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ABTRACT 

 

The aim of this thesis was to detect quantitative trait loci (QTLs) in aquaculture 

species for various traits of economical importance. The  results of this work 

can be integerated into breeding programs after validation and increase our 

biological knowledge on the complex traits studied. 

The first step was to design experiment that will successfully detect QTLs in 

aquculture species.  The designs depended largely on the family structure of the 

species, which varied from highly controlled (such as trout and oysters) to 

poorly controlled (sea bream and sea bass) and the actual size of the QTLs. 

Others factors such as number of progeny per family, heterozygosity and 

heritability of the trait were also found to impact on the success of QTL 

experiments. 

The next part of the thesis focuses on the actual QTL mapping for stress 

response in sea bass and disease resistance in sea bream, using the experimental 

design previously analysed for complex family structure with skewed parental 

contribution. Significant QTLs were found for body weight and morphology in 

sea bass and for survival and body length in sea bream. Only suggestive QTLs 

were detected for stress response in sea bass. 

Finally, the possibilities of using genomic selection for mass-spawning species, 

where natural mating is used, were investigated. Genomic selection gave 

significant higher genetic gain and accuracy of selection than traditional 

selection methods, but rate of inbreeding is dangerously high and need to be 

controlled. 
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1.1 Current state of sea bream and sea bass aquaculture in Europe 

 

European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus 

aurata) are two mass-spawning species mostly cultivated in the Mediterranean 

sea. Aquaculture in both fish started in early 1980s and production has 

increased almost continuously over the years in Europe (Figure 1 – FAO 2006), 

except for 2002 and 2004 due to the food price crisis. The main producer for 

both species is Greece, which controls over 80% of sea bream and over 70% of 

sea bass production in Europe.  

 

Figure1. Annual aquacultured production of European sea bass and gilthead sea bream 

in Europe (FAO 2006) 

Sea bream and sea bass aquaculture are important for the Mediterranean 

economy. Although selective breeding is not yet widely used in sea bass and 

sea bream aquaculture, interest in the genetic improvement of farmed fish is 

motivated by the increase in consumer demand. European regulations for food 
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production emphasise general well-being of reared individuals. Therefore stress 

response and disease resistance are being considered as important breeding 

goals.   

1.2 AQUAFIRST project 

The economic importance of sea bream and sea bass aquaculture played an 

important part in the  launch of the  AQUAFIRST project, a sixth framework 

European project (contract no 513692), which ran between 2004 and 2008. It 

combined genetic and functional genomic approaches to stress and disease 

resistance in fish and shellfish. This project involved the collaborations of 

seventeen institutes located in ten European countries over four years. Fish are 

subject to increased stress in intensive production systems, which in turn have 

an impact on the quality, performance and the susceptibility to disease and 

results in loss of production. 

The main objectives of the AQUAFIRST project were  

• To characterize in sea bream, sea bass, trout and oyster, stress- and 

disease-responsive genes as potential candidate gene markers for 

desirable traits. 

• To  determine genetic parameters of stress in these four species and 

genetic parameters of disease in sea bream and trout by seeking 

associations with (i) variations in  response to stress and resistance to 

pathogen and (ii) selected candidate genes and microsatellite markers 

by segregation analysis in appropriate families (QTL analysis) 

• To  provide specific protocols for selection, marker-assisted selection 

(MAS) and marker-assisted introgression 
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This thesis focuses on two species of the AQUAFIRST project, European sea 

bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata), the 

detection of QTL for stress response and disease resistance in these species, and 

the use of genomic information in selection for natural mating mass-spawning 

populations. 

1.3 Stress response and disease resistance 

 

Stress response and disease resistance are two complex traits, which are 

influenced by many genes. At present, genes involved in stress and/or disease 

response are largely unknown and biological pathways that comprise those 

genes are not well-understood. Engelsma et al. (2002) reported the link between 

stress response and disease resistance pathways, where chronic stress is 

associated with a reduced immune response.  

Various factors can cause stress such as low water quality, fish handling 

procedures, pathogen exposure and confinement, inflicted on animals during 

their rearing time in the fish farm. Those factors trigger chronic stress which 

activates the release of cortisol in an abnormally high quantity. The presence of 

cortisol in large quantity has a negative impact on macrophage production and 

reduces the immune response. Fish affected by chronic stress therefore are 

expected to have a reduced immune response. 

A commonly accepted measure of stress response in fish is the quantification of 

cortisol levels in blood. Disease resistance is often recorded through survival 

and correlated traits such as immunological and physiological parameters 

(Fjalestad et al. 1993). 
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1.4 Selective breeding and QTL mapping in aquaculture 

 

Selective breeding in aquaculture is mostly achieved to date by selection of 

parents for the next generation through mass selection or family-based 

selection. While mass selection is based on an animal’s own phenotypic 

records, family based schemes select animals either on the performance of the 

family (between family selection) or relative performance of an animal in the 

family (within family selection).  Despite progress in artificial reproduction 

(Morreti 1999, Saillant et al. 2001, Dupont-Nivet et al., 2006), natural mating is 

still widely used in sea bass and sea bream farms. Selection based on genomic 

information such as marker assisted selection (Fernando and Grossman, 1989) 

and genomic selection (Meuwissen et al., 2001) have not been implemented in 

sea bass and sea bream. 

 The quality of breeding programs is evaluated by two main parameters: the rate 

of genetic gain (how much the trait is improved) and increase of the rate of 

inbreeding (loss of genetic variation). A major issue in fish breeding is the high 

fecundity of fish species. While it is rather an advantage in animal breeding 

with the large number of offspring that can be obtained with limited number of 

parents, it can also cause a rapid build up of inbreeding in a closed population. 

Fessehaye et al. (2006) describes a rate of inbreeding in tilapia that is higher 

than an acceptable value of 1% (Bijma 2000) due to unequal parental 

contribution, which was also described in sole  (Blonk et al. 2009) and sea 

bream (Brown et al. 2005). A solution adopted by fish farmers is to regularly 

introduce parents from the wild into the brood stock (Gjedrem et al. 2005). The 

side effect of this practice is the partial loss of genetic gain achieved in previous 

generations.  
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Detection of quantitative trait loci (QTL) provides genetic knowledge that helps 

to integrate MAS into a breeding scheme. QTLs are genes or genome regions 

associated with a trait of economical importance. Experimental design is very 

important for QTL detection as it maximizes the power to detect associations 

(Kolbedhari et al. 2005). The number of individuals genotyped and phenotyped, 

the population structure and the density of genetic maps has to be considered 

carefully. While a large number of QTLs have been discovered in terrestrial 

farm animals such as cattle, pig, chicken and sheep, aquaculture has not yet 

benefitted from such attention. Although domestication of some fish species 

started in ancient civilization, breeding programs are recent (early 1970s). The 

advances in genomics tools for aquaculture species (Canario et al. 2008), such 

as the development of large panels of markers, permit the use of high 

throughput technologies and the use of MAS and genomic selection. Genetic 

maps for both European sea bass (Chistiakov et al. 2008) and gilthead sea 

bream (Franch et al. 2006) have been established with a large number of 

microsatellites and AFLP markers. This thesis uses those resources to provide 

the foundation of dissection of economic traits in sea bass en sea bream. 

 

1.5 Aim and outline of the thesis 

The aims of this thesis are to (i) develop an experimental design for QTL 

mapping in aquaculture species, (ii) use the data provided by such experiments 

(performed by collaborators) to find QTLs associated with stress response and 

disease resistance in gilthead sea bream and European sea bass and (iii) 

examine the impact of genomic selection on genetic gain and inbreeding. 

Chapter 2 describes three experimental designs to perform QTL analysis: 

“hierarchical design” where two divergent lines are crossed, “large full-sib 
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families design” where selective genotyping can be applied and “mass-

spawning design” for species such as sea bream and sea bass, where natural 

mating is used to produce the F1 generation. The impact of number of families, 

family size, heritability, heterozygosity and size of QTL are investigated. 

Chapter 3 and Chapter 4 summarize the results of QTL mapping for stress 

response and disease resistance in sea bream and sea bass. Chapter 3 focuses 

on linkage analysis performed for stress response, body weight and morphology 

using two methods: half-sib regression analysis and variance component using 

570 European sea bass. Chapter 4 uses the same methodology to detect 

associations with disease resistance after exposure to Photobacterium damselae 

subsp. piscicida in sea bream.  

Chapter 5 investigates the genetic level and inbreeding for three selective 

breeding methods (phenotypic, BLUP and genomic selection) for natural 

mating population for 10 generations of selection. The natural mating 

population was simulated following a structure observed in the sea bream 

population in Chapter 4. 

Chapter 6 discusses the four main issues presented in this thesis: (i) power of 

experimental designs and comparison with simulated and real mass-spawning 

data set, (ii) QTL mapping in aquaculture and genome wide association study 

(GWAS), (iii) comparison of selective breeding approaches and (iv) parentage 

assignment. 
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2.1 Abstract 

Rapid development of genomics technology is providing new opportunities for 

genetic studies, including QTL mapping, in many aquaculture species. This 

paper investigates the strengths and limitations of QTL mapping designs for 

fish and shellfish under three different controlled breeding schemes. For each 

controlled breeding scheme, the potential and limitations are described for 

typical species and are illustrated by three different designs using interval 

mapping. The results show that, regardless of the species, the family structure is 

extremely important in experimental designs. The heritability of the QTL 

(controlled by its allele frequency and effect on the trait) also has an important 

impact on the power to detect QTL, while the overall polygenic heritability of 

the trait is less important. Marker density does not greatly affect the power 

when the distance between markers is less than 10 cM; but ideally spacing 

should not exceed 20 cM. For each of the systems studied, it is possible to 

design an experiment that would have an 80% power to detect a QTL of 

moderate effect (explaining between 1.5 and 5% of the trait variation) by 

genotyping 1000 or fewer individuals. 
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2.2. Introduction 

Quantitative variation characterizes most traits of economic importance in 

livestock, including disease resistance, growth or meat quality.Variation in such 

“complex” traits often is controlled by a number of different genetic loci 

(quantitative trait loci or QTL) and environmental influences. QTL mapping 

studies have led to the identification of many genomic regions associated with 

QTLs in agricultural animals. Such studies are a prerequisite to the dissection 

and understanding of complex trait variation and the use of QTL in marker-

assisted selection (Martinez 2007, Sonesson 2007a, Sonesson 2007b). QTL 

studies have been successfully applied to most farm animal species (reviewed 

by Andersson and Georges 2004) and more recently to aquaculture species such 

as Atlantic salmon, rainbow trout and tilapia (reviewed by Korol et al. 2007). 

However, for some mass-spawning species such as sea bream and sea bass, 

QTL mapping has barely been undertaken and linkage maps have only recently 

become available (Sonesson 2007a). 

Several studies have examined statistical approaches to optimize the power of 

QTL detection experiments (Weller et al. 1990, van der Beek et al. 1995; 

Williams and Blangero 1999). Optimal designs for QTL detection depend on 

specific characteristics of a species and, therefore, optimal designs for terrestrial 

livestock species may be sub-optimal or impractical for aquaculture species. 

Aquaculture species present both challenges and opportunities for the 

experimental design of QTL studies because of their high fecundity (which 

enables breeders to produce large families) and because species differ in the 

degree to which breeding can be controlled (Gjedrem et al. 2005). Both 

fecundity and breeding control have an impact on the family structure of a 
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species and therefore on the design of QTL studies. Some studies have 

considered utilizing specific aspects of aquaculture for QTL mapping designs 

such as gynogenesis/androgenesis (Martinez et al. 2002) or exploiting the 

difference in recombination fractions between males and females in some 

species (Hayes et al. 2006), and therefore require fewer markers to detect QTL. 

Breeding control is variable among aquacultural species, and the level of 

control imposes limits on an experimental design. The overall size of an 

experiment is limited by the total resources available for genotyping and 

phenotyping. This consideration includes the number of individuals used for 

mapping, as well as the number of markers that will be typed, which in turn 

determines the average distance between markers. 

A complication with mass-spawning species is that these species generally have 

an effective number of parents that is much lower than the potential total 

number of parents due to the unequal contribution of parents to the next 

generation. Some potential parents do not contribute at all, and for the ones that 

contribute, the contribution is variable (Bekkevold et al. 2002, Porta et al. 2006, 

Brown et al. 2006). QTL mapping designs for those species require knowledge 

about the population structure, i.e. family type and size (Vandeputte et al. 

2005). 

The goal of this study is to explore experimental designs for successful QTL 

detection in aquaculture species. Three experimental designs, each 

corresponding to a different level of breeding control are chosen. The relative 

importance of various parameters of the design, such as family structure, 

heritability of a trait and the segregation of QTL alleles in the parental 

population are investigated. 
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2.3. Materials and methods 

 Experimental design 

The experimental designs that were evaluated were designed to detect QTL 

with an effect between 1.5 and 20% on the phenotypic variation of a trait of 

interest, given experimental and financial limitations in terms of genotyping and 

phenotyping of outbred populations. We used the concept of experimental 

power (a statistic that describes how often a particular experiment would detect 

QTL of a given size) to compare experimental designs. In other words, the 

power of a QTL experiment is the success rate of discovering a QTL with a 

given effect. 

The power of QTL experiments depends on different factors that fall into three 

categories: controlled, partially controlled and uncontrolled factors. The 

controlled factors comprise the numbers of individuals to be phenotyped and 

genotyped, the interval distance between markers and the false positive rate. 

Those factors are either fully determined by the experimenter (setting up the 

false positive rate) or limited by the availability of resources (number of 

markers used, maximum number of individuals in an experiment). The partially 

controlled factors are family structure and size of the experiment (number of 

families and number of progeny per family), heterozygosity of the parents for 

the QTL, and heritability of the trait of interest. Family structure, as well as the 

financial resources available, will determine the number of individuals to be 

genotyped and phenotyped. The marker contrast associated with the specific 

number of individuals genotyped and phenotyped will play an important role 

into success of QTL detection. Heterozygosity of the parents for the QTL 

corresponds to the fraction of parents that are heterozygous and therefore 
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informative for detecting QTL (Weller et al. 1990). 

The major uncontrolled factors are the number of QTL and the magnitude of the 

QTL effects, which cannot be estimated prior the experiment. For a bi-allelic, 

additive QTL with allelic effect a (difference between alternative homozygotes 

is 2a) and allele frequencies p and q (=1 − p) the variance of the QTL (σ 2

q ) is 

2pqa2. The proportion of phenotypic variance explained by the QTL, also 

referred to as the heritability of the QTL (hq

2

), is σ
σ

2

2

p

q
, where σp

2 is the 

phenotypic variance. For a single additive-effect QTL ( hq

2

), increases as a 

function of the frequency of the rare allele, with the highest value at p = q = 0.5. 

In this study, results of power calculations will be presented as a function of the 

variance explained by the QTL. 

It is assumed that the method used to map QTL is interval mapping, which uses 

information from two markers simultaneously and searches for the QTL in the 

bracketed interval. This method requires a known pedigree with phenotypic 

records on the last generation, as well as genotypes for parents and offspring 

(Lander and Botstein 1989). 

Description of designs 

The simulated experimental designs are relevant for a number of fish and 

shellfish species. The designs are associated with the level of breeding control 

for the species and hence the family structure. We simulated three different 

experimental designs representing each level of breeding control described 

above. The first design, named here the “hierarchical design”, is applicable to 
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species for which we have knowledge and control of reproductive behaviour 

and genetics. In species like Atlantic salmon, rainbow trout and common carp, 

full-sib families can be obtained with a relatively large number of progeny (up 

to thousands). The second experimental design corresponds to mass-spawning 

or batch-spawning species, like sea bream, European sea bass and tilapia, 

(“mass-spawning design”), where designed paired matings are hard to achieve. 

The third design is appropriate with species for which artificial reproduction is 

partially controlled, like oysters, and in which large full-sib family sizes permits 

use of selective genotyping (“large full-sib family design”). 

The “hierarchical design”: The standard scenario used 1000 individuals, 

structured in five full-sib families of 200 progenies each. The heritability of the 

trait of interest was primarily set to 0.5 and would vary in other scenarios. The 

heterozygosity was set at 0.5 (50% of the parents are heterozygous for the 

QTL). A heterozygosity of 50% or higher is within reach when the parents were 

the result of a cross between two divergent (outbred) lines. The false positive 

rate α was fixed at 0.01 and the distance between markers at 20 centiMorgans 

(cM). Various aspects of this basic scenario were changed in order to evaluate 

the effect of family structure, heritability and heterozygosity on the power to 

detect QTL. The scenarios are described in Table 1. The effect of marker 

spacing was investigated for the basic scenario using a spacing of 5, 10, 20 and 

50 cM. The power to detect QTL was calculated for QTL effect (in s.d.) from 

0.134 to 0.387 (corresponding to a proportion of phenotypic variation explained 

by the QTL from 1 to 15%). The power of different scenarios was calculated 

using the deterministic method described by van der Beek et al. (1995). The 

QTL mapping method underlying these power calculations tests for the 

presence of a QTL by using the difference between offspring inheriting 
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alternative chromosome segments from their parents. This contrast will depend 

upon the probability that a parent is heterozygous for the QTL, and if it is, on 

the QTL effect and the recombination fractions between the markers and the 

QTL. The standard error of this estimated contrast depends upon the within-

family variation, which is different for full- and half-sib families and is a 

function of the overall heritability of the trait and the family size. The method 

for prediction of power assumes that for all offspring, it can be determined 

which marker allele was inherited from the parents. This approach can handle a 

variety of two- and three-generation family structures (van der Beek et al. 

1995). The computation of power is as follows: 

])),((2[*)(
0

TnpxNCPxPpower
np

x

>=∑
=

χ   (1) 

with x representing the number of heterozygous parents, np the total number of 

parents for which marker contrasts are computed, P(x) is the binomial 

probability that x out of np parents are heterozygous and χ2(NC(x), np) is the χ2 

distribution with non-centrality parameter (NC) as a function of x and the 

relative QTL effect. T is the threshold for detecting a QTL at a given α. The 

whole power computation is detailed in van der Beek et al. (1995). We will 

refer to this method as the full- or half-sib regression method in the rest of the 

paper. 
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Table 1 -  Parameters for hierarchical experimental designs 

Scenario # full-sib 
families 

# of offspring 
per family 

Heritability Heterozygosity 

Scenario 1 5 200 0.5 0.5 

Scenario 2 5 200 0.2 0.5 

Scenario 3 10 100 0.5 0.5 

Scenario 4 5 200 0.5 0.2 

Scenario 5 5 100 0.5 0.5 

 

The “mass-spawning design”: Mass-spawning species present challenges for 

QTL mapping. The reproductive behaviour of some species is such that females 

only spawn in groups, making reproduction difficult to manipulate artificially. 

Natural spawning in groups of males and females is often practised in 

aquaculture and may be the only tractable way to produce offspring for further 

study. However, females may produce progeny sired by a number of different 

males and, similarly, males may sire progeny from a number of different 

females. Animals within a broodstock have uneven genetic contributions; some 

males and some females will produce more offspring than others, with a 

varying proportion of breeders having no offspring at all, and family sizes may 

vary widely. The traditional sexual reproduction is such that a small number of 

parents produce the majority of the offspring (Brown et al. 2005, Fessehaye et 

al. 2006). Those contributions determine the expected family structure for a  
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Figure 1 -  Histograms a) and b) show the distribution of the family sizes for 

males and females, respectively, for a population of 10,000 offspring generated 

by a brood stock of 20 males and 20 females 
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species. Another complicating factor is that parentage needs to be shown in 

Figure 1, were used to simulate nine populations, each characterized by a 

different mass-spawning population size (10,000, 20,000 or 30,000) and a 

different brood stock structure (20 males and 20, 40 or 60 females). Each 

simulated population was evaluated for three different parentage-testing 

population sizes (1000, 1500 and 2000 individuals). From QTL mapping 

populations that contain at least seven families of 100 progenies, we drew two 

pedigrees: seven or five families of 100 offspring each, which were used for 

power calculations. In this experiment, only the case of selecting exactly 100 

offspring was investigated. In reality, such an experiment will rarely have 

families of exactly the same size and is more likely to show a mix of family 

sizes. 

Power calculations for sea bream were done with a power calculator for 

variance component analysis that is available through GridQTL 

(www.gridqtl.org.uk). This power calculator is derived from the simulation 

approach developed by Williams and Blangero (1999) and subsequently 

extended for large and complex animal pedigrees (Yu et al. 2004). These power 

calculations assume that the QTL is completely linked to a fully informative 

marker (no recombination between QTL and the marker) and heterozygosity for 

the QTL is based on an identical-by-descent inheritance pattern among on 

individuals in the pedigree. The heritability of the trait of interest was set at 0.5 

with varying QTL effects. We also used the half-sib regression approach (van 

der Beek et al. 1995) to make a comparison between the two methods for power 

calculation and to evaluate the effect of incomplete marker-QTL linkage. 

The “large full-sib family design”: This design is suitable for species for which 

very large full-sib families can be obtained, such as oysters. Selective 
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genotyping, meaning that among all animals phenotyped, only some will be 

genotyped (usually the extreme phenotypes), is potentially useful to reduce cost 

and increase experimental power (Lebowitz et al. 1987). The level of breeding 

control of these species allows a large  experimental family size. In our 

scenario, we had 5000 individuals, divided into five families of 1000 progenies 

each, from which a subset of 200 full-sib animals would be selected from each 

family for genotyping (100 from each tail of the trait distribution). While the 

number of genotyped individuals was constant (200/family), we varied the total 

number of individuals per family (between 200 and 1000) that were 

phenotyped, thus providing different levels of selective genotyping.  

