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Preface 

Four years ago when I touched upon the topic of renewable energy, it was already widely 

discussed in China. At that time, China – the biggest consumer of fossil fuels in the world – 

had established a series of policies and had carried out a considerable amount of 

demonstration projects to exploit the renewable energy resources within its territory. 

However, I did not expect it become such a hot topic as it is today. The concepts of “Green 

Energy” and “Low-Carbon Economy” are now involved within the conversations between 

politicians, researchers and the public everyday. Therefore, it is a golden opportunity for me 

to carry out my doctoral research on renewable energy development in China during the 

past four years. I tried to evaluate the performance of renewable energy development in 

China by applying the theories and methodology of policy evaluation in this research. This 

doctoral research could not cover all the aspects of the renewable energy development in 

China due to the limited time and experiences of research I had. But it is already cheerful 

for me to be one of the researchers who study the problem of renewable energy in China 

from a sociologist‟s point of view. 

This research has been carried out in the framework of the “Innovative Methodology 

for Governmental Environmental Audit in China” project, a collaborative research program 

between The Royal Netherlands Academy of Arts and Sciences (KNAW) in the Netherlands 

and Chinese Academy of Sciences (CAS) in China. I am sincerely grateful to the financial 

supports from both KNAW and CAS. 

It is my great honor to be a student of Professor Arthur Mol, chair of Environmental 

Policy Group (ENP), Wageningen University, the Netherlands. He helped me open the 

window of Environmental Sociology. He gave me invaluable supervisions at every stage of 

my PhD program. This doctoral thesis can not come into being without his great enthusiasm 

and angelic patience during the past four years. The doctoral thesis is an important 

milestone of my research career and I will benefit from his supervision in the future. 

I highly appreciate the supervision of Professor Yonglong Lu, head of the 

Environmental Policy and Management Group, Research Institute for Eco-Environmental 

Sciences (RCEES) in CAS, and the director of the Bureau of International Cooperation in 

CAS. He led me the way to the world of scientific research. He encouraged me when I was 

depressed. He enlightened me when I was confused. He helped me get the opportunity to 

study in Wageningen and gave me essential directions in designing and carrying out 
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fieldworks. I have been his student for seven years since the beginning of my Master 

program. I wish I can be his student for the whole lifetime. 

I own many thanks to Dr. Lei Zhang. She helped me through the most difficult stage 

designing the research. She commented on the research proposal, articles and all chapters of 

my doctoral thesis. She, like an elder sister, also took care of me in daily life. The delicious 

foods from her made my life in Wageningen much more joyful. 

I am grateful to Nathan Johnson, who accompanied me on the fieldwork in Shandong 

Province. I also want to thank Mr. Li Sun, Ms. Min Xu, Mr. Yuping Dong, Mr. Zongming 

Li, Mr. Guangli Zhang, Mr. Shupeng Zhuang, Mr. Zhisheng Xia, Mr. Guoguo Zhang, and 

all the other people who helped me during my fieldworks. 

I want to extend my appreciations to all the friends, with whom I enjoyed the good 

time in Wageningen: Drs. Yuan Zhang, Dr. Er Ah Choy, Drs. Christopher Mahonge, Drs. 

Pham Van Hoi, Dr. Le Van Khoa, Dr. Lei Xie, Drs. Synara Sanchez, Drs. Dan Liang, Dr. 

Lijin Zhong, Drs. Shuqin Jin, Drs. Tie Chen, Drs. Jia Li, Drs. Chaohui Zheng, Drs. Yan Wu, 

Drs. Feng Li, Dr. Zhongkui Sun, and Mr. Yiding Wang. 

I also want to extend my appreciations to the colleagues in RCEES: Dr. Yajuan Shi, Dr. 

Hongchang Ren, Dr. Tieyu Wang, Dr. Xiaolong Wang, Dr. Wei Luo, Dr. Hong Zhang, Dr. 

Guizhen He, Dr. Guang Wang, Dr. Yamei Sun, Dr. Wentao Jiao, Drs. Jing Geng, Drs Chunli 

Chen, Drs. Wenyou Hu, Drs. Jing Li, Drs. Li Li, Drs. Haiqian Li, Drs. Yan Feng, Mr. Xiang 

Zhang, and Ms. Jingjing Yuan. I spent a lot of unforgettable days with them. 

Many thanks go to all ENP colleagues and fellow PhD candidates. I learnt a lot from 

the courses, colloquiums and discussions with them. Special thanks go to Ms. Corry 

Rothuizen, who was always being there and helping me. I am particularly grateful to Drs. 

Sarah Stattman and Mr. Alexey Pristupa for their kindly helps on the Dutch translation and 

the arrangement of thesis defense. 
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am in great debt to my wife Feiyue Yao, for her love, understanding and endurance over the 

years. 
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Chapter 1    Introduction 

“China's economy has a high energy intensity. The country uses 20-100 percent more 

energy than OECD countries for many industrial processes. Automobile standards lag 

behind European standards by ten years. And China has 20 of the world's 30 most polluted 

cities, largely due to high coal use and motorization.” 

– World Bank (2007) 

1.1 Background Information 

China is an economy in transition with a population exceeding 1.3 billion and economic 

growth over the past three decades averaging around 8%. China‟s demand for energy has 

surged to fuel its rapidly expanding industrial and commercial sectors as well as households 

experiencing rising living standards. During the last 30 years, not only aggregate but also 

average per capita energy consumption in China has increased sharply (Figure 1.1). China 

is now the second largest consumer of energy products in the world behind the United 

States (Chang et al., 2003; Crompton and Wu, 2005; Fan et al., 2005). According to the 

development objectives for China‟s national economy in 2050, the average annual growth 

rate of energy demand in China will be roughly 2.8% for the coming years (Wang and Lu, 

2002). In other words, its energy demand in 2050 will reach 3.5 times that in 2005.  

However, the production of conventional energy in China cannot significantly increase 

due to the limited reserves. By the end of 2007, in total 3.26×1011 t coal, 2.83×109 t oil and 

3.21×1012 m3 natural gas of recoverable energy reserves had been proven in China. Their 

production lives were 129 years, 15 years and 46 years, respectively
1
. In addition, the 

energy efficiency of China is lower than that of the most advanced countries. World Bank 

(2008) revealed that China‟s energy consumption per unit of GDP in 2007 was 1.160 t sce 

per 104 yuan GDP, 4.5 times higher than that of EU, 3.8 times higher than that of Japan and 

2.4 times higher than that of US. As a result, China became a net energy importer after 

1992 and the gap between energy production and consumption has kept increasing since 

then (Figure 1.2). 

                                                        
1 Source: adapted from China Statistic Yearbook 2008. 



Jingyi Han                                                                         Renewable Energy Development in China 

2 

 

 

Figure 1.2 Energy production and consumption in China  

Adapted from China Statistic Yearbook 2008 
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Figure 1.1 Total and per capita consumption of primary energy in China 

Adapted from China Statistic Yearbook 2008 
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China is a so-called “fossil-fueled civilization” as its energy system demonstrates 

unsustainable patterns of development, characterized by heavy dependence on fossil fuels 

(International Energy Agency, 1999; Lewis, 2007). Coal and oil accounted for 89.2% of 

China‟s total primary energy consumption in 2007 (Figure 1.3). This energy consumption 

structure has a particularly acute impact on the atmosphere in China (Zhou, 1996; Chang et 

al., 2003; Smil, 2003). China has overtaken the United States as the world‟s biggest CO2 

emitter (Vidal and Adam, 2007). Most cities in China are suffering air pollution caused by 

SO2 and NOx emissions from fossil fuel combustion. 

 
It is clear that China is now facing serious challenges as it attempts to meet the rising 

energy demand to fuel its economic growth, at the same time as it strives to reduce its 

reliance on coal and imported oil to relieve the environmental impacts. Previous researches 

suggested developing renewable energy resources as a sustainable solution to these 

challenges. Sorensen (2000) predicted the takeover of fossil and nuclear energy resources 

by renewable energy resources, due to the finiteness of fossil and nuclear energy resources. 

Janssen (2002) analyzed the contribution of renewable energy to energy security, 

Natural Gas

3%

Coal

69%

Crude Oil

21%

Hydro, 

Nuclear and 

Wind Powers

7%

Figure 1.3 Structure of China’s total primary energy consumption in 2007 

Adapted from China Statistic Yearbook 2008 
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environment, economic growth, employment, and trading technologies and services. Smil 

(2003) foresaw an extraordinary scale of transition from conventional fossil fuel to 

renewable energy resources in world energy consumption in the future.  

Renewable energy refers to the energies that are generated from natural resources and 

can be replenished in a short period. Currently bioenergy, wind energy, solar energy and 

hydro energy are widely developed on large scales in the world (Box 1.1). Besides, there 

are also other renewable energy resources such as geothermal and ocean energy, which 

have great energy potential but have not been developed on a large scale. Utilization of 

renewable energy instead of fossil fuels can reduce carbon emissions and subsequently 

clean the air. It also provides benefits in energy security and economic development. 

Therefore, China aims to significantly increase the proportion of renewable energy in its 

domestic energy consumption: 10% by 2010 and 15% by 2020 (National Development and 

Reform Commission, 2007). Renewable energy is of particular importance for China in 

ensuring security of energy supply, transforming to a green economy and alleviating 

climate change effects.  

1.2 Development of Renewable Energy in China 

Development of renewable energy resources in China can be traced to the 1950s, shortly 

after the foundation of the People‟s Republic of China. From 1958 to 1960, in total 41 tidal 

power stations were built in coastal provinces such as Fujian, Guangdong and Zhejiang. In 

1971 the photovoltaic (PV) panels were installed on Dongfanghong-2 Manmade Satellite2. 

However, pressures of energy shortage and energy related environmental pollution at that 

time were not as significant as they are today. Development of renewable energy in China 

remained at experiment level with immature technologies and limited scales for about 30 

years (Chang et al., 2003). 

                                                        
2 Source: China Renewable Energy Website: http://www.cres.org.cn/index.asp, retrieved on March 22, 2009 

http://www.cres.org.cn/index.asp
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Box 1.1 Different types of renewable energy 

 Bioenergy is produced by photosynthesis and stored in biomass, such as trees, 

crops, algae, as well as other organic wastes, in the form of chemical energy. 

Most biomass energy resources are burned directly for cooking and heating in 

rural areas of developing countries. However, it is technically feasible to 

transform biomass into electricity, solid fuel, liquid fuel and gaseous fuel by 

physical and chemical methods that create little buildup of greenhouse gases 

(GHGs) in the atmosphere. Therefore, biomass is regarded as one type of 

renewable energy if it is produced in such clean and sustainable ways. 

 Wind energy is the kinetic energy that is present in moving air. Wind energy is 

widely used for power generation. It is a pollution-free, infinitely sustainable 

form of energy because it does not use fossil fuel, nor does it produce 

greenhouse gasses, or toxic waste. Modern wind power technologies can 

convert kinetic energy that is present in the wind into a more useful form – 

electric power.  

 Solar energy is energy from the sun in the form of heat and light. This energy 

drives the climate and weather, and supports virtually all life on earth. Solar 

energy is the world‟s largest and most important energy resource. For thousands 

of years, human beings have used both heat and light directly from the sun for 

daily life. Modern technologies harness the sun's heat and light for more useful 

ends such as electricity and hydrogen generated by photocatalysis. 

 Hydro energy is the force or energy of moving water. In ancient ages, hydro 

energy was used mainly for irrigation, transportation and operation of various 

machines, such as watermills, textile machines and sawmills. At the end of the 

19th century, human beings started to use hydro energy for electricity generation 

(hydropower). Soon it became the most important renewable energy resource 

used for large-scale electricity generation. 
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China, following some advanced countries, started its nationwide development of 

renewable energy resources from the end of the 1970s and especially after the reform and 

opening-up in 1978. Rising concern of environmental protection3 and the two oil crises in 

1973 and 1979 stimulated China‟s determination to reduce its reliance on coal and imported 

oil. From 1978 to 2000, the Chinese government involved renewable energy development 

into its Five-year Plan and national laws such as the China Electric Power Act in 1995 and 

the China Energy Saving Law in 1998. As a result, renewable energy consumption in China 

increased steadily. About 7 million household biogas pools and more than 70,000 

centralized biogas stations were constructed in China in this period. Two single crystalline 

silicon solar cell production lines were introduced in the mid 1980s. In 1989 China built its 

first grid-connected wind farm in Xinjiang (Zhou, 1996; Lew et al., 1998; Li, 2003).  

From the beginning of the 21st century, the Chinese government used market 

incentives, in addition to command and control management and direct subsidies, to 

stimulate renewable energy production. The Chinese government started numerous 

renewable energy demonstration projects such as Integrated Rural Energy Development 

Program with Rural Economic Development, the China Brightness Program and the China 

Renewable Energy Scale-up Program. Activation of the Renewable Energy Law in 2006 

provided legal authority and created a new era for renewable energy development in China. 

International cooperation via Clean Production Mechanism (CDM) transferred both 

financial and technical resources from developed countries to China. These policies and 

programs resulted in great development of renewable energy utilization, especially small 

hydro, wind power, solar thermal and bioenergy, in China (Figure 1.4). 

In 2007 China invested 12 billion US dollar in renewable energy development, second 

only to Germany‟s 14 billion US dollar. In 2007 the amount of renewable energy utilization 

in China equaled to about 220 Mt sce, which accounted for 8.3% of China‟s total primary 

energy consumption (Howard and Wu, 2008). By the end of 2008, China had the largest 

small hydropower capacity (60 GW), the largest solar water heater installation (140 million 

m2 collector areas), the third largest bio-ethanol production (1.9 billion L), and the fourth 

largest wind power generation capacity (12 GW) in the world. All these data prove the fact 

that China is going to overtake developed countries to be a leading producer and “a pioneer 

leading the way” in developing renewable energy resources (REN21, 2009). 

                                                        
3 Labeled by the United Nations Conference on the Human Environment in 1972 
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1.3 Major Problems of Renewable Energy Development in China 

Above discussion showed the tremendous efforts and great achievements of renewable 

energy development in China. However, there are still some widely discussed problems in 

relation to the implementation of renewable energy in China4. 

First, the policy stimulation is insufficient. Currently the costs for developing most 

renewable energy resources in China are much higher than conventional energies, which 

results in less competitiveness of renewable energy. Therefore, policy stimulation is a vital 

factor to improve renewable energy development in China. However, the renewable energy 

policy framework in China lacks stability and coordination. It can not provide sufficient 

stimulation for long-term development of renewable energy resources. 

Second, the market mechanism is immature. In comparison with western countries, 

China has a relatively shorter history of its market economy. It is still under reform in 

several aspects. In relation to renewable energy development, there lacks a stable market 

                                                        
4 Source: the 11th Five-Year Plan for  Renewable Energy Development  

Figure 1.4 Development of renewable energy installed capacity in China  

(the Year 2000=100) 

Adapted from REN21 (2005; 2009) 
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demand. The markets of most renewable energies are organized by the government. 

Third, the technology R&D capability is weak. Except perhaps for hydropower and 

solar heating, the technological level of renewable energy production is much lower than 

western countries. Most technologies and key equipments are imported from other 

countries. The domestic system of production, quality assessment and labeling of renewable 

energy products falls short. In addition, China lacks experience with renewable energy 

resource investigation. 

1.4 Research Objectives and Questions 

As Barry (1999: 116) argued, “it is not terribly difficult to know what needs to be done, 

though it is of course immensely difficult to get the relevant actors (government and other) 

to do it”. Against the ambitious development planning and fast technology R&D, China is 

surprisingly weak in monitoring and evaluating the performances of renewable energy 

policies, programs and projects. A rich literature has been introducing renewable energy 

resources, policy arrangement and technology innovation in China (Lew et al., 1998; Lin, 

1998; National Energy Laboratory, 2004; Xiao et al., 2004; Li, 2005; Li et al., 2005). 

However, few researches on renewable energy policy implementation and performance 

have been conducted in China. The question whether the objectives of renewable energy 

development in China are reached in an efficient and effective way remains unanswered. 

Against this background, the main objectives of this study are to evaluate the 

performance of renewable energy policies and practices in China. To be more specific, the 

following research questions will be answered through this study: 

 Has the implementation of renewable energy policies and practices in China 

achieved good performance?  

 What are the driving forces behind the successes/failures of renewable energy 

development in China? 

 What reforms can be recommended for further renewable energy policies and 

practices in China? 
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1.5 Organization of Thesis 

This thesis is organized in seven chapters. Chapter 1 has so far overviewed the incentives, 

history and status of renewable energy development in China. In addition, the research 

objectives and research questions have been introduced in this chapter. Chapter 2 estimates 

the total amount of renewable energy resources, and overviews the institutional structure 

and policy framework of renewable energy development in China. Chapter 3 develops an 

analytical framework for performance evaluation of renewable energy development in 

China. This analytical framework is built on theories and methodology of policy evaluation. 

In between the theoretical and empirical parts of this study, there is also a methodological 

section which clarifies the choice of case study research as the major research approach and 

elaborates the methods for data collection. Chapter 4, 5 and 6, in which the designed 

analytical framework is applied in three cases at different administrative levels with 

different renewable energy resources, constitute the empirical part of this study. Chapter 4 

evaluates performance of biomass gasification projects in Shandong to learn lessons for 

rural bioenergy development in China. Chapter 5 assesses onshore grid-connected wind 

farms in Inner Mongolia to find out challenges behind this success story. In Chapter 6 an 

investigation on Solar Water Heater development in Zhejiang is carried out to indicate 

necessary policy revisions and market reforms for solar thermal utilization in China. 

Chapter 7 provides overall conclusions and recommendations for further renewable energy 

development and research in China. 
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Chapter 2    Renewable Energy in China: 

Resources, institutions and policies5 

“By developing local sources of energy such as hydro, wind, solar, geothermal and modern 

biomass including liquid biofuels, countries can create diversified energy portfolios that are 

less vulnerable to wide price fluctuations.” 

-Beijing Declaration6 

Abstract 

China, the largest economy in transition, is making great efforts to increase the proportion 

of renewable energy in its total energy consumption to 15% by the year 2020. However, 

except for the ambitious development targets, the overall picture of renewable energy 

development in China is not much familiar to the external world. How much renewable 

energy resources does China have? Who have the authorities in developing these renewable 

energy resources? What policies have been formulated to support the development of these 

renewable energy resources? In this paper, the authors estimate the amount of various 

renewable energy resources in China by reorganizing and calculating secondary data, and 

analyze the institutional arrangement and policy framework of renewable energy 

development in China from their own point of view. 

Keywords: China; Renewable energy; Overview 

2.1 Introduction 

China has the third largest territory (about 9.6 million km2) and the largest population 

(above 1.3 billion) in the world. Its topography diversifies from mostly plateaus and 

mountains in the west to lower lands in the east. The climate of China also varies greatly 

from the north to the south. Due to its topographical and meteorological characteristics, 

China has plenty renewable energy resources. 

                                                        
5 This chapter contains an article submitted to China & World Economy as Han J., A.P.J. Mol and Y. Lu. Renewable Energy in 

China: Resources, institutions and policies. 
6 The resulting documents of the Beijing International Renewable Energy Conference in 2005 
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In comparison with developed countries such as the United States, the Netherlands 

and Germany, the Chinese government has not yet carried out a systematic assessment of its 

total renewable energy resources and their spatial distribution. Only several fragments of 

this work have been done, e.g. the nation-wide solar energy investigation at the end of the 

20th century, or are just in process, e.g. the nation-wide investigation and assessment of 

agricultural residue resources started in January 2009, through government-supported 

research projects. 

In order to increase renewable energy utilization in its total energy consumption, 

China has built up a regulatory framework of renewable energy development. China has 

reformed its institutions and established new governmental departments to manage 

renewable energy development. Meanwhile a series of renewable energy policies have been 

formulated in succession by the Chinese government since the end of the 1980s. The 

Chinese government also carried out a lot of demonstration programs to promote its 

renewable energy development during this period (Lew et al., 1998; Li, 2003; NREL, 2004; 

Fan et al., 2005). 

This paper aims to estimate China‟s renewable energy resources and to overview 

China‟s regulatory framework in relation to renewable energy development. In doing so, we 

reorganize and calculate secondary data gained from statistical materials, governmental 

reports and documents, as well as scientific publications. We also interview governmental 

departments and research institutes in relation to renewable energy development in China. 

2.2 Renewable Energy Resources in China 

Since the definition of renewable energy is still under debate and there lacks a clear list of 

renewable energy resources, this paper does not aim to calculate the amount of all 

renewable energy resources reserved in China, but to estimate the potential of the main 

renewable energy resources with developed technologies to utilize. These renewable 

energies include bioenergy, wind energy, solar energy, hydro power, geothermal and ocean 

energy. 
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2.2.1 Bioenergy 

Bioenergy is an important energy resource comparable to oil and coal in China. In 2000, 

bioenergy accounted for about 13% of total primary energy consumption in China. Its 

proportion within rural household energy consumption can be as high as 42% (Li et al., 

2001). Currently most bioenergy resources produced in China are directly used in 

inefficient ways for cooking and heating. 

Although no detailed investigation of biomass production has been successfully 

conducted in China, previous studies proved that China was abundant in biomass energy 

resources (Li et al., 1998; Li et al., 2001; Li and Hu, 2003). These studies estimated that the 

energy value of annual biomass production in China was about 600 Mt sce and could reach 

800 to 1,000 Mt sce by 2020. There are five important types of bioenergy resource in China: 

agricultural residues, forestry residues, human and animal manure, municipal solid waste, 

and industrial wastewater. Annual production of each bioenergy resource is estimated as 

follow: 

2.2.1.1 Agricultural residue resources 

Agricultural residue refers to agricultural products‟ residue and processing wastes. Crop 

straw, rice husk, cornstalk and corncob are several good types of agricultural biomass for 

energy generation. Bridgwater (1999) made an experimental research of biomass 

production and stated that “production of crop residues is related to amounts of crop-

products and rates of residues produced from crops”. According to his research, the energy 

value of residue from a specific crop can be estimated by the following formula: 

E=BR × c=G × r × c 

E means the available energy from a specific crop residue;  

BR means the amount of crop residue; 

G means the production of this crop;  

r means the ratio of residue to production of this crop; 

c means energy coefficient of crop residue. 
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Thus, we can estimate that in 2005 total production of agricultural residue in China 

was approximately 708.01 Mt and it could provided 353.26 Mt sce energy (Table 2.1)7. 

Although agricultural residue is also used as important animal feedstock, industrial material, 

and useful fertilizer in China, this estimation shows the great energy potential of 

agricultural residue in China. If all the wasted agricultural residues are used properly, it can 

provide families in rural areas with reliable energy resources.  

 

 

                                                        
7 Li et al. (2005) estimated that China‟s total agriculture residue generation in 2005 is 750.9 Mt, a little higher than the estimation 

made in this study mainly because they took different r values. 

 Rice Wheat Corn Soy- 

bean 

Tuber Cotton Peanut Rape Others 

Area  
(106

 ha) 
28.85 22.79 26.36 12.90 9.50 5.06 4.66 7.28 N/A 

Yield 
(kg/ha) 

6,260 4,275 5,287 1,672 3,650 1,129 3,076 1,793 N/A 

G  
(106

 t) 
180.60 97.43 139.37 21.57 34.68 5.71 14.34 13.05 12.29 

r  
(kg/kg) 

1 1 2 1.5 1 3 2 2 1 

BR  
(106

 t) 
180.60 97.43 278.74 32.36 34.68 17.13 28.68 26.10 12.29 

c  
(t sce/t) 

0.43 0.50 0.53 0.54 0.49 0.54 0.53 0.54 0.50 

E 
(106t sce) 

77.66 48.72 147.73 17.47 16.99 9.25 15.20 14.09 6.15 

Table 2.1 Estimation of crop residue production in China, 2005 

N/A: data not available 

Source: China Yearbook 2006 
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2.2.1.2 Forestry residue resources 

Production of forestry residue in a specific region is even more difficult to estimate than 

that of agricultural biomass. According to studies conducted by the Food and Agricultural 

Organization of the United Nations (2006), only half of forestry products are used for 

industrial products at mills and manufacturing facilities. That is to say, another half, in the 

form of branches, barks, chips and sawdust, can be utilized for their energy value. Results 

of the Sixth National Forest Resource Survey showed that China had in total 800 to 1,000 

Mt forest biomass available, of which 400 to 500 Mt can be used to provide about 200 Mt 

sce energy (Li et al., 2001; Li et al., 2005). With the rapid process of afforestation projects 

implementation in China, a much larger amount of forestry residue can be expected in the 

coming years. 

Unlike agricultural residue, which is available in almost any rural area in China, 

production of forestry residue is much higher in several specific regions than the others 

(Figure 2.1). About 70% of China‟s total forestry residue resource is available in six 

provinces, while only 30% in the other 25 provinces. This spatial unbalance to some extent 

decreases unit cost and increases the possibility to utilize forestry residue in large scale8. 

 

                                                        
8 It is mainly because the cost of biomass collection and transportation will be sharply reduced since large amount of forestry 

residue is produced in a small region. 

 

Figure 2.1 Distribution of forestry residue availability in China, 2005 

Source: adapted from China Yearbook 2006 
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2.2.1.3 Human and animal manure 

Human and animal manure refers to excrement of human and animals that is available for 

energy value. In this study, only manure of human, cattle, pig and chicken are estimated. 

The manure of other animals, such as sheep, horses and ducks, are ignored because they are 

too dispersed to collect. 

The amount of manure per head per day depends on various factors such as body size, 

kind of feed, physiological state (lactating, growing, etc.), and level of nutrition (Wang et 

al., 1998). In order to estimate human and annual animal manure production in China, the 

formula developed by MOA/DOE Project expert team (1998) is used in this study: 

E=∑Ei=∑n·u·f·p·v 
Where, E is annual energy potential of human and animal manure in China; Ei is 

annual energy potential from manure of one specific animal/human (i = human, pig, cattle, 

chicken); n is number of animals/humans; u is the generation of manure per day per head of 

animal/human; f is the fraction recoverable, which represents the proportion of the manure 

that is recoverable for energy generation; p is the proportion of dry matter in manure; v is 

energy value of dry matter when it is converted into biogas. 

By using the above formula, it is estimated that China‟s energy potential of human and 

animal manure in 2005 was 1,352.0 PJ, or 46.1 Mt sce (see Table 2.2)9. Within the four 

sources, pig and cattle manure have more energy potential than human and chicken manure. 

It is easy to understand if one notices that most Chinese families in rural areas raise 

livestock (although in small number) at home, and more and more large and medium-sized 

animal farms have been established in China (Li et al., 2005). As a result, the standing stock 

at the end of the year kept increasing during the last decade. Although the amount of animal 

manure per head per day has decreased due to improvement of feed in recent years, the total 

energy potential from animal manure generation increased from 1,102.5 PJ in 1997 (cf. Li 

et al., 2005) to 1,352.0 PJ in 2005. 

 

 

 

                                                        
9 Li et al. (2005a) predicted that China‟s energy potential of animal manure was 1,598.5 PJ in 2005. It is mainly because the total 

amount of pig and cattle was overestimated. 
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Table 2.2 Energy potential from China’s human and animal manure in 2005 

 

2.2.1.4 Municipal solid waste resources 

Along with rapid economic development and urbanization, municipal solid waste is 

becoming a major environmental problem in China. Every day about 0.5 Mt foods, paper, 

plastics, fabric and other types of solid wastes are generated in China‟s cities. These wastes 

can be useful energy resources if they are properly disposed. In China, more than 80% of 

municipal solid wastes are disposed through landfill. For this reason, energy potential from 

municipal solid waste is calculated in the form of landfilling gas, which consists of methane 

and carbon dioxide. In 2005, in total 155.8 Mt municipal solid wastes were produced, and 

82.4% of this waste was disposed through landfill. According to Li et al. (2005), disposing 

every t of municipal solid wastes can produce 25.6 m3 landfill gas, and the energy value of 

landfill gas is 19.5 MJ per m3. Therefore, it is estimated that total energy potential from 

municipal solid wastes in 2005 is 64.1 PJ, or 2.2 Mt sce. 

 

 

 Human Pig Cattle Chicken 

Number (106 head) 1,307.6 503.3 141.6 8047.2 

Unit generation (kg head-1 d-1) 0.6 2.0 20.0 0.1 

Total generation (Mt) 286.4 367.4 1,033.7 293.7 

Fraction recoverable 1.0 1.0 0.6 0.6 

Proportion of dry matter (%) 13.0 20.0 18.0 20.0 

Dry matter (Mt) 37.2 73.5 111.6 35.2 

Energy value of dry matter (106 J kg-1) 4.2 6.3 4.2 7.5 

Energy potential (PJ) 156.2 463.1 468.7 264.0 
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Table 2.3 Energy potential from China’s industrial wastewater production in 2005 

2.2.1.5 Industrial wastewater resources 

Industrial wastewater, especially black liquor10, is another important bioenergy resource in 

China. The quality of wastewater (most importantly the concentration of organic matter) 

differs among various industrial sectors, which influences the energy potential of 

wastewater. In calculating energy potential, organic matters in wastewater are converted 

into amount of CH4 available (Table 2.3). We use the same rates of wastewater production 

and CH4 generation as Li et al. (2005) used in their study. Taking the energy value of CH4 

as 18.2 MJ per m3, the total energy potential from industrial wastewater in 2005 is 457.5 PJ, 

or 15.6 Mt sce. 

                                                        
10 Wastewater discharged from papermaking industry. 

 Product 

output 
(Mt) 

Wastewater 

production 
(m3 t-1) 

CH4 generation 
(m3 CH4 /m

3 
wastewater) 

Energy 

potential  
(PJ) 

Alcohol 3.90 15.00 22.23 23.70 

Sugar 10.34 7.00 0.56 0.70 

Beer 29.48 20.00 0.24 2.60 

Yellow wine 2.20 15.00 4.44 2.70 

Starch 4.20 20.00 12.42 19.00 

Lemon acid 0.63 14.00 17.75 2.80 

Yeast 0.08 125.00 10.66 1.90 

Modern medicine 1.03 1,130.00 7.34 155.50 

Traditional 

medicine 

1.46 396.00 0.06 0.60 

Monosodium 

glutamate 

1.35 25.00 22.27 13.70 

Fiberboard 4.67 68.00 0.58 3.40 

Slaughterhouse 77.43 16.00 0.81 18.30 

Vegetable oils 16.83 0.10 6.66 0.20 

Canned food 5.34 55.00 0.35 1.90 

Pulp 30.96 119.00 3.14 210.50 
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Table 2.4 shows the total energy potential from different biomass sources and its 

distribution over different sources in 2005 in China. The total energy potential was about 

617.16 Mt sce in 2005. Agricultural residue is the most important bioenergy resource in 

China, accounting for 57.24%. However, its energy potential is expected to shrink in the 

future due to the increased amount of biomass utilized for other purposes. Forestry residue 

(32.41%) is also an important and promising biomass energy source. Energy potential of 

human and animal manure accounts for 7.5% of total bioenergy potential and will rapidly 

increase due to expansion of large and medium-sized animal farms in China. Municipal 

solid waste (0.36%) plays a very limited role in total bioenergy potential in China, and is 

not suitable for large-scale bioenergy development. Industrial wastewater plays a moderate 

role, accounting for 2.49% of the total energy potential.  

 

 

 

 

 

 Energy potential (Mt sce) Percentage (%) 

Agricultural residue  353.26 57.24 

Forestry residue 200.00 32.41 

Human and animal manure 46.10 7.50 

Municipal solid waste 2.20 0.36 

Industrial wastewater 15.60 2.49 

Total 617.16 100 

Table 2.4 Bioenergy potential in China in 2005 
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2.2.2 Wind energy 

With its large land mass and long coastline, China is rich in wind energy resource. Three 

national wind energy resource surveys have been conducted in China to establish an overall 

database of wind resources in China. The first two surveys were conducted by the China 

Meteorological Administration in the 1970s and the 1990s respectively. These two surveys 

collected meteorological data at an altitude of 10 m, while wind power rotors are normally 

installed at 50 m above the ground. Moreover, the number of meteorological stations for 

data collection in the western and northern parts of China, where wind energy resources are 

abundant, was too limited to get a reliable estimation. As a result, the actual amount of wind 

energy resources available for electricity generation throughout China remained unclear at 

that time. The third national wind resource survey was co-conducted by the China 

Meteorological Administration and provincial meteorological departments from 2004 to 

2006. It collected 486,000 data from 2,384 meteorological stations. Results of this survey 

showed that onshore wind energy resource available for development was 253 GW at an 

altitude of 10 m, and more than 500 GW at an altitude of 50 m. China also has about 750 

GW offshore wind energy resources available for development (Yang, 2004; Li et al., 2005; 

Li et al., 2007). 

Wind energy resource in China has an important characteristic of spatial imbalance 

(Zhang, 2005; Ni, 2008). Inland areas with rich wind energy resource in China are located 

mainly in Inner Mongolia Plateau, some parts of Northeast China, the northern part of 

Xinjiang, the Qinghai-Tibetan Plateau, and the Hexi Corridor in Gansu (Figure 2.2). These 

areas account for about 25% of China‟s territory. In these areas, the average wind energy 

density ranges from 200 W/m2 to more than 300 W/m2. The annual hours of effective wind 

speed (3~20 m/s) in these areas exceed 4,000 h. China is also abundant in wind energy 

resource in its southeast coastal areas and islands in Jiangsu, Shanghai, Zhejiang, Fujian, 

Guangdong and Hainan. The average wind energy density also exceeds 150 W/m2 in these 

areas. 
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2.2.3 Solar energy 

Total radiant energy density from the sun is about 3.75×1026 W. Within this tremendous 

amount of energy, only a very small proportion can reach the earth. It is estimated that the 

total amount of sun radiation reaching earth surface is about 1.7×1016 W. In other words, 

solar energy the earth surface received every year equals 35,000 times the whole world‟s 

annual energy consumption. China has great potential of solar energy resource. Two thirds 

of its territory receives over 2,200 hours of sunlight every year. On average, China has 

5,852 MJ/m2 of annual solar radiation with a maximum over 9,000 MJ/m2 (Luo et al., 2005).  

The amount of solar energy a specific area receives is influenced by six factors: 

height-angle of the sun (the bigger it is, the more solar energy received), air mass (the more 

it is, the less solar energy received), air transparency (the bigger it is, the more solar energy 

received), geographic latitude (the higher it is, the less solar energy received), sunshine 

hours (the more it is, the more solar energy received) and altitude (the higher it is, the more 

solar energy received). Spatial distribution of solar energy resource in China represents 

trends of north>south and west>east (Figure 2.3). The western part of Tibet, the western 

part of Qinghai, the southeastern part of Xinjiang, the northern part of Gansu, and the 

Figure 2.2 Average onshore wind energy density in China (W/m
2
) 

Source: http://cwera.cma.gov.cn 
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northern part of Ningxia are in the group with the most abundant solar energy resources. 

Especially the Qinghai-Tibet Plateau, with an average altitude over 4,000 m, thin, clean and 

transparent air, low geographic latitude, and annual sunshine hours over 3,000 h, is 

technically the most suitable region for developing solar energy in China. In comparison, 

Sichuan, Guizhou and Chongqing are among the areas with least solar energy resource in 

China (Luo et al., 2005). 

2.2.4 Hydropower 

From 2001 to 2005, a nationwide survey of hydropower resource named “Reexamination of 

Hydro energy Resource in China” analyzed 3,886 large rivers (with theoretical installed 

capacity above 10 MW) in China (Figure 2.4). Results of this survey showed that national 

installed capacity of hydropower is 694 GW, ranking first place in the world. The technical 

annual power generation capacity is 5.42×1012 kWh. By the end of 2004, about 100 GW of 

installed capacity had been developed, which brought China an annual electricity 

production of 3.31×1011 kWh. Besides these large-scale hydropower resources, this survey 

also showed that China has plenty of rural small hydropower resources (< 50 MW), with a 

technical installed capacity of 128 GW. 

Figure 2.3 Distribution of solar energy potential in China (GJ/m
2
·yr) 

Source: http://www.cnjlc.com/h2o/8/2007071812118.html 
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Figure 2.4 Airscape of China’s water system 

Source: http://www.cnjlc.com/h2o/8/2007071812118.html 

There are three important characteristics of hydropower resources in China. 

First, hydropower resources in China show an imbalanced spatial distribution. In 

general, plenty of resources are available in undeveloped, southwestern areas, while limited 

resources are available in developed, eastern areas, where energy demand is relatively large. 

Sichuan (120 GW), Tibet (110 GW) and Yunnan (102 GW) are the top three provinces with 

most abundant hydropower resources in China. As a result, large amount of electricity 

generated from hydropower resources need to be transported from west to east. 

Second, hydropower resources in China show a seasonal imbalance. Caused by the 

monsoon climate, the amount of precipitation and runoff varies largely among different 

seasons. About 70% of runoff in major rivers happens from July to October every year, 

while a minimum runoff happens in winter period. In order to utilize hydropower regularly 

in all seasons, it is crucial to build reservoirs to regulate runoff. 

