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Since mass-vaccination programs started in the 
1950s, the incidence of many infectious diseases 
has rapidly decreased. The success of mass vac-
cination was shown by the eradication of small-
pox in 1979 [1]. Because vaccination is the most 
effective and cost-efficient method to control 
and even eradicate disease, research efforts to 
develop new and improve existing vaccines con-
tinue to be important. Most new vaccines are 
recombinant subunit vaccines that comprise one 
antigen of a pathogen that leads to a protective 
immune response. Subunit vaccines are usually 
produced in heterologous expression systems 
such as the bacterium Escherichia coli, the yeast 
Saccharomyces cerevisiae or Spodoptera insect cells.

Plants are a promising production platform 
for vaccines. Many proteins of pharmacological 
interest have been produced in plants, including 
vaccines, over the last two decades. The first vac-
cine was a hepatitis B surface antigen produced 
in tobacco [2]. The expression hosts, tissues and 
expression systems for plant-made vaccines have 
recently been reviewed extensively [3,4].

In the secretory pathway of all eukaryotic 
cells, specific oligosaccharide structures (so-
called N-glycans) may be coupled to secreted 
proteins, irrespective of  whether they are endog-
enous or recombinant proteins such as subunit 
vaccines. However, the structure of N-glycans 
from plants deviate to some extent from mam-
malian N-glycans (Figure 1A), and on plant-pro-
duced vaccines this can have both detrimental 

and beneficial effects. It is known that these 
plant-specific N-glycans can be immunogenic, 
at least for some animals [5]. In humans, pre-
existing anti-plant-glycan anti bodies in serum 
may lead to adverse effects [6]; if such anti bodies 
are of the IgE isotype allergic reactions may 
occur. Fortunately, anticarbohydrate IgE anti-
bodies seem to be of little clinical relevance [7]. 
On the other hand, plant-specific N-glycan epi-
topes can be exploited as a target of the host’s 
immune response and may be beneficial for 
immune protection. The presence of these or 
other carbohydrates as ‘cis-adjuvants’ may help in 
antigen uptake via lectin receptors, subsequent 
degradation and antigen presentation of den-
dritic cells (DCs) to T cells. In this article, we 
provide an overview of plant glycosylation and 
glycoengineering, and discuss the immunologi-
cal opportunities this may offer for the efficacy 
of plant-produced subunit vaccines.

N-glycosylation: differences between 
plants & mammals
In eukaryotes, secreted proteins may be modified 
on specific asparagines by oligosaccharides upon 
entry into the endoplasmic reticulum (ER) in a 
process called N-glycosylation. The initial addition 
of a N-glycan structure is to aid the folding process 
of the protein, and subsequent modifications of the 
N-glycans in the ER have a signaling function in 
the protein-folding quality-control mechanism. In 
mammals, N-glycans of glycoproteins that arise 
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after further processing in the secretory pathway play crucial roles 
in many biological processes [8–10]. Biosynthesis of N-glycans can 
approximately be separated in two phases, which take place sequen-
tially in the ER and in the downstream Golgi apparatus. Plants also 
possess N-glycosylation and the differences and similarities with the 
mammalian machinery will now be discussed. 

In the first ER-associated phase, N-glycan biosynthesis between 
mammals and plants is highly similar and does not result in dif-
ferences in N-glycans found on mature glycoproteins. N-glycan 
biosynthesis starts with the assembly of a precursor Man

5
GlcNAc

2
, 

linked to dolichol-phosphate lipid at the cytoplasmic side of the 
ER membrane. Then, this precursor flips to the luminal side of the 
ER, where the residual four mannose and three glucose residues 
are added by distinctive glycosyl transferases in a stepwise man-
ner [11,12]. The lipid-linked Glc

3
Man

9
GlcNAc

2
 moiety is then trans-

ferred en bloc by the multisubunit oligosaccharyltransferase complex 
(OST) to selected asparagines of nascent polypeptides during their 
translocation into the ER [9]. In Arabidopsis thaliana alg3 mutants, 
the resulting truncated N-glycans are efficiently transferred from 
lipids to proteins. This is in contrast to what is observed in other 
organisms and suggests that the Arabidopsis OST is remarkably sub-
strate tolerant [13]. By subsequent trimming reactions catalyzed by 
exoglycosidases of the ER and the Golgi apparatus, the so-called 
high-mannose type (Man

9
GlcNAc

2
 to Man

5
GlcNAc

2
) glycans are 

generated. Removal of the glucose residues is part of a quality-control 
process in the folding of newly synthesized glycoproteins [14,15]. 