 

Table 2 -  Scenarios for large full-sib family design where number of 

individuals genotyped and phenotyped are different for different genotyped 

fractions. 

Scenario Heritability Heterozygosity Genotyped 

fraction 

Individuals 

genotyped 

Individuals 

phenotyped 

 

1 0.5 0.5 0.1 1000 5000  

 2 0.1 0.5 0.1 1000 5000  

3 0.5 0.5 0.2 1000 2500  

4 0.1 0.5 0.5 1000 1000  

5 0.5 0.1 0.1 1000 5000  
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The heritability of the trait was 0.50 and the probability that a parent was 

heterozygous for the QTL was 0.5. Table 2 shows the five different scenarios 

investigated, considering different genotyped fractions (scenarios 1, 3 and 4) 

with their corresponding number of genotyped and phenotyped individuals, and 

considering lower heritability (scenario 2) and lower heterozygosity (scenario 

5). 

For the power calculations, we used the full-sib regression method described by 

van der Beek et al. (1995), but adapted for selective genotyping in full-sib 

families based on methods described by Bovenhuis and Spelman (2000). 

2.4. Results 

Hierarchical design 

The power of QTL experiments was calculated for QTL heritabilities (hq

2

) 

between 0 and 0.50. Figure 2 shows the experimental power for the five 

scenarios described in Table 1. To obtain an 80% power, the proportion of 

variance explained by the QTL needed to be at least 4.1%, 5%, 5.2%, 6.6% and 

8.1% for scenarios 1, 2, 3, 4 and 5, respectively. Scenario 1 (basic scenario) was 

the most powerful experimental design. In comparison with scenario 3, we can 

see that family structure (5×200 full-sib versus 10×100 full-sib) had an impact 

on the minimal QTL effect required (4.1% versus 5.2%, respectively) for an 

80% power. Having a smaller number of families with a larger number of 

progeny per family increased the power (or decreased the QTL effect required). 

Scenario 2 showed that a decrease in heritability had a negative impact on the 

power to detect QTL. Reducing the heritability from 0.5 to 0.2 increased the 

QTL effect required from 4.1% in scenario 1 to 5% in scenario 2. A lower 
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heterozygosity (0.2) as described in scenario 4 required the QTL heritability to 

be at least 6.6%; a low heterozygosity means that fewer parents are 

heterozygous for the QTL and therefore less information is available for QTL 

detection. Scenario 2 and 3 had similar results because in scenario 2 the low 

heritability was compensated for by an improved family structure and vice-

versa for scenario 3. Scenario 5 showed that the size of the experiment is a very 

important parameter; for an experiment of half the size, the QTL heritability 

required for a power of 80% increased to 8.3% (exactly twice as much as 

scenario 1). The full-sib  regression method for power calculations (van der 

Beek et al. 1995) assumes QTL analysis via interval mapping and the QTL 

being located exactly in the middle of a marker bracket. With this method, it 

was possible to look at the effect of marker spacing (interval between 2 markers 

expressed in centiMorgans (cM)). Figure 3 shows the power for the basic 

scheme with different marker intervals. For a sparse marker map (distance 

between marker of 50 cM), the power is substantially lower than for marker 

intervals of 5,10 or 20 cM. But comparing the power with genetic marker maps 

that vary in density between 5 cM and 20 cM, the difference is small, but the 

genotyping load increases as the density of the genetic map increases. For our 

experimental design, a reasonable balance between power and genotyping load 

was reached using a 20 cM interval between markers, assuming that markers 

are fully informative (Darvasi et al. 1993, Xu et al. 2005). Using less 

informative markers will require higher density genetic maps for the same 

experimental power. 

Mass-spawning design 

Table 3 summarizes the characteristics of paternal and maternal half- sib 

families for the scenarios described in the Materials and methods section  
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Figure 2 -  Power to detect QTL as a function of the percentage of phenotypic 

variance explained by the QTL for the 5 scenarios of hierarchical breeding 

design (Table 1) 

(population of 10,000, 20,000 or 30,000; sample size of 1000,1500 or 2000; 

mating schemes of 20 ♂×60 ♀, 20 ♂×40 ♀ or 20 ♂×20 ♀). The size of the total 

population does not seem to have an impact on the number of half-sib families 

obtained. However, the sample size has an effect, which is more pronounced in 

the female half-sib family sizes. Using a sample size of 2000 individuals results 

in at least 7 half-sib families >100; except for 2 cases out of a total of 18. When 

varying the number of females in the broodstock, the number of paternal 

families >100 did not change considerably, but as the number of females 

decreased, the number of maternal half-sib families >100 increased. For the 

”mass-spawning” model, we simulated a population of 10,000 individuals 

produced by mating 20 males and 20 females. Pedigrees of five paternal half-  
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Figure 3 -  Power of basic scheme(scenario 1, table 1) for hierarchical design as 

a function of percentage of phenotypic variation explained by the QTL with 

varying marker density 

sib families of 100 and seven paternal half-sib families of 100 were selected 

from a sample of 2000 individuals that were randomly drawn from the 

simulated population. Figure 4 shows the power trends for the two pedigrees 

with the variance component method and the half-sib regression method. For a 

power of 80%, the variance component method required a QTL that explains 

6.2% of the phenotypic variation for the pedigree of 700 individuals and 7.6% 

for the pedigree of 500. 

The regression method required a larger QTL, explaining 12.2% of variance for 

the pedigree of 700 individuals and 15.5% for the pedigree of 500 individuals. 

The expected power to detect QTL varied considerably between methods; as the 
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power for the large (n = 700) pedigree was lower for the regression approach 

than the power for the small (n = 500) pedigree under the variance component 

approach (Figure 4). 

 

 

Table 3. - Mass-spawning family distribution.  

Average number of half-sib families > 100 offspring 

10,000 population 20,000 population 30,000 population  

Sample 

size 

20♂ 

60♀ 

20♂ 

40♀ 

20♂ 

20♀ 

20♂ 

60♀ 

20♂ 

40♀ 

20♂ 

20♀ 

20♂ 

60♀ 

20♂ 

40♀ 

20♂ 

20♀ 

 

Male family size 

1000 6 5 5 5 6 5 6 6 5  

1500 7 6 6 6 7 7 6 7 6  

2000 7 7 7 6 7 7 7 7 7  

Female family size 

1000 0 1 1 0 3 5 0 2 5  

1500 1 6 6 1 7 6 0 7 6  

2000 7 7 7 8 7 6 7 7 7  
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Figure 4 -  Power to detect QTL for the mass-spawning breeding design. The 

letter R respresents the half-sib regression method and VC means variance 

component analysis. 500 or 700 indicate the number of individuals in the 

pedigree devided into paternal half-sib of 100 offspring each. The underlying 

full-sib strucure is taken into account by the VC method. 

 

Large full-sib family design 

Figure 5 shows that a QTL explaining 1.44% of the phenotypic variation using 

a genotyped fraction of 0.1 was expected to be detected with 80% power, while 

using a genotyped fraction of 0.2 required a QTL that explains 2.1% of the 

phenotypic variation for the same expected power. For a genotyped fraction of 

0.5 we reverted back to scenario 1 of the salmonid design, where no selective 
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genotyping was applied. Therefore, for the same number of individuals 

genotyped, measuring a larger number of individuals and genotyping a smaller 

fraction of the total measured individuals was more powerful for the detection 

of QTL with small effect  (explaining less than 5% of phenotypic variation). 

For a QTL of large effect (proportion of variance explained by the QTL >10%), 

the power was high, no matter what the genotyped fraction. With a genotyped 

fraction of 0.1 and a low overall heritability of 0.1 (scenario 2), a QTL that 

explains 1.8% of the phenotypic variation would be detected with an expected 

80% power. When the heterozygosity was low (scenario 5), the power to detect 

QTL was much  decreased; for a QTL effect as large as 12%, the maximum 

power was 65% for the parameters considered in this study.  

2.5. Discussion 

The commonality among the results of all the designs explored is that having 

fewer larger families is more powerful for QTL detection than using a large 

number of families with fewer offspring (Kolbehdari et al. 2005). The power to 

detect QTL for mass-spawning species when family distribution can be 

estimated is relatively high, when QTL heritability and QTL heterozygosity are 

estimated. When possible, selective genotyping is a useful method to increase 

power of QTL detection for a fixed genotyping cost. 

Half-sib regression and variance component powers 

We used two methods to calculate power according to the breeding design. The 

method developed by van der Beek et al. (1995) and revised by Bovenhuis and 

Spelman (2000) for selective genotyping is a deterministic method where 
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Figure 5 -  Power of the 5 scenarios with various genotyped fractions and 

heritability and heterozygosity for the large full-sib design (see Table 2 for 

scenario description) as a function of the percentage of phenotypic variation 

explained by the QTL, with a fixed number of genotyped individuals (1000). 

 

parameters such as heritability of the trait, marker spacing, heterozygosity and 

family structure are assumed known because we have some control over them. 

The values can be plugged directly into the formulae to obtain the power. 

However, this method does not give any standard error of the estimated power. 

The latter can be obtained only through extensive stochastic simulations. The 

method used for mass-spawners, derived from Williams and Blangero (1999), is 

slightly more stochastic in the sense that it uses actual pedigrees and simulates 

random QTL alleles in pedigree founders. The heritability of the trait and QTL 
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heritability have to be assumed, the QTL effect and the allele frequency remain 

unknown. This method does not require marker spacing information because it 

assumes that there is an infinite number of markers and therefore the QTL co-

locates with a marker. Another assumption is that all founders are heterozygous 

for the QTL and therefore that all families contribute to the QTL variance, a 

consequence of the random model. These assumptions will lead to an 

overestimation of the power of the experiment. This is clearly illustrated by the 

results in Figure 4 where we compared the variance component and half-sib 

regression methods for the sea bream example. An explanation for this large 

difference between the two methods is that the regression methods assume only 

half-sib families, while the pedigree given for variance component shows a 

number of full-sib relationships that are intertwined within the half-sib 

relationships, and that taking account of these relationships increases the 

information and the chance to discover QTL. The power of half-sib regression 

and variance component approaches was studied through extensive stochastic 

simulation by Kolbehdari et al. (2005). Kolbehdari et al. (2005) also showed 

that variance component analyses were more powerful, but the differences were 

much smaller than in the present study. This can most likely be attributed to the 

fact that Kolbehdari et al. (2005) only studied half-sib populations, with no 

underlying maternal sib structures. We recommend using the full- or half-sib 

regression method as a starting point when there are for hierarchical and large 

full-sib families designs (e.g., Atlantic salmon, rainbow trout, oysters) and the 

variance component method for species such as sea bream or sea bass, which 

show a mix of full- and half- sib families. If possible, we recommend applying 

more than a single QTL mapping method in order to quantify the robustness of 

the given QTL results in the light of the different assumptions underlying the 

different QTL methods. 
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Effect of design on power 

Clearly, family structure is an important variable in experimental design. 

Similar conclusions have been drawn in other studies on the effect of family 

structure on power to detect QTLs (van der Beek et al. 1995). The experiments 

carried out by Kolbehdari et al. (2005) showed that power is more affected by 

increasing the number of the progeny than it is by increasing the number of 

families. 

Heterozygosity of the QTL has a major impact on QTL detection. The current 

power calculations do not allow a clear assessment of the risk of missing QTLs 

as a result of lack of heterozygosity; as a result, these approaches will always 

favour fewer larger families over a larger number of smaller families. The 

method of van der Beek et al. (1995) does model the heterozygosity of the 

parents, but the resulting power estimate did not reflect the difference between 

the expected heterozygosity and the real heterozygosity. For a design 

comprising a large number of families with only a few progenies each and also 

likewise a few large families, if the heterozygosity is low, the QTL will be 

segregating only for a limited number of individuals and will reduce the amount 

of information (Hayes et al. 2006, Verhoeven et al. 2006). However, selecting 

only a few large families carries the risk that none of the parents is 

heterozygous for the QTL and therefore the balance between family size and 

number of families needs careful consideration. 

For species where there is some control in breeding, families can be generated 

from a cross between two divergently-selected lines, which increases the 

heterozygosity for QTL that has been under selection and therefore gives an 

advantage over species with low breeding control. Perry et al. (2001) show a 
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good example where divergently-selected lines were used to map QTL for 

upper thermal tolerance in rainbow trout. Populations with controlled breeding 

often also have better prior estimates for parameters such as heritability. For 

species with low breeding control, estimating heritability and heterozygosity is 

very difficult. When performing mapping experiments using fish derived from 

mass-spawning, it is necessary to characterize the population or use extensive 

simulations to determine how many fish will have to be sampled to provide 

sufficient family sizes for QTL mapping. 

Marker spacing effect 

The interval between two markers chosen here is rather large (20 cM). 

Kolbehdari et al. (2005) have shown that increasing the interval decreases the 

power. Some genetic maps in aquaculture have an average distance between 

markers much lower than 20 cM (about 5 cM for sea bass, (Chistiakov et al. 

2005) and 9 cM for oysters, (Hubert and Hedgecock 2004)). The power 

calculations for rainbow trout showed that it is not really necessary to have 

intervals smaller than 20 cM. Because not all markers are expected to be 

informative in outbred populations; average spacing between informative 

markers of 20 cM may well require the genotyping of markers at 10 or 15 cM 

intervals. 

Selective genotyping 

Literature on selective genotyping predicts that selective genotyping does not 

affect the power to detect QTL when the genotyping is limited to 50% of the 

total population (genotyping 25% of each extreme phenotype) (Sen et al. 2005). 

For this proportion of genotyping, only one-eighth of the information provided 

by individual genotypes is lost if the marker density of the genetic map is 
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sufficient (Sen et al. 2005). The combination of interval mapping and selective 

genotyping can reduce up to 7-fold (depending on the marker density) the 

number of progeny to be genotyped (Lander and Botstein 1989). If the sample 

size is not large enough, selective genotyping will result in loss of power 

(Rabbee et al. 2004). As shown in the results of this study and other 

experiments (Darvasi et al. 1993, Chatziplis and Haley 2000), genotyping fewer 

individuals from large full-sib families (high breeding control) is very powerful. 

Selective genotyping can reduce the overall cost of genotyping for a given 

power, but at the cost of increasing the number of animals measured for the 

phenotypic trait. For terrestrial farm animals, for which data have been 

collected over a period of years for routine breeding purposes, phenotyping 

should not be too expensive. Phenotyping, depending on the trait, can be 

expensive and time consuming (Zhao et al. 1997). If recording measurement for 

meat quality, number of individuals (relatives of the selection candidate) has to 

be significantly increased. Therefore, a balance between the cost of genotyping 

and phenotyping has to be established for each species studied. Selective 

genotyping is not an option if several traits are involved in the experiment, but 

is powerful when focussing on a single trait. 

Mass-spawning family structures 

One of the characteristics in reproductive behaviour of mass- spawning species 

is the unequal contribution of parents to the progeny. The model for the sea 

bream population simulation used in this study was a model based on sire and 

dam contributions found for a natural-spawning population studied by Brown et 

al. (2006).  

In the present “mass-spawning” model used here, we assumed that all progenies 
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were assigned to both dam and sire with certainty. However, this is an idealistic 

situation. The various methods used for assigning parents to offspring do not 

provide a 100% confidence of correct assignment, but usually leave between 1 

and 5% of wrong assignments and no assignments. Such pedigree mistakes will 

be identified when animals are genotyped for many more markers. However, 

this will result in a waste of resources as well as a very small loss of power. 

Erroneous or no parentage assignment can also introduce bias in quantitative 

genetic estimates like heritabilities and genetic correlations. 

Both males and females have unequal contributions, but male contributions to 

progeny tend to be more variable. The population simulated represents a 

situation where eggs from females with variable contributions are collected 

over a long period of time (e.g. a month) and where dominant males have a 

higher probability to fertilize eggs, which corresponds to common hatchery 

method. Female spawning has been recorded as asynchronous in sea bream 

(Brown et al. 2006), cod (Bekkevold et al. 2002) and many other species. Egg 

collection frequency has a consequence on the power of QTL detection because 

this affects the pedigree structure. If eggs are collected on a single day, many 

may come from a single female. The predicted power remains high because the 

pedigree has a large maternal half-sib family with nested paternal full-sib 

families, as well as few small half-sib families. However, with a single large 

maternal half-sib family, the chance effects with regard to segregation of the 

QTL predominate; e.g. even if the QTL heterozygosity is 0.5, 50% of individual 

females will not be segregating for the QTL. For most QTL, we would expect 

the heterozygosity to be less than 0.5, with commensurate reduction in the 

chance of detection. 
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Family-based QTL mapping and linkage disequilibrium mapping 

This paper describes QTL mapping designs using linkage analysis. Today, 

high-throughput SNP technologies allow the application of various other 

methods, such as linkage disequilibrium analysis (association studies) (Korol et 

al. 2007). However, the linkage analysis presented remains relevant for 

aquaculture because only a few species like salmonids, tilapias and channel 

catfish have the molecular resources required for such approaches. With new 

species being selected for aquaculture continuously, we expect linkage 

approaches to remain relevant for some time to come. The linkage 

disequilibrium analysis does present some advantages because they do not 

require known family relationships. One drawback of the family-based linkage 

analysis is that detected QTLs are specific for the families in which they are 

found and not for the entire population.  

2.6. Conclusion 

This study shows that QTL experiments with 80% power for QTL detection can 

be carried out for most aquaculture species where pedigree structure can be 

controlled or at least resolved. The goal was to provide some yardsticks for 

QTL experimental designs for fish and shellfish species that have not yet been 

studied extensively (unlike salmonids or tilapias). Strengths and limitations of 

designs were identified for different levels of breeding control. Family structure 

is one factor to consider with priority because of its major effect on power. 

Selective genotyping is recommended for species with high fecundity where 

control of breeding is possible, such as oysters, to improve power to discover 

QTL with small effects and cut the cost of the experiment where a single trait is 

of main interest. Classical QTL mapping designs (experimental crosses between 
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genetically divergent lines) are limited for mass-spawning species due to low 

breeding control and poor knowledge of those species. Stochastic population 

simulations using realistic parental contributions can be used to plan a QTL 

study for a mass-spawning species. 
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3.1. Abstract 

Natural mating and mass-spawning in the European sea bass (Dicentrarchus 

labrax L., Moronidae, Teleostei ) complicate genetic studies and the 

implementation of selective breeding schemes. We utilised a two-step 

experimental design for detecting QTLs in mass spawning species: 2122 

offspring from natural mating between 57 parents (22 males, 34 females and 

one missing), phenotyped for body weight, eight morphometric traits and 

cortisol levels, had been previously assigned to parents based on genotypes of 

31 DNA microsatellite markers. Five large full-sib families (five sires and two 

dams) were selected from the offspring consisting of 570 animals, which were 

genotyped with 67 additional markers. A new genetic map was compiled, 

specific to our population, but based on the previously published map. QTL 

mapping was performed with two methods: half-sib regression analysis 

(paternal and maternal) and variance component analysis accounting for all 

family relationships. Two significant QTLs were found for body weight on 

linkage group 4 and 6, six significant QTLs for morphometric traits on linkage 

groups 1B, 4, 6, 7, 15 and 24 and three suggestive QTLs for stress response on 

linkage groups 3, 14 and 23. The QTLs explained between 8% and 38% of 

phenotypic variance. The results are a first step towards identifying genes 

involved in economically important traits like body weight and stress response 

in European sea bass. 
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3.2. Introduction 

European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) is a marine 

fish, commonly distributed along the warm temperate coasts of the south-

eastern Atlantic Ocean and Mediterranean Sea. While in 1980 only 10 tonnes 

were produced in semi-intensive aquaculture systems, production has stabilised 

since 2000 and the total worldwide production was an estimated 105,900 tonnes 

in 2008 (http://www.globefish.org). The value of sea bass aquaculture totalled 

320 million Euros in 2007 at an average value of $5.1 per kilogramme. Greece 

is the main producer (44%), followed by Turkey (26%), Italy (12%) and Spain 

(8%), and sea bass represent 40% of Mediterranean aquaculture 

(www.feap.info). 

Although sea bass aquaculture started 30 years ago, selective breeding is not 

widely used (Vandeputte et al. 2001). For a long time, natural mating and mass 

spawning were commonly used for reproduction. Artificial reproduction and 

mating are now fully controlled (Moretti 1999, Saillant et al. 2001, Dupont-

Nivet et al. 2006) and have gradually become standard operational practice. In 

case of mass selection, the highly skewed unequal contribution of parents, so 

typical of mass-spawning fish (Jones and Hutchings 2002, Herlin et al. 2008), 

leads to inbreeding. Furthermore, the unknown pedigree of the individuals 

complicates selective breeding. However, the use of information from 

quantitative trait loci (QTL) is a first step towards selective breeding. Regions 

of the genome that are linked to a quantitative trait of interest are detected using 

QTL mapping.  

The steady increase in genetic and molecular biological studies of European sea 

bass (for a review, see Volckaert et al. 2008) provides a platform to implement 
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breeding programs that do not depend solely on the measurement of phenotypic 

traits, but rely also on information from genetic markers, i.e., marker assisted 

selection . Large scale profiling of paternity with microsatellite markers has 

facilitated the breeding of families on an experimental and commercial scale in 

a reliable and affordable fashion (García de Léon et al. 1995, Chatziplis et al. 

