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1.1 PROTEIN‐BASED BIOMATERIALS  

 

When we think about proteins, we easily recognise the important role and variety of 

functions they play in living organisms. Through millions of years of evolution, nature 

has  created  and  refined  proteins  for  a  wide  variety  of  specific  purposes.  The 

sequence  of  amino  acids,  the  proteins  building  blocks,  determines  the  three‐

dimensional  folded  structure  of  each  protein which  is  responsible  for most  of  the 

important protein properties. By using the same set of 20 amino acid building blocks, 

nature  can  vary,  almost  infinitely,  the  protein  structure  and  thus  the  functional 

properties of proteins. The best known role of proteins is as enzymes, which catalyse 

chemical reactions, but proteins also have a role  in the signalling and transducing of 

signals, and as building materials (structural proteins) in the body. 

Many proteins derived from natural sources have interesting properties, and provide 

materials  for  a  number  of  applications  across many markets1,  for  example:  silk,  a 

natural protein produced by the mulberry silk worm can be woven into textiles, whey 

(milk plasma) is used as an emulsifier in the dairy industry, collagen a protein derived 

from animal bones and tissue and casein, present  in cow’s milk, have been used as 

adhesives.  However, natural proteins are not susceptible to structural modifications 

of their architecture for specific needs2. Applications are often limited to the existing 

protein functional properties and available quantities1.  

Artificial  protein  polymers  are  of  increasing  interest  in  biotechnology3.  Based  on 

natural  protein  structures,  amino  acid  sequences  can  be  chosen  to  create  specific 

folding patterns, and thus, desired material properties. Nature is an endless source of 

inspiration where material scientists can  find basic protein motifs  for  the design of 

new kinds of high performance materials. For  instance, mussels have  the ability  to 

adhere  to  their  support  using  an  adhesive  protein which  is  quite  effective  in  salt 

water3.  In  the wall of arteries, are  found elastin and collagen with  life spans of  the 

order of one century3. 
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However,  the  capacity  to  design  and  synthesise  proteins  requires  a  deep 

understanding  of  how  molecular  architectures  assemble  in  nature.  Although 

understanding sequence‐to‐structure relationship in proteins is challenging, there is a 

growing number of peptide  folding motifs  for which  the so‐called  ‘design rules’ are 

becoming available and understood. These motifs  include  α‐helical coils and  the  β‐

structured amyloid‐like assemblies and collagens4. 

Peptides and proteins may be produced by chemical or biological processes. Chemical 

processes  allow  the  effective  production  of  relatively  small  quantities  of  custom‐

made peptides  in a  short period of  time. But  the production of  sequences over 35 

amino  acids  are  generally  not  considered  economically  viable5.  In  addition,  long 

peptides  are  obtained  by  polycondensation  methods,  where  the  chance  of 

introducing sequence errors  increases with  the  length of  the peptide. Recombinant 

methods  allow  the  production  of  pure  (monodisperse)  and  long  proteins  (10‐200 

kDa),  and  are  for  this  purpose  superior  to  chemical  synthesis  routes.  The 

development  of  such  systems  is,  nevertheless,  relatively  long  as  compared  to 

chemical  synthesis6  and  less  effective  for  the  production  and  purification  of  short 

peptides  (10‐30  kDa)5.  The  advances made  in  recombinant DNA  technology  in  the 

past  decade  have  tackled  some  of  the  problems  inherent  to  the  production  of 

recombinant proteins in biological systems, and contributed to their development. In 

particular,  the  use  of  genetically  modified  microorganism  for  the  production  of 

recombinant proteins  is one of  the most promising  systems because  it offers high 

productivity and usually scalable and cost‐effective processes5, 7, 8.  

 

1.2 COLLAGEN AND GELATIN AS BIOMATERIALS 

 

Collagens  are  the  most  abundant  proteins  in  animal  tissue.  They  constitute 

approximately one third of mammalian body proteins, and their main  function  is to 

provide  mechanical  strength  to  different  tissues  and  organs  as  extracellular, 

structural  proteins.  The  basic  structural motif  of  collagen  is  adapted  to meet  the 
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specialised needs of different tissues such as bone, skin, tendon, teeth, blood vessels, 

and  cartilage9‐11.  So  far  29  genetically  distinct  types  of  collagen  have  been 

identified12.  They  have  been  divided  into  several  families  based  on  the  polymeric 

structure they form or related structural features10.  

Besides  their structural and supportive  role, collagens also have a number of other 

important  biological  functions.  Collagens  interact  with  cells  in  connective  tissue 

(muscle,  tendon,  etc.)  and  transduce  essential  signals  for  the  regulation  of  cell 

anchorage, migration, proliferation, differentiation, and survival11, 13. 

Based on  its structural role and compatibility within the body,  isolated collagen  is a 

commonly  used  biomaterial  for  several  medical  applications  (surgical  and 

pharmaceutical)  as  well  as  for  some  food  purposes6,  14.  The  use  of  collagen  for 

medical applications  can be  traced back  to prehistoric  times where  collagen  in  the 

form of tendons was used as suture material15. Gelatin, obtained  from denaturated 

and partially degraded collagen,  is also used  in a number of different applications  in 

the  food and pharmaceutical  industries, as well as  for  some  technical applications, 

mostly  in the manufacture of photographic materials. Gelatin has been employed  in 

other  technical  uses  such  as  in  adhesives,  electrolytic  metal  refining,  micro‐

encapsulation and sizing of paper. However,  in some of  these applications, such as 

adhesives, gelatin has been replaced by synthetic products6.  

The use of collagen and gelatin as expensive biomaterials has enormous commercial 

potential10,  11,  14,  16.  Injectable  collagen  or  gelatin  formulations,  hemostats  for  the 

control of bleeding during  surgery or after  trauma,  sponges  for burns/wounds,  gel 

formulations  in  combination with  relevant  bioactive molecules  for  sustained  drug 

delivery, skin and bone substitutes, are only some of the biomedical applications and 

products found in literature7, 14, 16‐20. 

Bovine and porcine tissues are today’s main source of collagen and gelatin. The most 

abundant type of collagen in animal tissues is collagen type I, and therefore most of 

the medical preparations contain this type of collagen. But type I collagen  is not the 

only collagen present  in animal tissues, a minor, but variable, amount  is type III and 
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other collagens6, 7, 16. Furthermore, the ratio between the different types of collagen 

and the degree of crosslinking vary with the type and age of the tissue used to extract 

collagen.  This  results  in  a  lack  of  reproducibility,  and  heterogeneity  between 

batches16. Gelatin  is  a  heterogeneous material  as well,  composed  of  a mixture  of 

collagen chains of different length, structure, and composition, which yields products 

with variable gelling and physical‐chemical properties.  

The  variability  in  composition and  structure of animal‐derived  collagen and gelatin 

presents  a  significant  challenge  for  those  using  these  proteins  in  medical 

applications7 where reliable and predictable materials are essential. However, this  is 

not  the  only  concern  related  with  the  use  of  these  materials  in  medicine.  The 

potential  presence  of  infectious  agents,  such  as  virus  or  prions,  in  collagen  and 

gelatin  derived  from  animal  sources,  and  the  possibility  of  inducing  immunogenic 

reactions, poses a risk  for patients receiving the medical product7, 16. Despite these, 

animal  derived  collagen  and  gelatin  have  been  used  for  decades  in medical  and 

pharmaceutical applications. 

In recent years, the biomedical relevance of collagen and gelatin and the advances in 

recombinant‐based production systems have motivated scientists to find alternatives 

to animal collagen and gelatin. The  recombinant  (microbial) production of collagen 

and  gelatin  opens  up  the  possibility  of  producing  these  proteins  free  of  animal 

contaminants  and  with  defined  molecular  composition  and  structure,  and  thus 

predictable properties.  It might also be advantageous  to have  collagen and gelatin 

with human amino acid sequences  in view of  immunogenetic responses. This  is only 

possible using recombinant production since human collagen (from placentae, human 

cell  culture,  etc.)  is  scarcely  available  and human  gelatin,  i.e. derived  from human 

collagen,  is not available at all6.     Recombinant production allows  the possibility  to 

produce  collagen  and  gelatin  with  human  identical  amino  acid  sequences  or  to 

produce fully designed collagen‐like proteins, with the aim of creating new and varied 

structures  with  novel  functionalities  which  may  provide  benefits  for  specific 
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applications. The advances in the recombinant production of collagen and gelatin will 

be addressed in section 4 of this chapter. 

In order to find successful strategies for the biotechnological production of this class 

of proteins a good understanding of collagen structure and biochemistry is necessary. 

 

1.3 STRUCTURE AND BIOSYNTHESIS OF COLLAGEN 

 

1.3.1 Amino acid sequence and secondary structure 

Chemically,  collagen  is  characterised  by  an  exceptionally  high  content  of  glycine, 

proline and hydroxyproline, organised in repeating (Gly‐Xaa‐Yaa)n sequences that fold 

into a  triple‐helical structure  (Figure 1.1) The  length  (n),  the content of proline and 

hydroxyproline, and the presence of other amino acids in either Xaa or Yaa positions 

vary  with  the  type  of  collagen.  Collagen molecules  also  contain  non‐collagenous 

domains, and many of  these have  important biological  functions  that are different 

from those of the collagen domains. One example  is the non‐collagenous domain of 

type IV collagen which can inhibit angiogenesis and tumour growth21. 

The typical collagen triple helix consists of three extended  left‐handed proline II‐like 

helical chains that are super coiled into a right‐handed triple helix. The inner core of 

the collagen helix  is rather crowded, therefore the presence of glycine (the smallest 

amino acid, with a side chain consisting only of hydrogen)  is required  in every third 

position in order for the polypeptide chain to pack together close enough to form the 

collagen triple helix10. The three chains are staggered by one residue with respect to 

each  other,  in  the  direction  of  the  helix  axis,  and  are  linked  through  interchain 

hydrogen  bonds6.  The  hydrogen  donors  are  the  peptide  ‐NH  groups  of  glycine 

residues, and the hydrogen acceptors are the peptide ‐CO groups of residues on the X 

and Y positions11. 

Proline is often found in the X position and hydroxyproline in the Y position. Because 

of  their  ring  structure,  these amino acids  stabilise  the helical  conformations of  the 

polypeptide  chains.  The  unusual  amino  acid  hydroxyproline  is  formed  within  the 
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endoplasmic  reticulum  by modification  of  proline  residues  that  have  been  already 

incorporated  into collagen peptide chains. Some  lysine residues  in collagen are also 

converted to hydroxylysine. The hydroxyl groups of these modified amino acids and 

bridging water molecules participate in hydrogen bonds between polypeptide chains, 

which further stabilises the triple helix9, 22, 23. In short, the collagen helical form is the 

consequence of several reinforcing bonds, each of which is relatively weak9. 

 

 

 

 

 

Figure 1.1 Collagen triple‐helix 

 

1.3.2 Stability of the collagen helix‐ the role of proline and hydroxyproline 

The  thermal  stability of  the  collagen helix  is  an  important biological property.  The 

melting temperature (Tm) of collagens (usually defined as the point where half of the 

helical structure of a collagen solution  is  lost)  is related to the body temperature of 

the source species9, 24, and therefore collagens from different species have different 

melting  temperature.  This  difference  in  thermal  stability  is  strongly  related  to  the 

imino acid content  (proline and hydroxyproline) present  in  the collagen. The higher 

the  imino  acid  content,  the  more  stable  the  helix6,  9,  25.  A  correlation  between 

denaturation temperatures and the sum of proline and hydroxyproline content was 

demonstrated for several vertebrates by Burge and Hynes26 and by Piez and Gross27.  

Studies of the melting temperature of chemically synthesized polypeptide models of 

collagen have been used  to clarify  the biological significance of  the high content of 

proline  and  hydroxyproline.    Peptides  made  of  tandem  repeats  of  Gly‐Xaa‐Yaa 

possess an intrinsic propensity to form the collagen‐like triple helix. Peptides with the 

structure  (Gly‐Pro‐Pro)n  (n= 10, 15, or 20) were  the  first ones  to be  synthesised28. 
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Those  have  shown  to  form  triple‐helical  structures  similar  to  the  triple  helical 

structure  of  collagen29.  Later,  the  peptides  (Pro‐Hyp‐Gly)n  (n=5  or  10)  were 

synthesised    and  were  also  found  to  form  triple  helical  structures30.  Indeed,  the 

presence  of  hydroxyproline  (Hyp)  greatly  increased  the  thermal  stability  of  the 

helices. The midpoint of the thermal transition of helix to coil (Tm) for the (Pro‐Hyp‐

Gly)10 was ~60 °C, while that for the peptide (Pro‐Pro‐Gly)10 was ~25 °C, about 35 °C 

lower.  These  results  confirm  the  greater  stabilising  effect  of  hydroxyproline  as 

compared to proline. Recent studies, have also shown that the melting temperature 

of  partially  hydroxylated  recombinant  collagen  is  reduced31,  and  that  non‐

hydroxylated custom‐designed or human gelatins do not form helices at least above 4 

°C32‐34. The Tm also depends upon  the  length of  the  collagen peptide  chain, as  it  is 

expected  for  a  cooperative  transition35.  For  example,  the  melting  temperature 

determined for (Pro‐Pro‐Gly)15  is ~52 °C
29, more than two fold higher than the Tm of 

(Pro‐Hyp‐Gly)10. Additional  factors may be  involved  in  the  stabilisation of  the  triple 

helix  as  suggested  by  other  studies  performed with  collagen‐like  polypeptides36‐38, 

such as the unexpected stabilising effect of arginine in the Y position39.  

 

1.3.3 Collagen biosynthesis 

The synthesis of fibrilar collagens  in the animal cell  is a complex process  involving a 

number of  intracellular and extracellular post‐translational modifications. Collagens 

are  first  synthesised  in  the  rough  endoplasmic  reticulum  as  soluble  precursor 

molecules  known  as  procollagen.  Procollagen  molecules  contain  non‐helical 

propeptide  extensions  at  both N‐  and  C‐  terminal  ends  that  are  important  in  the 

process of chain association and nucleation, and prevent the premature formation of 

fibres  inside  the  cell10,  11.   Before  chain  association  and  triple helix  formation,  the 

procollagen  chains  are modified  inside  the  lumen  of  the  endoplasmic  reticulum, 

where hydroxylation of  certain proline  and  lysine  residues  and  glycosylation  takes 

place6, 11. The assembly and thermal stability of the procollagen molecules is strongly 

dependent on the successful hydroxylation of proline residues  in the Y position  into 
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4‐hydroxyproline  by  the  enzyme  prolyl  4‐hydroxylase6,  40.  In  the  absence  of  this 

enzyme  the procollagen molecules  remain  in  the  form of a non‐triple helical, non‐

functional protein6. In addition to this enzyme, a number of other proteins that assist 

in  the  correct  folding  and  processing  of  collagen  (chaperones  and  enzymes 

respectively) are required40. The modified procollagen molecules self‐assemble from 

‐N to ‐C terminus  into a triple helix  in a zipper  like manner, and are secreted to the 

extracellular space, where  they  fill  the space between  the cells, and bind cells and 

tissues together. After secretion, the C‐ and N‐ terminus extensions are cleaved off 

by specific proteinases and the collagen molecules spontaneously self‐assemble into 

fibrils, which are stabilised by the formation of covalent cross‐links between the side 

chains  of  lysine  and  hydroxylysine  residues.  See  Figure  1.2  for  a  schematic 

representation of collagen biosynthesis in the animal cell. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic representation of the biosynthesis of collagen in the animal cell 

 

The extent and type of cross‐linking varies with the physiological function and age of 

the tissue9, 16. The most abundant type of collagen (type I collagen) is one of the fibril 
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forming  collagens  that  are  the  basic  structural  component  of  connective  tissues. 

Several other types of collagen do not  form  fibrils, but play other roles  in different 

types  of  extracellular matrices.  For  example,  fibril‐associated  collagens, which  are 

present  in  connective  tissue  as  well,  bind  to  the  surface  of  collagen  fibrils  and 

connect  them  both  to  one  another  and  to  other  matrix  components.  Network‐

forming  collagens,  e.g.  type  IV  collagen,  are  more  flexible  than  fibril‐forming 

collagens  because  the  Gly‐X‐Y  repeats  are  frequently  interrupted  by  non‐helical 

sequences.  As  a  result,  they  assemble  into  two‐dimensional  crosslinked  networks 

instead of fibrils10, 22. 

 

1.4 CHARACTERISTICS OF NATURAL GELATIN 

 

Gelatin  is typically prepared  from collagen type  I or  III, which  is present  in skin and 

bones of cows or pigs. During  the  conversion of  collagen  into gelatin,  the covalent 

cross‐links  formed between  the collagen‐fibrils, and  the hydrogen and hydrophobic 

bonds formed within the collagen triple‐helical structure are destroyed.  

The  industrial production of gelatin consists of  three main stages: pre‐treatment of 

the  raw material,  extraction  of  the  gelatin,  and  purification  and  drying.    The  pre‐

treatment consists essentially of either an alkaline (liming) or an acid treatment. The 

main purpose of  liming  is to break covalent cross‐links  in collagen and thus  improve 

the efficiency of extraction of gelatin.  Liming  is mainly applied  to animal  tissues  in 

which  the collagen has a high degree of covalent bonding.  In contrast, no covalent 

bonds are broken during acid treatment. This type of treatment  is usually  limited to 

tissues of young animals or other tissues with a small amount of covalent bonding6. 

Following pre‐treatment the gelatin is extracted using hot water. The heat breaks the 

hydrogen  and  hydrophobic  bonds within  the  triple‐helix  structure  and  leads  to  its 

dissociation  into  individual  soluble  chains,  and  small  fragments. Upon  cooling,  the 

chains  rewind  in  triple‐helical  structures41. However,  because  the  chains  have  lost 

their  initial  register,  they  do  not  align  as  complete  collagen  triple‐helices.  Instead, 
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they form interconnected triple helical junction zones in a random fashion. Just like in 

a  fishing‐net,  the  triple helical  junctions knot  the chains together  in a network. The 

helix formation  is determined by the coincidental proximity of polypeptide domains 

and the potential thermostability of helices formed by interaction of those domains6. 

As  a  consequence,  helices  of  different  amino  acid  sequence  and  composition, 

different lengths, and different intrinsic thermostability are formed36, 37, 42. Figure 1.3 

shows a schematic representation of the conversion of collagen into gelatin. 

Regardless  of  the  process  used,  gelatin  preparations  consist  of  a  distribution  of 

polypeptide  fragments  of  different  sizes,  different  isolectric  points  and  different 

gelling  properties14,  43.  Furthermore,  the  physical‐chemical  properties  of  the  final 

product  depend  on  the  extraction  method  used,  the  length  of  the  thermal 

denaturation,  and  the  electrolyte  content  of  the  resulting material6,  14,  17,  43.  The 

extreme complexity of natural gelatin preparations makes the study of their structure 

very difficult.  

 

 

 

 

 

 

 

 

 

Figure 1.3 Conversion of collagen into gelatin 

 

 

Gel Sol 



 
Chapter 1 

 
 
 

21 

1.5  RECOMBINANT  PRODUCTION‐  FROM  COLLAGEN  TO  COLLAGEN‐LIKE 

PROTEINS 

 

Efforts  have  been  increasing  in  the  last  few  years  to  develop  an  efficient  and  safe 

alternative production system of recombinant human collagen and gelatin. Synthesis 

of  recombinant collagen presents various challenges, not  least because of  the many 

post‐translational  modifications  required  for  a  recombinantly  produced  collagen 

molecule to achieve a fully folded, triple helical conformation. As mentioned above in 

section  1.3.2  one  of  the  most  important  post‐translational  modifications  is  the 

hydroxylation of specific proline residues by the enzyme prolyl 4‐hydroxylase. 

Several  microbial  and  non‐microbial  systems  have  been  investigated  for  the 

production of  recombinant  collagen and  collagen‐like polymers. Mammalian44,  45 or 

insect cell lines46, 47, which should possess appropriate post‐translational modification 

systems,  have  been  used  for  the  production  of  recombinant  human  collagen. 

Mammalian  cells  transfected  with  human  collagen  genes  expressed  and  secreted 

hydroxylated  full‐length  collagen;  while  insect  cells  accumulated  the  collagen 

intracellularly and were  incapable of producing sufficient collagen‐specific proalyl 4‐

hydroxylase  (P4H)  to  fully hydroxylate  the  collagen. Recombinant non‐hydroxylated 

or  partially  hydroxylated  collagen  has  been  shown  to  accumulate  in  milk  from 

transgenic mice48 and in secretions from transgenic silkworms49.  Transgenic tobacco 

cell  culture14  and  transgenic  tobacco  plants50,  51  have  also  been  used  for  the 

production of recombinant collagen. Though, the collagen expression levels achieved 

in all  these expression  systems were  too  low  to make  these  systems  commercially 

attractive. 

High‐yield  expression  systems,  such  as bacteria  and  yeast do not  contain  any  P4H 

activity and can therefore not be used  for production of  fully hydroxylated collagen 

without co‐expression of a suitable P4H. 

Production  of  hydroxylated  and  non‐hydroxylated  collagen‐like  proteins  has  been 

attempted  in Escherichia coli52, 53. But, expression  levels were generally  low, mainly 
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due  to product degradation  (in  the case of non‐hydroxylated molecules), and gene 

instability issues. 

Since  yeasts  are  eukaryotes,  they  offer  certain  advantages  over  bacteria,  such  as 

occurrence  of  most  of  the  post‐translational  machinery  needed  for  functionality 

and/or  stability  of  recombinant  animal  proteins  (glycosylation,  acylation, 

methylation, protein  folding, targeting to subcellular compartments and proteolytic 

adjustments);  efficient  secretion  of  proteins, which  facilitates  the  isolation  of  the 

desired  heterologous  protein;  and  ability  to  cope  with  highly  repetitive  coding 

sequences, which  is  important  in  recombinant gelatin and collagen expression54,  55. 

Furthermore, yeasts grow to high cell densities resulting  in the production of  larger 

quantities of recombinant proteins than in mammalian and insect cells systems. 

Different yeast strains have shown to be able to produce human collagen. However 

hydroxylated triple‐helical collagen secretion  is a problem  in the yeast species used 

to date, Saccharomyces cerevisiae, Pichia pastoris and Hansenula polymorpha31, 56, 57. 

In contrast, single chain collagen‐like molecules with natural and synthetic sequences 

are very efficiently secreted by both H. polymorpha58 and P. pastoris32‐34.  

Completely  folded  triple  helical  collagen  is  resistant  to  proteases59,  60, while most 

unfolded collagen‐like molecules are very sensitive to proteolytic degradation14, 33, 61. 

Among all yeast used so far, the methylotrophic yeasts, P. pastoris, appears to be the 

most  suitable  for  high‐yield  secreted  production  of  non‐hydroxylated  collagen  and 

collagen‐like  proteins,  i.e.  protein  polymers  made  of  repeating  (Gly‐Xaa‐Yaa) 

sequences. In P. pastoris, proteolytic degradation of unfolded collagen‐like molecules 

(gelatin) is much less of a problem than, for instance, in H. polymorpha58. In addition, 

the expression  level of a non‐hydroxylated procollagen  fragment  in H. polymorpha 

was  considerably  lower  than  expression  levels  of  non‐hydroxylated  collagen‐like 

proteins in P. pastoris58. 
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1.6  P.  PASTORIS AS A HOST  SYSTEM  FOR  THE  PRODUCTION OF  COLLAGEN 

AND COLLAGEN‐LIKE PROTEINS 

 

The efficacy of P. pastoris for the production of homogenous, well defined, recombinant 

collagen and collagen‐like proteins has been reported in several works32‐34, 62.  

Collagen type III and I and the human P4H genes have been expressed in P. pastoris 

with  some  success.  Although  the  use  of  this  system  requires  the  integration  of 

several genes in the P. pastoris genome and is dependent on the correct association 

between  the co‐expressed  and  human P4H  subunits62,  63, moderate  levels  (0.5 

g/l)  of  triple  helical  human  procollagen  type  I were  accumulated  inside  the  yeast 

cells62.  

Werten  and  co‐workers33  reported  the  use  of  P.  pastoris  for  the  production  of 

recombinant  non‐hydroxylated  gelatins  based  on  rat  type  III  and  mouse  type  I 

collagen  sequences. One  of  the  fragments,  derived  from  rat  type  III  collagen, was 

produced  at  one  of  the  highest  levels  for  a  secreted  heterologous  protein  ever 

obtained from recombinant yeast (14.8 g/l). High‐level expression and secretion of a 

highly  hydrophilic  designed  gelatin  was  also  successfully  achieved  in  P.  pastoris. 

These  studies  demonstrate  the  ability  of  this  yeast  to  express  sequences  from 

different origins  (natural or  artificial).  Furthermore,  the use of high productivity P. 

pastoris‐based  recombinant  systems  results  in  cost‐effective  processes  for  the 

production  of  large  amounts  of material7,  because  the medium  components  are 

inexpensive and defined, consisting of pure carbon sources (glycerol and methanol), 

biotin, salts, trace elements, and water. This medium is free of undefined ingredients 

that  can  be  source  of  pyrogens  or  toxins  and  is  therefore  compatible  with  the 

production of human pharmaceuticals55. 

Some P. pastoris‐derived recombinant collagen‐like products have been evaluated for 

use  in  medical  devices  and  pharmaceutical  products  and  shown  to  have  good 

biocompatibility. Recombinant collagen (type II) sponges, commonly used as scaffold 
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in  tissue engineering applications,  revealed  to be more biocompatible  than animal‐

derived  collagen,  as  determined  in  animal  studies16.  A  low  molecular  weight 

recombinant  gelatin  was  developed  for  use  as  stabiliser  for  various  injectable 

biologics, and proven to be safe  for use  in humans14, 32. Olsen et al.14 reported that 

recombinant gelatin fragments were able to support attachment of Vero cells64 (cell 

line  derived  from  kidney  epithelial  cells)  at  levels  similar  to  those  provided  by 

commercial bovine type I collagen. 

Despite  all  the  research  and  development  around  P.  pastoris‐based  recombinant 

collagen‐like  systems,  the  production  of  gel  forming  recombinant  gelatin  and 

secreted production of triple helical or fibre‐forming collagen are challenges that still 

need to be addressed. If realized, they are  likely to  lead to the development of new 

products and applications. 