When released from the quality-control cycle, N-glycosylation 
enters the second, Golgi-associated phase. Here, differences occur 
between plants and mammals that are reflected in the final com-
plex-type N-glycan profile (Figure 1A). The first obligatory step 
in complex-type glycan formation is catalyzed by the enzyme 
N-acetylglucosaminyltransferase (GnT)I. Only when this enzyme 
has acted, the subsequent reactions can take place. In plants, 
these include those catalyzed by b1,2-xylosyltransferase and a1,3-
fucosyl transferase enzymes that are not found in mammals. As 
a consequence, complex-type glycans in plants are characterized 
by a b1,2-xylose residue and/or an a1,3-fucose residue linked to 
the core glycan [16]. A second N-acetylglucosamine (GlcNAc) is 
enzymatically added to the mannose core by GnTII. The termi-
nal GlcNAc residues on N-glycans of plant glycoproteins, which 
are stored in the vacuoles, are often removed by exoglycosidases, 
resulting in Man

3
XylFucGlcNAc

2
 complex-type glycans [16,17]. 

Alternatively, although this occurs at a very low frequency, the 
terminal GlcNAc residues of secreted proteins may be extended 
by b1,3-galactose and a1,4-fucose residues by the respective gly-
cosyltransferases. These structures are called Lewis A epitopes and 
can also be found on glycoconjugates in mammals [18,19]. Since 
any of the above-described processing reactions may not go to 
completion, N-glycan structures, even on a single type of glyco-
protein, can be heterogeneous and may include complex glycans 
as well as various intermediate high-mannose structures [20,21]. 
Although plants make complex-type glycans, plant glycoproteins 
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Figure 1. Schematic representations of N-glycan structures as discussed in the text. (A) Some typical plant (1) and human (2–4) 
type N-glycans as can be found in these organisms. The plant N-glycan is of the bi-antennary type, and decorated with the characteristic 
b1,2-xylose and a1,3-fucose residues. The N-glycans found in humans lack these epitopes, but can be extended with b1,4-galactose and 
sialic acid and further branching can occur. (B) Some of the N-glycan structures that have been generated in plants by glycoengineering.
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lack the characteristic b1,4-galactose- and sialic acid-contain-
ing complex-type glycans found in mammals (e.g., Figure  1, 

StructureS 2 & 3). They also lack homologs of the mammalian 
N-acetylglucosaminyltransferases involved in further branching 
of the bi-antennary N-glycans (Figure 1, Structure 4).

In summary, plants are able to produce GlcNAc-terminated 
complex-type bi-antennary glycans, but these glycans are sub-
stituted by plant-specific xylose and fucose residues and are not 
extended by some typical mammalian residues (Figure 1, Structure 1). 
These charac teristics appear to be conserved over the entire plant 
kingdom and have to be taken into account when plants are used 
as a production platform for medicinal proteins. 

Relevance of serum antibodies directed against 
plant glycans
There has been quite some debate on the possible conse-
quences of the ‘non-mammalian’ xylose and fucose epitopes 
on N-glycans of plant-produced biopharmaceuticals or vac-
cines. Carbohydrate-specific IgE antibodies have been found 
in patients allergic to pollen or venom allergens (reviewed in 
[7]). These IgE antibodies predominantly bind a1,3-fucose and 
b1,2-xylose on N-glycans of plants and invertebrates and are 
most likely raised in response to pollen or insect venom expo-
sure. The presence of these carbo hydrate-specific antibodies 
is important in view of possible adverse immune reactions to 
plant-produced vaccines. Mari investigated the role of IgE to 
cross-reacting carbohydrate determinants [22]. Skin prick tests 
revealed a poor biological activity of these carbohydrate-specific 
antibodies. These results are seemingly in contrast with those 
obtained with in vitro basophil histamine-release assays using 
purified glycoprotein allergens from tomato [23] or celery [24]. 
These assays clearly show that N-glycans are important in medi-
ator release. Nevertheless, the overall impression is that pollen-
induced carbohydrate-specific IgE antibodies are of limited 
clinical relevance as biological activity mediated by N-glycans 
is only observed in a selected group of food-allergic patients 
and often requires relatively high concentrations of allergen [25].