2007). From such communally bred families, quantitative genetic parameters 

have been reported for heritabilities and phenotypic and genotypic correlations 

for some traits, such as sex (Vandeputte et al. 2007), body weight and  length 

(Vandeputte et al. 2004, Saillant et al. 2006, Chatziplis et al. 2007) and carcass 

traits (Saillant et al. 2009). Heritabilities for growth are relatively high and vary 

from 0.29 to 0.60 in European sea bass (Saillant et al. 2006, Dupont-Nivet et al. 

2008). These high heritabilities have allowed a doubling in growth rate in just 

four generations (B. Chatain, pers. comm.). A medium density genetic map is 

available and has been updated (Chistiakov et al. 2005, Chistiakov et al. 2008), 

based on more than 200 microsatellites and more than 200 AFLPs (amplified 

fragment length polymorphism). The ESTs of several tissue-specific cDNA 

banks have been sequenced, analysed (A. Canario, pers. comm.) and used as a 

source of microsatellite (Chistiakov et al. 2008) and SNP markers (Souche 

2009). At the same time, a QTL analysis for body weight has been performed in 

European sea bass (Chatziplis et al., 2007) and has identified a QTL for growth 

on linkage group 1.  

An important economical trait is stress, either linked to pathogen infection or 

behaviour (such as confinement and handling). Cortisol, a widely accepted 

proxy for stress in fish, affects the immune system response (Engelsma et al. 

2002). Therefore, if genomic regions are found that influence the stress 

response, this could have a beneficial effect on the management of fitness. All 
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these features represent multiple steps towards the use of genetic and molecular 

tools for improvement of production. 

Massault et al. (2008) (Chapter 2) suggested a two-step experimental design 

for QTL mapping in mass-spawning species with natural mating. In a first step, 

individuals are assigned to parents using a limited number of markers and in a 

second step a subset of large families is selected for a whole genome scan. So 

far, such a design has not been applied in practice to fish. The strategy has been 

implemented in a single study on European sea bass. Volckaert et al. 

(submitted) describe how the families for QTL analysis were established by 

assigning parentage among the progeny of a one-day batch spawning. 

Heritabilities for growth, morphometry and stress response were calculated on 

these data and are reported by Volckaert et al. (submitted). The aim of this 

study is to perform the QTL analysis on stress response, body weight and 

morphological traits.  

3.3 Materials and methods 

Experiment 

We followed a two-step procedure for the stress experiment that takes into 

account the specificity of natural mating population, as suggested by Massault 

et al. (2008): (i) take a random sample of 2122 offspring, originating from a 

single day natural mating by mass spawning and assign parents using a limited 

number of genetic markers, (ii) select large families for further genotyping and 

QTL mapping. 

Fifty-seven parents originating from commercial and wild lines made up the 

base population. Offspring were chosen at random and genotyped for 31 loci at 
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50 days of age. Based on these genotypes offspring were assigned to parents. 

Confinement stress was induced on all 2122 fish, 8 months old approximately, 

by reducing the volume of water to 0.2 m3.kg-1 of fish for 4 hours (for details 

see Volckaert et al., submitted) 

Phenotyping 

Following the stress experiment, individuals were phenotyped for ten traits: 

body weight, eight various morphometric traits and cortisol level (for full 

details see Volckaert et al., submitted; see Figure 1 and Table 1). About half of 

the offspring were stunned in the morning using icy water while the other half 

was stunned in the afternoon. After being stunned, each fish was bled, weighted 

and digitally photographed. The plasma, after separation from the red blood 

cells, was conserved at -20ºC. When photographed, fish were placed as laterally 

as possible to avoid shape variation, landmarks were placed at various points of 

the body after determining the common scale using ruler and coordinated axes 

(x, y and z). From those landmarks, morphometric traits were observed. The 

cortisol level was determined using radio immunoassay technology (RIA) based 

on antiserum raised in rabbit against cortisol-3-CMO-BSA and tritriated 

cortisol (Fitzgerald Industries International). RIA cross-reacted with only one 

plasma component co-migrating with cortisol on a layer chromatography. 

Plasma samples were diluted in phosphate buffer containing 0.5 g.l-1 gelatine 

(pH 7.6) and heated at 80°. We extracted the cortisol according to the protocol 

of Scott et al. (1982), as detailed in Volckaert et al. (submitted). 
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Figure 1 -  Morphometric measurement on European sea bass. Numbers are 

related to the traits described in  Table 1. 

Genotyping and genetic map 

Volckaert et al. (submitted) identified with a triple multiplex-PCR of 31 

microsatellite markers 11 large full-sib families (n=922) from the 2122 

offspring for heritability and correlation analysis (see above). Five of the eleven 

families (n=570 fish) and their seven parents were fully genotyped for 98 

microsatellites markers (with 8 markers not fulfilling minimal quality 

requirements). The population structure for the QTL mapping includes the 

offspring from 5 males and 2 females; the number of offspring per family varies 

between 93 and 143 (Table 2). We generated a genetic map specific to our 
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Table 1 -  Number of observations, mean, standard deviation, coefficient of 

variation and heritabilities (standard error) for ten traits and 570 European sea 

bass. 

Trait Abbreviation**  Number of 
individuals 

Mean SD CV h2 * 
(±SE) 

Body weight BW ( - ) 566 40.58 14.21 35% 0.54 
(±0.2) 

Cortisol CORT ( - ) 444 319.5 136.40 43% 0.08 
(±0.06) 

1. Standard 
length 

SL (SL) 540 13.26 1.61 12% 0.65 
(±0.22) 

2. Head length HL (SNOP) 540 3.77 0.46 12% 0.61 
(±0.21) 

3. Body length BL (OPCA) 540 9.50 1.17 12% 0.64 
(±0.22) 

4. Pre anal 
length 

PrAnl (SNAN) 540 9.20 1.16 13% 0.68 
(±0.23) 

5. Abdominal 
length 

AL (OPAN) 540 5.57 0.72 13% 0.66 
(±0.23) 

6. Post anal 
length 

PsAnl (ANCA) 540 4.46 0.54 12% 0.52 
(±0.20) 

7. Head depth HD ( - ) 540 2.46 0.33 13% 0.64 
(±0.22) 

8. Body depth BD (DOPV) 540 3.38 0.41 12% 0.56 
(±0.21) 

* heritabilities calculated from 922 fish (including QTL population) in Volckaert et al. 

(submitted) 

** Abbreviation according to Chatziplis et al., 2007 
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population using the software CRI-MAP v.2.4. 

(http://compgen.rutgers.edu/multimap/crimap). 

QTL mapping 

We used two methods to detect QTLs: half-sib regression analysis as described 

by Knott et al. (1996), available on the web (http://www.gridqtl.org.uk, 

Hernandez and Knott 2009), and variance component analysis as described by 

George et al. (2000) (http://qtl.cap.ed.ac.uk/puccinoservlets/hkloaderLoki). The 

model used for half-sib analyses is as follows: 

ijijiiij exy ++= βα  

where yij is the offspring phenotype, αi the mean for family i, βi the regression 

coefficient for family i, xij the probability to inherit parental allele 1 conditional 

on the marker information and eij the residual. Information content was 

calculated as described by Knott et al. (1996). The QTL effect is estimated 

within families as the allele substitution effect. Knott et al. (1996) provide a 

method to calculate the QTL effect across families in terms of variance due to 

the QTL by looking at the difference between the residuals of full and reduced 

models: 

QTL effect = 4 * (1 – (RES full/RES reduced)) 

where RES full and RES reduced are the residuals of full and reduced models 

respectively. 

Regression was performed at each centiMorgan and the test statistic for 

presence of a QTL was calculated as described by Knott et al. (1996). We used 

permutation tests with 500 iterations and bootstrap analysis with 2000 iterations 



Chapter 3 

56 

to evaluate the significance and confidence intervals of detected QTLs, 

respectively. A QTL is considered significant if it exceeds the 5% genome-wide 

threshold and a QTL is considered suggestive if it exceeds the 5% 

chromosome-wide threshold. 

For variance component analysis we used the genotypes and the linkage map to 

first calculate the identity-by-descent (IBD) matrix at each position of the 

genome with Loki (Heath 1997). In the analysis only linkage information on the 

transmission of alleles from parent to offspring was considered and IBD 

relationships between parental alleles were not considered (i.e., no linkage 

disequilibrium). The resulting IBD matrix is used to model a QTL in a linear 

mixed model using ASREML: 

eZvZuXby +++=  

where y is the phenotype, X is the incidence matrix relating phenotypes to 

systematic environmental effects, b is the vector with solutions for systematic 

environmental effects, Z the incidence matrix relating animals to phenotype, u 

vector of additive polygenic effect, v vector of additive QTL effect and e vector 

of environmental effect (var(u) = Aσ2u and var(v) = Gσ2v, with A the additive 

relationship matrix and G the IBD matrix). For CORT the environmental effect 

of sampling time was included. The sampling time corresponds to a half-day, 

resulting in three classes: first day morning, first day afternoon and second day 

morning. For the other traits the only other systematic effect was the mean. The 

QTL effect is given by the variance component analysis as the proportion of 

phenotypic variance due to the QTL.  
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Table 2 -  The structure of the QTL population of European sea bass. Five 

males were mated with two females, providing full-sib families and paternal 

and maternal half-sib families. 

Half-sib ID Full-sib ID Dam ID Sire ID # offspring 

1 1 2 1 98 

1 2 2 3 93 

2 3 6 4 92 

2 4 6 5 143 

2 5 6 7 142 

 

The null hypothesis model is:  

eZuXby ++=  

With the same variable definitions as for the QTL model. The presence of a 

QTL, treated as a random effect, was tested at every centiMorgan using the 

likelihood ratio test: 

)(*2 lrlfLRT −=  

where LRT is the log likelihood ratio test, lf the log likelihood of the full model 

i.e. the model including the QTL and lr  the log likelihood from the reduced 

model i.e. the model without a QTL. Under the null hypothesis the likelihood 

ratio test follows a chi-square distribution with one degree of freedom. For 
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VCA, we computed 1% chromosome-wide thresholds according to the method 

described by Piepho (2001). The thresholds vary as a function of the 

chromosome length and the trait studied. 

3.4 Results 

Summary statistics 

Heritabilities for each trait (listed in Table 1 and including abbreviations) were 

calculated for 922 animals, including the QTL population (Volckaert et al., 

submitted), while all other statistics were derived from the actual QTL 

population (n=570). CORT heritability is 0.08, while heritabilities of the others 

traits ranged from 0.52 to 0.68. We note that all morphometric traits (SL, HL, 

BL, PRAL, AL, POAL, HD and BD) have a coefficient of variation (CV) 

within the same range (12-13%), while BW and CORT are more variable (CV 

of 35% and 43%, respectively). Morphometric traits are highly positively 

correlated among themselves and with BW (see also Volckaert et al., 

submitted).  

Genetic map 

Based on the marker genotypes collected on 570 offspring and their parents we 

built a genetic map containing 20 linkage groups and covering 639 cM 

(centiMorgans; Figure 2). Out of the 90 markers, 87 were located in linkage 

groups consisting of two or more markers. Three markers were unlinked to any 

of the other markers (linkage group LG9, LG18 and LG25). 

 



QTL mapping for stress response in sea bass 

59 

 

Figure 2 -  Genetic map of QTL mapping sea bass population. Three linkage 

group LG16, LG21 and LG22 from Chistiakov et al. (2005) are missing as no 

markers from those groups are present.   

 

The average marker spacing is 7.70 cM. The LG1 was cut into two parts (1a 

and 1b) because of a gap >100 cM. LG16, LG21 and LG22 are not represented 

in this genetic map as no markers were located on them. 

Information content  

Table 3 summarizes the average information content (IC) of each linkage group 

for both paternal (PHS) and maternal (MHS) half-sib analysis, as well as their 
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number of markers, average number of alleles and their length. The average 

information content of the genome amounts to 0.77 for PHS and 0.81 for MHS: 

it varied from 0.42 to 0.96 for PHS and 0.64 to 0.97 for MHS. We observed an 

average IC lower than 0.5 on LG2 and LG4 for both PHS and MHS. Another 

region on linkage group LG20, had low IC for PHS only.  

QTL detected 

Variance component analysis and regression analysis were performed for each 

trait for the whole genome (on the 20 linkage groups). Regression analysis was 

divided into PHS and MHS analysis (Table 4 – Figure 3). Significant QTLs for 

regression analysis were found when the F-statistics is above the 5% genome-

wide threshold and suggestive when above 5% chromosome-wide thresholds, 

given by GridQTL and significant when log likelihood (LR) is above a 1% 

chromosome-wide thresholds. 

There were two BW QTLs on LG4 and on LG6. The one on LG4 is present and 

highly significant in all analyses, although at various positions on the 

chromosome (F = 5.65 for PHS with significance thresholds of 5% CW of 3.10 

and 5% GW of 4.48, F = 7.09 for MHS with significance thresholds of 5% CW 

of 3.76 and 5% GW of 7.02 and LR = 5.78 for VCA with a significance 

threshold of 1%CW of 13.5). It was not possible to estimate the variation due to 

the BW QTL on LG4 detected with VCA, as the likelihood converged at the 

boundary of the parameter space, i.e. at a heritability of that QTL of 0.99, but 

the other analyses indicate a  large QTL effect on this trait. Another large BW 

QTL was detected on LG6 with the MHS method (F = 8.59 with 5% CW of 

3.82 and 5% GW of 7.02).  
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Table 3-  Number of markers, average number of alleles per marker, length of 

the linkage group, average information content for paternal and maternal half-

sib regression analysis (PHS and MHS) of European sea bass 

LG # markers Average # alleles length  Avg IC PHS  Avg IC MHS 

LG1a 5 5.2 53 0.80 0.76 

LG1b 6 4.3 7 0.96 0.97 

LG2 7 3.9 73 0.70 1 0.68 4 

LG3 4 3.5 13 0.83 0.81 

LG4 6 3.7 106 0.59 2 0.64 5 

LG5 6 4 45 0.88 0.91  

LG6 5 3.8 24 0.81 0.80 

LG7 4 6 34 0.89 0.84 

LG8 7 4.3 42 0.85 0.88 

LG10 4 4.3 36 0.83 0.80 

LG11 2 3.5 5 0.86 0.67 

LG12 4 5.5 14 0.92 0.90 

LG13 3 5 15 0.92 0.87 

LG14 6 3.8 59 0.79 0.77 

LG15 4 3 11 0.82 0.81 
 

1   average of 0.49 between 50 and 46 cM                4    average of 0.46 between 44 and 61 cM 

 2  average of 0.27 between 0 and 34 cM                  5    average of 0.37 between 0 and 33 cM 

3 average of 0.32 between 12 and 36 cM 
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Table 3 – (cont.) Number of markers, average number of alleles per marker, 

length of the linkage group, average information content for paternal and 

maternal half-sib regression analysis (PHS and MHS) of European sea bass. 

 

LG # markers Average # alleles length  Avg IC PHS  Avg IC MHS 

LG17 3 4.8 17 0.89 0.92 

LG19 3 4 34 0.82 0.67 

LG20 3 3 36 0.42 3 0.62 

LG23 2 4.5 9 0.88  0.92 

LG24 2 7 6 0.93 0.97 

 

1   average of 0.49 between 50 and 46 cM                4    average of 0.46 between 44 and 61 cM 

 2  average of 0.27 between 0 and 34 cM                  5    average of 0.37 between 0 and 33 cM 

3 average of 0.32 between 12 and 36 cM 

 

 

There was a large number of highly significant morphology QTLs, in particular 

for the PHS analysis. A common QTL is found in LG4 by all analyses, but 

again at a different position (F = 4.76 for PHS with 5% CW of 2.90 and 5% 

GW of 4.18, F = 10.31 with 5% CW of 4.37 and 5% GW of 6.98 and LR = 

15.46 for VCA with 1%CW of 13.03). VCA showed a large proportion of 

phenotypic variation explained by the QTL (38%), while this proportion is less 

for PHS and MHS (13% and 14% respectively). Another morphology QTL was 

detected with VCA on LG6 with a QTL effect of about 9.4% (LR = 22.79 with 

1% CW of 12.07). The other morphology QTLs found were located on four 
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different chromosomes and discovered with PHS analysis (F between 4.36 and 

4.96 with 5% CW of 2.41-2.69 and 5% GW of 4.18). The QTL effects explain 

between 12% and 16% of phenotypic variation.  

Three QTLs for CORT were detected with PHS (LG3 and LG14, F = 2.69 with 

5% CW of 2.70 and F = 3.01 with 5% CW of 2.74 respectively) and MHS 

(LG23, F = 6.59 with 5% CW of 3.25), but were 5% significant chromosome-

wide, therefore considered as suggestive QTLs. None were detected with VCA. 

The proportion of phenotypic variation explained by the QTLs varies between 

8% and 10%. 

Morphology and BW QTLs on LG4 were detected in the PHS as well as in the 

MHS analysis. The most likely location of the QTL was different in the two 

analyses: 55 cM in the HS analysis compared to 0 cM in the MHS analysis. 

However, the confidence intervals for QTL position are very large and overlap 

indicating that this might represent the same QTL. We can observe an 

interesting phenomenon between BW and morphological traits QTLs; there are 

three BW-morphology QTLs, one for PHS on LG4 and two for MHS on LG4 

and LG6. For each pair of QTL, we notice that both BW and morphology QTLs 

are located at the same position of the linkage group. Body weight and all 

morphometric traits in this study are highly correlated, which might explain the 

observed link between both QTLs (Volckaert et al., submitted). 
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Figure 3 -  QTLs in bold are 5% genome wide while the underlined one are 5% 

chromosome-wide. MHS stands for maternal half-sib regression, PHS for 

paternal half-sib regression and VCA for variance component analysis. The 

traits are MORPH for morphology and BW for body weight. 
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Morphology and BW QTLs on LG4 were detected in the PHS as well as in the 

MHS analysis. The most likely location of the QTL was different in the two 

analyses: 55 cM in the HS analysis compared to 0 cM in the MHS analysis. 

However, the confidence intervals for QTL position are very large and overlap 

indicating that this might represent the same QTL. We can observe an 

interesting phenomenon between BW and morphological traits QTLs; there are 

three BW-morphology QTLs, one for PHS on LG4 and two for MHS on LG4 

and LG6. For each pair of QTL, we notice that both BW and morphology QTLs 

are located at the same position of the linkage group. Body weight and all 

morphometric traits in this study are highly correlated, which might explain the 

observed link between both QTLs (Volckaert et al., submitted). 

3.5 Discussion 

Linkage map and information content 

The genetic map that we built resembles closely the previous genetic maps 

published by Chistiakov et al. (2005, 2008), with the difference that 23 new 

markers were added to our map. Although it is specific to our QTL population, 

the similarities between both of them show consistency and relevance of our 

results. The map is of medium density with an average gap of about 8 cM, 

which is sufficient for QTL mapping according to Chistiakov et al. (2005).  

The low IC detected in some regions on the linkage groups may impact the 

results, in particular for the QTLs detected on LG4, which are numerous. 

Results become less reliable as the extremity of the chromosome is not very 

informative.    

Identification of QTLs 
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We found a total of 15 different QTLs using the three analyses summarized in 

Table 4. The results found with VCA are similar to those found with MHS 

regression analysis. BW and morphology QTLs were discovered at the same 

linkage groups and at similar positions; those traits were found to be highly 

positively correlated. Morphology QTL on LG4 explains 38% of phenotypic 

variation, but some of the effect might be due to the actual BW QTL on the 

same linkage group. PHS detected more QTLs, especially for the morphological 

trait than MHS and VCA. PHS and MHS differ in the number of detected QTLs 

and in their position on the genome. More QTLs were discovered for PHS. 

There are only two female parents included in the analysis and this might have 

an impact on QTL discovery in MHS analysis.  

Potential QTLs might not have been detected, because the only two females in 

the parental population did not segregate for it. The 95% confidence intervals 

are very large for nearly all QTLs, covering the entire length of chromosomes. 

Fine mapping, which is the next logical step in this process, has to use a denser 

genetic map to be able to pinpoint interesting genes, but our results are precise 

enough for a first QTL analysis. For fine mapping, the use of more markers 

may help reduce the confidence intervals and narrow the interesting regions that 

we found. At the moment, only microsatellites are available, but development 

of AFLPs (Chistiakov et al. 2008) and soon SNPs may accelerate the process of 

fine mapping. Although the increase in the number of markers influences the 

precision of the results, population structure has an impact on the power to 

detect QTLs. In this study, we have a mixed population of half-sib and full-sib. 

To have the best results, we selected the largest families. But due to the unequal 

contribution of parents, the largest families will represent only very few parents.  
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The number of QTLs found with the variance component analysis is lower than 

with half-sib regression.  This might be due to the approximate 1% 

chromosome-wide thresholds calculated with Piepho’s method (Piepho 2001). 

Those thresholds are adjusted for the marker density of the genetic map.    

Chatziplis et al. (2007) mention a QTL associated with morphometric traits 

located at the beginning of LG1; we also detected a morphology QTL on LG1. 

The two  mapping populations differ, although they belonged to the same 

company. We split this linkage group into LG1a and LG1b because of a large 

region in the middle of LG1 devoid of markers. Our QTL is located at the end 

of the linkage group, in the LG1b section. The high confidence intervals 

suggest that the location of the QTL could be anywhere on the chromosome, 

and therefore this result potentially confirms the results of Chatziplis et al. 

