

Epigenetic regulation of Gene Associated Transposable Elements in potato:

Effect of DNA methylation in the promoter region of *Wound induced 1*

Internship Report

Tulipan Zollinger

March-June 2010

University of California, Berkeley Baker lab Supervisors: Prof. Dr. Barbara Baker Dr. Feng Li Examiner: Prof Dr. Richard Visser

Abstract

In Solanacea, transposable elements (TEs) are found in close proximity to genes. Genetic analysis, northern blotting and sequencing revealed that they are the source of numerous small interfering RNAs (siRNAs) which, because of their structure and specific length, are thought to be involved RNA-directed DNA methylation, an epigenetic silencing mechanism. A gene associated transposable element (GATE) located in the promoter of the potato wound-induced 1 (Win1) gene and its influence on the expression of Win1 are analyzed more closely in the experiments described here. These experiments were designed to test the hypothesis that the siRNAs produced by the GATE guide methylation to complementary DNA sequences in the promoter region, and thus reduce the expression of Win1. The methylation status of the Win1 promoter region was determined in an RNAi line, RNAiRDR2 and in wild type (WT) potato using bisulphite sequencing. The RNA mutant shows lower expression of RNA-Dependent RNA Polymerase 2 (RDR2) and lower levels of siRNAs than the WT line. We were able to show that the reduction in siRNA levels in RNAiRDR2 correlate not only with a 20% reduction in CHH methylation in the Win1 promoter region, but also with a significant increase in expression of the Win1 gene

Keywords: Transposable elements, RNA-directed DNA methylation, siRNA, RNAiRDR2 mutant, *Solanum tuberosum*.

Abbreviations

AGO4: Argonaute 4 DCL: Dicer-Like Protein DdDM: RNA-directed DNA methylation GATE: Gene-associated transposable element Pol IV: Nuclear RNA polymerase IV RDR2: RNA-dependent RNA polymerase 2 siRNA: small interfering RNA TE: transposable element

Acknowledgement

I would like to thank Barbara Baker for giving me the unique opportunity to do my internship in Berkeley and for introducing me to the world of epigenetics. I really enjoyed our weekly discussions on the project and scientific papers related to it.

My special thanks go to Feng Li, who was a very patient and helpful supervisor during all my experiments. His advice could always be relied on.

Also, I would like to thank Daniela Pignatta for the nice discussions we had over lunch; Jeffrey Tung for ensuring that everything went always smoothly in the lab; and Colleen Higgins, Pamela Rios and Andrew Lai for their help.

Finally, I would like to thank Richard Visser for his help in finding this internship position, and his support.

Contents

1. I	NTRODUCTION
1.1	TRANSPOSABLE ELEMENTS
1.2	EPIGENETIC REGULATION MECHANISMS AND DNA METHYLATION
1.3	RESEARCH QUESTION 4
2. I	IATERIAL AND METHODS
2.1	
2.2	PCR AMPLIFICATION OF DESIRED FRAGMENTS
2.3	CLONING AND COLONY PCR
2.4	SEQUENCING
2.5	DATA ANALYSIS
2.6	Controls
3. I	RESULTS
3.1	PCR AMPLIFICATION OF PROMOTER FRAGMENTS 11
3.2	CLONING AND COLONY PCR
3.3	SEQUENCING & DATA ANALYSIS
3.4	Controls
4. I	DISCUSSION
4.1	SUCCESSFUL BISULFITE TREATMENT AND AMPLIFICATION OF A WIN1 PROMOTER REGION16
4.2	WT AND RNAIRDR2 SHOW NO CONSIDERABLE DIFFERENCES IN CHH METHYLATION 16
4.3	CONCLUSION
4.4	REFERENCES

Index of figures

FIGURE 1: CYCLE OF RNA-DIRECTED DNA METHYLATION (RDDM) IN A.THALIANA. WHEN DOUBLE-STRANDED RNA
(DSRNA) IS FORMED FROM RNA TRANSCRIBED FROM A TRANSPOSABLE ELEMENT, IT IS PROCESSED BY DICER LIKE 3
(DCL3) INTO SMALL FRAGMENTS OF SPECIFIC LENGTHS. THESE ARE TAKEN UP BY ARGONAUTE4 (AGO4), DIRECT
IT TO COMPLEMENTARY DNA SEQUENCES AND INITIATE CYTOSINE METHYLATION. AN AMPLIFICATION PROCESS
INVOLVING RNA-DEPENDENT RNA POLYMERASE THEN INITIATES THE PRODUCTION OF MORE DSRNA, REINFORCING
METHYLATION AND SILENCING
FIGURE 2: PROCESS OF BISULPHITE SEQUENCING. TREATMENT WITH BISULPHITE CONVERTS UNMETHYLATED CYTOSINE
RESIDUES TO URACIL, WHILE METHYLATED RESIDUES REMAIN UNAFFECTED. COMPARING TREATED AND UNTREATED
SEQUENCES ALLOWS DETERMINATION OF THE METHYLATION STATES OF THE SINGLE CYTOSINE RESIDUES
FIGURE 3: THE RNAIRDR2 MUTANT (ORANGE) SHOWS A CLEAR DECREASE IN SIRNA LEVELS COMPARED TO THE WILD
Type line (blue). Unit: Transcripts Per Million (TPM). The siRNAs match precisely to the GATE
inserted in the promoter region of the gene. The green solid line represents the portion of the $\mathit{Win1}$
promoter region that had previously been sequenced, while as the dotted line indicates the 456bp
long region (from bp508 to 964) that was amplified with primers LF1191 and LF1192 and bisulphite
SEQUENCED DURING THIS PROJECT
FIGURE 4: IN PREVIOUS EXPERIMENTS IN THE BAKER LAB, BISULPHITE SEQUENCING OF BOTH THE STRNAI-RDR2 MUTANT
and the wild type reveals that CHH methylation is 20% lower in the mutant line, a decrease that
CORRELATES WITH THE DECREASE IN SIRNA LEVELS (FIGURE 3)6
Figure 5: Illustration of the expression of $Win1$ in the mutant line in relation to wild type. The mutant
SHOWS A CLEAR INCREASE IN THE GENE'S EXPRESSION
Figure 6: 1% agarose gel showing the product of a "nested" PCR. In the first round (lane 1 and 2), the
PRIMER PAIR LF1191N AND LF1192N GAVE A FRAGMENT OF 499BP IN BOTH WT AND RNAIRDR2. THESE BANDS
were then extracted, and used as a template for a second round, this time using primers LF1191 and
LF1192, located inside the previous fragment, and amplifying a new product of 456 BP (lanes 1 and 2
FOR WT AND RNAIRDR2, RESPECTIVELY). SIZE MARKER: 1KB+ DNA LADDER11
FIGURE 7: GRAPHICAL REPRESENTATION OF THE WIN1 PROMOTER REGION. THE BLUE DOTTED LINE INDICATES THE
FRAGMENT THAT WAS AMPLIFIED IN A "NESTED" PCR, WHERE THE PRIMER PAIR LF1191N AND LF1192N WERE
used in a first round, succeeded by a second round of PCR with primers LF1191 and LF1192 for
HIGHER SPECIFICITY
Figure 8: 1% Agarose gel showing bands obtained from 24 colonies transformed with a fragment
AMPLIFIED FROM THE RNAIRDR2 MUTANT WITH LF1191/92. ONCE THE PRESENCE OF THE DESIRED FRAGMENT
proven, colonies containing it were put into culture so as to obtain enough DNA for sequencing. Size
MARKER: 1KB+ DNA LADDER
FIGURE 9: CHH METHYLATION IN THE PART OF THE SEQUENCE CORRESPONDING TO THE MIS23 INSERTION (508-797BP).
TTHE MUTANT LINE SHOWS ONLY SLIGHTLY REDUCED METHYLATION

