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CHAPTER 1 

General Introduction 

Intensification of agriculture 

Agriculture has changed tremendously during the last decades, especially in West-European 

countries such as the Netherlands (Meerburg et al., 2009; Henle et al., 2008). Nowadays 

European agriculture is characterized by the use of large amounts of external inputs and 

high outputs (Hersperger & Bürgi, 2009; Fischer et al., 2008; Ten Berge et al., 2000). One 

of the main factors that enabled the intensification of agriculture was the introduction of 

herbicides (Kropff et al., 2008; Bastiaans et al., 2000). Before the introduction and 

availability of herbicides, weed management was one of the major issues determining the 

design of cropping systems in most agricultural systems. After the introduction of 

herbicides, however, weeds became to be regarded as solvable side-problems rather than 

being an important and decisive factor in the design of cropping systems (Macé et al., 2007; 

Bastiaans et al., 2000). Today, agriculture is economically still strongly dependent on these 

chemicals to maintain their crop yields at a certain level (Wilson &Tisdell, 2001; Pimentel, 

1997). The strong dependency of agriculture on chemical weed control is considered 

undesirable (e.g Hyvönen, 2007; Lotz et al., 2002; Liebman, 2001). First of all, a strong 

dependence on herbicides implies the extensive use of compounds with a potential negative 

side-effect on the environment (Bastiaans et al., 2008). Secondly, the risk of the 

development of herbicide resistance makes herbicide dependent systems vulnerable 

(Powles, 2008). During the last decades the negative side effects of pesticides on the 

environment have been reduced in the Netherlands. In the period 1998-2005 the 

environmental impact as a result of direct emission of pesticides has been reduced with 

86%. The use of crop free buffer zones and emission reducing equipment accounts for 75% 

of this reduction, and the ban of 90 chemicals for the other 25%. At the same time, industry 

has brought 39 new pesticides on the market with less environmental impact (Van Eerdt et 

al., 2006).  Although this is a strong reduction, the goals for 2010: no excedence of the 

maximum allowable risks (MTR, in Dutch: Maximum Toelaatbaar Risico), will not be met 

(Van Eerdt et al., 2006).  As a result, the focus and research on a reduction of herbicide 

dependency remains necessary.   
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A reduction of the adverse effects of herbicide dependence 
A number of strategies have arisen to reduce the adverse effects of strong herbicide 

dependence. In the sections below, a short description of those strategies will be given.  

 
1. Ecological weed management 

Instead of simply replacing herbicides by other direct control techniques, ecological weed 

management focuses on the management of weed populations at a time scale extending the 

current growth season (Kruidhof et al., 2008). Bastiaans et al (2008) described the basic 

ecological weed management principles and presented three directions for ecological weed 

management: A) manipulation of the competitive relation between crop and weed, B) a 

reduced recruitment of weed seeds from the soil seed bank, and C) gradual depletion of the 

soil seed bank (Figure 1.1).  

Figure 1.1. After Bastiaans et al. (2008). The hyperbolic yield loss (YL)- weed density relation illustrating three 

directions for ecological weed management. Nw: the aboveground weed density, and Sw: the density in the soil 

seed bank.  A) manipulation of the competitive interaction between crop and weeds, B) reduced recruitment from 

the soil seedbank (Sw), and C) gradual depletion of the soil seedbank.. 

 

Manipulation of competitive relation crop and weed 

Extensive research has been done on the manipulation of the competitive relations between 

crop and weed. Because of the complexity of this relationship modelling approaches have 

been used (Kropff & Van Laar, 1993; Kropff & Lotz, 1992; Spitters, 1989; Cousens, 1985). 

A number of eco-physiological models of competition between weeds and crops have been 

developed and experimentally evaluated. The principal purpose of these models has been to 
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improve our understanding of competition processes (Vitta & Satorre, 1999; Ryel et al., 

1992; Kropff, 1988). As a result, these models have given us insight in several important 

processes and in some cases general guidelines for weed management (Holst et al., 2007). 

A good example is weed competition in rice, for which several eco-physiological model 

investigations (Caton et al., 2003; Asch et al., 1999; Kropff et al., 1993) have lead to 

crosses between weed-competitive but low-yielding Oryza glaberrima and high- yielding 

but lower competitive Oryza sativa, that have a reduced trade off between competitiveness 

and yield potential (Dingkuhn et al., 1999). Another, somewhat less succesfull example is 

sugarbeet. For sugarbeet it is known that early covering genotypes with more horizontal 

leaves, have an enhanced competitive ability against weeds (Lotz et al., 1991). The 

downside of these horizontal leaves is the reduced mechanical weed control possibilities in 

the crop, which makes it harder to control weeds that were able to establish between the 

crop rows. So, when selecting for competitive crop varieties, one is often balancing 

between competitiveness against weeds and crop yield or implications for the agronomic 

practices in the crop.  

 
Reduced seedling recruitment 

To reduce the recruitment of weed seeds from the soil seed bank the germination and 

emergence of weed seeds should be prevented. Seeds of many species need a short 

exposure to light to be able to germinate (Andersson et al., 1997; Milberg et al., 1996; 

Vleeshouwers et al., 1995). A major source of light for buried weed seeds is the short 

exposure to light received during tillage (Buhler, 1997). In field experiments, dark tillage 

has been tested as a method of reducing the amount of weed seedlings emerging after 

cultivation (Botto, 1998; Gallagher & Cardina, 1998; Milberg et al., 1996; Jensen, 1995; 

Ascard, 1994; Scopel et al., 1994). Although the results suggest that dark tillage is 

promising, variation in emergence creates uncertainty as to the effect of such a treatment. 

Another way to reduce the recruitment of weed seeds from the soil seedbank is the 

application of a physical barrier that the germinated seeds have to overcome. Promising 

experiments have been conducted with a thin layer of compost that prevents the emergence 

of weed seedlings, but allows the emergence of the crop seedlings (Bleeker, 2009). Another 

barrier that can be used is a layer of mulch, consisting of a layer of decaying fresh plant 
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material. The release of allelochemicals from the decaying layer enhances the inhibitory 

effect and reduces the recruitment of weed seeds from the soil (Kruidhof et al., 2008).  

 

Depletion of the soil weed seed bank 

The third direction into ecological weed management is the gradual depletion of the weed 

seed bank. The weed population emerging after cultivation in some studies is related to the 

size and composition of the weed seed bank (Zhang et al., 1998; Roberts &Ricketts, 1979). 

In other studies, no relationship was found between seed bank and aboveground 

communities (Derksen & Watson, 1998), or only for a small number of species (Webster et 

al., 2003). This indicates the complexity of processes determining germination and 

emergence of weed seeds in the soil. Nevertheless, the soil seed bank is a product of the 

past and represents the potential future of the aboveground plant community (Figure 1.2a) 

(Swanton & Booth, 2004). Therefore, a modification of the size of the seed bank will result 

in changes of the emerging weed populations, and vice versa. The seed bank can be reduced 

by increasing the losses, reducing the input or a combination of both.  

 

Depletion of the weed seed bank: increasing the losses 

The sensitivity of seeds of many species to short exposures to light (Andersson et al., 1997; 

Milberg et al., 1996;Vleeshouwers et al., 1995) can not only be used to reduce seedlings 

recruitment, but also to increase the losses from the seed bank. The stale seedbed technique 

makes use of this sensitivity to enhance the germination of seeds in the soil seedbank. 

During the preparation of a seedbed, seeds are exposed to light and are stimulated to 

germinate. This initial seedbed preparation is then followed by destruction of the emerging 

weed seedlings with minimal soil disturbance (Lamour & Lotz, 2007; Mohler, 2001).  

 

Depletion of the weed seed bank: reducing the input 

The disadvantage of mechanical weed control techniques such as harrowing is that they 

cause soil disturbance and thereby light penetration of the soil, possibly causing the 

emergence of new flushes of weeds. Therefore, a maximization of the effects in of a stale 

seedbed followed by mechanical control in terms of light exposure and working depth is 

required if a further decrease in herbicidal use is the objective. Studies with population 
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Figure 1.2a Life cycle of annual weeds  

 

dynamic models showed that the seed shed is a critical parameter in the development of 

weed populations and could be the key to their control (Westerman et al., 2006; Wallinga, 

1998; Pandey & Medd, 1990). However, evidential data on a practical scale to test this 

hypothesis is lacking so far. 

 

 

2. Effective herbicide use 

 
Minimum herbicide doses 

Techniques to minimize the dose of herbicides are based on the fact that under optimum 

conditions, herbicide doses can be reduced below label recommendations and still provide 

adequate control (Kudsk & Streibig, 2003). Decision support systems to aid farmers have 
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been developed and as a result these techniques are widely adopted by farmers in several 

European countries such as Denmark (Kudsk, 1999), Sweden (Böstrom & Fogelfors, 2002), 

Finland and the Netherlands (Riethmuller-Haage, 2006; Kempenaar & Lotz, 2004). Further 

development of those systems requires a good understanding of pre-spraying weather 

conditions and herbicide types (Riethmuller-Haage, 2006), and the risk of the development 

of herbicide resistance. 

 

Site specific weed management  

Weed plants often grow in patches in arable fields (Heijting, 2007). Systems that only spray 

those places where a weed plant is present instead of spraying the whole field, can 

potentially reduce herbicide use.  

Site specific weed management (SSWM) systems are systems that contain three 

components: 

a) A weed sensing system, identifying, localizing and measuring crop and weed 

parameters; 

b) A weed management model that contains decision algorithms; 

c) A weed control implement that controls the weeds (Christensen et al., 2009). 

 

The possible reduction in herbicide application that can be achieved with SSWM systems 

increases with increasing spatial resolution of the actual weed control (Wallinga et al., 

1998). Within a farm four levels of spatial resolution for treatment can be distinguished 

(Christensen et al., 2009): 

1. individual plant level, 

2. grid level, 

3. weed patches or subfields with weed clusters, 

4. whole field. 

 

Sensing can either be aerial or ground based. Because of the high importance of resolution, 

ground based systems currently have more potential. The aerial systems are only applicable 

of detecting patches larger than 1 by 1 m, and have a higher weather dependency (Brown & 

Noble, 2005). Two ways of distinguishing crop from weed plants are currently available. 

The first makes use of knowledge on the distance between crop plants within the row and 
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green pixels within rows (Feyaerts et al., 1999), the second one is based on differences in 

morphological characteristics (Van Evert et al., 2009).  

The decision algorithms are either efficacy based or population dynamics based (Wiles et 

al., 1996). The first makes use of data on herbicide performance in different crops, with 

different weeds and growth stages. The second uses knowledge on weed biology and 

ecology through deterministic models.  

Several weed control implements have been developed, based on different mechanisms. For 

weed control on hard surfaces an automated weed detection system that sprays individual 

plants is available (Kempenaar & Leemans, 2005). Gerhards and Oebel (2006) developed a 

system that spatially applies herbicides by selective control of small sections of the spray 

boom (Gerhards & Oebel, 2006). Currently, direct injection sprayers that can apply 

different herbicides and dosages using maps of weed species are under investigation 

(Kempenaar et al., 2009). 

All these implements are suitable to levels of spatial resolution 3 and 4. Highly accurate 

implements that are able to work at levels 1 and 2 are several mechanical implements 

(O'Dogherty et al., 2007; Åstrand & Baerveldt, 2002; Wisserodt et al., 1999; Bontsema et 

al., 1998), electrical discharge (Blasco et al., 2002), and flame weeding (Poulsen, 2006). 

 

Until now, few farmers have adopted SSWM. Several reasons have been suggested for this 

low adoption rate. Christensen et al (2009) suggests that this is due to the limited range of 

usage of the current systems. The current SSWM systems are able to sense in specific crops 

and weeds, but unable to sense large number of unknown species while making 

instantaneous decisions. Therefore, the balance between potential savings and the costs of 

the system is not yet positive. 

 

3. Curative control measures: biological and mechanical 

A third strategy is the development of alternative curative control measures such as 

biological and mechanical weed control. Although several studies (Scheepens et al., 2001; 

Charudattan, 2000; Kempenaar, 1995) show that biological control can be an effective way 

to control weeds and some have resulted in commercial registration of the product, 

bioherbicides were never adopted on a large scale. The main reasons are the lack of 
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reliability, specificity and efficacy under field conditions compared to the reliability and 

efficacy of herbicides (Hallet, 2005).  

Mechanical control has progressed a lot during the past decade (Weide et al., 2008a; 

Melander et al., 2005). Developments concerning inter-row weeding have mainly aimed at 

increasing accuracy without losing capacity. Those developments mainly concern steering 

systems that differ in their discrimination of their mode of crop row detection, which ranges 

from detection of the crop row with the human eye to sensing of the crop row mechanically 

by gliders, camera-based optical sensing of the crop row and detection of the crop row with 

satellite navigation (RTK-DGPS) (Weide et al., 2008b). Inter-row cultivation using tines 

with hoe blades is the most common method (Weide et al., 2008a). The main problem for 

intra-row weeding is the discrimination between crop and weed plants combined with the 

ability of tools to get close enough to the crop plant. During the last decade, research has 

successively focused on harrowing, torsion and finger weeding and weeding using 

compressed air. The possibilities for using these weeding machines vary according to crop 

type, crop growth stage and field- and weather conditions and depend on selectivity (i.e. 

higher sensitivity of the weed plants relative to the crop plants) (Weide et al., 2008a). This 

selectivity is based on differences between weed and crop plants, for example in root 

anchorage forces, leaf area and/or plant height (Fogelberg & Dock Gustavsson., 1997). 

Conditions for physical weed control are normally favourable where crop plants are larger 

than the weed plants (Weide et al., 2008a).  In spite of the recent improvements of 

mechanical weed control, it is in many cases not possible to reduce weed populations 

during crop growth mechanically to the same extent as chemically, especially in relatively 

open and slow developing crops (Albrecht, 2005; Verschwele & Zwerger, 2005; Hyvönen 

& Salonen, 2003; Barberi et al., 1998a).  

 
 
Human dimension 
Weed management involves the tactical, operational and strategic level of decision making. 

Farmers need to play a key role in the reduction of herbicide dependence. The before 

mentioned weed control technologies and strategies being developed by research, can be 

adopted by farmers in order to contribute to the reduction of herbicide dependence of 

agriculture. Most research has been focused on the development of new weed control 



Introduction 

 9

technologies (Barberi, 2002), the development of new weed management strategies in 

cropping systems (Andrews et al., 1990), or the comparison of weed management between 

different cropping systems such as organic vs conventional systems (Albrecht, 2005). In 

most studies the assumption is being made that farmers operating within a particular 

farming system show similar behaviour. Or, in other words, all organic farmers will use the 

same weed control technology or strategy under comparable circumstances. However, 

farmers who supposedly operate in the same system are known to respond differently to for 

instance the market (Nowak & Cabot, 2004) or changes in the availability of farming 

techniques (Vanclay & Lawrence, 1994). It is therefore likely that weed management 

behaviour will vary between farms that operate within one type of farming system. Data on 

the farmers weed management behaviour and beliefs and the effects of these aspects on the 

on farm weed pressure is still lacking (Mertens et al., 2002). 

 
 
Legislation  
Another way to reduce the environmental impact of weed control is through legislation. 

Governments can decide to ban certain weed control techniques and thereby prevent their 

adverse effects on the environment. These decisions require knowledge on the type and 

magnitude of the effects of weed management techniques on the environment. The first 

major decision in the Netherlands to protect the environment from adverse effects of crop 

protection products and other chemicals was made in 1962. At that time, the Dutch 

government established the Pesticide Act, which stated general rules for the trade and use 

of pesticides, in order to protect the safety of men and those animals of which preservation 

was desirable.  

This act was harmonized for the whole European Union to make registration of pesticides 

similar in all countries in 1994. The act was changed again in 2002 to accommodate 

registration of biocides in the EU. Adverse effects of pesticides are not only regarded a 

problem in the so-called western parts of the world, such as Europe and the US (Lazzaro L 

et al., 2009; Moore et al., 2009; Boutin et al., 2004), but also in other parts of the world 

(Chen et al., 2009). For example, a registration procedure for pesticides to avoid side-

effects is currently being developed in China as well (Chuanjiang et al., 2007).  
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Since weed management activities are designed to control plants, the environmental 

compartment that is mostly at risk, is the plant kingdom. In practice, this concerns non-

target terrestrial plants in margins surrounding agricultural fields. These so-called field 

margins are part of the National Ecological Network (NEN) in the Netherlands. The 

emission to non-target plants of non-chemical weed control methods can be considered 

negligible, so most attention goes to herbicide treatments. Herbicides may have a large 

effect on the biodiversity of both flora and fauna in agricultural fields and the surrounding 

field margins. These chemicals can affect the plant species composition, the plant diversity, 

growth and morphology of plants both in and outside the treated areas. Plants are an 

important part of the habitat to other organisms such as birds and insects, providing them 

with food, shelter and an environment to reproduce (Moreby & Southway, 1999; Freemark 

& Boutin, 1995). Changes in the species composition of field margins due to herbicide 

applications to adjacent fields have been observed (Jobin et al., 1997; Marrs et al., 1989). 

Several organizations have developed schemes for assessing the risk of a crop protection 

product to non-target terrestrial plants: the European and Mediterranean Plant Protection 

Organisation (EPPO), the Organisation for Economic Cooperation and Development 

(OECD), the US Environmental Protection Agency (USEPA) and the Canadian Wildlife 

Service (CWS).   

These schemes do however not address the most fundamental question in this matter: 

“What are we trying to protect?” “Do we want to protect all plant species present in a 

certain area, or only those species that are identified as being important to man or 

wildlife?’”  

And if all species are to be protected, to which level, and which endpoints? And what is the 

reference vegetation? Do we need to consider species composition prior to the first 

herbicide applications in the area or is it sufficient to protect species that are currently 

present? All these questions need to be answered, not only by science but primarily by 

society as a whole. The role science can play is to fill in gaps in the knowledge required to 

answer these questions. 

At this moment, information is predominantly available for single plant species grown in a 

greenhouse treated in a single phase of their life cycle. Information on the effect of 

sublethal doses of herbicides on a plants’ life cycle, including its reproduction and 

recovery, but also the germinability of its seeds is lacking. Furthermore, the effects of 
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herbicides in the presence of surrounding vegetation, either through differences in the effect 

on their inter- or intraspecific competitive ability, or factors such as shading are not 

investigated yet. All these factors need to be taken into account before a well-considered 

decision can be made about “what to protect” and about the criteria for herbicide 

registration.  

 
 
This thesis 
As the schematic overview in figure 1.3 shows, on farm weed management is influenced by 

many factors. These factors comprise the development and availability of tools, the 

environmental impact of tools and the attitude and behaviour of the farmer. This thesis 

focuses on research questions targeting important gaps in our knowledge for each of these 

factors. In part A we focus on the development of ecological weed management strategies 

depleting the seed bank, in part B on the environmental effects of weed management 

strategies and in part C on the human dimension of weed management.  

 
Part A: Development of weed management strategies depleting the seed bank 

In the previous paragraphs of this chapter several strategies that can lead to the 

development of new weed management technologies have been discussed. Ecological weed 

management is one of those strategies and has good promise for the development of weed 

control techniques that can aid in a reduction of agricultures herbicide dependence. On one 

of the directions for ecological weed management, the manipulation of the competitive 

interaction between crops and weeds, extensive research has been done. In this part of the 

thesis we focus on the other two directions: the reduced recruitment from the soil seed bank 

and the gradual depletion of the soil seed bank. 

 

In Chapter 2 we describe a study on the optimization of the use of the stale seedbed 

technique to increase the germination and thereby the losses of the seed bank, and prevent 

new germination of weed seeds that may occur during the control of the weeds emerging 

after the stale seed bed application. The part of the weeds’ life cycle that is targeted in 

Chapter 2 is depicted in Figure 1.2b. 
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In Chapter 3 the depletion of the soil seed bank by a reduction of the input is investigated 

(Figure 1.2b). The effects of three organic weed management strategies on the size of the 

soil seed bank, the emerging weed population and the amount of hand weeding are 

investigated.  

Figure 1.2b Life cycle of annual weeds. 

The following research questions were investigated in Chapter 2:  

o What is the most effective way to apply a stale seedbed technique with regard 

to light and timing? 

o Which weed control method is most suitable to use after the application of a 

stale seedbed?  

o And how does the efficacy of a weed control methodology based on a stale 

seedbed strategy relate to the efficacy of chemical control? 
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Part B: the environmental effects of weed management 

In this part of the thesis the focus is on the environmental effects of weed management. As 

we describe in the legislation paragraph, weed management activities are designed to 

control plants and their effects will be most profound on the plant kingdom. The research in 

part B aims at research questions targeting the major gaps in our knowledge on 

environmental effects of weed management: the effects of herbicides on non target 

terrestrial plants. Several experiments were performed in the greenhouse as well as in semi-

field situations with two herbicides: a broad-spectrum (glufosinate ammonium, Chapter 4) 

and a small-spectrum (tepraloxydim, Chapter 5). 
 

 

The following questions were addressed with respect to non target plants in Chapters 4 

and 5: 

o What is the influence of plant development stage on plant sensitivity and 

herbicide efficacy? 

o How is individual plant sensitivity influenced by the presence of surrounding 

vegetation? 

o What is the effect of sublethal herbicide doses on the biomass, recovery and 

reproduction of non target plants? 

o Is it possible to translate the observed effects of broad-spectrum and small 

spectrum herbicides on greenhouse grown plants into the effects on field 

grown plants? 

The following research question was studied in Chapter 3: 

o Will a strategy, with a high investment in hand weeding to prevent seed return 

to the soil seed bank during the first years in a rotation, eventually result in 

lower weed densities and a reduction in the amount of required hand weeding 

compared to strategies with lower levels of hand weeding?  
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Part C: Human dimension of weed management 

Part C concerns the last factor influencing on farm weed management: the human 

dimension of weed management. As described elsewhere in this chapter, information on the 

farmers weed management behaviour and its effect on the on farm weed pressure is lacking. 

In Chapter 6 we describe an exploratory on-farm study conducted to gain insight in the 

farmers weed management behaviour in relation to weed pressure within a farming system. 

  

 
 

The specific research questions addressed in Chapter 6 were: 

o Can differences between farms in weed pressure be related to differences in 

farmers’ weed management behavior,  

o Which weed and general management factors are of main influence on the 

weed pressure,  

o What is the influence of farmer’s beliefs and knowledge on weed control 

techniques on the observed weed pressure? 



 

 

Figure 1.3 Structure of thesis.
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CHAPTER 2 
 

Effect of stale seedbed preparations and subsequent 
weed control in lettuce (cv. Iceboll) on weed densities1 

 
M.M. Riemensa, R.Y. van der Weideb, P.O. Bleekerb and L.A.P. Lotza 

 

aPlant Research International, WUR, P.O.Box 616, 6700 AA Wageningen, NL 

bApplied Plant Research, WUR, P.O. Box 430, 8200 AK Lelystad, NL 

 

Summary 
The effects of stale seedbed preparations and several weed control methods on the 

emergence of weeds were studied. Specific goal was to evaluate the use of a stale seedbed 

in combination with chemical or mechanical weed control methods in the field. Depending 

on location and year, stale seedbed preparations followed by weed control prior to planting 

reduced the amount of weeds during crop growth by 43 to 83%. Control of the emerged 

seedlings after a stale seedbed preparation was more effective with glyphosate than with a 

rotary harrow. Covering the rotary harrow during control improved its effect on the weed 

density during crop growth in two out of three years. Radiation with far red light (FR) did 

not reduce the number of emerging weeds in this study. Mechanical control by finger 

weeder, torsion weeder and hoe was applied without stale seedbed preparations. These 

measures reduced the weed densities with 88 to 99% compared to the untreated control and 

were more effective than chemical weed control with carbeetamide and chloorprofam. The 

results show that the stale seedbed technique in combination with mechanical control of 

emerging weeds can reduce the weed population during crop growth as effective as 

chemical control can, and may therefore help reduce the need for herbicides in the future. 

 

Keywords: stale seedbed, far red light, finger weeder, torsion weeder, hoe, rotary harrow, 

glyphosate 

                                                            
1 Weed Research 47 (2007), 149-156. 
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Introduction 
 

The awareness of government, consumers and farmers of possible adverse side effects of 

chemicals has increased over the past decades. This has resulted in research programmes on 

weed control in which the emphasis is mainly on the development and improvement of 

strategies that reduce or exclude herbicidal use. In spite of the recent improvements of 

mechanical weed control, it is in many cases not possible to reduce weed populations 

during crop growth mechanically to the same extent as chemically, especially in relatively 

open and slow developing crops (Albrecht, 2005; Verschwele & Zwerger, 2005; Hyvönen 

& Salonen, 2003; Barberi et al., 1998). The development of preventive methods may 

contribute to the reduction of the amount of weeds in the field during crop growth and 

thereby reduce the need for herbicides (Kropff et al., 2000).  

An example of a preventive measure is the stale or false seedbed technique. This technique 

involves the preparation of a seed- or plantbed to promote germination of weeds a number 

of days or weeks before the actual sowing or planting of the crop. One major reason for the 

enhanced germination of the seeds in the soil during the preparation of a seed- or plantbed 

is the exposure to light. Seeds of many species are sensitive to short exposures to light at a 

certain moment in the life cycle of the seed (Andersson et al., 1997; Milberg et al., 1996; 

Vleeshouwers et al., 1995). This initial seedbed preparation is then followed by destruction 

of the emerging weed seedlings with minimal soil disturbance (Mohler, 2001). The control 

of emerging weed seedlings is mostly done with herbicides (Heatherly et al., 1993; Oliver 

et al., 1993), although some studies included the use of non chemical control methods such 

as flame weeding and harrowing (Rasmussen, 2004; Caldwell & Mohler, 2001). 

The disadvantage of mechanical weed control techniques such as harrowing is that they 

cause soil disturbance and thereby light penetration of the soil, possibly causing the 

emergence of new flushes of weeds. Therefore, an optimization of the effects of a stale 

seedbed followed by mechanical control is required if a further decrease in herbicidal use is 

the objective. One strategy that aims to avoid the exposure to light is performing soil 

cultivations at night, also called photocontrol (Juroszek & Gerhards, 2004). In previous 

studies in Germany (Hartmann & Nezadal, 1990), Argentina (Botto, 1998), the USA 

(Buhler et al., 1998; Scopel et al., 1994) and Denmark (Jensen, 1995), it was found that a 

reduction up to 97.5% of the amount of emerging weeds by night tillage is possible, 
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although the amount of reduction was highly variable with the weed species, year, location 

and soil type. The effect of conducting photocontrol of weeds with a light-proof cover 

during daytime could work in a similar way (Juroszek & Gerhards, 2004).  

The aim of the research described in this paper was to compare the effects of different stale 

seedbed strategies on the weed density in planted lettuce among each other and with 

treatments without stale seedbeds. Weeds emerging after stale seedbed preparations were 

either controlled chemically or mechanically. Mechanical weed control involved rotary 

harrowing, hoeing, hoeing with a torsion weeder, a finger weeder or a covered rotary 

harrow to prevent the germination of new weed cohorts. 

 
 
Materials and Methods 
 

Experimental site  

Field research was carried out from 1999 until 2001 at three different experimental fields in 

Lelystad (The Netherlands, 52.30N, 5.26E). The research was carried out on one 

experimental field per year. At all locations lettuce (cv. Iceboll) was grown on a clay soil. 

More details are given in Table 2.1.  