Not only have IgE antibodies specific for carbohydrates 
been found in human sera, but IgG specific for a1,3-fucose 
and b1,2-xylose has also been detected, albeit at low levels [26]. 
Dietary antigens of plant origin do not seem to be the cause of 
serum antibodies as exposure in the gut normally leads to toler-
ance. Similar to the carbohydrate-specific IgE antibodies, IgG 
antibodies also probably develop in humans as a consequence 
of pollen (and venom) allergen exposure. Rabbits were shown to 
elicit specific anti bodies after parenteral exposure of both a1,3-
fucose and b1,2-xylose present on antibodies produced by plants 
[5,27]. These antibodies developed upon immunization of rabbits 
with complete Freund’s adjuvant, which is unlikely to be used 
in humans. Immunogenicity of these plant-specific N-glycans 
may also depend on the organism, since they do not seem to 
be immuno genic to mice [28]. As could be expected, topical 
application of glycoproteins from plants does not have adverse 
effects on humans, not even on human allergenic patients with 
IgE antibodies against plant N-glycans [29,30]. 

Glycoengineering
In order to prevent any adverse consequences of xylose and 
fucose epitopes, as well as to broaden the scope of applications 
of plant-made pharmaceuticals, efforts have been undertaken to 
control N-glycan biosynthesis in plants. Humanization of glyco-
sylation has focused on two areas: preventing the addition of the 
plant-specific xylose and fucose residues and diversification of 
N-glycans by the introduction of typical mammalian biosynthesis 
components (Figure 1B).

Genetic knock-out of xylosyltranferases and fucosyltransferases 
(Figure 1, Structure 5) has been established in the moss Physcomitrella 
patens via homologous recombination [31] and in the model plant 
A. thaliana by screening mutant libraries [32]. However, given the 
presence of gene families in plants, combined with the fact that 
homologous recombination in plants is very rare, the implemen-
tation of these approaches to other plant species is very difficult. 
As an alternative, gene silencing by RNAi of xylosyl- and fucos-
yltranferases has been established in several plant species, includ-
ing Nicotiana benthamiana [33], Medicago sativa [34] and Lemna 
minor [35]. Through yet another approach, the addition of xylose 
and fucose was strongly inhibited in Nicotiana tabacum [36] via 
the expression of mutant galactosyltransferases, which appear 
to result in intermediate galactosylated N-glycan structures that 
are not the substrates for the xylosyl- and fucosyltransferases 
(Figure 1, Structure 9). All of these plants have been used to produce 
recombinant glycoproteins that are indeed essentially devoid of 
the plant-specific xylose and fucose residues.

Nicotiana tabacum was the first plant wherein glycans were 
extended by typical mammalian residues through the introduction 
of human b1,4-galactosyltranferases [37,38]. N-glycans of antibodies 
produced by these plants were to a significant amount extended 
by terminal b1,4-galactose residues, but these glycans still carried 
xylose and fucose (Figure 1, Structure 6) [38]. Subsequently, RNAi of 
xylosyl- and fucosyltranferases was combined with expression of 
b1,4-galactosyltransferase, and from these engineered plants, effi-
ciently galactosylated antibodies that were also devoid of xylose 
and fucose could be isolated (Figure 1, Structure 7). Most interestingly, 
glycosylation of these antibodies was very homogeneous and the 
antibodies appeared to perform superior in a HIV-neutralization 
assay [39]. Very recently, in addition to the xylose and fucose knock-
down and b1,4-galactose introduction, terminal sialylation was also 
introduced in N. benthamiana (Figure 1, Structure 8) [40]. This was 
established by transient expression of the entire sialylation path-
way in the galactosylating host plant via the coordinate expres-
sion of mammalian genes for substrate biosynthesis, nucleotide 
sugar activation, transport and the sialyltransferase for transfer to 
the N-glycan. Furthermore, a wide variety of typical mammalian 
N-glycan epitopes were generated in plants by expression of the cor-
responding glycosyltranferases. For example, simultaneous expres-
sion of b1,4-galactosyltransferase and a1,3-fucosyltransferase has 
generated Lewis X structures (Figure 1, Structure  11) in tobacco [41]. 
Expression of GnTIII has resulted in bisected glycans (Figure 1, 

