

System for Environmental and Agricultural Modelling;
Linking European Science and Society

Report no.: 6
December 2005
Ref.: PD5.2.2
ISBN no.: 90-8585-034-7

Modelling Framework (SeamFrame) requirements

A.E. Rizzoli, M.G.E. Svensson, E.C. Rowe, M. Donatelli, R.
Muetzelfeldt, T. van der Wal, F.K. van Evert, F. Villa

Partners involved: IDSIA, Alterra, CRA, INRA, LUND, PRI, Simulistics, UBONN, UVM

 Logo’s main partners involved in this publication Sixth Framework Programme

http://creativecommons.org/licenses/by-nc/2.5/

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 2 of 49

SEAMLESS integrated project aims at developing an integrated framework that allows ex-
ante assessment of agricultural and environmental policies and technological innovations.
The framework will have multi-scale capabilities ranging from field and farm to the EU25
and globe; it will be generic, modular and open and using state-of-the art software. The
project is carried out by a consortium of 30 partners, led by Wageningen University (NL).

Email: seamless.office@wur.nl
Internet: www.seamless-ip.org

Authors of this report and contact details

Name: Andrea Rizzoli Partner acronym: IDSIA
Address: IDSIA, Galleria 2, 6928 Manno, Switserland
E-mail: andrea@idsia.ch

Name: Mats Svensson Partner acronym: LU
Address: Lund University, PO Box 170, S-22100, Sweden
E-mail: mats.svensson@lucsus.lu.se

Name: Ed Rowe, former scientist at WU Partner acronym: WU
Present address: CEH Bangor, University of Wales, Orton Building, Deiniol Road, Bangor
LL57 2UP, UK
E-mail: ecro@ceh.ac.uk

Name: Marcello Donatelli, Partner acronym: CRA-ISCI
Address: ISCI, Via di Corticella 133, 40128 Bologna, Italy
E-mail: m.donatelli@isci.it

Name: Robert Muetzelfeldt Partner acronym: Simulistics
Address: Simulistics, 11 Tantallon Place, Edinburgh, EH9 1NZ, Scotland, UK
E-mail: r.muetzelfeldt@ed.ac.uk

Name: Tamme van der Wal Partner acronym: Alterra
Address: Alterra, PO Box 47, 6700AA Wageningen, the Netherlands
E-mail: tamme.vanderwal@wur.nl

Name: Frits van Evert Partner acronym: PRI
Address: PRI – Wageningen University, P.O. Box 16, 6700 AA Wageningen, the Netherlands
E-mail: frits.vanevert@wur.nl

Name: Ferdinando Villa Partner acronym: UVM
Address: University of Vermont, 590 Main Street, Burlington, 05405, Vermont, USA
E-mail: ferdinando.villa@uvm.edu

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 3 of 49

Disclaimer 1:

“This publication has been funded under the SEAMLESS integrated project, EU 6th
Framework Programme for Research, Technological Development and Demonstration,
Priority 1.1.6.3. Global Change and Ecosystems (European Commission, DG Research,
contract no. 010036-2). Its content does not represent the official position of the European
Commission and is entirely under the responsibility of the authors.”

"The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability."

Disclaimer 2:

Within the SEAMLESS project many reports are published. Some of these reports are
intended for public use, others are confidential and intended for use within the SEAMLESS
consortium only. As a consequence references in the public reports may refer to internal
project deliverables that cannot be made public outside the consortium.

When citing this SEAMLESS report, please do so as:

Rizzoli, A.E., Svensson, M.G.E., Rowe, E.C., Donatelli, M., Muetzelfeldt, R. et al., 2005.
Modelling Framework Requirements, SEAMLESS Report No.6, SEAMLESS integrated
project, EU 6th Framework Programme, contract no. 010036-2, www.SEAMLESS-IP.org, 49
pp, ISBN no. 90-8585-034-7.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 5 of 49

Table of contents
Table of contents.. 5

General information.. 7

Executive summary ... 7

1 Introduction .. 9
1.1 Inspiration... 9
1.2 Key ideas ... 9

2 Environmental modelling frameworks requirements ... 11
2.1 Problems of current modelling tools ... 11
2.2 Tackling the problems ... 12
2.3 The benefits of the specifications... 13

3 SEAMLESS technical framework requirements... 15
3.1 Applications... 15
3.2 SEAMLESS for the policy maker... 16
3.3 SEAMLESS for the farmer... 16
3.4 SEAMLESS for the model and application developer ... 17
3.5 Other potential use scenarios for SEAMLESS for application and model development 20
3.6 Some more issues .. 21

4 A comparison of existing modelling frameworks .. 23
4.1 TIME – The Invisible Modelling Environment .. 24

4.1.1 Requirements matching.. 24
4.1.2 Contact details.. 26

4.2 IMA: the Integrating Modelling Architetcture .. 27
4.2.1 Requirements matching.. 27
4.2.2 Contact details.. 29

4.3 Modcom... 31
4.3.1 Requirement matching ... 31
4.3.2 Contact details.. 33

4.4 OpenMI ... 34
4.4.1 Requirements matching.. 34
4.4.2 Contact details.. 35

Appendix 1. SEAMLESS requirements and suggested solutions... i

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 7 of 49

General information

Task(s) and Activity code(s): T5.2, Activity 5.2.2

Input from (Task and Activity codes): T1.2, Activity 1.2.1

Output to (Task and Activity codes): T5.2, Activity 5.2.3

Related milestones: M 5.2.2

Executive summary

In modern software engineering, software frameworks are fundamental to software
development. A software framework provides a set of reusable libraries and classes to build
applications. Examples are the Smalltalk model view controller (Deutsch, 1989), or the
MacApp, the "Macintosh Application Framework"
(http://developer.apple.com/tools/macapp/). More recently, the Java software framework
(J2SE and J2EE) and the Microsoft .Net framework are providing easy and widespread
access to software frameworks to an unprecedented number of developers.

A modelling framework is analogous to a software framework, with the specialisation in
providing reusable components for building mathematical models. There are many modelling
frameworks on the market, examples are MATLAB, Modelica, and so on (the list cannot be
exhaustive, see http://www.idsia.ch/~andrea/simtools.html for a broader view).

An integrated modelling framework is an extension of a modelling framework, which
supports multiple modelling domains and paradigms. The number of integrated modelling
frameworks is considerably more limited, especially if we restrain to the intersection of
social, economic and environmental modelling. We list some of the most notable initiatives in
the various fields.

Economic modelling frameworks. GAMS (general algebraic modelling system,
http://www.gams.com) and GTAP (global trade analysis program,
http://www.gtap.agecon.purdue.edu) are some of the most used modelling systems in the
agro-economic domain. They can also account for social variables, such as unemployment.

Environmental modelling frameworks. If we limit to the agricultural domain, the list is
quite limited. There is no ‘real’ framework according to the definition, but APSIM, STICS
and CropSyst provide some of the functionalities. When we consider the water management
sector, we find many examples, such as TIME (the invisible modelling environment), IMT,
OpenMI, and OMS.

Other modelling software environments of notable interest are SME, MMS, ICMS, Tarsier,
Modcom, Simile, but they are integrated modelling environments, not frameworks. This
means that they can be used to perform assessments, analyses, decision support, but they do
not provide programming structures such as classes, components, objects, design patterns to
be used to create end-user applications.

In this document we will express the requirements imposed by the SEAMLESS project vision
on the SEAMFRAME modelling framework and we will critically assess these requirements
against a suitable set of existing modelling frameworks. As a result, we shall be able to
understand what to pick up and what to drop from these previous experiences in order to
improve the trade-off between re-use and innovation, and maximise our users’ satisfaction.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 9 of 49

1 Introduction

1.1 Inspiration

The SEAMLESS project has the overall ambition of providing a methodological framework
(SEAMLESS-IF) to support the ex-ante analysis of European agricultural management
policies at all scales, from market level down to biophysical systems level. The SEAMLESS-
IF will enable:

1. Analysis at the full range of scales, whilst focusing on the most important issues emerging
at each scale;

2. Analysis of the environmental, economic and social contributions of a multifunctional
agriculture towards sustainable rural development and rural viability;

3. Analysis of a broad range of issues and agents of change, such as climate change,
environmental policies, rural development options, effects of an enlarging EU, international
competition and effects on developing countries.

And this will be made possible thanks to an integrated and operational framework, named
SEAMFRAME, with the following specific objectives:

1. To develop and test a multi-perspective set of economic, social and environmental
indicators of the sustainability and multifunctionality of systems, policies and innovations in
agriculture and agroforestry, and to establish, as far as possible, threshold values for these
indicators and/or to enable trade-off analysis.

2. To provide quantitative and qualitative tools and databases for integrated evaluation of
agricultural systems at multiple scales and for varying time horizons.

3. To develop a software architecture that allows reusability of model and database
components and knowledge, also ensuring transparency of models and procedures developed.

1.2 Key ideas

SEAMFRAME will be based on the following key ideas:

First, the language used to represent models within SEAMFRAME will be declarative and
not imperative. This means that a model will be represented as a set of facts and relations that
are true about the model, rather than as an implementation in a specific compliable or
compiled language. Declarative representation makes models far easier to re-use and
combine, and much more transparent than implementations within a traditional, code-based,
model structure. Thanks to the declarative modelling approach, the model can be saved in a
standard, XML-based model-representation language. A declaratively-represented model can
then be used to produce (for example): a description of the model (e.g. HTML); an executable
version of the model; a transformation of the model (e.g. to simplify it, thus addressing the
scaling problem).

Second, SEAMFRAME will use ontologies (structured specification) of data, models and
tools, facilitating their retrieval from digital repositories and integration into workflows (a
workflow is a particular arrangement of data, models and tools). Modellers will thus gain
transparent access to each other’s work (Note: SEAMFRAME will provide facilities to use
the many models that are currently in use, thus preserving past investments and extending an
invitation to researchers who are not part of SEAMLESS per se).

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 10 of 49

Third, SEAMFRAME will provide a mechanism to store comments, conversations and
citations about models, data and workflows. An intelligent search agent will enable any user
to retrieve and combine information from 1) model specifications, 2) model, data, or
workflow metadata and their place in an ontology, 3) comments, conversations and citations.
Thus, a researcher faced with the task of modelling a certain system can find not only all
suitable models, but also the assumptions underlying those models, experiences of other
researchers in using those models, and the outcomes of other studies in which those models
were used. A decision maker faced with an analysis in which modelling was used, can use
SEAMFRAME to find other studies in which the same models were used, other models that
could have been used, and conversations about the history and suitability of the models that
were used.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 11 of 49

2 Environmental modelling frameworks requirements
Do we need another Modelling Framework? After all, we have a good number of Modelling
Frameworks, purposely designed to solve the modelling problems one can encounter in many
fields, from economics, to engineering, through natural sciences. Yet, we want another
modelling framework, because it looks like we are not satisfied with the current ones.

Software frameworks provide programming constructs and artifacts (e.g. classes and
components) that can be re-used to build software applications. Among others, .NET and
J2EE are two examples of software frameworks, since they provide a set of libraries and
classes with which the programmer can write new applications. Moreover, they provide tools,
such as compilers and some of these tools have a graphical interface, such as an Integrated
Development Environment.

In the same way, a modelling framework is a set of software components which can be used
to assemble a software application for designing and experimenting with models. The
libraries and classes are targeted to develop models, which can be packaged into applications.
Tools, such as simulators or optimisers, operated on models, and a visual modelling
environment can be useful to interactively develop a model or to set up a modelling scenario.

2.1 Problems of current modelling tools

Before listing the requirements of what we expect to be a good modelling framework, let’s
briefly summarise the problems we have encountered with the current ones:

1. models are applications. There is nothing inherently bad in this, but the problem is that
bundling data, algorithms and the graphical user interface of a model in an application
makes the model very hard to re-use out of its original context. Most models are therefore
monoliths.

2. Models are nearly impossible to maintain, they can hardly evolve. Once a model, design
and implemented as a monolithic software entity has been deployed, its evolution is
totally in the hands of the original developers. While this is a good thing for intellectual
property rights and in a commercial environment, this is absolutely a bad thing for
science and the way it is supposed to progress. Independent revisions and third-party
contributions are nearly impossible.

