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Dankwoord 
 
Zaterdag 3 oktober 2009 16:00, sporthal Zaanlands West te Zaandam 
 
De sporthal stroomt vol publiek, de scheidsrechters en de lijnrechters zijn er klaar voor, het 
volleybalnet lijkt er beter bij te hangen dan anders en de spanning is te snijden. Deze 
streekderby is één van de belangrijkste wedstrijden van het seizoen. Ons team, VV Zaanstad, 
staat tegenover onze grote concurrent VCC uit Wormer. Iedereen staat op scherp als de 
scheidsrechter het startsein geeft. Er volgt een zenuwachtige service van VCC, wij verwerken de 
bal goed en ik krijg de set-up. Ik voel de adrenaline door mijn aderen spuiten en ik raak de bal…. 
goed! Het eerste punt is binnen… Na de eerste en tweede set gewonnen te hebben, worden we 
echter zenuwachtig. Het dringt tot ons door dat we de derby kunnen winnen! Dit is geheel tegen 
de verwachting van de verslaggevers in en bij een serve op mij verkramp ik en schiet de pass 
weg. ”Rustig, rustig” maan ik mezelf tot kalmte toe. Een volgende goede pass kan het verschil 
helaas niet maken, we verliezen de derde set. Voor de vierde set spreken we af onze angst opzij 
te zetten en met flair te spelen. Terwijl ik de hele wedstrijd voorzichtig heb geserveerd, denk ik 
nu: “Geen angst, knallen”. De service gaat hard naar rechtsachter en VCC ketst ‘m weg, punt 
voor ons! Ons team speelt geweldig; verwoestende services en snoeiharde aanvallen, maar 
vooral spelplezier en teamspirit zorgen ervoor dat we de vierde set winnen en daarmee ook de 
wedstrijd! 

  
Het winnen van een volleybalwedstrijd is een ultieme teamprestatie. Raar toch, zult u 
misschien denken, dat ik deze sport beoefen terwijl een promotie echt een 
soloprestatie lijkt. Lijkt, want, dit proefschrift is geen soloprestatie. In veel opzichten 
lijkt een promotie op een volleybalwedstrijd; het schrijven van de artikelen is te 
vergelijken met het verliezen (als een manuscript wordt afgewezen) of het winnen (als 
een manuscript wordt geaccepteerd) van een set. Een volleybalwedstrijd kent, net als 
een promotie, zijn pieken en dalen en je hebt je teamgenoten zijn nodig om uit deze 
dalen te komen, voor steun, om te juichen als het goed gaat en voor de gezelligheid. 
Net als bij mijn volleybalteamgenoten, zijn er tijdens mijn promotietraject ook veel 
mensen die van belang zijn geweest en op (wetenschappelijke, sociale of mentale) 
manier hebben bijgedragen en die wil ik graag bedanken.  
  
In 2005 begon ik, na een pittige ondervraging door vier enge mannen (ook wel 
sollicitatiegesprek genoemd), aan mijn promotie in Wageningen. Deze vier enge 
mannen bleken later gelukkig toch niet zo eng te zijn; ik heb hen in de afgelopen jaren 
steeds beter leren kennen en zonder hen, mijn begeleiders, lag dit proefschrift nu niet 
voor u. Peter Verburg en Gerard Heuvelink, mijn dagelijkse begeleiders en 
(co)promotoren, wil ik ten eerste bedanken. Peter, bedankt voor je inzet en je altijd 
snelle, vele en vaak kritische reactie op mijn artikelen. Gerard, bedankt voor je 



 

uitgebreide en snelle reacties op mijn artikelen en vragen en voor je enthousiasme! 
Tom Veldkamp, mijn promotor, wil ik ook hartelijk bedanken. Super, dat je tijd voor mij 
vrijmaakte, ondanks dat je nog ontzettend veel andere PhD’s begeleidde, ook bedankt 
voor je enthousiaste inzet en je goede ideeën. Eddy Moors, mijn begeleider vanuit het 
ME1 project, bedankt voor de feedback op mijn artikelen die altijd gepaard ging met 
veel goede ideeën. Aan deze ruime begeleidergroep zijn in de loop der tijd nog twee 
mannen toegevoegd, Hans Kros en Wim de Vries. Ontzettend bedankt voor het delen 
van jullie kennis van INITIATOR en alles wat met stikstof te maken heeft. Anderen die 
geholpen hebben door het voeren van informatieve gesprekken, het delen van data en 
informatie en het helpen met het modelleren zijn Dick Brus, Karel van Houwelingen, 
Cor Jacobs, Eric Koomen, Peter Kuikman, Egbert Lantinga, Changsheng Li, Matheijs 
Pleijter, Radim Vašát, Gerard Velthof, Jan-Cees Voogd en Folkert de Vries. Allen 
bedankt! 
 
My roommates, Eke, Nynke, and Aurelien, also have a considerable share in this thesis. 
Because of them, I didn’t have to re-invent the wheel; among other things, they helped 
with ArcGIS, they helped to fine-tune my English in manuscripts and presentations, they 
showed how you call the helpdesk and how you can wind them around your little finger. 
Most of all, I will particularly miss their support, their company, and the many liters of 
thee we drunk together! They were there when I forgot my house key (thanks Nynke, 
that I could crash at your place), when my PC drowned and when my laptop crashed. 
Verder wil ik mijn vaste koffieleuten bedanken, de soft boys (Dirk, Frans en Joost), Bas, 
Marthijn, Gert, Arnaud, Toine, en anderen. LAD, de vakgroep, heb ik ervaren als een 
jonge en dynamische groep met een allemaal gezellige AIO’s. Ook de samenwerking 
met de andere AIO’s van het BSIK ME1-project (Arina, Dimmie, Petra, Petra en Sander) 
heb ik als ontzettend prettig ervaren. Niet alleen konden we elkaar inhoudelijk veel 
helpen, maar ook onze frustraties en successen konden we met elkaar delen. Ik heb 
ook veel gehad aan de discussies in ons PE&RC discussiegroepje CSI. Verder wil mijn 
collega’s en leidinggevenden aan de CAH aan Dronten bedanken. Jullie hebben me 
daar met open armen ontvangen en mij alle ruimte gegeven om mijn promotie af te 
ronden.  
 
Mijn vriendengroep (tevens oud-medestudenten Fysische Geografie) Suzanne, Michelle, 
Gelare, Tineke en Ruben bedankt voor de gezellige kerstdiners, wandelweekendjes en 
spelletjesavonden. Zoals wellicht al bekend was, heb ik tijdens mijn promotie altijd tijd 
vrijgemaakt om te volleyballen en ik vond het ook een perfecte manier om 
promotiestress van me af te schudden. Mijn teamgenoten van de afgelopen jaren wil ik 
daarvoor bedanken en in het bijzonder mijn teammaatjes, maar bovenal vriendinnen: 
Leonie (omdat ik je altijd aan het eind van de week kon bellen om promotie- en 
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Symbols and Abbreviations 
 
BME  Bayesian Maximum Entropy 
BP  Before present 
C  Carbon 
CH4  Methane 
CO2  Carbon dioxide 
c.v.  Coefficient of variation 
DNDC  Denitrification-decomposition model 
GHG  Greenhouse gas 
GIS  Geographical Information System 
ha  Hectare (100 x 100 m) 
INITIATOR Integrated NITrogen Impact Assessment Tool On a Regional Scale 
IPCC  Intergovernmental Panel on Climate Change 
kt  Kilotonne = 1 Gigagram = 109 gram  
MC  Monte Carlo 
MHW  Mean highest groundwater level 
MLW  Mean lowest groundwater level 
N  Nitrogen 
N2O  Nitrous oxide 
N  Nitrogen 
NIR  National Inventory Report  
PDF  Probability Distribution Function 
s.d.  Standard deviation 
t  Tonne = 1 Megagram =106 gram (= 1000 kilogram) 
WFPS  Water-filled pore space 
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1.1 Role of N2O in the greenhouse gas balance 

1.1.1 The greenhouse effect 
Climate is changing. Global average surface temperatures have raised 0.13ºC±0.03ºC 
over the past 50 years (IPCC, 2007a). The projections of climate change are alarming; 
a global mean temperature increase of 1.8ºC to 3.1ºC is projected for the last decade 
of the 21st century. The International Panel of Climate Change, IPCC (2007a), stated 
that most of the global warming since the mid-20th century is very likely caused by 
humans, or specifically, by the increase in anthropogenic greenhouse gas (GHG) 
concentrations. This is also known as the greenhouse effect. The best-known GHG is 
carbon dioxide (CO2), which contributes approximately 77% (IPCC, 2007a) to the global 
GHG balance. It is also the largest source of global warming. However, also methane 
(CH4) with a share of 14% and nitrous oxide (N2O) with a share of 8% are significant 
components of the total GHG balance (IPCC, 2007a).  
 
Nitrous oxide (N2O) is a natural gas in the Earth’s atmosphere. However, the 
atmospheric concentration has increased by 18% since pre-industrial times (IPCC, 
2007a; Fig. 1.1). This increase is subject of concern, because N2O is a long-lived GHG 
with a large global warming potential (310 times that of CO2; IPCC, 2007b). N2O is not 

Fig. 1.1 Atmospheric concentrations of N2O over the past 10,000 years (large panel) and since 1750 (inset 
panel). Measurements are derived from ice cores and atmospheric samples. The corresponding radiative 
forcing relative to 1750 is shown on the right hand axis of the large panel (IPCC, 2007a). 
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only a GHG, but it is also a destructor of stratospheric ozone (Crutzen, 1970) causing 
an increase in the amount of harmful solar radiation. N2O is emitted by natural, 
anthropogenic, and interrelated sources. To get more insight into the processes of N2O 
emission, it is necessary to look at the nitrogen cycle. 

1.1.2 N2O in the nitrogen cycle 
A graphical sketch of the nitrogen (N) cycle is shown in Fig. 1.2. The main sources of 
human-related N2O emissions are energy industries, transport, chemical industries, 
and waste handling. Notwithstanding the importance of these sources, agriculture is by 
far the largest source. The IPCC (2007b) indicated enhanced microbial production in 
expanding and fertilized agricultural areas as the primary driver for the increase of N2O 
in the industrial era. In agriculture, N2O is not solely produced by anthropogenic 
processes, but is a product of the interplay between nitrogen input and soil microbial 
processes.  
 
About 78% of the Earth’s atmosphere consists of inert N2. Because this molecule has a 
strong triple bond, it is unavailable to most organisms (Galloway et al., 2004). 

Fig. 1.2 The nitrogen cycle. Some of the most important sources and flows of N are shown (derived from 
NCAR) 
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Fig. 1.3 The extended “hole-in-the-pipe” model indicates how N2O is produced in the microbial processes of 
nitrification, nitrifier denitrification and denitrification (based on Firestone & Davidson, 1989; Wrage et al., 
2001). 

Therefore, nitrogen is often most limiting in many ecosystems. Only few bacteria and 
archaea can fix nitrogen. Plants from the legume family (Fabaceae or Leguminosae), 
like clover, host N-fixing bacteria in their roots as suppliers of reactive forms of nitrogen 
(NO3¯ and NH4+).  
 
Nitrogen application on agricultural soils causes an increase in the decomposition rate 
of soil organic matter (SOM). Decomposers, like bacteria and fungi, can decompose 
organic nitrogen into ammonium (NH4+). Nitrification, nitrifier denitrification, and 
denitrification produce most of the N2O in soils (Firestone & Davidson, 1989; Granli & 
Bøckman, 1994; Wrage et al., 2001). Nitrification is the process of oxidation of 
ammonia (NH3) to nitrite (NO2¯) and nitrate (NO3¯; Fig. 1.3). Nitrate is very soluble and 
is leaches from the soil to surface and groundwater. It is the main cause of 
eutrophication of ecosystems. Denitrification and nitrifier denitrification are processes 
in which NO3¯ and NO2¯ are transformed into N2 and N2O. Wet soil conditions (a WFPS 
of about 60% to 70%) are optimal for N2O emission. However, when the soil water 
content is continuously large, gasses are not able to escape from the soil. Therefore, 
N2O is mainly produced when the soil experiences wet-dry cycles. Besides the WFPS, 
the availability of mineral N (NH4+ and NO3¯), the availability of degradable organic 
carbon, the occurrence of frost-thaw cycles, and soil temperature are important 
controls of N2O emission from soil. Besides the emission from agricultural soils, N2O is 
also emitted by enteric fermentation and manure management in stables. However, 
these emissions are about ten times smaller (Van der Maas et al., 2009) than the N2O 
emission from agricultural soils. In this thesis, the emphasis is on N2O emission from 
agricultural soils. Fig. 1.4 shows that the Netherlands has a very large gross N balance 
of soils compared to other OECD (Organisation for Economic Co-operation and 
Development) countries (OECD, 2008; OECD & EUROSTAT, 2007). The Netherlands 
also has the largest N2O emission per hectare agricultural land in the European Union 
(Velthof et al., 2009). 
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1.1.3 Kyoto Protocol and Copenhagen 
Countries are required to produce an annual national inventory of their GHG emissions 
under the United Nations Framework Convention on Climate Change (UNFCCC) and the 
Kyoto Protocol (UNFCCC, 1997). Thirthy-seven industrial countries and the European 
Community agreed upon reducing their GHG emission for the years 2008–2012 by 5% 
compared to the emission in 1990. The EU committed to decrease its emission to at 
least 30% below 1990 levels by 2020 (EU, 2008). At the Climate Conference in 
Copenhagen in 2009, delegates of 192 countries were not able to agree upon a new 
binding convention to reduce GHG emissions.  
 
The IPCC produced guidelines (IPCC, 1997; IPCC, 2006) for making annual national 
GHG inventories. There are three different levels of complexity of the methodology, also 
called Tier levels. Tier 1 is the most basic level in which simple, linear equations and 
default data are used. Tier 2 is of intermediate complexity in which country-specific 
emission factors are used. Tier 3 is the most demanding in terms of complexity and 

Fig. 1.4 Gross N balances for OECD countries (OECD, 2008). 
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data requirements and comprises the use of process models and spatially explicit data 
stored in GIS.  
 
In the last Dutch National Inventory Report (NIR; Fig 1.5), 29 of the 43 key sources 
identified are reported at Tier 2 level while the others are reported at Tier 1 level (Van 
der Maas et al., 2009) The reported total N2O emission from the Netherlands in 2007 
is 50.3 Gg N2O-N (or 15.6 Tg CO2-eq), which is about 8% of the total Dutch GHG 
balance (207.5 Tg CO2-eq). The reported GHG emissions in 1990, the base year, were 
213.3 Tg CO2-eq, which means that Dutch emissions in 2020 should be reduced to 
170.6 Tg CO2-eq or less.  
 
To reach such a decrease in emission, the agricultural N2O emission should be 
decreased because it is the main source of N2O emission. Organic soils emit larger 
amounts of N2O than mineral soils. The Dutch fen meadow landscape, which has both 
organic soils and a large agricultural sector, is an important hotspot of agricultural N2O 
emission. Therefore, it is worthwhile to focus on N2O emissions from this landscape.    

1.2 The Dutch fen meadow landscape 
The Dutch fen meadow landscape (Figs. 1.6, 1.7) is a geologically young area. During 
the most recent ice age (Weichselien, 116,000-11,500 yr BP), the entire Netherlands 
was covered by Pleistocene cover sands and the North Sea was almost completely dry. 
The Weichselien was followed by the warm Holocene era, in which sea level was rising.  

Fig. 1.5 Distribution of (a) global N2O emission sources (Annex I countries; UNFCCC, 2010) and (b) Dutch 
N2O emission sources (Van der Maas et al., 2009). 
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Fig. 1.6 The Netherlands about 3800 yr BP during the Subboreal age (based on TNO-NITG (2010)).  
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Fig. 1.7 Current location of the fen meadow landscape in the Netherlands (inset) and different peat soils 
(Histosols) according to the FAO classification. 
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The rate of sea level rise was not constant. In Western Europe, five periods in the 
Holocene can be distinguished. In two of these periods (Boreal and Subboreal, 
Table 1.1) with slow sea level rise, large areas in the Netherlands were covered by 
swamps. Besides the sea level rise, the northwest part of the Netherlands is also 
dipping down towards the North Sea due to tectonic subsidence. In the northeast part 
of the Netherlands nutrient-poor rainwater developed oligotrophic peat bogs; while in 
the western part of the Netherlands, nutrient-rich groundwater developed eutrophic 
fens. At some places in the west of the Netherlands peat domes developed on top of 
the fens. These peat deposits could reach a thickness of about 10 m. In the Early 
Subboreal age, about half of the Netherlands was covered by peat bogs and fens. 
During the Atlantic and Subatlantic ages, large tidal basins developed and parts of the 
peatland were washed away. 

 
In medieval times, fens were reclaimed for agricultural use. The fens were drained by 
ditches, by deepened natural watercourses and by dams. Due to lowering of the 
groundwater levels, the peat started to oxidize and as a result the soil started to 
subsidize. First, the agricultural use was arable farming, mainly wheat cultivation. 
However, when the area became wetter due to soil subsidence, the main land use 
changed from arable land into grassland for dairy farming. Between the 16th and the 
19th century, oligotrophic peat was excavated and used as fuel. The western fen 
meadow landscape still exists primarily of grassland on peat soils and is intensively 
managed and owned by dairy farmers. However, more and more grassland is being 
extensively managed by nature organizations. A recent development in the area is the 
increase in maize crops from 960 ha to 1940 ha between 2000 and 2009 (CBS, 2010).   
  
The western fen meadow landscape (further called the ‘the fen meadow landscape’) is 
delineated by peat soils on the Dutch soil map 1:50,000 (De Vries et al., 2003a) and 
covers approximately 16,000 ha (Fig. 1.7). Peat soils in the eastern part of the 
Netherlands are not part of the fen meadow landscape, because they have different 

Table 1.1 Geological eras and corresponding sea level change  
Period Epoch Years BP (ka) Age Sea level change 

2.4 – present Subatlantic fast rise 
5.7 – 2.4  Subboreal slow rise 
9.2 – 5.7  Atlantic fast rise 
10.6 – 9.2   Boreal slow rise 

Holocene 

11.7 – 10.6   Preboreal rise and drop 
116 – 11.7  Weichselien (glacial age) drop 
128 – 116  Eemien (interglacial age)  rise 
238 – 128  Saalien (glacial age) drop 

Quaternary 

Pleistocene 

2.6*103 – 238 Other ages rise and drop 
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characteristics (i.e., they have smaller peat layers, they have different land use, and 
they are mainly bogs instead of fens). The fen meadow landscape is thus bordered by 
the ‘IJsselmeer’ in the northeast and the line dividing land below and above sea level in 
the southeast. To estimate N2O emissions for the fen meadow landscape, inventory 
methods or models are used.  

1.3 Inventory methods and models 

1.3.1 Tier methods 
Three levels of complexity of the inventory methodology; also called Tier levels as 
distinguished by the IPCC, vary from basic methods with simple equations and default 
data to complex process models; which requires large amounts of data. The Tier 1 
method makes use of activity data (e.g., animal numbers, car numbers) that are 
multiplied by a default emission factor. Countries that ratified the Kyoto protocol should  
specify their key emission sources, i.e., which sources have large emissions (level) or 
large changes in emissions (trend). Non-key sources can be reported at Tier 1 level. For 
key sources, Tier 2 or Tier 3 level inventories should be used (IPCC, 2000a). At Tier 2 
level, country-specific emission factors and nationally derived data are used. Tier 3 
methods make use of process models, such as DNDC (Li et al., 1992) and Century 
(Parton, 1996). The simplified INITIATOR model (De Vries et al., 2003b) is used for 
analyses in between Tier 2 and Tier 3 level. Because this model has been extensively 
used in this thesis, it will be described in detail in the next section.  

1.3.2 INITIATOR 
The INITIATOR model (Integrated Nitrogen Impact Assessment Tool on a Regional scale) 
is developed to gain insight in all nitrogen flows in the Netherlands and their 
uncertainties (De Vries et al., 2003b). An advantage of this model is that it is simple, 
transparent, and does not require detailed input data. Another reason why this model 
has been frequently used in this thesis is that N flows in the typical Dutch fen meadow 
landscape are adequately modelled by INITIATOR (De Vries et al., 2001; De Vries et al., 
2003b). The Dutch fen meadow landscape is unique, because it has been cultivated 
for centuries and it has thick mesotrophic and eutrophic peat soils in combination with 
intensive dairy farming. This requires tailored modelling, which has been incorporated 
in INITIATOR. 

 
The INITIATOR model includes N inputs and N transformations in terrestrial and aquatic 
ecosystems. An overview of the main N flows in INITIATOR is shown in Fig. 1.8. Nitrogen 
is supplied to the soil by deposition, biological fixation, application of animal manure 
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and synthetic fertilisers. Ammonia emissions can arise from housing, grazing, 
application of animal manure, and application of synthetic fertilisers. Nitrogen is taken 
up by vegetation and removed by mowing, by grazing cattle as meat and milk or 
recycled as manure. Nitrogen in the soil is transformed from organic to mineral forms 
by mineralization or vice versa by immobilization. Nitrification and denitrification in soil, 
groundwater, and ditches cause N2O emission. INITIATOR uses manure and fertilizer 
input numbers in kg per ha. Therefore, available data, such as animal numbers and 
excretion fractions, are used to allocate fertilizers and manure within the Netherlands.  
Other inputs are landuse and soil type. All inputs and model parameters are described 
in the Annex. The spatial resolution of the model is 250 m and the temporal resolution 
one year. The spatial extent of INITIATOR is the Netherlands, however, in this thesis the 
focus is on the fen meadow landscape.  

1.3.3 Other methods and models 
Besides the INITIATOR model, many other models are capable of simulating N2O 
emission. They vary in scale, complexity, and focus. A widely used model, also used in 
this thesis, for simulating N2O emissions is the DeNitrification-DeComposition (DNDC) 
model (Li et al., 1992). It is a process-based model, which can simulate C and N 
biogeochemistry in agro-ecosystems. DNDC was extended for certain ecosystems 
(Forest-DNDC, Wetland-DNDC)f coupled to other models (e.g. CAPRI-DNDC, EFEM-

Fig. 1.8 Overview of N inputs and processes in terrestrial and aquatic ecosystems in INITIATOR (de Vries et 
al., 2001) 
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DNDC). Descriptions of the DNDC model can be found in Chapter 3 and in Li et al. 
(1992).  
 
