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Abstract 
 
To safeguard rivers from flooding, river floodplains in the Netherlands have been enlarged to 
accommodate the water discharge. Many floodplains however are also developed for nature 
rehabilitation, resulting in natural processes of vegetation succession. Remote sensing is seen as an 
important tool to map and monitor the vegetation structure in order to provide river managers with 
up-to-date information on hydraulic roughness of the vegetation. 
The objective of this study was to develop a methodology for monitoring the location and structure 
properties of vegetation structure types in a river floodplain ecosystem using multi-directional 
hyperspectral data. In this study data were used from the CHRIS sensor onboard the PROBA 
satellite acquired in 2005 over the test site Millingerwaard, a river floodplain ecosystem along the 
river Waal in the Netherlands. CHRIS data are particularly suitable for mapping vegetation 
structure because of its high spatial resolution (~17m*17m), spectral coverage (18 bands from 400 
nm to 1050 nm) and angular sampling (5 viewing angles). 
First, the CHRIS images were classified into eight major land use classes, using different 
classification techniques. Best results were obtained from the CHRIS nadir classification, using the 
maximum likelihood classifier and multiple angular images for determining the regions of interest. 
After classification, relevant vegetation structure properties such as leaf area index (LAI) and 
fractional cover (fCover) were quantified on a pixel-by-pixel basis by using the canopy reflectance 
model FLIGHT. FLIGHT is a physical based radiative transfer model that simulates canopy 
bidirectional reflectance by using Monte Carlo ray tracing. LAI and fCover maps were computed 
through model inversion of the CHRIS data for the three main classified vegetation structure types 
“herbaceous”, “shrubs” and “forest”. All three vegetation classes were modelled as a 1D turbid 
medium, the forest class was additionally modelled with explicit 3D canopy geometry. The 
outcomes were validated with in situ LAI and fCover measurements that were collected using 
hemispherical photography and TRAC measurements.  
Although physically simplified, the 1D modelling approach provided superior results compared to 
the 3D approach, probably due to the less extensive parameterization process. LAI and fCover 
maps were computed for the CHRIS viewing angles in nadir direction, backscattering direction 
(view zenith angle of -36°) and forward scattering direction (view zenith angle of +36°). The 
backscattering direction gave the best results, and showed most variation in LAI and fCover values. 
Further research is needed in order to find out if the inferred vegetation structure maps can be 
related to hydraulic roughness values and thereby provide relevant information to river managers. 
 
 
Keywords: CHRIS/PROBA, multi-angular, vegetation structure types, maximum likelihood (ML) 
classification, Leaf area index (LAI), fractional cover (fCover), radiative transfer (RT) model, 
FLIGHT 
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1. Introduction 

1.1 Background 
Perhaps even in the Netherlands few people realise that about 65% of the Dutch land area would be 
submerged by sea or river water, if all dikes were removed. Dike building started in the Middle 
Ages in the Dutch Delta which was drowned gradually under influence of a relative rise of the 
mean sea level. The relative mean sea level rise amounted during the last centuries to 10-15 cm per 
century. Moreover, the land surface subsided locally due to compaction of peat and clay layers, 
caused by drainage, making dike building even more important to keep dry feat (Van de Ven, 
1993). Each century, catastrophic floods damaged sea and river dikes several times, the last being 
the storm surge of 1953 in the Southwest part of the Netherlands. After each event dikes were 
rebuilt and strengthened, but after the flood of 1953, the Dutch Deltaplan was set up, which aimed 
at reaching a much higher protection against flooding. The coastal zones were protected by 
shortening of the coastline from 1300 to 600 km and heightening of the sea dikes with 1.5 to 2 m, 
thus realising a lower flooding risk of only 1% per century (Van de Ven, 1993; Groen & Schmeink, 
1981). For rivers, the Delta plan aimed at a flooding risk of 3% per century for the 800 km of river 
dikes, with a design peak flow of 18.000 m3/s. But this was eventually lowered to 8% per century, 
with a design peak flow of 16.500 m3/s at Lobith (Groen & Schmeink, 1981).  
 
The Rhine is a highly managed river system in the Netherlands. During the 18th, 19th and 20th 
century, regulation, normalization and canalization measures have been implemented to improve 
both discharge and navigation of the river. These measures, together with the agricultural 
development in the floodplains caused the Rhine to loose its natural meanders and parts of its 
floodplain system (Van de Ven, 1993; Groen & Schmeink, 1981). 
The near-floods of the river Rhine in 1993 and 1995 reactivated river dike building. At the same 
time, global warming was recognized as a main problem, with its influence on sea level change and 
rainfall (IPCC, 2007). Recent climate studies show that the temperature in the Netherlands will 
increase during the 21st century. Also, a rise of 35-85 cm of the absolute mean sea level in 2100 
compared to 1990 is expected, which means that river water levels will also rise. In winter, 
precipitation will increase in Northern Europe leading to higher peak flows in the Rhine. These 
effects lead to an increased flood risk for the floodplains and its hinterland (KNMI, 2006; 
Ministerie van V&W, 2005). In 2007 the Dutch government decided to follow a complete new 
approach to river management, called “Space for the River” (PKB “Ruimte voor de Rivier”; 
Ministerie van V&W 2005; 2007). The Netherlands will suit itself more to the water instead of the 
other way around. Giving the river more space involves besides diminishing flood risks, 
multidisciplinary spatial planning in which economic, landscape and ecological values will be 
improved, with special attention to nature conservation and development (Ministerie van V&W, 
2007). Space for peak flows is sought in creating a larger water discharge capacity by widening and 
deepening the river beds and not in heightening the dikes even more.  
 

1.2 Problem definition 
The Millingerwaard is a river floodplain ecosystem next to the river Waal near Nijmegen where 
nature development has taken place on former agricultural land. The Millingerwaard is one of the 
places where space for the river is created for extra water storage in times of high water level in the 
river (Ministerie van V&W, 2007). This means that when the water discharge of the river is high, 
the water surplus will flow into the side channels and river floodplains of Millingerwaard. Since 
Millingerwaard is part of a nature rehabilitation project where spontaneous vegetation development 
occurs in this ecosystem, natural succession has taken place and softwood forests have developed. 
Softwood (e.g. willow) trees however, with their broad structure (figure 1), and other vegetation 
types hamper the river discharge. This vegetation causes resistance to the water flow through the 
floodplain (“Nederland Leeft met Water”, 2008). Moreover, floods cause sedimentation processes, 
especially in softwood forests. This accumulation of material decreases the flood flow velocities 

 1 



and increases the water surface (Geerling et al., 2008). Monitoring of these river floodplains is 
necessary to see how vegetation develops in the different floodplain ecotopes. In case there is too 
much vegetation that causes problems for water discharge, river managers have to take adequate 
measures by removing this vegetation.  
 
To intervene with the spontaneous vegetation growth, Cyclic Floodplain Rejuvenation (CFR; Duel 
et al. 2001, cited in Geerling et al., 2008) has been introduced for the Rhine river systems. It 
implies periodic artificial disturbance of the floodplain ecosystems, like removal of climax 
vegetation. Pioneer stages reappear and ecological succession starts again. In order to know where 
to remove this climax vegetation, data about the distribution of vegetation stages and the magnitude 
of resistance it causes to the water flow are needed. Accurate monitoring of location and structure 
properties of different vegetation structure types is important information for river managers with 
respect to river flooding. For this purpose Rijkswaterstaat (RWS) has made an ecotope 
classification for the Rhine system. It is part of the biological monitoring of the Dutch fresh waters 
(Rijkswaterstaat, 2008-2), a commitment for the European programme “Kaderrichtlijn Water”. The 
ecotope map is the starting point for hydraulic calculations. It is used to derive water resistance 
values of the vegetation in a floodplain with high water levels. 
The process of creating the ecotope classification took three years. The first classification was 
ready in 1997 and the second in 2008. In future RWS strives to make the classification every 6 
years. It is a very time-consuming and expensive way of monitoring the Dutch river and floodplain 
ecosystems. The +/- 70 classified RWS ecotopes are more or less homogeneous ecological units of 
which the composition is determined by geomorfological, hydrological, vegetation, land use and 
anthropogenic aspects. First, digital false colour aerial photographs are made. Then the 
photographs are interpreted and ecotopes (polygons and lines) are determined. With an overlay 
procedure using GIS software the ecotopes are combined with data on flood duration, management, 
water depth and morfodynamics. The outcome is a rough ecotope file. After translating it into 
standards the final ecotope map is created. This combination of methods causes some problems and 
uncertainties in the ecotope maps. First, the overlay procedures generated a (too) large amount of 
small areas. Those areas had to be re-distributed to the adjacent areas, which is a cause of 
uncertainty. It offers a very detailed classification, but for determining ecotopes that are relevant 
for flooding, so much detail is probably not needed. A validation of the RWS ecotope map was 
made in the field, but the amount of field samples was not large enough to be able to make 
statistical judgements with enough confidence. For a good quality of the ecotope maps more 
validations still have to be done. Furthermore there are geometric and thematic uncertainties in the 
maps. The overall thematic accuracy of the classification is 71%. The rough areas and bushes 
scored relatively low with respectively 65% and 46% of accuracy (Rijkswaterstaat, 2008-2). Those 
two ecotopes are very important to map for flooding events, because they have a large influence on 
the water flow (Geerling et al., 2008). And finally, there is no information on spatial variability (e.g. 
information on structure properties) within the units. 
 
Remote sensing gives the opportunity to observe the earth from a distance and to obtain 
information about an object or an area by means of a sensor on board of a satellite or airplane. This 
makes large scale data acquisitions possible and therefore remote sensing is a promising tool to 
monitor vegetation development and vegetation structure because it can cover a large area and 
methods can be automated (Lillesand et al., 2004).  

 
 
 
 
 
 
 
Figure 1: Willow trees next to the river Waal 
in Millingerwaard (photography: Erika 
Romijn) 
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Remote sensing is a promising tool for monitoring floodplain vegetation development. When 
remote sensing can be used to monitor the vegetation structure types of river floodplains and their 
structure properties, it could be a fast and cheap method for monitoring, compared to the traditional 
monitoring of RWS. From just one remote sensing image the necessary data can be derived and no 
overlay procedures, which are a cause for uncertainty, have to be done. However, there is spatial 
heterogeneity in river floodplains and this requires detailed spectral information to distinguish 
different vegetation structure types from each other. Also, mixing of different vegetation structure 
types within a pixel can be a problem. Apart from the location of the vegetation structure types, 
quantitative structure properties like leaf area index (LAI) and fractional cover (fCover) within 
these units are of importance for river managers. They show the variability within ecological units 
and indicate the places with the highest accumulation of biomass, which cause resistance for the 
water in flooding events. LAI is an important structure property of the vegetation, because by using 
photosynthesis models an estimation of the net primary production (NPP) and vegetation biomass 
can be derived from it (Kooistra et al., 2008). If a model could be developed with the remote 
sensing image as input and the variability of the vegetation structure as output, than monitoring 
becomes an automated process.  
Multi-angular data give the opportunity to observe the land surface under different angles. This can 
have an added value compared to one-directional remote sensing images or aerial photographs. 
They only give a view on the top of the canopy. This makes it difficult to distinguish for example 
bushes from trees. Multi-angular data could have an improvement for this aspect, because a 
combination of images under different angles can give information on the woody parts of the 
vegetation, which can only be observed under an angle. Nevertheless, not much research has been 
done so far to prove that multi-angular data are appropriate for this purpose. It has been argued that 
multi-angular data can be used for mapping vegetation structure properties (see paragraph 2.3.3 & 
2.3.4). Radiative transfer models, geometric optical models and ray-tracing models are often used 
to estimate vegetation properties.  
 

1.3 Research objectives and research questions 
The objective of this research is to develop a methodology for monitoring the location and structure 
properties of vegetation structure types in a river floodplain ecosystem using multi-angular 
hyperspectral CHRIS-PROBA data. 

 
Research questions 

1. How can different vegetation structure types in a river floodplain ecosystem be classified 
using multi-angular CHRIS-PROBA imagery? 

2. How can the canopy structure properties leaf area index, fractional cover and fraction of 
photosynthetic vegetation (LAI, fCover and PV) be derived from multi-angular CHRIS-
PROBA data using the radiative transfer, monte carlo ray tracing model FLIGHT (North, 
1996)? 

3. Are results still accurate when the methods from the first 2 questions are extrapolated to a 
larger floodplain area, namely from Millingerwaard to the complete area of the Gelderse 
Poort? 

 

1.4 Report outline 
The next chapter consists of literature review on the main topics of this research: river floodplain 
ecosystem management, monitoring of vegetation structure properties, remote sensing models for 
monitoring the vegetation structure and the scope of this research. Chapter three comprises 
information about the study site and data, and the methodology that is followed for this thesis 
research. In chapter four the results are presented. In chapter five these results are discussed with 
respect to the research objective and research questions, and in the light of the theoretical 
framework, using scientific literature. Chapter six contains the conclusions and recommendations 
for further research on the topic. 
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2. Literature review 

2.1 Dutch river floodplain ecosystems 
Natural river systems 
Natural river systems in the lower part of Northern Europe are not fixed to one place, but are 
moving freely through the landscape. Erosion and sedimentation processes remove sand from one 
side of the riverbanks and deposit it on the other side. This creates circumstances for rejuvenation 
of the vegetation. The river system in Biebrza National Park in Poland is an example of a natural 
river system (Bierbza National Park, 2008). In the Netherlands such natural river systems do not 
occur any more. Dutch rivers are regulated for shipping and river management purposes. The 
required measures have resulted in rivers that are not meandering any more; bends are cut off and 
rivers have a fixed streambed.  
 
Increasing flood risk 
The consequences of the regulation measures are that aquatic and floodplain ecology deteriorated 
and floodplain areas became smaller. Regulation also increased the flood risk in Dutch rivers, such 
as the Rhine system (Ministerie van V&W, 2005). Other human interventions like the construction 
of dams, drainage systems, and changes in land use such as deforestation also have an impact on 
the water cycle and water discharge, thereby contributing to the flood risk of rivers (Chuvieco, 
2008). In a more general context, humans contribute to the continuing increase in greenhouse gases 
in the atmosphere which have an impact on the global climate system and consequently on the 
hydrological cycle (IPCC, 2007). Especially in parts of the world where climate became warmer, 
the thermodynamic effects changed the hydrological cycle. As a result glaciers are shrinking and 
snow starts melting earlier and more intensive during winter and spring. This together with 
prolonged rainstorms and heavy thunderstorms are some of the causes that create risks of flooding. 
The west and the north of the Netherlands are especially vulnerable for flooding events because of 
the rise in sea level, while the east and south of the Netherlands can be in danger because of large 
amounts of water discharge in the rivers (Rijkswaterstaat, 2008-1). For this century a rise in river 
water discharge of approximately 3.000 m3/s for the Rhine near Lobith, resulting in peak flows up 
to 18.000 m3/s, and a rise in mean sea level of approximately 60 cm are expected. Two major 
events which happened in the Rhine system in 1993 and 1995 showed that the river system did not 
have enough capacity to accommodate all the water (Geerling et al., 2008). Protection against 
flooding is therefore a very important issue in the Netherlands. The Dutch government and river 
management organizations are working hard on solving future water surplus problems. 
 
Dutch policy and management of river floodplain ecosystems 
Rijkswaterstaat (RWS) is the Dutch organisation that implements the policy of the ministry for 
traffic and public works department (Ministerie van Verkeer en Waterstaat). Their goals are, 
amongst others, to ensure smooth and safe traffic over roads and waterways; to provide enough and 
clean water; to provide reliable and usable information; and to prevent rivers, lakes, channels and 
the sea from flooding. RWS carries out the plans of the Dutch government on water management. 
The Dutch government has published a statutory report in which they decide to anticipate on the 
consequences of climate change and the imminent high water levels by giving Dutch rivers more 
space (Ministerie van V&W, 2005). A few zones are selected for expansion of the rivers. The plan 
aims at guaranteeing safety for the inhabitants and improving the spatial quality of the river-areas. 
Conservation and development of landscape, ecological, geophysical and cultural values are 
important. As a first step the Dutch government has determined an amount of measures for river 
restoration which should be met before 1015. In some areas the measures will go together with 
nature development plans. The plans involved the creation of side-channels, lowering levees and 
restoring nature. In many cases this means that agricultural land will be altered into nature areas for 
water storage and nature development. Ecological succession takes place in these newly developed 
nature areas. However, this results in an increase in biomass which means that there is less water 
storage capacity available in case of flooding. The woody vegetation biomass hampers the river 
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discharge and smooth storage of water. Because of this, a new management strategy was adopted: 
Cyclic Floodplain Rejuvenation (Duel et al. 2001, cited in Geerling et al., 2008). This involves 
periodic removal of climax vegetation, in order to keep nature areas in a pioneer stage with 
continuous ecological succession (Geerling et al., 2008). In this way, complex vegetation structures 
that cause the most hydraulic resistance are being kept out of the floodplain ecosystems. 
 

2.2 Monitoring of vegetation structure 
Hydraulic resistance of vegetation has a large influence on the maximum water discharge capacity. 
Therefore, monitoring of river floodplain ecosystems is necessary in order to receive up-to-date 
information about vegetation structure and development in floodplains. River managers need these 
data to be able to reach the goals of flood protection and nature development. Monitoring 
vegetation development can be done by field work, but this is very laborious.  
Another option is to use remote sensing data to make classifications of different vegetation 
structure types. These classifications can be made each year with an automated monitoring process 
of vegetation development. Verrelst et al. (2009) used spectral data from Compact Airborne 
Spectrographic Imager (CASI) and structural information from LiDAR (LIght Detection And 
Ranging) to create vegetation classes for the Dutch floodplain area Millingerwaard. Spectral 
signatures (the characteristic reflection of radiation obtained by remote sensing techniques) of 
vegetation types were combined with structural characteristics from LiDAR (vegetation height) to 
get the necessary information for the vegetation classes. Figure 2 shows different vegetation 
structure types that are present in Millingerwaard. 
However, mapping plant communities into different small vegetation classes (like the Braun-
Blanquet system) is difficult when using remote sensing techniques. Spectral signatures of narrow 
defined plant communities can look very similar. Verrelst et al. (2009) demonstrated that clustering 
the vegetation types into combined classes, higher on the hierarchic scale of Braun-Blanquet, 
hereby discriminating in elevation and soil moisture parameters, gives superior results. When this 
segmentation technique is automated, monitoring of vegetation types can be easily done. 
Vegetation structure properties that can be derived from remote sensing data are leaf area index 
(LAI), fraction of photosynthetic fraction (PV), crown diameter and fractional cover (fCover). 
These properties can function as measures for the amount of woody vegetation or biomass in a 
pixel, which causes resistance to the water flow in case of flooding events. LAI is a measure for the 
structure within one tree. It is the total of one-sided area of photosynthetic tissue (green leaves) per 
area (m2/m2) (Jonckheere et al., 2004). It is an important property, because by using photosynthesis 
models an estimation of the net primary production (NPP) and vegetation biomass can be derived 
from it (Kooistra et al., 2008). Leaf angle distribution (LAD) and leaf clumping effects are factors 
that influence the LAI outcome. They can both lead to errors of up to 50% in LAI determination 
(Roujean and Lacaze, 2002). Fractional cover (fCover) is much less sensitive to clumping effects. 
fCover indicates the fraction of a pixel that is covered by vegetation and thus it specifies the 
horizontal extent of vegetation (Roujean and Lacaze, 2002). PV is a measure for the total amount 
(volume-fraction) of green vegetation within the vegetation. The other fraction is the non-
photosynthetic, woody, vegetation.  
 