 

1.7 AIM AND THESIS OUTLINE 

 

Animal‐derived collagen and gelatin have been extensively used  in the past decades 

for several pharmaceutical and biomedical applications. However,  there  is need  for 

collagen‐based materials with predictable and tailorable properties. 

The  aim  of  this  thesis  is  the  design  and microbial  production  of  gel  forming  non‐

hydroxylated  collagen‐like  proteins.  Recombinant  protein  expression  and  protein 

engineering  are  used  to  develop  collagen‐like  polymers with  defined  composition, 

structure,  and  tunable  physical‐chemical  properties.  The  possibility  of  using  these 

proteins  as  controlled  release  systems  is  also  explored,  as  well  as  the  set‐up  of 

efficient and scalable production procedures using P. pastoris as a microbial factory.  

In Chapter 2,  the design of non‐hydroxylated gel‐forming  collagen‐inspired  triblock 

copolymers is described. The production in yeast and preliminary characterization of 

two such protein polymers is reported. 

In Chapter 3, four versions of collagen‐inspired triblock copolymers, differing only in 

their mid‐block  length or  amino  acid  sequence,  are used  to  study  the  relationship 
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between mid-block size and hydrogel-forming properties. An analytical model, based 

on classical gel theory is used to help interpreting the experimental data. 

In Chapter 4, the possibility of using the hydrogels from collagen-inspired triblock 

copolymers as controlled release systems is investigated. The erosion and protein 

release kinetics of two hydrogel-forming collagen-inspired triblock copolymers, 

differing only in mid-block length, is studied and compared.  

In Chapter 5, the development of a pilot-scale strategy for the fermentation and 

purification of a new class of gel-forming collagen-like proteins is discussed. Five 

different collagen-inspired triblock co-polymers are fermented and purified. The 

pilot-scale production of each of these proteins was initiated to foster high 

productivity of protein for future applications and research. 

In chapter 6, some of the results obtained in the thesis are highlighted and 

suggestions for further research are given. 



 
General Introduction 
 
 

26 

REFERENCES 
 
1.  K. Sanford and M. Kumar, Curr Opin Biotechnol, 2005, 16, 416‐421. 
2.  R. Dandu, A. Von Cresce, R. Briber, P. Dowell, J. Cappello and H. Ghandehari, Polymer, 2009, 

50, 366‐374. 
3.  H. Heslot, Biochimie, 1998, 80, 19‐31. 
4.  D. N. Woolfson and M. G. Ryadnov, Curr Opin Chem Biol, 2006, 10, 559‐567. 
5.  S. Kyle, A. Aggeli, E. Ingham and M. J. McPherson, Trends Biotechnol, 2009, 27, 423‐433. 
6.  W. Y. Aalbersberg, R. J. Hamer, P. Jasperse, H. H. J. Jongh, C. G. Kruif, P. Walstra and F. A. De 

Wolf, Industrial proteins in perspective, Elsevier, Amsterdam, 2003. 
7.  J. Baez, D. Olsen and J. W. Polarek, Appl Microbiol Biotechnol, 2005, 69, 245‐252. 
8.  G. Morreale, E. G. Lee, D. B. Jones and A. P. Middelberg, Biotechnol Bioeng, 2004, 87, 912‐

923. 
9.  L. Stryer, Biochemistry, 3rd ed. edn., Freeman, New York, 1988. 
10.  J. Myllyharju and K. I. Kivirikko, Ann Med, 2001, 33, 7‐21. 
11.  D. J. Prockop and K. I. Kivirikko, Annu Rev Biochem, 1995, 64, 403‐434. 
12.  G. Veit, B. Kobbe, D. R. Keene, M. Paulsson, M. Koch and R. Wagener, J. Biol. Chem., 2006, 

281, 3494‐3504. 
13.  J. A. M. Ramshaw, Y. Y. Peng, V. Glattauer and J. A. Werkmeister, J Mater Sci: Mater Med, 

2008, 20, 3‐8. 
14.  D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, D. Carmichael, M. Perala, E. R. 

Hamalainen, M. Jarvinen and J. Polarek, Adv Drug Deliv Rev, 2003, 55, 1547‐1567. 
15.  W. Friess, Eur. J. Pharm. Biopharm., 1998, 45, 113‐136. 
16.  C. Yang, P. J. Hillas, J. A. Baez, M. Nokelainen, J. Balan, J. Tang, R. Spiro and J. W. Polarek, 

BioDrugs, 2004, 18, 103‐119. 
17.  S. Young, M. Wong, Y. Tabata and A. G. Mikos, J Control Release, 2005, 109, 256‐274. 
18.  M. Sutter, J. Siepmann, W. E. Hennink and W. Jiskoot, J Control Release, 2007, 119, 301‐312. 
19.  R. Rohanizadeh, M. V. Swain and R. S. Mason, J Mater Sci Mater Med, 2008, 19, 1173‐1182. 
20.  C. H. Lee, A. Singla and Y. Lee, Int J Pharm, 2001, 221, 1‐22. 
21.  Y. Maeshima, P. C. Colorado, A. Torre, K. A. Holthaus, J. A. Grunkemeyer, M. B. Ericksen, H. 

Hopfer, Y. Xiao, I. E. Stillman and R. Kalluri, J Biol Chem, 2000, 275, 21340‐21348. 
22.  G. M. Cooper, The Cell: a molecular approach, 2nd ed. edn., ASM Press, Washington, D. C., 

2000. 
23.  G. N. Ramachandran and A. H. Reddi, Biochemistry of collagen, Plenum Press, New York. 
24.  B. Brodsky, G. Thiagarajan, B. Madhan and K. Kar, Biopolymers, 2008, 89, 345‐353. 
25.  K. H. Gustavson, Nature, 1955, 175, 70‐74. 
26.  R. E. Burge and R. D. Hynes, Nature, 1959, 184, 1562‐1563. 
27.  K. A. Piez and J. Gross, J Biol Chem, 1960, 235, 995‐998. 
28.  S. Sakakibara, Y. Kishida, Y. Kikucha, R. Sakai and K. Kikiuchi, Bull. Chem. Soc. Jap., 1968, 41, 

1273‐1275. 
29.  Y. Kobayashi, R. Sakai, K. Kakiuchi and T. Isemura, Biopolymers, 1970, 9, 415‐425. 
30.  S. Sakakibara, K. Inouye, K. Shudo, Y. Kishida, Y. Kobayashi and D. J. Prockop, Biochim Biophys 

Acta, 1973, 303, 198‐202. 
31.  P. D. Toman, G. Chisholm, H. McMullin, L. M. Giere, D. R. Olsen, R. J. Kovach, S. D. Leigh, B. E. 

Fong, R. Chang, G. A. Daniels, R. A. Berg and R. A. Hitzeman, J Biol Chem, 2000, 275, 23303‐
23309. 

32.  D. Olsen, J. Jiang, R. Chang, R. Duffy, M. Sakaguchi, S. Leigh, R. Lundgard, J. Ju, F. Buschman, 
V. Truong‐Le, B. Pham and J. W. Polarek, Protein Expr Purif, 2005, 40, 346‐357. 



 
Chapter 1 

 
 
 

27 

33.  M. W. T. Werten, T. J. van den Bosch, R. D. Wind, H. Mooibroek and F. A. de Wolf, Yeast, 
1999, 15, 1087‐1096. 

34.  M. W. T. Werten, W. H. Wisselink, T. J. Jansen‐van den Bosch, E. C. de Bruin and F. A. de 
Wolf, Protein Eng, 2001, 14, 447‐454. 

35.  J. Engel and G. Schwarz, Angew Chem Int Ed Engl, 1970, 9, 389‐400. 
36.  A. V. Persikov, J. A. Ramshaw and B. Brodsky, Biopolymers, 2000, 55, 436‐450. 
37.  A. V. Persikov, J. A. Ramshaw, A. Kirkpatrick and B. Brodsky, Biochemistry, 2000, 39, 14960‐

14967. 
38.  A. V. Persikov, J. A. Ramshaw, A. Kirkpatrick and B. Brodsky, J Mol Biol, 2002, 316, 385‐394. 
39.  W. Yang, V. C. Chan, A. Kirkpatrick, J. A. Ramshaw and B. Brodsky, J Biol Chem, 1997, 272, 

28837‐28840. 
40.  J. Myllyharju, Matrix Biol, 2003, 22, 15‐24. 
41.  F. A. de Wolf and R. C. A. Keller, Progr. Colloid. Polym. Sci., 1996, 102, 9‐14. 
42.  K. Kuehn, J. Engel, B. Zimmermann and W. Grassmann, Arch Biochem Biophys, 1964, 105, 

387‐403. 
43.  J. M. Saddler and P. J. Horsey, Anaesthesia, 1987, 42, 998‐1004. 
44.  L. Ala‐Kokko, J. Hyland, C. Smith, K. I. Kivirikko, S. A. Jimenez and D. J. Prockop, J Biol Chem, 

1991, 266, 14175‐14178. 
45.  A. S. Olsen, A. E. Geddis and D. J. Prockop, J Biol Chem, 1991, 266, 1117‐1121. 
46.  M. Tomita, N. Ohkura, M. Ito, T. Kato, P. M. Royce and T. Kitajima, Biochem J, 1995, 312(Pt 

3), 847‐853. 
47.  T. Pihlajamaa, M. Perala, M. M. Vuoristo, M. Nokelainen, M. Bodo, T. Schulthess, E. Vuorio, R. 

Timpl, J. Engel and L. Ala‐Kokko, J Biol Chem, 1999, 274, 22464‐22468. 
48.  D. C. John, R. Watson, A. J. Kind, A. R. Scott, K. E. Kadler and N. J. Bulleid, Nat Biotechnol, 

1999, 17, 385‐389. 
49.  M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino, M. Hayashi, K. Shimizu, N. Nakamura, T. 

Tamura and K. Yoshizato, Nat Biotechnol, 2003, 21, 52‐56. 
50.  F. Ruggiero, J. Y. Exposito, P. Bournat, V. Gruber, S. Perret, J. Comte, B. Olagnier, R. Garrone 

and M. Theisen, FEBS Lett, 2000, 469, 132‐136. 
51.  C. Merle, S. Perret, T. Lacour, V. Jonval, S. Hudaverdian, R. Garrone, F. Ruggiero and M. 

Theisen, FEBS Lett, 2002, 515, 114‐118. 
52.  D. D. Buechter, D. N. Paolella, B. S. Leslie, M. S. Brown, K. A. Mehos and E. A. Gruskin, J Biol 

Chem, 2003, 278, 645‐650. 
53.  I. Goldberg, A. J. Salerno, T. Patterson and J. I. Williams, Gene, 1989, 80, 305‐314. 
54.  P. Li, A. Anumanthan, X. G. Gao, K. Ilangovan, V. V. Suzara, N. Duzgunes and V. 

Renugopalakrishnan, Appl Biochem Biotechnol, 2007, 142, 105‐124. 
55.  J. L. Cereghino and J. M. Cregg, FEMS Microbiol Rev, 2000, 24, 45‐66. 
56.  I. Keizer‐Gunnink, A. Vuorela, J. Myllyharju, T. Pihlajaniemi, K. I. Kivirikko and M. Veenhuis, 

Matrix Biol, 2000, 19, 29‐36. 
57.  M. Nokelainen, H. Tu, A. Vuorela, H. Notbohm, K. I. Kivirikko and J. Myllyharju, Yeast, 2001, 

18, 797‐806. 
58.  E. C. de Bruin, F. A. de Wolf and N. C. Laane, Enzyme Microb Technol, 2000, 26, 640‐644. 
59.  P. Bruckner and D. J. Prockop, Anal Biochem, 1981, 110, 360‐368. 
60.  J. M. Davis and H. P. Bachinger, J Biol Chem, 1993, 268, 25965‐25972. 
61.  E. C. de Bruin, M. W. Werten, C. Laane and F. A. de Wolf, FEMS Yeast Res, 2002, 1, 291‐298. 
62.  O. Pakkanen, E. R. Hamalainen, K. I. Kivirikko and J. Myllyharju, J Biol Chem, 2003, 278, 

32478‐32483. 



 
General Introduction 
 
 

28 

63.  D. R. Olsen, S. D. Leigh, R. Chang, H. McMullin, W. Ong, E. Tai, G. Chisholm, D. E. Birk, R. A. 
Berg, R. A. Hitzeman and P. D. Toman, J Biol Chem, 2001, 276, 24038‐24043. 

64.  B. Montagnon, J. C. Vincent‐Falquet and B. Fanget, Dev. Biol. Stand.  , 1984, 55, 37– 38. 



 

29 

 
 

Chapter 2  
 

Precision gels from collagen‐inspired 
triblock copolymers 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter as been published in modified form as: M. W. T. Werten, H. Teles, A. P. 

H.  A.  Moers,  E.  J.  H.  Wolbert,  J.  Sprakel,  G.  Eggink,  and  F.  A.  de  Wolf, 

Biomacromolecules, 2009, 10, 1106‐1113.  

 



 
Precision gels from collagen‐inspired triblock copolymers 
 
 

30 

SUMMARY 

 

Gelatin hydrogels find broad medical application. The current materials, however, are 

from animal sources, and their molecular structure and thermal properties cannot be 

controlled.  This  study  describes  recombinant  gelatin‐like  polymers  with  a  general 

design  that  inherently  offers  independent  tuning  of  the  cross‐link  density, melting 

temperature, and biocompatibility of the gel. The polymers contain small blocks with 

thermoreversible trimerization capacity and defined melting temperature, separated 

by hydrophilic nontrimerising blocks defining the distance between the knot‐forming 

domains. As an example, we report the secreted production in yeast at several g/l of 

two non‐hydroxylated ~42 kDa triblock copolymers with terminal trimerising blocks. 

Because  only  the  end‐blocks  formed  cross‐links,  the molecular  architecture  of  the 

gels is much more defined than that of traditional gelatins. The novel hydrogels had a 

~37  °C melting  temperature,  and  the  dynamic  elasticity  was  independent  of  the 

thermal  history.  The  concept  allows  to  produce  custom‐made  precision  gels  for 

biomedical applications. 
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2.1 INTRODUCTION 

 

Stimulus‐responsive  polymer  gels  are  promising  materials  for  chemomechanical 

systems,  sensors,  surgery,  regenerative  medicine,  and  pharmaceutics1. 

Biocompatibility is an essential requirement for medical gels2 and, therefore, gelatin3, 

which  is derived  from  the natural matrix protein collagen4,  is  ideally  suited. To  the 

benefit of millions of patients, several kilotons5 of gelatin with a billion dollar market 

value are used on an annual basis and novel gelatin materials are being developed for 

bone6,  retinal7,  tissue‐enhancing8,  and  other  implants,  in  vascular  prostheses9, 

sponge  embolization  therapy10,  scaffolds  for  tissue  and  cell  culture11,  12,  medical 

glues13, blood supplementation fluids14, 15, drug carriers11, 16, wound dressings17, and 

vaccines18. 

For  such  applications,  the  animal origin of  gelatin poses  the  risk of  contamination 

with  transmissible  disease  agents  (e.g.,  prions)  and  immune  responses15,  18‐20. 

Furthermore,  the  extraction  of  gelatin  from  bones  and  hides  causes  uncontrolled 

degradation and  results  in a variable multitude of molecular species3. Recombinant 

production  allows  to  circumvent  these  problems  and,  accordingly,  several  groups 

including our own have produced single‐component natural gelatins5, 20, 21 and non‐

natural gelatin‐like designer proteins22‐25. We realised secreted production of gelatins 

in  the  yeast  Pichia  pastoris  at  very  high  levels,  as  well  as  simple  and  scalable 

purification  procedures21,  25.  In  contrast  to  animal  gelatins,  these  recombinant 

gelatins are naturally nongelling. 

Nongelling  recombinant  gelatins  are  advantageous  when  used  in  blood 

supplementation  fluids  and  vaccines,  where  the  current  use  of  animal  gelatins 

requires suppression of unwanted gel  formation by chemical modification14,  15,  26 or 

degradation18,  20,  respectively.  However,  most  medical  applications  of  gelatin  do 

require gel formation. The basis of the thermoreversible knots  in a gelatin gel  is the 

characteristic triple‐helical structure of collagen3. It consists of repetitive Gly‐Xaa‐Yaa 

triplet repeats, commonly containing approximately 22 % proline3. At this low proline 
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content,  triple  helices  are  not  thermally  stable  above  5‐15  °C  unless,  as  occurs  in 

animals,  the  prolines  in  the  Yaa  position  are  post‐translationally  modified  to  4‐

hydroxyprolines  by  the  enzyme  peptidyl‐prolyl‐4‐hydroxylase  (P4H)27‐29.  Because 

microbial  hosts  generally  lack  this  enzyme,  recombinant  production  of  thermally 

stable triple‐helical collagen and gelatin requires coexpression of the two subunits of 

the mammalian P4H27, 28, 30. 

For  applications  such  as  controlled  drug  delivery,  independent  control  over  the 

melting  temperature  (Tm),  cross‐link  density,  and  biocompatible  properties  of  the 

gelatin gel would be highly advantageous. Thus  far, however, no  such material has 

been  conceived. Manipulating  the Tm of  recombinant gelatins  is already difficult  in 

itself,  as  it  would  require  control  over  the  degree  of  hydroxylation.  Proline‐rich 

trimer‐forming gelatin‐like (collagenous) peptides with adjustable, length‐dependent 

Tm have been  synthesised  chemically31‐33. but  these are  too  short  to  form gels and 

cannot  be  produced  in  an  economically  feasible way.  Polycondensated  (and,  thus, 

polydisperse)  peptides  long  enough  to  form  a  gel  can  neither  provide  a 

homogeneous,  controllable, and biomedically  relevant Tm, nor a  controllable  cross‐

link density. 

We  describe  here  recombinant  non‐hydroxylated  gelatin‐like  protein  polymers 

capable  of  forming  tuned  precision  gels.  The  block  copolymers  consist  of  short 

proline‐rich triple helix‐forming blocks that define the Tm, separated by long random 

coil spacer blocks that define the distance between the knot‐forming domains in the 

molecules.  The  currently used  spacers  are  extremely hydrophilic25. At  least one of 

them  is  capable  of  attracting  human  cells  in  culture34,  and  has  favorable 

biocompatibility as compared to animal products in blood applications15. Gel‐forming 

triblock protein polymers have been described before, making use of coiled‐coils35‐40, 

elastin‐mimetic motifs41, or the fluorescent protein DsRed39 as the cross‐link‐forming 

domain. The present work  is  the  first  report of such polymers where  the knots are 

formed by (trimerising) collagenous blocks. This choice of cross‐linking domain offers 

thermoreversible melting and a defined junction multiplicity42 (number of associative 
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groups per knot) of exactly three. Notably, also the random coil spacer blocks are of a 

collagenous (gelatin‐like) nature. The polymers, thus, truly represent a novel class of 

gelatins, offering defined  functionality  (number of associative groups per molecule) 

and  tunable  Tm,  while  expectedly  retaining  the  hallmark  biocompatibility  of 

traditional collagenous materials. 

 

2.2 MATERIAL AND METHODS 

 

Construction of expression vectors 

Triple helix‐forming block T was prepared by PCR using the oligonucleotides T‐FW and 

T‐RV (apendix 2, Table 2.2.1). The ~0.1 kb product was cloned into vector pCR4‐TOPO 

(Invitrogen),  resulting  in  vector  pCR4‐TOPO‐T.  The  previously  described  vector 

pMTL23‐P425  contains  a  gene  encoding  the  custom‐designed, highly hydrophilic  36.8 

kDa collagenous protein “P4”. This vector was digested with DraIII (5’ to the P4 gene) 

and  dephosphorylated.  Vector  pCR4‐TOPO‐T  was  digested  with  DraIII/Van91I.  The 

released T block was  ligated  into  the  linearised and dephosporylated vector,  to yield 

vector pMTL23‐TP4. This vector was then digested with Van91I (3’ to the P4 gene) and 

dephosphorylated, and a  second DraIII/Van91I digested T block was  inserted  to yield 

vector pMTL23‐TP4T. The TP4T gene was cloned into P. pastoris expression vector pPIC9 

(Invitrogen) via XhoI/EcoRI. 

The gene encoding R4 was  constructed by  concatenating  four  copies of an R gene 

monomer. The monomeric gene was designed by randomising the sequence of the P 

gene monomer25 in such a way that not every third residue of the encoded protein is 

glycine,  preventing  the  formation  of  collagen  triple  helices  while maintaining  the 

same  amino  acid  composition.  The  R  gene monomer was  constructed  by  overlap 

extension PCR43 using oligonucleotides RA‐FW and RA‐RV for the 5’ half of the gene, 

and oligonucleotides RB‐FW and RB‐RV  for  the 3’ half  (apendix 2, Table 2.2.1). The 

products of these reactions were combined by overlap extension PCR to generate the 

entire  R  gene  monomer.  The  monomer  was  cloned  into  vector  pMTL2344  via 
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XhoI/EcoRI,  and  multimerised  via  DraIII/Van91I  as  described  previously  for  P425, 

resulting  in  vector  pMTL23‐R4.  The  R4  fragment was  cloned  into  expression  vector 

pPIC9 via XhoI/EcoRI. The  construction of pMTL23‐TR4T  and  subsequent  subcloning 

into pPIC9 was analogous to the procedures described for TP4T. 

The  DNA  sequences  (and  translated  amino  acid  sequences)  of  the  XhoI/EcoRI 

fragments encoding P425, R4, TP4T, and TR4T have been deposited in GenBank under 

accession  numbers  EU834225‐EU834228.  Although,  for  clarity,  the  T  blocks  are 

referred to as (Pro‐Gly‐Pro)9 in the main text, the cloning procedure results in a Gly‐

Pro‐Pro‐Gly‐Ala extension at the N‐terminus, and an Ala‐Gly‐Gly extension at the C‐

terminus. 

Transformation of P. pastoris 

Expression vectors were linearised with SalI to promote integration at the his4 locus 

rather  than  the  AOX1  locus,  thus  enabling  normal  growth  on  methanol45. 

Transformation of P. pastoris his4 strain GS11545 and selection of transformants was 

as described previously21. 

Fermentation of P. pastoris 

Fed‐batch  fermentations  were  performed  in  2.5‐L  Bioflo  3000  fermenters  (New 

Brunswick Scientific), essentially as described by Zhang et al.46. Minimal basal  salts 

medium46 was used and no protease‐inhibiting supplements were added. The pH was 

maintained at 3.0 throughout the fermentation by addition of ammonium hydroxide 

as base. The methanol  fed‐batch phase  for protein production  lasted  two  to  three 

days. A homemade semiconductor gas sensor‐controller, similar to that described by 

Katakura  et  al.47,  was  used  to monitor  the methanol  level  in  the  off‐gas  and  to 

maintain a constant  level of ~0.2 %  (w/v) methanol  in  the broth. At  the end of  the 

fermentation, the cells were separated from the broth by centrifugation for 10 min at 

10000 × g (RT) in an SLA‐3000 rotor (Sorvall), and the supernatant was microfiltered. 
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Protein purification 

All centrifugation steps were performed in an SLA-1500 or SLA-3000 rotor (Sorvall) 

for 30 min at 20000 × g, and resuspension of protein pellets was always in Milli-Q 

water at 65 °C. 

As a precaution, the cellfree broth was heated for 30 min at 65 °C to melt possible gel 

structures formed by the recombinant protein. The pH was raised to 8.0 by addition 

of sodium hydroxide to allow precipitation of medium salts by centrifugation (RT). 

The protein was precipitated from the supernatant by addition of ammonium sulfate 

to 40 % of saturation, followed by incubation on ice for 30 min and centrifugation (4 

°C). This precipitation procedure was repeated once, and 50 mM sodium chloride and 

40 % (v/v) acetone were added to the final resuspended pellet. After centrifugation 

(4 °C), the pellet was discarded and acetone was added to the supernatant up to 80 % 

(v/v). The protein pellet obtained after centrifugation was air-dried, resuspended, 

and desalted by extensive dialysis against Milli-Q water. The final product was 

lyophilised. 

SDS-PAGE and N-terminal protein sequencing 

The NuPAGE Novex system (Invitrogen) was used for SDS-PAGE, with 10 % Bis-Tris 

gels, MES SDS running buffer, and SeeBlue Plus2 prestained molecular mass markers. 

Gels were stained with Coomassie SimplyBlue SafeStain (Invitrogen). Blotting of 

proteins for N-terminal sequencing by Edman degradation was as described 

previously
21

. Protein sequencing was performed by Midwest Analytical (St. Louis, 

MO). 

Mass spectrometry 

Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry was 

performed using an Ultraflex mass spectrometer (Bruker). Samples were prepared by 

the dried droplet method on a 600 µm AnchorChip target (Bruker), using 5 mg/ml 

2,5-dihydroxyacetophenone, 1.5 mg/ml diammonium hydrogen citrate, 25 % (v/v) 

ethanol, and 1 % (v/v) trifluoroacetic acid as matrix. Measurements (50 shots at 20 

Hz) were made in the positive, linear mode, with the following parameters: ion 
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source 1, 20000 V; ion source 2, 18450 V; lens, 5000 V; pulsed ion extraction, 550 ns. 

Protein Calibration Standard II (Bruker) was used for external calibration. 

Circular dichroism spectroscopy 

Proteins were dissolved at 100 mg/ml in 0.2 M sodium phosphate pH 3.0 and heated 

to 45  °C. Gels were allowed  to  form overnight  inside  the cuvette  (path  length 0.01 

mm) at room temperature. Circular dichroism (CD) spectra were recorded from 260 

to 210 nm using a  J‐715 spectropolarimeter  (Jasco) set at  the desired temperature. 

Spectra were  obtained  as  the  average  of  ten  consecutive  scans  using  a  scanning 

speed of 100 nm/min at a resolution of 0.2 nm. Melting curves from 20 to 65 °C were 

derived by increasing the temperature in steps of 5 or 10 °C, followed by equilibration 

at each temperature for 10 min prior to scanning. To allow recording of full spectra 

from 260 to 195 nm, measurements were also performed at 0.2 mg/ml  in a cuvette 

with 1 mm path length. 