Third, most hydropower resource in China is distributed in large-scale rivers. 

Hydropower resources in Yangtze River Watershed (47%), Brahmaputra River Watershed 

(13%) and Yellow River Watershed (7%) account for about two thirds of the national 
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installed capacity. This to some extent makes the large-scale hydroelectric power stations, 

e.g. the Three Gorges Hydro Power Station, more favorable than the small-scale ones in 

China. Currently, about 70% of hydropower in China is generated by power stations larger 

than 300 MW. 

2.2.5 Other renewable energies 

All the renewable energy resources discussed above are developed on a relatively large 

scale in China. There are several renewable energy resources, which have great energy 

potential but have not yet been developed on a large scale in China.  

2.2.5.1 Geothermal 

Geothermal is energy generated by heat stored beneath the earth's surface or the collection 

of heat absorbed in the atmosphere and oceans. Geothermal energy comes from high-

temperature liquid matter in the interior of the earth, or from the disintegration of 

radioactive elements (U, TU and K40). There are four types of geothermal resources 

available on earth: 1) heat water and vapor from the shallow interior of the earth; 2) high-

pressure gases, consisting of large amount of methane, located in deep sedimentary basins; 

3) Hot Dry Rock Geothermal Energy (HDR) from rocks just a few kilometers below the 

surface; and 4) magma fluid.  

China has a great potential of geothermal energy. The total geothermal resource in 

China can reach 7,360,000 PJ and technically 973 PJ is available every year. Geothermal 

resources are distributed unevenly within China‟s territory. High-temperature geothermal 

resources (> 150 °C) are located mainly in the southern part of Tibet, the western part of 

Yunnan Province and the western part of Sichuan Province (Taylor and Li, 1996). 

2.2.5.2 Ocean energy 

Ocean energy is generated due to sunlight radiation and the gravitation of sun and moon. It 

is stored by the movement of seawater. It is estimated by United Nations Educational, 

Scientific and Cultural Organization (UNESCO) that the total amount of ocean energy in 

the world is 76,600 GW, within which 6,400 GW can be harnessed (Takahashi and Trenka, 
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1995). Main forms of ocean energy include tidal energy, wave energy, ocean thermal 

energy, and salinity energy.  

Tidal energy is formed by tidal currents or the rise and fall in sea levels due to the 

tides. Tidal energy is used mainly for electricity generation. Its working mechanism is quite 

similar to hydro electricity generation, while the energy density and efficiency are lower 

than that of hydropower. In general, the larger the tide range is, the more power can be 

generated in a given period. Theoretically, it is worth developing electricity generation 

where the average tide range is larger than 3 m. Total installed capacity of tidal energy in 

China is 21.8 GW, which can provide the country 6.24×1010 kWh electricity every year11. 

These tidal energy resources are located in the southeast coastal areas, where the average 

tide range is larger than 4 m. Total installed capacity of tidal power plants in Fujian and 

Zhejiang accounts for 88.3% of the national capacity. 

Wave energy refers to the energy of ocean surface waves. The total energy potential of 

waves around the world‟s coastlines is estimated to be 2,000 – 3,000 GW. Wave energy is 

captured to do useful works including electricity generation, desalination, and the pumping 

of water. Wave power generation is not a widely employed technology, and no commercial 

wave farm has yet been established. It is estimated that the theoretical installed capacity of 

wave energy in China is 12.8 GW. This energy resource is distributed unevenly around 

China‟s coastal areas: 33% around Taiwan Island, 55% in Zhejiang, Guangdong, Fujian and 

Shandong, while only a small proportion in other areas.  

Ocean thermal energy is formed due to the temperature difference that exists between 

deep and shallow waters. The ocean surface is continually heated by the sun, which causes 

temperature difference between deep and shallow waters. This temperature difference 

contains a vast amount of solar energy, which can potentially be harnessed for human use. 

The total energy available is one or two orders higher than other ocean energy options such 

as wave power, but the energy extraction is comparatively difficult and expensive, due to 

low thermal efficiency. China has a great magnitude, 1,321 – 1,476 GW, of ocean thermal 

energy, mostly in the South China Sea. 

Salinity energy is the electronic energy difference between freshwater and saltwater, 

or between seawaters with different salt concentration. Salinity energy is normally 

abundant at the sea-river boundaries. This energy resource can be extracted by using the 

difference in vapor pressure above freshwater and saltwater, and using the difference in 

                                                        
11 Source: website of New Energy in China: http://www.newenergy.org.cn/html/00310/20031112.html  
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swelling between freshwater and saltwater by organic polymers. However, the most 

promising method is the use of semi-permeable membranes. China has about 1.7×1012 m3 

of annual water flux into the sea, which brings the country about 125 GW of installed 

capacity. Salinity energy resources in China are characterized by spatial and seasonal 

unevenness. On the one hand, 70% of the resources are distributed at river entrances to the 

East Sea. On the other hand, 60% of the resources can be explored in flood seasons 

(normally 4 to 5 months). 

2.3 Institutional Structure of Renewable Energy Development
12

 

In China, renewable energy development is supervised by a complex of governmental 

departments. The National People‟s Congress (NPC) and the State Council (SC) provide 

general direction, guidance and the Chinese government‟s standpoint about development of 

renewable energy. The ministries and commissions under the SC take responsibilities of 

renewable energy resource assessment, policy formulation, market regulation, technology 

development and financial resource allocation. Some state-owned energy companies also 

have administrative power in the energy sector (Lew et al., 1998). 

2.3.1 Central roles of the NPC and the SC 

The NPC is the organization with the highest state power in China. Current NPC is 

composed of the Chairman, 13 Vice Chairmen, the Secretary-General, 9 Deputy Secretary-

Generals, 161 members of the Standing Committee and 2,987 NPC deputies from the 

provincial People's Congresses. The NPC is the only organization who can amend the 

Constitution. It has the power to amend all basic laws, such as the Criminal Law, the 

Environmental Protection Law and the Renewable Energy Law. It has the power to elect, 

appoint and depose key members of central government, such as the President of the 

People's Republic of China, the Prime Minister of the SC and the Chairman of the Central 

Military Commission. It is also responsible to examine and approve plans for national 

development, central and local government budgets, and establishment of administrative 

regions. In developing renewable energy resources in China, the NPC is the top leader that 

issued the Renewable Energy Law in 2005, approved the Medium and Long-Term 

Development Plan for Renewable Energy in 2007 and the Eleventh Five-Year Plan for New 

                                                        
12 Information in this section is partly adapted from China‟s central government website: http://www.gov.cn.  

http://www.gov.cn/
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and Renewable Energy in 2008, and annual budgets on renewable energy basic research, 

technology R&D and demonstration projects. 

The SC is the central government in China. Current SC is composed of the Prime 

Minister, four Vice Prime Minister, five Councilors, 22 Ministers of ministries, 5 Ministers 

of Commissions, the Auditor-General and the Secretary-General. The SC is the highest 

executive of state power, such as economic coordination, market supervision and 

administration, social administration and public services. In developing renewable energy 

resources in China, the SC and the ministries and commissions under the SC are the most 

important national level executives of renewable energy development laws, plans and 

projects. Functions of key ministries and commissions which have impact on renewable 

energy development will be discussed below. 

2.3.2 Functions of ministries and commissions under the SC 

The National Development and Reform Commission (NDRC, formerly State Planning 

Commission) under the SC has broad administrative and planning control over economic 

and social development, and the restructuring of the economic system in China. In 

developing renewable energy resources in China, the NDRC is the major actor in drawing 

up and organizing the implementation of strategies, mid-long term planning, and annual 

plans. It approves, evaluates and adjusts the implementation of renewable energy projects. 

It deals with and balances the relations between renewable development and other national 

economic activities. It studies and analyzes both domestic and overseas economic situations 

to give predictions and pre-cautions on financing, banking, investment and pricing of 

renewable energy utilization. It is also the coordinator of other ministries and commissions 

in developing renewable energy resources. Arguably, it is the most powerful ministry-level 

administrative organ in developing renewable energy resources in China. 

Besides the NDRC, other ministries and commissions under the SC also have functions 

in developing renewable energy resources. The Ministry of Science and Technology 

(MOST) takes the major administration of renewable energy technology innovation and 

diffusion. The Ministry of Environmental Protection (MOEP, formerly State Environmental 

Protection Administration) is responsible for environmental protection and pollution 

treatment in developing renewable energy resources. The Ministry of Agriculture (MOA) 

gives supervision to utilization of rural renewable energy resources, especially agricultural 

biomass. The Ministry of Water Resources (MOWR) is mainly in charge of managing 
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nationwide use of hydro energy resource. The Ministry of Finance (MOF) is responsible for 

the financial budget, state-owned assets, finance and accounting in developing renewable 

energy resources. The State Electricity Regulatory Commission (SERC) is responsible for 

the reform of China‟s power sector and pricing of renewable energy fueled electricity. The 

State Forestry Administration (SFA) is in charge of developing and managing fuel wood 

and other wood energy resources. The Ministry of Land and Resources (MOLR), the 

Ministry of Commerce (MOC), the Ministry of Transportation (MOT) and the State-owned 

Assets Supervision and Administration Commission (SASAC) have also indirect influences 

on renewable energy development in China. 

2.3.3 Administrative power of state-owned energy companies 

In China most energy companies in oil industry, coal industry, hydropower industry, nuclear 

industry and power grid industry are state-owned. Within these state-owned energy 

companies, some large companies such as the China National Petroleum Corporation 

(CNPC), the China Petroleum & Chemical Corporation (SINOPEC), China National 

Offshore Oil Corp (CNOOC), the China Shenhua Energy Company Limited (CSEC) and 

the State Grid have ministry level administrative powers. On the one hand, they take 

responsibilities to fulfill government planned production quota and growth rate. On the 

other hand, they desire additional government support to become more competitive in the 

world market13. These companies have substantial influences on development and reform 

of the energy sector in China. Sinton et al. (2005) believed that the shift of power and 

resources from centralized planning agencies to state-owned energy companies 

characterized China‟s transition from plan to market  in energy sector.  

However, also the high level administrative power of state-owned energy companies 

has negative impacts on renewable energy development in China. First, interests of state-

owned energy companies diverge from that of the ministries such as MOEP and NDRC. 

They are reluctant to invest in renewable energy as long as it is not cost-effective. Second, 

involvement of state-owned energy companies can disperse the management of renewable 

energy development in China. It is difficult for energy regulators to prevent state-owned 

energy companies from exerting monopoly powers. Third, different state-owned companies 

                                                        
13 For example the CNOOC received government support in their trial in the buyout of American Unocal Company in 2005. 
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stand for the benefits of their own energy industries, which results in struggle in policy 

making and resource allocation between these energy industries.  

2.3.4 Integration of renewable energy management in China 

As discussed above, the management functions on renewable energy development in China 

are dispersed over more than 10 national governmental departments and more state-owned 

energy companies. As a result, development of renewable energy is confronted with a lot of 

bureaucratic hassle in China. On the one hand, the renewable energy developers need to 

deal with numerous governmental departments when they are applying for and operating 

new projects. On the other hand, development of different renewable energy resources are 

supervised by different governmental departments, which causes conflicts between 

administrative stakeholders (Han et al., 2008). In the long term, this will lead to 

administrative inefficiency and unreasonable energy allocation of financial resource. 

In order to deal with the problem of dispersed management in the energy sector, the 

National Energy Administration (NEA), a bureau attached to the NDRC, was established in 

200814 . The NEA integrates functions on energy management of NDRC, the National 

Energy Leading Group (NELG)15, the MOST and the administration of nuclear energy of 

the Commission of Science, Technology and Industry for National Defense (COSTIND). 

This significant institutional reform aimed at centralizing the management of energy sectors. 

The NEA is composed of nine departments with 112 staff. It is responsible for drafting 

energy development strategies, proposing reform advice, implementing management of 

energy sectors, putting forward policies for exploring new energy and carrying out 

international cooperation. The NEA is also influential in energy price management. It 

suggests the NDRC upon energy product prices and then submits it to the SC for approval. 

The NDRC consults the NEA on any price adjustment of energy products. 

The establishment of the NEA to a certain extent reduces the negative impacts of the 

dispersed energy management and subsequently benefits the development of renewable 

energy utilization in China. However, there are still some problems when it is in operation. 

First, the NEA has only a deputy-ministry administrative status, which is lower than most 

                                                        
14 Source: Plan on Reform of State Council Organs, approved at the 1st Session of the 11th NPC on March 15, 2008. Available 

online: http://www.chinalawandpractice.com/Article/1926907/Search/Results/Plan-on-Reform-of-State-Council-

Organs.html?Keywords=National+Energy+Commission accessed on May 29th, 2009. 
15 This is a deputy-ministry-level team established in 2005, aiming to research national energy development strategies and plans 

and to advise the SC on energy reservation, security and international cooperation. The NELG was dissolved after the 

establishment of the NEA. 
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nation level governmental departments in relation to renewable energy development and 

state-owned energy companies in China. Notably a high level authority named “the 

National Energy Commission (NEC)” was established at the same time with the NEA. The 

NEC was designed to be a deliberation and coordination authority, while work of the NEC 

General Office is undertaken by the NEA. Theoretically the NEC can help the NEA 

coordinate problems and relations that the latter can not deal with, while in practice one 

will wonder whether the NEC is not the same institution as the former NELG, with only a 

different name, and thus limits the NEA‟s full authority. It is doubtful whether the NEA can 

fulfill its full functions under this circumstance. Second, one and a half year after its 

establishment, the NEA was found to have only the function of approving energy-related 

projects. It is far away from what this authority was expected to be, i.e. an integrated 

administration of the energy sector. Therefore, the establishment of a full scale Ministry of 

Energy (MOE) is advocated by more and more political experts (Zhou, 2003; Sinton et al., 

2005; Zha, 2006; Kahn and Yardley, 2007).  

Such an MOE is not something novel in China. The former MOE was established in 

1988 in order to integrate the functions of the Ministry of Coal Industry (MOCI), the 

Ministry of Petroleum Industry (MOPI), the Ministry of Hydropower (MOH) and the 

Ministry of Nuclear Industry (MONI). However, the function of the MOE largely 

overlapped with the former State Planning Commission. State-owned energy companies 

also shared the function of governmental departments at that time. This new ministry was 

not accepted by the petroleum and nuclear energy sectors. As a result, the former MOE 

could not perform well and was dissolved in 1993. After that energy management in China 

was dispersed again in individual sectors. 

The establishment of the NEA implicates that the Chinese government has realized the 

necessity of a high level authority with integrated energy management functions. The NEA 

is not a compromise between stakeholders but a step of gradual reform. A full-authority 

MOE can be expected to emerge in near future. 
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2.4 Policy Framework of Renewable Energy Development in 

China 

Although the history of renewable energy development in China is short, the Chinese 

government has formulated and executed a series of policies and specific policy measures 

for the purpose of renewable energy development. In the Sixth Five-Year Plan (1981-1985), 

renewable energy technology was for the first time included into the National Key 

Technologies R&D Program, although the program allocated only 3 million yuan 16  to 

renewable energy technology R&D. From then on, renewable energy development started 

to gain more and more importance in the national development strategies. A series of 

policies were issued, covering a wide range of renewable energy resource management, 

renewable energy technology R&D, as well as its commercialization. These policy 

documents created a solid foundation and powerful support for the boom of renewable 

energy utilization. According to their main contents, these policies can be classified into 

general policies and specific policies, while the latter can be further classified into total 

volume objective, priority grid access, differential prices, cost allocation, special fund, low-

interest credit loan, and favorable tax rate (Lew et al., 1998; Li and Wang, 2005). 

2.4.1 General Policies 

General policies mainly clarify the importance of renewable energy development. From the 

Eighth Five-year Plan (1991-1995) until the Eleventh Five-year Plan (2006-2010), China 

has given the development of renewable energy strategic importance in its long-term 

national developing plans. In the China Electric Power Act (1995), the first Chinese law 

that discusses energy policy, it was declared that the Chinese government “encourages the 

development and utilization of new and renewable energy resources”. This principle was 

reaffirmed in the China Energy Saving Law (1998), the Medium and Long-Term 

Development Plan for Renewable Energy (2007), and the Eleventh Five-Year Plan for New 

and Renewable Energy (2008). China Renewable Energy Law (2005) set developing 

renewable energy as priority in the national energy strategy, aiming to establish capacity 

and infrastructure for rapid renewable energy development, and to create sustained markets 

for renewable energy as well. It also emphasized that research and commercialization of 

                                                        
16 Unit of Chinese currency, 10 yuan ≈ 1 Euro 
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renewable energy technologies were regarded as priority of modern technology and high-

tech industry development at the national level. 

General policies also clarify key areas of renewable energy development in China. In 

most policies mentioned above, biomass17, small hydro, wind energy and solar energy are 

given priority in the long-term renewable energy development plan. For developing 

strategies, policy emphases are laid on three aspects:  

 Expanding financial resources; 

 Developing production capacity; and 

 Establishing renewable energy markets. 

2.4.2 Specific Policies 

Besides these general policies, China also formulated specific policies focusing on mid- to 

long-term objectives, policy instruments and resource allocation of renewable energy 

development. These policies can be classified into seven categories: total volume objectives, 

priority grid access, differential prices, cost allocation, special funds, low-interest credit 

loans, and favorable tax rates. 

2.4.2.1 Total volume objectives 

Renewable energy is a new industry with relatively high costs, high risks and low profits, 

which reduce investment incentives of renewable energy developers. Therefore, it is 

difficult to promote renewable energy exploitation and utilization by simply depending on a 

market mechanism. Command-and-control policies from the national government are 

essential at an early stage of developing renewable energy resources. Total volume 

objectives, and portfolios in some fields, are most commonly used policy instruments by 

the Chinese government. Governmental supervision on total volume objectives directs total 

amount and proportion of renewable energy the country should develop during a certain 

period. It serves as market guarantee and steers investments in renewable energy 

development. The Chinese government defines its total volume objectives of renewable 

energy development in two ways: as proportion of renewable energy in total energy 

consumption and as quantitative objectives for individual renewable energy resources.  

 

                                                        
17 Low-efficiency combustion of biomass is excluded. 
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In the Eleventh Five-Year Plan for New and Renewable Energy and the Medium and 

Long-Term Development Plan for Renewable Energy, NDRC set renewable energy 

development objectives of 10% in total energy consumption by 2010 and 15% by 2020. In 

the Medium and Long-Term Development Plan for Renewable Energy, NDRC also 

announced portfolio mandates in power generation sector. For the whole sector, the share of 

electricity generated from non-hydro renewable energy resources should reach 1% of total 

electricity generation by 2010 and 3% by 2020. For any power producer with installed 

capacity greater than 5 GW, the mandatory share is raised to 3% by 2010 and 8% by 2020. 

Proportion objectives are much easier for decision makers and the publics to understand. 

Setting proportion objectives of renewable energy in total energy consumption also makes 

it possible to carry out horizontal comparison (with other countries) and vertical 

comparison (with previous years in China). 

However, there are two challenges in defining and implementing these proportion 

objectives. First, it is difficult to define provincial objectives. Although it is required in the 

Renewable Energy Law that the national administration “sets middle and long-term targets 

of the total volume for the development and utilization of renewable energy at the national 

level” and “on the basis of the target of total volume, as well as the economic development 

and actual situation of renewable energy resources of all provinces, autonomous regions 

and municipalities, cooperate with People‟s governments of provinces, autonomous regions 

and municipalities in establishing middle and long-term targets and release it to the public” 

(Article 7), in practice there is no satisfactory solution to decide the shares of development 

objectives, and more importantly financial resources, among provinces. Article 7 clarifies 

authority of provincial objective formulation without providing a feasible method to 

calculate disaggregated objectives. As a result, there is not any provincial objective up till 

now18. Second, proportion objectives have problems in defining development planning of 

individual renewable energy resources. China‟s renewable energy proportion objectives are 

accounted by proportion of all renewable energy resources in total primary energy 

consumption. It is not disaggregated into individual renewable energy resources. As 

separate authorities supervise the development of different renewable energy resources in 

China, there will be unavoidable conflicts in planning development strategies for individual 

renewable energy resources 

 

                                                        
18 After browsing all provinces‟ energy development plans in China, the authors could not find any proportion objective of 

renewable energy development. 
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 Considering the second challenge mentioned in the previous paragraph, the Chinese 

government also announced quantitative objectives for bioenergy, hydropower, wind power, 

solar energy, geothermal and tidal power in its Medium and Long-Term Development Plan 

for Renewable Energy (Table 2.5). Quantitative objectives are meaningful for financial 

resources allocation, market planning and stage evaluation. However, quantitative 

objectives for individual renewable energy resources in China also have big challenges in 

implementation. First, most quantitative objectives are set in installed capacity instead of 

actual amount of energy consumption. In practice, this has caused low efficiency in project 

management and facility operation (Shi, 2008). This problem creates great uncertainty to 

fulfill the national proportion objectives, even when the quantitative objectives are fulfilled. 

Second, quantified objectives are sluggish to respond to technology improvement and 

change in prospective energy consumption. Once the amounts have been decided, they are 

hard to change19.  

 

                                                        
19 In the 11th Five-Year Renewable Energy Development Plan, the Chinese government doubled its 2010 onshore wind power 

objective from 5 GW to 10 GW. This is the only example of quantitative objective adjustment. 

Energy resource Utilization method 
Objective in 

2010 
Objective in 2020 

Biomass Power generation 5.5 GW 30 GW 

Biomass briquette 1 Mt 50 Mt 

Methane 19×109 m3 44×109 m3 

Bio-ethanol 2 Mt 10 Mt 

Bio-diesel 0.2 Mt 2 Mt 

Hydro Large and mid hydro 120 GW 225 GW 

Small hydro 50 GW 75 GW 

Wind power Onshore  10 GW 30 GW 

Offshore  0.2 GW 1 GW 

Solar energy Power generation 0.3 GW 1.8 GW 

Water heater (collector) 150×106 m2 300×106 m2 

Other Geothermal  4 Mt sce 12 Mt sce 

Tide power - 0.1 GW 

Table 2.5 Quantitative objectives for individual renewable energy resources 
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2.4.2.2 Priority grid access  

Electricity generated from renewable energy resources, such as wind energy, is not 

seasonally stable, which makes it unwelcome for grid companies. Therefore, obtaining 

priority in grid access is necessary for protecting and promoting the immature renewable 

electricity industry. In China, priority grid access policy is implemented mainly in wind 

power and biomass electricity sectors. For promoting wind power development, the former 

Ministry of Power issued Opinions on Wind Power Farm Construction and Management in 

l994, in which power grids were compelled to purchase all electricity generated by nearby 

wind farms. In the Plans Regarding the Power Price Reform issued by the General Office 

of the State Council in 2003, it was further clarified that wind power did not participate in 

market competition. All grid companies should purchase electricity generated from 

renewable energy at prices decided by the government or in bids. In the Medium and Long-

Term Development Plan for Renewable Energy, the grid companies‟ compulsive purchase 

of wind power was reconfirmed, and petroleum selling enterprises were also compelled to 

purchase all bio-ethanol and bio-diesel produced in China.  

2.4.2.3 Differential prices 

Development costs of different renewable energy resources vary greatly. In order to 

develop diversified renewable energies, it is necessary to set different prices for different 

renewable energy resources to ensure the developers acceptable profit levels. It is allowed 

in the Renewable Energy Law that on-grid prices of renewable energy generated power 

differ among different energy resources and different regions. Currently, the average price 

of wind power is about 0.6 yuan/kWh, while the average price of small hydropower is 

between 0.20-0.35 yuan/kWh (Li and Wang, 2005). The pricing mechanism of renewable 

energy is more flexible than of conventional energy. Taking wind power for instance, the 

price mechanism works as follows: during the time that equals 30,000 hours of full capacity 

electricity generation, wind farms sell the produced electricity to the grid at the price pre-

established in the original bid. After this initial period and until the end of the project period, 

electricity is sold at a uniform on-grid price. The Medium and Long-Term Development 

Plan for Renewable Energy emphasized that on-grid prices of renewable energy can be 

adjusted according to the development level of renewable energy technology. 
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2.4.2.4 Cost allocation 

Currently the production costs of most renewable energy resources are much higher than 

that of traditional energies. In addition, geographical distribution of renewable energy 

resources is always uneven. It is impossible and unfair to make local enterprises and 

residents pay the additional cost of renewable energy development. Therefore, in China‟s 

policy documents these costs are allocated within the whole society, virtually to all end 

users. It is stated in the Renewable Energy Law, the Medium and Long-Term Development 

Plan for Renewable Energy and the Opinions on Wind Power Farm Construction and 

Management that if grid companies purchase renewable electricity at a price higher than the 

price of power generated from other sources, the price difference should be allocated within 

the whole power grid in the form of higher retail prices to the electricity end users. 

Additional costs caused by purchasing renewable electricity, such as constructing 

connection to the grid system, can also be compensated by higher retail prices.  

2.4.2.5 Special fund 

Insufficient funding is always an important barrier for developing renewable energies. If the 

cost allocation policy is a solution to the problem of high generation cost, then special fund 

policy is the most effective solution to the problem of lack of funding. In China, special 

funds for renewable energy development are set by both the national government and local 

government. The Renewable Energy Law and the Medium and Long-Term Development 

Plan for Renewable Energy require that the national fiscal system installs special funds, and 

that the local fiscal system allocates budget for supporting renewable energy development. 

The specific policy of special fund management in China, elaborated in the Interim 

Measures on Special Fund Management for Development of Renewable Energy, requires 

that special funds are mainly used for projects that are unprofitable and for public goods. 

Recipients of these funds should provide self-complementary funds of at least equal size to 

the special funds. This specific policy lists the following priority fields that the special 

funds should be spent on: 

 Technology R&D, standard establishment and demonstration projects; 

 Renewable energy projects for daily use in countryside and pastoral areas; 

 Independent renewable electricity systems in remote areas and sea islands; 
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 Renewable energy resources prospect, assessment and information systems; 

 Localization of equipments for renewable energy production and utilization. 

2.4.2.6 Low-interest credit loans 

Besides the special funds provided by national and local governments, low-interest credit 

loans from “policy banks” 20 , such as China Development Bank and Agricultural 

Development Bank of China, is another important solution to the problem of lack of 

funding for renewable energy development. In l999, the NDRC and MOST issued the 

Notice on Several Problems for Promoting Renewable Energy Development, in which 

certain favorable policies for power generation by renewable energy were set forward, 

including bank loans with 2% interest subsidy. In 2006 the national government provided 

low-interest loans for projects that are listed in the National Renewable Energy Industrial 

Development Guidance Catalogue21 and qualified for the credit conditions. The discount 

rate is offered for a period of 1-3 years, with the ceiling rate of 3%. The Renewable Energy 

Law also stated that “Financial institutions may offer preferential loans with financial 

interest subsidy to renewable energy development and utilization projects that are listed in 

the national renewable energy industrial development guidance catalogue and conform to 

the conditions for granting loans.” 

2.4.2.7 Favorable tax rates 

A favorable tax rate is helpful in stimulating investments on renewable energy development 

because it expands the profit margin for investors. It is the major financial incentive applied 

in China today for renewable energy development. The Renewable Energy Law stated that 

“The Government grants tax benefits to projects listed in the renewable energy industrial 

development guidance catalogue, and specific methods are to be prepared by the State 

Council”. In the Medium and Long-Term Development Plan for Renewable Energy, it is 

also emphasized that “The national government grants a favorable tax rate to renewable 

energy technology R&D and equipment manufacture”.  

There are three important favorable tax rate policies. The first one is favorable value-

added tax (VAT) rate on several renewable energies. In China, the normal VAT rate for 

                                                        
20 Not-for-profit banks that are founded, shared or secured by government. These banks serve for governmental policies or intents 

on macro-economic control by policy financing activities. 
21 Issued by NDRC in 2005 
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enterprises is 17%, while it is 13% for methane, 6% for small hydro and 8.5% for wind 

power developers. The second one is refund of custom tariffs. From January 2008, custom 

tariff imposed on imported materials and components for manufacturing wind turbines is 

refunded by tax exemption or rebate. The third one is reduction in income tax rate. For 

power plants using renewable energy resources, income tax is exempted during the first 5 

years of operation. For all enterprises developing renewable energy resources, the income 

tax rate is 15%, which is lower than the income tax rate of normal enterprises (33%). 

2.5 Conclusions 

China has plenty of renewable energy resources within its territory. The estimation shows 

that the total potential of bioenergy was about 617.16 Mt sce in 2005. The wind energy 

resource available for development exceeds 1,250 GW. The average annual solar radiation 

in China is 5,852 MJ/m2. China has also 694 GW installed capacity of hydropower and 

large amount of other renewable energy resources. However, renewable energy resources in 

China show great imbalance. A large quantity of renewable energy resources is available in 

remote and rural areas in Western China, while the areas with large energy demand are 

located in Eastern and Southeastern China. The amount of available wind and hydro energy 

resources varies also between seasons. It makes the production of renewable electricity 

fluctuating, which is an important reason why renewable electricity is not welcomed by 

power grid companies. 

The development of renewable energy in China is co-supervised by various 

governmental departments. The NPC and SC take the key role while the responsibilities of 

management are shared by several ministries, the NDRC and some state-owned energy 

companies. This institutional arrangement functions in organizing renewable energy 

projects, regularizing the renewable energy market and dealing with all the other issues in 

relation to renewable energy development. However, the authority of renewable energy in 

China is dispersed among too many governmental departments. It should be centralized by 

the establishment of a Ministry of Energy full-authority of renewable energy development. 

The Chinese government has set clear development targets of renewable energy and 

policy measures to achieve these targets. However, there are various problems and 

shortcomings with the policy framework if it is compared with the renewable energy 

policies in Western countries. First, China does not apply wind power feed-in tariff (a fixed 

price per unit of renewable electricity that a utility company or supplier has to pay for) that 
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functions well in other countries. It results in major barriers in wind power development. 

Second, most policies focus on command-and-control or governmental subsidies. 

Insufficient efforts have been taken in stimulating the maturity of renewable energy market. 

Moreover, performance of these policies is highly uncertain. China lacks both actors and a 

methodology for systematically evaluating the implementation of renewable energy policies. 

This forms important motivation for future studies. 
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Chapter 3    Analyzing Renewable Energy 

Development in China: a framework 

“There is no shortage of literature … (which) tell the story of disciplines capable of 

collecting massive amounts of empirical data but lacking systematic methods for exploring 

the normative frameworks which give these data meaning.” 

- Fischer (1995: 1-2) 

3.1 Introduction 

This study aims to answer the questions how renewable energy resources have been 

developed in China and what are reasons for the successes/failures, and to provide policy 

recommendations based on the answers to these questions. In evaluating renewable energy 

development in China, the core task is to evaluate the implementation of various renewable 

energy policies and the driving forces behind it. Therefore, theories of policy evaluation are 

taken as the theoretical basis of this study. The main purpose of this chapter is then to 

establish an analytical framework, including both the theoretical part and the methodology, 

for policy evaluation of renewable energy development in China. 

It is difficult to give a standard definition of policy evaluation, notwithstanding the 

fact that many definitions have been given in previous studies. For example, policy 

evaluation is defined as “an applied endeavor which uses multiple methods of inquiry and 

argument to produce and transform policy-relevant information that may be utilized in 

political settings to resolve public problems” (Dunn, 1990), or policy evaluation is seen as 

“a scientific analysis of a certain policy area, the policies of which are assessed for certain 

criteria, and on the basis of which recommendations are formulated” (Crabbé and Leroy, 

2008: 1), or policy evaluation is “designed to supply information about complex social and 

economic problems and to assess the processes through which their resolution is pursued” 

(Fischer, 1995). Policy evaluation can focus on policy outcomes expected to be achieved 

from a policy (ex ante evaluation); is can focus on the actual outcomes from the 

implementation of a policy (ex post evaluation); or – more commonly – it has a focus in 

between the two (ex nunc). 
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The key elements of a policy evaluation strategy include the policy to be evaluated, 

the process of evaluation, the criteria for evaluation and the policy recommendations 

derived from it. The policy evaluation strategies differ between different understandings of 

policies. In this chapter the discussion on policy evaluation is built upon three different 

perspectives on policy: “policy as a control loop” (Section 3.2), “policy as a political 

interaction” (Section 3.3) and “policy as an institutional phenomenon” (Section 3.4). In 

Section 3.5, I discuss the characteristics of the evaluation of renewable energy development 

in China and define an analytical framework for such an evaluation, mainly based on the 

discussion of the three perspectives on policy. The research methodology is elaborated in 

Section 3.6. This section describes the general methodological design of this study, the 

main reasons for using mainly qualitative research methodologies and the logics of case 

sampling in this study. Subsequently, three cases are selected for empirical study. And 

finally the methods for data collection are determined. 

3.2 Policy as a Control Loop 

3.2.1 Definitions of policy and policy evaluation 

In this perspective of policy as a control loop, policy is seen as a rational problem-solving 

process. Policy starts from a policy problem with a clear problem definition and consequent 

goal-setting, based on which different policy options are developed. One or a combination 

of these policy options are selected and implemented after the options have been compared 

and weighed against each other. In this view, policy is like a control loop. It resembles a 

fully scientific and operational process. When the policy problem appears, adequate policy 

options are assessed and implemented. If the problem has been solved, the policy process 

stops. Should the problem reappear, the policy process will be repeated.  

Few policy scientists adhere to this view of public policy literally. Definitions of 

public policy from this point of view can only be traced in some early-stage policy research, 

such as The Policy Orientation (Lasswell, 1951: 71). Within this rational problem-solving 

process, on the one hand the motives and the nature of the parties involved are considered 

rational, and on the other hand and more importantly the policy strategies are sought on the 

basis of scientific methods. Therefore, policy evaluation in this perspective is a “goal-

achievement model”, which assesses whether, or to what extent, the policy results are in 
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line with the policy objectives (Schriven, 1991; Vedung, 1997). In achieving these purposes 

of policy evaluation, policies must be assessed by pursuing criteria of goal attainment only 

or mainly (ex nunc or ex post).  

3.2.2 Policy evaluation strategies 

3.2.2.1 EEA framework 

There are numerous strategies to perform policy evaluation from this perspective. One 

representative strategy is the environmental policy evaluation framework developed by 

European Environmental Agency (EEA). EEA (2001) defined a number of key elements of 

the design and implementation of policy evaluation: 

1) needs, of the society; 

2) objectives, stage or ultimate targets of the policy; 

3) actors, which include those implementing the policy instrument and target groups 

of the policy; 

4) inputs, resources dedicated to designing and implementation of the policy; 

5) outputs, the tangible results of policy measures; 

6) outcomes, the response of target groups to policy outputs; and 

7) impacts, ultimate effects of the policy on environment and human health.  

Based on the above definitions of these key elements, EEA provided an evaluation 

framework for environmental policies, which focuses on policy effects and the related 

questions of effectiveness (Figure 3.1). In this framework, policy “effects” refers to the 

impacts of the evaluated policy on the outside world (in terms of policy outcomes and 

impacts) while policy “effectiveness” is defined as whether and how far the observed 

effects of a policy measure live up to the explicit objectives set for it. Assessing policy 

effectiveness is considered the central task of policy evaluation. Gysen et al. (2002) further 

define different types of policy effectiveness: institutional effectiveness, which means the 

extent “to which the output of the policy matches the objectives of the policy”; target group 

effectiveness, which means the degree “to which the outcome of the policy corresponds 

with the policy objectives”; impact effectiveness, which refers to the linkage between the 

impact of the policy and the policy objectives; and societal effectiveness, which indicates 

whether or not the impact of the policy satisfies societal needs. 
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The “goal attainment” policy evaluation is tempting because it provides a 

straightforward way to assess and optimize policies by simply compare the policy 

objectives and actual results after policy implementation. However, there are obvious 

problems with the “goal-attainment model”: it does not consider the side effects of policy 

measures or the influences of other impact factors; and it has a difficult time estimating the 

influences of other factors that impact on outcomes. These problems imply the difference 

between “policy effectiveness” and “goal attainment”. It prove constantly difficult to build 

the causal link between policy objectives and results, mainly because: 1) policy goals are 

sometimes too vague to measure; 2) a policy normally consists of multi measures, making it 

difficult to assess the effectiveness of a single measure; 3) the causal chains of a policy are 

too long, i.e. the policy process passes along many links and through numerous actors, to 

identify; and 4) side-effects are beyond the scope of goal attainment assessment. One 

option to move beyond some of these problems is to apply a “goal-free” evaluation.  

Figure 3.1 EEA Environmental Policy Evaluation Frameworks 

Source: EEA, 2001 
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3.2.2.2 “Goal-free” model and intervention theory 

Whereas the “goal attainment” evaluation starts from policy goals, a “goal-free” evaluation 

starts from policy results. Policy goals can either show up among the effects or they are 

irrelevant. Evaluators can even carry out the evaluation without knowing the policy 

objectives. This “goal-free” evaluation model addresses the side-effect critique of “goal 

attainment” evaluation without solving the problem of causal links. 