 
 
 
 
Figure 2: 
Different 
vegetation 
structure types in 
Millingerwaard 
(photography: 
Erika Romijn) 
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2.3 Remote sensing models for monitoring of vegetation structure and 
development 

2.3.1 Radiative transfer models 
Radiative transfer models (RT models) are physical based models that aim at understanding the 
interaction (reflection, transmission and absorption) between solar radiation and vegetation 
properties. RT models describe the transfer and interactions of solar radiation inside the canopy 
based on physical laws and thus provide an explicit connection between the chemical and physical 
characteristics of vegetation elements and the canopy reflection. The basis for these models is the 
bi-directional reflectance distribution function (BRDF) which calculates the reflection of an object.  
PROSPECT is a RT model that simulates spectral reflectance and transmittance from leaf 
properties of a plant at leaf level (Jacquemoud & Baret, 1990). PROSPECT idealizes the leaf as a 
pile of elementary plates composed of absorbing and diffusing constituents. It is based on the plate 
model of Allen, et al. (1969) where the leaf has a structure of plates and voids. PROSPECT adds 
parameters to the plate model such as water content, chlorophyll content and number of leaf layers. 
It contains an incidence angle and a transmission coefficient. By model inversion leaf 
characteristics can be estimated. 
 
The simulated leaf reflectance and transmittance output of PROSPECT can be used as input for the 
SAIL model that simulates canopy reflectance as a function of canopy parameters (Verhoef, 1984). 
Apart from the optical properties of a single leaf, the leaf area index (LAI) and the leaf inclination 
distribution are input for the SAIL model. This means that LAI can be obtained by model inversion.  
Some variations of SAIL are SAILH, SAIL++ and 4-SAIL. The combination of PROSPECT and 
SAIL is called ProSail. There are some extensions on the PROSPECT and SAIL model. There is 
the model GeoSail (Huemmrich, 2001) which is the SAIL model combined with the Jasinski 
geometric model. It simulates canopy spectral reflectance and fraction of absorbed 
photosynthetically active radiation (fAPAR) for discontinuous canopies. Cylinders and cones describe 
the different tree shapes. The model consists of three components: illuminated canopy, illuminated 
background and shadowed background. The coupled model PROSPECT & SAILH uses two 
approaches for simulating the BRDF (D’Urso et al., 2004). With LookUp Tables (LUT) the 
spectral profile is generated for each combination of canopy parameters. And using the PEST ASP 
Tool (non-linear parameter estimation software) the optimized parameters are determined 
according to a pre-defined cost-function. D’Urso et al. (2004) use the model to asses the capability 
to estimate LAI from CHRIS data for alfalfa and potato crops. Another model is the coupled 
PROSPECT & SAILH & CLAIR model (Vuolo et al., 2005). This is a simple empirical model 
coupled with a RT model. The semi-empirical relationship between WDVI (Weighted Differences 
Vegetation Index) and LAI is used as a priori information to get initial parameters for the model. 
 

2.3.2 Definitions of reflectance quantities 
“Natural irradiance is composed of a direct component (non-scattered radiation) and a diffuse 
component scattered by the atmosphere (gases, aerosols, and clouds), and the surroundings of the 
observed surface” (Schaepman-Strub et al., 2006).  
The conceptual quantities that are derived by RT modelling are defined by the BRDF. The 
bidirectional reflectance factor (BRF) can not be measured. It is a theoretical concept and includes 
only direct irradiance of incident light from one direction in the hemisphere that is scattered into 
another direction in the hemisphere. 
Measurable quantities include irradiance from the entire hemisphere. They include pure diffuse or a 
combination of direct and diffuse irradiance. This concept is called the Hemispherical-Directional 
Reflactance Factor (HDRF) (Schaepman-Strub et al., 2006). The measured values of the CHRIS 
sensor in this study can be approximated by HDRF values, but these are also theoretical reflectance 
values.  
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Bidirectional Hemispherical-directional Hemispherical-Conical 

 
 
Figure 3: On the left side: the bidirectional reflectance (a directional incoming beam and a directional 
reflected beam), in the middle: hemispherical-directional reflectance (hemispherical incoming 
radiance and a directional reflected beam), on the right side: hemispherical-conical reflectance 
(hemispherical incoming radiance and conical reflected radiance) souce: Schaepman-Strub et al., 2006. 
 
In fact, CHRIS measurements are Hemispherical-Conical reflectance Factor (HCRF) measurements, 
because the observation of the satellite includes, apart from the direct measured reflected radiance 
beam also some diffuse components. This means that CHRIS measurements are not exactly the 
same as modelled bidirectional reflectance quantities, but approximate the BRF. These concepts are 
made clear in figure 3. 
 

2.3.3 Added value of using multi-angular CHRIS-PROBA data 
Multi-angular data give the opportunity to simultaneously observe the land surface under different 
angles. This can have an added value compared to one-directional remotely sensed data which only 
give a view on the top of the canopy (nadir view). Multi-angular data can improve on this aspect, 
because a combination of images under different angles provides information on the woody parts of 
the vegetation, which can only be seen under angles which differ from nadir. Therefore, multi-
angular measurements could improve the classification of different vegetation types and the 
estimation of vegetation structure properties. The use of different configurations of multi-spectral, 
multi-angular and multi-temporal measurements can provide a better discrimination between 
vegetation classes. Duca and Del Frate (2008) improved their classification accuracy with 7% with 
the use of +36 and -36 VZA (View Zenith Angle) images next to the nadir VZA image. Chuma 
(2008) explored the usefulness of different angles and vegetation indices of multi-angular CHRIS-
PROBA data for classification of heathland habitat types. He concluded that certain bands and 
indices with combined multi-angular data (especially -36 VZA and -55 VZA) can be useful for 
vegetation classification. 
 
The rich content of multi-angular imagery provides information on how structure impacts the 
portioning of solar energy between vegetation canopy and the underlying surface. This facilitates 
ecological issues and improves the use of physical modelling. It increases the accuracy of the 
information content. LAI and fAPAR (fraction of absorbed photosynthetic radiation) are measures for 
vegetation canopy structure and its energy absorption capacity. Estimates of LAI and fAPAR can be 
improved by the use of multi-angular data, because it accounts for vegetation structure 
characteristics that have an impact on the angular reflectance (Diner et al., 1999; Diner et al., 2005).  
 
Crown clumping 
Off-nadir view angles of CHRIS data could help to improve the LAI estimation because it can 
account for clumping effects. The clumping effect is a measure for the amount of leaves that are 
clustered together. This alternates the top-of-canopy (TOC) reflectance signal. Clumping effects 
are mostly present in nadir views (Koetz et al., 2007). When leaves are more clumped the amount 
of sunlit leaves decreases and the amount of shaded leaves increases. This changes the final model 
outcome of canopy photosynthesis and therewith the estimate of NPP. So, the clumping index 
elucidates the differences of vegetation canopies with a different architecture. 
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2.3.4 RT Models using multi-angular data 
Verhoef and Bach (2007) used a coupled soil-leaf-canopy model (SLC) to derive LAI from TOC 
reflectance. It consists of the Hapke soil BRDF model, which is a combination of a soil and 
Prospect model, and the 4Sail2 model, which incorporates crown clumping. The model 
accommodates vertical heterogeneities (leaf colour gradients) and horizontal heterogeneities related 
to crown clumping.  
Chen et al. (2003) also incorporated clumping index into a sunlit/shaded leaf model. They used the 
effective LAI, which is a product of LAI and the clumping index. The clumping index can be 
linearly related to the Hotspot-Darkspot index (HDS), using values from the BRDF curve. In the 
BRDF curve the reflectance in a spectral band is plotted against the scattering angle (the difference 
between the sun angle and the view angle to the ground target). The series of equations used to 
derive the effective LAI are:  

 
Ω = a + b*HDS                       (1) 
HDS = (ρHS – ρDS) / (ρDS)                      (2) 
Effective LAI = LAI * Ω                      (3) 

 
Ω   = clumping index 
a & b   = coefficients determined by linear regression 
HDS   = Hotspot-Darkspot index 
ρHS   = reflectance at hotspot 
ρDS   = reflectance at darkspot 
Effective LAI  = effective leaf area index 
LAI   = leaf area index 
 
There are also other models than RT models that can use multi-angular data. An example is the 
geometrical-optical model (GO model). The SGM (non-linear simple geometric model) was 
inverted against multi-angle reflectance data from CHRIS-PROBA (Chopping et al., 2006). This 
model can be used to estimate woody shrub abundance by separating background and upper canopy 
contributions. The first attempts with this method were promising. However, the method was tested 
in a semi-arid environment and not in a floodplain ecosystem. The vegetation differs much in those 
two environments and this could affect the results when trying this method for a floodplain 
ecosystem. The separation of background and upper canopy contributions might already cause 
difficulties, because there is a lot of understory in a river floodplain ecosystem.  

 

2.3.5 PROFLIGHT 
 
FLIGHT 
Another RT modelling approach is the ray-tracing approach. These models follow the propagation 
of rays of light and how they interact with optical surfaces. FLIGHT (North, 1996) is a hybrid three 
dimensional ray tracing model based on Monte Carlo (MC) simulations of photon transport. The 
model is hybrid because of the combination of a GO model and a RT model. MC simulations are 
flexible and give the opportunity for accurate canopy representations. However, it has a large 
processing time for simulation. FLIGHT is accurate in accounting for forest dynamics, almost on a 
photon-by-photon basis. FLIGHT models the vegetation as a complex structure, which is 
represented by geometric primitives defined by crown shape and size, tree height, position and 
distribution, as in figure 4.  
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Figure 4: 3D canopy representation of a FLIGHT forest scene 
 
The model incorporates shadowing effect, crown overlapping and multiple scattering between 
crowns. The model outcomes are TOC BRF values. 
FLIGHT simulates photon trajectories, starting from a solar source, through successive interactions 
with the vegetation, to a predetermined sensor view angle. The model incorporates the probability 
of free path, absorption and scattering. Within the crown, photons are scattered based on 
probability density functions. The individual photons are followed until they are either absorbed or 
exited by the canopy. The model outcome is the result of a unique stand configuration, solar 
illumination direction (Θs,Φs), surface reflection direction (Θr,Φr) and spectral wavelength (λ). 
There is also a 1D mode available in which the vegetation is modelled as turbid medium. This 
turbid medium can be seen as a canopy layer that contains a mix of different elements that 
represent the vegetation structure characteristics. 
 
PROFLIGHT 
PROFLIGHT is a coupled RT model of PROSPECT and FLIGHT (Verrelst et al., 2008). Verrelst 
et al. (2008) applied PROFLIGHT to assess the underlying driving factors governing angular 
signatures. Both foliage optical properties and woody optical properties are needed as model input. 
Foliage optical properties were modelled by PROSPECT and coupled with FLIGHT. FLIGHT 
parameterization for woody parts and understory was done with field measurements taken in a test 
forest. FLIGHT simulations showed that the structural variability (variations in woody and foliage 
parts) is important for explaining the angular signatures.  
 
In another study the model PROFLIGHT was used to assess the effects of woody elements on 
forest canopy chlorophyll content retrieval (Verrelst et al., 2009 (unpublished work)). The 
contribution of crown wood cover, crown LAI and crown coverage on the chlorophyll content 
retrieval was assessed on the basis of modelled reflectance BRF data. The data that were needed to 
parameterize the model PROFLIGHT were foliage parameters for PROSPECT, canopy structure 
parameters and optical properties of background, bark and foliage for FLIGHT (Koetz et al., 2004; 
Verrelst et al., 2008). In order to reduce processing time a LUT approach was used and processing 
parallelization was implemented.  
 
The PROSPECT part was parameterized on: 
- chlorophyll content 
- dry matter content 
- leaf water content 
- effective nr. of leaf layers. 
 
The output reflectance and transmittance of foliage from PROSPECT were used as input foliage 
spectra for FLIGHT. For the FLIGHT simulations parameters from a field campaign were used to 
fill the LUT. The model was run by sending one million rays in an experimental canopy. 
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2.4 The scope of this research 
Since the launch of the PROBA satellite in 2001 (Barnsley et al., 2004) not much has been reported 
in literature on making classifications using multi-angular CHRIS data. Huber (2008) made use of 
support vector machines (SVMs) to classify multi-angular and hyperspectral CHRIS images. SVMs 
produced better results than the traditional methods using the maximum likelihood (ML) classifier 
(Huber, 2008). Both methods will be explored in this thesis research. 
A quantitative, physical based RT model with 3D canopy architecture provides the most logical 
linkage between the physics and biochemicals of canopy features and satellite observations. 
Therefore, the model PROFLIGHT seems to be very suitable for exploring the added value of 
multi-angular CHRIS data to monitor vegetation structure properties. Multi-angular data can be 
used in the model and the model contains structural parameters, which can be derived by model 
inversion. Furthermore, the implementation of the model has been developed in the RS/GIS 
department of Wageningen University so there is experience and expertise with the model. For this 
research, only the FLIGHT part of the model will be used, because leaf reflectance and 
transmittance data are already available from a field campaign and earlier studies in 
Millingerwaard (Liras, 2005). 
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3. Materials & Methods 

3.1 Study site  
The methods in this thesis research have been developed for Millingerwaard and the Gelderse Poort, 
a nature reserve located in the east of the Netherlands with a surface area of 6700 ha. The Gelderse 
Poort consists of several connected nature areas. One of them is Millingerwaard, a river floodplain 
ecosystem of 700 hectares near Nijmegen next to the Waal, the main branch of the river Rhine in 
the Netherlands (figure 5). Several remote sensing and field datasets have been obtained for 
Millingerwaard as it is an extensively studied area. 
In the last decades Millingerwaard has undergone different measures for river and nature 
restoration. In former times Millingerwaard used to be a floodplain area with a river and some side 
streams meandering in-between sand dunes. Softwood forest grew on the river banks. In later 
centuries the forests were logged and clay was dug from pits. In the 20th century, Millingerwaard 
was formed into an agricultural area with intensively managed grassland and maize. During the 
1980’s this came to an end when the project called “Plan Ooievaar” (the Black stork plan) started 
(De Bruin et al., 1987). Spontaneous nature development played a central role in this project. By 
digging out clay, following the relief, the old pattern of side streams, natural levees and isles 
returned. Agricultural land has been restored into its former state of natural vegetation. Right now 
the nature development in Millingerwaard sets an example for the rest of the country. 
Millingerwaard consists of sandy river dunes with natural grassland, old river streams, clay pits 
with swamps and softwood forest. Konik horses and Galloway cows have been introduced for 
natural grazing. They prune and trim plants and trees, manure the area, create paths and make the 
landscape more varied with a mosaic of grass lands, roughs, bushes and woods. The vegetation is 
very divers with more than 250 different species occurring on soils ranging from dry and nutrient 
poor to moist and rich of nutrients. It provides a habitat for fauna like red deer, roe deer, mice, 
birds and insects. Also beavers have been introduced into the swampy area. They eat bark, gnaw 
branches and create open spots in the softwood forest. Their population is quite stable (ARK 
Natuurontwikkeling, 2008). 
 

 
 
Figure 5: Location of the study site Gelderse Poort & Millingerwaard  
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Figure 6: Excavations to create more space for the river in Millingerwaard  
(photography: Erika Romijn)   
        
The Dutch government has set up a project for this floodplain area to create more space for the 
rivers and to reduce the risk of flooding (Ministerie van V&W, 2005). For Millingerwaard, the 
project aims at reducing the water level with 9 cm. Excavations and lowering of the floodplains are 
planned and implemented (figure 6). This includes digging side river streams for permanent water 
storage and lowering dams and riverside walls (Ministerie van V&W, 2007) to create an overflow 
area when water levels are high. The river is given an open connection with the floodplains. 
 
While Millingerwaard is still a nature development area, the problem occurs that spontaneous 
vegetation growth hampers the water discharge of the river. Measures, like CFR (chapter 2), are 
taken to create more space for the water to flow (ARK Natuurontwikkeling, 2008). 
 

3.2 Data 
Multi-angular CHRIS-PROBA data (2005) 
The most important data that are used for this research are multi-angular data from the CHRIS 
(Compact High-Resolution Imaging Spectrometer) sensor, onboard of the PROBA-1 (Project for 
On-Board Autonomy) satellite. The PROBA-1 satellite was launched on October 22, 2001 in India. 
PROBA-1 is a demonstration satellite of the European Space Agency (ESA) on which ESA 
performs tests to investigate if satellite missions can be more autonomous, without interference of a 
ground station. There is one ground segment with many automated functions. The PROBA-1 was 
initially a one year mission, but the satellite is still active at the moment. The satellite has a polar, 
sun synchronous orbit and operates on a height of 553-676 km.  
CHRIS is the main earth imaging payload for land areas on board of the PROBA-1. CHRIS is a 
hyperspectral, multidirectional sensor with a spectral range of 415-1050 nm in the visible (VIS) 
and near infrared (NIR) part of the electromagnetic spectrum. It can measure spectral reflectance 
from 5 different viewing angles: 0˚, +/-36˚ and +/-55˚. Further in the text they will be referred as: 
VZA (viewing zenith angle), for example: nadir VZA, -36 VZA. VZA -36 and -55 are defined as 
backscattering direction, VZA +36 and +55 as forward scattering direction. It has 5 different modes 
in which it can measure water bodies, land surfaces and atmospheric aerosols and chlorophyll. In 
this study mode 3 is used. This mode is intended for land surface and atmospheric aerosols and has 
a spatial resolution of approximately 17m*17m at nadir VZA (Barnsley et al 2004; European space 
agency, 2008). In mode 3 CHRIS has a spectral resolution of 5-12 nm and measures in 18 bands. 
Apart from the multi-angular aspect of the data, the advantage of using CHRIS data is that CHRIS 
has a large ground coverage of one image, compared to other imaging spectrometers like HyMap. 
The multi-angular CHRIS images used for this study were acquired on 6 September 2005. They 
contain the Millingerwaard and part of the Gelderse Poort. 
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Figure 7: RBG-composition (bands 2,4,8) of 
CHRIS nadir image of the Gelderse Poort 

 
Figure 7 shows the CHRIS nadir image after atmospheric correction. Appendix I contains more 
information about the PROBA satellite, the CHRIS sensor and image acquisition. 
 
RWS ecotope map (2005) 
RWS has made an ecotope classification for the Rhine system to be used for biological monitoring 
of the Dutch fresh waters (Rijkswaterstaat, 2008-2). This monitoring is a commitment for the 
European Water Framework Directive. The classified ecotopes are more or less homogeneous 
ecological units of which the composition is determined by geomorfological, hydrological, 
vegetation, land use and anthropogenic aspects. RWS started in 2005 with making digital, false 
colour, aerial photographs. In 2006, an interpretation of the photographs was made and ecotopes 
(polygons and lines) were determined. In the same year a field validation was made. In 2007 RWS 
made an overlay procedure using GIS software in which they combined the ecotopes with data on 
flooding duration, management, water depth and morfodynamics. The outcome was a rough 
ecotope file. After translating it into standards the final ecotope map was created. The ecotope map 
is amongst others the starting point for hydraulic calculations. 
 
Field data 
Reflectance data of leaves were collected during a field campaign in August 2004 using an ASD 
Fieldspec FR (field spectrometer). The processed data from this campaign from Calamagrostis 
epigejos, Salix alba and Rubus caesius (Liras, 2005) were used for this thesis research. Additional 
reflectance data from different bark and background types were obtained during the thesis work on 
the 2nd of April 2009 using the ASD FieldSpec FR. These reflectance data are used for the 
modelling part of the research. 
 
Other datasets 
Reference datasets: 

- Aerial photograph of the Gelderse Poort (2006) 
- Topographic data of the Gelderse Poort: 1:250.000 & 1:10.000 (2006) 

Datasets for validation 
- LAI field data of Millingerwaard, obtained with a combined methodology of hemispherical 

photography and TRAC measurements in 2005 (Gonsamo, 2006). 
- LAI field data of Millingerwaard, obtained in 2004 with the hemispherical camera 

(Mengesha, 2005). 
- fCover field data of Millingerwaard, obtained in 2004 with the hemispherical camera 

(Mengesha, 2005). 
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3.3 Methodology 

3.3.1 Overview 
Figure 8 shows the overall flowchart of the thesis research. It gives a simplified overview of the 
complete methodology that was followed. In short, the first part of the research deals with making 
the classification, based on multi-angular CHRIS images. This part is explained in detail in 
paragraph 3.3.3. The second part comprises running the model FLIGHT to derive LAI, fCover and 
PV maps, based on the previously derived CHRIS classification and the multi-angular CHRIS 
images and is explained in paragraph 3.3.4. First, in paragraph 3.3.2 the pre-processing methods are 
described. Thereafter, in paragraph 3.3.3 and 3.3.4 the detailed flowcharts with explanations are 
given. 
 