Structure 10) [42] and the generation of tri-antennary N-glycans has 
also been reported, therefore, further branching of N-glycans in 
plants seems feasible [Nagels, Unpublished Data].

Plant glycans: friend or foe in vaccine development?
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Interestingly, no significant phenotypes have been reported for 
the glycoengineered knock-in or knock-out plants. Although it 
cannot be excluded that phenotypes may appear as a consequence 
of future, novel glycoengineering approaches in plant species used 
thus far, or in not yet engineered plant species, the high added 
value of such plants allows the application of controlled condi-
tions that would minimize undesired phenotypes. This flexibility 
further increases the potential of plants as a host for therapeutic 
glycoproteins as the variety in glycoforms that can be produced 
via plants seems unlimited.

Role of carbohydrates in antigen uptake & presentation
N-linked glycans on proteins used in subunit vaccines play an 
important role in the recognition and endocytosis by cells of the 
innate immune system, notably DC as the most important antigen-
presenting cell (APC) type (see Figure 2 for a detailed explanation 
of this process including the steps described later). Sets of different 
classes of pattern-recognition receptors (PRRs) expressed on the 
surface of these cells bind distinct molecular patterns present on 
antigens. Two important classes of these PRRs are Toll-like recep-
tors (TLRs) [43] and C-type lectin receptors (CLRs) [44]. TLRs bind 
characteristic pathogen-associated molecular patterns (PAMPs) 
present in microbial lipids, lipoprotein, lipopolysaccharide (LPS), 
nucleic acids and, in the case of tissue damage, heat-shock proteins. 
All these PAMPs function as danger signals and upon binding, 
TLRs induce signal transduction events leading to the maturation 
of DCs, the secretion of inflammatory cytokines and subsequent 
effector T-cell induction. CLRs recognize carbohydrate structures 
regardless of whether these are of self or nonself origin. The most 
important function of CLRs is to recognize and internalize gly-
cosylated antigens to allow antigen presentation by MHC class II 
molecules. Uptake of antigen by CLRs without concomitant bind-
ing of a PAMP to a TLR often leads to tolerance and immune 
suppression [45]. Usually, the joint action of TLRs and CLRs shape 
the immune response.

Upon binding of an antigen to a CLR and/or a TLR, the antigen 
is endocytosed [44,46,47]. The antigen is subsequently degraded in the 
endosome/lysosome that is formed upon endocytosis and it is loaded 
onto a MHC class II molecule [48,49]. During this process, the DC 
matures and the cell migrates to a lymph node where a fragment 
of the antigen is presented to a naive T cell, resulting in differen-
tiation and proliferation. This only takes place upon costimula-
tion via costimulatory molecules (CD80 or CD86) also present on 
the cell surface of the DCs that bind to CD28 receptor molecules 
expressed on the CD4+ T-helper cell. Simultaneously with antigen 
presentation, cytokines are secreted by the DCs. Which cytokines 
are secreted depends on the PRRs that are activated by the specific 
antigen. The profile of secreted cytokines determines the outcome of 
different T-cell responses. Thus, IL-12 is secreted as a consequence of 
intracellular pathogens (i.e., viruses and intracellular bacteria), lead-
ing to the Th1-type response. This type of T-cell response should 
develop upon vaccination against a virus. Helminths lead to secre-
tion of IL-4 inducing a Th2-type response leading, among others, 
to the production of IgE by B cells. A Th2-type response is also 
induced by antigens, leading to an allergy. Extracellular pathogens 

such as fungi and extracellular bacteria lead to the release of IL-6 and 
TGF-b, with the subsequent development of a Th17-type response. 
Vaccines against extracellular bacteria should mount a Th17-type 
response. If there is no or little binding to TLR receptors, the APC 
may secrete IL-10 or TGF-b, which leads to the development of 
regulatory T cells that suppress immune responses. Thus, plant 
(glyco)proteins binding to different (sets of) PRRs leads to dif-
ferential and specific immune signaling. This can potentially be 
exploited to improve the efficacy of plant-produced subunit vaccines. 