The assumptions, based on which the causes of the policy problem are addressed, the 

solutions are pursued and hypotheses between policy and effect are made, are normally 

equivocal. In order to understand how policies are related to effects evaluators need to 

reconstruct policy theories, i.e. to make the assumptions underlying the relation between 

policy and effect more explicit. The intervention theory as suggested by Mickwitz (2002) is 

an example of such a reconstruction. 

An intervention theory is a model of the causal path from policy intervention to 

ultimate outcomes. It is defined as “a specification of what must be done to achieve the 

desired goals, what other important impacts may also be anticipated and how these goals 

and impacts would be generated” (Chen, 1990; Rogers et al., 2000). Normally one 

intervention in relation to outcomes can be explained based on several intervention theories 

because different stakeholders hold different expectations on the same intervention. 

Intervention theories are not intended to describe how the intervention actually works, but 

to describe how the intervention is expected to function in a complex social setting. 

Therefore, intervention theories can perform an instrumental role in the process of 

evaluating public policies. First, they can be used to determine the anticipated effects of the 

evaluated policy and further to determine the data that need to be collected. Second, 

because intervention theories are built partly on scientific theories, they can be used to 

evaluate policy instruments based on scientific knowledge in situations that final effects of 

a policy cannot be identified due to long time periods or complex interdependencies.  
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3.3 Policy as a Political Interaction 

3.3.1 Definitions of policy and policy evaluation 

In this perspective, policy is seen as the product of interaction between various social and 

political actors, each with their own interests and power. The policy problem is dependent 

on how the various social and political actors push through their own issues and problem 

definitions. The policy goal is no longer purely the ambition to solve a problem, but rather a 

reflection of the power balance between the actors. The selection of policy options also 

involves negotiations and struggles between different actors.  

There are numerous examples of policy definitions following this perspective: public 

policy is “whatever governments choose to do or not to” (Dye, 1984: 1); public policy “is, 

in its most general sense, the pattern of action that resolves conflicting claims or provides 

for cooperation” (Frohock, 1979: 11); public policy is “a set of interrelated decisions taken 

by a political actor or group of actors concerning the selection of goals and means of 

achieving them within a specific situation where these decisions should, in principle, be 

within the power of these actors to achieve” (Jenkins, 1978: 15). In this perspective, the 

strategies for policy evaluation are totally different from those in a “control loop” view of 

policy. A “goal attainment” evaluation is no longer sufficient.  

3.3.2 Strategies of policy evaluation 

3.3.2.1 Stakeholder-oriented evaluation 

Stakeholder-oriented evaluation takes as its starting point neither the policy goals nor the 

final results, but the different “stakeholders” (not) involved in the policy making process. 

The term “stakeholder” refers to a person, group, organization, or system who affects or can 

be affected by a policy, program or activity and therefore has responsibilities towards it and 

an interest in its functioning (Hughes, 1998). Stakeholders were initially discussed in 

theories of organizational management and business ethics, to widen the conventional 

category of shareholders. Freeman (1984) argued that in addition to investors, employees, 

suppliers, and customers22, other parties including governmental bodies, political groups, 

trade associations, trade unions, communities, associated corporations, prospective 

                                                        
22 The conventional input-output model saw firms as converting investor, supplier, and employee inputs into customer outputs 
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employees, prospective customers, the public, and sometimes even competitors should be 

counted as stakeholders. Although the concept of stakeholders was criticized, for instance 

by Charles Blattberg (2004) for assuming that the interests of different stakeholders are 

negotiable, stakeholder have remained a strong concepts and a commonly discussed topic in 

policy sciences.  

The major task of stakeholder-oriented evaluation is stakeholder analysis, that is, the 

process of identifying who can be impacted by or cause impacts on a policy, program or 

activity, and what these (potential) impacts are. Donaldson and Preston (1995) argued that 

the fundamental basis of stakeholder theory is normative and stakeholders can be identified 

by their “intrinstic interests”. Mitchell et al. (1997) derived a typology of stakeholders 

based on the attributed power to influence, the legitimacy of each stakeholder‟s relationship 

with the organization, and the urgency of the stakeholder‟s claim on the organization. Guba 

and Lincoln (1981) identified three broad classes of stakeholders, each with subtypes: 

1) The agents, those persons involved in formulating and implementing a policy, 

program or activity. These agents include: 

a) The policy makers; 

b) The local, regional and national funders; 

c) Local need assessors who identify the need that the policy, program or 

activity aims to improve or remove; 

d) Decision makers who determine to utilize or develop the policies locally; 

e) The providers of facilities, supplies and materials; 

f) The client for evaluating the policy, program or activity; 

g) The personnel engaged in implementing the policy, program or activity. 

2) The beneficiaries, those persons profit from the implementation of the policy, 

program or activity. These beneficiaries include: 

a) The direct beneficiaries, the “target group”, the persons for whom the policy, 

program or activity is designed; 

b) Indirect beneficiaries, persons whose relationship with the direct beneficiaries 

is mediated, eased, enhanced, or otherwise positively influenced; 

c) Persons who gain benefits by the fact that the policy, program or activity is in 

use. 

3) The victims, those persons negatively affected by the implementation of the policy, 

program or activity. These victims include: 
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a) Groups systematically excluded from the use of the policy, program or 

activity; 

b) Groups that suffer negative side effects from the use of the policy, program or 

activity; 

c) Persons who are politically disadvantaged by the use of the policy, program 

or activity; 

d) Persons who suffer opportunity costs for forgone opportunities as a result of 

the use of the policy, program or activity. 

This policy evaluation strategy guides the evaluators to seek answers to questions “who 

are impacted by the evaluated policy or posing impacts on the implementation of the 

evaluated policy” and “how much are these impacts”. Specific policy recommendations can 

also put forward partly based on the answers to these two questions. 

Arguably, network analysis is a more advanced, theory-based and scientific 

methodology for analyzing the stakeholders around policies to be evaluated. In sociological 

research, a network means a social structure made of nodes (which are generally 

individuals or organizations) that are tied by one or more specific types of interdependency, 

such as resources, values, visions, ideas or financial exchanges (Wellman and Berkowitz, 

1988)23. There are numerous network theories that operationalize network analysis. Most of 

them share many commonalities. I will elaborate on one example, which is relevant for the 

current research. 

The triad-network model developed by Mol (1995) and elaborated by Koppen and Mol 

(2002) is an analytical framework suitable for analyzing actors and stakeholders around 

complex social problems in a systematic way  (Figure 3.2)24. It can help to understand and 

analyze the institutions and actors constituting the policy, economic and social environment 

on the one hand, and the relations between the institutions and actors on the other hand. The 

triad-network model consists of three basic networks, viz. policy network, economic 

network and societal network. Each network constitutes a combination of a specific 

analytical perspective, distinctive institutional arrangements and a restricted number of 

interacting (collective) actors. The analytical distinction between these three networks 

relates to the way in which mechanisms of and perspectives on institutionalization, 

transformation and reproduction are conceptualized. In reality, the actors and institutions in 

                                                        
23 The definition of “network” completely differs in transportation systems, electronic sciences and sociology.  For the nature of this 

study, here I focus only on the network analysis in social sciences. 
24 Although the triad-network was designed in analysis of industrial ecosystems, it will be discussed in a broad sense of social 

sciences in this thesis. 



Analytical Framework 

49 
 

the three networks closely interact (Koppen and Mol, 2002).  

Actors and institutions involved in policy networks should be understood and 

analyzed primarily from a political-administrative perspective. In analyzing policy network 

of renewable energy development, four dimensions should be clarified: the rules of the 

game, the resources used in the network, the strategies between private actors and 

governmental authorities, and the so-called appreciative system. The „rules of the game‟ are 

the guidelines according to which different actors behave towards each other and allocate 

their resources. The „resources‟ used in policy network include legal resources, economic 

and financial resources, and informational and knowledge resources. Different „strategies‟ 

between governmental actors and private members can be distinguished in policy networks: 

insulation (to keep government as far away as possible), penetration (of the private actors in 

the government or vice versa), mutual adaptation, and inter-organizational concentration 

(cooperation through mutual understanding of each other‟s positions and interests). The 

„appreciative system‟ concerns the ideological identity or worldview dominant in the policy 

network, promoting and legitimating specific action strategies within the network. 

Societal 

network  

Economic 

network  

Policy 

network  

Social 

problems 

Figure 3.2 The triad-network model  
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Economic networks basically focus on understanding economic interactions via 

economic rules and transactions between primarily economic agents. In analyzing 

economic networks, the following relations should be studied: the relationships between 

economic agents in a product chain, from material providers till end users; the relationships 

between competitors in the same sector; the interactions between firms, other economic 

agents and research institutes; and relations and interactions in restricted geographical areas. 

It is especially economic and business theory that is helpful in further operationalizing 

economic network analysis. 

Societal networks focus on local communities and social organizations in relation to 

problem complex. In analyzing societal networks, following aspects should be studied: the 

nature of the relations between these social organizations and other stakeholder; the impacts 

of the studied social issues on the process in which these relations are formed; the extent to 

which the existing relations in societal networks can improve or hinder development of the 

studied social issues. 

3.3.2.3 “Value-pluralistic” and responsive evaluation 

Values are understood as the beliefs and desires that individuals or agents hold, and based 

on which they judge what is good among alternative options and their proper behaviors 

(Lacey, 1999).  

Traditionally, scientific research pursued an opinion of “value-free” investigation for 

centuries. To this end, “value-free” means: based on the assertion that values are shared by 

the whole society and that “objective facts” exist, impartiality on the one hand and 

neutrality on the other hand. Impartiality is a belief that certain theories and understandings 

are soundly accepted without needs of further investigation. Neutrality is the attitude that 

science itself is neither good nor bad, regardless of culture, race, or religion (Proctor, 1991; 

Lacey, 1999). The sharp demand for value-free sciences goes back to the days of, among 

others, Galileo Galilei and Francis Bacon (Drake, 1957; Bacon, 1960). Marx Weber had a 

controversial belief in "value-free" social science, in his distinction between the scientific-

objective approach, which should be “value-free” and the political policy which can never 

be “value-free” (Ciaffa, 1998).  

However, the idea of value-free science became increasingly challenged during the 

last decades. With respect to policy sciences Bahm (1971) argued that a researcher‟s 

“objective” willingness does not necessarily imply completely value-free research, and he 
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tried to prove this by analyzing why values and obligations are inherent in scientific 

problems, scientific attitude and scientific methods. Krathwohl (1980) argued that 

evaluators make their own judgments, instead of automatically and deterministically 

following “scientific knowledge”, as the only logic of evaluation. He also explored how to 

involve values into evaluation. Gray (1983) insisted that sociologists cannot analyze the 

consequences of social structure, forces, and change in a value-free context. Guba and 

Lincoln (1989) criticized value-free evaluations for being partial and vulnerable to specific 

interests of stakeholders, even if it uses “scientific” methodologies. They advocated the 

notion of value-pluralism and regarded it as an important part of a new generation of policy 

evaluation. Any policy evaluation is to some extent influenced by the social environment, 

personal and public interests, and the evaluator‟s values. This limitation of objectivity 

cannot be totally prevented but it can be understood. It is always helpful to recognize key 

stakeholders of a specific public policy and understand their opinions and values in order to 

judge pros and cons of the evaluated policies, rather than reaching judgments simply based 

on “true” or “right” criteria as was dominant in value-free assessments. 

A representative approach that copes with the demand of value-pluralism in policy 

evaluation is the responsive evaluation mode. The term responsive evaluation was first 

proposed by Stake (1975). It refers to a focus in the evaluation on parameters and 

boundaries through an interactive, negotiated process that involves stakeholders. This 

interactive and negotiated process consumes a considerable portion of the time and resource 

available in policy evaluation. Responsive evaluation has three elements, viz. the claims, 

concerns and issues of the evaluated policy as identified by different stakeholders. A claim 

is any assertion that a stakeholder may introduce that is favorable to the evaluated policy. A 

concern is any assertion that a stakeholder may introduce that is unfavorable to the 

evaluated policy. An issue is any state of affairs about which reasonable persons may 

disagree. Different stakeholders hold different claims, concerns and issues.  

Responsive evaluation has also consequences for the way a policy evaluation is 

implemented. Guba and Lincoln (1989) describe four steps of a responsive evaluation. First, 

stakeholders are identified and are solicited for those claims, concerns and issues that they 

may wish to introduce. Second, the claims, concerns and issues raised by each stakeholder 

are introduced to all other stakeholders for comments, refutation, agreement or any other 

reaction. Third, information is collected for those claims, concerns and issues that have not 

been resolved at the second step. Finally, negotiation among stakeholders, under the 



Jingyi Han                                                                         Renewable Energy Development in China 

52 

guidance of evaluators, is conducted to reach consensus on each disputed claim, concern 

and issue by using collected information. Of course, it is unnecessary and impossible to 

reach full consensus on each item among all stakeholders. The evaluator‟s judgment plays 

an important role in drawing conclusions on how to proceed on issues, claims and concerns 

that are not resolved through consensus in policy evaluation.  

3.4 Policy as an Institutional Phenomenon 

The third perspective on policy regards public policy as an institutional phenomenon. It 

does not focus on specific policy processes here and now, but on the policy field, i.e. the 

institutionalization of ideals, norms and opinions on the one hand, and practices and ways 

of going about things on the other hand. The contents and organization of policy are 

gradually fixed in specific patterns, common perceptions of the policy problem, in 

conceptions of the main mission and characteristics of the policy field, and in accepted 

views of who the principal players are, what the balance of power between these players is, 

and how they interact.  

It is difficult to define or identify the institutional features of a policy field with 

theoretically constructed typologies. Policy scientists normally carry out an (international) 

comparison between two similar policy fields, a cross-sector comparison between two 

policy fields and/or a longitudinal comparison between a specific policy field a period ago 

and today to analyze and describe the characteristic institutionalization of a policy field. 

Policy evaluation in this perspective then focuses on the institutional features of the 

policy field, and how it is stimulated and applied. It reveals structural causes of policy 

success or policy failure and seeks practical reasons for improving policy. The institutional 

dynamics of the policy field is another interest of the policy evaluation from an institutional 

perspective. It assesses how stable and lasting the institutional patterns are, how they are 

continually being reproduced and consolidated, and how resistant they are to change to 

tackle new policy problems25.  

In comparison with the perspectives of policy as a control loop and as a political 

interaction, the policy evaluation in an institutional view lacks a robust methodological 

basis. It is also less frequently tested in practice. 

                                                        
25 For example, the environmental policy field is comparatively younger than others, and thus constantly challenged with new 

issues and developments, which in turn displays high institutional dynamics. 
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3.5 Evaluation Model for Renewable Energy Policy in China 

The discussion above summarizes three different views of public policy. When renewable 

energy policy in China is considered, any of the three perspectives can be applied. 

Renewable energy policy in China can be assessed in the perspective of a control loop. The 

policy problem is then rather clear: to solve the energy shortage and to relieve the 

environmental contamination resulting from fossil fuel consumption. It should and does 

have quantified policy goals26. It has also concrete policy options which can be the target of 

policy evaluation and of further recommendations27. Renewable energy policy in China can 

also be assessed as a political interaction. We see intensive negotiation on policy problem 

definition 28  and policy option selection 29  in the process of renewable energy policy 

formulation in China. Renewable energy policy in China can also be analyzed as an 

institutional phenomenon. This field of policy making has become institutionalized and 

shares a joint view: there is no need to further explain why renewable energy has priority 

above fossil fuels in the future. It is institutionalized by the establishment of relevant 

governmental departments (at different levels) and the national law.  

By the same token, it is impossible to fully understand China‟s renewable energy 

policy, its development and its successes and failures from just a single perspective. 

Renewable energy policy in China is to be understood at the intersection of these three 

perspectives. In addition, the development of an evaluation model should also be guided by 

the specific questions to be asked and answered. Hence in developing a policy evaluation 

model for the present study, I have flexibly combined elements from the three approaches 

with the basic research questions as formulated in chapter 1. The used model consists of 

three steps: the assessment of policy performance, the analysis of driving forces, and the 

formulation of policy recommendations (Figure 3.3). 

                                                        
26 For example the total amount objective: 10% of the total energy consumption by 2010 and 15% by 2020. 
27 For example the priority grid access policy or the demonstration projects. 
28 For example the discussion on whether large hydro is renewable energy. 
29 For example the balance between bioenergy development and agricultural production 
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3.5.1 Policy goals, policies and performance 

As most policy analyses the model in this study starts with identifying the policy goals 

formulated (in this study by the relevant Chinese authorities on renewable energy 

development), followed by the identification of the policy measures and activities 

implemented and the identification of governmental and non-governmental actors related to 

this policy field. This is mainly a descriptive element, as this study is less focused on 

understanding the processes of agenda-setting and policy formulation, but concentrates on 

policy performance evaluation. 

Hence, the core of this policy evaluation model concentrates on performance 

assessment. This performance assessment consists of two parts: the analysis of effects and 

the evaluation of performance. The analysis of effects is carried out in a “goal-free” way, i.e. 

all the observed institutional, economic and societal transformations in relation to the 

studied renewable energy issue are concerned, no matter whether they are expected and 

Performance assessment 

Triad-network 

Policy recommendations formulation 

Criteria Step 1 

Step 2 

Step 3 

Policy goals and policies identification 

Driving forces analysis 

Figure 3.3 Evaluation model for renewable energy development in China 
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planned results of the studied renewable energy policy, or unexpected and unwanted side 

effects by other influencing factors. At this step I also identify the absent effects that are 

regarded as necessary for a successful development of the renewable energy issue. 

The observed effects are then evaluated by a set of performance criteria, viz. the 

economic performance, the technological performance, the environmental impact and the 

social impact (Table 3.1). These criteria are used for both the renewable energy projects in 

each case study (as described in Chapters 4, 5 and 6) and the renewable energy 

development in China in general (as applied in the concluding chapter). 

Economic performance refers to profit of renewable energy projects and end users‟ 

saving money from adopting renewable energies. Although most renewable energy projects 

in China are receiving governmental subsidies or other funding, a proper level of profit is 

fundamental for sustaining these projects, especially now that China has also embraced a 

market economy model. Poor profit levels can also reduce the enthusiasm of investors. 

Economic benefit to local residents has impact on the public acceptance of renewable 

energy. Arguably, for most people in a transitional economy such as China economic 

viability is the most important reason to develop and use renewable energy, rather than 

perception of environmental protection or the desire of a modern lifestyle.  

Indicator Sub-indicator Definition 

Economic 

performance 

Developer  Economic benefits for project developers 

End user Economic benefits for end users 

Technological 

performance 

Technology Proper selection of technology 

Equipment Efficient use of equipments 

Environmental 

impact 

Pollution abatement Contribution to the alleviation of environmental 

pollution 

GHGs reduction Contribution to the reduction of greenhouse gas 

emission 

Social impact Direct Improvement of life quality in local areas 

Indirect Improvement of other aspects in local areas 

Table 3.1 Evaluation criteria for renewable energy development in China 
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Technological performance refers to proper selection of renewable energy technologies, 

efficient use of equipments and good quality of renewable energy products. Development 

of renewable energy resources are largely restricted by local conditions. Using unsuitable 

technologies in an area with plenty renewable energy resources might cause failures of 

projects. Another important aspect of technology performance is the efficient use of 

equipments installed in renewable energy projects. It might be influenced by both the 

technology itself and by the daily management of projects. 

Environmental impact refers to improvement of environmental quality and reduction of 

GHGs emission in areas where the renewable energy projects are carried out. Some side 

effects to local environment are also studied. 

Social impact refers to improvement of life quality in local areas. It can include direct 

benefits such as saving time for collecting fuels or new employment opportunities, and 

indirect benefits such as improvement of local infrastructure. During the process of 

evaluation, these criteria are further elaborated in the context of different renewable energy 

resources. 

3.5.2 Analyses of driving forces 

As the previous step assesses the performance of the studied renewable energy issue, this 

step links the performance to various driving actors and forces; or negative drivers: 

inhibiting actors and factors. These (non-)drivers can be found in policy measures and 

policy actors, but might also be related to other drivers outside the policy arena, such as 

economic and market drivers, or those related to civil society. These driving forces are 

analyzed within the framework of a triad-network model as introduced above. 

3.5.3 Policy recommendations 

When the performance has been assessed and the corresponding driving forces have been 

identified, the final step of this policy evaluation model is formulating recommendations. 

Taking into account the driving forces that have influenced the performance, problem-

oriented recommendations are put forward with respect to institutional arrangements, policy 

formulations, market reform and technology improvements over short, medium and long 

term periods. 
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3.6 Research Methodology 

As discussed in Chapter 1, the main purposes of this study are to evaluate the performance 

of renewable energy development in China, to find out the driving forces of this 

performance, and to recommend on future development of renewable energy 

implementation. Given the nature of the research objectives, qualitative research is used as 

the major research approach to gather an in-depth understanding of the strengths and 

weaknesses of renewable energy development and implementation in China. Research 

findings from three information-rich cases are used to analyze the performance of 

contemporary renewable energy development in China, and to generate policy 

recommendations for furthering renewable energy. 

3.6.1 General Research Design  

In general, qualitative methodology is the main research approach in this study. Although it 

is criticized by some politicians and hard scientists for being unscientific, or only 

exploratory, or subjective, qualitative research has become an important mode of inquiry 

for social sciences that crosscut disciplines, fields, and subject matters (Huber, 1995; 

Marshall and Gossman, 1999; Denzin and Lincoln, 2005). Qualitative research aims to 

gather in-depth understandings of the complexity of social interactions and the ways 

participants attribute to these interactions.  

Qualitative research traditions share four characteristics: They take place in the natural 

and existing world other than in a laboratory; they use multiple methods that are interactive; 

they are emergent and evolving rather than tightly prefigured and fixed in advance; and 

they are fundamentally interpretive. Qualitative researchers are also believed to have 

common characteristics: They view social phenomena as holistic or seamless, they 

systematically reflect on their own roles in research, they are sensitive to their personal 

biographies and how these shape the studies, and they rely on complex reasoning that is 

multifaceted and iterative (Rossman and Rallis, 1998). 

Qualitative research does not have one distinct set of methods. It is a set of multiple 

interpretive practices. The most commonly used qualitative research approaches in 

sociology, political science and education evaluation include the semiotics approach as 

developed by, among others, Morris (1971) and Peirce (1934), the narrative approach as 

advocated by Mills (1959) and others, the discourse analysis as developed by Atkinson and 
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Heritage (1984), the ethnography approach as elaborated by Spradley and McCurdy (1972), 

the grounded theory as developed by Glaser and Strauss (1967), and the case study strategy 

as elaborated by, among others, Yin (1984; 1993) and Hamel et al. (1993). The preferred 

qualitative approach depends primarily on the type of research questions and objectives. 

Taking into account the nature of our research objectives, case study research is the most 

suitable approach to apply in this study.  

Case study research is an appropriate research strategy to use when “how” and “why” 

questions are asked (Yin, 1984). In this study, questions include how China has developed 

its renewable energy resources, what are the reasons for successes/failures of renewable 

energy development in China, and how to improve its performance in further development. 

These questions are typical “how” and “why” questions. This is the reason for choosing 

case study research as the major research methodology in this study. 

Although the major part of China‟s renewable energy development has a short history, 

the entire picture is too large and complex at vertical (China‟s complex administration 

levels), horizontal (China‟s large-size and varied territory) and thematic (different 

renewable energy types in China) directions to be studied as a whole. Hence, specific case 

studies need to be selected. 

3.6.2 Research Strategies 

In comparing quantitative research with qualitative research, a major difference lies in the 

logics of sampling approaches. While the former typically depend on larger number of 

random samples, the latter focuses on smaller number of purposefully selected samples. 

The logic of purposeful sampling strategy is selecting information-rich cases to acquire in-

depth understanding of the studied issues, from which the researchers can learn information 

of great importance to the research purposes (Patton, 2002).  

In total 16 strategies for purposeful selecting information-rich cases were raised by 

Patton (2002). In this study the maximum variation sampling, which aims at “capturing and 

describing the central themes or principal outcomes that cut across a great deal of 

participant or program variation”, is chosen to be the sampling strategy. Due to the limited 

time and resources available and the need for intensive, in-depth study of each case, a large 

number of cases is not allowed in this study. Small samples always cause problem of high 

heterogeneity among individual cases and limited generalizability. The maximum variation 

sampling strategy can turn this obvious weakness into a strength: any commonness of the 
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Table 3.2 Overview of cases for this study 

great varied samplings are of particular value in looking for experiences of the studies topic. 

This is the main reason why this study selects maximum variation sampling as the sampling 

strategy of cases. 

 Three criteria are used to ensure the variation of cases. Based on the maximum 

variation strategy and the above-mentioned criteria, three cases of renewable energy 

development in China are selected for in-depth studies (Table 3.2 & Figure 3.4). 

The first criterion is type of renewable energy technology. China started its efforts to 

develop renewable energy utilization about 30 years ago. Due to such a short history, only 

several renewable energy technologies have been widely developed. In this study, three of 

the most commonly applied renewable energy technologies in China are selected for case 

studies: biomass gasification, grid-connected wind power and solar water heater. Each case 

stands for one renewable energy technology. This also means hydropower as the forth main 

renewable energy in China is not included in this study. 

The second criterion is administration level. In China, tasks for renewable energy 

development differ among different administration levels. At higher administration level, 

renewable energy resources are developed in relatively long-term plans and on a more 

strategic level. Here financial resources are allocated from multiple sources. However, the 

structure of stakeholders‟ interactions is more complex, which causes specific patterns of 

during the processes of developing renewable energy resources. At lower administration 

level, renewable energy resources are normally developed in the form of small-scale 

demonstration projects on short term policy. Local communities may have important 

impacts on the implementation of such development strategies.  

Study area Type of renewable 

energy technology 

Administration 

level 

Economic 

development level 

Inner Mongolia Wind power Province Poor 

Shandong Biogas gasification Village Moderate 

Zhejiang Household solar energy City Rich 
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The third criterion is economic development level. Economic development might put 

tremendous influence on environmental and energy governance capacity. A region with 

high economic development level is expected to be more concerned about environmental 

quality, have larger environmental capacities among its bureaucracies and is more willing to 

accept and implement environment friendly policies (and thus renewable energy above 

fossil fuel projects). All these differences are expected to impose different impacts on local 

policies and practices of renewable energy development. 

In the three case studies, the evaluation framework (developed in Seciton 3.5) is 

applied in a not too rigid way to each case, to allow for the case specific dynamics in policy 

development. Each case is put in a wider context so that we can understand the particularity 

of that case vis-a-vis other situations where the same renewable energy is implemented.  

Figure 3.4 Map of China with highlighted case study sites 

Inner Mongolia: 

onshore wind power  

Shandong: 

biogasification  

Zhejiang:  

solar water heater  
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3.6.3 Data Collection Methods 

Data for qualitative researches can be distinguished, according to how they are acquired, 

into primary and secondary data. In collecting primary data the researcher purposefully 

design the data collection processes and plays an important role in doing it. In collecting 

secundary data researchers put more energy into critically examining and analyzing data 

from other invetigations, organizations and government departments, who have collected 

data for their own purposes (Clark, 1999; Denzin and Lincoln, 2005).  

A structured approach – triangulation – is applied to bring together the various data 

sources and data collection methods in this study. Triangulation is an effective tool widely 

used in social sciences. It is the usage of different methods, data, theories or investigators in 

studying the same complex social problem (Greene and McClintock, 1985; Chappel et al., 

1999). I apply site oberservation (as a competent observor, cf. Clark, 1999: p. 79), face-to-

face interviews, surveys, and interpretation of existing textual material, statistics and mass 

media reports to gain an case-specific and overall understanding of renewable energy 

development in China (Figure 3.5).  

Observation Interview 

Interpretation 

Figure 3.5 Triangulation method 



Jingyi Han                                                                         Renewable Energy Development in China 

62 

Primary data used in this study are collected via site oberservations, face-to-face 

interviews and questionnaires. Site observations are carried out at 7 biomass gasification 

stations in Shandong in July 2006 (cf. Chapter 4), at 3 wind farms in Inner Mongolia from 

September to October in 2007 (cf. Chapter 5) and at 5 solar water heater manufacturers and 

6 solar water heater retailers in Zhejiang from May to June in 2008 (cf. Chapter 6). Face-to-

face interviews are carried out with officials, scientists, project developers, 

industries/manufacturers and community members in relation to renewable energy 

development in Beijing, Shandong, Inner Mongolia and Zhejiang (see Appendix 1). A 

uniform questionnaire with closed questions is used in evaluating performance of 

household solar water heater utilization in Zhejiang (see Appendix 2). 

Besides the data collected through primary methods, secondary data are also used as 

information sources for this study. National and provincial statistical yearbooks are used to 

obtain historical data of socio-economic development and energy development. The 

information about bureaucratic structures and policy frameworks for renewable energy 

development is acquired from websites, documents and through interviews of both the 

central government and local governments. Data on renewable energy prices, installation 

capacities and market shares are collected from the reports written by governmental 

departments, NGOs and other third parties30 . Academic journal articles are referred to 

mainly in order to obtain technological parameters of renewable energy utilization. And 

data from mass media with reliable information sources have been used to assess public 

perception31. 

 

                                                        
30 Such as the EU, the NDRC, the Green Peace, the National Renewable Energy Laboratory (NERL) and the Energy Research 

Center of the Netherlands (ECN) 
31 Such as the Xinhua Net and the Renewable Energy Policy Network for the 21st Century (REN21) website  
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Chapter 4    Small-Scale Bioenergy Projects in 

Rural China: Lessons to be learnt32 

“Safety and certainty in oil lie in variety and variety alone.” 

- Winston Churchill (1913) 

Abstract 

Large amounts of small-scale bioenergy projects were carried out in China‟s rural areas in 

light of its national renewable energy policies. These projects applied pyrolysis gasification 

as the main technology, which turns biomass waste at low costs into biogas. This paper 

selects seven bioenergy projects in Shandong Province as a case and assesses these projects 

in terms of economy, technological performance and effectiveness. Results show that these 

projects have not achieved a satisfying performance after 10 years experience. Many 

projects have been discontinued. This failure is attributed to a complex of shortcomings in 

institutional structure, technical level, financial support and social factors. For a more 

successful future development of bioenergy in rural areas, China should reform its 

institutional structure, establish a renewable energy market, and enhance the technological 

level of bioenergy projects. 

Keywords: pyrolysis gasification; Shandong; renewable energy 

4.1 Introduction 

Bioenergy is receiving significant attention recently, for various reasons. First, it is 

celebrated for its potential contribution in mitigating greenhouse gas emissions. Second, it 

can contribute to alleviating rural poverty by additional sources of income. Third, it is often 

believed to increase energy security by lowering oil import dependencies of countries and 

regions (Mol, 2007; Verdonk et al., 2007). While first generation large scale bioenergy 

production from food crops as maize, oil palm and sugarcane is increasingly meeting severe 

                                                        
32 This chapter contains an article published as Han J., A.P.J. Mol, Y. Lu and L. Zhang. 2008. Small-scale bioenergy projects in 

rural China: Lessons to be learnt. Energy Policy, Vol. 36, Issue 6: 2154-2162. 
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criticism for its detrimental effects on the environment (biodiversity, soil and water 

deterioration, NOx emissions) and food access, small-scale and second generation (from 

biodegradable waste and plant left-over) are considered more favorably (Mol, 2007).  

While China has recently become involved in large-scale biofuel (bioethanol and 

biodiesel) production, it has a much longer history of small-scale bioenergy production, 

especially in rural areas. Especially since the end of the 1980s, bioenergy has been 

identified as an important and promising contributor to renewable energy production and 

rural development. Renewable bioenergy technologies that were widely applied from the 

early 1990s onwards included anaerobic digestion, pyrolysis gasification, bio-fuel 

solidification, bio-ethanol generation and bio-diesel cogeneration (Johansson et al., 1993). 

Being still predominantly an agricultural country, China has plenty of biomass resources for 

bioenergy development. It is estimated that China produces 200 – 400 Mt sce of non-

product biomass available for energy purposes every year (Li et al., 2001; Li and Hu, 2003), 

most of it in rural areas.  

Due to low levels of economic development in China‟s rural areas, pyrolysis 

gasification has been among the more popular technologies, as it is a rather simple 

technology and cheap compared with other bioenergy technologies. Around the year 1997, 

China started several rural biogasification demonstration projects under its agreement with 

European Union (Bridgwater, 1999; MOA/DOE Project Expert Team`, 1999). In 1998, 

about 200 village-level biogas stations were established in China (Zhou, 2002), and seven 

years later more than 1000 village-level biogas stations have been constructed through 

national investment, mainly in the rural areas of eastern and south-eastern coastal provinces 

such as Liaoning, Shandong and Zhejiang (Leung et al., 2004; National Renewable Energy 

Laboratory`, 2006). These projects aim to provide village residents access to clean and 

cheap energy and to improve local air quality by reducing direct combustion of straws and 

stalks. Ten years have passed since China constructed its first small scale biogas station, but 

anecdotal evidence suggests that the amount of functioning biogas stations has declined 

strongly. 

Against the above-mentioned background, this paper aims not just to assess the 

performance of these low-technology bioenergy projects, by especially to explain how and 

why the set targets for these projects were not met. These insights are used to put forward 

suggestions for decision makers to improve the performance of these technologies. In doing 

so, the paper focuses on coastal Shandong province, where biogasification projects have 
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been introduced widely. The next section introduces Shandong province (its renewable 

energy demand, available biomass resources, and its institutional and policy frameworks) 

and the biogasification technology used. The third section reports on a performance 

analysis of seven biogas stations in Jinan City, Shandong Province. The fourth section 

analyzes the causes and barriers that resulted in the poor performance of biogasification in 

Shandong Province. Finally, recommendations for future development of rural bioenergy 

utilization in China are formulated. 

4.2 Bioenergy in Shandong Province 

4.2.1 Demand for renewable energy 

Shandong is among the largest energy consuming provinces in China. In 2004, its total 

energy consumption climbed to 159 Mt sce, ranking the second in all China‟ provinces and 

for the first time exceeding its total energy production (Shandong Statistical Bureau`, 2005). 

In the national economic development objectives, China‟s average annual growth rate of 

energy demand is estimated to be 2.8% for the coming 50 years (Wang and Lu, 2002). In 

other words, total energy consumption in Shandong will reach 566 Mt sce in the year 2050, 

if the growth of energy demand in Shandong keeps up with the estimated national rate. 

At the same time, energy production in Shandong will not significantly increase if the 

current energy industry structure remains unchanged. Statistical data even show that coal 

production in Shandong in 2004 was 1.3% lower than that in 2003 and the production is 

believed to shrink further in the coming years (Gao and Gao, 2005). Although oil 

production is relatively stable (with 37.5% of oil products exported to other provinces), 

Shandong produces 6% of the total national oil production every year but has only 2.2% of 

the total national reserve. Its oil resources will be finished within the next 20 years. 

Like most provinces in China, Shandong has a “fossil-fueled” energy structure, where 

coal (76.0%) and oil (23.3%) account for 99.3% of total primary energy consumption 

(Shandong Statistical Bureau, 2005). This “fossil-fueled” energy structure has two negative 

effects. First, it releases large amounts of greenhouse gasses. In 2004 about 10% of China‟s 

waste gas emission occurred in Shandong, equaling the proportion of Shandong‟s energy 

consumption in national energy consumption. Second, it causes spilling of energy. In China, 

fossil fuels are mined, processed and consumed at lower efficiencies compared with 

renewable energy resources. Most fossil fuel producing areas are located in its northwest 
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and northeast China, while the major industrial areas and cities lie in east and southeast 

China, resulting in fuel transports over long distances. According to statistical analyses, 

approximately one fourth of China‟s primary energy is wasted during mining, processing 

and transportation. 

There is increasing recognition among Chinese scholars and state officials that future 

energy shortages in Shandong cannot be solved simply by enhancing oil and/or coal mining 

(and imports), but need to involve a change of energy structure by enhancing the share of 

clean and renewable energy. The growing strictness of national and local environmental 

protection needs and targets only reinforce this. Biomass has a large potential to become a 

major renewable energy source for Shandong. 

4.2.2 Biomass resources in Shandong 

Agricultural biomass and forestry biomass are two main resources for bioenergy production. 

Agricultural biomass refers to agricultural product residues and agro-food processing 

wastes. Crop straw, rice husk, cornstalk and corncob are often mentioned as useful biomass 

for energy generation. Forestry biomass is produced during forest growth, harvest and 

wood manufacturing. 

