
Reliability, Risk and Safety: Theory and Applications – Briš,
Guedes Soares & Martorell (eds)

© 2010 Taylor & Francis Group, London, ISBN 978-0-415-55509-8

Superposition of renewal processes for modelling imperfect maintenance

M.J. Kallen & R.P. Nicolai

HKV Consultants, The Netherlands

S.S. Farahani
Delft University of Technology, The Netherlands

ABSTRACT: In problems of maintenance optimization, it is convenient to assume that repairs are equivalent
to replacements and that systems or objects are therefore brought back into an as-good-as-new state after each
repair. Standard results in renewal theory may then be applied for determining optimal maintenance policies. In
practice, there are many situations in which this assumption can not be made. The quintessential problem with
imperfect maintenance is how to model it. In many cases it is very difficult to assess by how much a partial repair
will improve the condition of a system or object and it is equally difficult to assess how such a repair influences the
rate of deterioration. In this paper, a superposition of renewal processes is used to model the effect of imperfect
maintenance. It constitutes a different modelling approach than the more common use of a virtual age process.

1 INTRODUCTION

The research presented in this paper was motivated by
the practice of spot repairing steel coating systems (i.e.
paint). As soon as some percentage of the coating is
damaged, the damaged spots are repaired by replacing
the old coating. Since not all coating is replaced at
once, these spot repairs represent partial (or imperfect)
repairs of the coating system.

Let us consider the following example: we have a
steel structure which is protected against corrosion by
a coat of paint. Once 3% of the total surface of the
coating is damaged, these damaged areas are repaired.
The remaining 97% of the surface is left as is. From a
modelling point of view the difficulty now lies in the
fact that the (random) time to reach the threshold of
3% damaged surface is different after the repair than
it was before. Probabilistically we now have a mix-
ture of two areas with different lifetime expectations.
After the second repair, the mixture will become more
complicated as we may repair some spots with the old
coating, but also some of the spots which received a
new layer at the first repair.

Intuitively, the time between repairs will converge
to some value as the number of spot repairs increases.
This may be easily demonstrated by means of a Monte
Carlo simulation as will be done in the examples later
on. In the long run the ages of all spots become suf-
ficiently mixed for some form of stationarity to arise.
In this paper, the full probability distribution function
of the time between repairs will be derived.

Another example of a similar situation is one of
a parallel system consisting of a large number of
identical components. A certain fraction of the total
number of components is allowed to fail before they

are collectively replaced. This fraction could be based
on the requirement of a minimum system reliability or
simply on the fact that the stress on the remaining com-
ponents will become too large at some point in time.

The basic idea in this paper is the following: the
coated surface consists of a grid of cells which repre-
sent the spots. If we assume that the arrival in time of
damages to the coating in each cell can be modelled
by a renewal process, then the arrival of damages on
the complete surface is formed by a superposition of
these processes. For simplicity we assume that the indi-
vidual cells are independent. Implicitely we have also
assumed that damaged cells are repaired immediately
and that the time required for the repair is negligable.

However, in this case, we do not want to repair the
cells once they become damaged, but we want to wait
until a fraction of the total number of cells is damaged
and then repair all of the damaged cells at once. Using
the concept of the superposed renewal processes, we
will approximate the asymptotic distribution of the
time between repairs or, more general, the time to reach
a predefined fraction of damaged cells.

Section 2 discusses two approaches to derive the
probability distribution function of the interarrival
time for a superposed renewal process.Then, Section 3
uses this result to determine the probability distribu-
tion function of the time between repairs. These result
are demonstrated in Section 4 using a number of exam-
ples. The paper ends with a summary and conclusions.

2 SUPERPOSITION OF RENEWAL PROCESS

We start by introducing the notation and by giving the
necessary definitions. A renewal process {N (t), t ≥ 0}
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is a non-negative integer-valued stochastic process
which registers the successive renewals in the time
interval [0; t]. Let each renewal process have interar-

rival times X1, X2, . . . and let Sk =
∑k

i=1 Xi, k ≥ 1,
be the time of the k-th renewal. Each interarrival time
is identically and independently distributed according
to some non-negative probability distribution function
F(x) = Pr{Xi ≤ x}, x ≥ 0. The hazard rate is given
by the familiar expression ν(x) = f (x)/R(x), where
R(x) = 1 − F(x) is the survival probability at a time
x since the last renewal. The following well known
relationships will also be required later on:

and

The rate of occurence (or the average process rate) is
1/µ, where

is the mean time between renewals. For more on the
theory of renewal processes, we refer to any textbook
on stochastic processes like, for example, Ross (2000).