Differential scanning calorimetry 

Degassed 0.5 ml protein solutions  (0.4‐2.2 mM  in 0.2 M sodium phosphate pH 3.0) 

were  loaded  into  a MicroCal  VP‐DSC  calorimeter  at  45  °C.  Protein  solutions were 

equilibrated  for 10 h at 20  °C  to allow complete  triple helix  formation. For melting 

curves, the temperature was increased from 5 to 65 °C at a scan rate of 15 °C/h. 

Rheometry 

An  Anton  Paar  Physica MCR301  rheometer,  equipped with  a  stainless  steel  CC17 

Couette geometry, gap size, 0.71 mm; bob radius, 8.3 mm; and sample volume 3 ml, 

was operated at an angular frequency of 1 Hz and a strain of 0.1 %. Protein solutions 

(2.2 mM in 0.2 M sodium phosphate, pH 3.0) were heated to 45 °C, introduced in the 

geometry,  and  subsequently  quenched  to  20  °C  to  induce  gel  formation. 

Measurements  were  done  at  20  and  5  °C.  Melting  of  the  gel  was  studied  by 

increasing  the  temperature  from 20  to 65  °C  in  steps of 2.5  °C  that  lasted 10 min 

each,  and  these  data were  smoothed  using  a moving  average  filter  over  21  data 

points (10 min). 
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Scanning electron microscopy 

TR4T was dissolved at 100 mg/ml in Milli‐Q water at 60 °C. A gel was allowed to form 

overnight  at  room  temperature  and  then  glued  onto  a  brass  sample  holder  using 

Tissue‐Tek  (TBS).  The  specimen  was  freeze‐fractured  in  melting  nitrogen  slush, 

vacuum transferred to a CT1500 cryostage (Oxford Instruments), and sputter‐coated 

with ~10 nm of platinum. After cryoetching for ~5 min the surfaces were analyzed at ‐

184  °C  using  a  Field‐Emission  Scanning  Electron  Microscope  (JEOL  6300  F)  at  a 

working distance of ~10 mm, with  secondary  electron detection  at 3.5  kV.  Images 

were recorded digitally using Orion 6 (ELI) at a scan rate of 100 s (full frame) at a size 

of  2528  x  2030  pixels,  8  bit.  Image  noise  reduction  was  done  in  Orion  6,  and 

saturation, contrast, and brightness were adjusted in Adobe Photoshop CS2. 

Erosion and selease studies 

The erosion rate of TR4T gels was measured using a method similar to that reported 

previously38. TR4T was dissolved at 200 mg/ml in PBS (10 mM sodium phosphate, 150 

mM sodium chloride, pH 7.4) at 60 °C. Gel  layers of 1 mm thickness were made by 

pipetting 44 µL of  the  solution  into cylindrical polypropylene containers of 7.5 mm 

diameter  and  5 mm  height.  The  containers were  sealed  in  plastic  foil  to  prevent 

drying  and  the  gels  were  allowed  to  set  overnight  at  room  temperature.  The 

containers were unpacked and submerged in 2.2 ml of PBS and incubated at either 20 

or 37 °C under gentle tilting at 20 rpm with an amplitude of ~6 mm. Erosion of TR4T 

was  determined  by  monitoring  the  protein  concentration  in  the  supernatant  by 

measuring the absorbance at 230 nm (for lack of absorbance at 280 nm owing to the 

absence of aromatic amino acids in TR4T) and comparison with a calibration curve of 

TR4T.  Enzyme  release  from  TR4T  gels  was  studied  similarly,  using  gels  where  10 

mg/ml  lysozyme was added to the molten gel prior to preparing the gel  layers. The 

release of lysozyme was quantified by determining the tryptophan fluorescence (Ex = 

295 nm, Em = 240 nm) of  the  supernatant over  time against a calibration curve of 

lysozyme (eroded TR4T did not cause significant background fluorescence as  it does 

not contain aromatic residues). Both the erosion and the release experiments were 
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performed  in triplicate, and absorbance and fluorescence measurements were done 

using a Safire microplate reader (Tecan). 

 

2.3 RESULTS 

 

Rationale for non‐hydroxylated precision gels 

As  an  example  of  the  proposed  concept,  two  ABA  type  triblock  copolymers 

designated  TP4T  and  TR4T  are  described,  but  many  other  functional  multiblock 

configurations  are  conceivable.  The  amino  acid  sequences  of  all  protein  polymers 

described in this work are available through GenBank (accession numbers ACF33476‐

ACF33479). 

The  triple helix‐forming T blocks at both ends of  the  triblock copolymers consist of 

(Pro‐Gly‐Pro)n homopolymeric  stretches  (Figure 2.1a). On  the basis of helix melting 

studies  with  chemically  synthesised  (Pro‐Pro‐Gly)n 
32,  33,  48,  the  length  of  n  was 

tentatively chosen  to be nine  to provide a melting point  in a biomedically  relevant 

range. 

The middle  section  of  the molecule  acts  as  a  hydrophilic  spacer  (Figure  2.1a)  and 

consists  of  either  of  two  random  coiled  block  variants.  The  first  is  P4,  a  synthetic 

gelatin‐like molecule previously developed by our group25. It is extremely hydrophilic, 

acts  as  a  cytophilic  protein  in  human  cell  culture34,  and  shows  outstanding 

biocompatibility as a plasma expander15. Despite P4’s collagenous primary structure, 

it  does  not  form  detectable  triple  helices  at  4  °C  because  of  the  absence  of  4‐

hydroxyprolines25. It cannot, however, be excluded beforehand that P4 might play a 

minor role in network formation in the presence of the proline‐rich trimer‐forming T 

blocks. Therefore, a second type of mid‐block, R4, was constructed.  It has the same 

amino  acid  composition  as  P4, but  its protein  sequence  is quasi‐random  in  that  it 

does not have glycine as every third residue. Thus, R4 by definition cannot form triple 

helices.  



 
Chapter 2 

 
 
 

39 

Because both the end‐blocks and mid‐blocks have a defined length and composition, 

and because  trimerisation of  the mid‐blocks  is unlikely  (P4) or  impossible  (R4),  the 

resulting  gels  are  expected  to  contain  only  cross‐links  made‐up  of  (Pro‐Gly‐Pro)9 

(Figure 2.1b‐c).  This  is  in  stark  contrast with  traditional  gels prepared  from  animal 

gelatin, where all molecules have a different makeup, and the entire chain engages in 

network formation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  2.1  Schematic  representation  of  gel  formation  by  triblock  copolymers.  (a)  Triblock 
copolymer with (Pro‐Gly‐Pro)9 end‐blocks and random coil mid‐block. (b) Detail of a (Pro‐Gly‐Pro)9 
end‐block in triple‐helical form and of a trimeric knot in the gel. Three mid‐blocks originate from 
the knot, each of which also has a (Pro‐Gly‐Pro)9 block at its other end (not shown for clarity). (c) 
Gel consisting of triblock copolymers. The circles represent the time‐averaged space occupied by 
the random coiled mid‐blocks. The dark bars represent a random subset of trimeric knots formed 
between three neighboring chains. 
 

Biosynthesis of triblock copolymers 

P.  pastoris  strains  expressing  TR4T  and  TP4T  as  extracellular  proteins  were 

constructed and grown  in bioreactors. Culture  supernatants were analyzed by SDS‐

PAGE (Figure 2.2a). The proteins were purified from the cell‐free broth essentially by 

differential ammonium sulfate precipitation, similarly to the purification of P425. The 

a 

b 

c 
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purity of the proteins was estimated to be at least 99 %, based on amino acid analysis 

and subsequent linear least‐squares fitting to the observed data of (1) the theoretical 

composition of the respective pure protein and  (2) the composition determined  for 

host‐derived proteins present  in  the medium.  Purified  TR4T  and  TP4T migrated  as 

single bands in SDS‐PAGE (Figure 2.2a), indicating their purity and intactness. MALDI 

mass spectrometry confirms this observation and shows that the molecular weight of 

the proteins  is within experimental error of the expected value of 41741 Da (Figure 

2.2b).  Clearly,  the  proteins migrate  abberantly  in  SDS‐PAGE,  as was  demonstrated 

previously  for  P425.  N‐terminal  sequencing  of  the  bands  separated  by  SDS‐PAGE 

further  confirmed  the  identity  of  the  products.  A minor  fraction  (~15  %)  of  the 

molecules had a single N‐terminal Glu‐Ala extension, which  is known to occasionally 

occur because of partial processing of the α‐factor prepro secretory signal by the P. 

pastoris dipeptidylaminopeptidase21. Judging from the intensity of the bands in SDS‐

PAGE,  the volumetric productivity of TR4T and TP4T appears comparable  to  that of 

P4, which is produced at 3‐6 g/l of clarified broth25. 

 

 

 

 

 

 

 

 

Figure 2.2 Production of protein polymers. (a) SDS‐PAGE: Lane 1, 6, molecular weight marker; 
lane 2, culture supernatant of TR4T; lane 3, culture supernatant of TP4T; lane 4, purified TR4T; 
lane 5, purified TP4T; lane 7, purified control protein R4; lane 8, purified control protein P4. For 

culture supernatants, 5 l was  loaded, and for purified proteins ~20 g. (b) MALDI of purified 
TR4T and TP4T. Singly and doubly charged molecular ions are indicated. 

1     2     3    4    5     6     7     8 

a 

 

   188 ── 
     98 ── 
 

     62 ── 
     49 ── 
 
     38 ── 
 

     28 ── 
 

     17 ── 
     14 ── 

b 

10000 40000 70000

41,69520,880

41,69120,884

[M+2H]2+ [M+H]+

  TR4T

TP4T

Mass (m/z)

In
te

ns
ity

 (
a.

u.
)

kDa 



 
Chapter 2 

 
 
 

41 

Trimer‐forming functionality is restricted to proline‐rich end‐blocks 

The occurrence of  trimeric knots  is essential  for  the generation of a  thermoreversible 

gelatin network. In the triblock design, only the proline‐rich T blocks at both ends of the 

triblock copolymers fulfill this role, and the mid‐blocks act as spacers. To confirm that the 

combined  blocks  in  the  triblock  copolymer  retain  these  distinct  functions,  UV‐CD 

spectroscopy was performed at a protein concentration of 100 mg/ml, where the chance 

of  intermolecular  interactions  is  high.  Both  TR4T  and  TP4T  formed  optically  clear 

dispersions and yielded very similar spectra, with a consistently negative ellipticity below 

260 nm and a negative peak around 205‐200 nm, reflecting mainly random structure31, 

49. Spectra obtained with TR4T and TP4T at 20 and 65  °C are shown  in Figures 2.3a‐b 

(Figures 2.3c‐d show measurements at low concentration that permitted registration of 

spectra down to 195 nm). The predominance of random structure is in agreement with 

the  random  coil propensity of  the  large mid‐block, making up 88 % of  the molecular 

length. To investigate whether the secondary structure of free mid‐ and end‐blocks can 

fully account for that of TR4T and TP4T, or whether the mid‐ and end‐blocks  influence 

each other’s structure when coupled, the triblock spectra were compared to those of the 

individual blocks. Linear  least‐squares fitting of spectra of  isolated R4 (Figure 2.3e) and 

Ac‐(Gly‐Pro‐Pro)10‐NH2 in triple‐helical or heat‐denatured form
50 (data kindly provided by 

H.P. Bächinger) to the spectra of TR4T resulted  in a close  fit (Figure 2.3a). A poly‐(Gly‐

Pro‐Pro) content of ~9 % was obtained both at 20 and 65 °C,  in reasonable agreement 

with the 12 % length ratio of the end‐blocks relative to the entire block copolymer. This 

shows that the end and mid‐blocks in TR4T indeed assume the same secondary structure 

as  the  isolated  components and,  thus,  that at 20  °C,  the end‐blocks,  like Ac‐(Gly‐Pro‐

Pro)10‐NH2
50, are  largely  in helical conformation. The  spectral contribution of  the end‐

blocks  can  be  appreciated  by  subtraction  of  the  fitted  contribution  of  R4  from  the 

spectra of TR4T at 20 and 65 °C (see inset Figure 2.3a). Similarly, the secondary structure 

of TP4T could be fully accounted for by that of isolated P4 (Figure 2.3f) and Ac‐(Gly‐Pro‐

Pro)10‐NH2  (see  inset  Figure 2.3b),  and  its poly‐(Gly‐Pro‐Pro)  content of ~14 %  closely 

matched the expected value. These results show that, in both polymers, selectively, the 
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proline‐rich end‐blocks behave like Ac‐(Gly‐Pro‐Pro)10‐NH2
50 and, thus, take part in helix 

formation. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 Study of the secondary structure at 20 and 65 °C, as reflected by CD. (a) Spectra of 
TR4T (100 mg/ml) and (b) TP4T (100 mg/ml) are shown, along with fitted spectra (+) composed 
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of contributions of R4 and P4, respectively, and (Gly‐Pro‐Pro)n in isolated form. Inset: spectra of 
the proline‐rich end‐blocks, as deduced by subtracting the fitted contribution of R4 and P4 from 
the spectra of TR4T and TP4T, respectively. (c) Spectra of TR4T (0.2 mg/ml). (d) Spectra of TP4T 
(0.2 mg/ml). (e) Reference spectra of free R4 (100 mg/ml). (d) Reference spectra of free P4 (100 
mg/ml). 
 

Melting behavior of triple‐helical end‐blocks 
 

The  average  ellipticity  from 230  to 225 nm  (at 100 mg/ml),  as  an  indicator of  the 

presence of 3i helices
49, was determined by circular dichroism spectroscopy at various 

temperatures between 20 and 65  °C. Figures 2.4a‐b  show  the  thermal  response of 

the R4 and P4 (monoblock) polymers, which, in view of the above‐described absence 

of crosstalk between end and mid‐blocks, reflect  the properties of  the mid‐block  in 

TR4T and TP4T, respectively. Its near‐linear temperature dependence is characteristic 

of a gradual repopulation of local conformations of individual single chain sections49, 

51, 52. The behavior of the end‐blocks can be deduced by subtracting the contribution 

of  the  free  R4  and  P4 monoblock  polymers,  as  determined  by  component  fitting 

(Figure 2.3),  from  the melting  curve of  TR4T  and  TP4T,  respectively.  The observed 

sigmoidal  temperature dependence  (Figures 2.4a‐b),  is characteristic of cooperative 

unfolding  of  triple  helices31,  33,  48.  The  apparent  Tm  for  the  proline‐rich  end‐blocks 

deduced from the inflection point of these curves was 47 °C for both TR4T and TP4T. 

The corresponding van ’t Hoff enthalpies were calculated to be 188 and 223 kJ/mol, 

respectively. Based on the calorimetric enthalpy obtained for (Pro‐Pro‐Gly)10 trimers 

by Frank et al.33, the melting enthalpy expected for a (Pro‐Gly‐Pro)9 end‐block trimer 

is 223 kJ/mol. The van ’t Hoff enthalpies obtained for TR4T and TP4T are 0.85 and 1.0 

times  this  value,  respectively.  This  shows  that  the  cooperatively  melting  unit  is 

approximately  equal  to  the  end‐blocks, providing  further  evidence  that  triple helix 

formation occurs specifically through the proline‐rich end‐blocks. 
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Figure 2.4 Thermal denaturation as reflected by (a) and (b) the average ellipticity from 230 
to  225 nm  or by  (c)  and  (d) DSC.  Temperature profile of  (a) R4    and  (b) P4 produced  as  
separate monoblock polymers and of the proline‐rich end‐blocks as deduced by subtracting 
the fitted contribution of R4 and P4 from the melting curve of TR4T and TP4T, respectively. 
DSC thermograms of  (c) R4 (1.4 mM) and TR4T (1.1 mM) and (d) P4 (1.4 mM) and TP4T (1.1 
mM), recorded after equilibration for 10 h at 20 °C. 
 

The thermal denaturation of the polymers between 5 and 65 °C was also studied by 

differential  scanning  calorimetry  (DSC;  Figures  2.4c‐d). While  R4  and  P4  polymer 

solutions  did  not  show  endothermic  transitions,  and  thus,  no  triple  helices  were 

present, TR4T and TP4T had ΔCp maxima at 41 ± 0.5 °C (±s.d., n = 3) and 42 ± 0.4 °C 

(±s.d.,  n  =  3),  respectively.  This  confirms  the  conclusion  drawn  from  CD  that 

selectively  the  end‐blocks  in  the  triblock  copolymers  are  responsible  for 

trimerisation. The somewhat higher Tm values obtained with CD probably result from 
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a systematic offset  from  the  true  temperature, owing  to  inefficient heat  transfer  in 

the spring‐loaded CD cuvette assembly. The enthalpies of TR4T and TP4T were 154 ± 

56  kJ/mol  (±s.d.,  n  =  3)  and  140  ±  8  kJ/mol  (±s.d.,  n  =  3),  respectively,  in  good 

agreement with the expected enthalpy of about 148 kJ/mol per set of two (Pro‐Gly‐

Pro)9 end‐blocks (i.e., two‐thirds of the value of an end‐block trimer). This  indicates 

once more  that nearly all  (Pro‐Gly‐Pro)9 blocks  in TR4T and TP4T had  formed  triple 

helices.  The  shape  of  the  thermograms  of  TR4T  and  TP4T  reveals  van  ’t  Hoff 

enthalpies  of  260  ±  39  kJ/mol  (±s.d.,  n  =  3)  and  321  ±  79  kJ/mol  (±s.d.,  n  =  3), 

respectively. This corresponds  to,  respectively, 1.2 ± 0.2  (±s.d., n = 3) and 1.4 ± 0.4 

(±s.d., n = 3) times the calorimetric enthalpy of a (Pro‐Gly‐Pro)9 trimer. Therefore, as 

was concluded  from CD,  the cooperatively melting unit  roughly corresponds  to  the 

end‐blocks. A thermal denaturation cycle repeated on the same samples (after 10 h 

at 20 °C) resulted in calorimetric and van ’t Hoff enthalpies that deviated less than 3 

and  6  %,  respectively,  from  the  above  values  obtained  with  freshly  prepared 

solutions, showing complete reversibility of trimer formation. 

 

Triblock copolymers form gels 

Initial observations showed that TR4T and TP4T, unlike R4 and P425, formed optically 

clear gels when preheated solutions were cooled to room temperature. For example, 

at 7.8 mM equiv of trimer‐forming end‐block, a stainless steel bead with a diameter 

of 4.8 mm and a weight of 0.45 g, was supported by a TR4T gel during at least several 

hours until the gel was molten by heating. 

Gel  formation was  further  investigated by means of dynamic rheology, at a protein 

concentration of 2.2 mM, corresponding to 4.4 mM or ~10 mg/ml equiv of (Pro‐Gly‐

Pro)9 end‐blocks (Figure 2.5). Upon quenching from 45 to 20 °C, the storage modulus 

(dynamic  elasticity)  steeply  increased  within  minutes,  while  the  loss  modulus 

(dynamic  loss) remained low. After roughly five hours at 20 °C, the storage modulus 

of  TR4T  and  TP4T  reached  a  final  value  of  approximately  380  and  190  Pa, 

respectively.  This  range  is  in  good  agreement with  values  obtained  in  a  variety  of 
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animal gelatins at a corresponding  triple helix concentration53, which confirms  that 

most of  the end‐blocks  took part  in helix‐forming knots. No  further changes of  the 

storage modulus were observed during the 28‐hour measurement. The gel strength 

increased 5 (TR4T) to 25 % (TP4T) upon cooling from 20 to 5 °C. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Characterisation of    (a) TR4T  and  (b) TP4T  gel by dynamic  rheology. The  time‐
resolved  storage  and  loss modulus  were measured  at  the  temperatures  indicated,  at  a 
protein  concentration of 2.2 mM.  For each new  temperature,  the  sample was allowed  to 
equilibrate for three hours in the geometry before monitoring. Insets: storage modulus as a 
function of temperature. 

 

The  melting  behavior  of  the  TR4T  and  TP4T  gels  was  studied  by  increasing  the 

temperature from 20 to 65 °C and following the decrease of the storage modulus (see 

insets  in Figures 2.5a‐b). The apparent  inflection point  in the melting curves of both 

gels is at ~37 °C, which is below the Tm values obtained with DSC. This is in agreement 

with  the  expectation  that melting  of  the  gels  occurs  before  the majority  of  the 

trimeric knots unfold. 

 

Hydrogel morphology 

As  the  microstructure  of  the  gels  could  influence  their  release  characteristics, 

scanning electron microscopy  (SEM) was performed on a  freeze‐fractured TR4T gel. 
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The  distribution  of  micropores  is  highly  homogeneous,  and  an  interconnected 

network structure with smooth interfaces is apparent (Figure 2.6). 

 

 

 

Figure 2.6 SEM micrographs of a  freeze‐fractured TR4T hydrogel  (100 mg/ml) at different 
magnifications. 
 
 

Enzyme release and hydrogel erosion 

To get an impression of the suitability of the present gels for release of, for example, 

protein drugs, the release from a TR4T gel (200 mg/ml) of the 21 kDa model protein 

lysozyme, and  the erosion of  the gel  itself  (both  in a 50‐fold excess volume of PBS 

buffer)  were  investigated  in  a  pilot  study  (Figure  2.7).  At  20  °C,  the  release  of 

lysozyme was higher than the erosion of the hydrogel,  indicating that release of the 

enzyme  was  caused  both  by  erosion  of  the  gel  and  by  diffusion  of  the  enzyme 

through the polymer network. Assuming erosion at the surface of the gel, the erosion 

rate at this temperature was 4.6 × 10‐3 mg cm‐2 min‐1, as calculated from the slope of 

the  linear  regression  line  indicated  in  Figure  2.7. At physiological  temperature  the 

release of  lysozyme was virtually equal  to  the erosion of  the gel. This bulk erosion 

concurs with the observation that TR4T gels (200 mg/ml) at this temperature exist in 

a semimolten state,  in accordance with the apparent Tm of ~37 °C as determined by 

rheology (at 100 mg/ml). 
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Figure 2.7 Erosion of a TR4T gel (200 mg/ml), and release of lysozyme (10 mg/ml) at 20 and 
37 °C. Error bars represent s.d. (n = 3). 

 

2.4 DISCUSSION 

 

Gelatins are  important biomedical materials but currently have the disadvantage of 

being animal‐derived, polydisperse, and chemically  ill‐defined. Furthermore,  it  is not 

possible to  independently control the Tm, the distance between domains  involved  in 

triple‐helices  (forming  the  thermoreversible  knots  in  the  gel),  and  the 

biocompatibility.  In  this  study, we met  these  challenges  through  the  development 

and efficient production of recombinant gelatin‐like block copolymers. 

A prerequisite for the formation of a gelatin network is the formation of triple‐helical   

knots. The proline‐rich end‐blocks in our triblock design serve this function. The mid‐

blocks  represent  random coil spacer  regions  that cannot  readily  (P4), or at all  (R4), 

participate  in  trimer  formation. We  have  shown  here  that  the  (Pro‐Gly‐Pro)9  end‐

blocks  in  TP4T  and  TR4T  are  both  exclusively  and  near‐quantitatively  involved  in 

trimerisation,  as both  the  calorimetric enthalpies obtained with DSC  and  the  van’t 

Hoff  enthalpies  obtained  with  DSC  and  CD  were  in  good  agreement  with  values 

expected  for  free  (Pro‐Gly‐Pro)9.  The  cross‐links  formed  by  the  end‐blocks,  thus, 

essentially have a fixed  length and amino acid composition and, accordingly, a fixed 

Tm. Given  this  concurrence  in  enthalpic  values  the  alignment  of  the  end‐blocks  is 
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probably  even  largely  in  register,  as  is  known  for  chemosynthetic  (Pro‐Pro‐Gly)10 

peptides in trimeric form54. In any case, the triblock gelatins are highly defined in that 

the cross‐links are formed strictly by the end‐blocks. This  is  in striking contrast with 

animal  gelatin molecules, which  form  triple  helices  along  their  entire  chain.  As  a 

consequence,  the  cross‐links  in  animal  gelatin  gels have  a wide  variety of  lengths, 

compositions, and melting temperatures53. The fact that traditional gelatins comprise 

a wide range of different molecules further increases their undefined nature. 

Because animal gelatin gels are such highly complex systems,  they have very broad 

melting  trajectories.  During  aging,  the  storage  modulus  continues  to  increase  in 

proportion to the logarithm of time53, 55. Furthermore, these gels show a pronounced 

dependence on the thermal history53, 55. For example, Te Nijenhuis55  found that the 

stiffness of animal gelatins preaged at 17.4 °C strongly  increased upon  lowering the 

temperature, as additional helices of low thermal stability were formed. Our triblock 

gelatins  behave  very  differently. Only  the  end‐blocks  in  TP4T  and  TR4T  gels  form 

helices, and these have distinct thermal stability. Consequently, the storage modulus 

reached a plateau within only a few hours and the stiffness of the gels after preaging 

at 20 °C hardly increased upon cooling to 5 °C. The Tm of the gels is defined and can 

be directly controlled by varying the  length of the terminal  (Pro‐Gly‐Pro)n stretches, 

as  known  from  studies  with  chemically  synthesised  peptides32,  33,  48,  56.  Indeed, 

preliminary  DSC  experiments  showed  that,  under  identical  conditions,  triblock 

copolymers with (Pro‐Gly‐Pro)16 end‐blocks have a much higher Tm (~57 °C) than TR4T 

(~41 °C).  

Although  the Tm  values of TR4T and TP4T may appear  rather high as  compared  to 

published  Tm  values  for  chemosynthetic  (Gly‐Pro‐Pro)n 
32,  48,  the  Tm  is  known  to 

depend  highly  on  the  peptide  concentration32,  33.  Accordingly,  the  relatively  high 

concentrations  used  here  are  probably  the major  determinant  for  the  Tm  values 

found. The minor extensions of the end‐blocks resulting from the cloning procedure 

(see  Experimental  Section),  or  the  possible  involvement  in  trimerisation  of  a  few 

residues of the mid‐blocks (immediately adjacent to the end‐blocks) may provide an 
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additional  increase  in  Tm.  These  effects  will,  however,  be  limited  given  the  good 

agreement between  the enthalpies obtained and  those expected  for  (Pro‐Gly‐Pro)9. 