 

 
 
 
Figure 8: Overall flowchart showing a simplified version of the methodology that is followed in this 
thesis research. 
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3.3.2 Preprocessing  
Atmospheric correction 
The CHRIS images were already atmospherically corrected according to the method of Guanter et 
al. (2005). This method is widely accepted and has been taken up in the open source BEAM 
toolbox. BEAM is a toolbox for viewing, analysing and processing of remote sensing data from 
sensors such as MODIS, AVNIR, PRISM and CHRIS/Proba (European Space Agency, 2008). An 
atmospheric correction algorithm, which is a combination of radiative transfer and empirical line 
approaches, was used to remove the atmospheric distortion and artifacts due to miscalibration 
(Guanter et al., 2005). After this preprocessing step the CHRIS images contain HDRF data. The 
spectral signatures of objects in the corrected CHRIS images did not show any irregularities which 
means that the atmospheric correction had good results. Only some atmospheric noise can be 
observed in the first band, the blue band (442.6000 nm), but this is normal in this range of 
wavelengths. This band can be left out for further calculations. 
 
Image registration 
Thereafter, image registration was performed for the five angular images according to the method 
derived by Ma et al. (2009). With this method the five separate images were referenced to each 
other, so they precisely overlap each other. This allows automatic selection of a specific location in 
all five images at the same time. They used an automatic registration scheme for this, consisting of 
two methods for collecting control points. 
 
Geometric correction  
The next step was to perform geometric correction. Systematic distortions in remote sensing 
images due to scan skew, platform velocity, earth rotation etc. had already been removed when the 
images were obtained. No correction was done yet for unsystematic geometric distortions. The 
method for doing this is called geometric registration or georeferencing. It involves taking ground 
control points of clearly discernable objects in the satellite image. The same ground control points 
are collected on a map with a coordinate system or in an image that is already georeferenced. After 
that, a resampling method is applied to calculate the new pixel values in the satellite image. The 
following steps were taken to geometrically correct the CHRIS images. 
 

1. Creation of a spatial subset (in ENVI) 
The largest part of the CHRIS images cover the same area, but some parts do not overlap. The 
images with VZA -55 and +55 could not be used, because Millingerwaard is not included in these 
images. For the nadir, -36 and +36 VZA images a spatial subset was taken, in order to have the 
same extent for these images. 
 

2. Geometric correction of the nadir image (In Erdas Imagine) 
First the nadir image was georeferenced. The model properties were: 

- Polynominal order: 2 
- Projection: Bessel – Amersfoort 1 

 
The aerial photograph of 2006 was used as reference image. 34 ground control points (GCP’s) were 
selected in both images. Most GCP’s were located in the river floodplains, the other GCP’s were 
spread over the whole image. 
 
Image resampling was performed, with the following parameters: 

-  Resample method: nearest neighbor 
-  Projection: double stereographic 
-  Output cell size: 17 m2 

 
The control point error of the nadir image after registration was: X (0.1954); Y (0.2450). The total 
RMS error was 0.3134. 
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3. Geometric correction of the other images (In Erdas Image) 
Geometric correction was done for the -36 and +36 VZA images with use of the same GCP’s. This 
was possible because the images were coregistrated well. 
The control point error and RMS error for these 2 images was the same as for the nadir image. 
 

4. Change of the coordinate system (In ArcGIS) 
The spatial reference is Rijksdriehoekstelsel (RD new), because the aerial photograph was in this 
coordinate system. For further use with the image analysis and processing software ENVI, the 
coordinate system was changed into UTM projection (WGS 1984 UTM Zone 32N.prj).  
 

3.3.3 Classification of vegetation structure types 
3.3.3.1 Definition of classes 

The classes that are chosen for classification are based on the vegetation structure classes described 
in Geerling et al. (2008). Five classes are given as a minimum for estimating hydraulic resistance 
for river management purposes: bare and pioneer communities; grasses and herbaceous vegetation; 
herbaceous ad low woody vegetation; bush; and forest.  
For this research, the classes “water”, “built-up” and “arable land” have been added to be able to 
classify the whole CHRIS image. In table 1 all classes are summarized, with the main 
characteristics of each class.  
 
Table 1: Classes used for classification of RWS and CHRIS image 
 
 Class name Class characteristics 
1 Bare soil & pioneer vegetation mainly sand 
2 Grasses and low herbaceous vegetation vegetation < 1m 
3 Higher herbaceous vegetation vegetation between 1 m and 2 m 
4 Shrubs shrubs and trees < 5 m 
5 Forest trees > 5 m 
6 Water water 
7 Built-up streets, houses 
8 Arable land maize 
 
During the first classification attempt the class of “arable land” was not included, resulting in 
arable land being classified as “shrubs”. Shrubs and arable land have similar HDRF reflectance 
values, especially in the visible part of the spectrum. This is reasonable because agricultural crops 
may have some vegetation characteristics comparable to shrubs. Full grown maize for example has 
the same height as some shrubs. Arable land can not be included in the shrub class, because of the 
seasonal variation. On the aerial photograph, arable land can be discerned as bare soil. This is 
because the crops are harvested in Autumn and the aerial photograph was taken in early Spring. So 
by the time the photo was taken the land was still barren. The seasonal variation of arable land is 
different from shrubs. Therefore, to prevent arable land from getting mixed up with the shrub class, 
the new class “arable land” was created. In appendix II the spectral signatures from all classes are 
displayed for VZA -36, nadir and +36. The graphs contain HDRF values obtained from the angular 
CHRIS images. 
  

3.3.3.2 Classification of RWS ecotopes 
The legend that RWS used for the ecotope classification in 2005 is much more detailed, with 
around 70 ecotope classes. Because the RWS ecotope map will be compared with the classification 
outcome of the CHRIS image, the two classifications must consist of the same classes. Therefore 
the RWS ecotopes were reclassified into the 8 classes of table 1. First, an attempt was made to 
describe the species composition per ecotope class of the RWS dataset and then link this to the 
species composition of the ecotopes of the classes of Geerling et al. (2008). Background literature 
of the RWS ecotope map (Lorenz 2001; van der Molen et al., 2000; Willems et al., 2007) and of 
the classes of Geerling et al. (Schaminée et al., 1995-1999) have been used for this. But it appeared 
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not feasible to establish a link between the two classifications, because the same species groups 
occurred in more than one class of both classifications. It was too hard to decide which class of 
RWS could be linked to which class of Geerling et al.  
Therefore, a simpler approach was used. The classes of RWS were subdivided under the 8 classes 
(table 1), based on their ecotope description. Appendix III contains the division of the RWS classes 
into the 8 new classes. In ArcGIS an extra column for the new class names was added to the 
attribute table and the detailed classes of RWS have been reclassified into the 8 new classes. A map 
was drawn in ArcGIS containing the new classes. 
 

3.3.3.3 Classification of the CHRIS image 
In figure 9 the flowchart of the methodology for the classification of the CHRIS image is presented. 
Most classification steps were performed in ENVI, some additional steps were taken in ArcGIS. In 
short the following steps, according to the numbers in figure 9 were taken: 
 

1. A spectral subset is taken from the nadir image. 
2. The layers of CHRIS nadir VZA, CHRIS -36 VZA and CHRIS +36 VZA are stacked. 
3. Principal component analysis (PCA) is performed on the stacked layers image. 
4. Maximum likelihood (ML) classification is performed on the nadir image.  

(= classification 1) 
5. Support vector machine (SVM) classification is performed on the nadir image.  

(= classification 2) 
6. ML classification is performed on the stacked layers image. (= classification 3) 
7. ML classification is performed on the stacked layers image with PCA bands. Only the PCA 

bands 1, 2 and 3 are used. (= classification 4) 
8. ML classification is performed on the stacked layers image with PCA bands. Only the PCA 

bands 1-4 are used. (= classification 5) 
9. ML classification is performed on the stacked layers image with PCA bands. Only the PCA 

bands 1-5 are used. (= classification 6) 
10. Each classified CHRIS image is transformed into an ENVI vector file. 
11. Each ENVI vector file is saved as an ArcGIS shapefile. 
12. Each ArcGIS shapefile is clipped with the RWS ecotope map. 
 

The final maps contain the classification of the river floodplains of the Gelderse Poort.  
The next part contains a detailed explanation of the methodology. The different steps in-between 
brackets refer to the steps mentioned above. 
 
Different input images were used for the classification. First, a spectral subset was taken from the 
nadir image, consisting of bands 2-18 (step 1). Band 1 (442.6 nm) was left out because it consisted 
of some atmospheric noise. Next, an image with stacked layers, consisting of the nadir, -36 and 
+36 VZA layers was prepared (step 2). This image consisted of 51 bands, three times bands 2-18. 
To reduce the dimensionality of the dataset, PCA has been performed on the stacked layers image 
(step 3).  
 
Layer stacking (step 2) 
The three layers of the nadir, 36 and +36 VZA were stacked, resulting in an image with 51 bands. 
Once the layers were stacked, the header information did not contain the right wavelengths, it only 
showed band 1, band 2, and so on until band 51. The right wavelengths were inserted by means of 
importing an ASCII file. The stacked layers image is one of the images that was used for 
classification. 



 
 
 
Figure 9: Flowchart methodology CHRIS classification 
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PCA (step 3) 
With PCA, the often highly correlated multispectral bands are transformed into uncorrelated output 
bands, with maximized data variance. The output bands are linear combinations of the 
multispectral bands. The first PC band has the highest percentage of data variance, the second PC 
band the second highest, etc. A colour composite of PCA bands shows more colourful images than 
the colour composite of normal spectral bands. This is because the PCA data are uncorrelated and 
have a high variance (Richards & Xiuging, 1999). This PCA dataset has 51 bands, but only the first 
3, 4 or 5 bands have been used for classification. They consist of > 95% of all variation in the data.  
 
ROIs 
For each of the 8 classes, regions of interest (ROIs) were selected. In this case, they were selected 
graphically, but they can also be selected by methods such as tresholding. Here, the ROIs consist of 
a combination of several polygons of the same class, for example 10 polygons of forested area. 
Each ROI should contain more than 51 pixels, otherwise the classification with the stacked layers 
image (consisting of 51 bands) is not possible. Appendix IV contains a map with the ROIs in 
Millingerwaard. More ROIs have been selected in other parts of the Gelderse Poort area. 
 
The nadir image was used to roughly discriminate between classes. The aerial photograph of 
Spring 2006 and field knowledge were used as reference for finding the right ROIs. The PCA 
bands of the stacked layers image were used to identify sharp differences between classes. Certain 
combinations of PCA bands gave a good opportunity to distinguish certain classes from each other. 
For example the PCA bands combination of: Red - PCA band 1, Green - PCA band 3, Blue - PCA 
band 2 shows a very bright green colour for all the water parts which makes it easy to choose water 
ROIs. Other combinations like: Red - PCA band 3, Green - PCA band 5, Blue - PCA band 7 made 
it easy to choose arable land and to distinguish it from grasses or shrubs; they received a bright 
orange colour. Figure 10 shows those bright colour combinations and the locations of different 
ROIs.  
 

     
 
Figure 10: ROIs on different parts of the image Stacked layers with PCA bands. On the left side: Red-
PCA band 1, Green-PCA band 3, Blue-PCA band 4; the bright green colour indicates water, the red 
colour indicates bare soil. On the right side: Red-PCA band 3, Green-PCA band 5, Blue-PCA band 7; 
the pink colour indicates water, the orange colour indicates arable land. 
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Classification methods 
After ROI-selection, the classification of the CHRIS image was performed in ENVI, using two 
different methods: Maximum Likelihood (ML) and Support Vector Machine (SVM).  
 
Maximum likelihood classification 
With ML classification the assumption is made that the reflectance values for pixels of each class 
are normally distributed in each spectral band. For every pixel the probability is calculated that it 
belongs to a certain class. The pixel is then assigned to the class for which it has the highest 
probability (the maximum likelihood). The discriminant functions for each pixel in the image are 
calculated with the following formula (Richards & Xiuping, 1999): 
 

( ) ( ) ( )ii
t

iii mxmxpxgi −Σ−−Σ−− −1 ½ln ½)(ln ω    (4) 
 

i = class 
x = n-dimensional data (where n is the number of bands) 
p(ωi) = probability that class ωi occurs in the image and is assumed the same for all classes 
|Σi| = determinant of the covariance matrix of the data in class ωi 
Σi-1 = its inverse matrix 
mi = mean vector 

 
Support Vector Machine classification 
SVM classification works well with complex and noisy data. It uses a statistical approach. Each 
class is separated with a decision surface: a hyperplane. The data that lie closest to the hyperplane 
are called support vectors. For each pixel the decision values for each class are calculated. These 
values are used to make probability estimates. Every pixel is assigned to the class with the highest 
probability. A function to use for the kernel type has to be chosen: radial basis function, linear, 
polynomial, sigmoid. For this research, the default radial basis function was used, this works well 
in most cases (Wu et al., 2004). The mathematical representation is as follows:  
 

( ) ( ) 0,2exp, >−−= gjxxigxjxiK   (5) 
 
g = the gamma term in the kernel function  
 
The gamma in the kernel function has to be indicated. The default value of 0.056 was taken; this is 
the inverse of the number of bands in the input image. One can choose the number of pyramid 
levels used for classification. This sets the number of hierarchical processing levels. Here the value 
was set to 0 (default), this means the image is processed at full resolution. A penalty parameter can 
be used to account for misclassifications. It allows for training errors, so it allows for some training 
points on the wrong side of the hyperplane. It forces to create a more accurate model (Wu et al., 
2004). For this research, first the SVM classification was performed without penalty parameter. 
The second time a penalty parameter of 100 was used, this is the default setting. Furthermore, a 
classification probability threshold (probability that is required to classify a pixel) can be indicated. 
This option was not used, because the whole image had to be classified. 
As the processing time of the support vector machine is high, the software uses a hierarchical, 
reduced-resolution classification process. This process is most effective in areas that contain 
homogeneous features, like water bodies and fields. The more pixels in the ROIs, the better the 
classification results are. 
 
Both methods have been performed on the nadir image, as well as on the stacked layers image and 
the stacked layers PCA images. Only a selection of the outcomes is presented in the results sections 
of this report, namely: nadir/ML (step 4); nadir/SVM (step 5) without penalty parameter; stacked 
layers/ML (step 6); stacked layers+PCA with 3,4 and 5 bands and ML classification (step 7, 8, 9) 
(see figure 9). This selection gives the best results of all the methods that were compared. 
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The classified images had to be transformed into an ENVI vector file (.evf) (step 10) and than 
exported to a shapefile (.shp) (step 11). This shapefile can be opened in ArcGIS and has an 
attribute table containing the 8 classes. In ArcGIS the classified CHRIS image was clipped with the 
RWS ecotope polygon (step 12), so both images have the same shape which makes it easier to 
validate them with the aerial photograph.  
 

3.3.3.4 Validation of classification results 
 
Validation of ROIs 
The ROIs were validated by computing the ROI separability. This is a statistical measure of 
distance between the spectral signatures of ROI pairs for a given input file. Both the transformed 
divergence and the Jeffries-Matusita Distance were calculated. These values range from 0 to 2.0 
and indicate how well the selected ROI pairs are statistically separated. Values greater than 1.9 
indicate that the ROI pairs have good separability. Between 1.7 and 1.9, the separation is fairly 
good. Below 1.7 there is poor separation. ROI pairs with a separability value lower than 1 might be 
combined into a single ROI. 
 
Transformed divergence 
The transformed divergence gives an exponentially decreasing weight to increasing distances 
between the classes. 

 
( )( )( ) ( )( )( )( )T
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i and j = the two signatures (classes) being compared 
Ci = the covariance matrix of signature i 
μi = the mean vector of signature i 
tr = the trace function (matrix algebra) 
T = the transposition function 
 
Jeffries-Matusita Distance 
The Jeffries-Matusita distance is calculated with the following formula: 
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i and j = the two signatures (classes) being compared 
Ci = the covariance matrix of signature i 
μi = the mean vector of signature i 
ln = the natural logarithm function 
|Ci| = the determinant of Ci (matrix algebra) 
 
The outcome is a listing of the computed divergence for every class pair and one band combination. 
In this case the band combination is RBG (Red: band 8, Blue: band 4, Green: band 2) from the 
CHRIS nadir image. The listing contains the transformed divergence and the Jeffries-Matusita 
distance for every possible pair of signatures (Richards & Xiuping 1999).  
 
Validation of classification results with random sample points 
First the classification results have been roughly checked in the field. This was done in the month 
of March, 2009. After field validation the CHRIS classifications and the RWS classification have 
been validated with the aerial photograph of early Spring 2006 as ground truth map. Twenty 
random sample points were taken for each class in the CHRIS nadir image, using the Hawth’s 
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toolbox in ArcGIS. To prevent the points from being too close to each other, a rule was 
implemented that the distance between two random points must be more than 100 meter. In total 
160 sample points were selected. For each point the class in the CHRIS classification, the class in 
the RWS classification and the class visible in the aerial photograph were registered. It was not 
possible to see the differences between “low grasses & herbaceous vegetation” and “higher 
herbaceous vegetation” on the aerial photograph. Based on field knowledge, and the idea that in a 
river floodplain ecosystem the patches of grass with a natural shape (not a square) will probably 
contain higher grasses and herbaceous vegetation, the assumption was made that those patches 
belong to the class of “higher herbaceous vegetation”. Confusion matrices were made for the 
CHRIS classifications and for the RWS classification with the aerial photograph classes as ground 
truth. A confusion matrix is a table that shows the classes for each sample point in the classified 
image and in the validation image. Misclassifications become clear in this table. 
The accuracy (user accuracy) and reliability (producer accuracy), the error of omission, the error of 
commission have been calculated for the CHRIS nadir ML classification, using the following 
formulas: 

 
                                 

           (8) 
 
                                  
 
                     (9) 
 
                    (10) 
 
                    (11) 
 
 
                    (12) 
 
 

 
The accuracy indicates the extent to which the processing method correctly identifies the selected 
classes. The reliability shows what percentage of a particular ground truth class was correctly 
classified. The overall accuracy is the percentage of correctly classified pixels. The error of 
omission is a measure for the pixels that are incorrectly excluded from a particular class. The error 
of commission is a measure for the pixels that are incorrectly assigned to a particular class, but 
actually belong to an other class.  
 
The kappa coefficient is a statistical measure of agreement, beyond chance, between the two maps. 
It is calculated with the following formula (Carletta, 1996):  
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P(A) = the proportion of times that the coders agree and  
P(E) = the proportion of times that we would expect them to agree by chance 

 
Equation 14 is the more formal definition of the kappa value. 
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R = the number of rows in the confusion matrix 
xii = the number of observations in row i and column i (on the major diagonal) 
xi+ = the total observations in row i 
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x+1 = the total of observations in column i 
N = the total number of observations included in the matrix 
(Canada Centre for Remote Sensing, 2009) 
 
For the other classification methods of the CHRIS image, only the overall accuracy has been 
calculated. 
 

3.3.4 Estimation of vegetation structure properties using the model FLIGHT 
3.3.4.1 Choice of classes to use for the model   

The CHRIS classification resulted in 5 vegetation structure classes. Table 2 shows how these 
classes are linked to the classes that are used in Geerling et al. (2008). Geerling et al. used the first 
5 classes as a minimum for estimating hydraulic resistance for river management purposes. 
 
As can be seen in table 2, the hydraulic roughness does not differ very much between the lower 
herbaceous and higher herbaceous vegetation groups. The ranges are from (0.25-0.73) - (1.07-1.45). 
These values lie close to each other compared to the 24.41 and 12.84 of the shrubs and forest 
classes. The herbaceous classes were hard to separate with the classification of the CHRIS images, 
so those 2 groups could form 1 group as input for the model. The first class of bare soil and pioneer 
vegetation has low water resistance values of 0.15-0.30. This class was left out for modelling 
purposes because it does not have a big influence on the hydraulic resistance. The vegetation 
structure groups that will be used as input for the model FLIGHT are noted in table 3. 
 