3. Models can not be independently tested. This issue is related to #2, since models often do
not come with associated data sets for testing. Moreover, the adoption of object-oriented
programming, while it is a good thing for model reusability and portability, it makes
things more complex for testing, because of a number of problems such as observability
in virtual method calls and state dependent behaviour of objects (Pezzè and Young,
2004).

4. Models are difficult to reuse. This problem is also related to issue #1, since monolithic
models display a strong level of internal cohesion, and, if a modeller is interested in
reusing a particular function within a bigger model, she can find it very hard to isolate
and extract it, given the strong dependencies existing in the source code.

5. Inefficient use of resources. This issue is closely related to the preceding one; given that
models are difficult to reuse, modellers and programmers are re-implementing the same
things over and over, both in terms of models and tools used to operate on the models.

6. Models are not transparent

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 12 of 49

7. Models are platform specific

2.2 Tackling the problems

How can we solve the six (but there may be many more) issues we listed above? Many
groups are working hard at it, but some of them are hard nuts to crack and it is unavoidable
that, for the present time, there will be an overlap of efforts. This can be seen as a waste of
resources, but it can also be seen as an evolutionary design effort, where the best ideas and
practices (or the most popular) will emerge to provide a common and shared basis for
environmental modelling. Moreover, the wide variety of models we encounter in
environmental modelling, let alone other modelling domains, will provide food for thought
for many researchers in the coming years.

As in any software problem there’s no ‘silver bullet’ (Brooks, 1987). Yet, we have identified
a set of approaches and methodologies which have been successfully adopted and used so far
in diverse modelling framework efforts:

1. Knowledge management. Knowledge is a vague word, it means everything and nothing.
In this context ‘knowledge management’ means to organise knowledge on models and
data by means of structuring information. Semantic networks, one of the first attempt to
represent knowledge, are an example (see Durkin, 1994 for a general book on Expert
Systems and Knowledge Representation). Moreover, the Semantic Web initiative
(http://www.w3.org/2001/sw/) is proposing shared web ontologies, as an evolution of
semantic networks that can be used to univocally denote modelling concepts.

2. Object-oriented software development. O-O programming is nothing new, but it has
proven to be a successful key to the design and implementation of modelling frameworks.
Models and data can be seen as objects and therefore they can exploit properties such as
polymorphism, data abstraction and inheritance.

3. Design patterns. The adoption of design patterns in programming (Gamma et al., 1995)
has been proven to be a major factor for reuse, if not of code, at least of ideas and
solutions. A library of design patterns for environmental modelling would be an
interesting contribution. The modeller should create new models looking up at simple
specifications in the form of patterns and code snippets.

4. Component-oriented software development (see Szyperski et al, 2002). Objects (models
and data) should be packaged in components, exposing for re-use only their most
important functions. Libraries of components can then be re-used and efficiently
integrated across modelling frameworks. Yet, a certain degree of dependency of the
model component from the framework can actually hinder reuse.

5. Support for testing. Models should be testable and they should be distributed together
with their pre and post conditions and sets of data for testing. Techniques such as unit
testing (http://c2.com/cgi/wiki?UnitTest) have been successfully adopted in model
development.

6. Support for pre-conditions and post-conditions. It becomes important to adopt a ‘design-
by-contract’ approach in modelling, borrowing this concept from software engineering.
(Meyer, 1992). Each model will impose pre-conditions on the values of its inputs (e.g.
admissible ranges) and post-conditions on the outputs, which can also be expressed as
complex logical statements. The use of pre and post-conditions will make possible the
use of the testing technique of ‘unit tests’ (Jorgensen and Erickson, 1994, Beck, 2003),
enhancing the overall reliability of the system.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 13 of 49

7. Support for documentation. Model equations should contain symbols which have their
complete meaning in the ontology. The equations could be written in a declarative format
(e.g. MathML and/or LaTeX) and then, each symbol could be associated with its
meaning.

2.3 The benefits of the specifications

Why should ever a modeller take the trouble of following the complex specifications imposed
by a modelling framework? The answer is easy: because he will get much more in return, by
making a small investment in learning how to use the framework. Surely, the investment
must be moderate and the return must be substantial, otherwise it will be better to continue as
usual.

Here we list some of the expected returns, which become the requirements of a modelling
framework. The framework shall provide:

• discrete units of software which are re-usable even outside the framework, both for model
components and for tools components. Not an easy one to achieve since, as already pointed
out, a certain degree of dependency, at least on data structures, is unavoidable;

• declarative modelling: among the multiple benefits, it allows for portability, reuse and
openness of the knowledge embedded in models;

• software tools to facilitate model development, structuring and organising modelling
‘knowledge’;

• seamless and transparent access to data, which are made independent of the database layer.

• a number of tools (simulation, calibration, etc.) that the modeller will be free to use
(including a visual modelling environment);

• a model repository to store your model and to share it with others.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 15 of 49

3 SEAMLESS technical framework requirements
Collection of requirements has started during a meeting held in Wageningen on the 23/24
June 2003. The first set of requirements drove the description of the Technical Framework
Working Package within the IP preproposal. Requirements are continuously being collected,
being an integral part of the development process based on agile techniques (Beck, 2000).

3.1 Applications

Different applications define the main types of usage for the framework. Three types of user
have been defined:

• Prime users: take or prepare decisions at a political level – primarily DGs (Agriculture and
Environment) of the European Commission.

• Other end-users: national agencies, representative groups, OECD, etc. They may take or
prepare decsions at national or regional level, or represent stakeholder groups.

• Model and application developers/modellers: use the SEAMFRAME components to build
models and targeted applications.

These groups have been further detailed according to their roles:

• Coders: implement models, applications and tools.

• Linkers: link existing models and applications.

• Runners: execute existing models, but they create and define scenarios.

• Players: play simulations and experiments comparing scenarios and making analyses.

• Viewers: view the players’ results, have a low level of interaction with the framework.

• Providers: provide inputs and data to all other user roles.
The following table displays a match between user types (rows) and user roles (columns)

 Coders Linkers Runners Players Viewers Providers

Prime
Users

 √ √

Other
End-
users1

 √ √ √ √

Technical
Users √ √ √

1 End-users include all users who are neither modellers (technical users) nor policy makers (Prime
Users) and they include national policy development agencies, farmers’ representative groups, etc.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 16 of 49

Use scenarios and requirements will be now elaborated for the user types.

3.2 SEAMLESS for the policy maker within DGs – Prime Users

This version of SEAMLESS is a key requirement of the IP call and it is addressed to the
Prime Users; supporting policy making through use of social, economic and policy modelling
components. Previously developed tools integrating biophysical and economic processes,
agent based modelling, participatory decision making, multi criteria decision analysis, etc.,
will be used at different scales to design, synthesise, and analyse (evaluate) policy impacts at
different scales (farm/regional/national/European) and on different sectors
(industrial/social/environmental).

Use case 1 (Policymakers): A policymaker (not a modeller) requires a set of tools for
evaluating impacts of the newly agreed restructure of the EU CAP from a multicriteria
perspective. Several new, not formerly considered aspects will need to be included;
rural development, demand for locally produced products, etc. The balance between
local, regional and national level effects of policy decisions should be considered. The
tools must combine state-of-the-art knowledge from different disciplines (e.g. a crop
model with an economic model and a policy model) and yet be transparent and easy to
use. The tools must be easy to modify and re-use even if their designers are not present.

This leads to the following requirements:

A focus on
policy-relevant
meta-data:

One of the novelties with the SEAMLESS approach is the combining of
different types of models for policy evaluation purposes. This creates the
need for new meta-data for all types of models included.

Application
development
environment is
open-source

Code can be submitted to reviews from external groups. Add-ons and new
features can be contributed by groups adopting the SEAMLESS software.
Research investments are preserved, since no knowledge is lost: everything
is public, accessible and, if needed, can be re-implemented, migrated to
other approaches/platforms (see Eric S Raymond article “The Cathedral
and the Bazaar” http://www.firstmonday.dk/issues/issue3_3/raymond/)

3.3 SEAMLESS for Other End-users

In this version of SEAMLESS the user will have more space to build their simulations with
(e.g. regional-) specific scenarios, to explore and assess all point of view of various
stakeholders.

Use case 2 (Farmers’ association): A farmers’ representative in a facilitated workshop
wants to explore the idea of converting to organic (biological) status. How will this affect
the profitability of the farms? What alternative cropping options should be considered?
Need to simulate farms via FSSIM. Develop a program and implement models to
simulate farm activities in order to provide support for planning, accounting for
economic, technical, environmental, and labour perspectives. The farm is seen as a
spatially explicit unit, in which different production (in the broad sense) activities may
or may not take place: crops, orchards, livestock, forestry. Some of the models will be
dynamic, others will be static. There will be an economic budgeting model. Management
will account for machinery availability and characteristics, which extends the set of
rules to fire events. Need to test FSSIM performance against experimental farm data.
Need to evaluate scenarios (settings of resources, factors, and actions with specific or

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 17 of 49

stochastic weather and on specific soils). Need to validate scenarios before run. Need to
save each scenario simulation outputs.

This use-case leads to the following requirements:

Easy to use Specific applications with customised user interfaces will need to be
developed for scenario exploration with particular groups of farmers.

Reliable Farmers and others directly related to land use issues should be able to pick
recommended or “ empirically proven” model combinations for
sustainability estimations

3.4 SEAMLESS for the model and application developer –
Technical Users

This is the version of SEAMLESS which is most sought-after by European scientists and
which current SEAMLESS consortium members wish for; an environment for the coherent
development of models and their simulation.

The meeting, being software oriented, further specified this application into

1. Development of conceptual models, a tool for modelling

2. Development of “components”. Components can be solvers, numerical integration
algorithms, simulation engines or statistical analysis routines, as well as models.

3. Development of tools from these components, that are integrated across scales (temporal
and spatial), and disciplines (social sciences, economics, natural sciences).

Use case 3 (Model developers): A research centre wants to use SEAMLESS as a
development platform to produce models which are easy to integrate with the work of
different research groups. The research group also wants to preserve the investment
made in the model development, since language obsolescence often leads to periodical
re-implementation of the models.

The requirements emerging from this use case are for an environment which:

• makes it easy to integrate models

• makes it easy to assess and achieve interoperability

• provides methodology for preserving coding investment

• is self-documenting

• facilitates knowledge-based support to modelling

• facilitates a model repository

• facilitates web-based distribution

• facilitates version control

• facilitates use of multiple modelling paradigms

• facilitates spatial and temporal modelling at different scales

• facilitates quality control, through standardised representation, and through easy use of
tools for model comparison and testing

All these requirements inevitably lead to a solution, which becomes a requirement itself:

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 18 of 49

- A declarative approach to modeling:

This requires separating a model from the computational aspects which make possible the
transformation of the model input into an output. The model contains the “rules” of the
transformation, not the algorithm performing the transformation. For instance, in the case of a
model based on sets of Ordinary Differential Equations the model consists of the equations,
not of the numerical integration routine, the database access routines or the graphical
visualisation or statistical processing of the outputs.

 From Simile’s website:

In declarative modelling, we represent a model not as a series of assignment and control
statements, but as a set of facts that are true about the model. The order in which we
present the facts is (unlike a procedural program) irrelevant. The full set of facts defining
a model actually constitute a specification for the model: given these facts, and
knowledge about what the symbols mean, someone else can construct a working version
of the models.

This implies:

• The model must be specified using a declarative language. The language provides a
formalism to express the modelling facts. The language provides constructs to define the
model interface and the model constructs.

• The language must be semantically rich. This requirement implies that the elements of
the modelling language must have a meaning that can be understood by a computer. This
implies that the language elements must be defined. The repository for these definitions,
which are the knowledge about the model, are contained in what is called an ontology, i.e. a
schema (or DTD) for the necessary meta-data. Thus a key task for SEAMLESS is to deliver
this ontology. Recent research on the Semantic Web (http://www.sematicweb.org) shows
how XML and Schemas can be used to represent ontologies. This will enable SEAMLESS
to handle an (evolving) ontology, and shall aim at delivering a Schema (and a DTD for
creation of XML bindings) for the validation of the necessary meta-data.