The DAYCENT model (Del Grosso et al., 2006) is an extended version of the CENTURY 
model (Parton, 1996) that uses daily time steps. DAYCENT is very comparable to DNDC, 
because it is also a biogeochemical model including C and N cycles. However, P and S 
cycles are also included and this model is more complex and requires much data. The 
model SWAP-ANIMO is even more complex and data requiring. The coupled models 
SWAP and ANIMO calculate the flow and quantity of water and nutrients from and to 
soil and surface water (Kroes et al., 2008). Due to the complexity and data 
requirements, these models are best suited for GHG inventory at field scale. The 
detailed coupled model is a valuable tool for understanding emission processes at 
small scales (Stolk et al., subm.). MITERRA-EUROPE (Oenema et al., 2007; Velthof et al., 
2009) is a simpler model, which has a deterministic and static N cycle and uses 
emission factors and leaching fractions. The model can be classified as an IPCC Tier 2 
method. The model can be applied to large scales (Europe) and was developed to 
demonstrate the effects of different policy measures. 

1.3.4 Scales of GHG inventories and measurements 
Since GHG emissions are measured and modelled at different spatial and temporal 
scales, it is important to introduce some concepts of scale. The impreciseness of the 
term ‘scale’ contributes to the difficulty of developing universal theories of scale effects 
(Curran et al., 1997). The meaning of ‘scale’ varies across (and within) disciplines 
(Evans et al., 2003). Gibson (2000) defined scale as the spatial, temporal, quantitative 
or analytical dimensions used to measure and study any phenomenon. Bierkens et al. 
(2000) focused on methods for environmental research. They defined scale as the 
temporal and spatial units at which information is available or required. In this thesis, 
the term ‘scale’ is limited to spatial and temporal dimensions. Scale is assumed to 
consist of the triplet support, extent, and resolution (Western & Blöschl, 1999). The 
extent is defined as the area or time interval over which model outcomes are simulated 
or over which observations are made (Bierkens et al., 2000). The resolution is the grain 
(cell size) or timestep, which a model uses. The support indicates the size, shape, 
volume, and/or orientation of samples or model entities. An example is used to explain 
the difference between resolution, extent, and support. When an N2O measurement is 
made every hour during 5 minutes for one day (24 hour); the extent of the experiment 
is one day (24 hour), the resolution is one hour, and the support 5 minutes. The 
choices about support, extent, and resolution critically affect the type of patterns that 
will be observed, because patterns that appear at one scale may be lost at smaller or 
larger scales. 
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Results of investigations are scale dependent (Gibson, 2000). Observations and 
theories derived at one scale may not apply at another. Furthermore, the differences 
observed between locations at different scales may be enormous, with, for instance, 
large changes in both the strength and direction of relationships noted when the scale 
of the study changes (Curran et al., 1997). Ecologists call this the ‘ecological fallacy’ 
and geographers call it the ‘Modifiable Areal Unit Problem (MAUP)’ (Openshaw, 1983). 
The ecological fallacy or MAUP consists of two problems: (1) a scale problem in which 
variation in results that can often be obtained when data for one set of areal units are 
progressively aggregated into fewer or larger units and (2) an aggregation problem in 
which alternative combinations of areal units exist at equal or similar scales. Easterling 
(1997) showed how Integrated Assessment Models, such as global climate models, 
suffer from MAUP. Rastetter et al. (1992) illustrated that aggregation of CO2 uptake (by 
photsynthesis) is overestimated due to the MAUP, even for an idealized canopy in with 
leaves that are oriented horizontal and homogenously distributed. In this thesis, spatial 
scale plays an important role and many different spatial scales are used; from point 
scale to national scale. GHGs are usually measured at small spatial support, with boxes 
of about a few dm2 to a few m2 or with measurement towers that cover a few tens of 
m2 to a few km2. However, for the NIR, GHG emissions should be reported at national 
scale. Therefore, upscaling is necessary. In §1.3.1, §1.3.2, and §1.3.3 different 
upscaling methods are presented. Nevertheless, upscaling (and downscaling) 
introduces errors. The objective of the study determines, ideally, the support of the 
measurement or model. However, researchers often depend on available data and 
available models, which are not always at the preferred scale. Therefore, they should 
be cautious using these data models for their own objectives. Heuvelink (1998b) and 
Verburg et al. (2006) warn for directly applying fine-scale relations and models on 
larger scales. The problem is that the aggregate does not generally behave the same 
way as the fine-scale components from which it is constituted, because of feedbacks 
within the system and non-linear system behaviour. Different processes act on different 
scales.  
 
Besides spatial scale, temporal scale also plays an important role in this thesis. 
Considered temporal scales in this thesis differ from seconds and hours to years and 
decades. Scaling issues along spatial dimensions have much in common with scaling 
issues along temporal dimensions. For instance, GHG models with an annual resolution 
describe different processes than GHG models that operate at daily resolution.  
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1.4 Uncertainty of N2O emission inventories 

1.4.1 Dimensions of uncertainty 
Dealing with uncertainty is an important issue in GHG inventory (IPCC, 2007b). 
However, just as the definition of ‘scale’, also the definition of ‘uncertainty’ is subject of 
debate. Walker et al. (2003) defined uncertainty as any deviation from the 
unachievable ideal of completely deterministic knowledge of the system under 
consideration. While others assumed that uncertainty is the state of mind that 
expresses a lack of confidence about reality or an expression of our lack of confidence 
about what we ‘know’ (Brown & Heuvelink, 2005). The main difference between these 
definitions is that Walker et al. assumed that uncertainty is a property of the system (or 
model), while others interpret uncertainty as a perspective of a person. Rypdal et al. 
(2001) investigated the uncertainty of GHG inventories and stated that uncertainty 
covers all sources of errors due to limited knowledge. Uncertainty can arise from a 
variety of sources. According to Walker et al. (2003) sources of uncertainty are model 
context (boundaries, completeness), model structure (variables and their relationships), 
model inputs (drivers), parameters (data, calibration), and model outcome (important 
for decision makers). Measurements can also be a source of uncertainty, due to 
limitations in the measurement equipment (Kroon et al., 2008). In this thesis, different 
sources of uncertainty of N2O emission inventory will be described and their size of 
uncertainty will be estimated. Three ways to express the size of uncertainty are used. 
The first way is the standard deviation (s.d.) of a sample of observations, which is 
defined as the square root of the mean squared deviations about the mean (Burt & 
Barber, 1995). The second way is the relative standard error (IPCC, 2000a), which is 
the standard deviation divided by the mean and typically expressed as a percentage. 
The third way is the range or confidence interval, which is an interval that contains the 
majority of the values of an uncertain parameter (e.g. the 95% confidence interval). 

1.4.2 Uncertainty in N2O emission inventories  
Inventories of N2O emission are notorious for their large uncertainties. Whereas in the 
Dutch NIR (Van der Maas et al., 2009) the uncertainty in CO2 emission is about 3% and 
in CH4 emission about 25%, the uncertainty in N2O emission is about 50% at Tier 1 
level. Olsthoorn & Pielaat (2002) and Olivier et al. (2001) estimated the uncertainty of 
Dutch agricultural N2O emissions for the IPCC Tier 1 and Tier 2 methods using Monte 
Carlo analysis. De Vries et al. (2003b) performed a Monte Carlo uncertainty analysis to 
assess the propagation of errors in input parameters on N2O and NH3 emissions and 
NO3¯ and NH4+ leaching and runoff. The 90% confidence interval for N2O emission in 
the Netherlands ranged considerably between 18 and 51 Gg N yr-1 for the year 1993. 
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Olsthoorn & Pielaat (2002) and Olivier et al. (2001) also found large uncertainty ranges. 
The 95% confidence interval at Tier 1 level was 20.1 – 48.4 Gg N2O-N (Olivier et al., 
2001) and 25 – 64 Gg N2O-N (Olsthoorn & Pielaat, 2002) at Tier 2 level for the year 
1999. They concluded that most uncertainty arises from lack of knowledge of soil 
processes that produce N2O. Further, the spatial variability of factors such as 
groundwater level is unknown; while both are essential for making accurate N2O 
emission estimates. Emission factors used in these studies are based on research that 
date back to before the nineties; nowadays, emission factors are more up-to-date (Van 
der Hoek et al., 2007). Especially the emission factors for application of manure and 
synthetic fertiliser contribute to a large uncertainty in the N2O emission inventory.   
 
Recent research also pointed out that uncertainties of N2O emission inventories are 
large and our ability to predict N2O fluxes is still limited (Reis et al., 2009; Tonitto et al., 
2009). The IPCC (2007b) also report that large uncertainties in the major soil, 
agricultural, combustion, and oceanic sources of N2O exists.  
 
Researchers point to the large spatial and temporal variation in N2O emission as a 
main source of uncertainty (e.g. Ball et al., 2000; Jones et al., 2005; Kroon et al., 2008; 
Velthof et al., 1996a; Velthof et al., 1996b). Spatial variation at field scale is mainly 
caused by spatial variation in denitrification and nitrification processes; which are 
influenced by soil conditions. In peatlands, especially the soil water content and the 
groundwater level affect N2O emission. Wet soils with a soil water content of about 
70% are believed to have the largest N2O emission potential (§1.1.2); however, deep 
groundwater levels are assumed to enhance mineralization and accordingly large N2O 
emissions are expected. At landscape scale, spatial variation is mainly influenced by 
land use and management. Intensively management agricultural areas have much 
larger N2O emissions than other areas; therefore, the exact location and magnitude of 
agricultural areas are important factors in reducing uncertainties in landscape scale 
N2O emission inventories. Variation is also dependent on measurement support; a 
small support in N2O measurements will cause a large variation in results when scaling 
up. The large temporal variation in N2O emissions is shown by large peak emissions 
related to N input (by chemical fertilizers or manure application), rain showers, or 
freeze-thaw cycles.  
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1.5 Objectives 
The main objective of this PhD thesis is to determine and quantify various sources of 
uncertainty of N2O emission inventories for the Dutch fen meadow landscape. This 
objective can be divided into research goals based on different sources of uncertainty: 
 

1. What is the uncertainty as a result of spatial upscaling? 
- Analyse how different land cover representations potentially 

introduce systematic errors into the results of regional N2O emission 
inventories. 

- Compare the effect of different land cover representations on N2O 
emission between two different N2O inventory methods. 

2. What is the uncertainty as a result of temporal upscaling? 
- Analyse the effect of temporal resolution by comparing annual N2O 

emissions from two models with different temporal resolutions for 
the period 2001–2006. 

- Estimate emission factors for the simulated years and compare 
these with emission factors used in the Tier 1 and Dutch Tier 2 
methods. 

3. What is the uncertainty as a result of uncertainty in model inputs? 
- Quantify the uncertainty of N2O emission estimates due to uncertain 

model inputs at point and landscape scale. 
- Identify the main sources of model input uncertainty at both scales. 

4. What is the uncertainty originating from variation in land use change? 
- Estimate changes in N2O emission for the period 2006–2040 under 

different scenarios.  
- Quantify the share of different emission sources in the scenarios. 
- Compare the uncertainty of N2O emissions due to the diverging 

scenario conditions with to other uncertainties in N2O emission 
inventories. 

 
The focus of quantifying these different sources of uncertainty is limited to soil-bound 
N2O emissions from agriculture and natural sources in the Dutch fen meadow 
landscape. 
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1.6 Outline of this thesis 
This PhD thesis brings together different types, aspects, and scales of uncertainty in 
inventorying N2O emissions. The following four chapters contain the body of this thesis 
and contain publications (two published and two submitted) to international scientific 
journals. In each of these chapters, a different type of uncertainty or aspect of 
uncertainty in N2O emission from the Dutch fen meadow landscape is discussed. 
Chapter 2 addresses the effect of land cover data on N2O emission inventories. In this 
chapter, the influence of differences in spatial scale between the land cover databases 
and differences between aims of the databases on N2O emission inventories will be 
findings and some recommendations for future research. Chapter 3 focuses on the 
effect of temporal resolution on N2O emission inventories. To quantify the uncertainty 
caused by temporal resolution, two models with different temporal resolution are used. 
In Chapter 4, the uncertainty due to model inputs is quantified and their propagation 
through INITIATOR is analysed. This chapter also identifies the largest sources of 
uncertainty among the uncertain inputs. Chapter 5 describes the uncertainty in future 
N2O emissions, due land use change induced by socio-economic developments. Using 
three diverging scenarios for the Dutch fen meadow landscape, development of N2O 
emission until 2040 is assessed. Finally, Chapter 6 contains a general synthesis that 
reports the main conclusions and puts the results into a broader perspective.  

Fig. 1.9 Location of chapters 2 to 5 at spatial and temporal scales.   
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Effect of land cover data on N2O 
inventories in the Dutch fen 

meadow landscape 
Abstract 
Landscape representations based on land cover databases differ significantly from the 
real landscape. Using a land cover database with high uncertainty as input for emission 
inventory analyses can cause propagation of systematic and random errors. The 
objective of this chapter was to analyse how different land cover representations 
introduce systematic errors into the results of regional nitrous oxide (N2O) emission 
inventories. Surface areas of grassland, ditches, and ditch banks were estimated for 
two polders in the Dutch fen meadow landscape using five land cover representations: 
four commonly used databases and a detailed field map, which most closely resembles 
the real landscape. These estimated surface areas were scaled up to the Dutch fen 
meadow landscape. Based on the estimated surface areas agricultural N2O emissions 
were estimated using different inventory techniques. All four common databases 
overestimated the grassland area when compared to the field map. This caused a 
considerable overestimation of agricultural N2O emissions, ranging from 9% for more 
detailed databases to 11% for the coarsest database. The effect of poor land cover 
representation was larger for an inventory method based on a process model than for 
inventory methods based on simple emission factors. Although the effect of errors in 
land cover representations may be small compared to the effect of uncertainties in 
emission factors, these effects are systematic (i.e., cause bias) and do not cancel out 
by spatial upscaling. Moreover, bias in land cover representations can be quantified or 
reduced by careful selection of the land cover database. 
 
 
 

Based on: Nol, L., Verburg, P.H., Heuvelink, G.B.M. and Molenaar, K. (2008)  
Journal of Environmental Quality, 37(3): 1209-1219
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2.1 Introduction 
Every land cover map or database is a simplification of the complexity of a real 
landscape (Arbia et al., 1998; Regnauld, 2001; Schmit et al., 2006). However, the 
scale and mapping technique are a source of variation when comparing different land 
cover maps (Bach et al., 2006; Ellis, 2004; Schmit et al., 2006; Verburg et al., 2006). 
Differences between a land cover database and a real landscape are a source of error 
when the database is utilized (Fang et al., 2006; Fassnacht et al., 2006; Foody, 2002). 
The large dependence of GHG emissions on land use makes land cover data an 
essential input in GHG inventories (Denier van der Gon et al., 2000; Kern et al., 1997; 
Matthews et al., 2000; Plant, 1999). Recently Huffman (2006) acknowledged the need 
for highly accurate, high-resolution, and nationally consistent land cover data, while 
others have argued for statistically rigorous and accurate assessment of thematic 
maps (Heuvelink & Burrough, 2002; Stehman & Czaplewski, 1998). A lot of research 
has been performed to improve GHG inventories (Denier van der Gon & Bleeker, 2005; 
Kroeze, 1994; Li et al., 1992; Stacey et al., 2006), but careful analysis of how 
systematic errors in land cover data affect these inventories has received little 
attention. Often considerable emphasis is given to the provision of the most exact input 
data possible for soil and climate while little thought is given to the quality and 
accuracy of land cover or land use data (Bach et al., 2006; Jansen, 1998a). Bareth et 
al. (2001) noted that the accuracy of spatial data should be regarded with more 
importance in the estimation of N2O emissions. 
 
Signatories to the Kyoto Protocol (UNFCCC, 1997) must annually report emissions of 
their GHGs CO2, CH4, and N2O. The IPCC has established Good Practice Guidelines for 
reporting and upscaling national GHG emissions. The inventory methods are divided 
into three levels of increasing complexity and classified as: Tier 1, Tier 2, and Tier 3 
(§1.3.1,  IPCC, 1997; IPCC, 2000a).  
 
Many countries are still striving to fulfil the Kyoto reporting requirements (Bolan et al., 
2004; Brown et al., 2002; Saggar et al., 2004). Especially problematic are methods for 
N2O emissions from agricultural soils (Lokupitiya & Paustian, 2006). For the 
Netherlands, Kuikman et al. (2004) stated that current reporting to the Kyoto protocol 
is incomplete or inaccurate: several sources may not have been identified and others 
may well be reported incompletely. Accordingly, it is important to focus on decreasing 
the uncertainty and improving data quality of N2O emissions from agricultural soils 
(§1.1). An important source of N2O emissions from agricultural soils is the emission 
from ‘cultivation of histosols’, which differs from estimation of other agricultural N2O 
sources because it requires spatial input data. Cultivation of histosols leads to 
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oxidation of organic matter from peat soils due to the lowering of groundwater tables in 
cultivated areas. Emission of N2O from cultivated histosols in the Netherlands has been 
estimated to contribute 10% of the direct N2O emissions from soils and 5% of the total 
N2O emissions from agriculture (Klein Goldewijk et al., 2005). Histosols cover a 
significant area (approximately 9% of the land surface) in the Netherlands (CBS, 2007; 
Kuikman et al., 2005) and are predominantly situated in the fen meadow landscape. 
The main elements of Dutch fen meadow landscape are grassland parcels, ditches, 
and ditch banks, each with specific emission characteristics (Best & Jacobs, 1997; Van 
Beek et al., 2004b). 
 
The estimation of land surface area occupied by histosols and the main landscape 
elements depend on the available spatial input information and associated resolution. 
The scale of analysis or kind of information an investigator desires also influences the 
outcomes of the inventory. For example, if an investigator can choose between 
different land cover databases, each with a different resolution, then the choice for a 
certain database depends on the element of interest (Woodcock & Strahler, 1987). The 
optimum scale of analysis is usually the scale at which processes, in this case N2O 
emission, occur (Allen et al., 1984). Denitrification and nitrification are the most 
important processes in converting N into N2O in soils ({§1.1.2, Firestone & Davidson, 
1989). These processes take place at the microbial scale, whereas national inventories 
require emissions to be reported on a national scale. These inventories are often based 
on emission factors derived from small-scale chamber measurements (0.03–6 m2). 
The chamber measurements in fen meadow landscapes have mainly taken place on 
grassland parcels, preferably not too close to the ditch (Ambus & Christensen, 1994). 
Since different landscape elements have different emission characteristics, it is 
worthwhile estimating the surface area of the different landscape elements using land 
cover databases and investigating the effect of using these land cover databases on 
the N2O emission inventory. The objective of this paper was to analyse how different 
land cover representations potentially introduce systematic errors into the results of 
N2O emission inventories at landscape scale. To this end, five different land cover 
databases with differences in spatial resolution and accuracy were used in 
combination with four inventory methods. Understanding the influence of land cover 
databases on outcomes of emission inventories may help in the further refinement of 
reporting protocols. 

2.2 Materials and methods 
N2O emissions were calculated using different upscaling methods based on alternative 
land cover databases for two representative landscapes in the Dutch fen meadow 
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landscape. Implications at landscape scale of using alternative land cover databases 
were analysed by scaling the results up to the fen meadow landscape. 

2.2.1 Reclamations in the fen meadow landscape 
The formation of the Dutch fen meadow landscape (Figs. 1.7, 2.1) is described in §1.2. 
From medieval times until the 16th century, this land was reclaimed for agricultural use. 
A popular way of reclaiming the land was by ‘cope agreements’. In these agreements, 
the length of the parcel was usually prescribed to be about ten times the width of the 
parcel. This pattern of parcels with the same shape is still recognizable in the fen 
meadows. However, a common strategy was not applied everywhere resulting in areas 
with more irregular reclamations. Between the 16th and the 19th century oligotrophic 
peat was excavated and used as fuel. Today, lakes and grassland intersected by wide 
ditches are located in these areas. The fen meadow landscape exists primarily of 
grassland on peat soils and is intensively managed and owned by dairy farmers; 
however, more and more grassland is being extensively managed by nature 
organizations.  

Fig. 2.1 Location of the research polders in the Netherlands. 
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The Zegveld and Oukoop polders (Fig. 2.1) were chosen as case studies of the two 
most dominant reclamation types within the Dutch fen meadow landscape: cope 
(regular) reclamation and reclamation with wide ditches. 
 
The Zegveld polder (52°08”N, 4°48”E) has a surface area of 670 ha (Fig. 2.1) and is 
representative of the ‘cope’ reclamation type. The area was reclaimed in the 11th  
century. The village of Zegveld (Fig. 2.1; south corner) was the reclamation base from 
where the reclamation of the area started. The parcels stretch from Zegveld to the peat 
river Meije bordering the north of the polder. Many farms have settled in the centre of 
the parcels. The polder was one of the latest reclamations in the area, which gave the 
polder its peculiar shape. At the reclamation base in the south, the parcels are narrow 
becoming wider toward the north. The polder is predominantly drained 60-cm depth 
but an area of natural vegetation (25 ha) in the northwest is drained at approximately 
30 cm below surface level. 
 
The Oukoop polder (52°03”N, 4°43”E) is smaller than the Zegveld polder and has a 
surface area of 168 ha (Fig. 2.1). The area was reclaimed in the 11th or 12th century 
and is representative of the reclamation type with wide ditches. The polder was 
enclosed by reclamations from the Hollandse IJssel river in the south, the Oude Rijn 
river in the north, and an old stream (the ‘Oude Wetering’) in the east. Both peat soils 
are classified as Terric Histosol and originate from wood and reeds. 

2.2.2 Land Cover Databases 
Surface areas occupied by grassland parcels, ditches, and ditch banks were estimated 
for the two research polders and for the entire fen meadow landscape based on five 
land cover databases. The emissions of N2O differ with elements in the landscape. 
Therefore, these landscape elements were separately accounted for in the analysis. 
The five land cover databases used, more or less ranked in order of decreasing 
resolution and accuracy, were: a detailed field map unit of the distinguished landscape 
elements, Top10Vector, LGN4, CBS soil use, and CLC2000. 
 