(2007). They also mention a possible BW QTL on LG1, but we could not 

support this finding. No other QTLs were reported in European sea bass, 

suggesting that we found novel significant and suggestive QTLs for this 

species. 

We found three suggestive QTLs for stress response. Although they are not 

highly significant, it is an important discovery because QTLs for stress response 

have not been reported before. A candidate gene for this trait could be the 

glucocorticoid receptor, which has been sequenced and whose position remains 

unknown (Terova et al. 2005). Several genes related to carbohydrate 

metabolism, genes involved in Na+/K+ transport, polyamine biosynthesis, and 

iron homeostasis (Sarropoulou et al. 2005) could be also taken as candidate 

gene as they are involved into the mechanism of stress response. Our identified 

regions could be of high interest for candidate gene approach studies. 
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Methodological comparison 

We compared half-sib regression and variance component analysis, each with 

its advantages and drawbacks. We performed separately a paternal half-sib 

regression analysis (PHS) and maternal half-sib regression analysis (MHS). 

Therefore, in the regression analysis the full-sib relationships are not taken into 

account. We additionally performed a variance component analysis (VCA) that 

deals with all family relations in our experimental population. Half-sib 

regression does not require large computing resources and time, and therefore it 

allows to perform a permutation test and calculate confidence intervals using 

bootstrapping.  

Variance component analysis has been implemented to simultaneously account 

for all relations in our data. The QTL is modelled as a random effect in the 

model; therefore the QTL may have an infinite number of alleles. But VCA is 

computationally demanding, especially the calculation of IBD and thresholds 

for 5% chromosome-wide significance were computed according to an 

approximation given by Piepho (2001). Those calculations are time-consuming.  

Power of the experimental design 

This study has implemented the two-step procedure developed in Massault et al. 

(2008).  When applying simulated parameters from our specific population 

(rounded to 600 individuals), we found that, for an 80% power, we were 

theoretically able to detect QTLs explaining at least 14.5% of phenotypic 

variation using half-sib regression analysis and at least 6.5% of phenotypic 

variation using variance component analysis. Morphology QTL on LG4 

explains a large proportion of phenotypic variation (38%) and will have been 

detected with a less powerful experimental design. In case of paternal half-sib 
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regression, this QTL could be associated with marker DLA0175, while for 

MHS and VCA, it will be more linked to a marker at the beginning of the 

linkage group DLA0166. On the contrary, morphology QTL on LG6 might not 

have been detected as the QTL effect was 9.4% of the phenotypic variation 

(against 14.5% expected theoretically). It is a QTL of medium size that our 

design was powerful enough to detect; it a proof that the design is perfectly 

adapted for natural mating population. The proportion of phenotypic variation 

explained by QTLs detected with half-sib regression was of medium size effect 

(8%-16%). It shows that our method is able to detect not only QTLs with large 

effects but also medium effects for sea bass, and could be generalized to mass-

spawning species.    

The fact that there were only two female parents involved in the experiment 

may also have an impact on the success to detect QTLs. The heterozygosity for 

each allele is therefore none, half or one. As explained before, existing QTLs 

might be ignored because none of the females are segregating for it. The power 

therefore might be lower, as in theory we assumed heterozygosity of 0.5, which 

in reality is impossible to predict. 

The theory was based on a sparse genetic map, with marker spacing of 20 cM. 

Our genetic map had average marker intervals close to 8 cM. A denser map 

could have improved the power, and therefore our experiment with a sparser 

map might not have detected some QTLs. 

The power of the experiment depended on the heritability of the trait. We found 

three suggestive CORT QTLs for stress response. The heritability of this trait 

shown in Table 1 is 0.08. Massault et al. (2008) have set a high heritability of 

0.5 for the two-step experimental design. Trait heritability is known to play a 
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role in QTL discovery (Kolbehdari et al. 2005) and in the case of low 

heritability such as cortisol, there is less chance of detecting important QTLs. 

Our study shows that QTL mapping is possible for natural mating mass-

spawning species, using a specific experimental design and tools, such as 

parentage assignment. The results of this experiment are preliminary, but they 

are promising. QTLs were detected and could be located at specific 

chromosomes, so that complementary fine mapping can be undertaken.  
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4.1 Abstract 

Fish pasteurellosis is a bacterial disease causing important losses in farmed fish, 

including gilthead sea bream, a teleost fish of great relevance in marine. We 

report in this study a QTL analysis for resistance to fish pasteurellosis in this 

species. An experimental population of 500 offspring originating from eight 

sires and six dams in a single mass-spawning event, was subjected to a disease 

challenge with Photobacterium damselae piscicida, the causative agent of fish 

pasteurellosis. A total of 151 microsatellite loci were genotyped in all 

experimental fish, and half-sib regression QTL analysis was carried out on two 

continuous traits, body length at time of death and survival, and for two binary 

traits, survival at day 7 and survival at day 15, when the highest peaks of 

mortality were observed. 

Two significant QTLs were detected for disease resistance. The first one was 

located on linkage group (LG) 3 affecting late survival (survival at day 15). The 

second one, for overall survival, was located on LG 21, which allowed us to 

narrow the region to a potential marker (Id13) linked to pasteurellosis disease 

resistance. A large significant QTL was also found for body length at death on 

LG 6 explaining 5-8% of the phenotypic variation.  
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4.2 Introduction 

Gilthead sea bream (Sparus aurata L.) is a marine teleost fish of great 

importance for aquaculture, with an average cultured production of 80-100 

thousands metric tonnes per year. This species is relatively well-adapted to 

aquaculture conditions, but it is susceptible to fish pasteurellosis, which often 

results in high mortality, up to 90% (Hawke et al. 2003). Fish pasteurellosis is a 

bacterial disease (caused by Photobacterium damselae piscicida) that spreads 

rapidly and is fatal in most cases after a few days. The presence of white 

tubercules in some internal organs is typical of chronic pasteurellosis. The 

outbreak may be associated with high stock density or a prolonged period of 

high water temperatures, which favours the development of the bacteria.  

Disease outbreaks are a tremendous challenge for aquaculture production. 

Large economic losses can be generated by the destruction of entire production 

batches, while the potential infection of juveniles might pose a risk for the 

entire fish farm. Antibiotics and vaccines have been developed for a number of 

fish species and diseases. However, there is a general demand to minimize the 

use of antibiotics because bacteria can develop resistance and, drug residues in 

fish products could have a negative impact on consumers’ health (Grewal and 

Tiwari 1990, Teuber et al. 2001). Antibiotic treatment does not reduce mortality 

to an acceptable level as it still results in a loss of 40% of fish over a four week 

period (Toranzo et al. 1991). Several vaccines have been designed to limit the 

effects of pasteurellosis, but few are actually efficient (Magarinos et al. 1996, 

Romalde and  Magarinos 1997), in particular in juvenile fish (Magarinos et al. 

1999). In addition, vaccination presents safety issues for the personnel when 

carried out by manual injection, which is still widely used in parallel with 
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automatic vaccination devices (www.thefishsite.com) and leads to handling 

stress in the fish. 

A potential strategy to reduce the probability of disease outbreak and thus to 

avoid the dramatic consequences of high mortality in fish farms is to implement 

selective breeding for disease resistance (e.g Fjalestad et al. 1993). Various 

modes of selection can be applied to perform genetic improvement of disease 

resistance: direct selection or indirect selection. Direct selection occurs when 

fish are selected among survivors following a disease challenge or natural 

disease outbreaks. Estimated heritabilities of survival on specific diseases have 

been obtained in several species (rainbow trout, Rye et al. 1990; Atlantic 

salmon for vibriosis, furonculosis and sea lice, Gjedrem and Gjøen 1995, 

Kolstad et al. 2004) As already observed in other species for various infectious 

diseases, resistance to fish pasteurellosis in sea bream has a low heritability 

(Antonello et al. 2009).. It is difficult and expensive to estimate, since the 

disease occurs as sporadic epizootic outbreaks rather than as endemic 

infections. When a trait has low heritability and is difficult to measure, an 

option can be to resort to marker assisted selection (MAS) (Dekkers and 

Hospital, 2002). MAS and genomic selection consist of selecting animals based 

on markers information. Application in aquaculture was investigated by 

Sonesson (2007) for MAS and by Sonesson and Meuwissen (2009) for genomic 

selection. In case of MAS, this requires initial QTL mapping to detect the 

relevant loci. This method detects regions of the genome that are associated 

with the trait of interest, in this case disease resistance. The information can be 

used for selective breeding and also to track genes that underlie variation in 

disease resistance in order to understand the biology of this trait. A better 



QTL mapping for disease resistance in sea bream 

79 

understanding of the immune response could also assist in designing better 

drugs or other treatments. 

QTL mapping in gilthead sea bream is made possible by the rapid development 

of genomic tools for this species and more in general in aquacultured fish 

(Canario et al. 2008). A first generation linkage map has been developed 

(Franch et al. 2006) for S. aurata, providing a large panel of microsatellite 

markers. In this study, existing as well as newly developed microsatellite 

markers are used in a genome-wide scan for QTLs involved in resistance to fish 

pasteurellosis. 

4.3 Materials and Methods 

Fish 

The experimental population used in the present  experiment is part of a larger 

group of juvenile fish that were subjected to an experimental challenge with P. 

damselae piscicida to estimate heritability of disease resistance as reported in 

Antonello et al. (2009), where a detailed description of the challenge 

experiment, on the family structure of the challenged fish, the methods used for 

parentage assignment, and the composition of the contributing brood stocks can 

be found. An experimental population, approximately 3,500 animals originating 

from mass-spawning of four broodstocks, was experimentally infected with a 

highly virulent strain of P. damselae piscicida. Mortality was monitored daily 

for 19 days. Upon completion of challenge experiment, genotypes at seven 

microsatellite loci were obtained for 1753 animals and for all (256) broodstock 

fish, for parentage assignment. 
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Figure 1 – Distribution of body length at death  (a) and mean of body length at 

death where fish did no die before Day 4 and death were not reported at Day 16 

(b). 
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Trait measurements 

Dead fish were removed and day of death was recorded for each individual. 

Digital photos were used to determine the body length at death (BLD), which 

represents the body length on the day where the fish was found dead or at day 

20 for surviving fish. Since body length was recorded only after death, it cannot 

be considered to be independent from survival time. Fish that were alive at the 

end of the experiment were attributed a value of 20 for survival. Figure 1 a) 

shows the overall distribution of log-transformed BLD of dead fish and Figure 

1 b) the mean body length of collected dead fish for each sampling day for a 

subset of 500 fish. 

 

Figure 2 -  Death frequencies per day during 19 days of challenge. The value 

20 was allocated to survivors. 

Antonello et al. (2009) observed a peak of mortality on day 7 (11.4 % of loss) 

and a smaller peak on day 15 of the challenge experiment. To take into account 
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the peculiar dynamics of the infection, two additional (binary) traits were 

considered, survival at day 7 and survival at day 15, where animals received a 

score of 0 if they are dead at that time or 1 if they are still alive. Figure 2 shows 

the mortality peaks for the same subset as Figure 1 (500 animals).  

Two-step QTL design 

To perform QTL mapping, a two-step experimental design was implemented as 

described by Massault et al. (2008). The first step consists of collecting DNA 

samples and phenotypic data for a larger set of individuals. From the 3,577 fish 

that entered the disease challenge test, DNA was collected on a random subset 

of 1753 animals. Parentage of this subset fish was assigned using a set of 7 

microsatellite markers. A total 1257 fish could be uniquely assigned to parents 

using the software PAPA (Duchesne et al. 2002). More details can be found in 

Antonello et al. 2009). From these 1257 fish, 500 individuals were selected for 

QTL mapping, in order to analyse the largest full-sib families available 

(Massault et al. 2008). Selected fish originated from eight sires and six dams 

and consisted of 17 full-sib families (Table 1). The largest full-sib family 

comprises 151 offspring, three full sib families have medium sizes (between 35 

and 59), while the other full sib families have a low number of offspring 

(between 4 and 27). A total of eight paternal half-sib and six maternal half-sib 

families were selected for the QTL analysis. Two large paternal half-sib 

families from sire 147 with more than the half of the offspring (264) and sire 

178 with 107 offspring were present, while the six other sire families comprise 

less than 30 individuals per family. Maternal half-sib families were split into 

two large families (dam 151 with 186 offspring and dam 172 with 160 

offspring), two medium-size families (of 71 and 52 offspring) and two small 

families (totalling 31 individuals). These 500 fish (referred to as the QTL 
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Table 1 - Family structure with number of offspring per half-sib families and 

per full-sib families 

Sire ↓ 

Dam → 

147 153 159 165 169 174 178 180 Total 

136 - - - - - - 7 - 7 

151 151 - - - - - 35 - 186 

160 59 - - - - - 8 4 71 

168 - - - - - - 18 - 18 

170 - 7 6 - 19 - 20 - 52 

172 54 - 21 20 - 27 19 25 166 

Total 264 7 27 20 19 27 107 29 500 

 

population) were fully genotyped for 151 microsatellite markers. Of these, 111 

loci had been already mapped onto the first generation linkage map (Franch et 

al. 2006), 39 were developed for the present study as described in Franch et al. 

(2006).  

Genetic map 

The genetic map for the QTL population was constructed based on the 

genotypes of all animals for the 151 markers using CRI-MAP v.2.4. 

(http://compgen.rutgers.edu/multimap/crimap). First, the twopoint option was 
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used to determine which markers were significantly linked (LOD score > 3). 

Linkage groups were formed using the build option. Using information from a 

published map (Franch et al. 2006) the CRI-MAP all option was used to 

position new markers into a pre-determined map order of published markers. 

Subsequently, the resulting orders of all markers were evaluated using the flipsn 

option (flipping up to 4 markers). When multiple alternative orders were not 

significantly different (LOD< 3.0), the order with the highest likelihood was 

used.  

QTL mapping 

To detect QTL for body length and survival, survival at day 7 and survival at 

day 15, half-sib regression was implemented as described by Knott et al. 

(1996), both for maternal and paternal half-sib families. The half-sib regression 

tool is available online on GridQTL web page (http://gridqtl.org.uk). The model 

used is as follows: 

ijijiiij exy ++= βα  

where yij is the offspring phenotype, αi the mean of family i, βi the regression 

coefficient for family i, xij the probability to inherit parental haplotype 1 

conditional on the marker information and eij the residual. Information content 

and the phenotypic variance explained by the QTL were calculated as described 

by Knott et al. (1996). The F statistic is given  for each linkage group for the 

most likely position as well as the 5% chromosome-wide (putative) and the 5% 

genome-wide (significant) thresholds to determine the significance of the 

detected QTL. The thresholds were calculated using permutation analysis and 

confidence interval using bootstrap analysis. 
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Variance component analysis (George et al. 2000) was also performed for body 

length at death and survival, which are continuously distributed. The model 

used here (including the QTL) is as follows: 

eZvZuXby +++=  

where y is the phenotype of the offspring, X the incidence matrix relating 

phenotypes to systematic environmental effects, b is the vector with solutions 

for systematic effects, Z the incidence matrix relating animals to phenotype, u 

vector of additive polygenic effect, v vector of additive QTL effect and e vector 

of environmental effect (var(u) = A2
uσ  and var(v) = G, with A the additive 

relationship matrix and G the IBD matrix). The log likelihood is then compared 

to the model without QTL, by performing a log likelihood ratio test (LRT), 

which follows a χ2 distribution with one degree of freedom. 

 LRT = 2 (loglikelihood(model with QTL) – loglikelihood (model without QTL) 

4.4 Results and discussion 

Genetic map 

Out of 151 markers genotyped on 500 fish, 140 could be mapped to 24 linkage 

groups (LGs) Figure 3), the same number of chromosomes described for 

gilthead sea bream haploid set (Cataudella et al. 1980). Eleven markers remain 

unlinked. The coverage from our average sex map was 1041.3 centiMorgans 

and the average space between markers is 5.8 centiMorgans. A comparison 

between the map presented here and the first generation map (Franch et al. 

2006) showed concordance between most of the LGs of the two maps. The only 

exceptions are i) marker Ad75, which in Franch et al. (2006) was included in 
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LG 9 (instead of LG12’), ii) LG22 is not present in the map from this study, iii) 

LG18 now includes the original LG18 plus LG26. These differences are easily 

explained especially if evidence from the sea bream Radiation Hybrid (RH) 

map (Senger et al. 2006, Sarropoulou et al. 2007) is taken into consideration. In 

fact, 99 loci from the present map have been mapped in the RH map, allowing 

anchoring of the new linkage map to the physical map (Table 2). First, the 

original position of locus Ad75 was uncertainly linked to LG9 (Franch et al. 

2006), and it mapped on a different RH group (RH25, Sarropoulou et al. 2007) 

compared to the remaining markers on LG9 (RH23), therefore it seems likely 

that the present position is the correct one. Second, LG22 in Franch et al. 

(2006) was a small LG with only two loci, which are not informative in the 

present population study. However, based on the comparison between the RH 

map and the first generation linkage map (Sarropoulou et al. 2007) LG22 

should join LG8, since markers from both LGs are found on the same RH group 

(RH2). Third, fusion of LG18 and LG26 into a single group (LG18) in the new 

map was predicted by the RH map, where both LGs pointed to a single RH 

group (RH12). Regarding to the latter point, although the present map consists 

of a smaller number of mapped markers (140) compared to the first generation 

map (198), the much larger size of the present genetic map (500 individuals 

compared to 50) evidently provides a better representation of the sea bream 

genome. Finally, the presence in the present map of 99 anchoring loci to the RH 

map allows a comparative genomic approach to be implemented, since the RH 

map is easily linked to fish genome sequences (Sarropoulou et al. 2007).  

Disease resistance QTL  

Paternal half-sib (PHS) and maternal half-sib (MHS) regression analysis were 

performed for body length and survival traits (survival, survival at day 7 and 
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survival at day 15). Two genome-wide significant and 18 putative 

chromosome-wide significant QTLs for survival, survival at day 7, and survival 

at day 15 were found as detailed in Table 3. These 20 QTLs are distributed on 

10 different linkage groups. The first genome-wide significant QTL was found 

for resistance against pasteurellosis on LG21 with PHS. This QTL explains 4% 

of the phenotypic variation (Table 3). The confidence interval covers the whole 

linkage group (4 cM). A second significant QTL was detected, using PHS, on 

LG3 for survival at day 15, which explains 6% of the phenotypic variation and 

for which the confidence interval again extends to the whole chromosome. 

Variance component analysis also detected a QTL for survival with a LRT of 

15.2 on LG21 (Table 4), confirming the results found with half-sib regression 

analysis. Putative QTLs for survival were also reported on LG1, LG3, LG10, 

and LG19 with PHS and LG21 with MHS (Table 3). Putative QTLs for survival 

at day 7 were reported on LG1, LG4, LG5, LG14, LG19 and LG21. In one 

case, on LG1, a QTL for overall survival was also detected on this linkage 

group. Most of the QTLs were found with PHS, except for those on LG5 and 

LG21. The phenotypic variation explained by the QTLs varies between 3.5% 

and 5% and confidence intervals generally cover the entire linkage groups. 

Putative QTLs for survival at day 15 were found on LG10, LG12’, LG16, and 

LG19 with PHS, while MHS analysis detected a suggestive QTL on LG19 and 

LG21. All confidence intervals are large and QTLs explain between 4% and 6% 

of the phenotypic variation. 
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Figure 3 -   Sex-averaged genetic map on centiMorgans with 24 linkage groups 
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Comparing the results of detected QTLs at different survival times (day 7, day 

15, overall) suggests that the effects of some loci might be stronger or even 

exclusive during specific phases of the infection. For instance, QTLs on LG4, 

LG5, and LG14 are observed only for survival at day 7, whereas QTLs on 

LG16 and LG12’ are found exclusively for survival at day 15. This evidence 

should be taken with caution since these QTLs are suggestive and might not be 

confirmed after further analysis and/or could have an effect also on later stages 

of the infection, but these effects might have gone undetected due to limited 

power of the analysis. However, it is not unexpected to find phase-specific 

QTLs, since mechanisms of  disease resistance can be biphasic or even 

multiphasic (e.g. resistance to trypanosomosis in mice, Koudandé et al. 2008). 

A first line of defence might involve the innate immune response, while later on 

other mechanisms (e.g. adaptive immune response) could play a stronger role. 

A bimodal pattern has been found in the present challenge experiment as well 

as in other studies (Antonello et al. 2009), with a primary infection, after 

experimental exposure to the pathogen, and a secondary infection with bacteria 

released from moribund and dead fish. The observed infection/re-infection 

dynamics appears therefore to further support the hypothesis of a biphasic 

defence response. 

On the other hand, the effect of some QTLs seem to extend over the entire 

duration of the infection, being found either for at least two survival traits 

(QTLs on LG1, LG3, LG10), or for all three time points, as in the case of the 

QTLs on LG21, which reaches genome-wide significance only for overall 

survival, but is detected also on day 7 and day 15, and on LG19. The latter one 

explains a percentage of phenotypic variation between 7% and 9%, which is 

large for a putative QTL. LG19 is one of the linkage groups where sire ‘147’  
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Table 3  -  QTL for survival significant at the chromosome-wide level.  

