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ABSTRACT 

 
 
Vasily V. Bondarenko, 2009. Soil water regime and evapotranspiration of sites with trees and 

lawn in Moscow. PhD thesis, Wageningen University, Wageningen, The Netherlands, 171 

pp., with summaries in English and Dutch. 

 

Situations where tree groups of the species Tilia cordata grow together with lawn grass (trees 

overlapping grass) were studied on five locations in Moscow, Russia, during six periods of 

the growing season of 2004. The measurements included: detailed descriptions of the soil 

profiles, tree and lawn dimensions, and, for each period, leaf area index (LAI), soil water 

content, and soil electric conductivity (EC). LAI was determined through taking photos with a 

digital camera and processing the photos with a digital image processing program. Using 

weather and LAI data and vegetation dimensions, the values of potential evapotranspiration of 

the vegetation combinations were calculated. These calculations followed FAO guidelines for 

computing crop water requirements. The reference evapotranspiration was also calculated 

according to Makkink’s radiation model. The results resembled the values of the FAO 

reference. The measured values of soil water content were used to identify sites and periods 

with reduced evapotranspiration due to water stress. It appeared that incidence of water stress 

was very common. The measured soil water content values were transformed into ratios of 

actual evapotranspiration and potential evapotranspiration: so-called water stress factors. 

Using these factors, the actual evapotranspiration was calculated from the potential 

evapotranspiration values. The water regimes of each object and period were analysed. Deep 

percolation occurred in early spring and late autumn. The possibilities for rainwater to 

infiltrate the soil were very limited, due to degeneration of soil structure. The water balance of 

the root zones indicated that the root-zone volumes were smaller than in average forest 

conditions, and that runoff was extremely high. 

 

Keywords: Urban vegetation, Tilia cordata, linden, lawn, grass, Leaf Area Index, LAI, digital 

image processing, evapotranspiration, water stress, electric conductivity, salinity stress, 

Makkink’s radiation model, deep percolation, water infiltration, runoff, modelling  

 vii



 



Contents 
 

Abstract .................................................................................................................................... vii 

Introduction ............................................................................................................................... 1 

 

Chapter 1. Climate, soil and vegetation in Moscow ................................................................. 7 

1.1. Location .......................................................................................................................... 7 

1.2. Climate ............................................................................................................................ 7 

1.3. Hydrological conditions ................................................................................................ 11 

1.4. Geomorphologic conditions .......................................................................................... 11 

1.5. Urban soil ...................................................................................................................... 12 

1.6. Urban vegetation ........................................................................................................... 13 

1.7. Conclusion .................................................................................................................... 15 

 

Chapter 2. Evapotranspiration. Review of models and model selection ................................. 17 

2.1.  Introduction ................................................................................................................... 17 

2.2.  Review of models: model types – models – submodels ............................................... 20 

 2.2.1. Model types. Classification of evaporation models according to Shuttleworth . 20 

 2.2.2. Penman model and Penman-Monteith model ..................................................... 23 

 2.2.3. A range of submodels ......................................................................................... 28 

2.3. Selected transpiration models ....................................................................................... 41 

 2.3.1. Makkink’s radiation model ................................................................................. 41 

 2.3.2. FAO Guidelines for computing evapotranspiration ............................................ 42 

 2.3.3. An application of the FAO guidelines to trees-lawn combinations in Moscow . 52 

2.4.  Conclusion .................................................................................................................... 56 

 

Chapter 3. Research sites and data collection ......................................................................... 59 

3.1.  Selected sites in Moscow .............................................................................................. 59 

 3.1.1. Locations ............................................................................................................. 59 

 3.1.2. Soil profiles of the study sites ............................................................................. 60 

3.2.  Materials and methods .................................................................................................. 64 

 3.2.1. Soil measurements .............................................................................................. 64 

 3.2.2. Vegetation measurements ................................................................................... 65 



 3.2.3. Estimation of canopy parameters through image processing ............................. 67 

 3.2.4. Meteorological data ............................................................................................ 78 

 3.2.5. Deviation calculations ......................................................................................... 78 

 

Chapter 4. Modelling and calculation of potential evapotranspiration from the measuring   

data ........................................................................................................................ 79 

4.1.  Calculation of reference evapotranspiration ................................................................. 79 

4.2.  Estimation of Leaf Area Index of trees and lawn ......................................................... 82 

4.3.  Calculation of crop coefficients for “Mid-season stage” periods and potential 

evapotranspiration for trees-lawn combinations in all periods ................................... 101 

 4.3.1. Calculation of crop coefficients for “Mid-season stage” periods ..................... 101 

 4.3.2. Calculation of potential evapotranspiration of trees-lawn combinations ......... 105 

 

Chapter 5. Calculation of water stress and salinity stress coefficients and actual evapo-

transpiration for trees-lawn combinations ........................................................... 107 

5.1.  Calculation of water stress coefficients ...................................................................... 107 

5.2. Calculation of salinity stress coefficients ................................................................... 112 

5.3.  Calculation of actual evapotranspiration for trees-lawn combination ........................ 115 

 

Chapter 6. Calculation of rain interception by trees, lawns, and trees-lawn combinations .. 117 

 

Chapter 7. Water regimes of root zones ................................................................................ 125 

 

Chapter 8. Discussion of model results ................................................................................. 129 

8.1.  Reference evapotranspiration ..................................................................................... 129 

8.2.  Leaf Area Indices of individual trees and lawn areas ................................................. 130 

8.3.  Leaf area Indices of objects ........................................................................................ 133 

8.4.  Kc values and potential evapotranspiration ................................................................ 135 

8.5.  Soil water contents ...................................................................................................... 136 

8.6.  Water stress coefficients ............................................................................................. 137 

8.7.  Actual evapotranspiration ........................................................................................... 138 

8.8.  Interception ................................................................................................................. 139 

8.9.  Water regimes ............................................................................................................. 140 



8.10. Conclusion .................................................................................................................. 143 

 

Chapter 9. Conclusions ......................................................................................................... 145 

 

Principal symbols and units ................................................................................................... 147 

References ............................................................................................................................. 153 

Summary ............................................................................................................................... 161 

Samenvatting ......................................................................................................................... 165 

Acknowledgments ................................................................................................................. 169 

Curriculum vitae .................................................................................................................... 171 

 



 



INTRODUCTION 
 

Problem statement 

Moscow, the capital of Russia, is one of the largest cities in the world. Its green areas include 

trees, lawns and shrubs. Trees are often small leaved Linden (Tilia cordata), growing in lawn 

and planted in groups. During recent decades, the condition of the vegetation was often very 

suboptimal.  

A Russian measure to express the condition of trees is the “percentage of wilted 

leaves”, which ranges from 0 to over 75 for individual, living trees. A survey from Makarova 

(2003) showed that this percentage was more than 25 for half of the Linden stock in Moscow 

during 1999. This value may be compared with other cities, e.g. with The Hague, the 

governmental residence of The Netherlands.  

A German measure to express tree condition uses four vitality phases (Roloff, 1989): 

exploration, degeneration, stagnation, and surrender to the dying process (resignation). 

Kareva (2005) assessed trees in the centre of The Hague according to this system. She found 

that in that environment almost all trees were in the exploration phase, i.e. in the highest 

vitality class. 

Makarova (2003) studied whether tree condition and tree environment in Moscow 

were connected. The study included a wide range of environmental and physiological factors: 

contents of heavy metals in soil and leaf, nutrient contents in soil and leaf, abundance of de-

icing salt, soil texture and structure, soil water content and transpiration of trees. Makarova 

concluded that water stress was a main cause for the suboptimal tree condition. This scientific 

result compares well with observations by the Urban Greening Department of the Moscow 

municipality, showing that the state of the trees in Moscow is better in years with wetter 

growing seasons than in years with drier conditions. 

This thesis therefore elaborates the evapotranspiration of sites with trees and lawn and 

analyses the causes of the water stress.  

 

Scientific background and assumptions 

Key factors in the analysis of water stress are:  

• potential and actual evapotranspiration of the vegetation and the soil; 

• water stored in the root zone;  

• rainfall;  
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• runoff of rainwater from the soil surface; and 

• deep percolation of soil water from the root zone.  

Measuring all these quantities individually under “undisturbed”, in situ, urban conditions is 

very difficult. This especially holds true for actual evapotranspiration, runoff, and deep 

percolation. For such variables, predictions on the basis of well calibrated and validated 

models are necessary. In order to collect the necessary information on the key factors for 

water stress, it is therefore assumed that:  

1. the amount of rainfall and soil water content can be measured accurately;  

2. the potential and actual evapotranspiration can be calculated from climate and weather 

data, soil data, and measured leaf areas using appropriate models;  

3. deep percolation and runoff can be estimated or derived from the balance equation for 

the water regime of the root zone.  

It is further assumed that detailed knowledge on the above-mentioned key factors will allow 

development of measures that reveal the water stress. However, this aspect is subject of 

another project.  

 

Aims of the studies 

The objectives of the study were: 

1.  to study existing models for the estimation of evapotranspiration, with respect to use 

for Moscow city. 

2. to define water stress for trees-lawn combinations using the chosen evapotranspiration 

model and characteristics of the urban climate, leaf area index (LAI) of the vegetation, 

and water characteristics of soil in the city conditions. 

3. to assess principal reasons for water stress of the trees-lawn combinations and identify 

possible changes of  water regime of the urban soil. 

 

Thus the current thesis: 

• reviews potential models to be used; 

• identifies the most appropriate model; 

• obtains accurate estimates for the key factors of water stress; and  

• applies the most appropriate model to calculate the potential and actual 

evapotranspiration, water regimes, and water stress in tree-lawn combinations. 
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Approach 

Site demands. The study was made for a range of selected sites in Moscow. The sites were 

selected so that they represented for Moscow: 

• a common range of tree conditions; 

• of the most frequent vegetation type; 

• on the most frequent soil type; 

• at medium tree age.  

Selection was done by local experts.  

The vegetation of each site consisted of a group of Tilia cordata trees that grew 

together with lawn. Throughout the thesis this vegetation type will be referred to by: trees-

lawn combinations. 

 

Model demands. The potential evapotranspiration of the selected sites will be calculated from 

climate and regular weather data using existing evapotranspiration models. The potential 

models should therefore be able to deal with: 

• combinations of plant species (trees with lawn);  

• high vegetation (trees); and 

• non-pristine, sparse vegetation (low and unusual leaf area indices).  

Moreover, the potential models: 

• should already have been verified and widely accepted; 

• do not need to model temperature regimes or growth and dry matter production; 

• for experimental reasons, the time steps in the calculation should not be very short; 

• do not need to provide detailed simulation.  

It is preferred that the final models identified can be fully understood by the user 

(transparency wish). The thesis provides the basic theory for this understanding. It is also 

preferred that the user can implement and run the models using a standard spreadsheet. 

Calculation procedures will be described in such a way that they can be reproduced by the 

reader. 

 

Calculations. The actual evapotranspiration of the selected objects will be calculated from the 

potential evapotranspiration values and the water content levels of the root zones. The amount 

of deep percolation from the root zone will be estimated from the soil water content at the 

bottom of the root zone. The rainfall data, the actual evapotranspiration and the amount of 
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deep percolation will be inserted in a water balance of the root zone for each object in each 

period. This water balance diagnoses the water stress and will reveal the factors that are 

responsible for a suboptimal water regime. Thereafter, strategies to diminish the water stress 

problem are proposed. 

 

Outline of the thesis 

Chapter 1 sketches the relevant conditions in Moscow. The reader finds details on the climate, 

weather and atmosphere, as well as on soil genesis, hydrology and arboriculture.  

Chapter 2 is devoted to modelling evapotranspiration and provides a detailed, logical, 

complete introduction into the commonly accepted theory of evapotranspiration. It is included 

in so much detail to comply with the transparency wish and to allow the reader to fully 

understand the background of the calculations and predictions. It starts with a classification of 

models according to Shuttleworth (1991), presents mechanistic models that are especially 

developed for trees with varying dimensions and canopy parameters, and concludes with a 

section on modelling evapotranspiration of non-pristine, sparse vegetation according to FAO 

guidelines (Allen et al., 1998). Based on accuracy considerations these guidelines will be 

followed in the further part of the thesis.  

Chapter 3 is the “materials and methods” section. It describes characteristics and 

surroundings of the objects with Tilia cordata and lawn that are selected for the 

evapotranspiration and water regime research. It includes site descriptions, the results of a 

detailed soil survey, the methods that were used for measuring water contents and electric 

conductivities of the root zones at a number of points in time, and a quick and convenient 

procedure to find values of leaf area index (LAI) and fraction of ground cover of trees and 

lawn.  

Chapter 4 presents collected data and the results of basic data processing. The chapter 

starts with the identification of growth stages of the Linden trees and the division of the 2004 

growing season into six evapotranspiration periods. Then, for each period, the reference 

evapotranspiration of a reference surface is calculated from meteorological data of Moscow. 

The LAI values of the individual trees and lawn areas are presented, and combined in order to 

obtain values of the crop factor (potential object evaporation relative to a reference 

evaporation) for each of the objects and periods. In agrohydrology, such transformation 

factors are named “crop factors” even if the vegetation is not a crop. Finally, the reference 

evapotranspiration values are multiplied with the respective crop factors in order to find the 
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potential evapotranspiration for each object and period.  

Chapter 5 introduces the concepts of water stress and salinity stress, and water stress 

and salinity stress factors. The stress factors are calculated from the measurements of the 

water contents and electric conductivities of each object and period. Multiplying the potential 

evapotranspiration values with the respective stress factors gives the actual evapotranspiration 

of each object and period.  

Chapter 6 is devoted to rainfall interception.  

Chapter 7 uses the rainfall values, the actual evapotranspiration values, and the water 

content of the root zone in order to analyse the water regime of each object in each period. 

The analysis uses soil physical characteristics in order to establish the likelihood of the 

occurrence of percolation of root-zone water to deeper soil layers and runoff of rainwater 

from the surface of the objects.  

Chapters 8 and 9 present discussion and conclusions, respectively. 
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CHAPTER 1. CLIMATE, SOIL AND VEGETATION IN MOSCOW 

 

1.1. Location 

 

Moscow is located between 55o and 56o northern latitude, and between 37o and 38o eastern 

longitude, between the rivers Oka and Volga. The area of the city is 1081 km2. The population 

of the municipality Moscow amounts to 10.407 million persons. Moscow is divided into 10 

administrative districts and 123 regions. 

 

1.2. Climate 
 

The climate of Moscow is moderately continental, but the degree of continentality is much 

higher relative to other large European cities. The annual temperature amplitude is in Moscow 

28 °С, in Warsaw 22 °С, in Berlin 19 °С, and in Paris 16 °С. On average, the first frosts are 

observed on September, 29, and the last frosts are on average on May, 10; this means that the 

frost-free period is, on average, 141 days. This frost-free period, however, ranges between 98 

and 182 days. 
In Moscow, the vegetative period, i.e. the period with an average daily temperature of 

at least + 5 °С, is 175 days and extends from April, 18 until October, 11. On average, stable 

frosts begin on November, 24 and end on March, 10. Thaws in January and February are 

within 5–7 days after the start of a frost period, in December within 8–9 days, in November 

and March within 17–18 days. The average temperature in January is –9.4 °С and in July it is 

+18.4 °С. These have been considered to be stable reference values between 1961 and 1990 

(norm). During recent years the mean annual air temperature has increased by 0.8 °С in 

comparison with the 1961–1990 norm and equals 5.8 °С. The mean winter temperature has 

increased by 2.2 °С, and in other seasons, the means increased by 0.4–0.5 °С (NN, 2005). 

Arising above the big city is «the island of heat» (Barry and Chorley, 2003), which is 

formed in Moscow rather clearly. As a result the temperature in the city as a whole is 1.5–2.0 

°С higher than in the vicinities. Throughout the year, the city centre is on average 1–2 °С 

warmer than the suburbs. In the city centre, frosts begin 2 weeks later and come to an end 

earlier. Consequently, the frost-free period in the centre is approximately a month longer than 

in the suburbs. In clear frosty nights, outside the city, it is sometimes 4–5 oС colder than in the 

city centre (10–12 years back: 2–3 oС). For 80 years, the mean annual temperature at the 
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borders of the city did not change (3.8 oC). But in the central part of the city the temperature 

showed a remarkable increase during the past few decades. In 1976, the average temperature 

was 4.6 oС, in 1990 it was 4.8 oС, and in 1995 it had increased to 5.6 oС. And it still shows an 

increasing trend (Isaev, 2002; Hromov and Petrosynz, 2001). 

 The quantity of precipitation in Moscow usually equals 540–650 mm per year. On 

average there are per year in total 184 days with precipitation of at least 0.1 mm. On average 

for the last five years the annual quantity of precipitation equaled 760 mm, which is 1.2 times 

the long-term norm (644 mm). The maximum quantities of precipitation in these last five 

years were in July, August and October, the minimum quantity was observed in April. The 

majority of the total quantity of precipitation comes down during the warm period (75%). 

Rainstorms in the centre occurred 1.5 times more often than in the suburbs or out of the city. 

For the Moscow region, the quantity of precipitation typically decreases from the northwest to 

the southeast and the east. But in the city of Moscow, the quantity of precipitation increases 

by up to 190–220 mm (Isaev, 2002). More detailed information about air temperature and 

precipitation is presented in Table 1.1 and Figure 1.1. 

A stable snow cover is established on about November, 26 (extremes: October, 31 and 

January, 9), and finally disappears by April, 11 (extremes: March, 23 and April, 27). The 

height of snow cover reaches on average 30–35 cm by the end of winter. 

The greatest quantity of clouds in Moscow is observed from October until January, 

when the cloudiness of the sky averages 75–85%. For the last forty-years period in Moscow 

cloudiness has increased 10–17%. In the warm period of the year (April – September) 

cloudiness decreases to 48–60%. It can be connected with an increase in the frequency of an 

atmospheric, cyclonic-type, circulation in the cold period of year, and with the urban 

influence promoting an increase of the moisture content in the atmosphere. During the last 10 

years high air relative humidity (> 70%) and rather high winter air temperature (>  0 °С) 

occurred more often. 

Average monthly pressure of air from October until February does almost not vary and 

equals 748 mm, in summer months (June–August) 746 mm.  

Winds in Moscow are possible in all directions. In the cold period of the year western, 

southwest and southern winds, caused by the general atmospheric circulation, prevail. Since 

May frequency of northwest and northern winds increases. One of the important 

meteorological characteristics is wind speed, especially its low values (0–1 m/s). Monthly 

average wind speed is 1.8–2.2 m/s. Frequency of wind speed 0–1 m/s (38%) and calms (18%) 
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Table 1.1. Air temperature and precipitation in Moscow 
 

Air temperature, oC Precipitation, mm Months 
mean 

(norm) 
max min mean (norm) max min 

January –9.4 –5.8 –11.7 43 98 5 
February –7.7 –4.5 –11.2 37 94 2 
March –2.2 1.2 –6.1 34 88 6 
April 5.8 10.5 1.6 44 110 3 
May 13.1 18.1 7.3 49 160 2 
June 16.6 21.9 11.6 62 190 5 
July 18.4 23.2 13.4 83 295 8 

August 16.4 21.5 12.1 75 270 1 
September 11.0 15.5 7.2 54 200 7 

October 5.1 8.1 2.1 49 185 2 
November –1.2 0.6 –3.9 58 140 4 
December –6.1 –3.5 –8.4 56 112 13 

Year 5.0 9.0 1.3 644 883 397 

 
has increased as compared with the long-term norm. The greatest frequency of weak winds 

for these years was observed in May–June (51%). Thus, we can observe a tendency of 

decrease of wind speed in the city (in comparison with suburbs), which is most likely 

connected with growth of urban territory and increase of surface area and of the number of 

stories of buildings. The largest frequency of calms and low wind speeds between apartment 

blocks occurred in extended zones that were generated in the north, the south and in the centre 

of Moscow.    

 The natural cycle of temperature, distribution of precipitations, air humidity, solar 

light and other meteorological factors considerably changed in connection with intensive 

increase of the area of city buildings and with development of the collecting system that 

quickly drains off rain water. This is connected with the large quantity of stone constructions 

and the large areas of roofs and asphalt coverings. In the process of growth of the city and 

growth of the difference between the climates of Moscow and the Moscow suburbs each of 

these factors became more significant. 

 More and more often, thaws and more frequent negative combinations of temperature 

and humidity create discomfort and negatively influence conditions of vegetation, roads, 

buildings, and communications. 
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Fig. 1.1. Air temperature and precipitation in Moscow 
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1.3. Hydrological conditions 
 

The hydrographic network of the city of Moscow represents a complex of water objects 

consisting of more than 140 rivers and streams and more than 430 natural and artificial 

reservoirs. The basic rivers of the city territory are the Moscow-river and its large inflows 
Yausa, Setun, and Shodnya, which each have lengths of more than 25 km in Moscow (Zubov, 

1998). 

The Moscow River, the main waterway of the city, crosses Moscow from northwest to 

southeast. The length of the river part within the city equals almost 80 km. The air regime of 

the central part of the city and valley of the Moscow River has special temperature and 

geomorphologic conditions. Due to a difference of temperatures (1–1.5 oС), air streams go 

from periphery to city centre.  

Water objects of the city experience big anthropogenic influence, which is related to 

their use for industry aims and power engineering, cultural and community water 

consumption and recreation, and also to runoff removal, groundwater and sewage. 

 

1.4. Geomorphologic conditions 

 

Moscow is located on three physiographic areas (Lihacheva, 1996): 

    1. Smolensko-Moscowskaya moraine height, located in the northwestern part of 

Moscow. It includes smoothed relief forms with absolute heights of 175–185 m above sea 

level. 

    2. Моscvorecko-Оkskaya, a moraine-erosive plane coming into the city from the south 

and named «Teplostanskaya height». It represents an erosive surface with absolute heights of 

200–250 m. It is deeply cut by ravines. 

    3. Mescherskaya zandrovaya, lowland, located in the east-city parts. It represents flat 

sandy lowland with separate moraine raisings and superficial depositions of Jurassic clay and 

Carbonic lime stones covered with water-glacial sand and sandy loams. Absolute relief has 

heights up to 160 m. Pine woods on sandy sod-podzol soils are widely distributed. On 

separate sites are well-developed peat-podzol soils. 

The territory of the city is located at a height of 150 m above sea level, with a height 

of 30–35 m relative to the level of the Moscow River. About 30% of the territory of the city is 

occupied by a valley of the Moscow River which includes floodlands and terraces. East and 
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southeast are the lowest parts of the city (Mescherskaya plane). 

The modern relief of Moscow is substantially formed by sediments of the glacial 

epoch (Moscowskaya and Dneprovskaya moraines) and erosive activity of the rivers. 

However, as a result of economic and building activities there is a change of relief of the city 

territory: ravines and floodlands are covered with earth; hills and slopes are leveled; rivers 

and streams go to underground collectors (Stroganova et al., 1997). Thus, modern 

anthropogenic sediments which have depths from 3 to 20 m form a rather significant area. In 

these conditions, parts of the mother bed remained natural, and parts of the motherbed became 

also a cultural layer, banked, and with alluvial material. 

 

1.5. Urban soil 
 

As a result of the anthropogenic influence, there is an intensive transformation of natural peat 

soil, floodplane soil, and podzolic and sod-podzol soils with different degrees of podzolic and 

gley processes and organic mater contents into specific soil: anthropogenic, surface reformed 

natural soil («urbo-soil»); anthropogenic, deeply reformed soil («urbanozem»); «technozem». 

 «Urbo-soil» combines the top layer created as a result of human activity ("urbic", a 

non-agricultural layer) having a depth less than 50 cm with the undisturbed middle and 

bottom parts of soil profiles.  

 «Urbanozem» has an "urbic" layer, consisting of one or several layers (U1, U2, etc.), 

with a depth of more than 50 cm, that originated by mixing, covering, or pollution with urban 

materials, including debris (Bockheim, 1974; Gerasimova et al., 2003). The profile of 

«urbanozem» is characterized by the absence of natural genetic horizons down to depths of 50 

cm and more. Mechanically (physically) and chemically transformed soils exist. 

«Technozem» are artificially created and designed surface formations (soils; grounds; 

substrates), enriched with organic layers and consisting of one or several layers. 

According to research studies (Makarova, 2003), the soils of the Moscow region are 

exposed to a washing water regime and under actions of a podsolic process. As a result of 

migration of clay particles downwards in the profile, dust particles always concentrate in the 

top part of the soil. In the anthropogenic conditions of Moscow these processes are 

maintained, but accumulation of dust particles occurs in higher amounts, due to deflation of 

these particles from bare soil surfaces and due to significant initial contents of dust particles in 

soil substrates for plants. Change of the soil texture and soil structure also changes the 
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physical, chemical and biological properties of the soil. So, for example, when there is a 

destruction of the structure of a top layer, its density is increased and thus its porosity and 

water penetration decrease. The organic matter content in the root zone can change from 2–

7% up to 15–25% and more. The рНКСl reaches values of 6.9–7.8; the concentrations of some 

exchange cations and nutrient elements are on average equal to: Са2+: 20–50 mg-equivalent/100 

g soil; Mg2+: 2 mg-equivalent/100 g soil; P2O5: 5–27 mg/100 g soil; К2О: 10–21 mg/100 g soil. 

These values are in excess of values that are typical for natural soils (Stroganova and 

Agarkova, 1992). 

Moreover, relevant factors are the high contents of heavy metals in soils (Pb, As, Cu, 

Zn, Cd, Ni) and the salinization of the soil (NaCl, CaCl2, etc.) as a result of using de-icing 

mixes in the winter period, because their high concentration can have a negative effect on the 

condition of various components of the environment (Lihacheva and Smirnova, 1994). 

 

1.6. Urban vegetation 

 

The total size of the green areas of the city (trees, shrubs, lawns) equals about 16785.8 ha. The 

most widespread species are: Tilia cordata – 19.5%; Acer platanoides – 9.7%; Populus 

balsamifera – 6.7%; Fraxinus pennsylvanica – 6.0%; Acer negundo – 5.6% (NN, 2004). 

According to a monitoring of the condition of urban vegetation during 1999–2004 

(NN, 2003; NN, 2004; NN, 2005), more than 90% of the Tilia cordata trees have categories 

1; 2; 3; 4 (Table 1.3, Fig. 1.2). The classification of tree state categories is presented in Table 

1.2. (Mozolevskaya et al., 1996; cited in Makarova, 2003). 

 Occasional improvement of the condition of plants was also reported, which was 

explained by a favourable combination of climatic factors, the use of less dangerous new-

generation de-icing mixes in the winter period, and /or improvement of the maintenance of 

plants.  

More than 77% of the plantings along highways are linear planting, and about 53% of 

the plantings in the streets are alleys and tree groups. In most sites there is a combination of 

trees and lawn. 

In conditions of such a large megalopolis, as the city Moscow, a large number of 

various natural and anthropogenic factors influence the vegetation. So, for example, the 

industry of Moscow includes more than 10,000 industrial enterprises placed on an area of 

1080 km2 with a volume of emissions of about 91,000 tons per year; the number of cars is 
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 Table 1.2. Classification of tree state categories 
 

№ of category Tree state categories (visual estimation) 

0 No signs of weakening 

1 Trees with less than 25% of leaves wilting 

2 Trees with 25–50% of leaves wilting 

3 Trees with 50–75% of leaves wilting 

4 Trees with over 75% of leaves wilting 

5 Dead wood of the current year 

6 Dead wood of previous years 

 

 

more than 3,000,000 units (NN, 2005). A detailed description of the factors influencing the 

condition of the city vegetation is presented in the research report of Makarova (2003): 

ecological conditions of the city; technologies of planting and maintenance of plants; the state 

of the soil; anthropogenic (accidental) factors; cost of planting. 

 

Table 1.3. Distribution of trees (Tilia cordata) by Tree State Categories in Moscow 

during 1999–2004 

 
Distribution of trees (Tilia cordata) by Tree State Categories, % Year 

0 1 2 3 4 5 6 

1999 0.6 36.5 39.8 18.0 4.4 0.5 0.2 

2000 0.6 27.3 35.6 26.6 8.6 0.9 0.4 

2001 3.9 24.1 38.0 26.1 5.9 1.6 0.4 

2002 5.9 37.6 40.6 11.1 3.0 1.3 0.5 

2003 0.4 32.6 45.0 15.9 4.4 1.2 0.5 

2004 0.2 40.7 37.7 18.7 2.0 0.4 0.3 
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Fig. 1.2. Distribution of trees (Tilia cordata) by Tree State Categories in Moscow during 

1999–2004 

 

1.7 Conclusion 
 

The significance of the above information in connection with the thesis may be summarized 

as follows. 

The climate of Moscow is not only determined by a high continentality, but also by 

strong effects of the city. Relative to the surroundings, these urban influences increase 

Moscow temperature, cloudiness and air relative humidity and decrease wind speed, all 

playing roles in the level of evapotranspiration. 

The soils of Moscow often have high organic mater content (especially in the top part 

of a profile), contain a large amount of dust particles and often have bad structure. This 

structure is very sensitive to damaging actions (NN, 1965; Schachtschabel et al., 1989), which 

often are very intensive under urban conditions. 

Tilia cordata is the most important planting of Moscow. The thesis concentrates on 

this species. Janson (1994) classifies Tilia cordata as a tree that has little demands to the soil.  
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CHAPTER 2. EVAPOTRANSPIRATION. 

REVIEW, MODELS AND MODEL SELECTION 

  

2.1. Introduction 
 
Results of scientific research on hydrometeorological aspects of trees-lawn combinations 

under urban conditions are very scarce. Therefore, we studied literature on similar vegetation 

categories: 

- stand-alone trees; 

- mixed vegetation in agroforestry; 

- forest with transpiring understorey; 

- orchards and vineyards. 

 

Stand-alone trees. Literature on the transpiration of stand-alone trees may throw the reader in 

confusion. On one hand, a common opinion is that, in urban conditions, trees transpire more 

than comparable forest trees, due to stronger winds, drier air, and light reflection by buildings 

and pavements. On the other hand, it may be reasoned that the micro-climate in the crown of a 

stand-alone tree resembles the climate remote from the tree rather than a condition that would 

exist if the tree was close to similar trees (forest situation). Generally, the micro-climate of 

surfaces without trees induces a lower transpiration potential than the micro-climate of 

forested surfaces, because the roughness of forest produces stronger air turbulence (Eagleson, 

2002). The micro-climate in streets of villages, towns, and small- and medium-sized cities 

may be totally different from that of a large city like Moscow (see Chapter 1). Landsberg and 

McMurtrie (1984) assessed whether water use by isolated trees can be calculated from 

weather data, and the consequences of water uptake in terms of soil drying patterns. 

