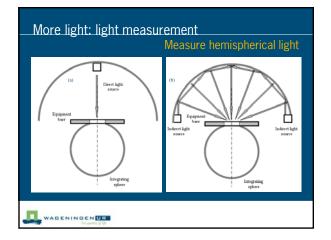
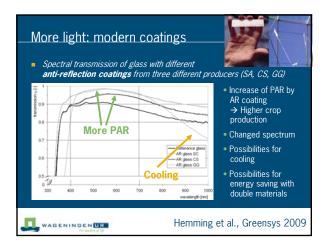

Light control with covering materials, screen and/or lamps for plant growth and quality control

Silke Hemming, Wageningen UR Greenhouse Horticulture

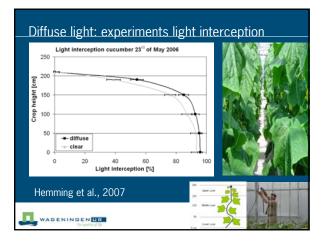

More light

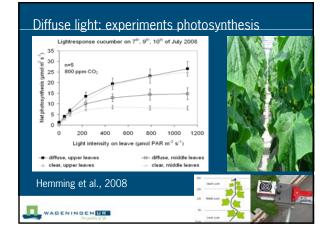
- Light intensity limiting factor in Northern latitudes, winter period
- 1% more light is 0.5-1% more production
- \rightarrow depending on crop, season, other growth factors

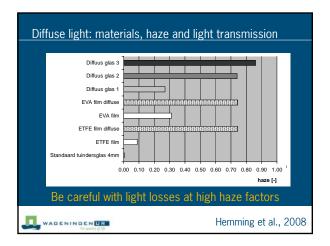

WAGENINGENUR

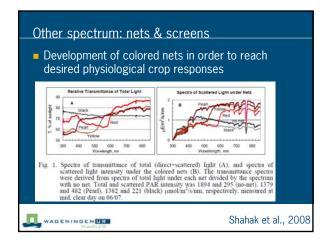
Marcelis et al., 2006

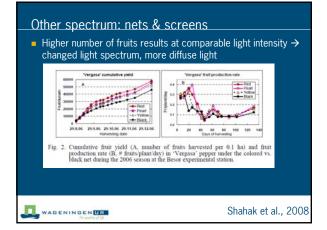
lore light by					Clouded sky
Advanced covering material • White glass (+1-2%) • Modern coatings on glass (+5-8%)	Ma	terial	thickness	light trans	mission hemispherical
	Flo	atglass	4 mm	89-90%	82%
 New plastic films ETFE (+3%) 	Wh	ite glass	4 mm	90-91%	83%
 New surface structures (+5-8%) 	AR	glass	4 mm	95-97%	89-90%
Lighter greenhoues construction (max +5%)	Diff	fuse glass	4 mm	90-91%	76-82%
e e e e e e e e e e	PE	/ EVA films	200 µm	85-90%	78-82%
Less installations (+1-3%)	ETI	FE (F-Clean)	100 µm	93%	86%
Roof angle (<1%)	PC	sheet	12 mm	80%	61%
Greenhouse orientation	PM	MA sheet	16 mm	89%	76%
Cleaning (up to 10%)					

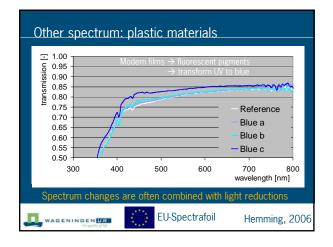


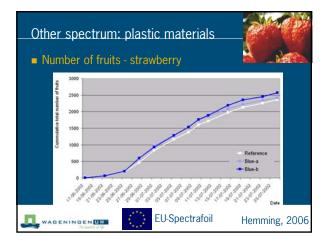

More ligh			teria	ls					
Material	2929192929291929	hemispherical		0.90 -					
Producer 1-1 PE-EVA-film	89.0%	80.9%	1%						
Producer 1-2 PE-EVA film	89,4%	76.9%	transmission hemispherical [%]	0.85 -					
Producer 1-3 PE-film +	82.0%	70.7%	je Li					-	_
Producer 2-1 PE-EVA-film	90.1%	81.5%	asi	0.80 -					•
Producer 2-2 PE-EVA-film	84.7%	72.6%	E ma						
Producer 2-3 PE-EVA-film	84.7%	71.3%	5	0.75 -					
Producer 2-4 PE-EVA-film	80.3%	68.7%	issi						
Producer 2-5 PE-film	90.0%	80.5%	E S	0.70 -		-	-		
Producer 3-1 PE-EVA-film	82.5%	71.0%	trar						
Producer 3-2 PE-EVA-film	90.6%	80.9%		0.65 -					
Producer 4-1 ETFE Film	92.9%	85.0%		0.		0.80	0.85	0.90	0.95
Producer 4-2 ETFE Film	93,4%	81.0%			tran	smissio	n perper	dicular [%]