Fang et al. (2006) pinpointed the importance of taking the uncertainty of land cover 
databases into consideration when using these for landscape studies. The five 
databases used in this study differ in uncertainty. Uncertainties in vector databases 
can be subdivided into geometric uncertainty and thematic uncertainty (Heuvelink et al., 
2007). Geometric or positional uncertainty is uncertainty about the shape and the 
location of an object. Thematic uncertainty is uncertainty about the attribute values of 
an object and occurs in both vector and raster data. It is mainly caused by interpolation 
errors and wrong classification of pixels or mapping units (Bolstad & Smith, 1992; 
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Foody, 2002; Steele et al., 1998; Van Oort, 2005). The resolution or minimum mapping 
unit of the land cover database is a source of geometric uncertainty (Hengl, 2006). This 
problem, the modifiable areal unit problem (see also §1.3.4), is especially problematic 
when there are discrete changes within landscapes. Depending on the resolution and 
shape of data elements, almost any result may be obtained (Openshaw, 1983). In this 
paper the effect of the differences in geometry and resolution on the estimation of the 
prevalence of the different landscape elements, important to N2O emission, was 
evaluated. Details about the used land cover databases are given in Table 2.1. 
 
The goal of the field map was to accurately delineate ditches and ditch banks 
(positional uncertainty < 0.2 m in width) and quantifying the surface area of these 
landscape elements with negligible bias (i.e., much smaller than bias associated with 
the four commonly used databases). The aim was to measure all ditch widths in the 
polder, but due to inaccessibility a number of ditch widths had to be estimated. In 
polder Zegveld 91% of all ditches were measured, 8% were estimated in the field, and 
1% was estimated using the Top10Vector and aerial photographs. In polder Oukoop 
68% of all ditches were measured, 12% were estimated in the field, and 20% were 
estimated using the Top10Vector and aerial photographs. The boundary between ditch 
bank and grassland was defined as the line that separates areas with a clear slope 
gradient from those without a slope or with minimal relief (slope < 1°). The surface 
area of ditches and ditch banks were then calculated using the widths from the field 
map and the lengths from the Top10Vector topographic database. This was acceptable 
because the bias of the Top10Vector in ditch lengths was small compared to the bias 
in ditch widths. The Top10Vector was used as the basis for the field map, the ditches 
were adjusted to the measured ditch widths and ditch banks were added. In the 
database resulting from the field map, a distinction was made between intensively and 
extensively managed grassland. The extensively managed grassland was managed by a 
governmental organization, and was unfertilized and grazed by sheep and beef cattle. 
The grazing pressure was lower than on the intensively managed grassland, used for 
dairy cattle. 
 
The Top10Vector database is a detailed topographic database of the Netherlands 
made by the Dutch National Mapping Agency (TDK). The Top10Vector is a vector file 
with a closed field structure; built up from coded lines enabling the user to select fields 
with certain characteristics. The Top10Vector is based on aerial photograph 
interpretation in combination with field investigation. It consists of several point, line, 
and polygon layers. The database is partly updated every year and the entire 
Netherlands is updated each 4 yr. The geometric uncertainty of the Top10Vector 
database is estimated at 2 m (Van Buren et al., 2003). 
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The CBS soil use database consists of soil use areas and boundaries. For agricultural 
land cover the only distinction made is between horticulture under glass and other 
agricultural use. The Top10Vector was used for the basic geometry (water, railroads, 
and roads). The geometric uncertainty of the topography is therefore also 2 m (CBS, 
2002). The main difference is the larger minimum mapping unit of the CBS soil use 
database (Table 2.1), which leads to an additional source of geometric uncertainty. 
 
In the analysis of the results, the linkage between the two databases was taken into 
account. The CBS soil use database provides insight into the distribution of different 
soil use types in the Netherlands and is used by the Statistics Netherlands (CBS) for 
deriving surface area and density statistics for regional classifications. 
  
The LGN4 is a land use database for the Netherlands and is based on satellite images 
from 1999 and 2000 (De Wit, 2001). The LGN4 exists of grid data and vector data of 
crops. The grid data contain the dominant land cover type per 25 by 25 m grid cell. In 
total 39 land cover types are distinguished. In this research, only grid data were used, 
because cropland is marginal in the fen meadow landscape. The main difference 
between LGN4 and the CBS soil use database is that LGN4 focuses on agricultural land 
cover whereas CBS soil use focuses more on urban land cover. The category agriculture 
is split into ten classes and the category nature has seventeen classes where a 
distinction is made between intensively and extensively managed grassland. Validation 
of the LGN4 was executed by checking 4000 points using aerial photos and the 

Table 2.1 Characteristics of land cover databases. 
Type Year of 

validity 
Minimum 
mapping unit 

Grid 
cell Projection Extent No. of 

categories Source 

Field map 

Vector 2006 0.2 m (ditch) 
2 m (roads) – RD (Dutch)b  Research 

Polders 12 – 

Top10Vector 

Vector 2000–
2004 

3 m (ditch) 
2 m (roads)a – RD (Dutch)b Netherlands 50 TDN (2006) 

CBS soil use 

Vector 2000 10,000 m2 c – RD (Dutch)b Netherlands 38 CBS (2002) 

LGN4 

Raster 1999–
2000 5000 m2 25 m RD (Dutch)b Netherlands 39 GeoDesk 

(2006) 
CLC2000 

Raster 2000 250,000 m2 100 m Lambert 
Azimuthal Europe 43 EEA (2000) 

a Vliegen (2000). 
b RD = Dutch National Grid. 
c Except for roads and railroads, which are all included in the database. 
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Top10Vector. The overall thematic accuracy of the LGN4 was estimated to be 92.2% 
(GeoDesk, 2006). However, large differences exist between classes. Classes with large 
abundances are generally more accurate than less abundant classes.  
 
The CLC2000 database is produced by the European Environment Agency (EEA). The 
database was made as part of the project COoRdinate INformation on the Environment 
(CORINE). CLC2000 is a raster image, which has a resolution of 100 m. The CLC2000 
is based on satellite images, which were interpreted by national teams. In the 
Netherlands vector databases of land cover (Hazeu, 2003) were developed for 1986 
and 2000 where changes in land cover between these years were also mapped. The 
minimum mapping unit for these vector databases is 25 ha and for changes in land 
cover between 1986 and 2000 the minimum mapping unit is 5 ha. These national 
databases were joined together and converted into the raster database CLC2000 using 
the majority rule (Büttner et al., 2002). This database distinguishes 44 land cover 
classes. The thematic accuracy of the CLC2000 was estimated to be 87.0±0.5% (EEA, 
2006). 

2.2.3 N2O Emission Estimation 
For the Zegveld and Oukoop polders, N2O emissions were estimated using four 
methods: IPCC Tier 1, Tier 2a, Tier 2b, and INITIATOR (Tier 2.5). The IPCC Tier 1 method 
estimates emissions by multiplying global activity data by default emission factors 
(Table 2.2). The emission factor is the fraction of N emitted as N2O. 
 
Emission factors and activity data from the Good Practice Guidance (IPCC, 2000a) and 
the IPCC Guidelines (IPCC, 1997) were used. When activity data were not indicated in 
the Good Practice Guidance, estimates from CBS (2007) were used. In the Tier 1 
method, land cover data are used for the estimation of the emission due to the 
cultivation of histosols. The estimated surface area of grassland on peat soil from each 
land cover database and the default emission factor were used. In the polder Oukoop, 
only negligible N2O emissions from ditches and ditch banks were measured (based on 
weekly closed chamber measurements in 2005, 2006, and 2007 by Schrier (personal 
communication; see also Table 2.3). The emissions from ditches and ditch banks in 
polder Zegveld were also assumed negligible, because the soil, land use, and 
hydrological conditions in this polder are very similar to those of polder Oukoop. 
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Table 2.2 Emission factors for N2O emission from agriculture for different Tier levels. 
 

Emission factors for direct emissions from managed 
soils 

Emission 
factors for 
emissions 
from 
animals 

Emission factors for 
indirect emissions 

 1:Synthetic 
fertilizer 
applied 

1: Animal 
manure 
applied 

2: 
Cultivation 
of histosols 

3: Animal 
grazing 

3: Manure 
manage-
ment 

4: Atmos-
pheric 
deposition 

5: 
Leaching 
of N 

 

kg N2O-N 
(kg N from 
applied 
fertilizer)-1 

kg N2O-N 
(kg N from 
applied 
manure)-1 

kg N2O-N 
ha-1 yr-1 

kg N2O-N 
(kg N 
excreted in 
pasture)-1 

kg N2O-N 
(kg N2O-N 
in manure 
system)-1 

kg N2O-N 
(kg NH3–
N+NOX–
N)-1 

kg N2O-N 
(kg N 
leached)-1 

Tier 1 0.0125a 0.0125a 5.0b 0.020a 

0.001 
(Liquid) 

0.02 
(Solid) 

0.01a 0.025a 

Tier 2a 0.017c 0.020d 4.7e 0.017f 

0.001 
(Liquid) 

0.02 
(Solid) 

0.01g 0.025g 

Tier 2b 0.020h 0.020d 5.8i 0.017f 

0.001 
(Liquid) 

0.02 
(Solid) 

0.01g 0.025g 

 Denitrification and nitrification 
kg N2O-N (kg N input)-1 

     
INITIATOR 
(Tier 2.5) 
Nether-
lands 

0.031 ± 0.014j 

0.001 
(Liquid) 

0.02 
(Solid) 

0.031 ± 
0.014jk 

0.033 ± 
0.012jk 

INITIATOR 
(Tier 2.5) 
Research 
Polders 

0.049 ± 0.006j 

0.001 
(Liquid) 

0.02 
(Solid) 

0.049 ± 
0.006jk 

0.046 ± 
0.005jk 

a Default value (IPCC, 1997; IPCC, 2000a). 
b Default value for temperate zones (IPCC, 1997). 
c Emission factor in the Netherlands = Fraction of NH4

+-fertilizers*0.02 + Fraction of other fertilizers*0.01. 
d Emission factor in the Netherlands for manure incorporation in organic soils (surface spreading of manure is 
forbidden in the Netherlands). 
e Emission factor in the Netherlands (Kuikman et al., 2005). 
f Emission factor in the Netherlands = (Fraction of urea (65%) * 0.02) + (Fraction of faeces (35%)*0.01). 
g In the Netherlands there are no country specific emission factors and fractions for indirect sources, therefore 
the IPCC default values were used (IPCC, 1997; IPCC, 2000a). 
h All interviewed farmers in the research polders use ammonium fertilizers. 
i Emission factor for eutrophic peat soils in the Netherlands, measured in Zegveld (Kuikman et al., 2005). 
j Emission factor depends on local soil and hydrological characteristics. 
k In INITIATOR N2O emission due to deposition of NH3 and NOX is considered a direct emission (De Vries et 
al., 2003b). 
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Table 2.3 N2O emission from grassland parcels, ditches, and ditch banks. Emissions were non-
continuously measured using flux chambers. 

Treatment     N2O emission  
(kg N2O-N ha-1 yr-1) 

Dry grassland parcel  
    Unfertilized 8.6a  
    Fertilized 18.1 a  
    Fertilized and grazed 38.5 a  
Wet grassland parcel  
    Unfertilized 2.0 a  
    Fertilized 8.8 a  
    Fertilized and grazed 14.6 a  
Ditch bank negligibleb  
Ditch negligibleb  
a Velthof (1997). 
b Schrier (personal communication). In polder Oukoop, N2O emissions from ditches and ditch banks were 
below the detection limit of the measurement equipment. 

Two alternative specifications of the IPCC Tier 2 method are considered in this study 
hereafter referred to as Tier 2a and Tier 2b. The Tier 2a method uses activity data and 
emission factors as reported in the most recent Dutch inventory report (Klein Goldewijk 
et al., 2005) while the Tier 2b method uses polder-specific activity data (i.e., number of 
animals, amount of fertilizer used) gathered from door-by-door interviews with farmers. 
Five of the twenty farmers in Zegveld were interviewed; together they own 31% of the 
area in the polder. In Oukoop, all eleven farmers were interviewed. All farmers could 
give animal numbers, separated into mature dairy cattle, yearlings, calves, sheep, 
lambs, goats, and pigs. Based on these interviews, an estimation of the total amount of 
cattle, applied manure, and applied fertilizer was made. For the Tier 2a method, activity 
data from the municipality or agricultural region (CBS, 2007) were used. This 
information was scaled down to the scale of the research polders as follows. 
Agricultural activity data in the Netherlands, such as the number of cows and the 
amount of chemical fertilizers used in an area, are correlated to the amount of 
grassland in that area. Therefore, activity data for the polder were estimated by 
multiplying the activity data from municipality/agricultural region by the ratio of 
grassland in the polder to grassland in the municipality/agricultural region. 
 
The process model INITIATOR (De Vries et al., 2003b) was identified as a method 
between Tier 2 and Tier 3 level and therefore called Tier 2.5 method. The model was 
developed to represent the crucial processes in the N chain by simple process 
descriptions, calculated in yearly time steps. Input data were taken from the CBS (CBS, 
2007) concerning animal numbers, manure management systems, and fertilizer use. 
Inputs from the land cover databases were also used. Soil characteristics from the 
Dutch Soil map (Stiboka, 1969) and hydrological characteristics (Wolf et al., 2003) 
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were added. INITIATOR uses a process model in which N2O emission is a function of 
denitrification and nitrification in the soil (De Vries et al., 2003b). Unlike the IPCC 
methods, the emission factors and denitrification and nitrification fractions vary as a 
function of soil type and groundwater level in INITIATOR (Table 2.2). 
 
Analysis of variance (ANOVA) was used to analyse whether differences between land 
cover databases for the polders are significant and whether differences between 
inventory methods are significant. 

2.2.4 Regional Upscaling 
In addition to comparing the calculated emissions for the two research polders, an 
assessment of the regional implications of the use of different databases was made for 
the entire fen meadow landscape. The field map of the research polders was scaled up 
(i.e., the extent was increased) to estimate the surface areas of different landscape 
elements and landscapes: ‘cope’ reclamations, reclamations with wide ditches, and 
irregular reclamations. This distinction was made because these three reclamation 
landscapes differ in the prevalence of landscape elements due to differences in the 
shape of grassland parcels and open water based on differences in reclamation history. 
All three reclamation types are common in the fen meadow landscape. The 
Top10Vector database was used to assign the type of reclamation landscape to each 
of the 315 polders in the fen meadow landscape. The surface areas of landscape 
elements found in the two research polders were used to estimate the distribution of 
these landscape elements in the fen meadows. Polder Zegveld was considered to be 
representative for ‘cope’ reclamation patterns with a regular pattern of predominantly 
rectangular parcels divided by small ditches. The length/width ratio of the parcels is 
approximately 10:1. The selection procedure for this type of reclamation is therefore 
based on the length/width ratio of the parcels. Polders, which have more than 70% of 
the parcels have a length/width ratio equal or greater to 10:1, were considered ‘cope’ 
reclamations. Twenty to thirty percent of the parcels in ‘cope’ reclamations have 
smaller width/length ratio, because these are situated at the edge of the polder or are 
dissected by a road. The second reclamation landscape can be described as polders 
with significant areas of open water. Usually these polders have wide ditches in 
between the parcels. Polder Oukoop was used as a reference polder for this 
reclamation landscape. The procedure to distinguish these polders at the regional level 
was based on the occurrence of open water and ditches wider than 3 m in the polders. 
Note that the Top10Vector database represents ditches smaller than 3 m as line 
elements. Polders with surface areas of water equal to or larger than 10% of the 
grassland surface areas, according to the Top10Vector, were therefore classified as 
reclamations with wide ditches. This percentage was derived from the standard width 
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of parcels in this area and the average ditch width. The remaining polders were 
classified as irregular reclamations. A representative for this reclamation landscape is 
polder Menningweer of which Molenaar (unpublished data) made a detailed field map. 
After classifying the polders based on the three reclamation landscapes and 
assignment of the accompanying surface areas of landscape elements, the total 
surface areas of grassland parcels, ditches, and ditch banks were estimated. These 
surface areas were used to estimate the total agricultural N2O emission from the fen 
meadow landscape. For each land cover database, the amount of grassland on 
histosols compared to grassland on mineral soil in each agricultural region (CBS, 2007) 
was calculated to estimate activity data such as amount of cattle and amount of 
fertilizer use. When emission factors derived from the Dutch situation were available 
(Klein Goldewijk et al., 2005), these were used. For some N2O sources, emission 
factors have not been determined in the Netherlands (i.e., for indirect emissions), and 
default IPCC emission factors were used. The emission of the fen meadow landscape 
was also estimated using INITIATOR, based on data on soils, hydrology, and land use 
data from the STONE database (Wolf et al., 2003). 

2.3 Results and discussion 

2.3.1 Land Cover Representations 
Representations of landscapes based on different land cover databases are shown in 
Figs. 2.2 and 2.3. The enlargements in Figs. 2.2 and 2.3 clarify the differences 
between the field map and the Top10Vector database. The Top10Vector database 
represented ditches smaller than 3 m as lines and did not make a distinction between 
ditch banks and grassland. The field map represented all ditches as polygons and was 
the only database that distinguished between ditch banks and grassland. The CBS soil 
use database ignored farmyards, farms, and small ditches due to the large minimum 
mapping unit compared to the field map and the Top10Vector. Only the village centre 
of Zegveld was represented as a residential area. The LGN4 and the field map 
databases distinguished between intensively managed grassland and extensive 
managed nature area. For both polders, the LGN4 database recorded a considerable 
surface area of ‘urban in agricultural area’ compared to the CBS soil use and CLC2000 
database. As a result, the LGN4 database recorded a reduced grassland area 
compared to the other databases. Raster databases have difficulties representing 
point and line features that are smaller or equal to the pixel size. The farms with 
farmyard in the polders are features that were represented by the LGN4 database as 
square and rectangular shapes, which were often different from their real shape (i.e., 
the field map). The coarse CLC2000 raster database showed the entire polder covered  



Effect of land cover data on N2O emission inventories in the Dutch fen meadow landscape 

41 

 

Fi
g.

 2
.2

 R
ep

re
se

nt
at

io
ns

 o
f p

ol
de

r Z
eg

ve
ld

 u
si

ng
 d

iff
er

en
t l

an
d 

co
ve

r 
da

ta
ba

se
s.

 



Chapter 2 

42 

  

Fi
g.

2
.3

 R
ep

re
se

nt
at

io
ns

 o
f p

ol
de

r 
Ze

gv
el

d 
us

in
g 

di
ff

er
en

t l
an

d 
co

ve
r d

at
ab

as
es

. 



Effect of land cover data on N2O emission inventories in the Dutch fen meadow landscape 

43 

with grassland, except for one pixel in the Zegveld polder and for one pixel in the 
Oukoop polder. 
 
Surface areas of (intensively and extensively managed) grassland parcels, ditches, and 
ditch banks as calculated using the different databases are given in Table 2.4. Except 
for the field map the land cover data did not have a separate class for ditch banks. 
These were all classified as grassland. The field map showed the smallest surface area 
with grassland, except for one pixel in the Zegveld polder and for one pixel in the 
Oukoop polder. 
 
Surface areas of (intensively and extensively managed) grassland parcels, ditches, and 
ditch banks as calculated using the different databases are given in Table 2.4. Except 
for the field map, the land cover data did not have a separate class for ditch banks. 
These were all classified as grassland. The field map showed the smallest surface area 
of grassland and the largest surface area occupied by water and ditch banks. The 
grassland surface area increased with increased minimum mapping unit for vector 
data and increased with increased resolution for raster data. This can be explained by 
the dominance of grassland which, when presented at coarser scales, results in a 
general overestimation of its prevalence (Moody & Woodcock, 1996; Schmit et al., 
2006). In vector data, ditches are ignored when they are < 3 m (Top10Vector) or have 
a surface area < 1 ha (CBS soil use). In raster data, ditches are ignored when another 
type of land cover is more abundant within a pixel. 
 
Overestimation of land cover classes with large abundances also occurred in other 
landscapes (Ellis et al., 2000; Fassnacht et al., 2006; Moody & Woodcock, 1996; 

Table 2.4 Surface areas land cover types per land cover database (ha). 

Location/ 
    Database 

Total 
grassland 

Intensively 
managed 
grassland 

Extensively 
managed 
grassland 

Water Ditch bank 

Polder Zegveld      
    Field map 513 434 70 70 33 
    Top10Vector 586 – – 30 – 
    CBS soil use 640 – – 19 – 
    LGN4 627 579 47 8 – 
    CLC2000 669 – – 0 – 
Polder Oukoop  
    Field map 115 86 29 35 10 
    Top10Vector 142 – – 19 – 
    CBS soil use 152 – – 15 – 
    LGN4 155 155 0 8 – 
    CLC2000 167 – – 1 – 
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Schmit et al., 2006; Turner et al., 1989). In the fen meadow landscape, grassland has 
a large abundance and therefore absorbs the other classes, especially for the 
databases with small accuracies and coarse resolutions. Other landscapes are less 
sensitive to aggregation errors (e.g. Turner et al., 1989). Moody and Woodcock (1995) 
analysed a mountainous forested area in California and found an increasing 
prevalence of water with increasing resolution due to lakes with a high degree of 
aggregation situated sparsely across the landscape. The class ‘conifers’ also increased 
on average by 20% when aggregating from a resolution of 30 to 100 m. They 
concluded that the large increase in this class was due to the spatial structure of 
moderately large patches. The results found by Moody and Woodcock (1995) are large 
compared with the 7 to 8% difference in grassland in our study areas between the 
LGN4 (25 m resolution) and CLC2000 (100 m resolution) databases. On the other 
hand, Bach et al. (2006) and Fassnacht et al. (2006) found smaller differences 
between land use classes when aggregating from 25 to 100 m. Van Oort et al. (2004) 
compared the LGN4 database with reference data from randomly chosen areas in the 
Netherlands. The reference data were based on cadastral information. The grassland 
surface area was 2.5% larger for the LGN4 database than for the reference data. 
Larger differences were found between the LGN4 and the field map (20–22%). This is 
probably due to the fact that Van Oort et al. (2004) only estimated areas of grassland 
and crops, whereas the largest difference was found due to the presence of ditches 
instead of grassland. In research where thematic errors are small, positional errors can 
be large (Bach et al., 2006). Fassnacht et al. (2006) found the class ‘broadleaf’, which 
forms narrow linear features along rivers, to be particularly susceptible to changes in 
resolution. This is comparable to our findings. Ozdogan and Woodcock (2006) also 
noted that large landscape elements can support large pixels, but when the landscape 
elements of interest are small, fine resolution is needed to correctly estimate surface 
areas.  