Ten treatments involving stale seed bed preparations, and chemical or mechanical weed 

control methods were tested for their efficacy on the control of weeds. Plots were 4 by 10 m 

and arranged in a randomized block design and replicated four times. Not all treatments 

were tested for their effect on the number of emerging weeds during each year. An 

overview of the treatments is given in Table 2.2. All plant beds and all stale seedbeds were 

prepared with a rotary harrow (working depth 3-4 cm deep). Stale seedbeds were prepared 

four weeks before the crop was planted; on May 14, May 18 and May 9 in 1999, 2000 and 

2001, respectively. The lettuce was grown in paper pots of 4 x 4 cm, which were planted as 

soon as the plants reached the 6 leaf stage. 
The number of emerging weeds after every treatment was counted on July 7 1999, July 13 

2000 and June 12 2001, unless otherwise mentioned. Counts were made in 1999 in two 

0.525 m2 (0.725 m x 0.725 m) quadrates, in 2000 in two 1.0 m2 (1.0 m x 1.0 m) quadrates 

and in 2001 in two 1.0 m2 (2.0 m x 0.5 m) subplots, all randomly located in each plot. 

Numbers were converted to numbers of weeds per 1 m2.  
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Table 2.1 Main soil characteristics and cultivation measures in the experimental field trials 

in Lelystad. 

  year  

Characteristic 1999  2000  2001  

% clay 16 14 14 

% organic matter 2.0 1.9 1.8 

pH-KCL 7.2 7.6 7.6 

Water soluble P2O5 per 

liter soil (mg/L) 

31 34 42 

Exchangeable K2O 

(mg/100 g soil) 

25 24 20 

N (kg/ha)  23.4 17.4 

Preceeding crop Winter wheat Winter wheat Summer barley 

Planting date June 15 June 9 June 11 

Harvest date July 26 August 1 July 30 

Interrow distance (cm) 35 35 35 

Intrarow distance (cm) 37 37 37 

Field size (m) 154 x 20 172 x 20 136 x 20 

    

Fertilisation:    

K2O Autumn 1998  

200 kg 

Autumn 1999  

194 kg 

Autumn 2000  

195 kg 

P2O5 Autumn 1998 

200 kg 

Spring 2000  

146 kg 

 

N June 2 1999 202 kg May 23 202 kg May 7 162 kg 

MgO Autumn 1998  

100 kg 

Autumn 1999  

154 kg 

Autumn 2000  

97 kg 
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The effect of a stale seedbed 

To test the effect of a stale seedbed followed by weed control on the emerging weed 

population, treatments A and G (Table 2.2) were compared. Treatment A was the untreated 

control, in which the only action was the preparation of a regular plant bed with a 2m wide 

rotary harrow from Lely West NV, Maassluis, The Netherlands (http://www.lely.nl). The 

same rotary harrow was used in all treatments. Treatment G involved the preparation of a 

stale seedbed with a rotary harrow four weeks prior to planting the crop, followed by weed 

control with a rotary harrow just prior to planting. The rotary harrow treatment in A 

coincided with the rotary harrow treatment in G. The length of the period between the 

preparation of a stale seedbed and the actual planting, four weeks, was based on practical 

experience under Dutch weather conditions. Weeds that are stimulated to germinate during 

stale seedbed preparation need some time to emerge. Four weeks was found to be optimal; 

the majority of the weeds have emerged and are still small enough to control mechanically. 

No weed control was applied after planting in either treatment. Both treatments were 

applied in every year and at each site. 

 

Stale seedbed followed by chemical or rotary harrowing control 

Two treatments (treatment F and G) were applied to test the effect of either chemical 

control or control by rotary harrowing, both applied prior to planting the crop to control the 

weeds germinating and emerging after a stale seedbed application. Both treatments started 

with the preparation of a stale seedbed with a rotary harrow four weeks prior to planting the 

crop on the above described dates. Subsequently, the emerging weeds were either 

controlled with glyphosate (Round up®, Monsanto Europe NV A.G. Benelux, 1080 g 

a.i./ha) (treatment F) or controlled with 3-4 cm deep rotary harrowing (treatment G). These 

treatments were applied in every year and at each site. No additional weed control was 

applied after planting the crop. 
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Table 2.2 Applied (stale) seedbed treatments from 1999-2001 in Lelystad at three different 

fields. 

Trtmnt Years Stale 
seedbed 

Seed bed 
preparation 

Weed 
control prior 
to planting 

Weed control after 
planting 

A 1999-
2001 

-$ rotary harrow - - 

B 1999-
2001 

- rotary harrow chemical - 

C 1999-
2000 

- rotary harrow - torsionweeder 

D 1999-
2000 

- rotary harrow - fingerweeder 

E 1999-
2000 

- rotary harrow - hoeing 

F 1999-
2001 

4 weeks#; 
rotary 
harrow 

- chemical - 

G 1999-
2001 

4 weeks; 
rotary 
harrow 

- rotary 
harrow 

- 

H 1999-
2001 

4 weeks; 
rotary 
harrow 

- covered 
harrow 

- 

I 2000-
2001 

4 weeks; 
rotary 
harrow 

- covered 
harrow 

FR 
Radiation. 

- 

J 2000-
2001 

- covered harrow - - 

Prior to planting: carbeetamide (Legurame, 1500 g a.i. ha-1, Feinchemie Scwebda GMBH) + chloorprofam 

(Brabant Chloor-IPC, 600 g a.i. ha-1, Agrichem).  
 Glyphosate (Round up®, 1080 g a.i. ha-1, Monsanto Europe NV A.G. Benelux). 
# The stale seedbed was prepared 4 weeks before the final seed bed.  
$ - indicates that a treatment (A-J) did not comprise this action (columns). 
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Cover of machinery 

The effect of covering the rotary harrow on the germinating and emerging weeds was tested 

with two comparisons in which four treatments were involved. First, the effect of a rotary 

harrow covered with black plastic during plant bed preparation (treatment J) was compared 

with the preparation of a plant bed with a rotary harrow without cover (treatment A). 

Treatment J was applied in 2000 and 2001.Second, the effect of weed control after a stale 

seedbed preparation with an uncovered rotary harrow (treatment G) was compared with the 

effect of weed control after a stale seedbed preparation with a covered rotary harrow 

(treatment H). The harrow was covered with black plastic and two blankets and had a 

working depth of 3-4 cm. No weed control was applied after planting the crop. Both 

treatments were applied in every year and at each site.  

 

Far red light 

The effect of far red light on the emergence of weeds was tested during the last two years of 

the experiments. In 2000 and 2001, four weeks after the preparation of a stale seedbed, the 

germinating and emerging weeds were controlled with a covered rotary harrow. Three bulb 

lamps with far red light (75 Watt) were placed under the black plastic and the two blankets 

that covered the rotary harrow (treatment I).  The light spectrum of the lamps was measured 

in an experimental chamber in which interference from visible light was excluded using an 

Ocean Optics 2000-series spectrophotometer. The spectrum of the lamps ranged from 695 

nm up to 1100 nm, with an optimum around 780 nm. This treatment was compared with 

treatment H, which followed the same procedure but without FR radiation.  

 

Mechanical weed control after planting and chemical weed control prior to planting 

In the first two years (1999 and 2000), three mechanical weed control methods applied after 

planting were tested for their efficacy on the control of the emerging weeds. The plant bed 

for the lettuce was prepared with a rotary harrow for all treatments. The tested mechanical 

control methods were control with a torsion weeder from Frato, Wijchen, The Netherlands 

(http://www.frato.nl) (treatment C), with a finger weeder from Kress & Co GMBH, 

Vaihingen/Enz, Germany (http://www.kress-fingerweeder.com) (treatment D) or with a 

regular hoe from K.A. Havelaar en Zn B.V., Moerkapelle, The Netherlands 
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(http://www.havelaar.biz) (treatment E). Mechanical weed control was carried out on July 

8, 1999 and June 23, 2000. Counts were made the next day in above described plots.  

The effect of the chemical weed control on the emerging weeds was tested every year and 

involved the application of a mixture of carbeetamide (1500 g a.i./ha) and chloorprofam 

(600 g a.i./ha) just before planting. In this treatment no weed control was applied after 

planting.  

 

 

Statistical analysis 
The effects of the mechanical weed control methods, chemical treatments or stale seedbed 

combinations on the emerging weed populations were analyzed per year with a one-way 

ANOVA (analysis of variance) in a randomized block design followed by a comparison of 

means (Fisher’s Least Significant Difference) using the 8th edition of the Genstat statistical 

program (Payne et al., 2005). Average densities of the total number of weeds per treatment 

are presented together with standard errors (s.e.), the standard error of the difference (SED) 

and degrees of freedom (df) calculated within years in Table 2.3. 

 

 
Results & Discussion 
 
Emerging weed population 

The average number of weeds per m2 in the untreated plots varied over years from 45.5 to 

78.4 (Table 2.3). The dominant weed species were, in 1999 Chenopodium rubrum, 

Solanum nigrum, Veronica chamaedrys and Capsella bursa-pastoris, in 2000 

Chenopodium album, Stellaria media, Poa annua and Solanum nigrum and in 2001 C. 

album, S. media, S. nigrum, Senecio vulgaris and C. bursa-pastoris. In general, densities of 

individual species were too low to detect significant differences between treatments.  

 

The effect of a stale seedbed 

The effect of a stale seedbed prepared with a rotary harrow and subsequent weed control 

(treatment G) was compared with the untreated control in which the only action was the 

preparation of a regular planting bed with a rotary harrow (treatment A). The density of 
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weeds during crop growth was significantly (P<0.001) reduced by treatment G compared to 

treatment A in all three years (Table 2.3). The preparation of the regular plant bed in 

treatment A coincided with the preparation of the final plant bed in treatment G. Previously, 

stale seedbed practices followed by shallow tillage also reduced the size of aboveground 

weed populations compared to treatments without stale seedbeds in peanut (Carroll Johnson 

& Mullinix, 1995), maize (Cloutier & LeBlanc, 2002) and fodder beet (Rasmussen, 2003). 

Weeds emerging after the first seedbed preparation were controlled by shallow tillage such 

as rotary harrowing, resulting in a depletion of the seed bank and lower weed densities 

during crop growth. However, weeds surviving the stale seedbed preparation and 

subsequent weed control in a study in Denmark had a slightly larger biomass than weeds 

germinating in the same treatment without a stale seedbed (Rasmussen, 2004). The 

surviving weeds germinated already during the stale seedbed preparation, and were larger 

than the weeds that started germination during the final seedbed preparation. 

 

 

Table 2.3 Average number of total weeds and percentage weed reduction compared to the 

untreated plots in 1999, 2000 and 2001. 

 Total (n) ± s.e. Reduction (%) 

Treatment 1999 2000 2001 1999 2000 2001 

A 53.3 ± 8.42a* 78.4 ± 3.39a 45.5 ± 6.53a 0 0 0 

B 21.7 ± 4.50bc 23.1 ± 3.32d 14.2 ± 3.46bc 59.3 70.5 68.9 

C 2.4 ± 0.60e 2.8 ± 0.45ef N.T. 95.5 96.4 N.T. 

D 0.7 ± 0.35e 0.6 ± 0.18f N.T. 98.7 99.2 N.T. 

E 6.2 ± 0.31de 5.8 ± 0.56e N.T. 88.4 92.6 N.T. 

F 16.4 ± 4.61cd 25.5 ± 1.43cd 11.8 ± 2.29bcd 69.2 67.5 74.0 

G 30.3 ± 2.63b 31.4 ± 1.34b 13.3 ± 4.34bcd 43.2 59.9 70.7 

H 14.0 ± 3.05cd 22.6 ± 1.87d 9.0 ± 3.08cd 73.7 71.1 80.2 

I N.T. 22.6 ± 1.32d 7.8 ± 0.98d N.T. 71.1 82.8 

J N.T. 28.9 ± 1.141bc 17.5 ± 2.85b N.T. 63.1 61.5 

SED (df) 5.16 (7) 2.494 (9) 3.488 (6)    

%= percentage weed reduction relative to the untreated (A) plot. 
 values in the same column followed by a different letter are significantly different from one another at the 0.001 

level. N.T.: not tested. 
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Stale seedbed followed by chemical or rotary harrowing control 

Two types of weed control were applied after stale seedbed preparations and prior to crop 

growth: chemical control (treatment F) and rotary harrowing (treatment G). Application of 

glyphosate after a stale seedbed reduced the number of weeds in the crop by 69, 68 and 74 

% in 1999, 2000 and 2001, respectively, compared to the untreated control (treatment A). 

Rotary harrowing after a stale seedbed on the other hand reduced this number by 43, 60, 

and 71 % in 1999, 2000 and 2001, respectively (Table 2.3). The control of the weed 

seedlings with the rotary harrow was significantly less effective (p<0.001) than the 

chemical control with glyphosate in two out of three years. The rotary harrow disturbed the 

soil up to a depth of 3-4 cm and may have brought seeds to the surface. These seeds may 

have germinated and emerged, and resulted in a higher weed density in the rotary harrow 

treatment. Although the weed densities remaining in the plots treated with glyphosate were 

lower compared to the densities in other plots, their total biomass was significantly higher 

than the biomass of weeds remaining in the plots treated in another way, including the 

untreated plot (data not shown). At the moment weed control was performed, germinating 

but not yet emerging weeds were probably present in the top layer of the soil as a result of 

the preparation of a stale seedbed. Glyphosate did not control these un-emerged weeds, 

rotary harrowing (and mechanical control in general) (Gunsolus, 1990) did. As a result, 

weeds emerged earlier in the glyphosate treated plots and therefore obtained a higher 

biomass than the weeds emerging in the rotary harrow treated plots.  

Previously, four week stale seedbed preparations followed by glyphosate treatments were 

more effective than the same stale seedbed preparations followed by treatments with either 

a tine weeder or a spring toot harrow (Caldwell & Mohler, 2001). However, the control 

with the tine weeder and spring tooth harrow were not effective compared to the control 

treatment. The tine weeder penetrated the soil with a depth varying between 0 and 10 cm, 

the spring tooth harrow penetrated the soil regularly up to a depth of 13 cm. The rotary 

harrow used in the present study is therefore a better option to control the residual weeds. 

Due to its working depth of 3-4 cm it affects weeds more than the tine weeder, and brings 

less seeds to the surface than the spring tooth harrow used in the study of Caldwell & 

Mohler (2001). 
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Cover of machinery 

Covering the rotary harrow with black plastic and blankets significantly (p<0.001) 

improved the control of weeds emerging after a stale seedbed preparation. Control went up 

from 43 and 60% (treatment G) to 74 and 71% (treatment H) in 1999 and 2000 respectively 

(Table 2.3). Covered treatments were more effective than the same treatments without 

cover, although these differences were not significant in 2001. A similar result was found 

for the covered and uncovered treatments that were not preceded by a stale seedbed 

preparation. Covering the rotary harrow during plant bed preparation (treatment J) 

significantly reduced the amount of weeds with 63 and 62% in 2000 and 2001, respectively 

compared to the uncovered preparation (treatment A). Results from this study are in 

agreement with previous studies performed in fallow fields in Sweden (Ascard, 1994) 

Germany (Hartmann & Nezadal, 1990), the USA (Gallagher & Cardina, 1998; Scopel et 

al., 1994), Denmark (Jensen, 1991 & 1995) and Argentina (Botto, 1998). They compared 

the effects of cultivation in the dark, during the day and with a covered harrow during 

daytime, on the number of emerging weeds. Tillage at night or with a covered harrow 

significantly reduced the number of weeds in a crop-free field, although reduction was, 

variable between years, locations, weed species and soil types. Part of the observed 

variation in those studies and the observed variation in the present study may be explained 

by differences in light requirements of seeds in time (i.e.. degree of dormancy). Differences 

in light requirements are the result of differences in dormancy state of the seeds. Dormancy 

state is a seed characteristic determining the range of environmental requirements needed 

for germination. Germination will be induced when actual environmental conditions, such 

as light, overlap the dormancy state (Vleeshouwers et al., 1995). The degree of dormancy 

state is determined by temperature during seed development when these are still attached to 

the plant (Bouwmeester, 1990) and other environmental conditions such as nitrogen 

concentration and moisture content of the soil experienced by the maternal plant (Luzuriaga 

et al., 2006). Different temperature ranges during seed development may cause different 

dormancy states of seeds and thereby different responses to environmental conditions such 

as light. Differences in the effect of cover on the emergence of weeds between years and 

locations observed in our study may therefore be (partly) caused by differences in 

temperature and other environmental conditions during seed development and treatment. In 

addition, the three locations differed in their relative density of the different weed species 
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(data not shown). Seeds of different species may have had different dormancy states and 

may also have contributed to the observed differences between locations and thus years.   

Another possible explanation for the different responses of seeds between locations and 

years are the differences in temperature ranges experienced by the seed bank in those years 

and locations. Changes in the light requirements of buried seeds were found to be correlated 

to temperature in several burial experiments (Batlla & Benech Arnold, 2005; Derkx & 

Karssen, 1993).  

 

Far red light 

It is known that the germination of seeds of many species can be influenced by exposure to 

light at a certain moment in the life cycle of the seed (Andersson et al., 1997; Milberg et 

al., 1996; Vleeshouwers et al., 1995). The light response of the seeds can be attributed to a 

family of chromoproteins called phytochromes. Two stable photoconvertable forms of 

phytochromes exist: the inactive form Pr which absorbs light of around 665 nm, and the 

active form, Pfr which absorbs light of around 735 nm.  Exposure to red light (R) (around 

665 nm) can convert Pr into Pfr, which will trigger germination if concentrations of Pfr are 

high enough. Subsequent radiation with far-red light (FR) (around 735 nm) will convert Pfr 

back to Pf and prevent germination (Frankland & Taylorson, 1983). This response of the 

seed is called the Low Fluence Response (LFR).  

The effect of FR on the emergence of weeds was tested by placement of three far red lamps 

under a covered rotary harrow during the control of weeds that emerged after a stale 

seedbed preparation (treatment I). Although one can expect a reduced emergence of weeds 

after irradiation with FR on the basis of the LFR, this was not the case in our study (Table 

2.3). Previous laboratory research in which seeds of more than 64 species were tested for 

their sensitivity to light showed that responses to light are species and population dependent 

(Andersson et al., 1997; Milberg et al., 1996). For instance, germination of Origanum 

vulgare seeds increased with 61% after an exposure to FR of 10 minutes whereas 

germination of seeds of Plantago major, Plantago lanceolata (Pons, 1991) and Galeopsis 

speciosa (Karlsson et al., 2006) increased slightly or not at all compared to germination in 

the dark. Germination of species or populations present in the seed bank in this study might 

have been less inhibited by FR than expected. Alternatively, the absence of a reduction in 

the number of emerging weeds as a result of FR might have been caused by an increased 
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sensitivity to light of the buried seeds. Burial of seeds is known to increase the sensitivity 

of the seeds to light. Seeds of many species are known to respond to relatively very low 

percentages (<2%) of Pfr after burial (Scopel et al., 1991; Kendrick &Cone, 1985; Mandoli 

&Briggs, 1981). This response, the Very Low Fluence Response (VLFR), will result in 

germination of these seeds after exposure to very low fluences. As a result of soil 

cultivation burial of weed seeds is very common in agricultural land and a large part of the 

weed seed bank in agriculture is sensitised (Hartmann & Mollwo, 2000). According to 

these authors all spectral colours from ultra-violet at 300 nm to near-infra-red at 800 nm are 

within the range required for the VLFR and therefore all light within this spectrum is able 

to cause germination of sensitised seeds. This implies that although radiation with FR 

(around 735 nm) will convert a large amount of the Pfr into Pr, the remaining percentage Pfr 

will always remain high enough to induce germination in sensitised seeds (Takaki, 2001). 

Furthermore, the longer seeds remain buried, the larger the percentage of seeds that will 

germinate after radiation with FR (Botto, 1998). The seeds in the top soil layer in this study 

may have been buried for a long period and may have responded according to the VLFR at 

the very low percentages of Pfr generated by the far red lamps.  

 

Mechanical weed control after planting and chemical weed control prior to planting 

The mechanical weed control methods, i.e. the finger weeder (treatment D), the torsion 

weeder (treatment C) and the hoe (treatment E), significantly reduced the total amount of 

weeds during crop growth by 88 to 99 % compared to the untreated control (treatment A) 

(Table 2.3).In addition, the torsion weeder reduced weeds more than the hoe in one year. In 

a previous study the torsion weeder was found to perform better than the finger weeder in 

terms of weeding and cost effectiveness (Melander et al., 2005) but the slight tendency in 

our experiment was not significant.  By hoeing (treatment E), the amount of weeds was 

significantly reduced by 88 and 93% compared to the untreated control, in 1999 and 2000 

respectively. The effect of this method on the number of weeds was not significantly 

different from the effects of the finger weeder and torsion weeder in 1999. In 2000, the 

density of weeds that remained after using the finger weeder was significantly lower than 

the density after application of the hoe. Compared to chemical weed control with 

carbeetamide (treatment B), the use of the finger weeder, torsion weeder and the hoe all 

resulted in a significantly better control (Table 2.3).  
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The chemical control (treatment B) was equally effective as the stale seedbed combinations 

(treatments F, G, H and I) in 2000 and 2001, except for the treatment with far red light 

(treatment I) in 2001 which was more effective at that time. The chemical control 

(treatment B) was more effective than control of weeds with a covered rotary harrow 

without a stale seedbed (treatment J). Several previous studies already concluded that 

mechanical intra-row control methods can be as affective as herbicides in those cases in 

which weeds were not very sensitive to the post-emergence herbicides applied and several 

cultivations were performed (Mulder & Doll, 1993).  

 

 

Conclusions 
No differences could be detected amongst treatments at the individual species level, except 

for the difference with the untreated control. The number of weeds per species may have 

been too low to be able to detect differences between other treatments. Nevertheless, 

differences were found at the whole vegetation level. 

Of the control methods tested, the mechanical weed control with the torsion weeder, the 

finger weeder, and the hoe were the most effective in reducing total weed densities during 

crop growth. Although less effective than the use of the torsion weeder and finger weeder, 

the effect of a stale seedbed preparation and subsequent weed control was similar to or 

better than the effect of chemical control with carbeetamide and chloorprofam. Weed 

reductions up to 83% were obtained as a result of the preparation of a stale seedbed and 

subsequent weed control. Of the control methods tested after a stale seedbed preparation, 

the application of glyphosate and the use of a covered rotary harrow were most effective. 

Less effective were tillage practices combining burial and radiation of seeds with FR. Seeds 

are probably sensitised by burial and will display the irreversible VLFR and consequently 

the germination and emergence of those weed seeds will not be prevented. The results show 

that the stale seedbed technique in combination with mechanical control of emerging weeds 

can reduce the weed population during crop growth as effective as chemical control can. 
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CHAPTER 3 

Effects of three organic weed management strategies 
on the seed bank, weed emergence and subsequent 

weed control effort over seven years 2 
 

M.M. Riemensa, R.M.W. Groenevelda, L.A. P. Lotza and M.J. Kropffb 

 
aPlant Research International, WUR, P.O. Box 616, 6700 AA Wageningen, NL 

bDepartment of Crop and Weed Ecology, Wageningen University, P.O. Box 430, 

6700 AK Wageningen, NL 

Summary 
The effects of three different weed management strategies on the required input of hand 

weeding in organic farming systems over several years, the weed seed bank in the soil, and 

the emerging weed seedling population were studied from 1996 to 2003. The strategies 

were (1) control of weeds as carried out in standard organic farming practice, (2) control of 

all residual weeds that grow above the crop, and (3) prevention of all weed seed return to 

the soil. Under all strategies the size of the seed bank increased after the conversion from 

conventional to organic farming systems. The increase under strategy 3 was significantly 

smaller than the increase under the other strategies. From 1999 onwards, the weed densities 

in plots treated with strategy 3 became significantly lower than the weed densities in plots 

treated with the other strategies. The number of manual weeding hours required to prevent 

weed seed return in addition to the number in standard organic farming practices was 

reduced during the study. Results show that a management strategy aimed at the prevention 

of seed return can reduce the increase of the seed bank size which is usually observed after 

transition from conventional to organic farming.  

 

Keywords: seed bank, weed control effort, manual control, management strategies, organic 

farming, population dynamics.  

                                                            
2 Weed Research 47 (2007), 442-451. 
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Introduction 
During the past three decades the reduction of pesticide use has become an important 

objective in both policy making and agricultural research. Partly as a result of this, organic 

farming has received a lot of attention. One of the key problems in organic farming is the 

amount of effort required for weed control. Mechanical weed control alone is usually not 

sufficient and additional manual control is necessary to achieve the level of weed control 

that is possible with herbicides. Labour is expensive and usually not available for the 

purpose of hand weeding in many areas of the world. Therefore, a strong reduction of the 

amount of manual labour for weed control in organic farming systems is essential.  

A reduction of manual labour requirements may be achieved by the improvement of weed 

management strategies. The use of strategies aimed at the prevention of addition of weed 

seeds to the soil seed bank may result in a declining seed bank (Sjursen, 2001). The weed 

population emerging after cultivation in some studies is related to the size and composition 

of the weed seed bank (Zhang et al., 1998; Roberts & Neilson, 1981; Roberts & Ricketts, 

1979). In some studies, no relationship was found between seed bank and aboveground 

communities (Derksen & Watson, 1998), or only for a small number of species (Webster et 

al., 2003). This indicates the complexity of processes determining the germination and 

emergence of weed seeds in the soil. Nevertheless, the soil seedbank is a product of the past 

and represents the potential future of the aboveground plant community (Swanton & Booth, 

2004). Therefore, a modification of the size of the seed bank will result in changes of the 

emerging weed populations, and vice versa. In this paper, we hypothesize that strategies 

aimed at the prevention of seed additions to the soil seed bank, will result in lower weed 

densities and will reduce the amount of manual labour required.  

Several previous studies evaluated the effects of different management strategies based on 

different tillage regimes (Barberi & Cascio, 2001; Menalled et al., 2001; Clements et al., 

1996; McCloskey et al., 1996; Froud-Williams et al., 1983), several crop rotations (Benoit 

et al., 2003; Menalled et al., 2001; Barberi & Cascio, 2001; Cardina et al., 1996), fertilizer 

applications (McCloskey et al., 1996) and herbicide applications (Grundy et al., 2005; 

Menalled et al., 2001; Barberi et al., 1997; Jones & Maulden, 1999; McCloskey et al., 

1996; Lotz et al., 1993; Ball, 1992;) on the seed bank or emerging seedlings or both. They 

all showed that, depending on the specific circumstances of the study, the actual weed 

population varies with different management strategies in which the effects of one or more 
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of these factors are investigated. However, none of these studies compared the effects of 

different organic weed management strategies on both the weed population as well as on 

the effort to control this population.  

The present study was undertaken to test the hypothesis that weed management strategies 

that focus on a reduction of the weed seed bank eventually require less labour for hand 

weeding. To do so, we studied the effects of three organic weed management strategies on 

the size of the soil seed bank, the emerging weed population and the amount of manual 

labour. The three strategies were (1) control of weeds as carried out in standard organic 

farming practice, (2) control of all residual weeds that grow above the crop, and (3) 

prevention of all weed seed returns to the soil. 

 

 

Materials and Methods 

Experimental farm 

Field research was carried out between 1996 and 2003 at the organic experimental farm 

“Dr. H.J. Lovinkhoeve” located in Marknesse, The Netherlands (52°42’N, 5°53’E) where a 

seven year rotation was established. The size of each of the seven rotation fields was 168 m 

x 300 m. Soil properties were: a coarse sandy clay, with pH-KCl of 7.3, an organic content 

of 2.2% and a CaCO3-level of 9%. After being a conventional farm for many decades, this 

farm was converted to an organic farm in 1996. The ploughing depth in the organic farming 

system was kept similar to the ploughing depth of 20 cm during the conventional farming 

period. The applied crop rotation scheme was: a 2-year lucerne crop, sugar beet, spring 

wheat, potato, maize and tulip. In 1996, winter wheat was grown instead of spring wheat 

and maize, onion instead of tulip and oats instead of potato (Table 3.1). 