Landsberg and McMurtrie presented concepts. Vrecenak and Herrington (1984) modelled 

transpiration from urban trees in 75 litre containers. The frequency of measuring data 

collection was 1 hour-1. The conditions of an individual urban tree often interact with those of 

neighbouring trees. In order to deal with this problem, Eagleson (2002) started from two 

extreme situations. One extreme was a tree spacing that was comparable with a forest 

situation. The other extreme situation included only one tree, on an infinitely large, not 

transpiring, surface. Eagleson derived the transpiration of the latter situation from the former 

situation through very rough approximations. He calculated the transpiration of situations 
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between both extremes (sparse vegetation of trees on a not-transpiring surface) through linear 

interpolation between the two extremes. Combinations of alleys or groups of trees and lawn 

grass areas are even more complicated because the lawn grass also contributes to the 

evapotranspiration. McMurtie and Wolf (1983) explored conditions for the coexistence of 

trees and grass using a mathematical model describing plant competition for radiation, water 

and nutrients. The model describes growth of both species in terms of key physiological 

processes (radiation interception, photosynthesis, respiration, grazing, litterfall, assimilate 

partitioning, nutrient uptake and water use). They used the model to demonstrate how species 

compete by depriving each other of resources essential for growth. Changes of growth 

parameters are shown to lead to shifts in species composition (e.g. through replacement of one 

species by another). Scholes and Archer (1997) reviewed literature on tree-grass interactions 

in savannas. These authors state that the coexistence of apparent competitors can be 

accounted for (“modelled”) in different ways. A first way is that competitors avoid 

competition by using resources that are slightly different, obtained from different places, or 

obtained at different times (niche separation by depth or by phenology). A second way is 

balanced competition: balancing through increasing negative effects for the species that is in a 

period of winning the competition. If no balance is possible under normal conditions, 

incidental events/disasters may occur that suppress the stronger species, fires being a classic 

example. 

 

Agroforestry is a farming system that integrates crops and/or livestock with trees and shrubs. 

The resulting biological interactions provide multiple benefits, including diversified income 

sources, increased biological production, better water quality, and improved habitat for both 

humans and wildlife. Farmers adopt agroforestry practices for two reasons. They want to 

increase their economic stability and they want to improve the management of natural 

resources under their care. Agroforestry systems, especially for temperate climates, have not 

traditionally received much attention from either the agricultural or the forestry research 

communities (Beetz, 2002). One can find proceedings of a number of scientific meetings and 

monographs devoted to modelling for agroforestry (NN, 1994; Sinoquet and Cruz, 1995; 

Auclair and Dupraz, 1999). They do not include comprehensive, robust, models. Mayus 

(1998) modelled transpiration and growth of millet in windbreak-shielded fields in the Sahel. 

Her simulation results showed good agreement with the experimental data from an 

experimental field in Niger. 
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Forest with transpiring understorey. The understorey of forest trees often accounts for a 

significant proportion of forest evapotranspiration. Black and Kelliher (1989) discuss the role 

of the understorey radiation regime, and the aerodynamic and stomatal conductance 

characteristics of the understorey in understorey evapotranspiration. Values of a so-called 

decoupling coefficient for the understorey in Douglas-fir stands indicated considerable 

coupling between the understorey and the atmosphere above the overstorey. Kelliher et al. 

(1986) estimated the effects of understorey removal from a Douglas-fir forest using a two-

layer canopy evapotranspiration model (Shuttleworth and Wallace, 1985). The model used 

meteorological data measured hourly at different heights above the canopy and in the tree 

crowns, and meteorological measurements near a salal understorey taken at a frequency of 0.1 

s-1. There was generally good agreement between modelling and experimental results. Using a 

similar approach, Spittlehouse and Black (1982) determined, in a Douglas-fir forest with salal, 

the evapotranspiration of the Douglas-fir overstorey and the evapotranspiration of the salal 

understorey separately. 

 

Orchards and vineyards have great importance for economy of many countries. Much 

research has been done in order to analyse and predict accurately their water requirements. 

This research is based on lysimeter experiments and detailed measurements of weather and 

soil water contents, in different climates. It resembles agricultural research for other crops. A 

group of experts worked during 8 years to update the FAO Irrigation and Drainage Paper No. 

24, published in 1977 (Allen et al., 1998). The update distinguishes a large number of 

agricultural crop categories, among them vineyards and orchards. It treats also “natural, non-

typical and non-pristine vegetation”. The paper refers to over 300 research publications. It is 

the prediction method described in this paper that is followed in our research. The method is 

described thoroughly later in this chapter. First, sections follow that are needed for 

understanding and judging the FAO method, and putting it in a right perspective. 

        

A main aim of the thesis is the calculation of potential evapotranspiration of selected 

sites with trees and lawn in Moscow. The calculation should only use regular weather data 

and canopy parameters. The modelling should be able to deal with non-pristine, sparse, tall, 

vegetation, and produce reproducible results. It should be based on existing models that 

already have been verified and does not need to model temperature regimes or growth and dry 

matter production. For experimental reasons, the time steps in the calculation should not be 
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very short. Detailed simulation is not intended. Many mechanistic models exist. Such models 

often suffer from inaccuracy and need a vast amount of input data. But they provide much 

insight. Evapotranspiration calculations for practical purposes often follow empirical- 

analytical methods. They often combine empirical crop factors with a mechanistic model like 

the Penman-Monteith equation. Section 2.2 classifies evapotranspiration models according to 

a scheme that is developed by Shuttleworth (1991), and reviews significant models and 

submodels. Section 2.3 lists the mathematical procedures for the application of two empirical-

analytical methods: Makkink’s radiation model and the computation according to FAO 

guidelines. Section 2.4 justifies the use of the FAO guidelines in the further part of the thesis. 

 

2.2. Review of models: model types – models – submodels 

 

2.2.1. Model types. Classification of evaporation models according to Shuttleworth  

 

Many evaporation models exist. A description of many models is presented in NN (1996a). 

Shuttleworth (1991) classified evaporation models, mainly through the meteorological input 

they require and the type of evaporation they provide (e.g. actual evapotranspiration, potential 

evapotranspiration, transpiration ET, evaporation of a reference crop ERC, potential 

evaporation E0). Now his reasoning follows. 

 

Simulation models 

 
When one aims at estimation of actual evaporation, a logical approach is to build a model that 

tries to simulate the physical and physiological processes that actually occur in the real 

situation. 

Usually these models are built in one dimension, and attempt to simulate evaporation 

from vegetation by including all the information available for the vegetation stand under 

study, e.g. its structure and form, and submodels of its stomatal behaviour in response to 

meteorological parameters. The model must also be supplied with short-term measurements 

of the meteorological conditions above the canopy as input, and then simultaneously solves 

all the equations describing the canopy using these as a boundary condition. In doing so, it 

generates simulated profiles of temperature, vapour pressure and the heat fluxes. 

Generally, the vegetation is divided into a finite number of horizontal layers. About 10 

layers are usually used, and for each layer the interception of solar and thermal radiation is 
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calculated, and partitioned into sensible heat, latent heat, and photochemical energy. Iterative 

procedures are used until an energy balance is achieved for all foliage layers. 

Such models must be considered the best available method of predicting actual 

evaporation, given extremely high data availability; and providing the required submodels are 

available. 

 

Single source models 

 

Single source or “big leaf” models of plant canopies consider the overall effect of the whole 

canopy reasonably approximated by a model that assumes all the component elements of the 

vegetation are exposed to the same microclimate. In the general model, the sensible heat and 

latent heat from the vegetation are assumed to be generated at one and the same height (the 

so-called “effective source sink height”) in the canopy, and are merged with those from the 

soil beneath. They then pass through additional resistances to reach some level above the 

canopy, “the screen height”, at which measurements of temperature and vapour measurements 

are made. 

Although simulation and single source models are superior to all other techniques, in 

that they provide a direct estimate of actual evaporation, their use is inhibited by the current 

lack of short-term meteorological data sets, and the submodels of stomata resistance required 

for their implementation. 

 

Intermediate models 

 

The prior section treated single source models. The section after the section under discussion 

(intermediate models) will treat energy balance models. Between the single source models 

and energy balance models a group of intermediate models may be distinguished. The energy 

balance models provide estimates of the evaporation of a reference crop ERC, the evaporation 

of a water surface Eo, or the evaporation of a saturated land surface. In order to increase the 

applicability of energy balance models beyond ERC and Eo, energy balance models have been 

extended with submodels. The extended energy balance methods provide estimates of crop 

transpiration ET. An example of such an extension is the inclusion of a relationship that can 

predict the aerodynamic resistance against upward transport of heat and vapour, not only from 

the wind velocity at screen height but also from canopy parameters. Another example is the 

inclusion of distinct submodels for “dry crop” transpiration and for evaporation of rainfall that 
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was intercepted by the canopy. Section 2.3.2 (FAO guidelines) is an example of an 

intermediate model. 

 

Energy balance models 

 

The Penman equation is the original and typical example of energy balance models. It 

calculates the energy used for evaporation from a free water surface (Eo) as the difference 

between the net radiation energy received by the free water surface and the energy lost by the 

free water surface in the form of sensible heat. The energy used for evaporation from the free 

water surface is equal to the amount of evaporation (upward vapour transport from the water 

surface to screen height) multiplied by λ, the latent heat of vaporization per unit mass of liquid 

water. The net radiation energy received by the free water surface is equal to the sum of the 

total incoming solar (shortwave) radiation and downward longwave radiation, minus the sum 

of the reflected solar (shortwave) radiation and the upward longwave radiation (heat fluxes in 

the water under the water surface are usually neglected). The energy lost by the free water 

surface in the form of sensible heat is equal to the temperature difference between the water 

surface and the temperature at screen height, multiplied by the amount of upward air transport 

from the water surface to screen height, and multiplied by the specific heat of air. The rate of 

upward vapour and air transport depends on turbulent movements in the boundary layer of the 

atmosphere, in such a way that the rate of upward (vertical) transport increases with 

increasing (horizontal) wind velocity at screen height. This dependency is modelled by a so-

called wind function f(u). 

Following the above reasoning for a reference crop, a model for the calculation of the 

potential evaporation of the reference crop ERC is obtained. 

 

Radiation models 

 

Penman’s elaboration of his model led to an equation showing that the rate of evaporation 

consists of two parts: a part that is proportional to the net radiation, and a part that is 

proportional to the vapour pressure deficit at screen height (the saturated vapour pressure at 

screen height minus the actual vapour pressure at screen height). It appears that an empirical 

relationship exists between the two parts. Moreover, the first part is commonly four to five 

times larger than the second. Both facts explain why simple models exist stating that, albeit 

evaporation energy is not equal to the net radiation energy, evaporation energy of a reference 
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crop is proportional to the net radiation energy. In a number of cases, the energy which is used 

for evaporation appeared to be near equal to the net radiation. Makkink’s model, described in 

Section 2.3.1., is an example of a radiation model. 

 

Humidity models 

 

Although it may be expected that evaporation correlates less with vapour pressure deficit than 

with net radiation (see above), models exist that assume proportionality between crop 

evaporation and vapour pressure deficit at screen height. The proportionality factor may be a 

wind speed dependent empirical expression. 

 

Temperature models 

 

Several empirical formulas exist which relate reference crop evaporation to temperature. The 

physical basis for them is that both the net radiation and the vapour pressure deficit are likely 

to have some, albeit ill-defined, relationship with temperature. The only real justification for 

using models of this type is that an estimate of evaporation is required on the basis of existing 

data, and temperature is the only measurement available. 

 

2.2.2. Penman model and Penman-Monteith model 

 

Penman model 

 

Literature shows that the well-known Penman model for the evaporation from a free water 

surface can be derived in many ways (Penman 1948; Penman 1963; Goudriaan, 1977; Frere, 

1979; Frere and Popov, 1979). The next derivation follows Van Keulen and Wolf (1986). 

Penman assumed that the air close to the water surface is always saturated, and wrote, for the 

energy balance at the evaporating free water surface, 

 

 

)()( as
u
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TThLEHR −+−=+=
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NR  = net radiation [J m-2 day-1], 

H = sensible heat loss [J m-2 day-1], 

LE  = energy used for evaporation ( L = latent heat of vaporization of water; E  = rate of water 
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loss at the surface) [J m-2 day-1],  

uh  = sensible heat transfer coefficient [J m-2 day-1 oC-1],  

as TT ,  are air temperature at the surface and air temperature at screen height, respectively [ºC], 

γ  = the psychrometer constant, expressing the physical connection between sensible heat 

transport and vapour transport by the moving air [mbar ºC-1],  

as ee ,  are vapour pressure at the surface and vapour pressure at screen height, respectively 

[mbar].  

When, in addition to E , the quantities  and  are also unknown, the above equation 

can still calculate 
sT se

E  using the Penman linearization of the temperature – saturated vapour 

pressure curve (see Fig. 2.1.): 
 

)( dsas TTee −Δ=−  

 

Td = the dewpoint of the air at screen height, i.e., the temperature at which the vapour in the 

air at screen height would start to condense or, in other words, the temperature at which the 

actual vapour pressure in the air at screen height would be the saturated vapour pressure [ºC], 

Δ  = slope of saturation vapour pressure curve [kPa ºC-1]. 

After substituting this linearization into the first equation, making  explicit, and 

combining with 

sT

 

LEHRN +=          and        )( asu TThH −=

 

we obtain the well-known Penman equations for the evaporation from a free water surface: 
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or, using in addition the linearization  Δ−=− /)( adda eeTT

))((1
aduN eehRLE −+Δ

+Δ
=

γ
 

 

ed = the saturation vapour pressure at the air temperature at screen height, i.e., the vapour 

pressure at screen height if the air at screen height would be saturated [mbar].    
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ed – ea is vapor 
pressure deficit   

 
Fig. 2.1. The relation between temperature and saturated vapour pressure. 

The figure is obtained by elaboration of Fig. 22 from Van Keulen and Wolf (1986). Ta = air 
temperature at screen height, Ts = surface temperature, ea = actual vapour pressure at screen 
height, es = saturated vapour pressure prevailing at the surface, Td = the dewpoint of the air at 
screen height, ed = the saturation vapour pressure at the air temperature at screen height.  

 

 

The sensible heat coefficient can be considered as a conductivity, and its reciprocal 

( ) as a resistance. Often, is substituted using 

uh

uh/1 uh

 

 apu rch /ρ=  

 

 in which: 

ar  = atmospheric or aerodynamic resistance (with units “time divided by length”)     [d m-1], 

ρ  = air mass density [kg m-3], 

pc  = specific heat of air [J kg-1 ºC-1], 
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Substitution of apu rch /ρ=  in the last Penman equation gives the most widely used 

form of the Penman model: 

 

)/)((1
aadpN reecRLE −+Δ

+Δ
= ρ

γ
 

 

Penman’s model is not only suitable for free water surfaces, but also for closed short 

canopies that are well supplied with water from the roots. This is because under these 

conditions the evaporation from the wet inner surfaces of the very many leaf stomata is 

similar to the evaporation of a free water surface. The model can also successfully be applied 

to saturated bare soil surfaces. 

 

Penman-Monteith model 

 

Experiments have shown that the above form of the Penman equation is less suitable for 

vegetated surfaces when the water supply from the roots is limited and/or when the canopy is 

not closed and short. For these conditions, Monteith combined the Penman equation with 

theory on canopy resistance against evaporation from the wet inner surfaces of the stomata. 

This combination is known as the Penman-Monteith model (Monteith, 1965; Rauner, 1976; 

Monteith, 1981). 

We consider a canopy that supplies sensible heat and water vapour to the atmosphere 

above the canopy. Sensible heat is transferred from the canopy surfaces to the air surrounding 

the canopy parts. The surrounding air is transported upwards to screen height by turbulent 

flow. The upward transport of sensible heat is proportional to the mass of upward air transport 

and to the temperature difference between canopy and screen height. The upward transport, 

from canopy to screen height, of an air volume in the turbulent air movements takes some 

time. From a physical point of view, this time dependency can be considered to be similar to 

the concept of “resistance” that is used for electric currents or fluid flows. So, we may say that 

the upward transport of air volumes encounters resistances, during their movement through 

the canopy, and during their movement between the canopy top and screen height. In the 

Penman-Monteith model, both resistances are combined in the so-called aerodynamic 

resistance ra. 

The transport of vapour from the neighborhoods of the leaves to screen height is also 

 26



connected with the turbulent air movements, which implies that the aerodynamic resistance 

for vapour is very similar to the aerodynamic resistance for sensible heat. But the water 

vapour has to overcome an additional resistance, namely the resistance encountered during its 

movement from the wet inner stomata walls, through the stomata openings, to the air 

surrounding of the leaves: the so-called canopy resistance rc. Therefore, Monteith assumed 

that the movement of water vapour from the evaporating inner stomata walls to screen height 

encounters the resistance ra + rc. The combination of this concept with the Penman model is 

known as the Penman-Monteith model. 

The form of the Penman-Monteith model can be derived in many ways. In this section, 

we follow the reasoning in Rowntree (1991). Rowntree wrote, for the energy balance at a 

vegetated surface, 
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Following similar mathematical procedures as for the derivation of the Penman model, 

the last equation can be transformed into the Penman-Monteith model: 
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It can be seen from the equations that the Penman-Monteith model may be obtained 

from the Penman model by replacing γ  by )/1( ac rr+γ . The ratio  is known as the 

resistance ratio

ac rr /

. For wet canopy, . Then, the Penman equation and the Penman-

Monteith equation are the same. When the canopy is dry and the stomata are closed, the value 

of  is infinitely large. Then, the above equation predicts that the evaporation is zero. It 

should be noted that the derivation of the Penman-Monteith equation may be based on 

different physical reasoning. 

0=cr

cr

E.g. Eagleson uses the same form although he neglects the stomata resistance in 

calculating the canopy resistance (Eagleson, 2002, p. 140 and p. 145).  
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2.2.3. A range of submodels 

 

Wind profile 

 

The height-dependent wind velocity near the earth surface plays a large role in evaporation. 

The horizontal wind velocity at a certain height above the earth surface varies with height and 

depends on the wind velocity at screen height, canopy properties and properties of the earth 

surface. Fig. 2.2 (from Brutsaert, 1982) is a definition sketch for the relevant quantities. 

 

 

Fig. 2.2. Quantities defining the wind profile in and above a canopy of trees 

(Brutsaert, 1982). 

Various heights are distinguished (Eagleson, 2002):  

- wind velocity at heights above the trees, 

- wind velocity and shear stress at the top of the tree crowns, 

- wind velocity within the tree crowns, 

- wind velocity below the tree crowns. 

  

Wind velocity at heights above the trees 

 
In 1930, von Kármán presented his well-accepted logarithmic law describing the vertical 

distribution of the mean horizontal wind velocity in the boundary layer of the earth 

atmosphere. The wind speed above a canopy follows this law: 
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in which 

)(zu = mean horizontal wind velocity at height [m sz -1], 

k = von Kármán’s constant [-], 

*u = shear velocity (explained below) [m s-1], 

0d  = zero-plane displacement height  [m], 

0z  = surface roughness length [m]. 

Note that  refers to heights above the top of the trees, while  refers to heights 

lower than the canopy top. Eagleson (2002, p. 101 and p. 107) presents equations and graphs 

allowing the determination of  and  from canopy properties. When  and  are 

known, and one value of at a height is available (e.g., a measuring value), the shear 

velocity and the wind speed at any height above the canopy can be calculated using the above 

equation. 

)(zu 0d

0d 0z 0d 0z

)(zu z

 

Wind velocity and shear stress at the top of the tree crowns 

 

At the top of the canopy the gradient of the wind velocity with depth is very high. Therefore, 

very significant shear stress occurs between the air above the canopy and the air in the 

canopy. This shear stress 0τ  at the top of the canopy increases with the wind speed  at the 

top of the canopy. The physical quantity describes conditions at the top of the canopy and 

is connected to the shear stress 

0u

*u

0τ  as well as to the velocity . It depends on properties of 

the canopy. Because  has the dimensions of length per time, it is called shear velocity. The 

shear velocity is defined by 

0u

*u

 

0
2/1

0* / uCu f== ρτ  

 

in which 

*u  = shear velocity [m s-1], 
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0τ  = shear stress at top of canopy [N m-2], 

ρ = fluid mass density [kg m-3], 

fC = foliage surface drag coefficient [-]. 

 

The foliage surface drag coefficient  depends on canopy parameters as follows: fC
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in which 

h = tree height [m], 

sh  = height of crown base above surface [m], 

m = exponent relating shear stress on foliage to horizontal wind velocity and having the 

nominal value 0.5 for the foliage elements of trees [-], 

n  =  number of sides of each foliage element producing surface resistance to wind and having 

the nominal value 2 for the foliage elements of trees [-], 

β = momentum extinction coefficient = cosine of angle leaf surface makes with horizontal    

[-], 

tL  = foliage area index = upper-sided area of all foliage elements per unit of basal area 

(foliage includes leaves, branches and stem) [-]. 

 

Both last equations may be combined giving the form 

t
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This form relates  to  through canopy properties. 0u *u

 

Wind velocity within the tree crowns 

 

Many observations have shown that, within the canopy, the extinction of wind velocity with 

depth has an exponential form, according to 
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The quantity ξ  varies from 0 at the top of the canopy to 1 at the bottom of the crowns. 

 

Wind velocity below the tree crowns 

 

Here, it is assumed that the wind velocity does not vary with height, and has the value of the 

wind velocity at the bottom of the crowns. From the last two equations, with 

u

1=ξ , it follows 

that 
 

)exp(0 tLnmuu β−=  

 

This assumption implies the assumption that the shear stress on the surface is zero. This is 

allowed because observations showed that, for  , “the shearing stress transmitted to the 

ground surface is essentially zero”. 

1>tL

 

Atmospheric, or aerodynamic resistance 

 

The literature shows that the atmospheric resistance is modelled in different ways. The 

various models predict different values for the same input values. E.g. the model of 

Eagleson, which follows now, predicts rather low values. After Eagleson’s model, models 

will be described that predict higher values. Atmospheric resistance is also called: 

aerodynamic resistance (Shaw and Pereira, 1982). 

ar

 

Equivalent atmospheric resistance according to Eagleson (2002) 

 

For the conditions between the reference height and the top of the canopy we can use an 

analogy with Ohm’s law (Eagleson, 2002, p. 133). Ohm’s law for an electric current in a wire 
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states that “the difference in electric potential V between the wire ends is equal to the electric 

current in the wire multiplied by the resistance i R of the wire”, or: 

 

i
VR =  

 

By analogy we may assume that 

R = the aerodynamic (or atmospheric) resistance between screen height and canopy top, ar

V = the difference between momentum concentration uρ  [kg m-2 s-1] at screen height and 

momentum concentration uρ at the top of the canopy, 

i  = the shear stress τ  (flux of momentum [kg m-1 s-2]) in the layer between screen height and 

canopy top. This shear stress does not vary with height so that it equals 0τ , the shear stress at 

canopy height. 
 

Substituting these quantities into Ohm’s law gives: 

 

0

02

τ
ρρ uu

ra
−

=  

 

where index 2 refers to screen height and index 0 to height of canopy top. Because usually 

 this may be approximated as 02 uu >>

0

2

τ
ρ ura =  

 

Using the von Kármán equation )(ln
0

02*
2 z

dz
k
uu

−
=  with  is screen height, and the 

definition of shear velocity 

2z

ρτ /0* =u  , this can be transformed into 

 

2
2

0

022 )(ln

uk
z

dz

ra

−

=  

 

This is the aerodynamic resistance for the transport of momentum. But we need for 
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our evaporation models the aerodynamic resistance for vapour transport. Eagleson assumes 

that the aerodynamic resistance for vapour transport can be approximated by the aerodynamic 

resistance for momentum transport (Eagleson, 2002). This is only partly true because the 

vapour transport is merely a diffusion process, and momentum is also transported by pressure 

differences (aerodynamic resistance for vapour transport is larger than for momentum 

transport). 

 

A widely accepted model for aerodynamic resistance 

 

Like the wind speed distribution, the variation of the air specific humidity with height may 

well be approximated by a logarithmic function (Brutsaert, 1982, p. 61): 

q
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with 

sq = saturation air specific humidity, at the surface (mass of water vapour per unit mass of dry 

air) [-], 

)(zq = air specific humidity at height [-], z

E = vapour flux (mass of water vapour per unit of surface per unit of time) [kg m-2 s-1], 

vα  = ratio of the von Kármán constants for water vapour and momentum,  , 1≈

z0h = roughness length for vapour and heat [m]. 

The equation has been developed from similitude considerations, dimensional analysis and 

experimental results. The  can be eliminated from this equation by using the equation for 

the logarithmic wind profile (z

*u

0m = roughness length for momentum [m]) 
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so that, with 1=vα , 
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This equation can be inserted in the Ohm’s analogy for vapour transport: 

 

E
zqq
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a
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resulting in the widely accepted equation for calculating aerodynamic resistance for vapour 

transport from wind speed measurements and humidity measurements:  

 

 

uk
z

dz
z

dz

r h

h

m

m

a 2
0

0

0

0 )(ln)(ln
−−

=  

 

where: 

 

mz  =  height of wind speed measurements [m], 

hz  =  height of temperature and humidity measurements [m], 

u  =  measured wind speed [m s-1]. 

Allen et al. (1989) and Allen et al. (1998) state that 

crophd
3
2

0 =  

cropm hz 123.00 =  

cropmh hzz 0123.01.0 00 ==  

croph  = crop height [m]. 

It can be seen that, if wind speed and humidity are measured at the same height, the 

above equation and the equation for the equivalent aerodynamic resistance according to 

Eagleson are the same if would be equal to . But, as mentioned a few sentences before, 

Allen et al. (1989) and Allen et al. (1998) state that  or . Brutsaert 

(1982, p. 124) writes that this ratio “appears to be of the order of 1/7 to 1/12, but for tall trees 

ohz omz

mh zz 00 1.0= 10/1/0 =omh zz
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it is probably of the order of 1/3 to1/2, but not much larger.” This remark suggests that the 

difference between both equations is less for tall trees than for short trees. 

It may be noted that Eagleson (2002, p. 101 and p. 107) also uses different relations 

between , , and plant height. He refers to measurements showing that the relations he 

presented are more appropriate for trees than the relations 

0d mz0

crophd
3
2

0 =  

cropm hz 123.00 =  

presented by Allen et al. (1989) and Allen et al. (1998). 

 

Model in Mohren (1987) 

 

Mohren (1987) specifies that the equation of  for the transport of momentum applies to the 

momentum transport from reference height to a plane at height  inside the canopy, the 

level at which the logarithmic wind profile would predict zero wind speed. In the case of a 

canopy of considerable roughness, differences between aerodynamic resistance to momentum 

and resistance to vapour and heat exchange must be taken into account. Resistances to vapour 

and heat exchange will be larger because these traits cannot be transferred by pressure 

interactions in the air between the ever-moving leaves. This can be taken into account by 

adding an excess resistance  to the turbulent resistance for the transport of momentum 

calculated from the wind profile. Mohren follows results from Chen and uses 

ar

00 dz +

exr

 

*/4 urex =  

 

where  = shear velocity [m s*u -1]. This value of  [s mexr -1] should be added to the value of  

calculated like Eagleson did (see above). 

ar

 

Model in Van Keulen and Wolf (1986) 

 

The example calculations in Van Keulen and Wolf (1986) all use aerodynamic resistances that 

apply to “a smooth land surface” (empirical results from Frere and Popov, see p. 70 of Van 

Keulen and Wolf (1986). Variations in the wind profile with vegetation parameters are not 

accounted for.   
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Concluding remarks 

 
It may be concluded from the above, that Eagleson’s model provides relatively low  values. 

Complicating factors are that: 

ar

- Eagleson calculates the wind profile from, amongst others, β , the momentum 

extinction coefficient = cosine of angle leaf surface makes with horizontal. It appears 

that  is very sensitive toar β . An appropriate value for β  is not easy to find. 

- Later, when calculating canopy transpiration, Eagleson uses relatively low values for 

the canopy resistance , which may enlarge the effect of a relatively low  value on 

the calculated transpiration. 

cr ar

 

Canopy resistance 

 

When considering the vapour transport between the wet inner walls of stomata to the 

atmosphere above the canopy, it is common to define the resistance against this transport as 

the canopy resistance. The water that evaporates from the saturated inner walls of the stomata 

has to overcome several component resistances before it leaves the upper boundary of the 

canopy; 

- water tension at the wet inner walls of the stomata, which is connected to the water 

tension in the soil, 

- intercellular resistance, controlling the flow within the stomatal cavity, 

- stomatal resistance, a physiological “valve” regulating plant water loss and carbon 

dioxide assimilation, 

- leaf boundary layer resistance (resistance during transport through a thin, relatively 

stable, air layer around the leaf), 

- interleaf resistance in the air layers between the leaves with their boundary layers, 

during the labyrinthic atmospheric pathway through the crown. 

 

Physically, the vapour transport in the canopy is a gas diffusion process obeying 

Fick’s diffusion law. For plants it is common to use a simplified form of this law (Larcher, 

1995, p.  75): 

 

Flux = concentration difference/resistance 
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This equation is very similar to Ohm’s law for electrical currents. The various 

resistances may act “in series” or “parallel”. E.g., leaf stomatal resistance and leaf boundary 

layer resistance act “in series”, resistances of individual stomata act “in parallel”. Many 

authors proposed models that estimate canopy resistance. These models differ with respect to 

the specific component resistances they neglect. E.g., Eagleson (2002) neglects in a large part 

of his book: leaf epidermis resistance, intercellular resistance, stomatal resistance, leaf 

boundary layer resistance. However, neglecting stomatal resistance may give unrealistic 

results. Other authors consider the interleaf resistance being a part of the aerodynamic 

resistance, and not a component of the canopy resistance. 

In many models the single stomatal resistance plays a central role. The resistance of an 

individual stoma may increase with temperature, vapour pressure deficit and/or soil water 

tension. Therefore, the use of a so-called minimum stomatal resistance is meaningful. 