In XML (extensible markup language), as with HTML, information is stored together with
tags which define what the information is. The difference is that HTML tags are pre-defined,
whereas XML tags can be defined in a case-specific ontology. See for example the following
piece of XML code; the language elements are tags such as <INFLOW>, <OUTFLOW> etc.:

<STOCK NAME = “BUDWORM” LOWER=0>
<INIT>5</INIT>
<INFLOW NAME=”BIRTHS”>

R*BUDWORM(1-BUDWORM/K)
</INFLOW>
<OUTFLOW NAME=”DEATHS”>
 (BUDWORM**2)/(1+BUDWORM**2)
</OUTFLOW>
</STOCK>

(From Villa’s paper “Integrating Modelling Architecture: a declarative framework for multi-
paradigm, multi-scale ecological modelling”, Ecological Modelling 137 (2001) 23-42).

The requirement that modelling must be declarative, and achieved by a semantically rich
modelling language, implicitly satisfies a number of other requirements:

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 19 of 49

Models are self-
documented

This is to a certain degree inherent to the DM methodology, since
the way the model is written makes clear what is an input, what an
output, what a state and what a parameter. DM also makes it easy to
develop multiple tools for model analysis and description, for
different users / purposes.

The model of the stock component named “budworm” is clearly
self-documenting (even if the declaration of the initial value equal
to 5 in the model specification is objectionable).

Another example of self-documentation (beyond other things) is
provided by ECOBAS (http://www.wiz.uni-kassel.de/ecobas.html)
where models expressed by a declarative approach can be searched,
downloaded, compiled, and run.

Knowledge based
support to modelling

This requirement was not expressed in the previous use case, but it
was set as a priority by the group. Knowledge-based support comes
“for free” once we provide semantic meta-data on model teleology.
Teleology is the model purpose and it can be formally expressed via
model meta-data (facts associated with the model) and inferred from
the input to output transformation.

A model repository Models can be stored in a repository and accessed for later usage,
queried, compared, evaluated.

The model repository
must be under version
control

It should be possible to track changes to the model equations made
by different authors and to view a ‘history’ of the development of a
model.

Model “quality” must
be verifiable where
possible

Here, the word “quality” should be defined according to the actual
use. Are we talking about programming structure (e.g. a “good”
model is one written clearly)? Are we talking about validated
outputs? About how easy it is to use? It must be remarked that many
economic and policy models are also hard to validate and / or
verify.
For models of natural systems, this requirement can be satisfied
with benchmarking tools that should be provided. Such tools will
provide standard statistical tests to assess model quality against
data.
Policy models are harder to benchmark, but some efforts have been
done in the field of Participatory Decision Making, using agent
based models, trying to reach a consensus based on empirical
observations of the agent behaviour.
Note: In any case, this requirement is a sensible one and it needs to
be discussed together with economists and social scientists.

Web-based
distribution of models

For an example, see the ECOBAS web site (http://dino.wiz.uni-
kassel.de/ecobas.html). Models can be sought after on a website
acccording to their metadata and finally they can be downloaded,
either in binary or source code format.

Web based deployment
of models

Models and tools can be packaged together to provide a ‘service’,
that is a transformation of data over the internet.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 20 of 49

Multiple modelling
paradigms

(static/dynamic/stochastic/deterministic/explanatory/qualitative/
conceptual). A Lattice of model classes should be listed. (Note: this
is also meta-data, which can be covered within the Schema)

Spatial and temporal
modelling at different
scales

Models shall be available at different scales, over time and space.
For instance, there will be models with characteristic times ranging
from hours to months. In the same way, some models will be valid
only over a limited area of a few hectares or on a much wider region
(e.g. NUTS2-3).

Use case 4 (Application developers): The research institute has access to their collection
of SEAMLESS models, including models developed by other partners. They want to
develop stand-alone applications for different kind of users: for end users, to use models
to evaluate the impact of regional policies or technological innovations; for policy
makers, to evaluate the impact of new laws and regulations.

The requirements associated with this use case are2:

An environment for
the development of
workflow management

Must support a workflow development environment to create the
application as a sequence of model transformations by tools, data
manipulations and processing. This ensures that SEAMLESS
allows the development of packaged customised applications.
(see http://www.wfmc.org/)

Repositories for data,
models, and tools

While the justification for the repository for models has been given
in the previous use case, and we cannot even think of not having
data repository (the question is how to implement it), tool
repositories are a novelty. Tools must have the same status as
models. Tools are the implementation of algorithms, they could be
numerical integration routines, or a linear program solver,
implementing the simplex algorithm. We need metadata for tools, to
describe what they do, and how they are interfaced with models.

Allows web based
deployment of tools

A tool providing a service (e.g. integration of a model) can be
offered as a web service. The Semantic Web initiative is all about
this. Links to the GRID computing initiative. Thanks to
semantically rich interfaces, models become searchable in the
webspace and an “agent” can manage a complex simulation
coordinating the different models taking part in it. Possible links to
the concept of “model federations” (see the DMSO HLA, High
Level Architecture https://www.dmso.mil/public/transition/hla)

Must support software
quality checking

The quality of the software components must be testable, by using
unit tests, integration test and regression tests.

3.5 Other potential use scenarios for SEAMLESS for application
and model development

1. A three-year project needs to build a crop rotation model by coupling 4 existing models -
a crop model and a natural vegetation model both in Fortran, a water balance model in

2 This use case needs to be expanded to include those elements from the other use cases set out below
which illustrate new requirements not already covered

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 21 of 49

Pascal, and a soil organic matter model developed in a graphical modelling environment
with code export possibility to C++. The partners need to calibrate and validate their
models using data from two years of field experiments (executed in the course of the
project), stored in a common database. The project has meteorological data which are
incomplete. Both the experimental data and the meteorological data will be checked and
revised in the course of the project. Furthermore one project member doesn't trust the
quality of the crop model, and needs to do some extensive testing, and perhaps further
model development.

2. Build an application that lets users pick component models from a repository (the
repository holds 10 crop models, 10 soil models, 10 aphid models, 10 meteo models, ..)
and connect them to form ecosystem models.

3. Develop a cropping systems simulator (CSS) from components to simulate soil structure,
soil water, soil C-N, annual and perennial crops, orchards, forestry, pesticides, diseases,
weeds. Different participants independently develop different model components,
according to their specific expertise. The simulator should allow the use of alternatives
for model components e.g. developed by independent groups, and new types of
component (e.g. an insects component). Need to handle state and time driven events. The
CSS must work as a stand alone application, or driven (e.g. in many instances) by a
higher level simulator (e.g. a Farm Activities Simulator). CSS performance will be tested
against experimental field data, and scenarios will be evaluated (settings of resources,
factors, and actions with specific or stochastic weather and on specific soils). Scenarios
need to be validated before each run, and outputs from each run saved.

4. A Chinese professor collaborates with a SEAMLESS project, uses SEAMLESS to
develop models, and develops a course in modeling at his university based on these
models. No money to pay for a SEAMLESS license

5. (Current FP5 project) In a greenhouse climate control project one partner is developing
an hydrological model using software under Linux. Another partner provides a crop
growth model to allow climate control optimization based on crop performance,
developed using FORTRAN in Windows. Does SEAMLESS offer a solution?

6. (Current FP5 project) Selection of structurally detailed statistically testable ecological
models Objectives: This project will investigate the costs and benefits of models that
provide a detailed description of ecological processes, using tools and example data sets
available. The approach will be to select models, which are empirically justifiable in that
they contain an amount of detail in their structure, which is appropriate to the data which
are available. This appropriateness will be evaluated using formal statistical tests. By
doing this it is intended to go as far as the information allows, but strictly no further.

3.6 Some more requirement issues

1. Portability (Linux/Windows). It has to be remarked that legacy models cannot usually be
ported if they are provided in compiled form. They can be only invoked as “web
services” from an application, but they must reside on their original environment.

2. Legacy models: one strong requirement was that SEAMLESS should support both open
and closed source submodels and tools, to allow for use of legacy and proprietary models.
Open source models are models where the source code is freely accessible and re-
dstributable. Closed source models are those where the source code is either protected by
an IPR agreement (even if the source code is accessible) or those where only binary code
is available. Closed source components will inevitably be less portable.

3. Reusability of models/tools/data. Reusability is automatically achieved if we provide full
access to the declarative modeling language we use to define our models.. It is the same
methodology for preserving coding investment, covered above.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 22 of 49

4. Interoperability. Maybe we also need a "Facility for Interoperability Testing" (FIT)
aiding modellers/developers in delivering interoperable models, tools and services which
can be used together. This may be covered by adequate meta-data. Checking the model
and tools interfaces we can see whether models/tools/policies are interoperable.

5. The ability of using remote sensing data to calibrate and validate spatial models This is
related to the “quality issue”, but also to type of model. Within the meta-data set there
must be information about this; whether it is an aggregated, point-base model, or a
distributed. If we want to strictly address the issue of GIS models, there is a need for
specific technical documentation. It may come in a later stage.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 23 of 49

4 A comparison of existing modelling frameworks
During the meeting a list of 18 requirements emerged, which are listed and discussed in
relation to the various suggested software solutions in Appendix 1. How should we prioritise
these requirements?

Adopting the MoSCoW scheme (Must have, Should have, Could have, Would have) the
requirements have been listed in descending order of number of votes received in the
meeting. This voting highlighted the aspects thought to be important, but does not necessarily
reflect the urgency with which the requirement should be or can be implemented.

 Requirement MSCW Priority

1 Uses declarative approach (formal representation of equations) for
language independent model description (XML)

M-C 8

2 Knowledge-based support for modelling (e.g. advises users where
coupling is appropriate)

M 8

3 Framework software is open source (e.g. GPL) M 4

4 Allows for quantitative (static, dynamic, stochastic, deterministic,
descriptive, explanatory…), qualitative and conceptual components

M 4

5 Supports both open and closed source submodels and tools M 3

6 Version control for framework, components and scenarios M 3

7 Facilitates self-documentation M 2

8 Supports model and software quality checking M 2

9 Allows web-based deployment of models and tools C 2

10 Supports a variety of different users M 2

11 Provides repositories for: a) data / models; b) solvers; c) knowledge M 1

12 Provides a benchmarking environment M 1

13 Portable between Linux and Windows M 1

14 Allows development of packaged, customised applications M 1

15 Reusable outside the framework M

16 Can handle an evolving ontology (tag definitions) M

17 Allows web-based publication of models and tools M

18 Allows specialised interactions between components (e.g. by using a
workflow environment)

M

On the basis of the above list of requirements, we selected four modelling frameworks
(TIME, Modcom, IMA, OpenMI) and, with the help of the framework developers and
supplemental material such as journal and conference papers, we checked how each one of
the framework addressed the requirements.

This screening phase will be useful in extracting relevant design ideas and possibilities of
software reuse in the design phase of SEAMFRAME.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 24 of 49

4.1 TIME – The Invisible Modelling Environment

The Invisible Modelling Environment (TIME) is a new environmental modelling framework
being developed within the Catchment Modelling Toolkit project in the CRC for Catchment
Hydrology. TIME differs from existing modelling frameworks in a number of ways,
particularly in its use of metadata to describe and manage models as well as the flexibility
given to model developers to ‘pick and choose’ the components of TIME relevant for a given
project. Functionality that is embedded as part of a monolithic core in other frameworks is
included in applications under TIME on an as-needed basis using optional, interchangeable
components. This flexibility extends to components that manage data and models,
recognising that one approach does not necessarily fit all applications. TIME includes a
number of small framelets supporting extension in key areas such as data representation and
visualisation. All fundamental data types, such as rasters and time series, are defined within
the data framelet, which supports the definition of new, compatible data types. The
visualisation framelet allows the definition of ‘layers’, each providing a visual representation
of some type of data, such as rasters or polygons. Multiple layers can be placed on a single
‘view’, such as overlaying a polygonal map on a raster. Views can be surrounded by
‘decorators’ such as axis and titles, each of which can be combined independently. TIME
includes a number of tools, which operate generically on models, including an automatic user
interface generator and various model optimisation tools. TIME is developed on the
Microsoft .NET platform and supports the development of models in a variety of languages,
including Visual Basic.NET, Fortran 95.NET, C# and Visual J#. TIME is currently being
used to develop a range of modelling applications, including a library of rainfall runoff
models and a model supporting assessment of stream ecosystem health under various flow
scenarios.