 

Three weed management strategies 

The effects of three weed management strategies on the weed seed bank, the emerging 

weed population and the required manual weed control effort were studied. The three 

strategies were (1) control of weeds as carried out in standard organic farming practice, (2) 

control of all residual weeds that grow above the crop, and (3) prevention of all weed seed 

return to the soil. Thus, strategies 2 and 3 involved additional manual weed control, on top 

of the mechanical and manual weed control carried out in strategy 1. Strategies were 
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applied in plots of 12 m x 40 m and replicated twice on each of the seven fields, during 

seven years. The plots were kept in the same location in each field during the experiment. 

The standard organic farming practices for each crop is given in Table 3.2. 

 

Effects on the weed seed bank 

At the start of the experiment in 1996 and at the end in 2003, the size of the weed seed bank 

was determined for the 0-20 cm top soil layer of each plot. Sampling occurred at the end of 

March, before seed- or plantbed preparations. Twelve soil cores of 20 cm depth (3 cm 

diameter) were taken from the centre (30 m x 8 m) of each plot at regular intervals. The 12 

samples per plot were pooled to form one sample of 3 kg fresh weight. This sample was 

mixed thoroughly. Next, a subsample of 300 gram was taken from the 3 kg sample for 

determination of seed numbers. The subsamples were all taken at one day to prevent 

differences in subsample weight due to moisture loss. To separate the seeds from the soil 

particles, an elutriator (Wiles et al., 1996) was used. Subsequently, seed numbers and 

species were determined. The total number of seeds per plot was counted, converted to 

numbers per m2 and averaged over the fields for each of the management strategies 

 

 

Table 3.1 Crop rotation scheme at the experimental farm “Dr. H.J. Lovinkhoeve” during 

this study. 

Year 
field 1996 1997 1998 1999 2000 2001 2002 
1 Lucerne Lucerne Sugar-

beet 
Spring 
wheat 

Potato Maize Tulip 

2 Sugar-
beet 

Spring 
wheat 

Potato Maize Tulip Lucerne Lucerne 

3 Winter 
Wheat 

Tulip Lucerne Lucerne Sugar-
beet 

Spring 
wheat 

Potato 

4 Winter 
wheat 

Potato Winter 
Wheat 

Tulip Lucerne Lucerne Sugar-
beet 

5 Onion Lucerne Lucerne Sugar-
beet 

Spring 
wheat 

Potato Maize 

6 Lucerne Sugar-
beet 

Spring 
wheat 

Potato Maize Tulip Lucerne 

7 Oat Winter 
Wheat 

Tulip Lucerne Lucerne Sugar-
beet 

Spring 
wheat 
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Effects on the emerging weed population 

The number of emerging weed seedlings was determined each year at the end of June or at 

the beginning of July after the last mechanical weed control. Weeds were counted in six 

0.375 m2 quadrates (0.50 m x 0.75 m) randomly located in the centre (30 m x 8 m) of each 

plot.  

Effects on the required manual weed control effort 

To be able to compare the amount of effort dedicated to manual weed control between the 

strategies, the total required amount of manual labour (h) per ha was determined every year 

for each plot during the whole growing season. 

 
 

Statistical analysis 

Weed seed bank 

The counted seed numbers per plot were converted to numbers per m2. As the background 

populations from which the soil seed samples were drawn cannot be assumed to be 

normally distributed (Dessaint et al., 1991), variance can not assumed to be constant and 

tests such as the analysis of variance can not be applied (Anonimous, 1988). Therefore, the 

dataset was analysed by a IRREML procedure (Iterative Reweighted Residual Maximum 

Likelihood) assuming a Poisson distribution using Genstat statistical program 8th edition 

(Payne et al., 2005). This analysis was followed by a Wald test to test for significance of 

main and interaction effects. To test for significant differences between treatments, t tests 

were used. The change in seed numbers per m2 in the top layer in the period between 1996 

and 2003 were calculated, for all species together and for the most abundant species 

separately. The differences in those changes between the strategies were, after the 

appropriate checks for normality, analysed using a two way ANOVA and a Fisher’s L.S.D. 

using Genstat statistical program 8th edition (Payne et al., 2005). 

Emerging weed population 

The counted weed numbers per plot were converted to numbers per m2 and analysed by a 

IRREML procedure with a Poisson distribution using Genstat statistical program 8th edition 
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(Payne et al., 2005). This analysis was followed by a Wald test to test for significance of 

main and interaction effects. To test for significant differences between treatments, t tests 

were used. In the first year after conversion, organic farming was relatively new to the co-

workers at the experimental station and mechanical weed control methods were not optimal 

in this first learning year yet. Therefore, the dataset from this year, 1996, was excluded 

from the analysis. 

Required manual weed control 

The total required amount of manual labour (h) per ha was analysed by a REML procedure 

(Restricted Maximum Likelihood) using Genstat statistical program 8th edition (Payne et 

al., 2005). This analysis was followed by a Wald test to test for significance of main and 

interaction effects. To test for significant differences between treatments, t tests were used.  

Than, the manual weed control hours per ha in strategy 2 and strategy 3 that were required 

in addition to the manual weed control hours per ha in strategy 1 were calculated: 

add21= (manual weed control hours per ha per year in strategy 2)- (manual weed control 

hours per ha per year in strategy 1), and 

add31= (manual weed control hours per ha per year in strategy 2)- (manual weed control 

hours per ha per year in strategy 3). These additional manual weed control hours were than 

analysed for differences between crops and years with a REML procedure, followed by a 

Wald test to test for main and interaction effects and t tests to test for significant difference 

between treatments, using Genstat statistical program 8th edition (Payne et al., 2005). 

 
 
Results & Discussion  

The weed seed bank  

The seed bank size increased during seven years of organic weed management practices 

from about 3083 seeds per m2 in 1996 to almost 9627 seeds per m2 in 2003 (P < 0.001), 

averaged over all strategies. The seed bank size determined at the start of the experiment in 

1996 was the result of conventional, chemical weed control since 1950. 



 

 

Table 3.2 The standard organic farming practices for each crop and their average date of application at the experimental farm 

“Dr. H.J. Lovinkhoeve” from 1996-2002. 
crop Lucerne, 1st 

year 
Lucerne, 2nd 

year 
sugarbeet spring 

wheat 
potato maize tulip winter 

wheat 
onion oats 

ploughing 
(previous 
year) 

December  December December December December  December October  December December 

stale seedbed 
(rotary 
harrow) 

end of March  1st week 
of April 

1st week 
of April 

1st week 
of 

April** 

3rd week 
of April 

  1st week 
of April 

 

seedbed 
preparation 
(rotary 
harrow) 

1st  week of 
May 

 4th week 
of April 

3rd week 
of April 

4th week 
of April 

2nd week 
of May 

October 
till 

December 
of 

previous 
year 

2nd week 
of 

October 
previous 

year 

3rd week 
of April 

4th week 
of March 

cutting 2nd week of 
June 

end of August 
1st week of 
September 

2nd or 3rd 
week of 

May 
1st week of 

July 
2nd or 3rd of 

August 
1st week of 

October 

        

fingerweeder*   2nd week 
of May 
3rd week 
of May 
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hoeing   3rd or 4th 
week of 

April 
3rd week 
of May 

3rd week 
of May 

4th week 
of May 

2nd week 
of June 
3rd week 
of June 
1st week 
of July 

  1st week 
of May 

2nd week 
of May 

 

layer of straw       one week 
after 

planting 

   

milling      3rd week 
of May 

     

ridging   2nd week 
of June 

       

harrowing    2nd week 
of May 

   1st week 
of April 

 1st week 
of April 

flame burning     2nd or 3rd 
week of 

July 

     

disk harrowing        1st week 
of May 

2nd week 
of May 
4th week 
of May 

3rd week 
of July 

2nd week 
of August 

1st week 
of May 

2nd week 
of May 

stubble 
treatment 
(cultivator) 

       2nd week 
of 

September 

 2nd week 
of 

September 

*) fingerweeder was bought in 2000 and applied from 2001 onwards.  

**) only stale seedbed in potato in 1998 and 1999. 
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The seed bank size in 2003 was the result of this conventional history plus the organic 

farming practices over the seven years in study. The observed increase in the number of 

seeds in the soil seed bank from 1996 to 2003 may therefore be caused by the transition to 

an organic farming system. 

Similar effects after transition from a conventional to an organic farming system on the 

seed bank size were observed in other studies. Albrecht and Sommer (1998) observed an 

increase from 4050 seeds per m2 to 17320 seeds per m2 three years after the conversion, 

Verschwele and Zwerger (2005) found an increase from 4188 in the first year to 11528 

seeds per m2 in the ninth year after conversion. In a Norwegian study an increase from 4000 

to 10000 seeds per m2 was observed during the first six years after conversion (Sjursen, 

2001).  

The absence of herbicides probably plays an important role in the increase after conversion. 

Several studies reported that seed banks are much larger under organic management 

systems than under chemical systems (Hyvönen & Salonen, 2003; Barberi et al., 1998a;; 

Roberts &Neilson, 1981). More seedlings are able to survive and produce seeds in systems 

without or with reduced herbicide application, resulting in a larger weed seed bank 

(Hyvönen & Salonen, 2003; Jones & Maulden, 1999). Albrecht (2005) argues that besides 

the absence of herbicides, a decline in crop cover due to the increase in cultivation of less 

competitive crops and reduced nutrient availability may play a role in weed seed banks 

after conversion. 

The size of the weed seed bank was strongly influenced by the main effects of field, year 

and strategy (P < 0.001). The interaction terms were not found to be significant (P > 0.05). 

Table 3.3 shows that the seed bank in 2003 was larger than the seed bank in 1996 for each 

strategy and that variability is very high. This high variability probably causes the absence 

of a significant interaction term. Therefore, the increase in seed numbers per m2 from 1996 

to 2003 was compared between strategies. Under standard organic farming practices 

(strategy 1), the average increase in seed bank size was more than 10000 seeds per m2 over  

a period of seven years (Table 3.4). The average increase in seed bank size under strategy 2 

was similar with about 9500 seeds per m2 over the same time period (Table 3.4). So, 

removal of weeds growing above the crop after standard organic weed control (strategy 2) 

did not affect the seed bank size compared to the standard organic farming practices. 
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Table 3.3 Mean seed numbers to 20 cm depth before and after seven years of different weed 

management strategies.  

 Size of seedbank (#/m2)  

Strategy 1996 2003 SED* (df=2) 

1 3460  12874  1665 

2 3242  11932 960 

3 2581  5411 1901 

*back transformed SED values to indicate the range of the SED. 

Strategy 1: standard organic farming practice, 2: removal of weeds growing above the crop, 3: prevention of all 

weed seed addition to the soil. No significant differences at the 0.05 level were observed. 

 

The number of weeds growing above the crop after standard organic farming practices was 

low, as a result of which no differences between the two strategies could be observed. The 

increase in number of seeds in plots treated with strategy 3 was on average 3048 (Table 

3.4). It was expected that prevention of seed shedding would lead to a decline in the size of 

the soil seed bank due to germination and mortality of seeds already present in the soil and 

not to an increase. The aimed full control before weeds were able to produce seeds was 

probably not completely accomplished with this strategy. Nevertheless, the increase in seed 

bank size with this strategy (3) was significantly (P < 0.002) smaller than the increase 

observed under the standard organic farming practices (strategy 1) (Table 3.4).  

The most abundant weed species in the seed bank in 1996 were the same as the most 

abundant in 2003: Poa annua, Stellaria media, Chenopodium album and Polygonum 

persicaria. The size of the seed bank of these species was not found to be affected by the 

applied strategies, year or field (P > 0.05). The species and number of species in the seed 

bank was in 2003 the same as in 1996. In this study we used 12 soil cores per plot to 

sample the weed seed bank. However, from previous research we may assume that the 

seeds are distributed following the Poisson or the Negative Binomial distribution. 
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Table 3.4 Mean changes in seed numbers to 20 cm depth after seven years of different weed 

management strategies.  

Strategy change in seed number per m-2 

1 10381a*  

2 9592a  

3 3048b   

SED (df) 1680 (2) 

*) different characters indicate significant differences at the 0.002 level. 

Strategy 1: standard organic farming practice, 2: removal of weeds growing above the crop, 3: prevention of all 

weed seed addition to the soil. 

 

This means that it probably would require more than 12 soil cores per plot to detect or 

estimate the seed numbers of species with a low density (Luschei, 2003; Ambrosio et al., 

1997). Based on the mean number of seeds per sample, it would have required at least 18 

soil cores per plot to estimate the number of seeds of the species with low densities 

accurately in this study (Dessaint et al., 1996). This means that the counted total number of 

seeds in this study may have a certain deviation of the actual number. However, since the 

deviation is due to species occurring at low densities that are not of main interest in this 

study with respect to the manual weed control effort and seed production, the estimation of 

the seed bank size was adequate enough for our purposes. In this study we used one of two 

main categories of methods for weed seed bank analysis: a method that directly extracts 

seeds from soil and identifies and counts them. The other method, that allows seeds present 

in soil to germinate and emerge for a certain period of time prior to identification and 

counting, is thought to estimate the species composition of a weed seed bank more accurate 

(Barberi et al., 1998b; Miele et al., 1998; Gross, 1990). Small seeded species are in some 

cases not detected with the direct seed extraction method (Barberi et al., 1998b) and 

changes in the number of seeds or the introduction of these species as a result of the applied 

strategies may therefore not have been observed in this study. Nevertheless, both methods 

are thought to estimate the total seed bank size over a soil layer equally well (Barberi et al., 

1998b).  
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The emerging weed population 

The number of weeds emerging after the last mechanical control treatment was not 

influenced by crop (P = 0.512) or year (P = 0.420). Crop type and rotation was found to 

influence the weed density in some previous studies (Hyvönen & Salonen, 2002 & 2003; 

Blackshaw et al., 2001; Doucet et al., 1999). Crops differ in their competitive ability, 

shading conditions, weed management, fertilization application and sowing times, and may 

therefore affect the species composition of weed communities (Kegode et al., 1999). In this 

study, weed densities were determined after the last mechanical control, meaning that it 

may not have been possible to observe differences in weed densities between crops. 

However, weed density was influenced by the interaction term strategy*year (P < 0.001). In 

the first years of the experiment the weed densities in plots treated with strategies 1, 2 and 3 

were not significantly different from each other (P > 0.05). From 1999 onwards, the weed 

densities in plots treated with strategy 3 (that aimed at the total prevention of weed seed 

return), became significantly lower than the weed densities in plots treated with the other 

strategies (Table 3.5). The decrease in the weed densities from 1997 to 2002 was not 

significant for any of the strategies (P > 0.05).    

The most commonly found weed species at the start were the same as the most abundant 

species during the whole study: P. annua, S. media, and Sonchus oleraceus. However, no 

differences could be detected amongst years or strategies at the individual species level (P > 

0.05). The number of weeds per species may have been too low or the variability may have 

been too high to be able to detect differences between years and strategies.  

 

The required manual weed control effort 

The amount of manual labour was strongly influenced by the main effects of strategy, crop 

and year and the interaction terms strategy*crop and crop*year (P < 0.001). There was no 

significant effect of strategy*year (P > 0.05). Therefore, we analysed the manual labour in 

strategies 2 and 3 that was required in addition to the manual labour in strategy 1. There 

was no significant difference in the amount of hand weeding between strategies 1 and 2 in 

any of the years (P > 0.05). This was probably due to the low number of weeds growing 

above the crop after the last mechanical weed control treatments. 
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Table 3.5 Mean weed density m-2 per year for the different weed management strategies.   

Strategy 1997 1998 1999 2000 2001 2002 

1 15.86 a*  22.92a  10.48a 5.25a  10.32a 7.16a 

2 19.72a   18.78a  8.47a  6.16a 14.8b 7.10a 

3 16.05a   22.34a  4.77b  2.75b 8.36a 3.00b 

SED-range** 

[min; max] 

[1.16; 2.47]     

mean SED 2.20      

df 10      

*values in the same column followed by a different letter are significantly different from one another at the 0.05 

level, **back transformed SED values to indicate the range and average of the SED. 

Strategy 1: standard organic farming practice, 2: removal of weeds growing above the crop, 3: prevention of all 

weed seed addition to the soil. No significant differences at the 0.05 level were observed. 

 

 

The number of manual hours required to prevent weed seed return in addition to the manual 

weed control hours in standard organic farming practices was reduced from 21.14 (h ha-1) 

in 1997 to -1.24 (h ha-1) in 2001 (Table 3. 6). However, in 2002 the additional amount of 

weeds in strategy 3 was increased to 23.82 h ha-1. This could completely be ascribed to the 

manual weed control effort in tulip in that year. Under strategies 1 and 2 no manual weed 

control was applied in tulip, while under strategy 3 around 100 hours of manual weed 

control were used to prevent seed shedding. Prior to growing tulip, the field was ploughed 

about 5 cm deeper than usual at the farm. This resulted in an increased emergence of small 

weeds, mainly P. annua. These weeds were not regarded as a threat to the yield of the tulip 

and not manually controlled under standard organic farming practices (strategy 1), nor 

under the strategy aiming at the removal of large weeds (strategy 2). Under strategy 3 

however, all weeds were to be prevented from seed shedding and a lot of manual effort was 

required to remove these weeds.  
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Table 3.6 The additional manual labour required in strategy 3 (add31) compared to labour 

in strategy 1. 

year add31(h*ha-1) 

1997 21.14a* 

1998 32.91b 

1999 10.45c 

2000 -7.06d 

2001 -1.34d 

2002 23.82a 

SED (df) 3.120 (5) 
* values in the same column followed by a different letter are significantly different from one another at the 0.05 

level. 

Strategy 1: standard organic farming practice, 3: prevention of all weed seed addition to the soil. 

 
 
Species diversity and composition 

Previous studies report of a density increase of herbicide-sensitive species after the 

avoidance or reduction of herbicides (Hyvönen & Salonen, 2003; Menalled et al., 2001; 

Albrecht & Sommer, 1998) or a density increase in insensitive species after repeated 

application of a specific herbicide (Ball, 1992). Verschwele and Zwerger (2005) also found 

a small increase in the number of species in the seed bank nine years after conversion, 

although the species that were most abundant at the time of conversion were still the most 

abundant species nine years later. It was therefore expected that the diversity of species in 

the present study would increase after the transition, or that the species composition would 

be altered by the absence of the herbicides, but they were not. In the previous studies the 

herbicide sensitive species, although in lower densities, were already present in the seed 

bank before the experiments started.  These results suggest that an increase in species 

diversity and composition may take a long time after conversion, probably more than the 

seven years that the present study lasted. Furthermore, the introduction of new species will 

depend on the environment of the farm and factors such as the presence of seeds in 

fertilizer. The presence of nature reserves, conventional farms or other organic farms in the 

vicinity of the organic farm will determine the source and variation of the species that can 

be introduced in a relatively short time period. 
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Overall 

The conversion from a conventional farming system to an organic farming system resulted 

in an increase in the amount of seeds in the soil. This increase will probably have been the 

result of a reduced control of the emerging weeds in the organic system, compared to the 

previously applied conventional system that included herbicide application. However, we 

did not determine the weed density prior to weed control during the cropping season, nor 

did we determine the weed density prior to conversion, and can not determine whether the 

density of the aboveground weeds was increased after conversion or not. In previous 

studies it did increase after conversion (Verschwele & Zwerger, 2005). We therefore 

hypothesize that weed densities in the organic system were higher than in the conventional 

system in the present study as well.  

If the seed bank was higher in 2003 than in 1996, why didn’t the density of weeds increase 

from 1997 to 2003? The explanation lies in the improved mechanical control during the 

experiment. In the first years after conversion, organic farming was relatively new to the 

co-workers at the experimental station and mechanical weed control methods were not 

applied in an optimal manner (pers. comm. Andries Siepel, manager of the experimental 

farm “De Lovinkhoeve”). Therefore, the weed densities, which were determined after the 

last mechanical control, were relatively high in the first years after conversion. During the 

experimental period, the application of the mechanical weed control methods was 

improved. Due to this improved mechanical control the number of weeds remaining after 

the last mechanical control treatments could be maintained at a constant level, in spite of an 

increasing seed bank.  

The weed density in the plots where strategy 3 was applied became significantly lower than 

the densities in plots where the other two strategies were applied from 1999 onwards. This 

is most likely due to the larger increase in seed bank size in strategies 1 and 2 compared to 

strategy 3. The amount of seeds in soil in plots where the aim was to prevent all seed 

shedding was lower than in plots under the other two strategies. This resulted in lower 

densities of emerging weeds prior to mechanical control. With similar mechanical control 

methods applied under all strategies, with equal efficiency, the weed density remaining 

after this control will be lower under strategy 3 than under strategies 1 and 2. The lower 

weed density under strategy 3 compared to strategy 1 resulted in a reduction of the 
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additional amount of manual weed effort in strategy 3 compared to the standard organic 

farming practice (strategy 1) (Table 3.6).  

 

 

Concluding remarks 
Results from this study show that a management strategy aimed at the prevention of seed 

return can reduce the increase of the seed bank size which is usually observed after 

transition from conventional to organic farming. To achieve a substantial reduction of the 

seed bank with such a strategy, seed return will have to be prevented completely. This 

study shows that it will be very difficult, if not impossible to prevent seed return for a 100% 

in practice and reduce the seed bank size with this strategy. According to Swanton and 

Booth (2004) the seed bank can only be managed successfully if not only seed production 

is reduced, but other parts of the plant’s life cycle are affected as well. A successful 

management system should also increase the seed mortality, manipulate the germination 

and emergence of weeds and remove sufficient amounts of the above-ground biomass. 

However, this will require a lot of effort and will sometimes be impossible to achieve due 

to external factors, such as unfavourable weather conditions.  
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CHAPTER 4 
 

Predicting sublethal effects of herbicides on 
terrestrial non-crop plant species in the field from 

greenhouse data3 
 

M.M. Riemensa, T. Dueckb, C. Kempenaara 

 
aPlant Research International, WUR, P.O. Box 616, 6700 AA Wageningen, NL 

bGreenhouse technologies, WUR, P.O. Box 616, 6700 AA Wageningen, NL 

 
Summary 
Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse 

experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. 

The present study was undertaken to investigate the predictability of effects on field-grown 

plants using greenhouse data. In addition, the influence of plant development stage on plant 

sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual 

plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction 

of non-crop plants was studied. Results show that in the future, it might well be possible to 

translate results from greenhouse experiments to field situations, given sufficient 

experimental data. The results also suggest consequences at the population level. Even 

when only marginal effects on the biomass of non-target plants are expected, their seed 

production and thereby survival at the population level may be negatively affected. 

 

Keywords: Non-crop terrestrial plants, Glufosinate ammonium, Biomass, Seed production, 

Life cycle. 

                                                            
3 Environmental Pollution 155 (2009), 141-149. 
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Introduction 
During the past two decades, the interest for vegetation on edges immediately surrounding 

arable fields has increased significantly. As a consequence, a great deal of concern has 

arisen regarding effects of pesticides on these margins, in The Netherlands (De Snoo, 

1995), other parts of Europe (Marrs et al., 1993), Canada and the United States (Boutin et 

al., 2004). Herbicides in particular may have a large effect on such networks. These 

chemicals may alter biodiversity as they can affect plant species composition, diversity, 

development, growth, or morphology. Plants are an important part of the habitat in relation 

to other organisms such as birds and insects, providing them with food, shelter, and an 

environment to reproduce (Moreby & Southway, 1999; Freemark & Boutin, 1995). 

Changes in the species composition of field margins due to herbicide applications to 

adjacent fields have been observed in previous studies (De Snoo, 1999; Jobin et al., 1997; 

Marrs et al., 1989). Issues such as herbicide doses and allowable distances to field margins 

for spraying are currently being discussed (De Jong et al., 2008; De Snoo, 1995). However, 

insufficient knowledge is available on the effects of sublethal doses of herbicides on non-

target, non-crop terrestrial plants required to estimate these distances and doses. The 

European and Mediterranean Plant Protection Organization (EPPO) Council has provided a 

standard for the environmental risk assessment of plant protection products such as 

pesticides to non-target terrestrial higher plants with a tiered approach (European and 

Mediterranean Plant Protection Organization, 2003). They present a definition of a non-

target plant that we will use in this paper: a non-crop plant located outside the treatment 

area. However, a number of factors that need to be dealt with during the collection of data 

required for the risk assessment are not described in this approach. Risk assessments of 

herbicide phytotoxicity are often performed with data obtained from greenhouse 

experiments with single plant species, which may over- or underestimate effects. The 

advantage of greenhouse experiments is that they can be easily standardized. To date, very 

few studies have investigated the possibilities of directly predicting effects in the field from 

greenhouse data (Wright & Thompson, 2001; Breeze et al., 1992; Fletcher & Johnson, 

1990). Those few used greenhouse and field data that originated from different studies in 

which either the plant species or origin of the plants differed. A direct comparison was not 

made in any of these studies. Such knowledge may be very useful during the development 

of risk assessment protocols. The present study was undertaken to investigate the 
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predictability of effects on field-grown plants using greenhouse data and to investigate the 

effects on vegetation assemblages, so-called mesocosms, in a greenhouse. In addition, the 

sensitivity of plants during different developmental stages, their recovery and effects on the 

next generation (seed production and germination) were addressed.  