1. Introduction

The Baker Lab is part of the Plant Gene Expression Center, which is run jointly by the USDA's Agricultural Research Service and the Plant & Microbial Biology Department of the University of California, Berkeley. The lab focuses on the understanding of epigenetic regulatory mechanisms of siRNAs derived from gene-associated transposons (GATEs).

1.1. Transposable elements

Transposable elements (TEs) or transposons are defined as mobile DNA sequences which, through a process called transposition, can change their position in the genome of a single cell (Henderson and Jacobsen 2007; Slotkin and Martienssen 2007). TEs were first described by Barbara McClintock in her genetic studies on maize, and are now known to make up large fractions of eukaryotic genomes (Table 1), with amounts ranging up to 60% in maize (McClintock 1956; Kidwell 2002). Though TEs are known to be major sources of genetic variation, they are often viewed as "parasitic" sequences, and their activity is potentially harmful potential by causing mutations by insertion, deletion or translocation in the host genome (Slotkin and Martienssen 2007). Mechanisms such as histone modification and DNA methylation have thus evolved to down-regulate or silence TE activity. These features cause alterations to the chromatin, leaving TEs intact but in an inactive, "cryptic" state (Henderson and Jacobsen 2007).

 Table 1: Amount of transposon derived DNA in percentage of total genome of important species

 (Kidwell 2002).

Organism	% of genome derived	
	from transposons	
Yeast - S. cerevisiae	3%	
Nematode - C. elegans	6%	
Arabidopsis thaliana	14%	
Fruitfly - D. melanogaster	15%	
Rice - Oryza sativa	14%	
Homo sapiens	44%	
Corn - Zea mays	60%	

Increasing evidence indicates that transposable elements and mechanisms responsible for their silencing play a major role in the epigenetic regulation of processes within the organism (Li and Baker 2010; Slotkin and Martienssen 2007; Slotkin et al. 2009). Gene Associated Transposable Elements (GATEs) for example, are a special class of transposons, which can act as regulators and influence the expression of certain genes by producing considerable amounts of siRNAs, which in turn can for example guide DNA methylation (Kuang et al. 2009; Li and Baker 2010; Mathieu et al. 2007).

In practical applications, such as breeding for resistance to pathogens, a better understanding of transposable elements and the RNAs they produce and interact with could, for example, help explain how they contribute to certain regulatory features that are invoked by pathogens, or why specific resistance genes from wild relatives may be regulated differently when introduced into domesticated cultivars. Also the sudden appearance of unexpected traits in such crosses could be caused by activation of TEs.

1.2. Epigenetic regulation mechanisms and DNA methylation

Epigenetics is defined as the study of inherited phenotypic changes that are not caused by mutations in the underlying DNA (Henderson and Jacbosen 2007). In this field of science, it is not yet fully understood how genetic sequences are recognized by silencing mechanisms, leading to repression of some and expression of others (Henderson and Jacobsen 2007). These systems are thus of high interest, and siRNAs are thought to play an important role by guiding epigenetic modification mechanisms to specific sequences (Henderson and Jacobsen 2007). Among these effects, cytosine methylation is being intensely studied. It consists in the addition of a methyl group to cytosine bases in different sequence contexts (CG, CHG, CHH, where H is A, T, or C), modifying and regulating the expression patterns of genes (Matzke et al. 2009).

The commonly accepted concept of RNA-directed DNA methylation (RdDM) in the model plant *A. thaliana* assumes that target loci (e.g. a transposon) recruit RNA polymerase IV (PoIIV) complexes through a yet unknown process, leading to the production of single-stranded RNA (Henderson and Jacobsen 2007; Law and Jacobsen 2010). Through RNA dependent RNA polymerase 2 (RDR2), double-stranded RNA is made from ssRNA, and will be diced into 24nt-long siRNAs by Dicer-like protein 3 (DCL3). Once loaded into the PAZ- and PIWI-domains of ARGONAUTE 4 (AGO4), the siRNAs will lead this new complex to homologous sequences and guide DRM2, which will methylate the designated DNA sequences

(Law and Jacobsen 2010). At the same time, the production of new siRNAs increases, amplifying the silencing in a loop-like process (Law and Jacobsen 2010). This accumulation is thought to be dependent on RDR2, as mutants with reduced expression of this enzyme show a decrease in siRNAs (Henderson and Jacobsen 2007).