2.3.2 N2O Emission Estimates 
Using inventory techniques based on the different IPCC Tier levels, the N2O emissions 
were calculated with the calculated surface areas (Fig. 2.4). Bias in the estimated area 
of grassland propagated in the calculated emissions. For all Tier levels and for both 
polders the most accurate database represented the smallest area of grassland and 
accordingly the smallest N2O emission. The N2O emissions from polder Oukoop are 
about four times smaller than N2O emissions from polder Zegveld, which is consistent 
with the difference in total surface area between the polders. The method with the 
highest Tier level (INITIATOR) produced the highest N2O emissions for both polders and 
for all land covers databases (Figs. 2.4d, 2.4h). Furthermore, INITIATOR showed the 
largest differences between emission estimates (24% for polder Zegveld and 33% for 
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polder Oukoop) because this method strongly depended on spatial data. Estimated N2O 
emission per hectare ranged from 12.7 to 30.0 kg N2O-N ha-1 yr-1, which is comparable 
to the emissions found by Velthof (1997, Table 2.3). 
 
For polder Zegveld, the emissions of N2O estimated with the Tier 2b method (Fig. 2.4c), 
were higher than the emissions estimated with the Tier 1 (Fig. 2.4a) and Tier 2a (Fig. 
2.4b) method. From the interviews, it turned out that more cattle were present in the 
polder than estimated from the municipality data (Tier 1 and Tier 2a). Another reason is 
that the dairy cattle had spent, according to the local data, more time in the meadow 
than global and Dutch numbers indicated. For both polders, the smallest N2O 
emissions were obtained from the Tier 1 method (Figs. 2.4a, 2.4e). The emission 
factors in the Tier 2 methods were larger and caused higher emission estimations. In  
 

Fig. 2.4 N2O emission from agriculture using different land cover data. 
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polder Oukoop the difference between Tier 2a (Fig. 2.4f) and Tier 2b (Fig. 2.4g) was 
small, indicating that the activity data from the CBS database were close to the activity 
data estimated from the interviews. Results from the INITIATOR (Figs. 2.4d, 2.4h) were 
high for both polders compared to the other methods.  
 
The INITIATOR estimates for N2O emission are based on the amount of denitrification 
and nitrification. Because the peat soils in the fen meadow landscape have excellent 
conditions for nitrification and denitrification, the emissions estimated by INITIATOR are 
much higher than the emissions estimated by other inventory methods. The analysis of 
variance (ANOVA) showed that differences between inventory methods are larger than 
differences between land cover databases.  
 
For both polders, the emission estimates differed significantly between all inventory 
methods, except for polder Oukoop between methods Tier 2a and Tier 2b. Due to the 
large emissions estimated by INITIATOR, the differences between land cover databases 
were not significant, except for polder Zegveld between the LGN4 and CBS soil 
database. 

2.3.3 Regional Extrapolation 
The surface area distribution of grassland parcels, ditches, and ditch banks from the 
research polders were used to scale up to the entire fen meadow landscape (Table 2.5). 
The three polders (Oukoop, Zegveld, and Menningweer) were assumed to be 
representative for all Dutch fen meadow polders. This is assumed to be correct for the 
purpose of examining the impact of scale bias in land cover data for estimating N2O 
emissions at landscape scale. 
 
The reclamation landscape with wide ditches contained about twice as much open 
water as the other two landscape types. The irregular reclamation landscape had the 
smallest share in ditch banks, which can be explained by the large abundance of 
square parcels compared to more elongated parcels in the other reclamation 
landscapes. Figure 2.5 shows a map of the fen meadow landscape including a 
classification of the polders in reclamation landscapes. 

Table 2.5 Surface area distribution of landscape elements in research polders used as reference for 
upscaling. 
  Landscape elements 

Research polder Reclamation landscape Grassland 
parcels Ditches Ditch banks 

Polder Zegveld ‘Cope’ reclamation 87.6 % 10.5 % 4.9 % 
Polder Oukoop Reclamation with wide ditches 84.3 % 20.7 % 6.0 % 
Polder Menningweer Irregular reclamation 87.3 % 12.0 % 2.0 % 
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Intersecting rivers and disappearance of peat due to peat excavation caused 
fragmentation of the fen meadow landscape. In the southern part ‘cope’ reclamations 
were abundant. The irregular reclamation landscape is common in the northern part of 
the fen meadow landscape, where there was no common strategy during the 
reclamation period. The reclamations with wide ditches were most abundant near 
locations where the peat was excavated for fuel use. The total area of grassland based 
on the field map was considerably smaller than the other estimated areas of grassland 
(Table 2.6). 
 

Fig. 2.5 Reclamation types in the fen meadow landscape.  
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The field map was used to estimate the extent of ditches in the fen meadow landscape, 
where other databases reported larger areas of grassland. According to the Dutch soil 
map 1:50,000 (De Vries et al., 2003a) 36% of the Dutch peat soils are situated in the 
fen meadow landscape. In the current national inventory, the total surface area of 
grassland on organic soils equals 231,000 ha (Klein Goldewijk et al., 2005). Assuming 
that there are no meaningful nationwide differences between the proportion of land on 
peat soils occupied by grassland, this suggests that 83,000 ha of grassland is located 
in the fen meadow landscape. This estimate is smaller than the estimates from the 
land cover databases, except for the field map estimate, which is 11% smaller 
occupied by grassland. 
 
In general, vector data are more suitable for representing distinct boundaries and clear 
landscape elements; whereas raster data are assumed to better represent natural 
phenomena with gradual boundaries, such as soils, vegetation types, and slopes (Star 
& Estes, 1990). The landscape structure of the fen meadow landscape with 
predominantly sharp boundaries between landscape elements and with long narrow 
ditches was therefore best represented by vector data. Poor representation of linear 
elements—especially ditches—in this landscape was a large source of bias by both 
vector and raster data. Note that the bias would be much smaller for landscapes with 
fewer line elements and larger patches of the same land use. 
 
The N2O emission estimates for the fen meadow landscape are shown in Table 2.7. 
The largest source of agricultural N2O emissions was the cultivation of histosols, which 
demonstrates the importance of this source. The highest emissions from this source 
were obtained with the CLC2000 database because of the larger estimated surface 

Table 2.6 Surface area of grassland in fen meadow landscape (ha). 
Database Surface area of grassland 
Field map 74,049 
Top10Vector 86,891 
CBS soil use 92,692 
LGN4 87,461 
CLC2000 96,391 

Table 2.7 Emission of N2O estimated for the fen meadows using the IPCC Tier 1 and Tier 2a method from 
different sources (103 kg N2O yr-1). 
 Cultivation of histosols Total emission from agriculture 
Database Tier 1 Tier 2a Tier 1 Tier 2a 
Field map 370 348 965 1072 
Top10Vector 434 408 1097 1215 
CBS soil use 463 436 1111 1259 
LGN4 437 411 1137 1264 
CLC2000 481 453 1210 1339 
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area grassland (Table 2.6). The total emissions were larger for Tier 2a than for Tier 1 
largely due to larger ammonium losses according to the Tier 1 method. For the fen 
meadow landscape, the maximum difference between the land cover databases was 
almost twice as large as between the inventory methods. This difference was largely 
due to two sources of error. The first error was the varying activity data used for the fen 
meadow landscape. For the research polders, most activity data were relatively 
constant for all land cover databases. Many Dutch activity data (e.g., number of cows) 
were reported per agricultural region without information about the distribution (e.g., 
the amount of cows grazing on mineral soils vs. grazing on organic soils). To estimate 
these activity data for the fen meadow landscape, estimates about the proportion of 
organic soils compared to the proportion of mineral soils in the agricultural regions 
from the land cover databases were used. These activity data, which varied between 
land cover databases, caused some differences in emission estimates. The second 
source of error was the bias in representation of landscape elements by the land cover 
databases.  
 
The N2O emission was also calculated using INITIATOR and input from the STONE 
database. The estimated emissions were about twice the emissions estimated with the 
Tier 1 and 2a method (data not shown). This was partly due to the high denitrification 
and nitrification estimated by INITIATOR, which was also identified at polder scale, and 
partly due to the use of STONE, which is a very coarse database (with a resolution of 
250 m) compared to the other databases used for the Tier 1 and 2a methods. 

2.4 Conclusions 
In this research, the surface area of grassland was overestimated when using the land 
cover databases. When moving to a coarser resolution for raster data or to a larger 
minimum mapping unit for vector data, classes with large abundances ‘absorbed’ 
classes with small abundances. The choice of a certain land cover database can have 
drastic effects on N2O inventories, because differences between estimated surface 
areas sometimes exceed 20% and different surfaces have different emissions. Such 
differences do not only apply to our study sites; at the regional level the amount of 
difference is similar. 
 
For the Zegveld and Oukoop polders, the differences in estimated N2O emissions were 
larger between the inventory techniques than between land cover databases. For the 
fen meadow landscape as a whole, the reverse applied because errors in land cover 
data were mainly systematic errors (bias) and errors from the inventory techniques 
were mainly random. Bias is consistently in the same direction and does not cancel out 
when estimates are scaled up to larger regions; therefore, these systematic errors 
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became more distinct for larger areas compared to random errors in emission factors. 
The effect of using a more detailed land cover database had the opposite effect of 
using a more detailed inventory method. Largest emissions were estimated using the 
coarsest land cover database and the most detailed inventory method and vice versa. 
Although focusing on the reduction of uncertainty by improving emission inventory 
methods may be efficient at the local scale, this study has shown that for large-scale 
inventories the careful selection, inventory, and use of land cover data may be as 
important in reducing inventory uncertainties. While significant effort has gone into 
improving emission factors and improving inventory techniques, in this chapter was 
demonstrated that with relatively little effort emission inventories can be improved by 
improving land cover data input. 
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Effect of temporal resolution on 
N2O emission inventories in the 

Dutch fen meadow landscape 
 
Abstract 
Most countries use a one-year-resolution emission factor approach to estimate 
terrestrial N2O emissions as part of their national GHG inventory, either by applying 
default values (Tier 1 method) or nationally derived values (Tier 2 methods). This 
approach employs an annual temporal resolution and uses yearly averaged inputs to 
predict emission. Little attention has so far been paid to the effect of the temporal 
resolution of the approach (e.g. day, season, year) on N2O emission estimates. The 
effect of lumping temporal variation can be very large due to daily or seasonal 
variations of processes causing N2O emissions. Therefore, annual N2O emissions from 
a model (DNDC) with daily time steps were compared with those of a model (INITIATOR) 
with annual time steps. N2O emissions were simulated for two intensively managed 
grassland plots in the Dutch fen meadow landscape in the period 2001–2006. The 
years with the largest differences in model results were used to estimate the effect of 
the within-year temporal distribution of rainfall, fertilization, and manure application on 
the annual N2O emission. Emission factors based on N2O results from DNDC and 
INITIATOR for the six simulation years were estimated using the available management 
and climate data. Annual N2O emissions from the investigated grasslands were 
sensitive to rainfall distribution within the year, especially to summer rainfall. An 
adjustment for relative summer rainfall is recommended for Tier 2 N2O emission 
estimates for intensively managed grasslands on peat soils. 
 
 

Based on: Nol, L. Heuvelink, G.B.M, De Vries, W., Kros, J., Moors, E.J., Verburg, P.H. 
(2009) Global Biogeochemical Cycles 23 (doi:10.1029/2008GB003378)
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3.1 Introduction  
Terrestrial N2O emission is an important component of the Dutch anthropogenic GHG 
balance. Brandes et al. (2007) estimated the contribution of N2O to the total Dutch 
GHG emission for the year 2005 as 8%, from which more than half originates from 
agricultural soils. These estimates were obtained in compliance with the Kyoto protocol 
and the UNFCCC guidelines, which imply the use of region-specific emission factors 
based on total emissions per year (Brandes et al., 2007; IPCC, 2006).  
 
It is widely known that N2O emissions from soils have a large spatial and temporal 
variability, particularly at the small space-time measurement scales that are often 
applied (Flechard et al., 2007; Skiba et al., 1996; Velthof et al., 1996b). Some 
ecosystems, e.g. needle-leaved forest, have an almost constant emission throughout 
the year (Schulte-Bisping et al., 2003). Other ecosystems have seasonal or event-based 
emission patterns. In fertilized grasslands, the largest part of the annual N2O emission 
occurs as ‘peak’ emissions (e.g. Calanca et al., 2007; Jones et al., 2007; Velthof et al., 
1996a). These peak emissions are caused by events such as fertilizer or manure 
application (Bouwman, 1996), rainfall events (Ryden, 1983) or freeze-thaw cycles 
(Christensen & Tiedje, 1990). A soil water filled pore-space (WFPS) between 50% and 
70% is believed to be optimal for N2O peaks (§1.1.2; Davidson et al., 1991). At dryer 
conditions (smaller WFPS), N2O is a by-product of nitrification and N2O emission is 
relatively small. At wetter conditions (larger WFPS), denitrification is the main process 
and formation of N2 is favoured over N2O formation (Granli & Bøckman, 1994). Other 
major controls on N2O emission are soil mineral N availability, temperature, and labile 
organic compounds availability (Skiba & Smith, 2000). Cultivated organic soils are 
large emitters of N2O due to large C and N availability.  
 
Besides the well-known issues concerning the choice of spatial scale for measurement 
(Chapter 2), modelling, and reporting N2O emissions (Velthof et al., 1996b); also 
different temporal scales can be distinguished. The IPCC Tier system (§1.3.1) 
distinguishes different temporal scales (IPCC, 2006). In the IPCC Tier 1 and Tier 2 
methods that most countries use to estimate and report emissions, the annual N2O soil 
emission induced by N inputs is calculated as a fraction of the N input. The N2O 
emission factor (in %) depends on the type of N input (e.g. N input from grazing animals, 
animal manure, fertilizers, crop residues, fixation, or deposition). The temporal 
resolution of both the Tier 1 and 2 method is typically a year (annual emission factor), 
because many activity data are not available at finer temporal resolution. Tier 3 
methods make use of process-based models that incorporate relevant factors and 
processes that affect N2O emission. The temporal resolution is usually small because 
daily or hourly soil processes are simulated. Process models which are widely used to 
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simulate N2O emissions are DNDC (Li et al., 1992), DayCent (Parton et al., 1998), and 
PaSim (Riedo et al., 1998; Schmid et al., 2001). N2O emission factors for Tier 1 and 
Tier 2 methods are annual averages generally obtained from experimental research, 
lasting between one and three years and lumping all small-scale temporal variation. 
Little attention has so far been paid to the effect of lumping small-scale temporal 
variability on annual N2O emission estimates. However, the effect of small-scale 
temporal variations can be very large due to the strong dynamic nature of causal 
factors behind N2O emission and strong non-linearities in the emission processes. With 
more information about the temporal variation of the causal factors, one could possibly 
adjust the emission factor for a specific year and improve the emission estimate of a 
Tier 2 method, without the need to use data-demanding Tier 3 methods.  
 
The main objective of this paper is to analyse the effect of temporal resolution by 
comparing annual N2O emissions from two models with a different temporal resolution. 
Accordingly, simulated N2O emission of a Tier 2 model with a coarse (annual) temporal 
resolution were compared to results of a Tier 3 model with a fine (daily) temporal 
resolution. The differences between the models and the effects of these differences on 
the estimated annual N2O emissions were studied. For years with large differences in 
simulated annual N2O emissions, small-scale processes that could cause these 
differences were identified. Emission factors were also estimated for the simulated 
years and compared with emission factors used in the Tier 1 and Dutch Tier 2 methods, 
to analyse whether the factors appropriately average the annual variations in N2O 
emissions. As such, the results of this work can contribute to improved identification of 
emission factors used in Tier 2 based inventories. Identification of the effect of 
temporal variation on annual N2O emission may be used to adjust the Tier 2 emission 
factors for a given year to the specific temporal variation patterns of that year.  

3.2 Materials and methods 

3.2.1 Research plots 
The N2O emission was modelled for the years 2001–2006 for two intensively managed 
grassland plots on peat soils in the Dutch fen meadow landscape. The research plots 
are located in polder Zegveld (Figs. 2.1, 2.2), which is in the centre of the fen meadow 
landscape. Two plots were studied; a ‘dry’ plot (52°8‘19”N 4°50’10”E) and a ‘wet’ plot 
(52°8‘12”N 4°50’18”E). 
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The plots are rectangular parcels (approximately 300 m by 50 m in size) bordered by 
ditches and owned by a dairy farmer. The plots are surrounded by other dairy farms. 
The soil consists of peat originating from wood. The dry plot is representative for most 
intensively managed grasslands in the fen meadow landscape. It has a summer 
groundwater level of about 51 cm below soil surface, whereas the wet plot has a 
summer groundwater level of about 28 cm below soil surface. For the year 2001 
through 2006, the average annual precipitation in the area was 889 mm (Fig. 3.1) and 
the average annual temperature was 10.9ºC (KNMI, 2007).  

3.2.2 Data collection 
Management, soil, and hydrological parameters were measured on the plots for the 
years 2001 through 2006 (Table 3.1). Overall, the management for both research plots 
is comparable. Both plots were grazed by cattle. A time series of N2O measurements 
was also available for model verification (Jacobs et al., 2003). On 27 dates between 15 
May 2001 and 28 June 2002, N2O emissions were measured at ten randomly selected 
locations in each plot. The measurement frequency was between once a month during 
winter and twice a week during the growing season. Ten static flux chambers were 
used to carry out the measurements. 

3.2.3 Models for N2O estimations 
Emissions of N2O were simulated for both plots for the years 2001 through 2006 with 
the models INITIATOR and DNDC. INITIATOR (De Vries et al., 2003b) has a yearly 
temporal resolution and DNDC (Li, 2007) has a daily temporal resolution. 

Fig. 3.1 Rainfall distribution (mm) for the simulation years 2001 through 2006. In the black boxes the years 
2003 and 2004 with a large difference in summer rainfall. The black boxes represent the years with the
smallest and largest amount of summer rainfall 
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An extensive description of the model INITIATOR can be found in §1.3.2 and in De Vries 
et al. (2003b). Table 3.2 gives a summary of the characteristics of INITIATOR that are 
relevant for comparison with DNDC. The denitrification-decomposition process-model 
(DNDC) was selected because it has been calibrated and validated for many sites 
around the world (Brown et al., 2002; Butterbach-Bahl et al., 2001; Cai et al., 2003; 
Grant et al., 2004; Jagadeesh Babu et al., 2006; Kesik et al., 2005; Kiese et al., 2005; 
Pathak et al., 2005; Saggar et al., 2004; Xu-Ri et al., 2003; Zhang et al., 2006) and 
can simulate drained organic soils. Version 9.1 of DNDC was used. DNDC is based on 
biogeochemical concepts (Li, 2007). The core of the model is a combination of the  

Table 3.1 Management data from both research plots from 2001 through 2006. 

Year and plot 

M
anure Application

a 

R
em

oval by M
ow

ing
a 

Excretion during 
grazing

ab  

M
anure Application

a 

R
em

oval by m
ow

ing
c 

Fertilizer U
se

a 

Excretion during 
grazing

d  

G
razing days

a 

   Sheep Cows 
 

C (kg C ha-1  
yr-1) 

kg DM 
ha-1 yr-1         N (kg N ha-1 yr-1)  (heads/ha) 

2001           
   Dry plot 129 2822 1539  46 176 133 45  272 61 
   Wet plot 185 2454 3760  68 153 132 129  0 251 
2002            
   Dry plot 905 1421 6605  46 89 129 226  1024 338 
   Wet plot 168 2495 5856  77 156 137 200  0 391 
2003            
   Dry plot 157 2112 6080  85 132 120 194  657 268 
   Wet plot 155 1659 6175  85 104 122 232  450 417 
2004            
   Dry plot 0 6388 1500  0 399 71 15  300 0 
   Wet plot 0 5496 0  0 344 68 0  0 0 
2005            
   Dry plot 167 2517 12250  89 157 149 148  0 289 
   Wet plot 158 3946 7500  85 247 149 82  0 159 
2006            
   Dry plot 824 3207 8001  38 200 140 197  300 298 
   Wet plot 128 2434 7750  60 152 122 103  30 190 
Average            
   Dry plot 104 3078 5996  51 192 124 138  426 209 
   Wet plot 132 3081 5714  63 193 122 124  80 235 

a Information from the farmer ( K. Van Houwelingen, personal communication, 2008) 
b The C content is about 35% of the dry matter content (Martinez, 2002); the models use the 
dry matter content as input. 
c Estimated using information from the farmer ( K. Van Houwelingen, personal 
communication, 2008) and C/N ratio grass yield (Lantinga, 1985).  
d Estimated using information from the farmer (K. Van Houwelingen, personal communication, 
2008), animal numbers, grazing days, C excretion, and N excretion numbers (Bussink, 1994) 
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Nernst (Stumm & Morgan, 1996) and Michaelis-Menten (Paul & Clark, 1989) 
equations to track microbial activities at hourly and daily time steps. These two 
equations are coupled via a so-called ‘anaerobic balloon’. The size of the ‘balloon’ is 
defined by the modelled redox potential from the Nernst equation. The soil substrates 
are allocated based on the calculated aerobic and anaerobic parts of the soil. With the 
Michaelis-Menten equation, redox reactions can be calculated based on the calculated 
substrate concentrations. This gives again a new redox potential. DNDC includes two 

Table 3.2 Overview of model characteristics of INITIATOR and DNDC relevant for comparison 
Aspect INITIATOR (De Vries et al., 

2003b) 
DNDC (Li, 2007) 

General characteristics   
Domain  Agricultural and natural soils Agricultural and natural soils 
Compounds N, C (Organic matter) N, C (Organic matter) 
Inputs to the soil Animal manure application, 

fertilizer application, grazing, 
deposition, and biological N 
fixation 

Animal manure application, 
fertilizer application, grazing, 
deposition, and biological N 
fixation 

Outputs NH3, NOx and N2O emissions 
from soil 

NH3, NOx and N2O emissions 
from soil 

Soil layers Two layers: rooting zone and 
saturated zone 

One soil layer, typically 50 cm, 
divided into sub layers of 5 cm 

Dynamics and time step Steady state; yearly balance Dynamic; with a time step of 1 
hour to 1 day 

Hydrology Yearly water balance based on a 
separate hydrological model 

One-dimensional soil heat flux and 
moisture flow model to calculate 
daily soil temperature and soil 
moisture. Driven by daily 
precipitation and temperature 

Processes   
N-fixation Model input Dependent on N demand by crops 
NH3 emission Emission fractions for: 

manure application, dependent on 
application technique 
fertilizer  application 
grazing 

Emission fractions for:  
manure application 
fertilizer application 
grazing 

N uptake by vegetation Growth function dependent on 
crop type, soil type, soil moisture 
and N availability 

Growth function dependent on 
light, N availability, moisture and 
temperature 

N Mineralization Fraction of the field N input in the 
field corrected for both N emission 
and N uptake. In peat soils, net 
nitrogen mineralization is 
calculated as a function of soil 
wetness class (drainage) and land 
use 

First order kinetics related to three 
biologically active nitrogen pools 
(microbial biomass, active humus 
and passive humus) with 
decomposition rates regulated by 
clay content, N availability, soil 
temperature, and soil moisture. 