 
 
Materials and Methods 
 
Experiment 1: Sublethal effects of glufosinate ammonium on four non-crop species 

To test the effects of glufosinate ammonium on the aboveground biomass, seed production, 

seed germination and recovery of different species grown in the greenhouse and in the field, 

seeds of Chenopodium album, Stellaria media, Poa annua, and Echinochloa crus-galli 

were obtained from a commercial seed supplier (Medigran, Hoorn, The Netherlands, 

http://www.medigran.nl). Seven hundred and sixty-eight 0.5-L pots were filled with a 

peat:sand mixture (2:1). Seeds of the four species were scattered over the soil surface (one 

species per pot) and covered with a thin layer of sifted soil. The species were sown in such 

a manner that emergence of all species would coincide. Half of the pots were randomly 

arranged in four blocks in a greenhouse (day/night temperature 18/12 C and a 16/8 h 

light/dark period) and watered in trays. The other half was randomly placed in four blocks 

in a field adjacent to the greenhouse located in Wageningen, The Netherlands. The 

experiment started in the first week of May 2005. After emergence the number of plants 

was thinned to four per pot. Half of the pots from both the greenhouse and the field were 

sprayed 2 weeks after emergence (WAE) with glufosinate ammonium and the other half at 

4 WAE. Four pots per treatment remained unsprayed as control. After treatment, the plants 

were placed back in the position they were in prior to treatment. Glufosinate ammonium is 

a broad-spectrum contact herbicide and is used to control a wide range of weeds after crop 

emergence, or for total vegetation control on noncultivated land. It inhibits the activity of 

the enzyme glutamine synthetase which causes the accumulation of ammonia, leading to 

cell destruction and inhibition of photosynthesis. Field-grown plants of all species were of a 

similar size as greenhouse-grown plants at 2 WAE. Dosages were 0, 0.04, 0.2, 0.4, 2, and 4 

L Finale per ha (which corresponded with doses of 0, 6, 30, 60, 300 and 600 g glufosinate 

ammonium per ha). The recommended field dose for this herbicide ranges from 3 to 5 L per 



Part B: Environmental effects of a broad spectrum herbicide on non target plants 

 55

ha, depending on the crop. The expected deposition of glufosinate ammonium when Finale 

is applied at 3 L per ha, varies from 111.0 g active ingredient (a.i.) per ha at 1 m, 36.2 g a.i. 

per ha at 4 m to 3.86 g a.i. per ha at 10 m from the field edge (calculated with the IDEFICS 

model (Holterman et al., 1997)). The herbicide was applied in a 4 m wide by 2 m deep 

spray chamber. The sprayer consisted of a 1 m wide movable spray boom with three Teejet 

XR11004 (class Medium spray quality) flat fan nozzles (Spraying Systems Co., Wheaton, 

IL, USA, http://www.teejet.com) that delivered 400 L per ha. The height between nozzle 

and the soil surface of the pots was 50 cm. Fresh weight was used as effect parameter. A 

preliminary comparison between the effect of glufosinate ammonium on the fresh and dry 

weight of plants did not show significant differences (Riemens et al., 2004). Furthermore, 

the effects of sublethal doses on fresh and dry shoot weight of Brassica napus in a previous 

study carried out in both greenhouse as well as field were highly correlated and the 

coefficients of variance were similar for dry and fresh weight, (De Jong & Udo de Haes, 

2001). The aboveground fresh weight of all species was determined at 4 weeks after 

treatment (WAT) and at seed setting (SS). For C. album and S. media plants seed setting 

already occurred at 4 WAT, so all plants were harvested at that moment, both in the field as 

well as in the greenhouse. Seeds were collected and counted per pot. After storage at 10 C 

in a dark room in which they were shielded from light and moisture, four lots of 20 seeds 

were randomly chosen per pot for a germination experiment. Germination tests were 

conducted in a greenhouse at day/night temperatures of 24/12 C and a 16/8 h light/dark 

period. Each seed lot was allowed to germinate in a plastic pot (6 x 5 x 5 cm) filled with 

sterilized soil. Germinated and emerged seeds were regularly counted and removed from 

each pot for 21 days. Experiments were conducted from May 2005 until February 2006.  

 

Experiment 2: Effects of glufosinate ammonium on mesocosms 

Mesocosms were composed of eight species in 5 L pots filled with a peat/sand mixture 

(2:1). Each mesocosm consisted of four monocotyledons, P. annua, E. crus-galli, Elymus 

repens, Panicum milliaceum, and four dicotyledons, Solanum nigrum, S. media, C. album, 

and Centaurea cyanus. All seed reproducing species were seeded in such a manner that 

emergence of the species would coincide. Since E. repens reproduces vegetatively, cuttings 

of the root system were placed into the soil in such a manner that its emergence would 

coincide with the emergence of the other species. Monocotyledons and dicotyledons were 
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placed alternately in the pots and thinned to eight plants per species per pot after 

emergence. The experiment started in May 2004. The pots were randomly arranged in a 

greenhouse with a day/night temperature of 18/12 C and a 16:8 h light:dark period, and 

were watered in the trays. At 4 weeks after emergence the pots were sprayed with the same 

herbicide and doses and in the same manner as in Experiment 1. The first visual symptoms 

of herbicide injury were recorded at 2 days after treatment based on four categories: no 

visible injury (1), yellow spots or leaftips (2), yellow spots or leaftips and wilting of the 

plant (3), and necrosis of plant tissue (brown coloration) and wilting of the plant (4). After 

4 weeks, the total fresh weight of the eight plants from each species per pot was 

determined.  

 
 
Statistical analysis 
 
Experiment 1: Sublethal effects of glufosinate ammonium on four non-crop species 

 
Fresh weight 

The aboveground fresh weight reduction compared to the control per dose was calculated 

for each plant species and analyzed using nonlinear regression analysis with a logistic 

growth curve: y = c + (d - c)/(1 + e-b(log(dose) - log(e))) (Seefeldt et al., 1995) with four 

parameters b, c, d, and e. The lower limit, c, was set at 0. The upper limit (d), the slope (b) 

and the ED50 (dose at which an effect of 50% can be observed) (e) were estimated. 

Because the fresh weight reduction compared to the control was plotted on the y-axis the 

values of the upper limit, d, were always estimated around 1 and not significantly different 

between treatments. Regressions were performed using the statistical program R (Team 

RDC, 2005, http://www.R-project.org), as described by Nielsen et al. (2004), and Ritz & 

Streibig (2005). Parameter estimates were compared using a two way analysis of variance 

using Genstat 8th edition (Payne et al., 2005). Fisher’s Least Significant Difference test 

was used to compare means. 
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Comparison of effects on field and greenhouse-grown plants 

The estimated ED10, 20,.,90-values of the greenhouse grown plants were log-transformed 

and plotted against the log-transformed ED10,20,.,90-values of the field-grown plants. The 

relationship was analyzed with linear regression analysis using Genstat 8th edition (Payne 

et al., 2005) for all species together and for each species separately. 

 
Seed production and emergence 

The percentage seed production and the percentage seedling emergence, both relative to the 

control, were calculated per dose for each plant species, location and age if seed production 

was sufficient for analysis. The percentages were arcsine transformed (Sokal & Rohlf, 

1981). After the appropriate checks for normality, a two-way analysis of variance with a 

randomized block design was used. Fisher’s Least Significant Difference test was used to 

compare means. Box plots were made with the number of seeds per plant fresh weight (g) 

on the y-axis and the glufosinate ammonium dose (g a.i./ha) on the x-axis to compare the 

reduction in seed production with the reduction in plant fresh weight per dose. 

 
Experiment 2: Effects of glufosinate ammonium on mesocosms 

The aboveground fresh weight reduction per dose was calculated for each plant species, the 

total vegetation, the dicotyledons and the monocotyledons in the mesocosms and analyzed 

using nonlinear regression analysis as described above for fresh weight in Experiment 1. 

The effect of surrounding vegetation was studied for plants sprayed with glufosinate 

ammonium at 4 weeks after emergence and harvested at 4 weeks after treatment. The doses 

at which plants show a certain effect level (the ED10, 20,.,90- values) were compared 

between individually greenhouse-grown plants and plants of the same species grown in the 

vegetation assemblages. In order to make this comparison, selectivity indices (Ritz & 

Streibig, 2005), defined as the ratio between the effective dose for a species in a vegetation 

and the effective dose for the same species grown individually, were calculated for each 

species and plotted against the corresponding effect level. If this ratio is larger than 1, the 

species will benefit from the surrounding vegetation, if the ratio is smaller, the effects of the 

surrounding vegetation on the sensitivity of the species will be negative. 
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Results 
 
Experiment 1: Sublethal effects of glufosinate ammonium on four non-crop species 

 
Effect of plant development stage on sensitivity 

The ED50-values of the dose-response curves of field-grown plants sprayed in an earlier 

developmental stage (2 WAE) were significantly (p < 0.05) smaller than the ED50-values 

of field-grown plants sprayed in a later stage (4WAE) for S. media, E. crus-galli and C. 

album (Table 4.1). This indicates that field-grown plants are more sensitive to glufosinate 

ammonium when treated in an earlier developmental stage than when treated in a later 

developmental stage. However, there was no difference between the ED50-values of P. 

annua field grown plants sprayed in different developmental stages (Table 4.1). 

Greenhouse-grown plants showed no effect of plant development stage on their sensitivity; 

the ED50-values between plants sprayed at 2 WAE and 4 WAE did not significantly differ 

(Table 4.1). 

 
Recovery of plants 

Recovery was studied by comparing the fresh weight of the plants harvested at 4 WAT with 

the fresh weight of plants of the same species at SS. Only the recovery of the 

monocotyledons, E. crus-galli and P. annua, was studied since seed setting of the 

dicotyledons coincided with the first measurement time at 4 weeks after treatment and this 

required harvesting of those plants. None of these plants were able to recover significantly 

(Table 4.1). The ED50-values at 4 weeks after treatment did not differ from the ED50-

values at seed setting (p > 0.05), except for the ED50-values of field-grown P. annua plants 

treated in a later developmental stage for which the effect was larger at SS than at 4 WAT.  
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Table 4.1 Experiment 1: Fresh weight reduction compared to the control. Parameter 

estimates ± SE (standard error) of dose response curves of the reduction of the 

aboveground fresh weight of greenhouse grown and field grown plants sprayed at two and 

four weeks after emergence (2 and 4 WAE) and harvested at four weeks after treatment (4 

WAT) and at seed setting (SS) relative to the control treatment, versus glufosinate 

ammonium dose. Regression equation: Y= d/(1+e-b(log(dose)-log(e))). 

  parameter estimate ± SE 
 
species 

 
treatment 

slope  (b) ED50 (e) (g active 
ingredient/ha) 

field 2 WAE 4 WAT 1.93  1.05** b 72.0  7.36* b 
field 4 WAE 4 WAT 0.73  0.16* b 430.1  52.49* a 
greenhouse 2 WAE 4 WAT 6.60  2.09** a 38.1  0.85** b 

Chenopodium 
album 

greenhouse 4 WAE 4 WAT 0.87  0.10** b 51.4   3.87** b 
field 2 WAE 4 WAT 0.94  0.54* cd 294.1   76.53** bc 
field 2 WAE SS 1.00  0.83* cd 276.11  182.41** bcd 
field 4 WAE 4 WAT 0.68  0.21* d 696.1  19.97* a 
field 4 WAE SS 1.59  0.61* bc 405.9  63.13* b 
greenhouse 2 WAE 4 WAT 2.52  0.69** a 65.9  2.47*** e 
greenhouse 2 WAE SS 1.75  0.20** b 108.8  9.99*** de 
greenhouse 4 WAE 4 WAT 1.06  0.14* bcd 211.8  27.28*** cde 

Poa annua 

greenhouse 4 WAE SS 1.35  0.38* bc 276.4  19.59*** bcd 
field 2 WAE 4 WAT 1.34  0.78* a 248.3  39.19* b 
field 2 WAE SS 1.25  0.49* a 336.8  70.87* b 
field 4 WAE 4 WAT 1.40  1.05* a 689.0  86.89* a 
field 4 WAE SS 1.15  0.68* a 590.7  10.78* a 
greenhouse 2 WAE 4 WAT 1.68  0.45* a 28. 1  2.53**c 
greenhouse 2 WAE SS 1.58  0.22** a 62.1  14.83** c 
greenhouse 4 WAE 4 WAT 2.45  0.77* a 58.36  5.87*** c 

Echinochloa 
crus-galli  

greenhouse 4 WAE SS 2.10  0.88* a 56.8  13.23** c 
field 2 WAE 4 WAT 2.66  1.18*a 180.9  38.53* b 
field 4 WAE 4 WAT 0.66  0.25* a 356.1  56.36* a 
greenhouse 2 WAE 4 WAT 1.08  0.52** b 23.5  1.81** c 

Stellaria 
media 

greenhouse 4 WAE 4 WAT 0.49  0.07***b 19.8  2.80** c 
***p<0.001, ** p<0.01, *p<0.05 

 Different letters within a column within a species indicate significant differences at the 5% level. 
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Comparison of effects on field and greenhouse-grown plants 

The dose-response curves for all species differed significantly (p < 0.05) for the plants 

grown in the greenhouse and the plants grown in the field (Table 4.1). The greenhouse-

grown plants had a smaller ED50-value than the field-grown plants and were more affected 

at high doses than were the field-grown plants. The relation between the log-transformed 

ED10, 20,.,90 -values from the greenhouse data and the log-transformed ED10, 20,.,90-

values of the field data is shown in Figure 4.1. The parameter estimates per species are 

shown in Table 4.2. These data show that a linear relationship exists between the ED-values 

of greenhouse and field-grown plants treated with glufosinate ammonium on a logarithmic 

scale for each species. The results were compared with a previous field study with 

glufosinate ammonium on established vegetations containing both dicotyledons and 

monocotyledons. In that study the no observed effect concentration (NOEC) was 256 

g.a.i./ha (De Snoo et al., 2003). We predicted the greenhouse dose corresponding with this 

NOEC to be 52 g a.i./ha with a 95% confidence interval of 31-89 g a.i./ha. This is 

consistent with the actual NOEC value of 68 g a.i./ha for the total aboveground weight. 

This value lies well within the calculated greenhouse range for the total aboveground 

biomass from the field data of De Snoo et al. (2003). 

 

 

Table 4.2 Experiment 1: comparison of effects on field and on greenhouse grown plants. 

Parameter estimates ± SE (standard error) of the relationship between the greenhouse and 

field ED10,20,….- 90- values for the individual species: 

 log(greenhouse ED-value)=a + b(log(field ED-value)). 

 parameter estimates ± SE  

species a (constant) b (slope) R2 

Poa annua 0.97 ± 0.12*** 0.47 ± 0.05*** 0.74 

Echinochloa crus-galli  0.26 ± 0.18* 0.55 ± 0.07*** 0.89 

Chenopodium album 0.39 ± 0.18* 0.56 ± 0.07*** 0.80 

Stellaria media 1.19 ± 0.20*** 1.10 ± 0.08*** 0.83 

***p<0.001, **p<0.01, *p<0.05 
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Figure 4.1 The linear relationship between the ED10, 20,., 90-values of greenhouse-grown plants and field-grown 

plants for all species on a logarithmic scale: log(greenhouse ED-value) = 0.1989 + 0.6314 x (log(field ED-

value)), with R2 = 0.566. 

 

Effects on seed production and seedling emergence 

Stellaria media was the only species that produced enough seeds in the greenhouse for 

analysis. Seed production of young plants (treated at 2 WAE) was similar to that of older 

plants (treated at 4 WAE) (p = 0.972). Therefore, seed production of both groups was 

analyzed as one. Seed production was strongly affected by glufosinate ammonium dose (p 

< 0.001). Seed production was already reduced at the lowest dose and no seeds were 

produced at all at the highest dose (Table 4.3). The relative effect (%) on seed production 

was greater than that on fresh weight (%) (Figure 4.2). Seedling emergence was unaffected 

for seeds from young treated plants. Seedling emergence was reduced with increasing dose 

(Table 4.3) (p < 0.001) for seeds produced by older treated plants. 
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Figure 4.2 Box plot of the number of seeds produced per gram plant fresh weight of the plants sprayed at 2 weeks 

after emergence(2WAE) and the plants sprayed at 4 weeks after emergence (4WAE) versus sublethal doses of 

glufosinate ammonium. 

 

 

Experiment 2: Effects of glufosinate ammonium on mesocosms 

 

Visual symptoms and effects on biomass 

The first visual symptoms on the species in the mesocosms were observed at 2 days after 

treatment. No visual symptoms were observed at the two lowest doses. At 30 g active 

ingredient/ ha (a.i./ha), P. annua showed no visual effects, while E. repens, C. album, S. 

nigrum, and S. media had yellow spots, P. milliaceum and E. crus-galli had yellow leaftips, 

and C. cyanus had yellow spots and was wilting. At doses of 60 and 300 g a.i./ha all species 

showed yellow spots and were wilting. At the highest dose applied, necrotic spots appeared 
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on the leaves of all species. The ED50-value of the monocotyledon-curve was significantly 

(p < 0.001) higher than the ED50-value of the dicotyledon- curve (parameters of the dose-

response curves are shown in Table 4.4). No significant differences were found for the 

slopes of the curves (p > 0.05), indicating that the monocotyledons in the mesocosms were 

less affected by glufosinate ammonium treatments compared to the dicotyledons in the 

same mesocosms. The estimated parameters of the dose-response curves for individual 

species (Table 4.4) confirm the trend that monocotyledons in a vegetation are less affected 

by sublethal glufosinate ammonium doses than the dicotyledons in the same vegetation. 

Except for S. nigrum which had a higher ED50 than those of P. annua and E. crus-galli, the 

ED50-values of all individual monocotyledons were higher than the ED50-values of the 

individual dicotyledons. 

 

Effect of surrounding vegetation 

The selectivity indices remained constant and below one for C. album: the dose before a 

certain effect can be observed is always five times lower when the species is grown in a 

mixture, compared to the single species situation (Figure 4.3). Glufosinate ammonium 

reduces the biomass of dicotyledons more than the biomass of monocotyledons at similar 

doses. Therefore, it is disadvantageous for C. album plants to grow in mixtures with 

monocotyledons. However, for S. media plants it is advantageous to grow in a mixture at 

low effect levels (that is at low doses), even when monocotyledons are present (Figure 4.3). 

S. media is a small plant that probably receives less of the applied dose due to the shelter 

provided by the other species when grown in a mixture. At a certain point, the applied dose 

reaches a threshold above which the provided shelter becomes insufficient and the 

competitive ability of S. media will be reduced compared to that of the monocotyledons. At 

high doses it will be disadvantageous for S. media to grow in mixtures containing 

monocotyledons. The monocotyledons in the mixture, P. annua and E. crus-galli, respond 

in an opposite way; at high doses it will be advantageous to grow in a mixture with 

dicotyledons, whereas it will be disadvantageous at low dosages. Thus, the ratio for most 

effect levels was significantly (p < 0.05) different from 1, indicating a species-specific 

response to the habitat, i.e., grown in a vegetation or grown individually (Figure 4.3), 

indicating that results from single species experiments can not be translated to effects on 

these species in mixtures. 
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Table 4.3 Experiment 1: Seed production and emergence. Back transformed percentages of 

seed production relative to the control treatment per glufosinate ammonium dose for 

greenhouse grown Stellaria media plants sprayed at two and four weeks together, and back 

transformed percentages of seedling emergence per glufosinate ammonium dose for seeds 

from greenhouse grown Stellaria media plants sprayed at two and four weeks after 

emergence (WAE). 

  % seedling emergence 

dose (g active 

ingredient/ha) 

% seed production 

relative to control 

young plants  

(2 WAE) 

older plants  

(4 WAE) 

0 100a 95.42 94.28 

6 66.98b 98.22  95.92  

30 41.96c 98.59  79.62 

60 18.89d 95.69  81.22 

300 1.40e 95.63 52.44 

600 0e 96.87 83.44 

Fisher’s LSD 17.60 13.33 

Different letters indicate significant differences at p<0.05 for seed production. Different symbols indicate 

significant differences at p<0.05 for seedling emergence. 

 

 

Discussion 
 

Comparison of effects on field-grown plants and on greenhouse-grown plants 

The current study shows that the aboveground biomass of greenhouse-grown plants is more 

affected by glufosinate ammonium than that of field-grown plants. The difference in 

sensitivity between greenhouse and field-grown plants to glufosinate ammonium may be a 

result of differences in environmental conditions that promote plant growth rate, such as 

temperature, relative humidity and light intensity (Riethmuller-Haage, 2006; Petersen & 

Hurle, 2001). Previous studies investigated the influence of these climatic conditions on 

glufosinate ammonium efficacy on Galium aparine and Brassica rapa in the greenhouse. 

Both low relative humidity (Anderson et al., 1993) and low light intensity (Petersen & 

Hurle, 2001) reduced the performance of glufosinate ammonium. The higher efficacy at a 
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high relative humidity may be due to the hydration of the cuticle. Watersoluble compounds 

such as glufosinate ammonium penetrate the cuticle more easily when it is hydrated (Price, 

1982). A low relative humidity, e.g. at field conditions, results in a reduced uptake by the 

cuticle (Petersen & Hurle, 2001) and hence less efficacy. The influence of light intensity on 

the efficacy of glufosinate ammonium can be attributed to the production of toxic ammonia 

during photorespiration that takes place at high light intensities (Wallsgrove et al., 1983). 

The light intensity under field conditions is usually higher than in the greenhouse (Petersen 

and Hurle, 2001) making glufosinate ammonium more effective outdoors. In their 

greenhouse study with temperatures ranging from 12 to 24 C, Petersen and Hurle (2001) 

found no temperature effect on the efficacy of glufosinate ammonium. However, earlier 

studies showed a reduced efficacy at temperatures below 10 C (Mathiassen & Kudsk, 

1993; Anderson et al., 1993; Langelüddeke et al., 1988; Donn, 1982). 

 

 

Table 4.4 Parameter estimates ± SE (standard error) of the relationship between the 

aboveground fresh weight of the total vegetation, the monocotyledons, dicotyledons and 

individual species in the mesocosms sprayed with sublethal doses of Finale versus 

glufosinate ammonium dose. Regression equation: Y= d/1+e-b(log(dose)-log(e)).  

 parameter estimates ± SE 

species slope (b) ED50 (e) (g active ingredient/ha) 

total vegetation 1.14 ± 0.06*** 41.49 ± 4.88*** 

monocotyledons 1.30 ± 0.11*** 91.45 ± 9.71*** 

dicotyledons 1.23 ± 0.07 25.92 ± 3.57*** 

Poa annua 0.54 ± 0.19** 52.44 ± 33.59 

Panicum milliaceum 1.85 ± 0.36*** 58.16 ± 12.45*** 

Echinogloa crus-galli 1.24 ± 0.29*** 45.94 ± 16.49** 

Elymus repens 1.99 ± 0.57*** 203.66 ± 48.99*** 

Chenopodium album 0.80 ± 0.23*** 5.80 ± 4.79* 

Centaurea cyanus 0.78 ± 0.19*** 6.87 ± 4.61* 

Solanum nigrum 1.57 ± 0.33*** 53.36 ± 14.92*** 

Stellaria media 0.99 ± 0.27*** 14.35 ± 7.75* 

***p<0.001, **p<0.01, *p<0.05 
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Figure 4.3 Selectivity indices (ratio of effective dose of species grown in artificial vegetations/effective dose of the 

same species grown individually) versus effect level of plants treated with sublethal doses of glufosinate 

ammonium. 

 

 

In the present study, the temperature in the greenhouse varied from 12 to 18 C (night/day), 

whereas the temperature in the field reached temperatures well below 10 C at night, with a 

maximum temperature of around 18 C during daytime. Although light intensity was higher 

under field conditions than under greenhouse conditions in the present study, the relative 

humidity and the temperature were lower in the field. We hypothesize that the effect of a 

low relative humidity and temperature in the field had more influence on the efficacy of the 

glufosinate ammonium than the higher light intensity. Together with a different structure 

and/or chemical composition of the cuticle of the field-grown plants this may have resulted 

in a lower efficacy on the field-grown plants compared to the greenhouse-grown plants. A 

relationship was found between the doses resulting in certain effect levels on aboveground 

fresh weight of greenhouse- grown plants and the doses corresponding to the same effect 
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levels on the aboveground fresh weight of plants grown in the field (Table 4.2). This 

relationship was not only found at the individual species level but was also valid for all 

species tested together (Figure 4.1). In wild plant species, the genetic variability within a 

species can be large between populations from different locations as well as within a 

population from specific location. In this study the plants growing in the greenhouse and 

the field were from the same seed lot, ruling out the genetic variability that may exist 

between locations, but taking the variability within a location into account. The benefit of 

this approach is that results are less variable. A main issue for the future is, however, 

whether it will be possible to use plants from one location in a greenhouse experiment for 

risk assessment to represent the response of the entire species in the field or that the genetic 

variability between locations will be too large. The relationship (Figure 4.1) can be used for 

the total biomass of vegetation composed of several species or for single plants, but not for 

the prediction of effects on individual species in vegetations. The doses at which certain 

effects could be observed for species in the vegetations differed from the doses at which the 

same effects could be observed for those species when grown individually. Depending on 

the species, these effects increased or decreased with dose (Table 4.1). In previous studies, 

effects on individual species grown in a vegetation were either difficult to determine in the 

field (De Snoo et al., 2003) or depended strongly on the species composition (Marrs & 

Frost, 1997) and the herbicide used (Marshall, 1988). Differences between the response of 

individually grown species and the same species grown in a mixture can have several 

causes. 

First of all, the competitive ability of species present in a mixture can be affected by the 

herbicide treatments and differ per species. As a result, some species will benefit from a 

higher competitive ability while others will experience an increased competition from the 

surrounding species for resources. Secondly, some species may benefit from the sheltering 

effect of other species present during herbicide application, and thus have a reduced 

exposure. Thirdly, the presence or absence of monocotyledons in the vegetation is known 

to influence the response of the dicotyledons in a mixture. Marrs and Frost (1997) found 

that the dicotyledons in their mesocosms responded differently in the presence or absence 

of grasses in the mixture. In the present study, the mesocosm experiments show that 

glufosinate ammonium reduced the aboveground weight of the dicotyledons more strongly 

than that of the monocotyledons, affecting a shift in the species composition. Larger effects 
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on species composition can be expected for herbicides that have a more specific mode of 

action, targeting specifically on mono- or dicotyledons. However, since it is impossible to 

separate the effects of herbicides on the inter- and intraspecific interference with neighbors 

from the effect of shelter (Marrs et al., 1993), it is not possible to determine the 

contribution of the herbicide to the changes in species composition or changes in the 

biomass of the individual monocotyledons or dicotyledons. As a result, the prediction of 

herbicide effects on species in vegetation based on single species experiments is not yet 

possible. 

 

Plant development stage and reproduction 

Plant development stage played a role in the determination of the plant sensitivity on three 

out of four species in the present study and elsewhere on several other species treated with 

metsulfuron methyl (Boutin et al., 2000), chlorsulfuron (Fletcher et al., 1996), glyphosate 

(Ruiter et al., 2000; Marrs et al., 1991), MCPA and mecoprop (Marrs et al., 1991). 

Seedlings and young plants were generally more sensitive than older plants. A natural 

vegetation usually consists of plants in different developmental stages and the balance 

between young and old plants, the season, and germination period will determine herbicide 

efficacy. The difference in sensitivity between younger and older plants was significant for 

field, but not for greenhouse-grown plants. We hypothesize that this is due to cuticle 

differences of the plants. The cuticle of young plants differs not only in thickness, but also 

in chemical composition and fine structure from the cuticle of older plants. These 

components determine the permeability of the cuticle for herbicides and are influenced by 

environmental conditions. So the cuticle is determined by plant age itself as well as the 

environment, thereby causing differences in sensitivity to herbicides. For greenhouse-

grown plants, age was the only difference between younger and older plants. The leaves of 

younger and older plants in the field, however, not only differ in age, but also in 

environmental conditions experienced during development. So differences in sensitivity are 

easier to detect between field-grown plants of different developmental stages than between 

greenhouse-grown plants of different developmental stages. To determine effects of 

herbicides in the long term, reproduction is an important factor (Zwerger & Pestemer, 

2000). We were unable to compare the seed production between species or between 

greenhouse and field-grown plants, because only greenhouse-grown S. media plants 
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produced enough seeds for analysis. Glufosinate ammonium strongly reduced the seed 

production of both young and old S. media plants. The seed production was reduced more 

strongly than the aboveground weight at the same doses, in accordance with previous 

results on chlorsulfuron (Fletcher et al., 1996) and MCPA (Andersson, 1994). These results 

suggest specific consequences at the population level. Although only marginal effects are to 

be expected on the biomass, seed production and thereby survival at the population level 

can be negatively affected. Seedling emergence was also reduced, although not for seeds 

from plants treated at an early developmental stage. Older plants treated with high doses 

produced seeds that showed reduced germination and emergence. Results from previous 

studies support our conclusion that seed production can be affected and that effects on 

seedling emergence are likely to occur as a result of glufosinate ammonium exposure. 