The agricultural sector in Shandong provides considerable amount of biomass 

resources, although no detailed investigation has been conducted yet. According to 

Bridgwater (1999), production of crop residues is related to amounts of crop-products and 

rates of residues produced from crops (cf. Section 2.2.1). Thus, the total amount of biomass 

residue from crops in Shandong in 2004 is about 67.32 Mt (Table 4.1). With pyrolysis 

gasification technology, 2.5 kg biomass is enough for a normal family to cook meals for a 

whole day. In other words, one forth of the total crop residue production, i.e. 18.25 Mt, can 

provide the 20 million rural families with sufficient fuels for cooking. This to some extent 

competes with the use of crop residues as animal fodder, industrial materials and fertilizers 

in Shandong. But it is estimated that currently about 20% of crop residues are burnt directly 

in the field as waste, which could in stead be used as bioenergy without conflicts for other 

use functions.  
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According to studies conducted by the Food and Agricultural Organization (FAO) of 

the United Nations, only half of the forestry harvest is used for industrial products at mills 

and manufacturing facilities (UNECE/FAO, 2006). Thus 50% of forest biomass, in the form 

of branches, barks, chips and sawdust, is available for energy production. In 2004, about 

1.29×106 m3 of forestry products were harvested in Shandong (Shandong Statistical Bureau, 

2005), offering 6.45×105 m3 forestry biomass for energy production. 

4.2.3 Institutions and policies for renewable energy development 

In Shandong Province, four major departments under the People‟s Congress (PC) and 

provincial government share power on renewable energy development (Figure 4.1). The 

Environmental Protection Bureau (EPB) is responsible for enforcing national 

environmental laws and policies, specifying local pollution standards, investigating 

environmental accidents and mediating environmental disputes. The Natural Ecosystem 

Protection Section (NEPS) under EPB takes responsibilities of directing comprehensive 

utilization of straws and monitoring improper combustion. The Rural Development Section 

(RDS) under the Department of Science and Technology (DOST) funds and organizes 

advanced-technology demonstration projects in rural areas, including renewable energy 

promotion projects. The Energy and Communication Section (ECS) under the Development 

 Wheat Corn Cotton Peanut Soybean Potato 

Area 
(ha) 

3,105,700 2,455,049 1,059,207 925,298 241,180 N/Aa 

Yield 
(kg/ha) 

5,102 6,106 1,036 3,948 2,972 N/A 

G (t) 15,845,638 14,991,484 1,097,709 3,653,002 716,674 4,909,964 

r 
(kg/kg) 

1 2 3 2 1.5 2 

BR (t) 15,845,638 29,982,968 3,293,127 7,306,004 1,075,011 9,819,928 

Table 4.1 Estimation of crop residue production in Shandong, 2004 

a N/A: data not available 
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and Reform Commission (DRC) develops policy measures for improving energy efficiency 

and promoting new energy in the framework of provincial socio-economic development 

plans. The Eco-Agriculture Section (EAS) under the Department of Agriculture (DOA), 

which is also called the “Office of Rural Renewable Energy Development of Shandong”, 

forms the most important governmental agency for renewable bioenergy development in 

Shandong. It takes full responsibility for organizing, planning and implementing renewable 

energy projects in rural areas. 

Shandong government develops renewable energy policies at provincial level, as 

supplement to or specifying national renewable energy policies and standards. These 

provincial policies entail regulatory instruments, financial incentives and technical 

standards for renewable energy development. The most important policies are summarized 

in Table 4.2. 

 

 

Shandong PC 

Shandong Government 

EPB DRC DOA DOST 

NEPS ECS EAS RDS 

Figure 4.1 Institutions for renewable energy development in Shandong 

Source: http://www.shandong.gov.cn/col/col5487/index.html 
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4.2.4 Biogasification projects in Shandong 

The urgent demand for renewable energy development, availability of biomass resources, 

and well-established institutional and policy framework enhanced the blossoming of 

bioenergy demonstration projects in Shandong. Around the year 1997, China started with 

bioenergy demonstration projects in rural areas and Shandong has been one of the key 

implementation provinces. By 2005 Shandong province had constructed over 400 village-

level bioenergy projects. Pyrolysis gasification technology was widely applied in these 

stations, because it was the most mature one at the end of the 1990s, while the cost to 

Policy Promulgator Statement 

Regulation on Rural 

Energy Development 

and Management in 

Shandong Province 

People‟s Government 

of Shandong Province 

(1997) 

Article 12: Governmental 

departments of rural energy 

development should organize 

production and utilization of new and 

renewable energy in suitable areas. 

Executive Order on 

Energy Conservation 

in Shandong Province 

The Standing 

Committee of the PC of 

Shandong Province 

(2002) 

Article 29: …Development of new 

and renewable energy, such as 

biogas, solar energy, hydropower and 

wind power, is encouraged. 

Circular on Ensuring 

the Quality of Rural 

Energy Development 

Projects in Shandong 

Province 

The Department of 

Agriculture of 

Shandong Province 

(2005) 

…Select villages and households 

who have husbandry experience, 

good economic condition and 

willingness to use biogas, to carry out 

the “One Pool with Three 

Transforms” project. 

Standards of “One 

Pool with Three 

Transforms” Rural 

Energy Project in 

Shandong Province 

The Department of 

Agriculture of 

Shandong Province 

(2005) 

…Households involved in the project 

should construct a biomass digester 

and reform the kitchen, toilet and 

pigsty. 

Table 4.2 Selected provincial renewable energy policies in Shandong 
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construct a biogas station are relatively low. As such, it perfectly matched the need of 

developing renewable energy resources in rural areas, where financial constraints are large. 

Pyrolysis gasification is suitable for treating various biomass materials, such as corn 

stalk, sawdust, wood chips and crop straw. The entire pyrolysis gasifier consists of four 

components: the feeding system, the gasifier, the steam generator and the gas storage 

facility (cf. Figure 4.2). The pyrolysis gasification process includes two stages (Sun et al., 

1992; Li and Hu, 2003; Leung et al., 2004). At the first stage, workers put biomass into the 

feeding system. Then the feedstock is transferred into the gasifier and becomes fluid in it. 

The diameter of feedstock can range in size between 0.25 and 250 mm. Biomass undergoes 

partial combustion at a temperature above 800˚C in absence of oxygen, to produce volatiles 

(mainly carbon dioxide and water vapor) and charcoal. At the second stage, charcoal 

transforms the volatiles into CO, H2 and CH4. After three rounds of purification, a mixed 

fuel gas is obtained, consisting of CO, H2 and CH4. This mixed gas is stored in a gas 

storage facility and transported via underground pipes to individual families. The entire 

process operates in batches. 

Gas storage Gasifier 

End users 

Purifier 

Feedstock Volatile 

Residues 

Biogas 
Biogas 

Feeding 

system 

Figure 4.2 Process of biomass pyrolysis gasification 
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4.3 Methodology: Case studies and evaluation criteria 

4.3.1 Case study methodology 

In assessing and explaining the performance of these bioenergy projects, we apply a case 

study approach, mainly for four reasons. First, no evaluation has been carried out yet on 

these projects in China. This makes our research into the reasons for project success and 

failure rather explorative, for which in depth case study research is more suitable. Second, 

the nature of research questions demands a qualitative field research approach, rather than a 

quantitative survey. In investigating why some projects succeeded, while others failed, we 

need detailed information on causal relations, rather than statistical correlations. A case 

study method is especially relevant when “a „how‟ and „why‟ question is being asked about 

a contemporary set of events, over which the investigator has little or no control” (Yin, 

1984). Third, performance of the bioenergy projects cannot be assessed in isolation, but is 

closely relation to their social, economic and natural environment. Case study methods are 

especially useful when we deal with unsharp boundaries between the event and the context 

and where we aim at “description and explanation of complex and entangled group 

attributes, patterns, structures or processes” (Verschuren, 2003). Fourth, quantitative 

surveys have to be based on large number of samples. However, information and data on 

bioenergy projects – and particularly the ones that have stopped – were very hard to obtain 

from governmental and other sources, making a large-scale quantitative survey impossible.  

However, the nature of case study research brings limitations, especially with respect 

to the generalizability of the outcomes. By cautiously selecting our cases, we have tried to 

minimize this risk and maximize the value of the case study outcomes for a wider 

constituency of projects. A district in Jinan City, Shandong Province was carefully selected 

for the in-depth case study analysis. This district was selected based on following reasons. 

Firstly, this is a representative rural area in Shandong in terms of economic development, 

the importance of agriculture versus other economic sectors, demography and natural 

environment. Most residents are involved in agricultural production, making up 9.7% of 

local GDP in 2005. The average annual family income is just below 20,000 yuan (€ 2,000) 

(Shandong Statistical Bureau`, 2005), which is about the average for the province. Secondly, 

all the small-scale biogas stations in Shandong were constructed under the same project, 

which aimed to alleviate atmospheric pollution caused by direct burning of stalks in the 

side-fields along Jinan-Qingdao Highway and Jinan Airport Highway. In comparison with 
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other areas, the selected district has the highest density of stations and the longest project 

history (seven stations were constructed during the period 1996 – 2005). This enabled us to 

evaluate longer running station and at the same time keep a number of variables constant. 

Thirdly, all the seven stations in this district used pyrolysis gasification technology, which 

is the most prevailing technology of biogas stations in China. This made the results relevant 

for other projects using similar technologies, while excluding technology as an explanatory 

variable. For these reasons, we can expect that the outcome of our case studies have 

relevance for other pyrolysis gasification cases in rural Shandong province.  

Table 4.3 provides – as far as available – the basic data for each case study station, 

which is named after the village where it locates. Scales of these stations vary: the smallest 

station provides 110 families with biogas for cooking and heating, while the biggest one 

supports 1,000 families. Four out of the seven had been discontinued by the time of 

fieldwork (July 2006). SZY station was under reconstruction during our fieldwork, to 

become an electricity plant that uses biomass as fuel. SSC was the only station in good 

condition and XLJ was in operation for the longest time. 

Biogas station Construction 

time 

Initial investment 

(10
6
 yuan) 

Capacity 

(families) 

Status 

Shasancun 
(SSC) 

2002 3.0 1,000 In good 
condition 

Xiaoliujia 

(XLJ) 

1998 0.4 110 In use 

Xiaozhangma 

(XZM) 

2004 N/Aa N/A discontinued in 

2005 

Nanguoer 

(NGE) 

2000 N/A 330 discontinued in 

2003 

Chengxicun 

(CXC) 

1997 0.98 260 discontinued in 

2004 

Shiziyuan 

(SZY) 

2005 1.5 N/A Under 

reconstruction 

Yuanjiacun 

(YJC) 

1996 0.96 300 discontinued in 

1999 
 

 a N/A: data not available 

Table 4.3 Basic information of selected biogas stations 
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Information was collected through interviews with officials in the governmental 

departments of Shandong Province and scientists in both Shandong Academy of Sciences 

and Shandong University, as well as the community leaders, station managers, workers and 

residents/consumers in each of the seven villages where biogas stations were constructed. 

4.3.2 Evaluation criteria 

Project performance was evaluated, paying attention to economic aspects, technological 

performance and especially effectiveness. Effectiveness points to the attainment of project 

objectives and intended impacts, and was further specified in four types: institutional 

effectiveness, target group effectiveness, impact effectiveness and societal effectiveness 

(European Environmental Agency, 2001; Gysen et al., 2002). Institutional effectiveness 

indicates the extent to which the output of the project meets the objectives. Target group 

effectiveness implies the relation between project objectives and the outcome, reflecting the 

extent to which the target group responded to project efforts. Impact effectiveness means 

the degree to which the project influences the state of environment (impact). And societal 

effectiveness refers to whether the final impact satisfied societal needs (and not just 

potentially ill-formulated project objectives). 

4.4 Assessing the Performance of Bioenergy Projects 

4.4.1 Economy of the bioenergy projects 

In principle, all stations were funded by the provincial government, the village government 

and other organizations, as was agreed in contracts between the provincial government and 

village governments. Villages were carefully selected so that they could afford their part of 

the initial investment. Other organizations funding the projects include the national 

government, the municipal government, external corporations and research institutes. SSC 

is the only station who received funding from China‟s Ministry of Agriculture. All stations 

received free experimental equipment from Shandong Academy of Sciences or Shandong 

University. Each household who applied (voluntary) for using biogas was charged 300 yuan 

(€ 30) for installation of pipes, a biogas stove and a meter registering biogas consumption. 

The total investment of a single station relied heavily on its scale: the larger the scale 

is, the more expensive the investment is. In China, normally construction cost of a biogas 
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station with capacity of 200 families ranges between 0.5 and 2 million yuan  (€ 50,000 – 

200,000) (Li et al., 1998; Bridgwater, 1999). Construction costs per capacity of 200 

families of the case study stations were as follow: SSC 0.6 million yuan; XLJ 0.73 million 

yuan; CXC 0.75 million yuan; YJC 0.64 million yuan. This is all at the low end of the range 

of construction costs for China pointing at a cost-efficient way of construction. 

During operation of the seven biogas stations, no financial support was received from 

higher level governments. It was the village government‟s full responsibility to run the 

station financially healthy. In most cases, the village government appointed one village 

official as station manager and hired two workers. The village government had authority to 

decide the price of biogas; higher-level governments gave no directions. Most villages set 

the price at a low level, comparable to the level of the neighboring village, to prevent 

complaints from villagers. The purchase of fuels, house rent, electricity, workers‟ salary and 

occasional repairs were all paid from the village government account. Every half year the 

station manager collected money from the villagers for the biogas they consumed, which 

formed the main income of the station and was put into the village government account. At 

the end of the year, the village government compensated any deficit. None of the seven 

stations could provide detail account records of its daily operation. Income and 

expenditures were recorded just as a single item on the community government‟s account, 

resulting in poor (financial) transparency. With the assistance of the station manager of XLJ 

station an estimation was made of expenditures and income of this biogas station in 2005 

(see Table 4.4), suggesting a significant annual government subsidy. 

4.4.2 Technological performance of the bioenergy projects  

Major outputs of the bioenergy projects included the installation of equipments such as 

biomass gasifiers, pipes and biogas stoves. Of the seven stations, XZM, NGE, CXC and 

YJC were discontinued shortly after their construction (cf. Table 4.3). SZY is being rebuilt 

into an electricity plant that uses biomass as fuel. XLJ was still in use, although, the station 

has to be discontinued for several days every two to three months due to technical problems. 

SSC was the only station that was still functioning properly. Most stations only used about 

half of the designed capacity during operation. 
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During operation, the gasification equipment faced various problems. Tar was the 

most serious problem. Equipment was regularly jammed by tar, which is very difficult to 

get rid of when it has coagulated on the inner surfaces of pipes and containers. In some 

villages workers had to open the equipment and clean them every week. This is time and 

money consuming. Another annoying problem with the gasification equipment consisted of 

biogas leakage from pipes. Biogas contains CO and CH4, which are hazardous to human 

health. Therefore, leakage needs to be prevented or quickly mitigated. Because all pipes 

were placed underground, leakage resulted in high costs for repair and pipe replacements. 

Average caloric value of biogas produced in these stations is only 5,316 KJ/m3, much 

lower than other fuels (Figure 4.3). As a result, users have to consume more biogas than 

other fuels to cook the same meal. A consequence is that stations need large storage 

Expenditures Income 

Item Amount Item Amount 

Purchasing 
fuels 

60,000
a
 

(200yuan/t·300t) 
Selling biogas 60,000 

(0.2yuan/m3·300000m3) 

Electricity bill 15,075 

(0.67yuan/kWh·22,500kwh) 

Apportionment 

of initial 

investment 

40,000b 

Workers‟ 

salary 
19,200 

(9,600yuan/worker·2 

workers) 

Subsidy from 

village 

government 

36,275 

Repair cost 2,000   

Depreciation 

of equipments 

and buildings 

40,000b   

Total 136,275  136,275 

a Corn stalks bought from farmers as fuel; 
b The initial investment of XLJ station was 0.4 million Yuan. It was designed to be used 

for 10 years 

Table 4.4 Expenditure and income of XLJ station in 2005 (yuan) 
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facilities. Normally workers in biogas stations run the equipment and fill the gas storage 

twice a day, which provides enough biogas for all users to cook meals for a day. If the 

caloric value of biogas could be doubled, the storage capacity could be halved or workers 

only needed to fill the storage once a day, saving costs. 

A final problem is that the gasification equipment cannot treat wet fuel, as it harms or 

even damages the steel equipment. Some rich villages such as SSC and SZY built extra 

buildings for storing fuels, while in others workers had to spend a lot of time drying wet 

fuels. During the raining seasons, these stations were often forced to stop producing biogas, 

due to a lack of dry fuels. 

4.4.3 Effectiveness of the bioenergy projects 

The available government documents often provide no concrete quantified objectives of 

bioenergy demonstration projects. Even the recently issued national policy, the Medium and 

Long-Term Development Plan for Renewable Energy, only provided six rather general 

objectives for bioenergy development in rural areas. Nevertheless, the motivation for 

bioenergy projects in Shandong province was clear: besides cheap energy production, the 

main goal was to alleviate air pollution caused by local farmers burning straw along 

highways. However, no quantified targets were set on both objectives, making them too 

vague for a quantified effectiveness evaluation. As a result, only qualitative judgments can 

be made. 

Figure 4.3 Caloric values of different fuels (KJ/m
3
) 

Source: Bridgwater et al., 1999 
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4.4.3.1 Institutional effectiveness  

Institutional effectiveness relates objectives to government outputs for bioenergy utilization, 

including the establishment of bioenergy projects and the managing of biogas stations. This 

study assessed government performance in relation to initial objectives of biogas project. 

Approximately 365 million yuan (€ 36.5 million) was budgeted by both national and 

provincial governments for constructing biogas stations in Shandong. Village governments 

also supported Bioenergy projects. When Shandong government planned the project in 

Jinan city, more than 20 villages applied to be sites for bioenergy demonstration projects. 

After an evaluation – with criteria such as village scale, economic level, distance to 

highways and availability of biomass resources – seven villages were selected. 

Subsequently, opinions of villagers in these seven villages were collected regarding, among 

others, their willingness to install a biogas stove and the costs for biogas they could afford. 

Visits to neighboring villages with running biogas stations were organized for villagers. 

Their final opinions directed the design and capacity of the individual projects. All seven 

biogas stations have been delivered, be it sometimes with delay. 

But significant ineffectiveness emerged during the running of the projects. During 

interviews staffs in EAS of Shandong DOA, who are supposed to take full responsibility for 

renewable bioenergy projects in rural areas, could not give clear answers to basic questions 

such as how many stations had been built or which institutes were doing research and 

development on bioenergy. Communications between Shandong authorities and village 

governments were poor. For instance, no Shandong department „in charge‟ was informed 

two years after the NGE village government discontinued the biogas station and sold the 

equipment. In case of emergencies around biogas projects, it always took a long time to 

decide who had responsibility and where necessary financial and technical resources for 

repair could be obtained. In addition, no monitoring and evaluation mechanism was 

established to follow and investigate the status of the stations. It seemed that for Shandong 

province, bioenergy projects ended not when local people were provided stable biogas 

provision, but when it was reported that the construction of the station was finished and this 

good news was released to the media. Several stations had no other function than to 

„demonstrate‟ the ability to construct a project. 
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4.4.3.2 Target group effectiveness 

Most villages in Shandong showed a strong willingness to establish bioenergy projects. By 

the end of 2005, Shandong Province alone had constructed more than 400 biogas stations. 

Although several of our case study stations were shut down, all village leaders interviewed 

expressed strong interests in continuing the projects if financial conditions and technical 

support were improved. But citizens in these villages did not show the same enthusiasm. 

The average proportion of families that applied for using biogas was below 50% in all the 

seven villages. A large number of villagers expressed their reluctance to pay the 300 yuan 

for installation of pipes and stoves, which prevented many families from using biogas. 

Nevertheless, fewer families burned straw and stalks, even after bioenergy projects 

discontinued. This change in behavior relates to two mechanisms. Villagers found that the 

air quality improved during the period they used biogas and thus did not turn back to 

biomass burning in the field after discontinuation of bioenergy projects. And during the first 

years of the new millennium the government posed stronger enforcement and sanctions on 

burning biomass in the field. Currently, most biomass not used in bioenery projects is used 

as fertilizer or as feedstock for livestock, and a small amount is still used as fuel in 

traditional stoves. Much less burning in open air takes place nowadays. 

4.4.3.3 Impact effectiveness 

One important purpose of constructing biogas stations in Shandong was to improve local air 

quality. Crop stalk and firewood were once traditional energy resources for rural household 

in Shandong mainly for cooking and heating. In the 1990‟s, energy from crop stalk and 

firewood accounted for about 80% of rural energy consumption. With rapid development of 

economy, the rural energy consumption is increased while energy structure changed. The 

consumption of commercial energies such as electricity, coal, gas and oil increases rapidly, 

especially in the coast areas and vicinity of large cities. The consumption of energy from 

crop stalk and firewood decreases sharply. It is estimated that crop stalk consumption for 

rural residential in Shandong decreased from 33.5 million tons in 2000 to 28.8 million tons 

in 2004 (National Bureau of Statistic of China, 2006). As a result, a considerable amount of 

crop stalk is directly burnt in the harvest period by farms, leading to serious air pollution 

(Li et al., 1999).  
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After implementation – of course also of biogas stations outside our case study area – 

air quality in Jinan City was significantly improved, and that remained even after the 

discontinuation of several projects. Figure 4.4 shows the reduction of concentrations of 

three air pollutants (SO2 for 65.3%, NO2 for 70.7%, and PM10 for 69.5%) after the start of 

these biogas stations. Within the same period, average pollutant concentrations of in other 

areas without bioenergy project reduced much more slowly (SO2 for 35.9%, NO2 for 29.4%, 

and PM10 for 61.1%). Although we cannot exclude other factors, such as the change of 

industrial structure, enhancement of energy efficiency or the stringency and enforcement of 

environmental policies, that improved local air quality over the years 1997 till 2005, 

bioenergy projects did contribute to lower air pollutant concentrations in two ways. Firstly, 

they reduced burning of crop stalks in open air, which directly contributed to air quality 

improvement. This is clearly the most important reason, as it continued even after most 

projects ended. Secondly, the biogas stations reduced the consumption of fossil fuel. In 

comparison with fossil fuels, biogas production, transportation and consumption is more 

environmentally friendly. Biogas releases less harmful waste when being processed 

compared to coal and oil (although it has small amounts of byproducts of tar and ashes, 

which are usually dumped locally). 
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Figure 4.4 Concentration of air pollutants in Jinan, 1997 – 2005 (mg/m
3
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Source: Shandong Statistical Yearbook, 2006 
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4.4.3.4 Societal effectiveness 

Normally societal needs are not stated directly in policy objectives. However, societal needs 

are fundamental driving forces for policies and projects. Therefore, societal effectiveness of 

these projects was also assessed, as the degree to which the projects contributed to societal 

needs. 

Local farmers obtained economic benefits from the biogasification implementation. 

First, these projects provided them cheap energy resources. Every family only needed to 

pay 300 yuan for installation of pipes and a stove, and on average 0.20 yuan/m3 for 

consumed biogas. According to rough estimations, a family could thus save 740 yuan 

annually on energy consumption. Second, these projects offered farmers new sources of 

income. In most villages with a biogas station, farmers could sell their straws and corncobs 

to the station at prices around 0.20 yuan/kg. For an individual farmer family this could 

mean annually several hundred yuan of extra income. Third, opportunities were created for 

new employment and business, including biogas station workers, equipment producers, 

station builders and contractors, and biofuel traders. Upgrading the technological level to 

generate electricity, as in the case of SZY, increases the need for more well-educated and 

skilled employees. 

Bioenergy projects provided rural residents clean and safe biogas for cooking and 

heating. After the installation of a biogas station, straws were no longer piled all over in the 

villages, and sooty kitchens and chimneys disappeared. Villagers felt living a modern 

lifestyle, similar to urban residents using piped gas. This motivated them to improve other 

aspects of their daily life. Using biogas also reduced the chance children caught injured or 

burned through coal stoves. 

With biogasification time used for cooking meals reduced significantly, freeing time 

for recreation and education. Traditionally, people in rural Shandong had to spend 

significant time on gathering straws, tree branches and waste wood for fuel. Even after coal 

was introduced for cooking in rural areas, buying and transporting coal from outside the 

village and heating the coal stoves remained time-consuming tasks, especially for women. 

Using biogas saved time. As local people indicated, after the introduction of bioenergy 

project, “only two persons are busy firing the gasifier when the whole village is cooking”. 
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4.5 Causes of Bioenergy Project Failure 

Overall, our effectiveness evaluation shows at best mixed results. While stations have been 

established and environmental impacts seem to have improved, four out of the seven 

stations were out of use during our investigation. Extrapolating this proportionally, less than 

200 stations would have survived in Shandong province. But our search for biogas projects 

indicates much smaller numbers. What are the main shortcomings that contributed to these 

project ambivalences? Our research, as well as experiences from other countries (Katinas 

and Markevicius, 2006; Nilsson et al., 2006; Prasertsana and Sajjakulnukit, 2006), found 

five causes that resulted in the failures of rural bioenergy projects. 

4.5.1 Institutional shortcomings 

Renewable energy development in China is co-managed by a number of agencies, both at 

the national level and at the local level. These governmental departments work under 

different national ministries and have different interests in developing renewable energy 

resources. No institutional arrangement has been constructed to encourage harmonious 

collaboration between these agencies, or to define clear hierarchies. As a result, 

coordination between different departments is heavily retarded, and responsibilities of each 

agency with respect to bioenergy development are unclear. All governmental departments 

are reluctant to monitor the status of biogas stations and to take responsibilities in ensuring 

project effectiveness. Stations encountering technical problems have no addressee for 

requesting financial and technical support. This lack of coordination and division of 

responsibilities is enhanced by unclear division of responsibilities between the central 

provincial departments and the local village authorities. These unclear institutional 

arrangements impose important negative impacts on bioenergy projects in China. 

Poor management of biogas stations also reflects the institutional shortcoming. 

4.5.2 Policy shortcomings 

In 1986, the National Economic Committee issued the Circular on Improving Rural Energy 

Development. This was the first policy on renewable energy development that mentioned 

the importance of bioenergy. However, more than 20 years later no detailed plans have been 
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formulated, no technical standards and guidelines for bioenergy been implemented to 

regulate the equipment market, and no quantified objectives have been set. 

In rural areas, development of bioenergy lacks long-term planning and strategy. Many 

county and town governments constructed biogas stations not in the framework of a long-

term energy policy, but following orders from higher-level governments. While most 

villages had strong enthusiasm for bioenergy demonstration projects, they lacked the 

authority and resources to formulate long-term energy policies that include these projects. 

In recent years, emphasis of bioenergy development in Shandong has been shifted 

from pyrolysis gasification to marsh gas33 as the national government does in its most rural 

areas. Pyrolysis gasification is no longer attracting the interest of government leaders. 

Infrastructure of marsh gas is cheaper to construct and easier to manage than that of 

pyrolysis gasification in rural areas (Hall et al., 1992; Lettinga and Haandel, 1993; Klass, 

1998; Ma, 2005). However, marsh gas projects also encounter many problems. In northern 

China, the temperature is very low in winter, which easily freezes marsh gas pools. There is 

still no satisfying way to treat poisonous residues, which could cause heavy metal pollution 

to crops and vegetables. Marsh gas pools produce unpleasant smells. With current 

technologies, production and use of marsh gas is not safe enough. It was reported that a 

villager fell into the pool and died in Guangxi Province (Feb. 6, 2003), and that a marsh gas 

pool exploded in Fujian Province (Aug. 17, 2007). 

Other policies also influenced the implementation of bioenergy projects in rural areas. 

To push the so-called “Building New Socialist Countryside” campaign, more and more 

farmland is occupied by new buildings and infrastructure. Farmers lost farmland, and areas 

of corn and rice plantation reduced. Shortage of biomass resources led to the closing of 

well-constructed and well-managed stations, such as CXC station. But at the same time 

government documents still see large-scale pyrolysis gasification projects as important 

contributions to “Building New Socialist Countryside” (China State Council, 2005). 

4.5.3 Technical shortcomings 

Pyrolysis gasification technology was designed and developed 20 years ago, for application 

in rural areas. Too much attention was paid to lowering costs, with equipment having a 

simple structure and labor-intensive operation. This had a number of consequences. 

                                                        
33 It can also be called biogas or gas from anaerobic digestion. I used the term “marsh gas” in this research because it is the most 

widely used one in China. 
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Insufficient purification devices were designed, which resulted in tar jamming. The 

equipment could not treat wet fuels. The caloric value of produced biogas was too low. And 

during construction, no high-quality steel was used and storage facilities and pipes started 

to rust and leak biogas.  

These technical problems prevented pyrolysis gasification from becoming a dominant 

renewable energy technology in China. Some advanced bioenergy technologies developed 

in Western countries remained too expensive for rural areas in China. Although domestic 

research institutes are making efforts to improve these technologies and experiment with 

electricity generation using biomass (e.g. SZY and other places), it will take some time 

before pyrolysis gasification technology can meet the technological requirements of today. 

4.5.4 Financial shortcomings 

Demonstration projects of pyrolysis gasification were developed mainly for rural areas, 

where social benefit is more important than economic benefit. Sufficient financial support, 

for example, through government subsidy, tax reduction and low-interest loans have been 

necessary for establishing these kinds of projects. External investment to the evaluated 

projects was for all stations sufficient to launch the biogas station.  

Financial problems especially occurred during the running of stations. A biogas station 

has to pay for fuels, workers‟ salary, electricity bills, house rent and regular repairs. At the 

same time, no effective renewable energy market has been established, and biogas was sold 

at a low price (on average 0.20 yuan/m3). The annual deficit of a biogas station evaluated in 

this study is estimated at more than 30,000 yuan (€ 3,000), which had to be compensated by 

the village government (see Table 4.4). Increasing the gas price would be a logical solution. 

In order to balance cost and benefit, the gas price should increase around 60%. Village 

officials – who are in charge of setting gas prices – are reluctant to set higher gas prices, as 

it is likely to raise strong opposition from villagers and a reduction in biogas consumption. 

But village budgets for necessary repairs, fuels, and salary are limited, also because only a 

part of the community profit from cheap biogas. SSC station is the only one that received 

continuous funding from China's Ministry of Agriculture during operation, which made it 

possible to carry out daily maintenance and further technical improvement. This seems to 

be a main reason why SSC station is the only station in good condition. Unfortunately, 

other stations can hardly survive without this kind of continuing financial support from 

(higher level) governments.  
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4.5.5 Lack of public support 

Raising gas prices also is difficult as biogas stations did not receive full support from local 

residents. Changing cooking routines was one of the major obstacles, while advantages of 

biomass gasification have been insufficiently realized. In some villages, such as YJC, only 

one-third of the families chose to install and use pyrolysis gasification equipment. This 

increased infrastructure cost per consumer, while later connections to the biogas 

infrastructure were significantly more expensive. In addition, quite some villagers refused 

to pay for the installation of pipes and stove, as they claimed that government promotion of 

bioenergy in rural areas should come together with free infrastructure. Other villagers were 

even reluctant to pay for the biogas consumed. In SSC and NGE, many families opened the 

gas meters installed in their kitchens and destroyed the arithmometer, in order to use biogas 

“for free”. 

This low public support for biogasification had three interdependent reasons. First, 

villagers‟ access to information on bioenergy technology was insufficient, resulting in a 

lack of confidence on the economic and environmental benefits biogasification could bring. 

Second, on average the income level of rural villagers is low. The prime criterion to judge 

innovations is direct economic benefit. As sufficient fuels often were locally available for 

villagers, this resulted in a lack of urgency to use – and pay for – new energy sources. 

Finally, prices of Liquefied Petroleum Gas (LPG), coal and electricity were not high 

enough to economically motivate villagers to change to biogas. 

4.6 Concluding Recommendations 

According to its long-term plan on rural construction, China will further extend rural 

utilization of renewable bioenergy. As one of the relatively mature technologies, pyrolysis 

gasification is believed to play an important role in this. Around the turn of the millennium, 

biogasification was expected to provide 4 Mt sce of energy in rural areas by 2010 (Zhou, 

2002). However, the various problems indicated and analyzed above seriously threaten this 

target; more than incidentally biogas stations have been discontinued shortly after 

establishment. In this respect, we can formulate three recommendations to overcome the 

various problems bioenergy projects now encounter, and to further bioenergy development 

in Shandong province and even throughout rural China. 
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First, it is essential to reform the institutional structure governing bioenergy projects. 

The spreading of bioenergy responsibilities over too many governmental institutions, with 

hardly any coordination, clearly frustrates effective development and implementation. 

Given the cross-departmental nature of bioenergy development, concentrating the 

responsibility for bioenergy development in one department seems not feasible. The 

establishment of interdepartmental working groups, both at national and provincial levels, 

consisting of representatives from the relevant departments and with clear mandates, could 

improve coordination and responsibility allocation. Such working groups should be in 

charge of distributing responsibilities regarding renewable energy, coordinating and 

harmonizing cooperation between governmental sectors and levels, formulating clear 

objectives and monitoring implementation, and distributing (financial) resources.  

Second, an effective renewable energy market infrastructure should be established. 

Bioenergy technology is still a novelty that emerges in technological and market niches. It 

functions as a small addition to the existing energy system, and is far from competitive in a 

normal energy market. But at the same time, it needs to function in a market structure, with 

price competition, cost recovery and efficiencies, and not as a fully subsidized government 

program. Consequently, a special renewable energy market would be a logical space, until 

bioenergy technology matures and is capable to compete with conventional energy 

technologies. As such, bioenergy can compete with other renewables. In such a renewable 

energy market, price setting of energy is somewhat higher than in the conventional energy 

market. Financial policies, including government subsidy, low interest loan, and tax 

reduction, could take care of that. But full cost-recovery, competition between alternative 

technologies and arrangements, efficiencies and consumer satisfaction have to become 

integral parts of such a semi-protected market. 

Finally, the technology and management structure of biogas stations need further 

development and improvement. The current low-technology, community-based bioenergy 

utilization is too inefficient. This requires of course large efforts in research and 

development on bioenergy, a tendency that can already be identified, and not only in China 

(cf. Mol, 2007). But it requires also a better assessment of the scale of bioenery production 

under various socio-economic and environmental conditions and context. Small-scale 

household-level gasifiers need less socio-material infrastructure, are less vulnerable, require 

simple management structures and can therefore be more efficient in certain contexts. In 

other situations, large scale high-technology industrial bioenergy plants might be prevalent. 
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Gasified biomass can be processed with advanced conversion technologies to produce 

electricity or co-generate electricity and heat, a well-know technology (Williams and 

Larson, 1993). And second-generation liquid biofuel technologies are currently being 

experimented in various countries. Standardized community-based, low-technology 

bioenergy production is not necessarily the best solution in all situations in rural China. 
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Chapter 5    Onshore Wind Power Development 

in China: Challenges behind a successful story34 

“Of all the forces of nature, I should think the wind contains the largest amount of motive 

power – that is, power to move things.” 

– Abraham Lincoln (1858) 

Abstract 

Wind energy utilization, especially onshore grid-connected wind power generation, has a 

history of 30 years in China. With the increasing attention to renewable energy 

development in recent years, wind energy has become the focus of academic research and 

policy-making. While the potential and advantages of wind energy are widely recognized, 

many questions regarding effectiveness of policies and performances of current practices 

remain unanswered. This paper takes Inner Mongolia, the province that has the most 

abundant wind energy resources in China, as a case to assess the performance of Chinese 

onshore wind power projects, focusing on the institutional setting, economic and 

technological performance, as well as environmental and social impacts. Results show that 

China is experiencing a rapid growth in wind power generation, which brings China great 

environmental, energy security and social benefits. However, for a full development of 

wind energy in China a number of barriers need to be removed: high generation cost, low 

on-grid price, and stagnating development of domestic manufacture. These findings lead to 

three policy recommendations. 

Keywords: China; onshore wind power; project performance 

5.1 Introduction 

Wind energy is a pollution-free, infinite sustainable form of energy. Utilization of wind 

energy uses no natural resource and generates no greenhouse gas or toxic waste. Modern 

                                                        
34 This chapter contains an article published as Han J., A.P.J. Mol, Y. Lu and L. Zhang. 2009. Onshore wind power development in 

China: Challenges behind a successful story. Energy Policy, Vol. 37, Issue 8: 2941-2951. 
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wind power technologies can convert the kinetic energy present in wind into a more useful 

form – electric power. Existing wind power technologies fall into three categories: grid-

connected wind farms, distributed generation, and off-grid standalone system. All 

categories can be installed both onshore and offshore. The onshore grid-connected wind 

farm – subject of this paper – is the most mature and widely used technology in the world, 

and so is it in China.  

With its large land mass and long coastline, China is rich in wind energy resources. 

Estimation by China Meteorological Administration showed that average wind power 

density in China is about 100 W/m2, with 253 GW of exploitable onshore wind resource 

(measured at relatively low height of 10 m above ground) and 750 GW of exploitable 

offshore wind resource (Li et al., 2005). Another research, carried out by UNEP in 

cooperation with the US National Renewable Energy Laboratory (NREL), calculated 1,400 

GW (at 50 m height) of exploitable onshore wind resource and 600 GW of exploitable 

offshore wind resource (Yang, 2004; Li et al., 2007).  