4.1.1 Requirements matching

1. Uses declarative approach (formal representation of equations) for language
independent model description (XML)

No. The model description (such as input and output definition, variable naming), is
handled through formal metadata specification. Given that TIME is implemented in .NET
it supports multi-language development, but it is up to the modeller to adopt a
programming style as close as possible to declarative modelling.

2. Knowledge-based support for modelling (e.g. advises users where coupling is
appropriate)

Not implemented, but the integral use of model metadata within the TIME environment
supports the analysis of proposed model links through matching of data types. The
lightweight architecture of the TIME core/kernel has the potential to support any
knowledge-based model support system that can be expressed in model metadata.

3. Framework software is open source (e.g. GPL)

The CRCCH (Co-operative Research Centre on Catchment Hydrology) has a federal
government requirement to assess the commercial potential of any CRC products.
However, it is the intention of the CRCCH to distribute as much as possible of the system
under an open source agreement.

4. Allows for quantitative (static, dynamic, stochastic, deterministic, descriptive,
explanatory…), qualitative and conceptual components

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 25 of 49

Yes. The TIME architecture has been designed to flexibly support a range of modelling
methods and approaches. In line with CRCCH needs, the current models developments
are almost entirely quantitative.

5. Supports both open and closed source submodels and tools

Yes. Through multi-language support and the capabilities of the .NET system, TIME
supports linking with compatible open and closed sources models and tools. In addition,
a proposed development in cooperation with the European Open Modelling Interface
(OpenMI) (www.harmonit.org) will increase the linking capabilities of TIME with a
range of European hydraulic and hydrological models.

6. Version control for framework, components and scenarios

Framework and component development uses CVS for version control. No formal
control of scenarios has been implemented.

7. Facilitates self-documentation

Yes. The metadata capabilities of both TIME and .NET support a reasonable level of
self-documentation (assuming developers provide correct metadata and required fields
when coding).

8. Supports model and software quality checking

No formal method for model and software quality checking has been constructed within
the TIME environment.

9. Allows web-based deployment of models and tools

Yes. Models and tools will become progressively available from www.toolkit.net.au
over the next three years.

10. Supports a variety of different users

Yes. Five major user types have been considered during the requirements analysis.

11. Provides repositories for: a) data / models; b) solvers; c) knowledge

a) yes. The toolkit website has been identified as the primary repository.

b) TIME supports pluggable solvers, but at present no specific solver repository is
available within TIME. However, these would be handled similarly to a), above.

c) An information management system is under development, and a "toolkit assistant"
that will act as the primary model knowledge system.

12. Provides a benchmarking environment

No. Benchmarking tools have been used for TIME development, but little development
has been undertaken for model benchmarking.

13. Portable between Linux and Windows

.NET is currently Windows based. Open source development of the Linux equivalent
(Mono www.go-mono.com)) offers potential for Linux deployment.

14. Allows development of packaged, customised applications

Yes. The component-based approach used with TIME supports development of tailored
user interfaces for collections of components linked together to form specific modelling
solutions.

15. Models are reusable outside the framework

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 26 of 49

Generally, TIME components (packaged as DLLs) are not reusable, unless the whole of
TIME core is provided.

16. Can handle an evolving ontology (tag definitions)

Not at present, but it will be possible through evolution of TIME metadata definition and
utilisation.

17. Allows web-based publication of models and tools

Yes. See (9) above.

18. Allows specialised interactions between components (e.g. by using a workflow
environment)

TIME supports the development of tailored components interactions through metadata
manipulation.

4.1.2 Potential contribution to SEAMLESS

TIME is the result of many years of research and development by Australia’s Co-operative
Research Centre for Catchment Hydrology. Despite being focused on catchment modelling,
the underlying ideas make it a source of inspiration for SEAMLESS. The fact of not being
open-source hinders the reuse of the software code. Had it been possible, a number of data
manipulation and visualization tools would have been available to SEAMLESS. The smart
use of introspection (the ability to discover the software property within the program itself)
will make it possible to develop SEAMLESS software components to be re-used in TIME
and possibly vice-versa.

4.1.3 Contact details

Robert Argent (Project Leader) R.Argent@unimelb.edu.au

Joel Rahman (Software Engineer) Joel.Rahman@csiro.au

Cooperative Research Centre for Catchment Hydrology (CRCCH)

Hyperlink: www.catchment.crc.org.au

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 27 of 49

4.2 IMA: the Integrating Modelling Architetcture

The IMA derives its power and generality from adopting the semantics of the natural entities
represented (e.g. economic value, biomass, or nitrogen flow) as opposed to that of the
execution workflow that calculates the desired results. The most general representation of a
modeled entity in the IMA is a tree of interconnected modules, each corresponding to a
precisely identified object of study. The declaration of each module can include an
observation context that encompasses all aspects connected to scaling, such as granularity and
extent in space and time, and can be manipulated by the investigator or by the system when
mediating across different, compatible representations used together.

4.2.1 Requirements matching

1. Uses declarative approach (formal representation of equations) for language-
independent model description (XML).

Yes. The IMA is a modular, extendible object system where both classes and objects are
specified in XML. XML-specified modules can represent data, models, optimisers,
algorithms.

2. Knowledge-based support for modelling (e.g. advises users where coupling is
appropriate).

Yes. The IMA’s primary goal is to give modellers the ability of using the bare conceptual
bones of the problems while promoting a design discipline that automatically enforces
constraints of semantics, space, time, and other applicable domains (e.g. consistency in
measurement protocols or bibliographic source) - as well as the obvious constraints of
storage type and units. Modules are tagged with semantic types (pointers into formally
specified ontologies) and contain domain objects that represent cross-cutting aspects
related to observation (space, time). Compatibility between all these is automatically
enforced by specialised interfaces built over a common API. Domain types and
ontologies can be added to the system in a plug-in fashion. The permanent storage
functionalities and database interfaces have the ability of retrieving only semantics- and
domain-compatible objects that will fit a precise role in an existing model structure. The
domain functionalities are developed in the core engine and under implementation in the
time and space domains. The semantic type functionalities are under development.

3. Framework software is open source (e.g. GPL).

Yes. Everything in the IMA is covered by the GPL, and there is no functionality that
requires the use of closed-source software. This has been a main design goal for the IMA.
All extensions use open source software (Mapserver/GEOS for GIS, R for statistics,
PostgreSQL for permanent storage) although they can be implemented with commercial
solutions if required.

4. Allows for quantitative (static, dynamic, stochastic, deterministic, descriptive,
explanatory…) qualitative and conceptual components.

The IMA supports multiple modelling paradigms and is not by any means limited to
equations as a way to describe a model. For modules whose specification requires
equations (e.g. those whose state is calculated by integrating a differential equation),
these can be specified entirely in XML if desired, although it is normally more intuitive
to use some sort of expression of programming language. The IMA supports a full-
fledged, object-oriented programming language and has plug-in support for other
languages (Scheme, Javascript, Python, C/C++). Currently the modules implementing
difference equation modelling, the STELLA importer (and probably the Simile importer

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 28 of 49

that will be developed) use CDATA sections and the internal IMA language compiler
rather than MathML or other XML-based ways to express the equations. Supporting
MathML if required would require very little effort.

5. Supports both open and closed source submodels and tools.

Yes. Everything in the IMA can be plugged in as an extension and all software with a C
API can be used. One specialised class of objects handles interaction with closed
executables, through proxy objects that range from command line drivers to
CORBA/COM peers for enabled components. This allows legacy programs to be given
the necessary semantic characterisations and wrapped at the executable level, becoming a
component of a larger-scale model implemented in the IMA.

6. Version control for framework, components and scenarios.

Under development. The permanent storage interface allows version control and
specialised, XML-specified “difference” objects are planned that can be applied to other
objects to modify them. This is a central feature to enable a “bulletin-board” approach
where the objects of discussion are actual data and models.

7. Facilitates self-documentation.

Yes. The core IMA engine has a template-based self-documentation system that uses
templates to enable self-documentation of objects in formats such as HTML, text, or
LaTeX. This system is currently used for all web-enabled database applications based on
the IMA. Plug-in support for MIME types can be also plugged in on a class-specific
basis. This feature is used to allow objects to intelligently select their proper multimedia
representation given a MIME type (e.g. spatial objects will generate GIS maps, temporal
objects will generate timeseries graphs, and spatio-temporal objects will generate
animated maps, all as an answer to the same request for a image/png).

8. Supports model and software quality checking.

Under development. Storing accuracy information along with data and model is a crucial
feature in an environment that allows arbitrary composition of data sources and
processing algorithms (with associated compounding of error) and allows automatic
rescaling of differently scaled information (with associated transformation error). Such
features are not implemented in the IMA at this time.

9. Allows web-based deployment of models and tools.

Yes. This is a core requirement for all the projects that the IMA is currently employed in.
A specialised IMA runtime runs as a multi-user server and a CGI IMA client allows full
control of an IMA object database and hierarchy through the web. The self-
documentation engine does the rest, allowing complete deployment of models, data, and
analysis tools.

10. Supports a variety of different users.

Yes. IMA-enabled applications can be used as simple databases from the Web while
modellers can use the IMA as an XML modelling tool and runtime environment.
Different runtimes can be created very simply using policy-based design, supporting
batch modelling, client/server interaction, or GUI interaction (currently not
implemented).

11. Provides repositories for a) data/models; b) solvers; c) knowledge.

The IMA runtime has a virtual repository interface that uses XML-specified views and
queries. It has been currently implemented on top of PostgreSQL out of consideration of
stability, open source and availability of specialised spatial operator. All of the three

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 29 of 49

classes of objects mentioned in the requirement map into representational categories
handled by the IMA and its permanent storage system.

12. Provides a benchmarking environment.

Not available. In general the explicit semantics of IMA modules allows many metrics to
be calculated on them (e.g. the runtime system can estimate the resource requirements of
a model by its representation, and enforce hard constraints on it before trying to allocate
and run it).

13. Portable between Unix and Windows.

Yes. The IMA is written in ANSI C++ and has no dependence on particular OS
architectures. All the development so far has been done on Linux.

14. Allows development of packaged, customized applications.

Under development. IMA models can be executed by a runtime and it’s easy to package a
model with its own runtime system. A feature in development is the translation of a
whole model into C language for compilation and delivering as an executable.

15. Reusable outside the framework.

Yes. IMA modules are executed by a runtime that can assume many different forms and
be hosted on a local computer or a server. Policy-based software design allows the
runtime operation to be redefined in a very simple way.

16. Can handle an evolving ontology (tag definition).

Under development. IMA modules can be tagged with semantic types that point to
specific ontologies. The issue of tracking evolving ontologies without losing semantic
integrity is, anyway, extremely tricky. The SEEK project (http://seek.ecoinformatics.org)
has a Semantic Mediation and a Knowledge Representation working group that is
discussing how to deal efficiently with evolving semantics.

17. Allows web-based publication of models and tools.

Yes. the model repository can be easily accessed from the web.

18. Allows specialised interactions between components (e.g. by using a workflow
environment).

Yes. The IMA is a workflow environment by its own nature, and it has close
relationships to Kepler (http://kepler.ecoinformatics.org/) and Ptolemy II
(http://ptolemy.eecs.berkeley.edu/ptolemyII/).

4.2.2 Potential contribution to SEAMLESS

IMA is a design, and parts of it have been implemented in IMT (Integrated Modelling
Toolkit). IMA and IMT are highly relevant to SEAMLESS since many of the fundamental
requirements are covered by IMA. A first assessment sees in the declarative modeling
capabilities of IMA the most interesting features, together with the ability to combine tools
and models in workflows. Finally, the knowledge base of SEAMLESS would benefit from
being inspired by IMA.