    

Canopy resistance according to Spittlehouse and Black (1982) 

 

Spittlehouse and Black (1982) do not consider the interleaf resistance and state that the 

stomatal resistance + boundary layer resistance of each leaf layer (layer with leaf area index = 

1) should be connected “in parallel” in order to find the bulk stomatal resistance [s m-1] of the 

canopy: 
 

L
rr

r lbls
c

+
=   

 

where: 

lsr =  stomatal resistance per unit area of leaf surface [s m-1], 

lbr  = leaf boundary layer resistance per unit area of leaf surface [s m-1], 

L  =  leaf area index [-]. 

 

Eagleson (2002, p. 32) presents foliage area indices of a range of deciduous trees, 

suggesting that an average value for L is 4. Feddes et al. (2003) give a minimum value 

 s/m for forest. Substituting both values in the above equation gives a minimum 

s/m. This value compares well with resistance measurements in an oak forest in 

The Netherlands (Ogink-Hendriks, 1995). Spittlehouse and Black (1982) present, for a 

125=cr

500=+ lbls rr
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Douglas-fir stand, a minimum value  = 428 s/m and a value  = 15 s/m, implying 

 s/m. The above values also compare well with the values in Shuttleworth and 

Wallace (1985). 

lsr lbr

443=+ lbls rr

 

Canopy resistance according to Eagleson (2002) 

 

Eagleson (2002) deals with the interleaf resistance by using the concept of interleaf layer 

resistance. He assumes that the crown consists of a number of horizontal layers, in such a way 

that the foliage area index of each layer is equal to 1. This conceptual crown is shown in fig. 

2.3. So, the number of such “leaf layers” is equal to the foliage area index of the crown, 

rounded down to the nearest lower whole number. It is further assumed that the lowest leaf 

layer is inactive and that layers exist between the leaf layers, the so-called interleaf layers. 

The thickness of the interleaf layers is calculated as the crown height divided by the number 

of interleaf zones. Vapour from such a “leaf layer’ has to pass all interleaf layers above the 

leaf layer before it reaches the atmosphere above the canopy. In each layer, this vapour 

movement has to overcome a resistance; the interleaf atmospheric resistance written as . ir

A value of  can be calculated by using again the analogy with Ohm’s law, like in the 

previous section on : 

ir

ar

 

i
VR =  

 

By analogy we assume that 

R = the interleaf layer resistance  of a leaf layer [s mir
-1], 

V = the difference between momentum concentration uρ  at the top of the layer and 

momentum concentration uρ at the bottom of the layer [kg m-2 s-1], 

i  = the shear stress τ  in the layer [kg m-1 s-2]. 

 

Substituting these quantities in Ohm’s law gives: 

 

τ
ρρ mlayerbottolayertop

layeri

uu
r

−
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Fig. 2.3. Conceptual model of crown 

(Eagleson, 2002). 

 

Values of  and  can be found from the exponential wind profile within the 

crown. (See section 2.1.3. on wind profile). These wind velocity values depend on:  

layertopu mlayerbottou

m = exponent relating shear stress on foliage to horizontal wind velocity and having the 

nominal value 0.5 for the foliage elements of trees [-], 

n  = number of sides of each foliage element producing surface resistance to wind and having 

the nominal value 2 for the foliage elements of trees [-], 

β = momentum extinction coefficient = cosine of angle leaf surface makes with horizontal    

[-]. 

tL  = foliage area index = upper-sided area of all foliage elements per unit of basal area [-]. 

 

A value for τ can be found from the law of viscosity in turbulent flow: 

 

dz
duKmρτ =  
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in which  

mK = the so-called eddy viscosity [m2 s-1].  is calculated from the wind velocity at the 

canopy top and from , ,

mK

m n β , 

du =  minus  [m slayertopu mlayerbottou -1], 

dz = layer thickness [m]. 

 

The  values of the individual layers are different for each layer. This complicates the 

calculation of a canopy resistance from the individual, layer specific,  values. Eagleson 

presents a very rough averaging procedure to arrive at an  value that may be used for each 

layer: 

ir

ir

ir
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in which 

*u = shear velocity [m s-1], 

βγ mn= [-]. 

 

Because the individual  values are identical, they may be combined in a “series-

parallel model” in order to find the resistance of the whole canopy, : 

ir

cr
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Fig. 2.4 shows the canopy modelled by the leaf layers and the series-parallel circuit of 

the interleaf layer resistances and leaf stomatal resistances  (written as in the figure). 

In the figure, the leaf boundary layer resistances are neglected. 

ir lsr llsr
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Fig. 2.4. Resistive model of “big leaf” canopy 

(Eagleson, 2002). 
 

 

Concluding remarks 

 

It may be concluded from the above that canopy resistance is a complicated quantity, which is 

still not fully understood. This especially holds true for tall canopies.  

 

 

2.3. Selected transpiration models 
 

2.3.1. Makkink’s radiation model 

 

A very simple radiation model is the model assuming isothermal conditions. Under these 

conditions, vertical transport of sensible heat is zero, because there is no vertical gradient of 

temperature. Then, net radiation must be equal to latent heat: 
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NRLE =  

 

Makkink (Makkink, 1957, 1962; de Bruin, 1987) recognized that temperature often 

deviates from the isothermal condition, but not much, and that all measuring values that are 

needed to calculate  are often not available. He proposed the form NR

 

⎟
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⎞

⎜
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Δ= 21
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refME  = potential evapotranspiration of a surface with a closed dry grass canopy with height 

8-15 cm and well supplied with water [mm day-1] (Massop et al., 2005), 

GR  = global radiation [MJ m-2 d-1], 

L = latent heat of vaporization [MJ m-3]. 

The constants  and  are, for European conditions, 0.75 and 0, respectively (NN, 

1996a). They have an empirical background. 

1c 2c

 

The model needs only temperature (for the calculation of ) and global radiation . 

The global radiation can be calculated from the latitude, the day of the year, and the ratio of 

actual duration of bright sunshine during the day and its maximum possible length if the day 

would be cloudless. 

Δ GR

 

In The Netherlands, the Makkink model is widely used (Huinink, 1998; Kroes et al., 

2002; Kroes and Van Dam, 2003; Massop et al., 2005). The Royal Dutch Meteorological 

Institute KNMI currently uses the model for the daily calculation of potential 

evapotranspiration values from daily meteorological measurements. 

 

2.3.2. FAO Guidelines for computing evapotranspiration 

 

Introduction 

 

Allen et al. (1998) recommended, in an FAO publication, guidelines for computing crop water 

requirements. In that publication, central roles are played by a reference surface and crop 

coefficients. The reference surface is defined as: “A hypothetical reference crop with an 
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assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23.” 

This definition refers to a grass surface under standardized conditions, and is a more 

quantitative specification of “short, closed, grass that is well supplied with water”. The (crop 

specific) crop coefficient is defined as the ratio between the crop evapotranspiration under 

standard conditions and the evapotranspiration of the reference surface. The standard 

conditions of the crop evapotranspiration refer to crops grown in large fields under excellent 

agronomic and soil water conditions. The crop coefficient ( ) may be split into a basal crop 

coefficient ( ) and a soil evaporation coefficient ( ): 

cK

cbK eK

 

ecbc KKK +=    

 

This splitting may especially be needed when time steps in data and calculations are 

one day. In our data and calculations time steps are longer, allowing us to follow the more 

simple approach of  without splitting.   cK

 

Crop coefficients 

 

The values of the crop coefficients change with crop growth stage. Four growth stages are 

distinguished: Initial stage, Crop development stage, Mid-season stage, Late season stage. For 

perennial plants the initial stage runs from the ‘greenup’ date, i.e., the time when the initiation 

of new leaves occurs, to approximately 10% ground cover. The crop development stage runs 

from 10% ground cover to effective full cover. Effective full cover for many crops occurs at 

the initiation of flowering. For some crops, especially those taller than 0.5 m, the average 

fraction of the ground surface covered by vegetation ( ) at the start of full effective cover is 

about 0.7−0.8. For dense grasses, effective full cover may occur at about 0.10−0.15 m height. 

For thin stands of grass, grass height may approach 0.3−0.5 m before effective full cover is 

reached. Another way to estimate for a vegetation the occurrence of effective full cover is 

when the leaf area index (LAI) reaches three. The mid-season stage runs from effective full 

cover to the start of maturity. The start of maturity is often indicated by the beginning of the 

ageing, yellowing or senescence of leaves, leaf drop, or the browning of fruits to the degree 

that the crop evapotranspiration is reduced relative to the reference evapotranspiration. The 

mid-season stage is usually the longest stage for perennials. The late season stage runs from 

the start of maturity to full senescence or leaf drop. 

cf
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   It is often assumed that: 

- in the initial stage,  has the constant value   and  has the constant 

value  , 

cK inicK , cbK

inicbK ,

- in the crop development stage, both K increase linearly with time, from the value of 

the initial stage to the value of the mid-season stage, 

- in the mid-season stage,  has the constant value   and  has the constant 

value , 

cK midcK , cbK

midcbK ,

- in the late season stage, both K decrease linearly with time, from the values of the 

mid-season stage to the end values  and , respectively. endcK , endcbK ,

 

Allen et al. (1998) presented tables that give, for most crops, values of: , , 

, , , , , planting date, length of growing stages, and maximum 

crop length. These tables do not apply well to trees, trees in lawn, sparse vegetation, and/or 

small areas surrounded by other vegetation or hardly-evaporating surfaces. But for these 

vegetation types and conditions, Allen et al. (1998) provided appropriate calculation 

procedures and methods. 

inicK , midcK ,

endcK , inicbK , midcbK , endcbK , eK

 

Potential evapotranspiration of reference surface 

 

The evapotranspiration of the hypothetical reference crop can be calculated in an 

unambiguous way from meteorological data. This calculation applies the Penman-Monteith 

model (see section Penman-Monteith model) to the reference crop (with an assumed crop 

height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23). The 

aerodynamic resistance is calculated according to Allen et al. (1989). See “A widely accepted 

model for aerodynamic resistance” in section 2.2.3. The calculation result is: 
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with 

0ET  = reference evapotranspiration [mm day-1], 

nR  = net radiation at the crop surface [MJ m-2 day-1], 
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G  = soil heat flux density [MJ m-2 day-1], 

T = mean daily air temperature at 2 m height [ºC], 

2u  = wind speed at 2 m height [m s-1], 

se  = saturation vapour presure [kPa], 

ae  = actual vapour pressure [kPa], 

as ee −  = saturation vapour pressure deficit [kPa], 

Δ  = slope vapour pressure curve [kPa ºC-1], 

γ = psychrometric constant [kPa ºC-1]. 

 

Allen et al. (1998) called this equation: FAO Penman-Monteith equation. They also 

gave directives for measuring/determining the above meteorological input data. 

 

The tabulated crop coefficients refer to a limited range of weather conditions, but crop 

coefficients do show some dependency on climate. Therefore, the tabulated , , 

 and  should be summed with the expression 

midcK , endcK ,

midcbK , endcbK ,

 

[ ]
3.0

min2 3
)45(004.0)2(04.0 ⎟

⎠
⎞

⎜
⎝
⎛−−− hRHu  

 

with 

2u = mean value for daily wind speed at 2 m height over grass during the particular 

growth stage [m s-1], for 1 m s-1≤ ≤ 6 m s2u -1

minRH  = mean value for daily minimum relative humidity during the particular growth 

stage [%], for 20% ≤  ≤ 80%.  minRH

h = mean plant height during the particular growth stage [m], for 0.1 m ≤ ≤ 10 m. h

Note that this correction is not needed if  = 2.0 m s2u -1 and = 45%. minRH

Allen et al. (1998) presented the correction graphically in their Figure 32. They also 

presented a relation between  and  in their Table 16. values are only 

corrected for tabulated  ≥ 0.45. 

minRH meanRH endcK ,

endcK ,
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Crop coefficient for the initial stage  inicK ,

 

In the initial stage, evaporation from the soil surface is important. The tabulated values of 

 should only be used in preliminary or planning studies. More accurate estimates can be 

obtained by considering: time interval between wetting events; evaporation power of the 

atmosphere; magnitude of the wetting event. Such estimates can be done using graphs on 

pages 117 and 118 or the calculation procedure in Annex 7 of (Allen et al., 1998). 

inicK ,

   Allen et al. (1998, p. 121) noted that: “  for trees and shrubs should reflect the 

ground condition prior to leaf emergence or initiation in case of deciduous trees or shrubs, and 

the ground condition during the dormancy or low active period for evergreen trees and shrubs. 

The  depends upon the amount of grass or weed cover, frequency of soil wetting, tree 

density and mulch density. For a deciduous orchard in frost-free climates, the  can be as 

high as 0.8 or 0.9, where grass ground cover exists, and as low as 0.3 or 0.4 when the soil 

surface is kept bare and wetting is infrequent.” 

inicK ,

inicK ,

inicK ,

 

Crop coefficient for the mid-season stage  midcK ,

 

Allen et al. (1998, p. 124) noted that: “  is less affected by wetting frequency than is 

, as vegetation during this stage is generally near full ground cover so that the effects of 

surface evaporation on are smaller. For frequent irrigation of crops (more frequently than 

every 3 days) and where the tabulated  is less than 1.0, the value can be replaced by 

approximately 1.1−1.3 to account for the combined effects of continuously wet soil, 

evaporation due to interception (sprinkler irrigation) and roughness of the vegetation, 

especially where the irrigation system moistens an important fraction of the soil surface 

(fraction > 0.3).” 

midcK ,

inicK ,

cK

midcK ,

 

Crop coefficient for the end of the late season stage endcK ,  

 

Tabulated are only corrected for wind speed and relative humidity with the already 

mentioned correction expression if ≥ 0.45. When vegetation is allowed to senesce and 

endcK ,

endcK ,
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dry (as evidenced by  < 0.45),  and  have less effect on  and no 

adjustment is necessary. Some guidance on adjustment of values for wetting frequency is 

provided in Chapter 7 of Allen et al.(1998). 

endcK , 2u minRH endcK ,

cK

 

Basal crop coefficients inicbK ,  ,  ,  midcbK , endcbK ,

 

A basal crop coefficient is defined as the ratio of the crop evapotranspiration over the 

reference evapotranspiration when the soil surface is dry but transpiration is occurring at a 

potential rate, i.e., water is not limiting transpiration. Therefore, a basal crop coefficient 

represents primarily the transpiration component of the crop evapotranspiration. It does 

include a residual diffusive evaporation component supplied by soil water below the dry 

surface and by soil water from beneath dense vegetation. 

Allen et al. (1998) presented, in their Table 18, the general guidelines that they used to 

derive  Tables from the  Tables: cbK cK

 

Initial growth stage: 

- annual crop – (nearly) bare soil surface                    = 0.15 inicbK ,

- perennial crop – (nearly) bare soil surface                = 0.15 – 0.20 inicbK ,

- grasses, brush and trees – killing frost                      = 0.30 – 0.40 inicbK ,

- perennial crop – some ground cover or leaf cover 

- infrequently irrigated (olives, palm trees, fruit trees, …)   

                                                                                      =  − 0.1 inicbK , inicK ,

- frequently irrigated (garden-type vegetables, …) 

                                                                                =  − 0.2 inicbK , inicK ,

Mid-season growth stage: 

- ground cover more than 80%                                     =  − 0.05 midcbK , midcK ,

- ground cover less than 80% (vegetables)                   =  − 0.10 midcbK , midcK ,

 

End-of-season growth stage: 

- infrequently irrigated or wetted during late season    ≈  − 0.05 endcbK , endcK ,

- frequently irrigated or wetted during late season       =  − 0.1 endcbK , endcK ,
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As  we may use the fourth (  = 0.30 – 0.40) and sixth/seventh 

(  =  − 0.1) lines of the above Table to estimate  for sites with trees and lawn 

in Moscow: 

einicbinic KKK += ,, inicbK ,

inicbK , inicK , inicK ,

 

45.01.035.0,, =+≈+= einicbinic KKK  

 

This value compares well with the graphs on pages 117 and 118, and with the remarks 

on  for trees and shrubs on page 121, of Allen et al. (1998). inicK ,

 

Soil evaporation coefficient  eK

 

Because will not play a large role in our data processing and calculations, we only present 

a short outline of this coefficient. If one intends to derive daily values of a main starting 

point is the equation: 

eK

eK

 

max,max, )( cewcbcre KfKKKK ≤−=  

 

max,cK =  maximum value of   following rain or irrigation, cK

rK =  dimensionless evaporation reduction coefficient dependent on the cumulative 

depth of water depleted (evaporated) from the topsoil. It can be calculated from a daily water 

balance of the surface soil layer with thickness 0.10 – 0.15 m. is 1 when the soil surface is 

wet, and 0 when the top layer water content is halfway between oven dry (no water left)  and 

wilting point, 

rK

ewf = fraction of the soil that is both exposed and wetted, i.e., the fraction of soil 

surface from which most evaporation occurs. 

 

Evapotranspiration under water stress and/or salinity stress 

 

Where the growth conditions differ from standard, unstressed, conditions, a correction on the 

evapotranspiration is required. Soil water shortage and salinity may reduce soil water uptake 

and limit crop evapotranspiration. A water stress coefficient  can be derived from a water sK
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balance of the root zone. Effects of salinity can be derived from a growth – salinity 

relationship for the root zone. 

   Allen et al. (1998) followed procedures very similar to methods published by other 

authors. 

 

Evapotranspiration for natural, non-typical and non-pristine vegetations 

 

A “non-pristine” vegetation is defined, in the usage here, as a vegetation having less than 

perfect growing conditions or stand characteristics (i.e., relatively poorer conditions of 

density, height, leaf area, fertility, or vitality) as compared to ‘pristine’conditions. These 

definitions of pristine and non-pristine vegetation follow Allen et al. (1998). The procedure to 

estimate crop coefficients for the initial growth stage for natural, non-typical and non-pristine 

vegetation is identical to that described earlier. The crop coefficient in this stage is primarily 

determined by the frequency with which the soil is wetted. The crop coefficient during the 

mid-season period and to a lesser extent the crop coefficient during the late season period 

differ from that described in previous parts. As the ground cover for natural and non-pristine 

vegetation is often reduced, they are often called: sparse vegetation. The crop coefficient of 

sparse vegetation is affected to a large extent by the frequency of precipitation and/or 

irrigation and by the amount of leaf area and ground cover. 

 

Mid-season stage 

 

Allen et al. (1998) presented in their Chapter 9 several methods for estimating  for 

sparse vegetation. These methods use leaf area index (LAI) or effective ground cover ( ). 

A method using LAI is similar to a procedure used by Ritchie (Allen et al., 1998, p. 184 and 

p. 186; Ritchie, 1972 ): 

midcK ,

effcf ,

 

( ) ( )( )LAIKKKK inicfullcinicmidc 7.0exp1,,,, −−−+=  

 

The following equation applies well to shrubs and trees: 
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fullcK ,  = upper limit on the evaporation and transpiration from any cropped surface, 

05.0,, += fullcbfullc KK  (see Allen et al., 1998, p. 143), 

fullcbK ,  = estimated basal  during the mid-season (at peak plant size or height) for 

vegetation having full ground cover or LAI>3 (see below), 

cbK

cf  = observed fraction of soil surface covered by vegetation as observed from nadir 

(overhead), 

effcf ,  = the effective fraction of soil surface covered or shaded by vegetation. 

For trees, it can be estimated as ηsin/, ceffc ff =  where η  = the mean angle of the sun above 

the horizon during the period of maximum evapotranspiration (generally between 11.00 and 

15.00), 

h  = plant height [m]. 

 

fullcbK ,  is estimated as 

[ ]
3.0

min2,, 3
)45(004.0)2(04.0 ⎟

⎠
⎞

⎜
⎝
⎛−−−+= hRHuKK hcbfullcb  

 

hcbK ,  =   for full cover vegetation (LAI > 3) under subhumid and calm wind conditions 

(  and  m s

midcbK ,

%45min =RH 22 =u -1). The value for  is estimated as  

1.0 +  for  ≤ 2 m and as 1.20 for  > 2 m. The value 1.2 represents a general upper 

limit on  for tall vegetation having full ground cover and LAI > 3 under the sub-humid 

and calm wind conditions), 

hcbK ,

h1.0 h h

midcbK ,

2u = mean value for wind speed at 2 m height during the mid-season [m s-1], 

minRH  = mean value for minimum daily relative humidity during the mid-season [%], 

h = mean maximum plant height [m]. 

 

The  as calculated with the equation at the beginning of this paragraph on “Mid-

season stage” may need to be multiplied by a resistance correction factor  if the leaf 

resistance is significantly greater than that of most agricultural crops where leaf resistance  

is commonly about 100 s m

midcK ,

rF

lr
-1. 
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where  = mean leaf resistance for the vegetation in question [s mlr
-1]. 

   

Late season stage 

 

During the late season stage  of “non-pristine” shrubs and trees may be estimated using 

similar procedures as above for the mid-season stage. But no suitable guidelines for 

estimating  of a trees-grass combination were found in Allen et al. (1998). Therefore, 

we assume that  of a trees-grass combination is similar to that of the fruit trees “apples, 

cherries, pears” after leaf drop. Note 18 of Table 12 of Allen et al. (1998) states that of 

these fruit trees after leaf drop is about 0.20 for bare, dry soil or dead ground cover and about 

0.50-0.80 for actively growing ground cover. We already estimated that  = 0.45. This 

may justify that we assume that 

cK

endcK ,

endcK ,

endcK ,

inicK ,

 

45.0,, == endcinic KK  

 

for the tree-grass combinations in Moscow. 

 

Small areas of vegetation 

 

The value for  for small stands depends on the type and condition of other vegetation 

surrounding the small stand. In the majority of cases for natural vegetation or for “non-

pristine” agricultural vegetation, the value of  must adhere to upper limits for  of 

approximately 1.20 –1.40, when the area of the vegetation is larger than about 2 000 m

cK

cK cK
2. This 

is required as ET from large areas of vegetation is governed by one-dimensional energy 

exchange principles and by the principle of conservation of energy. ET from small stands     

(< 2 000 m2) will adhere to these same principles and limits only where the vegetation height, 

leaf area, and soil water availability are similar to that of the surrounding vegetation. Under 

the clothesline effect or under the oasis effect the peak values may exceed the 1.2 –1.40 cK
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limit. An upper limit of 2.5 is usually placed on  to represent an upper limit on the stomata 

capacity of the vegetation to supply water vapour to the air stream under the clothesline or 

oasis conditions. For vegetation with a great leaf resistance the upper limit should be 

multiplied by the resistance correction factor . 

cK

rF

   Allen et al. (1998, pp. 200-203) present example curves and an equation allowing us 

to estimate clothesline and oasis effects on small areas of vegetation. The equation suggests 

that we may estimate  of a small area (tall wind breaks, such as single rows of trees) as cK

 

⎟⎟
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⎞
⎜⎜
⎝

⎛
+= 5.2;2.1min

width
hF

K canopyr
c  

 

canopyh  = mean vertical height of canopy area [m], 

width = width (horizontal thickness) of the windbreak [m]. 

    

ET estimates from large areas of vegetation or from small areas of vegetation that are 

surrounded by mixtures of other vegetation having similar roughness and moisture conditions 

should almost always be less than or equal to 1.4 ET0 , even under arid conditions. 

 

2.3.3. Application of the FAO guidelines to tree-lawn combinations in Moscow 

 

We applied the FAO guidelines to trees-lawn combinations in the following way: 

 

1) Determination of the growth stage of Tila cordata of each of the six distinguished periods. 

According to the FAO guidelines they were classified as initial period, development period, 

three mid-season periods, and late season period, successively. 

 

2) Calculation of the potential evapotranspiration of the grass reference ET0 for each of the six 

periods. 

 

3) Calculation of “overall” values  for each site and each mid-season period using 

the values of the fraction of ground cover  for trees alone ( ) and grass alone ( ) 

for each site and mid-season period. These values were obtained from digital photographs 

ncombinatiocf ,

cf tf ,1 gff ,12 =
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through image analysis for each site and  period. 

Index 1 refers to area under crowns; index 2 refers to area outside crowns.  

Index t refers to tree crowns; index g refers to lawn (grass). 

The calculation of “overall” values  for each site and each mid-season period is 

made with the equation 

ncombinatiocf ,

 

( ) ( )[ ]
area

crownareacrown
ncombinatioc S

SSfSf
f ∑∑ −⋅+⋅

=
)(21

,     

 

Σ Scrown = total area of crown projections [m2], 

Sarea = total area of object [m2], 

1f  = total fraction of ground under crowns that is covered by trees and/or grass [-], 

f2 = fraction of lawn outside the tree crown projections that is covered by the grass canopy (1-

fraction of  “bare soil”) [-]. 

The quantity  is calculated according to 1f

f1 = f1,t + (1- f1,t)· f1,g   

f1,t = fraction of lawn (grass + “bare soil”) under the tree crown projections that is covered by 

the tree canopy [-], 

1- f1,t = fraction of lawn under the tree crown projections that is not covered by tree canopy 

(fraction of “sky”) [-], 

f1,g = fraction of lawn covered by grass canopy, in spots within the tree crown projections that 

are not covered by tree canopy [-]. 

The quantity . gff ,12 =

 

4) Calculation of “overall” values of  for each site and each mid-season period 

according to 

ncombinatioLAI

( )
5.0

1ln , ncombinatioc
ncombinatio

f
LAI

−
−= , 

 (1-f c,combination) = fraction of the ground of the object, that is not covered by tree and/or grass 

leaves. The above equation is obtained by inversion of a relation between fraction of ground cover 

and leaf area index (Beer’s extinction law for spherically oriented leaves and vertical radiation 

beams; Bakker, 1992; Bakker et al., 1995; Oker-Blom, 1988). 
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5) Calculation of ncombinatiomidcK ,,  values for each site and mid-season period from the LAI  

values using the Ritchie type equation (Allen et al., 1998, p. 186) 

( ) ( )( )LAIKKKK inicfullcinicmidc 7.0exp1,,,, −−−+=     

For this we used that equation in the following form (the equation can be applied to the trees 

vegetation as well as to the combination vegetation (trees and grass)): 

( ) ( )( )ncombinatioinicfullcinicncombinatiomidc LAIKKKK 7.0exp1,,,,, −−−+=     

 

6) Calculation, from the obtained ncombinatiomidcK ,,  values and the  (0.45) and (0.45) 

values, and from the grass reference, the potential evapotranspiration of each site and period. 

Here, we calculated  as the mean of  and  for the first mid-season 

period. 

inicK , endcK ,

tdevelopmencK , inicK , midcK ,

 

7) Estimation of soil water and salinity stress of the sites. 

 

8) Calculation, from the potential evapotranspiration and water- and salinity stress, the actual 

evapotranspiration for each site and period. 

 

9) Making graphs of the courses of potential and actual evapotranspiration of each site during the 

total growing period. 

 

Estimation accuracy of the selected FAO methodology 

 

The authors of the FAO methodology aimed at providing a method that is consistent with 

actual crop water use data worldwide. The methodology is a consistent and transparent basis 

for a globally valid standard for crop water requirement calculations. The authors (Allen et al., 

1998) write: 

“To evaluate the performance of these and other estimation procedures under different 

climatological conditions, a major study was undertaken under the auspices of the Committee 

on Irrigation Water Requirements of the American Society of Civil Engineers (ASCE). The 

ASCE study analysed the performance of 20 different methods, using detailed procedures to 

assess the validity of the methods compared to a set of carefully screened lysimeter data from 

11 locations with variable climatic conditions (Jensen et al., 1990). The study proved very 
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revealing and showed the widely varying performance of the methods under different climatic 

conditions. In a parallel study commissioned by the European Community, a consortium of 

European research institutes evaluated the performance of various evapotranspiration methods 

using data from different lysimeter studies in Europe….. 

 The relatively accurate and consistent performance of the adopted FAO methodology 

in both arid and humid climates has been indicated in both the ASCE and European studies… 

 The methodology is recommended as the sole standard method. It is a method with 

strong likelyhood of correctly predicting evapotranspiration in a wide range of locations and 

climates.” 

 The selected FAO methodology consists of two parts: use of the FAO-Penman-

Monteith equation for calculating reference evapotranspiration; calculation of the crop factor 

of non-pristine, sparse, tall, vegetation. 

 

Reference evapotranspiration calculation 

 

Jensen et al. (1990) evaluated the adopted FAO-Penman-Monteith reference calculation using 

lysimeter data sets from 6 arid and 5 humid lysimeter sites all over the world. Table 2.1 

compares characteristics of these sites with weather information from Moscow. Table 2.2 

indicates the range of estimation accuracies for all locations. It may be concluded that the 

reference calculation method has a strong likelihood of correctly estimating reference 

evapotranspiration in Moscow. 

 

Crop factor calculation 

 

The crop factors of regular agricultural crops have been determined by lysimeter experiments. 

These are empirical values and can be found in several manuals. Lysimeter values are scarce 

for non-pristine, sparse, vegetation. But for this type of vegetation, lysimeter research 

provided an empirical relationship between crop factor and LAI (Ritchie, 1972; Ritchie and 

Johnson, 1990). This relationship is included in the FAO methodology. 

Crop factors show some dependency on wind speed and relative humidity. Generally, crop 

factors increase as wind speed increases and minimum daily relative humidity decreases. This 

is primarily due to differences in roughness between taller plants and clipped grass (NN, 

1996b). The dependency increases with vegetation height. Several manuals present graphs 

and/or equations for the determination of correction factors for this. The factors follow the 
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 Table 2.1. Comparison of Moscow climate with lysimeter sites at other locations 

Characteristics Moscow2

June 15 – July 16, 2004

All1 lysimeter locations and 

periods3

Latitude, o

Mean air temperature, oC 

Wind speed, m s-1

Net radiation, MJ m-2 d-1

56 

17.2 

0.95 

9.80 

0 – 56 

6  – 32 

0.8 – 4.2 

3.7 – 8.5 
 

1 Included in the study of Jensen et al. (1990). 
2 According to Chaper 4 of this report. 
3 May, July, September, and November, January, March for northern and southern latitudes, 
  respectively. 
 

 

Table 2.2. Estimation accuracy of the FAO-Penman-Monteith equation (Jensen et al., 

1990) for estimating reference evapotranspiration 

Estimated quantity of reference evapotranspiration  11 lysimeter 

locations 

Average peak monthly estimates expressed as % of lysimeter values  

 

Seasonal estimates expressed as % of lysimeter values 

 

Standard errors of estimate of estimates versus lysimeter values, in mm 

d-1, of monthly values over entire seasons of record 

82 – 107 

 

90 – 106 

 

0.11 – 0.65 

 

 

general trends in lysimeter results at different wind speeds, different values of minimum daily 

relative humidity and different vegetation heights. The correction is included in the FAO 

methodology. 