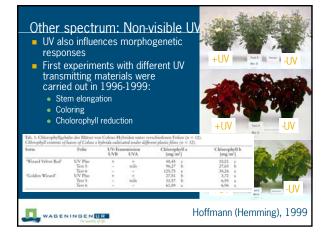


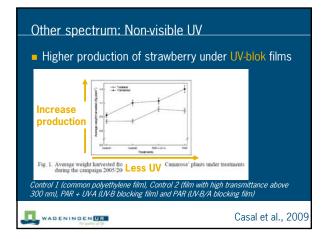


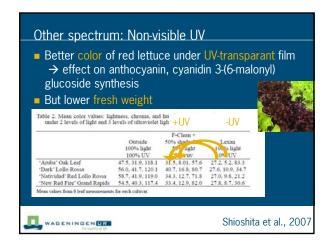


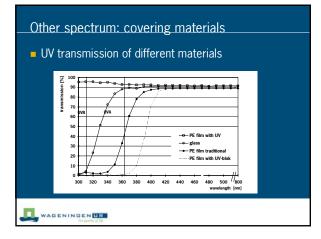



	Reference	Low haze	High haze
Spring crop	Kg/m ²	+6.5%	+9.2%
2008	Nr/m ²	+3.5%	+5.2%
Autumn crop	Kg/m ²	+8.8%	+9.7%
2008	Nr/m ²	+5.3%	+6.1%
		10 10 7 6	