A superposed renewal process, here denoted by
Ns(t), is obtained by counting the renewals up to time
t of multiple source processes, each of which is a
renewal process:

Unless the individual renewal processes Ni(t) are Pois-
son processes, the superposed process itself is not a
renewal process. This is because the interarrival times
are no longer independent. However, the distribution of
the interarrival time of the superposed process can be
derived analytically. Moreover, it is well known that the
superposed process is close to being a Poisson process
when the number of sources is very large.

In the following, we will discuss two distinctively
different approaches to the derivation of the distribu-
tion of the interarrival time of the superposed process.
One is the approach by Torab and Kamen (2001)
using a rate-optimal approximation of the superposed
process and the other is the approach by Cox and
Smith (1954) using what is known as the equilib-
rium distribution of a renewal process. Given the same
assumptions about the individual renewal processes,
we will show that these two approaches yield the same
result. In the next section, we will show how this
result can be used to obtain an approximation of the
interrepair time distribution.Any (probability distribu-
tion) function associated with the superposed process
will be denoted with a subscript s. We begin with the
approach used by Cox and Smith (1954).

2.1 Cox and Smith (1954)

First, we give a brief account of the main contribution
in the paper. Let Y (t) denote the age of the process at
time t : Y (t) = t − SN (t), with SN (t) the time of the last
renewal before t. Cox and Smith (1954) referred to this
as the delay time. If the interarrival time distribution
F(x) is not lattice, then

This limit distribution is referred to as the equilibrium
distribution for F , see Ross (1970, Chapter 3), and we
will denote it by G(x). For a superposed process, Ys(t)
is equal to the smallest age of the individual source pro-
cesses: Ys(t) = min{Y1(t), . . . , Yn(t)}. The distribution
can thus be easily derived as follows

where we assume that t is large or, in other words,
that the process has been running for a long time. The
density function of Eq. (5) is

as Eq. (4) implies g(x) = R(x)/µ. Now Cox and
Smith (1954) observed that the interarrival density
of a renewal process, f (x), may be obtained from the
equilibrium density of the process, g(x), by taking the
derivative of g(x) : (dg/dx) = −f (x)/µ. Differen-
tiating Eq. (6), Cox and Smith (1954) thus arrived
at the following result for the density function of
the interarrival time distribution for the superposed
process:

This result may be further reduced to

where

is a notation used by Torab and Kamen (2001). Note
that 9(0) = µ and that 9(x)/µ = 1 − G(x).

In Eq. (5), it was implicitely assumed that the
interarrival distributions of the source processes are
identical. In the next section, we describe the approach
used by Torab and Kamen (2001) which does not
require this restriction. However, we will show that
both approaches give the same result if we do make
this assumption.
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2.2 Torab and Kamen (2001)

In a rather enjoyable paper, Torab and Kamen (2001)
approach the characterization of the superposed pro-
cess in terms of the process rates. Working with
renewal rates avoids the difficulties involved when
working with distributions of the interarrival time,
especially when this distribution is not exponential.
The rate of the renewals in a superposed process, for
example, is simply equal to the sum of the rates of the
source processes.

Knowing that the superposed process is not a
renewal process, Torab and Kamen (2001) construct
a renewal process with a rate function νs(x) which
minimizes the difference with the actual superposed
process. In other words: they construct a renewal pro-
cess which is a rate-optimal approximation of the
superposed process. They find that the optimal rate
function is the following:

where

is named the recurrence rate. νi(x) and ηi(x) are resp.
the hazard rate and the recurrence rate of the source
process i with i = 1, . . . n. This rate is obtained by
taking η(x) = g(x)/[1 − G(x)] (see Eq. 3) so it may
be interpreted as being the rate of the equilibrium dis-
tribution G(x). Also, it can be shown, using Eq. (1),
that

This result follows by setting 1 − G(x) = 9(x)/µ =

exp{−
∫ x

u=0
η(u)du} and solving for η(x).

If we now assume that all source processes have the
same interarrival distribution F(x), then νi(x) = ν(x)
and ηi(x) ≡ η(x) for all i and Eq. (9) reduces to

We can now use Eq. (2), together with the relationship
in Eq. (11), to derive the interarrival distribution fs(t)
of the (approximated) superposed process. First, we
determine the integral of νs(x):

Next, the density function fs(x) of the interarrival
time is found by substituting Eqs. (12) and (13) into
Eq. (2). This gives the same result as in Eq. (8).