(De)nitrification Fraction of net N input (N input 
minus NH3 emission, uptake and 
immobilization) as a function of 
soil type and soil wetness class 

Process-oriented modelling of 
nitrification and denitrification 
sequence (NO3¯  NO2  N2O  
N2 ) Process depends on moisture 
content, oxygen content, 
ammonium content,  nitrate 
content, soil temperature and pH. 
Details are given in Li (2007). 

N2O and NOx emission Emission fractions due to 
nitrification and denitrification 

See above on (de)nitrification 
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parts. The first part predicts soil temperature, moisture, pH, redox potential, and 
substrate (ammonium, nitrate and DOC) concentrations. This part is driven by the input 
parameters about climate, soil, and management. The second part predicts N2O, NO, 
N2, NH3, and CH4 fluxes. These emissions are calculated using nitrification, 
denitrification, and fermentation sub-models with input parameters estimated in the 
first part of the model. The model has a site mode and regional mode. Because for this 
chapter, N2O fluxes were simulated on plot scale, the site mode of the model was used. 

3.2.4 Model parameterization and verification 
For DNDC, the use of default values for all model parameters resulted in unrealistic 
hydrological dynamics and crop uptake. DNDC was therefore parameterized with 
measured data and coefficients valid for the Dutch situation. INITIATOR was specifically 
developed and, in its standard configuration, already parameterized for the Dutch 
situation (De Vries et al., 2003b). Calibration of both models towards the N2O 
measurements was not done because it would make valid comparison with the 
measurements and between models impossible. Verification with independent 
measurements was done for both models to determine whether modelled N2O 
emissions were realistic. 

Parameterization of DNDC 
For both research plots, simulation with default DNDC parameters gave unrealistic 
results of groundwater level and water-filled pore space (WFPS), which seriously 
affected N2O emissions. Input parameters driving the simulation of the groundwater 
level and WFPS in DNDC are the mean highest groundwater level (MHW, m), WFPS at 
wilting point, WFPS at field capacity, and hydraulic conductivity (m hr-1). Both plots have 
an MHW of 0 m, because in winter the groundwater level can reach surface level for 
days and they often become nearly flooded (Velthof et al., 1996a). The essential 
difference between the plots is the mean lowest groundwater level (MLW, m). 
Unfortunately, DNDC does not use MLW as an input parameter. Using measured values 
of WFPS at wilting point, WFPS at field capacity, hydraulic conductivity, and 0 for the 
MHW, the model simulated a continuously saturated soil and a groundwater level 
permanently at the surface. Therefore, the MHW for both plots was parameterized with 
a simulated WFPS for 27 dates between 15 May 2001 and 28 June 2002 (Jacobs et al., 
2003), using the detailed hydrological model SWAP (Van Dam, 2000). The MHW input 
parameter of DNDC was parameterized by searching for the smallest residual error 
between WFPS values simulated with DNDC and WFPS values simulated with SWAP. 
After the parameterization, the best-fitted MHWs were 0.60 m for the dry plot and 0.49 
m for the wet plot. Velthof and Oenema (1995) measured WFPS on the same plots on 
34 dates for the year 1992. The best-fitted MHWs were used to simulate the WFPS for 
1992 and compared with the measured WFPS. The model also adequately simulated 
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WFPS for this year; the root mean squared error decreased by 24% for the dry plot and 
50% for the wet plot compared to the default model run (data not shown). 
 
After parameterization of WFPS, the grass died at the end of every simulation year. This 
problem was solved by changing the default crop parameters of DNDC. Four default 
crop parameters for perennial grass differ from measured parameters in Dutch 
grasslands: maximum grain production (kg dry matter ha-1), water requirement (kg 
water for producing 1 kg dry matter), maximum leaf area index (LAI), and accumulative 
degree-days of maturity (TDD, ºC). The default values for these crop parameters were 
adapted to (for the Dutch situation) more realistic values (Table 3.3). Other default crop 
parameters, such as the root-shoot distribution, were close to measured values. 
 
The default C/N ratio for the above-ground biomass of perennial grass in DNDC, i.e., 35, 
is larger than C/N ratios measured in Dutch grasslands, which are generally around 16 
(Lantinga, 1985). However, using smaller C/N ratios caused the grass to completely 
disappear at the end of every simulation year, even when nitrogen inputs were very 
large. Apparently, DNDC assumes that grassland is less efficient in N use than Dutch 
grassland is. With a C/N ratio of 16, the nitrogen demand for the first half of every year 
increased to more than 600 kg N ha-1. DNDC was originally developed for simulating 
arable crops. Apparently, the root turnover in DNDC is too fast for perennial grasslands. 
The default (fixed) C/N ratio of 35 for leaf and stem biomass was therefore used, which 
means a corresponding C yield of 4.1 t C ha-1 yr-1 (117 kg N from grass cut x 35) for the 
dry plot and 4.4 t C ha-1 yr-1 (125 kg N from grass cut x 35) for the wet plot. As DNDC 
calculates with a constant C content of 40% this corresponds with a yield of about 10.5 
t dry weight grass ha-1 yr-1, which is realistic for Dutch grasslands 
(Elgersma et al., 1998; Oenema et al., 2005).  

Model verification 
Upscaling of the N2O emission measurements to yearly emission estimates of the 
entire plot was needed in order to compare the measurements with the model outputs. 
The target scale (the daily and annual emission from an entire plot) is larger than the 

Table 3.3 Adaptations to the crop parameters in DNDC. 

Adapted parameter Default 
DNDC 

Adapted for Dutch 
fen meadow 

landscape 
Source 

Maximum grain production  
  (kg dry matter ha-1) 200 245 Barrett et al. (2004)  

Elgersma et al. (1998)  
Water requirement  
  (kg water for producing 1kg dry matter) 350 354 Smid et al. (1998) 

Maximum LAI 3 5 Lantinga (1985) 

Accumulative degree days of maturity or   
  TDD (ºC)  2500 1650 Calculated for simulated years  

(±165 days x 10ºC) 
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measurement scale. The measurement support was one hour and the surface area 
covered by the flux chamber was approximately 0.5 m2. For spatial upscaling, the plot 
emission was estimated as the arithmetic mean of the N2O emissions from the ten 
locations. The measured emissions were compared with the emissions simulated with 
DNDC on a daily scale. Measured and modelled trends and peaks in emissions were 
compared and deviations between the minimum and maximum emissions were 
calculated. To verify annual N2O emissions, the measurements also had to be scaled 
up in time. Previous research (Velthof et al., 1996a) showed that N2O emissions in the 
growing season are significantly larger than N2O emissions outside the growing season. 
Therefore the dataset was split into ‘growing season’ and ‘off-season’. The growing 
season for grasslands is defined as the period between 1 March and 1 October (Van 
Dijk et al., 2005). As defined in de Gruijter et al. (2006), the average N2O emission was 
computed as  
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where ( )μμ −ˆVar  is the variance of the estimation error of the annual N2O emission, 

SG2 is the sample variance of N2O emissions in the growing season, nG is the number of 
measurement dates in the growing season, SO2 is the sample variance of N2O 
emissions in the off-season, and nO is the number of measurement dates in the off-
season. The standard error was computed as the square root of Eq. (3.2) and for each 
plot, it was verified if the simulated annual N2O emissions from DNDC and INITIATOR 
were within the confidence intervals of the measured annual N2O emissions.  

3.2.5 Analysis of temporal resolution effects 
For 2001 through 2006, differences between the simulated annual N2O emissions 
from DNDC and INITIATOR were compared and the years with the largest difference in 
simulated N2O emissions were selected for further analysis. For these years, it was 
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analysed which inputs with high temporal variation caused the differences. Next, a 
three-step analysis was used to trace the effect of high-resolution temporal variation of 
these inputs on the annual N2O emission using DNDC. This high-resolution temporal 
variation cannot be included in INITIATOR due to its annual temporal resolution.  

Step 1: Identification of high-resolution variables and their interactions 
All input variables that require input at a high temporal resolution in DNDC, e.g. daily 
temperature, were selected for further analysis. Interactions of these variables that, 
based on literature, can have a combined effect on N2O emission (e.g. the combination 
of rainfall and fertilizer N input) were selected as well.  

Step 2: Selection of key variables and variable interactions 
Many variables (e.g. manure application) not only affect N2O emissions on the day itself, 
but have a prolonged effect and may influence daily N2O emissions for periods of 
weeks or months after the actual event. Therefore, N2O emissions are often more 
strongly correlated with the aggregate value of such a variable over the previous period 
than with the variable value at the day of N2O measurement. To identify the period over 
which the variable values need to be aggregated, correlations between daily N2O 
emission and values of variables aggregated over varying periods were explored. For 
each variable and variable interaction, identified in Step 1, the optimum aggregation 
period with the largest correlation coefficient was determined for use in further analysis. 
 
The temporal variation in variable values over the different years was analysed by 
comparing the values of the variables among the different years. The analysis was 
done for four seasons separately. For instance, if in the year 2002 relatively more 
grazing occurred in spring as compared to other years the variable ‘grazing’ in spring 
2002 was classified as ‘high’. For the year with the lowest value of the same parameter, 
a classification ‘low’ was assigned. A similar analysis was made for the variable 
interactions based on a multiplication of the variable values.  
 
The variables and variable interactions classified ‘high’ of ‘low’ for the years with the 
largest differences in annual N2O emission simulated by DNDC compared to INITIATOR 
were identified as ‘key’ variables and variable interactions. These ‘key’ variables and 
variable interactions can be the main cause of differences in simulated N2O emission 
between the two models and consequently show the effect of difference in temporal 
resolution of the models. 

Step 3: Analysis of the effects of temporal variation in key variables on N2O emission 
To identify the influence of the identified key variables and variable interactions on the 
differences in annual N2O emission between DNDC and INITIATOR and analyse the 
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effect of the within-year temporal variation in variable values temporal distribution of 
the key variables and interactions was manipulated.  
 
Two different methods were used to manipulate the temporal variation in key variables. 
In the first method, a key variable for a season that was classified as ‘high’ was 
substituted for the same variable from a year with a ‘low’ classification for that season. 
The advantage of this ‘switch’ method is that the key variables keep a natural variation, 
but the disadvantage is that annual totals of the variables could also change. If that 
was the case, INITIATOR was run as well with the new annual total value of the variable 
for comparison. In the second method, the within-year distribution of key variables was 
changed while keeping the annual totals equal. This was done by increasing a variable 
in a specific season while proportionally decreasing this variable in the other seasons 
or vice versa. Key variable interactions were manipulated as well by changing the 
distribution of the variables over the year and thereby influencing the variable 
interactions.  

3.2.6 Comparison of simulated annual average emission factors with the 
IPCC default values (Tier 1) and Dutch values (Tier 2) 
Using the simulated annual N2O emissions, emission factors were computed, following 
the IPCC Tier 1 (default values) and Tier 2 (national values) approaches. N2O emission 
factors based on DNDC and INITIATOR results for the six simulation years were 
estimated using the available management and climate data. The N2O emission factor, 
EFi j, for model i and year j was calculated as:  
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where N2Oij is the N2O emission (kg N2O−N ha−1 yr−1) for model i and year j, 
BackgroundN2O is the measured background emission (kg N2O−N ha−1 yr−1), and 
Ninputj (kg N ha−1 yr−1) is the N input by fertilization, manure application, and manure 
due to grazing in year j. The N input by deposition was not included, in line with 
common practice when calculating N2O emission factors from measurements (IPCC, 
2006). A similar approach was used by De Vries et al. (2005) to estimate emission 
factors with INITIATOR based on national N2O emission estimates. In this research no 
unfertilized plots were considered, but Velthof et al. (1996a) measured the background 
emissions for an unfertilized wet and an unfertilized dry plot from the same farm during 
two years with a measured background emission of 8.6 kg N2O-N ha-1 yr-1 for the dry 
plot and 2.0 kg N2O-N ha-1 yr-1 for the wet plot.  
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Fig. 3.2 Measured and modelled N2O emissions for the (a) dry plot and (b) wet plot from 1 July 2001 
through 30 June 2002. The values between the lower and upper quartile represent the 50% confidence
interval. 

3.3 Results 

3.3.1 Verification 
Fig. 3.2 shows daily N2O emissions modelled with DNDC and the N2O measurements 
for both plots. Box plots indicate the error caused by spatial variation of ten N2O 
measurements. While for the dry plot, only 58% of the modelled emissions for the 
measurement days falls between the minimum and maximum measured emission, the 
trend of the simulations is similar to the trend in measured emissions. DNDC in general 
overestimated the fluxes of N2O compared to the measurements. For the wet plot, the 
model fit was satisfactory for spring and summer, while the autumn fit was poor. DNDC 
modelled larger emissions in autumn than measured. 
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Fig. 3.3 Total annual N2O emission for the period 1 July 2001 through 30 June 2002 estimated with 
INITIATOR, DNDC and estimates based on measurements. 

In Fig. 3.3 yearly totals, estimated from 1 July 2001 through 30 June 2002, of the N2O 
emissions are shown. For both plots, the estimates from INITIATOR and DNDC are 
within the confidence intervals of the measurement estimates and therefore not 
statistically significantly different from the measurements. Verification does not reject 
either of the two models and neither does it show that one of the two is more accurate 
than the other.  

3.3.2 Analysis of temporal resolution effect 
For the dry plot, the largest difference of modelled annual N2O emissions between 
DNDC and INITIATOR was found for 2003 with a higher estimate from INITIATOR than 
from DNDC (Fig 3.4a). On the contrary, in 2004 the emission estimated with DNDC was 
much larger than the emission estimated by INITIATOR. For the wet plot (Fig 3.4b), for 
only one of the six simulation years (2003) the estimated N2O emission of INITIATOR 
was larger than the estimated N2O emission of DNDC. The trends of the differences 
between DNDC and INITIATOR were the same as for the dry plot. Because the years 
2003 and 2004 showed the largest differences between the modelled N2O emissions 
for both plots, these years were important in the subsequent analysis of the temporal 
resolution effect.   
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Step 1: Identification of high-resolution variables and their interactions 
The variables with high temporal resolution in DNDC are rainfall, temperature, N 
removal due to mowing, N input due to fertilization, N input due to manure application, 
and N input due to grazing. All interactions of rainfall and N inputs (rainfall & 
fertilization, rainfall & manure application, rainfall & grazing) were selected for analysis 
in Step 2, because the interaction of rainfall and N application is known to trigger N2O 
emissions (Flechard et al., 2007; Jones et al., 2007; Smith et al., 2003). Because 
grass residues can also be a source of enhanced emissions, the interaction between 
rainfall & mowing was also used in Step 2 (Velthof et al., 1996a). Finally, interaction 
between rainfall & temperature was selected as well, because high temperature in 
combination with rainfall can cause N2O emission peaks (Skiba & Smith, 2000).  

Step 2: Selection of key variables and variable interactions 
All variables identified in Step 1, except temperature, were severely skewed and were 
therefore log-transformed prior to further analysis. The N2O emission was also log-
transformed. The temporal aggregation results are shown in Table 3.4 for the dry plot. 

Fig. 3.4 Annual N2O emissions estimated with INITIATOR and DNDC for 2001 through 2006 for the (a) dry
plot and (b) wet plot  
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Management variables (fertilization, manure, grazing, and mowing) have a larger 
prolonged effect on N2O emissions than meteorological variables (temperature and 
rainfall). The daily N2O emission was best correlated (r2 = 0.65) with the interaction 
between rainfall summed over 12 prior days and temperature summed over 10 prior 
days. 
 
In Table 3.5, the results of the analysis of the seasonal variable values between the 
years are presented. The table shows that ‘high’ and ‘low’ variable values correspond 
to large differences in simulated yearly N2O emission for summer rainfall, winter 
temperature, autumn grazing, interaction between rainfall & temperature, and 
interaction between rainfall & mowing. These variables were therefore identified as key 
variables in explaining the effects of temporal variation on simulated N2O emissions. 
The same analysis was also performed for the wet plot (data not shown). The identified 
key variables for the wet plot were summer rainfall, spring fertilization, and autumn 
mowing. The key variable interactions were rainfall & temperature and rainfall & 
mowing. 

Step 3: Analysis of the effects of temporal variation in key variables on N2O emission  
The results of this analysis are given in Table 3.6. Switching the variable distributions 
between years hardly affected the INITIATOR results due to the small differences in 
change in yearly total variable values. DNDC, however, strongly reacted to switching the 
variable distributions between years. Exchanging summer rainfall for the years 2003 
and 2004 caused for both plots a large increase of N2O emission in 2003 and a large 
decrease of N2O emission in 2004. For the other substituted variables, the effect was 
less pronounced. 
 
 

Table 3.4 Number (nr) of days over which variable values are aggregated (day itself + previous days) to 
obtain the largest correlation coefficients (r2) with daily N2O emission with DNDC (dry plot).  
Variable Optimal nr of days Variable Optimal nr of days r2 
Variables     
Rainfall 10   0.15 
Temperature 27   0.48 
Manure  115   0.14 
Fertilization 160   0.31 
Grazing  41   0.21 
Mowing 85   0.38 
Interactions between variables (variable * variable) 
Rainfall 12 Temperature 10 0.65 
Rainfall  9 Manure 121 0.22 
Rainfall 10 Fertilization 162 0.44 
Rainfall  10 Grazing 48 0.28 
Rainfall  10 Mowing 102 0.52 
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For 2003, which originally had a dry summer, making the summer wetter and the other 
seasons drier increased the emission for the dry plot by 27% and for the wet plot by 
23%. For 2004, which originally had a wet summer, making the summer drier and the 
other seasons wetter decreased the emission for the dry plot by 11% and for the wet 
plot by 3%. 

Table 3.5 Relative value of variables in different years by season; ‘high’ indicates relatively high variable 
values as compared to other years and ‘low’ indicates relatively low values as compared to 2001-2006 
average. Bold numbers in boxes represent key variables and key interactions. 
Dry Plot 2001 2002 2003 2004 2005 2006 
Seasonal contribution of variable       
Rainfall       
    Spring high medium high low high high 
    Summer high medium low high high medium 
    Autumn low low medium low low high 
    Winter high high high high medium low 
Temperature       
   Spring low high high medium medium low 
   Summer medium low high medium low medium 
   Autumn high low low low medium high 
   Winter medium high low high medium low 
Manure        
   Spring medium medium medium low medium high 
   Summer low high medium low medium medium 
   Autumn high medium medium low high low 
   Winter high low high low medium medium 
Fertilization        
   Spring medium low medium high medium medium 
   Summer low high high high medium high 
   Autumn high high medium low high high 
   Winter high high medium medium low low 
Grazing       
   Spring low high medium low medium medium 
   Summer high high medium low high high 
   Autumn low low low high low low 
   Winter low low high medium low low 
Mowing       
   Spring low low high medium high low 
   Summer high medium medium low medium low 
   Autumn low medium low medium low high 
   Winter low low low low low high 
Variable Combinations       
Rainfall & Temperature high high low high high high 
Rainfall & Manure  high high high low high medium 
Rainfall & Fertilization  high medium medium low high high 
Rainfall & Grazing low high high low high high 
Rainfall & Mowing low low low high medium high 
1Temperature 
2Fertilization 
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Increasing the interaction of rainfall and temperature in 2003 led to a dramatic 
increase in N2O emissions (more than three times the original emission for the dry plot, 
see Table 3.6). The effect of decreasing the interaction rainfall & temperature in 2004 
was a large decrease in N2O emissions for both plots. Manipulation of the key variables 
and variable interactions in 2003 or 2004 sometimes also affected the emissions in 
2005 and 2006 due to differences in N content of the soil which is passed on to the 
next year (Table 3.6). 

3.4 Discussion 

3.4.1 Parameterization and verification 
Default parameters of DNDC yielded unrealistic results, particularly for the soil 
hydrology. Problems with the parameterization of field capacity and wilting point for 
DNDC have also been observed by Beheydt et al. (2007). However, accurate simulation 
of soil moisture is a key requirement for reliable simulation of N2O emissions (Frolking 
et al., 1998). Therefore, parameterization is essential. After parameterization, the 
WFPS corresponded to the measured WFPS in 1992, 2001, and 2002, which were all 
average in terms of summer rainfall. The model was assumed to perform well for years 
with wet and dry summers, too. Jagadeesh Babu et al. (2006) indicate the use of 
default crop parameters in DNDC as a potential source of errors, but they could not 

Table 3.6 Change in emissions calculated by DNDC as result of manipulation experiments of within-year 
temporal distribution for a number of key variables and interactions. 
Dry Plot 2001 2002 2003 2004 2005 2006 
Switch method: Variables substituted between 2003 and 2004 
Rain in summer   -   - +62% -37% -2% +1% 
Temperature in winter - - +3% -6% 0% +2% 
Grazing in autumn - - 0% +1% -2% -1% 
Changing intra-annual distribution while keeping annual totals equal 
More rain in summer 2003  - - +27% +1% 0% +2% 
Less rain in summer 2004 - - - -11% -2% +1% 
Temperature & Rain larger in 2003  - - +330% +12% +4% +3% 
Temperature & Rain smaller in 2004 - - - -83% -3% 0% 
Wet Plot 2001 2002 2003 2004 2005 2006 
Switch method: Variables substituted between 2003 and 2004 
Rain in summer - - +39% -25% -3% -1% 
Fertilization in spring     - - -2% 0% 0% 0% 
Mowing in spring - - +1% -9% -3% +1% 
Changing intra-annual distribution while keeping annual totals equal  
More rain in summer 2003  - - +23% +2% +2% +2% 
Less rain in summer 2004 - - - -3% -3% -2% 
Temperature & Rain larger in 2003  - - +78% +7% +5% +5% 
Temperature & Rain smaller in 2004 - - - -74% -5% -3% 

- not applicable (nothing was changed compared to the original run) 
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adjust these parameters due to lack of data. Tonitto et al. (2007) adjusted the crop 
parameters for their research in Illinois in the same way as in this research. 
 