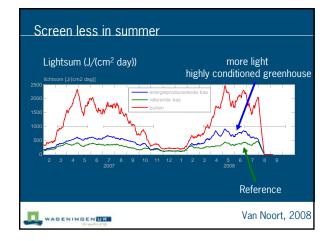


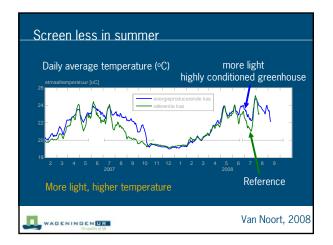


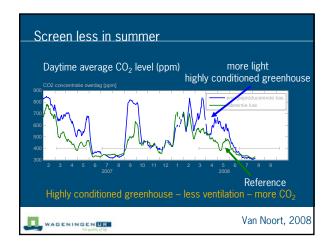


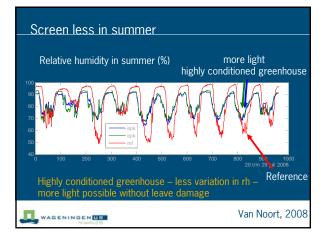


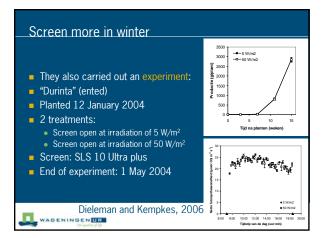


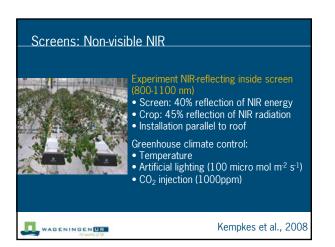


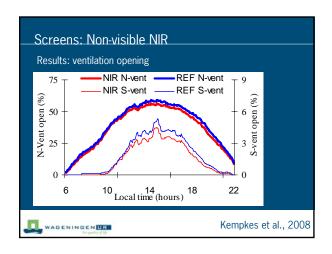


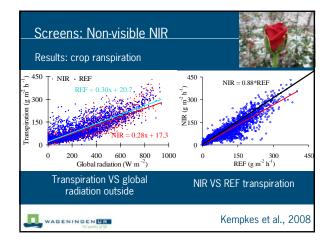


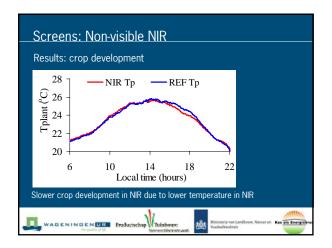


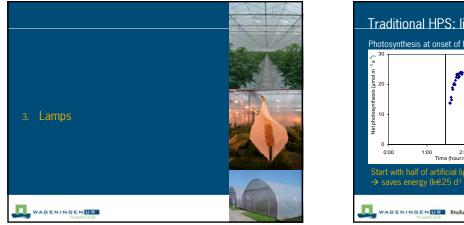


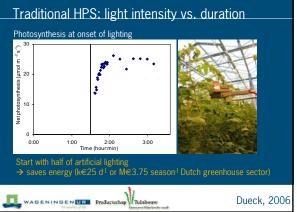


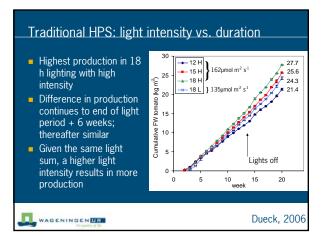


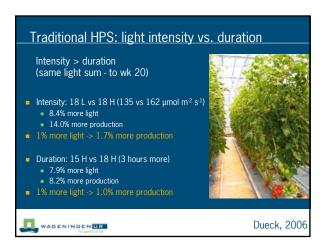


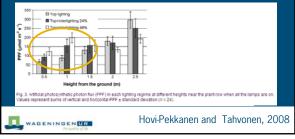

•	:reen m Keep scre → energy	en long	er close				
	→ small ef → higher l Table 1. Effect consumption	ffect or numidity	produce y levels	rion on the numb	vg/m ² /yea	ar) 10urs, RH, energy 18 € m ⁻³ gas) and	
	Screen open criterion (W m ⁻²)	Screens closed (hours)	RH > set point (hours)	Gas consumption (m ³ m ⁻² year ⁻¹)	Production (kg m ⁻² year ⁻¹)	Energy costs- production loss (€ ha ⁻¹)	
	(wm ⁻)	(nours) 1673	(nours) 156	(m m year) 39.6	(kg m - year -) 61.86	(e na)	
	2	1680	170	39.6	61.86		
	5	1718	168	39.4	61.86	360	
	10	1759	176	39.2	61.85	630	
	25	1853	175	38.8	61.80	900	
	50	1924	190	38.4	61.75	1170	
	100	2014	203	38.1	01.01	720	
	150	2049	214	38.0	61.57	270	
	WAGENINGE	NUR			Dieleman a	and Kempke	es, 2006



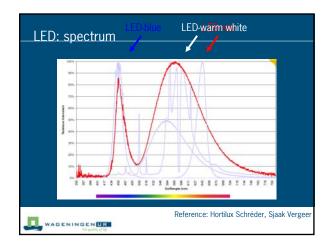


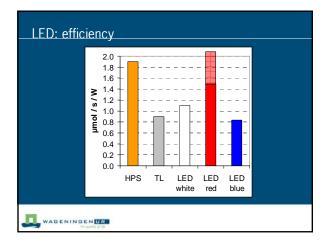


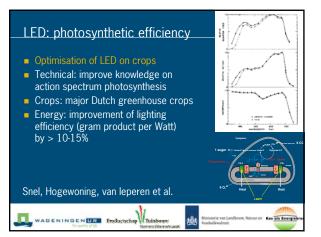


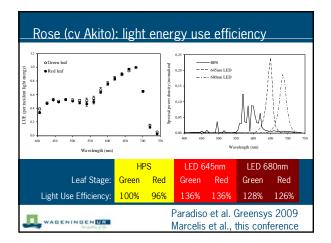


Interlighting: HPS

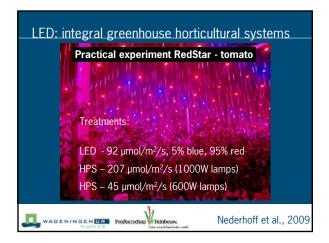

- Interlighting with HPS
- Results in higher PPF in middle / lower in crop with increasing amount of interlight used

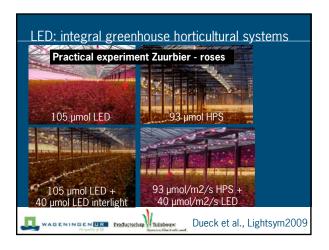


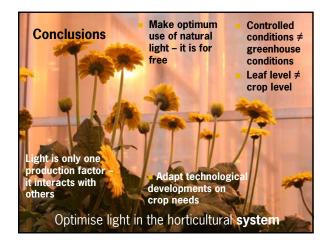

Res but	ults in I not sig	nificant	/ield and ly in sum n weight	nmer cr	op			spring,	
120 100 0 0 0 0 0 0 0	B b b	A D D D D D D	A b a a	Whole year	Yield in number (fruit m ⁴) 0 8	A b b c c c c c c c c c c c c c c c c c	A b b b b b b c t t L24		
	of lighting reg	ime on yield g	prading at differen 16, T + IL48 = top	 interlighting 		tters indica	te significant o	differences (P <	


nterligh Absorbed ight	Control (mol/m²/s))%	Inter- lighting (mol/m²/s)	%
natural light	286	17.9	275	17.3
HPS light	1314	82.1	798	50.1
LED light			520	32.6
sum	1600	100.0	1593	100.0
advantage	light absor e of increas red due to le	e in ligl	ht absorptio	









LED: Conclusions

- Production (tomato, bell pepper, rose) under LEDs in practice is comparable or higher than under HPS
- Physiological / morphogenetical process control via spectra
- LEDs are different from HPS (colour, lower crop temperature)
- → "Learning to grow with LEDs" → new experiment
- Improvements of LEDs can be expected (energy-efficiency, colour, costs)
- Optimize LED within horticultural system

Wageningen UR Greenhouse Horticulture Innovations for and together with the horticultural sector *Thank you:* Tom Dueck, Filip van Noort, Ep Heuvelink, Govert Trouwborst, Sander Hogewoning, Jan Snel a.m.m., WUR