Trait1 Method2 LG3 Pos4 F5 CW6 GW7 Effect (%)8 CI9 

Significant 

Survival PHS LG21 2 3.4 2.1 3.4 4 0-4 

Day15 PHS LG3 0 3.8 2.3 3.6 6 0-33 

BLD PHS LG6 11 5.0 1.8 2.3 8 0-40 

BLD MHS LG6 19 3.9 1.9 3.3 5 2-47 

Putative         

Survival PHS LG1 19 2.5 2.3 3.4 4 0-36 

 PHS LG3 0 2.3 2.1 3.4 4 0-33 

 PHS LG10 8 2.3 1.9 3.4 4 0-18 

 PHS LG19 3 2.5 2.5 3.4 7 0-37 

 MHS LG21 1 2.7 2.3 3.6 3 0-4 

Day 7 PHS LG1 32 2.6 2.2 3.3 4 0-36 

 PHS LG4 7 2.8 2.2 3.3 5 5-38 

 MHS LG5 27 2.9 2.7 4.2 3.5 0-44 

 PHS LG14 24 3.2 2.4 3.3 5 5-38 

 PHS LG19 0 3.3 2.0 4.2 7 0-37 

 PHS LG21 2 2.7 2.2 4.3 4 0-4 

 MHS LG21 1 3.6 2.6 4.2 4 0-4 
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Table 3 -  QTL for survival significant at the chromosome-wide level. (cont.) 

 

Trait1 Method2 LG3 Pos4 F5 CW6 GW7 Effect (%)8 CI9 

Day15 PHS LG10 8 2.3 2.1 3.6 6 0-18 

 PHS LG12’ 2 3.2 2.3 3.6 5 0-59 

 PHS LG16 13 2.5 2.3 3.6 4 0-13 

 PHS LG19 18 3.1 3.1 3.6 9 0-37 

 MHS LG19 37 1.9 1.9 4 2 0-37 

 MHS LG21 2 3.9 2.2 4 4 0-4 

BLD MHS LG4 4 3.0 2.0 3.4 4 0-43 

 MHS LG5 38 2.1 1.9 3.4 2.5 21-45 

 PHS LG8 7 2.2 1.8 2.7 5 0-25 

 PHS LG15 3 2.4 1.8 2.7 4 5-55 

 

1 Trait of interest: survival, survival at Day7, survival at Day15, and body length at time of  
death 

2 Method: paternal half-sib regression (PHS) or maternal half-sib regression (MHS) 

3 LG: linkage group 

4 Position: position of the QTL in centiMorgans 

5 F: F statistic for the QTL 

6 5%CW: value of 5% significance chromosome-wide threshold 

7 5%GW: value of 5% significance genome-wide thresholds 

8 Effect: the proportion of phenotypic variation in % explained by the QTL  

9 CI: 95% confidence interval 
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did not contribute to the analyses because he was not informative for any of the 

markers. 

Body length at death QTL  

QTLs found for BLD are also described in Table 3. A genome-wide significant 

QTL for BLD was detected on linkage group 6 for both PHS and MHS 

explaining 8% and 5% of the phenotypic variation, respectively. In total, 299 

offspring out of 500 are from PHS families segregating for this QTL. The QTL 

is positioned at 11 centiMorgans according to PHS and at 19 according to 

MHS. But in both cases the confidence interval is very large, therefore no 

conclusion can be drawn for the exact position of the QTL. The QTL was also 

detected using the variance component analysis on LG6 with a LRT of 32.9 

exceeding 1% chromosome-wide thresholds (Table 4). Two putative QTLs 

were found with PHS on LG8 and LG15 which explain respectively 5% and 4% 

of the phenotypic variation. With MHS, two putative QTLs were located on 

LG4 and LG5 which explain respectively 4% and 2.5% of the phenotypic 

variation. For all QTLs, confidence intervals are large and cover the entire 

linkage group.  

Table 4 -  Variance component results for body length at death and survival 

Linkage 

Group 

Trait LRT P=0.005 P = 0.001 

6 BLD 32.9 3.8 6.6 

21 Survival 15.2 3.8 6.6 
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Id13 marker 

A significant QTL was found on LG21, which is a small linkage group of 4 

centiMorgans and 3 markers. Using a contingency table and pearson chi-square 

test, we found that locus Id13 was a possible marker linked to disease resistance 

(Table 5). We had a more close look at the genotype of marker Id13. In total, 

192 animals were actually typed for Id13 and among the 28 fish that survived to 

the challenge; only 15 were genotyped, 13 from the largest family (147 x 151) 

and two from a smaller family of 20 offspring (165 x 172). The fact that some 

parents have not been genotyped for the marker reduces the number of 

offspring genotypes available. In both cases, about 10% of the family survived. 

The QTL segregates in the largest maternal half-sib  family of dam 151. Figure 

4 shows the mortality curve in percentage of animals that inherited the 177 

microsatellite allele (63 animals) and the 188 allele (89 animals). Looking at 

Figure 4, we notice that individuals that inherited the 177 allele register a loss 

of 35% for day 7 and day 8 alone, while the ones that inherited allele 188 record 

for those two days a loss of 13.5%. The pattern was reversed on day 10 - day 11 

Table 5 -  Contingency table for individuals inheriting alternative genotypes for 

marker Id13 at the end of the experiment (Day 20) 

Id13 genotype Dead Alive Total 

177-188 62 0 62 

188-188 75 13 88 

Total 137 13 150 

* p-value with Pearson chi-square test of 0.004 
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where individuals inheriting allele 188 lost a total of 26% individuals, but 

individuals inheriting allele 177 were less affected (9.5% loss). A sudden loss at 

day 13 affected both groups equally (11% for allele 188 and 9% for allele 177). 

Only the group that inherited allele 188 has animals that survived (13 animals, 

14.5% of the group). Those data indicate that that animals that inherited allele 

188 resist pasteurellosis longer, dying in large numbers from day 10 and not at 

day 7 like animals inheriting allele 177, which did not survive after day 17, 

showing a more severe course of infection.  

 

Figure 4 -  Survival curves for animals of a large full-sib family according to 

the segregation of the maternal allele 177 or 188 at the Id13 locus. 

As mentioned above, locus Id13 maps onto LG21. This small linkage group 

corresponds to RH18 in the RH map (Sarropoulou et al. 2007). The length of 

RH18 is 822.9 cRAD3000, which translates into an estimated size of 

approximately 35 Mega base pairs (Mbp) (1 Mbp = 23.48 cRAD3000, following 
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the approach of Senger et al. 2006 based on a total map length of 18,787.14 

cRAD3000 and an estimated genome size of 800 Mbp for S. aurata). This 

estimate is in agreement with the size range of orthologous chromosomes in 

other fish species (Tetraodon nigroviridis chromosome 5, 13.3 Mbp; 

Gasterosteous aculeatus group II, 23.3 Mbp; Oryzias latipes chromosome 3, 

36.6 Mbp;. Danio rerio chromosome 776.9 Mbp) and most similar to the one of 

the species with a comparable genome size (O. latipes, 700 Mbp). Loci Eid36 

and Hd46 on LG21 (Figure 3) are found at opposite ends of RH18. Therefore 

LG21 corresponds nearly to the entire chromosome, and its small length cannot 

be explained as a consequence of incomplete marker coverage. It is therefore 

quite likely that the chromosome corresponding to LG21/RH18 has a reduced 

recombination rate. In fact, in the first generation map, which was based on a 

completely unrelated mapping panel, LG21 consisted of four loci in complete 

linkage and with length zero. While the association of allele 188 of Id13 locus 

with longer survival to fish pasteurellosis is certainly suggestive, it is quite 

likely that this evidence is due to reduced recombination in the entire linkage 

group. Low recombination rates on LG21 represent an advantage when using 

genetic markers to assist breeding programs (discussed below) because linkage 

between the genetic marker and the QTL is stronger. On the other hand, to 

refine mapping of disease resistance QTL on LG21 will probably require to 

shift from family-based to population-based genome scan. To this end, the 

“mass-spawning” scheme for QTL identification (Massault et al. 2008) 

produced a larger experimental population, with over 250 full-sib families, 

generated by a substantial number of different sires and dams, all of them 

genetically unrelated, because brood stock fish originated directly from wild 

populations. 
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Disease resistance QTLs in aquaculture 

The discovery of two significant QTLs for resistance to pasteurellosis resistance 

and several suggestive ones can be added to the list of detected QTL associated 

with resistance to various diseases for a number of aquaculture species. QTLs 

of major effect, explaining a large proportion of phenotypic variation between 

25% and 50%, have been reported for salmon, trout and flounder (Ozaki et al. 

2000, Houston et al. 2006, Fuji et al. 2006) with between 50 and 80 markers. 

We found a lower percentage of phenotypic variance explained by QTL, 

varying between 2% and 9%. Rodriguez et al. (2004) obtained a smaller 

percentage of phenotypic variation explained by the QTL in trout (11% on 

average) with a marker density similar to ours (139 markers). The differences 

observed could be biological differences between species. In some species,  

resistance to disease can be influenced by a major gene, and in some other, it 

can ne influenced by many genes with smaller effects. The marker density does 

play a role in the power to detect those effects (Kolbedhari et al. 2005).  

One genomic region that has been frequently found to be associated with 

disease resistance/susceptibility is the MHC I complex, also in fish species (e.g. 

Grimholt et al. 2003, Miller et al. 2004, Johnson et al. 2008, Evans and Neff 

2009). The MHC I locus position in the teleost genome appears to be conserved 

as it has been mapped onto homologous chromosomes in G. aculeatus (Group 

X), D. rerio (chromosome 19), and O. latipes (chromosome 11), which 

corresponds to sea bream RH19/20 and LG7. Although MHC I has not mapped 

in S. aurata, it should be noticed that no QTL was found on LG7. 
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MAS and genomic selection 

The possibility of genetic improvement for disease resistance in fish has been 

demonstrated by Fjalestad et al. (1993), although MAS can be a better solution 

for traits such as disease resistance, where no measurement can be observed on 

the selection candidate. Results of QTL mapping, even if not integrated into a 

MAS scheme, could still be exploited to unravel the mechanisms of disease 

resistance by identifying regions of the genome that explain complex traits such 

as survival. 

Sonesson and Meuwissen (2009) explored the possibility of genomic selection 

as a selective breeding method in aquaculture, which could be particularly 

powerful for traits such as disease resistance, as it tends to eliminate 

requirement for observations on relatives. Their basic conclusions were higher 

genetic gain and lower rate of inbreeding. The main disadvantage with genomic 

selection is the need to re-estimate breeding values every few generations, as 

selection is based on linkage disequilibrium, which declines fast. Although this 

could be feasible in Atlantic salmon, high throughput genomic information is 

not currently available for a large number of aquatic species, including the 

gilthead sea bream.  

4.5 Conclusion 

This study shows the results of the first QTL mapping experiment done in 

gilthead sea bream for disease resistance to Pasteurella. The QTL found for 

body length at death, after validation, can be integrated into a breeding 

program, while an interesting marker Id13 has been associated with survival. 

With advancing genomics tools, comparison mapping with other species and 
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full genome sequencing will help to understand the mechanisms of innate 

immune response to bacterial infection. 
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5.1 Abstract 

Selective breeding is not widely used in populations that reproduce by natural 

mating and mass-spawning such as sea bream or sea bass. We simulated mass 

selection, best linear unbiased prediction (BLUP) and genomic selection 

(GBLUP) for natural mating population and controlled mating with 

heritabilities (h2) 0.2, 0.5 and 0.8, various population sizes (200, 512 and 800) 

and various  number of animals selected (40, 48 and 100). Values observed for 

genetic level after 10 generations ranged from 17.45 to 35.95. Average 

inbreeding rate over 10 generations (∆F) ranges from 1.7% to 9.7%, with the 

highest values reached by the BLUP method and accuracy (rIH) ranged from 

0.32 to 0.93. With a high h2, the genetic level is similar for the three methods. 

When the number of animals selected increases, genetic gain, rIH and ∆F 

decrease. When using controlled mating instead of natural mating, genetic level 

and rIH are similar with h2 = 0.2, while ∆F is lower using controlled mating. 

Therefore GBLUP is advantageous for natural mating mass-spawning species 

but inbreeding rates remain very high.     
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5.2 Introduction 

High fecundity of species is in general considered to be advantageous in 

selective breeding as large families are produced and high selection intensities 

realised (Gjerde and Rye 1997). For a number of species in aquaculture, 

especially those still in process the of domestication, natural mating and mass 

spawning are used for the production of the next generation. In this system, a 

number of males and females are placed together in a tank, which results in a 

large number of offspring of unknown paternity.  

Parentage assignment has become routine using DNA markers (see Jones et al. 

(2010) for review) and pedigree reconstruction has permitted a closer look at 

the actual population structure of mass-spawning species. Skewed parental 

contributions are common in fish:  sea bream (Brown et al. 2005),  tilapia 

(Fessehaye et al. 2006), cod (Herlin et al.  2008), sea bass (Chatziplis et al. 

2007)  and in sole (Blonk et al. 2009). In general a small number of sires and 

dams contributed a large number of offspring, while other individuals are not 

contributing any offspring. The offspring are a mix of full-sib and half-sib 

families (both paternal and maternal) with few large families and many small 

families. This variation in family size may dramatically increase the rate of 

inbreeding per generation (Hedgecock 1994, Brown et al. 2005, Fessehaye et 

al. 2006). 

Mass selection is currently the most-used method of selection in mass-spawning 

species (Brown et al. 2005, Gjedrem et al. 2005, Vandeputte et al. 2009). It is 

the simplest way of selective breeding, in which only the animals’ own 

performance is used as criterion of selection. A major disadvantage with mass 

selection is that genetic progress will be low for traits with low heritabilities. 
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But access to parentage assignment has made it possible to do family selection 

in communanlly reared progeny (walk-back selection; e.g. Herbinger et al.  

1995) 

A mixed model accounting for all family relations (Best Linear Unbiased  

Prediction (BLUP)) can be used to increase the accuracy of selection. Sonesson 

et al. (2005) investigated truncation selection based on BLUP estimated 

breeding values for fish breeding schemes and concluded that this method was 

more efficient in terms of genetic gain, but resulted in higher rates of inbreeding 

without restriction inbreeding. The rate of inbreeding can be constrained in 

populations with controlled reproduction by using optimum contribution 

selection (Sonesson and Meuwissen 2000).   

Genomic selection is a more recent method of selection that includes 

information on thousands of marker genotypes. Genomic selection can be used 

to increase the accuracy of selection, especially for sex-limited traits, traits with 

low heritability or traits recorded late in life. Advantages of genomic selection 

over marker assisted selection is that all genetic variance can be captured due to 

the large number of markers (see Goddard and Hayes 2009 for review).  

Various approaches have been developed to estimate breeding values using 

information of many marker such as partial least squares regression,  BayesA 

and BayesB (Meuwissen et al. 2001, Hayes et al. 2009). Due to rapid 

development in the field of genomics, it has become feasible to genotype 

individuals for large SNP panels at relatively low costs. At present these are not 

yet commercially available for many fish species but it is expected that in the 

near future this will be the case. This will open up the opportunity to apply 

genomic selection in fish. A specific aspect on the use of genomic selection in 

mass-spawning fish is that specifically reconstructed  pedigree is not needed.  
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The consequences of genomic selection for genetic improvement and rate of 

inbreeding in mass spawning fish have to our knowledge not been studied. In 

this study, we use simulation to determine the genetic gain and the rate of 

inbreeding in a mass pawning population. We compared the results of three 

selection methods, i.e. mass selection, BLUP selection and genomic selection, 

over a period of 10 generations. 

5.3 Material and methods 

Genetic model and selection process 

We simulated a genome with a total size of 10 Morgans, divided over 10 

chromosomes (1 Morgan length each) under a finite locus model. For a random 

mating population consisting of 50 males and 50 females, where one male and 

one female per mating was used as parents for the next generation and a 

mutation rate of 10-5 (Meuwissen et al. 2001), mutation-drift equilibrium was 

reached after 1700 generations, i.e. the number of polymorphic marker 

stabilizes on average at 4 400. We kept record of the pedigree for the last 5 

generations of random mating in order to reach an equilibrium situation prior 

selection. The base population G0 was the last generation of random mating 

after reaching mutation-drift equilibrium (generation 1700). The base 

population was identical for the three selection methods: mass selection, BLUP 

selection and genomic selection. Pedigrees were stored for each method of 

selection to calculate inbreeding coefficients, although pedigree records were 

only used for BLUP breeding value estimation. We simulated 5 different 

scenarios (for description, see Table 1) varying the number of selection 

candidates, the mating design and the number of phenotyped offspring. For 

each scenario,  in which each of the three selection methods were applied for 
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the three different heritabilities (0.2, 05 and 0.8) over 10 generations (G1 to 

G10). For each alternative, results were averaged over 50 replicates. 

Natural or controlled mating 

After each generation of selection, selected fish reproduced in two ways: either 

natural mating or controlled mating. For controlled mating (scenario 5) the 

number of selection candidates and the number of phenotyped offspring was 

not varied: 16 males were mated to in total 32 . Females were mated to only one 

male and males were mated to two females. Sixteen offspring were kept per 

full-sib family, 8 males and 8 females and the total of number of offspring with 

phenotypes was therefore 512.  

For the natural mating situation we tried to simulate a population structure 

similar to the population described by Antonello et al. (2009). For that purpose, 

we first allocated 245 mating pairs by randomly selecting randomly parents 

with replacement (males and females can be chosen for more than one mating) 

using a brood stock of 59 males and 68 females. We then allocated the number 

of offspring to the matings, by drawing those from a gamma distribution with 

parameters α = 0.17 and β = 0.75. This process was replicated 1000 times, and 

for each replicate a sample of 1257 offspring was randomly selected to form the 

target population. This simulation procedure resulted in number of parents, 

family structure and variation in number of offspring per family that was 

similar to the gilthead sea bream population described by Antonello et 

al.(2009).  The family variance of that population is showed in Figure 1a. 

Therefore, these parameters of the gamma distribution were chosen to simulate 

natural mating populations. 
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Table 1. - Characteristics of the 5 scenarios that were simulated 

 # offspring cm1/nm2 nselmales nselfemales 

Scenario 1     

h2 = 0.2 512 nm 20 20 

h2 = 0.5 512 nm 20 20 

h2  = 0.8 512 nm 20 20 

Scenario 2     

h2 = 0.2 200 nm 20 20 

h2 = 0.5 200 nm 20 20 

h2  = 0.8 200 nm 20 20 

Scenario 3     

h2 = 0.2 800 nm 20 20 

h2 = 0.5 800 nm 20 20 

h2  = 0.8 800 nm 20 20 

Scenario 4     

h2 = 0.2 512 nm 50 50 

h2 = 0.5 512 nm 50 50 

h2  = 0.8 512 nm        50 50 

Scenario 5     

h2 = 0.2 512 cm 16 32 

h2 = 0.5 512 cm 16 32 

h2  = 0.8 512 cm 16 32 

1 natural mating                2 controlled mating  
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Figure 1a and 1b show the distribution of family sizes of the population 

described by Antonello et al. (2009)and the simulated population averaged over 

1000 replicates for the same number of parents and number of offspring. The 

distributions are both skewed with few families contributing most of the 

offspring and a large number of families contributing fewer offspring. Variance 

of family size in simulated populations (148.33 ± 12.18) falls in the range of 

family size variance observed (138.61) by  of Antonello et al. (2009).  

The breeding schemes simulated in this study are smaller than those in Figure 

1a Therefore, we adjusted the parameter α of the gamma distribution to 1 in 

order to obtain the family size variance showed in Figure 1a for a situation were  

20 males and 20 females are randomly sampled with replacement to become 

parents. We randomly selected 512 fish that survived until reproductive age to 

form our population of selection candidates. We used an equal number of males 

and females in the brood stock for natural mating, while the number of females 

was twice the number of males for controlled mating. 

Forty parents (20 males and 20 females) were selected for scenario 1, scenario 2 

and scenario 3. One hundred parents were selected  in scenario 4 (50 males and 

50 females)  and forty-eight parents (16 males and 32 females) for scenario 5,  

were we used controlled mating.  Sex ratio in the selection candidates was 

assumed to be 1. 

Phenotypes 

We simulated a trait that is affected by 100 QTLs, with 10 QTLs per 

chromosome. QTLs were evenly spaced along the chromosome. The QTL 

effects were sample from a gamma distribution with shape parameter 0.4 

(Meuwissen et al. 2001) and scale parameter 0.12 in order to obtain a average 
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genetic variance σ2
A of 15 over 50 replicates. QTL effects were additive and 

had a  probability of 0.5 to be either positive or negative. The true breeding 

value was calculated as the sum of the allelic effects accross all QTLs:  

 

 

where gi is the true breeding value of animal i,  n is the total number of QTLs, 

a1ij the effects of the paternal QTL allele of animal i and at locus j and a2ij the 

effect of the maternal QTL allele of animal i and at locus j (Hayes and Goddard 

2008). In order to simulate a trait with a given heritability h2, the environmental 

values ei were drawn from a normal distribution N(0,σe), with 
( ) 2

2

2
2 1

Ae h

h σσ −= . 

The phenotypic value for animal i was the sum of genetic value gi  and 

environmental value ei. Genetic variance (σ2
A) in a specific f generation was 

calculated as the variance of the true breeding values of the animals in that 

generation. 

Selection methods 

Parents for the next generation are selected using three different selection 

methods: mass selection, GBLUP (Hayes et al. 2009) and BLUP. No restriction 

on inbreeding was applied for any of the methods. We will refer the number of 

selected males as nselmales and the number of selected females as nselfemales. 