Lastly,  it  is  probable  that  the  end‐blocks  as  part  of  the  triblock  copolymer  have  a 

higher Tm than that of free (Pro‐Gly‐Pro)9 because of decreased entropy and because 

the end‐blocks each only have one free terminus. Although the Tm may, thus, not be 

determined only by the length of the end‐blocks, the variability in Tm is. Besides using 

the length of the end‐blocks, the Tm could also be controlled by changing their amino 

acid composition. The relation between amino acid sequence and thermal stability of 

the triple helix has been described in detail56. 

The  length of both  the knot‐forming and  spacer  regions  in  the  triblock copolymers 

are  exactly  defined.  In  trimeric  form  the  length  of  the  knots  is  around  8  nm,  as 

calculated from the known size of (Pro‐Pro‐Gly)10 trimers57. On the basis of data from 

a set of 33 unfolded proteins58,  the radius of gyration  for  the present mid‐blocks  is 

expected to be around 7 nm, and the root‐mean‐square distance between the end‐

blocks on opposite sides of the molecule is around 18 nm (or slightly bigger owing to 

the  tendency  of  moderately  proline‐rich  sequences  to  form  transient  local 

polyproline‐II‐like structure elements). In a homogeneous gel, such as in the smooth 

interfaces observed with SEM, this size range seems suitable for slow release of, for 

example, protein drugs. The trial study on release of lysozyme indeed suggests these 

gels could be further developed for such applications. For example, longer or shorter 

mid‐blocks could be used to alter the distance between the cross‐links at both ends 

of the polymer and, thus, indirectly, the cross‐link density and release characteristics 

of the gel.  

The erosion rate of the gels may also need to be controlled. Coiled‐coil‐based triblock 

polymer gels in excess fluid have been shown to erode quickly at a constant rate from 

the  surface,  owing  to  loop  formation  between  the  end‐blocks  and  the  release  of 

disengaged  clusters  from  the  network38.  In  principle,  loops  can  also  form  in  our 

system, depending on the length of the mid‐block. It took two days for ~70 % of the 1 

mm thick TR4T gel to erode at 20 °C. Although this seems  fairly stable, applications 
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requiring  release  over  extended  periods would  still  require  chemical  or  enzymatic 

cross‐linking.  Shen  et  al38.  showed  it  was  possible  to  reduce  the  erosion  rate  of 

coiled‐coil‐based triblock gels by more than one hundredfold by employing dissimilar 

end‐blocks  that  do  not  readily  associate with  each  other  and,  thus,  cannot  form 

loops. A means of achieving this in our collagen‐based system may possibly be found 

in  the work of Gauba and Hartgerink, who demonstrated preferential self‐assembly 

of heterotrimers over homotrimers upon mixing oppositely charged chemosynthetic 

collagenous peptides59, 60. To provide the desired charge, Pro or Hyp residues in each 

peptide were replaced with either Asp, Glu, Lys or Arg. Applying this approach to our 

system,  triblocks with  positively  charged  end‐blocks  could  be mixed with  triblocks 

that  have  negatively  charged  end‐blocks.  Loop  formation would  be  prevented  by 

mutual charge  repulsion of  the end‐blocks, while a gel could still  form  through  the 

formation  of  heterotrimers  between  oppositely  charged  end‐blocks  of  different 

molecules. Moreover,  different  types  of mid‐blocks  could  be  combined with  each 

type of end‐block, allowing a unique level of control over the molecular architecture 

of the gels. This could be of interest particularly for biomedical applications, as there 

is considerable freedom to  insert or, conversely, avoid specific cell‐binding, protein‐

binding, protease‐sensitive, or bioactive amino acid sequences in the mid‐blocks. 

 

2.5 CONCLUSIONS 

 

Triblock  copolymers  consisting of  terminal  (Pro‐Gly‐Pro)9 blocks  and  a  random  coil 

spacer have been efficiently produced as extracellular proteins in recombinant yeast. 

Specifically  the  end‐blocks  form  collagen‐like  triple  helices,  contrasting  traditional 

gelatins  where  cross‐links  form  along  the  entire  chain  of  each  molecule.  Unlike 

animal  gelatins,  the  dynamic  elasticity  of  the  gels  is  independent  of  the  thermal 

history, and  the Tm  is  inherently defined by  the  length of  the end‐blocks. Together, 

these  characteristics  offer  novel  possibilities  for  controlled  drug  release  and  other 

biomedical applications. 
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APENDIX 2.1 
 
 

Table 2.2.1 Oligonucleotide sequences 
 

Name  DNA sequence (5’‐3’) 

T‐FW  GAGTCTCACCCGGTGCTC 

T‐RV 
CCACCGGCTGGTCCGGGAGGACCCGGTGGTCCAGGTGGACCTGGTGGTCCTGGTGGAC
CAGGTGGACCAGGTGGACCAGGCGGACCGGGAGCACCGGGTGAGACTC 

RA‐
FW 

GCGCTCGAGAAAAGAGAGGCTGAAGCTGGTCCACCCGGTGAGTCACCAGGTCCTCAGC 
CTGGTGGTCCACAAAACCCAGGTTCCGGTGAAGGTCAGGGAAACGGTAACCCT  

RA‐
RV 

TGGGCCAGGGTTGGGGTTTGGTGGTTCACCGGAACCTGGAGAACCACCTCCTTGTGGTT
GACCACCTTGAGATGGTCCATTCTTGTTAGGGTTACCGTTTCCCTGACCT  

RB‐
FW 

CAAACCCCAACCCTGGCCCACAGAACGGTCAAAAGCCTGGTGGTCAACAAAACGGTCCT
GGTAATGGTCAACAAGAGGGAAACGGTCAACAAAACGGTGGT 

RB‐RV 
GCGTCTGCAGTACGAATTCTATTAGCCACCGGCTGGCTGACCTGGAGGTTTTCCTGGTG 
GAGATCCAGGTCCGGACTGAGAACCACCACCGTTTTGTTGACCGTTTC 

 
 
 



 

57 

 

Chapter 3 
 
Influence of chain length on gel‐forming 
properties of telechelic collagen‐inspired 

polymers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter as been published in modifed form as: H. Teles, P. J. Skrzeszewska, M. W. 

T.  Werten,  J.  van  der  Gucht,  G.  Eggink,  and  F.  A.  de  Wolf,  Soft  Matter,  2010, 

DOI:10.1039/C0SM00175A.



 
Influence of chain length on gel‐forming properties of telechelic collagen‐inspired polymers 
 
 

58 

SUMMARY 

 

We studied the  influence of polymer  length on the formation of transient networks 

by telechelic polypeptides with ~ 2.3 kDa collagen‐like triple helix‐forming end‐blocks 

and much  longer  random  coil mid‐blocks. We  compared  triblock  copolymers with 

mid‐blocks of ~400 and ~800 amino acids  (~37 and ~74 kDa,  respectively), both of 

which were  secreted  to high  concentration by  recombinant  yeast  cells. The  longer 

triblock copolymers were produced and characterised for the first time at present. At 

the  same  molar  concentration  of  protein  and  crosslink‐forming  end‐blocks,  the 

storage  modulus  of  the  longer  polymers  was  much  higher  than  of  the  shorter 

polymers. These  results  indicate  that  the elastic properties of  the network are not 

only a  function of  concentration and  temperature but also of polymer  length. The 

experimentally  obtained,  temperature‐dependent  plateau  storage  modulus  of  all 

polymers were well described by an analytical model that was based on classical gel 

theory  and  accounted  for  the  particular molecular  structure  of  the  gels,  and  the 

presence  of  loops  and  dangling  ends.  The model  showed  that  the  temperature  at 

which 50 % of  the end‐blocks were  involved  in  junctions was  lower  for  the shorter 

polymers than for the longer polymers. 
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3.1 INTRODUCTION 

 

Protein‐based  hydrogels  have  proven  to  be  effective  biomaterials  in  a  variety  of 

medical and pharmaceutical applications1‐3. Despite  the  success of  these materials, 

which are mostly derived from animal fibrillar proteins, their use is often determined 

by the characteristics of the available proteins, and it may be influenced by batch to 

batch  (or  source  to  source)  variation,  and  the  possible  transmission  of  infectious 

agents associated with materials isolated from mammalian sources4. 

Traditional  gelatin,  commonly  used  in  protein  gels,  consists  of  a  multitude  of 

different,  partly  degraded,  and  chemically modified  fragments  of  animal  collagen, 

resulting in gels with ill‐defined molecular composition and complex network‐forming 

properties.  This  complexity,  in  combination  with  the  impossibility  to  change  the 

molecular  structure  at will,  limits  the  possibilities  to  determine  structure‐function 

relationships, and has prompted the need for exploration of synthetic strategies that 

allow exquisite control over the monomer sequence and polymer length4. 

In the past decade recombinant DNA techniques became a tool to develop genetically 

engineered protein polymers with defined composition and structure that offer safe 

biocompatibility  and  full  control  over  the  length  and  sequence  of  biopolymers.  In 

chapter 2, we reported on the recombinant production and characterisation of a new 

class  of  gel‐forming  telechelic  triblock  gelatins  with  controllable  and  predictable 

properties. Gel  formation  is obtained by  combining  collagen‐inspired  (Pro‐Gly‐Pro)n 

end‐blocks (T), inspired by and behaving like natural collagen, with highly hydrophilic 

random coil blocks defining  the distance between  the  trimer  forming T end‐blocks. 

Contrary  to natural  gelatin  gels,  this new  class of  synthetic  collagenous  gels has  a 

well‐defined  junction multiplicity of exactly  three and predictable physical chemical 

properties.  So  far,  two  of  such  triblock  copolymers,  denoted  as  ‘TP4T’  and  ‘TR4T’ 

have been produced and characterised  (chapter 2 and  reference5). These polymers 

consisted of 9  repeating units of  (Pro‐Gly‐Pro) T blocks and a mid‐block  (P4 or R4) 

made of a  tandem  repeat of  four highly hydrophilic 9 kDa blocks assuming  random 
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conformation:    the  polar  ‘P’  block  with  a  collagen‐inspired  designer  sequence 

consisting  of  (Gly‐Xaa‐Yaa)  repeats  and  the  ‘R’  block  with  the  same  amino  acid 

composition, but quasi random amino acid sequence. The mass of the entire TP4T or 

TR4T was 42 kDa. By changing the underlying DNA template, we doubled the  length 

of  the mid‐block  and  here,  we  report  for  the  first  time  on  the  biosynthesis  and 

characterisation of the resulting ~78 kDa triblock copolymers, TP8T and TR8T. In our 

previous work,  focussed on TR4T hydrogels5, we  showed  that  the network‐forming 

properties are  strongly dependent on  concentration and  temperature. By  taking  in 

consideration the formation of loops and dangling ends, we were able to develop an 

analytical  model5  that  accurately  described  the  network  structure  and  truly 

reproduced the observed relationships between the storage modulus, temperature, 

concentration  and  time  without  a  need  for  adjustable  parameters  other  than 

quantities  that  could  be  verified  by  experimental measurements.  In  this  chapter, 

besides concentration and temperature, we study the  influence of mid‐block  length 

and amino acid sequence on the viscoelastic properties of the networks. The amino 

acid  sequence appears  to have an  influence on  the persistence  length of  the mid‐

block and, consequently, on the critical overlap concentration. We use our previous 

model  to  interpret  the experimental data and  show  that  small  changes  in polymer 

structure influence significantly the mechanical properties of the networks. 

 

3.2 MATERIAL AND METHODS 

 

Expression vectors and Pichia pastoris transformation 

The construction of the vectors encoding the genes TP4T and TR4T are described  in 

detail  in chapter 2. The previously described vectors pMTL23‐P4T and pMTL23‐R4T, 

pMTL23‐P46  and  pMTL23‐R4,  and  pCR4‐TOPO‐T were  used  to  construct  the  genes 

encoding TP8T and TR8T. Vectors pMTL23‐P4T and pMTL23‐R4T were digested with 

DraIII  (5´  to  the  P4T  and  R4T  genes)  and  desphosphorylated.  P4‐  and  R4‐DNA, 

obtained from DraIII/Van91I‐digested pMTL23‐P4 and pMTL23‐R4, was  inserted  into 
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the  previously  digested  pMTL23‐P4T  and  pMTL23‐R4T,  respectively,  so  as  to  yield 

pMTL23‐P8T and pMTL23‐R8T. These  vectors were  then digested with DraIII  (5´  to 

the  P8T  and  R8T  genes)  and  desphosphorylated.  A  T  block  DNA,  obtained  from 

DraIII/Van91I‐digested  pCR4‐TOPO‐T,  was  inserted  into  the  previously  digested 

pMTL23‐P8T and pMTL23‐R8T, so as to yield vectors pMTL23‐TP8T and pMTL23‐TR8T.  

TP8T and TR8T fragments were then cloned  into P. pastoris expression vector pPIC9 

(Invitrogen) using XhoI/EcoRI. The entire P46, R4 (chapter 2), TP4T (chapter 2), TR4T 

(chapter 2), TP8T and TR8T DNA  sequences  (and  translated amino acid  sequences) 

have been deposited  in the GenBank under acession numbers ACF33476‐ACF33481. 

The  expression  vectors  were  linearised  with  SalI  and  transformed  into  the  his4 

GS1157 strain. Transformation and strain selection of transformants was as described 

earlier8. 

Fermentation of P. pastoris 

Fermentation  of  P.  pastoris  strains was  performed  as  described  by  Zhang  et  al9  . 

Strains  were  cultured  in minimum  basal  salts medium9  in  a  2.5‐liter  Bioflo  3000 

fermenter (New Brunswick Scientific). The fermentation was run at 30 °C and the pH 

was  kept  at  3  by  addition  of  ammonium  hydroxide.  The  methanol  level  in  the 

fermentation  broth  was  kept  constant  at  ~0.2  %  (w/v)  by  using  a  homemade 

semiconductor  gas  sensor‐controller,  similar  to  that  described  by  Katakura  et  al10. 

The methanol  fed‐batch phase was prolonged  for approximately 2‐3 days. The cells 

were removed by centrifugation for 30 min at 10,000x g in a SLA‐3000 rotor (Sorval), 

followed by microfiltration of the supernatant. 

Protein Purification 

Protein  purification  was  done  by  ammonium  sulphate  precipitation  as  described 

previously in chapter 2. 

SDS‐page 

Fermentation supernatants and pure products were analysed by SDS‐page using the 

NuPAGE Novex system (Invitrogen), with 10 % Bis‐Tris gels, MES SDS running buffer 

and  SeeBlue  Plus2  pre‐stained  molecular  mass  markers.  Gels  were  stained  in 
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Coomassie  SimplyBlue  SafeStain  (Invitrogen)  and  distained  in  MQ  water. 

Densitometric quantification of pure TP8T or TR8T standards, ranging from 2 µg to 25 

µg  micrograms,  and  culture  supernatants  was  done  with  Bio‐Rad  GS‐800 

densitometer  and  analised  using  Quantity  One  computer  software.  N‐terminal 

sequencing analysis was determined by Edman degradation as described previously8. 

Protein sequencing was preformed by Midwest Ananlytical (St. Louis, Mo). 

Mass spectroscopy 

MALDI‐TOF was performed using an Ultraflex mass  spectrometer  (Bruker). Samples 

were prepared by the dried droplet method on a 600 μm AnchorChip target (Bruker), 

using  5  mg/ml  2,5‐dihydroxyacetophenone,  1.5  mg/ml  diammonium  hydrogen 

citrate, 25 % (v/v) ethanol and 1 % (v/v) trifluoroacetic acid as matrix. Measurements 

(20 Hz) were made  in  the positive,  linear mode, with the  following parameters:  ion 

source 1, 20000 V; ion source 2, 18450 V; lens, 5000 V; pulsed ion extraction, 550 ns. 

Protein Calibration Standard II (Bruker) was used for external calibration. 

Rheology 

The  rheological  measurements  where  preformed  with  an  Anton  Paar  Physica 

MCR301 rheometer, equipped with a cone and plate geometry of 50 mm diameter. 

Temperature control was insured by a Peltier system, which allowed fast heating and 

cooling.  Protein  solutions  of  different  molar  concentrations  were  prepared  in 

phosphate  buffer  (10  mM,  pH  7),  heated  for  half  an  hour  at  50  °C  and  then 

introduced  in  the pre‐heated geometry. The system was subsequently quenched  to 

20  °C  and  gel  formation  was  followed  for  15  hours.  A  solvent  trap  was  used  to 

prevent  evaporation.  Gelation  was monitored  by measuring  the  storage modulus 

(G’), as well as the loss modulus (G’’) at a frequency of 1 Hz and a controlled strain of 

1  %.  Two  types  of  rheological  measurements  were  carried  out  at  different 

temperatures  between  20  and  40  °C).  At  each  temperature  the  system  was 

equilibrated  for  5h  before  doing  the  measurements.  First,  viscoelastic 

characterization of the equilibrated gel was performed in the frequency range 0.001‐

20 Hz  (0.00628‐125 rad/s) and a deformation amplitude of 1 %. Second,  to explore 
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the behavior of the system below 0.01 rad/s, creep experiments were carried out and 

converted  to  the  frequency domain using methods described by  Ferry11.  For TP4T, 

the  applied  stress  was  varied  between  5  Pa  and  20  Pa  and  for  TP8T  and  TR8T, 

between 5 Pa and 300 Pa. The stress values were chosen not to go beyond the linear 

regime.  The deformation  and  recovery phases were  followed  each  for  a period of 

1800  s. The TR4T experimental data presented  in  this  chapter have been acquired 

previously5. 

Differential Scanning Calorimetry (DSC) 

Differential  scanning  calorimetry experiments were performed with a MicroCal VP‐

DSC instrument. 0.51 ml degassed protein solutions (2.4 mM) prepared in phosphate 

buffer 10 mM, pH 7) were loaded at 50 °C into the calorimeter. For each experiment, 

the  protein  solutions were  equilibrated  for  10  h  at  20  °C  to  allow  complete  helix 

formation. Then,  the  temperature was  raised  from 20  to 65  °C at a scan  rate of 15 

°C/h. At the protein concentration used both melting temperature and enthalpy are 

scan rate independent12. After recording the DSC trace, the sample was cooled to 20 

°C and left for 10 h for helix re‐anneaniling. The DSC trace was then recorded again in 

an identical manner. The calorimetric transition enthalpy was obtained by integration 

of the area under the excess heat capacity peak. The flooring of the thermogram was 

done by fitting the thermogram baseline with a polynomial function of degree three 

and the area under the endotherm was determined using the Simpson’s rule. 

Dynamic Light Scatering 

Protein  solutions of 0.5 mg/ml prepared  in phosphate buffer  (10 mM, pH 7) were 

pipetted  into  light scattering cuvettes of 45 µl  (3 mm×3 mm×5 mm) The data were 

acquired at 20 °C using a Malvern Zetasizer Instrument (Nano series). The light source 

was a 4 mW He‐Ne laser with wavelength 633 nm. The scattering angle θ was fixed at 

173°.   

 



 
Influence of chain length on gel‐forming properties of telechelic collagen‐inspired polymers 
 
 

64 

3.3 EXPERIMENTAL RESULTS AND DISCUSSION 

 

Biosynthesis and molecular characterisation of the protein polymers 

P. pastoris strains containing the genes encoding the ~78 kDa collagen‐like triblock‐

copolymers targeted to the extra‐cellular medium, TP8T and TR8T, were cultured  in 

bioreactors and the proteins were purified from the fermentation supernatant. Cell‐

free TP8T and TR8T fermentation broths and purified products were analysed by SDS‐

PAGE  (Figure 3.1a). All purified proteins migrated as  single bands  indicating a high 

purity  and  intactness,  although  TP8T  and  TR8T  showed  anomalous  migration 

behaviour  in SDS‐PAGE,  similar  to  the migration behaviour  found previously  for P4 

(chapter 2 and reference6), TP4T and TR4T (chapter 2). The molecular weights of TP8T 

and  TR8T  were  determined  by  MALDI‐TOF  MS.  Figure  3.1b  shows  that  the 

experimental values are in good agreement with the expected value of 78176 DA for 

both  TP8T  and  TR8T.  Furthermore, N‐terminal  sequencing  of  the  SDS‐PAGE  bands 

confirmed the identity of the proteins. 

 

 

 

 

 

 

 

 

 
Figure 3.1 Production of protein polymers  (a) SDS‐PAGE:  lane 1, molecular weight marker; 
lane 2, purified TR8T; lane 3, cell‐free TR8T fermentation broth; lane 4, purified TP8T; lane 5, 
cell‐free  TP8T  fermentation  broth.  15  µl  of  cell‐free  fermentation  broth  and  ~20  µg  of 
purified protein was applied;  (b) MALDI‐TOF of purified TP8T and TR8T. Single and doubly 
charged molecular ions are indicated. 
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The  productivity  of  TP8T  and  TR8T was  estimated  to  be  1‐3  g/l  of  clarified  broth. 

These  values  are  very  similar  to  the production  yields previously  reported  for P46, 

TP4T  and TR4T  (chapter 2). We  can deduce  from  these  results  that  an  increase  in 

total protein size did not have an influence on the proteins’ intactness and yield. 

 

Enthalpy and melting temperature 

Endothermic transitions occurred upon melting TP8T and TR8T with a ΔCp maximum 

at 315.6 K and 315.3 K, respectively (Figure 3.2a and 3.2b). The calorimetric transition 

enthalpies were calculated by integration of the area under the excess heat capacity 

peaks. The calculated enthalpies were 229 ± 20 and 202 ± 11 kJ/mol triple helix  for 

TP8T and TR8T,  respectively. The experimental enthalpy values measured correlate 

well with the expected melting enthalpy value of 223 kJ/mol for a (Pro‐Gly‐Pro)9 end 

block calculated on  the basis of  the  results obtained by Frank et al.13 and Engel et 

al.14. These results are consistent with the earlier reported values of Tm and enthalpy 

for TP4T and TR4T  (chapter 2). This confirms our previous  findings  that  the  trimer‐

forming end‐blocks (T) are solely responsible for trimerization. 

 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Thermogram of TP8T and TP4T and (b) Thermogram of TP8T and TR8T. Protein 
concentration 2.4 mM. 
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Hydrogel formation  

In line with our previous studies (chapter 2 and reference5), the gel‐forming behaviour 

of  TP4T,  TR4T5,  TP8T  and  TR8T  was  investigated  by means  of  dynamic  rheology. 

Several concentrations of the four different protein gels were investigated. At 20 °C, a 

physical  gel  is  formed  due  to  triple  helix  formation  exclusively  by  the  collagen‐like 

end‐blocks  (T).  In  the  beginning  of  the  gelation  process  viscous  properties  are 

predominant but with  time, as  the protein network develops,  the elastic properties 

prevail. A steady‐state storage modulus  is reached after 5‐6 hours. All  four different 

proteins  show  this  same  course  of  network  formation.  Figure  3.3a  shows  the 

development of the storage (G’) and loss (G’’) modulus for a 1.2 mM solution of TP8T 

and TR8T. Similar data can be found for TP4T and TR4T in chapter 2 and reference5. 

After the steady state value of G’ was reached in TP4T, TP8T and TR8T gels, the G’ and 

G’’  values were measured as a  function of  frequency. Within  the available  frequency 

range, the elastic behaviour (G’) dominates over the viscous behaviour (G’’). The storage 

modulus  does  not  depend  on  the  frequency  in  this  range,  while  the  loss modulus 

decreases with frequency and reaches a minimum around 0.1 rad/s and then increases 

again (Figure 3.3b). The same behaviour has been reported before for TR4T5 gels. 

 

 

 

 

 

 

 

 

 
 
Figure 3.3 (a) Storage modulus for 1.2 mM TR8T (─) and TP8T (‐ ‐) as a function of age (1Hz, 
γ=1 %). Inset shows a zoom of the initial stages of TR8T gelation: G’ (■), G’’ (+). (b) Frequency 
sweeps at 293K for 1.2 mM TR8T and TP8T and 2.3 mM for TP4T. 
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To  obtain  insight  into  the  gel  system  at  frequencies  below  0.01  rad/s,  creep 

measurements were preformed. A fixed stress was applied to the gel after it reached 

a steady G’ value and the resulting deformation was followed as a function of time. 

We converted the creep results to the frequency domain5 and combined them with 

the  oscillatory  shear  data.  Figure  3.4  shows  creeps  curves  and  the  resulting 

frequency‐dependent  storage  and  loss modulus  for  several  concentrations  of 

TP4T,  TP8T  and  TR8T.  Similar  results were  found  for  TR4T5.  Both  frequency‐

dependent  and  creep  experiments  allowed  us  to  determine  the  plateau 

storage modulus G0 and relaxation time τ at different concentrations (symbols 

in  Figure  3.5a‐b  respectively).  The  plateau  storage  modulus  of  all  proteins 

studied depends strongly on concentration5. Furthermore, the  longer versions 

of the collagen‐like protein polymers,  i.e., TP8T and TR8T have a considerably 

higher plateau storage modulus (G0) than their shorter counterparts, TP4T and 

TR4T  (Figure  3.5a).  While  a  storage  modulus  of  ~  700  Pa  is  obtained  at  a 

protein  concentration  of  1.2  mM  with  TR8T,  a  comparable  value  is  only 

reached at a concentration of ~2 mM with TR4T gels. This difference  is most 

probably  related  to  the  fact  that  longer  chains  are  less  likely  to  form 

intramolecular  loops,  and  therefore  lead  to  a  higher  density  of  trimolecular 

(network‐building)  junctions  at  the  same  polymer  concentration5.  In  an 

attempt  to  provide  a  consistent  and more  thorough  interpretation  of  these 

observations,  we  use  a  model  that  we  have  developed5  for  networks  of 

telechelic polymers with trimer‐ forming end‐blocks. 
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Figure  3.4  Creep  experiments  at  293  K  for  (a)  TP4T,  (c)  TP8T  and  (e)  TR8T  at  different 
concentrations as indicated; Combined frequency sweeps and converted creep experiments 
at 293K for (b) TP4T, (d) TP8T and (f) TR8T at different concentrations as indicated. 
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Modelling of the network 

The  model  was  developed  based  on  classical  Flory15‐Stockmayer16  theory  of  gel 

formation  and  allows  calculation of  the  complete  (linear)  viscoelastic behaviour of 

the network. The model takes into account the equilibrium between helix formation 

and free ends by the trimer forming end‐blocks (T)5, 14. The formation of helices can 

occur  in  two ways: a  triple helix  formed by  three T end‐blocks  coming  from  three 

different chains (junction) or, by two of the three T end‐blocks coming from the same 

chain  (loop)  and  one  from  a  different  chain.  Only  junction  points  with  all  three 

branches  linked  to  the  gel network  contribute effectively  to  the elastic properties, 

while  loops and dangling ends act as gel stoppers. The  junction/loop ratio  increases 

with protein concentration and molecular size5. The concentration of chains involved 

in loops (CL) can be expressed as a function of concentration of junctions (CJ), overlap 

concentration (C*) and concentration of total protein (CT)
5: 

 

T

J

coilT

J
L C

CC

VC

C
C

22

*

                                                                                                             (3.1) 

 

where C*,  is  related  to  the dimension of  the chains and can be estimated as C*~1/ 

(4/3πRg
3), where Rg is the radius of gyration of a polymer coil of a certain volume V. 