These effects were, however, species and herbicide dependent. Andersson (1994) showed 

that the seed production of Bilderdykia convolvulus, C. album, Myosotis arvensis, and 

Thlaspi arvense was reduced by MCPA, while the seed production of Chamomilla recutita 

and Galium spurium remained unaffected. He did not find a reduction in seed size. In 

another study, fluroxypyr reduced the number of large seeds and increased the number of 

small seeds produced by Veronica persica (Champion et al., 1998), possibly due to 

desiccation. Furthermore, the germination percentage of V. persica was found to increase 

with increasing seed size and therefore decreased with increasing dose (Champion et al., 

1998). In the present study, the size of seeds from younger treated plants did not differ 

between doses (p> 0.05), whereas the size of seeds from older treated plants decreased with 

increasing glufosinate ammonium dose (p < 0.001), also possibly due to desiccation. Plants 

treated in an earlier stage may have been able to recover from desiccation before seed 

production and thus could produce seeds of a normal size.  

 

Ways of exposure of plants to herbicides in non-target areas 

Plants in non-target areas can be exposed to herbicides via the air, or via run-off. Because 

the most likely route for most herbicides is exposure through droplet drift (European and 

Mediterranean Plant Protection Organization, 2003), we choose to simulate drift exposure 

by spraying the plants and did not consider vapors. However, under certain circumstances, 

and for some groups of herbicides, volatilization can play an important role (Wittich &  

Siebers, 2002; Franzaring et al., 2001; Schweizer & Hurle, 1996) and tiered risk assessment 
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protocols for vapor phase toxic compounds have been developed (Dueck, 2003). The 

effects of a single application were investigated, ignoring possible cumulative effects of 

repeated exposures. Repeated exposures can be important since some herbicides are applied 

to the same field more than once during a growing season. We recommend this aspect be 

investigated in future research. 

 

 

Conclusion 
The risk assessment guideline proposed by the European and Mediterranean Plant 

Protection Organization (2003) starts with a requirement of exposure studies of six plant 

species to a single-dose application of a product and then continues with the development 

of doseeresponse curves, all in the greenhouse. The relationship between the effects on 

greenhouse and field-grown plants found in the present study, shows that it might be 

possible to translate results from greenhouse experiments to field situations in the future. At 

this moment, however, the relationship was only found for total vegetation and for single 

species, but not for species grown in a mixture. Furthermore, mainly annual species were 

used in the experiments because of practical considerations. However, arable field 

boundary vegetation is known to be composed of both annual and perennial species (Kleijn 

& Verbeek, 2000). Before we can adopt the use of greenhouse data to predict the effects on 

vegetations in the field, we will have to investigate which endpoints and exposure time are 

most suitable for the determination of short- and long-term effects on perennial species. 
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CHAPTER 5 
 

Sublethal effects of herbicides on the biomass and 
seed production of terrestrial non-crop plant species, 
influenced by environment, development stage and 

assessment date4 
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aPlant Research International, WUR, P.O. Box 616, 6700 AA Wageningen, NL 
bGreenhouse technologies, WUR, P.O. Box 616, 6700 AA Wageningen, NL 

cDepartment of Crop and Weed Ecology, Wageningen University, P.O. Box 9101, 6700 HB 
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Summary 
Guidelines provided by the OECD and EPPO allow the use of single species tests 

performed in greenhouses to assess the risk of herbicides to non-target terrestrial plant 

communities in the field. The present study was undertaken to investigate the use of 

greenhouse data to determine effects of herbicides with a different mode of action on the 

biomass, seed production and emergence of field-grown plants. In addition, a single species 

approach was compared with a mixed species approach. Effects on the biomass of 

greenhouse and field-grown plants were found to be related at different effect levels, 

indicating that it might be possible to translate results from greenhouse studies to field 

situations. However, the use of single species tests may not be valid. The response of a 

single plant species to sublethal herbicide dosages differed to the response of the same 

species grown in a mixture with other species.  

 

Keywords: Non-crop terrestrial plants; Tepraloxydim; Greenhouse; Field; Biomass 

 

                                                            
4 Environmental Pollution 157 (2009), 2306-2313. 
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Introduction 
It is well known that herbicide application can pose a risk for the vegetation surrounding an 

arable field (De Jong et al., 2008; De Snoo, 1999; Jobin et al., 1997; Marrs et al., 1989). 

The availability of methodologies to assess the environmental risk of plant protection 

products such as herbicides to non-target terrestrial higher plants is currently limited. Non-

target plants are non-crop plants located outside the treatment area (European and 

Mediterranean Plant Protection Organization, 2003). Recently several researchers underline 

the importance of the development of those methods (Damgaard et al., 2008; Olszyk et al., 

2008). From a practical point of view, the use of greenhouse data in future risk assessment 

methodologies is preferred since greenhouse experiments can be standardized to a higher 

degree than field experiments. To date, only a few empirical studies have investigated the 

effects of herbicides on non-target plants (Boutin et al., 2004; Franzaring et al., 2001; 

Zwerger & Pestemer, 2000; Fletcher et al., 1996;) and even less have compared the effects 

of herbicides at sublethal dosages on greenhouse and field grown plants (Wright & 

Thompson, 2001; Mathiassen et al., 2000; Breeze et al., 1992; Fletcher & Johnson, 1990). 

In a previous study we compared the effects of a broad-spectrum herbicide, glufosinate 

ammonium, on field and greenhouse grown plants of several species (Riemens et al., 2008 

and Chapter 4) and were able to find a relationship which could be used to calculate effects 

on field grown plants from greenhouse data for that herbicide. In the present study we 

hypothesize that this type of relationship will be valid for a small spectrum herbicide as 

well. We designed two experiments to answer the following research questions: 1) Can a 

similar relationship between the sublethal effects on greenhouse and field grown plants be 

found for a small spectrum herbicide? 2) Can plants recover before seed setting? 3) What is 

the effect of sublethal dosages on the next generation? and 4) What is the effect of 

surrounding vegetation after application of a small spectrum herbicide on the individual 

species? To answer the first three questions, greenhouse and field grown plants of several 

individual species were treated with tepraloxydim in experiment 1. To study the influence 

of surrounding vegetation, artificial greenhouse grown vegetations were treated with 

tepraloxydim in experiment 2. 
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Materials and Methods 
 

Herbicide 

Tepraloxydim is the active ingredient of aramo, which is a systemic postemergence 

leafherbicide used to control annual as well as perennial grass weeds in broad leaf crops. 

Tepraloxydim belongs to the cyclohexanediones. Their primary mode of action is the 

inhibition of lipid formation. Since lipids form an important part of membranes and cell 

walls, the application of aramo causes the prevention of cell wall formation and delay or 

inhibition of growth.  

 

Individual species (monocultures) 

Seeds of Panicum milliaceum, Poa annua, and Echinogloa crus-galli were obtained from a 

commercial seed supplier (Medigran, Hoorn, The Netherlands, http://www.medigran.nl). 

Seven hundred sixty-eight 0.5 L pots with a diameter of 10 cm were filled with a peat: sand 

mixture (2:1). Seeds of the three species were scattered over the soil surface (one species 

per pot) and covered with a thin layer of sifted soil. The species were sown in such a 

manner that emergence of all species would coincide. Since Elymus repens reproduces 

vegetative, cuttings of the root system were placed into the soil in such a manner that the 

emergence of this species would coincide with the emergence of the seed-sown species. 

The cuttings of E. repens were harvested from E. repens plants growing on a clay soil in a 

field near Duiven in the Netherlands. 

Half of the pots were randomly arranged in four blocks in a greenhouse (day/night 

temperature 18 to 12°C and a 16/8 h light/dark period) and watered in trays. The other half 

was randomly placed in four blocks in a bare field adjacent to the greenhouse located in 

Wageningen, The Netherlands. Experiments were conducted from May 2007 until February 

2008.  After emergence the number of plants was thinned to four per pot.  

To compare the effect of tepraloxydim on dicotyledons grown in mesocosms with the effect 

on dicotyledons grown in monocultures, an additional experiment was carried out from 

May to June 2008. Ninety six 0.5 L pots with a diameter of 10 cm were filled with a peat: 

sand mixture (2:1). Seeds of Solanum nigrum, Stellaria media, Centaurea cyanus and 

Panicum milliaceum were scattered over the soil surface (one species per pot) and covered 

with a thin layer of sifted soil. The pots were randomly arranged in four blocks in a 
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greenhouse (day/night temperature 18 to 12°C and a 16/8 h light/dark period) and watered 

in trays. After emergence the number of plants was thinned to four per pot. 

 

Mesocosms 

Artificial vegetations were created by filling forty-eight 5 L pots with a diameter of 20 cm 

with a peat: sand mixture (2:1). Each mesocosm consisted of four monocotyledons: P. 

annua, E. crus-galli, E. repens, P. milliaceum, and four dicotyledons: Solanum nigrum, 

Stellaria media, Chenopodium album and Centaurea cyanus. All plant species, except E. 

repens, were seeded into the 5L pots in such a manner that emergence of the species would 

coincide.  Since E. repens reproduces vegetative, small pieces of the root system of this 

species were placed in the soil. The seeds of the annuals and the root pieces of the perennial 

were of the same origin as for the individual species. 

Monocotyledons and dicotyledons were placed alternately in the pots. After emergence the 

number of plants per species was thinned to eight per pot, so in total 64 plants per pot. The 

experiments started in May 2004. The pots were arranged randomly in a greenhouse with a 

day-night temperature of 18-12 °C and a light/dark period of 16/8 h. The pots were watered 

from the bottom.  

 

Treatments 

An overview of the experimental schedule is given in Table 5.1. Herbicide treatments took 

place in a 4 m wide x 2 m deep spray chamber. The sprayer consisted of a 1 m wide spray 

boom with three Teejet XR11004 (class Medium spray quality) flat fan nozzles  (Spraying 

Systems Company, Wheaton, Illinois, USA, http://www.teejet.com) that delivered 400 l/ha. 

The nozzle was moved over the pots at a height of 50 cm from the soil surface. 

Half of the pots containing the monocotyledon monocultures from both the greenhouse and 

the field were sprayed two weeks after emergence (WAE) with tepraloxydim and the other 

half containing the monocotyledon monocultures at four WAE. The dicotyledon 

monocultures and the mesocosms, which were both grown in the greenhouse, were sprayed  



 

 

Table 5.1 Overview of experimental schedule for treatments of the mesocosms, the monocotyledon and dicotyledon monocultures. 

type of 

vegetation 

species/ 

pot 

species plants/ 

species 

treatment 

moment 

harvest 

moment 

end point 

measured 

nr of 

replicates 

mesocosm 8 C. cyanus, S. media, S. nigrum, 

C. album, E. repens,  

P. milliaceum, E. crus-galli,  

P. annua 

8 4WAE 4WAT fresh weight 4 

monocotyledon 

monoculture 

1 E. repens, P. milliaceum,  

E. crus-galli, P. annua 

4 2WAE 4WAT fresh weight 4 

     SS fresh weight + 

seed number 

4 

    4WAE 4WAT fresh weight 4 

     SS fresh weight + 

seed number 

4 

dicotyledon 

monoculture 

1 C. cyanus, S. media, S. nigrum, 

C. album 

4 4WAE 4WAT fresh weight 4 
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at four WAE with the same herbicide. Four pots per treatment remained unsprayed as 

control. For both the monocultures as well as the mesocosms doses were 0, 0.02, 0.1, 0.2, 1, 

and 2 L Aramo per ha (50 g tepraloxydim/L).  

 

Measurements 

Fresh weight was used as effect parameter. The aboveground fresh weight of half of the 

pots containing the monocotyledon monocultures was determined at four weeks after 

treatment (WAT) and the fresh weight of the other half at seed setting (SS). Seeds were 

collected at SS and counted per pot for all monocotyledon species, except E. repens. After 

storage at 10°C for 4 months in a dark room in which they were shielded from light and 

moisture, four lots of 20 seeds per pot were randomly chosen for a germination experiment. 

Germination tests were conducted in a greenhouse at day/night temperatures of 24/12°C 

and a 16/8 h light/dark period. Each seed lot was allowed to germinate in a plastic pot 

(6x5x5 cm) filled with sterilized soil. Germinated and emerged seeds were regularly 

counted and removed from each pot for 28 d.  

The aboveground fresh weight of the pots containing the dicotyledons was determined at 

four WAT. The total aboveground fresh weight of the eight plants belonging to one species 

in a mesocosm was determined per pot at four WAT. 

 

 

Statistical analysis 
For an interpretation and discussion of the results of the statistical analysis as presented in 

this section we refer to the results and discussion sections. 

 

Sublethal effects of tepraloxydim on four individual non-crop species 

 

Fresh weight 

The aboveground fresh weight was measured for each plant species and analyzed using 

nonlinear regression analysis with a logistic growth curve: y = c + (d-c)/(1+e-b(log(dose)-log(e))) 

(1) (Seefeldt et al., 1995) with four parameters: slope (b), lower limit (c), upper limit (d), 

and ED50 (e), the dose at which an effect of 50% can be observed. The estimations for the 
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parameters are shown in Table 5.2. Regressions were performed using the statistical 

program R (Team RDC (2005), http://www.R-project.org), as described by Nielsen et al. 

(2004) and Ritz & Streibig (2005). A common parameter was estimated whenever possible. 

Parameter estimates were compared using a two way analysis of variance. Fisher’s Least 

Significant Difference test was used to compare means. To determine recovery the 

following definition was used: a plant is able to recover from exposure to Aramo when the 

ED50 value at SS is equal to or larger than at 4WAT.  

 

Figure 5.1 Individual species (monocultures). The linear relationship between the log transposed ED10,20…,90-

values of greenhouse-grown plants and field-grown plants for all species treated with tepraloxydim (circles, 

Aramo, present study), glufosinate ammonium (triangles, Finale, Riemens et al., 2008 and Chapter 4), and 

glyphosate (crosses, Gove et al., 2007): log(field EDvalue)=-0.321+1.142 x log(greenhouse EDvalue), R2=0.73. 

Dashed lines indicate the 95% confidence interval. Aramo: log(field EDvalue)= -0.454+0.764 x log(greenhouse 

EDvalue), R2=0.64; Finale: log(field EDvalue)= 0.914+0.897 x log(greenhouse EDvalue), R2= 0.57; glyphosate: 

log(field EDvalue)= 0.626+0.623 x log(greenhouse EDvalue), R2= 0.72.  
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Comparison of effects on field and greenhouse-grown plants 

The estimated ED10, 20, 90-values of the field-grown plants were log-transformed and 

plotted against the log-transformed ED10, 20,…, 90- values of the greenhouse-grown 

plants. The relationship was analyzed with linear regression analysis using SPSS for all 

species together. Data on the effects of glyphosate on the dry weight of greenhouse and 

field-grown Geranium robertianum, Primula vulgaris and Carex remota from (Gove et al., 

2007) was used to fit dose response curves and determine ED values for these species as 

well. The results for tepraloxydim and glyphosate are plotted together with the results of 

previous work with glufosinate ammonium (Chapter 4 and Riemens et al., 2008) and 

Chapter 4 in Figure 5.1. 

 

Seed production and emergence 

The number of seeds per pot and the number of seeds produced per gram aboveground 

fresh weight were calculated per dose for each plant species, location and age. After the 

appropriate checks for normality, an analysis of variance with a randomized block design 

was used, if seed production was sufficient for analysis. Fisher’s Least Significant 

Difference test was used to compare means for both the number of seeds per gram fresh 

weight as well as for the number of seeds per pot. P. annua and E. crus-galli field-grown 

plants did not produce enough seeds for analysis. The number of P. annua seeds produced 

by early (2 WAE) and late (4WAE) treated plants did not differ significantly and were 

therefore analyzed together. Results are shown in Figure 5.2.   

E. crus-galli and P. milliaceum seeds did not emerge in the emergence test for any of the 

doses, including the control. Therefore, only emergence data for P. annua seeds from 

greenhouse-grown plants were analyzed. The average percentage emergence per dose was 

calculated for each treatment. After the appropriate checks for normality, an analysis of 

variance with a randomized block design was applied. Fisher’s Least Significant Difference 

test was used to compare means (Table 5.3). 
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Figure 5.2 Individual species (monocultures). Seed production per gram fresh weight for P. milliaceum, E. crus-

galli and P. annua per location and treatment moment. Significant letters indicate significant differences within a 

species between treatments at the 5% level. 
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Effects of tepraloxydim on mesocosms 

The aboveground fresh weight in each treatment was calculated for each plant species, the 

total vegetation and the monocotyledons in the mesocosms and analyzed using nonlinear 

regression analysis as described above for the fresh weight in experiment one. Results are 

shown in Table 5.4. The aboveground fresh weight per dose of the dicotyledons in the 

mesocosm was analyzed using linear regression analysis with the equation: y = a*x + b (3). 

Results are shown in Table 5.5.   

The effect of the surrounding vegetation was studied for plants sprayed with tepraloxydim 

at four weeks after emergence and harvested at four weeks after treatment. The dose 

response curve of monocotyledonous plant species grown in the mesocosm was compared 

with the dose response curve of the same species grown individually by calculation of the 

selectivity indices (SI) (Ritz & Streibig, 2005). The selectivity index is defined as the ratio 

between the effective dose for a species grown in the mesocosm treated at 4 WAE and the 

effective dose for the same species grown as monocultures treated at 4 WAE. These indices 

were calculated for each species and plotted against the corresponding effect level. An SI 

equal to one, indicates that plants are equally affected in both situations. An SI larger than 

one indicates that the species will benefit from the surrounding vegetation, an SI smaller 

than one indicates that the species will experience a negative effect on its biomass from the 

surrounding vegetation when exposed to tepraloxydim. The SI comparing curves between 

the individually grown plants and the plants grown in the mixture are shown in Figure 5.3 

for E. crus-galli, E. repens, P. annua and P. milliaceum. 

 

 

Results 
 
Experiment 1: Sublethal effects of tepraloxydim on four non-crop species 

 

Effect of plant development stage on sensitivity 

The ED50 values of dose-response curves of field-grown plants sprayed in an early 

development stage (2WAE) were larger than the ED50 values of those of field-grown 

plants sprayed in a later development stage (4WAE) (Table 5.1). This indicates that field 

grown plants are less sensitive when they are treated in an early stage than in a later stage.  
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C
hapter 5 Table 5.2 Parameter estimates ± standard error for Y=c+(d-c)/1+eb(log(dose)-log(e)) describing the sublethal effects of tepraloxydim on 

the fresh weight of four species grown in monoculture in the greenhouse and field, sprayed at 2 and 4 weeks after emergence 

(WAE), and harvested at 4 weeks after treatment (WAT) and at seed setting (SS). 

    Parameter estimate ± SE 

Species Treatment Slope (b) 
ED50 (g active 
ingredient) (e) upper limit (d) 

lower limit (c 
) 

Field 2 WAE 4 WAT 2.12 ± 0.255a 1.26 ± 0.254a 9.92 ± 1.407a 0.14± 0.016a 
Field 4 WAE 4WAT 1.29 ± 0.188b 0.22 ± 0.080b 36.24 ± 5.524b 0.45± 0.059b 
Field 2 WAE SS 3.05 ± 0.441c 1.44 ± 0.317a 81.35 ± 12.243c 0.58± 0.059bc 
Field 4 WAE SS 3.78 ± 0.344c 1.13 ± 0.157a 101.28 ± 15.329c 0.29± 0.027d 
Greenhouse 2 WAE 4 WAT 5.62 ± 0.575d 4.84 ± 0.313c 15.77 ± 1.700d 0.17± 0.018a 
Greenhouse 4 WAE 4 WAT 1.37 ± 0.317ab 3.78 ± 1.048c 23.27 ± 3.005e 1± 0.321e 
Greenhouse 2 WAE SS 2.96 ± 0.222c 9.03 ± 1.00d 74.61 ± 7.209c 0.12± 0.039a 

E.crus-galli 
 
 
 
 
 
 
 Greenhouse 4 WAE SS 4.03 ± 1.692cd 7.14 ± 1.075d 72.33 ± 8.027c 0.8± 0.099c 

Field 2 WAE 4 WAT 0.9 ± 0.111a 0.47 ± 0.233a 37.14 ± 7.773ab 0.34± 0.055 
Field 4 WAE 4WAT 0.7 ± 0.094a 2.05 ± 1.166bc 61.27 ± 11.592ac  
Field 2 WAE SS 2.11 ± 0.157b 5.91 ± 1.116d 232.88 ± 35.602d  
Field 4 WAE SS 0.6 ± 0.120a 5.37 ± 4.009d 195.41 ± 37.347d  
Greenhouse 2 WAE 4 WAT 1.88 ± 0.345bc 1.3 ± 0.383c 18.25 ± 3.547b  
Greenhouse 4 WAE 4 WAT 0.85 ± 0.148a 5.32 ± 3.008d 28.04 ± 5.255b  
Greenhouse 2 WAE SS 1.79 ± 0.168c 4.05 ± 0.978bd 63.46 ± 10.818c  

P. 
milliaceum 
 
 
 
 
 
 Greenhouse 4 WAE SS 1.32 ± 0.129d 2.2 ± 0.673b 78.98 ± 14.327c  

Field 2 WAE 4 WAT 20.2 1 ± 7.959a 20.15 ± 12.186a 16.74 ± 1.312a 0± 0.00 P. annua 
 Field 4 WAE 4WAT 0.71 ±0.264b 4.64 ± 2.699a 20.35 ± 2.511a  



 

 

Field 2 WAE SS 1.15 ± 0.142bc 26.3 ± 3.29a 70.15 ± 2.14b  
Field 4 WAE SS 0.71 ± 0.166b 1.05 ± 0.423b 38.99 ± 2.630c  
Greenhouse 2 WAE 4 WAT 1.05 ± 0.570bc 36.42 ± 20.229c 15.58 ± 2.001a  
Greenhouse 4 WAE 4 WAT 0.83 ± 0.754bc 221.6 3 ± 26.185d 16.49 ± 1.775a  
Greenhouse 2 WAE SS 4.37 ± 1.126a 54.16 ± 2.392e 58.06 ± 1.313d  
Greenhouse 4 WAE SS 1.61 ± 0.351c 94.27 ± 8.901f 64.09 ± 1.472e  
Field 2 WAE 4 WAT 1.44 ± 0.447a 3.63 ± 1.224a 7.82 ±1.097a 0.35± 0.127 
Field 4 WAE 4WAT 0.3 ± 0.088b 0.49 ± 0.066 b 14.55 ± 1.978b  
Field 2 WAE SS 2.37 ± 0.414c 6.68 ± 0.862ac 31.41 ± 2.508c  
Field 4 WAE SS 0.55 ± 0.068b 0.52 ± 0.258b 44.87 ± 4.367d  
Greenhouse 2 WAE 4 WAT 1.4 ± 0.380cd 8.91 ± 3.230c 7.14 ± 0.962a  
Greenhouse 4 WAE 4 WAT 0.62 ± 0.166ab 15.89 ± 4.523c 11.37 ± 1.498b  
Greenhouse 2 WAE SS 1.78 ± 0.382cd 16.81 ± 4.523c 11.28 ± 1.101b  

E. repens 
 
 
 
 
 
 
 Greenhouse 4 WAE SS 0.97 ± 0.216d 16.58 ± 6.778c 12.34 ± 1.413b  

Different letters within a species within a column indicate significant differences at the 5% level. 

.
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However, this difference was not significant (p<0.05) for E. crus-galli and P. milliaceum 

harvested at seed setting (SS), and P. annua harvested at four weeks after treatment 

(4WAT). Greenhouse-grown plants showed the same trend, although the difference in 

ED50 value between plants treated in an early stage and plants treated in a later stage was 

only significant (P<0.05) for P. milliaceum harvested at 4WAT and P. annua at both 

harvest moments (Table 5.1).  

 

Recovery of plants 

Field-grown plants were able to recover from the treatments with tepraloxydim. In general, 

their ED50 values were larger at seed setting (SS) than at four weeks after treatment 

(4WAT). However, these differences were not significant for E. crus-galli and P. annua 

treated in an early development stage (2WAE) or for E. repens. Greenhouse grown E. crus-

galli plants were able to recover, and so were the P. milleaceum and P. annua greenhouse-

grown plants treated in an early development stage. E. repens plants showed the same 

trend, but this was not significant at the 5% level.  

P. milliaceum and P. annua greenhouse grown plants treated in a later development stage 

(4WAE) were not able to recover, but showed the opposite response: a stronger effect of 

the tepraloxydim was observed at seed setting than at 4WAT (Table 5.1). 

 

Comparison of effects on field and greenhouse grown plants 

The dose response curves of all species differed significantly in one or more parameters for 

the plants grown in the greenhouse and the plants grown in the field.  The ED50 values of 

E. crus-galli and P. annua plants of greenhouse grown plants were significantly larger than 

of the same plants grown in the field (p=0.05). The same was true for P. milliaceum and E. 

repens, except for early treated plants harvested at seed setting, which showed no 

significant difference, and for P. milliaceum plants treated at 4WAE and harvested at seed 

setting for which the ED50 value of field grown plants was larger (Table 5.1). 

The relation between the log-transformed ED10,20…90- values for the greenhouse dose 

response curves and for the field dose response curves is shown in Figure 5.1, together with 

the results from a previous study with glufosinate ammonium (Riemens et al., 2008 and 

Chapter 4) and a study with glyphosate (Gove et al., 2007). These data show that a linear 

relationship exists between the ED-values of greenhouse and field grown plants of several 
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species treated with tepraloxydim, glufosinate ammonium and glyphosate on a logarithmic 

scale. 

 

Effects on seed production and seedling emergence  

The influence of location (field or greenhouse) and plant development stage at the moment 

of treatment on the seed production per pot (Table 5.5) and the seed production per gram 

fresh weight (Figure 5.2) was studied for P. milliaceum, E. crus-galli and P. annua.  

Seed production per pot was strongly affected by tepraloxydim dose (p<0.01). The effect of 

tepraloxydim on seed production was greater than that on fresh weight (Figure 5.2). Field 

grown P. milliaceum plants produced significantly less seeds per gram fresh weight than 

greenhouse grown plants did (p<0.05). The development stage of the parent plants at the 

moment of exposure to tepraloxydim did not influence the relative seed production of the 

plants of P. milliaceum and P. annua.  

 

Figure 5.3 Selectivity indices (effective dose in mesocosms: effective dose individually) for P. annua, P. 

milliaceum, E. crus-galli and E. repens versus effect level of plants treated with sublethal doses of tepraloxydim. 
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Figure 5.4 Effect of the tepraloxydim dose on the total fresh weight of the mesocosms, and the fresh weight of 

monocotyledons and dicotyledons in mesocosms. 

 

 

The greenhouse grown plants of E. crus-galli treated in an early development stage were 

able to produce more seeds per gram fresh weight than the plants treated in a later stage 

(p<0.01). Tepraloxydim dose did not significantly reduce the emergence of P. annua 

seedlings from seeds produced by plants treated in any development stage (Table 5.2).  

 

 

Experiment 2: Effects of tepraloxydim on mesocosms 

 

Visual symptoms and effects on biomass 

The first visual symptoms on the species in the mesocosms were observed at two days after 

treatment with aramo. At the three lowest doses, no visual symptoms were observed. At 10 

g a.i./ha and higher, yellow spots appeared on the leaves of P. milliaceum, whereas the 

other species remained symptom- free. 
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Table 5.3 Individual species (monocultures). Percentage seedling emergence of P. annua 

seeds per tepraloxydim dose. Seeds were harvested from plants sprayed with tepraloxydim 

at 2 and 4 weeks after emergence (WAE). 

Species Treatment dose (g a.i./ha) Percentage seedling emergence 

Poa annua Greenhouse 2 WAE 0 38.4 

  1 22.6 

  5 25.8 

  10 20.8 

  50 * 

   100 * 

 Greenhouse 4 WAE 0 19.2 

  1 41.4 

  5 36.8 

  10 24.3 

  50 * 

    100 * 

*) Not enough seeds to perform a seedling emergence test. 

Differences were not significant between treatment at the 5% level. 