Although not every simulated daily emission fell between the minimum and maximum 
measured value for the dry plot, the patterns were similar (Fig. 3.3). The annual 
modelled fluxes were within the borders of the confidence intervals of the measured 
fluxes (Fig. 3.4).  
 
The simulated N inputs and outputs to soil were compared with measurements on 
nitrogen inputs and outputs at other sites in the Dutch fen meadow landscape to 
analyse differences between modelled and measured nitrogen flows (Table 3.7). For 
both DNDC and INITIATOR, measured N inputs of fertilizer and manure were used. The 
N deposition used by INITIATOR was based on estimates by an emission deposition 
model, whereas DNDC used the measured N concentration in rain (mg N l-1). 
Mineralization and accompanied subsidence of the surface layer has been observed in 
both plots (Beuving & Van den Akker, 1996). Kuikman et al. (2005) estimated that the 
mineralization is about 363 kg N ha-1 yr-1 for the dry and about 136 kg N ha-1 yr-1 for the 
wet plot. For the dry plot, both models estimated a smaller mineralization, although 
INITIATOR is closer to the estimate of Kuikman et al. (2005) and DNDC largely 
underestimates the mineralization. For the wet plot, the modelled mineralization rates 
are closer to the estimate of Kuikman et al. (2005). INITIATOR represents differences 
between mineralization rates of the dry and the wet plot better than DNDC.  
 
The N outputs by DNDC are generally too small, particularly for the net crop removal 
and denitrification (total emissions of N2, N2O, and NO2). The latter value was 
influenced by underestimation of mineralization in the dry plot. Furthermore, DNDC 
simulates a strong N accumulation in the soil, which seems unrealistic in view of the 
underestimated mineralization. The N outputs by INITIATOR are more in line with the 
measurements; only N leaching is significantly underestimated. DNDC simulates N2O 
emissions quite independently from the estimated N uptake and N leaching. A crucial 
difference between both models is the much smaller N2O/N2 ratio estimated by 
INITIATOR due to the much larger estimated denitrification. Measurements by Van 
Beek (2004b) are between the DNDC estimate and the INITIATOR estimate for 
denitrification. Denitrification measurements by De Klein and Logtestijn (1994); 4-16 
kg N ha-1 yr-1) from grassland on peat soil are close to the DNDC estimate, although 
these measurements were only limited to the topsoil (<20 cm). These findings show 
that analysis of the N balance provides valuable information about measured and 
modelled N flows for both plots. For the objectives of this study, however, the balance 
was only used to show differences between modelled and measured N flows. 
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3.4.2 Analysis of temporal resolution effect 
In three steps, the effect of high-resolution temporal variation on N2O emissions was 
analysed. For the variables manure, fertilization, and mowing the largest correlation 
with daily N2O emission was found using the sum of the variable over a period of more 
than two months (Table 3.4). For the estimation of the annual N2O emission it is, 
therefore, not necessary to know the exact dates of these events. The effect of these 
events on N2O emission is prolonged and N levels in the soil are enhanced for several 
months; thus knowing the months in which the events occur is sufficient to estimate 
the annual N2O emission. Rainfall gave the best correlation when using the sum of the 
prior ten days for the dry plot. Apparently, it takes about ten days for the hydrology in 
the field to return to the initial situation and the effect of rainfall on N2O emission is 
noticeable for more than a week.  

Table 3.7. N balance with annual averages for the validation period from 1 July 2001 to 30 June 2002 
(kg N ha-1 yr-1). Comparison of simulated and measured N inputs and outputs to the soil.  

 Dry Plot Wet Plot 
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Nitrogen inputs to soil      
Fertilizer 104 104 104a 110 110 110a 
Manure (applied & grazing) 187 187 187a 264 263 263a 
Deposition 39 39 39 39  
N fixation 21 25 3 25  
N mineralization 178 298 363b 136 93 136b 
Total 529 654 484 530  
      
Nitrogen outputs to soil      
NH3 volatilization 27 27 39c 36 37 66c 
Grass loss (cut & grazed) 83 240 221a 174 248 424a 
N leaching 55 6 38d 12 4 38d 
Denitrification, of which: 22 381 126-213e 19 242  
   -N2O emissions 19 20 16 13  
   -NO emissions 2 6 2 4  
   -N2 emissions 2 358 1 227  
Total 209 652 240 531  
      
Nitrogen change in soil  +320 +2 +311 -1  
a Information from farmer (K. Van Houwelingen, personal communication, 2008) 
b Kuikman et al. (2005) 
c Sonneveld et al. (2008) 
d Van Beek et al. (2004a) 
e Van Beek et al. (2004b) 
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The analysis of the temporal resolution effects showed for both plots that changes in 
the rainfall dataset have the largest effect on annual N2O emission. The dry plot is 
more sensitive to summer rainfall than the wet plot. Apparently, the high water levels in 
the ditches surrounding the wet plot cause the plot to keep a certain wetness even in 
dry summers. Note that the summer in 2003 was dry and the summer of 2004 was wet 
(Fig. 3.1). Climatological studies indicate that the frequency of these extreme wet and 
dry years will increase (KNMI, 2006). This study showed that the estimation of the 
annual N2O emission is very sensitive to seasonal changes in rainfall. Especially the 
amount of rainfall in summer affects annual N2O emissions. Temperatures are high in 
summer and nitrogen is applied in spring or summer. Nitrogen application in spring 
also causes high nitrogen levels in summer due to the prolonged effect. These 
conditions are needed for N2O emission peaks, together with a certain wetness of the 
soil. Because for the research plots the conditions for temperature and nitrogen 
application are always met in summer, the amount of rainfall is probably the decisive 
condition for N2O emission. Large summer rainfall amounts causes large summer N2O 
emissions and a large annual N2O emission, and vice versa. Jones et al. (2007) also 
found large N2O emissions due to large rainfall amounts in the growing season. 
Flechard et al. (2007) observed N2O emission factors, which were consequently 
smaller for dry years than for other years. For boreal sub humid climates, Grant et al. 
(2006) already advised to decrease emission factors for dry years.  

3.4.3 Inclusion of finer temporal resolution into low temporal-resolution 
models 
Ideally, countries would use Tier 3 methods to accurately simulate their N2O emissions, 
but limited data availability makes this difficult. However, in this thesis, information 
from Tier 3 methods was used at small spatial extents (parcels) to improve Tier 2 
methods. For instance, the proportion of summer rainfall is not considered in the low 
temporal-resolution model INITIATOR. The analysis of the temporal resolution effects 
shows that the proportion of summer rainfall can potentially have a large effect on 
annual N2O emission. Therefore, the INITIATOR model can be improved by adjusting the 
N2O emissions for years with a relatively low or high summer rainfall (Table 3.5). For 
years with ‘medium’ summer rainfall (Table 3.5) the emissions were not adjusted, but 
for years with ‘low’ or ‘high’ summer rainfall, a linear adjustment was made 
proportional to the deviation from the normal summer rainfall.  
 
For both plots, this temporal resolution effect was estimated to be 12.9% (± 4.5%). For 
instance, the annual emission increases by 12.9% when the summer rainfall has a 
share of 26% of the annual rainfall and decreases by 12.9% when the share is 24% of 
the annual rainfall. The adjusted N2O emissions are given in Fig 3.5. The annual 
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estimated emissions slightly improved; the root mean squared error between DNDC 
and INITIATOR decreased by 13% for the dry parcel and by 2% for the wet parcel, but 
differences in results between the models still remain (Fig. 3.5). INITIATOR estimated 
on average larger N2O emissions for the dry plot and DNDC estimated on average 
larger N2O emissions for the wet plot. This is probably because INITIATOR puts more 
emphasis on N2O emission due to mineralization from the dry plot, while DNDC puts 
more emphasis on N2O emission due to denitrification caused by the high WFPS from 
the wet plot. Accordingly, differences in modelled annual N2O emissions are not only 
caused by differences in temporal resolution, but also by differences in model concepts. 

3.4.4 Comparison of simulated annual average emission factors with the 
IPCC default values (Tier 1) and Dutch values (Tier 2) 
Table 3.8 shows that the emission factors for DNDC and INITIATOR for the dry plot over 
the six simulation years are very similar. These emission factors were derived assuming 
a constant background emission. The emission in 2004 simulated by INITIATOR was 

Fig. 3.5 Annual N2O emissions estimated with INITIATOR and DNDC for 2001 through 2006 for the (a) dry
plot and (b) wet plot (see also Fig. 3.4) compared with updated INITIATOR estimates, which take into account 
the effect of relatively low or high amounts of summer rainfall. 
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smaller than the background emission, causing a negative emission factor. The large 
emission factors for DNDC in 2004 are caused by the large summer rainfall. 

 
The default Tier 1 value for the N2O emission factor according to the updated IPCC 
Guidelines (IPCC, 2006) is 1% for the application of manure and fertilizer on both 
mineral and organic soils, based on results of a global N2O emission inventory of 
Bouwman et al. (2002). The emission percentages used in the Dutch Tier 2 approach 
are also 1% for mineral soils but 2% for organic soils. This value is mainly based on 
measurements during a two year experimental study by Velthof and Oenema (1995), 
who measured N2O emissions from managed grassland in the Netherlands on two 
mineral soils (sand and clay) and two peat soils (similar to the research in this chapter, 
a dry and a wet plot). These authors calculated N2O emission factors near 1% for the 
mineral soils but near 2% and 4% for the ‘wet’ and ‘dry’ peat soils, respectively. The 
larger values were caused by the larger C and N turnover rates and shallower 
groundwater levels in peat soils, leading to larger denitrification rates. It is clear that 
the DNDC and INITIATOR estimates are closer to the national value than the IPCC 
default value. Note, however, that the differences between the DNDC and INITIATOR 
estimates and the national value are still substantial.  

3.5 Conclusions 
Comparison of predictions obtained with the high temporal resolution model DNDC and 
the low temporal resolution model INITIATOR enabled an assessment of the effect of 
temporal resolution on annual N2O emission. However, differences between modelled 
N2O emission are also influenced by differences in model concepts and these 
differences are hard to separate from those caused by differences in temporal 
resolution. Results point to the important role of distribution of rainfall within a year for 
estimating annual N2O emissions from intensively managed grasslands in the fen 
meadow landscape. In years with a relatively large summer rainfall, N2O emission 
estimated with DNDC was larger than estimated with INITIATOR. In years with a 

Table 3.8 Nitrogen inputs and estimated annual N2O emission factors derived from the simulated N2O 
emissions of DNDC and INITIATOR. 
 2001 2002 2003 2004 2005 2006 
Dry Plot       
  N input due to manure and  
          fertilizer (kg N ha-1 yr-1) 224 401 399 86 386 376 

  DNDC N2O emission factor 2.3% 4.4% 2.6% 13.6% 2.6% 3.4% 
  INITIATOR N2O emission factor (%) 4.5% 3.8% 6.6% 3.0% 3.7% 6.7% 
Wet Plot       
  N input due to manure and  
          fertilizer (kg N ha-1 yr-1) 328 414 438 68 315 285 

  DNDC N2O emission factor (%) 3.9% 3.5% 2.6% 20.6% 4.4% 4.5% 
  INITIATOR N2O emission factor (%) 3.2% 3.0% 4.5% -1.1% 2.6% 4.3% 
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relatively small summer rainfall, the opposite occurred. One important conclusion from 
this work is therefore that low temporal resolution inventory models such as INITIATOR 
(and other Tier 2 methods) may be improved for intensively managed grasslands on 
peat soils by adjusting N2O emission estimates for years with relatively dry summers 
and wet summers. More research is needed to analyse to what degree these 
conclusions may be extrapolated to other ecosystems.  
 
The analysis used to identify key variables and variable interactions showed that not 
the daily values of these variables are important for predicting daily and annual N2O 
emissions, but the average of the variables over weeks or even months. Aggregates 
over longer periods showed the largest correlation with daily N2O emissions. Especially 
for management variables, the largest correlations were found using the average of 
months or even longer. Because of this prolonged effect, the exact dates of nitrogen 
application are not important for estimating annual N2O emissions for intensively 
managed grasslands on peat soils. It is sufficient to know in which month the 
application took place. This will greatly simplify upscaling efforts of N2O emissions.  
 
The emission factors estimated from DNDC and INITIATOR varied largely between the 
models and between years. It is therefore recommended to estimate emission factors 
over a large time period (decades) and to be cautious with years with very large of very 
small summer rainfall. 
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Uncertainty propagation analysis 
of an N2O emission model at the 

plot and landscape support 
Abstract  
Uncertainties associated with agricultural N2O emissions are large. The goal of this 
work was (i) to quantify the uncertainties of modelled N2O emissions caused by model 
input uncertainty at point and landscape support, and (ii) to identify the main sources 
of input uncertainty at both scales. For the Dutch fen meadow landscape, a Monte 
Carlo uncertainty propagation analysis was performed using the INITIATOR model. 
Spatial auto- and cross-correlation of uncertain numerical inputs that are spatially 
variable were represented by the linear model of coregionalization. Bayesian Maximum 
Entropy was used to quantify the uncertainty of spatially variable categorical model 
inputs. Stochastic sensitivity analysis was used to analyse the contribution of groups of 
uncertain inputs to the uncertainty of the N2O emission at point and landscape support. 
The average N2O emission at landscape support had a mean of 20.5 kg N2O-N ha-1 yr-1 
and a standard deviation of 10.7 kg N2O-N ha-1 yr-1, producing a relative error of 52%. 
At point support, the relative error was on average 78%, indicating that upscaling 
decreases uncertainty. Soil inputs and denitrification and nitrification inputs were the 
main sources of uncertainty in N2O emission at point support. At landscape support, 
uncertainty in soil inputs averaged out and uncertainty in denitrification and 
nitrification inputs was the dominant source of uncertainty. Experiments at landscape 
scale are needed to assess the spatial variability of these fractions and analyse how a 
more realistic representation influences the uncertainty budget at landscape scale. 
This research confirms that results from uncertainty analyses are often scale 
dependent and that results for one scale cannot directly be extrapolated to other 
scales. 

 

Based on: Nol, L., Heuvelink, G.B.M. and Veldkamp, A, De Vries, W., Kros, H.   
Accepted by Geoderma
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4.1 Introduction 
In the past century, fossil fuel consumption has rapidly grown due to industrialisation 
and increasing traffic. In agriculture, the use of nitrogen (N) fertilizers and manure with 
high N content rapidly increased (Vitousek et al., 1997). These processes seriously 
increased the levels of N in the environment (Galloway et al., 2008; IPCC, 2007b). In 
the Netherlands, this has led to emissions of nitrous oxide (N2O) and ammonia (NH3), 
biodiversity loss, eutrophication of surface water and pollution of groundwater (Bakker 
& Berendse, 1999; De Vries et al., 2001; Gulati & Van Donk, 2002; Kroeze et al., 2003; 
Ozinga et al., 2009; Van Dyck et al., 2009). The most recent National Inventory Report 
of the Netherlands (Van der Maas et al., 2008) identifies uncertainty about N2O 
emission from agriculture as the main source of uncertainty in the total annual GHG 
budget. Ramírez et al. (2008) reached the same conclusion using a Monte Carlo (MC) 
uncertainty analysis on Tier 2 level. However, these studies did not analyse the causes 
behind the large uncertainty in N2O emission from agricultural soils. 
 
The MC method is commonly used to analyse how uncertainties propagate in 
ecosystem models and cause uncertainty in model outputs (Rypdal & Winiwarter, 
2001).  Attractive properties of the method are the easy implementation, the general 
applicability and the resulting entire probability distribution of the model output 
(Heuvelink, 1998a). It can also reach a given level of accuracy, by using a sufficient 
large number of MC runs. Uncertainty propagation analysis on N2O emissions using MC 
simulation has been performed for various ecosystems and models. For instance, 
DNDC was used to estimate the uncertainty in N2O emissions from Chinese rice 
paddies (Li et al., 2004) and Finnish peatlands (Alm et al., 2007). In the Netherlands, 
de Vries et al. (2003b) performed an uncertainty analysis of all major N flows using the 
INITIATOR model. However, this research was limited to non-spatial model inputs, 
whereas spatial model inputs such as soil type and land use also influence the 
uncertainty in GHG prediction (Mosier, 1998; Pihlatie et al., 2004; Saggar et al., 2004). 
There is a need for a systematic uncertainty analysis on different spatial scales (Boyer 
et al., 2006; Yates et al., 2007), taking uncertainty in all major inputs and spatial auto- 
and cross-correlation between these inputs into account.  
 
In this chapter, the approach and results of an uncertainty analysis using MC 
simulation of an N2O emission model for the Dutch fen meadow landscape are 
described, including all relevant management, soil, and emission model inputs. This 
landscape was selected since the largest uncertainties associated with N2O emissions 
are found for peat soils in the Netherlands (Van der Maas et al., 2008). The study was 
carried out both at point and landscape support with the aims to (i) quantify the 
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uncertainty of N2O emission estimates of an N emission model due to uncertain model 
inputs at point and landscape support, and (ii) identify the main sources of input 
uncertainty at both scales.  

4.2 Materials and methods 

4.2.1 The model INITIATOR 
INITIATOR (version 3.2) is a simple integrated N model developed for the Netherlands 
(§1.3.2). De Vries et al. (2003b) provide an extensive description. An extended version 
of INITIATOR can simulate CO2 emissions from soils, CH4 emissions, NH3 emissions and 
N2O emissions from housing systems, and leaching and runoff of P, base cations and 
heavy metals (De Vries et al., 2005), but here the focus is on N2O emissions from soils, 
notably peat soils. INITIATOR uses 48 model inputs to model N2O emission from soils. 
Model inputs are defined as initial conditions, boundary conditions, and model 
parameters.  
 
Data on manure application from cattle in stables, grazing cattle, pigs and poultry (kg N 
ha-1) are privacy-sensitive and not easily available, therefore, pre-processing with a 
spatial manure distribution module was used (De Vries et al., 2009). A so-called GIAB-
database (Naeff, 2003) was used to assess the number of animals per animal type and 
stable system for each Dutch farm. First, these data were aggregated in INITIATOR to 
the municipality level. Secondly, the manure excretion in meadows and stables 
(kg N yr-1) was estimated and distributed over the grasslands in the municipality and 
rescaled to a 250 m resolution, while taking into account differences in soil type, land 
use and hydrology. If the amount of manure application was greater than the EU legal 
permitted N load, the excess is exported to neighbouring areas with shortages. In 
INITIATOR, the manure application (kg N ha-1 yr-1) was also used to estimate the 
amount of synthetic fertilizer used. Synthetic fertilizers were assumed to be added to 
the grassland, which already received manure application, up to the legally permitted N 
load.  
 
N mineralisation in peat soils, which is largely due to drainage, was assessed from the 
CO2 emission. In INITIATOR, the CO2 emission was calculated as a function of thickness 
and organic matter content of the peat layer, soil wetness and land use (De Vries et al., 
2005; De Vries et al., 2009). Using the C/N ratio of the peat layer, the N mineralization 
was modelled. The maximum N uptake by grassland and cropland was calculated by 
multiplying the crop or grass yield with the % N in crop or grass, which is a function of 
total N input. The categorical model inputs land use, soil type and soil wetness were 
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used for stratification and estimation of continuous input variables such as grass yield 
and emission factors.  

4.2.2 The Dutch fen meadow landscape 
The Dutch fen meadow landscape is located in the western part of the Netherlands 
(§1.2). Nowadays, 81% of the land cover in the fen meadow landscape is grassland 
(GeoDesk, 2006). Most grassland is intensively managed and owned by dairy farmers. 
However, more and more grassland is extensively managed and higher groundwater 
regimes are applied to reduce soil subsidence. The fen meadow landscape is 
predominately located on peat soils according to the Dutch soil map 1:50,000 (De 
Vries et al., 2003a). The area covers about 1000 km2.  
 
A flow diagram of used methods and intended results is presented in Fig. 4.1. The 
methods will be discussed in the next sections. 

Fig. 4.1 Flow chart of uncertainty analysis methods and results 
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4.2.3 Selection of model inputs for uncertainty quantification (Quickscan) 
Not all model inputs were included in the MC uncertainty propagation analysis. Only 
those inputs that have a large uncertainty and to which the model is sensitive were 
taken into account. Janssen et al. (2005) and Petersen et al. (2003) reported the use 
of a ‘quickscan’ for selecting the main sources of uncertainty. The developed quickscan 
was intended to qualitatively classify all types of uncertainty (e.g. model context, model 
inputs, stakeholder involvement); however in this chapter the focus is on uncertainty 
due to uncertainty in model inputs. Other types of uncertainty are treated in the other 
chapters of this thesis and in Kroon et al. (2008). The quickscan was adapted for use 
in this research. The first step in the quickscan approach was to create a table listing 
all model inputs, their level of uncertainty and their level of sensitivity. A qualitative 
approach was used for simplicity and transparency. The second step was to determine 
the level of uncertainty of the inputs using literature research, measurements of 
different model inputs in the fen meadow landscape, and interviews with experts. The 
developers of the INITIATOR model, which have detailed knowledge about the 
processes causing N2O emission in the Dutch fen meadow landscape, were also 
consulted. The last step of the quickscan was to determine the level of sensitivity of the 
inputs. This was partly derived by interpreting the model structure and components, 
partly from interviews with experts, and partly from test runs with INITIATOR. 