The  equation  to  calculate  the  elastic modulus  (G0) was  derived  from  the  classical 

gelation theory15, 16:  

 

  
2

3

0

12

p

RTpCF
G T 

                                                                                                           (3.2) 

 

where RT is the thermal energy per mole, F is the front factor, taken to be 0.55, and 

p=3CJ/2CT is the probability of a T end group to be involved in a junction point. 
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Stress  relaxation occurs when an elastically active chain breaks. Here,  this happens 

when a  triple helix  (junction point) dissociates5. The  relaxation  time  is given by  the 

following equation:      

  

 120  p                                                                                .                                           (3.3) 

 

where τ0  is the  life time of a single helix. Dissociation of helices  is also a function of 

temperature.  The  higher  the  temperature  the  faster  the  helices  dissociate.  This 

temperature dependence can be expressed by the Van ’t Hoff’s equation: 

 





 


RT

H
KK HH exp0,                                                                                                            (3.4) 

 

where  ΔH  is  the  molar  enthalpy  of  helix  formation.  Since  helix  formation  is  a 

exothermic  process  (ΔH  <0),  KH,  the  triple  helix  association  equilibrium  constant,  

decreases  with  increasing  temperature5.  The  shift  in  KH  brings  changes  in  the 

concentration of  junctions (CJ),  loops (CL) and free ends (CF) and thus changes  in the 

storage modulus, the relation time and the viscosity5. 

For  the  model  calculations  with  mid‐block  other  than  R4  it  was  necessary  to 

recalculate the overlap concentration (C*) which  is related to the dimensions of the 

protein  chain.  All  the  other  parameters,  determined  experimentally,  were  kept 

constant with respect to our former work. For more details on the model calculations 

please see reference5. 

To have a good estimation of the dimension of the protein chains in solution we used 

dynamic light scattering to measure the size of P4 and R4 blocks. The results obtained 

indicate an ~8 %  lower hydrodynamic radius  (Rh)  for  the P4 block  (5.7 ± 0.3 nm) as 

compared to the R4 block (6.2 ± 0.4 nm). The measured hydrodynamic radius of R4 is 

smaller than the radius of gyration (Rg) of ~7 nm estimated earlier5 based on a master 

curve  for Rg  as  a  function  of  the  number of  residues  proposed by  Fitzkee  et  al.17. 
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However, the hydrodynamic radius is usually slightly lower than the radius of gyration 

for random coil proteins18, 19. Assuming Rg to be ~11 % higher than Rh, the calculated 

overlap concentrations for TP4T and TR4T were ~ 1.6 mM and ~1.1 mM5, respectively. 

We assumed the Rg to scale with the residue number as Rg ~ N
0.6  for polymers in good 

solvent17, 19. Accordingly, we estimated the Rg of the polypeptides with the  longer mid‐

blocks, P8 and R8, to be ~10 and ~11 nm, respectively, thus maintaining the same size 

ratio between the P8 and R8 blocks as between the P4 and R4 blocks. The corresponding 

values of  the overlap concentrations  (C*) of TP8T and TR8T were ~0.38 mM and ~0.3 

mM, respectively. Having determined the overlap concentration (C*) of all four proteins, 

we could model the network. Figures 3.5a‐e show a very good agreement between the 

experimental data (symbols) and model calculations (solid lines) for all proteins. 

 It is apparent from the model that the polymers with longer mid‐blocks have a higher 

storage modulus because a longer mid‐block leads to a bigger radius of gyration (Rg) 

and thus to a lower overlap concentration. A bigger Rg decreases the probability that 

two end‐blocks from the same molecule associate with each other, i.e., form a loop. 

The consequence of  fewer  loops  in  the system  is a higher storage modulus5. Figure 

3.6a  shows  the  dependency  of  the  fraction  of  junctions  (pJ)  and  loops  (pL)  on  the 

concentration  for  all  four  proteins,  based  on model  calculation.  In  this  figure  it  is 

clearly shown that the fraction of  loops present in the system  is considerably higher 

for the shorter triblock copolymers, TP4T and TR4T at each concentration. 

In addition, we observed that the R series, TR4T and TR8T, also show a higher storage 

modulus than their corresponding P series counterparts, TP4T and TP8T (Figure 3.5a). 

The  difference  is  more  pronounced  for  the  shorter  versions,  TP4T  and  TR4T. 

Although, P and R blocks are both  random  coils with exactly  the  same amino acid 

composition, their amino acid sequence  is different. Fitzkee et al17 have shown that 

even  a polypeptide  chain  that  assume  a  random  coil  conformation  still has  locally 

folded  conformations  that  contribute  to  the  overall  flexibility  of  the  chain. 

Apparently, this leads to a smaller radius of gyration for the P mid‐blocks than for the 

R mid‐blocks.  This  effect  is  stronger  for  the  proteins with  the  shorter mid‐blocks, 
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because  the  fraction  of  loops  decreases  strongly  with  increasing  polymer  length 

(Figure 3.6a). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 (a) Plateau storage modulus (G0) as 
a function of protein concentration at 293K; 
(b) Relaxation time (τ) as a function of protein 
concentration  at 293K: TR8T  (■), TP8T  (X)  , 
TR4T  (▲)  and  TP4T  (●);  (c),  (d)  and  (e) 
Plateau storage modulus (G0) as a function of 
temperature  for  different  concentrations  of 
TP4T: 2 mM  ( ), 1.6 mM( ), 1.2 mM  ( )  ; 
TP8T: 1.2 mM  ( ), 1 mM  (+), 0.9 mM  (◊), 
and TR8T: 1.2 mM (*), 0.9 mM (×), 0.6 mM 
 Symbols correspond to experimental data .(׀)
and lines correspond to model calculations.  
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Melting behaviour of the network 

In order to compare the melting behaviour of the four proteins, creep and frequency 

sweeps were  carried  out  also  at  higher  temperatures  (293‐323  K).  Figures  3.5c‐e 

show  the  plateau  storage modulus  (G0)  of  TP4T,  TP8T,  ad  TR8T  as  a  function  of 

temperature,  at  different  concentrations.  Contrary  to  what  emerged  from  DSC 

measurements  (Figure 3.2)  the temperature at which the G0 value approaches zero 

and the gel completely loses its elastic properties, varies with the length of the mid‐

block. For the same molar concentration, e.g. 1.2 mM, this temperature is ~298 K for 

TP4T and ~313 K for TP8T. Those temperatures should correspond approximately to 

the  temperature at which 50 % of all  the T end groups available  in  the system  (i.e. 

twice  the  amount  of  gelatin molecules)  are  involved  in  trimolecular  junctions  and 

thus the junction probability p = 3CJ/2CT = 0.5. 

 

 

 

 

 

 

 

 

 

Figure  3.6  (a)  Dependency  of  fraction  of  junctions  (pJ)  and  loops  (pL)  on  protein 
concentration;  (b)  Dependency  of  fraction  of  triple  helices  (pH)  and  junctions  (pJ)  on 
temperature for TP4T and TP8T at a protein concentration of 1.2 mM. 
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a concentration of 1.2 mM. The  total amount of  triple helices  (junctions and  loops 

together) does not depend on the length of the mid‐block and reaches ~50 % at ~315 

K for both TP4T and TP8T. However, the fraction of junctions is significantly higher for 

molecules with a longer mid‐block. The 50 % value is reached at 297 K for TP4T and at 

313 K for TP8T in good agreement with the temperature dependence of G0 shown in 

Figure 3.5c‐d, and discussed above. 

 

3.4 CONCLUDING REMARKS 

 

In order to explore the relationship between the mid‐block size and hydrogel‐forming 

properties  of  telechelic  polypeptides  with  trimer  forming  collagen‐like  end‐blocks 

four  versions  of  this  class  of  polymers,  differing  only  in  their mid‐block  length  or 

amino  acid  sequence, were  studied.  The  temperature‐dependent measurement  of 

the  storage  modulus  (reflecting  the  elasticity  of  the  gels)  showed  that,  besides 

polymer  concentration5,  the  length  of  the  random  coil  mid‐blocks  is  also  a 

predominant  factor  governing  the  viscoelastic  properties  of  the  hydrogels. Due  to 

loop formation by the trimer‐forming end‐blocks, the gel strength depends not only 

on the helix content of the system but also on the ratio between loops and junctions. 

Longer polymer chains render a higher gel strength, because the probability is lower 

that their two end‐blocks associate with each other to form a loop. A consequence of 

fewer loops in the system is a higher number of active chains effectively contributing 

to the elastic properties of the network. The results were supported by an analytical 

model based on classical gel theory. The model calculations were in good agreement 

with the experimental data showing, once more, that the well‐defined multiplicity of 

the network of this particular class of hydrogels allows the prediction of the complete 

viscoelastic behaviour of the network, when the polymer structure is well known. 

Our results suggest that, by controlling the structure of the present type of hydrogel‐

forming polymers through genetic engineering their physical‐chemical properties can 
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not only be controlled and predicted but also developed  in order to match a variety 

of different applications. 

 

ACKNOWLEDGEMENT 

 

This  research  was  financially  supported  in  part  by  The  Netherlands  Ministry  of 

Economic Affairs and  the B‐Basic partner organisations  (www.b‐basic.nl)  through B‐

basic,  a  public‐private  NWO‐ACTS  programme  (ACTS=Advanced  Chemical 

Technologies for Sustainability). 

 



 
Influence of chain length on gel‐forming properties of telechelic collagen‐inspired polymers 
 
 

76 

REFERENCES 
 
1.  C. Yang, P.  J. Hillas,  J. A. Baez, M. Nokelainen,  J. Balan,  J. Tang, R. Spiro and  J. W. 

Polarek, BioDrugs, 2004, 18, 103‐119. 
2.  D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, D. Carmichael, M. Perala, E. R. 

Hamalainen, M. Jarvinen and J. Polarek, Adv Drug Deliv Rev, 2003, 55, 1547‐1567. 
3.  C. H. Lee, A. Singla and Y. Lee, Int J Pharm, 2001, 221, 1‐22. 
4.  R. Langer and D. A. Tirrell, Nature, 2004, 428, 487‐492. 
5.  P.  J. Skrzeszewska, F. A. de Wolf, M. W. T. Werten, A. P. H. A. Moers, M. A. Cohen 

Stuart and J. van der Gucht, Soft Matter, 2009, 5, 2057‐2062. 
6.  M. W. T. Werten, W. H. Wisselink, T. J. Jansen‐van den Bosch, E. C. de Bruin and F. A. 

de Wolf, Protein Eng, 2001, 14, 447‐454. 
7.  J. M. Cregg, K.  J. Barringer, A. Y. Hessler and K. R. Madden, Mol Cell Biol, 1985, 5, 

3376‐3385. 
8.  M. W. T. Werten, T. J. van den Bosch, R. D. Wind, H. Mooibroek and F. A. de Wolf, 

Yeast, 1999, 15, 1087‐1096. 
9.  W.  Zhang, M. A.  Bevins,  B. A.  Plantz,  L. A.  Smith  and M. M. Meagher,  Biotechnol 

Bioeng, 2000, 70, 1‐8. 
10.  Y. Katakura, W. Zhang, G. Zhuang, T. Omasa, M. Kishimoto, Y. Goto and K. Suga,  J. 

Ferment. Bioeng., 1998, 86, 482‐487. 
11.  J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980. 
12.  P.  J.  Skrzeszewska,  F.  A.  De Wolf, M.  A.  Cohen  Stuart  and  J.  van  der Gucht,  Soft 

Matter, 2010, 6, 416‐422. 
13.  S. Frank, R. A. Kammerer, D. Mechling, T. Schulthess, R. Landwehr, J. Bann, Y. Guo, A. 

Lustig, H. P. Bachinger and J. Engel, J Mol Biol, 2001, 308, 1081‐1089. 
14.  J. Engel, H.‐T. Chen, D. J. Prockop and H. Klump, Biopolymers 1977, 16, 601‐622. 
15.  P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, 1953. 
16.  W. H. Stockmayer, J. Chem. Phys., 1944, 12, 125‐136. 
17.  N. C. Fitzkee and G. D. Rose, Proc Natl Acad Sci U S A, 2004, 101, 12497‐12502. 
18.  D. K. Wilkins, S. B. Grimshaw, V. Receveur, C. M. Dobson, J. A. Jones and L. J. Smith, 

Biochemistry, 1999, 38, 16424‐16431. 
19.  C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, Inc., New York, 

1961. 
 
 



 

77 

 
 

Chapter 4 
 

Hydrogels of collagen‐inspired telechelic 
triblock copolymers for the sustained 

release of proteins 
 

 

 

 

 

 

 

 

 

 

 

 

 

This  chapter  as  been  accepted  for  publication  in modified  form  in  the  Journal  of 

Controlled Release as: H. Teles, T. Vermonden, G. Eggink, W.E. Hennink, F.A. de Wolf, 

2010. 



 
Hydrogels from collagen‐inspired telechelic triblock copolymers for the sustained release of proteins 
 
 

78 

SUMMARY 

 

In this chapter we study the erosion and protein release behaviour of two hydrogel‐

forming collagen‐inspired triblock copolymers, differing only in their mid‐block length 

(molecular weights ~37 kDa and ~73 kDa). These polymers, produced as heterologous 

protein  in recombinant yeast, are made of thermosensitive ABA gel‐forming triblock 

copolymers with  controllable  and  tailorable  properties.  By  varying  polymer  length 

and concentration the elastic properties of the hydrogels as well as their mesh size, 

swelling and erosion behaviour can be tuned. We show that the hydrogel networks 

are highly dense and that the decrease of gel volume  is mainly the result of surface 

erosion,  which  in  turn  depends  on  both  temperature  and  initial  polymer 

concentration.  In addition, we also  show  that  the  release  kinetics of an entrapped 

protein  is  governed  by  a  combined  mechanism  of  erosion  and  diffusion.  The 

prevalence  of  one  or  the  other  is  strongly  dependent  on  polymer  concentration. 

Most  importantly,  the  encapsulated  protein  was  quantitatively  released 

demonstrating that these hydrogels offer great potential as drug delivery systems.  
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4.1 INTRODUCTION 

 

The potential of hydrogels as biomedical materials has  long been  recognised1‐3. For 

this  reason  they are  increasingly being utilised  as delivery  systems  for  a  variety of 

therapeutic agents, especially because of their capacity to preserve the structure and 

functionality  of  incorporated  drugs,  particularly  pharmaceutical  proteins,  and 

because they are usually well tolerated by  living tissue3, 4. Hydrogels are hydrophilic 

polymeric matrices  that have  the ability  to absorb  large amounts of water and still 

maintain a distinct 3D structure4, 5. They are formed by either chemical (covalent) or 

physical (reversible) cross‐links between hydrophilic polymer chains, which prevents 

these chains  from dissolving  in water.  In recent years, there has been an  increasing 

interest  in physically  cross‐linked hydrogels, because  the use of  crosslinking agents 

can be avoided with these systems. These agents can not only affect the integrity of 

the  substance  to  be  entrapped  (e.g.  proteins,  cells)  but  they  are  often  toxic 

compounds which have  to be  removed/extracted before  the gels can be applied  in 

the body5. Because proteins possess many mechanisms for the physical association of 

peptide  segments,  they  can  be  used  to  form  gel  networks  in  aqueous  solution. 

Peptide‐based  biomaterials  are  attractive  because  of  their  programmable, 

biodegradable  and  bioresorbable  nature2.  A  classic  hydrogel‐forming  protein  is 

gelatin,  a  natural  polymer  derived  from  collagen,  which  is  a  biocompatible  and 

biodegradable material widely used  for pharmaceutical and medical applications6‐8. 

However, the variability in composition and structure of animal‐derived gelatins, and 

the  possibility  of  inflammatory  responses  in  humans  urged  the  development  of 

techniques  for  the  recombinant  production  of  collagen  and  gelatin6,  9.  A  major 

advantage of recombinant production is the ability to genetically control the protein 

structure  and  thereby,  its  physical  and  chemical  properties5,  10.  Despite  the 

developments  in  the past decade  in  the production of  recombinant gelatins11,  their 

use as protein delivery systems is scarce12‐14. 
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In chapter 2 and 3 (see also reference15) we describe the genetic design, recombinant 

production and characterisation of a new class of ABA  triblock copolymers  forming 

thermosensitive  gels  with  highly  controllable  and  predictable  properties.  Gel 

formation  is obtained by  combining  collagen‐inspired  (Pro‐Gly‐Pro)n end‐blocks  (T), 

which  have  triple  helix‐forming  ability, with  highly  hydrophilic  random  coil  blocks 

defining  the distance between  the  trimer  forming end‐blocks. These monodisperse 

triblock  copolymers  have  a  defined  molecular  weight,  and  controllable  physical‐

chemical properties. Importantly, they form gels with a molecular architecture that is 

much more defined than that of traditional gelatins. 

We  have  shown  that,  small,  but  tailored  changes  in  length  of  the  different  blocks 

result in significant changes in their properties (chapter 3). The thermostability of the 

hydrogels formed by these polymers can be tailored by changing the number of (Pro‐

Gly‐Pro)  repeats,  and  the  viscoelastic  properties  can  be  changed  by  varying  the 

polymer concentration and the  length of the mid‐block  (chapter 3 and reference15). 

This makes these gel forming peptide‐based triblock copolymers promising materials 

for drug delivery applications where the possibility of working with a predictable and 

tailorable material can be crucial for the success of a specific application.  

The  aim  of  the  present work was  to  study  the  in  vitro  kinetics of  gel  erosion  and 

protein  release  from  this new  type of hydrogels. Bovine Serum Albumin  (BSA) was 

used  as model  protein  for  in  vitro  release  studies.  The  hydrogel  forming  collagen‐

inspired  triblock  copolymers,  denoted  as  TR4T  and  TR8T  (chapter  2  and  3), were 

investigated. These consist of a mid‐block made of 4 or 8 repeats of highly hydrophilic 

random  coil R blocks  and  triple helix  forming  T  end‐blocks of  9  repeating units of 

(Pro‐Gly‐Pro) resulting  in a gel melting temperature of ~37 °C (chapter 2 and 3, and 

reference15). Temperature, polymer concentration and the length of the random mid‐

blocks  of  the  recombinant  polymers  were  varied  to  establish  the  potential 

applicability  of  these materials  as  drug  delivery matrices.  Results were  correlated 

with rheological studies, mesh size of the gel and gel degradation kinetics.  
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4.2 MATERIALS AND METHODS 

 

Materials 

Dextran Blue from Leuconostoc ssp. was obtained from Fluka (Buchs, Swuitzerland). 

Bovine serum albumin (BSA), Myoglobin, sodium azide (NaN3) and trifluoroacetic acid 

(TFA)  were  provided  by  Sigma‐Aldrich  (Zwijndrecht,  The  Netherlands).  Phosphate 

buffer  saline  pH  7.4  (PBS  (8.29  g/l  NaCl;  3.1  g/l  Na2HPO4.12H2O;  0.3  g/l 

NaH2PO4.2H2O))  was  purchased  from  Braun  Melsungen  AG  (Germany)  and 

acetonitrile (ACN) was purchased from Biosolve (Valkenswaard, The Netherlands). 

Biosynthesis of triblock copolymers 

The  construction of  the  genes encoding  TR4T  (~42  kDa)  and  TR8T  (~78  kDa),  their 

transfection  to  Pichia  pastoris,  production  and  purification  has  been  previously 

described  in detail  in chapter 2 and 3. The complete amino acid  sequence of TR4T 

and TR8T has been deposited  in GenBank16 under the accession numbers ACF33479 

and ACF33481, respectively. 

Rheological characterisation 

The  rheological  measurements  where  preformed  with  an  Anton  Paar  Physica 

MCR301 rheometer, equipped with a cone and plate geometry of 50 mm diameter. 

Temperature control was insured by a Peltier system, which allowed fast heating and 

cooling.  Polymer  solutions were  prepared  in  PBS  buffer  pH  7.4  containing  0.02 % 

(w/w)  of  NaN3  (PBS/NaN3)  buffer,  heated  for  half  an  hour  at  60  °C  and  then 

introduced  in  the pre‐heated geometry. The system was subsequently quenched  to 

20  °C  to  induce  gel  formation.  A  solvent  trap  was  used  to  prevent  evaporation. 

Gelation was followed for 5h at 20 °C by measuring the storage modulus (G’), as well 

as the loss moduli (G”) at a frequency of 1 Hz and a controlled strain of 1 %. 

The  average  molecular  weight  between  cross‐links,  Mc,  was  calculated  from  the 

plateau  storage  modulus  (G0)  using  Equation  (1)
15,  17,  derived  from  the  classical 

rubber‐like  theory  and  taking  in  consideration  that  only  the  trimer  forming  side 

blocks (T) form helices: 
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c

p

M

RTFC
G 0                                                                                                                           (4.1) 

 

where  Cp  is  the  protein  concentration  (g/m
3),  R  the molar  gas  constant,  T  is  the 

absolute temperature and F the front factor taken to be 0.5 as a trade off between 

the classical affinity network theory and the phantom network model15. 

Hydrogel swelling and degradation studies  

The  triblock  copolymers were dissolved at a  concentration of 10 % or 20 %  (w/w) 

(total weight 60 mg) in PBS/NaN3 buffer at 60 °C in cylindrical shaped glass vials with 

a  diameter  of  5 mm. Next  20  µl  of  a  100 mg/ml  (w/w)  solution  of  Dextran  Blue 

(Mw=2,000,000 g/mol)  in PBS/NaN3 buffer was added to the polymer solutions and 

the mixture was heated to 42 °C for 10 min to allow homogeneous distribution of the 

Dextran  Blue  in  the  hydrogel.  The  gels  (total weight  approximately  100 mg) were 

allowed to stabilise overnight at room temperature. Next, the exact height of the gel 

inside the glass vials was measured (H0) and 0.7 ml of PBS/NaN3 buffer was added on 

the top of the gels and the vials were placed in a shaking water bath at 20 °C or 37 °C. 

At regular time  intervals aliquots of 0.15 ml release buffer were taken,  followed by 

replacement of the aliquot with fresh buffer, and measurement of the height of the 

gels  (Ht) to determine the swelling ratio  (SR=Ht/H0; only  for 20 °C experiments). The 

removed buffer samples were analyzed for its Dextran Blue content by measuring the 

absorbance at 620 nm with a NanoDrop ND‐1000 spectrophotometer (Thermo Fisher 

Scientific, USA). 

Protein release studies  

In  vitro  protein  release  from  gels  was  studied  using  BSA  (MwBSA=67,000  g/mol; 

dhBSA=7.2 nm
18) and myoglobin (Mwmyo=17,000 g/mol; dhmyo=4.2 m

19). Twenty µl of a 

concentrated solution of model protein (100 mg/ml) was added to 60 mg of a 10 % or 

20 % (w/w) polymer solution in PBS/NaN3 buffer, as described above in the hydrogel 

swelling and degradation studies section. The gels were allowed to stabilise overnight 

at room temperature. Next, 0.9 ml of PBS/NaN3 buffer was added on the top of the 
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gels and the vials were incubated in a shaking water bath at 20 °C or 37 °C. At regular 

time intervals aliquots of 0.15 ml release buffer were taken, and replaced by an equal 

amount of  fresh buffer. The concentration of BSA or myoglobin  in  the samples was 

determined by using a Waters Acquity Ultra Performance LC system  (UPLC, Waters, 

USA), with a BEH C18 1.7 µm, 2.150 mm column. An eluent gradient, from 0 to 100 

% of eluent A was used, where eluent A was 95/5/0.1 % H2O/acetonitrile/CF3COOH 

and  eluent  B  was  100/0.1  %  acetonitrile/CF3COOH.  The  injection  volume  of  the 

samples was 5µl, the flow rate 0.25 ml/min and the detection of BSA was done at 210 

nm and Myoglobin at 410 nm. 

 

4.3 RESULTS AND DISCUSSION 

 

Rheological properties  

In this study, two triblock collagen‐like proteins were used, further denoted as TR4T 

(~42 kDa) and TR8T (~78 kDa). These consisted of the same triple helix forming T end‐

block (see  introduction) and a mid‐block made of either 4 or 8 tandem repeats of a 

highly hydrophilic random coil R block (chapter 2). The proteins were produced and 

secreted in intact form by the yeast P. pastoris as host system (chapter 2 and 3). Their 

rheological  properties  have  been  extensively  studied  and  reported  previously 

(chapter 2, 3 and  reference15). However, because  the polymer concentrations used 

here are higher than used in the earlier rheological studies, we measured the storage 

(G’)  and  loss modulus  (G”)  of  TR4T  and  TR8T  at  the working  concentrations  and 

determined  the molecular  weight  between  cross‐links  (Mc).  Figure  4.1  shows  the 

storage modulus of the different hydrogels as a function of time, measured at 20 °C 

for 10 and 20 % (w/w) formulations. The G’ increased and reached a plateau after 3h 

or  less,  indicating  that  gel  formation  was  complete.  As  expected,  the  storage  G’ 

increased  with  increasing  polymer  concentration.  In  addition,  at  the  same  gel 

concentration the G’ was always higher for TR4T gels. These results are not surprising 
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since, e.g., 20 % (w/w) TR4T gel contains a two times higher molar concentration of 

trimer forming end‐blocks (T) than a 20 % (w/w) TR8T gel. Since the trimer forming 

end‐blocks  are  responsible  for  trimer  self‐assembling,  essential  for  the  network 

formation, a higher molar ratio of T end‐blocks results in a higher G’.  
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Figure 4.1 Characterisation of TR4T and TR8T 10 % and 20 %  (w/w) hydrogels by dynamic 
rheology at 20 °C in time. 
 