China‟s efforts to develop wind power can be traced back to the early 1970s. Since 

then, especially in the past 20 years, the national government has initiated a set of nation-

level projects to increase the production and consumption of wind electricity. As a result, 

total installed capacity in China increased from 25 MW at the end of 1996 to 5,906 MW at 

the end of 2007. About 160 wind farms at different scales have been established on the 

Qinghai-Tibet Plateau, Inner Mongolia, the North-West Region, and the South-East Coastal 

Region of China. 

Grid-connected wind power is well developed in Inner Mongolia, especially after 

2005. By the end of 2007, its wind power generation capacity exceeded 1,000 MW. Given 

its great potential for wind energy development, Inner Mongolia is considered a priority 

area to develop wind power by both national and local governments, therefore more wind 

farms will be built in this area in the future. The government aims to increase the total wind 

power capacity in Inner Mongolia to reach 4,000 MW by 2010. This makes Inner Mongolia 

a perfect case to examine wind energy development in China. 

Against the above-mentioned background, this paper aims to investigate the 

constraints for development of wind energy production to suggest policy recommendations 

related to that. First, an overview of wind power development in Inner Mongolia is 

presented. Subsequently, wind power projects in Inner Mongolia are evaluated regarding 

their institutional setting, economic and technological performance, and environmental and 
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social impacts. Finally, following this evaluation policy suggestions are formulated for 

improving wind power development in China. 

5.2 Wind Power Development in Inner Mongolia 

5.2.1 Rich wind energy resources 

Inner Mongolia, China's northern border autonomous region, features a long, narrow strip 

of land sloping from northeast to southwest, neighboring Mongolia and Russia in the north 

(Figure 5.1). It stretches 2,400 km from west to east and 1,700 km from north to south. It is 

the third largest province in China, covering an area of 1.18 million km2, or 12.3% of the 

country's territory. It is sparsely populated, with only 24.05 million inhabitants (data at the 

end of 2007). Inner Mongolia has plateau landforms, mostly more than 1,000 meters above 

sea level. Besides 86.67 million hectares of grassland, there are also hills, plains, deserts, 

rivers and lakes in Inner Mongolia. It is mainly characterized by temperate zone continental 

monsoon climate with yearly average temperatures of 0°C~8°C and yearly temperature 

differences of 35°C~36°C. Spring is warm and windy; summer is short and hot with many 

rainy days; autumn usually sees early frost and dropping temperatures; winter is long and 

bitter cold. 

Figure 5.1 Map of China with hilighted Inner Mongolia 
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Inner Mongolia is abundant in wind energy resources due to its special geographic 

characteristics such as relative high altitude, open terrain, low vegetation, few buildings, 

speed increasing effect when north-south air flows through the raised landform, and small 

ground friction. According to estimations by China Meteorological Administration, Inner 

Mongolia has 101 GW of exploitable onshore wind energy resources, 40% of the nation‟s 

total amount. Furthermore, wind energy resource in Inner Mongolia is distributed evenly 

both at spatial and temporal scales. Four fifths of its vast territory is suitable for developing 

wind power, with minimally 4,400 and maximally 7,800 hours of effective wind speed 

(5~25 m/s) accumulation (Table 5.1). In one word, Inner Mongolia is a perfect place for 

developing wind energy. 

 

5.2.2 History of wind power development 

Only in the 1970s, Inner Mongolia started to develop wind power by constructing off-grid 

standalone wind turbines for herdsmen. The first grid-connected wind farm in Inner 

Mongolia was built in December 1989. At that time, five 100 kW wind turbines (Model 56) 

produced by the American company Wind Power were installed in Zhurihe Wind Farm, in 

the north-central part of Inner Mongolia. Subsequently, four other wind farms were 

constructed in succession: Shangdu in 1994, Xilinhot in 1995, Huitengxile in 1996, and 

Dali in 1999. At this stage, scales of wind farms were very limited, with maximum 

individual turbine capacity of 600 kW and wind farm capacity of 5,400 kW (in Huitengxile). 

There existed no domestic wind turbine manufacturer. All equipments were imported from 

Spain, United States, Denmark and Germany. 

 Area 

(10
3
 km

2
) 

Wind power 

density 

(W/m
2
) 

Wind energy 

density 

(kWh/m
2
) 

Effective wind speed 

accumulation (h) 

Greatly 

abundant  

83 240~400 1,500~3,600 6,100~7,800 

Abundant 200 180~220 1,000~1,500 5,300~6,780 

Exploitable 660 100~200 400~1,000 4,400~6,000 

Table 5.1 Wind energy resource in Inner Mongolia (adapted from Zang and Feng, 1998) 
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Wind power developed steadily from 2000 to 2005 in Inner Mongolia, with an annual 

increase of 16% in installed turbines and 24% in installed capacity (Figure 5.2). At this 

stage, a market of domestically produced wind power equipment emerged, symbolized by 

the establishment and growth of domestic wind turbine manufacturers. Although the 

proportion of domestically manufactured installed capacity in total installed capacity 

reached only 15% in 2005, China became one of the countries capable of manufacturing 

wind turbines independently. 

Installation of wind power in Inner Mongolia skyrocketed in 2006 and 2007, during 

which period most of the wind farms in Inner Mongolia were constructed. Installed wind 

power capacity tripled in both years and so did the number of installed wind turbines 

(Figure 5.2). At the end of 2006, Inner Mongolia exceeded Xinjiang to become the leading 

province in wind power capacity in China. By the end of 2007, Inner Mongolia had 33 

wind farms (at 19 locations) with 1,856 wind turbines and 1,683.69 MW of installed 

capacity, which accounted for 26.5% of the total installed capacity in China (Table 5.2). At 

this stage, domestic manufacturing capability and capacity also increased rapidly. The 

proportion of domestically produced turbines in the total installed capacity increased to 

about 60% by the end of 2007. This proved to be vital for lowering the cost of wind 

turbines and of constructing wind farms. 

Figure 5.2 Installation of wind power in Inner Mongolia (MW)  

left: wind power capacity; right: number of wind turbines 
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Location Wind farm Number of 

turbines 

Total capacity 

(MW) 

Sonid Youqi Zhurihe 50 33.90 

Shangdu Dashanwan 12 3.60 

Xilinhot Baoligenshan 13 4.78 

Qahar Youyi Zhongqi Huitengxile 214 189.00 

Dadonggou 120 121.50 
 Dayangpuzi 134 100.50 

 Caoduozi 29 44.50 

Hexigeten Qi Dali (Maolin) 73 51.36 

 Dali (Datang) 27 40.50 

 Saihanba 195 165.75 

 Daheishan 4 3.40 

 Nandian 4 3.00 

Duolun Xishan 36 30.60 
Ongniud Qi Sunjiaying 134 100.50 

 Wudaogou 66 49.50 

 Bolike 4 8.00 

Songshan Qu Dongshan 120 102.00 

Xin Barag Youqi Altanemole 33 49.50 

Zhuozhi Bayinxile 34 44.00 

Zhengxiangbai Qi Baoligentaohai 2 3.00 

Abag Qi Huitengliang (Beifang) 33 49.50 

 Huitengliang (Guohua) 73 99.50 

 Huitengliang (Datang) 38 57.00 

Bayan Kuangqu Aorigehu 2 1.50 

Damao Qi Bailingmiao 28 35.00 

Erehot Xili 4 6.00 

Hanggin Qi Yihewusu 43 32.25 

Urad Houqi Narenbaoligen 10 7.50 

Urad Zhongqi Bayinhanggai 58 43.50 

 Chuanjing 124 98.80 

 Turiguge (Huiren) 66 49.50 

 Turiguge (Zhongdiantou) 20 15.00 

Taibus Qi Gongbaolage 53 39.75 

Total 33 1,856 1,683.69 

Table 5.2 Wind farms in Inner Mongolia (by the end of 2007. Source: Shi, 2008b, 

adapted and updated by the authors) 
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5.2.3 Current policy objectives 

From the Eighth Five-year Plan (1991-1995) until the Eleventh Five-year Plan (2006-2010), 

China gives the development of renewable energy resources, especially biomass, solar, 

small hydro and wind energies, strategic importance in every stage of its long-term national 

development plan35. China’s Renewable Energy Law, which was activated in 2006, set 

developing renewable energy as priority in national energy strategy, aiming to establish 

capacity and infrastructure for rapid renewable energy development, and to create a 

sustainable market for renewable energy. Through the law, R&D and commercialization of 

renewable energy technologies were regarded as priority of modern technology and high-

tech industry development at national level. The Chinese government has also set 

compulsory market shares of wind energy for different target years. The Medium and Long-

Term Development Plan for Renewable Energy required installment of 5,000 MW of 

onshore wind power capacity and 200 MW of offshore wind power capacity by 2010, as 

well as 30,000 MW onshore and 1,000 MW offshore by 2020. The 11th Five-Year 

Renewable Energy Development Plan, passed in March 2008, doubled the 2010 onshore 

objective to 10,000 MW. Besides these targets, in 2003 China also set targets for a 

mandatory proportion of domestically produced wind turbines used in newly constructed 

wind farms that every turbine must meet the 70% domestic cost content requirement, in 

order to further develop a national wind industry and to lower the costs of wind farm 

construction. 

In Inner Mongolia, the government has set clear development targets for wind power 

in its official documents36: by the end of 2010, the total installed capacity of onshore grid-

connected wind power has to reach 4,000 MW. It is an ambitious target, as the Inner 

Mongolia government aims to fulfill 80% of the 2010 national target of onshore wind 

power development. In order to achieve this target, in the same documents the Inner 

Mongolia government planned five GW-level wind farms – Huitengxile, Huitengliang, 

Bayinhanggai, Saihanba and Bayinxile – to construct another 2,316 MW installed capacity 

within three years. Notably, 1,174.8 MW of capacity was installed in 2007. In other words, 

most likely Inner Mongolia will easily reach its 2010 development targets within the 

                                                        
35  In the China Electric Power Act (1995), the first Chinese law that discusses energy policy, it was declared that China 

government “encourages the development and utilization of new and renewable energy resources”. This principle was reaffirmed 

in China Energy Saving Law (1998), Medium and Long-Term Development Plan for Renewable Energy (2007), and the Eleventh 

Five-Year Plan for New and Renewable Energy (2008).  
36 The 11th Five-year Plan of Energy Industry in Inner Mongolia and the 11th Five-year Plan and 2020 Long-term Targets of Wind 

Power Development in Inner Mongolia, both issued by Inner Mongolia Development and Reform Commission (IMDRC) in 2006. 
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remaining three years if it continues at the current speed of wind farm development. Some 

experts even expressed their concerns regarding a too rapid development of wind power, 

and advocated sticking to the predetermined schedule. 

5.3 Evaluation Methods of Wind Power Projects Performance 

After 15 years of development, wind power generation in Inner Mongolia has grown up. 

Nevertheless, increase in scale alone does not necessarily mean successful wind power 

development. Inner Mongolia still falls short in wind power production compared to a 

number of western countries. An integrated evaluation of the implementation performance 

of wind power projects in Inner Mongolia can assess the achievements in developing wind 

power in this autonomous region during the past years, and appraise what changes are 

necessary for the future.  

In evaluating the performance of wind power development in Inner Mongolia, this 

paper focuses on a systematic analysis of wind farms in Inner Mongolia regarding four 

aspects: the institutional arrangements, economic performance of wind farms, technological 

performance of wind farms, as well as social and environmental impacts. 

Data for performance evaluation were collected from three sources. First, documents 

from various sources were reviewed to get a clear idea what kind of policies have been 

formulated, what policy measures and objectives have been determined, and what outcomes 

have been claimed in Inner Mongolia. Different methods have been used at different stages 

of this study to collect official and unofficial policy documents, governmental reports and 

scientific publications. Second, face-to-face in-depth interviews were held with officials 

and experts in governmental departments (at national, provincial and local levels), wind 

power research institutes and companies. Semi-structured questionnaires were used for 

these interviews. 37  Third, representative case studies were carried out at Huitengxile, 

Zhurihe and Dashanwan wind farms in Inner Mongolia. These three wind farms are 

different at locations, scales and main turbine manufacturers, representing all wind farms in 

this Inner Mongolia. On-site observations, systematic closed interviews with staffs in wind 

farms, and discussions with local residents and neighbors were carried out at each wind 

farm. 

                                                        
37 Interviews were held at: Center for Renewable Energy Development in Energy Research Institute NDRC; Department of Energy 

IMDRC; Department of Electricity of Wulanchabu City, Inner Mongolia; Inner Mongolia Association for Science and Technology; 

Government of Qahar Youyi Zhongqi, Wulanchabu City, Inner Mongolia; Chinese Wind Energy Association; Research Institute for 

Wind Power, Inner Mongolia; Inner Mongolia North Longyuan Wind Power Company Ltd. 
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5.4 Institutional Arrangements for Wind Power Projects 

Issues concerning institutional arrangement for wind power projects in Inner Mongolia 

include project approval, wind farm management and pricing policy. There are two types of 

wind power projects in Inner Mongolia: government contract projects and concession 

projects. Government contract projects appeared in the early 1980s, while concession 

projects have a relatively shorter history, as the first project was carried out in 2003.  

5.4.1 Government contract projects 

Approval of government contract projects works as follow: wind power companies hand in 

project proposal to NDRC or Inner Mongolia Development and Reform Commission 

(IMDRC). For projects larger than 50 MW, the NDRC is responsible for decision-making; 

while the IMDRC, local counterpart of NDRC, can approve projects smaller than 50 MW 

without approval from NDRC.  

Wind farms in operation are run by wind power companies that constructed the wind 

farms. While all wind power companies in Inner Mongolia are directly managed by 

IMDRC. Purchase of wind power is strictly controlled by the national government. Prices 

of wind electricity are decided in Power Purchasing Agreements (PPA) signed between 

NDRC (or IMDRC) and wind power companies by calculating generation cost and 

reasonable profit rate. The two power gird companies in China, the State Power Grid 

Corporation and the Southern Power Grid Corporation, are obliged to purchase all wind 

electricity, which is subsequently sold to ender users from these two grid companies. If the 

purchasing price of wind power is higher than the price of power generated from other 

sources, the price difference will be apportioned within the whole power grid (Figure 5.3). 
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This project management mechanism has two advantages. First, there exist a legal 

separation between electricity generation and electricity transport & distribution. Wind 

power is generated by wind power companies, while it is transported and distributed by 

power grid companies. This separation to some extent can avoid monopolization of the 

wind power market. Some Chinese professionals foresee a separation of electricity 

transport and distribution in the near future, not unlike what we witness in several western 

countries. Second, the authority of IMDRC to decide on wind power projects smaller than 

50 MW significantly increases efficiency of wind farm establishment. At the early stage of 

wind power development in China, every new project needed to be approved by NDRC, 

which made the application for wind power projects very complex and time consuming. 

This new project approval procedure gives impetus to the rapid development of wind farms 

in Inner Mongolia. 
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Figure 5.3 Institutional structure of wind farm management in Inner Mongolia 
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5.4.2 Concession projects 

In addition to government contract projects, a new and special wind power project model, 

called the “concession model” (Figure 5.4), is increasingly used for wind power projects in 

China (Lema and Ruby, 2007). Before 2003, the development of a wind power project was 

granted to one consortium under a government contract. In 2003, the concession model was 

effectuated to stimulate competition in wind power development. Essentially, the 

concession model is a tender system. The China Meteorological Administration assesses 

wind resources throughout the country. NDRC offers several selected locations for 

concession projects to power companies who are interested in generating electricity from 

wind energy, and provides investment facilities like the establishment of access roads and 

power grid. Wind energy developers – usually power companies combined with a wind 

turbine manufacturer – are invited to bid for the development of a location. The one who 

offers the best price per kWh on the terms provided will win the concession and thus the 

right to produce electricity on the site38. In December 2007, the fifth concession bid was 

opened in Inner Mongolia.  

                                                        
38 From the second bid, the so-called “equipment localization rate” was also brought into the decision of selecting the developer. 

This refers to the degree to which the developer uses domestically produced equipment and technology.  

Wind resource 
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Figure 5.4 Concession model of wind power development 

Source: adapted from Zhou and Han, 2005 
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The pricing of wind electricity under concession projects works as follows: during the 

first 30,000 full load hours, wind farms sell wind electricity to the grids at the price pre-

established in the original bid. After this initial period and until the end of the concession 

period, electricity is sold at a uniform on-grid price. The wind electricity is purchased in the 

same way as from government contract projects. 

Advantages of this concession model include the combination of functions of 

government and power companies, the selection of suitable developers and lower wind 

power prices. All power companies are allowed to participate in wind power development 

by bidding for and putting financial resources into concession projects. By the end of 2007, 

1,600 MW of wind power projects have been approved through the concession model in 

Inner Mongolia.  

However, the concession model has also obvious disadvantages. First, some bidders 

intentionally underestimate operating costs to get a lower power price compared to other 

bidders. Once the bid is selected, it proves economically impossible to construct and 

operate the wind farm. In other words, insufficient financial resources are put into the 

development of the wind farm. Large power companies in China are required to build a 

certain amount of generation capacity from renewable energy resources 39 . This is an 

important reason for hiding costs of wind power in other investments to win the bid. 

Lacking competition of international developers or turbine manufacturers in the concession 

bids is another reason for this problem. This problem has been partly solved in the fifth 

phase of concession projects, which changed the bid and selection mechanism in the 

following way: the highest bid and lowest bid were excluded and then the bid most close to 

the average price of the remaining bids won the concession project.  

Second, the concession model may reduce government‟s normal tax income. Under 

the concession model, wind power developing enterprises who win the concession bids 

enjoy preferential tax policy. There is a great chance that the enterprises include other 

economic activities into wind power projects so that they can gain more economic profits 

with low tax rates. Without effective monitoring, the government‟s revenue is possible to be 

hurt. 

                                                        
39 In the Medium and Long-Term Development Plan for Renewable Energy, NDRC announced Renewable Portfolio Standard (RPS) 

mandates in power generation sector. For the whole sector, the share of electricity generated from non-hydro renewable energy 

resources should reach 1% of total electricity generation by 2010 and 3% by 2020. For any power producer with installed capacity 

greater than 5 GW, the mandatory share is raised to 3% by 2010 and 8% by 2020. 
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5.5 Economic Evaluation of Wind Power Projects 

5.5.1 Funds for wind power project development 

The most crucial task in wind power development is ensuring funding. Currently, the 

average construction cost of wind farms is about 10,000 yuan/kW. This means Inner 

Mongolia needs some 23.16 billion yuan over the year 2008-2010 to fulfill its development 

objectives. Funds for wind farm construction were initially raised mainly by the national 

government from Chinese banks and international cooperation projects. For instance, 50 

million U.S. dollars of mixed credit40 was provided by the Danish Government to construct 

the Huitengxile Wind Farm in 1996. A similar funding channel was used to develop the 

Zhurihe Wind Farm and the Dashanwan Wind Farm. With this mechanism, allocation and 

utilization of funds were strictly monitored by governmental departments, and financial 

security and transparency was ensured. 

With the rapid development of wind power in Inner Mongolia (and in China), 

international financial resources could no longer meet the need of wind farms developers. 

In order to overcome this barrier, two additional mechanisms were introduced. First, the 

Clean Development Mechanism (CDM) provided a major channel for foreign funding 

(Gilau et al., 2007). In 2002, the first CDM contract between the Netherlands and China 

was signed. According to this contract, the Netherlands buys Carbon Emission Reduction 

credits (CERs) from China through the Huitengxile Wind Farm project at a price of 54 yuan 

per ton of CO2 reduction. Within the 10 year contract period, 54,000 t CO2 emission would 

be reduced, which provided Huitengxile 0.27 billion yuan of Dutch funding. Second, the 

wind power concession model has advantages in attracting investments from power 

companies. Inner Mongolia used the funds raised through the concession model to scale up 

its wind power development. The Huitengxile Wind Farm was extended (200 MW) by the 

second concession bid. The Huitengliang Wind Farm (300 MW×2) and Bayinxile Wind 

Farm (200 MW) were approved by the fourth concession bid (Li et al., 2007). The Niaolan 

Yiligeng Wind Farm (300 MW) and Tongliao Beiqinghe Wind Farm (300 MW) were 

approved by the fifth concession bid (Ni, 2008). 

                                                        
40 Mixed credit is an interest free or low interest loan with 10 or 15 years maturity aimed at financing supplies of equipment and 

related services for development projects in relatively creditworthy developing countries. 
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5.5.2 Poor economic profits 

To compete with conventional energy resources, it is important for wind farms to gain 

enough profit during operation. Unfortunately, wind farms in Inner Mongolia are not yet 

able to achieve satisfying profits, mainly due to both high generation costs and cheap prices 

of wind power. 

Firstly, the cost of wind power is higher than that of fossil fuel electricity in Inner 

Mongolia. Average costs for wind electricity generation in Inner Mongolia range between 

0.45~0.60 yuan/kWh. Meanwhile, the average cost of coal-fired electricity is only 0.30 

yuan/kWh. The total costs of a wind power project consist of construction costs, 

maintenance costs, loan interests, salary costs and taxes. The most important “raw material”, 

wind resource, is free. Although the construction costs of wind farms in Inner Mongolia 

experienced a steady decline over the past two decades (Li et al., 2005), the relatively high 

production costs of wind electricity – compared to fossil fueled electricity – is primarily 

caused by high construction cost of wind farms (Lew and Logan, 2001; Mathew, 2006). 

Currently, the average construction cost – consisting of equipment, infrastructure, the 

building process and land rents – is estimated to be around 10,000 yuan per kW installed 

capacity. The majority of the wind turbines installed in Inner Mongolia are imported from 

overseas. Key components of domestically made turbines are also imported. In comparison, 

imported turbines and components are 30% more expensive than domestic ones. As a result, 

depreciation of equipments accounts for a large proportion of generation cost of wind 

electricity, compared to coal electricity. To maintain equipment, a wind farm needs to pay 

about 0.15 yuan for every kWh of electricity it generates. The average rate of interest on 

loans for wind farms is about 9% of the total costs. Salary of employees is estimated to be 

about 0.07 yuan/kWh. Another 0.03 yuan/kWh relates to other issues in wind farm 

management. Taxes imposed on wind farms include value added tax41 and income tax42. 

Import tariff and VAT on imported goods are refunded43. Approximately, on average wind 

farms pay 0.17 yuan taxes for every kWh of electricity. 

High generation costs make wind electricity less competitive in comparison with 

fossil-fueled electricity. When there are still abundant fossil fuel resources available in the 

world, no power company is willing to afford less benefits – or even economic losses – 

                                                        
41 Wind farms enjoy a preferential VAT rate of 8.5%, half of the rate normal enterprises are experiencing.  
42 Refunded completely in the first 2 years, refunded for 50% in the next three years (which means a tax rate of 16.5%), and 

experiencing the full rate (33%) afterward. 
43 Source: Ministry of Finance File No. 36[2008], “Policy on adjusting import tax of wind turbine components”.  
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through the development of a large capacity of wind power. Currently, the incentive for 

power companies to develop wind power is mainly in anticipation of renewable portfolio 

policy and increasing fossil fuel prices in the future. If no further stimulation policy 

measures are taken and fuel prices remain fluctuating, power companies will quickly loose 

enthusiasm in wind power development. 

Secondly, low profits are caused by cheap wind energy prices. Wind farms gain 

limited income by selling electricity to the power grids. In 2007, average wind electricity 

price in China was only 0.63 yuan/kWh. It is lower than wind electricity prices in 2004 in 

most western countries with a well-developed wind power sector (Figure 5.5). The only 

countries with wind electricity prices lower than China were Norway (0.32 yuan/kWh), 

Sweden (0.53 yuan/kWh) and the United States (0.55 yuan/kWh). However, in Norway up 

to 25% of the construction cost for wind farms is subsidized by the national government. 

Wind farms in Sweden receive an “ecological award” equaling 0.225 yuan/kWh, while 

wind farms in the United States get 0.126 yuan/kWh tax refund. Furthermore, wind 

resources in all three countries are better than in China, which lowers their costs of wind 

electricity generation. 

Figure 5.5 Comparison of wind power price in China (2007) with foreign 

countries (2004) (Sources: Li et al., 2005; author‟s calculation) 
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Low price of wind electricity in China has its institutional reasons. As mentioned 

above, the price of wind electricity is formed in two different ways. If the wind power 

project is directly – that is, not in competition – contracted by NDRC/IMDRC to the 

company, the electricity price is decided by NDRC/IMDRC when the project is approved. 

The price is then normally high enough to ensure wind farms an economic profit. Under the 

concession contract, the price is set differently. In order to win the concession bid, and 

partly due to an overestimation of the on-grid price in the future, wind power enterprises 

are inclined to take high risks and set a low price in their bids for the first 30,000 full load 

hours. As a result, the average wind electricity price of concession projects is much lower 

than the electricity price of government contract projects (see Table 5.3). The low 

purchasing price offered by winning concessions provides little incentives for further 

investments. 

 

 

Wind farm Location Price (yuan/kWh) Pricing mechanism 

Huitengxile Inner Mongolia 0.382 Concession project 

Bayinxile Inner Mongolia 0.466 Concession project 

Huitengliang Inner Mongolia 0.420 Concession project 

Rudong Jiangsu 0.436 Concession project 

Baoligenshan Inner Mongolia 0.648 Government contract 

Zhurihe Inner Mongolia 0.609 Government contract 

Dashanwan Shangdu 0.609 Government contract 

Dabancheng Xinjiang 0.533 Government contract 

Table 5.3 On-grid price of wind electricity of major wind farms in China 
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High generation costs and low on-grid prices of wind electricity have a direct impact 

on current wind power development in China: many power companies wait with further 

investments until the wind power market proves mature and profitable. The Chinese wind 

power industry seems to be caught in a vicious circle of “high costs/low price – insufficient 

investment – high costs”.  

The second phase of Huitengxile Wind Farm can be taken as an example for roughly 

assessing the economic profits of a wind farm in Inner Mongolia (Table 5.4). This project 

started in October 2005 and the turbines came into use at the end of 2006. Total investment 

for the second phase reached 516.5 million yuan, with 39.6 MW installed capacity and a 

designed operational lifetime of 20 years. The electricity price in the concession contract 

was 0.382 yuan/kWh (post-tax). Information on economic costs and benefits is listed in 

Table 4. During its operating lifetime, the wind farm generates 2,854.9 (142.97×20=2,854.9) 

million kWh of electricity. The construction cost per kWh electricity is 0.181 yuan and the 

total cost per kWh electricity is 0.450 yuan. However, during the first 30,000 full load 

hours (8.3 years) the electricity generated by this wind farm is sold to the grid at a price of 

0.382 yuan/kWh, resulting in an annual deficit about 10 million yuan. This deficit can be 

compensated only if the generation cost of wind electricity is reduced significantly to 0.334 

yuan/kWh or if the price of electricity after that is increased to 0.5 yuan/kWh. 

 

Cost Benefit 

Construction costs (yuan/kW) 10,901 Electricity price (yuan/kWh) 0.382 

Interests (yuan/kWh) 0.041 Electricity generation (106 kWh/y) 142.97 

Salary costs (yuan/kWh) 0.068   

Maintenance costs 
(yuan/kWh) 

0.156   

Other costs (yuan/kWh) 0.034   

Table 5.4 Cost and benefit information of Huitengxile Wind Farm (39.6 MW) 
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5.6 Technological Performance of Wind Power Projects 

The third performance indicator of wind power development is technological performance. 

We will especially pay attention to three sub-indicators: site selection, average scale of 

individual wind turbines, and the localization of wind power manufacturing. 

 5.6.1 Site selection 

A suitable site for a wind farm influences its technological as well as economic 

performance. Richness of wind resources, transportation conditions and distance to the 

power grid are main criteria for selecting wind farm sites. 

The amount of potential wind energy depends mainly on wind speed at site and to a 

lesser extent on the density of air, which is determined by air temperature, barometric 

pressure, and altitude. For any wind turbine, the power and energy output increases when 

the wind speed or air density increases (Abderrazzaq, 2004). Therefore, it is crucial for a 

wind farm to be located in areas with high and stable wind speed. Besides a favorable 

meteorological situation, convenient transportation and access to power grid are vital for 

lowering construction and operational costs of a wind farm. Close distance to railways or 

highways helps reducing transportation costs during the construction of wind farms. 

Convenient conditions to transmit electricity to the grid are necessary for large scale 

electricity generation by wind farms.  

These three indicators – wind resources, transportation and access to power grid – 

were applied to assess technological performance of the three wind farms selected for case 

study (Table 5.5). 

All three wind farms are located in rich wind resource areas, according to the National 

Standard for areas with rich wind resources. In comparison, Huitengxile wind farm is richer 

in wind resources than the other two. Although average wind speed in Huitengxile is the 

lowest among the three farms, the longer time of effective wind speed compensates this 

disadvantage. Transportation conditions are somewhat different among the three. 

Huitengxile Wind Farm does not have convenient access to railway, but it locates at a 

province-level expressway. Zhurihe and Dashanwan are very close to the railway system. 

Both wind farms constructed roads to railway stations nearby. 
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Connection to power grid has become a bottleneck for wind power development in 

Inner Mongolia. Within the three wind farms, Huitengxile is the only one who has a 

convenient connection to power grid. The electricity it generates is sent to a 110 kV grid 

across the wind farm. However, the grid can not satisfy further development of the wind 

farm. Zhurihe needed to build an additional transmission line to the grid 9 km away. The 35 

kV power grid across Dashanwan was too small. An upgrade proved essential to improve 

electricity transportation efficiency. 

Grid expansion is too costly for power companies. In China the average cost to 

construct 100 km of transmission line is 350 million yuan. Upgrading the power grid is 

even more expensive. Wind farms are normally built in remote areas. Power companies can 

hardly afford the construction cost of transmission line from the main power grid to their 

wind farms. Although it is stated in concession project policies that “the power grid 

company will construct transmission line to the wind farm”, there is no obligation regarding 

the time the construction should be finished or the standard of transmission line. Behind the 

booming wind farm construction, it is also notable that slow down in power grid 

construction can delay future development of wind power in China.  

Wind farm Wind 

speed 

(m/s)* 

Effective 

wind 

speed (h)** 

Wind power 

density 

(W/m
2
) 

Transportation 

condition 

Distance to 

grid 

Huitengxile 7.2 6,255 662 38 km from 
railway; highway 

across 

50 km from 
220 kV; 110 

kV across 

Zhurihe 8.1 5,808 554 9 km from 

railway 

9 km from 

110 kV 

Dashanwan 7.8 5,628 447 0.5 km from 

railway 

35 kV across 

Standard*** >6 >5,000 >300 - - 

Table 5.5 Site situation of three wind farms in Inner Mongolia 

* At 10 m height; ** 5~25 m/s at 10 m height; *** National standard for area of rich 

wind resource 
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5.6.2 Average scale of individual wind turbine 

At a given location, efficiency of wind power generation increases when average turbine 

scale increases. It is a worldwide trend that the scale of individual turbines is becoming 

larger and larger. Nowadays, 1,500 kW and 2,000 kW turbines are prevailing in the 

international wind turbine market (Shi, 2008).  

The average scale of wind turbines installed in each year in Inner Mongolia shows a 

steady increase from 1989 to 2007, with an exception in 2000 (Figure 5.6). The minimum 

scale of individual turbines is 100 kW, which was installed in Zhurihe in 1989. The 

maximum reached 2,000 kW, which were turbines installed in Caoduozi, Bolike and 

Bayinxile in 2007. It is the largest scale of individual (onshore) turbines in China and 

comes close to the prevailing scale in the western world. 

Figure 5.6 Average scale of turbine installed in Inner Mongolia 
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5.6.3 Localization of wind power system manufacture 

According to the Global Wind Energy Council (2008), China is now the fastest growing 

wind power market in the world, while Inner Mongolia is the fastest growing wind power 

market in China. Increase in the use of domestically produced wind power systems can 

significantly reduce the construction costs of wind farms. Due to the reduction in 

purchasing price, transportation costs and custom tariffs, domestic wind turbines are about 

30% cheaper than imported turbines44. Domestic turbines also have advantages in better 

adaptation to Chinese or Inner Mongolian circumstances, short delivery terms and 

convenient/cheaper after-service.  

There are three types of wind turbine manufacturers in China: domestic-owned, joint 

ventures and foreign-owned. The market share of the former two types of enterprises is 

considered an indicator of the maturity of China‟s domestic wind turbine industry. Of all 

wind turbines produced in China up till now, there are more turbines manufactured by 

foreign-owned enterprises (53%) than those by domestic-owned (45%) and joint-venture 

enterprises (2%). This is partly caused by the short history of domestic wind turbine 

industry in China. A factor in the stagnating development of the domestic wind turbine 

industry was the high import tax of wind turbine components before 199745. Domestic 

enterprises without wind turbine R&D capacity could not afford the cost of importing wind 

turbine components. 

This situation did not change until it became mandatory that every turbine in 

concession projects meet the 70% domestic cost content requirement. Since then, the 

proportion of domestic turbines was included as one of the assessment indicators in 

evaluating bids of concession projects. The developer was also required to include a 

domestic manufacturer into the bidding team. All these policy measures provided 

opportunities for China‟s wind turbine companies to boom. Therefore, in 2007 in China the 

proportion of wind turbines manufactured by domestic-owned (56%) and joint-venture 

enterprises (2%) exceeded those by foreign enterprises (42%). The proportion of domestic 

wind turbines installed in Inner Mongolia also experienced rapid increase in the past decade. 

Before 2000, no domestically produced wind turbines were installed in Inner Mongolia, 

                                                        
44 However, already 70% localization rate is required. The potential for additional cost reduction is somewhat limited in this 

respect. 
45 It is now totally refunded, according to State Council File No. 37[1997], “Circular on adjusting tax policy of imported facilities”. 
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while in wind farms established in Inner Mongolia in 2006 and 2007 domestically 

manufactured wind turbines dominated with 55.7% and 58.9%, respectively.  

Along with the market-oriented reform of wind power industry in China, a local wind 

turbine industry is evidently being developed in China. There are now over 20 domestic 

wind turbine manufacturers such as Goldwind, Huarui, Wandian, Huiteng, Longyuan, 

Zhonghang, and Yunda. Most of them have the technological capability to manufacture 

wind turbines with a generating capacity of 750 kW, and some are in the process of 

developing megawatt-scale turbines. Several demonstration projects have domestic 1.2 MW 

and 1.5 MW wind turbines (Shi, 2008).  

However, there are obviously shortcomings of increasing localization of wind turbine 

manufacture in China. First, most local wind turbine companies still need to purchase core 

components, such as the rotor and gearbox, from overseas. They manufacture only 

supporting systems that account for a small proportion of the total costs of the entire wind 

turbine. Consequently, the construction costs of wind farms cannot be reduced significantly 

before these core components are manufactured domestically.  

Second, cooperation with foreign companies results in the transfer of wind power 

equipment rather than technologies. This transfer of hardware (equipment) is helpful in 

meeting localization criteria in short term, while the transfer of software (knowledge and 

technology) is more important for the establishment of a successful domestic wind turbine 

industry in the long term.  

Third, domestic wind turbine technology is still immature. Wind farms need to pay 

more time and money to maintain domestic turbines than imported ones. The immature 

domestic technology also results in wind turbines frequently breaking off. It is estimated 

that average full load hours of wind turbines in Inner Mongolia was 1,933 h in 2007 (Shi, 

2008). It is higher than the national average (1,787 h), while much lower than that in 

western countries such as United Kingdom (2,628 h), Australia (2,500 h) and United States 

(2,300 h). In some (extreme) cases, a wind turbine with 2,000 designed full load hours can 

actually be in operation for only 300 hours a year 46 . Besides technical reasons, some 

researchers also ascribe the problem of low full load hours to the prevailing policy system 

that is more focused on installed capacity than actual utilization of wind resource. There are 

no statistics on real electricity produced by wind farms. MW, instead of kWh is the only 

criterion for assessing wind power development in China (Shi, 2008). 

                                                        
46 As was the case for three Huarui wind turbines installed in Boligenshan Wind Farm in 2003. 
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5.7 Environmental and Social Impacts 

5.7.1 Environmental impacts 

Environmental impacts of wind power development in Inner Mongolia refer to the impacts 

of wind power development on local environmental quality. 

The Chinese government has set the objective of 10% air pollutant reduction between 

2006 and 2010 in its 11th national Five-Year Plan, and wind power will be an important 

contributor to reduce air emission pollution from energy generation. For every 1,000 kWh 

of wind electricity generated, 600 kg CO2, 2.1 kg of soot, 4.76 kg of SO2 and 31.5 kg of 

solid waste emissions are reduced. In addition, 2,520 kg of water and 290 kg of coal is 

saved (Huang, 1993; Li et al., 2005). In total 1,334 million kWh of wind electricity 

generation in Inner Mongolia in 2007, which resulted in a substantial prevention of 

emissions, as listed in Table 5.6. 