For all three methods, all animals were phenotyped and for genomic selection, 

all animals were genotyped.   
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Mass selection 

The parents for the future generations were selected according to their own 

performance. Selection candidates were ranked from the highest phenotypes to 

the lowest. Nselmales and nselfemales with the highest phenotypes were 

therefore kept for reproduction. 

Best Linear Unbiased Prediction (BLUP) selection 

The estimated breeding values (EBVs) from the selection candidates were 

calculated using the following mixed model: 

 

where y was the vector of phenotypes, µ the mean phenotype, Z the incidence 

matrix relating phenotypes to breeding values, u vector of estimated breeding 

values, with var(u) = A σ2
A and e vector of environmental effects, with var(e) = 

I σ2
e . A is the genetic relationship matrix of animals from 5 generations prior to 

selection up to the current generation and I the identity matrix. In our case, no 

fixed effects other than the mean were added to the model. Phenotypes from 

animals from the last 5 generations prior base generation up to the current 

generation were included. For estimated breeding values,  heritabilities were 

assumed known and  fixed either to 0.2, 0.5 or 0.8. The new brood stock was 

therefore composed of the nselmales males and nselfemales females with the 

highest EBVs.  
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Genomic BLUP selection 

The genomic breeding values (GEBVs) of selection candidates were estimated 

with the following model (Hayes et al. 2009)  and using a genomic relationship 

matrix to based on marker information: 

 

where y was the vector of phenotypes, µ the mean phenotype, Z the incidence 

matrix relating phenotypes to breeding values, u vector of estimated breeding 

values, with var(u) = G σ2
A and e vector of environmental effects, with var(e) = 

I σ2
e . G, here, is the genomic relationship matrix between the animals of the 

current generation and I the identity matrix. Animals from the current 

generation were phenotyped and genotyped. For estimated breeding values 

heritabilities were fixed to 0.2, 0.5 or 0.8. In our case, no fixed effects other 

than the mean were added to the model. We constructed the genomic 

relationship matrix G as described by Hayes and Goddard (2008). On average 

information was available  of 4 400 polymorphic markers. A similarity value 

between two individuals was calculated between each locus, which can be 

either 0, 0.5 or 1. The genomic relationship between 2 individuals is the sum of 

the similarity values across all loci. The new brood stock was composed of 

nselmales males and nselfemales females with the highest GEBVs.  

Genetic level, inbreeding rate and accuracy of selection 

Inbreeding level per generation was calculated as the mean of the inbreeding 

coefficients of the animals in a  generation. Rate of inbreeding ∆F was 

calculated as : 



Chapter 5 

114 

 

where Ft is the average inbreeding level of generation t and Ft-1 the average 

inbreeding level of generation t-1. 

The genetic level in a generation was calculated as the average of  the true 

breeding values of individuals in that generation and the accuracy of selection 

for a  generation (rIH) was the correlation between true breeding values and the 

estimated breeding values of animals of that generation.  

5 .4 Results 

Comparison of selection methods 

Figure 2 shows the genetic level, rate of inbreeding, accuracy and genetic 

variance for scenario 1 with low heritability (0.2). After 10 generations of 

selection, GBLUP results in the high of genetic level, while mass selection 

realised the lowest genetic level. The genetic level obtained using BLUP 

selection falls in between  GBLUP and mass selection. Rates of inbreeding are 

in general very high (up to 12% increase per generation). For the three methods 

of selection, inbreeding rate increases a lot between G1 and G2 after first 

selection, where sibs are more likely to be mated due to high intensity of 

selection. The generation G0 being the last generation of random mating with 

equal family sizes and no selection taking place between G0 and G1, explains 

the fact the hige increase of rate of inbreeding between G1 and G2. While the 

BLUP and GBLUP selection method reach a 12% rate of inbreeding in G2, the 

inbreeding rate with mass selection climbed to 6% and remains about 6% 

during the 10 generations of selection. The inbreeding rate using BLUP 
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stabilizes around 12%, while the inbreeding rate with GBLUP stabilizes around 

8%.  We can observed fluctuations in rate of inbreeding from one generation to 

the next. This could be explained by the presence of dominant families. In some 

generations, dominant families will be genetically superior and therefore a large 

amount of offspring of those families will be selected, increqsing the risk of sib 

Figure 1 -  a) Distribution of full-sib family size observed in a gilthead sea 

bream population (Antonello et al. 2009). b) Distribution of simulated  full-sib 

family size averaged over 1000 replicates  

mating, while in other generations, dominant families will not be genertically 

superior. Therefore fish from a lot of different families will be selected, 

decreasing the risk of sib mating. Accuracy of selection in generation G1 (after 
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first selection) is the highest with GBLUP (0.70) followed by BLUP (0.63) and 

accuracy for mass selection method was 0.44. Accuracy of selection for all 

three selection methods decreased over time to 0.46 value of for GBLUP,  0.33 

for BLUP and  0.32 for mass selection in generation G10. Genetic variance 

decreases considerably for all three selection methods. This is partly due to the 

Bulmer effect (first generations) and the high rates of inbreeding. Further, allele 

fixation will reduce genetic variance. Genetic variance for mass selection 

decreases slower for BLUP or GBLUP selection, which have a similar 

reduction in genetic variance. Table 3 summarizes the results for the 5 

scenarios. The  genetic level at G10, the average inbreeding level over10 

generations, and the  accuracy at G1 and G10 is given. In all the studied 

alternatives GBLUP performs best or similar than the other two selection 

methods in respect of genetic level. Average inbreeding rate over 10 

generations is very high (between 1.7% and 9.7%) for all selection methods and 

for any scenarios. This is mainly due to the nature of mass-spawning species 

and due to the fact that no attempts were made to the restrict inbreeding in our 

selection procedure. Accuracy of selection varies between 0.36 and 0.93 for 

GBLUP, between 0.33 and 0.90 for BLUP and 0.32 and 0.89 for mass 

selection. Accuracy is always higher when using GBLUP selection compared to 

BLUP and mass selection.  

Effect of heritability 

Figure 3a shows the genetic level for scenario 1 (512 selection candidates, 20 

males and 20 females  selected) with high heritability (e.g. 0.8) for the three 

selection methods. Genetic level is similar for GBLUPand mass selection. We 

observe from Table 3 the similar genetic level  between the GBLUP and mass 

selection with high heritability for all the scenarios,, while the BLUP genetic 
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level is much lower. Figure 3b shows the genetic level for GBLUP selection in 

scenario 1 when heritabilities differ; here the genetic level is higher when the 

heritability is higher. This also holds for other scenarios (see Table 3). The rate 

of inbreeding for GBLUP and BLUP selection decrease as the heritability 

increases while the rate of inbreeding for mass selection is more stable. 

Effect of populationsize 

To study the effect of population size on the results of GBLUP we compared 

scenario 2, scenario 1 and scenario 3, where the population size varies (200, 

512 and 800 respectively) for a heritability of 0.2 and 40 selected parents 

(Figure 3c). At heritability of 0.2,  the genetic level is similar in the case of  512 

animals and  800 animals, except for the last 2 generations, where the genetic 

level when using 512 animals is higher than when using 800 animals.  

However, for medium and high heritability, the genetic level is higher when 

using 800 animals (Table 3).  The rate of inbreeding are higher at lower 

heritability and this could explains that for h2 = 0.2, the genetic level is higher 

with 512 animals than with 800. The advantage of having more animals is 

counterbalanced by the higher rate of inbreeding, which causes a larger loss of 

genetic variation. The rate of inbreeding level increases as the population size 

increases. A higher number of  selection candidates produced by the same 

number of parents results in a larger size of the dominant families and  

potentially more sibs will be selected to produce the next generation. 

Effect of intensity of selection and mating design 

Figure 4a, Figure 4b and Figure 4c show the genetic level, inbreeding rate and 

accuracy of selection, with 512 selection candidates and heritability of 0.2 for 

GBLUP selection for a natural mating population with 20  selected males and 
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20 selected females (scenario 1), a controlled mating population with 16 

selected males and 32 selected females (scenario 5) and a natural mating 

population with 50  selected males and 50 selected females (scenario 4), 

respectively. No major differences are observed between the genetic levels 

when selecting 40 animals with natural mating and 48 animals with controlled 

mating are very similar, while the genetic level obtained with 100 animals 

selected using natural mating is not as high as the two other scenarios (Figure 4 

a). Accuracy of selection is similar for the three cases starting between 0.6 and 

0.7 after the first selection and decrease in the same pattern and values for the 

three scenarios. The inbreeding rate is the highest when using natural mating 

with 40 selected animals and the lowest when using natural mating with 100 

selected animals. The inbreeding rate of the controlled mating schemes is lower 

than natural mating with 40 animals selected, due to the population structure 

and the slight higher number of selected animals.  

5.5 Discussion 

We showed that in most cases, GBLUP performed better than or as good as 

BLUP and mass selection. However, while we included phenotypes for all 

animals of the pedigree (5 last generations of random mating up to the current 

generation) for BLUP estimation of breeding values, we only used genotypes 

and phenotypes of the selection candidates of the current generation for 

practical purposes. Therefore, we did not explore the full potential of GBLUP 

and we could expect a higher genetic level when including animals from 

previous generations. The inbreeding rate is very high in general (between 1.7% 

and 9.7%), with BLUP selection being the highest and mass selection the 

lowest. Accuracy at G10 of selection is always the highest with GBLUP.  
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Figure 2 - Results of different selection methods for scenario 1, i.e. 20 selected males, 

20 selected females, 512 candidate selection for a h2=0.2 – averaged over 50 replicates 

- Genetic level (a), inbreeding rate (b) 
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Figure 2 (cont.) - Results of different selection methods for scenario 1, i.e. 20 

selected males, 20 selected females, 512 candidate selection for a h2=0.2 – 

averaged over 50 replicates - accuracy of selection (c) and genetic variance (d). 

 



Chapter 5 

122 

Stochastic simulation versus deterministic simulation 

We also predicted genetic level, rate of inbreeding and accuracy of selection for 

mass and BLUP selection for scenario 5 (controlled mating) using deterministic 

simulation (SelAction, Rutten et al. 2004) to compare with simulation results. 

Genetic level and accuracy of selection increase as the heritability increases for 

the 2 selection methods. While ∆F in mass selection remains constant when 

heritability increases (1.8%) , ∆F decreases in BLUP selection when heritability 

increases (from 5.7% at h2=0.2 to 2.1% at h2 = 0.8). The  BLUP selection 

method performs better iwith a genetic level of 28.00 and accuracy of selection 

of 0.55 than mass selection with genetic level of 27.40 and accuracy of 

selection of 0.42, while inbreeding rate for BLUP (5.7%) is higher than in mass 

selection (1.8%)  for low heritabity.  For an heritability of 0.8, the 2 methods 

result in the same genetic level and accuracy (genetic level of 46.40 and 

accuracy of selection of 0.85).  

In both stochastic and deterministic simulations for the mass and BLUP 

selection method, we observed similar trends. Accuracies found with stochastic 

simulation with mass selection are close to those expected by deterministic 

simulation (√h2). While the predicted inbreeding rate from deterministic 

simulation are similar to stochastic simulation, inbreeding rate in BLUP is 

higher with stochastic simulation.  Genetic level at G10 is lower than those 

predicted deterministically for the three heritabilities. The stochastic genetic 

level with low heritability (scenario 5) are 22.48 and 21.64, respecively, while 

the genetic level of BLUP and mass selection using deterministic simulation are 

28.00 and 27.40. This can be explained by three factors. First, the deterministic 

simulation as implemented in selAction assumes  an infinitesimal model, where 

traits are affected by an infinite number of genes each with small effects. In the 
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stochastic simulation, we used a finite locus model, with 100 genes with effects 

distributed according to a gamma distribution. This means that in our stochastic 

simulation of allele frequencies will change and some alleles might become  

fixed and no further improvement will be possible, while improvement is 

continuous and infinite with deterministic simulation. Secondly, the 

deterministic model does not account for reduction of genetic variance due to 

inbreeding. Therefore, the genetic variance remains higher than in our 

stochastic simulation. Finally, results given by the deterministic simulation 

correspond to an equilibrium situation, where genetic variance and heritability 

converged after few generations, where they do not change due to Bulmer effect 

(i.e genetic variance).  

Inbreeding rate 

As the results showed, the rate of inbreeding with GBLUP selection is very 

high (7% in scenario 1 with low heritability).  The level of inbreeding of 

scenario 1 with heritability of 0.5 started from 0.002 in G0 and reached 0.47 at 

G10 while the level of inbreeding that reported  Sonesson  and Meuwissen 

(2009) started from 0 in G1 and reaches 0.06 in G10 for heritability of 0.4 in a 

scenario where QTLs effects are only estimated once. The large difference 

observed between the two results is mostly due to the population strcuture and 

the number of selection candidates. Sonesson  and Meuwissen (2009) use a 

control on mating with equal family size and 3 000 selection candidates, while 

we used natural mating with 512 selection candidates. The inbreeding rate using 

the BLUP selection method without restriction on inbreeding was larger (9.6% 

in scenario 1 with low heritability).  Sonesson (2007) found that the rates of 

inbreeding were higher using BLUP schemes than marker-assisted schemes, 

because less individuals per family were selected due to the extra information  
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Figure 3 -  a) Genetic level for GBLUP, BLUP and mass selection with 512 

selection candidates, 20 selected males and 20 selected females for an 

heritability of 0.8 (scenario 1) – b) Genetic level of GBLUP with 512 selection 

candidates, 20 selected males, 20 selected females for heritability of 0.2, 0.5 

and 0.8 (scenario 1)               
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 Figure 3  (cont.) -  c) Genetic level of GBLUP with 20 selected males, 20 

selected females, heritability of 0.2 and for 200, 512 and 800  selection 

candidates (scenario 2, scenario 1 and scenario 3) 



Chapter 5 

126 

 

 

Figure 4 - Comparison between natural mating with 20 males selected, 20 females 

selected, 512 selection candidates and heritability of 0.2 (scenario 1), controlled mating  

with 16 selected males, 32 selected females, 512 selection candidates and heritability 

of 0.2 (scenario 5)   and natural mating with 50 males selected, 50 females selected, 

512 selection candidates and heritability of 0.2.  - a) genetic level, - b) inbreeding 

rateand   
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Figure 4  (cont.) -  Comparison between natural mating with 20 males selected, 20 

females selected, 512 selection candidates and heritability of 0.2 (scenario 1), 

controlled mating  with 16 selected males, 32 selected females, 512 selection 

candidates and heritability of 0.2 (scenario 5)   and natural mating with 50 males 

selected, 50 females selected, 512 selection candidates and heritability of 0.2.  -  c) 

accuracy of selection . 

 

from  markers. The same principle applies here if we consider that marker 

assisted selection corresponds to GBLUP with one QTL. 

The high rate of inbreeding observed in our simulation can be explained by 

variability in family sizes. Brood stocks that were kept, were fairly small in our 

simulation. Furthermore , not all brood stock in mass spawning actually 

contributes to the next generation. This will not be the case when reproduction 

can be controlled. The low number of effective parents in combination with the 
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variation in family size has a dramatic impact on the rate of inbreeding  Finally, 

we did not apply any restriction on inbreeding. The rate of inbreeding that we 

recorded in our simulation, are not acceptable for sustainable breeding schemes. 

Our study confirms the reported high inbreeding rate after one generation 

between 2.5% and 3.5% in sea bream (Brown et al. 2005) and of 3-6% in tilapia 

(Fesshaye et al. 2006). Those characteristics are specific from mass-spawning 

species. Our results show that, while the effect on the genetic level is rather 

minor compared to breeding programs with reproductive control, it is essential 

to control the rate of  inbreeding for breeding schemes that use mass-spawning. 

However, we can see in scenario 4 that increasing the number of selected 

animals does reduce inbreeding rates. Although inbreeding rates in scenario 4 

are still too high for selective breeding purposes, increasing the number of 

selected animals remains an option to restrict inbreeding. The number of 

selected parents should be increased further more along with the number of 

selection candidates to keep a high selection intensity. Another option would be 

to use several mass-spawning units. While rates of inbreeding will remain high 

within each unit, the exchange of genetic material between units would restrict 

the overall rate of inbreeding  to an acceptable level (Blonk et al. 2009).  

Finally, in genomic selection, the genomic relationship matrix could be used to 

restrict inbreeding. Further investigations should be undertaken in this area.  

Control over inbreeding rates for mass-spawning species are discussed in 

greater detail in the general discussion. 

 Natural mating and controlled mating 

For the first 5 generations, natural mating and controlled mating have somewhat 

similar genetic level for heritability of 0.5 and 0.8, while natural mating has a 
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higher genetic gain than control mating for heritability of 0.2. But after 

generation 5, for all heritabilities, controlled mating results in high genetic level 

than natural mating. The high inbreeding rate observed for natural mating could 

partly explain the lower genetic level in the later generations. Many loci would 

become fixed at the unfavourable allele and reduce the genetic variance.  

The rates of inbreeding in GBLUP are lower than in BLUP. The genomic 

relationship matrix distinguishes among full-sib individuals, while the 

traditional relationship matrix based on pedigree does not. Therefore, the 

genomic relationship matrix based on markers is more accurate than the genetic 

relationship matrix based on pedigree and become more accurate by increasing 

the number of markers (VanRaden 2007).  

Candidate selections and training population 

In this study, we estimated the breeding values of one set of phenotyped 

animals per generation. However, a strong argument in favour of genomic 

selection is that it is possible to estimate accurately breeding values of animals 

with no phenotypes (Goddard and Hayes, 2009). The genetic markers are used 

to link the selection candidates (with no phenotypes) to a  reference population 

that has been  genotyped and phenotyped. This can be especially advantageous 

for traits which are  difficult to record. In our specific simulations, such 

application of genomic selection could not be achieved, due to the uneven 

family sizes. To estimate accurately breeding values of animals that where only 

genotyped, sibs of animals to be estimated have to be present in the reference 

population, where animals have been genotyped and phenotyped. However, in 

the case of mass-spawning species, the smallest families might not have enough 
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offspring to obtain accurate estimation of breeding values and therefore will 

reduce accuracy of selection. 

Efforts to control reproduction in mass-spawning species (i.e. in sea bass 

Vandeputte et al. 2009) will increase the efficiency of genomic selection.  
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This thesis is part of a larger European project, designed to detect QTLs for 

disease resistance and stress in rainbow trout, Pacific oysters, gilthead sea 

bream and European sea bass. Information on detected chromosomal regions 

can subsequently be used in marker-assisted selection. The work presented here 

focuses on QTL mapping for traits of economic importance in mass-spawning 

species. The objectives were firstly to propose designs for QTL mapping 

experiments for various aquatic species, secondly to perform QTL analyses for 

stress response and disease resistance in sea bream and sea bass, using the 

designs previously introduced, and finally to integrate genomic information in 

breeding programs for mass-spawning fish species. 

Although quantitative genetic theory can be relatively easily applied to 

genetically improve most species, natural mating mass-spawning fish have 

some specific characteristics that have to be taken into account when designing 

breeding schemes: (i) large number of offspring per parent, (ii) large variation 

in family sizes and unequal parental contribution (Brown et al. 2005, Fessehaye 

et al. 2006, Blonk et al. 2009). These characteristics carry with them the risk of 

high rates of inbreeding. Furthermore, natural mating in mass-spawning species 

leads to  complex population structures, where males are mated to several 

females and females mated to several males within the same tank. An additional 

step, parentage assignment, must be undertaken to reconstruct pedigrees, which 

are necessary for QTL experiments and breeding programs. The main challenge 

of this thesis was to apply QTL detection and genomic selection of mass-

spawning species (i.e. uncontrolled reproduction). 

This discussion is divided into four parts: (i) power of experimental designs and 

comparison between expectations and real results, (ii) mass-spawning design 

for QTL experiments and the possibility of genome wide association studies 
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(GWAS), (iii) restriction of inbreeding rate in natural mating populations and 

marker assisted selection, and (iv) parentage assignment and pedigree 

reconstruction.    

6.1. Power of experimental designs 

Selective genotyping design 

While the price of genotyping per marker decreases, the actual price of 

genotyping per animal does not necessarily decrease too. We presented in the 

power study (Chapter 2) a strategy for selective genotyping where 5 large full-

sib families of 1000 offspring were phenotyped and for each family, 200 fish 

with extreme phenotypes were genotyped. The contrast between different 

alleles is increased, and therefore so is the power to detect QTLs. This method 

can easily be applied for fish and shellfish, i.e. Pacific oysters, where very large 

full-sib families can be obtained. The genotyping is significantly reduced for 

the experimental population (only 1000 animals are genotyped instead of whole 

population of  5 000 animals). Sauvage et al. (in press) used this strategy and 

detected 5 significant QTLS, which were associated to summer mortality in 

Pacific oysters.   

 However, selective genotyping presents several drawbacks. First,  the number 

of individuals to phenotype remains very large (5000 in our study). The 

principle of selective genotyping is to phenotype the whole population, while 

only selected markers are genotyped to limit the costs. However, phenotyping 

can also be costly, depending on the trait of interest (i.e. carcass trait). 

Furthermore, it cannot be applied when multiple traits are measured. Increase of 

power is only achieved for one trait, i.e. the trait based on which individuals are 

selectively genotyped. It is possible to select extreme phenotypes for two or 
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multiple traits, however the gain in reducing genotyping cost will be lost as you 

quickly end up genotyping the whole population. Also, selective genotyping 

cannot be applied for non-continuous trait such as 0/1 trait. Therefore, in case of 

0/1 trait, the whole population needs to be genotyped as only two different 

phenotypes exist.  