The measured plateau storage modulus (G0) enabled the calculation of the, Mc, using 

Equation  (4.1). The Mc values  increased with decreasing polymer concentration and 

where higher for TR8T than for TR4T gels, at the same concentration (Table 4.1). Note 

that only for TR4T 20 % (w/w) gels the Mc value was below the molecular weight of 

the incorporated protein (BSA 67 kDa). In all other cases the Mc was higher than the 

molecular weight of the incorporated protein. 

 

Table 4.1 Rheological data of TR4T and TR8T hydrogels at 20 °C 
 

Polymer 
Polymer  Concentration 
 (w/w) 

G’  
(Pa) 

Mc 
(kDa) 

10 %  1300 ± 7  94 ± 6 
TR4T 

20 %  5120 ± 10  47 ± 2 
10 %  548 ± 1  222 ± 3 

TR8T 
20 %  3180 ± 4  78 ± 1 
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Hydrogel stability 

The  stability  of  the  hydrogels  was  investigated  by  measuring  the  time‐dependent 

changes  of  their  volume  (reflected  by  their  height).  Figure  4.2  shows  the 

swelling/dissolution profiles of TR4T and TR8T gels at a polymer concentration of 10 and 

20 % (w/w). In line with their higher mechanical strength and thus the highest cross‐link 

density, TR4T  gels were  stable  for  longer periods  than TR8T  gels at  the  same weight 

concentration. Figure 4.2  shows  that at 20  °C, TR4T 20 % gels  fully dissolved after 18 

days,  while  TR8T  gels  lasted  only  12  days.  At  higher  polymer  concentration,  the 

hydrogels were stable for longer periods and reached a higher swelling ratio. When gels 

are incubated with buffer they absorb water, swelling stress accumulates and acts as an 

opposing force against the thermosensitive trimer formation that holds the gel together. 

When swelling stresses are high, dissociation of  junctions occurs, eventually  leading to 

polymer dissolution. Although the present hydrogels are able to resist the swelling stress 

to a certain extent, such phenomenon is highly dependent on temperature and surface 

erosion. At 20 °C both TR4T and TR8T 20 % gels swell to a maximum of ~2.8 times their 

initial volume, while 10 % gels only swell to a maximum of ~1.3 times their initial volume. 

The time to reach maximal swelling increases with concentration: in 120 h for 20 % gels 

and 48 h for 10 % gels. 
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Figure 4.2 Swelling curves of TR4T and TR8T 10 % and 20 %  (w/w) hydrogels at 20 °C as a 
function of time. Data are shown as mean ± standard deviation, n=3. 
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At 37 °C, close to the hydrogels melting temperature, hardly any swelling was 

observed. At this temperature, the dissociation rate of the trimer forming junctions 

and dissolution of the separate polymer chains is much faster than the rate of water 

uptake. 

To evaluate the hydrogel degradation more accurately, at both 20 °C and 37 °C, 

release of Dextran Blue into the incubation buffer was monitored in time. Dextran 

Blue is a very large molecule, with a molecular weight of ~2 MDa, and is therefore 

essentially immobile in the network and can only be released by surface erosion. 

Figure 4.3a-b and Figure 4.4 show that Dextran Blue was released at a constant rate 

over time and 100 % release of the loaded amount was reached when the gels were 

fully dissolved. It also demonstrates that an increasing polymer concentration 

influences the release kinetics of Dextran Blue. For both TR4T and TR8T at both 10 

and 20 % (w/w) polymer concentration, the release kinetics of Dextran Blue correlate 

well with the time dependent height variation shown in Figure 4.2, confirming that 

the degradation of the gel at 20 °C is mainly mediated by surface erosion. These 

observations can be confirmed by fitting the experimental Dextran Blue release data 

to the Ritger-Peppas equation (Equation 4. 2)
20

: 

 

nt kt
M

M =
∞

                                                                                                                                 (4.2) 

 

where Mt/M∞ represents the fractional release of the entrapped compound, k is a kinetic 

constant, t is the release time and n is the diffusion exponent that can be related to the 

release mechanism of the entrapped molecules. If n=0.5 the release is controlled by Fickian 

diffusion, if n=1 the release is controlled by surface erosion, and if 0.5< n <1 then both 

diffusion and erosion play a role in the release mechanism. For the Dextran Blue release 

profiles at 20 °C (Figure 4.3a–b), the calculated n values were between 0.93 and 1.00. The 

release of Dextran Blue at 20 °C presents thus a zero order kinetics profile due to surface 

erosion of the hydrogel. As previously reported by van de Manakker et al. for 
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cyclodextrin/cholesterol/PEG hydrogels21,  the assumption  that Dextran Blue  is  trapped as 

immobile dye  inside  the network  is  correct  and  is  therefore  a  reliable method  to  study 

hydrogel degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The release of Dextran Blue at 37 °C (Figure 4.4) presents also a zero order kinetics, 

but  here,  the  hydrogel  dissolution  is  accelerated  by  the  higher  temperature  and 

complete  release  is  reached  already  after  48  h,  when  the  gel  is  fully  dissolved. 

However, for applications at 37 °C a higher gel stability can be achieved by increasing 

the length of the terminal (Pro‐Gly‐Pro)n blocks. 

0 50 100 150 200
0

25

50

75

100

TR8T/Dextran Blue
TR4T/Dextran Blue

TR8T/BSA
TR4T/BSA

time (h)

C
um

ul
at

iv
e 

re
le

as
e 

(%
)

0 150 300 450
0

20

40

60

80

100

10% gel

20% gel

time (h)

C
um

ul
at

iv
e 

re
le

as
e 

(%
)

0 150 300 450
0

25

50

75

100

TR8T/BSA
TR4T/BSA

TR8T/Dextran Blue
TR4T/Dextran Blue

time (h)

C
um

ul
at

iv
e 

re
le

as
e 

(%
)

Figure 4.3 Cumulative BSA or Dextran Blue 
release  from  20%  (a)  and  10%  (b)  (w/w) 
TR4T and TR8T hydrogels at 20 °C ((▼) BSA 
release  from  TR4T  hydrogels,  ( )Dextran 
Blue  release  from  TR4T  gels,  (■)BSA 
release  from  TR8T  hydrogels  and  ( ) 
Dextran Blue release from TR8T hydrogel); 
and (c) BSA release from 10 and 20% TR4T 
gels. Data are  shown as mean ±  standard 
deviation, n=3.
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Figure 4.4 Cumulative protein release from 20 % (w/w) TR4T and TR8T hydrogels at 37 °C: 
(▼)  BSA  release  from  TR4T  hydrogels,  ( )Dextran  Blue  release  from  TR4T  gels,  (■)BSA 
release  from  TR8T  hydrogels  and  ( ) Dextran Blue  release  from  TR8T  hydrogel. Data  are 
shown as mean ± standard deviation, (n=3). 
 

In vitro release studies 

BSA  (Mw 67 kDa) was used as model protein  to  study  the  influence of hydrogel 

composition and temperature on release. Figure 4.3‐4.5 show that, at both 20 °C 

and 37  °C, BSA  release  from gels  consisting of 10 and 20 %  (w/w) TR4T or TR8T 

was  sustained.  Most  importantly,  quantitative  (100  %)  protein  release  was 

observed, meaning  that BSA did neither  aggregate nor precipitate. Also, protein 

release from all hydrogels at all polymer concentration is faster than the release of 

Dextran  Blue which,  as  shown  above,  can  only  be  released  by  surface  erosion 

(Figure 4.3‐4.4).  

To  characterise  the  release mechanism  of BSA  from  the  different  hydrogels  the 

experimental data were  fitted to Equation  (4.2). The diffusion exponents  (n) vary 

between  0.5  and  1  showing  that  both  erosion  and  diffusion  play  a  role  in  the 

release kinetics (Table 4.2 and Figure 4.3a‐b).  
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Table 4.2 Diffusion exponents (n) derived from entire set of BSA 
release data at 20°C. 
 

Polymer
Polymer concentration  
(w/w) 

Diffusion 
 exponent 
 (n) 

Coefficient of 
determination  
(r2) 

10 %  0.49 ± 0.03  0.99 
TR4T 

20 %  0.75 ± 0.07  0.97 
10 %  0.65 ± 0.08  0.99 

TR8T 
20 %  0.88 ± 0.09  0.98 

 

For 10 % (w/w) TR4T the cumulative release scaled linearly with the square root of 

time up to a cumulative release of 90 % (inset  in Figure 4.5a). These results point 

to  a  first  order  release  kinetics20,  and  thus,  BSA  release  from  10 %  (w/w)  TR4T 

hydrogels  is controlled by Fickian diffusion. At  first sight,  the calculated diffusion 

exponents  (n)  are  higher  for  20  %  (w/w)  gels,  which  would  indicate  that  the 

release  would  be  more  surface‐  and  less  diffusion‐controlled  at  these  high 

polymer  concentrations. However,  a  closer  analysis  of  these  results  shows  that 

after the first 24h, the cumulative release seems to be proportional to the square 

root of time and thus, to point to first order kinetics20 (Figure 4.5b), indicating that 

protein release  from the 20 % (w/w) gels only takes place after  initial swelling of 

the  gel.  In  the  first  hours,  hardly  any BSA  is  released  from  the  gel,  and  release 

starts  only  after  10‐24  h, when  the  swelling  ratio  is  ~2,  demonstrating  that  the 

networks are very tight and only when, sufficient water has been absorbed by the 

matrix  the  hydrogel mesh  size  is  sufficiently  large  to  allow  protein  diffusion.  A 

similar  sustained  release  profile was  also  found  for  other  proteins  proving  the 

versatile character of these hydrogels as drug delivery system. The release kinetics 

for  myoglobin  can  be  found  in  Figure  4.6.  Comparison  of  the  release 

characteristics of the 10 and 20 % (w/w) gels shows that drug release from these 

hydrogels  can  be  tailored  by  varying  the  recombinant  polymer  concentration 

(Figure 4.3c).  
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Figure 4.5 (a) Cumulative BSA release from 10 %  (w/w) TR4T gels as a function of time and 
inset in function of square root of time. (b) Cumulative BSA release in order of the square 
root or time from 20 % (w/w) TR4T and TR8T hydrogels at 20 °C: (▼)from TR4T hydrogels, 
(■)from TR8T hydrogels. 
 
 

At  37  °C,  the  release  of  BSA  is  largely  determined  by  the  melting  rate  of  the 

hydrogels.  In  agreement  with  the  higher  equilibrium  concentration  of  junctions 

(physical  cross‐links)  remaining  at  this  temperature  in  TR8T,  as  compared  to  TR4T 

(chapter 3)22, the release of BSA  (partly controlled by diffusion) and the gel erosion 

was somewhat slower in TR8T than in TR4T. Nevertheless, complete release from 20 

%  gels  was  reached  after  only  48  h  even  for  TR8T  gels,  in  agreement  with  the 

completion  of  the  Dextran  Blue  release  at  the  same  polymer  concentration  and 

temperature  (Figure  4.4). Using  10 %  gels  of  TR4T  or  TR8T,  complete  release was 

even reached within 24 h (results not shown). 
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Figure 4.6 Cumulative Myoglobin  release  from 20 %  (w/w) TR8T hydrogels at 20  °C  (a)  in 
order  of  time;  and  (b)  in  order  of  the  square  root  of  time.  Data  are  shown  as mean  ± 
standard deviation (n=3). 

 

4.4 CONCLUSIONS 

 

The time‐dependent release of entrapped protein from hydrogels consisting of a new 

class of telechelic triblock copolymers with collagen‐like end‐blocks was investigated 

in  vitro,  along  with  the  time‐dependent  erosion  of  the  gels.  Apart  from  initial 

swelling, the volume of the gel gradually decreased due to surface erosion, which was 

governed  by  concentration  and  temperature.  The  gels  showed  a  continuous  and 

quantitative release of the entrapped protein by a combined mechanism of erosion 

and diffusion,  the kinetics and relative predominance of which could be  tailored by 

manipulating  the  concentration  and  design  (i.e.  the  length)  of  the  gelatin‐like 

polymer. These hydrogels are attractive protein delivery systems  for  three  reasons: 

(1)  They  did  not  appear  to  induce  aggregation  of  entrapped  protein  and  finally 

released 100 % of the entrapped protein in soluble form; (2) They are not chemically 

cross‐linked, but self‐assembling and self‐healing15, 23, and can be degraded into free 

amino acids without leaving a trace in the body; (3) Their design as telechelic triblocks 

automatically  implies  the  freedom  to  tune  their  erosion  and melting behaviour by 
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varying  the  length  and  secondary  structure  of  the  mid‐block  and  optionally,  by 

designing  end‐blocks  with  different  thermostability.  The  end‐blocks  used  in  the 

present  polymers  had  a  triple  helix melting  temperature  of  ~40‐41  °C15,  24  but  for 

example, we have also developed end‐blocks  that melt at ~ 15‐20  °C  (unpublished 

data),  or  at  ~57  °C24. Note  that  the  gels melt when  the  percentage  of  end‐blocks 

involved  in  trimolecular  junctions becomes  lower  than  fifty, which  is always below 

the Tm of the triple helices
15, 22. The present synthetic mid‐blocks can also be replaced 

by human sequences, or by particular amino acid sequences that promote or avoid, 

depending  on  the  purpose,  the  binding  of  specific  organic molecules.  The  unique 

characteristics  and  the  possibilities  for  tailored  design  of  this material makes  it  a 

promising  drug  delivery  system,  but  other  pharmaceutical  and  biomedical 

applications are possible. 
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SUMMARY 

 

We  have  recently  developed  a  new  class  of  gel‐forming  collagen‐like  tri‐block 

copolymers with biomedical  relevance.  These  consist of highly hydrophilic  random 

coil mid‐blocks, in combination with proline rich trimer‐forming end‐blocks. With the 

aim  of  producing  higher  amounts  of  protein material  for  future  applications  and 

research we have carried out, at pilot‐scale, the fermentation and purification of five 

of these proteins with molecular weights ranging  from ~42 kDa to ~114 kDa. Pichia 

pastoris  strains were  grown  in  a  140  l  bioreactor  (100  l working  volume)  using  a 

three‐phase  fermentation  process.  The  fermentation  culture  reached  high  cell 

densities, 400‐500 g/l  (wet weight), and all proteins were efficiently expressed and 

secreted  into the  fermentation medium at a concentration of ~700‐800 mg/l of cell 

free broth. The downstream processing principles elaborated previously at  lab‐scale 

were successfully adapted to the  larger scale and resulted  in 80‐95 % recovery. The 

purified  proteins  (purity  of  at  least  98  %)  were  intact  and  showed  a  similar 

performance to those obtained using lab‐scale procedures. The good productivity and 

efficient  DSP  shown  in  this  study  provides  a  promising  perspective  towards  a 

potential further scale‐up to industrial production of these proteins. 
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5.1 INTRODUCTION 

 

Over  the past decades, collagen‐like proteins have emerged as effective and widely 

used  biomaterials  in  a  range  of  different  clinical  applications1.  The  use  of 

recombinant  techniques  for  the  production  of  collagen  and  gelatin  (denaturated 

collagen) with defined  composition and  structure, and  thus predictable properties, 

has  opened  the  way  for  the  development  of  novel  materials.  Furthermore, 

recombinant microbial  production  eliminates  the  concerns  related  to  the  quality, 

purity  and  predictability  of  animal  derived  collagen  and  gelatin  and  the  risks  of 

transmission of infectious agents2, 3.  

Several  microbial4‐7  and  non‐microbial8‐13  sources  have  been  explored  for  the 

production of recombinant collagen and gelatin. However, microbial approaches have 

advanced  faster and  shown  to be more attractive  for  commercialisation  than non‐

microbial approaches2.   The methylotrophic yeast P. pastoris  is one of the  favoured 

hosts for the recombinant production of these proteins, especially because of its high 

levels  of  heterologous  gene  expression  and  secretion  of  low  levels  of  endogenous 

proteins,  hence  facilitating  purification14,  15.  In  addition,  recombinant  products 

derived  from  P.  pastoris  fermentations  were  shown  to  have  excellent 

biocompatibility as determined in animal studies16. 

 Successful recombinant production and purification at small‐scale of hydroxylated17, 

18,  and  non‐hydroxylated19  human  and  synthetic  collagen  and  gelatin  has  been 

achieved in P. pastoris by several groups, including our own20, 21. In chapter 2 and 3, 

we have reported on the recombinant production and characterisation of a new class 

of collagen‐inspired tri‐block copolymers with highly controllable and predictable gel‐

forming  properties  (chapter  2  and  3).  Gel  formation  is  obtained  by  combining 

collagen‐inspired (Pro‐Gly‐Pro)9 end‐blocks (T),  inspired by and behaving  like natural 

collagen, with  highly  hydrophilic  random  coil  P  or  R  blocks  defining  the  distance 

between the trimer forming T end‐blocks. The polar ‘P’ block has a collagen‐inspired 
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designer sequence consisting of (Gly‐Xaa‐Yaa) repeats and the ‘R’ block has the same 

amino acid composition, but quasi random amino acid sequence. 

This concept allows the production of custom made precision gels with potential for 

biomedical applications22‐25 (chapter 2). Indeed, these materials have already shown 

to be attractive drug delivery matrices (chapter 4). 

So  far,   high  level  (1‐3 g/l) secreted production of  four of such  triblock copolymers, 

consisting of 461 or 857 amino acids and denoted as TP4T, TP8T, TR4T and TR8T, has 

been realised with P. pastoris in small (3 l) fermenters (chapter 2 and 3). Also, simple 

and effective purification procedures have been successfully developed at laboratory 

scale  (chapter 2 and 3). However, we  feel  that  to deliver  the amounts of material 

necessary  for  clinical  applications,  methods  for  large‐scale  production  and 

purification  of  these  proteins  need  to  be  investigated.  Consequently,  as  a  further 

development  to  our  previous works, we  now  report  on  the  pilot‐scale  production 

(140 l) and purification of five members of this new class of collagen‐inspired triblock 

copolymers. In addition to the above mentioned proteins, we also fermented for the 

first  time a 1253  amino  acid  long  (~114  kDa) protein belonging  to  the  same  class, 

denoted  as  TP12T.  The  preliminary  characterisation  of  the  proteins  is  also 

investigated and compared to those produced using small‐scale procedures. 

 

5.2 MATERIALS AND METHODS 

 

Expression vectors and P. pastoris transformations 

The construction of  the genes encoding TP4T and TR4T  (chapter 2)  (both ~42 kDa), 

TP8T and TR8T  (chapter 3)  (both ~78 kDa) and  their  transfection  to P. pastoris has 

been  described  in  detail  in  chapter  2  and  3.  The  previously  described  vectors 

pMTL23‐P8T,  pMTL23‐P4  and  pCR4‐TOPO‐T  were  used  to  construct  the  gene 

encoding TP12T (~112 kDa). Vector pMTL23‐P8T was digested with DraIII (5´ to the P8 

gene) and desphosphorylated and a DraIII/Van91I‐digested P4 block was  inserted to 

yield pMTL23‐P12T. This vector was then digested with DraIII (5´ to the gene P12) and 
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desphosphorylated, and a second DraIII/Van91I‐digested T block was inserted to yield 

vector pMTL23‐TP12T. TP12T  fragment was  then cloned  into P. pastoris expression 

vector  pPIC9  (Invitrogen)  via  XhoI/EcoRI.  TP4T,  TR4T,  TP8T,  TR8T  and  TP12T  DNA 

sequences  (and  translated  amino  acid  sequences)  have  been  deposited  in  the 

GenBank under acession numbers EU834227‐EU834231. The expression vectors were 

linearised with SalI and transformed into the his4 GS11526 strain. Transformation and 

strain selection of transformants was as described previously21. 

Media composition 

Minimal glycerol medium contained: 1 % glycerol, 1.34 % YNB and 0.4 mg/l biotine. 

Fermentation  basal  salts medium  contained,  per  l:  26.7 ml  H3PO4  85  %,  1.175  g 

CaSO4.2H2O,  18.2  g  K2SO4,  14.9  g MgSO4.7H2O,  4.13  g  KOH,  40.0  g  glycerol.  Trace 

elements  contained  (PTM1),  per  l:  6.0  g/l  CuSO4.5H2O,  0.08  g/l  NaI,  3.0  g/l 

MnSO4.1H2O, 0.2 g/l Na2MoO4.2H2O, 0.02 g/l H3BO3, 0.5 g/l CoCl2, 20 g/l ZnCl2, 65.0 

g/l FeSO4.7H2O, 0.2 g/l biotin, 5 ml H2SO4 

Pilot scale fermentation 

P. pastoris  strains were  cultivated  in  a  stainless  steel  reactor  (Applikon,  Schiedam, 

The Netherlands) with a total volume of 140  ls, 39.1 cm  inner diameter and 114 cm 

height)  and  a working  volume  of  100  ls,  and  a  d/D  ratio  of  0.358  (ratio  of  stirrer 

diameter to vessel diameter). Probes and sensors were connected to the bioreactor 

to  measure  temperature,  pH,  dissolved  oxygen,  foam  and  methanol.  The 

fermentations were run as a 3 phase process as follows. First, the fermentation was 

initiated by inoculating the fermenter containing 50 ls of basal salts medium with 8.4 

% [vol/vol] of a pre‐culture grown  in minimal glycerol medium for 24 h at 30 °C and 

250  rpm  in  baffled  flasks.  The  temperature was  controlled  at  30  °C,  the  dissolved 

oxygen  (dO2)  was  maintained  at  20‐30  %  saturation  and  controlled  by  the 

proportional integral derivative (PID) cascade controller, which automatically adjusts 

the  stirrer  speed,  the  airflow    rate  (max 20  l/min)  and  the pressure  (overpressure 

0.08‐0.8  bar).  The  pH  was  set  at  3.0.  Throughout  the  fermentation,  ammonium 

hydroxide  solution  (30  %)  was  used  to  adjust  the  pH  and  compensate  for  the 
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acidification brought about by  the metabolic activity of  the yeasts. The airflow was 

set  at  0.16  l/(min∙l)  (i.e.  per  l  of  initial  volume)  and  antifoam  was  delivered  as 

required. PTM1 trace elements were added (0.44 % of the initial medium volume) to 

the fermentation broth 2h after inoculation. 

When the glycerol in the batch medium was consumed by the cells, as indicated by a 

sharp  increase  of  dO2  concentration  (dO2  spike),  the  glycerol  fed‐batch  phase was 

initiated.  This  occurred  approximately  25  to  31  h  after  the  beginning  of  the 

fermentation by pumping a 50 % (v/v) glycerol‐water feed, supplemented with 12 ml 

PTM  trace elements per  l of mixture. The  initial  feed  rate was 17.7 ml of glycerol‐

water mixture per hour per l of initial medium and after 1 h the feed rate was linearly 

decreased from 17.7 to 0 ml/h in the course of 3 h. A cumulative amount of 35.4 ml 

per  l  of  initial medium  of  glycerol‐water mixture was  added  to  the  broth.   At  the 

beginning of  the  glycerol  fed batch phase,  the  airflow was  set  to 4  l/min  (per  l of 

initial volume).  

The methanol  fed batch phase  (induction phase) was started 1 h after  the glycerol 

fed‐batch  had  been  initiated.  First  a  fixed  amount  of methanol was  added  to  the 

culture medium  to a  final concentration of 0.15 %  (vol/vol)  (per  l of  initial medium 

plus  inoculum)  in order to relate the signal of the methanol sensor to the methanol 

concentration  in the fermentation broth. Subsequently, the methanol concentration 

in  the broth was  fixed at  the  set value by controlling  the methanol pump with  the 

help of the methanol sensor (Raven Biotech stand‐alone Model 2.1). The air stream 

was  enriched  with  10  %  pure  oxygen  (relative  to  saturation  with  air)  and  was 

controlled  by  the  agitation  speed  (maximally  700  rpm)  through  the  PID  cascade 

controller. The addition of methanol automatically  started when  the cells began  to 

consume methanol after  consumption of  the  remaining  glycerol. The  fermentation 

was terminated ~ 95‐110 h after  inoculation, usually when the stationary phase was 

reached, as indicated by a strong decrease in base and methanol consumption. 
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Pilot scale purification 

Previous  to  the  harvest,  the  pH  of  the  fermentation  broth was  increased  to  8  by 

adding ammonium hydroxide,  so  as  to  allow precipitation of medium  salts. During 

this process, the temperature was decreased to 20 °C, the pressure was released and 

de  agitation was  set  to100  rpm.  Cell  removal was  done  by microfiltration  using  a 

cross‐flow  filtration  unit  equipped  with  a  flat‐plate  microfilter  (SmartFlow 

Technologies,  Optisep  11000,  5  m2,  0.22  µm)  mounted  in  a  stainless  steel  filter 

holder.  The  extracellular  fluid  was  collected  into  a  1500  l  stainless  steel  vessel 

previously heat‐sterilised and cooled  to 4  °C. The  cell broth was  concentrated  to a 

maximum of 30  ls and the concentrated cell broth was washed (diafiltrated) several 

times  with  demineralised  water  using  the  same  filter,  while  the  cells  were 

continuously pumped through the filter and back  into the bioreactor,. The final cell‐

free broth was 300 ls. The secreted collagen‐inspired polymer was then precipitated 

from the cell‐free broth by adding ammonium sulphate up to 50 % saturation while 

gently stirring (60 rpm), followed by  incubation overnight at 4 °C. The next day, the 

slurry with  the precipitated product was microfiltrated using  the mentioned  cross‐

flow  filtration  unit  equipped  with  a  fresh  flat‐plate  microfilter  (SmartFlow 

Technologies, Optisep 11000, 5 m2, 0.22 µm). The retentate with  the protein  flocks 

was  concentrated  approximately  10  times,  subsequently washed  (diafiltrated)  two 

times with 50  l of water saturated with 50 % ammonium sulphate (to avoid protein 

dissolution in this step) and finally concentrated to a total volume of 30 ls and diluted 

by adding 250  l of demineralised water, so as to dissolve  the polymer product. The 

temperature was  increased  to 45  °C  for approximately 15 min  to melt possible gel 

structures  and  the  solution  was  stirred  at  100  rpm.  The  temperature  was  then 

decreased to 20°C and the stirring continued until all the protein was dissolved. The 

permeate  resulting  from  the ammonium  sulphate precipitation  steps was  stored  in 

cubic vessels of 1 m3  and analysed for its protein content by SDS page before being 

discarded.  
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The  above‐described  ammonium  sulphate  precipitation  and microfiltration  of  the 

precipitated  protein  polymer  was  repeated  once  more,  after  which  the  final 

resuspended protein pellet was desalted by ultrafiltration  (SmartFlow Technologies, 

Optisep 11000, 10 m2, PES 5 kDa cut off). During this procedure the protein solution 

was  diafiltrated  with  demineralised  water  until  the  conductivity  of  the  permeate 

emerging from the filter unit was lower than 100 µS. A final ‘dead‐end’ microfiltration 

with  a  disposable  Pall  filter  (Supor  Acropale  200,  0.2  µm)  served  to  remove  any 

possible  remaining  contaminations.  The  microfiltered  product  was  lyophilised.  In 

view of potential  contaminations  stemming  from  the ultrafiltration  step, enhanced 

purity was ensured by carrying out a second purification of the concentrated product 

in the laboratory. This would not have been necessary if we would have disposed of a 

completely  closed,  sterile  system.  Thus,  the  protein was  resuspended  again  after 

lyophilisation  in 4  l of Mili‐Q and precipitated  twice by addition of dry ammonium 

sulphate to 50‐60 % saturation, 20 min. centrifugation in a SLA‐3000 rotor (Sorvall) at 

10000 rpm, 4 °C and dissolution of the pellets  in the same amount of milli‐Q water. 