Table 2: Relation between the different vegetation structure classes 
 
Geerling et al. (p.76)  
 

Geerling et al. (p.55) & hydraulic 
roughness indication (k at 4m 
waterdepth) 

CHRIS classification 

Bare and pioneer 
communities 

Dry bank / sand (0.15) 
 

Bare soil & pioneer 
vegetation 

 Pioneer vegetation (0.28)  
 Groin (0.30)  
Grasses & low 
herbaceous vegetation 

Production grassland (0.25) Grasses & low 
herbaceous vegetation 

 Natural grassland (0.39)  
 Mixed grassland & herbaceous (0.73)  
Higher herbaceous 
vegetation 

Herbaceous levee (1.07) Higher herbaceous 
vegetation 

 Dry herbaceous vegetation (1.45)  
Bush 
 

Softwood bush / bush (24.41) Shrubs 
 

Forest Softwood forest (12.84) Forest 
 
 
Table 3: Vegetation structure classes as input for the model FLIGHT 
 

Class name Hydraulic resistance values 
Herbaceous vegetation 0.25-1.45 
Shrubs 24.41 
Forest 12.84 
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3.3.4.2 Processing steps for running the model FLIGHT 
 
General overview of the FLIGHT modelling procedure 
 

 
 
Figure 11. Schematic diagram showing the modelling procedure of (PRO)FLIGHT  
 
Figure 11 shows that the modelling procedure of PROFLIGHT is built up by two independent 
modules. For this thesis research, the PROSPECT part (on the right side of the figure) is not used. 
The first procedure comprises an interface where the user can fill the LUTs with input files for 
PROSPECT and FLIGHT. Parameter values of leaf biochemicals and 3D canopy structure have to 
be entered. For the variables, only the boundaries and LUT steps need to be filled in. Tabular data 
of the requested scenarios are then automatically generated. Also, a task manager file is created that 
consists of all the tasks that have to be executed. Each task represents a forest scenario. The tasks 
are stored in a relational database. 
The second module is the PROFLIGHT simulator. It executes the tasks in the task manager by 
feeding FLIGHT with the right input files from the database. It flags the tasks with “pending”, “in 
progress”, “finished” or “error occurred”. When an error occurs, the system automatically proceeds 
with the next task. When a task is finished, the simulated BRF result is stored in a database. This 
automated process results in a large dataset. With SQL queries the desired subsets from the 
generated database can be extracted. 
 
FLIGHT processing steps 
The flowchart in figure 12 shows the processing steps for running the model FLIGHT and deriving 
the final results of leaf area index (LAI), fractional cover (fCover) and fraction of photosynthetic 
vegetation (PV) per pixel in the CHRIS image. The numbers in the figure correspond to the 
numbers of the steps listed below. Further on the steps are explained in more detail. 
 

1. Run IDL/ENVI script for LUT generation. 
2. Run IDL/ENVI script for spectral resampling. 
3. Create database and tableformats (TASKLIST & output_FLIGHT) using MySQL. 
4. Copy “inflight_data” to Linux using WinSCP. 
5. Fill tables (TASKLIST) with “inflight_data” using MySQL. 
6. Copy resampled spectra to Linux using WinSCP. 
7. Run the FLIGHT model using python scripts. 
8. Copy .csv output files to desktop pc using WinSCP. 
9. Run IDL/ENVI inversion script for generation of LAI, fCover, PV and minimum RMSE 

maps. 
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Figure 12: Flowchart showing the steps that need to be taken to run the FLIGHT model and derive the 
vegetation structure properties maps. 
 
Several python scripts were used to run the model. The scripts were modified to the data from the 
forest, shrubs or herbaceous class. All the python and IDL/ENVI scripts, as well as some MySQL 
commands are taken up in appendix A and B on the cd-rom that has been added to this thesis report. 
To explain them, the names of the scripts created for the “forest class” are used in the next section. 
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Generation of LUT 
1. Run IDL/ENVI script for LUT generation. 

First a LUT was created for each of the vegetation structure classes. The LUT consists of all the 
model parameters and variables. Most model and vegetation structure parameters had a fixed value. 
There are three variables in the model: LAI, fCover and fraction PV. They each received a range of 
values in-between which they may vary. This means that many combinations of the different model 
parameters and variables are possible and that the LUTs have a big extent. Each vegetation 
structure class has its own characteristics and thus needed its own LUT. In table 4 the ranges of 
values for the variables for the first model run are indicated. A large range for each variable is first 
used to keep on the safe side. For the second model run the ranges were reduced and refined.  
For the herbaceous class for example the LAI values range from 0.5 – 7. The values increase with 
0.5 until the value of 5 is reached, and then the values increase with 1 until the value of 7 is reached. 
 
Table 4: Ranges of values for the variables fCover, LAI and PV for the 1st model run 
 
Vegetation structure class Fcover LAI PV 
Herbaceous 0.6-1; step: 0.05 0.5-7; step: 0.5 until 5; 

step: 1 until 7 
0.5-1; step: 0.1 

Shrubs 0.5-1; step: 0.05 0.5-7; step: 0.5 until 5; 
step: 1 until 7 

0.5-1; step: 0.1 

Forest 0.2-1; step: 0.05 0.5-10; step: 0.5 until 5; 
step: 1 until 10 

0.3-1; step: 0.1 

 
Appendix V contains all the model and vegetation structure parameters and variables that filled the 
LUT, together with a description of them. 
 
The LUT was created by running a script in IDL/ENVI (prospect_flight_soil.pro) (appendix A.1 on 
cd-rom). The script “textbox.pro” needs to be open too, to be able to run LUT script. When 
executing this script popup-windows appear and the numbers and ranges of values for each of the 
parameters can be filled in. The output of the script is stored in data files that are called “inflight”.  
 
Spectral resampling 

2. Run IDL/ENVI script for spectral resampling. 
Leaf reflectance and transmittance, bark reflectance and background reflectance spectra are needed 
as model input for each vegetation structure class.  
Leaf spectra were already obtained and processed (Liras, 2005) during the field campaign in 2004 
with the Fieldspec Pro. Fr.® (portable spectro-radiometer). This equipment measures in 2100 
bands, ranging from 350 to 2450 nm with steps of 1 nm in-between the bands. The spectra showed 
atmospheric noise around 1350-1400 nm and 1800-1950 nm. Those parts have been deleted. Some 
spectra showed a few values above 1. These values have been deleted too. Measurements were 
taken with white and black backgrounds.  
The following formulas have been used to calculate leaf reflectance and transmittance. 
        Leaf reflectance = μ (reflectance spectra with a black background)                           (15) 
        Leaf transmittance = μ (reflectance spectra with white background) – leaf reflectance         (16) 
 
With a black background, no transmitted radiance is reflected back, so only the “real” reflectance is 
measured. Using a white background, this transmitted radiance is reflected back to the Fieldspec, 
together with the leaf reflectance. So the transmittance can be obtained by substracting the 
reflectance with a black background from the reflectance with a white background. 
 
Field spectra of different bark and background types have been collected during the thesis research 
in the beginning of April 2009 with the Fieldspec Pro. Fr.®, near Alterra in Wageningen. Table 5 
shows the spectra that were chosen as model input for the 3 vegetation structure classes for the 1st 
model run. 
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Table 5: Measured input spectra for the 1st model run 
 
Spectra Herbaceous Shrubs Forest 
Leaf Calamagrostis 

epigejos 
Salix alba Salix alba 

Bark - Salix alba Salix alba 
Background Sand The average of grass 

+ water and a forest 
background 

Forest background 

 
Salix alba is the most representative species for both the shrubs and forest class. The only available 
leaf measurements for grasses and herbaceous vegetation were from Calamagrostis epigejos. This 
species can grow quite high, so it can represent the herbaceous class, that consists of both small and 
higher herbaceous vegetation. The forest background is a mixture of leaves, branches and moss. 
Most shrubs in Millingerwaard grow on a wet underground, but the background is also covered by 
twigs and leaves. That is why those two measured background types were combined for this class. 
Sand was taken as background for the herbaceous class, because it approximates the soil that is 
present underneath the herbaceous vegetation in Millingerwaard. 
 
The spectra were resampled to the CHRIS bands in order to have suitable model input spectra using 
a script in IDL/ENVI (spectral_resampling.pro) (appendix A.2 on cd-rom). The script 
“textbox.pro” needs to be open too. With spectral resampling the number of bands from the 
Fieldspec has been reduced to the number of bands from the CHRIS image, which is 18. The new 
bands of the spectra fit exactly to the wavelengths of the CHRIS bands. The output is a text file 
with the reflectance (and transmittance) values for each CHRIS waveband. 
 

3. Create database and tableformats (TASKLIST & output_FLIGHT) using MySQL. 
The next steps were taken with the LINUX computer, via a connection in the WUR-network, 
because of the big computational load of the model. A shell was used to connect to the MySQL 
database and to execute python scripts. The input and output data for the model needed to be stored 
in a database. So, first a new database “erika” was created with MySQL. Table formats for the 
inflight-data (called TASKLIST) and for the flight output data (called output_FLIGHT) were 
created; 1 for each vegetation structure class. The TASKLIST contains the LUT values with a 
unique task_id for each combination of parameters and variables to run the model. 
 
The following MySQL commands were used to create the table formats (Appendix B.1&2 on cd-
rom): 
 

• TASKLIST_forest 
 

CREATE TABLE IF NOT EXISTS TASKLIST_forest 
( task_ID INT NOT NULL, 
  status VARCHAR (15), 
  HOSTNAME VARCHAR (50), 
  background VARCHAR(15), 
  VZA_label VARCHAR(15), 
  VZA VARCHAR(5), 
  LAI DECIMAL(4,1), 
  PV DECIMAL(3,2), 
  fcover DECIMAL(3,2), 
  scene VARCHAR (2), 
  PRIMARY KEY (task_ID)); 
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• Output_FLIGHT_forest 
 
CREATE TABLE IF NOT EXISTS flight_output_forest 
( task_ID INT (11) NOT NULL, 
  bandnumber INT (11) NOT NULL, 
  wavelength INT (11) NOT NULL, 
  fdif float NOT NULL, 
  wrefl float NOT NULL, 
  PRIMARY KEY (task_ID, wavelength)); 
 

4. Copy “inflight_data” to Linux using WinSCP. 
The “inflight_data” were copied to the LINUX computer with a programme called WinSCP. 
 

5. Fill tables (TASKLIST) with “inflight_data” using MySQL. 
Then the tables “TASKLIST” (TASKLIST_forest, TASKLIST_shrubs and 
TASKLIST_herbaceous) were filled with the “inflight_data” (compressed text-files) for the LUT, 
using MySQL statements (Appendix B.3 on cd-rom). 
 
LOAD DATA LOCAL INFILE 'compressed_LUT_prospect_FLIGHT_forest.txt' 
INTO TABLE TASKLIST_forest 
FIELDS TERMINATED BY "," 
OPTIONALLY ENCLOSED BY "'"; 
 

6. Copy resampled spectra to LINUX using WinSCP. 
The resampled spectra were copied to the LINUX computer.  
 

7. Run the FLIGHT model using python scripts. 
Now the model FLIGHT can be run. A python script (PROFLIGHT_forest.py) was used to run the 
(PRO)FLIGHT.exe model (North, 1996) based on the LUTs. Within this python script there is a 
link to another python script (Taskmanagercl_forest.py) which stores al the output .txt files into the 
database table “output_FLIGHT” (Appendix A.3 on cd-rom). All combinations in the LUT are 
used for the model runs and FLIGHT generates outputs belonging to all these combinations. The 
model has been run in the so-called “reverse” mode. This means that the outputs are TOC BRF 
reflectance values for a specified view direction and for any combination of LUT values. The 
resampled spectra were taken from the folder “SPEC” and some fixed data were taken from the 
folder “DATA”. These folders need those specific names, because the model refers to them. Then 
the data in the output tables were written to .csv files (which can be opened for example in excel). 
This was done by running another python script “getMySQLforest.py” (Appendix A.4 on cd-rom). 
In the script there is an inner join of the output table and the tasklist table on the field (task_ID) to 
couple the generated BRF values back to the LUT-information. The output consists of combined 
columns of those 2 tables: task_ID, background type, VZA-label, VZA, LAI, PV, Fcover, 
wavelength and wrefl. 
 
The innerjoin is written as follows: 
 
SELECT task_ID, background, VZA_label, VZA, LAI, PV, fcover, wavelength, wrefl 
 FROM flight_output_forest inner join TASKLIST_forest using (task_ID);  
 
Some useful shell and MySQL commands have been taken up in appendix B.4 on the cd-rom. They 
have been used to keep track of the modelling process and the database creation.  
 

8. Copy .csv output files to desktop pc using WinSCP. 
The output .csv files were copied to the desktop pc for further use. 
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9. Run IDL/ENVI inversion script for generation of LAI, fCover, PV and minimum RMSE 
maps. 

The final script is the IDL/ENVI script: chris_inversion.pro (Appendix A.5 on cd-rom). The 
CHRIS image (with a certain angle), the classified image (created in 3.2) and the .csv file are 
needed as input files. The script allows refinement of the simulations by narrowing the ranges of 
values for LAI, fCover and PV. For example, the forest class is chosen. The script calculates the 
best match for the simulated BRF spectra and the CHRIS HDRF spectra, which is determined 
based on a cost-function. Three cost-functions were implemented in the script: the RMSE (17), the 
relative RMSE (18) (Weiss et al., 2000) and an other cost function (19) (Gobron et al., 1997): 

 
 
(17) 
 
 
(18) 
 
 
(19) 
 
 

The script generates maps with the variables LAI, Fcover, PV, according to the LUT values that go 
with the minimum of the cost-function. In case of an ill-posed problem (same RMSE, different 
variables) the script writes away extra info (SD, min, max) and calculates the average for the 
variables. The maps are created for one certain class, a certain angle and a certain LUT range.  
For the 1st model run, Millingerwaard was used as spatial subset. The maps of the three classes 
were combined, using band-math expressions in ENVI, to show the LAI, Fcover or PV for 
herbaceous, shrubs and forest together in one map. 
The created LAI and fCover maps had the rectangular shape from the CHRIS subset, so afterwards 
a new spatial subset from those maps was taken for only the river floodplain areas. This was done 
by subsetting the data via ROIs with the RWS vector file (.evf) as ROI. Histograms of LAI and 
fCover values were made by exporting them to ASCII files and adjusting them in Excel. The 
histograms contain LAI and fCover values for each angular map, summarized per vegetation 
structure type, and also summarized for all vegetation structure types together. All maps and 
histograms were created for the Millingerwaard and later for the whole Gelderse Poort area. 
 
 3.3.4.3 Model refinement for the 2nd model run 
After looking at the first modelling results the values for the 3 LUT variables have been refined. 
Most LAI values for the herbaceous and shrub classes had received the highest available value of 7, 
so the herbaceous and shrubs LAI ranges were extended until 10 and 12 respectively. The 
minimum for these classes was shifted up a little bit, because there were no LAI values smaller 
than 1 and 2.5 respectively. For the forest class, the LAI range was also extended until 12. This was 
done based on the LAI measurement results in 2005 (Gonsamo, 2006), where the highest LAI 
values of the Salix species did not exceed 12. The minimum for this class was set at 2.5, because 
there were no LAI values lower than that.  
The ranges for FCover have been reduced, based on the first inversion results. Most values for 
herbaceous, shrubs and forest were above 0.5 and 0.7 respectively. The new ranges were set to a 
minimum 0.6 for herbaceous, 0.7 for shrubs and 0.8 for forest. These new ranges seem more 
realistic when looking at the vegetation coverage on the aerial photograph for a CHRIS pixel. 
The ranges for PV were adjusted as well. The value for the herbaceous class was set to 1, because 
herbaceous vegetation does not contain non-photosynthetic material: it does not contain bark or 
other woody elements. The ranges for shrubs and forest were set to 0.7-0.95. These values are 
estimated based on similar values found in literature (Broadbent, et al., 2006; Gensuo, et al., 2006; 
Guerschman, et al., 2009). The new ranges of values for the variables, used for the 2nd model run, 
are presented in table 6. 
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Table 6: Ranges of values for the variables fCover, LAI and PV for the 2nd model run 
 
Vegetation structure class fCover LAI PV 
Herbaceous 0.7-1; step: 0.05 1-10; step: 0.5 until 7; 

step: 1 until 10 
1 

Shrubs 0.6-1; step: 0.05 2.5-12; step: 0.5 until 
7; step: 1 until 12 

0.7-0.95 

Forest 0.8-1; step: 0.05 2.5-12; step: 0.5 until 
7; step: 1 until 12 

0.7-0.95 

 
For the 2nd model run, first the Millingerwaard was used as spatial subset. Second, results were 
obtained for the Gelderse Poort, using the complete CHRIS image as spatial subset. 

 
 3.3.4.4 Validation of structure properties 
Validation of modelled LAI values was done with ground measurements from 2004 (Mengesha, 
2005) and 2005 (Gonsamo, 2006). In 2004 LAI measurements were obtained by means of 
hemispherical photography and in 2005 a combined method of hemispherical photography and 
TRAC measurements, adjusting the LAI outcome of the hemispherical photography for clumping 
index, was used. Two sets of validation points with measured LAI values were loaded into ArcGIS 
(appendices VI and VII). The LAI maps were overlaid by these validation points to obtain the 
modelled LAI for the validation points. 
The modelled LAI values were compared with the measured LAI values from 2004 and 2005 by 
means of scatter plots. Outliers were excluded and linear regression functions were calculated. The 
R2 values (coefficient of determination) give an indication of how good the validation results are. 
 
fCover validation data were available from the same ground measurements from 2004. Modelled 
fCover was validated using the same methodology as for LAI. 
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4. Results 
 

4.1 Classification of vegetation structure types 

4.1.1 RWS classification 
Figure 13 shows the RWS ecotope map for the river floodplains in the Gelderse Poort after 
classification into the 8 classes. The total area of forest is small; most of it is located in the 
Millingerwaard. Also, most of the bare soil parts are present in Millingerwaard as bare land and 
sand dunes along the river Waal. Furthermore the largest part of the Gelderse Poort consists of 
grasses and low herbaceous vegetation. These can be agricultural or natural grasslands and 
vegetations. Arable land takes up a large part of the Gelderse Poort as well. Some of those 
agricultural fields lie within Millingerwaard. Water is present almost everywhere in the image, 
apart from the river, sometimes as small lakes, sometimes as side streams of the river. 
 

 
 
Figure 13: Classified RWS ecotope map of the Gelderse Poort 
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Validation 
 
Table 7: Confusion matrix RWS classification 
 

Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

Bare soil 7 3 1 3 3 17
Grass & low herbaceous 34 4 1 39
Higher herbaceous 1 4 6 11
Shrubs 2 8 2 12
Forest 1 1 23 1 26
Arable land 1 18 19
Water 1 22 23
Build up 1 1 11 13
Total 9 44 9 9 25 23 26 15 160  
 

 
Table 8: Accuracy RWS classification 
 
Classes Accuracy (%) Error of omission (%) Error of commission (%) Reliability (%)
Bare soil 41,18 58,82 22,22 77,78
Grass & low herbaceous 87,18 12,82 22,73 77,27
Higher herbaceous 54,55 45,45 33,33 66,67
Shrubs 66,67 33,33 11,11 88,89
Forest 88,46 11,54 8,00 92,00
Arable land 94,74 5,26 21,74 78,26
Water 95,65 4,35 20,00 80,00
Build up 84,62 15,38 26,67 73,33  
 
Table 7 contains the confusion matrix for the RWS classification and table 8 the corresponding 
accuracy measures. The overall accuracy is 80.63%. The Kappa coefficient is 0.66. The accuracies 
of the classes “grasses and low herbaceous vegetation”; “forest”, “arable land” and “water” are 
high. The accuracy of bare soil is the lowest. Bare soil is often wrongly classified as water or built-
up area. The reliability (producer’s accuracy) is highest for the forest class. 
 