Figure 1: Cycle of RNA-directed DNA methylation (RdDM) in *A.thaliana*. When double-stranded RNA (dsRNA) is formed from RNA transcribed from a transposable element, it is processed by Dicer Like 3 (DCL3) into small fragments of specific lengths. These are taken up by ARGONAUTE4 (AGO4), direct it to complementary DNA sequences and initiate cytosine methylation. An amplification process involving RNA-dependent RNA polymerase then initiates the production of more dsRNA, reinforcing methylation and silencing.

Methylation seems to be particularly important in the regulation of transposable elements, which, in order to have their harmful potential reduced to a level viable for the plant, need powerful control mechanisms (Matzke et al. 2009).

To determine the amount and location of methylation, DNA is treated with bisulfite, which will convert non-methylated cytosines to uracils. Comparing treated and untreated sequences allows for precise determination of the methylation state of the single cytosine residues. This process is illustrated in Figure 2.

Figure 2: Process of bisulphite sequencing. Treatment with bisulphite converts unmethylated cytosine residues to uracil, while methylated residues remain unaffected. Comparing treated and untreated sequences allows determination of the methylation states of the single cytosine residues.

1.3. Research question

In experiments realized prior to my arrival in the Baker Lab, it was shown that the genomes of Solanacea contain abundant transposons, and that many of them are located in or in close proximity to genes, forming GATEs.

The potato *wound-induced 1 (Win1)* gene was found to contain a MITE (miniature inverted repeat transposable element) named *MITE in Solanacea 23 (MiS23)* in its promoter region (149-797bp) (Li and Baker 2010; Oosumi et al. 1995; Stanford et al. 1989). Further investigation through genetic analysis and northern blotting and sequencing showed that the transcription of this TE leads to the production of large amounts of siRNAs of the 24nt size class (Kuang et al. 2009).

These findings lead to the hypothesis that the siRNAs originating from this GATE are involved in the guidance of asymmetric cytosine methylation to complementary target sequences, and can thus have the ability to modulate expression of the nearby *Win1* gene.

This hypothesis was tested by analyzing differences in cytosine methylation in a fragment of the *Win1* promoter (position 150-515) in both a wild type (WT) potato line and the *StRNAi-RDR2* mutant with reduced RDR2 expression. Since this protein is known to be involved in a loop-like process reinforcing DNA methylation by producing more siRNA (see Figure 1), it was expected that the mutant line would show fewer siRNAs, and thus a reduced ability to methylate the *Win1* promoter. This in turn would lead to a higher expression of the gene controlled by this promoter.

Quantification of siRNAs matching the MITE showed that the abundance of siRNAs was in fact clearly lower in the mutant line as can be seen in Figure 3 (B.Baker, personal communication). Comparing sequences from both lines obtained through bisulfite sequencing revealed that this drop in siRNA levels correlates with a 20% reduction in CHH methylation (Figure 4) and an increased expression of *Win1* (Figure 5).

Figure 3: The RNAiRDR2 mutant (orange) shows a clear decrease in siRNA levels compared to the Wild Type line (blue). Unit: Transcripts Per Million (TPM). The siRNAs match precisely to the GATE inserted in the promoter region of the gene. The green solid line represents the portion of the *Win1* promoter region that had previously been sequenced, while as the dotted line indicates the 456bp long region (from bp508 to 964) that was amplified with primers LF1191 and LF1192 and bisulphite sequenced during this project.

Figure 4: In previous experiments in the Baker lab, bisulphite sequencing of both the *StRNAi-RDR2* mutant and the wild type reveals that CHH methylation is 20% lower in the mutant line, a decrease that correlates with the decrease in siRNA levels (Figure 3).

Figure 5: Illustration of the expression of *Win1* in the mutant line in relation to wild type. The mutant shows a clear increase in the gene's expression.

In order to be able to confirm these findings, the remaining part of the *Win1* promoter that had not been sequenced so far was the focus of the present experiment, with the aim of obtaining accurate data on its methylation status. The fragment to be sequenced is shown in Figure 3.

2. Material and Methods

2.2. PCR amplification of desired fragments

In potato, the *Win1* gene is located at position 942-1626bp in the 7kb genomic DNA (GenBank number X13497). Genomic DNA from both WT and StRNAi-RDR2 was treated with bisulfite, and amplified by PCR using primers designed to match specific regions (listed in Appendix 1). The PCR conditions are described in Table 2 and Table 3.

Reagent	Amount (µl)
DNA template	1
10mM F-primer	0.5
10mM R-primer	0.5
2x Phusion Flash MasterMix	5
ddH ₂ O	3

Table 3: Conditions for PCR reacti	on " Bisulfite Sea	uencina " (30 cvlces)

Temperature	Time	
95	5'	
95	15"	<u>30</u>
50	45"	cycl
72	1'30''	es
72	6'	

After the first run with the PCR conditions "Bisulfite Sequencing" (Table 2), the same PCR reaction was repeated, using a 50µl reaction volume for the second run. 2µl of both PCR products are then loaded on 1% agarose gel, and run for ~30min at 110V to check for successful amplification.

If this gel showed the bands of interest, 30µl of the PCR products were then run on another gel, and the bands of interest cut out and purified using QIAquick MiniElute (QIAGEN) columns according to the manufacturer's protocol.

2.3. Cloning and colony PCR

The purified PCR product was then cloned into OneShot competent *E.Coli* cells using the Zero Blunt TOPO PCR cloning kit (Invitrogen), according to the manufacturer's protocol.

Table 4: F	Reaction	composition	for	торо	cloning
------------	----------	-------------	-----	------	---------

Reagent	Amount (µl)
Fresh PCR product	1
Salt solution	1
PCR 4 BluntTOPO	1
Water for final volume of 5µl	3

The transformed cells were then plated on LB-plates containing kanamycin, and grown overnight at 37°C.