Plant sugar structures induce tailored immune responses 
through CLRs
Plant polysaccharides, not necessarily N-glycans, have been shown 
to be effective immunological response modifiers having few 
adverse effects. They are increasingly considered as adjuvant in 
combination with subunit vaccines. The combination of a plant 
polysaccharide and synthetic subunit vaccine is assumed to be a 
safer and more tolerable combination when compared with live-
attenuated or killed vaccines with aluminium compounds as adju-
vant. Thus, inulin [50], a storage polysaccharide of Compositae, 
has been shown to be a promising adjuvant inducing both Th1 
and Th2 immune responses. New plant polysaccharides with 
adjuvant activity have recently been discovered such as a poly-
saccharide from the seeds of Plantago asiatica [51] and from the 
roots of Actinidia erinatha [52]. The latter also showed a dual Th1 
and Th2-potentiating activity. Not only are such plant polysac--potentiating activity. Not only are such plant polysac-
charides considered as adjuvant, but also plant glycosides, that is, 
oligosaccharide moieties that are attached to plant compounds, 
are considered promising adjuvants. QuilA, isolated from the bark 
of Quillaja saponaria [53], is the best-studied glycosidic adjuvant. 
Plant polysaccharides and glycosides probably exert their adjuvant 
activity through the carbohydrate-binding CLRs on the antigen-
presenting DCs. The seeds of Plantago asiatica not only contain a 
polysaccharide but also phenylethanoid glycosides showing adju-
vant activity. Coculturing immature DCs with either the poly-
saccharide or one of the phenylethanoid glycosides leads to DC 
maturation as demonstrated by increased expression of MHC class 
II molecules and the costimulatory molecule CD86 [51]. Immature 
DCs capture antigens that are endocytosed, degraded and pre-
sented to T cells via MHC class II molecules. The CLRs play 
a key role in endocytosis. In the same study, Huang et al. show 
that Plantago polysaccharides and glycosides both stimulate endo-
cytosis through the mannose receptor, a CLR, leading to antigen 
presentation and T-cell proliferation [51].

Although plant carbohydrates are promising candidates to 
stimulate protective immune responses in combination ‘in trans’ 
with subunit vaccines, the combination of both properties in one 
molecule would be even more promising. The antigen and adju-
vant are then presented in a ‘cis configuration’, making optimal 
use of the synergistic relationships between CLRs, TLRs and 
intracellular PRRs such as NOD-like receptors. The possibility 
of this approach was, among others, demonstrated by Singh et al. 
using the carbo hydrates Lewis X and Lewis B chemically cross-
linked to ovalbumin (OVA) [54]. In a transgenic mouse model, it 
was demonstrated that this leads to increased MHC class I and 
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II presentation of OVA, which was mediated through the CLR 
DC-specifi c ICAM-grabbing nonintegrin (DC-SIGN). In a simi--specific ICAM-grabbing nonintegrin (DC-SIGN). In a simi-
lar fashion, Xie et al. showed that the algal b1,3-glucan laminarin 
coupled to OVA can be used to target the CLR dectin-1 and 
enhance antigen-specific immune responses [55]. Thus, combin-
ing carbohydrates with subunit vaccines in cis, allows the target-
ing of DCs leading to protective immune responses in situations 
where the natural response is insufficient as exemplified by HIV 

and various cancers [56]. Plants are promis-
ing production hosts for such vaccines by 
engineering appropriate glycosylation of 
subunit vaccines.