Wind power also has negative impacts on the local environment. Previous 

investigations showed that developing wind power could cause noise pollution, visual 

pollution, and threats to birds. It is notable that in Inner Mongolia these environmental 

problems are not as serious as initially thought. First, most local residents live at least 1,000 

m away from wind turbines. The average noise levels of wind turbines in operation in Inner 

Mongolia is only 31 dB (A) at a distance of 1,000 m, equal to noise level in bedroom. 

Second, wind turbines in Inner Mongolia are constructed on wide-open grasslands, with 

little human activity. Therefore, wind power projects in this region hardly cause visual 

pollution. Third, all wind farms in Inner Mongolia had to pass an environmental impact 

 Soot SO2 Solid waste 

Reduction 2.8 6.4 42.0 

Total emission 778.0 1,456.0 73,630.0 

Proportion (%) 0.36 0.44 0.06 

Table 5.6 Pollutants reduction by wind power in Inner Mongolia (2007) (1,000 ton) 
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assessment (EIA) before construction. An important part of an EIA concerns the impact of 

the planned wind farm on birds. Wind farms planned on migratory routes of birds are not 

allowed and need to be re-planned. Although data on actual bird mortality through wind 

farms are not available for Inner Mongolia, statistical analyses showed that there is only a 

very small chance for birds to be hid by wind turbines (Li et al., 2007).  

5.7.2 Societal influence 

Societal influence of wind power development in Inner Mongolia considers whether wind 

power projects satisfy societal needs.  

Nationally, the growth of domestic wind turbine industry offers employment in R&D, 

manufacturing and selling of wind power products. At the local level, the construction and 

maintenance of wind farms create new job opportunities for local people in wind farms. 

Although wind farms are not labor-intensive, labor is needed for constructing wind farm, 

regularly monitoring wind turbines, guarding equipments, and maintaining turbines and 

other facilities.  

Developing wind power increases total domestic energy production and thus energy 

security of the region. Inner Mongolia generated 1,334 million kWh of wind electricity, 

1.5% of its total electricity consumption in 2007. Although this proportion can not be 

compared with that in Western countries, the steep increase promises contribution to Inner 

Mongolia‟s and China‟s future energy security. 

There are also social benefits indirectly related to wind farms. Due to the 

establishment of wind farms, local transport and traffic conditions are often improved. Most 

wind farms in Inner Mongolia locate at remote and mountainous areas, where poor traffic 

conditions used to be a major limiting factor for economic development. After wind farm 

construction, improved road infrastructure facilitated transportation and mobility of persons 

and goods, and thus economic development. During our surveys in Inner Mongolia we 

found that more than two third of the hotels and restaurants around wind farms were 

established after the construction of the wind farm. All interviewed hotel and restaurant 

owners agreed that their business increasing due to the wind farms. Construction of wind 

farms also brings localities additional tourism resources. For example, the Huitengxile 

Wind Farm became an important attraction of Qahar Youyi Zhongqi, the city where this 

wind farm locates. Now about half of the local residents‟ daily income is gained from 

tourists.  
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However, developing wind power in Inner Mongolia also encounters societal 

problems. Wind power development in Inner Mongolia lacks communication between 

developers and local residents. The most important problem is that local governments do 

not have enough influence on the establishment of wind farms in their territory, nor do they 

have influence on the way wind farms are run. There is a potential conflict between local 

economic benefits and wind farm development in the future, since a large area of land will 

be used for a long time without sufficient compensation to local people. Besides, 

herdsmen‟s production is influenced by wind power projects. During the construction of 

wind farms (normally one to two years), grassland (about 1 ha. for each turbine) is not 

available for grazing. After construction is completed, the grassland needs to recover at 

least one year and that needs substantial human intervention such as leveling land, seeding 

and irrigation. Another problem relates to the security of wind farm facilities. Normally 

wind farms are very large and located on land open to the public. Wind farm managers 

complain that local residents steal components of wind turbines, especially at an early stage 

of wind farm completion. How to protect wind turbine components from being stolen 

bothers wind farm managers already for a long time. 

5.8 Conclusion and Recommendations 

Wind power in China is recently experiencing a rapid growth. Our research in Inner 

Mongolia illustrates the major environmental, energy security and social benefits that wind 

power development brought to this region. At the same time, this study also reveals several 

complications in wind power development: high generation cost, low on-grid price, as well 

as immature domestic manufacturing. These shortcomings need to be removed as they 

might complicate further wind power development in China towards levels that are now 

experienced in countries such as Denmark and Germany. To this end, three policy 

recommendations are put forward, to secure further development of wind power in Inner 

Mongolia and China. 

5.8.1 Fossil fuel tax 

In comparison with fossil-fueled (especially coal-fueled) electricity, wind electricity is still 

too expensive. Many experts have argued that the cost of fossil-fueled electricity is 

calculated improperly (Costanza, 1980; Durning, 1992; Kooten et al., 1999). Electricity 
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generated from fossil fuels has major negative impacts to the local environment and human 

health, while conventional calculation methods do not include these costs (externalities) 

into fossil-fueled electricity costs and prices. To produce a level playing field for the 

various electricity producers, the actual costs of fossil-fueled electricity need to include 

environmental externalities, i.e. the cost of environmental pollution, human health and 

resource exhaustion. In the research project “ExternE” (European Commission`, 1995), it 

was estimated that if the externalities of fossil fuel are included, costs of coal electricity is 

anticipated to double. Based on this presumption, cost of coal electricity in China will then 

increase to 0.6 yuan/kWh, making wind electricity fully competitive with coal electricity. 

An important policy measure that can realize the internalization of environmental 

externalities is fossil fuel tax. If the tax rate is properly designed, cost of fossil-fueled 

electricity will be increased to an equal level as that of wind electricity. Besides, part of the 

money raised from fossil fuel tax can be allocated to renewable energy (including wind 

energy) technology R&D. China has not yet started to use such taxes on fossil fueled power 

generation. However, this topic has been discussed for years and is expected to be 

implemented sooner rather than later (Hai, 1999; Wang, 2007)47.  

5.8.2 Reformed concession model 

The concession model is a typically Chinese policy arrangement for stimulating wind 

power development. As analyzed in this paper the main problem of the concession model is 

the extremely low grid price offered by winning concessions, and the subsequent lack of 

further investment. Although through the concession model the Chinese government 

intended to select the most suitable wind farm developer, in practice the main (and 

sometimes only) selection criterion became the lowest on-grid price offered. Of all the 

winners of concession projects in China, only Longyuan Power Group & Hero Asia 

Company Limited succeeded in winning the Bayinxile Wind Farm project without bidding 

the lowest price (Meyer, 2006). The concession model for wind power development in 

China needs to be reformed on two points: fixed on-grid price and improved localization 

policy. 

Firstly, a fixed feed-in tariff should be set for concession projects. Although China has 

                                                        
47 On December 19, 2008, when this article was under review, China‟s national government announced an increment of the fuel-oil 

consumption tax from 0.1 yuan a liter to 0.8 yuan a liter starting at the beginning of 2009. We expect that the same  policy will be 

applied in the power generation sector in the near future. 
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set up feed-in policy for wind electricity generated under concession projects, the on-grid 

price of wind electricity is not fixed. Our survey among wind power companies revealed 

that these companies do not applaud the “two-step” pricing mechanism of China‟s 

concession model (i.e. different prices before and after the first 30,000 hours full capacity 

generation), because it causes vicious competition in bidding for concession projects. 

Although NDRC modified the bidding rules by adding evaluation criteria of wind 

developing condition (site selection, technology selection, efficiency of project 

development, etc.) and the "mid-price" evaluation routine for the latest phases of 

concession projects to avoid vicious competition, this situation did not really change and 

the price setting procedure is obviously unreasonable.  

If there is a fixed feed-in tariff for concession projects, wind power developers just 

need to concentrate on the creation of the best wind developing condition. Such feed-in 

tariff can be different among regions and project types, following an integrated 

consideration of wind resources, project characteristics, on-grid price of fossil-fueled 

electricity and purchasing power at site (Jobert et al., 2007). At the end of 2007, Guangdong 

province started to set feed-in price of wind electricity at 0.689 yuan/kWh, which is 0.25 

yuan/kWh higher than the on-grid price of fossil-fueled electricity48. It is a helpful attempt 

towards setting fixed feed-in wind power prices, and at the same time bridging the 

economic gap between wind power and fossil-fueled electricity production. 

Secondly, the localization policy of wind turbine should be improved. China is 

strongly promoting local manufacturing capacity and capability of wind turbines. The 

mandatory localization rate policy has shown its function in expanding domestic supply 

markets and reducing costs. However, two aspects of the localization policy can be 

improved. First, not only the quantity but also the quality of localized turbines should 

become an important policy objective. Quality criteria can relate to individual turbine scales, 

annual full load hours, lifetime of turbines, etc. Second, one turbine manufacturer should be 

allowed to sign contracts with more than one developer in bidding for the same concession 

projects 49 . In this way, turbine manufacturers with better resources will have more 

opportunities to develop and mature in a short term. 

                                                        
48 Coincidentally, the NDRC document “Measures for Pricing and Cost Distribution of Renewable Energy Electricity” states that 

the on-grid price of electricity generated from bioenergy should be 0.25 yuan/kWh higher than that of fossil-fueled electricity. 
49 In the concession projects policy, business contracts between wind farm developer and turbine manufacturer are exclusive.  
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5.8.3 Enhanced international cooperation 

China has a relatively short history of wind power development, with a comparable 

shortage of experience and infrastructure. International cooperation is of vital importance 

for the further development of wind resource utilization in China. Although China has made 

significant efforts in international communication and cooperation, this can be further 

enhanced. 

In order to improve international communication of wind energy science and 

technology, it is meaningful to establish joint research institutes, which can be a 

combination of Chinese research institutes and their foreign counterparts, or new institutes 

consisting of Chinese and foreign experts. Joint research institutes can function in 

developing wind turbines that apply advanced technology from western countries while 

fitting China‟s unique environmental and social circumstance. These institutes are also 

helpful in properly understanding learning experiences from wind power promotion 

policies in western countries. 

Another important content of improved international cooperation is capacity building. 

Due to the localization rate criterion of the concession model, domestic turbine 

manufacturers are more inclined to import hardware (components) than software 

(manufacturing knowledge/technology). However, the latter is much more important for the 

long-term development of the domestic industry. If the domestic wind industry is to mature, 

the government should further support both cross-boundary transfer and domestic 

innovation of wind power technology other than import of equipments.  

It is also worth trying to involve overseas power companies into the bidding for 

concession projects. Currently developers of concession projects are all domestic power 

companies, sometimes linking with joint-venture turbine producers. However, both the 

financial resource and technology level of domestic companies are limited. In the process 

of improving international cooperation to spur technological development, it is worthwhile 

to try involving overseas power companies into the bidding for concession projects. Besides 

providing more financial resources and advanced wind power technology, overseas power 

companies are also expected to provide long-term maintenance and service. 
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Chapter 6    Solar Water Heaters in China: a 

new day dawning50 

“While China has only limited experience with solar power, it is already a global leader in 

taking advantage of solar hot water.” 

- Martinot and Li (2007) 

Abstract 

Solar thermal utilization, especially the application of solar water heater technology, has 

developed rapidly in China in recent decades. Manufacturing and marketing developments 

have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This 

paper takes Zhejiang, a relatively affluent province, as a case study area to assess the 

performance of Solar Water Heater utilization in China. The study will focus on 

institutional setting, economic and technological performance, energy performance, and 

environmental and social impact. Results show that China has greatly increased Solar Water 

Heater utilization, which has brought China great economic, environmental and social 

benefits. However, China is confronted with malfeasant market competition, technical 

flaws in Solar Water Heater products and social conflict concerning Solar Water Heater 

installation. For further development of the Solar Water Heater, China should clarify the 

compulsory installation policy and include solar water heaters into the current “Home 

Appliances Going to the Countryside” project; most of the widely used vacuum tube 

products should be replaced by flat plate products, and the technology improvement should 

focus on anti-freezing and water saving; the resources of solar water heater market should 

be consolidated and most of the OEM manufacturers should evolve to ODM and OBM 

enterprises. 

Keywords: China; Solar Water Heater; Performance assessment 

                                                        
50 This chapter contains an accepted article for publication by Energy Policy, as Han J., A.P.J. Mol and Y. Lu. Solar Water Heaters 

in China: a new day dawning. 
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6.1 Introduction 

In comparison with other countries, China has great potential for solar energy resources. 

The average annual solar radiation is 5,852 MJ/m2, with a maximum of over 9,000 MJ/m2 

in, mostly, the western part of Tibet, the western part of Qinghai, the southeastern part of 

Xinjiang, the northern part of Gansu, and the northern part of Ningxia (Luo et al., 2005). 

Solar energy utilization, including solar water heater (SWH), solar energy heating and 

cooling systems (SEHC), and solar photovoltaic power generation (PV), is of great 

importance to China‟s renewable energy development strategy. Among these solar energy 

technologies, the SWH system is the most economical, mature and popular in contemporary 

China. SWH technology uses solar thermal energy to heat water for a wide variety of 

applications (e.g., domestic, office and industrial use). A SWH system is normally 

composed of a solar thermal collector and a fluid system to move the heated water from the 

collector to its point of use. The system uses pressure differences for pumping the water and 

has a reservoir or tank for hot water storage and subsequent use.  

China has a great demand for hot water. According to a survey in 2004, only 10% of 

the water used by Chinese residents is hot water, while the amount in western countries 

reached 90%. More than 90% of the survey respondents indicated that they need more hot 

water in daily life51. In addition, along with the rapid industrialization and urbanization in 

China, large amounts of hot water are needed in factories, hotels and other public places. 

This provides ample opportunities for further SWH utilization in China. 

China started SWH utilization in the 1970s. By the end of 2007, the country had 

installed 1.08×108 m2 (collector area) of SWHs, which accounted for more than 60% of 

SWHs installed in the world (Luo, 2008). Recently, China set ambitious objectives for the 

mid to long-term development of the SWH system: 1.50×108 m2 of installed collector areas 

by 2010 and 3.00×108 m2 by 202052. This would mean an annual growth rate of 13.6% for 

the 2010 objective and 9.0% for the 2020 objective. With an eye on this planned growth of 

SWH systems in China, the main objective of this paper is to assess and evaluate the past 

performance of SWH development in China. What have been the economic, technological 

and energy performance of SWHs in China, and are there serious social and environmental 

side effects related to SWH expansion?  

                                                        
51 Source: http://health.sohu.com/2004/03/20/95/article219519544.shtml, retrieved on Jan. 07, 2009. 
52 Source: China’s Eleventh Five-Year Plan for New and Renewable Energy. 
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The SWH industry and market in China has been especially strong in provinces like 

Shandong, Jiangsu and Zhejiang. This research takes Zhejiang Province as the case study 

area. It starts with an overview of SWH development in Zhejiang and the research methods 

applied. Subsequently, the performance of SWH utilization is evaluated in terms of legal 

and institutional framework and economic, technological and energy performance. After an 

assessment of environmental and social impacts, the analysis concludes with 

recommendations for advancing and improving SWH utilization in China. 

6.2 Study Area and Methods 

Zhejiang Province is situated on China's southeastern coast, directly south to Shanghai. It 

covers a total land area of 101,800 km
2
, of which the mountainous and hilly regions make 

up 70.4%, the plains and basins make up 23.2% and the rest, 6.4%, is rivers and lakes. At 

the end of 2006, its population reached 46.3 million, with a high density (455 persons/km2). 

Zhejiang has a sub-tropical monsoon climate, with a clear division of the four seasons. The 

average annual temperature is 15 – 18 °C and the average annual precipitation is 1,200 – 

1,800 mm. Zhejiang is among the more developed provinces in China. With a 20,574 yuan 

annual per capita income for urban residents in 2007, Zhejiang ranked third of all provinces 

(following Shanghai and Beijing). In 2007, Zhejiang‟s GDP was 1.864 trillion yuan, 

accounting for 7.6% of China‟s national GDP. Pillar industries in Zhejiang include light 

industry, tourism and retail trade.  

The Zhejiang Province was selected as the study area for the performance assessment 

of SWH development in China mainly for two reasons. First, the province has the highest 

installation rate of SWH systems in China53, and second, Zhejiang is experiencing a boom 

in SWH manufacturing, with a 30% annual production increase over recent years. Although 

SWH systems are of particular importance in Zhejiang, we do not expect that SWH 

performance in this province will be radically different from that of other leading Chinese 

provinces54. 

In carrying out this research, documentary materials, interviews, site observations and 

questionnaires were used as the main research methods. Documentary materials provided 

                                                        
53 It is estimated that SWHs had been installed at more than 30% of households in Zhejiang by the end of 2006; this is much higher 

than the national average (8%). Source: Zhejiang Solar Energy Industry Association website: http://zj.xn--

fiqx11jxbb.cn/html/zixun/20081127/16143783.html; Survey on SWH market characteristic in Zhejiang: 

http://www.topo100.com/zonghebaogao/zhuanzhulingyu/nongcunshichang/2008-12-01/42860.html. 
54 SWH utilizations in different provinces in China were developed almost in the same period with the same “experiment – 

demonstration – marketaliztion” process. 



Jingyi Han                                                                         Renewable Energy Development in China 

120 

information about status, formal goals, manufacturing capacity, markets and future planning 

of SWH development in Zhejiang. The documents reviewed in this research include laws, 

governmental policies, statistical materials, industrial and scientific studies and market 

reports. From May 2008 to June 2008, semi-structured face-to-face interviews were 

conducted with five governmental officials, two staff members of SWH sector associations 

and eight estate developers in Zhejiang to understand and assess the progress of SWH 

development. In June 2008, we visited five randomly selected SWH companies and six 

SWH retailers in Zhejiang to understand the status and problems of SWH manufacturing 

and marketing. 

For analyzing household SWH use, a uniform questionnaire with closed questions was 

used, consisting of three parts. The first part focused on elementary family information, 

including number of family members, annual income, and average education level. The 

second part of the questionnaire collected SWH purchasing information, including time, 

place and purpose of purchase, product brand, price and size. The third part related to SWH 

utilization, including frequency, water temperature, annual maintenance costs, impacts on 

daily life, and expectation and experiences with performance. In total, 600 questionnaires 

were randomly distributed, with 300 distributed in 3 neighborhoods in Haining City (each 

100) and 300 in 3 rural counties. Of the 300 questionnaires distributed in urban areas, 298 

were completed correctly, while 281 out of the 300 distributed in rural areas were usable for 

further analysis. 

6.3 Renewable Energy Development in Zhejiang 

6.3.1 Energy shortage in Zhejiang 

One of the main reasons for the diversification of energy sources in Zhejiang is its small 

energy production and fossil fuels availability. Zhejiang energy production in 2007 was 

only 11.69 Mt standard coal equivalent (SCE), which is 0.50% of the total energy 

production in China. Meanwhile, due to the rapidly growing energy consumption of both 

household and industry, Zhejiang energy consumption in 2007 reached 145.33 Mt SCE, 

which is 5.47% of the national consumption (National Bureau of Statistic of China, 2009). 

As a result, Zhejiang has suffered energy shortages for years. More than 90% of its energy 

demand has to be met by importing coal, oil and other energy sources from outside (mainly 

other provinces with little coming from overseas). 
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Energy shortage is becoming a major barrier for economic development in Zhejiang. 

In summer, when heat waves strike Zhejiang, the demand for electricity to run air 

conditioners increases sharply. Although Zhejiang has made significant efforts to enhance 

its electricity production – increasing from 62.5×109 kWh in 2000 to 203.7×109 kWh in 

2007 – many factories are still regularly obliged to shut down production activities 

temporarily to save electricity for residents. This causes considerable economic loss for 

local industries. 

Heavy dependence on imported energy also increases the cost of electricity generation. 

About 80% of the electricity generated in Zhejiang is thermal power. As Zhejiang has 

limited raw coal reserves, it has to import over 100 Mt coal from other provinces every year. 

When the coal is transported from its place of production, e.g., from Shanxi Province to 

Zhejiang, the price almost doubles55. Therefore, electricity generation costs in Zhejiang are 

higher than in most other Chinese provinces56.  

Besides energy shortage, environmental pollution presents a second reason to search 

for non-fossil fuel energy resource development in Zhejiang. Waste gas discharged from 

coal-fuelled combustion increased from 42.6 million m3 in 2000 to 115.42 million m3 in 

2007. Soil and water environments in Zhejiang are also considerably polluted by fossil fuel 

residues. 

6.3.2 Development of non-fossil fuel energy resources in Zhejiang 

Zhejiang started its efforts to develop alternative energy resources as soon as the 1970s 

(Lian et al., 1991; Dong, 1999). For over 30 years, it has achieved notable growth in wind, 

hydro, nuclear and solar energy utilization.  

Zhejiang has plenty of wind energy resources along its 6,486 km coastline. In 1972, 

China‟s first independently developed wind turbine was installed in Zhejiang, with a 

capacity of 18 kW. By the end of 2007, the total installed wind power generation capacity 

in Zhejiang reached 47.35 MW (Shi, 2008). However, most wind turbines in Zhejiang were 

installed along the seashore areas, which were more vulnerable to typhoons than the wind 

turbines installed in inland. 

                                                        
55 Source: interview with officials in Zhejiang Development and Reform Commission on May 25, 2008. 
56 According to the NDRC document Circular on Electricity Wholesale Prices and Electricity Transmission and Distribution 

Prices in Provincial Grids in 2007 (File No. 2920), the baseline of electricity wholesale prices in Zhejiang in 2007 was 0.573 

Yuan/kWh, ranking the sixth highest within all provinces in China. 
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Zhejiang is also rich in hydro energy resources. Eight water systems crossing its 

territory provide Zhejiang with 6,613.2 MW of economically exploitable hydro energy. 

After the construction of the first large-scale hydropower plant on Xin‟an River in 1957, 

more than 3,000 hydropower plants followed, resulting in about 4,000 MW of hydropower 

generation capacity and 14.0×109 kWh of annual hydropower production. Hydro energy 

resources in Zhejiang are mostly located in rural areas and thus are suitable for micro and 

small hydropower development. Although small-scale hydropower is more environment-

friendly, its development is more expensive than large-scale hydropower. 

Zhejiang is an important base for nuclear power generation in China. The first nuclear 

power plant in China‟s mainland, Qinshan Nuclear Power Plant, was constructed in 

Zhejiang Province in 1985. This 3,000 MW nuclear power plant provides China with an 

annual 22.6×109 kWh of electricity57. In 2008, construction of the first AP1000 reactor, 

Sanmen Nuclear Power Plant, began in Zhejiang. However, nuclear energy continues to 

have problems concerning residue disposal and safety. 

6.3.3 Development of solar energy resources in Zhejiang 

Zhejiang started its R&D on solar energy technologies in the mid-1970s. During the past 30 

years, it has improved solar thermal and power generation technologies. Zhejiang was 

among the first group of provinces that started developing SWH technology, which is now 

the most important renewable energy technology in Zhejiang. In 1975 it sent a delegation to 

the First National Experience-Exchange Conference on Solar Energy Utilization 

Technology (in Anyang City, Henan Province) and developed a corrugated roof SWH (in 

Jiashan County) (Ding and Jiang, 1994). Zhejiang University was the first research 

institution engaged in the research of solar energy technology in China. It developed the 

“honeycomb flat plate” SWH in 1980 (Lu, 1999), which improved solar thermal efficiency 

considerably. In 1993, a glass vacuum tube SWH was developed in Zhejiang, with much 

lower costs than the flat plate SWH. More recently, SWH technology in Zhejiang further 

improved, by cooperation with research institutes outside the province (the University of 

Science and Technology of China, Tsinghua University and the Guangzhou Institute of 

Energy Conversion at the Chinese Academy of Sciences). The latest SWH technology in 

Zhejiang is the hybrid solar-heat pump water heaters. In recent years, Zhejiang University 

                                                        
57 Data at the end of 2005. Source: China Atomic Energy Authority: http://www.caea.gov.cn/n602669/index.html 
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has also focused research on mono- and multi-silicon crystalline Solar PV modules and 

photovoltaic power generation system products. In addition, the Zhejiang Energy Research 

Institute (ZERI) carries out research projects on solar energy utilization, such as solar 

powered TV sets and clocks, household PV power generation systems, photoelectric 

transposers and silicon thin-film PV cells. It is also engaged in research on improving solar 

energy efficiency, such as improved Polyvinyl Fluoride (PVF) membranes, high-efficiency 

solar vacuum tubes and SWH systems. And the Zhejiang Center of Energy Efficiency in 

Buildings, affiliated with the Zhejiang Department of Science and Technology, focuses 

research on energy saving and, especially, solar energy utilization in buildings. 

Parallel to – and sometimes directly linked with – these technological innovations, 

Zhejiang has experienced a remarkable growth in SWH equipment production, especially 

during the last decade. Jiashan Solar Energy Equipments Enterprise, the first SWH 

manufacturer in Zhejiang, was established in 1982. With the invention of the glass vacuum 

tube SWH in 1993, SWH manufacturers emerged in Haining, Wenling, Zhoushan, Ningbo 

and other cities. Zhejiang University also succeeded in transforming their research 

outcomes into commercial production and established Zhejiang University Sunny Energy 

Science and Technology Co., Ltd., which is under the support of senior experts and 

professors from Zhejiang University and has an annual PV production capacity of 20 MW. 

Currently, Zhejiang houses 1,000 SWH manufacturers (or 20% of the total number in 

China). In 2007, Zhejiang was China‟s main centre for SWH production, with sales 

reaching 5.76 billion yuan (18% of the national market share).  

At the turn of the millennium, the rapidly growing SWH production sector started to 

face problems with false advertisement, counterfeit products and malfeasant competition. 

Subsequently, in March 2003, the first solar energy sector association was established in 

Haining City, with 63 SWH enterprises as members58. Five years later, a provincial level 

solar energy sector association – the Zhejiang Solar Energy Industrial Association (ZSEIA) 

– was founded on November 8, 200859. This not-for-profit organization consists of 67 solar 

energy enterprises in Zhejiang. The association serves as an information platform, 

represents sector interests, solves conflicts between members and bridges the gap between 

solar energy enterprises and the government. 

                                                        
58 Source: interview with Mr. Guoguo Zhang, the director general of the Haining solar energy sector guild on May 23, 2008. 
59 Source: interview with staff in Zhejiang Solar Energy Industry Association on May 25, 2008. 
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6.4 Solar Energy Governance 

The development of SWH in Zhejiang has been facilitated by a favorable institutional 

environment, where governmental agencies have created the conditions for market 

development and have worked closely with producers and technological institutes.  

Various governmental departments at the provincial level influence solar energy 

developments in Zhejiang Province. The Zhejiang Development and Reform Commission 

(ZJDRC), like its counter partner at the national level, is in charge of developing renewable 

energy resources, including solar energy, in Zhejiang. It is responsible for drawing up and 

organizing the implementation of mid- and long-term strategies and annual plans for solar 

energy development in Zhejiang. The Department of Science and Technology (ZJDOST) 

protects the intellectual property rights of solar energy technologies and coordinates the 

international cooperation of solar energy technologies. The Environmental Protection 

Bureau (ZJEPB) examines and approves the Environmental Impact Assessment (EIA) of 

solar energy projects. Other governmental departments relevant to solar energy 

development in Zhejiang are the Department of Construction (ZJDOC), Department of 

Finance (ZJDOF), Local Taxation Bureau (ZJLTB), Quality and Technical Supervision 

Bureau (ZJQTSB) and the Administration of Industry and Commerce (ZJAIC). 

In order to achieve the ambitious objectives of SWH development set in the Eleventh 

Five-Year Plan for New and Renewable Energy, the NDRC approved the Implementation 

Plan on Promoting Solar Thermal Utilization in China in April 2007. In this national policy, 

the installation of SWH systems is given priority for major hot water consumers, such as 

hospitals, schools, restaurants and swimming pools. Zhejiang has also drawn up regional 

policies on solar energy development, often functioning as an implementation of or a 

supplement to national policies. However, solar energy has not received the same policy 

support in Zhejiang as other renewable energy resources – especially wind and biomass60. 

More recently, though, the Zhejiang government has regarded the SWH system as an 

important and advanced technology. The SWH was recently listed as a key field for priority 

development in the Guide to Key Fields of High-Tech Industries for Prior Development in 

Zhejiang, issued by ZJDRC in 2007.  

                                                        
60 There is one interesting and notable piece of evidence for this argument. The provincial government started to draft a policy 

titled measures to promote utilization of solar energy and biogas technologies in Zhejiang in 2004. However, when the final 

document came into force in 2005, the title was changed into measures to promote development and utilization of biogas in 

Zhejiang. The parts on solar energy were quite limited.  
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Nationally and provincially, the first governmental policies were very much focused 

on demonstration projects. In 1982, in the first SWH demonstration project in Zhejiang, the 

BTR-3A double-tube SWH was introduced to residents by the Zhoushan Office of New 

Energy in Chengguan Town, Zhoushan County. Within three years, up to 30% of local 

householders in Chengguan Town installed SWHs. Zhejiang Province now uses a variety of 

policies to promote and regulate SWH system development and installation in buildings. 

The Management Measures on Building Energy Saving, issued by the provincial 

government in October 2007, regulates that “installation of solar water heater systems is 

compulsory in new villas and terraced houses, strongly recommended in new apartment 

buildings not higher than 12 stories and encouraged in other buildings; application of PV 

and other solar energy utilization systems is also encouraged”. Economic subsidies on 

household SWH installation are used to promote household SWH utilization in Zhejiang. 

However, there is no uniform standard subsidy on SWH installation; the amount of subsidy 

differs between cities. In Haining City, one-third of household SWH installation costs are 

compensated by the government. In Yiwu County, every family who installs an SWH can 

get a 500-yuan subsidy. In Jiangshan County, the subsidy is 300 yuan, while in other 

counties there is no subsidy available. During the past 10 years, these policy efforts have 

contributed to an annual increase of 30% of SWH instalation in Zhejiang and currently 

2.9×106 m2 collector areas of SWHs have been installed. 

Zhejiang Province also issues technical standards to control SWH quality and safety. 

The Standard for Design, Installation, and Examination & Acceptance of Solar Water 

Heaters in Residential Buildings stipulates the requirements for installing SWHs in 

buildings. This includes procedures for installing, adjusting and examining SWHs and the 

required materials for manufacturing SWHs. For example, it states that “light-weight filled 

walls are not suitable for supporting solar water heaters” (Article 4.3.3), “installation of 

solar water heater should not damage the building structure and function, the water-

proofing or any other function of the building” (Article 5.1.6) and “materials for 

manufacturing water tanks of solar water heaters must be anti-rust, toxin-free, and capable 

to bearing the maximum water temperature in the tank” (Article 5.5.2). ZJDRC and other 

provincial departments mentioned above are responsible for the implementation of these 

regulations. 

Recently, NGOs have become an important factor in further promoting solar energy 

technologies. Although China still has an underdeveloped NGO network (Mol, 2006) , there 
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is an impressive promotion of diverse renewable energy activities by the two major 

Zhejiang environmental NGOs – “Green Zhejiang” and the “Zhejiang Environmental 

Volunteers Association”. They have built a website for renewable energy information 

exchange, carried out annual summer camps for youths to increase their knowledge of 

renewable energy resources and organized dialogues between scientists, officials and 

businessmen to discuss mid- and long-term energy strategies in Zhejiang.  

6.5 Economic and Market Performance of SWH 

In assessing the economic and market performance of SWH systems, we concentrate on the 

cost benefit analyses of both SWH production and SWH utilization and on the market 

structure. 

6.5.1 Cost-benefit analysis of SWH production 

Profitability is vital for further growth of SWH manufacturing in Zhejiang. By comparing 

the economic costs and benefits of SWH manufacturing, the profit potential of this industry 

can be estimated. The costs of SWH manufacturing include material costs, labor costs and 

taxes, while the benefits are represented by the sale price. As the manufacture of SWH 

products in Zhejiang is divided over different component and assembly industries, we have 

only calculated the cost of the final assemblers. More than 90% of SWH units installed by 

households in Zhejiang are glass vacuum tube SWHs, and our cost benefit calculation is 

thus limited to this specific type of SWH, with the most common size having a 200 L water 

tank. 

A glass vacuum tube SWH is composed of a supporting system, a water tank, a solar 

reflecting plate and glass vacuum tubes. The supporting system consists of a 1.8 – 2.0 m 

long frame made of stainless steel and costs about 180 yuan in Zhejiang. A stainless water 

tank (200 L) costs around 400 yuan, while the cost of the solar reflecting plate is 80 yuan. 

With the average cost of one vacuum tube at 16 yuan and 20 tubes normally included in one 

SWH, total costs for the tubes add to 320 yuan. Therefore, the total material costs of a 200 

L glass vacuum tube SWH are 980 yuan. SWH labor costs are related to equipment 

assembly and product installation 61 . Although labor costs have increased sharply in 

Zhejiang over recent years, they do not account for a large proportion of the total SWH 

                                                        
61 Cost of installation is normally included in sale price. Therefore SWH manufacturers provide end users with installation service.  
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manufacturing cost. For enterprises included in this study, the average labor cost per 

product unit is about 63 yuan. In Zhejiang, SWH manufacturing does not enjoy preferential 

tax policies, except for refunds of customs tariffs. With a VAT of 17% and an income tax of 

25%, average taxes per unit of SWH are 128 yuan and 53 yuan, respectively. Therefore, 

total average costs per unit of 200 L whole glass vacuum tube SWHs in Zhejiang add up to 

1,224 yuan. 

Market prices of SWH products in Zhejiang depend on the brand, size and time and 

place of purchase. Collected market prices of 200 L glass vacuum tube SWH products in 

Zhejiang averaged 1,802 yuan in 2008. Therefore, the average profit from one SWH unit 

(200 L) is 578 yuan. As publicly perceived, and proven again in this research, SWH 

manufacturing is highly profitable in Zhejiang62. This profitability is arguably the most 

important factor driving the rapid development of the SWH sector. 

6.5.2 Economic analysis of SWH utilization 

In order to analyze the economic performance of SWH utilization, the costs of purchasing, 

operating and maintaining SWH products are compared with the economic benefit they 

bring to users. Because not all SWH products used in Zhejiang are produced in that 

province – but also in other Chinese provinces – data for calculating the purchasing price of 

SWHs were acquired via user questionnaires instead of the average market prices of 

Zhejiang producers. To estimate the annual economic performance, the purchasing cost of 

individual SWHs was apportioned within the designed life expectancy. Governmental 

subsidies were not considered, because they are provided only in some cities/counties 

(usually related to demonstration projects) and at different rates. The economic benefits of 

SWH utilization were realized mainly through saving fuel costs for heating water. Data for 

this were also obtained via user questionnaires. 

Respondents in this research purchased their SWH products at an average price of 

2,160 yuan. Most users also needed to buy pipes63, at a price of 3 yuan/m. On average, 

users needed 30 m pipes, adding up to 90 yuan for pipes. Therefore, the average purchasing 

costs of SWHs in Zhejiang were 2250 yuan. This is much more expensive than the 

purchasing costs for an electric water heater (average 833 yuan) and a fuel gas water heater 

                                                        
62 Note that in this research, interest on loans and other costs for running an enterprise have been excluded.  
63 Users who install an SWH after construction of the building need to install pipes from the roof to their kitchen and bathroom. 

Pipes are preinstalled in new buildings and the cost is included in the purchasing price of flats.  
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(average 560 yuan) in Zhejiang. The designed life expectancy of SWH products varies from 

10 to 15 years. If we take the mean life expectancy (12.5 years), the apportioned purchasing 

costs are around 180 yuan/y. There are no operation costs, as users operate SWHs 

themselves without extra energy or materials. The costs for water can be excluded because 

SWH technology adds no additional water use or costs compared to alternative water 

heating systems. The maintenance costs for SWHs relate to cleaning and changing 

components and especially to frozen water pipes or tanks (which will be discussed below). 

From the questionnaire, the average maintenance costs of SWH users in Zhejiang proved to 

be 22 yuan/y. The total average costs households pay for SWH utilization in Zhejiang are 

thus around 202 yuan/y.  

SWH technology saves fuel costs in comparison with other water heating systems. 

Heating 1,000 L of water from 5 °C to 55 °C consumes 210 MJ of thermal energy64. Taking 

the thermal efficiencies of electricity, LPG and natural gas water heaters as 98%, 84% and 

84% respectively65, it costs 18 (natural gas) to 41 yuan (electricity) to obtain the thermal 

energy by conventional energy resources. Meanwhile, no fuel costs are involved with 

SWHs (Figure 6.1). 

 

                                                        
64 4200J/(kg•°C)×1000kg×(55°C-5°C)=210×106J 
65 Source: efficiency data of LPG and natural gas fired water heater from Minimum allowable values of energy efficiency and 

energy efficiency grades for domestic gas instantaneous water heater and gas fired heating and hot water combi-boilers. 