 

2.4. CONCLUSION 
 

Evapotranspiration is a very complex process. The application of mechanistic models 

introduces many difficulties and uncertainties. Section 2.2 showed that this especially holds 
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true for the aerodynamic resistance ra and the canopy resistance rc of sparse, tall, vegetation. 

We made example calculations with a number of mechanistic models. The outcome of these 

calculations appeared often to be unrealistic. Therefore, the further part of the thesis uses the 

empirical-analytical FAO guidelines for computing evapotranspiration of “non-pristine”, 

sparse, tall vegetation. The method according to the FAO guidelines uses, as a first step, a 

mechanistic model for the calculation of the potential evpotranspiration of a reference crop 

(short, closed, grass). This calculation also needs values of  ra and  rc , but these values are 

accurate in the case of short, closed, grass. In the second step, the difference between the 

potential evapotranspiration of the crop under consideration and the potential 

evapotranspiration of the grass reference is determined on the basis of empirical information 

that has been collected from a vast amount of lysimeter (or lysimeter-like) experiments. The 

reference evapotranspiration is not only computed according to the FAO guidelines but also 

according to Makkink (1957, 1962). 
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CHAPTER 3. RESEARCH SITES AND DATA COLLECTION 

 

3.1. Selected sites in Moscow 
 

3.1.1. Locations 

 

The territory of Moscow city is 1081 km2. Therefore, climatic, hydrological and soil 

conditions of various parts of the city are different. In order to reduce differences between 

conditions only one part of the city was chosen: the north-east. 

 Differences in city conditions are also connected with anthropogenic factors: intensity 

of air pollution and degradation of soil under the influence of industry and transport; housing 

density; population size. In the central part of the city adverse ecological conditions are 

observed (poor aeration, increased concentration of pollutants, etc.). The best ecological 

conditions are in the suburbs of the city. The middle part of the city has average conditions 

(NN, 2004). 

Therefore, for our studies, sites were selected in the central and middle parts of the 

city and at the outerparts: Saharov prospect, Sokolniki (Strominka street) and Habarovskaya 

street (Figs. 3.1. and 3.2.).  

Objects of studies were Linden trees (Tilia cordata) and lawn (combination of trees 

with lawn), located along main streets on the solar side. This species of trees is most frequent 

in Moscow (19.5% of all city tree vegetation). In a first step, the state of a large number of 

trees in each ecological zone was assessed on the base of visual estimation. The assessment 

classified these trees using the following tree state categories: 1: trees with less than 25% of 

leaves wilting; 2: trees with 25–50% of leaves wilting; 3: trees with 50–75% of leaves 

wilting; 4: trees with over 75% of leaves wilting (see section 1.6.). In the second step, trees, 

all of similar age, were selected in such a way that the distribution of the states of the selected 

trees was representative for the distribution of tree states. In summary: 

In total, the state of 139 trees was visually assessed; 

from them, 40 trees were selected;  

Saharov pr. – 15 trees (coded 2–4; 6–10 and 1–7 (I–III); 

Sokolniki (Strominka st.) – 14 trees (coded 1*–10* and 1–4); 

Habarovskaya st. – 11 trees (coded 1–11). 
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a b 

c 

 
Fig. 3.1. Location of the sites in the territory of Moscow (overview): 

a – Habarovskaya st; b – Sokolniki (Strominka st.); c – Saharov pr. 

 

 

3.1.2. Soil profiles of the study sites 

 

The results of a soil survey that was carried out on the objects are given in Table 3.1. The 

profiles of urban soil strongly differ from agricultural and natural soils (humus-podzol) (Fig. 

3.3). 
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a 

 
b 

 
c 

Fig. 2.2. Location of the sites (enlarged): 

a – Habarovskaya st; b – Sokolniki (Strominka st.); c – Saharov pr. 
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Table 3.1. Description of three urban soil profiles, one agricultural soil profile, and one 
natural soil* 

 
Object Index  

of layer 
Depth  

of layer, cm 
Some characteristics 

 

Ud1 0–30 urban mix from peat, sand and top (humus) 
layers of natural soil; colour – dark-gray; 
texture – sandy clay loam with high organic 
matter content (silty clay loam with high dust 
content), much dust; not compact; soil 
aggregates with predominant size < 1 mm and 
content not more than 10%. 

Ud2 30–60 urban mix from peat, sand and top (humus) 
layers of natural soil, but with less organic 
matter content than Ud1; 
colour – gray; texture – silty clay loam with 
high dust content, more dust than in Ud1; not 
compact; soil aggregates with predominant 
size < 1 mm and content not more than 5–
10%. 

CU1g 60–80 mix from Ud2, layer B of natural soil (subsoil) 
and moraine; colour – mix from gray and red-
brown (foxy); texture – clay loam with dust 
from subsoil; compact; gleyic layer. 

Habarovskaya st. 

CU2g 80–100 mix from layer B of natural soil (subsoil) and 
moraine; colour – red-brown (foxy); texture – 
clay loam; compacted; gleyic layer. 

 

Ud1 0–20 urban mix from peat and sand; colour – very 
dark–gray (black); texture – sandy clay loam 
with high organic matter content, much dust; 
not compact; size of predominant soil 
aggregates not more than 0.25  mm; very bad 
structure. 

Ud2 20–40 urban mix from peat, sand and top (humus) 
layers of natural soil; colour – dark-gray; 
texture – silty clay loam with high dust 
content; not compact; soil aggregates with 
predominant size not more than 0.25  mm; 
unstructured layer. 

CU1 40–60 mix from Ud2 and layer B of natural soil 
(subsoil); colour – mix from light brown and 
gray; texture – silty clay loam with dust, but 
almost without organic matter; not so 
compact.  

Sokolniki 
(Strominka st.) 

CU2 60–80 mix from CU1 and moraine; colour – mix 
from brown and red-brown (foxy); texture – 
clay loam with dust and fine sand; compact. 
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CU3g 80–100 colour – red-brown (foxy); texture – clay 
loam with sand; very compact; gleyic layer. 

Ud1 0–20 urban mix from peat, sand and top (humus) 
layers of natural soil; colour – dark-gray; 
texture – silty clay loam with high dust 
content and high organic matter content; not 
compact; soil aggregates with predominant 
size < 0.25 mm and content not more than 
10%. 

Saharova pr. 

Ud2 20–100 urban mix from peat, sand and top (humus) 
layers of natural soil; colour – gray; texture – 
silty clay loam with high dust content but 
with less organic matter content than Ud1; not 
compact; soil aggregates with predominant 
size < 1–3 mm and content not more than 10–
20%; contains gravel and small parts of brick 
(anthropogenic, construction, influence).  

 
 

A plough 

 
0–24 Plough layer; colour – gray; silty clay loam 

with high dust content; not compact. 
A2B 24–52 colour – mix from light brown and whitish; 

texture – silty clay loam; compact. 
BB1g 52–66 colour – red-brown (foxy); texture – clay 

loam; compact; gleyic layer. 

Agricultural 
soil 

BB2 66–94 colour – brown; texture – clay loam; compact. 
 
 

A1 

 
0–13 Humus layer; colour – gray; silty clay loam 

with high dust content; not compact. 
A2BBg 13–46 colour – mix from light brown and whitish; 

texture – silty clay loam; compact; gleyic 
layer. 

BB1g 46–73 colour – light brown; texture – clay loam; 
compact; gleyic layer. 

Natural soil 
(humus-podzol) 

BB2 > 73 colour – brown; texture – clay loam; compact. 

* The indices U, Ud, and CU refer to an urban soil classification system that has been 
developed by M.N. Stroganova at the Moscow State University: 

U = urban layer. 
Ud = urban layer with much organic matter (d from “djoem”), often originated from grass 

roots. 
CU = mix from natural soil (B and/or C) with urban soil.

 63



 

 
 

Ud1

 
 
 

A plough 
 

 
LFH 

Ud2  
 

 A2B 

A2BBg

CU1  
 

BB1g

BB1g

 

 
 
 

CU2

 

 
 
 
 
 
 

BB2

 

 
 

 
 
 

BB2

 

urban soil 

 

 

 agricultural soil 

 

natural soil 

A1

 
Fig. 3.3. Profiles of different types of soil 

 

 

3.2. Materials and methods 

 

3.2.1. Soil measurements 

 
Soil in the root zone of each tree of each object was sampled with an auger and with 100 cc 

metal cylinders (Fig. 3.4a). Samples were taken from each 10 cm layer down to a depth of 1 

m. The studies of urban soil were for a depth of 1 m, because for this depth on all territories of 
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Moscow city actions are carried out for monitoring, improvement and restoration of properties 

of soil favourable for vegetation (according to the Law of Moscow city about urban soil).  

Sampling at each tree was carried out fivefold. The soil in the cylinders was taken to 

the laboratory in order to estimate texture and organic matter content, and to make a 

morphological description of the layers. At the sites, immediately after collecting the soil, a 

special so-called W.E.T. sensor (Eijkelkamp, Giesbeek, The Netherlands) was used to 

measure volumetric water content, soil temperature, and electric conductivity (Fig. 3.4b). 

 

 

 
 

 

 

 
a 

 
b 

Fig. 3.4. The used equipment: 

a – Kit with soil sampling cylinders; b – W.E.T. sensor (Eijkelkamp) 
 

 
 

3.2.2. Vegetation measurements 
 
 
Measurements were taken from each tree and corresponding lawn area of each object, in order 

to obtain values of crown projection areas of trees, tree fractions of ground cover, tree Leaf 

Area Index, grass fractions of ground cover, and grass Leaf Area Index. Fraction of ground 

cover and LAI of tree crowns and lawn areas were estimated through image processing of 

digital photos that were taken in an upward direction beneath the tree crowns and  in a 

downward direction towards lawn areas. The method is explained in detail in section 3.2.3. 

Here we describe some general considerations on the method to be chosen. 
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Several methods for measuring canopy structure exist (Norman and Campbell, 1989; 

Lindsey and Bassuk, 1992; Hardin and Jensen, 2007). Traditional methods involve: 

destructive harvesting of leaves within a vertical column passing through the canopy; 

collection of leaf litter. We required a method which was non-destructive, suitable for high 

(tree) as well as for low (grass) canopies, insensitive to quickly changing weather conditions, 

objective, very quick, and available. 

Gap fraction analysis is a powerful non-destructive field method. The analysis 

assumes a relationship between LAI and gap fraction. One class of gap fraction methods 

further assumes a relationship between gap fraction and light attenuation with increasing 

depth in vegetative canopies. A second class of gap fraction methods is based on the 

measurement of gap fractions from images of the canopy. This measurement may be done by 

simple counting techniques, by special counting devices, using a planimeter, or by digital 

image analysis.  The selected method belongs to the last category. It includes a two-steps 

procedure to optimize accuracy of gap fraction estimation. In the first step, processed images 

are visually compared with the original image. Such processed image has the property that its 

resemblance with the original image can be easily inspected and optimized by eye. In the 

second step, the gap fraction of the processed and optimized image is determined by 

computer. Physical backgrounds of digital image processing are given in Pratt (2007). The 

method is non-destructive, suitable for high (tree) as well as for low (grass) canopies, 

insensitive to quickly changing weather conditions, objective, and very quick. It could be 

made available by courtesy of J. Meuleman (Wageningen University and Research Centre). 

 In order to determine LAI of a tree four quadrants of the tree crown were 

photographed. LAI of each quadrant was determined from the four quadrant images. The four 

values of the quadrant LAI were averaged in order to obtain the tree LAI. Due to 

heterogeneity of the tree crown the LAI values of each of the four quadrants will not be the 

same. The standard deviation of these four values is a measure of tree crown heterogeneity. If 

overlap of the quadrant images is negligible, and the determination of quadrant LAI is 

accurate, the procedure provides an accurate tree LAI value. So, the standard deviation of the 

four values of quadrant LAI is a measure of tree crown heterogeneity rather than a measure of 

accuracy of the tree LAI determination. Similarly, standard deviation of LAI values of 

different lawn areas of a site is a measure of lawn heterogeneity of the site rather than a 

measure of accuracy of the lawn LAI determination.    

For comparison and transformation of information about tree state categories, obtained 
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on the base of visual estimation, we can use the correlations with values of leaf area index 

LAI given in Table 3.2. The LAI values in this table have been calculated assuming that the 

gap fraction D of categories 25%, 50%, 75% wilted leaves is 0.25, 0.50, and 0.75, 

respectively, and by applying equation: 

 

LAI = - 2* ln D 

 

A common value of LAI of trees in good condition is, e.g., six (corresponding to category 

zero, with D = 0.05, in the Russian classification). Comparing this with the table, we see that 

visual estimation is not so “sensitive” in the LAI range of 2.8 – 6.  

 

Table 3.2. Tree state categories and values of LAI 

№ of category Tree state categories (visual estimation) Values of LAI 

1 Trees with less than 25% wilted leaves > 2.8 

2 Trees with 25% – 50% wilted leaves 2.8–1.4 

3 Trees with 50% – 75% wilted leaves 1.3–0.6 

4 Trees with over 75% wilted leaves < 0.6 

 
 

3.2.3. Estimation of canopy parameters through image processing 

 

A number of parameters of the tree canopies and the lawn canopies were estimated by taking 

photos with a digital camera and processing the photos with a special computer program. The 

photos were taken in an upward direction beneath the tree crowns and in a downward 

direction towards lawn areas. Photos were taken at six points of time during the growing 

season. At each of these points of time each tree crown was photographed from four positions 

underneath the crown. After image processing, results were averaged per tree. The digital 

camera provided JPEG images of 1600 × 1200 pixels. Before applying the image analysis 

program all digital photos had to be transferred from format JPEG to BMP. The image 

analysis program was developed and written in C++ by J. Meuleman, Wageningen 

University, Wageningen, The Netherlands. The application of the program involved regular 

comparisons between originals and processed versions, which appeared to be feasible with a 

55 cm colour display monitor. 

The program results are the fraction of ground cover by the tree crown, the visible 

 67



 

fraction of leaf area of the tree crown, the visible fraction of stem and branch area of the tree 

crown, the fraction of ground cover by the lawn, the visible fraction of the canopy of the 

lawn. The program has the possibility to select or exclude parts of the images, by defining an 

envelope around parts through a mouse-clicking procedure. The accuracy of the determination 

of the fractions of ground cover, which can be judged visually on the screen, appears to be 

very high. It is this fraction that is used to calculate a value of LAI. This calculation  is based 

on an inverse form of Beer’s law. 

Theoretical background. Applied to plant canopies, Beer’s law states that the relative 

attenuation rate of the direct component of solar radiation is proportional to the amount of 

foliage (leaves) along the path of the solar beam: 

 
d Is / Is  =  - ks * d (LAIpath) 

 

Is = direct solar radiation along the path of the solar beam in the canopy [J s-1], 

LAIpath = LAI along the path (fractional surface area of leaves projected on a plane 

perpendicular to the path) [-], 

ks = extinction coefficient = mean projection of a unit foliage area on a plane perpendicular to 

the solar beam. For spherically oriented leaves (no preferred direction of the leaf normal), 

ks = 0.5 [-]. 

 

Integration of the above equation gives: 

 

Is = Iso exp (- ks * LAIpath) 

 

Iso = direct solar radiation of the beam just above the canopy [J s-1], 

Is = direct solar radiation of the beam just under the tree crown [J s-1], 

LAIpath = LAIpath along the total path length of the beam through the canopy [-]. 

 

This equation can be rewritten as: 

 

LAIpath = - (1/ks) * ln (Is / Iso) 

 

This equation may be applied to a (hypothetical) vertical beam. Then: 

LAIpath = LAI, 
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Is / Iso = fractional area of sky that can be seen in the direction of the beam (vertical). 

 

It means that for ks = 0.5: 

 

LAI = - 2* ln D 

 

D = fraction of sky that can be seen on a photo that is taken from beneath a tree crown in the 

vertical direction (or fraction of bare soil in the case of lawn photos) [-]. 

 The image processing procedure provides accurate values of D. From the accurate D, a 

value of LAI is calculated according to the above equation. This calculation may result in 

more or less accurate LAI values. The accuracy of the calculated LAI is less if the canopy 

parts are strongly clustered (Welles and Norman, 1991). Evapotranspiration is not very 

sensitive to LAI. 

Algorithm for the digital image analysis. The computer program for analysing photos 

that are taken vertically upwards through a tree crown has the following structure and 

algorithm. One complete image consists of 1200x1600 pixels each having a 32 bits address. 

These 32 bits contain the intensities of three colour channels: 

- 8 bits being the intensity of the red channel (the r-value), 

- 8 bits being the intensity of the green channel (the g-value), 

- 8 bits for the intensity of the blue channel (the b-value), 

- 8 bits unused.  

The range of each of the r, g, b values is 0−255. From all measured r, g, b values r-, g-, and b-

histograms are made. An r-histogram of an image is a function that gives the frequency of 

occurrence of each r-level in the image (this level ranges from 0 to 255). The value of the 

histogram at a particular r-level is the fraction of pixels in the image with that r-level. In the 

same way, the g- and b-histograms are defined. Generally, the tree images have histograms 

with rising right parts. These rising right parts represent “sky”. The intensities where these 

rising right parts start are identified by mouse clicking in the histogram, above the curve-part 

where rising starts. The intensities at which clicking in each of the three histograms occurred 

are recorded and named threshold_blue, threshold_green, and threshold_red. Intensity values 

larger than the respective thresholds likely belong to pixels representing “sky”. The threshold 

values are displayed in the upper part of the histogram window (for instance: r = 213 g = 221 

b = 215). In the next step the program transforms the colour of each pixel into sole blue 255 
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or sole green 255 or sole red 255 on the basis of the following criteria: 

- If all three threshold values are exceeded, the pixel will be made blue. Otherwise: 

- If the intensity of the green or the intensity of the red is smaller than 2, the program 

will transform the colour of the pixel into red. It means that the signal levels are too 

small to take a decision. In most cases this happens on parts of the trunk or branches 

of a tree. Otherwise: 

- If (green intensity + 1) is larger than 1.25 times (blue intensity + 1), the pixel will be 

transformed into green. The 1-additions only have computational reasons. 

- The remaining pixels represent trunk and branches. 

Subsequently, the new image is displayed together with the original image, which allows a 

visual inspection of the “goodness of classification”. If the correspondence is not satisfactory, 

the threshold values may be changed in order to improve correspondence. This trial and error 

procedure may be repeated until the correspondence is sufficient. Finally, the program 

computes the number of blue, green and red pixels as percentages of all pixels of the image. 

Blue = sky 

Green = leaves 

Red = stem (trunk and branches) 

For the lawn, a slightly modified program is used: 

- All thresholds are set equal to 255, eliminating “sky”. 

- If the intensity of the green or the intensity of the red is smaller than 2, the program 

will transform the colour of the pixel into white. Otherwise: 

- If (green intensity + 1) is larger than 1.25 times (blue intensity + 1), the pixel will be 

transformed into green. The 1-additions only have computational reasons. 

- Otherwise, the pixel will be made red. 

Green = leaves 

Red = bare soil 

The “select” option in the program allows selecting areas in the image that can be let 

out of consideration. This option is used to exclude the trunk to prevent the trunk from 

influencing the image processing results. 

Step 2 of both algorithms is not really important. It solves situations where no decision 

can be made concerning the signal levels. By manual inspection, during the development of 

the program, these pixels were assigned to the most likely category (“trunk and branches” in 

the case of crowns; not-considered part in the case of lawn). 
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Illustration of program application. The remaining part of this section illustrates the 

digital image processing. Point 1 is a photo of object Saharov pr., alley of trees 1−7 (I−III) at 

a certain point of time. Point 2 presents the trees at the subsites I, II, and III. Point 3 presents 

the digital photos taken from 4 positions underneath the crown of one of the trees. Point 4 is a 

digital photo from a lawn area belonging to a tree. Point 5 gives technical data of the digital 

camera. Point 6 illustrates buttons and information on the screen, together with some screen 

pictures. These pictures play a role in the interaction of the operator with the program.  

 

1. Object 

 

 
 

Saharov prospect 
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2. Trees 
 

   
 

Trees 1−3 (I) 
 

Trees 4−5 (II) 
 

Trees 6−7 (III) 
 

 
3. Digital photos of 4 sides of tree crown (JPEG Image, 1600 × 1200 pixels) 

  

a b c d 
 
 

4. Lawn under tree 
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5. Equipment – Digital camera “Nikon Cool Pix 5700” 
 

 
 

Nikon Cool Pix 5700 

Camera controls 
LCD monitor 
LCD 'soft buttons' 
Status LCD 
Lens 
Lens accessories 
Macro range 
Max shutter 
RAW format 
JPEG type 
Continuous 
 
Flash 
Flash range 
Viewfinder 
Weight (inc batt.) 
Dimensions 

Top, Rear, Lens barrel 
1.5" 110,000 pixel, flip-out & twist 
No 
Top of camera, illuminated 
35 - 280 mm equiv. (8×), F2.8 - F4.2 
0.8x wide angle, 1.5× tele, thread adapter, hood 
3 cm – Infinity 
1/4000 sec 1.3 stops from max aperture 
Yes (Nikon NEF) 
EXIF 2.2 (ExifPrint) 
Continuous H, Continuous L, Multi-Shot 16, 
Ultra High-Speed Continuous 
Electronic automatic pop-up 
Approx. 4.0 m (13.1 ft) @ Wide 
180,000 pixel electronic viewfinder 
512 g 
108 x 76 x 102mm 

 
 

6. Some buttons, windows and screen pictures of the special program for estimation of 
Leaf Area Index (LAI) of tree and of lawn. Before using this program all digital 
photos must be transferred from format JPEG to BMP. 

 
 
 

Tree 
 

Read BMP-image 
Make Histogram 
Sky 
Envelope 
 
Results Complete Image 
Sky = ??? % 
Leaves = ??? % 
Stem = ??? % 
 
Results Within Envelope 
Sky = ??? % 
Leaves = ??? % 
Stem = ??? % 
LAI = ??? 
 
 
 

Gazon (lawn) 
 
Read BMP-image 
Make Histogram 
Bare Soil 
Remove Stem, etc. 
Calculate minus stem 
 
Results Complete Image 
Excluded = 0.00 % 
Leaves = ??? % 
Bare Soil = ??? % 
 
Results Within Envelope 
Excluded = ??? % 
Leaves = ??? % 
Bare Soil = ??? % 
LAI = ??? 
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Tree 
 

 

 
 
 

 
BMP-image 

 
Histogram 

  
RGB-image RGB-image (Within Envelope) 
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Results Complete Image 

 

 
Results Within Envelope 
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Gazon (lawn) 
 
 

 

 
 
 

 
BMP-image Histogram 

 
RGB-image Remove Stem 
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Results Complete Image 

 

 
Results After Remove Stem 
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3.2.4. Meteorological data 

 

The Meteorological Institute of Moscow provided meteorological data which were measuring 

values averaged over the meteorological stations of Moscow, for the considered period: 

- diurnal rainfall, 

- diurnal maximum and minimum temperatures, 

- diurnal maximum and minimum relative air humidities, 

- diurnal maximum and minimum cloudiness values, 

- diurnal maximum and minimum wind speeds. 

We converted these data into needed parameters, averaged over distinguished periods. Values 

for clear-sky solar (clear-sky short-wave) radiation were derived from latitude and time of the 

year. Values for net outgoing long-wave radiation were derived from mean air temperature, 

air humidity and cloudiness. These derivations followed Van Keulen and Wolf (1986). 

 

3.2.5. Deviation calculations 
 

In this thesis, means  and deviations  from means are calculated according to 
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CHAPTER 4. MODELING AND CALCULATION OF POTENTIAL 

EVAPOTRANSPIRATION FROM MEASURING DATA  
 

4.1. Calculation of reference evapotranspiration 
 

The growth stages of Linden (Tilia cordata) in Moscow and suitable evapotranspiration 

periods were determined according to the FAO guidelines. See Table 4.1. 

 

Table 4.1. Selected evapotranspiration periods and growth stages of linden (Tilia 

cordata) in Moscow 

Periods Stages 

15.04.04−15.05.04 Initial 

16.05.04−14.06.04 Development 

15.06.04−16.07.04  

17.07.04−16.08.04 Mid-season 

17.08.04−14.09.04  

15.09.04−15.10.04 Late season 

 

 Reference evapotranspiration was calculated for each period according to the FAO 

guidelines (section 2.3.3.) and according to Makkink’s radiation model (section 2.3.1.). 

 

Calculation of the evapotranspiration of the grass reference for each period 

 

1. Needed data that were derived from Moscow meteorological data, and location 
 

Tmax =  monthly average daily maximum air temperature at 2 m above ground surface 

[0C], 

Tmin = monthly average daily minimum air temperature at 2 m above ground surface [0C], 

2u  = monthly average wind speed at 2 m above ground surface [m s-1], 

RHmax = monthly average daily maximum relative humidity [%], 

RHmin = monthly average daily minimum relative humidity [%], 

n = actual duration of sunshine in a day [hour], 
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Altitude = 150 [m], 

Latitude = 560 N. 

 

2. Quantities that are required by the FAO reference model for each  period 

 

Tmean  =  daily mean air temperature [0C], 

Δ = slope of saturation vapour pressure curve [kPa 0C-1], 

γ = psychrometric constant [kPa 0C-1], 

e0 (Tmax) = saturation vapour pressure at maximum air temperature [kPa], 

e0 (Tmin) = saturation vapour pressure at minimum air temperature [kPa], 

es = saturation vapour pressure for a given time period  [kPa], 

ea = actual vapour pressure [kPa], 

es− ea = saturation vapour pressure deficit  [kPa], 

Ra = extraterrestrial radiation [MJ m-2 day-1] 

     (solar radiation received at the top of the Earth’s atmosphere on a horizontal surface), 

N = maximum possible sunshine duration in a day, daylight hours [hour], 

n/N = relative sunshine duration [dimensionless], 

Rs = solar or shortwave radiation [MJ m-2 day-1] 

       (amount of radiation reaching a horizontal plane, after some of the radiation is 

        scattered or absorbed by the atmospheric gases, clouds and dust), 

Rso = clear-sky solar or clear-sky shortwave radiation [MJ m-2 day-1] 

       (solar radiation that would reach the same surface during the same period 

        but under cloudless conditions), 

Rs / Rso = relative solar or relative shortwave radiation [dimensionless], 

Rns = net solar or shortwave radiation [MJ m-2 day-1] 

       (fraction of the solar radiation Rs that is not reflected from the surface), 

σ = Stefan-Boltzmann constant [4.903 ⋅10-9 MJ К-4 m-2 d-1], 

Rnl = net longwave radiation [MJ m-2 day-1] 

       (difference between outgoing and incoming longwave radiation), 

Rn = net radiation [MJ m-2 day-1] 

 (difference between incoming and outgoing radiation of both short and long  

  wavelengths), 

G = soil heat flux [MJ m-2 day-1] 
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       (energy that is utilized in heating the soil; G is positive when the soil is warming and 

        negative when the soil is cooling) 

ETo = reference evapotranspiration [mm day-1] (grass reference evapotranspiration). 

 
3. Transformation of the Moscow data into the required data 

 

Table 4.2. Values of different climatic parameters and estimation of reference 

evapotranspiration, for each period 

Values of parameters for each period 
Parameters 

  
15.04.04− 
15.05.04 

16.05.04− 
14.06.04 

15.06.04− 
16.07.04 

17.07.04− 
16.08.04 

17.08.04− 
14.09.04 

15.09.04− 
15.10.04 

Tmax, 0C 12.9 15.7 20.4 22.4 20.2 11.8 
Tmin, 0C 4.8 8.7 14.0 15.4 13.1 7.2 
u2, m/s 1.27 1.28 0.95 0.65 0.98 1.06 
RHmax, % 85.6 85.7 91.0 94.2 92.8 91.5 
RHmin, % 52.5 59.8 65.6 66.2 65.7 72.2 
n, h 4.7 4.0 4.3 4.0 4.6 2.6 
Altitude, m 150 150 150 150 150 150 
Latitude, ° 56 56 56 56 56 56 
       
Tmean, °C 8.9 12.2 17.2 18.9 16.7 9.5 
Δ, kPa/°C 0.078 0.092 0.123 0.137 0.123 0.082 
γ, kPa/°C 0.066 0.066 0.066 0.066 0.066 0.066 
e0 (Tmax), kPa 1.50 1.82 2.34 2.64 2.34 1.40 
e0 (Tmin), kPa 0.87 1.15 1.60 1.71 1.50 1.00 
es, kPa 1.19 1.48 1.97 2.18 1.92 1.20 
ea(average), kPa 0.77 1.04 1.49 1.68 1.46 0.97 
(es−ea), kPa 0.42 0.44 0.48 0.50 0.46 0.23 
Ra, MJ m-2 d-1 33.3 39.4 40.5 36.1 27.7 18 
N, h 15.0 16.7 17.1 15.9 13.6 11.3 
n/N 0.31 0.24 0.25 0.25 0.34 0.23 
Rs, MJ m-2 d-1 13.49 14.58 15.19 13.54 11.63 6.57 
Rso, MJ m-2 d-1 25.08 29.67 30.50 27.18 20.86 13.55 
Rs/Rso 0.54 0.49 0.50 0.50 0.56 0.49 
Rns, MJ m-2 d-1 10.39 11.23 11.69 10.42 8.96 5.06 
σ, MJ К-4 m-2 d-1 4.903⋅10-9 4.903⋅10-9 4.903⋅10-9 4.903⋅10-9 4.903⋅10-9 4.903⋅10-9

Rnl, MJ m-2 d-1 2.55 2.02 1.89 1.82 2.38 1.93 
Rn, MJ m-2 d-1 7.84 9.20 9.80 8.61 6.58 3.13 
G,  MJ m-2 d-1 0.71 0.47 0.70 0.24 -0.32 -1.00 
        
FAO model:       
ET0, mm d-1 1.97 2.39 2.61 2.45 2.07 1.11 
       
Makkink’s 
model:       
ET0, mm d-1  
(c1 = 0.75) 2.24 2.60 3.03 2.80 2.32 1.11 
ET0, mm d-1  
(c1 = 0.65) 1.94 2.25 2.62 2.42 2.01 0.97 
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Fig. 4.1. Reference evapotranspiration for all periods 

 

 

4.2. Estimation of Leaf Area Index of trees and lawn 
 

Application of the special program for the estimation of Leaf Area Index (LAI) of a tree or 

lawn (see section 3.2.) provided these values for all objects and periods 

(Tables 4.3−4.6) and (Figs 4.2−4.12). The photos show each object in each period. 
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Table 4.3. LAI of trees and lawn in the successive periods (Habarovskaya st.) 