Moen et al. (2004) proposed a multistage strategy using selective genotyping to 

detect QTLs for disease resistance in Atlantic salmon. After the disease 

challenge, only affected animals were genotyped and significant markers were 

identified based on the transmission disequilibrium test. In the next stage 

resistant animals were genotyped for the significant markers and a  Mendelian 

segregation test was performed to ascertain if the markers were segregating in a 

Mendelian fashion. The last stage was to perform a survival analysis using a 

log-rank test on markers that were both significant in the transmission analysis 

disequilibrium and segregated in a Mendelian fashion. Although the Moen et al. 

(2004) method of selective genotyping is attractive because it works for binary 

traits such as survival and it reduces the amount of genotyping, it is not widely 

used in QTL mapping for disease resistance in fish. The only example is 

reported by Lallias et al. (2009) for European flat Oysters.  

Moen et al. (2004) suggested a specific mating design (mating ratio of 1 male 

for 2 females), with maternal half-sib families of 40 offspring, where resistant 

and susceptible fish are compared. It is not easy to obtain such a structure in 

mass-spawning. The sample size should be 5000 fish (the smallest family 

contains 4 offspring in a sample of 500 animals in sea bream) to have at least 40 

offspring per half-sib family. In addition, mass-spawning species reproduce in 

batches and the genotyping of a few microsatellites for all individuals is 

necessary to assign parents and reconstruct families. Therefore there is no 
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advantage anymore in performing a transmission disequilibrium test only on 

affected individuals. The method proposed by Moen et al. (2004) is not 

appropriate for mass-spawning species because of their population structure and 

the rapid development of markers. However, as all animals have to be 

genotyped for parentage assignment, effort could be made to equalize family 

sizes. In that way, the population structure will resemble more the one 

described by Moen et al. (2004). 

Mass-spawning design 

 Chapter 2 investigates the power to detect QTL using a mix of full-sib and 

half-sib families for a mass-spawning species. The trait under study has a 

heritability of 0.5 and the heterozygosity of the QTL is 0.5. We used the 

variance component analysis to detect QTL for a design with 500 and 700 

animals. Pedigrees were structured into 5 paternal families (VC500 pedigree) 

and 7 paternal families (VC700). In both cases, 15 dams contributed to the 

offspring. Those results were obtained by simulation using a natural mating 

population structure described by Brown et al. (2005). In the study by Brown et 

al. (2005) a brood stock of 54 parents was used: 13 males and 21 females 

contributing to 195 offspring. Proportions of parental contributions were 

calculated and simulated for a larger population (thousands of individuals) and 

various brood stock sizes (40, 60 and 80).  

For an 80% power, VC500 and VC700 designs were able to detect QTLs that 

explain 7.6% and 6.2% of phenotypic variation, respectively. Chapter 3 and 

Chapter 4 describe QTL mapping experiments for European sea bass and 

gilthead sea bream. The characteristics of the simulated pedigrees for sea bass 

and sea bream are summarized in Table 1. The aim of the experiments in sea 
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bass and in sea bream was to obtain five sire families of 100 offspring and 15 

dams contributing to the offspring,  but the sea bass pedigree based on realized 

data contained 570 animals (70 additional animals). The number of dams in the 

realized pedigrees was lower than expected based on the simulation. Only two 

females contributed to offspring in the sea bass experiment and 8 in the sea 

bream experiment. The total number of full-sib families was therefore much 

lower than expected; two sire families had approximately 140 progeny and the 

three others about 95. The family sizes for sea bream were more uneven with 

one large full-sib family (≈ 150) and several small ones. The discrepancies 

between the simulated pedigrees based on the population described by Brown et 

al. (2005) and the realized pedigrees obtained in our experiments could be 

explained by several factors: (i) the  population used for simulation was a 

gilthead sea bream population described by Brown et al. (2005) and might not 

be representative of sea bass reproductive behaviour, (ii) the brood stock used 

in the sea bream experiment was divided into actually 4 brood stocks taken 

from the wild at two different locations (Adriatic sea and Mediterranean sea) 

while only one brood stock was used for the population described by Brown et 

al. (2005) and came from a fish farm and (iii) the sample sizes were larger in 

our experiment (>1200 fish with assigned parents per experiment) while less 

than 200 animals composed the sample in Brown et al. (2005). Mass-spawning 

fish do not have the same family structure even within the same species due to 

variation in male success (Bekkevold et al. 2002, Brown et al. 2005). VC500 

and VC700 were simulated according to the population structure described by 

Brown et al. (2005), while realized pedigrees were taken from one experiment 

in sea bass (Chapter 3) and one in sea bream (Chapter 4). Simulated and 

realized population structures were all different from each other, showing the 

lack of repeatability between experiments and between species. Difference 
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observed in population structure can be explained by some stochastic factors 

(i.e. water temperature or non-contributing parents) and by the random 

sampling of individuals to obtain the population.  Therefore, it is difficult to 

predict a population structure for natural mating mass-spawning species. 

 

Table 1 – Characteristics of simulated pedigrees (VC500, VC700) and real data 

set (SEABASS, SEABREAM). 

Pedigree # offspring #sires #dams # Full-sib families 

VC500 500 5 15 70 

VC700 700 7 15 98 

SEA BASS 570 5 2 5 

SEA BREAM 500 6 8 17 

 

Figure 1 shows the power for the simulated pedigrees and the two realized 

pedigrees (from experiment described in Chapter 4 and Chapter 5) for a 

heritability of 0.5 and heterozygosity for the QTL of 0.5. Power was calculated 

as described in Massault et al. (2008). This heritability corresponds to the 

heritability estimated for body weight in sea bass and body length in sea bream 

(Antonello et al. 2009). The simulated pedigree with 700 animals has higher 

power than the simulated pedigree with 500 as demonstrated in Chapter 2. 

Two results to point out are the better performance of the sea bream pedigree 

over VC500 and the better performance of the sea bass pedigree over VC700. 
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With equal trait heritability and equal heterozygosity, the only variable 

parameter here is the population structure. At 80% power, VC500 can detect 

QTLs explaining 7.6%, while the sea bream pedigree, with exactly the same 

number of animals, can detect QTLs explaining 6.5% of the phenotypic 

variation. Heterozygosity was set at 0.5, which is the best case scenario in a 

diallelic system. However, if heterozygosity is lower, realized pedigrees will 

perform worse than the simulated ones. The number of dams being lower in 

simulated pedigree, when heterozygosity is low, the chances of segregation for 

the QTL are lower.  

 

 

Figure 1 -  Deterministic power for simulated and real data in this thesis 

. 
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The realized number of dams contributing to progeny in the sea bream pedigree 

is about half the number of dams that contributed in the simulated scenario 

VC500. The same holds true for the sea bass pedigree and the VC700. At 80% 

power, VC700 pedigree allows the detection of QTLs that explain 6.2%, while 

the sea bass pedigree can detect QTLs that explain 5% of the phenotypic 

variation with 130 animals less. Here again, the number of dams contributing to 

the progeny seems to play an important role in the power to detect QTLs. 

Having few dams increases the power because more information can be 

captured from larger families, on  condition that QTL are segregating in those 

families.  Therefore, the number of dams in the sea bass pedigree associated 

with a higher number of progeny and more equal family sizes is more powerful. 

Looking back at the results from QTL mapping, estimated effects of significant 

QTLs were between 8 and 38% in sea bass and between 4 and 8% in sea bream, 

while simulated pedigree VC500 predicted the detection of QTL sizes as low as 

8% and the realized pedigrees predicted 6.5% in sea bass and 5% in sea bream. 

Although both experimental populations were generated through a natural 

mating mass-spawning event, population structures were different in sea bream 

and sea bass. While 6 males and 8 females contribute to the offspring, with 

uneven family sizes in sea bream, offspring in sea bass were generated by 5 

males and 2 females with more equal family sizes. Uneven family size resulted 

in the detection of smaller QTLs (sea bream). The larger effects observed in sea 

bass QTL analysis can be explained by the presence of only two females that 

might not segregate for small QTLs by chance.  

To conclude, we found a higher power in the realized pedigree than expected 

from the  simulated pedigrees, due to the lower number of dams contributing to 

the offspring. The actual  number of parents contributing to offspring and 
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family sizes in natural mass-spawning populations is difficult to predict because 

of limited knowledge on reproductive behaviour. 

6.2 QTL mapping 

 

Efficiency of two-step procedure 

 

Chapter 3 and Chapter 4 describe a two-step procedure, where first a large 

sample (i.e. 2000 individuals) is subjected to parentage assignment based on a 

small number of markers and then the largest full-sib families are fully 

genotyped and phenotyped for the QTL mapping experiment. Sea bass and sea 

bream studies identified significant QTLs: 2 for body weight and 6 for 

morphology in sea bass and, one for body length at time of death and one for 

survival at day 15 and one for survival to the disease for sea bream. A third 

experiment has been run with stress response, morphology and body weight on 

sea bream, where 9 QTLs were detected for morphology (unpublished results). 

The two step approach was successful in detecting QTLs for both continuous 

traits (i.e. morphology) and categorical traits (i.e. survival).   

However, no significant QTLs were detected for stress response, neither in sea 

bream nor in sea bass. The heritability of cortisol level, a measure of stress 

response, was low (0.08), which may be pointing towards the lack of major 

QTLs. However, reported heritability of cortisol is variable, i.e. moderate to 

high in rainbow trout (Pottinger et al. 1999) and in common carp (Tanck et al. 

2001) or not significant from zero in Atlantic Salmon (Fevolden et al. 1994). 

Tanck et al. (2001) discuss the fact that experimental set-up and model used to 

estimate heritability can be responsible for over-estimation of heritability. 

Experimental factors that can influence the level of cortisol are the species 
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themselves (trout have high heritability and salmon low heritability), fish 

handling during the blood collection, experimental set up (size of tank, length 

of stress inflicted and number of fish in the tank, replication, control) or 

accuracy of measurement.   Using identical set up parameters across 

experiments and an identical procedure of cortisol sampling could decrease the 

variability of the stress response  and allow the comparison between studies. 

Results of sea bass stress and disease resistance of sea bream show that the two 

step experimental design described in Chapter 2 is valuable using interval 

mapping. However, results for the third experiment (sea bream stress response) 

were not conclusive. While the number of animals was roughly the same for the 

three experiments, the number of microsatellites markers varies (Table 2).  For 

both species, the number of chromosome (haploid) is 24. We may assume that 

most of the genome has been captured for the stress response in sea bass and 

the disease resistance in sea bream experiments, as the genetic maps have 

respectively 20 and 24 linkage groups. This is not the case for the stress 

response in the sea bream experiment, which covers only 13 linkage groups and 

10 markers were not linked to any other marker. The results given by the 

analysis for this experiment are incomplete due to the low resolution of the 

genetic map. Some very strong associations were found, where the QTL size 

was equivalent to the genetic variance. The polygenic component was likely 

confounded with the QTL component, which captured all the effects.  

The QTL mapping was done using interval mapping for the experiment on the 

stress response of sea bream with low resolution genetic mapping, where a large 

proportion of markers were unlinked, this method was not successful. A more 

appropriate approach would have been single marker analysis, which is as 

powerful as interval mapping (Haley et al. 1994) but less confident for the 
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location of the detected location.  Another factor that explains the lack of 

success in detection of QTLs is the family structure, with 7 males and 74 

females for 500 animals. Family sizes were much smaller than for the 

experiment on sea bream disease resistance stress, with the biggest full-sib 

family of 18 offspring.  

Table 2 -  The genetic map characteristics for the three experiments 

Experiment # markers Map 

length 

Marker 

spacing 

#linkage 

group 

# unlinked 

markers 

# fish 

Sea bream stress 51 329.1 12.2 13 10 549 

Sea bass stress 90 639 7.7 20 3 570 

Sea bream disease 151 1041.3 5.8 24 11 500 

 

Future prospect of QTL mapping 

 

Once a QTL has been detected and the position narrowed to a specific region, 

the next steps are to undertake fine mapping and confirm the QTL. Confidence 

intervals given by bootstrap analysis with half-sib regression were large, 

usually corresponding to an entire linkage group. In those regions, a large 

number of potential genes are present, but for the moment, very few genomes of 

fish species have been completely sequenced. Therefore employing a candidate 

gene approach to narrow the region to a single causative gene is difficult, as 

candidate genes remain unknown in most cases. However, fine mapping may 

help to reduce the length of the region. Fine mapping consists of typing a large 

number of markers in the specific region to increase the number of 
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recombinations between the markers and QTL and find the true association with 

a single marker (in the best case scenario) using a large population. A QTL 

confirmation experiment uses different animals than the original QTL study, 

and should consider a lower QTL size (usually over-estimated in the discovery 

experiment), an adequate type I error (α) and other parameters such as 

experimental designs and expected heterozygosity.  A number of QTLs have 

been detected in various aquaculture species, but to date, very few have been 

fine-mapped and/or confirmed such as a QTL for IPN resistance, found first by 

Houston et al. (2008) and recently confirmed by Moen et al. (2009) or one of 

the body weight QTL in the sea bass experiment, reported in Chatziplis et al. 

(2007).   

The aim of QTL mapping is to integrate the knowledge on markers associated 

to a quantitative trait into breeding schemes, known as marker-assisted 

selection (MAS). Sonesson (2007) demonstrated the possibilities of such a 

selection method in fish breeding. At the time of the preparation of the 

European project Aquafirst (2004), QTL mapping and development of breeding 

programs relying on MAS was an attractive solution. But MAS has been rarely 

applied in fish breeding to this date (Moen et al. 2009).   

However, QTLs can be a useful source of biological knowledge. The detection 

of regions that influence a quantitative trait could lead to the discovery of 

specific genes responsible for the variation and to a better understanding of 

physiological pathways. It is particularly interesting concerning stress response 

and disease resistance pathways, where only few genes are known accurately. 

Moreover, those two pathways are linked in a way that prolonged stress 

negatively affects the immune response. 

Recently, with the availability of large panels of markers (SNPs especially), 

genome wide association studies (GWAS) have been widely applied in studies 
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of humans. GWAS utilizes a very large number of markers to scan the whole 

genome and find associations with quantitative traits of interest. The main 

advantages of this method are: (i)  it detects association between the trait and a 

SNP across the whole population (Goddard and Hayes 2009) and not within 

families like QTL mapping with half-sib regression and (ii) it is powerful for 

low effective population sizes (Goddard and Hayes 2009). The application of 

GWAS for mass-spawning species is achievable. The latest sex-averaged 

genetic maps for gilthead sea bream has a length of 1241.9 centiMorgans (cM) 

(Franch et al. 2006) and for sea bass of 1373.1  cM (Chistiakov et al. 2008). If  

it is assumed that the genome size of a mass-spawning species is 15 Morgans 

(or 1 500 000 kilobase pairs - kbp), the number of markers to be genotyped is 

fixed by the distance between two markers, assuming that they are evenly 

spaced. One cM is equivalent to 1 000 kbp, therefore for a genome size of 

1 500 000 kbp and length segment between 2 markers of 50 kbp, 100 kbp and 

200 kbp, the number of markers to be genotyped is respectively 7 500, 15 000 

and 30 000. The measure of linkage disequilibrium r2 is given in Table 3 for 

various effective population sizes and various lengths between two markers. 

The values were calculated according to Sved (1971). 

Table 4 shows the deterministic power of GWAS experiment calculated 

according to Luo (1998) for two QTL size explaining 5% and 10% of the 

phenotypic variation. The phenotypic variation was arbitrarily set up at 100, the 

QTL allele frequency at 0.5 and marker allele frequency at 0.5. Power was 

calculated for three population sizes (100, 500, 1000) and for three lengths of 

segment between 2 markers (or three different numbers of markers genotyped) 

with a type I error of 0.01. However, linkage disequilibrium calculated in Table 

3 is deterministic. The actual r2 is unknown, as mass-spawning species have 

been recently domesticated (Duarte et al. 2007). 



General discussion 

147 

Table 3 – Expected linkage disequilibrium (r2) for effective population size Ne 

of 50, 100 and 500 and for different lengths of segment between two markers – 

50, 100 and 200 kilo base pair (kbp)  

 Ne = 50 Ne=100 Ne=500 

50 kbp (30 000 markers) 0.91 0.83 0.50 

100 kbp (15 000 markers) 0.83 0.71 0.33 

200 kbp (7 500 markers) 0.71 0.56 0.20 

 

The power is high when the extent of LD is high (small effective population 

and large number of markers genotyped), as well as the sample size and the 

QTL effect. When only 100 individuals are genotyped, the power of the 

experimental design is lower, even if r2 and QTL variance is high. When LD is 

low, determined by large effective population size (500) and large distance 

between genotyped markers (200 kbp), the explored experimental designs are 

not powerful, even with a large sample size and large QTL variance.  Even if 

the number of markers remains limited today for mass-spawning species, 

GWAS can be achieved with at least an 80% chance to detect QTLs with an 

effective population size of 100, 7 500 genotyped markers (200 kbp) and 500 

animals genotyped. Power can also be influenced by frequencies of marker and 

QTL sizes, which are determined for a specific trait. Here, we chose two QTL 

sizes of 5% and 10% of phenotypic variation. But in reality, some QTLs would 

be as large as those we used and some others will be much smaller. With 

smaller QTL sizes, even with large population sizes and high r2, power will be 

lower and they might not be detected.   
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GWAS for mass-spawning seems to be powerful to detect association between 

trait and markers. The complex population structure should not have an 

important impact because the genome scan is done across the population and 

within families (Goddard and Hayes 2009). However, it is difficult to predict 

linkage disequilibrium pattern as no r2 has been reported either for sea bream or 

sea bass. 

 

Table 4 – Power of experimental design for GWAS with 3 sample population 

size (N), three lengths of segment between 2 markers (length) and two QTL 

size (h2q)  

Length  N = 100 

h2q = 0.05    h2q = 0.1 

N = 500 

h2q = 0.05     h2q = .1 

N = 1 000 

h2q = 0.05    h2q = 0.1 

Ne = 50, 50 kbp  0.23  0.58 0.97 1 1 1 

Ne = 100, 50 kbp  0.21 0.52 0.96 1 1 1 

Ne = 500, 50 kbp  0.10 0.27 0.75 0.99 0.98 1 

Ne = 50, 100 kbp 0.21 0.52 0.96 1 1 1 

Ne=100, 100 kbp 0.17 0.43 0.91 1 1 1 

Ne=500, 100 kbp 0.06 0.15 0.51 0.89 0.88 0.99 

Ne = 50, 200 kbp 0.17 0.43 0.91 1 1 1 

Ne=100, 200 kbp 0.12 0.31 0.81 0.99 0.99 1 

Ne=500, 200 kbp 0.03 0.08 0.27 0.62 0.62 0.95 
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6.3 Selective breeding 

 

Chapter 5 reports genetic gain, inbreeding rate and accuracy of selection for 

genomic selection (GBLUP), BLUP selection and mass selection, without 

restriction on inbreeding for various heritabilities, various numbers of selection 

candidates, various intensities of selection and  various mating designs.  

Marker assisted selection 

Chapter 5 mentions three main selective breeding methods: phenotypic 

selection, BLUP selection and genomic selection. Before the concept of 

genomic selection appeared (Meuwissen et al. 2001), studies on selective 

breeding were mainly focused on how to implement marker assisted selection 

(MAS).  

In addition to the three methods of selection presented in Chapter 5, we 

simulated a breeding program including a known QTL (marker assisted 

selection) using a controlled mating design. Sixteen males were mated to thirty-

two unrelated females, forming 32 full-sib families of 8 males and 8 females 

offspring (512 in total). At each new generation, intensity of selection was 

0.0625 for males (16) and 0.125 for females (32). We simulated one QTL, 

which explained 25% of the genotypic variance, therefore explaining 5% of 

phenotypic variance. To include the effect of the QTL on the phenotype, the 

quantitative trait is correlated with both the polygenic component and the QTL 

as described by Schrooten et al. (2005). Genetic variance was set at 15  to 

compare with the results from Chapter 5 and genetic gain, rate of inbreeding 

and accuracy were calculated per generation deterministically using SelAction 

(Rutten et al. 2002). Table 5 reports genetic gain, rate of inbreeding and 

accuracy of selection for MAS, BLUP, GBLUP and mass selection.  
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From the results presented above, genetic response generated by MAS selection 

is higher than BLUP, but lower than GBLUP. Inbreeding rate in BLUP is 

higher than GBLUP, while inbreeding rate in Mass is lower than GBLUP. 

While MAS is expected to be efficient for a controlled mating design, this 

method is not widely used in commercial populations of fish. The attention has 

shifted to genomic selection for aquaculture breeding schemes in the past few 

years (Sonesson and Meuwissen 2009). The limited number of studies focused 

on QTL detection and validation could be an explanation for the lack of 

implementation of MAS in breeding schemes. GWAS offers the possibility to 

detect a large number of QTLs, without the need of a validation step. The sum 

of QTL effects can explain a large part of genetic variance. Therefore, more 

genetic gain can be achieved, while spending less time on experimentation to 

detect and validate QTLs. But implementation of marker-assisted selection 

might be problematic in the long term with large QTLs, because of the 

possibility of hitch-hiking due to strong selection in the first generations 

(Hospital 1997).  