Important lessons for the engineer-
ing of plant-produced ‘cis vaccines’ can 
be learned from glycoallergens wherein 
the carbohydrate moiety binds a CLR. 
The peanut glyco allergen Ara h 1 acts as 
a Th2-stimulating adjuvant by binding to 
DC-SIGN on DCs [57]. Consequently, the 
DC-SIGN/Ara h 1 complex is endocytosed, 
degraded and presented to T cells, skewing 
the immune response towards a Th2 ‘aller-h2 ‘aller-‘aller-
gic’ phenotype. Deglycosylation of Ara h 
1 abolished activation of DCs proving the 
necessity of the carbohydrate moiety. Ara 
h 1 glycans mainly consist of xylosylated 
N-glycans with the composition Man

3(-4)

XylGlcNAc
2
 [58], which like mannose-ter-

minating glycan, functions as a ligand for 
DC-SIGN [59]. Various pathogens target 
DC-SIGN to modulate TLR signaling and 
regulate adaptive immune responses [60]. 
However, the DC first has to sense the 
pathogen through TLR activation before 
DC function is altered through DC-SIGN 
signaling. TLR activation by Ara h 1 has not 
yet been reported, however, in view of the 
findings of Gringhuis et al. seems required 
[60]. Coordinate binding of glycosylated 
antigens to both a CLR and a TLR deter-
mine the outcome of the immune response 
through the cytokine pattern elicited by 
the DC as outlined in the previous section. 
Binding to CLRs, TLRs and other PRRs 
leads to the differential activation of tran-
scription factors such as those belonging to 
the NF-kB family that regulate the expres-
sion of cytokines and chemokines that shape 
the adaptive immune response. Increased 
insight into these signaling routes and 
their cross-talk allows the design of ‘intel-
ligent’ vaccines that mount desired immune 
responses. Combining these insights with 
our knowledge of plant glycosylation and 
glyco engineering and how plant glycans 

bind PRRs allows a rational design of plant-produced vaccines.

Expert commentary
The production of vaccines in plants is promising because plants 
can be considered as flexible production hosts that allow the 
develop  ment of a large variety of custom-glycosylated vaccines in 
a cheap fashion. A large variety of vaccines have been expressed in 
plants [3] leading to immune protection in animals, with Dow’s 
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Figure 2. Antigen (or vaccine) recognition by pattern-recognition receptors. 
Different classes of PRRs bind different ligands. An important PRR class is formed by the 
TLRs binding microbial lipids, lipoproteins, lipopolysaccharides, nucleic acids and, in the 
case of tissue damage, heat-shock proteins. These compounds are considered as danger 
signals. Another class of PRRs is formed by the CLRs binding carbohydrates, for example, 
N-glycans. CLR binding typically leads to endocytosis of the recognized ligand. However, 
to mount an effective immune response, concomitant signaling through both a TLR and 
a CLR receptor is required. Binding to TLRs leads to signal transduction, resulting in the 
activation of transcription factors that lead to the expression of cytokines. CLR binding 
leads to endocytosis of the antigen or vaccine molecule as well as signal transduction 
that also results in the activation of transcription factors and cytokine expression. TLR 
and CLR signaling may influence each other, leading to the expression of specific 
cytokines that determine the differentiation of naive T cells into distinct T-helper cells 
(see text for more details). Parallel to signaling, the endocytosed antigen or vaccine is 
degraded in the endosome/lysosome, loaded onto MHC class II molecules and presented 
to the TCR of naive T-helper cells. During the process of antigen/vaccine degradation and 
MHC loading, the dendritic cell matures and expresses costimulatory molecules 
(CD80/86) that provide an extra signal required by the naive T cell to proliferate and 
differentiate into effector T-helper cells. 
CLR: C-type lectin receptor; PRR: Pattern-recognition receptor; TCR: T-cell receptor; 
TLR: Toll-like receptor.
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Newcastle disease virus vaccine for chickens as the first registered 
product. Human vaccines have also been successfully produced in 
plants with some being tested in humans [61]. Since the first descrip-
tion of a plant-produced vaccine [2], the focus has mainly been 
on the possibilities that plants offer for vaccine production. Little 
attention has been paid to glycosylation and often only focused on 
possible adverse reactions of plant glycans in humans.