4.1.2 CHRIS classification 
Figure 14 shows the feature space plot with a cloud of points from the CHRIS nadir dataset. On the 
Y-axis is the NIR band (band 14), on the x-axis the Red band (band 8). The coloured circles 
contain the pixels from the ROI classes. The water class has a low HDRF in both the Red and the 
NIR band. The bare soil class has a high reflectance in Red. The vegetation classes and the arable 
land class lie close to each other, but they do not really overlap. They have high reflectance values 
for the NIR wavelengths and quite low values in the Red band. The built-up class lies somewhere 
in-between the other classes. 
In figure 15 the spectral signatures of the 8 classes are plotted. The signatures belong to a pixel that 
lies within the ROI class in the feature space plot (figure 14). The signatures for “water” and 
“grasses and low herbaceous vegetation” are plotted twice, because those classes cover a large area 
in the feature space plot. It probably concerns different kinds of grasses, e.g. natural grassland and 
agricultural grassland. 
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Figure 14: Feature space plot showing the spectral location of pixels that were chosen for each ROI 
within the nadir image of the Gelderse Poort that is used for classification. The association between the 
red band (band 8) on the x-axis and the NIR band (band 14) on the y-axis is presented here so the 
different spectral characteristics of each land use class become apparent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 15: Spectral signatures of the ROI classes, belonging to a pixel from the ROIs in the feature 
space plot in figure 14, with on the x-axis the band numbers from the CHRIS sensor (bands 1-18) and 
on the y-axis the HDRF values.  

 35 



Figure 16 shows the ecotope map of the river floodplains after classification of the CHRIS nadir 
image with the Maximum Likelihood classifier. 
 
The largest area of the Gelderse Poort is covered by grasses and low herbaceous vegetation. The 
rest of the Gelderse Poort is mostly covered by agricultural fields, bare soils and higher herbaceous 
vegetation. Forests take up just a small part in Millingerwaard. Some other parts in and near 
Millingerwaard are covered by shrubs. Water is present in many parts of the floodplain area. Not 
many parts are indicated as built-up area.  
 

 
 
Figure 16: CHRIS ecotope map of the Gelderse Poort, created with maximum likelihood classification 
of the CHRIS nadir image using regions of interest. 
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Validation 
Validation of ROIs 
All of the pairs except for one have a separability value higher than 1.9. This means that the classes 
are statistically separated well. The arable land class even has a value of 2.0 in separation with 
built-up, forest, water and bare soil. Only the pair “higher herbaceous vegetation” and “grasses and 
low herbaceous vegetation” has a separability value of 1.71. This means that the spectral 
characteristics of these two classes are quite similar. This can be seen in the scatterplot of figure 14 
where the classes almost overlap each other. In figure 15 two spectral signatures are plotted for 
grasses and low herbaceous vegetation. One of those signatures is very close to the signature of 
higher herbaceous vegetation. These signatures belong to pixels in the scatterplot in the part where 
the classes almost overlap. The other signature has higher reflectance values in the NIR. This 
signature belongs to a pixel in the upper part of the plotted ROI class for grasses and low 
herbaceous in figure 14. In appendix VIII the separability values for the pair separation of the ROIs 
in the CHRIS nadir image are presented.  
 
Validation of the classified image 
During field validation in the floodplains of Millingerwaard it was obvious that some parts of the 
class of higher herbaceous vegetation (on the classified CHRIS image) have moved up to the class 
of shrubs and the class of shrubs to the forest class. Furthermore, on some parts where the 
classification indicates bare soil there is water now.  
Table 9 shows the confusion matrix for the maximum likelihood classification of the CHRIS nadir 
image and table 10 the measures of accuracy. The matrix is based on the 160 random sample points 
taken in the CHRIS image and in the aerial photograph (ground truth). The overall classification 
accuracy is 68.13% and the kappa coefficient is 0.56. The accuracies of the classes “arable land” 
and “built-up” are the highest and the accuracy of the class “grasses and low herbaceous” is the 
lowest. Sample points of other classes, especially “higher herbaceous” and “shrubs” are often 
misclassified into this class. The reliability, however, is highest for the class “grasses and low 
herbaceous”. Pixels that are grass on the aerial photograph are also classified as grass in the Nadir 
image. Furthermore, the reliability of “forest”, “arable land” and “water” is high. The reliabilities 
of “higher herbaceous vegetation” and “shrubs” are the lowest. These classes are often 
misclassified into “grasses and low herbaceous vegetation” and, in the case of shrubs, also in forest. 
 
Table 9: Confusion matrix CHRIS nadir ML classification 
 

Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

Bare soil 11 1 2 3 17
Grass & low herbaceous 3 19 6 5 1 3 1 1 39
Higher herbaceous 1 8 1 1 11
Shrubs 2 9 1 12
Forest 2 4 16 1 3
Arable land 1 17 1 19
Water 3 1 1 18 23
Build up 2 11 13
Total 20 20 20 20 20 20 20 20 1

26

60  
 

Table 10: Accuracy CHRIS nadir ML classification 
 
Classes Accuracy (%) Error of omission (%) Error of commission (%) Reliability (%)
Bare soil 64,71 35,29 45,00 55,00
Grass & low herbaceous 48,72 51,28 5,00 95,00
Higher herbaceous 72,73 27,27 60,00 40,00
Shrubs 75,00 25,00 55,00 45,00
Forest 61,54 38,46 20,00 80,00
Arable land 89,47 10,53 15,00 85,00
Water 78,26 21,74 10,00 90,00
Build up 84,62 15,38 45,00 55,00  
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Results and validation of the other CHRIS classifications 
 
Table 11: Overall accuracy for the other CHRIS classifications  
Stacked layers means a combination of bands 2-18 from the CHRIS nadir, -36, +36 VZA images 
 
Input image Classification method Overall accuracy 
CHRIS Nadir Support Vector Machine 56,25% 
CHRIS Stacked layers Maximum Likelihood 44,38% 
CHRIS Stacked layers 
PCA bands 1-3 

Maximum Likelihood 55% 

CHRIS Stacked layers 
PCA bands 1-4 

Maximum Likelihood 56,25% 

CHRIS Stacked layers 
PCA bands 1-5 

Maximum Likelihood 58,13% 

 
The results from the other classification methods are less good than the results from the CHRIS 
nadir classification with the ML classifier. In table 11 the overall accuracies are given for those 
classifications. The maps and accuracy matrices of the other classifications can be found in 
appendix IX. 
The SVM method did not improve the results compared to the ML method. The classified image 
(appendix IX) shows misclassifications in built-up areas that are placed along the borders of the 
river and the lakes. The classification of the CHRIS image with stacked layers, using the ML 
classifier, performed worst with an overall accuracy of only 44%. As is noticeable in appendix IX, 
many parts of the image are classified as water. Also, the vegetation classes do not come out as 
they should. Too many parts are classified as high herbaceous vegetation, but are in fact shrubs or 
forest. The classifications of the stacked layers CHRIS image with PCA has better results. All of 
these images were classified with the maximum likelihood method. When using the first 3 PCA 
bands, the overall accuracy is 55%. The overall accuracy improves when more PCA bands are 
chosen. With 4 PCA bands, the overall accuracy is 56% and with 5 PCA bands 58%. On the 
classified PCA-band images the parts along the river borders are also classified as built-up area. 
 

4.1.3 Comparison of CHRIS classification with RWS classification 
 
 
CHRIS nadir classification (ML) RWS classification 
 

 
 
Figure 17: Ecotope maps of Millingerwaard obtained by maximum likelihood classification of the 
CHRIS nadir image and reclassification of the RWS ecotope map. 
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In figure 17 the images of the RWS classification and the best results for the CHRIS classification 
(CHRIS – nadir – ML) are shown together.  
 
The RWS classification has a higher overall accuracy (80%) than the CHRIS classification (68%). 
As can be seen in the classifications of Millingerwaard in figure 17, the RWS classification shows 
more details in the classes. It shows for example small lines of forest (in the north, near the river) 
and small areas of shrubs. But the CHRIS image is more detailed in showing the classes on a pixel 
basis. For example, within the parts of higher herbaceous vegetation, there are some pixels of low 
herbaceous vegetation. 
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4.2 Vegetation structure properties 

4.2.1 LAI 
 4.2.1.1 Millingerwaard 
 
LAI -36 VZA (figures 18 & 19) 
Most LAI values range from 1 to 4.5, with a peak at 2.5 (figures 18 and 19). The LUT values for 
LAI range from 1-7, with a step of 0.5; and from 7-12 with a step of 1. Every possible LUT value is 
present in the map, but from 5 until 12, the frequencies are lower, with an exception at value 10. 
This second peak at 10 represents the rectangular shaped arable fields. The higher LAI values 
around 6-7 and at 12 belong to parts west of the lake. These parts consist of natural vegetation with 
a lot of appearing high grasses, small shrubs and some scattered bushes. Those higher values can 
also be seen in some forest parts in the middle and south of Millingerwaard and along the winter 
dike. There is a gradient in the map with subtle differences in LAI values. Even in the rectangular 
agricultural field in the east some variation in values are discernable.  
 
LAI nadir VZA (figures 20 & 21) 
The distribution of LAI values is more or less the same as for the backward scattering direction 
(figures 20 and 21). Most values are ranged between 1 and 4.5, with a peak at 2.5. There is also a 
second peak at 10 and a lower frequency for the other values between 6 and 12. However, not all 
possible LUT values occur in the image. The higher LAI values are located in the same places as 
on the map for the backscattering direction: next to the lake, in the forested areas in the middle and 
south of the image, in the arable fields and along the winter dike in the south. The difference with 
the backward scattering direction is that less of a gradient can be seen in LAI values. 
 
LAI +36 VZA (figures 22 & 23) 
Most LAI values in the forward scattering direction are again in-between 1 and 4.5, but there is not 
a natural curve in the histogram like in the histograms of the backward scattering and nadir 
direction (figures 22 and 23). There is a small peak at 2.5. Furthermore there is a high frequency at 
6 and 6.5. This indicates the same parts on the map as where the peak value of 10 is in the nadir 
and backward scattering direction: the value of 6 belongs to the natural grasslands west of the lake 
and the value of 6.5 belongs to the arable land. There are also some values of 12 in the forest and 
shrub areas in Millingerwaard. There is not so much gradient in LAI values compared to the 
backward scattering map and the values from 7 to 11 are not included. No subtle differences can be 
discerned in the image. Large parts, like the part next to the lake, received high values. 
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 Figure 18: LAI map of Millingerwaard for the backward scattering direction (VZA -36). 
 

NB: the values at the colour scale bar in the 2nd and 3rd position (here: 2.5 and 6.5) differ for 
each colour map in paragraphs 4.2.1.1-4.2.2.2. This is because of the different ranges of values 
that are present in each map. 
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Figure 19: Histogram of LAI for all classes in Millingerwaard for the backward scattering 
direction.  
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Figure 20: LAI map of Millingerwaard for the nadir direction. 
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Figure 21: Histogram LAI for all classes in Millingerwaard for the nadir direction. 
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  Figure 22: LAI map of Millingerwaard for the forward scattering direction (VZA +36). 
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Figure 23: Histogram of LAI for all classes in Millingerwaard for the forward scattering 
direction. 
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Figure 24: Histograms of LAI for the forest class (modelled as 1D medium), the shrub class and the 
herbaceous class in Millingerwaard for all 3 viewing directions. 
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Figure 24 shows the LAI histograms separately for each vegetation structure type. All three angles 
show the same trend of how the LAI values are distributed within the lower ranges from 1-5. 
However there are some small differences in frequencies within this range and also in the higher 
ranges of values.  
In the forest class almost all values range from 2.5 until 4.5. LAI of 2.5 has the highest frequency 
for all scattering directions, the frequency decreases with higher LAI values. There are some LAI 
values around 6 and 12. LAI of 2.5 has the highest frequency in the backward scattering direction; 
LAI of 3 and 3.5 has the highest frequency in the nadir direction. LAI of 4 and 4.5 has the highest 
frequency in the forward scattering direction. 
For the shrub class most values are also in-between 2.5 and 4.5, but there are also quite high 
frequencies around 6, 7 and 11 and a high peak at 12. In the forward scattering direction, LAI 
values do almost not occur in the higher ranges, except at the value of 12. The LAI values for the 
backward scattering direction are distributed over more classes than for the nadir and forward 
scattering direction. 
Most LAI values in the herbaceous class range from 1 until 4.5 for all three scattering directions. 
The LAI value of 1 has a very low frequency for the nadir direction; the backward and forward 
scattering directions have a higher frequency at 1. At 6 and 6.5 there are peaks in the forward 
scattering direction. At 9 there are some values covered by the nadir and backward scattering 
direction and at 10 there is a peak in the nadir and backward scattering direction. LAI values of the 
backward scattering direction occur at almost every possible LUT value. 
 
Forest was modelled as 1D medium, because this gave better results than with an explicit 3D 
geometric shape. As an example, in appendix X, the results for forest modelled as 3D medium are 
presented for the nadir viewing direction. There is not much variation in LAI values. This is also 
pronounced in the histogram in appendix X, where the LAI values for the forest class in all three 
viewing directions are given.  
 
 
 

4.2.1.2 Gelderse Poort 
The LAI modelling results for the river floodplains of Gelderse Poort as spatial subset are more or 
less the same as for Millingerwaard. The maps and histograms for the backward scattering 
direction are shown in figures 25 and 26. The results for the nadir and forward scattering direction 
are presented in appendix XI. The high peaks at values 10 for backward scattering direction are 
much higher compared to those peaks for Millingerwaard. This means that there are many arable 
fields along the river floodplains in the Gelderse Poort; they have a very dark colour. Similar peaks 
can be seen in the nadir and forward scattering direction, respectively at 10 at 6-6.5. The peaks at 
2.5, however, are less expressed than for Millingerwaard. The distribution of the rest of the values 
is similar to the distribution of values for Millingerwaard. The histogram for the backward 
scattering direction covers all possible LUT values, the nadir histogram has the same shape as the 
backward scattering histogram, but does not cover all values. The histogram for the forward 
scattering direction has an irregular shape and no values between 7 and 11. 
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Figure 25: LAI map of the Gelderse Poort for the backward scattering direction. 
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Figure 26: Histogram LAI Gelderse Poort for the backward scattering direction. 
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4.2.2 fCover 
4.2.2.1 Millingerwaard 

The fCover maps look much more granulated than the smooth-looking LAI maps. The map and 
histogram of the backward scattering direction (figures 27 and 28) show almost no values of 0.6 
and 0.65. Most values are evenly distributed between 0.7 and 1. The highest fCover values of 0.95 
and 1 belong to the arable field in the northeast of Millingerwaard. Some parts within the forest and 
natural grassland and along the winter dikes also received high values. Lowest values are present in 
the parts that contain bare soil or pioneer vegetation, in the north of Millingerwaard. 
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Figure 27: fCover map of Millingerwaard for the backward scattering direction. 
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Figure 28: Histogram of fCover for all classes in Millingerwaard for the backward scattering direction. 
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Figures 29 and 30 show the fCover map and histogram for the nadir viewing direction. The fCover 
values of 0.6 and 0.65 have a low frequency. Then there is a small peak at 0.7. The right part of the 
histogram is bell-shaped with a peak at 0.85. Highest values are scattered through the whole image. 
The value of 0.7 belongs to pixels in the natural grassland in the north and west of Millingerwaard 
and the peak at 0.85 belongs to pixels in the arable fields. 
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Figure 29: fCover map of Millingerwaard for the nadir direction. 
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Figure 30: Histogram of fCover for all classes in Millingerwaard for the nadir direction. 
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What is striking for the forward scattering direction (figures 31 and 32) is that most pixels received 
the highest possible fCover value of 1. This is not only the case for the arable fields, but also for the 
natural grasslands west of the lake. The rest of the values is irregularly distributed between 0.7 and 
0.95. The highest values belong to the arable land, the natural grasslands west and north of the lake, 
the forest south of the lake and along the winter dike in the south of Millingerwaard. The lowest 
values belong to the parts that are bare or pioneer vegetation, in the north of Millingerwaard. 
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Figure 31: fCover map of Millingerwaard for the forward scattering direction. 
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Figure 32: Histogram of fCover for all classes in Millingerwaard for the forward scattering direction. 
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Figure 33: Histograms of fCover for the forest class (modelled as 1D medium), the shrub class and the 
herbaceous class in Millingerwaard for all 3 viewing angles. 
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Figure 33 shows the histograms of fCover in Millingerwaard separately for the three vegetation 
structure types.  
For the forest class, the highest frequency of fCover values in the nadir direction is at 0.8. The 
highest frequency of the backward scattering direction is at 0.85. For the forward scattering 
direction, the highest frequency is at 1. The backward scattering direction has a frequency at all 
possible fCover LUT values. The nadir direction only has a frequency at values 0.8 and 1. The 
values in the forward scattering direction are more evenly distributed among the fCover values. 
For the shrub class there are two peaks in the nadir direction at 0.65 and 0.85. The rest of the nadir 
fCover values are distributed among the other classes. The highest frequencies for the backward 
scattering direction are at 0.7 and also at 0.85 and 0.9. The fCover values occur in all classes. The 
forward scattering direction has peaks at higher fCover values of 0.8, 0.9 and 1.  
The herbaceous class has a high frequency of fCover values in the nadir direction at 0.8 and 0.85. 
The peak for the forward scattering direction lies at 1. The fCover values for the backward 
scattering direction are distributed quite evenly over all the fCover classes. 
 
 
 

4.2.2.2 Gelderse Poort 
The map and histogram in figures 34 and 35 show the distribution of fCover values derived from 
the backward scattering direction for the whole Gelderse Poort area. The results are similar to the 
results of Millingerwaard. Although, there are higher peaks and lower dips in the histogram. There 
are almost no fCover values of 0.6 and 0.65.  
 
The results for the nadir and forward scattering direction are displayed in appendix XII. The results 
for the nadir direction are similar to those of Millingerwaard. There are almost no fCover values of 
0.6 and 0.65. The results for the forward scattering direction are also similar to those of 
Millingerwaard. Only, the frequency for the fCover value of 1 is much higher in the Gelderse Poort.
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Figure 34: fCover map of the Gelderse Poort for the backward scattering direction. 
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Figure 35: Histogram fCover Gelderse Poort for the backward scattering direction. 
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4.2.3 PV 
The model outcome of PV did not show any variation with the RMSE method. The PV received the 
minimum LUT-value that was available for each vegetation structure type. For the forest and shrub 
class this was 0.7 and for the herbaceous class this was 1. If you allow the LUT to have a larger 
range of PV values, for example 0.5-1, than PV again receives the lowest possible value, which is 
in this case: 0.5. 
 