4.2.3 Contact details

Ferdinando Villa, Project Leader (ferdinando.villa@uvm.edu)

Ecoinformatics Collaboratory, Gund Institute for Ecological Economics

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 30 of 49

University of Vermont, USA

Hyperlink: http://www.sf.net/projects/imt.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 31 of 49

4.3 Modcom

MODCOM’s central concept is that of well-defined, self-describing component models,
either written specifically for MODCOM or included through an adapter. A MODCOM
simulation is constructed as a collection of interconnected components. MODCOM’s
component architecture provides a robust base for building flexible, domain-specific tools for
such tasks as visual construction of components and simulations, specification of spatial
relationships, and optimisation.

The MODCOM core functionality has been implemented. A number of agro-ecological
process components have been developed. Two tools for visual construction of simulation
models have been recently developed.

4.3.1 Requirement matching

1. Uses declarative approach (formal representation of equations) for language
independent model description (XML)

No. MODCOM components are defined at the binary level; such components can be
written in a declarative language just as well as in Fortran, C/C++ or Java. It is anyway
possible to automatically convert a Simile declarative model into a MODCOM
component.

2. Knowledge-based support for modelling (e.g. advises users where coupling is
appropriate)

Not available.

3. Framework software is open source (e.g. GPL)

Yes. The MODCOM source code is fully available.

4. Allows for quantitative (static, dynamic, stochastic, deterministic, descriptive,
explanatory…), qualitative and conceptual components

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 32 of 49

MODCOM allows quantitative components. Extensions might be required for qualitative
components.

5. Supports both open and closed source submodels and tools

MODCOM is written in C++ on the Microsoft COM platform and a .NET version is
under development. The source code of a model, written in C# or in C++ can be made
explicit, or packaged in a binary component.

6. Version control for framework, components and scenarios

The MODCOM framework is available under concurrent version control (CVS). Models
can also be distributed under the versioning system, but there are no facilities for data and
scenario handling.

7. Facilitates self-documentation

MODCOM components are defined at the binary level; MODCOM wants components to
do their job but doesn’t care how they do it. A component could make available the
specification of the model it represents and documentation could be generated from that.

8. Supports model and software quality checking

A component could provide information about valid ranges for inputs; a checking
component could be written to signal when those ranges are exceeded. A component
could make available the specification of the model it represents; checks could be made
on the basis of it.

9. Allows web-based deployment of models and tools

Currently no facilities, but MODCOM-based components and tools could be deployed
through the Web.

10. Supports a variety of different users

Presently the model coder, who writes source code, and the model runner.

11. Provides repositories for: a) data / models; b) solvers; c) knowledge

Not currently. These tools are envisioned in a future release.

12. Provides a benchmarking environment

Not currently. Envisioned in a future release.

13. Portable between Linux and Windows

MODCOM is currently under porting to the .NET environment, for which a runtime
environment is also available on Linux.

14. Allows development of packaged, customised applications

Yes. Assembling models and components allows to create specialised applications,
targeted for a particular usage.

15. Reusable outside the framework

MODCOM models fully depend on the Modcom framework, in the same way as TIME
models.

16. Can handle an evolving ontology (tag definitions)

Not currently supported.

17. Allows web-based publication of models and tools

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 33 of 49

Currently no facilities, but MODCOM-based components and tools could be deployed
through the Web.

18. Allows specialised interactions between components (e.g. by using a workflow
environment)

Yes, but it is up to the programmer to define the flow of the logic in the source code of an
application which uses the MODCOM framework.

4.3.2 Potential contribution to SEAMLESS

MODCOM has many contact points with TIME. It can be considered a modeling and
simulation framework and it has the advantage of having been thought for agro-ecological
models from the beginning. For instance, MODCOM can combine discrete and continuous
simulation paradigms to handle management events during biophysical simulations.

MODCOM is also open-source and this grants for its full re-use within SEAMLESS.

On the down side, MODCOM has not a fully developed suite of applications (or framelets) as
TIME and therefore adapting it for use to simulate biophysical models will be more labour
intensive.

4.3.3 Contact details

Frits van Evert (frits.vanevert@wur.nl)

Plant Research International

Wageningen University, NL

Hyperlink: http://www.modcom.wur.nl

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 34 of 49

4.4 OpenMI

OpenMI stands for Open Modelling Interface and Environment, a standard for model linkage
in the water domain. OpenMI is born as a product of the HarmonIT project, which aims at
providing an infrastructure to unify and link models and tools for catchment management at a
European scale. OpenMI consists of a set of software interfaces that allow new and existing
models to interact with each other, with sources of data and with instruments and tools for the
display and analysis of data.

In OpenMI a model can be regarded as an entity that can provide and/or accept data. OpenMI
is based on direct access of the model at runtime, thus not using files for data exchange. A
model is therefore implemented as a component, which can be accessed through a standard
interface.

Parts of this review are based on the official OpenMI documentation, on an internal document
provided by Alterra (Critical assessment of Open MI), and on a Review of OpenMI
architecture reports A & B, by Dr Hamish Harvey
(http://www.cen.bris.ac.uk/pgra/dph/publications/2003-05-28-openmi1.pdf).

4.4.1 Requirements matching

1. Uses declarative approach (formal representation of equations) for language
independent model description (XML)

No. OpenMI is aimed at connecting existing models, which are ‘black-boxes’ wrapped
up in a standard interface.

2. Knowledge-based support for modelling (e.g. advises users where coupling is
appropriate)

Not implemented. Matching model interfaces and model composition is greatly enhanced
by adopting the common OpenMI interface, but model teleology and semantics are not
presently supported.

3. Framework software is open source (e.g. GPL)

The OpenMI software is supposed to be distributed as open-source.

4. Allows for quantitative (static, dynamic, stochastic, deterministic, descriptive,
explanatory…), qualitative and conceptual components

The OpenMI interface is neutral with respect to the adopted modelling paradigm, since it
concentrates on the data exchange. Yet, values are crisp and they are quantitative.

5. Supports both open and closed source submodels and tools

Yes. A model can be an opaque black-box, which simply implements the OpenMI
interface, but a model can also be structured according to a ‘template’ provided by a
class, which has methods such as initialise, and get_values, that contain the model code.
The modeller is free to customise these methods and develop his/her own model
implementation.

6. Version control for framework, components and scenarios

Not implemented.

7. Facilitates self-documentation

Yes. Each model has a description and an ID to facilitate model archival and retreival.

8. Supports model and software quality checking

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 35 of 49

No formal method for model and software quality checking has been constructed within
the OpenMI environment.

9. Allows web-based deployment of models and tools

This wasn’t the focus of the development, but, being models implemented as
components, it is easy to transform them into web services.

10. Supports a variety of different users

It supports model developers and model linkers. Finished applications, based on the
OpenMI architecture, can be targeted to the end-users.

11. Provides repositories for: a) data / models; b) solvers; c) knowledge

While modelling knowledge is not explicitly supported, models can be stored for later
usage, and the same holds for data visualisation and analysis tools.

12. Provides a benchmarking environment

Not available.

13. Portable between Linux and Windows

OpenMI is available in C# (runs on the .NET framework) and in Java, which runs on
multiple platforms.

14. Allows development of packaged, customised applications

Yes. The component-based approach allows to package applications linking sub-models.

15. Models are reusable outside the framework

OpenMI reuses models provided by other frameworks. A model implementing the
OpenMi interface can be re used by another framework which is compliant with that
interface.

16. Can handle an evolving ontology (tag definitions)

The semantic annotation of model inputs and outputs is not available. Still there are three
interfaces to describe what’s returned from an OpenMI model
IQuantity/IUnit/IDimension. OpenMI provides a warning mechanism that kicks in when
things are obviously wrong. The terms “unit” and “dimension” are being used loosely.

17. Allows web-based publication of models and tools

Not explicitly, but it is easy to implement.

18. Allows specialised interactions between components (e.g. by using a workflow
environment)

The OpenMI pull architecture favours model linking and reuse and components can be
combined in a variety of ways. The OpenMI pull-model is expected to impose the least
amount of restrictions in linking models: quantities are ‘pulled’ from models, which ask
other models to provide what they need.

4.4.2 Potential contribution to SEAMLESS

OpenMI, as TIME, was originally intended for integrating catchment hydrology models. The
basic principle behind OpenMI is that hydrological models are big, complex applications, and
we therefore need a software framework to handle the hand over of data from application to
application, not limiting to a simple pipeline, but also allowing for feedback loops. While
OpenMI remains a framework for application linking, it also becomes very interesting to

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 36 of 49

provide a layer for integration of different SEAMLESS applications at various levels of scale,
such as Economic Models ate the European scale, with Farm-Economic models at the
regional scale, and biophysical models at the field scale.

4.4.3 Contact details

Hyperlink: www.openmi.org

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 37 of 49

References
Antoniou, G., Van Harmelen, F. 2004. A Semantic Web Primer. The MIT Press, Boston.

Beck, K. 2000. Extreme Programming explained : embrace change. Addison-Wesley, Boston.

Beck, K. 2002. Test Driven Development – by Example. Addison-Wesley, Boston.

Brooks, F. P.. 1987. No silver bullet: essence and accidents of software engineering.
Computer 20 (4), 10-19.

Durkin, J. 1994. Expert Systems: Design and Development. Prentice-Hall International,
London.

Gamma, E, Helm, R. Johnson, R., Vlissides, J. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Boston.

Jorgensen, P.C., Erickson, C. 1994. Object-oriented integration testing. Communications of
the ACM 37 (9), 30-38.

Ludaescher, B., Gupta, A., and Martone, M.E. 2001. Model-based mediation with Domain
Maps. In: Proceedings of 17th Intl. Conference on Data Engineering (ICDE), Heidelberg,
Germany, IEEE Computer Society.

Pezzè, M., Young, M. 2004. Testing Object-Oriented Software. In: Proceedings of the 26th
International Conference on Software Engineering. pp. 739 – 740. ISBN ~ ISSN:0270-5257 ,
0-7695-2163-0

Meyer, B. 1992. Applying design by contract. Computer 25 (10), 40-51.

Muetzelfeldt, R., Massheder, J. (2003) The Simile visual modelling environment. European
Journal of Agronomy, 18: 345-358.

Szyperski, C., Gruntz, D., Murer, S. 2002. Component Software: Beyond Object-Oriented
Programming, 2nd Edition. ACM Press, New York.

Villa, F. 2001. Integrating modelling architecture: a declarative framework for multi-
paradigm, multi-scale ecological modelling. Ecological Modelling 137, 23-42.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 39 of 49

Glossary

Application: it is a software package obtained from the modelling environment. An
application includes a custom GUI and it includes several components.

Architecture: Blue-print and styles to define structure;

Component: it is a model of a physical piece of the system being built. For example, source
code files, DLL's, Java beans and other discrete pieces of the system may be represented as
components. By building the system in discrete components, localisation of data and
behaviour allows for decreased dependency between classes and objects, providing a more
robust and maintainable design. Components may be either models or tools/utilities.

Declarative code: computer code where the order of the statements is not relevant for its
execution. Declarative code contains the model equations, but it does not tell how to compute
a result using the equations. Modelling is an activity well suited to be described with
declarative code.

Imperative code: computer code that explains how to solve a problem, following a
unambiguous and definite sequence of steps. Imperative code processes declarative code.
Simulation is an activity which requires imperative code.

Integrated framework: an application which allows the evaluation of agricultural systems
accounting for technical, environmental, economic and social indicators. One or more
integrated frameworks will be the main deliverables of the integrated project.

Model: focused simplification of (a phenomena or process in) the real world;

Modelling environment: a software which allows developing components and applications.
The modelling environments contains components which include a GUI for either component
or application development.

Legacy model: a model, often packaged in an application, inherited from someone else.

Modelling framework: the kernel component for static and dynamic model components use.

Ontology: it is a specification of a conceptualisation. Once a modeling exercise has defined
all the variables and relationships existing in a given model, this information can be stored in
an ontology. There are many languages which can be used to represent an ontology, but
RDFS/OWL is one of the most common since, being based on XML, it can be easily
processed by computers.