Colonies were picked with a pipette tip and placed into PCR buffer and plated onto numbered plates. The PCR tubes were used to run Colony PCR to check whether the cells contain the constructs of interest, while as the colonies on plates were used for further processing.

Table 5: PCR reaction for Colony PCR.

Reagent	Amount (µl)
5x Buffer Green GoTaq	2
10mM LF799 primer	0.4
10mM LF800 primer	0.4
MgCl ₂	0.6
ddH ₂ o	6.2
DNTP	0.2
GoTaq	0.2

Table 6: PCR conditions for program "Feng" used for Colony PCR (34 cycles).

Temp (°C)	Time	
95	5'	
95	15"	<u>30</u>
55	30''	cycl
68	2'	es
4	forever	

3µl of each reaction were loaded on 1% agarose gels to test for successful transformation. Colonies whose PCR gave the expected bands were incubated in 2ml LB (50µl Kan/50ml LB) overnight on shaker, before being MiniPrepped (QIAGEN) the next day.

2.4. Sequencing

After measuring the DNA concentration of the extracted DNA at 260nm using a NanoDrop 2000 spectrophotometer (Thermo Scientific), sequencing PCR reaction were then run using the following protocol.

Reagent	Amount
DNA	~600ng
5x Reaction Buffer	2 µl
BigDye	1 µl
Primer LF799	1 µl
ddH ₂ O to total of 10 μ l	

Table 7: PCR reaction "Seq".

Table 8: PCR conditions for "Seq", 25 cycles.

Temp (°C)	Time	
96	2'	
96	30"	30
50	15"	cyc
60	4'	es
4	forever	

The PCR products were then prepared for sequencing using the following protocol as follows: a reagent mix containing 12.5µl ddH2o, 2µl NaAc pH 5.0, and 47.5µl 100% ethanol per reaction was prepared. The PCR products were transferred into 1.5 Eppendorf tubes and 62µl of the reagent mix added to each tube. After 20 minutes of precipitation at room temperature, they were centrifuged at full speed for 20 minutes. The supernatant was removed and the tube washed by adding 500 µl of 70% ethanol. After another 5 minutes of centrifugation at full speed, all ethanol was removed and the tubes let to dry completely. The DNA was then resuspended in 15µl Hi-Di formamide (Applied Biosystems), and loaded into the wells of a sequencing plate suited for an ABI 3130 sequencing machine (Applied Biosystems).

2.5. Data analysis

The raw data from the sequencer is then assembled in the VectorNTI program (Applied Biosystems, USA), and the quality of the data assessed. High quality sequences are then aligned to the original template sequence obtained from NCBI (www.ncbi.nlm.nih.gov) in order to find differences in methylation. A program custom written by Dr. Feng Li helped with this step, and produced graphical representation of the data.

2.6. Controls

In order to ensure that the methods were applied correctly, a fragment from an exon of an *S.tuberosum* beta-tubulin sequence that had previously successfully been specified was also analyzed. The 301bp long fragment (GenBank Nr. EU935742, position 3-304) is known to have a very low methylation level, and no differences between WT and RNAiRDR2 are expected. This makes it an optimal sequence to test bisulphite sequencing, which, if successful, should show very low methylation. The fragment was amplified with the primer pair LF981 and LF982.

3. Results

3.1. PCR amplification of promoter fragments

The products of the initial PCR reactions were separated on agarose gels, and if present, the bands of interest extracted for further processing.

Figure 6: 1% agarose gel showing the product of a "nested" PCR. In the first round (lane 1 and 2), the primer pair LF1191N and LF1192N gave a fragment of 499bp in both WT and RNAiRDR2. These bands were then extracted, and used as a template for a second round, this time using primers LF1191 and LF1192, located inside the previous fragment, and amplifying a new product of 456bp (lanes 1 and 2 for WT and RNAiRDR2, respectively). Size marker: 1Kb+ DNA ladder.

Figure 7: Graphical representation of the Win1 promoter region. The blue dotted line indicates the fragment that was amplified in a "nested" PCR, where the primer pair LF1191N and LF1192N were used in a first round, succeeded by a second round of PCR with primers LF1191 and LF1192 for higher specificity.

3.2. Cloning and colony PCR

The bands on agarose gels representing the desired fragments were extracted, purified and then transformed into competent *E.coli* cells using the Zero Blunt TOPO PCR cloning kit (Invitrogen). Transformed cells were then selected for on kanamycin containing LB plates. Colony PCR was used to ensure that the selected colonies in fact contained the fragments of interest.

Figure 8: 1% agarose gel showing bands obtained from 24 colonies transformed with a fragment amplified from the RNAiRDR2 mutant with LF1191/92. Once the presence of the desired fragment proven, colonies containing it were put into culture so as to obtain enough DNA for sequencing. Size marker: 1Kb+ DNA ladder.

3.3. Sequencing & data analysis

The sequences obtained through Sanger sequencing were aligned and the methylation status graphically represented as shown in **Error! Reference source not found.** Over the whole sequence, the wild type showed lower CHH methylation than the mutant line: 78.88% versus 82.83%. If only the sequence corresponding to the *MiS23* insertion was considered, WT showed slightly higher methylation: 92.6% versus 90.8%.

 Table 9: Comparison of methylation status between WT and RNAiRDR2 as seen over the whole sequenced fragment.

	RNAi	RDR2	WT		
C-context	Number of Cs %Methylated		Number of Cs	%Methylated	
CG	4.92	98.6	5	88.5	
CHG	2	46.5	2	21.4	
СНН	70	82.83	70	78.88	

	RNAi	RDR2	WT		
C-context	Number of Cs %Methylated		Number of Cs	%Methylated	
CG	3	100	6	100	
CHG	0	0	0	0	
СНН	47	90.83	47	92.61	

Table 10: Comparison of methylation status between WT and RNAiRDR2 limited to the sequence corresponding to the *MiS23* insertion.