4.2.4 Validation of LAI with field data from 2004 and 2005 
4.2.4.1 Validation of LAI with field data from 2004 

Figure 36 shows scatter plots of the modelled and measured LAI values from the field campaign of 
2004. All validation points are located in forest areas (appendix VI). The black dots represent 
validation points that have a poor correlation and were not included for the linear regression.  
The blue line is the linear regression line that belongs to the blue dots: the validation points that 
were used for linear regression. The ranges of values of the modelled and measured LAI are the 
same with values in-between 2.5 and 4. Overall the modelled LAI is a little bit lower than the 
measured LAI, but all values still lie close to the ‘x=y’-line, which is the ideal line for regression. If 
all points fell on the ‘x=y’-line, the modelled and measured values would be the same. The R2 is the 
highest in the nadir and forward scattering (plus 36) direction. The linear regression line from the 
nadir scatter plot is very close and almost parallel to the ‘x=y’-line. 
Two of the black dots (validation points 3 and 9: appendix VI) occur in all three observation angles. 
The modelled LAI for these two points is lower than the measured LAI and the difference is larger 
in comparison to other validation points. A reason for this could be that the forest area is quite 
heterogeneous. As a CHRIS pixel is ± 17 m2, the modelled LAI is an average value for the whole 
pixel; the forest surrounding the exact measurement location is also taken into account. Therefore 
the modelled LAI can have a different value than would be expected for the exact measurement 
location. Another reason could be that those points are outliers because of measurement 
inaccuracies. The 3rd black dot (validation point 10: appendix VI) is only present in the nadir 
direction. This validation point has a relatively high modelled LAI value. In the other two 
directions the modelled value of this point is much lower. So probably it is because of a modelling 
uncertainty that this point has such a high value in the nadir direction. Those three points are 
considered as outliers and are therefore excluded from the validation analysis. They would change 
the direction of the linear regression line and the R2 considerably. Excluding them from further 
analysis will give a more realistic validation result. 
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Figure 36: Scatter plots showing the correlation between the modelled LAI for the 3 viewing angles 
and the measured LAI that was obtained with the hemispherical camera for 13 validation points in 
2004. The linear regression functions and R2s are plotted in the graphs. 
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Cross validation 
The modelled LAI outcomes for all 3 observation angles lie within the same range of values; 
between 1.5 and 4.5 (figure 37). The modelled LAI values in the back scatter (VZA -36) and 
forward scatter (VZA +36) directions are lower than in the nadir direction. The LAI values in the 
backscatter and forward scatter direction are very similar. The scatter plot in figure 37 shows a 
higher correlation between those two observation angles than in the scatter plots with the nadir 
direction. The points lie almost on the ‘x=y’-line and the R2 is relatively high: 0.56. 
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Figure 37: Scatter plots showing the cross validation results of the modelled LAI outcomes for the 3 
different viewing angles for the 13 validation point locations of 2004.  
NB: some points have the same value in this graph: so 5 blue dots represent 13 validation points. 
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Figure 38: Scatter plots showing the correlation between the modelled LAI for the 3 viewing angles 
and the measured LAI that was obtained with the hemispherical camera + TRAC for 19 validation 
point locations of 2005. The linear regression functions and R2s are plotted in the graphs. 
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The scatter plots in figure 38 contain the modelled and measured LAI values for the validation 
points from 2005. Red points represent dots from all the measured classes (herbaceous, shrubs and 
forest); black dots represent the points that were excluded from validation analysis. 
The four black dots in the bottom of the graphs occur in all three observation directions. These 
points represent GH1, FR17, FR18 and FR19; 1 validation point in the grasses & herbaceous class 
and 3 validation points in the forest class (for exact location, see appendix VII). These points 
probably have inaccuracies in the field measurements, because the measured value is much higher 
than the average measured value of the other points. On the aerial photograph, the vegetation 
composition looks similar to the vegetation composition of the other validation points in the same 
class (for grass: GH1, compared to GH4 or GH5; for forest: FR17, 18, 19 compared to FR20; 
appendix VII). So you would expect a similar value in measured LAI. One outlier, visible in all 3 
observation angles, has a very high modelled value. This concerns validation point SH8 in the 
shrub class. Another validation point in the shrub class, SH11 only has a high value in the nadir 
direction. These high modelled values for SH8 and SH11 are probably due to modelling 
uncertainties. The validation points GH1, FR17, FR18, FR19, SH8, and SH11 were considered as 
outliers and therefore excluded from further analysis. 
Best validation results are obtained in the nadir direction, with an R2 of 0.2297. The ranges of 
values lie close to each other, but there does not seem to be a very strong correlation between 
measured and modelled LAI values. Validation results for the forward and backward scattering 
direction are very poor. 
 
Appendix XIII contains scatter plots of the same validation results, but they show the results 
separately for the three modelled classes. The correlations are not very strong. The forest class 
shows an R2 of 1, but this is not representative for the forest class, because the linear regression line 
was drawn based on only 2 points. In the nadir direction the shrub class gives the best validation 
results and in the forward and backward scattering direction best validation results were obtained 
from the herbaceous class. 
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Figure 39: Scatter plots showing the cross validation results of the modelled LAI outcomes for the 3 
different viewing angles for the 19 validation point locations of 2005.  
 
The scatter plots from the cross validation in figure 39 show a relatively high correlation of LAI 
values between all CHRIS observation angles. The best results were obtained from cross validation 
of the backscattering (VZA -36) and the forward (VZA +36) scattering direction. 
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4.2.5 Validation of fCover with field data from 2004 
The validation results of the modelled fCover with measured fCover from 2004 are not so good. 
There hardly seems to be any correlation between the modelled and measured fCover values. 
Validation points are scattered all over the plot, especially in the nadir and backward scattering 
direction. It is hard to find an explanation for this. It could be again due to the fact that the forest is 
heterogeneous and that therefore the modelled values for a CHRIS pixel differ too much from the 
measured values at one exact location. The nadir and backward scattering direction have better 
validation results than the forward scattering direction. The R2s are 0.34 and 0.24 respectively. For 
this analysis the validation points with a large difference in modelled and measured values were 
excluded, so taking these points into account would make the results even worse. Appendix XIV 
contains the scatter plots that show the correlation between the modelled and measured fCover 
values and also the scatter plots with the cross validations. The results from cross validation are 
even weaker than the validation results themselves. There seems to be no correlation between the 
different observation angles.  

4.2.6 Critical assessment of outliers 
In figure 40 the HDRF values from the CHRIS nadir data are plotted against the measured LAI 
values from 2004 and 2005. Reflectance in the green, red and NIR band are plotted separately. The 
scales of the x and y axes are set equal so the results from 2004 and 2005 can be compared.  
A positive linear relationship is expected between the NIR/Red VI and LAI, and between the 
NIR/Green VI and LAI (Kimura et al. 2004). Based on this finding, you would expect certain linear 
relationships between reflectance in NIR, red and green with LAI: A positive linear relation 
between NIR reflectance and LAI, and a negative linear relation between red reflectance and LAI, 
and green reflectance and LAI. The same kind of relationships was found in the study of 
Rautiainen et al. (2009). 
 
Measurements of 2004 
Linear regression lines are drawn through all the measured points, excluding the points that were 
labelled as outliers. In this way it becomes clear if the points that were labelled as outliers (black 
dots), also show a different relation than expected between reflectance values and LAI. The black 
dots with a red circle (figure 40, on the left side) are in such a position that they would change the 

n. 
rs based on LAI measurements. 

his concerns the measurement points 3 and 10 (appendix VI). The other ‘outlier’; point 9 is the 

f this point is too 
high. Looking at the same 3 points (point 3, 9 and 10) in the fCover validation table and graphs 
(appendix XIV), points 3 and 9 can also be seen as outliers. Point 10 is positioned relatively close 
to the ‘x=y’-line and is not an outlier in the fCover graphs. 
 
Measurements of 2005 
The measured points in the graphs (figure 40, on the right side) are split up in 3 classes. The linear 
line is drawn through all points from all classes, excluding the outliers. Only for the herbaceous 
class the negative trend in linear regression for the green and red band, and the positive trend for 
the NIR band can be seen. However, the points are not positioned very close together. The 
herbaceous outlier with the red circle is GH1. This point is located in natural grassland (appendix 
VII). There is no reason why this point should have a higher measured LAI value than the rest of 
the GH points, so it concerns an outlier. For the shrub class the linear relation between reflectance 
values and LAI is not obvious. It seems that the decision of the choice of outliers was right, but in 
fact the expected linear relationships can not be drawn between the remaining shrubs points. For 
the forest class a negative linear trend can be seen in the green and red band. In the NIR band, there 
is no positive linear trend. The group of three forest outliers (red circle) should have higher 
reflectance values in the NIR band. The decision seems right to consider them as outliers. 

direction of the linear regression line in a wrong way if they were included for linear regressio
This justifies the decision that those points are considered as outlie
T
black dot in the middle of the graphs. There is no obvious reason why this point should be 
considered as outlier, because this point falls in the right range of linear regression. So probably 
point 9 is an outlier because of modelling accuracies: the modelled LAI value o
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Figure 40: Spectral reflectance in green, red and NIR bands (bands 4, 8 and 14) of the CHRIS nadir 
data in comparison to the LAI measured in 2004 and 2005. 
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5. Discussion 

5.1 Classification of vegetation structure types 

5.1.1 Separability of classes 
In the feature space plot of figure 14 and from the separability values in appendix VIII it becomes 
apparent that the ROIs are well separated. The classes lie close to each other in the feature space 
plot, but do not really overlap. Except for the pair of “grasses and low herbaceous” and “higher 
herbaceous”, all separability values are higher than 1.9. Therefore the decision was made to 
combine those two herbaceous classes in one class “herbaceous” for the modelling part of the 
research.  
The classes with different vegetation structure types lie closest to each other in the feature space 
plot. They all show a high reflectance in the NIR band and a low reflectance in the Red band. This 
is characteristic for vegetation and it indicates the red edge inflection point. The arable land class is 
well separated from all the other classes. It was useful to create this extra class, because it does not 
show many similarities to the other classes. Arable land consists of mainly maize; this has different 
spectral characteristics than other vegetation types in the image. 
 
Field validation 
Field validation was preformed in early Spring 2009. The field observations were only done to get 
a general idea of the vegetation composition in the floodplain area, because the classification was 
based on CHRIS images from 2005. It was clearly visible that the vegetation had developed since 
this date. For example, what belonged to the higher herbaceous class on the CHRIS classification 
image had become part of the shrubs area. Also, there were more bare soil parts in the field: the soil 
has been excavated as part of the nature rehabilitation and floodplain restoration projects. During 
field validation, all grasses and herbaceous vegetation were low, because it was the month of 
March, while the CHRIS acquisition was done in September. Therefore, there were no differences 
detectable between the classes of “grasses and low herbaceous” and “higher herbaceous” 
vegetation in the field.  
 

5.1.2 Misclassifications 
Table 9 and 10 show the accuracy and misclassifications of the CHRIS nadir ML classification. 
Misclassifications can be due to the large pixel size of the CHRIS data. If some of the classes are 
mixed within a pixel, the spectral signature is a mixture of these classes too. The pixel is classified 
to the class for which the pixel reflectance values have the highest probability. So, for part of the 
pixel this can be right. However, the whole pixel is generalized and the parts that actually belong to 
another class are misclassified.  
Furthermore, due to the large pixel size, some class boundaries have shifted from the actual 
position which is illustrated in figure 41. The random sample point 134 is positioned in a forested 
area, but in the CHRIS image, this point still belongs to the water class. The largest part of this 
pixel consists of water; therefore the whole pixel was classified as water. Around 9 random sample 
points were positioned near a class boundary and were misclassified because of this. 
 

                 
 
Figure 41: Misclassification due to pixel size of CHRIS image and shifting of boundaries. 
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Another reason for misclassification can be that sometimes the spectral signatures in the CHRIS 
 the vegetation classes, are very similar, that they can easily be misclassified. 
appen that higher herbaceous vegetation is classified as shrubs.  

es on the river that were classified as 
 with a load of sand.  
t-up class (figure 15) has some characteristics of a vegetation 

rwaard (and elsewhere in the image) there are small spots of “built-up” area. These are 

g different methods and 

pixels in the river and thus were erased from the image. 

 methodology for making a land cover classification with multi-
ain findings of Huber were that SVM methods achieved higher 

re pixels are required for the ROIs to explicitly separate land cover 

 The spectral 
ignature of the pixels consists of a combination of signatures from the three viewing directions. 

The nadir signature of one pixel can for example be the reflectance of bare soil. But the forward 
scattering and backward scattering signatures of the same pixel can contain the reflectance of 
something else; for example a tree, standing just next to the bare soil part. The CHRIS sensor first 
received the reflectance of this tree. The bare soil part is behind the tree and thus could only be 
detected from the nadir viewing direction. Many pixels that are lying close to class boundaries were 
assigned to the wrong class, probably because they have a spectral signature that is a mixture of 
different classes. 

ined by 
 while in the 

image, especially for
It could for example h
 
On the classified CHRIS nadir ML image there are small lin
sand. These lines are probably ships
The spectral signature for the buil
signature. It has a small peak in the green band (band 4) and makes a jump from the Red band to 
the NIR bands, although a smaller jump than for the vegetation signatures. The reason for this can 
be that within built-up areas there are vegetated areas as well, such as gardens, parks and trees. The 
pixel size of CHRIS is about 17m*17m, so within a pixel small vegetated areas are mixed with the 
buildings and streets. This causes a mixed signal. 
In Millinge
probably scattered houses, farms or piles of bricks. Of course not the whole pixel consists of built-
up area, but the mixture of signals of houses and their surroundings probably comes closest to the 
“built-up” signature. 
 

5.1.3 Difference in classification accuracy when usin
input maps 
The used classification methods resulted in differences of overall classification accuracy (tables 10 
and 11). Best results were obtained with the ML classification that was performed on the CHRIS 
nadir image. The overall accuracy was 68%. The SVM classification of the CHRIS nadir image 
had less good results with an overall accuracy of 56%. SVM works well on complex and noisy data. 
ENVI uses a reduced resolution classification process for SVM classification. This works best with 
large homogeneous areas. The river floodplains however, are quite heterogeneous because shrubs, 
forests, grasses and herbaceous vegetation interchange with each other. The SVM classification 
worked well for the large homogeneous water and arable land areas. Misclassifications occurred 
mostly within the heterogeneous herbaceous classes. When the penalty parameter was set to 100, 
the “ships with loads of sand” were erased from the image, because the small spots of sand had 
een seen as unrealistic b

 
Huber (2008) used the SVM
angular CHRIS data. The m
classification accuracies than standard methods such as the ML classifier. However, Hubers study 
also showed that ML results differed considerably with different strategies of collecting training 
samples. It is important to choose the training samples (ROIs) well. For SVM classification, 
especially mixed pixels at the border of class boundaries should be included, because they are 
useful to determine the support vectors and the hyperplane (borders) between two classes. For ML 
classification however, rather pu
classes. For this thesis research, mostly pure pixels were chosen for the ROIs. As an addition, some 
pixels near class boundaries were chosen. Probably SVM classification would have performed 
better, when a different set of ROIs was chosen, mainly located next to class boundaries. 
 
The stacked layers ML classification has the lowest accuracy of all: only 44%.
s

Another striking thing is that water bodies were enlarged in the image. This could be expla
the following: the forward scattering and backward scattering direction “detect” water;
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nadir viewing direction something different is detected. The water signal is very low and distinctive 
(see figure 15) so it has a large influence on the mixed signature of the pixel. Therefore, the pixel 
has the highest probability to fall into the water class. 
 
The stacked layers ML classification with PCA performed better than without PCA. The PCA 
classification is based on the variability of information in a pixel. Because of this, the regions of 

ome parts are classified as built-up, while they 

. 

Simic and Chen (2008) found that hyperspectral measurements in multiple CHRIS VZAs have 
 to 

easurements in the nadir direction, only measurements in the red and NIR band in 

on map, which are 
ot visible in the CHRIS classification map. The CHRIS images have a pixel size of around 

ssification 
put do not improve the classification results. 

ed value of using multi-angular data lies in the decision making process of 

interest contain more characteristic information. They are not a mixture of 3 angular layers, but 
they consist of separate PCA bands with a high variability. The more PCA bands are used, the 
better the results get. The accuracy for the first 3 PCA bands is 55%, for the first 4 PCA bands 56% 
and for the first 5 PCA bands 58%. This is reasonable because more PCA bands contain more 
variability of data. Although, the more bands, the smaller the extra amount of variability gets. What 
is remarkable is that in all these classifications s
actually belong to another class. This can be especially seen along river borders. A mixed signature 
of water and bare soil resembles most to the built-up signature and is therefore classified as built-up 
area. This can be seen in figure 15 where the built-up spectral signature lies in-between the water 
and bare soil signature
 

much redundancy in data. They tried to refine the measurement concept and concluded that next
hyperspectral m
two other directions would suffice. The two other directions would be the hotspot, the angle where 
the sun and view directions coincide and the darkspot, the angle where the sensor sees the 
maximum amount of vegetation structural shadows. Further research could be done to see if this 
method would improve the classification results. 
 

5.1.4 Difference in classification accuracy of RWS and CHRIS ecotope maps 
The RWS classification has a higher overall accuracy (81%) than the CHRIS classification (68%). 
This is probably due to the pixel size from the images that were used for classification. A dedicated 
method using aerial photographs with a high spatial resolution was used for the RWS classification. 
Small lines of forest and shrubs can be discerned in the RWS ecotope classificati
n
17*17m². Taken into account the difference in pixel size and the amount of time needed to create a 
classification, the methodology used in this research shows good results.  
In the classified RWS ecotope map, the classes look quite homogeneous. The classification of the 
CHRIS image looks more heterogeneous. This is more realistic, because natural areas in a river 
floodplain ecosystem are a mixture of grasses, herbs, shrubs and trees.  
 

5.1.5 Added value of multi-angular data 
Best classification results were obtained with ML classification performed on the CHRIS nadir 
image. Classification with multiple (stacked) layers as input did not give better results. This means 
that with the current research methodology, the use of multiple angular images as cla
in
Different angular images, however, do have an added value in making the ML classification on the 
nadir image. This accounts for the process of choosing the ROIs on which the ML classification is 
based. When the 3 layers of VZA -36, nadir and VZA +36 were stacked, certain band combinations 
showed more distinctive colours for the different classes. This was especially the case after 
performing PCA on the stacked layers image. With certain PCA band combinations, classes stood 
out compared to the other classes and ROIs could be chosen with great precision. With RBG band 
composition, water for example can be easily mistaken for dark coloured vegetation. But with PCA 
bands 1,3 and 4 (figure 10), water becomes easily detectable. So, with respect to the first research 
question, the add
choosing ROIs for ML classification. 
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No added value could be seen when using the ML classification on the stacked layers image, 
neither when using PCA as additional method. As written in 5.1.3 this could be due to the fact that 
a ‘stacked layers’-pixel contains a mixed signature.  
 
Not much literature could be found on making classifications of multi-angular remote sensing 
images. Most articles have the focus on assessing vegetation structure and deriving canopy 
biophysical and vegetation biochemical variables from multi-angular data. 
In one of the few articles about multi-angular classification techniques, Duco and Del Frate (2008) 
investigated the use of hyperspectral, multi-angular and multi-temporal measurements from CHRIS 
imagery to generate thematic maps. They also found that different multi-angular compositions 
allow a clearer perception of differences in land cover types and vegetation density, because 
differences are more evident in multi-angular band compositions than in RGB true colour 
compositions (for differences in angular signatures, see appendix II). This is why the ROIs were 
easier to choose on an image with a multi-angular band composition. PCA made the differences in 
land cover type even clearer because it presents the greatest variety in the multi-angular image. 
 
Duca and Del Frate (2008) used an neural network methodology, making use of ROIs, to make a 

ies of pixels belonging to a land 
over class, which is maybe not appropriate for multi-angular data. Huber (2008) found that the use 

of multi-angular data only slightly improved SVM and ML classification accuracies in general, 
he 

 surface 
er unit ground area, contain a high amount of chlorophyll and thus have a high photosynthetic rate. 

mulation of biomass. So these parts have a high 
oodplain ecosystems and river managers should 

s from 2005 are more diverged. In general, the 

odelled LAI results would maybe resemble more the LAI 
ground measurements.  

land cover classification based on CHRIS imagery. First they classified the nadir image with a 
precision of 85.7%. After stacking the images of VZA -36, nadir and VZA 36, the classification 
accuracy improved with 7%. Especially the classification of bare soil, asphalt and industrial 
buildings improved considerably. Probably, the neural network methodology, that uses multiple 
input values with associated weight factors and a function that sums the weights and maps the 
results to an output, performs better on multi-angular data than the ML classification that was used 
in this research. ML classification only uses statistical probabilit
c

when all bands from the stacked image were included. So, to improve classification results with t
use of multi-angular data, probably the neural network methodology should be used. 
 

5.2 Vegetation structure properties 

5.2.1 Modelling results for LAI 
The colour gradient in the LAI maps of figures 18, 20 and 22 shows the variability in LAI values 
within the vegetation structure types. Especially in the natural grasslands and heterogeneous forest 
parts this variability is very obvious. The parts in the forest, shrub and herbaceous areas that show 
the darkest colours, have the highest LAI values. This means that they have the largest leaf
p
As a consequence, in these parts there is most accu
relevance with respect to water resistance in river fl
pay special attention to these areas. 
 