Efficiency data of electrical water heater from Xu et al., 2006. 
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Figure 6.1 Fuel costs for heating water from 5 °C to 55 °C (yuan/1000 L) 
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The average annual household water use for daily life in Zhejiang is 190.5 t (National 

Bureau of Statistic of China, 2009). If we take the proportion of hot water used in daily life 

from the 2004 survey, an average of 19 t of hot water is consumed by individual families 

every year. Meanwhile, results from the questionnaire revealed that an average of 81 t of 

hot water per year is consumed by individual families in the study area66. Therefore, by 

using an SWH, a household can save 342 to 3,321 yuan in fuel costs every year. 

Considering that the average installation and maintenance costs of household SWHs are 

2,525 (2,250+22×12.5) yuan, the payback period is 8 months to 7.4 years. 

6.5.3 SWH market structure 

In Zhejiang, SWH manufacturing is concentrated in cities such as Haining, Huzhou and 

Ningbo as a result of preferential policies, demonstration projects and governmental 

subsidies. SWH utilization is very popular in cities with a mature manufacturing sector. 

Hence, a large part of SWH production in Zhejiang is consumed domestically. According to 

the user questionnaires, 94.3% of households in urban areas (n=298) and 65.8% in rural 

areas (n=281) in Haining had installed SWHs by the end of 2007. In other Zhejiang cities, 

installation of household SWHs also increased rapidly over the last few years, but not to 

such high rates. Besides domestic sales, SWH products produced in Zhejiang are sold to 

other provinces, such as Hebei, Henan and Yunnan, and are exported to Southeast Asian, 

American and European countries. SWH enterprises spend considerable resources on 

advertising and image building via websites, TV, newspapers and public places. 

Of all SWH products, vacuum tube systems have the largest market share in Zhejiang, 

as in all of China (Figure 6.2). In 2007, 95.35% of SWHs in China were vacuum tube 

systems and only 4.65% were flat plate systems 67 . In the EU, 85.94% were flat plate 

systems and only 8.56% were vacuum tubes (Beurskens and Mozaffarian, 2008; Luo, 2008). 

                                                        
66 There are two possible reasons for differences between the two data sources: first, average living in Zhejiang has been largely 

enhanced since 2004; second, families are supposed to increase everyday hot water consumption when there is no fuel cost. 
67 Because data of SWH market shares in Zhejiang are not available, data in China are used instead.  
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As Zhejiang is not rich in mineral resources for manufacturing SWH products, most 

raw materials – such as polyurethane (PU) and steel – need to be imported from other 

provinces or from overseas. This makes the manufacturing of SWH products in Zhejiang 

vulnerable to external raw materials markets. In the past two years, prices of both PU and 

stainless steel have increased more than 20%, putting pressure on solar SWH manufacturers 

in Zhejiang. 

Most of the 1,000 and more SWH manufacturers in Zhejiang have operated under the 

so-called Original Equipment Manufacturer (OEM) model68. Only one manufacturer owns 

the entire SWH product chain in Zhejiang. About two-thirds of the SWH enterprises in 

Zhejiang produce SWH components, such as supporting systems, heat pipes, vacuum tubes, 

solar reflecting plates and water pipes, while the other enterprises assemble these 

components into final SWH systems. The major problem the SWH market in Zhejiang has 

is the large number of enterprises with a limited scale. Of the 25 Chinese SWH 

manufacturers with an annual output value above 100 million yuan, only two are located in 

Zhejiang69. This results in malfeasant competition, especially concerning low prices, and 

bad-quality products and service. Although raw material and labor costs have increased in 

                                                        
68 An original equipment manufacturer, or OEM, is typically a company that uses a component made by a second company in its 

own product, or that sells the product of the second company under its own brand. 
69 Besides the 2 manufacturers in Zhejiang, 8 are located in Jiangsu, 7 in Shandong, 4 in Beijing, 2 in Guangdong and 2 in Anhui. 

Source: Luo, 2008. 
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Figure 6.2 Market shares of SWH products in China and EU (2007) 
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recent years, the average market price of SWHs decreased in Zhejiang. Hence, in order to 

keep profits, many manufacturers use low-quality material, resulting in unreliable products 

and poor quality. Under this circumstance, local users increasingly trust only famous brands. 

Our survey indicates that over 71% of the respondents (n=579) buy their household SWHs 

from one of the three brands that passed governmental product certification, even though 

the price of these brands is 17% above the average price of other brands. As a result, most 

of the cheaper SWH products are sold in external markets. In these markets, short life 

expectancy, unreliable quality and security problems during installation and utilization have 

reduced the reputation and, consequently, the market share of “made in Zhejiang” SWH 

products. 

6.6 Technology Assessment of SWH Systems 

6.6.1 Climate conditions 

Solar energy utilization is highly dependent on the climate conditions at specific sites. The 

most important climate factors are the “sunshine hour” (SH) and “sunshine radiation” (SR). 

SH refers to the hours in which a specific region receives sunlight. SR refers to the total 

amount of sun radiation per unit area that a specific region receives during a period of time. 

SR presents the density of solar energy availability in this region. In China, provinces are 

divided among five groups, where the first group is the richest in sunshine and the fifth 

group is the poorest. Zhejiang Province is among the fourth group (Luo et al., 2005). It does 

not receive long hours of sunshine per year, with annual SH varying from 1,765 to 2,142 

hours, depending on location70. It receives the most sunshine hours in July and August, 

when the average temperature is around 30 °C and there is little need for hot water in 

people‟s daily lives. In January and February, the coldest months, Zhejiang receives the 

lowest amount of SH (Figure 6.3). With an annual SR of 2,083 MJ/m2, the amount of 

thermal energy from sunshine is also low in Zhejiang, when compared with the national 

average of 5852 MJ/m2. 

                                                        
70 Data from Zhejiang Meteorology Bureau. 
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With unfavorable climate conditions for solar energy, Zhejiang is still the most 

developed province in terms of SWH utilization. There are three possible explanations for 

this phenomenon. First, the SWH system prevails in Zhejiang because it is a low-

temperature solar energy utilization technology that is especially favorable for areas 

without plenty of solar radiation (Dickinson and Cheremisinoff, 1980). Second, Zhejiang is 

relatively rich among the provinces, where most households have enough purchasing power 

to afford SWH technology. It is also for this reason that Zhejiang is the home of many solar 

energy demonstration projects. Third, household SWH installation has boomed in parallel 

with the development of a well established SWH manufacturing industry in Zhejiang. The 

combination of high production profits, cheap products and low transportation costs has 

accelerated market development. 

6.6.2 Technology performance 

Several aspects should be considered in assessing the performance of glass vacuum tube 

SWH technology in Zhejiang and China: life expectancy, integration into buildings, water 

temperature performance, water wastage and performance under extreme conditions.  

Although most SWH products are designed to be used for 10 to 15 years, this is not 

necessary true in practice. The questionnaire analysis results show that 48% of current 

SWH users in Zhejiang have installed an SWH before (n=579). The average life period of 

their previous SWH was only 6.5 years, much shorter than the designed life expectancy (10 

to 15 years). New SWH systems were installed for mainly two reasons. First, users did not 
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know or care about the designed life expectancy. An average 6.5-year life was already 

longer than the payback period. Second, many families replaced their first SWH not 

because it ceased to work, but because they wanted new products with a larger size and 

more advanced technology. The current SWH technology in use was installed, on average, 

5.8 years ago, and 91% of these units are still in “excellent” or “good” condition71. The new 

SWH products are expected to have a longer life expectancy than the older ones.  

Most SWH products in Zhejiang are used by households. Normally, the supporting 

system, the water tank and the solar collectors are installed on the roof. Cold water is 

pumped upward from the kitchen or bathroom to the roof and hot water is transported 

downward through the pipes. SWHs are better integrated into new buildings than existing 

buildings. After the provincial government issued the compulsory installation policy in 

2007, SWH units became fully integrated into new apartment buildings during construction 

(Figure 6.4, left). When residents buy a new house or apartment, they automatically become 

owners of an SWH. In most other new buildings, space is automatically reserved for solar 

collectors on the roof and for pipes in the wall. However, current SWH technology does not 

integrate easily into most existing buildings. The solar collectors are eye-catching on the 

roof, and they cause visual pollution (Figure 6.4, right). The installation of water pipes in 

existing buildings causes another problem: if these are installed on top of the wall, it also 

causes visual pollution, while installation in the wall increases costs and causes damage to 

the wall.  

The water temperature obtained in the water tank depends heavily on the heat 

absorption capacity of the tubes and the heat preservation qualifications of the water tank. 

The national Technical Requirement for Environmental Labeling Products – Domestic solar 

water heating system (HJ/T 363-2007)72 requires that hot water temperatures from SWH 

systems not to be lower than 45 °C. Experiments by Xiao et al. (2004) showed that the 

outlet water temperature of SWH systems with vacuum tube technology varies from 40 to 

80 °C under all possible weather conditions. Therefore, SWH systems can meet the 

temperature requirements except, perhaps, in extreme weather conditions. The latest SWH 

product technologies (with advanced heat pump and heat pipes) can produce water at a 

                                                        
71 We defined an “excellent” SWH as a unit that had never been repaired; “good” is an SWH‟s technology functioning as it was 

designed after only minor repairs; “adequate” are SWH units functioning as designed after major repairs; “bad” are SWHs where  

minor functions have degenerated (e.g., leakage of valves); “very bad” are SWHs where major functions have degenerated (e.g.,  it 

can no longer heat water up to a satisfying temperature). 
72 Issued by the former State Environmental Protection Administration in 2007. 
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temperature above 60 °C under all weather conditions (Wang et al., 2000; Lu et al., 2002; 

Chyng et al., 2003).  

However, there remain two major technical concerns with SWH in China. First, the 

water tanks and pipes installed outside buildings can become frozen and crack during cold 

winters (with outside temperatures below -8 °C). Though it is not a problem in Zhejiang, 

this technical barrier does prevent the popularization of SWHs in northern China. The 

second problem relates to the waste of clean water, which is especially important in water-

scarce regions. Because the water in pipes between the water tank and the place/tap of 

water use cannot be heated, users have to waste cold water before using hot water from the 

SWH. With the average internal diameter (12mm) and length of the pipe (15m), Zhejiang 

households waste 1.7 L of water every time hot water is used. 

6.7 Environmental and Societal Impacts 

In a final SWH assessment, environmental and social impacts of this technology should be 

included.  

Except for the wasted cold water, SWH technology is applauded for its environmental 

benefits. Before the widespread SWH installation, people in Zhejiang used electricity (at 

private places) or coal (at public places) to boil water. By applying SWH systems, use of 

fossil fuels for heating water is reduced. It is estimated that installation of SWHs can reduce 

Figure 6.4 SWH installed in apartment buildings (left: integrated in new buildings; 

right: added to existing buildings) 
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120 kg SCE of fossil fuel consumption and 4.85 kg SO2, 2.2 kg NO2, 3.75 kg dust and 200 

kg CO2 emission per m2 collector per year (Li and Hu, 2005). In Zhejiang, a 2.9×106 m2 

collector area of SWH systems had been installed by the end of 2007, saving 348,000 t SCE 

of fossil energy consumption every year. If this amount of fossil energy is used for 

electricity generation, it produces around 1 billion kWh of electricity, equal to the annual 

production of a mid-sized power plant in China. In addition, every year the 2.9×106 m2 

collector area prevents 14,065 t SO2 emission (1.76% of Zhejiang‟s SO2 emission in 2007); 

6,380 t NO2 emission (provincial emission data not available); 10,875 t dust emission 

(5.98% of Zhejiang‟s dust emission in 2007); and 580,000 t CO2 emission (0.28% of 

Zhejiang‟s CO2 emission in 2007). This contributes significantly to better air quality in 

Zhejiang. 

The development of SWH utilization has several positive social impacts in Zhejiang. 

It brings local residents an economical, clean and safe way of heating water for daily life, 

and it saves fuels costs. Moreover, SWH systems reduce the risks of CO poisoning (as with 

gas water heaters) and electric shocks (as with electrical water heaters)73. In addition, the 

utilization of SWH systems provides people a way of expressing their concerns about 

environmental protection. In our survey 36% of the respondents (n=579) regarded 

“environmental protection” as the most important reason for installing an SWH. Utilization 

of SWHs can also improve public health conditions. A survey carried out by All-China 

Women‟s Federation (ACWF) in 2006 revealed that 86% of Chinese housewives have 

rheumatoid arthritis, and the use of cold water for laundry and dish washing is considered 

the main cause of this disease (Pienimaki, 2002). SWH introduction increases the 

availability and use of hot water and, thus, reduces the prevalence of rheumatoid arthritis. 

But the development of household SWH systems also causes a number of social 

problems and conflicts. Though limited, there are some security risks related to installation, 

such as workers falling from high altitudes while installing SWHs on top of buildings74 and 

utilization 75 . Conflicts with city administrations and estate management also present 

development problems. The city administration may interfere with SWH installation 

because, without careful planning, SWHs can cause visual pollution. The Regulations on 

City Appearance and Sanitary Condition in Zhejiang Province states that “Articles which 

                                                        
73 It is estimated that hundreds of people die every year from these two risks in China (Source: China Consumer Council, 

http://news.xinhuanet.com/legal/2006-03/10/content_4285335.htm). 
74 On 1st July, 2008, an SWH installation worker fell from the top of a four-story building and died in Lishui City. Source: 

http://ajj.lishui.gov.cn/sgkb/sgxx/t20080702_428764.htm 
75 On 17th March, 2007, an SWH fell from the top of a five-story high building as the supporting system rusted. Nobody was 

injured. Source: http://ctjb.cnhubei.com/HTML/ctjb/20080318/ctjb288654.html 
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may impair city appearance or have security risks should not be installed on the top, porch, 

or out of windows” (Article 12). The Regulations on City Appearance and Sanitary 

Condition in Hangzhou City is even stricter: “It is not allowed to install any article on the 

top, porch, or out of windows of buildings close to main streets and key areas”. Although it 

is not clear if SWHs are an article “which may impair city appearance or have security 

risks”, the installation of SWHs on existing buildings is prohibited by city administrations 

in some cities in Zhejiang, in accordance with the above-mentioned policies. 

Obstruction by the estate management is often more fierce and complex. Although 

most estate developers agree that SWH systems have environmental benefits and can be a 

selling point of new estates, the installation of SWHs is forcefully rejected by estate 

managements in many new apartment projects. In the Jiangsu and Henan Provinces, 

proprietors had to secretly install SWHs during the night, only to see them removed by the 

estate management shortly after76. There are three explanations behind these conflicts. First, 

there is a lack of space for SWH installation on top of new buildings higher than 12 stories. 

Second, some estate managers merely want additional income, and they allow SWH 

installation only under the condition that proprietors pay a 50 to 100 yuan “maintenance 

fee”. Finally, there is conflict over compulsory policies. The “strongly recommended” and 

“encouraged” legal provisions are vague. Installation, then, of SWH systems is only 

compulsory for new villas and terraced houses, which accounts for a small proportion of 

new buildings in China. There is no stipulation about how to deal with an SWH installation 

rejection, and solid local and provincial enforcement is lacking.  

6.8 Conclusion and Recommendations 

SWH technology has been developed for more than 30 years in China. Our evaluation 

reveals that using SWHs instead of conventional (gas and electric) water heaters has great 

economic benefits (saving fuel costs); environmental benefits (reducing fossil fuel 

consumption and pollutants emission); and social benefits (cheaper, cleaner and safer hot 

water for daily life). But SWH systems are meeting a number of bottlenecks in China. The 

following policy, technology and market recommendations address these shortcomings of 

SWH development in China. 

                                                        
76 This kind of radical conflict has not happened in Zhejiang yet. However, about half of the interviewed estate management 

expressed their hostility towards SWH products in apartment communities. 
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6.8.1 Policy recommendations 

Regardless of the economic benefits and the short payback period of SWHs, the current 

market price still makes them unaffordable for families in the poorer regions of China. 

Governmental subsidies can be effective in further promoting the use of SWHs in these 

areas. The current “Home Appliances Going to the Countryside” project is a nationwide 

government-funded project aiming to expand sales of household electric appliances in rural 

areas at prices 13% below those in cities. Including SWHs in the product list of this project 

would further disseminate SWHs in rural China77. Offering no-interest loans is another 

possible way to promote SWH utilization in rural areas, especially for families who cannot 

pay the purchasing price of an SWH all at once.  

Current compulsory SWH installation policies are too vague; they need to be modified 

in two respects. First, the requirements for SWH installation on new buildings should be 

more stringent and clear: new buildings, for example, not higher than 12 stories must install 

SWHs simultaneously; new buildings must reserve enough space (on the roof) to install 

water pipes; and proprietors should be allowed to decide when to install SWHs. Second, 

there should be a penalty clause for estate managements that reject SWH installation or that 

charge money for installation. 

6.8.2 Technology improvement 

The widely spread glass vacuum tube technology has three disadvantages when compared 

to flat plate and heat pump SWH systems. First, the vacuum tube breaks down easily, while 

flat plate and heat pump systems are more robust, even under low temperatures. Second, the 

solar collectors of vacuum tube SWHs are larger and more difficult to adapt to buildings 

than flat plate and heat pump SWHs. Third, vacuum tube SWHs have a relatively low 

energy efficiency (45%) compared to flat plate (>50%) and heat pump (>80%) SWHs (Li et 

al., 2002; Lu and Luo, 2002). Hence, vacuum tube SWHs in China should be gradually 

replaced by flat plate and heat pump SWH technology. In order to achieve this replacement, 

three improvements of flat plate and heat pump SWH products are essential. First, the 

manufacturing costs should be reduced. Currently, the market price of flat plate and heat 

                                                        
77 SWH was not included in the initial product list of “Home Appliances Going to the Countryside” project announced on March 

10th, 2009, mainly because the technical standard of SWH is not accepted by all producers. However, it is believed that as soon as 

the standard is agreed upon, SWH will be included in the list. 



Jingyi Han                                                                         Renewable Energy Development in China 

138 

pump SWHs are 30% to 50% higher than similarly sized vacuum tube SWHs. Second, 

several technical problems should be solved. For example, welding spots in water tanks 

may start leaking just a few years after installation. And it is impossible to take apart flat 

plates to clean their inner surface. Third, it is necessary to shift flat plate and heat pump 

R&D from focusing purely on laboratory efficiency improvements to field research on the 

adaptation of technology to market demand. 

No matter which SWH technology is used, two technical problems must be solved: 

waste of water and freezing of pipes in winter. In China, several solutions to both problems 

have been suggested. Wang (1999) suggested that an electric heater be associated with 

automatic temperature control. Lu and Luo (2002) ummarized temperature control 

strategies in China, such as circulating water pipelines, electric heat tracing, and casing 

protected pipes. He (1999) invented an automatic water flow controlling device. Kang 

(2006) added 4-port solenoid operated valves and an F-drainpipe under the water tank. 

Zhao et al. (2007) provided four anti-freezing methods for SWH pipelines. However, all of 

these solutions increase the manufacturing cost of SWHs, and they need extra energy 

(normally electricity) input. Technologies satisfying both anti-freezing and resource 

conservation conditions are still lacking. 

6.8.3 Market reform 

Currently, there are more than 5,000 SWH manufacturers in China, most of which are 

limited in production capacity and product quality. In order to survive intensive competition, 

they sell their products at low prices, resulting in market disturbance. Therefore, SWH 

manufacturing resources should be consolidated by enabling larger companies to take over 

small enterprises. On average, large enterprises have the advantages of stricter quality 

control and better market reputation. In addition, market entry standards, in terms of 

process and product quality requirements, should be enhanced to ensure the quality of the 

industry. By enhancing market entry requirements, only enterprises with eligible production 

capacities and quality control mechanisms would be able to apply for production and 

distribution licenses. 

Too many SWH enterprises in China operate under the Original Equipment 

Manufacturer (OEM) model. The OEM model is inevitable under socialized manufacturing, 

as it reduces investment risks and rationalizes resource distribution. But these OEM 

enterprises in China have become a barrier to the further development of the SWH industry. 
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A number of OEM enterprises need to evolve into what is called, in China, an Original 

Design Manufacturer (ODM). These should then evolve into an Original Brand 

Manufacturer (OBM). There are three major challenges to OEM enterprises transitioning to 

ODM and OBM enterprises. The first challenge is how to raise capital. Most OEM 

enterprises run on the capital they have accumulated by themselves over the past years, 

without bank loans or credits. Under ODMs and OBMs, more investment is needed, and 

these enterprises should use other possible funding resources to achieve further 

development. The second challenge is how to reform the product structure. Under an OEM 

model, SWH enterprises produce components but do not investigate market demand or 

develop new technologies or products. Under ODM and OBM models, SWH enterprises 

need to further invest in R&D, new products and market satisfaction. The third challenge is 

how to increase enterprise reputation. As part of the production chain of parent enterprises, 

OEM enterprises do not have to worry about their reputation. Under ODM and OBM 

models, constructing their own brand and reputation is essential. Product quality, media 

advertisement and branding are key components of reputation construction and 

maintenance. 

In the international market, product quality standards are stricter than in the domestic 

market, and market prices are higher. SWH enterprises with large production capacities, 

advanced technologies and advanced quality control systems can expand into the 

international market. Chinese SWH enterprises have advantages in the international market 

because of the low material and labor costs and self-owned intellectual property rights. 

While to be more competitive in future international market, three strategies are essential 

for Chinese SWH enterprises. First, they need to find a good cut-in point. While in 

domestic markets, low prices are the main competitive advantage, in international markets, 

reliable quality and environmental performance are the main competitive advantage. 

Moreover, flat plate and heat pump SWH systems are mainstreams in international markets, 

and Chinese SWH enterprises should adjust their product structure accordingly. Second, 

Chinese companies should enhance international relations by cooperating with foreign 

partners, eventually establishing overseas branches to save on transport costs. Finally, they 

should employ qualified personnel for the development of various SWH technologies, 

foreign language competencies and international trade expertise. 
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Chapter 7    Conclusions and Recommendations 

“In the move to a low carbon economy, we believe that China will no longer be a 

developing country following where others have led, but a pioneer leading the way.” 

– Howard and Wu (2008) 

7.1 Introduction 

Renewable energy development is regarded as an important element solution to climate 

change, as it reduces carbon dioxide emissions. As such renewable energy has obtained 

global attention from both scientists and politicians. China started its efforts to develop 

renewable energy resources about 30 years ago. The Chinese government has issued 

various policies, allocated large amount of funding and carried out demonstration projects 

mainly on the implementation of biomass, wind power, solar energy and small hydropower. 

During the process of this study, the Renewable Energy Law was activated in 2006, which 

was a milestone of and forms a fundamental legal basis for the nationwide development of 

renewable energy resources in China. As a result, utilization of renewable energy resources 

increased rapidly over the past years since the start of the new Millennium. However, no 

systematic assessment has been carried out on the performance of renewable energy 

development policies in China. There is no clear answer to the question whether the 

policies and projects on renewable energy development were implemented in an effective 

way. 

Against this background, the main objective of this study was to assess the 

performance of renewable energy policies and practices in China. Three main research 

questions were raised at the beginning of this study. First, has the implementation of 

renewable energy policies and practices in China achieved good performance? Second, 

what are the driving forces behind the successes/failures of renewable energy development 

in China? Third, what reforms can be recommended for further and future renewable 

energy policy and programs in China? These research questions were approached in the 

analytical framework of policy evaluation. With the help of three cases viz. rural biomass 

gasification, onshore wind power and SWH, performance of renewable energy 

development in China was assessed in terms of economic performance, technological 
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performance, environmental impact and social impact. The driving forces behind the 

performance were also analyzed within the triad-network of renewable energy development 

in China. 

This concluding chapter subsequently provides overall answers to the research 

questions. Considering the facts that all biogasification projects in China are implemented 

at community level in rural areas, Inner Mongolia is the province with most installed 

capacity of wind power, while Zhejiang has the highest installation rate of SWH, findings 

from the cases have some degree of generalization, i.e. the findings have relevance for other 

areas with similar renewable energy projects in China. But, of course, in generalizing 

findings one also needs to be careful on the case study specific characteristics. In Section 

7.2 I conclude on the performance of renewable energy development in China. In Section 

7.3 I analyze the policy network drivers, economic network drivers and societal network 

drivers to the performance of renewable energy development in China. In Section 7.4 I put 

forward recommendations for further implementation of renewable energy. This chapter 

ends with discussions on the implications for future research on public acceptance of 

renewable energy, evaluation of evaluation and post-Kyoto renewable energy development 

in China. 

7.2 Performance of Renewable Energy Development in China 

As discussed in Chapter 3 and carried out in each of the three empirical chapters, the 

performance of renewable energy development in China was assessed in terms of economic 

performance, technological performance, environmental impact and social impact. In this 

section, I try to bring together the evaluation results of the three cases to conclude on 

performance of renewable energy development in different conditions in China. Judgments 

on performance of individual cases in general are given in Table 7.1, followed by a detailed 

discussion on each performance criterion in the subsequent sections. 
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7.2.1 Economic performance 

Among the three cases of this study, only the SWH projects brought the project developers 

economic benefits (Section 6.5.1). SWH manufacturing is one of the most profitable 

industries in China. In comparison, the biogasification projects (Section 4.4.1) and wind 

power projects (Section 5.5.2) failed to achieve satisfying economic performance.  

Application of SWH in households saved large amounts of fuel costs to heat water, 

which could recover the installation cost of SWH within a short period (Section 6.5.2). The 

biogasificaiton projects could also bring end users economic benefit by saving fuel cost. 

Considering the fact that most biogasification projects were established in rural areas, their 

economic benefits to end users were even more significant than the SWH projects. 

However, due to the large scale close down of biogas stations, this economic benefit was 

not realized in at least (but probably more than) half of the communities with 

biogasification projects (Section 4.4.3). Electricity generated by wind farms was purchased 

Indicator Sub-indicator 
Biomass 

gasification 
Wind power SWH 

Economic 

performance 

Project developer -- -- + 

End user N/A - ++ 

Technological 

performance 

Technology -- + - 

Equipment -- - N/A 

Environmental 

impact 

Pollution abatement + + ++ 

GHGs reduction + + ++ 

Social impact 
Direct + + + 

Indirect N/A + -- 

Table 7.1 General judgment on performance of cases 

--: highly negative                    -: negative                              N/A: not applicable 

+: positive                             ++: highly positive 
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by grid companies, who sold the electricity to end users connected to the grid. If grid 

companies purchased wind electricity at a price higher than the price of power generated 

from other sources, the price difference was allocated within the whole power grid in the 

form of higher retail prices to the electricity end users (cf. Section 2.4.2). Therefore, 

economic performance of wind power projects to end users was negative78.  

7.2.2 Technological performance 

There is still large room for China to improve the level of renewable energy technology it 

applies. The designers of biogasification technology were too much concerned with the 

reduction of costs. As a result the gasification systems suffered problems of tar, leakage and 

difficulties in treating wet feedstock (Section 4.4.2). China is the leader of SWH production 

in the world. However, the widely spread glass vacuum tube SWH technology applied in 

China is faced with several technical problems. There is no satisfying solution yet to adapt 

SWH systems to existing buildings. SWH systems in use caused waste of water. The water 

tank and pipes installed outside of the buildings were frozen during cold winters (Section 

6.6.2). In comparison, the wind power technology used in China was carefully designed and 

applied at sites with sufficient wind energy resources. However, the average construction 

cost of wind power in China was too high, although it is expected to reduce by enhancing 

the proportion of domestically manufactured turbines installed in wind farms (Section 5.6.1 

& Section 5.6.3).  

China had more problems in managing the equipments of various renewable energy 

demonstration projects. Four out of the seven biogas stations I visited were closed down 

and one was working in worrying conditions, mainly due to management problems (Section 

4.4.2). The average full load hours of wind turbines in China were much lower than those 

with the same technology in some western countries. In other words, they worked less 

efficiently than they were designed for (Section 5.6.3). Because the SWH systems were 

easy to operate, there was no information about management problems obtained during this 

study.  

 

                                                        
78 Although most end users of wind power don't know this was negative 
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7.2.3 Environmental impact 

Reducing air pollutants and GHGs emission reduction as well as preventing further 

exhaustion of non-renewable energy sources were the two incentives for China to start its 

efforts to develop renewable energy resources. The positive environmental performance of 

renewable energy projects analyzed in this study was achieved mainly via the reduction of 

fossil fuel consumption and thus a reduction of greenhouse gas emissions. In villages where 

biogasification projects were successfully carried out, local people used biogas instead of 

coal and straws for daily life fuels. As a result, emissions of air pollutants were reduced in 

villages with biogasification projects compared to villages without biogasification projects 

(Section 4.4.3). In 2008 the wind farms in China generated about 12 billion kWh of 

electricity, which reduced in total 0.0252 Mt soot, 0.0571 Mt SO2, 0.378 Mt solid waste, 

and 7.2 Mt CO2 emissions (Shi, 2009). China had installed 1.08×108 m2 (collector area) of 

SWH by the end of 2007, which could theoretically reduce 0.524 Mt SO2, 0.238 Mt NO2, 

0.405 Mt dust and 21.6 Mt CO2 emissions every year. 

7.2.4 Social impact 

The development of renewable energy resources in China influenced the civil society and 

the local communities where the projects were carried out in both positive and negative 

ways. Villagers obtained economic benefits from the biogasification implementation by 

using cheaper fuel (than coal and LPG), selling straws to the biogas stations and obtaining 

new employment. With biogasification, they also had more time for recreation and 

education (Section 4.4.3). The construction and maintenance of wind farms offered new job 

opportunities to local people. In the areas where wind farms were constructed, the traffic 

conditions were always improved. The establishment of wind farms also brought additional 

tourism resources. However, herdsmen‟s production is negatively influenced by wind 

power projects (Section 5.7.2). Installation of SWH brought local residents an economic, 

clean and safe way of heating water for their daily lives. Through the utilization of SWH 

they had a new way to express their concerns on environmental protection. In addition, 

introduction of SWH increased the availability and use of hot water and thus reduced 

rheumatoid arthritis prevalence in local people. However, both the installation and 

utilization of SWH had limited security risks. The installation and maintenance of SWH 

caused several accidents to the public (Section 6.7). 
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Overall, from the case studies we can conclude that the development of renewable 

energy in China had poor economic and technology performances, highly positive 

environmental impacts and decent social impacts. Poor economic benefit had substantially 

negative impacts on implementation of renewable energy projects. A large percentage of 

biogas stations discontinued their production because of insufficient income. The low profit 

level, mainly due to the extremely cheap price of wind power, was making wind power less 

and less attractive for renewable energy developers in China. The stagnating technology 

evolution was another main bottleneck to renewable energy development in China. Without 

suitable technology and proper management of equipment, the renewable energy resources 

in China can not be utilized in sufficient ways. Environmental improvement, in the form of 

reduction of air pollutants, GHGs and fossil fuel consumption, is an important outcome of 

renewable energy development in China. The Chinese government aims to reduce 10% of 

its air pollutant emission during the 11th national Five-Year Plan. The implementation of 

renewable energy will be a contributor to this objective. The development of renewable 

energy resources in China also brought both benefit and conflict to local societies. How to 

obtain higher public acceptance and support is a challenge for renewable energy 

development in the near future. 

When I selected cases for case studies, the administrative level was taken as a main 

criterion. Results showed that the projects at lower administrative level (biogasification) 

have more difficulties in communicating with and asking for supports from the top 

government than those at higher level (wind power). The economic condition was taken as 

another important criterion for selecting cases in this study. Results showed that the 

economic condition of study areas had substantial impacts on the performance of renewable 

energy projects. The initial investment became the main barrier for local people in poor 

areas to accept renewable energy technology, even if the technology had economic profit in 

long term (cf. Chapter 4). On the contrary, renewable energy technology was well accepted 

in rich areas in China (cf. Chapter 6). 
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7.3 Driving Forces of Renewable Energy Development in China 

The emergence and performance of renewable energy development in China is not an 

“incidental or marginal phenomenon”, but rather a result of systematic transformations in 

existing political, economic and societal institutions. In Chapter 3 I introduced a triad-

network model for analyzing such transformations. In this section I use this model to 

generalize the driving forces of renewable energy development in each case. It is interesting 

to find out that each case is strongly influenced by two of the three networks, while the 

influence of the other network is very limited (Figure 7.1). To be more specific, the 

biogasification projects are mainly influenced by policy networks and societal networks; 

the wind power projects are mainly influenced by policy networks and economic networks; 

while SWH is mainly influenced by societal networks and economic networks. In this 

section I want to draw general conclusions as to (the absence of) these driving forces and 

what that might mean (in general terms) for recommendation to strengthen the renewable 

energy developments and improve performance. 

Societal network 

(Society) 

Economic network 

(Market) 

Figure 7.1 The triad-network of renewable energy development in China 

Policy network 

(Government) 

Biogasification 

SWH 

Wind power 
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7.3.1 Driving forces of the biogasification 

The development of biogasification in China is strongly influenced by policy networks and 

societal networks. As was illustrated in the case, all biogasification projects were planned 

and established following a “top-down” governmental order. Two-third of the construction 

costs came from governmental investments. All the stations were constructed at community 

level and were run by the community governments. The acceptance and reactions from the 

local residents imposed great impacts on the operation, and even survival of the stations. In 

comparison, the biogasification lacked representation of strong economic actors and was 

not organized along economics of market rules and principles. The biogas produced by the 

stations was not sold to a grid, or to a fuel market. When the villagers purchased biogas, the 

gas price was not decided by market mechanism, but governmental order. There was no 

private investment in the construction and/or maintenance of the biogas systems. 

The absence of economic network drivers has obvious negative impacts on the short 

and long term performance of biogasification projects in various aspects. It was the main 

reason for the poor economic performance of the biogas stations, as the biogas was sold at 

too low prices. Being isolated from the real market, the biogas stations had no access to 

external investments or new technologies. The management of the biogas stations was also 

very unprofessional 79  and completely neglected simple cost-benefit analyses. Hence, 

stronger influences of economic network drivers would improve the management and the 

economic performance of the biogas stations. In strengthening the economic network 

drivers, there are two important tasks. One is how to involve private economic agents into 

the development of biogasification projcets. The other one is how to run the biogas stations 

along market rules and principles. 

7.3.2 Driving forces of the wind power 

The development of wind power in China is strongly influenced by policy networks and 

economic networks. The government had and used the full authority to assess wind power 

resources, select project sites, decide on project scales and organize the bidding process 

around new wind parks. The production of wind power was heavily influenced by policy 

evolution. For example, after the introduction of 70% domestic equipment policy into 

                                                        
79 Because they were not run by energy companies, but staffs from the community governments 
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concession projects, the wind power developers who once mainly used imported turbines 

had to look for domestic equipment providers in short time. Some of them lost the 

opportunity to apply for new project because they could not find a suitable provider of 

domestic equipment.. Meanwhile, the wind power developers could apply for concession 

projects under a completely competitive bidding mechanism that followed market rules. 

Domestic wind turbine manufacturers grew up quickly and took a considerable market 

share in China. The cooperation between domestic manufacturers and their foreign partners 

were also an important driver for furthering wind power developments. Setting wind power 

electricity prices involved both market and policy dynamics. However, there is little 

influence of the societal network on wind power development in China. NGOs in China had 

very limited voice in wind power projects and development, certainly when compared with 

those in western countries. Wind farms in China were normally constructed in remote areas, 

which resulted in little impact on the daily lives of local residents. Hence, the establishment 

of wind farms was seldom opposed by local people but local people had also no influence 

at all in design, siting and running of wind power parks. At best there was some kind of 

compensation, usually decided centrally by governmental authorities. 

The strong influences of policy network and economic network drivers had crucial 

meaning to the rapid development of wind power in China. It provided favorable policy 

environment to wind power development. It helped find suitable wind resource and project 

developers, and it reduced transaction costs. And not in the least it is responsible for the 

extremely rapid growth of wind energy in China. However, it also induced the vicious 

competitions in the concession project bids. The absence of societal network drivers did not 

have fundamental influence on wind power development in China. If the influences of 

societal network are strengthened, side effects of wind power development will become 

more articulated by the society80. We can expect stronger Not-In-My-Backyard (NIMBY) 

kind of protests around wind power parks in China, when civil society networks are 

strengthened and more strongly involved in wind power developments. In strengthening the 

societal network drivers, there are also two important tasks. One is how to provide 

sufficient and up-to-date information of wind power development to the society. The other 

one is how to create a better platform for the public to express their opinions on wind power 

development. 

                                                        
80 In fact the question here is not “whether” but “when” the societal network drivers are strengthened because the public perception 

of sustainable development is increasing rapidly.  
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7.3.3 Driving forces of the SWH 

The development of SWH is strongly influenced and advanced by economic networks and 

societal networks. The production and retail of SWH products are completely marketalized 

in China. Both production and retailing of SWH is fully part of the economic network. 

Buying and installing SWH systems can be placed in-between the economic and societal 

network. All producers compete with each other on a „free‟ market, with only limited policy 

structuring and involvement. Subsidy on SWH installation was still used in several cities in 

China, while the standard was not uniform. The installation of SWH system on existing 

buildings was obstructed by city administrations and real estate managers in many cities in 

China. However, certainly in comparison with the other two sectors of renewable energy, 

the development of SWH was much less influenced by policy network drivers. There was 

no other special policy measure implemented on SWH development. 