Project: when referred in the use cases of the user Application/component developer (see
below) a project is either a component or a system model which includes several components.
When the user is a farmer or a policy maker, a project is the use of an application in specific
conditions (a farm, a region etc.)

Programming interface: a set of component interfaces, packaged in a binary object together
with their implementations, with the necessary documentation to reuse them in a software
application.

Proprietary model: a model for which the rights to access, use and inspect its code are limited
by Intellectual Property Rights.

Simulation: monitoring dynamics of attributes (in time and/or in space);

Software framework: productivity tool(box) to assemble components using architecture

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 40 of 49

Open Source: software code for which you have complete access to the source code.
Moreover, the source is freely usable and re-distributable under a license agreements such as
GPL (Gnu Public License), LGPL and so on;

System: a portion of the real world, with clearly defined borders, described both in a static
and dynamic fashion by models

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

 Page 41 of 49

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page i of viii

Appendix 1. SEAMLESS requirements and suggested solutions

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

1 Uses declarative
approach (formal
representation of
equations) for
language independent
model description
(XML)

M
-
C

8 2 Simile has been developed
specifically as a proof-of-concept
demonstrator for a declarative
modelling approach. Models are
saved in an open text format:
currently Prolog; we have a
prototype converter to and from
XML.

Yes / no. FIW is not explicitly
build to support language
independent model
descriptions.

You can however use wrapper
around models that do.

Yes / no. GF uses
XML to specify
model meta-data. In
this specification,
only simple meta-
data is provided to
support the
registration of the
model within the GF.

Python provide tools for
meta-modelling (AtoM3,
Basil).

To define our own
declarative approach we have
to:

1 Design a language
(mathematical
modelling)

2 Define an
“Agronomic
Markup language”.
AML (like XML or
CML) might be
though of as HTML
with some
agronomy added.

3 Use parsers
available from
python: PyXML.
These parsers will
generate abstract
syntax trees that are
expressed in AML.
AML will allow
back end
development in
multiple
environments due to
the ease and
ubiquity of AML
parsing.

Develop an engine to link
together SEAMLESS
components from the abstract
language directives.

Our GCF (general coupling
framework, see
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl) system supports
and promotes the flexible
composition and deployment of
coupled models. It uses XML to
capture metadata describing (GCF-
compliant - see below) models
which are to be composed together,
composition information describing
how models will be coupled (in
terms of their input and output
requirements) and information
regarding the required deployment
on (an appropriate set of)
computational resources and
communication mechanisms.

YES. The IMA is a modular,
extendible object system where
both classes and objects are
specified in XML. XML-specified
modules can represent data,
models, optimizers, algorithms.
Class implementers have a choice
to leave some, all or none of the
specification expressed as
procedural or functional language
fragments enclosed in CDATA
sections. The IMA supports
multiple modelling paradigms and
is not by any means limited to
equations as a way to describe a
model. For modules whose
specification requires equations
(e.g. those whose state is calculated
by integrating a differential
equation), these can be specified
entirely in XML if desired,
although it is normally more
intuitive to use some sort of
expression of programming
language. The IMA supports a full-
fledged, object-oriented
programming language and has
plug-in support for other languages
(Scheme, Javascript, Python,
C/C++). Currently the modules
implementing difference equation
modelling, the STELLA importer
(and probably the Simile importer
that will be developed) use
CDATA sections and the internal
IMA language compiler rather than
MathML or other XML-based ways
to express the equations.
Supporting MathML if required
would require very little effort.

MODCOM components are defined
at the binary level; such
components can be written in a
declarative language just as well as
in Fortran, C/C++ or Java.
Interaction with Robert
Muetzelfeldt in May and December
2002 resulted in a proof-of-concept
for the (automatic) translation of a
Simile model to a MODCOM
component.

TIME supports multi-
language development
within the .NET framework.
Any requirements for model
description (such as input
and output definition,
variable naming), are
handled through formal
metadata specification and
utilisation.

2 Knowledge-based
support for modelling
(e.g. advises users
where coupling is
appropriate)

M 8 3 None at the moment. In the past
we have developed a prototype
built-in tutorial system, controlled
by a marked-up tutorial file (which
can be generated automatically
from any Simile model). Also,
strong links with AI going back 20
years on knowledge-based support

Yes. FIW contains domain
specific ‘Model element’. The
couplings between Model
elements are predefined. It is
easy to define new model
elements and to specify
allowable couplings.

No. Model
applications have
Accepting attributes
and Providing
Attributes. System
builders can connect
any providing
attribute to any

Currently, we have
developed amap-e-learning,
an e-learning platform to
accelerate knowledge
transfer and facilitate
learning AMAP
technologies. There are

Currently, our framework focuses
on the mechanics of coupling
models together and leaves the
issues of scientific and numeric
compatibility to the developer. We
are aware of these issues and have
submitted a grant proposal to
investigate how far the capturing

YES. The IMA’s primary goal is to
give modellers the ability of using
the bare conceptual bones of the
problems while promoting a design
discipline that automatically
enforces constraints of semantics,
space, time, and other applicable
domains (e.g. consistency in

Currently not, but this is
envisioned to take place in layer 4
of the diagram below.

Caveat: enabling knowledge-based
modeling support in MODCOM
would not be difficult, but
developing the expertise to support

The integral use of model
metadata within the TIME
environment supports the
analysis of proposed model
links through matching of
data types. The lightweight
architecture of the TIME
core/kernal has the potential

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page ii of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

for modelling (the ECO project). accepting attribute. courses, mailing lists, … and incorporation of appropriate
metadata can help with this
problem (with appropriate domain
experts).

measurement protocols or
bibliographic source) - as well as
the obvious constraints of storage
type and units. Modules are tagged
with semantic types (pointers into
formally specified ontologies) and
contain domain objects that
represent cross-cutting aspects
related to observation (space, time).
Compatibility between all these is
automatically enforced by
specialized interfaces built over a
common API. Domain types and
ontologies can be added to the
system in a plug-in fashion. The
permanent storage functionalities
and database interfaces have the
ability of retrieving only semantics-
and domain-compatible objects that
will fit a precise role in an existing
model structure. The domain
functionalities are developed in the
core engine and under
implementation in the time and
space domains. The semantic type
functionalities are under
development.

knowledge-based modeling would
be a major effort.

to support any knowledge-
based model support system
that can be expressed in
model metadata.

3 Framework software
is open source (e.g.
GPL)

M 4 2 At the moment, the core Simile
software is partly compiled Prolog,
and partly interpreted Tcl/Tk (text
files, but not licensed as open
source). However, any user can
add their own input/output, display
and run control tools ('helpers') in
Tcl/Tk. Also, models themselves
are totally open (see 1 above).

Note: In the pure declarative
modelling paradigm, there is no
'framework software'. There are
only various documents
(models/submodels plus various
additional files such as scenario
files and interface spec files), plus a
collection of tools. Some tools may
be gathered together to make a
'framework software' package, but
this is not a necessary characteristic
of the approach.

No. Source is available under
conditions.

No. Source is
available under
conditions.

LGPL is better than GPL
because you can mix open
source and close source
together.

Currently a version of the GCF
system is available freely for
academic use (see the web page
above). Our University does not
object to the software being made
open source (probably under
LGPL) at an appropriate time.

YES. Everything in the IMA is
covered by the GPL, and there is no
functionality that requires the use
of closed-source software. This has
been a main design goal for the
IMA. All extensions use open
source software (Mapserver/GEOS
for GIS, R for statistics,
PostgreSQL for permanent storage)
although they can be implemented
with commercial solutions if
required.

Yes. Versioned source code is
available at
http://137.224.191.13/cgi-
bin/cvsweb.cgi/

The CRCCH has a federal
government requirement to
assess the commercial
potential of any CRC
products. However, it is the
intention of the CRCCH to
distribute as much as
possible of the system under
an open source agreement.
Licensing arrangements will
be clarified over the coming
months.

4 Allows for
quantitative (static,
dynamic, stochastic,
deterministic,
descriptive,
explanatory…),
qualitative and
conceptual

M 4 1 Yes to all the above. Models begin
life as flow/influence diagrams
("conceptual models"), and can be
incrementally instantiated. Simile
also supports qualitative variables
(soil=clay/sandy/loam).

Yes. Any component that can
produce values, can be used as
a model for FIW.

Yes. Any component
that can produce
values, can be used
as a model in the GF.

Yes. Python will be used as a
software bus to link multi-
language components
together (C, C++, Fortran,
Java, Python, R/Splus,
Matlab, …). Automatic
wrappers are build from
binary code and API. Unit

In principle any type of model is
supported. The system is flexible.
The current system has been
developed with iterating/time-
stepping scientific models in mind
and "GCF compliance" is achieved
by simply including calls to
primitive put() and get() routines. If

YES. See point 1 for issues of
modularity. Supporting a new
modelling paradigm requires
writing the correspondent XML
class definitions and possibly some
support methods using the C++
API.

Yes. Yes. The TIME architecture
has been designed to flexibly
support a range of modelling
methods and approaches. In
line with CRCCH needs, the
current models developments
are almost entirely

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page iii of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

components test and documentation is
added manually or semi-
automatically. So, we can use
quickly existing components
for quantitative, qualitative
and conceptual modelling.

this is unacceptable, we have
techniques which enable models to
be "wrapped" in a transformation
wrapper which converts a models
output to the required put() and
get() model (dealing with any
control issues – relating to whether
the data exchange mechanism is a
"push" or "pull" model. These have
relatively simple control
requirements. Models are
composed using a dataflow
approach. We are currently
investigating handling more
complex control structures.

quantitative.

5 Supports both open
and closed source
submodels and tools

M 3 2 Since Simile is a representative
proof-of-concept demonstrator for
declarative modelling, text is the
natural format for representing
models. This is intrinsically open-
source, both for viewing and for
editing. No doubt it is possible to
engineer particular fixes (such as
digital signatures) for particular
software tools, but these would be
specific to those tools. It would
also be possible to have a
declarative modelling approach that
supports binary/encrypted files, but
it would not, I think, get much
support from tool developers and is
certainly against the spirit of
declarative modelling.�Simile
tools (input/output, display, run
control) are written in Tcl/Tk, an
interpreted language. They are
thus open-source-viewable.
Currently, they are not licensed for
open-source-editing. There is no
restriction on any Simile user
developing their own tools.

Yes. Models can be delivered
as a dynamic link library or
executable or directly
implemented in an FIW
application.

Yes. Model
applications can be
provide as DLL or
EXE. For each
application a
wrapper has to be
written to make the
application available
to the framework.

Yes.

Python is freely usable and
distributable, even for
commercial use. Components
are loaded dynamically so
closed source submodels can
be used with open source one
with respect of open source
license requirement.

In principle both open and closed
source models are allowed - see
point 4.

YES. See point 4 and 1. Everything
in the IMA can be plugged in as an
extension and all software with a C
API can be used. One specialized
class of objects (working in
previous versions, will need some
work to update) handles interaction
with closed executables, through
proxy objects that range from
command line drivers to
CORBA/COM peers for enabled
components. This allows legacy
programs to be given the necessary
semantic characterizations and
wrapped at the executable level,
becoming a component of a larger-
scale model implemented in the
IMA.

Yes. Yes. Through multi-
language support and the
capabilities of the .NET
system, TIME supports
linking with compatible open
and closed sources models
and tools. In addition, a
proposed development in
cooperation with the
European Open Modelling
Interface (OpenMI)
(www.harmonit.org) will
increase the linking
capabilities of TIME with a
range of European hydraulic
and hydrological models.

6 Version control for
framework,
components and
scenarios

M 3 1 All aspects of Simile are suitable
for version control. (We make
extensive use of CVS in
Simulistics.)

No. The framework itself and
the applications written using
the framework, are stored in
CVS.

No. The framework
itself and the
application and
components are
stored in a Visual
Sourcesafe database.
Support is managed
by the company
MX-Systems in
Rijswijk (NL)

Yes. CVS (Concurrent
version system) is a widely
used system for open source
software. It is easy to use
(lots of GUI frontends) and
support many developers.

This issue is considered to be
external to the GCF itself. We
currently use CVS and our clients
also use CVS for their model code
(which is not in any sense "owned"
by the GCF system).