A key development that allows improved vaccine efficacy is 
the targeting of DCs to yield strong protective adaptive immune 
responses [62] through various PRRs. An important role in targeting 
DCs is foreseen for CLRs binding carbohydrate groups, but other 
PRRs may also be used. Currently, different classes of PRRs are 
known that are distinguished on the basis of their structure and 
function. The TLRs are the best-studied class of PRRs, however, 
the description of the first TLR only dates back to 1997 [63]. CLRs 
play a key role in endocytosis of glycan-conjugated antigens by 
APCs and the first CLR to be discovered was dectin-1 in 2001 [64]. 
As such, it is not surprising that the biology of PRRs is a field 
that is still developing, particularly with the involvement of CLRs. 
Although the knowledge with regard to the role of PRRs in acti-
vating adaptive immune responses is rapidly increasing, much has 
still to be discovered.

It is worth noting that plants appear to be very tolerant for 
glyco engineering and many different glycotraits have been intro-
duced without obviously affecting plant growth, as discussed 
earlier. Different CLRs are specific for distinct carbohydrates. 
Since plants can be engineered in such a way that many different 
glycans can be added to proteins, plants are an ideal platform for 
the production of rationally designed vaccines. Increased under-
standing of the biology of PRRs with regard to antigen uptake and 
signaling functions will further aid the rational design of vaccines.

An important aspect in the production of vaccines is the homo-
geneity of the product. Glycosylation is prone to result in a hetero-
geneous population of N-glycans in many heterologous production 
systems. In cultured cells, the glycoforms formed differ as a conse-
quence of different environmental conditions such as pH, nutrient 
availability and cell status [65]. Plants have been demonstrated to yield 
highly homogenous glycan profiles on recombinant proteins after 
glycoengineering. For example, antibodies produced by glycoengi-
neered Lemna minor contained a single major N-glycan species with 
two terminal GlcNAc residues and no plant-specific N-glycans were 
detected on the antibodies [35]. From glycoengineered N. benthami-
ana, highly homogeneously glycosylated antibodies could be isolated 
of which the galactosylated structures represent approximately 80% 

of all glycoforms. In this work, they outperformed the CHO cell 
line producing the same antibody [39]. Based on these observations, 
it can be concluded that plants are excellent production hosts for 
glycosylated subunit vaccines yielding a homogeneous product.

Five-year view 
The glycoengineering results in the plant field demonstrate that 
plants may have an added advantage as they are very flexible and 
subunit vaccines containing any glycan structure can be produced, 
with potentially very high product homogeneity. Not all relevant 
glycotraits are already present in all relevant plant species and in 
the near future various glycotraits will be transferred to the specific 
plant species of preference. In addition, full control over specific 
glyco traits, such as glycan homogeneity and full (genetic) knock-out 
of xylose and fucose, will be implemented. This would allow in these 
species the commercial production of many native (humanized) gly-
covaccines. Whether the full potential of glycoengineering plants 
will be used to produce vaccines carrying dedicated N-glycans that 
function as ‘cis-adjuvants’ will largely depend on developments in 
the field of immunology. Consolidation of plant species will occur 
based on other factors such as cost of goods (including downstream 
processing), speed to market, intellectual property issues and com-
patibility with existing regulations. Furthermore, these factors and 
developments in these areas codetermine the competitive position 
of plants as a platform for the production of glycovaccines. Taken 
together, our view is that the current status quo in the fields of 
glycobiology, immunology and plant expression will lead to glyco-
sylated plant-produced vaccines that will contribute to improved 
public healthcare.
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Key issues

• Plants hold the promise to be an excellent production platform for N-glycosylated subunit vaccines with high product homogeneity.

• Plants are highly flexible production hosts that can be engineered to produce virtually any desired glycoform without affecting the 
plant’s phenotype.

• Plants can be engineered to produce N-glycosylated vaccines that can potentially be targeted to dendritic cells yielding highly 
efficacious and protective immune responses.

• Although antibodies against plant N-glycans have been detected in allergic patients their clinical relevance seems limited, hence plants 
form a safe production platform.

• Glycosylated plant-produced vaccines will contribute to improved public healthcare.
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