Figure 9: CHH methylation in the part of the sequence corresponding to the MiS23 insertion (508-797bp). Tthe Mutant line shows only slightly reduced methylation.

Figure 10: Graphical representation of the methylation state in the 456bp long fragment in the promoter region of *Win1* (position 508-964), amplified with the primer pair LF1191 and LF1192. Every line represents a methylation pattern, and the number on the right of the line expresses the number of clones that exhibited it. The columns represent each cytosine residue found. The color and fill of the circles expresses the methylation state of a particular cytosine residue, as explained in the legend below. The vertical line at position 797 indicates the end of the *MiS23* (508-797) insertion. While apparent differences in cytosine methylation can be observed between the wild type (Top) and the RNAiRDR2 mutant, it must be kept in mind that some lines have to be multiplied by the number on the right, if several clones showed the same pattern.

Legend

- CHH methyl.CHH unmethyl.
- CHG methyl.
- CG methyl.
 CG unmethyl
 Not determined
- O CHG unmethyl.

3.4. Controls

Bisulphite sequencing of a 301bp long fragment from an *S.tuberosum* tubulin exon showed, as expected, very low cytosine methylation levels in both WT and RNAiRDR2 (results displayed in Figure 11). This confirmed that the DNA used throughout these experiments had successfully been treated with bisulphite, and that a very high proportion of unmethylated cytosine residues had been converted to uracil.

and the RNAiRDR2 mutant. As expected, no differences between the two lines are apparent, and the correct display of the methylation state proves the bisulfite treatment was successful.

Legend

 \bigcirc

- CHH methyl.
 - CG methyl.
 CG unmethyl
- CHG methyl. O Not determined
- CHG unmethyl.

4. Discussion

4.1. Successful bisulfite treatment and amplification of a *Win1* promoter region

A 456bp long fragment (position 508-964) of the promoter region of the *S.tuberosum wound-induced1* gene was successfully amplified with PCR in both a wild type line and a mutant (RNAiRDR2) with reduced expression of the RDR2 protein. The DNA had previously been treated with bisulfite, and sequencing of a control region in a conserved exon of the tubulin gene proved that this procedure worked satisfactorily. These findings thus allowed for determination of the methylation state of cytosine residues.

4.2. WT and RNAiRDR2 show no considerable differences in CHH methylation

Sequencing of the bisulfite treated DNA in both lines resulted in precise determination of the methylation status of cytosine residues in different sequence contexts. While some differences could be observed between the two lines, these were not consistent when looked at over the whole sequence (WT with 4% lower CHH methylation than the mutant line) or when limited to the sequence corresponding to the *MiS23* insert (WT with 2% higher CHH methylation).

4.3. Conclusion

These findings do not provide data sound enough to confirm the hypothesis that the reduced siRNA levels in RNAiRDR2 would lead to lower CHH methylation in the *MiS23* insertion. While a trend toward lower methylation seems to be distinguishable at first sight when interpreting the graphical representation, one has to keep in mind that clones having the same methylation pattern are pooled. The calculated percentages are thus a better indicator of the actual methylation.

These unexpected results prompt questions on their origins. Unsuccessful bisulfite treatment is not a likely cause, since the controls described in chapter 2.6 showed that this step was successful. Also, the different cells within the organism do not necessarily show the same methylation state, as many environmental factors can influence the inducing mechanisms. It could thus be that the sequenced clones randomly showed similar methylation. This is however not very probable, as 16 (WT) and 15 (RNAiRDR2) clones were analyzed.

Assuming the present data if correct, another cause could be that the fragment that was analyzed within the scope of this project is not controlled exclusively by RdDM,

and that other mechanisms are responsible for its methylation, or that this fragment is simply not subject to RNA guided methylation.

Also, since the genomic DNA that was used in the present experiment was not identical to the one that had previously been sequenced and linked low CHH methylation to lower RNA levels, it could also be that the plant from which it was extracted was in another stage of growth, which could lead to other methylation behavior.

A number of follow-up experiments could help find a potential mistake that was made during this project, or determine whether the results presented here-in are factual. In order to do so, both bisulfite treated and untreated DNA should be used, and the current experiment be repeated, together with the previous experiments by the Baker lab that showed an implication of GATEs in RNA-mediated DNA methylation. This would not only prove whether the method is working, but also confirm the previous findings, and show that they were not due to special circumstances at the moment of DNA extraction (stress level of plant, siRNA levels, impurities) but can be generalized to a global phenomenon.

4.4. References

Alvarado, V., Scholthof, H.B. (2009) Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. *Seminars in Cell & Developmental Biology 20*. DOI:10.1016/j.semcdb.2009

Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S., Pellegrini, M., Jacobsen, S.E. (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. *Nature*. 452:215-219

Ding, S.-W., Voinnet, O. (2007) Antiviral Immunity Directed by Small RNAs. *Cell.* DOI:10.1016/j.cell.2007.07.039

Friedman, A.R., Baker, B.J. (2007) The evolution of resistance genes in multi-protein plant resistance systems. *Current Opinion in Genetics & Development*. DOI:10.1016/j.gde.2007.08.014.

He, X.F., Fang, Y.Y., Feng, L., Guo, H.S. (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. *FEBS Letters*. DOI:10.1016/j.febslet.2008.06.011

Henderson, I.R., Jacobsen, S.E. (2007) Epigenetic inheritance in plants. *Nature*. DOI:10.1038/nature05917

Jay, F., Renou, J.-P., Voinnet, O., Navarro, L. (2009) Biotic Stress-Associated microRNAs: Identification, Detection, Regulation and functional Analysis. *Methods in Molecular Biology*. vol 592. DOI:10.1007/978-1-60327

Jullien, P.E., Berger, F. (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. *Current Opinion in Plant Biology.* DOI:10.1016/j.pbi.2009.07.004.