Inbreeding for natural mating mass spawning species 

As shown in Chapter 5, the inbreeding rate is very high with any selection 

method used. Inbreeding rate decreases when we apply a controlled mating 

design. Sonesson and  Meuwissen (2000) explored a number of options to 

constrain inbreeding rate to 1% per generation using the optimum contribution 

method (Meuwissen 1997), where numbers of selected individuals for the next 

generations varies from generation to generation to maintain inbreeding rate at a 

fixed value. The proposed strategies of Sonesson and Meuwissen (2000) to 

restrict inbreeding resulted in higher genetic improvement compared to random 

mating. But all solutions required the possibility to choose which males to mate 
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Table 5 -  Genetic gain (∆G) , increase of inbreeding rate (∆F ) and accuracy of 

mass (Rgg) , MAS, BLUP and GBLUP selection method for controlled mating 

(16 males X 32 females, 16 offspring per full-sib families), heritability of 0.2  

 

 ∆G ∆F Rgg 

Mass   1.72 1.70% 0.37 

BLUP  2.23 6.30% 0.44 

MAS  2.62 1.60% 0.77 

GBLUP  2.92 4.70% 0.52 

 

to which females, which is not possible in natural mating mass-spawning 

species. Therefore optimum contribution is one way to restrict inbreeding 

which can be applied to natural mating mass-spawning species. However, 

reducing the number of selected animals to constrain the inbreeding rate could 

be disastrous for mass-spawning species, because of the variability in family 

size and uneven contribution of parents. Dominant parents will contribute to 

more offspring and potential candidates from small families will be eliminated. 

A higher number of offspring from the largest families are therefore expected to 

be selected for the next generation and inbreeding will increase. The problem 

could be avoided by increasing the population size considerably. Another 

solution that could be effective in natural mating fish would be to restrict the 

number of offspring selected per sire (or dams) but keeping the number of 

animals selected per generation constant. This would lead to less genetic 

improvement compared to no restriction on inbreeding. Finally, keeping several 
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separate brood stock and select animals from all brood stock can help to control 

inbreeding (Blonk et al. 2009). However, in practice, the implementation of this 

solution will require a higher number of tanks and the handling of larger 

populations, which might not be always feasible in fish farms (cost and space to 

have several tanks). 

 

6.4. Parentage assignment 

Parentage assignment is a necessary step to be able to reconstruct pedigrees of 

mass-spawning species. Natural mating is still widely used in fish farms to 

produce the next generation. This implies that offspring are kept in the same 

tank, where it is impossible to distinguish families. For QTL mapping and 

selection purpose, it is essential to perform parentage assignment and retrieve 

the original pedigree. It requires first to genotype all offspring for a panel of 

markers and then applying statistical methods to allocate parents to offspring. 

The parentage assignment for the sea bream experiment described in Chapter 4 

used 7 microsatellites for 1753 fish (Antonello et al. 2009). Out of the 1753 

genotyped fish, parents were allocated for 1257 (roughly 70%). The statistical 

method used (exclusion method) here did not allow for any genotyping errors 

and therefore decreases the number of allocations. Using less stringent 

thresholds (likelihood approach), the authors could assign parents for nearly 

1500, but with less certainty. Using a higher number of microsatellites will 

increase the proportion of correct assignment (i.e. 15 markers). It is important to 

consider that, out of the microsatellites used; some will be excluded because 

they do not show polymorphism. Antonello et al. (2009) discarded markers 

from the 9 that were originally typed. As genotyping costs are 
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decreasing,adding more markers to increase the accuracy of parentage 

assignment is feasible.  

The pedigree can also be reconstructed by measuring molecular relatedness 

(Toro et al. 2002), where relatedness is calculated as the similarity between 

marker alleles (Li et al. 1993). Blonk et al. (2010) showed, that pedigree 

estimation using the molecular relatedness method is more appropriate to 

natural mating mass-spawning species, due to skewed parental contribution to 

offspring and variable family sizes.  

Errors in parentage assignment could have a large impact when using a 

selection method that relies on pedigree, such as BLUP as mentioned by Blonk 

et al. (2010). The breeding values will be over- or under-estimated for an 

animal, which is assigned to the wrong parents.  But pedigree reconstruction is 

not necessary for mass selection and genomic selection. The practical and time 

limitations raise the question whether or not pedigree reconstruction is a 

necessary step in selection. Mass selection is solely based  the  record of its own 

performance, while genomic selection uses marker data to evaluate the 

relationship between individuals without a pedigree. However, the lack of 

pedigree information results in higher inbreeding in mass selection, because 

sibs will have a higher chance of being selected, especially for high heritability 

traits. The information provided by the pedigree is valuable to restrict 

inbreeding in mass selection. In the case of genomic selection, the information 

from the genomic relationship matrix essential for the breeding value estimation 

replaces the pedigree information and that information can also be used to 

minimize genomic relationship between selected individuals to restrict 

inbreeding. Therefore no pedigree in parallel is necessarily needed to constrain 

inbreeding. 
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Conclusion 

Despite the inherent difficulties linked to skewed parental contribution to 

offspring and variable family size, selective breeding in natural mating mass-

spawning is feasible through a common selection method (i.e. mass, BLUP and 

MAS selection). Genomic selection is also promising as it works at the 

population level, not at the family level for the detection of QTLs (GWAS). 

However, in any of the selection method studied in this thesis, inbreeding rate is 

high and efforts need to be made to constrain inbreeding rate for natural mating 

mass-spawning species. 
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SUMMARY 

Several aquaculture fish species reproduce through mass-spawning which 

allows little control over reproduction and generates a complex population 

structure with unequal family sizes and uneven parental contributions. As a 

result, mass selection is the most common method for selective breeding in 

these fish species at present. However, there is growing interest for genetic 

improvement of natural mating mass-spawning species and, following the 

availability of large panels of genetics markers, implementation of selection 

based on genomic information (marker-assisted selection or genomic selection) 

becomes a viable option.  

This thesis investigates different aspects of utilizing genomic information in 

selective breeding of natural mating mass-spawning species, starting with the 

design of QTL mapping experiments (Chapter 2), followed by the actual 

results from QTL mapping experiments in European sea bass and gilthead sea 

bream for stress response and disease resistance (Chapter 3 and Chapter 4). 

Finally, we compared selection response and rate of inbreeding of various 

selection methods for natural mating mass-spawning species (Chapter 5).  

Chapter 2 describes three experimental designs to perform QTL detection in 

aquaculture species: “hierarchical design” where two divergent lines are 

crossed, “large full-sib families design” where selective genotyping can be 

applied and “mass-spawning design” for species such as sea bream and sea 

bass, where natural mating is used. We concluded that family structure and 

QTL size have a large impact on the power to detect QTL, in all three designs, 

while the polygenic heritability has a small impact on the power. Marker



Summary 

159 

density does not greatly affect the power when the distance between markers is 

less than 10 cM; but ideally spacing should not exceed 20 cM. For each of the 

systems studied, it is possible to design an experiment that would have an 80% 

power to detect a QTL of moderate effect (explaining between 1.5 and 5% of 

the trait variation) by genotyping 1000 or fewer individuals. 

Chapter 3 and Chapter 4 summarize the results of QTL mapping for stress 

response and disease resistance in sea bream and sea bass. Chapter 3 focuses 

on linkage analysis performed for stress response and two additional traits 

(body weight and morphology) in sea bass using the 2-step design for mass-

spawning species presented in Chapter 2. 2122 fish were subjected to 

confinement stress followed by measures of cortisol, body weight and a range 

of body proportions. The pedigree was reconstructed on the basis of 31 genetic 

markers. 570 fish from the five largest families were selected for QTL mapping 

and genotyped for 67 additional markers. Two statistical methods to detect QTL 

were used: half-sib regression analysis (paternal and maternal) and a variance 

component analysis accounting for all family relationships. Two significant 

QTLs were detected for body weight, located on linkage group 4 and 6. Six 

significant QTLs were detected for morphology, located on linkage group 1B, 

4, 6, 7, 15 and 24. Suggestive QTLs were detected for stress response located 

on linkage group 3, 14 and 23. The QTLs explained between 8% to 38% of the 

phenotypic variance. Chapter 4 uses the same methodology as described in 

Chapter 3 to detect QTL for disease resistance in gilthead sea bream. After 

exposure to Photobacterium damselae subsp. piscicida, day of death and body 

length at time of death were recorded.  Parentage assignment was performed 

using a panel of 7 microsatellite markers. 500 fish from the largest families 

were selected for genome-wide genotyping using 151 microsatellite markers. 
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Besides ‘day of death’ and ‘body length at time of death’, two binary traits were 

defined to investigate whether ‘early’ and ‘late’ survival were under different 

genetic control: survival at day 7 and survival at day 15. We detected two 

significant QTL for disease resistance: one on linkage group 3 for survival at 

day 15 (‘late’ survival) and one on linkage group 21 for day of death (overall 

survival) explaining 6% and 4% of the phenotypic variation, respectively. 

Marker Id13 was identified as being linked to a QTL with an effect on survival 

after exposure to Photobacterium damselae subsp. piscicida. A large significant 

QTL was detected for body length on linkage group 6, explaining 5-8% of the 

phenotypic variation. 

Chapter 5 compared selective breeding using three methods of selection in 

natural mating mass-spawning: selection based on own performance (mass 

selection), selection using own performance and performance of family 

members (BLUP, i.e. assuming family relations have been reconstructed) and 

selection based on own performance and performance of family members using 

a genomic relationship matrix (GBLUP). Natural mating populations were 

simulated to reproduce the population structure observed in gilthead sea bream 

and selection was for 10 generations without applying any restrictions on the 

increase of inbreeding. We simulated breeding schemes that differed with 

respect to the number of selection candidates, the number of selected parents, 

the heritability of the trait and the mating scheme (natural or controlled mating). 

The rate of inbreeding was high in all simulated scenarios. Lowest rates of 

inbreeding were found when mass selection was used. BLUP resulted in a 

higher rate of inbreeding than GBLUP. Average genetic merit in generation 10 

was always highest for GBLUP whereas BLUP was superior to mass selection 
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only at lower heritabilities. We consider GBLUP a more efficient method, but 

steps must be taken to constrain inbreeding rate.  

Chapter 6 discusses four main issues: experimental design for QTL mapping in 

fish species, future prospects of QTL mapping experiments, selective breeding 

using genomic information and finally parentage assignment. We focused on 

two main experimental designs: selective genotyping and the two-step design 

for natural mating mass-spawning species. Selective genotyping is 

advantageous if phenotypes are available on a large number of animals, but is 

not very efficient if interest is in multiple traits or binary traits (i.e. survival). 

The two-step design for natural mating mass-spawning species is complicated 

by the upredictability of family sizes. With our 2 QTL mapping studies, we 

demonstrated that the 2-step procedure is efficient for mass-spawning species. 

However, it is not very powerful when using low resolution genetics maps or if 

traits have low heritabilities. Genome wide association studies (GWAS) could 

be an alternative to the 2-step design: the efficiency of the method is less 

dependent on the family structure and it is more powerful than linkage studies. 

However, application of GWAS requires a large number of markers.  

The comparison of MAS with BLUP and GBLUP shows that MAS using a 

QTL explaining 25% of the genetic variation results in a relatively high 

response to selection, the smallest inbreeding rate and the highest accuracy. 

However, few reports on QTLs of this size in fish limit the application of this 

method. Inbreeding is a major issue in selective breeding in mass-spawning 

species. Limiting the number of offspring per parent or using multiple spawning 

units could limit the rate of inbreeding. 
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Despite the inherent difficulties linked to unequal parental contributions, 

selective breeding in mass-spawning species while restricting the rate of 

inbreeding is challenging but feasible.  
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SAMENVATTING  

Diverse vissoorten planten zich natuurlijk en in groepen voort. Er is weinig 

controle op deze vorm van reproductie en dit leidt tot een ingewikkelde 

familiestructuur met grote verschillen in familiegrootte en ongelijke bijdragen 

van ouders. Het gevolg is dat selectie op grond van eigen prestatie de meest 

gebruikte selectiemethode is bij deze vissoorten. Er is echter groeiende 

belangstelling voor de genetische verbetering van soorten die zich natuurlijk en 

in groepen voortplanten. De beschikbaarheid van grote hoeveelheden 

genetische merkers brengt ook alternatieve selectiestrategieën zoals merker 

ondersteunde selectie of genomische selectie binnen handbereik. 

Dit proefschrift onderzoekt verschillende aspecten die gerelateerd zijn aan de 

implementatie van selectie met behulp van merkers voor vissoorten die zich 

natuurlijk en in groepen voortplanten. Hoofdstuk 2 handelt over het efficiënt 

opzetten van QTL detectie experimenten in vis en schaaldieren. Vervolgens 

worden in hoofdstuk 3 en 4 QTL detectie experimenten beschreven in de 

Europese zeebaars en de goudbrasem voor stress respons en ziekteresistentie. 

Ten slotte onderzochten we de selectierespons en de inteelttoename van 

verschillende selectiestrategieën voor soorten die zich natuurlijk en in groepen 

voortplanten (Hoofdstuk 5). 

Hoofdstuk 2 beschrijft drie experimentele ontwerpen voor QTL detectie: "het 

hiërarchische ontwerp" waarin twee genetisch verschillende lijnen worden 

gekruist, "het ontwerp met grote full-sib families" waar selectieve genotypering 

kan worden toegepast binnen families en "het ontwerp voor soorten die zich 

natuurlijk en in groepen voortplanten". Dit laatste ontwerp is geschikt voor 
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soorten zoals de goudbrasem en de zeebaars waar natuurlijke voortplanting 

wordt gebruikt. We concluderen dat in alle drie ontwerpen familie structuur en 

de grootte van de QTL effecten een belangrijk effect hebben op het 

onderscheidend vermogen. De polygene erfelijkheidsgraad heeft een gering 

effect op het onderscheidend vermogen. De merkerdichtheid heeft een gering 

effect op het onderscheidend vermogen wanneer de merkerafstand kleiner is 

dan 10 cM. De optimale merkerafstand moet niet groter zijn dan 20 cM. Voor 

de onderzochte ontwerpen is het mogelijk om met 1000 of minder individuen 

een QTL dat 1.5 tot 5% van de variatie verklaart met 80% zekerheid opsporen. 

In hoofdstuk 3 en hoofdstuk 4 worden de resultaten van QTL detectie voor 

stress respons en ziekteresistentie in goudbrasem en zeebaars beschreven. 

Hoofdstuk 3 richt zich op een koppelingsanalyse voor de reactie op 

insluitingstress en twee aanvullende kenmerken (lichaamsgewicht en 

morfologie) in zeebaars. Hierbij is gebruik gemaakt van het 2-staps ontwerp 

voor soorten die zich natuurlijk en in groepen voortplanten zoals gepresenteerd 

in hoofdstuk 2. 2212 vissen werden ingesloten, wat resulteert in stress, en dit 

werd gevolgd door een cortisolmeting en het vaststellen van het gewicht en 

enkele lichaamsmaten. De afstamming werd gereconstrueerd op grond van 31 

microsatelliet merkers. Hierna werden 570 vissen van de vijf grootste families 

gegenotypeerd voor 67 extra microsatelliet merkers en deze vissen werden 

vervolgens gebruikt voor de QTL detectie. Twee statistische methoden voor 

QTL detectie werden gebruikt: de half-sib regressie analyse en de 

variantiecomponent analyse die gebruik maakt van alle familierelaties. Twee 

significante QTLs werden gevonden voor lichaamsgewicht op koppelingsgroep 

4 en 6. Zes significante QTLs werden gevonden op koppelingsgroep 1b, 4, 6, 7, 

15 en 24 voor morfologische kenmerken. Suggestieve QTLs werden gevonden 
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op koppelingsgroep 3, 14 en 23 voor stress respons. De QTLs verklaren tussen 

de 8% en de 38% van de fenotypische variatie.  

Hoofdstuk 4 maakt gebruik van dezelfde methodiek als beschreven in 

hoofdstuk 3 om QTLs voor ziekteresistentie op te sporen in goudbrasem. Na 

blootstelling aan Photobacterium damselae subsp. piscicida, werden levensduur 

(in dagen, gemeten vanaf het moment van blootstelling) en de lichaamslengte 

ten tijde van overlijden geregistreerd. De ouders van de 1753 vissen werden 

toegewezen op grond van de informatie van 7 microsatelliet merkers. 500 

vissen van de grootste families werden geselecteerd voor typering met 151 

microsatelliet merkers. Naast levensduur en de lichaamslengte ten tijde van 

overlijden werden ook twee binaire eigenschappen gedefinieerd om te 

onderzoeken of overleving gedurende het begin van het experiment en 

overleving aan het eind van het experiment genetisch gezien dezelfde 

eigenschap is: overleving op dag 7 en overleving op dag 15. We detecteerden 

twee  significante QTLs voor ziekteresistentie: één op koppelingsgroep 3 voor 

overleving op dag 15 en één op koppelingsgroep 21 voor levensduur. Het QTL 

op koppelingsgroep 3 verklaart 6% van de fenotypische variatie en het QTL op 

koppelingsgroep 21 verklaart 4% van de fenotypische variatie. Merker Id13 op 

koppelingsgroep 21 kon worden geïdentificeerd als zijnde gekoppeld aan een 

QTL met een effect op levensduur na blootstelling aan Photobacterium 

damselae subsp. Piscicida. Een QTL met een groot en significant effect op 

lichaamslengte kon worden gelokaliseerd op koppelingsgroep 6. Het QTL 

verklaart 6-8% van de fenotypische variatie. 

In hoofdstuk 5 worden 3 verschillende selectiemethoden voor vissoorten die 

zich natuurlijk en in groepen voortplanten vergeleken: selectie op eigen 

prestatie, selectie op grond van eigen prestatie en op basis van de prestaties van 
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familieleden (BLUP, aannemende dat familierelaties worden gereconstrueerd) 

en selectie op grond van eigen prestatie en op basis van de prestaties van 

familieleden gebruikmakend van een genomische relatiematrix (GBLUP). Een 

zich natuurlijk voortplantende populatie werd gesimuleerd op basis van de 

informatie verkregen van de goudbrasem. De populatie werd geselecteerd 

gedurende 10 generaties zonder dat er enige beperkingen werden gesteld wat 

betreft de inteelttoename. Fokprogramma’s werden gesimuleerd die verschilden 

wat betreft het aantal selectiekandidaten, het aantal geselecteerde ouders, de 

erfelijkheidsgraad van het kenmerk en het paringsschema (natuurlijke paring of 

gecontroleerde paring). De inteelttoename was hoog in alle gesimuleerde 

situaties. BLUP resulteert in een grotere inteelttoename dan GBLUP. Het 

genetisch niveau in generatie 10 was altijd het hoogst voor GBLUP. BLUP 

resulteert in een hoger genetisch niveau in generatie 10 dan selectie op grond 

van eigen prestatie wanneer de erfelijkheidsgraad van het kenmerk relatief laag 

is. We beschouwen GBLUP als een efficiënte selectie methode maar dan 

moeten er wel maatregelen worden genomen om de inteelttoename te beperken. 

Hoofdstuk 6 bediscussieert vier belangrijke punten voor genetisch onderzoek in 

vissen: experimentele ontwerpen voor QTL detectie, de toekomst van QTL 

detectie experimenten, selectie met gebruik van genomische informatie en 

tenslotte de reconstructie van afstamming. We concentreerden ons op twee 

belangrijke experimentele ontwerpen: het selectief genotyperen en het twee-

stappen ontwerp voor QTL detectie in soorten die zich natuurlijk en in groepen 

voortplanten. Het selectief genotyperen is voordelig wanneer fenotypes van een 

groot aantal dieren beschikbaar zijn, maar niet erg geschikt wanneer interesse 

bestaat in het detecteren van genen voor meerdere kenmerken of wanneer het 

een binair kenmerk (bijvoorbeeld overleving) betreft. Het twee-stappen ontwerp 
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voor QTL detectie in soorten die zich natuurlijk en in groepen voortplanten 

wordt bemoeilijkt door de onvoorspelbaarheid van de familiegrootte. We 

hebben met onze twee QTL detectie studies aangetoond dat het twee-stappen 

ontwerp toepasbaar is. Het onderscheidend vermogen is echter gering wanneer 

de merkerresolutie laag is of wanneer de erfelijkheidsgraad van het kenmerk 

laag is. Wanneer in de toekomst voldoende genetische merkers beschikbaar zijn 

dan is een associatiestudie een goed alternatief. Associatiestudies zijn minder 

afhankelijk van familiestructuur en hebben een beter onderscheidend vermogen.  

Vergelijking van merker ondersteunde selectie (MAS) met BLUP en GBLUP 

laat zien dat MAS gebruikmakend van een QTL dat 25% van de genetische 

variatie verklaart resulteert in een hoge selectierespons, de laagste 

inteelttoename en de hoogste nauwkeurigheid van selectie. Er zijn echter weinig 

studies die QTLs van een dergelijke omvang melden en dit beperkt de 

toepassing van merker-ondersteunde selectie. De inteelttoename is een 

belangrijk probleem bij het selectief verbeteren van soorten die zich natuurlijk 

en in groepen voortplanten. Het beperken van het aantal nakomelingen per 

ouder of het gebruik maken van meerdere voortplantingsgroepen kan de 

inteelttoename beperken.  

Het selectief verbeteren van zich natuurlijk en in groepen voortplantende 

soorten terwijl de inteelt wordt beperkt is een uitdaging maar is zeker niet 

onmogelijk.  
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