Values of Leaf Area Index of trees and lawn for each period 
Object 15.04.04− 

15.05.04 
16.05.04− 
14.06.04 

15.06.04− 
16.07.04 

17.07.04− 
16.08.04 

17.08.04− 
14.09.04 

15.09.04− 
15.10.04 

Habarovskaya st. 

Trees 

1 0.79 ± 0.24 2.49 ± 0.52 3.27 ± 0.33 3.24 ± 0.37 2.82 ± 0.68 1.59 ± 0.18 
2 1.65 ± 0.19  2.01 ± 0.29 2.74 ± 0.42 3.73 ± 0.49 3.45 ± 0.50 3.22 ± 0.62 
3 2.27 ± 0.31 3.67 ± 0.77 4.77 ± 0.66 5.08 ± 0.74 5.06 ± 0.72 3.75 ± 0.39 
4 1.91 ± 0.03  2.67 ± 0.29 3.50 ± 0.31 4.10 ± 0.25 3.12 ± 0.49  1.86 ± 0.22 
5 1.83 ± 0.09 2.45 ± 0.62 3.35 ± 0.80 5.17 ± 0.60 3.90 ± 0.83 2.00 ± 0.29 
6 0.67 ± 0.07 1.13 ± 0.23 1.57 ± 0.36 1.92 ± 0.27 1.59 ± 0.11 0.63 ± 0.07 
7 2.23 ± 0.17 3.22 ± 0.39 4.10 ± 0.24 4.49 ± 0.34 3.34 ± 0.42 1.07 ± 0.05 
8 1.85 ± 0.26 2.81 ± 0.25 3.90 ± 0.36 4.63 ± 0.47 2.59 ± 0.42 1.20 ± 0.07 
9 1.98 ± 0.04 2.36 ± 0.28 2.96 ± 0.61 3.88 ± 0.60 2.26 ± 0.45 1.09 ± 0.15 

10 2.67 ± 0.06  3.12 ± 0.25 3.78 ± 0.49 4.69 ± 0.33 3.80 ± 0.43 2.13 ± 0.33 
11 2.63 ± 0.27 2.75 ± 0.33 3.00 ± 0.41 3.48 ± 0.45 2.33 ± 0.42 1.19 ± 0.14 

Lawn 

1 1.18 1.64 1.95 1.90 0.83 1.55 
2 1.06 1.02 0.96 2.51 2.17 1.24 
3 0.78 0.75 0.69 0.25 1.28 0.92 
4 0.56 0.51 0.42 0.18 1.08 0.88 
5 0.68 0.69 0.73 0.65 1.08 0.94 
6 0.45 1.23 1.54 1.51 1.21 1.75 
7 0.34 0.33 0.33 0.64 0.91 0.26 
8 0.09 0.12 0.15 0.08 1.18 0.37 
9 0.18 0.29 0.37 0.34 1.34 0.42 

10 0.36 0.78 0.87 0.44 0.61 0.63 
11 0.29 0.81 0.89 0.48 0.48 0.53 

Average LAI 
grass 0.54 ± 0.28 0.74 ± 0.32 0.81 ± 0.39 0.82 ± 0.63 1.11 ± 0.30 0.86 ± 0.38 
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Table 4.4. LAI of trees and lawn in the successive periods (Saharov pr.) 

 
Values of Leaf Area Index of trees and lawn for each period 

Object 15.04.04− 
15.05.04 

16.05.04− 
14.06.04 

15.06.04− 
16.07.04 

17.07.04− 
16.08.04 

17.08.04− 
14.09.04 

15.09.04− 
15.10.04 

Saharov pr. 

Trees 

2 4.08 ± 0.27 5.34 ± 0.34 5.97 ± 0.39 6.36 ± 0.39 6.16 ± 0.38 4.93 ± 0.24 
3 4.39 ± 0.33 6.09 ± 0.25 6.81 ± 0.22 7.12 ± 0.35 6.48 ± 0.68 5.66 ± 0.41 
4 6.04 ± 0.83 7.94 ± 1.23 8.69 ± 1.44 8.12 ± 1.26 6.71 ± 0.91 6.18 ± 1.03 
6 3.82 ± 0.21 5.12 ± 0.20 5.73 ± 0.38 6.57 ± 0.64 6.28 ± 0.51 4.60 ± 0.25 
7 3.39 ± 0.34 4.67 ± 0.35 5.13 ± 0.28 5.01 ± 0.38 4.37 ± 0.73 3.23 ± 0.35 
8 3.47 ± 0.44 4.58 ± 0.49 4.99 ± 0.45 5.05 ± 0.30 4.70 ± 0.28 4.26 ± 0.19 
9 5.12 ± 0.46 5.62 ± 0.38 5.81 ± 0.32 5.60 ± 0.37 4.79 ± 0.25 1.46 ± 0.16 

10 4.46 ± 0.29 5.37 ± 0.47 5.70 ± 0.53 5.93 ± 0.41 5.61 ± 0.48 4.76 ± 0.43 

1 (I) 2.90 ± 0.04  4.61 ± 0.15 5.29 ± 0.27 5.65 ± 0.55 5.37 ± 0.43 3.95 ± 0.07 
2 (I) 3.61 ± 0.18 4.05 ± 0.17 4.24 ± 0.19 4.07 ± 0.29 3.64 ± 0.51 2.41 ± 0.15 
3 (I) 3.15 ± 0.16 4.05 ± 0.29 4.42 ± 0.37 4.08 ± 0.44 3.60 ± 0.44 3.24 ± 0.52 
4 (II) 2.58 ± 0.25 3.29 ± 0.42 3.69 ± 0.50 3.24 ± 0.49 2.49 ± 0.55 1.80 ± 0.32 
5 (II) 4.19 ± 0.47 4.85 ± 0.42 5.22 ± 0.43 4.94 ± 0.65 4.32 ± 0.99 2.36 ± 0.43 
6 (III) 3.46 ± 0.16 4.01 ± 0.15 4.81 ± 0.26 4.64 ± 0.28 4.13 ± 0.38 2.76 ± 0.22 
7 (III) 1.92 ± 0.24 2.30 ± 0.27 2.55 ± 0.28 2.39 ± 0.27 2.06 ± 0.25 0.93 ± 0.16 

Lawn 

2 2.25 1.54 0.69 1.13 1.43 0.77 
3 1.47 1.46 1.43 1.34 1.26 0.69 
4 1.40 1.22 1.13 1.67 1.84 0.37 
6 0.72 1.73 2.36 2.54 2.60 1.85 
7 0.77 0.68 0.59 0.61 0.65 0.85 
8 0.62 0.67 0.74 0.52 0.58 0.60 
9 1.19 1.00 0.92 0.88 0.84 0.29 

10 0.40 1.24 2.09 1.69 0.77 1.05 
Average LAI 

grass 1.10 ± 0.48 1.19 ± 0.31 1.24 ± 0.54 1.30 ± 0.51 1.25 ± 0.54 0.81 ± 0.33 

1 (I) 0.25 0.21 0.14 0.11 0.12 0.09 
2 (I) 0.26 0.22 0.16 0.15 0.12 0.26 
3 (I) 1.15 1.34 1.40 1.95 2.13 0.94 
4 (II) 1.51 0.89 0.43 0.93 1.21 0.61 
5 (II) 1.94 1.51 1.49 1.14 0.77 0.83 
6 (III) 1.23 0.75 0.58 1.53 2.08 0.53 
7 (III) 1.84 2.19 3.03 2.18 1.78 1.89 

Average LAI 
grass 1.17 ± 0.53 1.02 ± 0.57 1.03 ± 0.81 1.14 ± 0.64 1.17 ± 0.72 0.74 ± 0.42 
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Table 4.5. LAI of trees and lawn in the successive periods (Sokolniki (Strominka st.)) 

 
Values of Leaf Area Index of trees and lawn for each period 

Object 15.04.04− 
15.05.04 

16.05.04− 
14.06.04 

15.06.04− 
16.07.04 

17.07.04− 
16.08.04 

17.08.04− 
14.09.04 

15.09.04− 
15.10.04 

Sokolniki (Strominka st.) 

Trees 

1* 5.43 ± 0.77 6.10 ± 0.90 6.55 ± 1.11 6.30 ± 0.93 5.76 ± 0.79 4.33 ± 0.54 
2* 4.77 ± 0.54 5.62 ± 0.97 6.14 ± 1.17 6.08 ± 0.77 5.93 ± 0.71 4.40 ± 0.25 
3* 4.37 ± 0.38 4.70 ± 0.46 5.19 ± 0.55 5.29 ± 0.52 5.13 ± 0.55 4.31 ± 0.18 
4* 5.68 ± 0.47 6.22 ± 0.51 6.71 ± 0.30 6.76 ± 0.31 6.70 ± 0.27 5.16 ± 0.12 
5* 5.07 ± 0.68 6.64 ± 0.81 7.48 ± 1.06 7.57 ± 1.26 6.32 ± 0.95 5.48 ± 0.51 
6* 3.51 ± 0.40 3.79 ± 0.35 4.09 ± 0.20 4.11 ± 0.20 3.92 ± 0.32 3.29 ± 0.42 
7* 4.89 ± 0.70  5.88 ± 1.84 6.51 ± 2.22 6.36 ± 2.14 5.48 ± 2.12 4.31 ± 0.90 
8* 3.74 ± 0.48 4.58 ± 0.57 4.87 ± 0.59 4.81 ± 0.71 4.48 ± 0.84 3.77 ± 0.30 
9* 4.10 ± 0.15 4.64 ± 0.24 5.09 ± 0.31 5.17 ± 0.29 4.95 ± 0.34 4.55 ± 0.21 

10* 5.44 ± 0.67 5.88 ± 0.76 6.28 ± 0.64 6.28 ± 0.64 6.10 ± 0.60 5.84 ± 0.66 

1 5.32 ± 0.53 7.39 ± 0.73 8.96 ± 0.72 8.12 ± 1.04 6.63 ± 0.40 6.08 ± 0.37 
2 5.44 ± 0.30 6.72 ± 0.60 7.48 ± 0.61 6.94 ± 0.55 6.32 ± 0.56 2.60 ± 0.21 
3 5.27 ± 0.55 5.94 ± 0.29 6.29 ± 0.29 5.90 ± 0.55 5.66 ± 0.49 4.86 ± 0.32 
4 4.34 ± 0.92  5.01 ± 0.95 5.42 ± 1.04 4.91 ± 0.76 4.23 ± 0.55 2.64 ± 0.38 

Lawn 

1* 0.49  0.52 0.61 1.62 0.63 0.88 
2* 0.58 0.63 0.69 0.54 0.56 0.96 
3* 1.20 0.92 0.78 0.28 0.71 1.52 
4* 2.06 1.83 1.27 0.55 1.28 1.15 
5* 1.56 1.44 1.02 0.37 0.83 1.17 
6* 1.60 1.12 0.96 0.65 1.78 1.04 
7* 1.23 1.09 0.89 0.66 1.63 0.71 
8* 1.65 1.43 1.23 1.42 1.50 1.25 
9* 1.27 1.35 1.66 2.51 1.87 1.46 

10* 1.50 1.26 1.01 1.41 0.73 1.23 
Average LAI 

grass 1.31 ± 0.36 1.16 ± 0.30 1.01 ± 0.23 1.00 ± 0.59 1.15 ± 0.46 1.14 ± 0.19 

1 5.26 2.75 0.95 1.91 1.27 0.96 
2 4.99 2.14 0.80 1.92 0.25 0.79 
3 4.45 1.96 1.07 2.79 0.35 0.68 
4 4.54 2.03 1.17 3.74 0.32 0.80 

Average LAI 
grass 4.81 ± 0.32 2.22 ± 0.27 1.00 ± 0.12 2.59 ± 0.69 0.55 ± 0.36 0.81 ± 0.08 
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Fig. 4.2. LAI of trees in the successive periods (Habarovskaya st.) 
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Fig. 4.3. LAI of lawn in the successive periods (Habarovskaya st.) 
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Fig. 4.4. LAI of trees in the successive periods (Saharov pr.) 
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Fig. 4.5. LAI of trees in the successive periods (Saharov pr.)
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Fig. 4.6. LAI of lawn in the successive periods (Saharov pr.) 
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Fig. 4.7. LAI of lawn in the successive periods (Saharov pr.) 
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Fig. 4.8. LAI of trees in the successive periods (Sokolniki (Strominka st.))
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Fig. 4.9. LAI of trees in the successive periods (Sokolniki (Strominka st.))
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Fig. 4.10. LAI of lawn in the successive periods (Sokolniki (Strominka st.))
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Fig. 4.11. LAI of lawn in the successive periods (Sokolniki (Strominka st.))
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Table 4.6. Summary. Leaf Area Indices of trees and lawn in each period 
 

Values of LAItrees, LAIgrass, bgrass for each period 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 
alley of  trees 1−11       

S area, m2 180.0 180.0 180.0 180.0 180.0 180.0 
Σ Scrown, m2 37.7 37.7 37.7 37.7 37.7 37.7 
Σ Scrown / S area 0.21 0.21 0.21 0.21 0.21 0.21 
LAI trees 1.85 2.70 3.52 4.17 3.21 1.80 
LAI grass 0.54 0.74 0.81 0.82 1.11 0.86 
b* grass 0.237 0.309 0.333 0.336 0.426 0.349 

Saharov pr. 

alley of  trees 2−4; 6−10       

S area, m2 619.0 619.0 619.0 619.0 619.0 619.0 
Σ Scrown, m2 347.8 347.8 347.8 347.8 347.8 347.8 
Σ Scrown / S area 0.56 0.56 0.56 0.56 0.56 0.56 
LAI trees 4.25 5.45 5.94 6.06 5.52 4.24 
LAI grass 1.10 1.19 1.24 1.30 1.25 0.81 
b grass 0.423 0.448 0.462 0.478 0.465 0.333 

alley of  trees 1-7 (I-III)       

S area, m2 281.0 281.0 281.0 281.0 281.0 281.0 
Σ Scrown, m2 109.7 109.7 109.7 109.7 109.7 109.7 
Σ Scrown / S area 0.39 0.39 0.39 0.39 0.39 0.39 
LAI trees 3.18 4.04 4.49 4.36 3.88 2.68 
LAI grass 1.17 1.02 1.03 1.14 1.17 0.74 
b grass 0.443 0.400 0.402 0.434 0.443 0.309 

Sokolniki (Strominka st.) 

alley of  trees 1*−10*       

S area, m2 288.0 288.0 288.0 288.0 288.0 288.0 
Σ Scrown, m2 82.3 82.3 82.3 82.3 82.3 82.3 
Σ Scrown / S area 0.29 0.29 0.29 0.29 0.29 0.29 
LAI trees 4.86 5.56 6.05 6.03 5.64 4.68 
LAI grass 1.31 1.16 1.01 1.00 1.15 1.14 
b grass 0.481 0.440 0.396 0.393 0.437 0.434 

bio group of  trees 1−4       
S area, m2 115.0 115.0 115.0 115.0 115.0 115.0 
Σ Scrown, m2 59.2 59.2 59.2 59.2 59.2 59.2 
Σ Scrown / S area 0.52 0.52 0.52 0.52 0.52 0.52 
LAI trees 5.12 6.32 7.11 6.54 5.77 4.20 
LAI grass 4.81 2.22 1.00 2.59 0.55 0.81 
b grass 0.910 0.670 0.393 0.726 0.240 0.333 

 
* b (fc, grass) - soil cover fraction by grass.
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Fig. 4.12. Fraction of soil cover by grass in each period
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4.3. Calculation of crop coefficients for “Mid-season stage” periods and 

potential evapotranspiration for trees-lawn combinations in all periods  
 

4.3.1. Calculation of crop coefficients for “Mid-season stage” periods 

 

Crop coefficients for the trees-lawn combinations in Moscow in the “Mid-season stage” 

periods were calculated according to the FAO guidelines (see sections 2.3.2−2.3.3). The 

periods are given in Table 4.7. The input data and calculation results are given in Table 4.8.  

 

Table 4.7. “Mid-season stage” periods of linden (Tilia cordata) in Moscow 

Periods Stage 

15.06.04−16.07.04 

17.07.04−16.08.04 

17.08.04−14.09.04 

 

Mid-season 

 

 

1. Measured parameters from Moscow and the Moscow objects 

 

LAI trees = Leaf Area Index of trees [-], 

∑
∑ ⋅

=
crown

crowntree
trees S

SLAI
LAI

)( , 

S crown  = projected area of tree crown [m2], 

Σ Scrown = total projected area of crowns [m2], 

LAI grass = mean value of Leaf Area Index of grass (lawn) [-], 

h = mean height of tree [m], 

2u  = mean value for wind speed at 2 m above ground surface during mid-season [m s-1], 

RHmin = mean value for minimum daily relative humidity during mid-season [%]. 

 

2. Parameters that are required by the model for calculating potential evapotranspiration 

of the trees-lawn combinations in the “mid-season stage” periods (see section 2.3.5) 

 

fullcbK ,  = estimated basal  during the mid-season (at peak plant size or height) for cbK
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vegetation having full ground cover or LAI>3 [-], 

hcbK ,  =   for full cover vegetation (LAI>3) under subhumid and calm wind 

conditions (  and  m s

midcbK ,

%45min =RH 22 =u -1. The value for  is estimated as 1.0 + 

 for  ≤ 2 m and as 1.20 for  > 2m. The value 1.2 represents a general upper limit 

on  for tall vegetation having full ground cover and LAI > 3 under the sub-humid 

and calm wind conditions) [-], 

hcbK ,

h1.0 h h

midcbK ,

cf  = observed fraction of soil surface covered by vegetation as observed from nadir 

(overhead) [-], 

effcf ,  = the effective fraction of soil surface covered or shaded by vegetation [-]. 

For trees, it can be estimated as ηsin/, ceffc ff =  where η  = the mean angle of the sun 

above the horizon during the period of maximum evapotranspiration (generally between 

11.00 and 15.00). 

inicK ,  = crop coefficient for the initial stage [-], 

endcK ,  = crop coefficient for the end of the late season stage [-], 

45.0,, == endcinic KK  

treesmidcK ,,  = crop coefficient for sparse vegetations, considering the trees without grass for 

the mid-season stage [-], 

ncombinatiomidcK ,, = crop coefficient for the tree-grass combinations for the mid-season stage 

[-]. 

 

3. Results of the data processing per object and per “Mid-season stage” period 
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Table 4.8. Values of different climate and vegetation parameters and estimation of 

crop coefficients for tree-lawn combinations for each “Mid-season stage” period 

Values of parameters for each “mid-season stage” period Parameters 
  15.06.04−16.07.04 17.07.04−16.08.04 17.08.04−14.09.04 
u2, m/s 0.95 0.65 0.98 
RHmin, % 65.6 66.2 65.7 
sin η 0.84 0.79 0.67 
Kc,ini = Kc,end 0.45 0.45 0.45 
 

Habarovskaya st. 

(alley of  trees 1−11)    
S area, m2 180 180 180 
LAI trees 3.52 4.17 3.21 
LAI grass 0.81 0.82 1.11 
LAI combination 1.19 1.22 1.47 
h, m 6.71 6.71 6.71 
Kcb,full 1.04 1.02 1.04 
Kcb,h  (h > 2 m) 1.2 1.2 1.2 
Kc,full 1.09 1.07 1.09 
fc, combination 0.448 0.457 0.521 
fc,eff 0.533 0.577 0.773 

Kc,mid,combination 0.580 0.586 0.689 
 

Saharov pr. 

(alley of  trees 2−4; 6−10)    
S area, m2 619 619 619 
LAI trees 5.94 6.06 5.52 
LAI grass 1.24 1.30 1.25 
LAI combination 2.77 2.83 2.74 
h, m 10.29 10.29 10.29 
Kcb,full 1.02 1.00 1.02 
Kcb,h  (h > 2 m) 1.2 1.2 1.2 
Kc,full 1.07 1.05 1.07 
fc, combination 0.749 0.757 0.746 
fc,eff 0.891 0.956 1.106 

Kc,mid,combination 0.910 0.902 0.914 
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(alley of  trees 1−7 (I−III))    
S area, m2 281 281 281 
LAI trees 4.49 4.36 3.88 
LAI grass 1.03 1.14 1.17 
LAI combination 1.89 1.99 1.99 
h, m 9.44 9.44 9.44 
Kcb,full 1.02 1.00 1.03 
Kcb,h  (h > 2 m) 1.2 1.2 1.2 
Kc,full 1.07 1.05 1.08 
fc, combination 0.612 0.631 0.630 
fc,eff 0.727 0.796 0.934 

Kc,mid,combination 0.775 0.783 0.805 
 

Sokolniki (Strominka st.) 

(alley of  trees 1*−10*)    
S area, m2 288 288 288 
LAI trees 6.05 6.03 5.64 
LAI grass 1.01 1.00 1.15 
LAI combination 1.65 1.64 1.78 
h, m 16.12 16.12 16.12 
Kcb,full 0.99 0.97 1.00 
Kcb,h  (h > 2 m) 1.2 1.2 1.2 
Kc,full 1.04 1.02 1.05 
fc, combination 0.561 0.559 0.589 
fc,eff 0.667 0.705 0.873 

Kc,mid,combination 0.705 0.688 0.741 
 

(bio group of  trees 1−4)    
S area, m2 115 115 115 
LAI trees 7.11 6.54 5.77 
LAI grass 1.00 2.59 0.55 
LAI combination 2.38 3.96 1.88 
h, m 7.10 7.10 7.10 
Kcb,full 1.04 1.02 1.04 
Kcb,h  (h > 2 m) 1.2 1.2 1.2 
Kc,full 1.09 1.07 1.09 
fc, combination 0.696 0.862 0.609 
fc,eff 0.828 1.088 0.903 

Kc,mid,combination 0.872 1.003 0.792 
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4.3.2. Calculation of potential evapotranspiration of trees-lawn combinations 
 

The obtained values of crop coefficients for tree-lawn combinations and the obtained 

values of reference evapotranspiration were combined in order to estimate the potential 

evapotranspiration of each trees-lawn combination in each period (Table 4.9 and Fig. 

4.13): 

ETcombination = Kc, combination · ET0  

ETcombination = potential evapotranspiration of a trees-lawn combination in a period [mm 

day-1], 

ncombinatiocK , = crop coefficient for a trees-lawn combination in a period [-], 

ETo = reference evapotranspiration in a period [mm day-1]. 

 

Table 4.9. Potential evapotranspiration for trees-lawn combinations per period 

Values of potential evapotranspiration for each period, mm day-1

Object 
  

15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 

alley of  trees 1−11 0.89 1.24 1.51 1.44 1.43 0.50 

Saharov pr. 

alley of  trees 2−4; 6−10 0.89 1.65 2.38 2.21 1.89 0.50 

alley of  trees 1−7 (I−III) 0.89 1.49 2.02 1.92 1.67 0.50 

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 0.89 1.41 1.84 1.69 1.53 0.50 

bio group of  trees 1−4 0.89 1.57 2.28 2.46 1.64 0.50 
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Fig. 4.13. Potential evapotranspiration for trees-lawn combinations per period 
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CHAPTER 5. CALCULATION OF WATER STRESS AND SALINITY 

STRESS COEFFICIENTS AND ACTUAL EVAPOTRANSPIRATION 

FOR TREES-LAWN COMBINATIONS 
 

5.1. Calculation of water stress coefficients 
 

Plants suffer from water stress if the matric suction of the root zone is too low or too high. In 

very wet conditions (wetter than field capacity θFC) water stress may occur due to the 

incidence of oxygen deficiency. If soil dries out to a very dry condition, the roots are not able 

anymore to take up water from the root zone. Generally, this moisture condition is referred to 

as wilting point θWP = water suction of 16000 cm water head = pF 4.2. Water stress already 

occurs at water contents higher than wilting point, below a critical water content or so-called 

threshold water content θt. This value depends on characteristics of plants, soil properties, 

climatic parameters and the transpiration process.   

The total available soil water (TAW) and readily available soil water (RAW) in the root 

zone with depth Zr can be estimated using the following equations (Allen et al., 1998, p. 162): 

TAW = 1000 (θFC – θWP) Zr 

RAW = p TAW 

θt = θFC – p·( θFC – θWP) 

θFC =  water content at field capacity [m3/m3], 

θWP = water content at wilting point [m3/m3], 

Zr = rooting depth [m], 

θt = threshold soil water content below which transpiration is reduced due to water stress 

[m3/m3], 

p = average fraction of Total Available Soil Water that can be depleted from the root zone 

before moisture stress starts (0.5 according to Allen et al., 1998).  

  Values of θFC and θWP can be estimated from the contents of mineral particles < 0.05 

mm and < 0.002 mm and organic matter using pedotransfer functions (Staring series) in 

Woesten et al. (2001).  By comparing the results of our soil survey with the Staring series it 

was found that our objects have top soils similar to B15 and sub soils similar to O15 in 

Woesten et al. (2001, pg 18−19; 63; 83). Their pF curves are given in Fig. 5.1. The horizontal 

lines in each figure indicate the standard deviation from the mean (solid curve) of the results 

of measurements on a set of samples from one texture class. 
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Fig. 5.1. pF curves for top soil (B15) and sub soil (O15)  
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For B15: θFC = 0.39; θWP = 0.11; θt = 0.250 (for p = 0.5)  

For O15: θFC = 0.37; θWP = 0.10; θt = 0.235 (for p = 0.5). 

Average values:  θFC = 0.38 (38%); θWP = 0.105 (10.5%); θt = 0.24 (24%). 

 

TAW = 1000 · (0.380−0.105) ·1 = 275 mm; 

RAW = 138 mm. 

 

A water stress coefficient Ks of a root zone during a period can be found by comparing 

the actual soil water content θa of the root zone during the period with the threshold water 

content θt and by using the following equations: 

 
 

 
( ),ta

WPt

WPa
S forK θθ

θθ
θθ

<
−
−

=

 

Ks = 1 (for θa > θt) . 

 

Ks = water stress coefficient [-], 

θt = threshold soil water content below which transpiration is reduced due to waterstress 

[m3/m3] or [%], 

θa = actual soil water content [m3/m3] or [%], 

θFC = the water content at field capacity [m3/m3], 

θWP = the water content at wilting point [m3/m3]. 

 

Once the water stress coefficient is known the actual evapotranspiration can by found 

through multiplying the potential evapotranspiration by the water stress coefficient (Allen et 

al., 1998).  
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Table 5.1. Volumetric water contents of the root zones  

during the various periods 

Values of volumetric water content of soil root zones for each period, % 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 

alley of  trees 1−11 

 

23.8±0.58 
19.6±1.04 

(−4.2)* 

19.6±1.04
18.5±0.96

(−1.1) 

18.5±0.96
22.2±1.30

(+3.7) 

22.2±1.30
18.0±1.16

(−4.2) 

18.0±1.16
21.0±1.29 

(+3.0) 

21.0±1.29
22.8±1.27

(+1.8) 

Saharov pr. 

alley of  trees 2−4; 6−10 

 

29.3±1.58
24.0±1.57 

(−5.3) 

24.0±1.57
16.4±1.14

(−7.6) 

16.4±1.14
26.2±1.93

(+9.8) 

26.2±1.93
22.1±1.24

(−4.1) 

22.1±1.24
20.9±1.15 

(−1.2) 

20.9±1.15
26.0±1.56

(+5.1) 

alley of  trees 1−7 (I−III) 

 

23.3±1.04
14.3±0.82 

(−9.0) 

14.3±0.82
10.4±0.22

(−3.9) 

10.4±0.22
27.8±0.34

(+17.4) 

27.8±0.34
20.1±1.08

(−7.7) 

20.1±1.08
16.4±0.80 

(−3.7) 

16.4±0.80
20.7±1.17

(+4.3) 

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 

 

37.1±1.38
31.6±1.29 

(−5.5) 

31.6±1.29
22.7±1.18

(−8.9) 

22.7±1.18
38.9±1.42

(+16.2) 

38.9±1.42
27.6±1.22

(−11.3) 

27.6±1.22
24.9±1.19 

(−2.7) 

24.9±1.19
26.2±1.26

(+1.3) 

bio group of  trees 1−4 

 

29.7±1.24
27.0±1.15 

(−2.7) 

27.0±1.15
22.1±1.14

(−4.9) 

22.1±1.14
28.0±1.26

(+5.9) 

28.0±1.26
20.5±1.21

(−7.5) 

20.5±1.21
19.3±1.28 

(−1.2) 

19.3±1.28
23.9±0.44

(+4.6) 
 

* - difference of volumetric water content between start and end of period.    
 
 

Table 5.2. Water stress coefficients during the various periods 
 

Values of waterstress coefficient (Ks) 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 

alley of  trees 1−11 0.99−0.67 0.67−0.59 0.59−0.87 0.87−0.56 0.56−0.78 0.78−0.91

Saharov pr. 

alley of  trees 2−4; 6−10 1.00−1.00 1.00−0.44 0.44−1.00 1.00−0.86 0.86−0.77 0.77−1.00

alley of  trees 1−7 (I−III) 0.97−0.28 0.28−0.00 0.00−1.00 1.00−0.71 0.71−0.44 0.44−0.76

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 1.00−1.00 1.00−0.90 0.90−1.00 1.00−1.00 1.00−1.00 1.00−1.00

bio group of  trees 1−4 1.00−1.00 1.00−0.86 0.86−1.00 1.00−0.74 0.74−0.65 0.65−0.99
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Fig. 5.2. Volumetric water contents of soil root zones during the various periods 
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Fig. 5.3. Water stress coefficients during the various periods



5.2. Calculation of salinity stress coefficients 

 

When there is too much salt in the soil, transpiration decreases due to salinity stress. 