Kidwell, M.G. (2002) Transposable elements and the evolution of genome size in eukaryote. *Genetica*. DOI:10.1023/A:1016072014259

Kinoshita, Y., Saze, H., Kinoshita, A., Soppe, W.J.J., Koorneef, M. (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. *The Plant Journal*. DOI:10.111/j.1365-313X

Kuang, H., Padmanabhan, C., Li, F., Kamei, A., Bhaskar, P.B., Ouyang, S., Jiang, J.C., Buell, R., Baker, B.J. (2008) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs. *Genome Research.* DOI:10.1101/gr.078196.10

Law, J.A., Jacobsen, S.E. (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nature Reviews Genetics* 11, 204-220. DOI:10.1038/nrg2719

Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C., Paszkowski, J. (2007) Transgenerational Stability of the Arabidopsis Epigenome is Coordindated by CG Methylation. *Cell*. Volume 30. DOI:10.1016/j.cell.2007.07.007

Matzke, M., Kanno, T., Daxinger, L., Huettel, B., Matzke, A.J.M. (2009) RNA-mediated chromatin-based silencing in plants. *Current opinion in Cell Biology*. DOI:10.1016/j.ceb.2009.01.025

McClintock, B. (1956) Controlling elements and the gene. *Cold Spring Harbor symposia on quantitative biology* 21:197/216.

Navarro, L., Jay, F., Nomura, K., He, S.H., Voinnet, O. (2008) Suppression of the MicroRNA Pathway by Bacterial Effector Proteins. *Science*. DOI:10.1126/science.1159505

Oosumi, T., Belknap, W.R., Garlick, B. (1995) Mariner transposons in humans. *Nature*. 378 (6558) p. 672.

Ruiz-Ferrer, V., Voinnet, O. (2009) Roles of Plant Small RNAs in Biotic Stress Responses. *Annual Review of Plant Biology*. DOI:10.1146/annurev.arplant.043008.092111

Slotkin, R.K., Martienssen, R. (2007) Transposable elements and the epigenetic regulation of the genome. *Nature Reviews Genetics.* DOI:10.1038/nrg2072

Slotkin, R.K., Vaughn, M., Borges, F., Tanurdi, M., Becker, J., Feijó, J., Martienssen, R. (2009) Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. *Cell.* Volume 136, Issue 3, Pages 461-472

Stanford, A.C., Northcote, D.H., Bevan, M.W. (1989) Differential expression within a family of novel wound-induced genes in potato. *Molecular and General Genetics*. DOI10.1007/BF00339718

Appendix

Table 11: Sequences of the primers used in this project.

X13497	LF1191	508-537	AtTTAACGATTTATGGAATGATGtTTGTTG	456
	LF1192	932-964	CTATTACTAATTAaCTTCACCATTTTCTCGAAA	
	LF91N	477-501	GTTAATGGTAATATTATGTGTTTTGT	499
	LF92N	952-976	ΑΑCΑΑΑΑΑΤΑΑCACTATTACTAATTA	
EU935742				
	LF981	3-29	caccGAGAGAAATttTttAtATTtAAGGAGG	301
	LF982	280-304	TCCCAaCACCAaACTaTCCAAACAC	

Appendix 2: GenBank sequence of X13497 (*Win1* and *Win2*)

1 gaa	attctgac tca	aatcgaat tga	agcaaatg gt	tgaaataa ata	agtataga gt	agttaaat
61 g†	ttatgaata ta	aattaagat ga	attgtacgc g	taatcccac at	ttatccatt t	caatacaat
121 a	atatgcaaaa a	atgaatgaaa †	ttagtaaatt	ttggccatag a	atttcccaaa	taatatttgg
181 0	gaaaaaattt 🤉	ggcaaatagt g	gtttgtccat	acagtttgtc a	attatttggc	aaatattttt
241 0	ggcaaatatc (ccaaattccc a	aaatactagt	tttttctagt a	atttgggcca	aatctcatta
301 1	tttgggatct 1	tttgaaaatt a	aaaattttac	cccaaacttt †	tatcttttac	aaaaacatcc
361	tctatagtag H	ttgtttgtgt (cgtattacat	aatttttcac 🤉	gtgaacacca	aagtagtgat
421 0	gaaatattca 🤉	gtgaatatta a	aatgatatgg	ttgttgatga a	aaatgatgaa	caataggcta
481 a	atggtaacaa a	agtcatgtgc 1	tttgtctact	taacgattta †	tggaatgatg	cttgttgcac
541 1	tcactccaaa (ctaccacatt o	gctctagtgt	catgagcact a	atttgttatt	gttgcaacga
601 a	agattcaatt 🤉	gacttgtaat a	acaaacttat	ggttagtttt g	gatagttttt	aaaacttatg
661 0	ggtataaatc a	acatttttct a	aaaaagtga	aatatatttc	ccaaatacta	tggccaaaca
721 0	catagtgaaa †	tttcacccaa a	attttcaccc	aaataatatt	tggcaagaat	atttagaaat
781 0	ctatggccaa a	acgctagctt a	aatatcccaa	atttccaact (caagttgtca	aactaattaa
841	ttcagtctaa 🤉	gtagctatta 🤉	gctatcactt	ttgaaaaaag g	gttctataaa	aacccgcaag
901 1	taataagatc a	aaattatact a	actaattaat	ctttcgagaa a	aatggtgaag	ctaattagta
961 a	atagtactat †	tttgttatct 1	ttgttcctct	tcagcatcgc (cgcaattgcc	aacgcacagc
1021	aatgcggtag	acaaaagggc	ggtgccttat	gcagcggcaa	cttgtgttgc	agccaattcg
1081	ggtggtgtgg	gtcaacaccc	gaattttgtt	cacctagcca	aggttgccag	agccgctgca
1141	ctggtactgg	tggatcaacc	ccaactccat	ctggtagcgc	ccaaaacgtt	cgtgcaacgt
1201	atcatatata	caacccgcag	aatgttgggt	gggacctgaa	tgctgttagt	gcttactgct
1261	caacttggga	tgctaataag	cctttatcct	ggcggaagaa	atatggttgg	actgctttct
1321	gtggtccagt	cggacctcgt	ggtcgagact	cctgtggcaa	gtgcttaagg	gtacgtacga
1381	tctatttata	taacaatatt	tcattataat	aaccaagttt	tcgttcaaac	tgacttttat
1441	atatatgtgc	aggtgacaaa	tacacgtaca	ggagctcaaa	cgacagtaag	aatcgtggat
1501	caatgtagta	acggaggact	agacttggac	gttaacgttt	ttcgacaaat	cgacacagac
1561	ggaaatggaa	atcatcaagg	ccatcttatt	gtgaactacc	agtttgttga	ttgtggtgat
1621	aattaatctt	atagttgaca	cagaattata	agattcatgt	ttgactaccc	aaataaatgt
1681	taaaagtatg	aaatgaaaat	aataataata	ataataaagt	tatttctttc	tgcattttag
1741	aaaagtgaat	tgatacaagt	cacgtccaac	aaattaaagt	ccctcgtttg	ttttatttaa
1801	ttaatgcaat	gatattaatc	gaacacaaaa	ctaagattta	atatgccgta	tatataataa
1861	ttaaagaata	tatatataaa	tgtaaaatag	tttctaatat	tttgaaaaat	gtccagaatt
1921	agacattatg	ctcatataaa	atgaaaagga	aacaataaat	ttctgggaag	aggagggaaa
1981	gcaagactta	gatgattcgg	ataggggcgg	aggcaacata	tacttagggg	gttcgaaacc
2041	ctcggcggaa	aatattacta	ctatttatat	atggttaaaa	ttattttta	ggtatgtata
2101	atagatgtcg	aatccccttc	ccctaattcg	tgtgtttact	tctcaaattt	tgaaccccct
2161	tattaaaaat	tctggctccg	cactggattt	agatatgtaa	agaggaggtg	taaagatgcg
2221	ttagtgagag	gttggttgta	gacttatagt	agaagttagg	aaaagtaaag	gtagaccgaa
2281	atagagtatg	tgtgtgttgg	ggttagatat	gatattatta	accaatgtta	atgctccaaa
2341	tattttatgg	tacacttaat	taaattataa	gttgtttatc	taaatatata	taaatttatt
2401	tgcattgaat	actttcttct	taattaatgt	aacactcata	tataaaaatt	tcaaacttcg