Finally,  40  %  (vol/vol)  ethanol  was  added  to  the  resuspended  pellet.    After 

centrifugation  in a Sorvall 3000 rotor at 10000 rpm,  (4 °C) the pellet was discarded 

and ethanol was added to the supernatant to a final concentration of 80 % (vol/vol). 

The  protein  pellet  obtained  after  centrifugation was  air  dried  dissolved  in milli‐Q, 

microfiltered using a Pall filter (Supor Acropale 200, 0.2 µm) and lyophilised. 

SDS‐PAGE analyses and densitometry 

Fermentation supernatants and pure products were analysed by SDS‐page using the 

NuPAGE Novex system (Invitrogen), with 10 % Bis‐Tris gels, MES SDS running buffer 

and  SeeBlue  Plus2  pre‐stained  molecular  mass  markers.  Gels  were  stained  in 

Coomassie  SimplyBlue  SafeStain  (Invitrogen)  and  distained  in  MQ  water. 

Densitometric quantification of pure protein standards,  ranging  from 2 µg  to 25 µg 

micrograms, and culture supernatants was done with a Biorad GS‐800 densitometer 

and analised using Quantity One computer software. 
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Mass spectrometry 

MALDI-TOF was performed using an Ultraflex mass spectrometer (Bruker). Samples 

were prepared by the dried droplet method on a 600 μm AnchorChip target (Bruker), 

using 5 mg/ml 2,5-dihydroxyacetophenone, 1.5 mg/ml diammonium hydrogen 

citrate, 25 % (vol/vol) ethanol and 1 % (vol/vol) trifluoroacetic acid as matrix. 

Measurements (20 Hz) were made in the positive, linear mode, with the following 

parameters: ion source 1, 20000 V; ion source 2, 18450 V; lens, 5000 V; pulsed ion 

extraction, 550 ns. Protein Calibration Standard II (Bruker) was used for external 

calibration. 

Rheology 

An Anton Paar Physica MCR301 rheometer, equipped with a stainless steel CC17 

Couette geometry, gap size: 0.71 mm, bob radius: 8.3 mm, and sample volume of 3 

ml, was operated at an angular frequency of 1 Hz and a strain of 0.1 %. Protein 

solutions (3.2 mM in 0.2 M sodium phosphate pH 3.0) were heated to 45 °C, 

introduced in the geometry, and subsequently quenched to 20 °C to induce gel 

formation. Melting of the gel was studied by a stepwise increase (2.5 °C/step) of the 

temperature from 20 to 65 °C over a total time span of 3h. 

 

5.3 RESULTS 

 

Production of collagen-inspired triblock copolymers at 140 l scale 

P. pastoris strains encoding the genes of five extracellular collagen-inspired triblock 

copolymers, i. e. TP4T, TP8T, TP12T, TR4T and TR8T, were grown in a 140 l (100 l 

working volume) bioreactor. All proteins have the same basic design consisting of 

triple helix-forming T end-blocks of 9 repeating units of (Pro-Gly-Pro) and a mid-block 

made of 4, 8 or 12 tandem repeats of highly hydrophilic random coil ‘P’ or ‘R’ blocks. 

The proteins molecular sizes ranged from ~42 kDa to ~114 kDa.  All proteins have 

been previously produced in 3 l bioreactors. 
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Figure  5.1  Profile  of  P.  pastoris  growth  for  TR8T  and  TP12T  fermentations.  Dotted  line 
markes the moment of induction. 
 

High  cell  density  culture  was  scaled  up  using  the  three‐phase  growth  strategy 

previously  developed  at  laboratory  (1‐3  l)  scale  (chapter  2  and  reference27).  The 

whole  fermentation process  lasted  for  ~  95‐110  h  and  comprised  a  glycerol  batch 

phase,  a  glycerol  fed‐batch  phase  and  a methanol  induction  phase.  The  fed‐batch 

cultivation mode was  initiated ~ 25‐31 h after  inoculation by applying  the glycerol‐

methanol mixed feeding strategy mentioned in Materials and Methods. Both biomass 

growth  and  methanol  consumption  were  very  similar  between  different 

fermentations. As  an example,  the  time‐dependent biomass  formation  (Figure 5.1) 

and  methanol  consumption  (Figure  5.2)  are  shown  for  TR8T  and  TP12T 

fermentations. The cell wet weight (CWW)  increased continuously and reached final 

values between 400 and 500 g/l (Table 5.1), and ~ 0.4  l of methanol was consumed 

per litre of fermentation broth. The growth rate during induction phase of both TR8T 

and TP12T  fermentations was 0.021 h‐1. Similar growth rates were obtained  for the 

other pilot scale fermentations. The accumulation of protein in the extracellular fluid 

of  the  fermentation broth was monitored by densitometric analysis of  the product 

band  in SDS‐PAGE of samples of  that cell‐free  fluid,  in comparison  to  references of 

purified,  freeze‐dried  product  loaded  on  the  same  gel.  Figure  5.3  shows  the 

accumulation of protein  in the culture supernatant at several time points for a TR8T 
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fermentation. The accumulation of the target protein in the cell-free broth is 

indicated by a band of increasing intensity at the top of the gel. The protein 

concentration in the fermentation broth reached its maximum at the end of the 

fermentation. Clearly, these protein polymers show an anomalous migration 

behaviour in SDS-PAGE, as been documented in chapter 2 and 3. 
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Figure 5.2 Methanol consumption profile for TR8T and TP12T fermentations 

 

Secretion of recombinant TR8T could be detected after 69 h of fermentation and no 

traces of secreted protein are detected before methanol induction (tind.= 29h). The 

concentration of TR8T in the cell-free broth, determined accordingly, was ~700 mg/l. 

A similar value was estimated for TP4T, TP8T, TP12T and TP12T. 

 

Table 5.1 Fermentation and purification data for TP4T, TP8T, TR4T, TR8T, TP12T 

 

Protein 
Theoretical  

size (kDa) 

Cell wet  

weight (g/l) 

Cultivation  

period (h) 

Protein  

recovered (g) 

Recovery  

(%) 

TP4T 41.7 477 110 49 92 

TP8T 78.2 498 98 53 93 

TP12T 114.6 409 97 44 85 

TR4T 41.7 410 100 53 94 

TR8T 78.2 400 96 46 89 
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Figure 5.3 SDS-PAGE analysis of fermentation medium at several time points and purified 

TR8T. 1-Molecular mass marker, 2- t=25h (before induction), 3- t=45h, 4- t=69h, 5- t=91h, 6- 

t=96h (harvest), and 7- pure TR8T (10 µg). Lanes 1-5 all 15µl 

 

Pilot scale purification of collagen-like protein polymers 

Isolation of heterologous proteins secreted by P. pastoris is relatively simple as 

compared to other recombinant systems, because it grows on chemically defined 

media and does not secrete high amounts of endogenous protein
14, 15

. A clear 

supernatant can be obtained either by centrifugation or by filtration. We opted for 

cross-flow microfiltration. The protein was then purified from the cell-free 

supernatant by two steps of ammonium sulphate precipitation. The protein 

precipitate was separated from the resultant supernatant by cross-flow 

microfiltration and dissolved in demineralised water. Before lyophilisation, the 

product was desalted and concentrated by cross-flow ultrafiltration. Figure 5.4 shows 

a SDS-PAGE analysis of purified TP4T, TP8T, TP12T, TR4T and TR8T. The final recovery 

for each protein from the cell-free broth was 80-95 % (Table 5.1). 

 

 

 

 

 

Figure 5.4 SDS-PAGE analysis of purified proteins. Lanes: 1-TP4T, 2- TP8T, 3- TP12T, 4- TR4T, 

5- TR8T, 6- Molecular mass marker. Lanes 2-6: 20 µg of purified proteins. 
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Caracterisation 

Amino acid analysis revealed a purity of at least 98 % of TP4T, TP8T, TP12T, TR4T and 

TR8T.  The purified proteins were  analysed by  SDS‐PAGE  and  all migrated  as  single 

bands  indicating  a  high  purity  and  intactness  (Figure  5.4). MALDI‐TOF MS  analysis 

confirmed these results for the 42 kDa products (Figure 5.5) and 78 kDa products (not 

shown, with much more noise) and showed that the experimental values are in good 

agreement with the theoretical molecular weights (Table 5.1). It was not possible to 

obtain a clear MALDI‐TOF MS spectrum of TP12T, because  the molecular weight of 

this protein is close to the upper mass limit of the MALDI mass spectrometer used. 

 

 

 

 

  

 

 

 

 

 

Figure 5.5 MALDI‐TOF of purified (a) TP4T and (b) TR4T. Single and doubly charged molecular 
ions are indicated. 
 

Gel  formation by the proteins produced at pilot‐scale was  investigated by means of 

dynamic rheology. As an example, Figure 5.6 shows the development of the storage 

(G’) and loss (G’’) modulus for a 3.2 mM solution of a protein solution. As expected, 

at 20 °C, a physical gel  is formed due to triple helix formation by the collagen‐like T 

end‐blocks.  In  the  beginning  of  the  gelation  process  viscous  properties  are 

predominant  but  within  minutes,  as  the  protein  network  develops,  the  elastic 

properties prevail. A steady‐state (plateau) storage modulus is reached after roughly 

five hours. The protein melting behaviour was also studied by following the decrease 
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of the storage modulus (G’) when the temperature was increased from 20 °C to 65 °C. 

The apparent melting temperature (Tm) of the gel can be deduced from the inflection 

point in the melting curve (inset of Figure 5.6) and was found to be ~ 37 °C. This value 

is  in accordance with the Tm vales obtained for the same protein gel produced with 

lab‐scale procedures (chapter 2). The proteins produced at pilot‐scale thus appeared 

to be structurally  intact and have similar properties  to  the proteins produced using 

lab‐scale procedures. 
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Figure 5.6 Characterisation of TR4T gel by dynamic rheology. Storage (G’) and loss modulus 
(G’’)  as  a  function of  time measured  at 20  °C, 1Hz,  γ= 1 %). The  inset  shows  the  storage 
modulus as a function of temperature 
 

5.4 DISCUSSION 

 

Collagen  and  gelatin  are  important  materials  used  for  several  biomedical 

applications.  But  the  variability  in  composition  and  structure  from  animal  derived 

collagen and gelatin, and  concerns  related with  the possibility  that  these materials 

might  transmit  infectious  diseases,  has  accelerated  the  development  of  synthetic 

strategies  for the production of this class of proteins. P. pastoris  is the best studied 

and most used system  for  the high‐yield production of animal or synthetic collagen 

and  gelatine  at  laboratory  scale2,  28.  To produce  the material necessary  for  clinical 
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studies large amounts of product are required and efficient large-scale production 

strategies are needed. In this study, we meet these challenges by developing a pilot-

scale strategy for the fermentation and purification of a new class of gel forming 

collagen-like proteins. Five different proteins were fermented and purified TP4T, 

TP8T, TP12T, TR4T and TR8T. The pilot-scale production of each of these proteins was 

initiated to foster high productivity of protein for future applications and research. 

For the first time we carried out the fermentation culture in a 140 l fermenter and 

developed an efficient purification procedure for the production of large amounts of 

these proteins. High cell densities were reached (400<CWW<500 g/l of cell wet 

weight) and the expression level for all proteins fermented was ~ 700-800 mg/l of cell 

free broth. Although lower than the expression levels observed by us for lab-scale (3 

l) fermentations (1-3 g of protein/l of cell free broth) (chapter 2 and 3), this level of 

expression is still above several other pilot-scale and large-scale fermentation 

processes using P. pastoris as a host system for the secreted production of 

heterologous proteins where secretion yields are below 500 mg/l
14, 29-32

. Also, the 

final biomass concentration obtained at pilot-scale reached slightly lower values than 

at small-scale (550-600 g/l cell wet weight). Cell growth is especially important for 

secreted proteins, as the concentration of product in the medium is roughly 

proportional to the concentration of cells in the culture
14, 15

. Thus, the lower yield 

obtained directly relates to the lower biomass obtained for the pilot-scale 

fermentations. The protein concentration in the cell-free broth of a small-scale TP4T 

fermentation with a final biomass (CWW) of 400 g/l was estimated to be ~ 600 mg 

protein per l of cell free broth. This value corresponds nicely with the protein 

concentration obtained for the pilot-scale fermentations at similar (final) biomass 

concentration.  Dissolved oxygen is one of the most important factors for P. pastoris 

cell growth and heterologous protein expression. For this reason, the air is enriched 

with pure oxygen to increase productivity in Pichia fermentations
14, 15, 33

. In the lab-

scale fermentations, we enriched the air going into the fermenter with 20 % pure 

oxygen. At pilot-scale it was not possible to enrich the air stream with the same 
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percentage of pure oxygen. The bioreactor cooling system could not cope with  the 

rise in temperature as a result of an increase in O2 consumption. We had to decrease 

the percentage of pure oxygen in the air stream to ~10 % to avoid the temperature to 

rise above 30 °C, which would lead to cell death. 

Harvest of products from P. pastoris fermentations can be done by centrifugation or 

filtration. At pilot scale, we chose  for  filtration rather than centrifugation, while we 

used centrifugation to obtain cell‐free broth from the 3 l fermentations. Please note 

that  filtration  is  always  necessary  for  complete  cell  removal  before  purification. 

Centrifugation results  in significant entrainment, making washing of  the sediment a 

necessity for full recovery of secreted protein. For these reasons we opted for cross‐

flow microfiltration with open channel  filters. The  filtration system provided a high 

capacity and easy operation procedure.  Several  studies34‐36 have  shown  that  cross‐

flow microfiltration  is a reliable and cost‐effective method for harvesting yeast cells 

at  high  cell  density,  with  high  recovery  efficiencies.  Also,  scale‐up  of  cross‐flow 

microfiltration of high‐cell density cultures is simpler to perform (linear scale‐up) than 

other separation methods such as centrifugation36. 

Cross‐flow microfiltration was an equally efficient and easy method to separate the 

precipitated  target  protein  after  ammonium  sulphate  precipitation.  The  total 

recovery  from  the  cell  free  broth  was  approximately  80‐95  %,  higher  than  the 

recovery  estimated  for  small‐scale  process  (~30‐40 %).  The  purified  proteins were 

intact and showed similar performances to that observed for protein produced using 

lab‐scale procedures. 

In conclusion we have successfully developed a pilot‐scale expression and purification 

scheme for the production of collagen‐inspired triblock copolymers. Successful high‐

level expression and secretion was achieved, demonstrating the ability of P. pastoris 

to  produce  designer  gelatins.  The  product was  intact,  had  a  high  purity  and was 

comparable  to  that  produced  using  lab‐scale  procedures.  The  production  scheme 

developed was found to be reproducible and easily scalable. 
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Collagen and gelatin are the main structural functional components in many medical 

and pharmaceutical applications. Curently, the collagen and gelatin used  in most of 

this applications  is derived  from animal  sources, and  their molecular  structure and 

thermal  properties  cannot  be  controlled.  In  recent  years,  there  have  been  efforts 

made  to  replace  animal‐derived  collagen  and  gelatin  by  recombinant  alternatives. 

Although much has been achieved, there are still several questions to be addressed. 

The  recombinant production of non‐gel  forming  collagen‐like proteins  (gelatin) has 

advanced  fast.  Secreted  production  at  high  yields  has  been  realised  using  Pichia 

pastoris  as  a  recombinant  system.  As  opposed,  the  production  of  recombinant 

collagen‐like  proteins with  gel‐forming  capacity  remains  still  a  challenge.  This  is  a 

drawback  since  more  than  80  %  of  animal‐derived  gelatin  is  used  in  medical 

applications requiring gel formation, with the rest being applied mainly  in  injectable 

formulations (non‐gelling gelatin)1.   

Irrespective  of  the  expression  system,  recombinant  gel‐forming  gelatin  may  be 

obtained  by  producing  recombinant  collagen  and  then  denature  it  to  yield 

recombinant  gelatin.  The  production  of  gel‐forming  gelatin  implies  the  use  of  a 

recombinant system capable of performing several post‐translational modifications, 

the  most  important  being  the  hydroxylation  of  proline  residues  into  4‐

hydroxyproline.  The  presence  of  hydroxyproline  residues  is  important  for  the 

formation  and  thermostability  of  collagen‐like  triple‐helices,  but  most  of  the 

microbial  recombinant  systems  do  not  possess  endogenous  prolyl  4‐hydroxylase 

(P4H),  the  enzyme  performing  the  hydroxylation  of  proline  in  collagen  chains. 

Nevertheless, successful production of fully hydroxylated triple‐helical collagen could 

be  achieved  in  P.  pastoris  by  co‐expression  of  heterologous  P4H.  However,  the 

modest  yields  together  with  the  complex  downstream  processing  due  to  the 

intracellular  accumulation  of  protein  make  this  system  unattractive  for 

commercialization.  Possibly  due  to  similar  reasons,  other  reported  recombinant 

systems  used  to  obtain  hydroxylated  triple‐helical  collagen  have  not  advanced 

further.  The  low production  yield of hydroxylated  triple‐helical  collagen,  combined 
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with high process costs, might explain why there have been no reported attempts to 

convert  recombinant  collagen  in  recombinant  gelatin.  Because  the  production  of 

correctly  folded  and  processed  triple‐helical  collagen  in microbial  systems  is  very 

complex,  we  have  adopted  in  this  thesis  an  alternative  approach  to  obtain 

recombinant gel‐forming gelatin without the need for hydroxylation. Gel formation is 

achieved due  to  the self‐assembly of highly  repetitive proline sequences present  in 

artificial collagen‐like polymers. In this way, some of the problems that are  inherent 

to the production of recombinant hydroxylated collagen‐like proteins can be avoided. 

Moreover, we show that these new protein polymers are an attractive alternative to 

animal‐derived  gel‐forming  gelatin  as  they  seem  to  be  suitable  for  biomedical  or 

pharmaceutical applications. 

 

Hydrogels from self‐assembling collagen‐inspired protein polymers 

In chapter 2 of this thesis, we discuss the design of a new class of non‐hydroxylated 

gel‐forming  collagen‐like  proteins.  The  design  of  these  proteins was  based  on  the 

principle that chemically synthesized collagen‐like peptides of the form (Gly‐Pro‐Pro)n 

have  the capacity  to self‐assemble  in stable  triple‐helices. Although, by  themselves, 

they  are  too  short  (5<  n  <20)  to  form  gels,  they  can  potentially  be  used  in  a 

multidomain  system where  they  serve  as  junction  points  in  a  gel  network. When 

designing protein polymers with gel‐forming capacity two, apparently contradictory, 

behaviours  should  be  taken  into  consideration:  interchain  interactions  should  be 

strong enough to keep the network together, and at the same time, the chains must 

allow  solvent  inside  the  network–  otherwise  the  polymer  will  precipitate  from 

solution  rather  than  forming  a  swollen  gel2. Gel‐forming  triblock  protein  polymers 

have been described before, making use of coiled‐coils2‐7, elastin‐mimetic motifs8, or 

the  fluorescent  protein DsRed6  as  the  cross‐link‐forming  domain.  In  this  thesis we 

describe  the design  (chapter 2) of a multidomain  (triblock)  class of proteins where 

the  interchain  binding  domains  consisting  of  (Gly‐Pro‐Pro)n  repeats  (collagen‐like 

domain) are spaced by a long, highly hydrophilic mid‐block that assumes random coil 
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structure in water (Figure 6.1). Because hydroxylation is absent, gel formation is only 

possible due to the high proline content of the end‐blocks.  

 

 

Figure 6.1 Single polypeptide consisting of a random‐coil like mid‐block flanked by collagen‐
like end‐blocks (G‐glycine, P‐proline) 

 

By  changing  the  underlying  DNA  template, we  designed  several  versions  of  these 

triblock copolymers. Those are made of 9 repeating units of (Pro‐Gly‐Pro) end‐blocks 

(T), and mid‐blocks made of tandem repeats of highly hydrophilic 9 kDa blocks (Pn or 

Rn)  assuming  random  conformation:  the  polar  ‘P’  block  with  a  collagen‐inspired 

designer  sequence  consisting  of  (Gly‐Xaa‐Yaa)  repeats  and  the  ‘R’  block with  the 

same  amino  acid  composition,  but  quasi‐random  amino  acid  sequence.  Based  on 

studies  concerning  helix  melting  of  chemically  synthesized  (Pro‐Pro‐Gly)n
9‐11,  we 

tentatively  choose  nine  (Pro‐Gly‐Pro)  repeats  (n=9)  in  order  to  provide  a melting 

point in a biomedical relevant range. 

Given  the  suitability  of  P.  pastoris  as  a  host  organism  to  express  and  secrete 

recombinant collagen‐like proteins, the DNA templates of several versions of triblock 

copolymers were  inserted  in  the yeast genome. P. pastoris  strains  secreted  several 

collagen‐inspired triblock copolymers at high yields and  in  intact  form  (chapter 2, 3 

and 5). Table 6.1 gives an overview of all the proteins fermented and their molecular 

weights. 
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Table 6.1 Collagen‐inspired triblock copolymers fermented  
 

Protein  TP4T TP4T TP8T TR8T TP12T *TR12T 

~Mw (kDa)  42  72  114 

             *Strain available but never fermented 

 

The  same purification procedure, used previously  for  the non‐gelling block protein 

P412, was  successfully  adapted  for  the purification of  these proteins.  The  first  two 

proteins analysed were TP4T and TR4T  (chapter 2). According  to our expectations, 

these proteins  formed  thermoreversible hydrogels  at  room  temperature. We have 

shown that the (Pro‐Gly‐Pro)9 end‐blocks  in TP4T and TR4T are both exclusively and 

near‐quantitatively  involved  in  trimerization,  as  both  the  calorimetric  enthalpies 

obtained with DSC and the van’t Hoff enthalpies obtained with DSC and CD were  in 

good  agreement  with  values  expected  for  free  (Pro‐Gly‐Pro)9
9‐11.  Also  the  CD 

spectrum was consistent with the fact the ~88 % of the protein secondary structure is 

random  coil  and  only  ~12 %  forms  collagen‐like helices.  Since  only  the  end‐blocks 

exclusively  form  triple‐helices,  the molecular architecture of  the gels  is much more 

defined than that of animal‐derived gelatins (Figure 6.2), where triple‐helices can be 

formed  along  their entire  chain. The  cross‐links  in  animal  gelatin  gels have a wide 

variety of lengths, compositions, and melting temperatures.  

(Pro-Gly-Pro)n

All distances between 
knots similar

All knots similar

(Pro-Gly-Pro)n

All distances between 
knots similar

All knots similar

 

Figure 6.2 Schematic representation of hydrogels from collagen‐inspired triblock copolymers 
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Gelling  of  the  collagen‐inspired  triblock  copolymers  was,  as  opposed  to  animal 

gelatins,  independent  of  the  thermal  history,  meaning  that  the  storage modulus 

reached a stable plateau within approximately 5 h, and did not increase significantly 

after  the  temperature  was  lowered.  All  polymers  tested  (chapter  2,  3  and 

reference13)  showed  this  same  gelling  behaviour.  This  difference  between  gels  of 

collagen‐inspired triblock copolymers and animal‐derived is related with the fact that 

in the  former all the helices have the same thermostability, while  in animal‐derived 

gelatins there are helices with different thermal stabilities and when the temperature 

is  lowered  additional  helices  of  low  thermal  stability  are  formed,  contributing 

additionally to the storage modulus.  

Let us now look in more detail to the internal structure of these gels.  