Traditionally, the salt condition of the soil is expressed in EC of the saturation extract, 

transformed to a temperature of 25 °C (EC depends on water content and temperature; EC of 

saturation extract, at 25 °C, is not dependent anymore of (incidental) water content and 

temperature during the measurement). The salinity effect on transpiration is expressed 

through a salinity stress coefficient, like the effect of drought on transpiration was expressed 

through a water stress coefficient. The actual evapotranspiration may be calculated through 

multiplying the potential evapotranspiration not only by the water stress coefficient, but also 

by the salinity coefficient (Maas and Hoffman, 1977; Maas, 1990; Feddes et al., 2003). The 

relationship between EC of the saturation extract at 25 °C and the salinity stress coefficient is 

usually expressed as two straight lines. See Fig. 5.4. The first (horizontal) line represents 

conditions before salinity stress occurs (salinity stress coefficient  = 1). After a threshold 

EC is exceeded, transpiration decreases linearly with increasing EC, until the coefficient 

becomes zero (second line). The particular graph in Fig. 5.4 presents experimental data for 

linden (Tilia cordata) from Weissenhorn (2002). 
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Fig. 5.4. Salinity stress coefficient of Tilia cordata and electrical conductivity (EC) of the 

saturation extract at 25 °C 
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The two lines in the graph represe

ss = 1 (for EC = 0 − 4) 

C > 4) 

 order to transform data that are obtained for different soil conditions (temperature, 

volume

ECw, 25 w,T ⋅  (1 + 0.0216 ⋅  (25–T)) 

nt 

 

K

Kss = -0.1 EC + 1.4 (for E

 

In

tric water content, degree of water saturation), the following set of equations 

(Heimovaara, 1993; Mualem and Friedman, 1991) can be used: 

 

 = EC

⎟⎟
⎠

⎞⎛ θ
⎜⎜
⎝
⋅=

Sat

a
wSatExt ECEC

θ25,  

 

Cw, 25 = “soil pore water” electrical conductivity at actual volumetric water content and 

uctivity at actual volumetric water content and 

ion extract” electrical conductivity [mS/cm] (all pores saturated with 

temperature [°C], 

water content [cm3/сm3], 

aturated with water [cm3/сm3], 

The m asuring of the EC values was done using a special sensor (“W.E.T. sensor”, 

E

temperature T = 25 oC (standard) [mS/cm], 

ECw,T = “soil pore water” electrical cond

temperature [mS/cm], 

ECSatExt = “soil saturat

water),  

T  = soil 

θa  = actual soil volumetric 

θSat  =  soil volumetric water content when all pores are s

θSat ≈ 0.55 for the topsoil and θSat ≈ 0.43 for the subsoil. 

 

e

Eijkelkamp, Giesbeek, The Netherlands), which allows the direct measuring of soil 

volumetric water content, soil temperature, and pore water electrical conductivity. The final 

results are presented in Table 5.3 and Fig. 5.5. For all objects and periods Kss = 1, because 

ECSatExt < 4. It means that the studied vegetation did not suffer from salinity stress. Water 

stress appears to be the sole physical stress factor. 
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Table 5.3. EC of soil saturation extract at 25 0C for all periods 
 

Values of soil saturation extract electrical conductivity ECSatExt, mS/cm 
Object 
  

15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 

alley of  trees 1−11 0.38±0.03 0.42±0.03 0.51±0.04 0.36±0.02 0.47±0.02 0.63±0.05

Saharov pr. 

alley of  trees 2−4; 6−10 0.39±0.02 0.27±0.01 0.48±0.03 0.35±0.03 0.33±0.02 0.62±0.04

alley of  trees 1−7 (I−III) 0.38±0.01 0.36±0.02 0.74±0.05 0.58±0.03 0.57±0.03 0.75±0.02

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 0.49±0.03 0.34±0.01 0.77±0.04 0.44±0.01 0.41±0.02 0.51±0.03

bio group of  trees 1−4 0.57±0.02 0.52±0.01 0.65±0.03 0.43±0.02 0.40±0.01 0.65±0.03
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Fig. 5.5. EC of soil saturation extract during all periods 
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5.3. Calculation of actual evapotranspiration of trees-lawn combinations 
 

After the estimation of the potential evapotranspiration of trees-lawn combinations (see 

section 4.3.2.) and water stress coefficients (see section 5.1.) the actual evapotranspiration for 

trees-lawn combinations can be calculated: 

ETa, combination = ETcombination · Ks 

 

ETa, combination = actual evapotranspiration for a trees-lawn combination in a period [mm day-1], 

ETcombination = potential evapotranspiration for the trees-lawn combination in a period  

[mm day-1], 

sK = water stress coefficient [-]. 

 

Table 5.4 and Fig. 5.6 present the result of these calculations.      

 

Table 5.4. Actual evapotranspiration of trees-lawn combinations for each period 

Values of actual evapotranspiration for each period, mm day-1

Object 
  

15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 

alley of  trees 1−11 0.60 0.73 1.31 0.80 1.11 0.46 

Saharov pr. 

alley of  trees 2−4; 6−10 0.89 0.72 2.38 1.90 1.46 0.50 

alley of  trees 1−7 (I−III) 0.25 0.00 2.02 1.36 0.73 0.38 

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 0.89 1.28 1.84 1.69 1.53 0.50 

bio group of  trees 1−4 0.89 1.35 2.28 1.82 1.07 0.50 
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Fig. 5.6. Actual evapotranspiration of trees-lawn combinations for each period 
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CHAPTER 6. CALCULATION OF RAIN INTERCEPTION BY TREES, 

LAWNS, AND TREES-LAWN COMBINATIONS 

 
A part of the precipitation cannot reach the soil surface because it is intercepted by the canopy 

of the trees and grass (Rutter et al., 1975; Gash, 1979; McNaughton and Jarvis, 1983; 

Landsberg, 1986; Shuttleworth, 1989; Schmugge and Andre, 1991; Bussiere, 1992). The 

intercepted water evaporates later. Strictly speaking, distinction between intercepted rainwater 

and throughfall would not be relevant in our calculations because evapotranspiration is 

defined as the undifferentiated sum of evaporation and transpiration. Evaporation is the 

process whereby liquid water is converted into water vapor and removed from the evaporating 

surface. Water evaporates from bare soil and wet vegetation. Transpiration is the process of 

vaporization of liquid water contained in plants through stomata of the leaves and vapor 

removal to the atmosphere. Although, strictly speaking, an estimate of the intercepted part 

would not be necessary, it may be a help in evaluating the consistency of the whole set of 

calculation results.  

 The amount of interception may reach 10–15% from the total precipitation 

(McNaughton and Jarvis, 1983). Landsberg (1986) states that the interception amounts 

5−60% from the effective precipitation, i.e., the precipitation that reaches the soil surface and 

can be used by plants. 

The amount of interception strongly depends on amount of precipitation and LAI. 

Firstly, the interception by the trees within the crown projection areas is calculated. Secondly, 

the interception by the grass canopy outside the tree crown projections. Finally, the 

interception of the tree – lawn combinations is estimated. 

Aston (1979) and Spittlehouse and Black (1982) present an empirical formula for the 

estimation of the volume of intercepted precipitation by trees: 

)]3039.11525.00063.0(1[ 2 +⋅−⋅−⋅= treestreestrees LAILAIPI ,        (R2 = 0.97) 

 

Itrees = intercepted precipitation by trees, [mm], 

P = quantity of precipitation, [mm], 

LAI trees = leaf area index of trees, [dimensionless]. 

This formula estimates intercepted precipitations by trees very well when quantity of 

precipitation is lower than 10−12 mm, and LAI > 2.5. Calculation of Itrees was performed for 

each day with one or more rainfall events, and, after that, summed for each period. A small 
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part of the rainfall events in periods 3, 4 and 5 exceeded 10−12 mm/event (4, 4 and 1 events 

in periods 3, 4 and 5, respectively). These events were excluded from the calculations. 

In 1983, Von Hoyningen-Huene and, in 1985, Braden (Feddes et al., 2003, pp. 5−16 

and 5−17) proposed an empirical formula for the estimation of the volume of intercepted 

precipitations by various agricultural crops. It will be applied to the lawn:  

⎟⎟
⎟
⎟
⎟
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⎞
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⎜
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⎝
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11  

 

Igrass = intercepted precipitation by grass, [mm], 

P = quantity of precipitation, [mm], 

a = empirical coefficient, a = 0.25 mm,  

b = soil cover fraction of grass [-], 

LAIgrass = leaf area index of grass [-]. 

Interception by the lawn was calculated for each day with one or more rainfall events. 

The results were summed for each period. 

In order to obtain overall interception values, the calculated interceptions for trees and 

lawn were summed according to the following weighing equation: 

 

grass
area

crown
trees
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crown
ncombinatio I

S
S

I
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⎟
⎠

⎞
⎜
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⎝

⎛
−+⋅= ∑∑ 1          

 

The use of this weighing procedure implies neglecting the interception by the grass canopy 

underneath trees. This is acceptable because interception by trees is much larger than by 

grass, and the tree crown projections only cover a fraction of the areas. Application of these 

formulas needs information on precipitation, LAI trees, LAI grass and b grass for each period. 

These values are presented in Tables 6.1 and 6.2 and Fig. 6.1. The calculation results are 

given in Tables 6.3 and 6.4 and Figures 6.2 and 6.3. 

 

 

 118



Table 6.1. Total quantity of precipitation during all periods 

Periods Total precipitation, mm 
15.04.04−15.05.04 33.2 
16.05.04−14.06.04 48.3 
15.06.04−16.07.04 244.0 
17.07.04−16.08.04 109.0 
17.08.04−14.09.04 68.2 
15.09.04−15.10.04 35.9 

   

 

 The FAO Guidelines by Allen et al. (1998) do not deal with interception explicitly. 

They account for the sum “interception + soil evaporation” through the difference Kc – Kcb. 

This difference is tabulated in their Table 18. For example, it can be derived from this Table 

that the Guidelines assume for the midseason and late season periods that 

 

ETETKKEI cbc 1.0)( ≈−=+  

 

EETI −≈ 1.0  

 

ET = potential evapotranspiration [mm d-1],  

E = soil evaporation [mm d-1]. 

Considering the ET values calculated in Chapter 4, it may be concluded that the last equation 

predicts interception values that are often lower than the values calculated in this chapter 

(Table 6.3).  
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Table 6.2. Leaf Area Indices of trees and grass during all periods 
 

Values of LAItrees, LAIgrass, bgrass for each period, mm 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 
alley of  trees 1−11       

S area, m2 180.0 180.0 180.0 180.0 180.0 180.0 
Σ Scrown, m2 37.7 37.7 37.7 37.7 37.7 37.7 
Σ Scrown / S area 0.21 0.21 0.21 0.21 0.21 0.21 
LAI trees 1.85 2.70 3.52 4.17 3.21 1.80 
LAI grass 0.54 0.74 0.81 0.82 1.11 0.86 
b grass 0.237 0.309 0.333 0.336 0.426 0.349 

Saharov pr. 

alley of  trees 2−4; 6−10       

S area, m2 619.0 619.0 619.0 619.0 619.0 619.0 
Σ Scrown, m2 347.8 347.8 347.8 347.8 347.8 347.8 
Σ Scrown / S area 0.56 0.56 0.56 0.56 0.56 0.56 
LAI trees 4.25 5.45 5.94 6.06 5.52 4.24 
LAI grass 1.10 1.19 1.24 1.30 1.25 0.81 
b grass 0.423 0.448 0.462 0.478 0.465 0.333 

alley of  trees 1−7 (I−III)       

S area, m2 281.0 281.0 281.0 281.0 281.0 281.0 
Σ Scrown, m2 109.7 109.7 109.7 109.7 109.7 109.7 
Σ Scrown / S area 0.39 0.39 0.39 0.39 0.39 0.39 
LAI trees 3.18 4.04 4.49 4.36 3.88 2.68 
LAI grass 1.17 1.02 1.03 1.14 1.17 0.74 
b grass 0.443 0.400 0.402 0.434 0.443 0.309 

Sokolniki (Strominka st.) 

alley of  trees 1*−10*       

S area, m2 288.0 288.0 288.0 288.0 288.0 288.0 
Σ Scrown, m2 82.3 82.3 82.3 82.3 82.3 82.3 
Σ Scrown / S area 0.29 0.29 0.29 0.29 0.29 0.29 
LAI trees 4.86 5.56 6.05 6.03 5.64 4.68 
LAI grass 1.31 1.16 1.01 1.00 1.15 1.14 
b grass 0.481 0.440 0.396 0.393 0.437 0.434 

bio group of  trees 1−4       
S area, m2 115.0 115.0 115.0 115.0 115.0 115.0 
Σ Scrown, m2 59.2 59.2 59.2 59.2 59.2 59.2 
Σ Scrown / S area 0.52 0.52 0.52 0.52 0.52 0.52 
LAI trees 5.12 6.32 7.11 6.54 5.77 4.20 
LAI grass 4.81 2.22 1.00 2.59 0.55 0.81 
b grass 0.910 0.670 0.393 0.726 0.240 0.333 

 
 

 120



Table 6.3. Values of interception of tree-grass combinations during all periods 
 

Values of Interception combination for each period, mm 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 
alley of  trees 1−11       

Overall I trees -* 0.63 7.93 5.09 1.73 -* 
Overall I grass 0.69 1.29 2.22 1.16 1.39 1.53 
I combination 0.69 1.92 10.16 6.25 3.12 1.53 

Saharov pr. 

alley of  trees 2−4; 6−10       

Overall I trees 4.28 9.20 51.88 23.74 13.21 4.61 
Overall I grass 0.90 1.44 2.13 1.17 0.90 0.62 
I combination 5.19 10.64 54.01 24.91 14.11 5.23 

alley of  trees 1−7 (I−III)       
Overall I trees 1.52 3.94 24.15 10.26 5.13 0.83 
Overall I grass 1.36 1.61 2.34 1.38 1.15 0.75 
I combination 2.88 5.55 26.49 11.64 6.28 1.58 

Sokolniki (Strominka st.) 

alley of  trees 1*−10*       
Overall I trees 2.78 4.89 27.46 12.22 7.04 2.83 
Overall I grass 1.85 2.24 2.66 1.36 1.31 1.59 
I combination 4.63 7.13 30.12 13.58 8.35 4.42 

bio group of  trees 1−4       
Overall I trees 5.38 10.25 58.61 24.03 12.99 4.21 
Overall I grass 6.11 3.49 1.78 2.86 0.31 0.67 
I combination 11.49 13.75 60.38 26.89 13.30 4.88 

* when LAItrees < 2.5  precipitation is  intercepted only by grass and Icombination ~ Igrass

 
 

Table 6.4. Fraction of Intercepted precipitation by tree-grass combinations during all periods 
 

Fraction of Intercepted precipitation for each period, % 
Object 

  
15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Habarovskaya st. 
alley of  trees 1−11 2.1 4.0 4.2 5.7 4.6 4.3 

Saharov pr. 

alley of  trees 2−4; 6−10 15.6 22.0 22.1 22.9 20.7 14.6 

alley of  trees 1−7 (I−III) 8.7 11.5 10.9 10.7 9.2 4.4 

Sokolniki (Strominka st.) 

alley of  trees 1*−10* 13.9 14.8 12.3 12.5 12.2 12.3 

bio group of  trees 1−4 34.6 28.5 24.7 24.7 19.5 13.6 
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Fig. 6.2. Values of Interception of tree-grass combination during all periods 
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CHAPTER 7. WATER REGIMES OF ROOT ZONES 
 

A vegetation zone may be defined as the system of above-ground parts of the vegetation and 

the soil root zone. It may further be assumed that the water content of the vegetation is the 

same at all measuring days, and that the root-zone thickness is 1 m. This chapter concentrates 

on the water regime of the vegetation zone. A water balance may be written for each object 

and each period between two subsequent measuring routines of soil water content, as well as 

for each object and the total period between the measuring routines at the start of the first 

period and at the end of the last period: 

 

Initial water content of the root zone + rainfall + inflow from runoff elsewhere + watering 

incidents = actual evapotranspiration + runoff + deep percolation + final water content of the 

root zone.   

 

Table 7.1 presents rainfall amounts for each period and, for each object and period, the 

initial and final water contents of the root zones, potential evapotranspiration and actual 

evapotranspiration. Cases where precipitation exceeds potential evapotranspiration have, by 

definition, a rainfall surplus. Table 7.1 shows that most cases had a rainfall surplus. The table 

indicates a number of periods of objects which suffer from water stress (actual 

evapotranspiration smaller than potential evapotranspiration). Cases without water stress are 

shaded in the table. 

Rates of deep percolation may be estimated from the water contents of the 90 – 100 

cm deep soil layers of the root zones. Rate of deep percolation by gravity is equal to the 

unsaturated water conductivity, which depends on water content. If the 90 − 100 cm soil layer 

is very dry, deep percolation may be neglected. If the layer is very wet, the rate may be very 

high. The root zones are similar to soil O15 from the Staring series. Woesten et al. (2001) 

present for this soil unsaturated water conductivities as a function of water content: 1.2; 6.3; 

39; 96; 159; 222; 333; 1110 mm/month at soil water contents of 27.3; 31.8; 36.7; 38.9; 39.8; 

40.3; 40.7; 41.0%, respectively. We assumed that deep percolation may be neglected if it is 

less than 1.2 mm/month. Now we return to Table 7.1. Measuring values of the water contents 

of the lowest soil layer are available from the measuring routines between periods 1 and 2, 2 

and 3, 3 and 4, 4 and 5, 5 and 6, and at the end of period 6, for Habarovskaya st., Saharov pr., 

and Sokolniki (Strominka st). In addition, the values are available for Sokolniki (strominka 
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st), site (1−4), at the start of period 1, and for Habarovskaya st. at 25.10.04, a date later than 

the end of the last period. The water contents of the lowest layers at the beginning of the first 

period are not available for most of the objects. It is only available for Sokolniki (Strominka 

st.), site (1−4): locally as high as 39%. This is equivalent to a deep percolation rate of 100 

mm/month at the measuring day. The highest measured water contents of the lowest layer of 

this object between period 1 and 2 and between period 2 and 3 were 33 and 33%, implying 

deep percolation rates of 20 mm/month at the measuring days. The water contents of the 

lowest layers of the sites of Habarovskaya st. that were measured some days after the last 

period at 25.10.04, had as highest measuring value 36%, indicating a deep percolation rate of 

35 mm/month at day 25.10.04. For all further measured lowest-layer water contents of objects 

and measuring times the value of the water content of the lowest layer was so low that rate of 

deep percolation could be neglected.  It may be concluded that deep percolation occurs early 

spring and late autumn, but not in the remaining part of the growing season. 

The possibilities for rain to infiltrate the soil surface may be estimated from the 

saturated water conductivity (permeability) of the upper soil layers. The part of the rainfall 

that is not intercepted by the canopy reaches the soil surface. If the intensity of this part is 

larger than the maximum infiltration rate at the soil surface, runoff will occur. The order of 

magnitude of the maximum infiltration rate is the same as that of the water permeability 

(saturated hydraulic conductivity). Well structured soils have permeabilities that are largely 

determined by inter-aggregate pores, biopores, etc. Such pores are large and provide excellent 

infiltration possibilities. The upper parts of the soils of the objects are highly degenerated. 

They contain much dust rather than aggregates (Chapter 3). Their permeability is more related 

to size of individual mineral particles than to size of aggregates and large pores. Most of the 

particles of the soils are between 0.01 – 0.05 mm. This size fraction has a permeability of 

0.0004 cm/s. It means that the order of magnitude of the infiltration rate of the degenerated, 

dusty, upper soil parts is 0.24 mm/min. Rainfall intensities often exceed this value. The above 

reasoning means that, when rainfall reaches the soil surface, a nonzero but very limited 

infiltration rate develops. 

The amount of runoff from each object during the entire period may be estimated from 

a simplified water balance. If we neglect inflow from runoff elsewhere, watering incidents 

and deep percolation, and assume that the water content of a root zone at the start of the 

growing season is equal to its water content at the end of the growing season, then: 

 

Runoff = rainfall – actual evapotranspiration 
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Using this equation, runoff was estimated for each object. The estimated values were 

385, 297, 391, 301 and 295 mm for Habarovskaya st., Saharov pr. site (2 − 4; 6 − 10), 

Saharov pr. site (I − III), Sokolniki (Strominka st.) (1* − 10*) and Sokolniki (Strominka st.) 

site (1 − 4), respectively. This is, on average, 62% of the rainfall. The values deviate a little 

due to neglecting deep percolation. 

 The water balance equation may also be applied to single periods. Then, the water 

contents at the start and at the end of a period cannot be neglected and must be included in the 

balance. It appears that now anomalies arise: calculated runoff is often higher than rainfall in 

cases with a drying regime and calculated runoff is often negative in cases with a wetting 

regime. These anomalies disappear if one uses much smaller root-zone volumes in the balance 

calculations. It indicates that the effective root-zone volume is less than 1 m3/m2 object area. 

 The root-zone water contents at the start of the first period are plotted against the 

values of the total evapotranspiration in Fig. 7.1. The graph suggests that an optimal value of 

this water content is 280−300 mm in the top 1 m soil layer. 
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Fig. 7.1. Initial water content in root zone (at start of period 15.04.04–15.05.04) and 

actual evapotranspiration (sum for all periods). Dots from left to right: Saharov 1–7 (I–
III); Habarovskaya st.; Saharov 2–4; 6-10; Sokolniki 1–4; Sokolniki 1*–10* 

 127



Table 7.1. For each object and period: precipitation, initial water content, end water 

content, potential and actual evapotranspiration (see text) 

 
Precipitation, water content ini, water content end, water loss 

Object 
  

15.04.04− 
15.05.04 

16.05.04−
14.06.04 

15.06.04−
16.07.04 

17.07.04−
16.08.04 

17.08.04− 
14.09.04 

15.09.04−
15.10.04 

Precipitation, mm 33.2 48.3 244.0 109.0 68.2 35.9 
Duration of period, days 31 30 32 31 29 31 

 
Habarovskaya st. 

alley of  trees 1−11       
Water content ini, mm 238 196 185 222 180 210 
Water content end, mm 196 185 222 180 210 228 
ETcombination , mm/day 0.89 1.24 1.51 1.44 1.43 0.50 
ETa, combination , mm/day 0.60 0.73 1.31 0.80 1.11 0.46 

Saharov pr. 

alley of  trees 2−4; 6−10       

Water content ini, mm 293 240 164 262 221 209 
Water content end, mm 240 164 262 221 209 260 
ETcombination, mm/day 0.89 1.65 2.38 2.21 1.89 0.50 
ETa, combination, mm/day 0.89 0.72 2.38 1.90 1.46 0.50 

alley of  trees 1−7 (I−III)       

Water content ini, mm 233 143 104 278 201 164 
Water content end, mm 143 104 278 201 164 207 
ETcombination  , mm/day 0.89 1.49 2.02 1.92 1.67 0.50 
ETa, combination  , mm/day 0.25 0.00 2.02 1.36 0.73 0.38 

Sokolniki (Strominka st.) 

alley of  trees 1*−10*       

Water content ini, mm 371 316 227 389 276 249 
Water content end, mm 316 227 389 276 249 262 
ETcombination, mm/day 0.89 1.41 1.84 1.69 1.53 0.50 
ETa, combination, mm/day 0.89 1.28 1.84 1.69 1.53 0.50 

bio group of  trees 1−4       
Water content ini, mm 297 270 221 280 205 193 
Water content end, mm 270 221 280 205 193 239 
ETcombination, mm/day 0.89 1.57 2.28 2.46 1.64 0.50 
ETa, combination, mm/day 0.89 1.35 2.28 1.82 1.07 0.50 
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CHAPTER 8. DISCUSSION OF MODEL RESULTS 
 

8.1. Reference evapotranspiration 

 

In order to estimate the reference evapotranspiration (ET0) in Moscow, two radiation models 

were used: the very universal FAO guidelines and the semi-empirical Makkink’s radiation 

model that has been developed in The Netherlands (Table 4.2 and Fig. 4.1). The estimations 

were carried out for the growth stages (periods) of combined vegetations of Linden trees 

(Tilia cordata) and grass (lawn) on the basis of data on climatic parameters. The FAO model 

contains more parameters and is less empirical than Makkink’s model, so that one might 

expect that it estimates the unknown evapotranspiration more exactly. Therefore, we accepted 

the FAO model as "base" (standard). However, we found that Makkink’s model (with factor 

С1 = 0.65) gave ET0 values that are the same as the values obtained through the FAO model. 

Hence, in cases where the availability of climatic parameters for conditions of Moscow is 

limited, it is possible to use the simpler Makkink’s model. 

The evapotranspiration values are relatively low because of urban influences (low 

wind speeds and high cloudiness and humidity). The maximal level of the reference 

evapotranspiration (ET0) was observed during the periods 15.06.04−16.07.04 and 

17.07.04−16.08.04, with values equal to 2.61 (Makkink: 2.62) and 2.45 (2.42) mm/day, 

respectively. This can be explained by the increase of air temperature in these periods because 

of the reception of a maximum solar radiation. The complex interrelation of climatic 

parameters resulted in similarity of values for the periods 15.04.04−15.05.04 and 

17.08.04−14.09.04. Values of ET0 in these periods are equal to 1.97 (1.94) and 2.07 (2.01), 

respectively. Note that the first period is the Initial stage, and the other period is the last time-

step of the Mid-season stage. The importance of this will be specified later at the discussion of 

trees-lawn combinations. 

A further essential feature is the distinct "uniformity of change” of the ET0 values. 

From the Initial stage the reference evapotranspiration gradually increases, followed by an 

also gradual decrease to the final period of the Mid-season stage. Further on, a sharp reduction 

of ET0 values is observed during late season. This is connected to a change of climatic 

parameters (especially change of air temperature), strongly slowing down the process of 

evapotranspiration. The ET0 value for the period 15.09.04−15.10.04 is reduced two times in 

comparison with the period 17.08.04−14.09.04,  and equals 1.11 (0.97) mm/day. 
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One might argue that the application of the evapotranspiration models to the urban 

objects may be not quite correct because of shading by buildings and the relatively small size 

of the objects. But Moscow is very widely planned, and the period of maximum 

evapotranspiration is generally between 11.00 and 15.00 hours (Allen et al., 1998, p. 188). 

And the selected objects are surrounded by similar greening objects and further objects like 

road signs, traffic lights, above-ground cables, statues, etc., all making the  aerodynamic 

roughness more uniform. 

 

8.2. Leaf Area Indices of individual trees and lawn areas 

 

Considering city conditions, we can surely observe the dependency of the various vegetation 

conditions on a complex of factors. A first step on the way towards an estimation of the state 

of plants can be the use of a universal indicator quantity that allows studying not only a 

“status quo” but also dynamic processes. Accordingly, we used, for trees and lawn, the 

quantity Leaf Area Index (LAI), because it is possible to draw conclusions about the presence 

of plant stress and the consequences of its influence from the development of leaf surface and 

crown as a whole.  

City plantings of Tilia cordata and lawn areas at different locations of Moscow were 

involved in studying these questions. Using a specific algorithm (see section 3.2), values of 

LAI were obtained for each tree and lawn area at these objects. We shall consider the obtained 

data at the level of an individual tree and at the level of a planting (alley or biogroup). 

 

Object:  Habarovskaya st.  (Table 4.3 and Figs 4.2 and 4.3) 

During the Initial stage (15.04.04−15.05.04) the majority of trees have a LAI of 

1.65−2.27 (max = 2.63−2.67; min = 0.67−0.79). From that, LAI increases and during 

17.07.04−16.08.04 the maximal LAI values of the majority of trees are 3.48−4.69 (max = 

5.17−5.08; min = 1.92). Thus, the LAI values of the "leader trees" in the Initial stage are 

levelled with those of the other trees during Mid-season. During the further periods decrease 

of LAI is observed, and again, during 15.09.04−15.10.04, there is a change of “leader trees”. 

Values of LAI in this period are 1.07−2.13 (max = 3.22−3.75; min = 0.63). Trees with a rather 

high LAI at Initial stage can improve or keep their positions up to the end of the vegetative 

period. The trees with lowest initial values of LAI do not show an essential increase. Their 

values remain rather low. The given example shows specific features of each tree (groups of 
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trees), reacting not only on the general climatic factors, but also on site-specific anthropogenic 

factors like: technology of planting and size of planting hole; mechanical damages to stem; 

different degrees of soil density near the surface and change of water-air regimes under the 

surface in the root zone; a non-uniform care (watering, application of fertilizers); etc. 

Analyzing the condition of the lawn on various sites of this object a rather non-

uniform development is observed. Periods of increasing LAI are unexpectedly interrupted by 

decrease. At Initial stage the LAI values of the lawn are 0.18−0.78 (max = 1.06−1.18; min = 

0.09). In this case it is impossible to speak about a general natural increase of LAI values, 

reaching maximum in the optimum period. At each site, more than one peak LAI value is 

reached, in different periods. Thus, there can be several maximal LAI values at each site. The 

absolute-maximal value for the lawn of this object is LAI = 2.51 and the absolute-minimal is 

LAI = 0.08 (in the period 17.07.04−16.08.04). The unstable condition of the lawn during 

almost the entire vegetative period can be attributed to the realization of actions for lawn 

improvement and repeated local damages. 

 

Object:  Saharov pr. (Table 4.4 and Figs 4.4−4.7) 

On this object the change of the LAI of trees was considered separately for two parts 

(2−4; 6−10) and (I−III).  

For the majority of trees (2−4; 6−10) LAI typically increased gradually from Initial 

stage (15.04.04−15.05.04) with LAI = 3.47−5.12 (max = 6.04; min = 3.39) to mid-season 

(17.07.04−16.08.04) with LAI = 5.60−7.12 (max = 8.12; min = 5.01−5.05). The period 

15.09.04−15.10.04 is characterized by LAI = 3.23−5.66 (max = 6.18; min = 1.46). In this case 

the "leader" (tree 4) keeps its position. The sharp decrease of LAI of tree 9 may be explained 

by intensive anthropogenic influence like, for example, repair of underground 

communications in the root zone and significant damage of the root system. Other trees kept 

stable values of LAI. 

Change of LAI of trees at I−III occurs differently. Each of the sites I−III is surrounded 

by a highway and secondary roads, all paved with an asphalt covering, leaving very small 

areas for lawn. At Initial stage (15.04.04−15.05.04) LAI = 2.58−3.61 (max = 4.19; min = 

1.92). The further increase of the LAI values, up to a maximum, occurs during the period 

15.06.04−16.07.04, and reaches values of LAI = 3.69−4.81 (max = 5.22−5.29; min = 2.55). 

Only one tree has kept ability to increase LAI during the following period 17.07.04−16.08.04. 

This value, LAI = 5.65, is also the absolute-maximal value for trees of site I−III. The period 
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15.09.04−15.10.04 is characterized by LAI = 1.80−3.24 (max = 3.95; min = 0.93). Thus, it is 

similar to the situation of object Habarovskaya st. If trees had rather high LAI values at the 

initial stage they can increase these values or keep the values at a high level during the whole 

vegetative period, and trees with lowest values of LAI typically do not significantly increase 

their LAI values. 