2461	tgcatcatag	agacaaacaa	ataggataag	atgcaaattt	atgagtagta	atattaaatt
2521	tcataatttg	tgtggaggta	taagcataat	tccaaaaact	ggtctgctag	cctcatttat
2581	tcagctatac	ctctattatc	aacgcatttg	tgggtcagaa	gtagaaataa	acttaagaaa
2641	ggtactttgt	ctcttaatta	ttcctactgt	attttaattt	taattttagt	ttttatttaa
2701	aatatttgcc	ttttctcatt	atatagatat	ataattttga	tttatttatt	tgaaaaacta
2761	tatcataatc	aaatataaaa	taattattga	catactatat	tggcacttaa	atgatttagt
2821	atgtaattat	tcattaaatt	tatacaaaaa	tttcataagt	agatggatca	aacatacgca
2881	tatcaagtaa	aaaatgaagg	tttgatgtat	tttttaaaa	tagagatcac	aaaaaataa
2941	aagaaaaaaa	atatcacgtg	accataggga	caccgaagtg	tatttaaagt	ttggctttct
3001	taaaggtccc	ttttttaat	tcaacgagga	ggactttttc	tagatactta	tcagaaacga
3061	cgctgtccaa	caatttttt	ttttttgtt	aatagccgcc	tcaagtcgtg	cacttctaaa
3121	agccgccatt	agtttttatg	gtttttttt	cgattcgtgt	tcgacattca	tattagaatt
3181	caattgtatt	tgaatttcca	ttgtataaag	ctttatttag	gaaaattgct	ccttatcaaa
3241	tatttttga	aattataaaa	tttaaaaata	ttttttattt	atttaaatac	cttatttatg
3301	tcttatcaaa	atcagacaaa	ttgaaatgga	gaaagcatat	gacatataat	tattgatctt
3361	atcctacggc	ataaagtttt	gacattctaa	aaaataacac	ctactccctc	tgtccatttt
3421	tatttgtaat	ggtacgtttt	tcagaagtca	atttgattaa	ttttcaaagt	taaattagat
3481	tacattaatt	tgatattta	aataaaaaat	ttaaatattc	aaaaatcata	cgaaaaatat
3541	tataaaatgc	aattttttgc	atatcaatat	gatgaaaata	tacatcgtaa	aatgatagtc
3601	aaagttttta	tagttttaac	ttttaaaaaa	aaactataac	aattaaaaat	ggacgaatat
3661	agtattaatt	aaaagtatag	cagctgcaag	cacccaaatt	tcagggacac	aaccaaaata
3721	aatacataaa	taaagaccta	taaaaccccc	gaatctatta	tagatcaaac	gtagatcaat
3781	acacttttgg	ataaaaaaaa	atggttaagc	taagttgtgg	tcctatttta	ctagctctgg
3841	ttctttgcat	cagcctaacc	tcagttgcca	acgcacagca	gtgcggaagg	caaaggggag
3901	gagcgttatg	tggcaacaac	ttatgttgca	gccaattcgg	gtggtgtgga	tcgacacccg
3961	aatattgttc	acctagccaa	ggttgccaga	gccagtgtac	tggaagtgga	ccagatccag
4021	gccaaggggg	cagcgcgcaa	aacgttcgtg	caacatatca	tatatataac	ccacagaatg
4081	ttgggtggga	tttgaatgct	gttagcgctt	actgttctac	ttgggatgct	aataagcctt
4141	acgcctggcg	gagtaagtat	ggttggactg	ctttttgtgg	tccagtcgga	cctcgtggtc
4201	gtgactcgtg	cggaaagtgc	ttaagggtaa	gatatactag	ctacatcctt	ccgtttttat
4261	ttttagttga	gaaaagttaa	aattaaagag	ttatcagaaa	caacgaataa	agtatatatt
4321	gagatttaat	tattcgtagc	aaggtcctaa	tcataatcag	gataacaaat	gtatttttcc
4381	caagtaagat	tgctttacaa	ctatgagttt	gaatgagtac	tggtcaacat	tcactggttt
4441	tggtcaaatt	gatagagtaa	ttaatttgat	gagtttttt	gtttttggta	attgaagtat
4501	atgttcctag	actttctgtg	taattagatc	taacttgact	tttacaacaa	aaaccagtca
4561	caaagaaagc	gattgttata	taatttattc	aaaattattt	tgagagtttc	atttccatca
4621	atactaattt	ggtatacttt	ggattgaata	taaattagaa	ggaaacaagc	agtgtttatt
4681	caaacaaagg	gaacagaaag	tttccttgtt	tagcaatacg	aaagtagttc	tagtattgag
4741	atgtttaata	ttaataagag	tttttaggct	tattttgtga	tagcgtaact	cattaaaaga
4801	gtctgaagta	atgatcattg	acttttgaat	gtcaaagtta	atactatcat	cttattaata
4861	catagtttct	aaataatatt	actcaactaa	taccatcgca	aattatgtat	acaggtgaca
4921	aatacacgta	caggagctca	aacgacggtg	agaatcgtgg	atcaatgcag	caacggcgga
4981	ctagatttgg	acattaacgt	ttttcaacaa	atcgatacag	atggagtagg	aaatcaacaa