UNDER DEVELOPMENT. The
permanent storage interface allows
version control and specialized,
XML-specified “difference” objects
are planned that can be applied to
other objects to modify them. This
is a central feature to enable a
“bulletin-board” approach where
the objects of discussion are actual
data and models – one central goal
for the IMA and the projects it’s
currently at the center of.

Yes. Versioned source code is
available at
http://137.224.191.13/cgi-
bin/cvsweb.cgi/

Framework and component
development uses CVS for
version control. No formal
control of scenarios has been
implemented.

7 Facilitates self-
documentation

M 2 3 This is a major strength of
declarative modelling. The
combination of an ontology

No. It is not difficult to extend
FIW with reporting tools to
generate documentation about

No. Not supported. In the standard Python
library, there are several tools
to extract and process

The framework generator software
is basically Java and XML
processing technology so JavaDOC

YES. The core IMA engine has a
template-based self-documentation
system that uses templates to

MODCOM components are defined
at the binary level; MODCOM
wants components to do their job

Yes. The metadata
capabilities of both TIME
and .NET support a

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page iv of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

specifically developed for
modelling (compartments, flows,
submodels), plus user-supplied
labels ('biomass'), makes it
straightforward to automatically
generate meaningful descriptions
("the model has a compartment
called biomass"). Additionally,
extra markup can be provided for
any model element, and directly
associated with that element. A
demonstration HTML generator has
been developed for Simile models.

a used schematization. documentation and self-
documentation. For example,
Pythondoc is a tool like
Javadoc: it generate
documentation for source
code comment.

is a practical approach for
documenting the code. The XML
files describing the definition,
composition and deployment
(DCD) aspects can be viewed in
user accessible ways using tools,
for example, XMLSpy.

enable self-documentation of
objects in formats such as HTML,
text, or LaTeX. This system is
currently used for all web-enabled
database applications based on the
IMA. Plug-in support for MIME
types can be also plugged in on a
class-specific basis. This feature is
used to allow objects to
intelligently select their proper
multimedia representation given a
MIME type (e.g. spatial objects
will generate GIS maps, temporal
objects will generate timeseries
graphs, and spatio-temporal objects
will generate animated maps, all as
an answer to the same request for a
image/png).

but doesn’t care how they do it. A
component could make available
the (declarative?) specification of
the model it represents and
documentation could be generated
from that.

reasonable level of self-
documentation (assuming
developers provide correct
metadata and required fields
when coding)

8 Supports model and
software quality
checking

M 2 3 Simile's interactive model-design
environment contains numerous
tests for errors in model
development (e.g. equation syntax).
Additionally, a number of aids have
been developed to support
debugging of complex models
(such as mouse-over to show the
current value of any model element,
and a snapshot tool to freeze such
values). Other tools are being
planned. Also, any submodel can
be saved as a stand-alone model,
for independent testing. Software
(in the sense of code for model
execution) is automatically
generated: the source code is
available for inspection.

No. There are tools to generate
and visualize model output.

No. There are tools
to generate and
visualize model
output.

Python community provide
framework for quality
checking:

1. Unit test framework
(PyUnit, unittest or
doctest)

2. Source code
checking
(PyChecker, Pylint)

3. Python debugger (
pdb)

4. Python profiler
(profile)

Each components have to
provide interface
documentation and unit test
at least. Before each release,
we can check the quality of
the SEAMLESS platform by
testing all the components.

This is considered to be external to
the GCF system.

UNDER DEVELOPMENT.
Storing accuracy information along
with data and model is a crucial
feature in an environment that
allows arbitrary composition of
data sources and processing
algorithms (with associated
compounding of error) and allows
automatic rescaling of differently
scaled information (with associated
transformation error). Such features
are not implemented in the IMA at
this time, and one of the projects
where the IMA concepts are being
used (SEEK:
http://seek.ecoinformatics.org) has
a working group that is tackling
these complex issues.

MODCOM components are defined
at the binary level; at that level, one
is past the checking of model
and/or software quality. But there
are many ways in which quality
checks could be supported. A
component could provide
information about valid ranges for
inputs; a checking component could
be written to signal when those
ranges are exceeded. A component
could make available the
(declarative?) specification of the
model it represents; checks could
be made on the basis of it.

No formal method for model
and software quality
checking has been
constructed within the TIME
environment.

9 Allows web-based
deployment of models
and tools

C 2 3 Models can be deployed in XML.
A test version of Simile has
demonstrated that models can be
easily downloaded from the web by
clicking on a link. Indeed, a model
can be constructed in a minute or
two by clicking on submodels with
different URLs.

Tools (input/output, display and run
control) can be distributed as text
files (but not currently loaded by
clicking links).

No. FIW applications are self
contained, to add new models,
you have to extend the
application with new model
elements and attributes.

Yes. The generic
framework uses
registerable modules.

It is possible with Webware,

an open source suite of
software components for
developing object-oriented,
web-based applications.

The framework support flexible
deployment and Web/Grid services
is one of the deployment areas we
support. The flexibility allows a
composition of a set of GCF
models to be deployed on resources
ranging from a single machine,
through a dedicated parallel
machine through the Grid, using a
suitable mpi, through to Web and
eventually Grid services.

YES. This is a core requirement for
all the projects that the IMA is
currently employed in. A
specialized IMA runtime runs as a
multi-user server and a CGI IMA
client allows full control of an IMA
object database and hierarchy
through the web. The self-
documentation engine does the rest,
allowing complete deployment of
models, data, and analysis tools.

Currently no facilities, but I can’t
think of a reason why MODCOM-
based components and tools
couldn’t be deployed through the
Web.

Yes. Models and tools will
become progressively
available from
www.toolkit.net.au over the
next three years.

10 Supports a variety of
different users

M 2 2 Simile has been developed for
research-grade modelling.
However, its intuitive user interface
allows it to be used by total

Yes. Modelers extend the
application by programming.

System builders create

Yes. Modelers build
Model applications.

System builders can

Yes. No reason why not. This is really
an issue for the GUI or portal
which is considered to be beyond

YES. IMA-enabled applications
can be used as simple databases
from the Web while modellers can
use the IMA as an XML modelling

Yes. Yes. We currently identify 5
major user types, and
consider the requirements of

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page v of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

novices. Customised user
interfaces for running the model
(and hide the model structure) can
and have been be readily
developed. In fact, we have a
simple (and declarative) user-
interface description language that
allows any user to develop
customised interfaces using
elements like slider, graph and
labels, even sound and animated
gifs, to display model behaviour.

schematizations that are stored
in a database.

End users can load
schematizations and run
scenarios.

build and run
systems.

the scope of GCF itself. tool and runtime environment.
Different runtimes can be created
very simply using policy-based
design, supporting batch modelling,
client/server interaction, or GUI
interaction (currently not
implemented).

each.

11 Provides repositories
for: a) data / models;
b) solvers; c)
knowledge�

M 1 2 Models can be stored in regular or
XML databases (e.g. ColdFusion).
There is no direct access to
databases at the moment, but this is
planned.

Solvers are currently built into the
Simile framework (this is mainly
due to the fact that Simile models
can have a far more complex state
variable structure than conventional
modelling environments, so making
it difficult to have a general
external mechanism for having
external numerical integration
routines.) �The knowledge
associated with any model element
can be saved with it (as comments),
and retrieved on request. This
could be marked up in e.g. XML
syntax. We have also
experimented with allowing an
arbitrary number of URLs to be
associated with a model element,
enabling a user to tap into
unlimited resources on the web
about (for example) a sheep
submodel, the Penman-Monteith
equation, or whatever.

No Yes. Models and
tools are registered
in the framework.
You don’t need to
rebuild the
application to add
new models or tools.

Not currently. These tools are
envisioned in layer 4 of the
diagram above.

These are considered to be beyond
the scope of the GCF system itself
but we have a proposal for funding
submitted to begin to address this
provision.

YES. (see points above, too).The
IMA runtime has a virtual
repository interface that uses XML-
specified views and queries. It has
been currently implemented on top
of PostgreSQL out of consideration
of stability, open source and
availability of specialized spatial
operator. A native XML
implementation based on Apache’s
XIndice may be the next priority.
All of the three classes of objects
mentioned in the requirement map
into representational categories
handled by the IMA and its
permanent storage system.

Not currently. These tools are
envisioned in layer 4 of the diagram
above.

yes. The toolkit website has
been identified as our
primary repository.

At present no specific
solvers have been developed
within TIME. However,
these would be handled
similarly to a), above.

c) We are developing both an
information management
system for the Toolkit, and a
"toolkit assistant" that will
act as the primary model
knowledge system.

12 Provides a
benchmarking
environment

M 1 2 Simile currently provides very
limited tools for exploring model
behaviour - essentially, simple
simulation. However, run controls
are separate plug-ins, and can be
independently developed for (e.g.)
sensitivity analysis, replicate runs,
and benchmarking.

No. No. Not currently. Envisioned in
layer 4.

Beyond the scope of GCF I’m afraid I know too little about
the meaning of this requirement in
the SEAMLESS context to answer.
In general the explicit semantics of
IMA modules allows many metrics
to be calculated on them (e.g. the
runtime system can estimate the
resource requirements of a model
by its representation, and enforce
hard constraints on it before trying
to allocate and run it).

Not currently. Envisioned in layer
4.

We have benchmarking tools
for TIME development, but
little development has been
undertaken for model
benchmarking.

13 Portable between
Linux and Windows

M 1 3 Microsoft Windows 98, Me, NT,
2000 and XP are all supported.
Linux and FreeBSD (x86
architecture), and SunOS (Sparc

No. FIW is written in Delphi,
maybe an adapted Kylix
version could run on Linux.

No. Generic
framework is written
in Delphi, maybe an
adapted Kylix

Yes. Python, tools and
frameworks used to design
SEAMLESS architecture are
portable. To be added with

The GCF system supports flexible
deployment including platform OS.
Currently we have been
experiencing problems with our

YES (potentially). The IMA is
written in ANSI C++ and has no
dependence on particular OS
architectures. On the other hand, all

Yes, in principle; although in
practice it is probably more trouble
than it’s worth. Biggest problem
areas would be with C++’s

.NET is currently Windows
based. Open source
development of the Linux
equivalent (Mono www.go-

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page vi of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

architecture) are all supported.
Active development for Apple OS
X is underway (in beta test).

version could run on
Linux.

SEAMLESS, components
have to distribute a shared
library (so and dll) on Linux
and Windows. Then,
SEAMLESS platform will be
portable.

For Linux available
components, we can use
Cygwin to port them on
Windows. And for windows
ones, we can use WinLib.

Globus deployment on windows
but we believe the use of Cygwin
overcomes these and are currently
testing this.

the development has been done on
Linux and I had no interest so far in
porting it to Windows (particularly
because the chief mode of
interaction has been through a Web
browser, thus OS-independent). I
see no reason why porting to
Windows should be a problem,
particularly if using a Cygwin
environment, but it has not been
attempted so far.

standard template library (of
which many implementations
exist) and with variant support on
Linux. There are solutions (e.g.
Wine for variants) but they don’t
always work quite the way one
would like.

Best option for portability might be
that at some point in the future
MODCOM will be ported to the
.NET environment, for which a
runtime environment will also be
available on Linux.

mono.com)) offers potential
for Linux deployment.

14 Allows development
of packaged,
customised
applications

M 1 2 Yes: see 10 above. Yes. FIW is a programmers
framework, it is used to build
domain specific simulation
applications.

No. Generic
framework is a
complete system for
building and running
simulations.

Yes. Tools and methodology
to manage the release of a
large project are described
here.

No reason why not. YES/IN DEVELOPMENT. IMA
models can be executed by a
runtime and it’s easy to package a
model with its own runtime system.
A feature in development (low
priority at this time) is the
translation of a whole model into C
language for compilation and
delivering as an executable.

Yes. Yes. The component-based
approach used with TIME
supports development of
tailored user interfaces for
collections of components
linked together to form
specific modelling solutions.