The range of modelled LAI values is the same as the range of measured LAI values from 2004. The 
ranges of modelled and measured LAI value
modelled LAI is slightly lower than the measured LAI (figures 36 and 38). There could be several 
reasons for this. First, it is not sure if the measured LAI values are reliable, because the two 
validation datasets from 2004 and 2005 differ much from each other. From figure 40 it became 
apparent that the validation dataset from 2005 is less reliable. Also, LAI measurements within one 
validation dataset show varying results for the same type of vegetation. You would expect a quite 
similar LAI value for these parts. Second, it can be due to the parameterization of the model. 
Certain spectral signatures for leaves, woody parts and background were used as model input. 
Those spectral signatures were obtained at a different location and under other circumstances than 
when the CHRIS images were acquired for Millingerwaard. When input spectral signatures would 
be used from the same location, the m
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There are some parts with extremely high LAI values of 10 and 12 in the nadir and backward 
scattering direction, and high values of 6, 6.5 and 12 in the forward scattering direction. This 
mainly concerns arable land, with maize crops, that had been (mis)classified as “herbaceous class” 
r “shrub class”. As a consequence it was also modelled as “herbaceous class” or “shrub class” and 

veral times in a leaf of 

he modelling results for the forest class, using the 1D (turbid medium) modelling approach, were 

e arable field 
 the north east of Millingerwaard received the highest fCover values. This is reasonable because 

rasslands and some parts of the forest also received 
 look as smooth as the LAI maps, but are much more 

granulated. Probably the modelling outcome for fCover is not as good as for LAI and fCover maps 
ient. The validation results for fCover also showed that the 

o
this gives some erroneous results in the maps. The high values can be explained as follows: The 
leaf size of maize is much bigger than the leaf size of Calamagrostis epigejos or Salix alba, that 
were used as model input. A leaf of Calamagrostis epigejos would fit se
maize. To compensate for the leaf size, the model creates a very high LAI value. So, when using 
the Calamagrostis epigejos leaves as model input in stead of maize leaves, the total surface of the 
leaves will be the same as for the maize leaves.  
Other parts with high LAI values are lines along the winter dikes next to the road, especially visible 
in the nadir and forward scattering direction. The vegetation on these dikes consists of grass. Grass 
has the characteristic to grow very fast. It could be that when the CHRIS images were obtained in 
September, the grass on these dikes was dense and high, resulting in a high LAI. 
 
T
better than the 3D modelling results. They showed more variation in LAI values. This could be 
because the 3D modelling approach has a more extensive parameterization process, which could 
not be properly done in this study. Widlowski et al. (2005) studied if 1D models could describe 
forest reflectance as good as 3D models can. They concluded that results from 1D models match 
well the results from 3D models, both in magnitude and in directionality. So, it is maybe not 
necessary to use the 3D modelling approach and the 1D modelling approach is sufficient for 
modelling the forest canopy. 
 

5.2.2 Modelling results for fCover 
High fCover values occur at the same places as high LAI values (figures 18, 20, 22 and 27, 29, 31). 
This is what you would expect, because LAI and fCover are closely related. The larg
in
it is a homogeneous maize field. The natural g
high values. The fCover maps however, do not

should have had a smoother colour grad
modelled fCover results are quite poor. LAI maps look more realistic and the validation results 
were better. Jimenez et al. (2009) obtained good fCover validation results with approaches based 
on VI-modelling and spectral mixture analysis. fCover was calculated for homogeneous 
agricultural fields. Probably the fCover validation results for Millingerwaard are quite poor, 
because it is a heterogeneous area. Unfortunately, not much literature could be found on physical 
based fCover modelling results and multi-angular (CHRIS) data, so it is hard to explain the results 
and compare them with other findings. 
 

5.2.3 Modelling results for PV 
The focus of this study was not on the variable PV. The modelling results for PV were not realistic 
yet, because PV always received the lowest possible LUT value. There can be several reasons for 
this. Possibly, the model is not fit yet for this variable and further research is needed to improve the 
model for use of this variable. Also, more attention should be paid to the parameterization of this 
variable. There were no ground reference data available, so the parameterization process could not 
be properly done. The fact that PV always received the lowest possible LUT value would imply 
that the fraction of photosynthetic vegetation in the area is low, and that there is a lot of non-
photosynthetic material (bark) present. This is not a realistic model outcome, because Willow trees 
consist of more photosynthetic vegetation than only 50% or 70% which were the modelled PV 
results. 
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5.2.4 Validation results 
 
Validation points from 2004 (figures 36 and 37) 
The ranges of measured and modelled LAI values are very similar. There is a quite high correlation 
between the measured and modelled LAI values in the nadir direction. The correlation in the 
forward and backward scattering direction is lower. However, with cross validation, the modelled 
LAI values from the forward and backward scattering direction together show a high correlation. 
This is what you would expect, because the satellite observes the same kind of tree structure in an 
angle of 36 degrees, either in the forward or in the backward scattering direction. 
 
The validation points of fCover are spread all over the scatter plots, there seems to be hardly any 
correlation between measured and modelled fCover values. Leaving out all the outliers, the nadir 
and backscattering direction give the best validation results. When doing cross validation, there 
seems to be no correlation between the different observation angles. There is no obvious reason for 

ion points used in 2004.  

he field measurements becomes clear. There should 

lar data 
 good result is that the LAI values in the backscattering and forward scattering direction are 

the model gives good results, because the same kind of 
r an angle of 36 degrees, either in the forward or in the 

ty can be observed in the nadir angle. Like in the study of Huber (2008) the minimum 
flectance values occurred in the forward scattering directions, because shaded leaf surfaces are 

present in this direction. The forward scattering angle does not show a lot of variability. Similar 

this. Maybe better parameterization of the model is needed. 
 
Validation points from 2005 (figures 38 and 39) 
There is not a high correlation between measured and modelled LAI values. When leaving out the 
outliers, best validation results were obtained in the nadir direction. Cross validation, however, 
shows better validation results. This means that the LAI model outcomes in different observation 
angles are highly correlated. Best cross validation results were again obtained from the 
backscattering together with the forward scattering direction. This is the same kind of result as 
ould be seen with the validatc

 
Reliability of field measurements 
From the graphs in figure 40 the reliability of t
be a negative linear relationship between the CHRIS HDRF in the green band and the measured 
LAI, and the red band and the measured LAI. There should be a positive linear relationship 
between the CHRIS HDRF in the NIR band and the measured LAI. 
This trend can be partly seen in the data from 2004. The green band shows the negative linear 
relation and the NIR band show the positive linear relation. The red band does not show a very 
clear negative linear relation. Also, the points are located very close to the linear line. 
The relations are not so well expressed in the data from 2005. There is a negative linear relation in 
all the graphs, and the validation points are not closely located to the linear line. For the individual 
classes, only the herbaceous class seems to have the right relationships.  
Therefore, it can be concluded that the validation results with data from 2005 are less reliable than 
those with data from 2004. 
 

5.2.5 Added value of multi-angu
A
highly correlated. This implies that 
vegetation structure in observed unde
backward direction. 
Most variability in results can be seen in the backscattering direction (-36 VZA). The highest peaks 
in LAI, and thus the places where vegetation is developing fast, are most obvious in this VZA. The 
polar plot (appendix I) indicates that the sun is shining from the same direction as the image 
backscattering direction. This explains the good modelling results of the -36 VZA. Huber (2008) 
found similar results and concluded that there is an increase in reflectance in the backward 
scattering direction. The -36 VZA is located closest to the images hotspot, where solar reflection is 
highest and there are almost no shadowing effects. It is shown that the canopy hotspot effect 
contains most information for vegetation characterization, especially for canopy structure. Less 
variabili
re
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results were found in the study
ignatures were not unique and 

 of Liesenberg et al. (2007). They showed that the surface anisotropy 
varied with sun-view geometry and seasonality. Strongest 

g direction and in the red band. The best view 

hat improvements on the empirical 
pproaches have been achieved lately with physical model techniques. LAI estimation results from 

i-empirical relationship between LAI and a 

f a plant into account and VI-based models 
re based on semi-empirical relationships, the physical based modelling approach seems more 

 of solar radiance with vegetation components. This means that 

lling approach. 

ity for grasslands, and vegetation height and soil conditions (e.g. 
ndergrowth or dead wood) for shrubs and forests. 

 class in each viewing direction. 

s
anisotropy was observed in the backward scatterin
angles for their classification purposes were from nadir to -45˚. In this research the reverse 
FLIGHT modelling option was used, where only one angular image is used at a time. In forward 
modelling there is an option to combine different angular images. This could give interesting 
results. Maybe a combination of the nadir and backward scattering angle would give the best 
results for indicating the places with highest LAI values. 
 

5.2.6 Added value of RT models compared to VI based models 
In this research the RT modelling approach was followed to estimate vegetation structure 
properties. This physical based modelling approach is rather new compared to the “traditional” VI 
(vegetation-index)-based modelling approach, which is an empirical approach. A comparative 
analysis performed by Richter et al. (2008), showed t
a
empirical approaches were obtained through the sem
vegetation index like NDVI or WDVI. They used the RT model PROSAILH for the physical based 
method. It was shown that the empirical methods have limitations, because they are site and sensor 
dependent. So they require reliable ground measurements for calibration. Accuracy of LAI results 
from the physical based modelling approach was higher than from the VI-based modelling 
approach. They concluded that the physical model inversion approach is more promising for LAI 
estimation. As RT models take the physical features o
a
realistic in describing the interaction
the results from this thesis research are very promising, because the physical based model FLIGHT 
was used. It would be interesting to derive LAI maps based on a VI-modelling approach and 
validate them with the same ground measurements as the current results. Then a conclusion can be 
made if the RT modelling approach is better than the VI based mode
 

5.2.7 Coupling of model outcomes with hydraulic roughness values 
At this moment RWS calculates the hydraulic roughness values in river floodplain ecosystems per 
ecotope. The ecotope classification (Van Velzen et al., 2003) is comparable to the ecotope 
classification used in this research. The only difference is that RWS has more detailed classes in 
the classification. The main driving factors that determine the hydraulic roughness values are 
vegetation height and dens
u
 
Table 12: Average modelled LAI values for the forest
 

Forest 
VZA nadir VZA -36 VZA +36 Average all VZA’s 
2,98 3,16 3,63 3,26 
 
Table 13: Average modelled LAI values for the shrub class in each viewing direction. 
 

Shrubs 
VZA nadir VZA -36 VZA +36 Average all VZA’s 
7,31 5,92 6,78 6,67 
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Table 14: Average modelled LAI values for the herbaceous class in each viewing direction. 
 

Herbaceous 
VZA nadir VZA -36 VZA +36 Average all VZA’s 
5,71 4,48 4,68 4,96 
 
At this moment it is difficult to couple the modelled LAI values from this study to the hydraulic 
roughness values of RWS. Hydraulic roughness indications for herbaceous vegetation were 0.25-
.45 (table 2), for shrubs 24.41 and for forest 12.84. It is only possible to say something about the 

shrubs and forest class because they were modelled with the same species Salix alba. The average 
 twice as high as for 

1

modelled LAI values for all VZAs (tables 12, 13 and 14) for shrubs (6.67) were
forest (3.26). This is the same kind of difference in magnitude as for the hydraulic roughness values: 
24.41 and 12.84. Both outcomes for the shrub and forest class differ from each other with a factor 2. 
Based on this finding, a linear relation could maybe be expected between the modelled LAI per 
vegetation structure type and the hydraulic roughness indication. Further research on this aspect is 
necessary to be able to conclude something about this.  
 

5.3 Extrapolation of the methodology 
An extrapolation to the Gelderse Poort area has been made. There was no validation set available, 
but a similar trend in magnitude and distribution of LAI and fCover values can be seen in the maps. 
The only difference is that there are more arable fields present in the Gelderse Poort, which were 
incorrectly modelled as herbaceous or shrub class. This resulted in more high LAI values of 10 or 
12. But overall, it seems possible to extrapolate the method to the Gelderse Poort area. This means 
that the method could also be extrapolated to other river floodplain ecosystems, when using CHRIS 
images as input for classification and modelling. 
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6. Conclusions a

rst resea estion How c cture types in a river floodplain 
cosystem be classified using multi-angular CHRIS-PROBA imagery?”. 

d be improved with a better band selection. 
lso, a better choice of pixels for ROIs could improve the results. For ML classification, pure 

pixels should be chosen and for SVM classification pixels on the borders between classes should be 
 the SVM or NN (neural network) approaches 

ntaining varying values of the three variables, was 
sed to run the model. The reflectance outcome (BRF) was compared with the reflectance (HDRF) 
f each CHRIS pixel and best fits were made based on the RMSE method. Using an inversion 
cript, LAI, fCover and PV maps were derived. Although physically simplified, the 1D modelling 

approach provided superior results compared to the 3D modelling approach, probably due to the 
less extensive parameterization process. LAI maps looked smooth and showed a gradient in LAI 
values. fCover maps were more granulated but also showed variation in values. PV maps did not 
show any variation. This implies that the model FLIGHT is appropriate for modelling LAI values. 
The method needs to be improved to derive realistic fCover values, maybe with better 
parameterization of the model. Possibly the model is not fit yet for the variable PV. Further 
research is needed to improve the model performance for this variable.  
 
Best LAI modelling results were obtained in the backscattering (VZA -36) direction. This angle 
shows most variations in LAI values. The differences in LAI values are more pronounced than in 
the nadir direction, because the backscattering angle coincides more with the solar viewing angle.  
 
Further improvement of the model is possible by choosing better input spectral signatures. The 
model generalizes the canopy, because only one leaf spectrum and one background spectrum is 
used. For this research, some input signatures were averaged to get a more realistic canopy 
representation. In a heterogeneous canopy, however, the average spectral signature differs from 
location to location. More research in the test site could be done, to obtain more realistic 
(combinations of) input spectral signatures. 
 

nd recommendations 
 
The fi rch qu  was: “ an different vegetation stru
e
 
The best classification results, with an overall classification accuracy of 68% were obtained with 
the ML classification based on ROIs, performed on the CHRIS nadir image with spectral bands 2-
18. With the current classification methodology, the use of multiple angular images did not 
improve the classification accuracies. The added value of multi-angular data was only in the choice 
of ROIs: pixels from different classes were easier to detect on an image that was composed of PCA 
bands from the stacked layers of VZA -36, nadir and VZA +36. 
 
All spectral bands, except for band 1, were used for classification. It is possible that there was 
redundancy in spectral bands. Classification results coul
A

chosen. As was described in literature, probably
could give better results than the ML classification method. 
 
The second research question was: “How can the canopy structure properties LAI, fCover and PV 
be derived from multi-angular CHRIS-PROBA data using the radiative transfer, monte carlo ray 
tracing model FLIGHT (North, 1996)?”.  
 
The canopy structure properties LAI, fCover and PV were derived with the model FLIGHT in 
reverse mode. A LUT approach, with the LUT co
u
o
s

 67 



The third research question was: “Are results still accurate when the methods from the first 2 
ely from Millingerwaard (figure 42) to 

ated to the Gelderse Poort 

ulic roughness maps derived from 

questions are extrapolated to a larger floodplain area, nam
the complete area of the Gelderse Poort?”.  
 
Extrapolation of the method is possible, because an RT modelling approach was used and those 
methods are not site specific. The method has been successfully extrapol
resulting in LAI and fCover maps that show a similar distribution of values as for Millingerwaard. 
These results, however, could not be validated because of lack of ground reference data. It would 
be useful to try the currently used method with multi-angular CHRIS data for another river 
floodplain ecosystem, using a detailed ground data set for model parameterization and validation.  
 
And finally, more research is needed to find out if it is possible to link the LAI findings to 
hydraulic roughness values. In this way the LAI maps (or hydra
LAI maps) could give an indication to river managers were management measures are most needed. 
LAI maps could improve the hydraulic roughness indication, because the hydraulic roughness 
values are computed per ecotope and the LAI values are derived per pixel. So within ecotope 
variation becomes clear when using LAI values from this thesis methodology. 
 
 
 

 
 
Figure 42: The river Waal and softwood forest development on the shores of Millingerwaard 

hotography: Erika Romijn). (p
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Appendices 
 

Appendix I: Information about image acquisition 
 
PROBA-1 satellite CHRIS sensor 

                 
http://www.lamma.rete.toscana.it http://www.chris-proba.org.uk/ 
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Appendix II: Spectral signatures for all classes 
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Appendix III: Division of RWS classes into the 8 new classes 

  Bare and pioneer communities 
 

RWS code Description (Dutch) 
II.2 zoete zandplaten 
OK-1 Onbegroeide oeverwal 
K4 Kale oever 
O-UK-1 Onbegroeide oeverwal of uiterwaard 
REST-U Uiterwaard tijdelijk kaal 
REST-T Overstromingsvrij tijdelijk kaal 
REST-O Tijdelijk kaal 
REST-O-U Oeverwal of uiterwaard tijdelijk kaal 
REST Tijdelijk kaal 

 
  Grasses and low herbaceous vegetation 
RWS code Description (Dutch) 
VII.1 Moerassig overstromingsgrasland 
VII.3 Produktiegrasland 
UG-1 Natuurlijk uiterwaardgrasland 
UG-2 Uiterwaard productiegrasland 
HG-1 Overstromingsvrij natuurlijk grasland 
HG-2 Overstromingsvrij productiegrasland 
G1 Natuurlijk grasland 
G1-2 Productie/natuurlijk grasland 
G2 Productiegrasland 
O-UG-1 Oeverwal of uiterwaard natuurlijk grasland 
O-UG-2 Oeverwal of uiterwaard productiegrasland 

 
  Higher herbaceous vegetation 
RWS code Description (Dutch)  
IV.8 Soortenarm helofytenmoeras 
IV.9 Soortenrijk riet met moerasplanten 
UM_1 Oeverwal of uiterwaard riet 
G5 Riet en overige helofyten 
G6 Ruigte 
O-UR-1 Oeverwal of uiterwaard ruigte 
V.1 Soortenrijke moerasruigte 
V.2 Soortenarme moerasruigte 
UR-1 Uiterwaardruigte 
HR-1 Overstromingsvrije ruigte 
HM-1 Overstromingsvrij riet 
UR-1 Uiterwaardruigte 
 
 
  Shrubs 
RWS code Description (Dutch) 
VI.2 Zachthout struweel 
VI.3 Pionier zachthoutooibos 
UB-2 Uiterwaardstruweel (<5m) 
HB-2 Overstromingsvrij struweel 
B4 Struweel 
O-UB-2 Oeverwal of uiterwaard struweel 
  Forest 
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RWS code Description (Dutch) 
VI.4 Zachthoutooibos 
VI.7 Griend 
UB-1 Natuurlijk uiterwaardbos (>5m) 
UB-3 s Uiterwaardproductiebo
HB-1 Overstromingsvrij natuurlijk bos 
HB-3 ngsvrij productiebos Overstromi
B1 Natuurlijk bos 
O-UB-1 Oeverwal of uiterwaard natuurlijk bos 
B2 Productiebos 
VI.8 Productiebos in oever 
O-UB-3 Oeverwal of uiterwaard productiebos 
 
  Arable land (Maiz) 
RWS code Description (Dutch) 
UA-1 Uiterwaardakker 
HA-1 Overstromingsvrije akker 
G3 Akker 
IX.a Akker in oever 
O-UA-1 Oeverwal of uiterwaard akker 
 
  Water 
RWS code Description (Dutch) 
RzD Diep zomerbed 
RzM Matig diep zomerbed 
RzO Ondiep zomerbed 
RnM Matig diepe nevengeul 
RwO Ondiep 
RwM Matig diep 
RvM Matig diep 
RvD Zeer diep 
RwD Zeer diep 
RvO Ondiep 
I.1 dynamisch zoet tot zwak brak ondiep water 
 
 Built-up 
RWS code Description (Dutch) 
A Bebouwd/verhard 
O-UA-2 aard Bebouwde oeverwal of uiterw
III.2 Sterk dynamisch hard substraat onder invloed van zoet of brak water 
III.3 Matig dynamisch hard substraat onder invloed van zoet water 
UA-2 Bebouwde uiterwaard 
HA-2 Overstromingsvrij bebouwd 
 



Appendix IV: rwaard  ROIs in Millinge
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Appendix V: Parameters of vegetation structure classes for running the model FLIGHT 
 
For 3D case only (forest class)
Crown shape Exy (m) Ez (m) Min_HT (m) Max_HT (m) DBH (m)
ellipsoid 3 8 1 10 0.4  

No
(s
de
AE

LA

t varying parameters
ame for each class;
fault values are taken)
R.OPT 0

SOILROUGH 0.08
D bins value

0-10 0.015
10-20 0.045
20-30 0.074
30-40 0.1
40-50 0.123
50-60 0.143
60-70 0.158
70-80 0.168
80-90 0.174

 
 
 
 
 
 
                  Model parameters:

Fixed parameters
MODE
NO_WVBANDS
SOLAR_ZENITH (degrees)
SOLAR_AZIMUTH (degrees)

nadi

r
18
46

170
r +36 -36

VIEW_ZENITH (degrees) 8.67 28.64 33.77
VIEW_AZIMUTH (degrees) 224.81 0.71 205.54

 
 
 
 
 
 
 
 
 
 

 
Vegetation structure class variables & parameters: 
 
1st model run 
 

Variables Fixed parameters
Class Fcover LAI (m²/m²) PV Scene Leaf size (m)
Herbaceous 0.6-1; step: 0.05 0-7; step: 0.5 until 5; step: 1 until 7 0.5-1; step: 0.1 1D 0.027
Shrubs 0.5-1; step: 0.05 0-7; step: 0.5 until 5; step: 1 until 7 0.5-1; step: 0.1 1D 0.02
Forest 0.2-1; step: 0.05 0-10; step: 0.5 until 5; step: 1 until 10 0.3-1; step: 0.1 3D 0.02  
 
2nd model run 
 

Variables Fixed parameters
Class Fcover LAI (m²/m²) PV Scene Leaf size (m)
Herbaceous 0.4-1; step: 0.05 1-10; step: 0.5 until 7; step: 1 until 10 1; no steps 1D 0.027
Shrubs 0.6-1; step: 0.05 1.5-12; step: 0.5 until 7; step: 1 until 12 0.5-0.95; step: 0.05 1D 0.02
Forest 0.8-1; step: 0.05 2.5-12; step: 0.5 until 7; step: 1 until 12 0.5-0.95; step: 0.05 3D 0.02  
 
Input spectra 
 
1st model run 
Class Leaf Background Bark
Herbaceous Calamagrostis epigejos sand
Shrubs Salix alba average (water+grass & forest background) Salix alba
Forest Salix alba forest background Salix alba  
 
2nd model run 
 
Class Leaf Background Bark
Herbaceous Calamagrostis epigejos 0.95*forest background + 0.05*sand
Shrubs Salix alba average (water+grass & forest background) Salix alba
Forest Salix alba forest background Salix alba  
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VEGETATION PARAMETERS 

cene (1D/3D)
 
S  
1D indicates a “turbid medium”. This is used for an area that is homogenous in coverage. Here it is 
used for the herbaceous and shrub classes. 3D is used for the forest class. Each tree is than 
represented by 3D shapes of cones and ellipsoids. 
 