 

 

The fresh weight of the dicotyledons in the mesocosm was unaffected by the tepraloxydim 

doses. Both the dicotyledon total fresh weight, as well as the fresh weight of the individual 

dicotyledons was linearly related to the tepraloxydim dose, with the slope not significantly 

different from 0 (p>0.05) (Table 5.4). The total fresh weight of the mesocosms was 

significantly reduced by the applied tepraloxydim dose (p<0.05) (Table 5.3). This was 

entirely the result of the reduction in fresh weight of the monocotyledonous species in the 

mesocosm (Figure 5.4).  

 

Effect of surrounding vegetation on individual species 

For all species the selectivity indices decreased with increasing effect level (Figure 5.3), 

indicating that at higher tepraloxydim doses it becomes less beneficial, or more detrimental 

to be in the mixture for these species. The selectivity indices remained below one for P. 
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milliaceum: the dose before a certain effect can be observed is always lower when the 

species is grown in the mixture, compared to the single species situation (Figure 5.3). The 

selectivity indices for P. annua remained above one, so this species benefits from the 

surrounding vegetation when it is exposed to tepraloxydim. At low effect levels, and 

therefore, low tepraloxydim doses, E. crus-galli and E. repens benefit from the presence of 

the other species, but at higher doses they experience a disadvantage of growing in the 

mixture.  

 

 

Discussion 
 
Relationship between the sublethal effects on greenhouse and field grown plants  

We previously showed that the effective dosages (ED values) obtained in a greenhouse 

experiment treated with the broad spectrum herbicide glufosinate ammonium were related 

to the effective dosages from a field experiment treated with the same herbicide, at the 

same time (Chapter 4 and Riemens et al., 2008). We stated that the relationship could be 

used for the translation of effects on greenhouse grown plants to field grown plants and 

might be valid for other herbicides and plant species as well. In this study, we fitted dose 

response curves through data of tepraloxydim on several herbaceous species and data from 

a previous study with glyphosate (Gove et al., 2007), another broadspectrum herbicide, 

which was applied on greenhouse and field grown plants of three woodland species. The 

resulting ED values for these herbicides were plotted together with the glufosinate 

ammonium data in Figure 5.1. The ED values of greenhouse grown plants were linearly 

related to the corresponding ED values (at the same effect level) obtained from field grown 

plants for all three herbicides. These results confirm our hypothesis that this type of 

relationship is valid for herbicides with different modes of action. The line fitted for 

glufosinate ammonium in Figure 5.1 lies well above the line y=x, which indicates that 

greenhouse grown plants were more sensitive to this herbicide than field grown plants 

were. However, the line for tepraloxydim lies well underneath this line, indicating the 

opposite: greenhouse grown plants were less sensitive to tepraloxydim than the field grown 

plants. Fletcher and Johnson (1990) previously compared EC50 values from a multitude of 

studies (in which numerous variables were not the same). 



 

 

Table 5.4. Monocotyledonous aboveground fresh weight (g) in mesocosms treated with tepraloxydim. 
  Parameter estimate ± SE 
Species Slope (b) ED50 (g active ingredient) (e) upper limit (d) lower limit (c )
Echinogloa crus-galli 2.26 ± 0.530a 4.11 ± 0.758a 25.3 ± 2.76a 1.09 ± 0.232a

Panicum milliaceum 1.77 ± 0.389a 1.60 ± 0.522b 23.04 ± 3.42a 0.99 ± 0.209a 
Poa annua 3.01 ± 2.670a 15.38 ± 5.780a 4.56 ± 0.470b 1.41 ± 0.259a 
Elymus repens 2.60 ± 1.517a 7.02 ± 1.730a 11.24 ± 1.386b 2.45 ± 0.432b 

All monocotyledons 1.83 ± 0.313a 4.29 ± 0.502a 62.83 ± 2.905c 6.02 ± 0.921c

Total vegetation 1.88 ± 0.671a 3.50 ± 0.813a 160.48 ± 5.079d 97.38 ± 3.385d 
Parameter estimates ± SE (standard error) of dose-response curves of the aboveground fresh weight of the individual monocotyledonous species in the mesocosm, 
the total monocotyledon fresh weight in the mesocosm and the total fresh weight of the mesocosm sprayed at four weeks after emergence and harvested at four 
weeks after treatment vs. tepraloxydim dose. Regression equation: Y=c+(d-c)/(1+e-b(log(dose)-log(e))). Different letters within a column indicate significant differences at 
the 5% level. 
 
Table 5.5. Dicotyledonous aboveground fresh weight (g) treated with tepraloxydim grown as single species (monocultures) and 
grown in mesocosms. 

 single species grown in mesocosm
species Parameter estimates ± SE Parameter estimates ± SE
 a (constant) b (slope) a (constant) b (slope)
Centaurea cyanus 54.06 ± 1.34*** 0.090 ± 0.03*** 12.50 ± 2.03*** N.S.
Chenopodium album 21.45 ± 1.34*** -0.149 ± 0.03*** 10.32 ± 2.03*** N.S. 
Solanum nigrum 46.29 ± 1.34*** -0.141 ± 0.03*** 30.35 ± 2.03*** N.S. 
Stellaria media 87.05 ± 1.34*** -0.130 ± 0.03*** 40.25 ± 2.03*** N.S. 

Total dicotyledons 94.42 ± 2.03*** N.S.
Parameter estimates ± SE (standard error) of the equation y =a*x + b, with y being the fresh weight of the dicotyledonous species grown individually (left) or the 
fresh weight of the dicotyledonous species grown in the mesocosm (right), all sprayed at four weeks after emergence and harvested at four weeks after treatment, 
and x being the tepraloxydim dose. N.S.: parameter estimate not significantly different from zero, ***: parameter estimate significantly different from zero at the 
1% level. R2 = 95.0 (single species) and R2 = 0.94 (mesocosm).  
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They found that for 55% of the herbicide-plant species combinations they used in their 

analysis field grown plants were more sensitive, while for 30% greenhouse grown plants 

were more sensitive and for the remaining combinations the sensitivity was equal (Fletcher 

& Johnson, 1990). Whether  the sensitivity to a certain herbicide will be larger or smaller in 

the field or greenhouse depends on the herbicide- plant species combination, and the 

climatic conditions that influence plant growth such as temperature, relative humidity and 

light intensity (Riethmuller-Haage, 2006).  

 

Effect of surrounding species 

While we compared greenhouse and field data on individual species, field margins are in 

most cases composed of several species, both annuals as well as perennials (Kleijn & 

Verbeek, 2000). Figure 5.3 clearly shows that species respond in a different way to 

herbicide exposure when grown in the vicinity of other species. In general smaller species 

benefit from surrounding vegetation; in both this study with tepraloxydim and the previous 

study with glufosinate ammonium (Chapter 4 and Riemens et al., 2008) P. annua plants 

and the smaller dicotyledonous species such as S. media benefited from the other species in 

the vegetation. The effect of a herbicide not only depends on the applied dosage but also on 

the exposure to the chemical. In a vegetation the exposure of smaller species is reduced by 

the presence of other plants. The other three grasses used in this study all respond in a 

similar fashion; at low dosages it is beneficial to be in a vegetation with other species. The 

presence of the other, dicotyledonous species, in the mixture reduces their exposure to the 

herbicide. With increasing dosage it becomes less favorable for these species to be in the 

mixture, probably as a result of the herbicide induced reduction of their competitive ability. 

Due to the reduction in monocotyledonous fresh weight with increasing dosages, the 

dicotyledonous species are expected to benefit from the reduced competition for light, 

water and nutrients and increase in biomass. However, the aboveground fresh weight of the 

dicotyledons appears to remain unaffected (Table 5.4, Figure 5.4). We hypothesize that 

although tepraloxydim is regarded as a small spectrum herbicide that only affects grasses, 

the dicotyledons are affected by tepraloxydim as well. Tepraloxydim belongs to the 

cyclohexanedione herbicides which inhibit acetyl-coenzyme A carboxylase, involved in 

fatty acid an flavonoid biosynthetic pathways. Both monocotyledons as well as 

dicotyledons use this enzyme in their pathway (Rendina & Felts, 1988). Two forms of this 
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enzyme exist: the eukaryotic form, which is sensitive to cyclohexanediones and the 

prokaryotic form, which is less sensitive. Monocots lack the prokaryotic form and are 

therefore highly sensitive to these herbicides, while dicotyledons contain and use the 

prokaryotic form (Devine & Shukla, 2000). The effect of tepraloxydim on broad leaved 

species is therefore very small and can be compensated by the relative increase in their 

competitive ability compared to the monocotyledons. As a result, changes in the fresh 

weight of the dicotyledons due to tepraloxydim application can not be observed. These 

results show that the use of single-species tests in the ecological risk assessment of 

herbicides may not be valid. The presence of surrounding vegetation significantly alters the 

response of species to herbicide exposure. Recently, Damgaard et al. (2008) performed a 

competition experiment with two species, C. bursa-pastoris and G. dissectum, and 

mecoprop-P which supports this conclusion as well. They found that low dosages of the 

herbicide had significant effects on the interspecific competitive ability of the both species 

and that results from single species tests can not be used to predict the response in a 

multiple species study.  

 

Plant development stage and reproduction 

Tepraloxydim affected plants in an earlier development stage less than plants of the same 

species in a later development stage. Previous results showed the opposite: younger plants 

were more sensitive to glufosinate ammonium (Chapter 4 and Riemens et al., 2008), 

glyphosate (Ruiter et al., 2000; Marrs et al., 1991), MCPA and mecoprop (Marrs et al., 

1991) than older plants. These results seem conflicting, but can be explained by the 

following. All these herbicides, except tepraloxydim, are broad-spectrum herbicides that 

need to be applied on young plants to be effective. To obtain an optimal control with grass 

herbicides such as tepraloxydim, cycloxydim and fluazifop-P-butyl it is required to apply 

them on plants that have a minimum height of 15-20 cm or from the third leaf stage until 

the formation of new leafs has stopped. 

Reproduction is an important parameter in determining long term effects of herbicides on 

non target plants (Zwerger & Pestemer, 2000). In this study the seed production was 

stronger affected than the fresh weight at the same dosages, in accordance with previous 

results on glufosinate ammonium (Chapter 4 and Riemens et al., 2008), chlorsulfuron 

(Fletcher et al., 1996) and MCPA (Andersson, 1994).  The seed production per gram 
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aboveground weight of field grown plants was more affected than the production of 

greenhouse grown plants (Figure 5.2, P. milliaceum), which is in accordance with the effect 

on the fresh weight itself: field grown plants are more sensitive than greenhouse grown 

plants (Figure 5.1). In this study we did not find a significant effect on the emergence of 

treated plants. Previously studies have shown that effects on seed production and the 

emergence are herbicide and species dependent (Chapter 4 and Riemens et al., 2008; 

Champion et al., 1998; Andersson, 1994).  

 

 

Conclusion 
To assess the risk of side effects of herbicides on non target plants the European and 

Mediterranean Plant Protection Organization (2003) proposes a guideline. The proposed 

studies use single species tests in a controlled environment. Our results indicate that the use 

of effects measured in greenhouse studies on single species may be used to determine the 

risk of herbicides to single species in the field. However, the relationship between 

greenhouse and field effects (Figure 5.1) is probably herbicide specific and needs to be 

assessed for each group of herbicides with a similar mode of action. 

The use of single-species tests in the ecological risk assessment of herbicides may not be 

valid. Exposure of single species to sublethal herbicide concentrations can not be used to 

predict effects on a mixture of species (this study, Riemens et al, 2008 and Damgaard et al, 

2008). Additional knowledge on the response of common field margin communities to 

sublethal herbicide dosages is required. Important factors that need to be taken into account 

are the species composition of those communities (annuals/perennials, monocotyledons/ 

dicotyledons), mode of action of the herbicides, the development stage of the margin and 

the choice of endpoint (biomass, reproduction). 
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Summary 
Most studies on weed population dynamics in farming systems have focused on the effects 

of different farming systems. Those studies usually assume that farmers, operating within a 

particular system, show homogeneous management behaviour. However, it is likely that 

weed management behaviour will vary between farms that operate within one system, 

thereby influencing the weed pressure. In the present study we 1) investigated whether 

differences between organic farms in weed pressure can be related to differences in 

farmers’ weed management behaviour, 2) explored which weed and general management 

factors are of main influence on the weed pressure, and 3) investigated the influence of 

farmer’s beliefs and knowledge on weed control techniques and the observed weed 

pressure. Preventive measures and timing of main soil tillage operation were identified as 

the weed management factors most influential for weed pressure. With increasing number 

of preventive measures applied, the weed pressure decreased, with a stale seedbed being the 

most important preventive measure. The weed pressure increased with the number of days 

after September 1st on which the main tillage operation was carried out. Field size, rather 

than weed pressure, determined the number of hand weeding hours per ha. On farms with 
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lower weed pressures a higher percentage of competitive crops were grown than on farms 

with higher weed pressures. The farmer’s beliefs and knowledge on weed control 

techniques differed between farmers with different weed pressures. It was concluded that 

exploratory on-farm studies can give us insight in the human dimension, which can lead to 

a better understanding of the farming systems and to more effective weed management in 

those systems. 

 

Keywords: Organic farming system, Hand weeding, Beliefs, Weed density, Weed seed 

production, Management behaviour 
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Introduction 

Weeds are often regarded as one of the largest bottlenecks for organic farming systems as a 

result of the large amount of labor required for their control (De Buck et al., 2001). 

Although these farming systems have received a lot of attention during the past decades as 

a result of an increased concern about negative effects of pesticide use, the percentage of 

organic farms is still rather low: 3,8% on average in Europe and 2,7% in the Netherlands in 

2008 (CBS, 2008). Fear of ineffective weed control is often perceived as one of the most 

important obstacles to conversion from conventional to organic farming (Beveridge & 

Naylor, 1999). 

So far, researchers have used a reductionist approach to study weed management, e.g. 

focusing only on the comparison between types and adjustments of implements of non-

chemical control techniques (Barberi, 2002). Since long time, a systems approach has been 

regarded as a pillar for the design of real, effective organic crop production systems 

(Vereijken, 1997; Andrews et al., 1990). A few studies have investigated the weed 

population dynamics in farming systems. Most of them focused on the effects of different 

farming systems such as conventional and organic systems (Albrecht, 2005; Sjursen, 2001). 

Although an effort has been made in those studies to keep methods similar to on-farm 

practices for each type of farming system, the assumption is being made that farmers 

operating within a particular farming system show homogeneous management behaviour. 

However, farmers who supposedly operate in the same system are known to respond 

differently to for instance changes in the availability of farming techniques (Vanclay & 

Lawrence, 1994) or the market (Nowak & Cabot, 2004). Different weed management 

strategies within a farming system can influence the weed pressure strongly (Riemens et al., 

2007a and Chapter 3). It is therefore likely that weed management behaviour will vary 

between farms that operate within one farming system, thereby influencing the weed 

pressure. 

Exploratory on-farm studies can give us insight in the variation in weed management 

behaviour as well as weed pressure within a farming system (Mertens, 2002).  

The objective of this study was to 1) investigate whether differences between organic farms 

in weed pressure can be related to differences in farmers’ weed management behaviour, 2) 

explore which weed and general management factors are of main influence on the weed 
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pressure, and 3) to investigate the influence of farmer’s beliefs and knowledge on weed 

control techniques and the observed weed pressure. 

 

 

Materials and Methods 
 

Farms 

The research took place at sixteen commercial organic farms distributed over four areas in 

the Netherlands two on clay soils, and two on a sandy soil. All farms were located between 

52 North and 5East, and 52North and 10East. The four farms per region were chosen to 

represent both farms with high and low weed pressures, relevant crop rotations and the 

willingness of the farmers to participate in the research.  

 

Measures for behaviour: interview and registration form  

Data on the weed management behaviour of the farmer were collected via an interview and 

a registration form. The interview consisted of a set list of questions regarding the effect of 

cropping practices on weed population dynamics and soil structure, the effect of weed 

control activities of the farmers such as preventive weed management tools (e.g. stale 

seedbed, fallowing, sowing density, stubble treatments, crop choice), grower typology, and 

the priority of weed management compared to other activities such as pest control and 

fertilization. The interviews were held at the beginning of the project, spring 2003.  

Furthermore, each farmer was asked to register activities that took place at the farm each 

year of the survey (2003-2005) by filling in a registration form on the amount and timing of 

activities related to a) fertilization, b) cultivation, c) disease control, d) weed control, and e) 

planting and harvest dates of the crops for each field. 

 

On farm weed pressure 

 Several parameters were recorded at each of the farms to obtain the on farm annual weed 

pressure: the weed species, the average density per species (nr of plants m-2), and the 

average number of viable seeds produced per plant (nr of seeds per plant). Weed density 

was monitored in 15 quadrates arranged along a diagonal transect in each field. The 

quadrates had an area of 1 m2; however different shapes were used in order to maintain the 
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same proportion of crop row to inter-row space found in the field as a whole. The quadrates 

were placed approximately 10 m apart. Transects were approximately located at the same 

sites in the fields each year. If weeds were present in two or more of the quadrates, 10 

individual plants were taken from the field for seed production measures. Those plants were 

harvested outside the quadrates. These recordings were done each year (2003-2005), on 

each farm, on every field, 3 weeks prior to crop harvest. This implies that every field was 

monitored at least once a year, and in some cases several times a year, due to different 

succeeding crops in one season. The weed density per species and the nr of seeds produced 

per plant were used to calculate the total weed density (total nr of plants m-2) and the total 

seed production (total number of seeds m-2). As a result of measuring at the end of the 

growing season, the measured weed density and weed seed production were the result of 

weeds emerging from the viable soil seed banks present in a field (the potential density) and 

the weeds surviving subsequent weed control during the season. 

 

 

Statistical analysis 
The approach to the analysis was first to identify general patterns in the weed density, weed 

seed production, and number of weed species between farms by means of summary 

statistics. The next step was to examine the relationships between various factors (farm 

size, crop, soil tillage, weed management) and the weed pressure. Finally it was 

investigated whether farmers with different self-reported beliefs and behaviours on weed 

management also differed in weed pressure and factors that had an important effect on the 

weed pressure. 

 

General patterns in weed pressure and weed abundance  

The weed density per species was used to calculate the total weed density (total nr of plants 

m-2) per farm averaged over all years and fields. To investigate which species were most 

abundant, the weed densities and seed production per species were averaged over three 

years, farms and fields.  
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Screening of factors influencing the weed pressure  

Two measures were used to represent the on farm weed pressure; the weed density (nr of 

plants m-2), and the weed seed production (nr of seeds m-2). The relationship between the 

two measures for weed pressure were analysed by fitting a linear regression model in the 

Statistical program GenStat (Payne et al., 2008) of the seed production vs. the weed 

density. Prior to fitting the model, the data on weed density and weed seed production was 

log transformed to meet terms of normality.  

Factors influencing the weed pressure were investigated by fitting all possible linear 

regression models in the Statistical program GenStat (Payne et al., 2008) of all a priori 

selected factors that could be influencing the weed pressure (weed density and weed seed 

production). These factors were hand weeding effort (hours ha-1), timing of main soil tillage 

(nr of days after September 1st), number of applied preventive weed control measures, field 

size and soil type. Prior to fitting the models, data was log transformed to meet terms of 

normality whenever required. The fitted models were compared according to the highest 

adjusted R square value and the lowest Mallow’s Cp. In this way the best regression model 

containing only the most important factors were selected for the average weed density, and 

the average weed seed production. 

 

Investigating the effects of factor levels 

After the most suitable models were found, the effects of the factors on the weed pressure 

were investigated by examining the coefficients of the models.  

For the factors not included in the models, it was investigated why these were not as 

influential as was expected. These factors were hand weeding hours, field size and soil 

type. Because hand weeding hours and field size were correlated, the number of hand 

weeding hours averaged over the three years (h ha-1) was plotted against the average field 

size (ha). A logarithmic function was fitted with the statistical program (Payne et al., 2008). 

 

Investigating which crops allow high weed pressures 

Hierarchical Cluster Analysis (HCA) was used to analyze the seed production and weed 

density in the crops. HCA is a tool designed to reveal natural groupings within a dataset. 

We used the agglomerative method, which starts with individual objects (crops) which are 

combined into groups by collection of objects or groups into larger groups. Grouping is 
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based on similarity between objects/groups. Crops are placed in a multidimensional space 

(nr of dimensions= nr of crops). Position of crops in the space is based on the measures for 

weed pressure (density and seed production). Distance between crops is the measure for 

dissimilarity: Euclidean Distance (ED). Crops were only included in the analysis if they 

were grown at least three times by different farmers. 

 

Linking farmers’ self reported beliefs on weed management with weed pressure  

Due to the relatively small sample size (n=16), it was not possible to reduce the number of 

variables from the questionnaire and perform a PCA (Principal Component Analysis). 

Therefore descriptive analysis was used to detect differences in the farmers’ beliefs on 

weed management. At several moments during the interview each farmer was asked to tell 

about their interests. Based on their response during the interview, farmers were 

categorized as either crop growth or market oriented. This and other variables that were 

significantly different between farmers were used for comparison with the weed pressure 

data. For each of those questionnaire variables, the average weed density and weed seed 

production were calculated. Differences in weed pressure were evaluated with Tamhane’s 

T2 test. 

 

 

Results and Discussion 
Over the survey period of 3 years a total of 20 weed seed producing species were observed 

(Table 6.1). Stellaria media was the most abundant species on each farm and had an 

average density of 29 plants m-2. Other abundant species were Chenopodium album, 

Polygonum convolvulus, Poa annua and Polygonum persicaria, although they were not, 

like S. media, observed at each farm. Galinsoga parviflora had the highest average density 

(36 plants m-2), but was less abundant as S. media.  

The average weed density on the farms varied from almost 1 weed plant m-2 on farm 1 to 

26 weed plants m-2 on farm 8 (Table 6.2). On a sandy soil the average weed density was, 

for most farms, higher than the density on a clay soil. Results in Table 6.1 are the average 

densities of species present in the fields, while average densities in Table 6.2 also include 

data of fields at which no species were present. 
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Figure 6.1. Relationship between the log transformed average weed seed production and average weed density, 

measured at the end of a growing season, three weeks prior to crop harvest. R2=71.0. Y =2.52 + 1.14 x X, with Y= 

log(weed seed production), and X= log (weed density). 

 

Factors influencing weed pressure 

The two parameters used to represent  weed pressure, the average weed density per farm 

(plants m-2) and the weed seed production per farm (plants m-2), were linearly related when 

averaged over all years and fields (Figure 6.1). Similar linear relationships were found for 

the weed seed production and weed density per farm per year (data not shown). 

The variation in weed seed production and weed density was best explained by a model 

with two factors: timing of the main soil tillage treatment (x1) and the number of applied 

preventive measures (x2): Y = c + a x1 - b x2, in which a, b, and c are constants and Y is 

either the log(seed production) or the log(weed density). With increasing number of applied 

preventive measures, the number of weed seeds being produced and the weed density 
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decrease (Table 6.3). Applied preventive measures were the use of a stale seedbed, a high 

sowing density, adjusted row distance, stubble treatment, and crop and variety choice. The 

most influential preventive measure applied was the stale seedbed. A stale seedbed 

followed by control of the emerging seedlings prior to planting or seeding a crop can reduce 

the number of weeds during crop growth, compared to a weed control system without a 

stale seedbed with 80% or more under experimental conditions (Chapter 2 and Riemens et 

al., 2007b).  

 

 

Table 6.1. Mean density of the individual weed species and the standard error of the mean 

(s.e.m.), and the mean number of weed seeds produced per species and the standard error 

of the mean (s.e.m.), averaged over all years, farms and fields. 

weed species 

weed density 

(nr m-2) s.e.m. 

weed seeds  

(nr m-2) s.e.m. 

Amaranthus retroflexus 2.00 - 569 - 

Apera spica venti 15.50 7.500 0 - 

Capsella bursa pastoris 11.17 2.555 2217 839 

Chenopodium album 25.16 2.806 15018 3790 

Echinogloa crus galli 9.04 1.541 1005 204 

Elymus repens 12.50 4.010 0 - 

Galinsoga parviflora 36.05 6.875 7076 2034 

Lamium purpureum 10.40 3.696 143 43 

Matricaria chamomilla 5.95 1.186 2329 720 

Poa annua 9.75 3.276 5 2 

Polygonum aviculare 8.00 2.176 5 2 

Polygonum convolvulus 11.17 1.540 182 28 

Polygonum persicaria 17.13 4.299 1137 520 

Raphanistrum raphanistrum 3.33 1.856 381 212 

Senecio vulgaris 8.76 4.120 409 115 

Solanum nigrum 10.71 2.339 4138 3052 

Sonchus oleraceus 7.25 5.921 228 131 

Stellaria media 29.07 2.708 2204 487 

Urtica urens 12.40 5.896 2001 1341 

Veronica filiformis 12.00 5.862 3942 257 
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The current results show that the application of a stale seedbed has a positive influence on 

the reduction of the weed pressure at the farm level as well. 

The timing of the main soil tillage operation (e.g. ploughing) influenced the weed density 

and the number of weed seeds produced on the fields in the season followed by the 

operation. The number of produced weeds seeds and the weed density significantly 

increased with the number of days after September 1st on which the main tillage operation 

was carried out. On fields where the main soil tillage operation was carried out in autumn, 

the seed production and density were lower than on fields tilled in spring. The average 

timing of the main soil tillage operation on a clay soil did not significantly differ from the 

average timing on a sandy soil (p=0.672).  

 

 

Table 6.2. Mean density of the total weed species and the standard error of the mean 

(s.e.m.), averaged over all years, weed species and fields. 

farmer soil type weed density (nr m-2) s.e.m. 

1 clay 0.99 0.272 

2 clay 3.25 1.038 

3 clay 1.89 0.195 

4 clay 3.06 0.977 

5 sand 24.36 4.947 

6 sand 1.13 0.830 

7 sand 17.34 2.628 

8 sand 26.41 10.182 

9 sand 14.70 3.801 

10 sand 15.84 2.374 

11 sand 14.77 5.989 

12 sand 8.89 1.773 

13 clay 11.64 3.967 

14 clay 4.50 0.450 

15 clay 6.38 1.485 

16 clay 5.63 1.057 
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Table 6.3. Coefficients of the model Y = c + a x1 - b x2, with Y: either the log(seed 

production) or the log(weed density); x1: timing of the main soil tillage treatment; and x2: 

the number of applied preventive measures. 

Y a b c R2 

log(weed density) 0.72  0.323 0.21  0.069 0.24  0.076 55.8 

log(weed seed production) 1.18  0.398 0.22  0.085 1.98  0.935 58.2 

 

 

Vleeshouwers & Kropff (2000) also observed that late soil cultivation (large number of 

days after September 1st) results in higher weed densities than early soil cultivation. Three 

factors influence the differences in seedling numbers after soil cultivation at different dates; 

the degree of dormancy of the seeds, soil temperature after cultivation and soil penetration 

resistance after cultivation (Vleeshouwers & Kropff, 2000).  In the present study, S. media 

was the most abundant species, occurring at high densities (Table 6.1).  Weed management 

practices affecting S. media will therefore have a large effect on the total on farm weed 

pressure. Under favourable conditions, S. media can germinate and emerge all year round in 

the Netherlands (Sobey, 1981). Seeds of this species emerging in late summer and early 

autumn, after crop harvest, will be controlled by the main soil tillage operation. When this 

control takes place in spring, these late-emerging plants are able to grow during winter and 

produce seeds before the tillage operation takes place in early spring. However, when a 

treatment is already performed in the autumn, those late-emerging plants will be controlled 

and will not contribute to the weed pressure in the following season. The weeds emerging 

during winter after the soil tillage will have a reduced growth and seed production, thereby 

contributing less to the weed pressure in the following growing season than the weeds 

emerging in autumn.  