The condition of the lawn on this object is also unstable during the vegetative period, 

at site (2−4; 6−10) and as well as at site (I−III). A comparison may be made. Initial stage LAI 

is 0.62−1.47 (max = 2.25; min = 0.40) at site (2−4; 6−10) and is 1.15−1.84 (max = 1.94; min 

= 0.25−0.26) at site (I−III). The absolute maximum of site (2−4; 6−10) is LAI = 2.54−2.60, 

being observed in the periods (17.07.04−16.08.04) and (17.08.04−14.09.04), and of site 

(I−III) it is LAI = 3.03, being observed in an earlier period (15.06.04−16.07.04). For two 

lawns in these periods average values of lawn LAI did not exceed 2.1−2.2. Late Season LAI 

values are 0.37−1.05 (max = 1.85; min = 0.29) and 0.26−0.94 (max = 1.89; min = 0.09) at 

sites (2−4; 6−10) and (I−III), respectively. These values are similar for the two sites, and 

reflect the general condition of lawn in this period. 

 

Object:  Sokolniki (Strominka st.). (Table 4.5 and Figs 4.8-4.11) 

This object is also presented by two parts: alley (1*−10*) and biogroup (1−4). The 

first values belong to site (1*−10*). Initial stage (15.04.04−15.05.04) LAI = 3.74−5.44  

(max = 5.68; min = 3.51). These are the greatest values of this period from all considered 

sites. Further development of LAI of the majority of trees is sufficiently uniform and reaches 

maximum levels in periods 15.06.04-16.07.04 and 17.07.04-16.08.04, during which LAI = 

4.87−6.51 (max = 7.48; min = 4.09) and LAI = 4.81−6.36 (max = 7.57; min = 4.11). Late 

Season is characterized by LAI = 3.77−5.48 (max = 5.84; min = 3.29). We can see again the 

tendency of preservation of the level of LAI values of each of the trees, both for well and for a 

slowed-up way of developing. 

It is also interesting to analyze LAI of trees in biogroup (1−4). Initial stage 

(15.04.04−15.05.04) LAI = 4.34−5.44. Maximal values LAI are characteristic for the period 

15.06.04−16.07.04 and equal 5.42−8.96. Late Season LAI = 2.60−6.08. In this case the LAI 

values of the tree with minimal initial LAI value remain the minimum values during all 

periods. 

The LAI values of lawns on site (1*−10*) at Initial stage (15.04.04−15.05.04) are not 

so large: LAI = 1.20−1.65 (max = 2.06; min = 0.49−0.58). Considering the whole vegetative 
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period the lawn areas show also non-uniform development. It is interesting that the absolute 

maximum and minimum observed LAI occurred in one period. It is 17.07.04−16.08.04 with 

maximum LAI = 2.51 and minimum LAI = 0.28. Late Season values are LAI = 0.71−1.52. 

LAI values of  lawn areas at site (1−4) for Initial stage (15.04.04−15.05.04) are 

sufficiently high and equal to 4.45−5.26, which is three times higher than at site (1*−10*). 

From that there is a sharp decrease of LAI. So during 15.06.04−16.07.04 it has already fallen 

to 0.80−1.17. After that there is an increase to LAI = 1.91−3.74 in the period 

17.07.04−16.08.04, and LAI is reduced again to a minimal size of 0.25 in period 

17.08.04−14.09.04. During Late Season the values of LAI equal 0.68−0.96.  

Thus, this object being an example, we could see some dynamics of the condition of 

lawns, which is rather indicative and reflects influences of such factors as: compaction of soil; 

damage as a result of construction work and subsequent soil erosion; restoration of lawns; 

lawn care activities, including trimming, watering, aeration, application of fertilizers. Besides, 

the state of a lawn is influenced substantially by its appropriateness: incidence of shading 

from parts of buildings and large trees; properties of soil substrate on which the lawn grows 

(including optimum composition of the substrate); degree of drainage of the territory; climatic 

factors (favorable or unfavorable combinations of temperature and quantity of precipitation); 

i.e., a complex influence of the components of the system «tree – lawn – growing conditions». 

 

8.3. Leaf Area Indices of objects 
 

The original data were obtained for individual trees and specific lawn sites. In order to be able 

to compare the set of trees and lawn of an object with those of others, and in order to 

formulate a complete/overall representation of LAI, it was necessary to take into account the 

areas of the tree crown projections and to determine a weighted average LAI value for the 

trees of each object. The results made it possible to compare objects (Table 4.6 and Fig. 4.12). 

 

Initial stage (15.04.04-15.05.04) 

Maximal values of LAI of trees are characteristic for object Sokolniki (Strominka st.), and 

equal to 4.86 at site (1*−10*) and 5.12 at site (1−4). Average values are observed on object 

Saharov pr.: LAI = 4.25 at site (2−4; 6−10), and 3.18 at site (I−III). Minimal values are 

observed for object Habarovskaya st. where LAI = 1.85, which is 2.6−2.8 times less than for 

object Sokolniki (Strominka st.). 
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Development (16.05.04−14.06.04) and  

Mid-season (15.06.04−16.07.04; 17.07.04−16.08.04; 17.08.04−14.09.04) 

During these periods there is an increase of LAI values at all objects. However, the maximal 

values and the periods of their occurrence can be various. For objects Sokolniki (Strominka 

st.) and Saharov pr. LAI is 6.05−7.11 and 5.94−4.49, respectively, for the period 

15.06.04−16.07.04; and LAI is 6.03−6.54 and 6.06−4.36, respectively, for the period 

17.07.04−16.08.04. For Habarovskaya st., maximal LAI = 4.17 occurring in the period 

17.07.04−16.08.04. Thus, objects Sokolniki (Strominka st.) and Saharov pr. kept not only 

higher LAI values than Habarovskaya st., but also during a longer term. 

 

Late Season (15.09.04−15.10.04) 

The given period is characterized by the following values: Sokolniki (Strominka st.)  

LAI = 4.68−4.20; Saharov pr. LAI = 4.24−2.68; Habarovskaya st. LAI = 1.80 (the minimal 

value in comparison with other objects). 

Thus, on Habarovskaya st. there was a situation at which even a favorable 

combination of climatic factors is not capable to improve significantly its usual growing 

conditions (including soil). The condition of Tilia cordata can worsen significantly at 

negative combinations of climatic factors (for example, at insufficient precipitation). 

Analyzing the average LAI values for lawn during the period 15.04.04−15.05.04 we 

can draw the conclusion that  Habarovskaya st. again shows the lowest LAI: 0.54 (fraction of 

soil cover by grass only 0.237). Other objects show rather uniform values: Saharov pr., site 

(2−4; 6−10), LAI = 1.10 (0.423); site (I−III), LAI = 1.17 (0.443); Sokolniki (Strominka st.) 

(1*−10*), LAI = 1.31 (0.481, i.e. more than 50% of the area is exposed bare soil). Much 

greater values were observed for object Sokolniki (Strominka st.), site (1−4): LAI = 4.81 

(0.910). 

Change of LAI of a lawn during the vegetative period has no clear regularity and is 

characterized by various periods of increase and decrease of values. The maximal values for 

different objects during the periods of an observably maximum follow.  Habarovskaya st. LAI 

= 1.11 (0.426) - the period 17.08.04−14.09.04. Saharov pr. site (2−4; 6−10) LAI = 1.30 

(0.478) - the period 17.07.04−16.08.04; site (I−III) LAI = 1.17 (0.443) - the periods 

15.04.04−15.05.04 and 17.08.04−14.09.04; Sokolniki (Strominka st.) site (1*−10*) LAI = 

1.31 (0.481) - the period 15.04.04−15.05.04, site (1−4) LAI = 4.81 (0.910) - the period 

15.04.04−15.05.04. 
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LAI values of the period 15.09.04−15.10.04 on all objects vary 0.74−1.14 (0.309-

0.434). 

According to our research sufficiently high values of LAI of lawn are observed during 

the Initial stage. It may be explained by several reasons. In conditions of Moscow, the start of 

the development of grass (lawn) is earlier than of other vegetation in the spring, and, 

accordingly, the grass has no competitors for light, water and nutrients. Besides, in the city 

conditions, the air temperature is some degrees higher; the snow cover disappears earlier; and 

the surface of soil warms up faster (also because of significant contents of organic matter 

having dark color in the soil top layer); - all this enabling the lawn to develop more 

intensively than in suburbs of the city. It should be noted, that "life" of lawn under conditions 

of Moscow stops in the winter period and does not proceed before the spring starts. In this 

case the quality of the soil conditions in the spring period is a potentiality for the entire 

vegetative period. 

 

8.4. Kc values and potential evapotranspiration 

 

In our calculations of crop coefficients (section 2.3.4.), we adopted the value Kc = 0.45 for all 

Initial and Late stages. Using this value we derived Initial and Late stage values of potential 

evapotranspiration for the tree-grass combination ETcombination from the Initial and Late stage 

reference evapotranspiration. The derived value for Initial stage is ETcombination = 0.89 mm/day, 

which appeared to be 1.8 times more than the derived Late Season ETcombination = 0.50 mm/day 

(Table 4.9, Fig. 4.13). Certainly, approximation of these values for all objects without 

differentiation may be questioned. However, we know that in the Initial stage the stable part 

of the vegetation transpiration is transpired by the lawn grass. LAI of lawn in this period is 

not so high on the majority of the sites. Only by the end of the period (practically for one 

week) trees show sufficiently intensive development of leaf surface. In Late Season the 

transpiration is reduced, since climatic factors significantly slow down biological processes.  

For the calculation of values of evapotranspiration of all Mid-season periods, 

appropriate Kc values were derived (Table 4.8). This derivation was based on the definitions 

of fraction of soil surface covered by trees (as observed from overhead) and fraction of soil 

surface covered by grass (as observed from above). The obtained data indicate low values of 

grass LAI. Therefore, when objects as a whole are considered, decrease of fraction of soil 

surface covered by the combined vegetation can be observed. Certainly, our data show rather 

 135



significant tree LAI values, but tree crowns only represent a part of the transpiring surfaces, 

not occupying all object territory. In spaces between trees the basic transpiring surface is 

grass, the projected cover of which is not stable during the vegetative period.  

Values of Mid-season evapotranspiration (Table 4.9, Fig. 4.13) are maximal during 

15.06.04−16.07.04: Habarovskaya st. ETcombination = 1.51 mm/day; Saharov pr. site (2−4; 

6−10) ETcombination = 2.38 mm/day; site (I−III) ETcombination = 2.02 mm/day; Sokolniki 

(Strominka st.) site (1*−10*) ETcombination = 1.84 mm/day; site (1−4) ETcombination = 2.28 

mm/day. Later (the period 17.07.04−16.08.04) almost all objects show gradual decrease of 

evapotranspiration. Only Sokolniki (Strominka st.), site (1−4), is characterized by an increase 

of ETcombination = 2.46 mm/day. The obtained results may be explained by comparing them 

with the information about LAI, the values of which are large, and by taking into account that 

conditions (climatic factors; insignificant shading; location of surrounding buildings; etc.) are 

favourable for evapotranspiration as well. 

 

8.5. Soil water contents 
 

In order to transform potential evapotranspiration values into actual evapotranspiration values 

it is necessary to analyze the parameter “volumetric water content of soil” and to estimate its 

change during the various periods of the vegetation process. Besides, such an analysis can 

evidently show whether plants suffered from water stress or not, and provide factors of water 

stress (section 5.1).  

The analysis of the values of the volumetric water content that were obtained for each 

object (Table 5.1 and Fig. 5.2) shows that, after snow thawing and water accumulation in the 

root zone, an unequal situation is already present. During Initial stage (15.04.04−15.05.04), 

objects Sokolniki (Strominka st.), sites (1*−10*) and (1−4), and Saharov pr., site (2−4; 6−10), 

have volumetric water content values that are higher than the critical value: 29.7; 37.1; 29.3 > 

critical value = 24.0% at the beginning of the period and 31.6; 27.0; 24.0 ≥ 24.0% at the end 

of the period. Volumetric soil water contents of root zones of other objects are already below 

critical level in this period:  Habarovskaya st. and Saharov pr., site (I−III): 23.8 and 23.3 < 

24.0% at the beginning of the period and 19.6 and 14.3 < 24.0% at the end of the period. But 

the reasons of these conditions are various. The soil profile of Habarovskaya st. has water 

shortage because significant runoff occurs, and Saharov pr., site (I−III), has, besides 

significant runoff, a more intensive development of tree LAI and grass LAI, i.e. its area of 
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transpiration surface is larger than at Habarovskaya st. 

During the following period (15.05.04−14.06.04), all objects show decreases of 

volumetric soil water contents, to values below the critical value, 16.4−22.7 < 24.0% , and, in 

the case of Saharov pr., site (I−III), volumetric water content becomes even lower than the 

water content at wilting point: 10.4 < wilting point = 10.5%. The reasons are: insufficient 

amount of precipitation, intensive development of leaf surface.  

Later (period 15.06.04−16.07.04), volumetric soil water contents increase up to values 

of 26.2−28.0%, which are higher than critical, and for one of the objects,  Sokolniki 

(Strominka st.) site (1*−10*), even to a value that is a little higher than field capacity: 38.9 > 

38.0%, despite  the significant tree LAI value (4.49−7.11) of this object during this period. 

But the precipitation in this period is 244 mm. It is rather favorable allowing the significant 

area of transpiration surfaces to receive sufficient water from the soil. It is especially 

important for Tilia cordata, because this species of wood plants reaches its maximal 

development in this period (15.06.04−16.07.04). Only Habarovskaya st. has volumetric soil 

water contents again below critical level (22.2% < 24.0%).  

Then there is a decrease of volumetric water content of soil, proceeding up to the 

period 17.08.04−14.09.04 when value of water content is again below critical level and equals 

16.4−21.0%. Only on one object Sokolniki (Strominka st.), site (1*−10*) this value is a little 

more and about 24.9%. 

During the period 15.09.04−15.10.04 air temperature, LAI and evapotranspiration 

decrease, which allows a large amount of water to reach the root zone and to be stored in it. It 

is interesting that even in this period objects Habarovskaya st. and Saharov pr., site (I−III), 

have volumetric water contents (22.8 and 20.7%) below critical value. 

 

8.6. Water stress coefficients 
 

Similar regularity is observed when we consider water stress coefficients Ks (Table 5.2 and 

Fig. 5.3). On all objects there is a reduction of this parameter. This can especially be seen 

during 16.05.04−14.06.04, because of several reasons: development of the leaf surface, 

insufficient amount of precipitation and, in some cases (Habarovskaya st. and Saharov pr., site 

(I−III)), low initial volumetric water content of the soil after snow thawing. Thus, during 

Development stage, Ks = (0.90-0.44) < 1 on almost all objects, and even = 0 (water content at 

wilting point) on Saharov pr., site (I−III). 

 137



 During the period with maximum precipitation (15.06.04−16.07.04) Ks = 1 on all 

objects, except for Habarovskaya st., where Ks = 0.87. Then again the water stress factors 

decrease, and, at the end of period (17.08.04−14.09.04), Ks = 0.44−0.78. Only the factor of 

Sokolniki (Strominka st.), site (1*−10*), is stable and remains 1. 

 Then, certainly, Ks values start to increase, but do not always reach the maximal 

value. Thus, before the formation of a snow cover, the soil profile cannot receive enough 

water to reach its water holding capacity. Because of the city practice of gathering and taking 

out most part of snow, the soil in the spring period is not completely saturated by water again, 

which may be considered suboptimal. Besides, if the amount of precipitation in spring is 

insignificant, and water runoff is significant, it happens that the water storage in the root zone 

soil is not sufficient. In addition, appearing grass (lawn) also requires water. Accordingly, the 

tree in the city develops in stressful conditions already in the beginning of the vegetative 

period, and its state depends to a greater extent on a favorable combination of climatic factors 

or a duly care. 

 
8.7. Actual evapotranspiration 

  
On the basis of the obtained data we determined values of actual evapotranspiration for the 

tree-grass combinations, ETa, combination (see section 5.3.). The values are given in Table 5.4 

and Fig. 5.6. Minimal values of Initial Stage were observed for Habarovskaya st. and Saharov 

pr., site (I−III), where ETa, combination = 0.60 and 0.25 mm/day, respectively. For the period 

16.05.04−14.06.04 volumetric water content has decreased to the water content at wilting 

point at Saharov pr., site (I−III), and trees experience strong water stress, by which the 

process of evapotranspiration practically stopped.  

During 15.06.04−16.07.04 maximal values of actual evapotranspiration were 

observed: 1.31−2.38 mm/day (minimal value applies to Habarovskaya st.). At this time 

significant amounts of precipitation provide the soil profiles with water, which then transpire 

through the leaf surface. Thereafter, actual evapotranspiration is gradually reduced, already to 

ETa, combination = 0.73 mm/day on object  Saharov pr., site (I−III), in period 17.08.04−14.09.04, 

which is two times less than on  Saharov pr., site (2−4; 6−10), with ETa, combination = 1.46 

mm/day and Sokolniki (Strominka st.), site (1*−10*), with ETa, combination = 1.53 mm/day.  

This tendency of object Saharov pr., site (I−III), remains during Late stage when its 

ETa, combination = 0.38 mm/day, which is the minimal value from all objects of study. 
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8.8. Interception 
 

An interesting aspect at studying the distribution of water by plants in the city is the 

interception of some part of precipitation by the leaf surface of trees and lawn, I combination. 

This parameter depends on the value of LAI (Table 6.2) and amounts of precipitations (Table 

6.1 and Fig. 6.1). The parts of the precipitations intercepted by trees do not reach the level of 

the lawn (under tree crowns) and cannot be intercepted by the grass leaves or reach the soil at 

the surface of the root zone (Tables 6.3 and 6.4). 

The calculated interception values for periods 1, 2, and 6 are small relative to the 

corresponding evapotranspiration values. Note that evapotranspiration is defined as the sum 

of the evaporation from soil and wet vegetation and transpiration of vegetation, which means 

that interception is included in evapotranspiration. It should also be noted that the evaporation 

from wet vegetation is not uniquely related to precipitation: the evaporation from wet 

vegetation is relatively small if the same amount of rainfall is distributed over a small number 

of events with intensive rainfall. In other words, the intercepted water part at precipitations of 

intensive character (storms) is less than at uniform, small, precipitations.  

The minimal interception during Initial stage was found for site Habarovskaya st.: 

I combination = 0.69 mm (2.1% from total amount of precipitations), which is in this case 

basically due to the  leaf surface of the grass. The maximal value for this stage was found for 

Sokolniki (Strominka st.), site (1−4): I combination = 11.49 mm (34.6% from total amount of 

precipitations). In this case values of LAI of trees and grass are high. 

The absolute maximum of the intercepted precipitations was observed during 

15.06.04−16.07.04. In this period, maximum quantity of precipitations and maximum LAI of 

trees occurred (LAI values of lawns were not so high). The Icombination values in this period 

were 60.38 mm and 54.01 mm on Sokolniki (Strominka st.), site (1−4) and Saharov pr., site 

(2−4; 6−10), respectively. These amounts represent 24.7 and 22.1% of the total quantity of 

precipitations, respectively. When the precipitations had an intensive character (storms), the 

part of the intercepted water is less than when precipitations were uniform and small. 

During Late Season the amount of intercepted water decreases, since the leaf surface 

of trees becomes less, and the amount of precipitations is not so large. Fractions of 

interception in this period are 4.3−14.6%, depending on the LAI values of trees and grass, and 

also on the ability of trees to keep the leaf surface in this period. 
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8.9. Water regimes 
 

Chapter 7 indicates an extreme runoff value for the objects during the measuring period: 62% 

of the rainfall. Part of this excessive value may be explained by systematic errors. 

Evapotranspiration is calculated from LAI values that were obtained through image 

processing. This method provides LAI values that are a little too low if the canopy parts are 

clustered. The introduced error can only be small as evapotranspiration is only a weak 

function of LAI. By definition, the evapotranspiration includes evaporation of intercepted 

rain. This may not affect the evapotranspiration value when evaporating wet canopy surface 

(in case of wet canopy) is identical to transpiring dry canopy surface (in case of dry canopy). 

But in the case of sparse woody plants this evaporating wet surface is much larger than the 

dry transpiring surface. Then, the real evapotranspiration increases with the time that the 

wooden parts are wet. A maximum value of the introduced error may be estimated from 

Chapter 6 (Interception). The maximum error is limited. The significant runoff is due to the 

very limited infiltration possibilities. The infiltration rate is nonzero, so that there is a yearly 

refill of the water that the vegetation withdraws from the root zones. But the refill is very slow 

and often does not reach field capacity. The limited infiltration possibilities are accompanied 

by excessive runoff. 

 The results may be interpreted for rainfall in other years. The rainfall in Moscow 

during the distinguished six periods of the growing season of 2004 was 33.2, 48.3, 244.0, 

109.0, 68.2, and 35.9 mm, respectively. Norm values are 46.5, 55.5, 72.5, 79.0, 64.5, and 51.5 

mm, respectively. Rainfall in the 2004 growing season was 538.6 mm (norm: 369.5 mm). The 

difference, 169 mm, is mainly caused by a few peak rainfall events in periods three and four 

of the 2004 growing season. It may be assumed that this difference ran off the surface. 

Estimated runoff values in the 2004 growing season ranged from 295 to 385 mm. In order to 

obtain an estimate for the runoff in a growing season with a rainfall of 369.5 mm (norm), we 

may correct this range by subtracting 169 mm. Then we find the range 126 – 216 mm. This is 

a substantial part of the norm rainfall summed over the six periods (369.5 mm): 34 – 58 %. 

The norm values of the rainfall in the distinguished periods (1.50, 1.85, 2.27, 2.55, 2.22, and 

1.66 mm/day, respectively) may be compared with the values of potential evapotranspiration 

of the sites and periods of the 2004 growing season in Table 7.1. Norm rainfall for most of the 

periods would be enough to support the calculated potential evapotranspiration of most of the 

distinguished sites and periods. Only period three of Saharov pr. and period three of biogroup 
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of trees 1–4 of Sokolniki (Strominka st.) are exceptions. For both cases deficits are small 

(0.11 and 0.01 mm/day, respectively). If the sites would be improved, evapotranspiration 

would increase. An upper bound for the evapotranspiration may be estimated as the reference 

evapotranspiration in the growing season (386.7 mm) multiplied by the factor 1.2, which is 

464 mm. The norm rainfall is 369.5 mm. The root-zone soil can supply the difference of 94.5 

mm if the zone is sufficiently rewetted before the start of the growing season. 

 The results may also be compared with literature on similar vegetation types. McIntyre 

et al. (2002) review runoff studies for grassy woodlands, and Arnaez et al. (2007) for 

vineyards. The runoff coefficient is strongly connected to the degree of soil cover by the 

smaller plants, and may range between zero and values that exceed 70%. Degree of soil cover 

by the grass, averaged over the six periods, can be derived from Table 4.6 for each site. These 

values are 0.332, 0.435, 0.405, 0.430, 0.545 for Habarovskaya st., Saharov pr. 2–4; 6–10, 

Saharov pr. 1–7 (I–III), Sokolniki (Strominka st. 1*–10* and Sokolniki (Strominka st. 1–4, 

respectively. The corresponding runoff values are 385, 297, 391, 301, and 295 mm (Chapter 

7). The correlation coefficient, r, of both series of values is –0.731. It may be expected that 

the estimated runoff for the growing season correlates negatively with the soil water content 

at the start of the growing season (Water contentini for the first period in Table 7.1.). The 

correlation coefficient r of this runoff and this initial water content is –0.808.  The saturated 

water conductivity value, estimated in Chapter 7, is in the lower part of the range of reported 

values for new and old, compacted and non-compacted, residential lawns (Partsch et al., 1993; 

Ferguson, 2005). 

 Chapter 7 indicates that the assumed root-zone volume of 1 m3/m2 is much too large, 

and that the effective root-zone volume is much smaller. It is indeed very plausible that, in 

reality, the root zone volumes are severely reduced by: road foundations extending under the 

vegetated areas; over-compacted spots; debris; utilities like tubes, cables; incomplete 

exploration of potential root zones by the roots, etc. The effective root depth should be 

interpreted as the average root-zone volume under a unit of vegetated area. Note that, when 

the whole growing season is considered and based on our calculations, it counter-intuitively 

appears that the root-zone volume has little influence on the runoff.  This could because: 

* the amount of water in the root zone is small in comparison with the rainfall during the 

growing season;  

* the measured fractional water contents at the beginning and the end of the growing season 

are similar; and 
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* the amount of deep percolation during the growing season is neglible. 

We may carry out a sensitivity analysis using some data derived from Table 7.1: 

rainfall during the whole growing season; actual evapotranspiration during the whole growing 

season; initial and final fractional water contents of the root zone (mm water per 1000 mm 

root zone), and applying the following balance equation: 

 

runoff = rainfall – actual evapotranspiration – ((final – initial fractional water content) * 

root zone volume) 

 

Considering a variation of 0.75 – 1.25 m3 root zone volume/m2soil surface, we find that the 

resulting runoff variations are 371 – 362, 259 – 233, 359 – 338, 290 -283 and 249 – 237 mm 

for the Habarovskaya st., Saharov pr. 2-4; 6-10, Saharov pr. 1-7 (I-III), Sokolniki (Strominka 

st. 1*-10* and Sokolniki (Strominka st. 1-4 data, respectively. It can be seen that the assumed 

large variation in root-zone volume produces only small variations in runoff. 

 In Chapter 7, the runoff data of the whole growing season were calculated from the 

simplified balance equation 

 

runoff = rainfall – actual evapotranspiration 

 

These runoff data (385, 297, 391, 301, and 295 mm) are an overprediction because the 

amount of water in the root zones at the end of the growing season is not precisely equal to, 

but slightly higher than the amount at the start of the growing season. If we apply the balance 

equation that includes root-zone water content, using a root-zone volume of 1 m3/m2 and the 

initial and final water contents in Table 7.1, we find the runoff values 367, 246, 349, 287, and 

249 mm. These data are an under-prediction because the root-zone volumes are much less 

than 1 m3/m2. 

 The depth to which the roots extend has been set at 1 m. This is in agreement with 

urban greening practice in Moscow where standard planting holes have a depth of 1 m, and in 

agreement with rooting behaviour of Tila cordata (Kutschera and Lichtenegger, 2002). So, we 

have the situation that the roots reach to a depth of 1 m, but the root-zone volume is much less 

than 1 m3/m2, due to reasons mentioned above. This is not a drawback for the calculation of 

the stress factors, because these factors are not derived from the total amount of root-zone 

water, but from the fractional soil water content of the root zone. This procedure is widely 
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accepted. Gregory (2006) includes a review of this. 

Chapter 7 also indicates that the assumed root depth of 1m is much too large, and that 

the effective root depth of the root zones is much smaller. It is indeed very plausible that, in 

reality, the root zone volumes are severely reduced by: road foundations extending under the 

vegetated areas; over-compacted spots; debris; utilities like tubes, cables, incomplete 

exploration of potential root zones by the roots, etc. The effective root depth should be 

interpreted as the average root-zone volume under a unit of vegetated area. Note that, when 

the whole growing season is considered, the root zone volume has no influence on the 

calculated runoff, because the amounts of water in the root zones at the beginning of the 

growing period and at the end of the growing period are similar. It means that the runoff as 

calculated in Chapter 7 is not influenced by uncertainties in root zone volumes. 

 Under conditions of excessive runoff and reduced root zones the level of the soil water 

content at the start of the growing period plays a significant role. It is clearly demonstrated in 

Fig. 7.1. Real urban conditions are very irregular and variable. Nevertheless, the data show 

clearly that vegetation frequently suffers from water stress although there is a surplus of 

rainfall. The incidence of excessive runoff is connected with a number of negative factors: 

soil structure degeneration at the surface of the soil, which is very sensitive to soil structure 

deterioration by anthropogenic influences; absence of large pores; hydrophobic soil 

behaviour; small fraction of soil surface covered by vegetation; little micro-relief. These 

factors are closely related to urban conditions and urban activities. 

 

8.10. Conclusion 
 

This chapter considered the basic aspects of the dynamics of the condition of the soil and 

plantings at different objects in the city. From this, conclusions are drawn and presented in the 

next chapter. The conclusions make it possible to find solutions that can help to improve the 

very frequent suboptimal situations. These solutions should be based on an appropriate 

substrate technology and Russian component materials. 
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9. CONCLUSIONS 
 

1. Reference evapotranspiration (ET0) in Moscow was calculated according to the 

FAO Penman-Monteith method. This calculation needed: cloudiness, temperature, wind 

speed, relative humidity of air. It appeared that Makkink’s method to calculate reference 

evapotranspiration gave the same values as the FAO Penman-Monteith method. The 

calculation according to Makkink does not need values of wind speed and relative humidity. 

The calculated reference evapotranspiration values are low because of urban influences. 

Evapotranspiration periods could be chosen according to FAO guidelines: Initial stage, 

Development stage, 3 Mid-season stages, Late Season stage. 

 From the Initial stage the reference evapotranspiration gradually increases, followed 

by an also gradual decrease to the final period in the Mid-season stage. Further on, a sharp 

reduction of ET0 values is observed during Late Season.  

The FAO-Penman-Monteith reference calculation method likely produces correct 

estimations of the evapotranspiration in Moscow. 

2. The majority of researched objects trees (Tilia cordata) and lawn (trees-lawn 

combination) had water stress, which was demonstrated by the obtained values of water stress 

coefficients. For the period from the middle of April up to the middle of June (Initial and 

Development stages), a decrease in the values of the factors of water stress (Ks < 1) was 

observed on all objects.    

In most cases, values of actual evapotranspiration in this period were 0.60–0.89 mm 

per day, while the potential evapotranspiration for the trees-lawn combinations (unstressed 

conditions) in this period could be 1.24–1.65 mm per day. 

The Leaf Area Index (LAI) of trees in conditions of water stress at the end of the 

Development stage had smaller values, in comparison with optimal conditions (Ks = 1.0). This 

decrease in values of LAI corresponds with a degeneration of the state of the trees (by visual 

estimation, category 0 changes into category 1 or even 2). 

 Trees with rather high LAI at Initial stage can improve or keep their positions up to 

the end of the vegetative period. The trees with lowest initial values of LAI do not show an 

essential increase. 

 State of lawn was unsatisfactory, because the fraction of bare soil was more than 50% 

in most cases. 