4.2.4 Input uncertainty quantification of selected model inputs 
The uncertainties of model inputs selected using the quickscan were characterized 
with probability distribution functions (PDFs, Heuvelink et al., 2007). The spatial 
support of the inputs and the method used to adjust the inputs to the model resolution 
(in space and time) influence their uncertainty. The estimation and representation of 
input uncertainty also depends on the measurement scale of the input (e.g. continuous 
numeric or categorical) and whether the input is constant or variable in space, as 
described below.   

Numerical constants 
Uncertain numerical constants are characterized by a continuous PDF, which quantifies 
the probability that the uncertain variable takes a value in any given interval. Common 
shapes for continuous PDFs are the normal, lognormal, and uniform distribution. In 
case of multiple uncertain numerical constants, statistical dependence between 
uncertain inputs may need to be considered, because this can have a marked effect on 
the outcome of the uncertainty propagation analysis. For normally distributed inputs, 
statistical dependence between two variables is specified by the Pearson’s correlation 
coefficient. 
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Spatially variable continuous model inputs 
An uncertain numerical model input that varies in space can be represented by the 
basic model: 
 

 )()()Z( xε+= xx m  (4.1) 

      
where Z(x) is the variable at location x, m(x) is a known trend and )(xε is an unknown 

stochastic residual. The residual )(xε may be spatially autocorrelated, usually 

characterized with the semivariogram )(hγ : 

 

 ( )[ ]2)()(
2
1)( hxxh +−Ε= εεγ ε  (4.2) 

 
where E is the mathematical expectation and h is the lag distance (m). Note that 
second-order stationarity was assumed in Eq. (2), by letting γ depend only on the 
separation distance h and not on the locations x and x+h (Oliver & Webster, 2007). If 
there are two (or more) uncertain spatial variables Z1 and Z2, then spatial cross-
correlation may need to be specified as well, using the cross-semivariogram )(12 hγ  
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To guarantee positive-definiteness of two correlated spatial variables, the linear model 
of coregionalization (LMCR) is often imposed (Goovaerts, 1997; Lark & Papritz, 2003; 
Vašát et al., 2010): 
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where the fi(h) are one-dimensional variogram structures, m is the number of 
structures, and where each of the matrices Ai is symmetric and positive-definite. The 
LMCR model can easily be extended to three variables and more. 

Spatially variable categorical model inputs 
For a spatially variable categorical model input C with categories ci (i =1,…, nc) the 
uncertainty about its value at some location x is characterized by a discrete PDF: 
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 )())(( xx iicCP π==  (4.5) 

 
where ))(( icCP =x is the univariate probability that variable C falls in category ci at 

location C or shortly πi(x). The bivariate probability is given by: 
 
 ),())(and)(( yxyx ijji cCcCP π===  (4.6) 

 
Bayesian Maximum Entropy (BME) was used to quantify uncertain categorical spatial 
variables. BME has proven to be a powerful method for spatial prediction and mapping 
categorical variables (Bogaert, 2002; Brus et al., 2008). The method combines ‘hard’ 
data (observations) with ‘soft’ data (maps). BME consists of two steps: (i) estimation of 
the unconditional multi-point PDF at the prediction location and at neighbouring 
observation location and (ii) conditioning the unconditional multi-point PDF on the 
observations at locations in the local neighbourhood of the prediction location. The 
entropy (H) is a measure of the prediction accuracy:  
 

 
∑−=
=

cn
ππH

1i

ii log  (4.7) 

 
The minimum value of the entropy is 0 and occurs when one possible outcome has 
probability 1, the maximum entropy value is log nc, which occurs when all outcomes 
have equal probability (Brus et al., 2008). The larger the entropy, the larger the 
uncertainty in model input C.  

4.2.5 Assessment of uncertainty at point and landscape support 
The propagation of uncertainty in the N2O emission calculated with INITIATOR caused 
by uncertainty in model inputs was analysed using MC simulation. During the MC 
simulation, random drawings from the PDF of the uncertain inputs were generated and 
the model was run for each of the drawings (Heuvelink, 1998a). Many of the numerical 
constants were stratified based on categorical data, meaning that their PDF depends 
on the value of a categorical variable. Therefore the MC simulation followed a nested 
approach (Finke et al., 1999) in which first the categorical variables are simulated, 
after which the numerical constant is simulated, conditional to the simulated 
categorical variables. Sequential Gaussian simulation (Goovaerts, 1997) was used to 
generate realizations from spatially distributed and spatially correlated variables. For 
spatially distributed categorical variables, BME was used to draw from the conditional 
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multi-point PDFs. Repeated sampling and model running yielded a sample of simulated 
N2O emissions, of which summary statistics were computed to assess the uncertainty 
propagation. To verify that the number of MC runs was sufficient and produced stable 
results, scatter plots of standard deviations at point support of independent MC 
analyses were made.  
 
At point support, the MC analysis was performed for every node of a dense grid 
covering the study area, using a spatial resolution of 250 m. Maps of the associated 
uncertainties in N2O emissions associated uncertainties were made, to identify spatial 
patterns and hotspots. Because spatial correlation was taken into account, the N2O 
emission and associated uncertainty could also be aggregated to the landscape scale 
(Heuvelink & Pebesma, 1999). For every MC simulation, first the variance of the N2O 
emission for the fen meadow landscape was computed. Next, the average over all MC 
simulations was used to characterize the model output uncertainty at landscape 
support. The model output uncertainty at point support, which was characterized by 
calculating the variance over MC runs for each point location, was also averaged to 
enable comparison with the model output uncertainty at landscape support (Fig 4.2). 

4.2.6 Assessment of the main sources of uncertainty 
The main sources of uncertainty were determined with a stochastic sensitivity analysis 
(Saltelli et al., 2000). This method assesses the contribution of distinct uncertainty 
sources to uncertainty in the predicted N2O emission. With this method, it is not only 
possible to analyse the contribution of individual inputs, but also of groups of uncertain 
inputs on the uncertainty of the N2O emission. For each group of uncertain inputs, the 

Fig. 4.2 Approaches to estimate uncertainty at point and landscape support. 
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bottom marginal variance (BMV) is calculated; which is the variance reduction that 
results from only assuming uncertainty in one group of inputs, compared to the total 
variance (Jansen, 1998b; Li & Wu, 2006). Differences between the BMV at point and 
landscape support were also analysed.  

4.3 Results  

4.3.1 Selection of model inputs for uncertainty quantification 
The quickscan results are discussed for seven groups including all model inputs used 
to simulate agricultural N2O emissions, following Table 4.1. 
 
Soil: Soil type was considered a very sensitive input to INITIATOR, because many other 
INITIATOR inputs depend on it. Also, the uncertainty in soil type was large. Soil type is 
derived from the Dutch soil map 1:50,000 (De Vries et al., 2003a; Steur & Heijink, 
1991), but large parts of the map were already established in the 1960s and 1970s. 
Although soil types hardly change over a few decades, (drained) peat soils do (Kempen 
et al., 2009; Van Kekem, 2004). In the western part of the Netherlands, peat soils are 
generally thick (§1.2). The peat soils exist of eutrophic or mesotrophic peat mixed with 
clay minerals. When peat in the topsoil oxidizes, clay minerals will accumulate and the 
soil type will transform into a mineral soil. Van Amstel et al. (2000) also reported a 
large uncertainty about the area occupied by peat soils. Thus, soil type was included in 
the uncertainty propagation analysis. 
 
Data from auger points were used to determine the spatial variability in soil properties. 
The soil properties bulk density, organic matter content, C/N ratio, thickness of the 
peat layer and (if present) thickness of the mineral cover layer all turned out to have a 
large spatial variation, which in turn causes large uncertainties when the density of 
sampling points is small. However, N2O emission was only sensitive to organic matter 
content in INITIATOR. It was therefore decided to include only the soil property soil 
organic matter in the uncertainty propagation analysis. 
 
Land use and hydrology: INITIATOR is sensitive to land use because many INITIATOR 
inputs depend on it. The uncertainty in land use is small, because accurate, up-to-date 
information is available (GeoDesk, 2006). Therefore, this model input was not 
considered uncertain. The mean lowest groundwater level (MLW) and mean highest 
groundwater level (MHW) are uncertain, but in INITIATOR the groundwater table is 
mainly used to distinguish between three soil wetness classes: wet, moist and dry. Due 
to this crude division, much of the uncertainty about the groundwater table is 
eliminated. For example, in the fen meadow landscape, groundwater table is uncertain  
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because at many locations it is uncertain if the table is I or II, but since in INITIATOR 
these tables fall in the same soil wetness class (i.e., wet), there is little uncertainty 
about the soil wetness class at these locations. Consequently, hydrological parameters 
were not included in the uncertainty propagation analysis  
 
Manure management: Input data on the amount of applied N (kg N ha-1 yr-1) are 
relevant, because the area consists mainly of intensively managed grassland. Due to 
limited data availability, pre-processing and other causes, these inputs are very 
uncertain. Data from interviews on the application of animal manure at comparable 
farms on peat soils in the Northern Frisian woodlands (Sonneveld et al., 2008) also 
demonstrate large uncertainties. The Frisian manure application data was compared 
with default INITIATOR inputs from the GIAB-database for 215 grassland parcels in the 
Northern Frisian woodlands. The average applied cattle manure was 98 kg N ha-1 with 
a random error (i.e., standard deviation) of 142 kg N ha-1 and the average applied N 
during grazing was 52 kg N ha-1 with a random error of 58 kg N ha-1. Because pigs and 
sheep are not common in the fen meadow landscape, the uncertainty of these two 
inputs is low for this area and not relevant. Thus, only N in applied cattle manure and in 
manure from grazing cattle were considered uncertain and quantified for the 
uncertainty propagation analysis. 
 
Atmospheric deposition: Atmospheric deposition plays an important role in the N 
budget in natural areas, such as forests. In the Netherlands, however, the N inputs by 
management and cattle to grasslands are much larger than N inputs by atmospheric 
deposition (Van der Maas et al., 2008). In the fen meadow landscape, the proportion of 
natural areas is much smaller (7%) than the proportion of grassland (81%). Therefore, 
the model is only moderately sensitive to atmospheric deposition and this input was 
not taken into account in the uncertainty analysis.  
 
Denitrification and nitrification in soils: N2O emission is in INITIATOR described as a 
function of nitrification and denitrification. In INITIATOR, the amount of nitrification of 
NH4+ to NO3¯and further denitrification of NO3¯ to N2 are modelled as fractions of N 
input to soil and depending on soil type, land use, and hydrology. During these 
nitrification and denitrification processes, a certain amount of N is assumed to be 
leaked as N2O emission (Firestone & Davidson, 1989). The model uses denitrification 
and nitrification fractions, being the fraction of N nitrified to NO3¯ and the fraction of N 
denitrified to N2, and N2O emission factors, being the ratio of N2O emission to total N 
(N2O + NOX + N2) emission to simulate these N2O emissions. As expected, De Vries et al. 
(2003b) showed that the uncertainty in N2O emissions is largely determined by the 
uncertainty of these parameters, especially for peat soils. These parameters were 
therefore considered in the uncertainty propagation analysis.  



Chapter 4 

 88 

 
Uptake by vegetation: Because the fen meadow landscape is mainly covered by 
grassland, the model is not very sensitive to inputs that are used to estimate the N 
uptake in nature areas or maize, being the only crop that is cultivated in this landscape. 
Therefore, only the uncertainty of grass yield was considered. Because of the large N 
inputs to grasslands, N is usually not a limiting factor for N uptake and usually 
grasslands can reach a maximum N uptake. The model inputs grass yield and % N in 
grass are multiplied in INITIATOR to calculate the maximum N uptake. These two inputs 
were classified as sensitive and consequently included in the uncertainty propagation 
analysis. 
 
Organic products: INITIATOR simulates the N input from four types of organic products: 
sugar beet waste, kitchen and garden compost, mushroom compost and sewage 
sludge. The contribution of N from organic products to the soil is small compared to the 
contribution of N from animal manure (Velthof, 2004). The sensitivity of the model was 
therefore assumed negligible for organic products. 
 
In summary, ten model inputs (Table 4.1) were selected by the quickscan and used in 
the MC uncertainty analysis. How the PDFs of these model inputs with a high 
uncertainty (++) and a high sensitivity (++) were obtained, is discussed in the next 
section. 

4.3.2 Uncertainty quantification of selected model inputs 
Soil type: Soil type as used by INITIATOR has 13 categories in the Netherlands. The fen 
meadow landscape consists mainly of the categories thick peat and thin peat, although 
categories peaty clay, clay, peaty sand, sand and water/urban also occur. BME was 
used to estimate multi-point PDFs and to simulate maps of soil type for use in the MC 
simulation, following the approach of Brus et al. (2008). The map with dominant soil 
types, being the soil type with the highest probability of occurrence at a given location, 
resulting from BME is presented in Fig. 4.3. In the largest part of the study area, thick 
peat soils are dominant, although thin peat soils and clay soils also occur. The entropy 
map is given in Fig. 4.4. Areas with low entropy mainly coincide with areas where 
detailed soil surveys were carried out.   
 
Organic matter content of peat soils (%): INITIATOR requires the organic matter content 
up to the depth of the mean lowest groundwater level (MLW) to estimate the amount of 
carbon and nitrogen available for mineralization. In all cases, the depth of the MLW is 
less than 120 cm. For each soil type, the distribution of organic matter content at 0–20 
cm, 20–50 cm and 50–120 cm depth was modelled geostatistically using data from  
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Fig. 4.3 Dominant soil types estimated with Bayesian Maximum Entropy for the fen meadow landscape. 
Inset: Location of Dutch fen meadow landscape. 
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Fig. 4.4 Entropy (–) estimated with Bayesian Maximum Entropy for the fen meadow landscape. 
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Fig. 4.5 Semivariograms and cross-semivariograms of (a) standardized log-transformed organic matter 
content at three depths: 0–20 cm, 20–50 cm and 50–120 cm and of (b) residuals in nitrogen in applied 
cattle manure and nitrogen in manure from grazing cattle. Circles are experimental semivariogram values; 
solid line represents the fitted LMCR model. 
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the Dutch soil information database (Alterra, 2009; Van der Pouw & Finke, 1999). 
Because organic matter content depends on soil type, PDFs were made for every depth 
and for every soil type. All distributions were skewed and organic matter content was 
therefore log-transformed. Semivariograms and cross-semivariograms of standardized 
residuals (i.e., after subtracting soil type dependent means and dividing by soil type 
dependent standard deviations) are presented in Fig 4.5a. The with BME simulated 
maps of soil type were subsequently used for simulation of the organic matter content 
for the three different depths using LMCR. For each point, the simulated values for 
different depths were weighted for the soil profile from 0 cm to MLW and summed up 
to get an organic carbon content for 0 to MLW for each MC run and for each point. After 
back transformation, the simulated values were truncated for values larger than 100%. 
The average and standard deviation of organic matter content over all MC runs are 
presented in Fig. 4.6. 
 
Nitrogen inputs by cattle manure application and cattle grazing: To assess the 
uncertainty in N inputs by cattle manure application and cattle grazing, interview data 
from the Northern Frisian woodlands (Sonneveld et al., 2008) were used. These data 
were used because there were no data from the fen meadow landscape and because 
the two landscapes have comparable N management data. All 215 dairy farms on peat 
soils from this research were selected and compared the spatial data on N in applied 
cattle manure (kg N ha-1 yr-1) and N applied during grazing (kg N ha-1 yr-1) with spatial 
data derived by INITIATOR based on the GIAB database for the Northern Frisian 
woodlands. Semivariograms and cross-semivariograms of the differences (errors) 
between these databases were calculated (Fig. 4.5b). By assuming that the errors 
observed in the Northern Frisian woodlands are comparable to those in the fen 
meadow landscape, the semivariograms and cross-semivariograms were used to 
generate random drawings of the errors in N inputs by cattle manure application and 
cattle grazing in the MC analysis (Goovaerts, 2001). For each MC run and each point in 
the study, the default value from INITIATOR based on the GIAB database was 
augmented with the random drawn error. Values were truncated at zero to rule out 
negative values.  
 
Fractions of soil N which are denitrified and nitrified: The fractions of available N in the 
soil that are denitrified and nitrified depend on soil type, land use and soil wetness 
class. For wet soils, the denitrification fraction is large and the nitrification fraction 
small. For dry soils, it is the opposite. Values for the denitrification fraction range from 
0 in dry sandy soils to 1 in wet peat soils or wet clay soils. The nitrification fraction has 
a smaller variability. Its values range from 0.4 for wet peat soils to 1 in well-drained pH 
neutral soils. Both parameters were assumed to be normally distributed with parameter  
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Table 4.2 Uncertainty in N2O emission factors of due to nitrification and denitrification stratified by soil 
type and the uncertainty in fractions of soil nitrogen that is denitrified and nitrified stratified by soil type, soil 
wetness class, and land use for the fen meadow landscape (derived from De Vries et al., 2003b).  
Soil 
type 

N2O emission 
factor due to 
nitrification 

N2O emission 
factor due to 
denitrification 

Soil wetness 
classa 

Land use Fraction  of soil 
nitrogen which is 
nitrified 

Fraction of soil 
nitrogen which is 
denitrified 

 mean s.d.b mean s.d.b   mean s.d.b mean s.d.b 
Grass 0.98 0.013 0.75 0.075 
Maize 0.98 0.013 0.70 0.100 Dry 
Nature 0.98 0.013 0.60 0.100 
Grass 0.95 0.025 0.83 0.063 
Maize 0.95 0.025 0.75 0.075 Moist 
Nature 0.95 0.025 0.70 0.100 
Grass 0.90 0.025 0.89 0.045 
Maize 0.90 0.025 0.89 0.045 Wet 
Nature 0.95 0.025 0.90 0.050 

Very wet Nature 0.80 0.050 0.95 0.025 

Clay 0.01 0.004 0.04 0.013 

Extremely wet Nature 0.65 0.075 0.95 0.025 
Grass 0.95 0.025 0.88 0.375 
Maize 0.95 0.025 0.75 0.075 Dry 
Nature 0.98 0.013 0.85 0.075 
Grass 0.90 0.025 0.88 0.375 
Maize 0.95 0.025 0.83 0.063 Moist 
Nature 0.95 0.025 0.90 0.050 
Grass 0.85 0.025 0.94 0.020 
Maize 0.88 0.038 0.89 0.045 Wet 
Nature 0.90 0.050 0.95 0.025 

Very wet Nature 0.65 0.013 0.95 0.025 

Peat 0.02 0.005 0.07 0.025 

Extremely wet Nature 0.05 0.100 0.95 0.025 
a Soil wetness class is divided into three wetness classes: wet with a mean highest groundwater level (MHW) 
of less than 40 cm, moist with an MHW between 40 and 80 cm and dry with an MHW greater than 80 cm. 
b s.d. = standard deviation 
 
values determined by De Vries et al. (2003b; Table 4.2). Simulated values were 
truncated for values smaller than 0 and larger than 1 . 
 
Emission factors of N2O due to nitrification and denitrification: The fractions of N 
emitted as N2O due to nitrification and denitrification processes are related to soil type. 
The uncertainty in these N2O emission factors were assessed by De Vries (2003b) 
based on literature data, available empirical field evidence and model calculations, as 
shown in Table 4.2. The mean and standard deviation for the denitrification emission 
factors are larger than for the nitrification emission factors. All parameters were 
assumed to have a (truncated) normal distribution. Simulated values were truncated 
for values smaller than 0 and larger than 1. 
 
Yield of grass and % N in grass: The grass yield in INITIATOR depends on soil type and 
soil wetness class (Table 4.3). The values of INITIATOR were derived from the average 
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grass yields reported by Aarts et al. (2005). Reported uncertainties in yields (Aarts et al., 
2002; Aarts et al., 2005; Ten Berge et al., 2002) were used for the MC simulation. A 
normal distribution was assumed and the simulated values were truncated at zero to 
rule out negative values. 
 
The % N in grass is assumed to be spatially constant. In INITIATOR, the grass yield and 
the % N in grass determine the uptake of N. The parameter value used for % N in grass  
is 3.08% (Schröder, 1998). The uncertainty of the % N in grass was derived from Ten 
Berge et al. (2002; Table 4.3) and the errors were assumed to be normally distributed. 
The simulated values were truncated at 0% to rule out negative values. The grass yield 
and % N in grass are positively correlated with an r value of +0.8 for Dutch soils 
occurring in the fen meadow landscape, as described by Ten Berge et al. (2002; 
Table 4.3). Thus, a bivariate (truncated) normal distribution for the yield and % N in 
grass was assumed. 

4.3.3 Uncertainty in N2O emissions at point and landscape support 
In Fig. 4.7, the standard deviation of the N2O emission at point support of 100, 250, 
and 500 MC runs are plotted against the standard deviation of the N2O emission at 
point support of another 100, 250, and 500 MC runs. Theoretically, when the results of 
an infinite number of MC runs is plotted against the results of another infinite number 
of MC runs the result will be a 1:1 line. Because the results of the 500 MC runs are 
already close to the 1:1 line, 1000 runs were considered sufficient to get a stable 
outcome with a small MC sampling error. 
 
The map of the average N2O emission is almost similar to the map of a reference run in 
which average values of model inputs are used (Fig. 4.8). The average N2O emission for 
the entire fen meadow landscape is 19.7 kg N2O-N ha-1 yr-1. This is larger than the IPCC 
Tier 1 and Tier 2 estimates for the area, which were 13.0 and 14.5 kg N2O-N ha-1 yr-1,

Table 4.3 Uncertainty in yield of grass and % N in grass. 
Land use Soil 

type 
Yield of grass  
(kg dm ha-1) 

% N in grass  
(% of dm) 

Correlation 

  

Soil wetness 
class 

Mean s.d.a Mean s.d.a  
 Peaty clay moist 10000 500    
 Peaty clay wet 9500 760    
Grass Peat moist 10000 1000 3.08b 0.372 0.78 
 Peat wet 9000 720    
 Clay moist 11000 1210    
a From Ten Berge et al. (2002) 
b INITIATOR uses one value for the % N in grass, there is no further subdivision.  
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Fig. 4.7 Scatter plots of standard deviations of N2O emission (kg N2O-N ha-1 yr-1) over MC runs on point 
scale for two independent MC analyses: (a) 100 runs, (b) 250 runs, (c) 500 runs. 
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Fig. 4.8 N2O emission (kg N2O-N ha-1 yr-1) simulated with INITIATOR for the reference run for the fen 
meadow landscape. The legend has a logarithmic scale. 
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Fig. 4.9 Standard deviations of N2O emission (kg N2O-N ha-1 yr-1) of the Monte Carlo simulation for the fen 
meadow landscape. The legend of this map has a logarithmic scale. Circles accompanied by the letters A, B,
C, and D refer to example locations discussed in the main text. 
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respectively (§3.3.3). Velthof et al. (1996a) measured emissions in the fen meadow 
landscape which are comparable to the results presented here; 2.0 kg N2O-N ha-1 yr-1 
for an unfertilized and mown plot and 38.5 kg N2O-N ha-1 yr-1 for a fertilized and grazed 
plot. Also Van Beek et al. (2009) measured comparable emissions with 11.8 kg N2O-N 
ha-1 yr-1 for wet drained peat soils and 29.8 kg N2O-N ha-1 yr-1 for dry drained peat soils.  
 