2.3 Large number of sources

It may be easily checked that if f (x) = exp{−x/µ}, i.e.
the source processes are Poisson processes with rate
1/µ, then the superposed process is also a Poisson
process with rate n/µ with n ≥ 1 being the number of
sources.

There is also a number of ways to show that the
superposed process is close to a Poisson process if the
number of sources is sufficiently large.This means that
the interarrival distribution tends towards the exponen-
tial distribution as n grows large. For example, let the
time between failures be a multiple of µ/n : x = τµ/n.
Then x → 0 when n → ∞ and νs(x) → n/µ in
Eq. (12). Cox and Smith (1954) use a similar approach
to show that the number of events during a period x
tends to be Poisson distributed with rate 1/τ. A good
overview of the main proofs of this result is given by
(Barlow and Proschan, 1965, Ch. 2, Sec. 3).

3 INTER-REPAIR TIME DISTRIBUTION

Let a repair be performed when the coating in k = ρn
cells is damaged. Here ρ, with 0 < ρ < 1, is a frac-
tion which is defined such that k = 1, 2, . . . If the
number of source processes n is sufficiently large,
we may approximate the superposed process with a
Poisson process with rate n/µ, where µ is the mean
time between failures in the source processes. How-
ever, once a cell becomes damaged, the source process
actually stops and the rate of the superposed process is
reduced by 1/µ. This means that the superposed pro-
cess is a continuous-time Markov process which has a
rate in state i equal to

Here, i corresponds to the number of failed cells. The
time required to reach k failed cells is now given by
the time to reach state k when starting in state 0. This
is known as a phase-type distribution (Neuts, 1981),
but the inter-repair time distribution in this particular
case is also known as a hypoexponential distribution:

with νi 6= νj for i 6= j. See, for example, Ross (2000,
p. 253) or Johnson et al. (1994, p. 552) where it is
referred to as the general gamma or general Erlang
distribution.

4 EXAMPLES

4.1 Monte Carlo simulation

In order to check the approximation of the interarrival
time distribution, we perform a Monte Carlo simula-
tion. Comparing the result of the approximation with
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that of the simulation gives us an indication of how the
approximation fairs in different cases. The simulation
is performed as follows. First we choose a sufficiently
large number of source processes n and number of
repairs m. Then we start by taking n samples from
the interarrival time distribution F(x) : x1, x2, . . . , xn.
Next, we repeat the following steps m times:

1. sort the samples in ascending order such that

and store the time of x(k);
2. replace times x(1) to x(k) with new samples of the

interarrival time (sampling again from F(x)) and
add the time x(k) to these new samples.

At the end, we will have m simulated inter-repair times
by taking the time between the stored values of x(k).
In the following two sections we will show the results
for F(x) being a exponential and Weibull distribution.
The result for the exponential distribution is known
analytically, which enables us to check the correctness
of the simulation algorithm presented here.

4.2 Exponential distribution

Let the interarrival distribution of each source process
be the exponential distribution

with mean interarrival time µ = 5. We set ρ = 0.03,
which means that we repair the damaged cells once
3% of the total number of cells have deteriorated. For
the simulation we use n = 500 and m = 100, such
that k = 15. The result for the inter-repair time dis-
tribution, using the superposed process, is given in
Fig. 1.As expected, the inter-repair time obtained using
Eq. (15) agrees with the simulation results. This agree-
ment indicates that the simulation algorithm presented
in the previous section is correct.

Figure 1. Inter-repair time distribution for a superposed
process consisting of 500 source processes with exponen-
tial interarrival times. Damaged cells are repaired once 3%
of the total surface area is damaged.

4.3 Weibull distribution

Let the interarrival distribution of each source process
be the Weibull distribution

with scale parameter a = 5 and shape parameter
b = 2.5. The mean interarrival time µ for each process
is approximately 4.44. Figure 2 shows how the time
between repairs initially decreases as the number of
repairs increases, after which it varies around a mean
value of approximately 0.13. This is the mean value
of the inter-repair time distribution obtained using
Eq. (15). Figure 3 compares this distribution with a
histogram of the simulated times between repairs.We
know this result is not exact, but the approximation
is good.

The quality of the approximation depends on a
number of aspects. First of all, the number of source
processes (n) must be sufficiently large. As individ-
ual cells become damaged, the total number of source

Figure 2. Inter-repair time between each repair for a super-
posed process consisting of 500 source processes with
weibull distributed interarrival times. Damaged cells are
repaired once 3% of the total surface area is damaged.