Hand weeding hours, average field size and soil type were not included in the models that 

gave the best fit for one of the weed pressure parameters. The hand weeding effort (that is, 

the average number of hand weeding hours ha-1) of the farmers was determined by the 

average field size (ha). The larger the field, the lower the number of hand weeding hours 

per ha (Figure 6.2). The number of hand weeding hours did not significantly differ between 

farms on a sandy soil and farms on a clay soil (p=0.129). Earlier studies with multi-year 

experiments by Van der Weide et al (2008a) and Melander &  
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Figure 6.2. Relationship between manual weed control effort (hand weeding hours per ha) and the average field 

size (ha). R2=79.2. Y =42.41-17.74log(x) with Y= manual weed control effort (hours per ha), and x= field size 

(ha). 

 

 

Rasmussen (2001) showed that the amount of hand weeding (h ha-1) was positively related 

to the weed density (plants m-2). The difference between those previous studies and the 

present study can be explained by the farmers’ behaviour. The previous studies were 

carried out on experimental farms and had the objective to manage the weed populations 

according to best available weed management practices. In contrast, manual weed control 

on the sixteen farms in this study was related to field size. With increasing field size, the 

average hand weeding hours per ha decreased. This result suggests that farmers can only 

dedicate a certain amount of time to manual weed control, independent of the weed 

densities on the fields. The results further imply that the adoption of preventive weed 
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control measures may provide farmers with an effective way of reducing the weed pressure 

on their farms. It is well known from previous studies that the use of preventive measures 

such as the stale seedbed technique (Chapter 2 and Riemens et al., 2007b) and the use of a 

high cropping density (Kropff et al., 1993) can significantly reduce weed densities. This is 

the first study in which the importance of preventive weed control measures for weed 

pressure is shown in an exploratory study on commercial farms.  

 

Results should be interpreted carefully, because investigated factors were intertwined. An 

example is the correlation between the applied preventive weed control measures and the 

soil type. On farms with a sandy soil type the average number of applied preventive weed 

control measures was 2.88 per farm, which was significantly  (p=0.012) lower than the 

average of 4.63 per farm on a clay soil. Due to this correlation, soil type and the number of 

preventive measures could not be included in one model. The model that best fitted the 

weed pressure data was the model with the preventive measures, thereby excluding soil 

type from the model. Soil type did influence a factor that was included in the models; the 

number of applied preventive measures on a farm. 

 

 

Table 6.4. Farmers’ self reported grower typology and farmers’ risk perception of soil 

structural damage as a reason not to control weeds mechanically, in relation to the 

observed weed pressure (weed density and weed seed production). Different letters indicate 

significant differences between grower typologies and within the farmers’ risk perception 

of soil structural damage within columns at the 5% level. 

  weed pressure (mean  s.e.m.) 

  
weed density 
(plants/m2) 

weed seed production 
(seeds/m2) 

crop growth oriented 4.6  1.82a 1728  624.2a 
type of grower market oriented 17.6  3.29b 13592  4815.9b 

never 5.0  1.00a 2197.0  729.96a 

sometimes 8.1  3.18b 5510.9  3299.11a 
how often is 
the risk of soil 
structural 
damage a 
reason not to 
control weeds often  22.2  3. 37c 16749.1  7406.21b 
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Figure 6.3. Grouping of crops with HCA (hierarchical cluster analysis) based on weed density and seed 

production. HCA group 1 contains crops allowing high weed densities and weed seed productions, HCA group 2 

contains crops that allow lower weed densities and weed seed production. 

 

 

Crops allowing high weed pressures 

The hierarchical cluster analysis showed that crops could be grouped into two groups 

(Figure 6.3); HCA group 1 with high weed pressure (that is, with high weed density and 

weed seed production) and HCA group 2 with lower weed pressure. HCA group 1 contains 

bulb crops (tulip), lettuces (lettuce, endive), onion like crops (e.g. onions, carrots, leek, 

fennel), sunflower, and vegetable crops (courgette, pumpkin). HCA group 2 contains 

cabbages (e.g. brussel sprouts, cauliflower, broccoli, chinese cabbage), potatoes, celeriac, 

cereals (e.g. oat, winter- and summer barley, winter-and summer wheat, rye), grass, and 

legumes (peas, fresh beans). For each farm we calculated which percentage of the crops 
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that were grown belonged to HCA group 1. Crops with high weed pressures (HCA group 1) 

are crops with low competitive abilities to weeds. Apparently, this factor has more effect on 

these farms than the mechanical control possibilities that these crops offer, compared to for 

instance cereal crops. Again results need to be interpreted with care; the farms located on a 

sandy soil differed from farms on a clay soil in the percentage of crops grown from HCA 

group 1 as well. The percentage of crops from HCA group 1 grown on sandy soils was on 

average 42%, on clay soils it was on average 11% (p<0.001).  Since soil type determines to 

some extent the crop types that can be grown, and the crop determines for a large part the 

management options, factors are intertwined. 

 

Linking farmers’ self reported beliefs on weed management with weed pressure 

Grower typology (crop growth or market oriented), beliefs on soil structural damage caused 

by mechanical weed control, and awareness of the influence of crop choice on weed growth 

were questionnaire variables in which farmers significantly differed. Farmers that regarded 

themselves more market-oriented growers had a higher average on farm weed pressure 

(Table 6.4). The mean weed density on farms managed by market oriented farmers was 

17.6 plants m-2, while the mean weed density on farms managed by crop growth oriented 

farmers was 4.6 plants m-2. A similar pattern was found for the mean weed seed production; 

on farms managed by market oriented farmers the average weed seed production was 13592 

weed seeds m-2, while the mean weed seed production on farms managed by crop growth 

oriented farmers was 1728 weed seeds m-2.  

Farmers that were aware of the influence of crop choice on weed growth and took the farm 

weed situation into account during crop choice, significantly (p=0.03) choose less crops 

from HCA group 1 than farmers who did not take the weed situation into account (37% vs. 

16%). Those farmers that believe that soil structural damage can occur when weeds are 

mechanically controlled and often not control weeds mechanically to avoid soil structural 

damage had a significantly higher average weed density than farmers that never or 

sometimes avoid mechanical weed control to prevent structural damage (Table 6.4). The 

same trend emerged for the weed seed production, although differences between farmers 

that often avoid the and sometimes avoid mechanical weed control were not significant. 
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Conclusions and considerations for future research 
 In this exploratory study we investigated the relationship between weed pressure and weed 

management behaviour on commercial, organic farms. In addition we explored the 

possibility of the use of a questionnaire to identify beliefs of farmers regarding their weed 

management and weed pressure. Differences between organic farms in weed pressure were 

influenced by differences in farmers’ management behaviour. Preventive measures and 

timing of main soil tillage operation were identified as the most influential weed 

management factors for weed pressure. The farmer’s beliefs and knowledge on weed 

control techniques differed for farmers with different weed pressures. The sample size we 

eventually choose (n=16) was a compromise between a minimization of the number of 

fields for determination of the weed pressure on one hand, and a maximization for the 

questionnaire variables on the other hand. In future studies, a better view on farmers’ 

beliefs and perceptions on weed management behaviour can be obtained by increasing the 

number of farmers and reducing the number of fields for weed pressure monitoring. 

Qualitative aspects such as the perception a farmer has concerning weeds, the strategy the 

farmer uses to achieve certain goals, the awareness of certain processes in weed biology 

and the reasons for the use of certain techniques are much more difficult to quantify than 

the quantitative aspects such as hand weeding hours. Wilson et al (2008) presented the 

mental model approach to identify the motivational and cognitive processes underlying 

farmer decision making. In future research, the incorporation of the human dimension, in 

terms of farmers’ beliefs, attitudes and behaviour and the underlying processes with the 

mental model approach, can lead to a better understanding of the (organic) farming systems 

and lead to more effective weed management in those systems.  
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CHAPTER 7 
 

General discussion 
 

On farm weed management is influenced by many factors (Figure 1.3). These factors 

comprise the development and availability of weed management tools, the environmental 

impact of these tools and the attitude and behaviour of the farmer. In Chapter 1 we 

identified major gaps in our knowledge on each of these aspects. Research questions were 

formulated concerning ecological weed management strategies depleting the soil seed bank, 

environmental effects of chemical weed management and the human dimension of weed 

management. In part A of this thesis the efficacy of increasing the losses from the soil seed 

bank (Chapter 2) and reducing the input to the soil seed bank (Chapter 3) was investigated. 

In part B the major gaps in our knowledge on the effects of a broad-spectrum (Chapter 4) 

and a small-spectrum herbicide (Chapter 5) on non target terrestrial plants were targeted. In 

Part C the relationship between the attitude and beliefs of farmers and its effect on the on 

farm weed pressure was investigated (Chapter 6). 

 In this Chapter the contribution of the research described in this thesis to our understanding 

of seed bank dynamics and weed management at the farm level, the environmental effects 

of weed management and the human dimension are discussed. Future research needs 

concerning these topics are formulated. 

 

 

A1. Understanding seed bank dynamics and weed management 
The ecological weed management principle “depleting the soil seed bank” was investigated 

in Chapters 2 and 3 (part A) of this thesis. In Chapter 2 we showed that the use of a stale 

seedbed technique in April or May can provide farmers with a tool to increase the losses 

from the soil seed bank by enhanced germination and emergence of the total weed 

community. Unfortunately we were unable to show significant differences for the 

individual species. Nevertheless, we do know that some of the most abundant annual weed 

species in the Netherlands, such as Chenopodium album, Stellaria media and Solanum 

nigrum, have their peak in emergence in April and May (Colbach et al., 2005; Chancellor, 

1986; Van den Brand, 1987 & 1985a, b; Roberts, 1964). These species also formed the 
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most abundant species in the fields described in Chapter 2. Furthermore, the application of 

a stale seedbed in April or May was also found to be an important factor reducing the on 

farm weed pressure on sixteen organic commercial farms in Chapter 6. The most abundant 

species on these farms was Stellaria media. This implies that the induced emergence and 

control of these abundant species may be responsible for the observed reduced weed 

densities during crop growth after application of a stale seedbed. For a further 

maximization of the efficacy of techniques based on light sensitivity and subsequent 

germination and emergence of seeds, such as the stale seed bed technique, we need more 

insight in the seed bank dynamics of weeds in relation to their complete life cycle (Figure 

1.2). The gathering of scientific knowledge on the relationship between the soil seed bank 

and the aboveground weed population began with the development of periodicity tables for 

common agricultural weeds in the beginning of the 1980s (e.g. Roberts (1981 & 1984)). 

Since then several attempts have been made to unravel the soil seed bank dynamics of 

agricultural systems. Two main routes have been followed: an empirical approach and a 

reductionist approach (Grundy, 2003). The empirical approach requires long term weed 

emergence data and associated meteorological data. Based on the combined analysis of 

these datasets the meteorological factor that is most influential for weed emergence is 

selected and used as main factor dominating the prediction of emergence in relatively 

simple models. The downside of this approach is that the prediction of low emergence by 

the models can be either the result of unfavourable meteorological conditions or a large 

percentage of seeds with a high dormancy state (Grundy, 2003); the models do not provide 

insight in these processes. The reductionist approach overcomes this problem by 

partitioning the processes underlying the observed emergence of weeds in the field into 

three major components: dormancy relief, germination and pre-emergence growth. 

Although these models have the potential of predicting the emergence of weeds under a 

range of realistic conditions, very few studies have attempted to combine these three 

components in one mechanistic model, because of the high complexity. Vleeshouwers & 

Kropff (2000) provided us with a combined model for Chenopodium album, Polygonum 

persicaria and Spergula arvensis, and Van der Weide (1993) with one for Galium aparine. 

One of the major challenges for future development of this kind of models is our limited 

understanding of dormancy. It is unclear how seeds perceive changes in their environment 

(such as temperature, moisture and light) and how this perception is used to change their 
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dormancy state. The development of dormancy sub-models, based on data obtained at the 

molecular physiological level, may provide us with the required insight (Chao, 2002).  

Another important aspect is the quality of the input data of these predictive models; the 

prediction of a model is as reliable as its input data (Grundy, 2003). Data required by 

emergence models are climatologic data and seed bank estimates (species and number of 

seeds), sometimes supplemented with data on soil characteristics (Colbach et al., 2006). As 

we discuss in Chapter 3, obtaining a reliable estimate of the size and composition of the 

viable soil seed bank is still very difficult. Although considerable research effort has been 

made to determine how the seed bank can best be sampled (Dessaint et al., 1996), a final 

methodology has not been developed yet. The main problems are the non-normal 

distribution patterns of the seeds, the presence of species in very low numbers, and a quick 

determination of seed viability after excavation. The use of a model weed to unravel 

processes determining relief of dormancy, germination and emergence would be helpful to 

our understanding of the below- and aboveground relationship (Chao et al., 2005). Because 

of its high abundance and densities in agricultural fields, its large geographical distribution 

(Chapters 2 and 6), (Mertens et al., 2002) and competitive nature (Storkey & Cussans, 

2007; Lutman et al., 2000), Stellaria media would be a good candidate species for future 

research efforts on predictive modeling of emergence from its soil seed bank.   

 

 

A2. Seed bank dynamics and weed management at the farm level 
 

Organic farming systems 

In Chapter 3, three strategies that allowed for different levels of seed return to the soil seed 

bank were compared: one strategy aimed at a 100% prevention of seed return, one aimed at 

the prevention of seed return from the largest plants (thus, the plants with most seeds), and 

a reference strategy, representing standard weed control in an organic system. The 

strategies were applied for a period of seven years and their effects on the aboveground 

weed density and the soil seed bank were monitored at the end of this period. The farm was 

converted from a conventional to an organic managed farm in year one. In general, the size 

of the seed bank under organic weed management systems is larger than under herbicide-

based systems (Sjursen, 2001; Albrecht &Sommer, 1998). Therefore it was expected that 
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the soil seed bank would increase in size under the standard organic strategy, would 

decrease under the strategy aiming at a 100% prevention of seed shed and decrease or 

remain at a similar level under the intermediate strategy. However, the soil seed bank 

increased in size under all applied strategies. This result shows that it is very hard, and 

perhaps impossible to achieve the desired decrease of the soil seed bank by prevention of 

weed seed return alone. Weed management strategies depleting the seed bank can only be 

successful if they not only prevent seed return to the soil, but also target other parts of the 

weed’s life cycle as depicted in Figure 1.2. Based on the results from part A of this thesis, a 

successful organic management system should manipulate the germination and emergence 

of weeds and at the same time remove sufficient amounts of the above-ground biomass 

before seeds will be returned to the soil seed bank. In Chapters 2 and 6 we showed that the 

use of a stale seed bed can provide farmers with an efficient tool to manipulate the 

germination and emergence of weeds and reduce the on farm weed densities during crop 

growth. For a viable and cost effective organic sector, management systems combining 

these two and the other ecological weed management principles depicted in Figure 1.1 are 

required. This requires insight in weed population dynamics in time and space, the 

competitive interaction between crops and weeds, and the influence of agricultural practices 

on these dynamics (Freckleton & Stephens, 2009).  

 

Integrated farming systems 

Preventive measures such as the application of a stale seedbed are not only relevant for 

organic farming systems, but also for integrated, herbicide based systems. For all systems 

the phrase “Prevention is better than to cure”, is applicable. However, also from an 

economic point of view the relevance of these measures will increase in the future. Due to 

European regulations the number of available herbicides is decreasing. Already for some 

small crops (small meaning a relatively small number of ha world wide, but large economic 

benefits in the Netherlands) the number of available herbicides is reduced to zero or one. 

The use of preventive measures, based on ecological principles, can reduce the weed 

densities during crop growth and the need to control. On top of that, results from Chapter 2 

show that the stale seedbed technique in combination with mechanical control of emerging 

weeds can reduce the weed population during crop growth as effective as chemical control 

can.  
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Although the development of preventive measures will continue to be important for 

integrated systems, the development of precision technologies will be a key factor for a 

further decrease of herbicide use in integrated farming systems during the next decade. The 

precise application of available herbicides can save on economic costs (Christensen et al., 

2009; Kempenaar et al., 2009) and reduce environmental impact at the same time. Precision 

application of herbicides or mechanical implements in time and space requires an accurate 

detection of large numbers of unknown weed species within different crops while making 

instantaneous decisions (Christensen et al., 2009). This kind of technology can be 

developed for agriculture, but the current speed of development is slow. According to 

Kropff et al. (2008) the progress could be much faster with enhanced investments. Farmers’ 

income needs to be boosted to create an opportunity to invest in this new technology, other 

wise these products will keep lacking commercial interest.  

In the past, major developments in Dutch agriculture were for a large part induced by the 

government. Especially after World War II the Dutch government invested heavily in 

agricultural research to increase the cost-effectiveness and production of agricultural 

systems. To speed up current developments towards more sustainable agricultural systems 

with a reduced herbicide (and pesticide) dependence, governments could stimulate farmers 

towards the use of more technology based agriculture instead of subsidizing farmers to 

increase production.   

 

 
B. Environment  
An important group of decision makers involved in the reduction of adverse effects of weed 

management are the regulators. Weed management tools are designed to control plants, and 

as a result, non target plants are at risk the most when these tools are applied. Current 

guidelines used by governmental agencies and companies to assess the risk of herbicides to 

non target plants are very limited in their description of how and what data should be 

collected and analyzed to asses the risk to non target terrestrial plants. The main reason for 

this limited guidance is that regulators themselves are not exactly sure about what needs to 

be protected. Non-target plants are defined as non-crop plants located outside the treatment 

area. Directive 91/414/EEC does not contain specific data requirements for non target 

plants. It generally states that there is a need to report all potentially adverse effects and 
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additional studies need to be undertaken where there are indications of such effects. As a 

result, all herbicide applications should at the moment being turned down by regulators 

because these compounds will always affect plants. This situation is unwanted by both 

regulators as well as companies (Füll et al., 2000). Currently, two main questions can be 

formulated. First of all: what do we want to protect? And the second one: how do we test 

the risk that these compounds pose to that which we want to protect?  

In this thesis we have focused, in Chapters 4 and 5, on aspects that are important for the 

second question: translation of data from greenhouse to field conditions, from single 

species to multiple species, recovery of species after exposure and the effects on 

reproduction. We by all means, do not want to pretend that we have answered all of these 

questions or provided society with sufficient data to answer them. However, we have 

provided insight in the responses of wild species to sublethal dosages and contributed to the 

on going discussion.  

Our results from Chapter 4 with the broad spectrum herbicide glufosinate ammonium as 

well as results from Chapter 5 with the small spectrum herbicide tepraloxydim indicate that 

the use of measured effects in greenhouse studies on single species may be used to 

determine the risk of herbicides to single species in the field. However, the relationship 

between greenhouse and field effects is probably herbicide specific and should be assessed 

for each group of herbicides with a similar mode of action. For each relationship a safety 

factor should be developed to account for the variation introduced by climatological 

conditions, but also genetic and phenotypic diversity amongst the non-target species to 

ascertain that greenhouse data can be used to protect non-target plants from effects in the 

field. The use of single-species tests in the ecological risk assessment of herbicides to 

vegetations may not always be valid. Exposure of single species to sublethal herbicide 

concentrations can not be used to predict effects of the same species in a mixed vegetation. 

Important factors that need to be taken into account are the species composition of those 

communities, mode of action of the herbicides, the development stage of the margin and the 

choice of endpoint (biomass, reproduction). 

The other question, “what needs to be protected” requires insight in the system of which 

non-target plants are part. Regulators need to make decisions about the protection of system 

functioning of these margins. They require knowledge on the biodiversity and species 

abundance of field margins to make their decision. Several studies have focused on the 
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diversity of these margins and how they are affected by agricultural practices (Kleijn & 

Verbeek, 2000; Kleijn & Snoeijing, 1997). Herbicides strongly influenced the species 

abundance and composition of the margins in a Dutch study (Kleijn & Snoeijing, 1997). 

However, insight in the role of plant diversity in the functioning of the ecosystems in those 

field margins is still needed. On top of that, the species composition of margins differs from 

country to country. Therefore, the development of a standardized vegetation for risk 

assessment protocols is an enormous challenge, which may appear to be impossible. A 

regional risk assessment would be the alternative. 

 

Direct environmental effects of weed management are mainly caused by herbicide drift. 

Therefore, during the last two decades mechanical weed control has received a lot of 

attention and is regarded as a more environmental friendly way to control weeds. However, 

during the development of a more sustainable weed management strategy, indirect effects 

should not be forgotten. Like other agronomic practices, weed control requires energy. 

Based on equations described in the Appendix we calculated and compared the energy use 

of weed management in a conventional, integrated and organic farming system under Dutch 

circumstances on a clay soil and a sandy soil (Figure 7.1).  The energy use of weed control 

in an organic system on a sandy soil is a factor 1.7-1.8 times higher than in an integrated or 

conventional system and a factor 2.1-2.5 times higher on a clay soil. Of course, weed 

management is only part of the total production system, other agronomic practices such as 

fertilisation should not be neglected. In previous research, fossil energy use of farming 

systems (including pest control and fertilization) was compared at the crop production 

level. In general, the total energy consumption of organic production is on average lower 

than of conventional production (Haas et al., 2001). The reduction in energy use varied 

from 21 to 43 %. When comparing the energy input/output ratio of these systems, data is 

less clear. For some cropping systems the organic systems have a higher output compared 

to the input, for others, conventional systems have a better result (Bertilsson et al., 2008; 

Dalgaard et al., 2001).   
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Figure 7.1. Average energy use (MJ/ha) of weed management in an organic, integrated and conventional Dutch 

farming system, on a clay and a sandy soil. 

 

 

C. Human dimension 
The perception a farmer has concerning weeds, the strategy the farmer uses to achieve 

certain goals, the awareness of certain processes in weed biology and the reasons for the 

use of certain techniques are an important part of weed management systems (Chapter 6). 

The identification of the motivational and cognitive processes underlying farmers’ 

behaviour can therefore lead to a better understanding of weed management systems, 

organic as well as herbicide-based.  

One way to better understand the factors driving decision making is to develop a mental 

model with respect to the stimulus in question (Morgan et al., 1992).  The concept of 

mental models is a well-established theory in psychology and decision science and has been 

the focus of extensive research (Fischhoff & Downs, 1997; Atman et al., 1994; Bostrom et 

al., 1992). Mental models affect how an individual defines a problem, reacts to issues, 

gathers and processes information, assesses risks and benefits, and makes decisions 

concerning topics that come to his or her attention through various sources of 

communications. Mental models define the boundaries of thought and action and tend to 

prevent people from seeing alternative perspectives. As such, they limit people to familiar 

patterns of reasoning and action. Effective analyses of mental models can identify how 

different groups of people think about and respond to a variety of topics, including benefits 
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associated with educational activities, and proposals to improve their business lives. Mental 

models can be assessed through a methodology that includes 1) developing an expert-

centered technical model, 2) eliciting an audience-centered mental model through open-

ended interviews, 3) conducting a larger confirmatory survey assessment of the target 

audience, 4) drafting a risk communication message, and 5) evaluating and refining the 

message. This mental model approach has been applied to determine what people know, 

and more importantly, what they need to know about issues like global warming (Bostrom 

et al., 1994), radon in homes (Bostrom et al., 1992), wildland fire (Zaksek & Arvai, 2004), 

food safety (Fischhoff & Downs, 1997), and using nuclear energy sources in space 

missions (Maharik & Fischhoff, 1993).  However, the mental models approach has not been 

widely used in agriculture, despite the abundance of difficult, risk-based decisions that must 

be dealt with on a regular basis, and the influence that communications from the scientific 

community and chemical industry representatives could potentially have on farmer decision 

making.  These communication efforts need to be strategically designed and targeted to 

address the issues known to be most important for strengthening understanding and 

improving agricultural risk management decisions (Llewellyn et al., 2005). Currently, this 

mental model approach is under investigation in a joint Dutch-US project for weed 

management (Doohan et al., 2009). This approach can be used to develop new and improve 

existing decision support systems (DSS). Currently, available DSS provide farmers with a 

tool to reduce the herbicide dose without loosing efficacy. The MLHD technology 

(Kempenaar & Van den Boogaard, 2004) is a Dutch DSS based on the fact that labels often 

recommend doses higher than the required doses to control weed populations under 

standard conditions. The system delivers stage and species dependent recommendations for 

specific groups of herbicides. The system also provides a handheld MLHD sensor which 

can be used to measure the efficacy of the applied dose at a moment when effects of the 

herbicides can not be seen by eye yet. This method of detection has been a key factor in the 

acceptance of this DSS by farmers (Kempenaar & Van den Boogaard, 2004). DSS 

providing information on the minimum effective dose on the right place and moment are 

however still lacking. The main reason is the large amount of factors that need 

consideration such as the composition of the weed population, the weed and crop 

development stages, climatic and soil conditions, application technology and additives 

(Riethmuller-Haage, 2006).  



 

 

Figure 7.2 Mental model of weed management. Adapted from Wilson et al (2008). 
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When the development of this kind of DSS becomes possible, or DSS based on ecological 

weed management, the development of a mental model can provide knowledge on the 

farmer’s behaviour and the risks that they perceive of the new tools, which will be 

important for a successful adoption of these tools by farmers.  

 
Concluding remarks 
As the schematic overview in Figure 1.3 shows, on farm weed management is influenced 

by many factors (development and availability of tools, environmental impact of tools and 

the attitude and behaviour of the farmer). For each of these factors we investigated research 

questions targeting gaps in our knowledge for that specific aspect of weed management. 

The use of methods that reduce the seed bank proved to be a useful strategy to prevent the 

frequently observed increase in weed pressure on farms that convert from a conventional to 

an organic system. Ecological weed management systems should however target more than 

one stage of the weeds life cycle to reduce weed populations. Many little hammers are 

needed to reduce the on farm weed populations, and targeting the seed bank is one of them. 

Ecological weed management systems can be beneficial for organic as well as integrated 

farming systems. The incorporation of these principles in new weed management strategies 

can contribute to a reduction of herbicide use and a reduced environmental impact on non 

targets. The attitude and beliefs on weed management of farmers are very important for the 

adoption of these new strategies and should be taken into account during its development. 

Therefore, the combination of natural and social sciences is needed for the further 

development of sustainable weed management systems. 
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APPENDIX 

Energy consumption by weed control in a 
conventional, integrated and organic farming system 

 

To calculate the energy consumption of weed control in a conventional, integrated an 

organic farming system, we defined a crop rotation, weed management tactics per system 

and equations for direct and indirect energy use. 

 

Description of a crop rotation and weed management tactics 

To compare the energy consumption of weed management in a conventional, integrated and 

organic farming system, we defined a crop rotation on an arable farm on a clay and on a 

sandy soil, representative for the Dutch situation. To be able to compare the energy 

consumption needed for weed control between farming systems, we used one description of 

a crop rotation for all farming systems (Table A.1). In practice however, the organic 

farming systems in the Netherlands usually have a wider crop rotation scheme than the 

conventional or more integrated systems. 

 

 

Table A.1. Description of a crop rotation and farm size for a sandy and a clay soil. 

 soil type 

crop sand (ha) clay (ha) 

potato 15 15 

winterwheat 15 15 

sugarbeet 15 15 

carrot 7.5 7.5 

onion  7.5 

 52.5 60 

The type and frequency of the applied weed control techniques we used were previously 

defined by Bleeker et al, (2002) for an organic system, and by Bruinsma et al (2003) for an 

integrated and conventional farming system (Tables A.2 and A.3). 