5041	ggacacctta	ttgtgaacta	ccaatttgtt	aattgtggtg	acaatgtcaa	tgttcctctg
5101	ctttctgtag	ttgacaaaga	atgagaaaca	actacatggc	tctgtttagt	ctaatggttg
5161	tataaaagtc	atctttgatg	atttaaaaaa	agaataaaag	aacaaaatga	aaaagaaaaa
5221	aaaaggttct	tagaaggggt	tagccaattc	catatgatct	gttgatcatg	gatgtcttca
5281	ttttaaggaa	aaagtgagtt	gaagtgtgta	ttgtatttgt	gatcattttg	tactcgactt
5341	atttgaattt	tgaataagaa	attccaacaa	ctcttgtttg	gggattgaat	tgggatgtta
5401	tttatgttat	gtagtgagtg	acaatataga	aattgtcatg	caacattatg	taaaataatg
5461	cttttactgt	cgcatacaaa	tttatgtcac	actctattca	atttggtcat	tctataaata
5521	ggaattttcg	catataacca	tttaaaaata	acttaattat	actccatagc	tatagtttgt
5581	taataacgat	tcgtaactac	atgttagatg	gaggagagag	gcgagcgaga	gagggaaaag
5641	agtggagaga	ggcaaattgt	atatgtatat	ttgtcgaatt	gtatatgtat	atctgtcaaa
5701	ttattgtata	tatgtaactg	atatacatat	gtatttgtaa	atctgtcgaa	caagattggg
5761	agagaggagg	agagaggtga	gcgagattgg	aagagagagg	agagagacga	actgtatatg
5821	tatatatgta	agataattgt	atatatgtaa	ttgctataca	tatgtatttg	tatatctggt
5881	gagcgagatc	gggagagaga	aagagcgaga	gagggcaaag	agtggaaaga	ggataattgt
5941	tgttgtatat	ctgttatata	attgtatgta	tacaaatgtc	taatttgtat	ttgtatatgt
6001	ataagtgacg	aaattatagt	taaaagtaag	ttgtgagccg	taattaattc	aaattatagt
6061	tatgcctatg	ttaactaatt	aacttgtata	tgtttgctta	tccgcgtaat	tttccattct
6121	aaaaaatag	ttataatttt	taaaagattt	tttcaaaaaa	attaatttga	tattctcatt
6181	tgatacaaaa	ttaggcgaaa	taaacttttt	tgatgatctc	cattttttc	cgaataatcc
6241	ttacctgctt	tagagagtat	ataatgtgta	taataaatgt	atatatagtg	tgtataataa
6301	atgtacatat	agtgtgtata	atattcattt	tggctacaat	atgtcttttg	atttttagct
6361	aattgtcaat	atttcatcag	aatggtagct	acttatgtat	tgcccgaaaa	atattttctt
6421	aatctttgtg	ctggcccata	gaaaggtgta	ttaattaacc	atgtaaaaag	ttttttttt
6481	cataaactag	atattgtatt	aattatgcag	cttttaatac	caaaaataag	acttttttc
6541	cccgtaaatg	ttttgaactt	acctatagaa	caattttttg	cgtgtgtgat	gtaaaaaaaa
6601	gaaaaggaaa	cttagtaatc	aaacgtacgt	gtaggtaaac	agcgtaaata	atgaaagaat
6661	gggcatcata	aaaagaattt	aacgcttttt	aaatctatat	ttaattaatg	tacataataa
6721	aataaaagac	gcatagactt	tataacaaat	tcttaaatac	tttaaacaaa	ttcgaaacta
6781	gtgtttaaaa	actattacga	taatgaatca	agattaaaag	gtctatattc	aaaattaata
6841	gagaatgaaa	acagatagtg	aaactaatta	actatatatt	taactcaaac	aatatttaaa
6901	taacaatcat	taacggacta	gaatacttta	gctatacctt	gaatatactt	aaattaaaat
6961	ttacattaat	ttgatcaaag	gtgaaataat	taaaaaaaaa	atcaggtctt	aaaaacaaa
7021	ataaatacgc	gtttctaaaa	gttactatat	tttgtttaat	attttaggca	atttttttc
7081	ataaaccatt	tacaataaaa	aataggaaag	cgtaattttg	catgtatata	tatcttctct
7141	ttactacact	catatatcga	tttacttctt	tctatcaaaa	ttttagctta	gggttattta
//						