3. A principal cause of water stress for trees-lawn combinations in Moscow is 
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deficiency of water content in soil during significant periods of vegetation, especially during 

Initial and Development stages. In this time mean quantity of precipitation is about 50 mm per 

month, and measured volumetric water content of soil was 22.7–10.4%, being lower than 

threshold value (24%).  

A large fraction of the not-intercepted rainfall runs off from the surface of soil. This 

extreme runoff is connected with a very limited possibility for rainwater to infiltrate into the 

soil, due the high dust content, a dry condition of the soil top layer, and incidence of 

unstructured bare soil. 

 Total actual evapotranspiration highly depends on the amount of water that is present 

in the root zone at the start of the growing season. In this period the optimal value of water 

content in the top 1 m soil layer is 280–300 mm for trees-lawn combinations in Moscow.  

The suboptimal condition of the vegetation can be improved by diminishing the water 

stress, which can be realised by improving the infiltration capacity of the top soil and quality 

of soil substrates. 
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PRINCIPAL SYMBOLS AND UNITS 
 

a = empirical coefficient in interception equation, a = 0.25 mm  

b = fraction of soil surface covered by grass [-] 

b-value = blue channel intensity of pixel, 0-255 [-] 

= foliage surface drag coefficient [-] fC

pc

0d

 = specific heat of air [cal g-1 K-1] 

D = fraction of sky that can be seen on a photo that is taken from beneath a tree crown in a                   

vertical direction (or fraction of bare soil on a photo towards lawn in a vertical direction) [-] 

 = zero-plane displacement height [-] 

= vapour flux (mass of water vapour per unit of surface per unit of time) [kg m-2 s-1] E

E0 = potential evaporation [mm day-1] 

ERC = evaporation of a reference crop [mm day-1] 

 ET = transpiration [mm day-1] 

 EC = soil electrical conductivity [mS cm-1] 

ECSatExt = electrical conductivity of soil saturation extract [mS cm-1] 

ECw, 25 = soil pore water electrical conductivity at a given volumetric water content and 

temperature T = 25 oC (standard) [mS cm-1] 

ECw,T = soil pore water electrical conductivity at given volumetric water content and 

temperature [mS cm-1] 

refME

0ET

e

ae

 = potential evapotranspiration of a surface with a closed dry grass canopy with height 8 

− 15 cm and well supplied with water (Massop et al., 2005) [mm day-1] 

ET = evapotranspiration [mm day-1] 

 = reference evapotranspiration [mm day-1] 

ETcombination = potential evapotranspiration for trees-grass combination [mm day-1] 

ETa, combination = actual evapotranspiration for trees-grass combination [mm day-1] 

= vapour pressure [kPa] 

e0 (Tmax) = saturation vapour pressure at maximum air temperature [kPa] 

e0 (Tmin) = saturation vapour pressure at minimum air temperature [kPa] 

= actual vapour pressure at screen height [kPa] 

ea = actual vapour pressure at screen height [mbar] 

ed = saturation vapour pressure at air temperature at screen height [mbar] 
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es = saturated vapour pressure, prevailing at the surface [mbar] 

se

rF

1f

gff ,12 =

cf

effcf ,

ewf

G

 = saturation vapour presure [kPa] 

 = resistance correction factor [-] 

 = total fraction of ground under crowns that is covered by trees and/or grass [-] 

f2 = fraction of lawn outside the tree crown projections that is covered by grass canopy (1-fraction 

of “bare soil”) [-] 

f1,g = fraction of lawn covered by grass canopy, in spots within tree crown projections that are 

not covered by tree canopy.  [-] 

f1,t = fraction of lawn (grass + “bare soil”) under tree crown projections that is covered by tree 

canopy [-] 

 = fraction of soil surface covered by vegetation as observed from nadir (overhead) [-] 

 = effective fraction of soil surface covered or shaded by vegetation [-] 

= fraction of the soil that is both exposed and wetted, i.e., the fraction of soil surface from 

which most evaporation occurs [-] 

f(u) = wind function 

 = soil heat flux density [MJ m-2 day-1] 

g-value = green channel intensity of pixel, 0-255 [-] 

= sensible heat loss [J m-2 day-1] H

h

canopyh

croph

sh

uh

cK

inicK ,

= plant height, mean plant height, mean maximum plant height [m] 

 = mean vertical height of canopy area [m] 

 = crop height [m] 

 = height of crown base above surface [m] 

 = sensible heat transfer coefficient [J m-2 day-1 oC-1] 

I = intercepted precipitations [mm] 

Icombination = intercepted precipitations by trees-grass combination [mm] 

Igrass = intercepted precipitations by grass [mm] 

Itrees = intercepted precipitations by trees [mm] 

Is = direct solar radiation along path of a solar beam in canopy [J s-1] 

Iso = direct solar radiation of a solar beam just above canopy [J s-1] 

  = crop coefficient [-] 

  = crop coefficient during initial growth stage [-] 
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midcK ,

endcK ,

05.0, +fullcbK

ncombinatiocK ,

ncombinatiomidcK ,,

treesmidcK ,,

max,cK cK

cbK

inicbK ,

midcbK ,

endcbK ,

fullcbK , cbK

hcb, midcbK ,

%RH 22 =

mK

rK

k

 = crop coefficient during mid-season growth stage [-]  

 = crop coefficient at end of late season growth stage [-] 

fullcK ,  =   (p. 143 in (Allen et al., 1998)) [-] 

= crop coefficient for tree-grass combination [-] 

= crop coefficient for tree-grass combination for mid-season stage [-] 

 = crop coefficient for sparse vegetation, considering the trees without grass, for 

mid-season stage [-] 

= maximum value of   following rain or irrigation [-] 

 = basal crop coefficient [-] 

 = basal crop coefficient during initial growth stage [-] 

 = basal crop coefficient during mid-season growth stage [-] 

 = basal crop coefficient at end of late season growth stage [-] 

 = estimated basal  during mid-season (at peak plant size or height) for vegetation 

having full ground cover or LAI>3 [-] 

K  =   for full cover vegetation (LAI>3) under subhumid and calm wind conditions 

(  and u  m s45min =
-1) [-] 

Ke = soil evaporation coefficient [-] 

= kinematic eddy viscosity [cm2 s-1] 

= soil evaporation reduction coefficient [-] 

Ks = water stress coefficient [-] 

Kss = salinity stress coefficient [-] 

 = von Kármán’s constant [-] 

ks = extinction coefficient [-] 

L = latent heat of vaporization [2.45 MJ m-3] 

, LAI = Leaf Area Index = one-sided leaf area per unit of basal area [-] L

tL

ncombinatioLAI

 = foliage area index = upper-sided area of all foliage elements per unit of basal area [-] 

 = overall Leaf Area Index of trees – lawn combination [-]  

LAIgrass = Leaf Area Index of grass [-] 

LAI trees = Leaf Area Index of trees [-] 
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LAIpath = LAI along path length of radiation beam through canopy (fractional surface area of 

leaves projected on a plane perpendicular to the path) [-] 

M = canopy cover (i.e., fraction of total ground surface covered by vegetation) [-] 

m

n

)(zq z

sq

GR

NR

nR

ar

exr

ir

lbr

 = exponent relating shear stress on foliage to horizontal wind velocity and having the 

nominal value 0.5 for the foliage elements of trees [-] 

N = maximum possible sunshine duration in a day [hour] 

n = actual duration of sunshine in a day [hour] 

 = number of sides of each foliage element producing surface resistance to wind and having 

the nominal value 2 for the foliage elements of trees [-] 

P = quantity of precipitation [mm] 

p = average fraction of Total Available Soil Water that can be depleted from the root zone 

before moisture stress [-] 

= air specific humidity at height (mass of water vapour per unit mass of dry air) [-] 

= saturation air specific humidity (mass of water vapour per unit mass of dry air) [-] 

Ra = extraterrestrial radiation (solar radiation received at the top of the Earth’s atmosphere on 

a horizontal surface) [MJ m-2 day-1]   

 = global radiation [MJ m-2day-1] 

 = net radiation [J m-2 day-1] 

 = net radiation at the crop surface [MJ m-2 day-1] 

Rnl = net long-wave radiation [MJ m-2 day-1] 

Rns = net solar or short-wave radiation [MJ m-2 day-1] 

Rs = solar or short-wave radiation [MJ m-2 day-1] 

Rso = clear-sky solar or clear-sky short-wave radiation [MJ m-2 day-1] 

RAW = Readily Available soil Water in root zone [mm] 

RHmax = average daily maximum relative humidity [%] 

RHmin = average daily minimum relative humidity [%] 

 = atmospheric or aerodynamic resistance [s m-1] 

rc = canopy resistance [s m-1] 

 = excess resistance [s m-1] 

 = interleaf layer resistance [s m-1] 

 = leaf boundary layer resistance per unit area of leaf surface [s m-1] 
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lsr

T

)(zu z

*u

2u

0z

)( 0hz

)( 0mz

hz

mz

v

= stomatal resistance per unit area of leaf surface [s m-1] 

r-value = red channel intensity of pixel, 0-255 [-] 

Sarea = total area of object [m2] 

Scrown = area of projection of crown of tree [m2] 

T = soil temperature, oC; 

= mean daily air temperature at 2 m height [ºC] 

Ta = air temperature at screen height 

Ts = (air) temperature at the surface 

Td = the dewpoint of air at screen height [ºC] 

Tmax = average daily maximum air temperature at 2 m above ground surface [°C] 

Tmin = average daily minimum air temperature at 2 m above ground surface [°C] 

Tmean = daily mean air temperature at screen (2 m) height [°C] 

TAW = Total Available soil Water in the root zone [mm] 

threshold_blue = threshold value of blue channel intensity of pixel, 0−255 [-] 

threshold_green = threshold value of blue channel intensity of pixel, 0−255 [-] 

threshold_red = threshold value of blue channel intensity of pixel, 0−255 [-] 

= mean horizontal wind velocity at height  [m s-1] 

 = shear velocity [m s-1] 

 = mean horizontal wind speed at 2 m height [m s-1] 

 = surface roughness length [m] 

 = roughness length for vapour and heat [m] 

 = roughness length for momentum [m] 

Zr = rooting depth [m] 

 = height of temperature and humidity measurements [m] 

 = height of wind speed measurements [m] 

α  = ratio of the von Kármán constants for water vapour and momentum,  [-]  1≈

= momentum extinction coefficient = cosine of angle leaf surface makes with horizontal [-] β

β  = extinction parameter for horizontal wind velocity [-] mn=γ

γ , γ 0 = psychrometer constant, expressing the physical connection between sensible heat 

transport and vapour transport by moving air [kPa ºC-1] 

 = slope of saturation vapour pressure curve [kPa ºC-1] Δ
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θFC =  water content at field capacity [m3 m-3] 

θSat =  soil volumetric water content when all pores are saturated with water [m3 m-3] 

θWP = water content at wilting point [m3 m-3] 

θa = actual soil volumetric water content [m3 m-3] 

θt = threshold soil water content below which transpiration is reduced due to water stress  

[m3 m-3] 

λ = latent heat of vaporization per unit mass of liquid water [MJ kg-1] 

shh
zh

−
−=ξ  , relative distance down from the crown top [-] 

ρ  = air (fluid) mass density [g cm-3] 

σ = Stefan-Boltzmann constant [4.903 ⋅10-9 MJ K-4 m-2 day-1] 

 = shear stress at the top of the canopy [N m-2] 0τ
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SUMMARY 
 

Moscow is a very large megalopolis and the politic, cultural and financial center of Russia. 

Moscow is located between 55o and 56o northern latitude and 37o and 38o east longitude, 

between the rivers Oka and Volga. The territory of the city is located at a height of 150 m 

above sea level. Average duration of the vegetative period is 175 days. The average 

temperature of January is –9.4 0C and of July is +18.4 0C. In the last years the air mid-annual 

temperature has increased. The amount of precipitations in Moscow is usually 540−650 mm 

per year. Monthly average wind speed is equal to 1.8−2.2 m/s, but frequency of winds of 0−1 

m/s (38%) and of calms (18%) has increased. The current relief map of Moscow is 

substantially formed by sediments from the glacial epoch (Moscowskaya and Dneprovskaya 

moraines), erosive activity of the rivers, and anthropogenic sediments. The anthropogenic 

influence caused an intensive transformation of natural peat soil, floodplain soil, podzolic and 

sod-podzol soils into specific soil: anthropogenic-superficial-reformed natural soil called 

«urbo-soil»; anthropogenic deep-reformed soil called «urbanozem»; and a specific soil called 

«technozem». The total size of the green areas of the city (trees, shrubs, lawns) equals about 

16785.8 ha. About 19.5% of the trees are Tilia cordata. The largest part of the green sites is 

occupied by “tree –lawn” combinations. 

 Anthropogenic factors like intensive increase of urban buildings and communications 

and large areas of roofs and asphalt coverings etc. influence the natural cycle of climate 

parameters and discomforts the urban vegetation. 

  In order to estimate these changes the concept of evapotranspiration was used as a 

basic informative parameter. This quantity makes it possible to unite data on climate 

parameters, state of trees and lawn, expressed as Leaf Area Index (LAI), and conditions of the 

soil in the city. Evapotranspiration is the undifferentiated sum of the evaporation and 

transpiration process. Evaporation is the process whereby liquid water is converted into water 

vapour and removed from the evaporating surface (rivers, bare soil, wet vegetation). 

Transpiration is the process of vaporization of liquid water contained in plants through 

stomata of the leaves and the vapour removal to the atmosphere. When soil water content is 

lower than the optimum range or rate of transpiration is very high, plants are in a stress 

situation. 

Many evapotranspiration models exist, but, for tree-lawn combinations in Moscow, 

we applied a system of calculations based on FAO guidelines. Additionally, for reference 
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evapotranspiration, we applied Makkink’s radiation model. Besides, an algorithm was 

developed for the estimation of LAI values through digital photos of tree crowns and lawn 

areas and digital image analysis with computer. 

 Values of water stress coefficient, salinity stress coefficient, actual evapotranspiration, 

part of precipitations that is intercepted by the canopy, and water loss from root zones were 

also calculated. The values were obtained for sites with trees (Tilia cordata) and lawn for the 

vegetation stages (periods): Initial (15.04.04-15.05.04); Development (16.05.04-14.06.04); 

Mid-season (15.06.04−16.07.04; 17.07.04−16.08.04; 17.08.04−14.09.04); Late season 

(15.09.04−15.10.04). 

 The value of the reference evapotranspiration (ET0) in the Initial stage 

(15.04.04−15.05.04) is 1.97 mm/day. Maximal ET0 values were observed during the Mid-

season (periods 15.06.04−16.07.04 and 17.07.04−16.08.04), being 2.45−2.61 mm/day. 

 Values of LAI were obtained for individual trees and for plantings (alley or biogroup) 

of Tilia cordata and for lawn on different objects of Moscow: Habarovskaya st., Saharov pr., 

Sokolniki (Strominka st.). 

 During the Initial stage majority of trees have LAI values of 1.65−5.44 (max = 6.04; 

min = 0.67) and lawns have LAI values of 0.18−1.84 (max = 5.26; min = 0.09). 

 Typically, maximum values of LAI of trees occur for the Mid-season periods 

15.06.04−16.07.04 and 17.07.04−16.08.04 and equal 3.48−7.12 (max = 8.96; min = 1.92). For 

lawn these periods were different (15.06.04−16.07.04 and 17.08.04−14.09.04) and absolute 

maximum and minimum LAI could be observed in one and the same period. Maximum LAI = 

3.03 and minimum LAI = 0.08. 

 On the level of individual trees and lawn-plots maximal values were observed on 

Sokolniki and minimal values on Habarovskaya st. If trees have rather high LAI at initial 

stage they increase LAI or keep it at a high level during the whole further vegetative period. 

Trees with lowest LAI values typically have insignificant increase of the parameter. The 

lawns had non-uniform development during the whole vegetative period. 

 Considering LAI of set of trees (alley or biogroup), the objects had during the Initial 

stage on average LAI = 1.85−5.12 and during Mid-season 4.17−7.11. For lawn during the 

Initial stage average values of LAI = 0.54−4.81 were observed (soil fraction covered by grass 

0.237−0.910). Change of LAI of lawn during the vegetative period has no clear regularity and 

is characterized by the “incidental” occurrence of periods with increasing or decreasing 

values. The maximal values for Mid-season are 1.11−1.30 (soil fraction covered by grass 
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0.426−0.478). Consequently, in most cases, more than 50% of the area is exposed (bare soil). 

 Based on calculations of crop coefficients evapotranspiration values were obtained for 

tree-grass combinations, ETcombination. In Initial stage ETcombination = 0.89 mm/day; during Mid-

season this value increases to ETcombination = 1.51−2.46 mm/day; for Late season ETcombination = 

0.50 mm/day. The differences of ETcombination between objects during Mid-season were equal 

to a factor of 1.6. 

 In order to find reasons for the differences in the state of trees, volumetric water 

contents of the root zones were estimated from soil water content measurements at a range of 

depths and a number of points of time. During the Initial stage, already two objects from a 

total of five had water contents lower than the critical level (24%). During Development 

stage, a similar situation was observed on all objects (even a “wilting point” water content 

occurred). When the amount of precipitation was high (244 mm), i.e. in the Mid-season 

period 15.06.04−16.07.04, most objects were in an even more critical state. 

Later, in 17.08.04−14.09.04, the water content decreased again below 24%. Here, 

water stress coefficients were often < 1. Only during 15.06.04−16.07.04 the coefficient 

reached 1 for all objects. The stressful situation could be explained by the dry state of the soil, 

high runoff values and development of larger transpiration surface (LAI). 

 Consequently, values of actual evapotranspiration ETa, combination  decreased and were 

0.25−0.89 mm/day during Initial stage, up to 1.35 mm/day during Development stage,  

1.31−2.38 mm/day during Mid-season 15.06.04−16.07.04, the last value being the maximum. 

 During the vegetative period some parts of the precipitations were intercepted by 

canopies of trees and grass, Icombination. This parameter is 0.69−11.49 mm for the Initial stage, 

which is 2.1−34.6% from the total precipitation in that period. It is 1.92−13.75 mm for the 

Development stage (4.0−28.5%). The interception during Mid-season was not estimated 

because of incidence of extreme rainfall events. Icombination is low for Late season 

15.09.04−15.10.04. 

 Losses of water from root zones per object and period were calculated using water 

characteristics of the soil and an assumed root depth of 1 m. The calculations pointed to 

important features. Deep percolation occurred in early spring and late autumn, but not in late 

spring, summer and early autumn. Runoff was high due to a limited infiltration capacity. 

Volume of root zones was reduced. The rainfall would be enough to support a potential 

evapotranspiration.  

 The obtained data show the need for the development of a new procedure for the 
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estimation of the condition of urban plantings, a procedure that takes into account the seasonal 

dynamics of the conditions of growth: climatic, soil-hydrological and anthropogenic 

conditions. In this procedure, special attention should be given to the Initial and Development 

stages for Moscow conditions. The current assessment procedure estimates the condition of 

the city plantings during the second part of Mid-season, which is a period of stabilization 

without a possibility to change the consequences of stress factors. The new approach will 

allow to project actions for improvement of conditions of growth: preparation of optimum soil 

mixes; duly watering; a complex care. 
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SAMENVATTING 
 

Moskou is een zeer grote megalopolis en het politieke, culturele en financiële centrum van 

Rusland. Moskou is gesitueerd tussen 55o en 56o noorderbreedte en 37o en 38o oosterlengte, 

tussen de rivieren Oka en Wolga. Het territorium van de stad ligt op een hoogte van 150 m 

boven zeeniveau. De gemiddelde duur van de periode waarin plantengroei kan plaats vinden 

is 175 dagen. De gemiddelde temperatuur van januari is –9,4 oC en van juli +18,4 oC. 

Gedurende de laatste jaren is de temperatuur van het jaarmidden gestegen. De 

neerslaghoeveelheid in Moskou is meestal 540 − 650 mm per jaar. Het maandgemiddelde van 

de windsnelheid is gelijk aan 1.8 – 2.2 m/s, maar de frequentie van windsnelheden van 0 − 1 

m/s (38%) en van windstilte (18%) is toegenomen. Het huidige reliëf van Moskou is 

hoofdzakelijk gevormd door sedimenten uit de glaciale periode (Moscowskaya en 

Dneprovskaya moraines), erosieve activiteit van de rivieren, en anthropogene sedimenten. De 

anthropogene invloed veroorzaakte een intensieve transformatie van natuurlijke veengronden, 

overstromingsvlaktes, podsolen en gras-podsolen in specifieke bodems: anthropogeen-

oppervlakkig-veranderde natuurlijke bodem, genaamd «urbo-soil»; anthropogeen-diep-

veranderde bodem, genaamd «urbanozem»; en een specifieke bodem genaamd «technozem». 

De totale oppervlakte van de groene gebieden van de stad (bomen, struiken, gazon) is 

ongeveer gelijk aan 16785,8 ha. Ongeveer 19,5% van de bomen is Tilia cordata. Het grootste 

deel van deze gebieden bestaat uit “bomen-gazon” combinaties. 

 Anthropogene faktoren zoals een intensieve toename van stedelijke bebouwing en 

communicatievoorzieningen en grote oppervlaktes daken en asfalt-dekken etc. beïnvloeden de 

natuurlijke cyclus van klimaatparameters en hinderen de stedelijke vegetatie. 

 Teneinde dit te onderzoeken is het evapotranspiratie-concept gebruikt als basale 

informatieparameter. Deze grootheid maakt het combineren mogelijk van waardes van: 

klimaatparameters, de conditie van bomen en gazon, uitgedrukt in de bebladeringsindex 

(LAI), en de conditie van de bodem in de stad. Evapotranspiratie is de ongedifferentieerde 

som van de evaporatie en transpiratie processen. Evaporatie is het proces waarbij water in 

vloeibare vorm wordt omgezet in waterdamp en afgevoerd wordt van het verdampende 

oppervlak (rivieren, onbegroeide grond, natte vegetatie). Transpiratie is het proces van 

verdamping van zich in planten bevindend vloeibaar water via stomata van de bladeren en de 

afvoer van de waterdamp naar de atmosfeer. Indien het vochtgehalte van de bodem lager is 

dan het optimale traject, of indien de transpiratiesnelheid zeer hoog is, verkeren planten in een 
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stress situatie. 

 Er bestaan vele evapotranspiratiemodellen, maar voor de boom-gazon combinaties in 

Moskou is een berekeningssysteem gebaseerd op FAO richtlijnen gebruikt. Daarnaast is ook 

het stralingsmodel van Makkink voor referentie-evapotranspiratie toegepast. Bovendien is een 

algoritme ontwikkeld voor de schatting van LAI-waardes middels digitale foto’s van 

boomkronen en gazon-delen en digitale beeldverwerking met pc. 

 Ook zijn berekend: waardes van de waterstress factor, de zoutstress factor, actuele 

evapotranspiratie, het deel van de neerslag dat is onderschept door de bovengrondse 

plantendelen (interceptie), en het waterverlies van wortelzones. De waardes zijn verkregen 

voor locaties met bomen (Tilia cordata) en gazon voor de volgende vegetatie stadia 

(periodes): Initieel (15.04.04−15.05.04); Ontwikkeling (16.05.04−14.06.04); Middenseizoen 

(15.06.04 − 16.07.04; 17.07.04 − 16.08.04; 17.08.04 − 14.09.04); Laatseizoen (15.09.04 − 

15.10.04). 

 De waarde van de referentieverdamping (ET0) in het Initiële stadium (15.04.04 − 

15.05.04) is 1,97 mm/dag. Maximale ET0 waardes werden waargenomen gedurende het 

Middenseizoen (periodes 15.06.04 − 16.07.04 en 17.07.04 − 16.08.04): 2,45 − 2,61 mm/dag. 

 Waardes voor LAI werden verkregen voor individuele bomen en voor plantsoen (allee 

of biogroep) van de soort Tilia cordata, en voor gazon, op verschillende objekten van 

Moskou: Habarovskaya st., Saharov pr., Sokolniki (Strominka st.). 

 Gedurende het Initiële stadium hebben de meeste bomen een LAI van 1,65 − 5,44 

(max = 6,04; min = 0,67), en de gazons een LAI = 0,18 − 1,84 (max = 5,26; min = 0,09). 

 Maximale waardes voor LAI van de bomen zijn karakteristiek voor de Middenseizoen 

periodes 15.06.04 − 16.07.04 en 17.07.04 − 16.08.04 en gelijk aan 3,48 − 7,12 (max = 8,96; 

min = 1,92). Voor gazon waren deze periodes verschillend (15.06.04 − 16.07.04 en 17.08.04 

− 14.09.04) en konden de absolute maximum en minimum LAI waargenomen worden in 

dezelfde periode. Maximum LAI = 3,03 en minimum LAI = 0,08. 

 Op het niveau van individuele bomen en gazon-delen werden maximale waardes 

waargenomen op Sokolniki en minimale waardes op Habarovskaya st. Indien bomen een 

nogal hoge LAI hebben in het Initiële stadium, dan verhogen zij hun LAI of houden deze op 

een hoog niveau gedurende de gehele verdere vegetatieve periode. Bomen met de laagste LAI 

waardes kenmerken zich door een slechts insignificante toename van de parameter. De gazons 

vertoonden niet-uniforme ontwikkeling gedurende de gehele vegetatieve periode. 

 Op het niveau van boomgroepen (allee of biogroep) hadden de objekten gedurende het 
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Initiele stadium een gemiddelde LAI van 1,85 − 5,12 en gedurende het Middenseizoen van 

4,17 − 7,11. Voor gazon gedurende het Initiële stadium werden gemiddelde LAIs van 0,54 − 

4,81 waargenomen (bedekkingsgraad van het gras 0,237 − 0,910). De verandering van LAI 

van gazon gedurende de vegetatieve periode vertoonde geen duidelijke regelmatigheid en is 

gekarakteriseerd door een “toevallig” optreden van periodes met toenemende of afnemende 

waardes. De maximale waardes voor het Middenseizoen zijn 1,11 − 1,30 (graad van 

bedekking van grond door gras 0,426 − 0,478). Het betekent dat in de meeste gevallen meer 

dan 50% van het oppervlak bestaat uit onbegroeide grond. 

 Gebaseerd op berekeningen van gewasfaktoren zijn evapotranspiratie-waardes 

verkregen voor boom-gras combinaties, ETcombination. In het Initiële stadium heeft deze de 

waarde 0,89 mm/dag; gedurende het Middenseizoen neemt deze toe tot 1,51 − 2,46 mm/dag; 

voor het Laatseizoen is de waarde: 0,50 mm/dag. De verschillen van  ETcombination tussen de 

objekten gedurende het Middenseizoen waren gelijk aan een faktor 1,6. 

 Teneinde oorzaken te vinden voor de verschillen in boomconditie zijn vochtgehaltes 

van de wortelzones geschat uit vochtgehaltes die gemeten zijn op een reeks van dieptes en op 

een reeks van tijdstippen. Gedurende het Initiële stadium hadden al twee objekten (uit een 

totaal van vijf) vochtgehaltes lager dan het kritische niveau (24%). Gedurende het 

Ontwikkelingsstadium is eenzelfde situatie waargenomen voor alle objekten (zelfs een 

vochtgehalte overeenkomend met het verwelkingspunt). Toen de hoeveelheid neerslag erg 

hoog was (244 mm, in de Middenseizoen-periode 15.06.04 − 16.07.040), hadden de meeste 

objekten een nog meer kritieke toestand. Later, in de periode 17.08.04 − 14.09.04, daalde het 

vochtgehalte weer onder 24%. Toen waren de waterstress faktoren vaak < 1. Alleen 

gedurende 15.06.04 − 16.07.04 bereikte de waterstress faktor de waarde 1 voor alle objekten. 

De stress-volle situatie kon verklaard worden uit de droge toestand van de grond, het 

oppervlakig afstromen van veel regenwater, en de ontwikkeling van meer transpirerend 

oppervlak (LAI). 

 Dientengevolge was de actuele evapotranspiratie  ETa, combination veelal kleiner dan de 

potentiële en was 0,25 − 0,89 mm/dag gedurende het Initiële stadium, bereikte waardes tot 

1,35 mm/dag gedurende het Ontwikkelingsstadium, en was 1,31 − 2,38 mm/dag gedurende 

Middenseizoen 15.06.04 − 16-07.04. De laatste waarde is tevens het maximum. 

 Gedurende de vegetatieve periode is een deel van de neerslag onderschept door de 

bovengrondse delen van de bomen en het gras, Icombination. Deze parameter is 0,69 − 11,49 mm 

voor het Initiële stadium, wat neerkomt op 2,1 − 34,6% van de totale neerslag in die periode. 
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De interceptie is 1,92 − 13,75 mm voor het Ontwikkelingsstadium (4,0 − 28,5%). De 

interceptie gedurende het Middenseizoen is niet geschat vanwege de extreem grote regenval 

in die periode.  Icombination is laag voor het Laatseizoen 15.09.04 − 15.10.04. 

 Waterverliezen per object en periode zijn berekend uit de vochtkarakteristieken van de 

bodem onder aaname van een bewortelingsdiepte = 1 m. De berekeningen wezen naar 

belangrijke aspekten. Wegzijging naar diepere bodemlagen trad op in het vroege voorjaar en 

late najaar, maar niet in het late voorjaar, zomer en vroege najaar. De oppervlakkige 

afstroming was hoog, tengevolge van een beperkte infiltratiecapaciteit. Het volume van de 

wortelzones was gereduceerd. De regenval zou voldoende zijn voor een potentiële 

evapotranspiratie.  

 De verkregen gegevens tonen de behoefte aan de ontwikkeling van een nieuwe 

procedure voor de schatting van de conditie van stedelijke beplantingen, een procedure die 

rekening houdt met de seizoensgebonden dynamiek van de groeicondities: klimatologische, 

bodem-hydrologische en anthropogene condities. In deze procedure behoort speciale aandacht 

gegeven te worden aan de Initiële en Ontwikkelings-stadia voor de condities van Moskou. De 

huidige procedure voor vegetatie-beoordeling houdt in dat de conditie van het stedelijk groen 

geschat wordt in het tweede deel van het Middenseizoen. Deze periode vertoont een conditie 

die gestabiliseerd is, zonder de mogelijkheid tot verandering van stressfaktoren. De nieuwe 

benadering maakt het mogelijk om plannen voor verbetering van groeicondities mogelijk te 

maken: het prepareren van optimale grondmengsels; tijdig water geven; een complex van 

boom- en gazonverzorgingsmaatregelen. 
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