 

 

Table A.2. Type and frequency of the applied weed control techniques in a conventional, integrated and organic system on a clay 
soil (according to Bruinsma et al, (2003) and Bleeker et al.( 2002). 

 conventional integrated organic 

potato 1x ridging 1x ridging 1x ridging 

 1x 1 kg metribuzin 1x harrow 1x harrow 

  1x earth up 1x earth up 

  1x per 3 years 0,25 kg metribuzin  

winter- 

wheat  

1x 2L isoproturon (500) fall 1x 0,2 L clodinafoppropargyl(240) cloquintoceet-methyl(60) 

(spring) 

5x harrow 

 1x 1,5 L bifenox mecopprop-P(308) + 0,5 L fluroxypyr 

(200) (spring) 

1 x 1L bifenox(250) mecopprop-P(308) + 0, 4L fluroxypyr 

(200)+ 15 g Metsulfuron-methyl(20%) (spring) 

 

onion 1x 2L MCPA (spring) pre-emergence: 1x3L glyphosate(360) pre-emergence: 

flame weeding 

 pre-emergence: 1 x 1,5 L pendimethalin post-emergence: 2 x 0,15L bentazon(480)+ 0,15L ioxynill(200) 4 x hoe 

 pre-emergence: 1 x 3 L glyphosate (360) 2x hoe/ fingerweeder combination  

 post-emergence: 1 x 1L chlorprofam   

 1x 0,15L bentazon (480)+ 0,15L ioxynill(200)   

 1x0,25L bentazon (480)+ 0,25L. ioxynill (200)   

sugar-

beet 

3 x0,5 L fenmedifam (157)+ 0,5L metamitron 

(70%)+0,5L ethofumesate(200)+ 0,5L mineral oil(800) 

1,5x 0,5L fenmedifam(157)+0,5L metamitron(70%)+0,5L 

ethofumesate(200)+0,5L mineral oil(800) 

2 x harrow 

 2x hoe 2 x hoe+fingerweeder 2 x hoe 

  1x hoe + earth up 1x hoe + earth up 

carrot 3x 0,5L metoxuron+0,5L nonfenol-

polyethoxyethanal(250) 

1 x0,5L metoxuron (80%) +0,5L nonfenol-

polyethoxyetganal(250) 

pre-emergence: 1x 

flame weeding 

  2x hoe+ fingerweeder 3x hoe 

144 

A
ppendix 



 

 

Table A.3. Type and frequency of the applied weed control techniques in a conventional, integrated and organic system on a sandy 

soil (according to Bruinsma et al (2003) and Bleeker et al. (2002)).  

 conventional integrated organic 

potato 1x 0,75kg metribuzin 2x harrow 2x harrow 

 1x harrow 2x hoe + earth up 2x hoe + earth up 

 1x hoe 1x earth up 1x earth up 

 1x earth up   

winterwheat  1x 1,5L diflufenican(20)+ ioxynill(100)+ 

isoproturon(400) 

1x 0,2L clodinafop-propargyl(240) cloquintoceet-

mexyl(60) (spring) 

5x harrow 

 1x0,38L fluroxypyr(180) 1 x 1L bifenox(250) mecopprop-P(308) + 0,4L fluroxypyr 

(200)+ 15 g metsulfuron-methyl (20%) (spring) 

 

 1x 0,01 kg metsulfuron-methyl (20%) 1x per 3 years 2L MCPA (spring)  

sugarbeet 1x 0,5L quizalofop-P-ethyl (50) 2,5x 0,5L fenmedifam(157)+0,5L metamitron(70%) 

+0,5L ethofumesate(200)+ 0,5L mineral oil(800) 

2x harrow 

 4x 2,5L fenmedifam (157)+ 2,5kg 

metamitron(70%)+ 2,5L ethofumesate 

(200)+2,5L mineral oil(800) 

1x hoe+fingerweeder 2x hoe 

  1x hoe+ earth up 1x hoe+ earth up 

carrot 1x 0,25L clomazone(360)+ 1L linuron(500) 1x 0,25L clomazone(360)+ 1L linuron(500) pre-emergence: 1x flame 

weeding 

 3 x0,5 L metoxuron(80%)+0,5L 

nonylfenol-polyetanal(250) 

1x0,5 L metoxuron(80%)+0,5L nonylfenol-

polyetanal(250) 

3x hoe 

  2x hoe+ fingerweeder  
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Description of equations to calculate energy use needed for weed control 

Energy is defined as fossil energy measured in joule (J). All fuels and electricity are 

assumed to come from fossil energy sources. Energy use (EU) by weed control is defined 

as the net energy used for the control of weeds (Hulscher, 1991). Energy use can be divided 

into direct and indirect EU. Direct EU is defined as the energy input used for weed control 

that can be converted directly into energy units (eg diesel-fuel). Indirect EU is defined as 

the energy used for weed control that can not be converted directly into energy units 

(development and maintenance of machinery, herbicides). 

 

The total energy use for the use of a specific weed control technology (EUwc) can be 

expressed by equation (1): 

 

  DEUEUEU indirectdirectwc   (1), 

in which the EUdirect is the direct energy use per hour (MJ/h) and the EUindirect is the indirect 

energy use per hour (MJ/h), and D is the duration of the activity (h/ha). 

 

The duration of the activity D on its turn is determined by the forward speed s (km/h), the 

implement width i (km) and the field efficiency e (-): 

 

 (2). 

 

Direct energy use 

The direct energy use of a specific weed control tactic is determined by its fuel use per hour 

F (kg/h), and the energy content of the fuel Ec (MJ/kg):  

 

cdirect EFEU   (3). 

 

The fuel use per hour is determined by the required power P (KW/h), the fuel use at full 

power Fp (kg/h) and the corrected load of the tractor Lc (-): 

 

cp LFPF   (4). 
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The load of a tractor is never 100%. The maximum power that can be developed through 

the ground is depending on the kind of tracking machine. We assumed that the load of a 

two wheel driven tractor is 60%, of a four wheel driven tractor is 70% and for self driving 

vehicles it is 80%. Furthermore, the load is dependent on the type of weed control operation 

that is carried out. For each weed control operation a correction factor was used to take this 

into account (Table A.4).  

 

The corrected load (Lc) is calculated as:  

 fc cLLL    (5), 

with Load L, and correction factor cf. 

 

Indirect energy use 

The indirect energy use (EDindirect) is determined by the weight of the machinery W (kg), 

the energy use required for production, maintenance and transport of the machinery EUmain 

(MJ/kg), the life span of the machinery Ls (yr) and the user frequency f (h/yr): 

 

 (6). 

 

Table A.4. Load and correction factors for the tractor load per weed control operation. 

weed control operation Load (L) correction factor (cf) 

herbicide spraying 0,60 0,30 

rotary harrow 0,70 0,00 

harrow 0,70 0,00 

hoe 0,70 0,15 

fingerweeder 0,70 0,15 

flameweeder 0,60 0,30 

earth up 0,60 0,15 

 

 
 fL

EUW
EU

s

main
indirect 
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Summary 
 

On farm weed management is influenced by many factors. These factors comprise the 

development and availability of weed management tools, the environmental impact of these 

tools and the attitude and behaviour of the farmer. In Chapter 1 we identified major gaps in 

our knowledge on each of these aspects. Research questions were formulated concerning 

ecological weed management strategies depleting the soil seed bank, environmental effects 

of chemical weed management and the human dimension of weed management. In part A 

of this thesis the efficacy of increasing the losses from (Chapter 2) and reducing the input to 

(Chapter 3) the soil seed bank were investigated. In part B the major gaps in our knowledge 

on the effects of a broad-spectrum (Chapter 4) and a small-spectrum herbicide (Chapter 5) 

on non target terrestrial plants were targeted. In Part C the relationship between the attitude 

and beliefs of farmers and its effect on the on farm weed pressure was investigated (Chapter 

6).  

 

Part A Weed management strategies depleting the soil seed bank 
In Chapters 2 and 3 (part A of this thesis) the efficacy of weed management depleting the 

soil seed bank was investigated. The reduction of the soil seed bank by means of increasing 

the losses as a result of stimulation of germination and emergence of weed seeds was 

studied in Chapter 2. The effects of stale seedbed preparations and several weed control 

methods on the emergence of weeds were observed. Specific goal was to evaluate the use 

of a stale seedbed in combination with chemical or mechanical weed control methods in the 

field. Depending on location and year, stale seedbed preparations followed by weed control 

prior to planting reduced the amount of weeds during crop growth by 43 to 83%. Control of 

the emerged seedlings after a stale seedbed preparation was more effective with glyphosate 

than with a rotary harrow. Covering the rotary harrow during control improved its effect on 

the weed density during crop growth in two out of three years. Radiation with far red light 

(FR) did not reduce the number of emerging weeds in this study. Mechanical control by 

finger weeder, torsion weeder and hoe was applied without stale seedbed preparations. 

These measures reduced the weed densities with 88 to 99% compared to the untreated 

control and were more effective than chemical weed control with carbeetamide and 

chloorprofam. The results show that the stale seedbed technique in combination with 
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mechanical control of emerging weeds can reduce the weed population during crop growth 

as effective as chemical control can, and may therefore help reduce the need for herbicides 

in the future. 

In Chapter 3 weed management strategies decreasing the soil seed bank by reducing the 

seed input were studied. Three strategies that allowed for different levels of seed return to 

the soil seed bank were compared: one strategy aimed at a 100% prevention of seed return, 

one aimed at the prevention of seed return from the largest plants (thus, the plants with 

most seeds), and a reference strategy, representing standard weed control in an organic 

system. The strategies were applied for a period of seven years and their effects on the 

aboveground weed density and the soil seed bank were monitored at the end of this period. 

The farm was converted from a conventional to an organic managed farm in year one. In 

general, the size of the seed bank under organic weed management systems is larger than 

under herbicide-based systems. Therefore it was expected that the soil seed bank would 

increase in size under the standard organic strategy, would decrease under the strategy 

aiming at a 100% prevention of seed shed and decrease or remain at a similar level under 

the intermediate strategy. However, the soil seed bank increased in size under all applied 

strategies. Nevertheless, the weed densities in plots treated with the strategy aiming at a 

100% prevention of seed return became significantly lower than the weed densities in plots 

treated with the other strategies. The number of manual weeding hours required to prevent 

weed seed return in addition to the number in standard organic farming practices was 

reduced during the study. Targeting the seed bank proved to be a useful strategy to prevent 

the frequently observed increase in weed pressure on farms that convert from a 

conventional to an organic system. Ecological weed management systems should however 

target more than one stage of the weeds life cycle to reduce weed populations. Many little 

hammers are needed to reduce the on farm weed populations, and targeting the seed bank is 

one of them. Ecological weed management systems can be beneficial for organic as well as 

integrated farming systems. The incorporation of these principles in new weed management 

strategies can contribute to a reduction of herbicide use and a reduced environmental 

impact on non targets. 
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Part B Environmental effects of weed management  
Weed management tools are designed to control plants, and as a result, non target plants are 

at risk when these tools are applied. Current guidelines used by governmental agencies and 

companies to assess the risk of herbicides to non target plants are very limited in their 

description of how and what data should be collected and analyzed to asses the risk to non 

target terrestrial plants. Guidelines provided by OECD and EPPO allow the use of data 

obtained in greenhouse experiments in the risk assessment for pesticides to non-target 

terrestrial plants in the field. In this thesis the use of greenhouse data to determine effects of 

herbicides with a different mode of action on the biomass, seed production and emergence 

of field-grown plants was investigated in Chapter 4 and 5. In addition, a single species 

approach was compared with a mixed species approach. Effects on the biomass of 

greenhouse and field-grown plants were found to be related at different effect levels, 

indicating that it might be possible to translate results from greenhouse studies to field 

situations. The relationship between greenhouse and field effects is probably herbicide 

specific and should be assessed for each group of herbicides with a similar mode of action. 

The use of single species tests may not be valid. The response of a single plant species to 

sublethal herbicide dosages differed to the response of the same species grown in a mixture 

with other species. The results also suggest consequences at the population level. Even 

when only marginal effects on the biomass of non-target plants are expected, their seed 

production and thereby survival at the population level may be negatively affected. 

Important factors that need to be taken into account are the species composition of those 

communities, mode of action of the herbicides, the development stage of the margin and the 

choice of endpoint (biomass, reproduction).  

Direct environmental effects of weed management are mainly caused by herbicide drift. 

Therefore, during the last two decades mechanical weed control has received a lot of 

attention and is regarded as a more environmental friendly way to control weeds. However, 

during the development of a more sustainable weed management strategy, indirect effects 

should not be forgotten. Like other agronomic practices, weed control requires energy. 

Based on equations described in the Appendix a comparison of the energy use of weed 

management in a conventional, integrated and organic farming system under Dutch 

circumstances on a clay soil and a sandy soil was made and is presented in Chapter 7. 

According to these calculations, the energy use of weed control in an organic system on a 
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sandy soil is a factor 1.7-1.8 times higher than in an integrated or conventional system and 

a factor 2.1-2.5 times higher on a clay soil. Of course, weed management is only part of the 

total production system, other agronomic practices such as fertilization make up for a large 

part of the energy consumption in agriculture and should not be neglected.  

 

Part C Human dimension of weed management 
Most studies on weed population dynamics in farming systems have focused on the effects 

of different farming systems. Those studies usually assume that farmers, operating within a 

particular system, show homogeneous management behaviour. However, it is likely that 

weed management behavior will vary between farms that operate within one system, 

thereby influencing the weed pressure. In Chapter 6 we 1) investigated whether differences 

between organic farms in weed pressure can be related to differences in farmers’ weed 

management behaviour, 2) explored which weed and general management factors are of 

main influence on the weed pressure, and 3) investigated the influence of farmer’s beliefs 

and knowledge on weed control techniques and the observed weed pressure. The farmer’s 

beliefs and knowledge on weed control techniques differed between farmers with different 

weed pressures. Preventive measures and timing of main soil tillage operation were 

identified as the weed management factors most influential for weed pressure. With 

increasing number of preventive measures applied, the weed pressure decreased, with a 

stale seedbed being the most important preventive measure. The weed pressure increased 

with the number of days after September 1st on which the main tillage operation was carried 

out. Field size, rather than weed pressure, determined the number of hand weeding hours 

per ha. On farms with lower weed pressures a higher percentage of competitive crops were 

grown than on farms with higher weed pressures. It was concluded that exploratory on-farm 

studies can give us insight in the human dimension, which can lead to a better 

understanding of the farming systems and to more effective weed management in those 

systems.  

 

Finally, in Chapter 7 the contribution of the research described in this thesis to our 

understanding of seed bank dynamics and weed management at the farm level, the 

environmental effects of weed management and the human dimension was discussed. 

Future research needs on each of these aspects of weed management are formulated. It was 
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concluded that the development of future sustainable weed management strategies with a 

minimum environmental impact would benefit from an approach combining social and 

natural sciences. 
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Samenvatting 
 

Het beheersen van onkruiden op de boerderij wordt beïnvloed door een groot aantal 

factoren. Deze behelzen onder andere de ontwikkeling en beschikbaarheid van 

onkruidbestrijdings-methoden, de invloed van deze methoden op het milieu, en het 

handelen van de boer zelf. In hoofdstuk 1 is beschreven beschrijven hoe deze aspecten 

gerelateerd zijn en welke kennisleemten er voor al deze aspecten zijn. Daarbij zijn 

onderzoeksvragen geformuleerd betreffende ecologische onkruidbeheersing gericht op het 

uitputten van de zaadbank, de milieu-effecten van (chemische) onkruidbeheersing en de 

invloed van menselijk handelen op de onkruidbeheersing. In deel A van dit proefschrift zijn 

twee ecologische onkruidbeheersingsstrategieën onderzocht: 1) het verhogen van de 

verliezen uit de zaadbank (Hoofdstuk 2) en 2) het verminderen van de instroom van nieuwe 

zaden naar de zaadbank (Hoofdstuk 3). In deel B zijn onderzoeksvragen ten aanzien van de 

effecten van een breedwerkend (Hoofdstuk 4) en een smalwerkend (Hoofdstuk 5) herbicide 

op terrestrische niet-doelwit planten behandeld. In deel C is ten slotte ingegaan op de relatie 

tussen de houding en overtuigingen van de boer ten aanzien van onkruidbestrijding en de 

onkruiddruk op de boerderij. 

 

Deel A Onkruidbestrijdingsstrategieën: uitputten van de zaadbank 
In hoofdstuk 2 en 3 (deel A van dit proefschrift) werd de effectiviteit van 

onkruidbestrijdingsstrategieën die gericht zijn op uitputting van de zaadbank onderzocht. In 

Hoofdstuk 2 werd onderzocht hoe een vals zaaibed gevolgd door verschillende 

onkruidbestrijdingsmethoden ingezet kan worden om de zaadbank te verkleinen en de 

onkruiddruk tijdens de gewasgroei sterk te verminderen. Door het toepassen van een vals 

zaaibed bleek dat, afhankelijk van de locatie en het jaar, het aantal onkruiden gedurende de 

gewasgroei met 43 tot 83% gereduceerd kan worden. De bestrijding van de zaailingen die 

na toepassing van een vals zaaibed opkwamen was effectiever met glyfosaat toediening dan 

met een rotorkopeg. Door de rotorkopeg tijdens bestrijding af te dekken met zwart plastic 

kon de onkruiddruk gedurende de daaropvolgende gewasgroei in twee van de drie jaar 

verminderd. Blootstelling aan ver-rood licht had geen effect op de aantallen onkruiden. 

Onkruiden werden ook mechanisch bestreden met een vingerwieder, torsiewieder en 

schoffel zonder toepassing van een vals zaaibed. In vergelijking met de onbehandelde 
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controle kon het aantal onkruiden met deze methoden met 88 tot 99% verminderd worden. 

Deze methoden waren daarmee effectiever dan de chemische bestrijding met carbeetamide 

en chloorprofam. De resultaten laten zien dat de toepassing van een vals zaaibed in 

combinatie met mechanische bestrijding van de zaailingen de onkruiddruk tijdens de 

daaropvolgende gewasgroei even goed kan bestrijden als chemische bestrijding, en daarmee 

de noodzaak om onkruiden chemisch te bestrijden kan helpen verminderen.  

In hoofdstuk 3 werden onkruidbeheersingsstrategieën gericht op het voorkomen van 

aanvulling van de zaadbank met nieuw geproduceerde zaden onderzocht. Drie strategieën 

die elk een verschillende mate van aanvulling van de zaadbank toestaan werden gedurende 

zeven jaar op een proefbedrijf toegepast. Eén strategie was gericht op een 100% preventie 

van aanvulling van de zaadbank, één strategie op de preventie van zaadproductie en 

aanvulling van de zaadbank door onkruidplanten die boven het gewas uitstaken en één 

strategie diende als referentie voor standaard onkruidbestrijding in een biologisch 

landbouwsysteem. De effecten van deze strategieën op de bovengrondse onkruid populatie 

en de zaadbank werden waargenomen. Het eerste jaar waarin het experiment werd 

uitgevoerd was ook het eerste jaar waarin op de proefboerderij, na meer dan 40 jarig 

gangbaar en geïntegreerd geboerd te hebben, biologisch geteeld werd. Over het algemeen 

neemt de omvang van de zaadbank na omschakeling naar een biologisch systeem sterk toe. 

Het was dan ook de verwachting dat de omvang van de zaadbank onder de 

referentiestrategie (standaard biologisch) sterk zou toenemen, onder de strategie gericht op 

100% preventie zou afnemen en onder de tussenliggende strategie zou afnemen dan wel 

gelijk blijven. De omvang van de zaadbank nam echter onder alle strategieën toe. Onder de 

strategie gericht op een 100% preventie werd de onkruiddruk gedurende de zeven jaar van 

het onderzoek echter wel significant lager dan onder de andere twee strategieën. Het aantal 

handwieduren dat bij deze strategie extra ingezet moest worden ten opzicht van de 

referentie, nam gedurende de studie ook af.  

De resultaten in deel A van dit proefschrift laten zien dat ecologische 

onkruidbeheersingssystemen meerdere stadia van de levenscyclus van de onkruiden moeten 

aanpakken om de onkruiddruk te kunnen reduceren. Het aanpakken van de zaadbank bleek 

echter wel een goede strategie te zijn om de gebruikelijke toename van de onkruiddruk na 

omschakeling naar een biologisch systeem te voorkomen, maar een afname van de 

onkruiddruk bleek niet haalbaar te zijn. Strategieën gericht op het uitputten van de 
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zaadbank, hetzij door een toename van de kieming, hetzij door het voorkomen van nieuwe 

aanvoer, zijn één van de vele maatregelen die nodig zijn om onkruidpopulaties in het veld 

te kunnen verminderen. Door toepassing van onkruidbeheersingsstrategieën gebaseerd op 

ecologische principes kan een bijdrage geleverd worden aan een vermindering van de 

afhankelijkheid van herbiciden in zowel biologische als geïntegreerde systemen.  

 

Deel B Milieu-effecten van onkruidbeheersing  
Onkruidbestrijdingsmethoden zijn gericht op het doden van planten. Als een gevolg 

daarvan lopen niet-doelwit planten in akkerranden bij toepassing van deze methoden het 

meeste risico. De huidige richtlijnen die door overheden en het bedrijfsleven gebruikt 

worden om deze risico’s in kaart te brengen, zijn beperkt in hun beschrijving over hoe en 

welke data verzameld en geanalyseerd moet worden. De OECD en EPPO richtlijnen staan 

het gebruik van data verkregen uit kasexperimenten toe om de risico’s op niet-doelwit 

planten in het veld te bepalen. In de hoofdstukken 4 en 5 van dit proefschrift werden de 

effecten van herbiciden met verschillende werkingsmechanismen op de biomassa, 

zaadproductie en opkomst van kasplanten vergeleken met die van planten die buiten de kas 

groeiden. Daarnaast werd een vergelijking gemaakt tussen een aanpak gebaseerd op een 

individuele soort en een aanpak waarbij mengsels van soorten werden gebruikt. Effecten op 

de biomassa van kas- en veldplanten bleken op meerdere effectiviteitsniveau’s gerelateerd, 

waarmee een vertaling van resultaten uit kasstudie naar veldsituaties perspectiefvol lijkt te 

zijn. De relatie tussen kas en veldeffecten is waarschijnlijk herbicide-specifiek en zal voor 

elke groep van herbiciden met een vergelijkbaar werkingsmechanisme bepaald moeten 

worden. Het huidige gebruik van individuele soorten om het risico op akkerranden te 

bepalen lijkt niet terecht te zijn. De sublethale effecten van een herbicide op een individuele 

soort verschilden sterk van de effecten op dezelfde soort wanneer deze in een vegetatie met 

meerdere soorten groeide. De invloed van sublethale herbicide doseringen op de 

zaadproductie, en daarmee hun overleving, bleek groter te zijn dan de effecten op de 

biomassa van de planten. Voor de risico-bepalingen van herbiciden op niet-doelwit planten 

zijn de soortensamenstelling van de te beschermen vegetatie, het werkingsmechanisme van 

de herbiciden, het ontwikkelingsstadium van de soorten in de vegetatie en de keuze van 

beoordelingsparameter (biomassa, reproductie) factoren die meegenomen moeten worden. 
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Directe milieu-effecten van onkruidbestrijding worden hoofdzakelijk door herbiciden 

veroorzaakt. Als een gevolg daarvan is de afgelopen decennia veel aandacht besteed aan 

mechanische onkruidbestrijding, omdat deze als een milieu-vriendelijker alternatief worden 

gezien. Wanneer men echter een duurzame onkruidbeheerssingsstrategie ontwikkelt, 

moeten de indirecte effecten niet vergeten worden. Zoals de meeste andere agronomische 

activiteiten, vraagt ook onkruidbestrijding energie. Op basis van de vergelijkingen in de 

Appendix werd in dit proefschrift een vergelijking gemaakt tussen het energieverbruik van 

onkruidbestrijding in een gangbaar, geïntegreerd en een biologisch systeem op een zand en 

een klei grond onder Nederlandse omstandigheden. De berekeningen wezen uit dat de 

benodigde energie voor onkruidbestrijding in een biologisch systeem op een zandgrond  

een factor 1.7 tot 1.8 hoger en op een kleigrond een factor 2.1 tot 2.5 hoger ligt dan in een 

geïntegreerd of gangbaar systeem. Onkruidbestrijding is echter slechts een klein deel van 

het totale productiesysteem, andere agronomische activiteiten zoals bemesting maken een 

groot deel uit van het energieverbruik in de landbouw en moeten zeker niet genegeerd 

worden.  

 

Deel C Menselijk handelen en onkruidbestrijding 
De meeste studies die zijn uitgevoerd naar onkruidpopulatiedynamica in 

landbouwsystemen hebben zich gericht op de effecten van verschillende 

landbouwsystemen. Er werd in die studies over het algemeen aangenomen dat boeren, 

werkzaam binnen een bepaald systeem (hetzij biologisch, hetzij geïntegreerd), een 

homogeen management-gedrag vertonen. Het is echter zeer goed mogelijk dat het gedrag 

ten aanzien van onkruid beheersing sterk verschilt tussen boeren binnen een bepaald 

systeem, en dat daarmee ook de onkruiddruk op een bedrijf verschillend beïnvloed wordt. 

In Hoofdstuk 6 werden daarom de volgende vragen onderzocht: 1) kunnen verschillen in 

onkruiddruk tussen verschillende (biologische) bedrijven gerelateerd worden aan 

verschillend gedrag van de boeren ten aanzien van de onkruidbestrijding?, en 2) welke 

onkruidbeheersingsmaatregelen en andere agronomische maatregelen hebben de grootste 

invloed op de onkruiddruk op een bedrijf?, en ten slotte 3) wat is de invloed van de kennis 

en overtuigingen van de boeren ten aanzien van onkruidbestrijdingsmaatregelen op de 

onkruiddruk op het bedrijf? De overtuigingen en kennis over onkruidbestrijding verschilde 

tussen boeren waarbij op het bedrijf verschillende onkruiddichtheden aangetroffen werden. 
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Het aantal preventieve maatregelen en de timing van de hoofdgrondbewerking werden als 

belangrijkste factoren geïdentificeerd die de onkruiddruk beïnvloeden. De onkruiddruk nam 

significant af met een toename van het aantal preventieve maatregelen, waarbij het vals 

zaaibed als belangrijkste maatregel kon worden aangemerkt. De onkruiddruk nam toe met 

het aantal dagen na 1 September waarop de hoofdgrondbewerking werd uitgevoerd. De 

grootte van een akker, en niet de onkruiddruk zelf, bepaalde het aantal handwieduren per ha 

dat ingezet werd. Op boerderijen met een lagere onkruiddruk werden meer competitieve 

gewassen geteeld dan op boerderijen met een hogere onkruiddruk. Dit type studies kan ons 

inzicht verlenen in de invloed van het menselijk handelen op bedrijven en ons helpen 

effectievere management systemen te ontwikkelen.  

 

Ten slotte werd in hoofdstuk 7 de bijdrage van het onderzoek zoals beschreven in dit 

proefschrift aan onze kennis over zaad bank dynamica en onkruidbeheersing op boerderij 

niveau, en de milieu-effecten en menselijke aspecten van onkruidbeheersing bediscussieerd. 

In dat hoofdstuk worden toekomstige onderzoeksbehoeften geformuleerd voor elk van deze 

aspecten van onkruidbeheersing. De ontwikkeling van toekomstige duurzame 

onkruidbestrijdingssystemen met een verminderde milieu-belasting zou baat hebben bij een 

gecombineerde bèta- en gammawetenschappelijke benadering. 
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