15 Reusable outside the
framework

M - 3 Simile models represented in XML
format can be processed by any tool
capable of handling XML. This
includes all programming
languages with an XML API, and
XSLT. Models can also be
converted into Prolog and
processed with Prolog's far more
powerful engine for symbolic
reasoning. Generated C++ source
code can be hand-integrated into
other systems. Compiled DLLs can
be integrated into other systems
directly (this has been done by the
SimArc group in the University of
Naples).

Yes / No. Maybe FIW
applications can run as a batch
or as a COM component, but
is not designed to do so.

No. Yes. A principal aim of the system! A
GCF-compliant model should be
able to be used in any framework
through the use of an appropriate
and simple to generate wrapper. We
currently support a number of
deployment options (see above,
point 9) which demonstrate this
principle.

YES. IMA modules are executed
by a runtime that can assume many
different forms and be hosted on a
local computer or a server. Policy-
based software design allows the
runtime operation to be redefined in
a very simple way.

Yes. What is re-usable?

Packaged customised
applications are re-usable.

Generally, TIME
components (packaged as
DLLs) are not reusable.

16 Can handle an
evolving ontology (tag
definitions)

M - 2 The Simile XML Schema is
currently rather fluid (the Prolog
format is still Simile's native
model-representation format). As
it matures, we plan to introduce
namespaces (at least two: one for
System Dynamics elements, one for
the object-based aspects, possibly
using XMI). Additionally,
MathML might be used for
mathematical expressions, but this
will considerably increase the size
of file. However, even if there
were only a single Simile Schema,
it would still be possible for the
Schema to be extended, or for a

Yes - but you have to extend
the model elements
programmatically.

Yes / No. The
generic framework
adapts easily to
extended model
applications.

Yes. Although this is outside the scope
of what we have achieved so far,
we consider it to be part of the
scientific compatibility issues for
which funding has been requested
to address.

IN DEVELOPMENT. IMA
modules can be tagged with
semantic types that point to specific
ontologies. The issue of tracking
evolving ontologies without losing
semantic integrity is, anyway,
extremely tricky and how to deal
with it is not well understood in
general. One of the projects that the
I and the IMA concepts are
involved in (SEEK, mentioned
above) has a Semantic Mediation
and a Knowledge Representation
working group that is discussing
how to deal efficiently with

Yes.

MODCOM is based on interfaces –
components can always implement
another interface through which
additional functionality can be
made available. Existing
components could be “retrofitted”
by aggregating or compositing
them.

Possible through evolution of
TIME metadata definition
and utilisation.

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page vii of viii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

group (e.g. SEAMLESS) to add
their own namespace.

evolving semantics.

17 Allows web-based
publication of models
and tools

M - 2 Yes. Models will be published as
XML documents. These will be
viewable through a variety of
XSLT filters. Or as documents
generated (by XSLT) from the raw
XML. (What is meant by
publication of tools?)

No. No. Yes. Easily. Yes. See above. YES. This question has been
extensively answered in many of
the above points.

Currently no facilities, but I can’t
think of a reason why MODCOM-
based components and tools
couldn’t be published through the
Web.

Yes. See (9) above.

18 Allows specialised
interactions between
components (e.g. by
using a workflow
environment)

M - 2 No modelling workflow
environment developed.

Yes. Programmers have access
to every aspect of the Model
elements, their attributes and
their sources.

Specialized access should be
reduced as much as possible.

If specialized access is
needed, effort should be put in
extending or defining new
access methods

that are more generalized.

No. Access between
components is only
done through
connectors.

Yes. Through the python
language.

This is not currently supported - see
point 4.

YES. The IMA is a workflow
environment by its own nature and
is highly customizable.

Yes. TIME supports the
development of tailored
components interactions
through metadata
manipulation.

 Additional comments Declarative modelling can
potentially be integrated with
component-based modelling
architectures in 3 main ways.
First, a declarative modelling tool
like Simile can be used to produce
individual components. Second, a
declarative modelling environment
can include programmed
components (this is in effect what
the Tyndall Centre's integrating
framework does, with XML
wrappers for each component, and
the complete model specified as an
XML document.). Third,
component-based architectures can
provide components for many
support tasks (links to GIS, running
simulations, etc), with the model
itself being a single component
(either programmed or produced in
a declarative modelling
environment). Therefore, it is
possible to envisage ways of
combining a declarative approach
with a component-based approach.

However, even if both the first and
second methods are used in the
previous point (i.e. components are
specified declaratively, and the
component structure of the model is
represented declaratively), there are

FIW is a programmers’ tool
used within W!SL for
designing integrated
applications and producing
source code. A Delphi objects
library is used to manage and
link components e.g.
FORTRAN-derived dlls.

FIW has now been used for 4-
5 years, and 4 key applications
have been developed by
W!SL’s water and
environment group.

GF is a wide Dutch
initiative used by
e.g. Deflt
Hydraulics, Alterra,
W!SL. It is a based
on FIW concepts but
is an end-user
environment, used
for configuration and
building models. A
graphical interface
allows users to
connect modeules
and define data
passes.

Python is an interpreted,
interactive, object-oriented
programming language. It
combines remarkable power
with very clear syntax. It has
modules, classes, exceptions,
very high level dynamic data
types, and dynamic typing.
There are interfaces to many
system calls and libraries, as
well as to various windowing
systems (X11, Motif, Tk,
Mac, MFC). New built-in
modules are easily written in
C or C++. Python is also
usable as an extension
language for applications that
need a programmable
interface.

The Python implementation
is portable (UNIX, Windows,
Mac...) and freely usable and
distributable, even for
commercial use.

The Tyndall project is the design,
construction and application of an
integrated modelling system to aid
decision makers considering the
potential human response to the
climate change problem. In order
to build the modelling system, we
required the technical capability to
construct a flexible, modular and
distributed integrated modelling
system. Modularity is necessary in
order that the modelling system can
be configured in different ways, so
that models can “plug and play”
within the system; flexibility is
necessary in order to answer a
range of evolving policy questions;
and a distributed nature is required
in order to take advantage of the
full range of modelling capabilities
at different institutions in Europe
which address the relevant
discliplines (for us, climatology,
economics, and climate impacts on
natural and human systems). The
system which we chose to provide
these capabilities is the GCF,
general coupling framework, built
by the Centre for Novel Computing
(CNC) at the University of
Manchester.

 MODCOM’s central concept is that
of well-defined, self-describing
component models, either written
specifically for MODCOM or
included through an adapter. A
MODCOM simulation is
constructed as a collection of
interconnected components.
MODCOM’s component
architecture provides a robust base
for building flexible, domain-
specific tools for such tasks as
visual construction of components
and simulations, specification of
spatial relationships, and
optimization.

The MODCOM core functionality
has been implemented (layer 1 and
layer 2 in diagram below). A
number of agro-ecological process
components have been developed
(layer 3). In Wageningen, we have
developed a tool for visual
construction of simulation models
(layer 4); another such tool has
been developed in Oregon; both
still need further development.

The Invisible Modelling
Environment (TIME) is a
new environmental
modelling framework being
developed within the
Catchment Modelling
Toolkit project in the CRC
for Catchment Hydrology.
TIME differs from existing
modelling frameworks in a
number of ways, particularly
in its use of metadata to
describe and manage models
as well as the flexibility
given to model developers to
‘pick and choose’ the
components of TIME
relevant for a given project.
Functionality that is
embedded as an immutable
‘core’ layer in other
frameworks is included in
applications under TIME on
an as-needed basis using
optional, interchangeable
components. This flexibility
extends to components that
manage data and models,
recognising that one
approach does not
necessarily fit all
applications. TIME includes
a number of small framelets

SEAMLESS
No. 010036
Deliverable number: PD 5.2.2
12 July 2005

Page viii of vii

Requirement M

S
C
W

P
ri
o
ri
t
y

U
r
g
e
n
c
y

Simile

r.muetzelfeldt@ed.ac.uk
http://www.ierm.ed.ac.uk/simile/in
dex.html

FIW

Framework for Integrated
Watermanagement
(but broader than water, so
name will change soon)

Tonny.Otjens@wur.nl
Tamme.vanderwal@wur.nl

GF

General Framework

Tonny.Otjens@wur.
nl
Tamme.vanderwal@
wur.nl

Python

christophe.pradal@cirad.fr

GCF

CNC General Coupling Framework
Griley@cs.man.ac.uk
R.Warren@uea.ac.uk
Tyndall centre
http://www.cs.man.ac.uk/cnc-
bin/cnc_gcf.pl

IMA

Integrating Modelling Architecture

ferdinando.villa@uvm.edu
University of Vermont
http://www.sf.net/projects/imt

MODCOM

Frits.vanevert@wur.nl
http://biosys.bre.orst.edu/modcom/i
ndex.htm

TIME

The Invisible Modelling
Environment

R.Argent@unimelb.edu.au
Joel.Rahman@csiro.au
www.catchment.crc.org.au

still significant problems with a
component-based approach. These
relate mainly to the problem of
rigid interfaces, and to technical
issues concerned with the
sequencing of component
execution.

3. A commitment to declarative
modelling does not imply a
commitment to Simile. Other
architectures (IMA) support
declarative modelling to some
extend, including notation for
representing System Dynamics
models. Moreover, Simile could be
used as a short-term gap-filler
while other tools are developed
within the consortium. The
investment in model development
will be preserved provided that the
consortium tools have at least the
expressiveness of Simile.

A large number of extension
modules have been
developed for Python. Some
are part of the standard
library of tools, usable in any
Python program (e.g. the
math library and regular
expressions). Others are
specific to a particular
platform or environment (e.g.
UNIX, IP networking or
X11) or provide application-
specific functionality (e.g.
image or sound processing).

Python also provides
facilities for introspection, so
that e.g. a debugger or
profiler for Python programs
can be written in Python
itself. There is also a generic
way to convert an object into
a stream of bytes and back,
which can be used to
implement object persistency
as well as various distributed
object models.

Our proposal for the
SEAMLESS architecture

is to develop a multi-
language component platform
based on a declarative
approach, specific to
SEAMLESS. We will glue
together different python
based frameworks and multi-
language components (C,
C++, Fortran, Java, R/Splus,
Matlab, …) to obtain a
flexible and scalable open
source architecture.

CNC and Tyndall are collaborating
together to connect computer
modules from different institutions
within the UK and Europe using
the general coupling framework.
We have recently completed a
prototype global-scale Community
Integrated Assessment Model
(CIAM) which we are continuing to
expand.

Like yourselves, we have a need to
integrate across issues, discliplines
and scales. We will therefore be
nesting regional and local modules
within the global modelling system
that has thus far been assembled.
Within this context, we do have an
interest in Europe and in the
complex inter-relationships
between climate change, land use
change and agriculture. Therefore,
there is scientifically an advantage
in making our systems compatible.
We also have a parallel
participatory process involving
stakeholders.

On the technical side, many of our
requirements are similar to yours.
We require the declarative
approach between modules; we
have a need to integrate
quantitative and qualitative
information; we require application
to both Unix and Windows
environments; and we will need to
accommodate both open and closed
source modules within the system;
and version control is of course a
standard need.

Several of the requirements listed
below pertain to functionality in
layer 4. As may be clear from the
above, we strongly believe that
such functionality is best
implemented on the foundation
provided by layers 1 through 3.

supporting extension in key
areas such as data
representation and
visualisation. All
fundamental data types, such
as rasters and time series, are
defined within the data
framelet, which supports the
definition of new,
compatible data types. The
visualisation framelet allows
the definition of ‘layers’,
each providing a visual
representation of some type
of data, such as rasters or
polygons. Multiple layers
can be placed on a single
‘view’, such as overlaying a
polygonal map on a raster.
Views can be surrounded by
‘decorators’ such as axis and
titles, each of which can be
combined independently.
TIME includes a number of
tools, which operate
generically on models,
including an automatic user
interface generator and
various model optimisation
tools. TIME is developed on
the Microsoft .NET platform
and supports the
development of models in a
variety of languages,
including Visual Basic.NET,
Fortran 95.NET, C# and
Visual J#. TIME is currently
being used to develop a
range of modelling
applications, including a
library of rainfall runoff
models and a model
supporting assessment of
stream ecosystem health
under various flow scenarios.