Hydrogel  formation  is driven by  self‐assembly of  the T end‐blocks  that  form  triple‐

helices.  Helices  can  be  formed  either  by  three  T  end‐blocks  coming  from  three 

different chains (junction) or by two of the three T end‐blocks coming from the same 

molecule  (loop).  Only  junction  points  with  all  three  branches  linked  to  the  gel 

network  connect elastically  active  chains, while  loops  and  free  (dangling) ends, do 

not13  (Figure  6.3).  According  to  classical  gel  theory,  the  storage  modulus  is 

proportional  to  the concentration of elastically active chains,  i.e. chains  that bridge 

two cross‐links  in  the gel. The  results obtained by Skrzeszewska et al13 using TR4T, 

indicated that the fraction of chains that are active increases strongly with increasing 

concentration. The same relation was, not surprisingly, observed for TP4T, TP8T and 

TR8T  (chapter 3). The probability  that  three end‐blocks  from  three different chains 

form a  junction point  is higher than the probability of having a  loop (or a free end), 

because at higher concentrations, the chains are closer together. A consequence of 

having  fewer  loops  in  the  system  is  a  higher  number  of  active  chains  effectively 

contributing to the elastic properties of the network.  
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Figure 6.3 Network overview‐ Junctions, loops, and free (dangling) end 

 

Protein concentration is also an important factor influencing the melting temperature 

of these gels. Note that it is the melting temperature of the gels and not the melting 

temperature of the helices which is influenced by polymer concentration. The triple‐

helices  formed  by  the  T  end‐blocks  have  a  distinct melting  temperature  (Tm)  that 

depends only on the number of (Pro‐Gly‐Pro) repeats. In the case of the present gels 

the helices melting  temperature determined using differential  scanning calorimetry 

and circular dichroism spectroscopy was ~41‐42 °C (chapter 2 and 3). The Tm of the 

gels is lower than the Tm of the helices and varies with concentration
13. The gels melt 

when the percentage of end‐blocks involved in trimolecular junctions becomes lower 

than fifty percent, which is always below the Tm of the triple‐helices (chapter 2 and 3 

and reference13), because the fraction of chain ends participating in junctions reaches 

fifty  percent  at  significantly  lower  temperatures  than  the  total  helix  content 

(junctions and loops). This effect is stronger for low polymer concentrations because, 

as  explained  above,  the  fraction of  loops  increases with decreasing  concentration. 

These  conclusions  are based  in  a  theoretical model developed by  Skrzeszewska  et 

al.13.  

We will see in the next section that temperature and concentration are not the only 

parameters affecting the physical‐chemical properties of the network. 

 



 
Chapter 6 

 

123 

Minor structural changes result in dramatic changes in properties 

The design of the synthetic collagen‐like polymers described in chapter 2 as telechelic 

triblocks implies the freedom to vary the length and secondary structure of the mid‐

block, and optionally, by designing end‐blocks with different thermostability, tune the 

melting temperature of the hydrogels. This means that full control over the monomer 

sequence and polymer length allows the correlation between polymer structure and 

function,  and,  in  this  way,  a  tailored  response  of  the  hydrogels  for  a  specific 

application may  be  achieved.  This  is  an  advantage  as  compared  to  animal‐derived 

gelatin  gels, where,  due  to  the  complexity  of  their  composition,  relatively  little  is 

known about gelatin structure and about structure‐properties relationships. 

In order to explore the relationship between the mid‐block size and hydrogel‐forming 

properties  of  these  telechelic  polypeptides with  trimer  forming  collagen‐like  end‐

blocks four versions of this class of polymers, differing only in their mid‐block length 

or amino acid sequence, were studied (chapter 3). For both long and short13 versions, 

the  storage  modulus  (measure  for  the  elasticity  of  the  gels)  showed  a  strong 

dependency upon concentration and  temperature. However,  the  longer versions of 

the  collagen‐like  protein  polymers,  i.e.,  TP8T  and  TR8T  had  considerably  higher 

storage modulus than their shorter counterparts, TP4T and TR4T, at the same molar 

concentration of trimer forming end‐blocks. This difference is related to the fact that 

longer  chains  are  less  likely  to  form  intramolecular  loops,  and  therefore  lead  to  a 

higher  density  of  trimolecular  network‐building  junctions  at  the  same  polymer 

concentration  (chapter  3  and  reference13).  Less  expected  was  the  difference  in 

storage modulus  observed  between mid‐blocks  of  the  same  length  but  different 

amino  acid  sequence,  i.e.,  between  TP4T  versus  TR4T,  and  TP8T  versus  TR8T. 

Although the P and R blocks are both random coils with exactly the same amino acid 

composition,  their  amino  acid  sequence  is  different‐  the  R  block  is  a  ‘randomized 

version’ of the P block amino acid sequence. Fitzkee et al.14 have shown that even a 

polypeptide  chain  that assumes a  random  coil  conformation  still has  locally  folded 

conformations that contribute to the overall flexibility of the chain. Apparently, this 
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leads to a smaller radius of gyration for the P mid‐blocks than for the R mid‐blocks. 

This  effect  is  stronger  for  the  proteins  with  the  shorter  mid‐blocks  because  the 

fraction of loops decreases with increased polymer length (chapter 3). 

We  have  also  observed  that  the  length  of  the mid‐block  had  an  influence  on  the 

melting  temperature  of  the  gels  (but  not  on  the  helices  Tm).  The  temperature  at 

which  50 %  of  the  end‐blocks were  involved  in  junctions  (Tm) was  lower  for  the 

shorter  polymers  than  for  the  longer  polymers,  as  the  loop  fraction  is  higher  for 

polymers  with  shorter  mid‐blocks.  As  a  consequence,  for  the  same  molar 

concentration of end‐blocks, the proteins with  longer mid‐bocks had higher Tm. The 

interpretation  of  the  experimental  results was  supported  by  a model14  developed 

earlier for the networks of these telechelic polymers with trimer‐forming end‐blocks. 

The model calculations correlated well with the experimental data showing that the 

well‐defined (only one single type of cross‐link is formed) multiplicity of the network 

of  this  particular  class  of  hydrogels  enables  the  prediction  of  the  complete 

viscoelastic behaviour of the network when the polymer structure is well known. Our 

results  suggest  that,  by  controlling  the  structure  of  the  present  type  of  hydrogel‐

forming polymers  their physical‐chemical properties can not only be controlled and 

predicted but also changed in order to match a variety of different applications 

In  chapter 3 we have only explored  the effect of mid‐block  length and amino acid 

sequence in the viscoelastic behaviour of the networks. However, further research is 

necessary, to understand how the introduction of another type of block might affect 

the networks. For  instance,  the  introduction of charged or hydrophobic blocks may 

change  the  intermolecular  interactions  between  mid‐blocks,  by  attraction  or 

repulsion, and  thus affect drastically  the viscoelastic behaviour of  the networks.  In 

that scenario the present model would not be valid, new parameters would have to 

be included.  
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Applications 

Numerous  applications  have  been  proposed  and  investigated  for  self‐assembled 

hydrogels. There have been a wide‐range of studies focused on the development of 

controlled release drug delivery systems using this material15‐20, especially because of 

the capacity of hydrogels to preserve the structure and functionality of incorporated 

drugs,  particularly  pharmaceutical  proteins,  and  because  they  are  usually  well‐

tolerated by living tissue21, 22.  

It  is  generally  accepted  that  one  of  the  prerequisites  for  further  progress  in  the 

design  of  drug  delivery  systems  is  the  creation  of  macromolecular  carriers  with 

precisely defined structure and properties that match a physiological process15.  It  is 

for  this  reason  that  stimuli‐responsive  hydrogels  are  of  significant  interest.  These 

hydrogels can undergo volume and phase transition induced by minor changes in the 

environment,  such  as  temperature  and  pH.  The  present  hydrogels  from  collagen‐

inspired triblock copolymers belong to such a class of materials because they undergo 

phase transition  in response to temperature changes. As opposed to animal‐derived 

gelatin, used often as a delivery system,  they have a defined molecular weight and 

predictable physical‐chemical properties (chapter 2 and 3). 

So  as  to  establish  the  potential  applicability  of  these  materials  as  drug  delivery 

matrices,  temperature,  polymer  concentration,  and  the  length  of  the  random  coil 

mid‐blocks  of  the  recombinant  polymers  were  varied  (chapter  4).  The  time‐

dependent  release  of  entrapped  protein  from  TR4T  and  TR8T  hydrogels  was 

investigated  in  vitro,  along with  the  time‐dependent  erosion  of  the  gels.  The  gels 

showed  a  continuous  and  quantitative  release  of  the  entrapped  protein  by  a 

combined  mechanism  of  erosion  and  diffusion.  The  kinetics  and  relative 

predominance  of which  could  be  tailored  by manipulating  the  concentration  and 

design  (i.e.  the  length) of  the  collagen‐like polymer. The  results  suggest  that  these 

hydrogels  are  attractive  protein  delivery  systems  because  they  did  not  appear  to 

induce aggregation of entrapped protein, and finally released 100 % of the entrapped 

protein  in  soluble  form;  and  they  are  not  chemically  cross‐linked,  but  self‐
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assembling13, 23, and can be degraded into free amino acids without leaving a trace in 

the body. In addition, their design as telechelic triblock  implies that the erosion and 

melting behaviour can be tuned by varying the length and secondary structure of the 

mid‐block and optionally, by designing end‐blocks with different thermostability.  

The hydrogels used  in  the study described  in chapter 4 have melting  temperatures 

close to ~37 °C (chapter 2 and 3). At this temperature the gels erode rather quickly 

(1‐2  days  depending  on  the  concentration  used).  For  this  reason  the  controlled 

release  experiments  were  mainly  preformed  at  20  °C.  At  this  temperature  the 

hydrogels  were  stable  over  two  weeks  allowing  the  study  of  their  erosion  and 

controlled  release  kinetics.  But  controlled  delivery  applications  require  hydrogels 

stable at physiological  temperature over extended periods of  time  (several weeks). 

The future use of this hydrogels as controlled release systems depends greatly upon 

the possibility of increasing their thermostability by increasing the number of Pro‐Gly‐

Pro)  repeats. However,  there might be a  limitation on  the number of  (Pro‐Gly‐Pro) 

repeats  that  can be added. Not only  the amino acid  sequence might become  very 

repetitive  leading  to  translational  problems  in  the  cell, which might  result  in  low 

yields or no expression at all; but also end‐blocks with higher thermostability (melting 

temperature) might induce trimer formation inside the yeast cell leading to secretion 

problems.  The  expression  and  production  of  collagen‐inspired  triblock  copolymers 

with longer end‐blocks is currently being addressed in another project. 

Another  important  issue  in  developing  controlled  release  systems  for  protein 

pharmaceuticals  is  the  preservation  of  structure  and  activity  of  the  incorporated 

protein,  during  and  after  casing.  The  incorporation  of  the model  protein  into  the 

collagen‐inspired  hydrogels  was  done  at  ~42  °C.  Below  this  temperature  gel 

formation occurs almost  instantaneously not allowing a uniform distribution of  the 

model  protein  in  the  network.  Many  pharmaceutical  proteins  might  loose  their 

activity  or  structure  at  this  temperature.  Future  in  vitro  studies  are  necessary  to 

investigate  the  influence of  the gel preparation procedure, as well as other  factors 
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such as mid‐block characteristics (charge, isoelectric point, etc.), on the bioactivity of 

the incorporated drugs.  

 

Production in P. pastoris and process scale‐up 

The development of efficient large‐scale production processes can be a critical factor 

in  whether  or  not  a  relevant  pharmaceutical  material  is  available  in  sufficient 

amounts to be used for application studies and eventually enter human clinical trials 

and  the marketplace.  In  chapter  5  we  describe  the  development  of  a  pilot‐scale 

process  for  the  fermentation  and  purification  of  this  new  class  of  gel  forming 

collagen‐like  proteins.  The  procedures  used  for  lab‐scale  fermentation  (3  l 

bioreactors) and purification provided the basis for the development of a pilot‐scale 

fermentation and purification  scheme. P. pastoris  strains were grown  in a 140  litre 

bioreactor.  The  fermentation  culture  reached  high  cell  densities,  and  all  proteins 

fermented  (proteins  in  table  6.1) were  efficiently  expressed  and  secreted  into  the 

fermentation  medium  at  a  concentration  of  ~700‐800  mg/l  of  cell  free  broth. 

Although lower than the expression levels observed for lab‐scale fermentations (1‐3 g 

of protein/l of cell free broth) (chapter 2 and chapter 3), this level of expression is still 

above  several  other  pilot‐scale  and  large‐scale  fermentation  processes  using  P. 

pastoris  as  a  host  system  for  the  secreted  production  of  heterologous  proteins, 

where secretion yields are below 500 mg/l24‐28. 

The downstream processing used allowed a good  recovery and protein with a high 

purity and similar performance to those obtained at lab‐scale. Both fermentation and 

downstream  processing  processes  and  equipment  chosen  support  linear  scale‐up 

under  good manufacturing  practices  (GMP).  Furthermore  the  use  of  P.  pastoris  is 

ideal  for  the  production  of  proteins  with  pharmaceutical  or  medical  relevance 

because  the  medium  components  are  inexpensive  and  defined,  and  this  yeast 

secretes  low  amounts  of  endogenous  proteins  facilitating  purification  of  secreted 

recombinant proteins. The effort  to generate  certified production  is  low  compared 
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with other expression systems, where media components or by-products of the 

expression organisms can give rise to purification problems
29, 30

.  

The good productivity and efficient downstream processing shown in chapter 5 

provide a promising perspective towards a potential further scale-up to industrial 

production of these proteins. In fact, the pilot-scale scheme presented here could be 

readily translated to large-scale without need for further development. However, 

additional research may be necessary to improve yield, since this might be a 

bottleneck when producing enough material for future clinical applications and, 

ultimately, commercialization.  

As pointed out in chapter 5 a possible reason for the lower yield at pilot-scale as 

compared to lab-scale, was a decrease in dissolved oxygen inside the fermenter. 

Dissolved oxygen is often a limiting factor when a high growth rate is reached. This is 

even more critical in larger fermenters, because the oxygen can be depleted in some 

area of the reactor. Additionally, dissolved oxygen is one of the most important 

factors for P. pastoris cell growth and heterologous protein expression.  For this 

reason, the air is enriched with pure oxygen to increase productivity in Pichia 

fermentations 
27, 30, 31

. In the lab-scale fermentations, we enriched the air going into 

the fermenter with 20 % pure oxygen. At pilot-scale it was not possible to enrich the 

air stream with the same percentage of pure oxygen. The bioreactor cooling system 

could not cope with the rise in temperature as a result of an increase in O2 

consumption. We had to decrease the percentage of pure oxygen in the air stream to 

~10 % to avoid the temperature to rise above 30 °C, which would lead to cell death. 

Further investigation should be done using a more efficient cooling system in order to 

be able to increase the percentage of pure oxygen in the air stream. 

There are several other fermentation factors that can be modified in standard 

fermentation protocols to improve yield. Temperature and pH are two important 

fermentation parameters often influencing the yield of secreted proteins. Changes in 

standard protocols to both of these parameters in several P. pastoris fermentations 

have shown to positively influence yield and/or solubility of recombinant proteins in 
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the  fermentation medium31‐35. We  have  carried  out  at  lab‐scale  two  independent 

fermentations where  the  pH  and  temperature were  altered.  The  pH was  set  to  6 

instead of 336, and the temperature to 20 °C37  instead of 30 °C.  In both cases there 

was no visible  improvement  in terms of protein yield. In particular the fermentation 

run at a lower temperature resulted in a significantly lower protein yield. From this it 

can  be  conclude  that  the  pH  and  temperature  conditions  chosen  for  the 

fermentations are already optimum and no  further  improvements may be achieved 

by altering these factors. 

Another  way  of  optimizing  protein  expression  in  P.  pastoris  is  by  isolation  of 

multicopy expression  strains,  i.e.,  strains  that  contain multiple  integrated  copies of 

the required gene27, 38. There are several studies were the increase in copy number of 

a gene could drastically enhance  the expression  levels of  recombinant proteins39‐43. 

However,  it should be  taken  in consideration  that  there  is an optimal copy number 

for a maximal protein production43, and a  systematic method  should be applied  to 

obtain efficient and stable high copy recombinant P. pastoris strains. 

 

Final Conclusions and future prospects 

Over  the  course of  this project we designed,  and produced  successfully  in  yeast  a 

novel  class  of  gel‐forming  collagen‐inspired  triblock  copolymers.  Additionally, 

important steps have been taken in their characterization and potential application as 

drug  delivery  systems.  The  work  described  here  demonstrates  these  gel‐forming 

proteins are good  candidates  to  replace animal‐derived gelatin. As opposed  to  the 

latter, they have a defined molecular composition and predictable physical‐chemical 

properties.  Importantly,  they  form  gels with  a molecular  architecture  that  is much 

more  defined  than  that  of  traditional  gelatins,  allowing  a  thorough  study  of  their 

structure and structure‐function relationships. 

Future studies should focus in exploring the tailorability of these protein polymers for 

a  diverse  range  of  pharmaceutical  and medical  applications. We  have  shown  that 

these  gels  are  good  candidates  for  drug  delivery.  However,  the  introduction  of 
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different  blocks  with  other  characteristics  and  functionalities  will  create  new 

possibilities and business opportunities. For example, the present hydrogels might be 

used  as  growth  scaffolds  for  tissue  formation,  and,  at  the  same  time,  act  as  a 

repository for various growth factors to facilitate tissue regeneration. The porosity of 

such  scaffolds  could  be manipulated  by  varying  polymer  concentration  and/or  the 

length  of  the  mid‐blocks.  Furthermore,  the  insertion  of  specific  cell  binding 

sequences in the mid‐blocks could strongly enhance cell viability and proliferation in 

such scaffold, as has been observed for dextran‐based hydrogels functionalised with 

certain  peptide  sequences44.  Also,  these  hydrogels  could  be  used  to  immobilize 

enzymes  and  cells,  or  be  developed  as  in  situ  delivery  systems  for  applications  in 

cancer  therapy.  Another  possibility  is  to  insert  mid‐blocks  with  another  type  of 

folding pattern, or different stimulus responsiveness, e. g. pH responsive mid‐block, 

which can lead to various functional materials.  

For  the  further  development  of  the  present  collagen‐inspired  self‐assembling 

hydrogels  as  biomaterials,  in  vivo  studies with  therapeutic  relevant  proteins,  and 

biocompatibility and  cytotoxicity  studies need  to be performed. This would  further 

enhance the potential application of these hydrogels in humans as controlled delivery 

systems  or  as  scaffolds  in  tissue  engineering  applications.  In  particular, 

biocompatibility is a critical issue for the use of these materials in humans. One of the 

mid‐blocks  presented  here  showed  favourable  biocompatibility,  as  compared  to 

animal products  in blood applications45, and  the  capacity  to attract human  cells  in 

culture46.  These  results  suggest  these  hydrogels  are  not  expected  to  induce 

immunogenetic responses.  In addition, their structural design as triblocks allows for 

example  changes  in  the  mid‐block  amino  acid  sequence  to  further  enhance 

biocompatibility, e.g., by replacing it for a human amino acid sequence. 

The development of new applications is more liable to be directed to the biomedical 

field because of their high added value and the need for safe and reliable alternatives 

to animal‐derived collagen and gelatin. In the long run, as the microbial recombinant 
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production develops and becomes progressively  cheaper, even  some  technical and 

food applications might become feasible.  

The contents of  this  thesis provide a good starting point  for  future development of 

this novel class of hydrogel forming collagen‐like proteins. 
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Collagens are the most abundant proteins in the animal and human body. Based on their 

structural role and compatibility within the body, collagen and gelatin (denaturated and 

partially  degraded  collagen)  are  a  commonly  used  biomaterial  in  several medical  and 

pharmaceutical applications. However,  the variability  in composition and  structure of 

animal‐derived collagen and gelatin presents a  significant challenge  for  those using 

these proteins in medical applications. This is not the only concern related with the use 

of these materials in medicine. The potential presence of infectious agents, such as virus or 

prions, in collagen and gelatin derived from animal sources, and the possibility of inducing 

immunogenic reactions, poses a risk for patients receiving the medical product. In recent 

years, the biomedical relevance of collagen and gelatin and the advances in recombinant‐

based  production  systems  have motivated  scientists  to  find  recombinant  alternatives. 

Although much has been achieved there are still several questions to be addressed. The 

recombinant production of non‐gel forming collagen‐like proteins (gelatin) has advanced 

fast.  Secreted  production  at  high  yields  has  been  achieved  using  Pichia  pastoris  as  a 

recombinant  system.  On  the  contrary,  the  production  of  recombinant  collagen‐like 

proteins with gel‐forming capacity remains still a challenge. This  is a drawback since gel 

formation  is  required  in many medical  applications  using  these  proteins  as  functional 

component. 

Recombinant (microbial) production of gel‐forming collagen‐like proteins presents various 

difficulties, not  least because of the many post‐translational modifications required for a 

recombinantly  produced  collagen  molecule  to  achieve  a  fully  folded,  triple‐helical 

conformation. The basis of the thermoreversible knots in gelatin is the characteristic triple‐

helical  structure  of  collagen.  It  consists  of  repetitive  (Gly‐Xaa‐Yaa)  triplets,  commonly 

containing approximately 22 % proline. At this  low proline content, triple helices are not 

thermally stable above 5‐15 °C unless, as occurs in animals, the prolines in the Yaa position 

are post‐translationally modified to 4‐hydroxyprolines by the enzyme prolyl‐4‐hydroxylase 

(P4H).  Because microbial  hosts  generally  lack  this  enzyme,  recombinant  production  of 

thermally  stable  triple‐helical  collagen and gelatin  requires  coexpression of mammalian 

P4H. 
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The  aim  of  this  thesis  is  the  design  and microbial  production  of  collagen‐inspired 

designer polymers, forming hydrogels without the need for prolyl‐hydroxylation, and 

with  pre‐defined  and  tunable  physical‐chemical  properties.  The  yeast  P.  pastoris  is 

used as microbial factory for the production of these proteins. In addition, we show that 

these new protein polymers  are an  attractive option  to  animal‐derived  gelatin  as  they 

appear to be potentially suitable for biomedical or pharmaceutical applications. 

 

In  chapter  2 we  describe  the  genetic  design,  recombinant  production  and  preliminary 

characterisation of a new class of ABA triblock copolymers forming thermosensitive gels 

with  highly  controllable  and  predictable  properties.  Gel  formation  is  obtained  by 

combining proline‐rich  collagen‐inspired  (Pro‐Gly‐Pro)9 end‐blocks  (T), which have  triple 

helix‐forming  ability, with  highly  hydrophilic  random  coil  blocks  (Pn or Rn)  defining  the 

distance between  the  trimer  forming end‐blocks. We  report  the secreted production  in 

yeast at several g/l of two such non‐hydroxylated ~42 kDa triblock copolymers, TP4T and 

TR4T. The dynamic elasticity  (storage modulus) of  the gels  from  these collagen‐inspired 

triblock  copolymers was  comparable  to  animal  gelatin with  a  similar  content  of  triple 

helices.  In  favourable  contrast  to  traditional  gelatin,  the dynamic  elasticity  of  the  new 

material,  in  which  only  one  single  (well‐defined)  type  of  cross  links  is  formed,  is 

independent of the thermal history of the gel. The novel hydrogels have a ~37 °C melting 

temperature. However,  the  thermostability of  the hydrogels  formed by  these polymers 

can be tailored by changing the number of (Pro‐Gly‐Pro) repeats. The concept allows to 

produce custom‐made precision gels for biomedical applications. 

 

In chapter 3 it was shown that small, but tailored changes in the length of the mid‐block of 

the collagen‐inspired triblock copolymers results  in significant changes  in the viscoelastic 

properties of the hydrogels. We compared 4 different triblock copolymers, differing only in 

their mid‐block  size  or mid‐block  amino  sequence.  The  shorter  versions,  i.e.  TP4T  and 

TR4T, had mid‐blocks made of ~400 amino acids, and their longer counterparts, i.e. TP8T 

and TR8T, ~800 amino acids. These results obtained indicate that the elastic properties of 
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the network are not only a function of concentration and temperature but also of polymer 

length.  The  experimental  results were well  described  by  an  analytical model  that was 

based on classical gel theory and accounted for the particular molecular structure of the 

gels,  and  the  presence  of  loops  and  dangling  ends.  These  results  suggest  that,  by 

controlling  the  structure  of  the  present  type  of  hydrogel‐forming  polymers  through 

genetic engineering  their physical‐chemical properties can be predicted, and  tailored  in 

order to match a specific application 

 

In chapter 4 we explored  the potential of hydrogels  from collagen‐inspired  triblock co‐

polymers as drug delivery systems. We studied the erosion and protein release kinetics of 

two of these hydrogel‐forming polymers,  i.e. TR4T and TR8T, differing only  in their mid‐

block  length  (mid‐block molecular weights  ~37  kDa  and  ~73  kDa). By  varying polymer 

length and concentration, the elastic properties of the hydrogels as well as their mesh size, 

swelling and erosion behaviour can be tuned. We show that the hydrogel networks are 

highly dense and that the decrease of gel volume is mainly the result of surface erosion, 

which in turn depends on both temperature and initial polymer concentration. In addition, 

we  show  that  the  release kinetics of an entrapped protein  is governed by a  combined 

mechanism  of  erosion  and  diffusion.  The  prevalence  of  one  or  the  other  is  strongly 

dependent on polymer  concentration. Most  importantly,  the encapsulated protein was 

quantitatively released demonstrating that these hydrogels offer great potential as drug 

delivery systems. 

 

The development of efficient large‐scale production processes can be a critical factor 

in  whether  or  not  a  relevant  pharmaceutical  material  is  available  in  sufficient 

amounts to be used for application studies and eventually enter human clinical trials 

and the marketplace. In chapter 5 we describe the development of a pilot‐scale process 

for the fermentation and purification of five collagen‐inspired triblock copolymers (TP4T, 

TR4T, TP8T, TR8T and TP12T) with molecular weights ranging from ~42 kDa to ~114 kDa. P. 

pastoris  strains were  grown  in a 140  liter bioreactor using a  three‐phase  fermentation 
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process.  The  fermentation  culture  reached  high  cell  densities,  and  all  proteins  were 

efficiently expressed and  secreted  into  the  fermentation medium at a concentration of 

~700‐800  mg/l  of  cell  free  broth.  The  downstream  processing  principles  elaborated 

previously at lab‐scale were successfully adapted to the larger scale and resulted in 80‐95  

% recovery. The purified proteins were intact and showed a similar performance to those 

obtained  using  lab‐scale  procedures.  The  good  productivity  and  efficient  downstream 

processing (DSP) shown in this study provides a promising perspective towards a potential 

further scale‐up to industrial production of these proteins. 

 

In chapter 6 some of the results obtained in the thesis are highlighted and suggestions for 

further research are given. 

The contents of  this  thesis provide a good starting point  for  future development of 

this novel class of hydrogel forming collagen‐like proteins. 
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