Fractional cover (0-1) 
This is the fraction of ground covered by vegetation on vertical projection. 
 
Leaf area index (m2/m2) 
LAI is the mean one-sided green leaf area per unit ground area. 
 
Fraction of photosynthetic vegetation (0-1) 
This is the volume-fraction of photosynthetic vegetation within the vegetation. The PV, together 
with the NPV (fraction of woody vegetation / non-photosynthetic) is 1.  
 
Background type (herbaceous, shrubs, forest) 
For each vegetation structure cla  different background type is used. The background type is 
defined as the type of soil or vegetation that grows underneath the vegetation or in the gaps within 
the vegetated area. 
 

nly for the 3D case: 

ss a

O
 

rown shape (e/c/f)C  
The crown shape of the trees can be e (ellipsoid), c (cones) or f (field). 

y) (m)
 
Crown radius (Ex  
 
Centre to top distance (Ez) (m) 
For crowns that are modelled as ellipsoids, this is half of the crown height. 

t for the first branch (Min_HT) (m)
 
Minimum heigh  

aximum height for the first branch (Max_HT) (m)
 
M  
 
The first branches of the crowns are randomly distributed between the minimum and maximum 
height for the first branch.  
 

iameter at breast height (DBH) (m)D  
meter of the trunk, measured at breast height. 

RAMETERS (non-varying) 
 
Mode of operation (MODE) (f,i,s,r)

This is the dia
 
GENERAL PA

 
This is the mode in which FLIGHT will operate. F means forward modelling, i = image, s = solid-
object, r = reverse. For this research the reverse modelling option was used. In reverse mode the 

ulated (BRF) reflectance in one specified view direction, for a certain 
 less calculation time than the forward mode in which the reflection in all direction 

 simulated. 
 
Number of wavebands (NO_WVBANDS)

model output gives the sim
class. This takes
is

 
This is the number of wavebands that is used for the simulations. In this case it is 18, the same 
number as the CHRIS wavebands. 
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)Number of photons (NO_PHOTONS  
his is the total number of photon paths that is simulated. T

 
Leaf angle distribution (LAD) (1-9) 
This measure indicates how the leaves are distributed in the crowns and in which angles. It is 
expressed as a fraction lying within 10 degree bins of 0-10, 10-20, 20-30…80-90. 

OILROUGH) (0-1)
 
Soil roughness index (S  

 0, a rough slope (mean 
lope of 60 degrees) is indicated by 1. 

This indicates how rough the soil is. A Lambertian soil receives the value
s
 
Solar zenith angle (degrees) 
The solar zenith angle is from the moment that the satellite obtained the image.  
 
Solar azimuth angle (degrees) 
The solar azimuth angle is from the moment that the satellite obtained the image.  
 
View zenith angles (degrees) 
The view zenith angle is indicated for the three angular CHRIS images that are used. It differs a 
little bit from the expected 0˚ and +/-36˚. 
 
View azimuth angles (degrees) 

e is indicated for the three angular CHRIS images that are used. The view azimuth angl



Appendix VI: Validation points LAI and fCover from 2004. Plotted on the aerial photograph 
nd the CHRIS nadir classification. a
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Validation points 2004 
 
LAI 
 
Plot.no CE_LAIeff(m2/m2) LAI_2nd_modelrun_nadir LAI_2nd_modelrun_min36 LAI_2nd_modelrun_plus36

1 3,9 3 2,5
2 3,4 2,5 2,5
3 4 2,5 2
4 3,4 3,5 3
5 3,9 3,5 2,5
6 3,5 3 2,5
7 3,8 4 2,5
8 3 2,5 2,5
9 3,4 2,5 1,5

10 2,9 4,5 2,5 2,5
11 3,3 3 2,5 2,5
12 3,5 3 3 3
13 3,7 3 2,5 2,5

3
2,5
2,5

3
3

2,5
3

2,5
2

 
 
 

outliers  
CE_LAIeff = measured effective LAI, obtained with hemispherical photography and CAN_EYE 
LAI_2nd_modelrun_nadir =  

modelled LAI for the CHRIS nadir direction, obtained from the 2nd modelrun  
LAI_2nd_modelrun_min36 =  

modelled LAI for the CHRIS backscattering direction, obtained from the 2nd modelrun 
LAI_2nd_modelrun_plus36 =  

modelled LAI for the CHRIS forward scattering direction, obtained from the 2nd modelrun 
 
fCover 
 
Plot.no CE_fCover fCover_2ndmodelrun_nadir fCover_2nd_modelrun_min36 fCover_2nd_modelrun_plus36

1 0,96 0,8 1 0,8
2 0,94 0,8 0,85 0,9
3 0,95 0,75 0,9 0,7
4 0,93 0,8 0,8 0,8
5 0,97 0,9 1 0,9
6 0,94 0,9 0,85 0,85
7 0,94 1 1 0,8
8 0,89 0,8 1 0,85
9 0,91 1 0,7 0,7

10 0,84 0,8 0,85 0,9
11 0,93 0,8 1 0,85
12 0,93 0,8 0,85 0,8
13 0,92 0,8 0,85 0,9  

 
outliers  

 
CE_fCover = fCover, obtained with hemispherical photography and CAN_EYE 
fCover_2nd_modelrun_nadir =  

modelled fCover for the CHRIS nadir direction, obtained from the 2nd modelrun  
fCover_2nd_modelrun_min36 =  

modelled fCover for the CHRIS back scattering direction, obtained from the 2nd modelrun 
fCover_2nd_modelrun_plus36 =  

modelled fCover for the CHRIS forward scattering direction, obtained from the 2nd 
modelrun 

 
 



Appendix VII: Validation points LAI from 2005. Plotted on the aerial photograph and the 
IS nadir classification 

 

   

 

 

CHR
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Validation points 2005 
 
Plot code LAI combined HP/TRAC

 1 9,6400
LAI 2nd modelrun (nadir) LAI 2nd modelrun (min 36) LAI 2nd modelrun (plus 36)

2,5000 3,0000 4,5000
 2 3,0300 3,0000 2,0000 3,0000
 3 2,5800 3,0000 2,0000 3,0000
 4 3,5900 4,0000 2,5000 4,5000

GH 5 4,1500 4,0000 3,0000 6,0000
GH 6 3,0300 3,0000 2,5000 3,0000
SH 7 4,5800 3,5000 3,5000 6,0000
SH 8 2,8200 11,9800 12,0000 12,0000
SH 9 2,8700 4,5000 3,5000 6,0000
SH 10 4,0300 3,5000 2,5000 4,5000
SH 11 4,7000 10,0000 3,0000 4,5000
GH 12 4,6000 3,0000 2,5000 4,0000
SH 13 5,7600 6,0000 2,5000 4,0000
GH 14 4,6000 3,5000 3,0000 4,5000
FR 15 4,4500 2,5000 3,5000 4,5000
FR 17 7,0200 3,0000 2,5000 3,0000
FR 18 7,6100 2,5000 2,5000 2,5000
FR 19 6,7900 2,0000 2,0000 2,5000
FR 20 5,0300 4,5000 3,0000 3,0000

GH
GH
GH
GH

 
 

outliers  
GH = validation point in the grasses&herbaceous class 
SH = validation point in the shrub class 
FR = validation point in the forest class 
 
LAI combined HP/TRAC = LAI obtained with combined hemispherical photography and TRAC 
measurements. 
LAI_2nd_modelrun(nadir) = modelled LAI for the CHRIS nadir direction, obtained from the 2nd 
modelrun. 
LAI_2nd_modelrun(min36) = modelled LAI for the CHRIS back scattering direction, obtained 

om the 2nd modelrun. 
AI_2nd_modelrun(plus) = modelled LAI for the CHRIS forward scattering direction, obtained 

 the 2nd modelrun. 
 

fr
L
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Appendix VIII: Separability values ROIs 

Input File: CHRIS nadir   
    ROI Name: (Jeffries-Matusita, Transformed Divergence)   
   
Water [Blue] 385 points:   
    Bare Soil [Thistle] 93 points: (1.99862393 1.99999999)   
    Forest [Green3] 88 points: (1.99999650 2.00000000)   
    Shrubs [Green1] 84 points: (1.99999989 2.00000000)   
    Higher herbaceous [Cyan3] 124 points: (1.99999642 2.00000000)   
    Grass & Low herbaceous [Cyan1] 149 points: (1.99999915 2.00000000)   
    Built-up [Orange1] 123 points: (1.99990476 2.00000000)   
    Agricultural [Yellow] 79 points: (2.00000000 2.00000000)   
   
Bare Soil [Thistle] 93 points:   
    Water [Blue] 385 points: (1.99862393 1.99999999)   
    Forest [Green3] 88 points: (2.00000000 2.00000000)   
    Shrubs [Green1] 84 points: (1.99999990 2.00000000)   

  Higher herbaceous [Cyan3] 124 points: (1.99988437 2.00000000)   
    Grass & Low herbaceo  [Cyan1] 149 points: (1.99979736 2.00000000)   

 
   

] 84 points: (1.98509284 1.99999598)   

ow herbaceous [Cyan1] 149 points: (1.99995479 2.00000000)   

 (1.99999989 2.00000000)   
  Bare Soil [Thistle] 93 points: (1.99999990 2.00000000)   
  Forest [Green3] 88 points: (1.98509284 1.99999598)   

    Higher herbaceous [Cyan3] 124 points: (1.92044373 1.99984125)   
    Grass & Low herbaceous [Cyan1] 149 points: (1.99941992 1.99999995)   
    Built-up [Orange1] 123 points: (1.99999678 2.00000000)   
    Agricultural [Yellow] 79 points: (1.99999984 2.00000000)   
   
Higher herbaceous [Cyan3] 124 points:   
    Water [Blue] 385 points: (1.99999642 2.00000000)   
    Bare Soil [Thistle] 93 points: (1.99988437 2.00000000)   
    Forest [Green3] 88 points: (1.98601952 1.99999400)   
    Shrubs [Green1] 84 points: (1.92044373 1.99984125)   
    Grass & Low herbaceous [Cyan1] 149 points: (1.76135549 1.90461146)   
    Built-up [Orange1] 123 points: (1.99981010 1.99999997)   
    Agricultural [Yellow] 79 points: (1.99999933 2.00000000)   
   
Grass & Low herbaceous [Cyan1] 149 points:   
    Water [Blue] 385 points: (1.99999915 2.00000000)   
    Bare Soil [Thistle] 93 points: (1.99979736 2.00000000)   
    Forest [Green3] 88 points: (1.99995479 2.00000000)   
    Shrubs [Green1] 84 points: (1.99941992 1.99999995)   
    Higher herbaceous [Cyan3] 124 points: (1.76135549 1.90461146)   
    Built-up [Orange1] 123 points: (1.99983315 2.00000000)   
    Agricultural [Yellow] 79 points: (1.99998508 2.00000000)   
   

 

  
us

    Built-up [Orange1] 123 points: (1.99991421 2.00000000)  
000 2.00000000)    Agricultural [Yellow] 79 points: (2.00000

   
orest [Green3] 88 points:   F

    Water [Blue] 385 points: (1.99999650 2.00000000)   
    Bare Soil [Thistle] 93 points: (2.00000000 2.00000000)   
    Shrubs [Green1
    Higher herbaceous [Cyan3] 124 points: (1.98601952 1.99999400)   
    Grass & L
    Built-up [Orange1] 123 points: (1.99998975 2.00000000)   
    Agricultural [Yellow] 79 points: (2.00000000 2.00000000)   
   
Shrubs [Green1] 84 points:   
    Water [Blue] 385 points:
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Built-up [Orange1] 123 points:   
    Water [Blue] 385 points: (1.99990476 2.00000000)   

ints: (1.99991421 2.00000000)   

4 points: (1.99981010 1.99999997)   
5 2.00000000)   
)   

24 points: (1.99999933 2.00000000)   
8 2.00000000)   

0)     

    Bare Soil [Thistle] 93 po
    Forest [Green3] 88 points: (1.99998975 2.00000000)   

Shrubs [Green1] 84 points: (1.99999678 2.00000000)       
    Higher herbaceous [Cyan3] 12
    Grass & Low herbaceous [Cyan1] 149 points: (1.9998331

00    Agricultural [Yellow] 79 points: (2.00000000 2.000000
   
Agricultural [Yellow] 79 points:   
    Water [Blue] 385 points: (2.00000000 2.00000000)   
    Bare Soil [Thistle] 93 points: (2.00000000 2.00000000)   
    Forest [Green3] 88 points: (2.00000000 2.00000000)   

Shrubs [Green1] 84 points: (1.99999984 2.00000000)       
    Higher herbaceous [Cyan3] 1
    Grass & Low herbaceous [Cyan1] 149 points: (1.9999850
    Built-up [Orange1] 123 points: (2.00000000 2.0000000
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Appendix IX: Results from other classification methods 
 

 
 
 

6

60

Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

Bare soil 7 2 1 2 5 17
Grass & low herbaceous 1 23 4 1 4 4 1 1 39
Higher herbaceous 4 4 1 2 11
Shrubs 1 2 5 1 3 12
Forest 2 4 3 15 1 1 2
Arable land 1 1 3 13 1 19
Water 1 2 18 2 23
Build up 5 1 1 1 5 13
Total 13 34 17 13 27 20 21 15 1  
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26

13

Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

re soil 6 1 2 6 2 17
Grass & low herbaceous 14 7 1 1 15 1 39
Higher herbaceous 4 4 1 2 11
Shrubs 2 6 4 12
Forest 10 3 4 8 1
Arable land 11 8 19
Water 1 22 23
Build up 9 4
Total 6 19 26 11 4 12 74 8 160

Ba
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60

Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

Bare soil 7 2 2 1 1 4 17
Grass & low herbaceous 21 6 3 2 2 4 1 39
Higher herbaceous 5 3 2 1 11
Shrubs 2 8 1 1 12
Forest 1 5 4 13 1 2 26
Arable land 1 1 2 1 13 1 19
Water 3 19 1 23
Build up 5 1 1 2 4 13
Total 12 31 22 19 20 17 28 11 1  
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60

Groun
Ba

d truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

re soil 9 2 1 1 1 3 17
Grass & low herbaceous 23 5 2 2 2 4 1 39
Higher herbaceous 4 6 1 11
Shrubs 1 1 8 1 1 12
Forest 1 9 4 9 1 2 26
Arable land 1 1 2 1 13 1 19
Water 2 1 19 1 23
Build up 6 1 1 2 3 13
Total 15 33 25 19 15 17 28 8 1  
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Ground truth Bare soil
Grass & low 
herbaceous

Higher 
herbaceous Shrubs Forest Arable land Water Build up Total

Bare soil 9 2 1 1 4 17
Grass & low herbaceous 1 24 4 3 3 1 3 39
Higher herbaceous 4 6 1 11
Shrubs 1 2 7 1 1 12
Forest 1 6 3 13 2 1 2
Arable land 1 1 2 2 1 12 19
Water 2 20 1 23
Build up 8 1 1 1 2 13
Total 19 32 25 17 20 14 25 8 1

6

60  
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Appendix X: LAI results for the forest class, modelled as 3D medium with the model 
FLIGHT 
 

 
 
LAI map of the forest class, modelled as 3D medium, in Millingerwaard for the nadir direction.  
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Histogram of LAI for the forest class, modelled as 3D medium, in Millingerwaard for the nadir, 
backward scattering and forward scattering direction.  
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Appendix XI: LAI results for the Gelderse Poort in the nadir and forward scattering 
direction o

 97 

btained with the model FLIGHT 
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 LAI map of the Gelderse Poort for the nadir direction. 
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Histogram LAI Gelderse Poort for the nadir direction. 
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AI map of the Gelderse Poort for the forward scattering direction. 
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Histogram LAI Gelderse Poort for the forward scattering direction. 
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Appendix XII: fCover results for the Gelderse Poort in the nadir and forward scattering 
irection obtained with the model FLIGHT 

0.6 0.7 0.8 1 

 
  fCover map of the Gelderse Poort for the nadir direction. 
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Histogram fCover Gelderse Poort for the nadir direction. 
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fCover map of the Gelderse Poort for the forward scattering direction. 
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Histogram fCover Gelderse Poort for the forward scattering direction. 
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Appendix XIII: Scatter plots validation LAI with field data from 2005 
 

herbaceous
outliers herbaceous
shrubs
outliers shrubs
forest
outliers forest
x = y
Lineair (herbaceous)
Lineair (shrubs)
Lineair (forest)

nadir
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plus 36

0
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12
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Measured LAI

2

M
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d 
LA
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Nadir: 

: y = 3.4483x – 12.845; R2 = 1  
: y = 0.5049x + 2.1988; R2 = 0.2635  
: y = 0.2277x + 2.5252; R2 = 0.1517 

in 36 
: y = -0.8621x + 7.3362; R2 = 1  
: y = -0.263x + 4.1539; R2 = 0.3077  
: y = 0.3952x + 1.0556; R2 = 0.6205 

lus 36 
: y = -2.5862x + 16.009; R2 = 1 
: y = -0.6012x + 7.6383; R2 = 0.4595 
: y = 0.9453x + 0.5455; R2 = 0.4733 

hese scatter plots show the correlation between the modelled LAI for the 3 viewing angles and the 
measured LAI t ion points in 
005. The results are presented separately for the 3 modelled vegetation structure types. The linear 

regression functions and R2 values are written underneath the graphs. F means forest, S means 
shrubs, H means herbaceous. 

F
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M
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hat was obtained with the hemispherical camera + TRAC for 19 validat
2
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4 Appendix XIV: Scatter plots validation fCover with field data from 200
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scatter plots show the correlation between the modelled fCover for the 3 viewing angles and 
b ined with the hemispherical camera for 13 validation points in 

nd R2s are plotted in the graphs. 
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These scatter plots show the cross validation results of the modelled fCover for the 3 viewing 
angles and the measured fCover that was obtained with the hemispherical camera for 13 validation 
points in 2004.  
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