Figure 3. Inter-repair time distribution for a superposed
process consisting of 500 source processes with weibull dis-
tributed interarrival times. Damaged cells are repaired once
3% of the total surface area is damaged.
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Figure 4. Inter-repair time distribution for a superposed
process consisting of 500 source processes with weibull dis-
tributed interarrival times. Damaged cells are repaired once
50% of the total surface area is damaged.

processes becomes smaller. Therefore, the fraction of
damaged surface area also affects the quality of the
approximation adversely: the larger the fraction ρ,
the worse the approximation. This is demonstrated
in Fig. 4, which is the same example with ρ =

0.50. In this case, the approximated inter-repair time
distribution overestimates the true inter-repair time
(slightly).

Finally, the quality of the approximation will be
poorer for an interarrival time distribution F(x) which
is less “exponential”. For the Weibull distribution
this means that the quality of the approximation will
decrease as the shape parameter b deviates more
from 1. The approximation in Fig. 4 with a repair at
50% damaged area will become better if the shape
parameter is closer to 1.

To summarize: as the number of source processes
becomes smaller, the mean time between failures
becomes larger; and if the mean time between fail-
ures becomes larger, the influence of the failure rate of
the interarrival time distribution fs(x) becomes larger.
Figure 5 shows three different failure rate functions
νs(x) for fs(x): one based on the assumption that the
superposed process is Poisson (= n/µ, which is used
in these examples), one based on the rate-optimal
approximation (= νs(x) as in Eq. 12) and one obtained
by simply summing the rate functions of the source
processes (= nν(x)). The latter is clearly not a good
choice for νs(x). Also, the fact that νs(x) → n/µ as
x → 0 (see Sec. 2.3) is confirmed here.

Note that the rate defined in Eq. (12) is slightly
greater than the rate n/µ which we used here. Looking
at Fig. 4, we conclude that the approximation overesti-
mates the true time between repairs.The approximated
superposition process with failure rate n/µ is too slow.
By this we mean that, in reality, the failure of cells
occurs at a slightly higher rate. From this, we con-
clude that the approximation will improve if we use
the rate in Eq. (12), which was proposed by Torab
and Kamen (2001). However, since this rate is not
constant, we will not be able to use the hypoexpo-
nential distribution in Eq. (15). This is because the

Figure 5. Comparison of failure rate functions for a super-
posed process consisting of 500 source processes with
weibull distributed interarrival times.

superposed process will no longer be continuous-time
Markov process, but rather a semi-Markov process.
The phase-type distribution for the time to reach a cer-
tain number of failed cells may also be determined for
a semi-Markov process, but this is beyond the scope
of this paper.

5 CONCLUSIONS

In this paper we proposed a model for partial repair (or
imperfect maintenance) based on the superposition of
renewal processes.We showed how this model may be
used to determine an approximate (asymptotic) prob-
ability distribution of the time between repairs. Failed
cells or components are not repaired until a predefined
fraction of the total number has failed.

The quality of the approximation of the inter-repair
time distribution is good, but deteriorates once the
number of source processes decreases. This is espe-
cially the case when the interarrival time of the source
processes is non-exponential. Using Taylor expan-
sions, Blumenthal et al. (1973) derived correction
factors for the exponential interarrival time if the num-
ber of source processes n is small or t is finite. A finite
time t introduces an error due to the fact that the pro-
cess has not been running very long, which means that
the asymptotic results may not be valid. Whether or
not these correction factors can be used as an indica-
tion of the minimum number of source processes is the
subject of further research.

In extreme cases, such as when the number of source
processes is small or when many failures are allowed to
occur before a repair is made, the superposed process
will have to be modelled by a semi-Markov process
based on the rate-optimal approximation of Torab and
Kamen (2001).

There are many applications for this model. We have
mentioned two: spot-repair of a protective coating sys-
tem used for objects made of steel and the replacement
of failed components in a large parallel system. The
example of the steel coating is an idealized example,
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since the assumption of independent spots will not
be true in practice. Also, protective coating systems
may not be replaced infinitely many times (as the steel
is damaged during the process of removing the dam-
aged coating) and spots adjacent to damaged spots will
generally also be repainted. Nonetheless, the approx-
imation proposed in this paper gives the modeller a
useful tool for riskbased maintenance optimization.
The model allows for a quantification of the overall
rate of deterioration, and the uncertainty about this
rate, for a partially repaired system.
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