The economic network drivers largely improved the development of SWH in China. 

SWH was the only renewable energy technology promoted through a real market, while 

other renewable energies were developed in “state-organized markets”. The state-organized 

markets can ease development and implementation of renewable energy by providing 

greater ease of access to the grid, relevant (market) signals to encourage investment, and 

make available larger land areas (Shelk, 2008). However, the profit of a renewable energy 

project grows along with increasing market demand while the state-organized markets can 

not provide such „real‟ market demands. Being in a „real‟ market, producers of SWH in 

China achieved much economic benefit, which stimulated the rapid development and 

diffusion of SWH industry and technology in China. Meanwhile, the societal network 

drivers did not play a major role in the development of SWH except for the conflicts with 

other social sectors, as described above. The marginal influence of policy network drivers 

resulted in problematic SWH product market order, lack of technological innovation and 

poor energy performance. It further harmed the image of domestic SWH products in 

external markets. If the function of policy network is strengthened, development of SWH 

will receive stronger policy supports. The frequency of conflicts with other social sectors 

can be largely reduced. It is also possible to see an improved market with better qualities of 

SWH products and services. In strengthening the policy network drivers, there are also two 

important tasks. One is how to improve the communication between governmental 

authorities and the SWH companies. The other one is how to revise existing policies or 

formulate new policies to promote the development and technological innovation of SWH. 
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7.4 Recommendations for Further Implementation 

The above discussion focuses upon the performance of renewable energy development in 

China and the driving forces to this performance. As another important research objective, 

corresponding recommendations (to strengthening the absent network drivers) for further 

implementation of renewable energy in China are put forward in this section. These 

recommendations include policy revision, market reform and technology innovation. 

7.4.1 Institutional reform and policy revision 

Although the institutional structure and policy framework for renewable energy 

development has been formulated by the Chinese government (Section 2.3 & 2.4), they 

need revision in the following aspects. 

First, a full-authority Ministry of Energy should be established. It has full ministry 

level of authority so that it can negotiate with other ministries in making national 

development plans. It supervises the development of both conventional energies and 

renewable energy in China so that it can formulate and implement long-term renewable 

energy development strategy. It has monitoring system on the efficiency of renewable 

energy projects and watchdog department on the market order of renewable energy 

products. 

Second, private energy companies should be allowed to purchase or contract the 

renewable energy projects that are run by the government. For further renewable energy 

projects, a completely competitive bidding mechanism should be used to select the project 

developers. The project developers are responsible for both the construction and operation 

of the renewable energy projects. 

Third, the government should provide the social organizations and the public better 

accesses to construction and operation data of renewable energy projects, e.g. via periodical 

reports, websites and media information. There should also be better platforms, such as 

public hearings, opinion polls, and participation in public policy making, for the social 

organizations and public people to express their opinions in siting and mitigating local side-

effects of renewable energy projects. 

Fourth, feed-in tariff should be set on wind power. Currently feed-in tariff is applied 

on all renewable electricity generation except for wind power. The Chinese government has 

carried out five terms of concession projects, in order to select the best project developers 
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under the bidding competition. But this caused the problem of extremely low grid prices 

offered by winning concessions and subsequently hampered the growth of wind power 

sector. Therefore, a fixed feed-in tariff should be set for concession projects. This feed-in 

tariff can be set at the market price of grid electricity so that the market can decide where to 

get electricity from. By setting the feed-in tariff, a reasonable profit of the developers can 

be ensured. The selection of developers for concession projects is then based on other 

criteria, such as technology level and management performance. 

Fifth, renewable energy development should be involved in the “Building New 

Socialist Countryside” campaign. Developing renewable energy resources, especially 

biomass energy, in rural areas can provide local residents cheap and clean fuels. Its strategic 

meaning of environmental improvement and poverty alleviation are quite in line with the 

“Building New Socialist Countryside” campaign. Currently development of biogasification 

in rural China is threatened by the campaign as the latter caused reduction of biomass 

wastes harvest. If renewable energy development is involved as an important content of the 

campaign, it can attract more concerning from the higher government. The problem of 

biomass shortage can also be solved.  

7.4.2 Market establishment 

Renewable energy is still a novelty that emerges in technological and market niches in 

China. Before it is capable to compete with conventional energy technologies, a semi-

protected renewable energy market should be established.  

In such a semi-protected market, the government continues providing large amount of 

financial supports to renewable energy development. Foreign experiences have proved the 

importance of financial supports in promoting renewable energy successfully and 

effectively (Haas et al., 2004; Sawin and Prugh, 2004). Further financial supports are also 

vital for development of renewable energy development in China. The financial supports 

can be realized in three ways. The first way is governmental subsidy. Most of the 

governmental investment in renewable energy in China is spent on subsidizing project 

construction. In this way, the – sometimes extremely expensive – infrastructure can be 

constructed. The subsidy to end users is important for promoting renewable energy 

utilization in rural areas where the local people can not afford the cost of buying renewable 

energy facilities, such as SWH systems or PV panels. The second way is investment in 

scientific research. Although China has increased its investment on renewable energy 
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development, only less than 20% of the investment is spent on human resource 

development and technology R&D. Human resource development and technology R&D are 

key elements of capacity building and therefore more investment on them is necessary for 

renewable energy development in China. The third way is tax incentive. Although the 

preferential tax on renewable energy development was stated in the Renewable Energy Law 

and trailed in wind power sector, there is no policy clarifying the standard of VAT, income 

tax and customs tariff of renewable energy in China. 

In such a semi-protected market, the renewable energy products are sold more 

according to “real” market rules and conditions. For those whose costs can compete with 

conventional energies, the market competition can stimulate its scale of production. For 

those whose costs are still too high, they receive more governmental subsidies to level the 

platform of competition with conventional energies. When the technologies of those 

renewable energy products have improved and the costs have been low enough, they can 

participate in the market competition without governmental subsidy. The most important 

point is that the price of renewable energy products should be decided by market 

mechanism, not the government. 

In such a semi-protected market, foreign investors can play an important role. The 

concession projects should be opened up to foreign investors. At the beginning, the foreign 

investors are required to have a Chinese partner; while later they can bid for concession 

projects independently. Before the year 2012 CDM projects should be a major platform for 

foreign investment. The government should help domestic renewable energy producers in 

calculating benchmarks and contacting CERs buyers. For those small-scale renewable 

energy projects in China, they can apply to be Programmatic CDM (PCDM) projects. 

PCDM can involve a group of small scale renewable energy projects with the same project 

idea. It therefore improve the possibility for rural renewable energy projects in China to 

apply for CDM projects and further exploit the potential of CDM projects in renewable 

energy industry.  

7.4.3 Technology improvement 

Besides the policy revision and market establishment, China should also improve the 

technologies it is using for renewable energy development. 

In short term, some technological problems should be solved. As discussed in the 

previous chapters, development of renewable energy in China encountered several 
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technological problems. For example, the biogasification equipments were jammed by tar, 

or the SWH equipments were frozen in extremely cold weather. These technological 

problems can be prevented in two ways. First, set more stringent standard on renewable 

products. It puts the pressure on the producers and subsequently stimulates their efforts in 

solving these technological problems. Second, leave these technological problems to the 

research institutes. Research institutes have advantages in accumulated basic research 

outcomes and information of sophisticated technologies. They may solve the technological 

problems that the renewable energy producers can not solve. 

In medium term, technology improvement should focus on energy efficiency at the 

point of end users. Currently most of the renewable energy resources are utilized in low-

efficiency ways, for example, thermal utilization of bioenergy and solar energy. By 

technology improvement, these renewable energy resources can be used in more efficient 

ways, for example, electric power. This will reduce costs for energy services and help meet 

other sustainable development objectives. In medium term, technology improvement should 

also focus on reduced technology imports and reduced dependency on foreign technologies. 

When the domestic technologies are improved, we should even consider the possibility for 

further technology or product exports to other countries. 

In long term, technology improvement should focus on diversifying technology of 

renewable energy resources. Currently the increment of renewable energy consumption in 

China is mainly achieved by utilization of biomass, hydropower, wind power and solar 

thermal. In fact China has also large amount of other renewable energy resources81. These 

resources have not yet been largely developed partly because the cost is still too high and 

partly because they are located in remote areas. New technologies should aim at cost 

reduction and local utilization of these renewable energy resources. This is very important 

to achieve the long-term objectives of renewable energy development and energy security. 

7.5 Implications for Future Research 

This study has assessed the performance of renewable energy in China, analyzed the 

driving forces behind the performance and put forward recommendations to further 

development. Considering that renewable energy development is a nationwide, long-term 

strategy in China, this study touches only the tip of the iceberg. There are at least three 

                                                        
81 As discussed in Chapter 2, the amount of geothermal and ocean energy are much larger than that of bioene rgy and wind energy 

in China. 
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interesting topics for future researches in relation to renewable energy development in 

China. 

7.5.1 Public participation and acceptance of renewable energy development 

Public participation and acceptance of renewable energy is fundamental to further 

increasing the share of renewable energy in the overall energy consumption. In this study I 

have tried to analyze the influences of social actors on renewable energy development in 

China. The results reveal that economic benefit is an important precondition of public 

acceptance of renewable energy technologies in China. The biogasification projects were 

accepted by more villagers after their economic performance was proved (Section 4.4.3). 

Most household users (48%) installed SWH in consideration of saving money (Section 6.7). 

It is interesting to strengthen this discussion in the following directions. The first 

direction is about the factors influencing public participation and acceptance of renewable 

energy in China. Similar studies have been carried out by Uperti and Horst (2004) who 

explored the causes and consequences of public opposition to a biomass electricity plant in 

UK, and Devine-Wright (2008) who classified the personal, psychological and contextual 

factors that shape public acceptance of renewable energy technologies. The second 

direction is about the public participation techniques in renewable energy development in 

China. Polatidis and Haralambopoulos (2004) support participatory multi-criteria decision 

aiding techniques to actively include all stakeholders of renewable energy development in 

Greece. Is this also possible and relevant in China? The third direction is about solutions to 

social barriers to renewable energy development in China, which can also be compared 

with previous studies. Agterbosch et al. (2007) analyzed the most crucial social barriers to 

realize wind power projects and concluded on different solutions of both the entrepreneurs 

and local civil servant to these barriers. Wolsink (2000; 2007) explained the limited public 

acceptance of renewable energy beyond the conventional NIMBY arguments and advocated 

„strong‟ modernization in planning regimes and decision-making practices to enhance the 

implementation processes of renewable energy. Khattak et al. (2006) identified and ranked 

the barriers to renewable energy projects, within which social acceptance was considered as 

an important factor, in Pakistan and provided solutions in such a way that the barrier 

removal does not introduce another barrier. 

Up till now no systematic studies have been carried on public acceptance and 

participation in renewable energy projects and developments in China. But considering the 
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massive investments programs put forward by the Chinese government in renewable energy, 

and the poor record of Chinese research on participation and acceptance, research in 

strongly need in this field. 

7.5.2 Evaluation of evaluation 

This study evaluates the performance of renewable energy development in China. As Power 

(1999: 122-147) agued, performance evaluation is a complex, difficult and expensive 

approach, which raises a high risk that the evaluation itself will not provide a good 

performance. Now that China is slowly embarking on a more systematic trajectory of 

evaluation and auditing of major governmental policy, the question of the quality of such 

audits and evaluation moves to the fore. Hence, it would be interesting to start designing an 

evaluation of various policy and project evaluation studies and activities as carried out in 

China. Such an evaluation of evaluations can be focused on the one hand on the quality, 

completeness and feasibility of evaluation methodology and on the other hand on the 

quality of evaluation outcomes. Quality, completeness and feasibility of evaluation 

methodology refers to the extent to which the evaluation methodology can fulfill the 

evaluation plan, while the quality of evaluation outcomes refers to the extent to which 

evaluation outcomes are addressing the needs of evaluation stakeholders, both 

governmental and non-governmental. 

7.5.3 Post-Kyoto Renewable Energy Development in China 

The Kyoto Protocol, as the major result of the "Third Conference of the Parties" (COP) of 

UNFCCC in December of 1997, promoted financial and technical co-operation 

internationally to adopt climate policies and technologies, and set binding emission 

reduction targets and timetables for Annex I countries (developed nations plus economies in 

transition). It allowed developed countries to reach their targets under three “flexibility 

mechanisms”82. China ratified the Kyoto Protocol in 1998 as a non-Annex I country. As the 

largest developing country with fast industrial development in the world, China attracted 

large amount of investments and projects from western countries83 and became the largest 

                                                        
82 The developed countries are allowed to supplement domestic Policies And Measures (PAM) with projects abroad and with 

market instruments including International Emissions Trading (ET), Joint Implementation (JI) and Clean Development Mechanism 

(CDM). 
83 Mainly EU countries 
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receiver of CDM projects and as such contributed to the reduction of GHGs under the 

Protocol. It is notable that renewable energy is an important field for these foreign 

investments and projects. 

We are approaching the final year of the Kyoto Protocol (2012). What are and should 

be the post-Kyoto strategies for China? And what will be the role of renewable energy 

among these strategies? Will China become a world leading in developing renewable 

energy? 

First, considering the Chinese government‟s great determination on and the large 

amount of investment to exploit renewable energy resources, there is no reason to doubt the 

bright future of renewable energy development in China. As an important aspect of this 

bright future, China will promote domestic renewable energy R&D. As I have discussed in 

this study, China has developed rapidly in SWH technology innovation. There are also 

many institutes as well as researchers carrying out both laboratory and field researches on 

new renewable energy technologies. It is not interesting to study whether, but rather when 

and how China will take a global leading role in various renewable energy technologies. 

Second, China can be expected to take a more active role under Bali Roadmap. The 

Bali Roadmap was issued on the second COP of Kyoto Protocol in December 2007. It put 

on paper a clear agenda and topics of future negotiation on a secure climate in post-Kyoto 

era. When China ratified the Kyoto Protocol in 1998, it was regarded as a developing 

country and thus non-Annex I country. Ten years passed and China has made great 

achievement in economic development in these years 84 . In future negotiations on 

international cooperation towards climate change problems, China may take a more active 

role under the “common but differentiated responsibility” principle. For example, China 

will contribute more to the projects in the Least Developed Countries, in forms of financial 

support and technology transfer.  

                                                        
84 It is more and more regarded as a transition economy instead of a developing country. 
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Appendixes 

Appendix 1 List of Interviewees 

The Case of Biogasification in Shandong Province 

 
Name Affiliation Title 

Mr. Zhong Eco-Agriculture Section, Department of 

Agriculture  

Director 

Li Sun Energy Research Institute of Shandong 

Academy of Sciences 

Director 

Min Xu Energy Research Institute of Shandong 

Academy of Sciences 

Professor 

Yuping Dong College of Mechanical Engineering, Shandong 

University 

Professor 

Zhiyong Wang Baichuan Tongchuang Energy Sources Co., 

Ltd. 

Manager 

Chuanmin Ai Aijia Village, Licheng District, Jinan City Secretary 

Laiming Zhang Nanguoer Village, Licheng District, Jinan City Deputy Secretary 

Mr. Zhao Shasan Village, Wangsheren Town, Jinan City Secretary 

Ronghe Li Shiziyuan Village, Licheng District, Jinan 

City 

Secretary 

Chongguo Li Shiziyuan Village, Licheng District, Jinan 

City 

Mayor 

Jinshan Wu Sunyunzi Village, Shouguang City Secretary 

Mr. Liu Xiaoliujia Village, Licheng District, Jinan 

City 

Secretary 

Mr. Zhang Xiaozhangma Village, Wangsheren Town, 

Jinan City 

Mayor 

Bingfu Li Biogas Station, Xiaozhangma Village Manager 

Fenghai Wang Yuanjia Village, Dongjia Town, Jinan City Secretary 
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The Case of Wind Power in Inner Mongolia 

 

 

The Case of Solar Water Heater in Zhejiang Province 

 
Name Affiliation Title 

Zhisheng Xia Zhejiang Solar Energy Industry Association Chairman 

Guoguo Zhang Haining Solar Energy Sector Guild Chairman 

Xiaoping Zhang Department of Agricultural Economy, Haining 

City 

Director 

Haitao Chen Energy Section, Zhejiang Development and 

Reform Commission 

Director 

Xianyi Zhang Agricultural Economy Section, Department of 

Science and Technology, Zhejiang Province 

Director 

Shixing Wang Meteorological Information Center, Zhejiang 

Meteorology Bureau 

Director 

Zhifu Han Ecological Section, Zhejiang Environmental 
Protection Bureau 

Director 

Funian Zhang Zhejiang Wanma Real Estate Group Manager 

Weiliang Kong Zhejiang Kaiyuan Real Estate Group Manager 

Hongyu Huang Zhejiang Greentown Real Estate Group Engineer 

Shixiong Jin Zhejiang Hongxiang Construction Group Engineer 

Jianhong Quan Haining Interma Solar Electrical Co., Ltd  Manager 

Dongwei Wang Haining Onosi Solar Water Heater Co., Ltd Manager 

Name Affiliation Title 

Zongming Li Research Institute of Wind Power  Director 

Guangli Zhang China Renewable Energy Scale-up Program Project Manager 

Shupeng Zhuang North Longyuan Wind Power Corporation Deputy General 
Manager 

Yijun Jia North Longyuan Wind Power Corporation Department Manager 

Ms. Hu North Longyuan Wind Power Corporation Department Manager 

Jian Zhang Huitengxile Wind Farm Manager 

Jun Wang Shangdu Wind Farm Manager 

Jianjun Zhang Zhurihe Wind Farm Manager 
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Appendix 2 Questionnaire for Solar Water Heater Users 

Instruction 

This questionnaire aims to understand the status, barriers and public opinions of 

purchasing and using solar water heater (SWH), and the economic, environmental and 

social benefits. This is an academic questionnaire purely for scientific researches. There is 

no “correct” answer to each question.  

 

1. Personal information 

1.1 Your family has ________ members. 

A. 1; B. 2; C. 3; D4; E. 5 and above 

1.2 Your family income in 2006 was _______. 

A. <20,000; B. 20,000～40,000; C. 40,000～60,000; D. 60,000～80,000; E. >80,000 

1.3 Your educational background is _______. 

A. primary school; B. middle school; C. high school; D. bachelor; E. master and above 

 

2. Purchasing SWH 

2.1 The SWH installed in your home has been used for _____ years. 

A. <1; B. 1; C. 2; D. 3; E. 4; F. 5 and above 

2.2 Is this the first time your family has installed SWH? Yes ____ No ____. If not, the 

average life of the previous SWHs is _____ years. 

2.3 You learn information about SWH from _______ (Multiple choices) 

A. newspaper; B. magazine; C. TV; D. radio; E. internet; F. other __________ 

2.4 The price of the SWH you are using is _____ yuan. It is _____. 

A. too expensive; B. expensive but acceptable; C. reasonable; D. cheap 

2.5 You choose SWH because it is __________. 

A. safe; B. environmental friendly; C. economical; D. from governmental order;  

E. already installed when you purchased the house; F. other ___________ 
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3. Using SWH 

3.1 The capacity of the SWH is _____ L. Is it enough for your family? Yes____No____. 

3.2 The annual maintenance fee of the SWH is ________ yuan. 

A. 0; B. <20; C. 20～50; D. 50～100; D. >100 

3.3 Before you installed water heater, you took baths _____ in winter.  

A. in public bathrooms; B. at others‟ who had water heater; C. using hot water from 

water boiler; D. by cold water; E. other ________ 

3.4 After using SWH, the air quality at your home ________. 

A. significantly improved; B. slightly improved; C. did not change 

3.5 The SWH can be used in _____ days a year.  

A. <100; B. about 150; C. about 200; D. about 250; E. about 300; F. 365 

3.6 Averagely you take _____ baths a week. 

A. <1; B. 1～2; C. 3～4; D. 5～6; E. 7 and above 

3.7 SWH has advantages of _____ to other types of water heaters (Multiple choices). 

A. cheap to install; B. cheap to use; C. safe; D. high water temperature; E. easy to use; 

F. environmental friendly; G. other __________________ 

 

4. Prospect of SWH 

4.1Will you continue using SWH? _______ 

A. Of cause. It is the best choice for my family; B. Yes. But I am expecting fro better 

products; 

C. Yes, combined with other water heater;    D. No. It is a big mistake to install SWH; 

4.2 Do you believe it is promising to popularize SWH in this city? ___________ 

A. Highly possible. It has actually been popularized here already; 

B. Maybe. But there need some additional conditions; 

C. Difficult. Only if the government insists and invests a lot of resources; 

D. Impossible. SWH has no future in this city. 

4.3 What are the major barriers do you think to popularize SWH? _________ (Multiple 

choices) 

A. The price is too high to afford;                       B. Poor market order; 
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C. It is largely restricted by weather condition;   D. Too complicated to operate; 

E. Low technological level;                                 F. It is not safe; 

G. Short life time;                                                H. Other __________________ 

4.4 The government should take measures including _______________ to popularize SWH 

(Multiple choices). 

A. command-and-control measures; B. subsidies; C. better city planning; D. more 

technical supports to end users; E. better regulated market; F. more laws and 

regulations; G. public education of environmental protection; H. other _____________ 

4.5 Do you have more opinions and suggestions to the development of SWH? 

______________________________________________________________________

______________________________________________________________________ 

4.6 Do you have more opinions and suggestions to this questionnaire? 

______________________________________________________________________

______________________________________________________________________ 

 That‟s the end of this questionnaire. Thank you for your cooperation.
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Summary 

Energy demand in China has risen rapidly, driven by its massive economic growth. 

Meanwhile, the energy system in China heavily depends on fossil fuels, which causes 

serious problems of climate change and air pollution. China started to develop renewable 

energy about 30 years ago, aiming to alleviate the pressure of energy shortage and fossil 

fuel related environmental problems. The central government has shown great 

determination to promote the utilization of renewable energy resources and it set ambitious 

targets to increase the proportion of renewable energy in the country‟s total energy 

consumption to 10% by 2010 and 15% by 2020. 

China has a large amount of renewable energy resources within its vast territory. Large 

potentials of producing bioenergy, solar energy, wind energy, hydro energy, geothermal and 

ocean energy have been identified in China. During the past three decades, the Chinese 

government made major efforts to develop these renewable energy resources. A series of 

policies have been formulated to promote renewable energy utilization. As the second 

largest investor on renewable energy in the world, China has invested considerable 

financial resources to renewable energy projects. As a result, the installed capacity of 

renewable energy in China has increased sharply, especially in the fields of wind power, 

solar thermal and hydro power. However, China lacks effective monitoring and evaluation 

systems to review the performance of renewable energy policies, programs and projects. It 

is not yet clear whether the objectives of China‟s renewable energy development policy will 

be reached in an efficient and effective way. 

Under such circumstances, this study evaluates the performance of renewable energy 

policies and practices in China. The following three research questions are given a central 

place: What is the performance of the implementation of renewable energy policies and 

practices in China up till now? What are the driving forces behind the successes/failures of 

renewable energy development in China? What reforms can be recommended for future 

renewable energy policies and programs in China? 

In order to answer these questions, this study uses various ideas and concepts of policy 

evaluation theories as sources of inspiration and information to build an analytical model 

for evaluating the performance of renewable energy developments in China. Within this 

analytical model, the performance of renewable energy development is evaluated by criteria 

of economic performance, technological performance, and environmental and social 
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impacts. The driving (f)actors behind the performance are subsequently analyzed using a 

triad-network model. Finally, recommendations for future development of renewable 

energy in China are formulated, based on these analyses. 

This study takes primarily a qualitative research strategy, based on case study research. 

Three main cases form the central part of this study: one case of biogasification 

developments in Shandong Province, one case of onshore wind power developments in 

Inner Mongolia, and one case of solar water heater developments in Zhejiang Province. 

Data for each case study are collected through site observation, via in-depth interviews with 

key informants, via questionnaires and through secondary analysis of existing data, 

statistics and written sources. A structured approach – triangulation – is applied to combine 

the various data sources and data collection methods. 

Results of the case study on biogasification prove that these projects do not bring 

developers and users economic benefit, due to the large-scale close down of biogas stations 

after a relatively short life time. The biogas stations also suffer from various technological 

problems such as tar jam, leakage of gas pipes and difficulties in treating wet feedstock. 

However, the establishment of biogasification projects improves the environmental quality 

of local area and the quality of life of local residents. 

The analyses of wind power projects illustrate the poor economic performance of 

wind power projects due to the vicious competition for concession projects. Most of the 

wind farms are well designed and equipped with relatively new wind turbine technology, 

but many of them are used at low efficiency. The wind power projects reduce the 

consumption of fossil fuels for power generation and thus contribute to the reduction of air 

pollutant emission (among which greenhouse gasses). The construction of wind farms has 

marginal direct impacts on the life of local people and ecosystems. Nevertheless, these 

projects bring local areas some indirect benefits, such as improvements in the mobility 

infrastructure and accessibility and attractiveness to tourists (and thus economic income). 

From the solar water heater case study it could be concluded that this technology 

brings both producers and end users major economic benefits. The use of solar water heater 

also reduces air pollutant emissions by reducing the consumption of fossil fuels. While 

overall this relatively simple technology functions well, the expansion of solar water heater 

utilization encounters some technological challenges. It proves difficult to adapt the solar 

water heaters onto existing buildings. Water tanks and pipes installed outside of the 

buildings are not resistant to extreme temperatures, as they freeze during extremely cold 
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winters. The development and implementation of solar water heater has comes together 

with a number of social problems, especially in relation to obstructions by city 

administrations and real estate management in some cities. 

The analyses of the driving forces behind these three renewable energy developments 

show some remarkable differences. The biogasification projects in China are strongly 

influenced and pushed by policy networks and societal networks, while economic networks 

play a marginal role in their development and implementation. Wind power projects in 

China are strongly influenced and advanced by policy networks and economic networks, 

while the influence of social networks is marginal. And the solar water heater projects in 

China are strongly guided and implemented by economic networks and societal networks, 

whereas policy network institutions and actors play less prominent roles. These driving 

networks, and the absence other networks, partly explain the performance of each of the 

renewable energy projects in China. 

These findings also result in a number of recommendations for further developing 

renewable energy in China. In order to strengthen the poorly developed or absent network 

drivers in each case, improvements should be made with respect to institutional reform and 

policy revision, the further creation of market dynamics, and technology improvement. 

Some of the concrete recommendations formulated in this study are: 

 The management of and investment in renewable energy projects should be 

improved by involving private companies into project development. 

 Feed-in tariffs should be introduced in wind power projects.  

 It is necessary to open up renewable energy development planning and siting to 

public participation and create a better platform for the public to express their 

opinion.  

 A semi-protected market should be established to promote renewable energy 

development. In this semi-protected market, the developers continue to receive 

governmental subsidies, while the renewable energy products are sold increasingly 

according to “real” market rules and conditions, and foreign investments play a more 

important role than present.  

 Technology improvements should aim to solve the technological problems in the 

short term, to improve efficiency of renewable energy utilization in the medium term, 

and to diversify the renewable energy technologies in the long term. 

 



Jingyi Han                                                                         Renewable Energy Development in China 

184 

Finally this study formulates implications for future research. Research is 

recommended especially with respect to public participation and acceptance of renewable 

energy development as that hardly takes place at the moment; with respect to evaluation 

modes of performance evaluation itself; and with respect to China‟s post-Kyoto renewable 

energy development strategies. 
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Samenvatting 

Door de enorme economische groei in China is de vraag naar energie er snel gestegen. Het 

Chinese energiesysteem is echter sterk afhankelijk van fossiele brandstoffen, wat ernstige 

klimaatveranderings- en luchtvervuilingsproblemen veroorzaakt. China begon ongeveer 30 

jaar geleden met het ontwikkelen van hernieuwbare energie, met als doel de druk van 

energie tekorten en milieuproblemen door fossiele brandstoffen te verlichten. De centrale 

overheid toont sinds kort een grote vastberadenheid in het bevorderen van het gebruik van 

hernieuwbare energiebronnen en heeft ambitieuze doelen gesteld om het aandeel van 

hernieuwbare energie in de totale energieconsumptie van het land te verhogen tot 10% in 

2010 en 15% in 2020. 

Binnen het enorme grondgebied van China zijn vele bronnen van hernieuwbare 

energie beschikbaar. In China zijn goede mogelijkheden geïdentificeerd voor het 

produceren van bio-, zonne-, wind-, water-, geothermische en zee-energie. De Chinese 

overheid heeft de afgelopen drie decennia veel gedaan om deze hernieuwbare 

energiebronnen te ontwikkelen. Diverse beleidsmaatregelen zijn geformuleerd om het 

gebruik van hernieuwbare energie te bevorderen. Als op één na grootste investeerder in 

hernieuwbare energie ter wereld heeft China aanzienlijke financiële middelen geïnvesteerd 

in projecten op het gebied van hernieuwbare energie. Als gevolg daarvan is de 

geïmplementeerde capaciteit van hernieuwbare energie in China enorm toegenomen, vooral 

op het gebied van wind-, zonne- en waterenergie. Er is echter gebrek aan effectieve 

controle- en evaluatiesystemen om de resultaten van beleidsmaatregelen, programma's en 

projecten op het gebied van hernieuwbare energie te beoordelen. Het is daardoor nog niet 

duidelijk of de doelstellingen van het beleid voor de ontwikkeling van hernieuwbare 

energie in China op een efficiënte en effectieve wijze zullen worden gehaald. 

Binnen deze context evalueert dit onderzoek de resultaten van de beleidsmaatregelen 

en de praktische toepassing van hernieuwbare energie in China. De volgende drie 

onderzoeksvragen staan hierbij centraal: Wat zijn de resultaten van de implementatie van 

beleidsmaatregelen voor, en praktische toepassingen van, hernieuwbare energie in China tot 

nu toe? Wat zijn de drijvende krachten achter de successen/mislukkingen bij het 

ontwikkelen van hernieuwbare energie in China? Welke hervormingen kunnen worden 
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aanbevolen voor toekomstige beleidsmaatregelen en programma's voor hernieuwbare 

energie in China? 

Om deze vragen te beantwoorden maakt dit onderzoek, als bron voor inspiratie en 

informatie, gebruik van verschillende ideeën en concepten uit theorieën over 

beleidsevaluatie, om zo een analytisch model te ontwikkelen voor het evalueren van de 

resultaten van hernieuwbare energieontwikkeling in China. Met dit analytische model 

worden de resultaten van het ontwikkelen van hernieuwbare energie geëvalueerd met 

behulp van criteria voor economische resultaten, technologische resultaten en voor de 

gevolgen voor het milieu en de sociale context. De (f)actoren achter de resultaten worden 

vervolgens geanalyseerd met een Triad Network-model. Ten slotte worden op basis van 

deze analyses aanbevelingen geformuleerd voor de toekomstige ontwikkeling van 

hernieuwbare energie in China. 

Dit onderzoek maakt gebruik van een kwalitatieve onderzoeksstrategie, gebaseerd op 

casestudyonderzoek. Centraal staan drie hoofdcases: een casus over ontwikkelingen op het 

gebied van biogasvorming in de provincie Shandong, een casus over windkrachtprojecten 

in Binnen-Mongolië, en een casus over de ontwikkeling van zonneboilers in de provincie 

Zhejiang. Gegevens voor elke casestudy zijn verkregen door observatie op locatie, via 

diepte-interviews met belangrijke betrokkenen, uit enquêtes en door secundaire analyse van 

bestaande gegevens, statistieken en schriftelijke bronnen. Een gestructureerde benadering - 

triangulatie - wordt toegepast om de verschillende gegevensbronnen en methodes voor 

gegevenscollectie te combineren. 

De uitkomsten van de casestudy over biogasvorming tonen aan dat deze projecten 

geen economisch voordeel opleveren voor de ontwikkelaars en gebruikers, door de 

grootschalige sluiting van biogasstations na een relatief korte levensduur. De biogasstations 

lijden ook aan verschillende technologische problemen zoals verstopping door teer, 

lekkende gasleidingen en problemen met het behandelen van natte grondstoffen. Echter, het 

opzetten van biogasprojecten verbetert wel de lokale milieukwaliteit en de levenskwaliteit 

van de mensen ter plaatse. 

De analyses van windkrachtprojecten illustreren de slechte economische resultaten 

hiervan als gevolg van de scherpe concurrentie om concessies. De meeste windparken zijn 

goed ontworpen en uitgerust met relatief nieuwe windturbinetechnologie, maar veel worden 

inefficiënt gebruikt. De windkrachtprojecten verminderen het verbruik van fossiele 

brandstoffen voor krachtopwekking en dragen zo bij aan een vermindering van de uitstoot 
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van luchtvervuiling (waaronder broeikasgassen). De directe effecten van windparken op het 

leven van lokale bewoners en ecosystemen zijn marginaal. Wel brengen deze projecten de 

lokale gebieden enkele indirecte voordelen, zoals verbeteringen in de verkeersinfrastructuur 

en grotere toegankelijkheid en aantrekkelijkheid voor toeristen (en daarmee inkomsten). 

Uit de casus over zonneboilers kan worden geconcludeerd dat deze technologie grote 

economische voordelen brengt voor zowel voor producenten als eindgebruikers. Het 

gebruik van een zonneboiler vermindert ook de luchtvervuiling door het verbruik van 

fossiele brandstoffen te verminderen. Hoewel deze relatief simpele technologie over het 

algemeen goed functioneert, brengt de toename van het gebruik van zonneboilers enkele 

technologische uitdagingen met zich mee. Het aanpassen van de zonneboilers voor 

bestaande gebouwen blijkt moeilijk te zijn. Watertanks en leidingen die aan de buitenkant 

van gebouwen worden geïnstalleerd zijn niet bestand tegen extreme temperaturen, en 

bevriezen in extreem koude winters. Problemen met de ontwikkeling en implementatie van 

zonneboilers vallen samen met een aantal sociale problemen, vooral waar het gaat om 

gebrek aan medewerking door stedelijke overheden en vastgoedbeheerders in sommige 

steden. 

De analyses van de drijvende krachten achter deze drie hernieuwbare-

energieontwikkelingen geven enkele opmerkelijke verschillen weer. De biogasprojecten in 

China worden sterk beïnvloed en gestimuleerd door beleidsnetwerken en maatschappelijke 

netwerken, terwijl economische netwerken een marginale rol spelen in hun ontwikkeling en 

implementatie. Windkrachtprojecten in China worden sterk beïnvloed en bevorderd door 

beleidsnetwerken en economische netwerken, terwijl de invloed van maatschappelijke 

netwerken marginaal is. En de projecten met zonneboilers in China worden in hoge mate 

geleid en geïmplementeerd door economische en maatschappelijke netwerken, terwijl 

instellingen en actoren van beleidsnetwerken een minder prominente rol spelen. Deze 

sturende netwerken, en de afwezigheid van andere netwerken, verklaren voor een deel de 

resultaten van alle hernieuwbare-energieprojecten in China. 

Deze bevindingen resulteren in een aantal aanbevelingen voor het verder ontwikkelen 

van hernieuwbare energie in China. Om de slecht ontwikkelde of afwezige netwerk-drivers 

in elke casus te versterken zijn verbeteringen nodig met betrekking tot institutionele 

hervormingen en beleidsherziening, het meer ruimte geven aan marktdynamiek en 

technologische verbeteringen. Enkele concrete aanbevelingen die in dit onderzoek zijn 

geformuleerd, omvatten: 
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• Het management van en het investeren in hernieuwbare energieprojecten moet 

worden verbeterd door particuliere bedrijven te betrekken bij de ontwikkeling van projecten. 

• Er moeten feed-in tarieven worden geïntroduceerd bij windkrachtprojecten.  

• Het is noodzakelijk de planning van het ontwikkelen van, en het kiezen van 

locaties voor, hernieuwbare energie te openen voor publieksparticipatie, zodat een beter 

platform kan ontstaan waar belanghebbenden hun mening kunnen uiten.  

• Er moet een semi-beschermde markt worden opgezet om de ontwikkeling van 

hernieuwbare energie te bevorderen. Binnen deze semi-beschermde markt blijven 

ontwikkelaars overheidssubsidie ontvangen, terwijl de hernieuwbare energieproducten 

meer en meer verkocht worden volgens de regels en voorwaarden van de 'echte' markt. 

Buitenlandse investeringen moeten een belangrijkere rol gaan spelen.  

• Verbeteringen van de technologie moeten als doel hebben de technologische 

problemen op korte termijn op te lossen om de efficiëntie van het gebruik hernieuwbare 

energie op de middellange termijn te verbeteren, en om op de lange termijn de 

hernieuwbare energietechnologieën te diversifiëren. 

Ten slotte worden implicaties voor toekomstig onderzoek geformuleerd. In het 

bijzonder wordt onderzoek aangeraden naar publieksparticipatie en het accepteren van 

hernieuwbare energieontwikkeling, aangezien dit momenteel nauwelijks plaatsvindt, het 

evalueren van de resultatenevaluatie en China's post-Kyoto strategieën voor het 

ontwikkelen van hernieuwbare energie. 
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