The N2O emission standard deviation map is presented in Fig 4.9. The areas with a 
high standard deviation are largely coinciding with large N2O emissions. The average 
standard deviation of the MC simulation at point support is 15.8 kg N2O-N ha-1 yr-1. The 
average N2O emission over all runs at landscape support is 20.5 kg N2O-N ha-1 yr-1 with 
a standard deviation of 10.7 kg N2O-N ha-1 yr-1. The distribution is only slightly skewed 
(skew < 0.5) and the 95% confidence interval is 4.3–39.5 kg N2O-N ha-1 yr-1 

4.3.4 Main sources of uncertainty 
A stochastic sensitivity analysis was executed for the four variable groups as identified 
in the quickscan: 1) soil, 2) manure management, 3) nitrification and denitrification in 
soils and 4) uptake by vegetation (see Table 4.1). The share of different groups of 
inputs in the uncertainty of the N2O emission at point support and at landscape 
support is presented in Fig. 4.10. The uncertainty at point support is much higher than 
at landscape support. At point support, the input groups soil and nitrification and 
denitrification in soils both have a large share in the uncertainty. Clearly, the group 
nitrification and denitrification in soils has by far the largest share in the uncertainty at 
landscape support.  

4.4 Discussion 

4.4.1 Input uncertainty quantification 
The focus of this research was on the uncertainty in modelled N2O emissions caused by 
the uncertainties in model inputs. The contribution of model structural uncertainty was 
ignored. Due to the large number of INITIATOR inputs, a quickscan was used to select 
which model inputs were relevant for the uncertainty analysis. Gottschalk et al. (2007) 
used a similar approach to estimate which inputs should be used for the uncertainty 
propagation analysis of the simulation of net ecosystem exchange. A possible 
disadvantage of the quickscan approach is that inputs that have not been selected 
have an influence on the N2O emission, causing an underestimation of the output 
uncertainty. The main advantage of the quickscan is that it is time efficient. The 
alternative is to include more inputs or even all inputs in the uncertainty analysis. 
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However, including spatial auto- and cross-correlations of these inputs will become a 
very time consuming and complex process, while the extra identified uncertainty is 
probably limited compared to other sources of uncertainty.  

4.4.2 Uncertainty of N2O emissions at point support 
There was no simulated systematic error, because the difference between the results 
of a reference run with average parameter values and the average over the MC runs 
was negligible (r2 = 0.95). This is probably caused by the approximate linearity of N 
process descriptions in INITIATOR.  
 
It is important to realize that different factors dominate the uncertainty at different 
locations. To illustrate this aspect, two locations with a large uncertainty in N2O 
emission and two locations with a small uncertainty in N2O emission were selected 
(Fig. 4.9). The uncertainty of N2O at locations A and B is large. The soil type for both 
locations is most probably thick peat (Fig. 4.3), but the entropy is large for location A (H 
= 0.5) and small for location B (H = 0.0; Fig. 4.4). At location A, various soil types will be 
predicted during the MC simulation and therefore the uncertainty in the organic matter 
content is large (Fig. 4.6). At location B, the organic matter content is large and the 
uncertainty in the organic carbon content is considerable, because the standard 
deviation of organic matter content is large for thick peat soils. The uncertainty in 
nitrification and denitrification variables was also large for both locations, because 
standard deviation is large for grass on peat soils with moist conditions (Table 4.2). At 

Fig. 4.10 Contribution of groups of uncertain inputs to: (a) variance at point support and (b) variance at 
landscape support. 
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location C, the uncertainty of N2O emission is small, although the dominant soil type is 
thick peat soil. The MLW is close to surface level (data not shown), which causes low 
mineralization rates which in turn result in small N2O emissions. The uncertainty of the 
N2O emission at location D is small, because it is highly probable (H = 0.0, see Fig. 4.4) 
that the dominant soil type is not peat, but clay (Fig. 4.3). Therefore, the organic matter 
content and the uncertainty in organic matter content are small (Fig. 4.6). The land use 
at location D is grassland and the uncertainty in nitrification and denitrification 
variables is small for grass on clay soils compared to grass on peat soils (Table 4.2). 

4.4.3 Uncertainty of N2O emission at landscape support 
The N2O emission from the fen meadow landscape is large (on average 
20.5 kg N2O-N ha-1 yr-1) compared to other countries and other landscapes. This is due 
to the typical landscape with drained peat soils, combined with large N inputs to soil 
(Velthof et al., 1996a). 
Results of this study showed that the modelled uncertainties in N2O emissions are 
quite considerable and scale-dependent for the Dutch fen meadow landscape. It is 
generally known that biogeochemical processes are scale-dependent. One of the main 
reasons is that different processes operate and interact at different scales (Heuvelink, 
1998b; Veldkamp et al., 2001). In the uncertainty propagation analysis, this scale 
aspect was incorporated by aggregating point support data to the landscape support. It 
is also known that aggregation of spatial data usually leads to a lower uncertainty and 
to linearization of relationships (Heuvelink & Pebesma, 1999; Kok & Veldkamp, 2001). 
This aggregation effect is reflected in the decrease of the calculated uncertainty from 
point support (c.v. = 78%, s.d. = 15.8 kg N2O-N ha-1 yr-1) to the aggregated landscape 
support (c.v. = 52%, s.d. = 10.7 kg N2O-N ha-1 yr-1). A similar large uncertainty of N2O 
emissions has been found by many researchers (Brown et al., 2001; Nevison, 2000; 
Olsthoorn & Pielaat, 2002). A further decrease of the coefficient of variation is foreseen 
at even coarser aggregated scales, such as country scale. In the Dutch National 
Inventory (Van der Maas et al., 2008), the uncertainty of direct N2O emissions from 
agriculture is estimated as 61%, which is larger than the c.v. obtained at the landscape 
scale. The 61% value is however, a conservative estimate, because the IPCC emission 
factors used were assumed to have large uncertainties.  
 
The contribution of uncertainty sources to the output uncertainty depend on the model 
output considered (Kros et al., 1999) and are also scale dependent. For instance, the 
uncertain soil inputs have a larger share at point support than at landscape support. 
These soil inputs and associated errors are spatially variable, which means that errors 
partially average out at the landscape support. The degree of averaging out depends on 
the nugget variance and spatial correlation length of the uncertain soil inputs. In our 
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case, spatial correlation was not very strong and much of the uncertainties in soil 
inputs therefore ceased at landscape support. This did not happen with the 
uncertainties about the nitrification and denitrification variables. Just as De Vries et al. 
(2003b), it was found that at landscape support uncertainty in N2O emission was 
mainly due to uncertainty in nitrification and denitrification variables. These variables 
were taken constant in space and hence did not average out at landscape support. For 
instance, when an MC run simulates a large value of the denitrification emission factor 
for grasslands on wet peat soils, this emission factor is attributed to all grasslands on 
wet peat soils in the fen meadow landscape and will therefore result in a large total 
N2O soil emission for the landscape. This may not be very realistic. The quantification 
of the spatial variability of these variables and inclusion of this spatial variability in 
models is therefore crucial, especially for large (national, continental) scales. The large 
uncertainty considering nitrification and denitrification variables is found by many 
researchers and research is focussing on decreasing the uncertainty of emission 
factors (Beheydt et al., 2007; Flechard et al., 2007; Olsthoorn & Pielaat, 2002). 
However, at point support soil parameters are also a large source of uncertainty. 
Therefore, for point support predictions, decreasing the uncertainty of soil parameters 
can also contribute to the improvement of the N2O emission inventory. Although these 
soil parameters were spatially variable in the model, these are often assumed to be 
constant in time. Especially for the fen meadow landscape, this assumption is 
unrealistic and using soil data that were collected a few decades ago for the estimation 
of current emissions can involve large uncertainties (Kempen et al., 2009; Van Kekem, 
2004).  

4.5 Conclusions 
Although in this research only the ten most important input uncertainties were taken 
into account, the uncertainty is substantial and ranges between 50% and 80%. In fact, 
these are underestimates of the true uncertainty, because there are more 
uncertainties, such as the uncertainty in model structure. Chapter 4 gives more 
information about the uncertainty in model structure. Clearly, there is an urgent need to 
reduce the uncertainties of simulated N2O emissions, including model uncertainties. 
One possibility might be by model comparison strategies. The uncertainty is scale 
dependent and decreases when data are aggregated. The contribution of uncertainty 
sources is also scale dependent. Spatial variables can average out with upscaling (i.e., 
soil inputs), while variables that are constant in space cannot. Not only improvement of 
nitrification and denitrification variables can decrease uncertainties of N2O emissions, 
but at point support, also the improvement of soil data can. 





 

 

 
Translation: “Fen meadow pact: You are out of luck, because we are not going away!” 



 

 105
 

 

Uncertainty in future N2O emission 
due to land use change 

Abstract 
Better insight in the possible range of future N2O emissions can help to construct 
mitigation and adaptation strategies and to adapt land use planning and management 
to climate objectives. Socio-economic developments and related land use change in 
the area are expected to be large in future and have major impacts on N2O emission. 
The goals of this study are to estimate changes in N2O emissions for the period 2006–
2040 under different scenarios for the Dutch fen meadow landscape and to quantify 
the share of different emission sources. Three scenarios were constructed and 
quantified based on the Story-And-Simulation approach. The rural production and the 
rural fragmentation scenarios are characterized by globalization and a market-oriented 
economy; in the rural production scenario dairy farming has a strong competitive 
position in the study region while under the rural fragmentation scenario agriculture is 
declining. Under the rural multifunctionality scenario, the global context is 
characterized by regionalization and stronger regulation towards environmental issues. 
Farmers will receive subsidies to manage wet meadows extensively as high nature 
valued farmland. Under the rural production scenario, the N2O emission decreased 
between 2006 and 2040 by -7%. Due to measures to limit peat mineralization and 
policies to reduce agricultural emissions, the rural multifunctionality scenario shows 
the largest decrease in N2O emissions (-44%). Under the rural fragmentation scenario, 
in which the dairy farming sector is diminished, the emission decreased by -33%. 
Compared to other uncertainties involved in N2O emission estimates, the uncertainty 
due to possible future land use change is relatively large and assuming a constant 
emission with time is therefore not appropriate. 
 

Based on: Nol, L., Verburg, P.H. and Moors, E.J.   
Submitted to Global Change Biology
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5.1 Introduction 
The uncertainty of greenhouse gas (GHG) emission inventories is usually high (IPCC, 
2007a; Van der Maas et al., 2008), especially inventories of the GHG nitrous oxide 
(N2O) (EPA, 2009; Ramírez et al., 2008). Uncertainty can be located in: context, model 
structure, model technique, model inputs, model parameters, and model outputs 
(Walker et al., 2003). For emission of N2O, uncertainty is mainly originating from model 
input data, from model parameters due to errors in measurements underlying emission 
factors, and from model structure due to a lack of knowledge of emission processes. 
However, it is not only the uncertainty in the current state of N2O emissions that is 
relevant to assess, but the uncertainty in future N2O emissions is important too. 
Uncertainty in future N2O emissions is mainly caused by uncertainties in land use. 
Human-induced changes in land use are driven by socio-economic developments. 
Better insight in the possible range of trends in N2O emission can help to construct 
mitigation and adaptation strategies and link land use planning and land use 
management to climate objectives (del Prado et al., 2010).   
 
Scenarios are a commonly used tool to address the role of uncertainties in future 
developments (Peterson et al., 2003). In the IPCC special report on emissions 
scenarios (SRES) four global scenarios addressing two main uncertainties that were 
supposed to influence emissions were presented: economic (A) vs. environmental (B) 
orientation and global (1) vs. regional (2) orientation (IPCC, 2000b). The market-driven 
scenarios (A1 and A2) are expected to have higher GHG emissions until 2040 
compared to the environment driven scenarios (B1 and B2). The higher GHG emissions 
in the market-driven scenarios are caused by large economic growth, large energy 
demand, large-scale dairy farming, little attention to nature protection, and little 
mitigation policies. The Millennium Ecosystem Assessment (Carpenter et al., 2005) 
under authority of UNEP constructed four global scenarios focusing on ecosystem 
services. Key driving forces under these scenarios were the approach to sustainability, 
the focus on economy and the social policy. The projected global changes between 
1995 and 2050 vary considerably between -14% and +57% for N2O emission and 
between -28% and +161% for the all GHG emissions. UNEP (2007) also constructed 
four scenarios for their Global Environmental Outlook (GEO-4) based on environmental, 
social, and economic drivers. They did not distinguish between different GHG’s. 
Generally, their estimates are more conservative than the Millennium Ecosystem 
Assessment emission estimates (between -23% and +109% for global GHG emissions 
and between -39% and +70% for the European GHG emissions).  
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At regional scales, many researchers studied the trends in future GHG emissions using 
different scenarios. Socio-economic developments are relevant to asses because they 
can cause changes in climate, but also in land use, including changes in land cover or 
changes in management practices. However, land use change is often ignored in 
emission inventories, although it can significantly influence future GHG emissions 
(Verburg & Van Der Gon, 2001). One example of how management practices influence 
GHG emissions is provided by Smith et al. (2008). The study used the SRES scenarios 
to estimate the GHG mitigation potential of various agricultural practices. They 
concluded that improved cropland and grassland management (e.g. efficient nutrient 
management, lower grazing intensity, water management) and restoration of degraded 
lands and cultivated organic soils were the most prominent measures and that they 
could potentially reduce the global GHG emissions by 20% in 2030. Another example is 
from Leip et al. (2008), who estimated the effect of agricultural measures on future 
N2O emissions at the regional scale. Results showed that only a small fraction of 
increased N fertilizers would go into increased yield, while most of it would be emitted 
to the environment. It is, therefore, important to research the possible effects of land 
use change. 
 
Assessment of uncertainty in future GHG emissions is especially important in regions 
with rapid land use change and with high and uncertain GHG emissions. An example of 
such a region is the Dutch fen meadow landscape. This landscape is an area with peat 
soils. Due to the low bearing capacity and moist conditions of these soils, the main land 
cover in the area is grassland. These grasslands are usually intensively managed by 
dairy farmers; they are fertilized with manure and synthetic fertilizers, grazed, and 
mown. High N inputs to the soil by N fertilizers, manure, and cattle droppings cause 
high N2O emissions. Especially the high C content and moist conditions of the peat 
soils are optimal for N2O emission (Ramírez et al., 2008; Velthof & Oenema, 1995). The 
peat soils also emit N2O themselves, due to mineralization; the organic C in the soil is 
emitted as CO2, whereas the organic N in the soil is emitted due to nitrification and 
denitrification as N2O. The fen meadow landscape is thus a hotspot of N2O emission 
and the sources of soil-bound N2O emission can be split into mineralization, manure 
application, grazing, synthetic fertilizer application, N-fixation by crops such as clover, 
and deposition (De Vries et al., 2003b; IPCC, 2000a; IPCC, 2006; Kroeze et al., 2003).     
 
The uncertainty of N2O emissions in this region is large due to uncertainties in 
biophysical and management factors (Brown et al., 2001; Nevison, 2000; Olsthoorn & 
Pielaat, 2002). In Chapter 4, a Monte Carlo analysis of N2O emissions was performed 
with an integrated N model, including uncertainty in different input variables, 
autocorrelation in model inputs, and correlation between model inputs. They estimated, 
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for this region, the uncertainty (coefficient of variation) of agricultural N2O emission to 
be approximately 52%. On top of this large uncertainty, land use is also rapidly 
changing due to expanding cities, the difficult competitive position of dairy farms and 
subsidence of peat soils (Koomen et al., 2008; Kuikman et al., 2005). The region is 
facing many future challenges, such as implementing natural conservation policies like 
the national ecological network (NEN), dealing with urban expansion, meeting 
(recreational, commercial) needs of citizens, coping with the effects of climate 
change,like flood risk and droughts (Beniston et al., 2007; MNP, 2006; MNP, 2007). 
These future changes in the fen meadow landscape are likely to have major impacts on 
the N2O emissions. 
 
The goals of this paper are (i) to develop specific scenarios for land use change in the 
Dutch fen meadow landscape, (ii) to estimate changes in N2O emission for the period 
2006–2040 under these different scenarios for the Dutch fen meadow landscape and 
quantify the share of different emission sources in the scenarios and (iii) to assess the 
uncertainty of N2O emissions due to the diverging scenario conditions and to compare 
this uncertainty to other sources of uncertainty in N2O emission inventories. This 
comparison is to understand the full range of uncertainty in order to better target future 
improvements in emission estimates. To achieve these objectives first plausible 
storylines for scenarios of land use change will be constructed using plausible 
storylines based on interviews with stakeholders and experts. As a second step, this 
cognitive knowledge will be translated into quantitative modelling of N2O emissions. 

5.2. Methods 

5.2.1 Case study area 
 
The Dutch fen meadow landscape was formed in the Holocene because peat swamps 
came into existence in the western part of the Netherlands (Fig. 5.1). Since medieval 
times, the area has been cultivated for agriculture. This landscape has a surface area 
of approximately 1000 km2 according to the occurrence of peat soils on the Dutch soil 
map (1:50,000; Stiboka, 1969). 
 
The region’s main land cover is grassland (89%) for intensive dairy farming. The 
grassland is intersected by many ditches to drain the peat soils. Recently, large parts of 
the grassland area are taken out of production and purchased by nature organizations. 
General properties of the fen meadow landscape for the year 2006 are in Table 5.1. 
About 86% of the area consists of thick peat soils of more than 50% peat in the upper 
0.80 m of the soil profile combined with a peat layer that runs deeper than 1.20 m. 
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5.2.2 Scenario construction 
Scenarios were constructed following the widely used and accepted Story And 
Simulation (SAS) method introduced by Alcamo et al. (2009). The Millennium 
Ecosystem Assessment (Carpenter et al., 2005), the Global Environmental Outlook 
(UNEP, 2007), PRELUDE (EEA, 2007; Volkery et al., 2008) and a local scenario study by 
Kok (2006) are examples of studies which have used an approach similar to the SAS 
method. The construction of scenario storylines is part of the SAS method, which is a 
participatory and iterative process where the storylines are a result of this process (Kok 
et al., 2006; Lorenzoni et al., 2000; Patel et al., 2007; Xiang & Clarke, 2003). Note that 

Table 5.1 Properties of the Dutch fen 
meadow landscape for the reference year 
2006 
Property  Value 
 
Soil distribution  
  Clay 4% 
  Thick peat 86% 
  Thin peat  4% 
  Peaty clay 2% 
  Water/Urban 3% 
 
Land use distribution  

  Grassland 89% 
  Crops 3% 
  Natural area 5% 
  Urban 3% 
 
Groundwater  

  Mean highest groundwater 
level (MHW) -0.12 m 

  Mean lowest groundwater 
level (MLW) -0.69 m 

 
Agricultural management  

  Average cattle manure 
application 

151 kg N ha-

1 yr-1 
  Average cattle manure 
during grazing 

35 kg N ha-1 
yr-1 

 
N2O emission  

  Total agricultural emission 
20.2 kg 

N2O-N ha-1 
yr-1 

 
N2O emission sources  

  Manure 18% 
  Grazing 4% 
  Fertilization 19% 
  Fixation 1% 
  Deposition 4% 
  Mineralization 43% 
  Leaching 12% 

Fig. 5.1 Location of peat soils within the Dutch fen 
meadow landscape. Inset: Location of the fen meadow 
landscape in the Netherlands. 
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the constructed scenarios were chosen to represent a range of possible developments 
without one scenario being more likely than the other, because the objective was to 
identify the entire range of possible future N2O emissions and accordingly the upper or 
lower limit of possible future emissions.  

Interviews with experts and stakeholders 
The first step in the SAS method is an iterative process of interviewing experts and 
stakeholders and constructing participatory qualitative and quantitative scenarios. 
Nineteen experts and stakeholders from different research areas and organizations 
related to the region (e.g. farmers, rural advisory companies, nature organizations, and 
dairy experts) were interviewed. They were presented with open questions about 
expected trends for the period 2006–2040 in climate, land use, policy, demography, 
economy, nature protection, and agriculture in the fen meadow landscape Most 
questions started with: “What future developments/trends do you expect in …?”. These 
open questions triggered the respondents to answer with causal relations (“If…then…”), 
which were helpful for constructing the scenarios.  

Construction of qualitative scenario storylines 
As a second step, scenarios for the fen meadow landscape were constructed. These 
scenarios were primarily based on answers to the questionnaires. Based on frequently 
heard answers, concepts of scenarios were constructed and presented again to the 
experts and stakeholders. This iterative process continued until the scenarios were 
considered plausible and consistent. Physical and financial conditions together with the 
causal relations stated by the respondents were taken into account to achieve 
consistency in the scenarios. Additionally, a relation with well-known scenarios at global 
and national scale was established to enable the quantification and plausibility of the 
constructed scenarios (Carpenter et al., 2005; EEA, 2007; IPCC, 2000b; MNP, 2006; 
MNP, 2007; UNEP, 2007). Currently available policy plans that are relevant for the 
region were also accounted for. Land use change and climate change are mostly driven 
by the same overall socio-economic changes and associated policies. Some of the land 
use changes anticipated in the scenarios are accounting for adaptation measures to 
climate changes. In order to ensure internal consistency of the scenarios an approach 
was chosen that accounts for both land use change and climate change within the 
scenarios. 

Translation in main scenario drivers  
Many stakeholders and experts were not familiar with the model inputs or could only 
indicate if the model inputs would be higher or lower under a certain scenario. To 
bridge the gap between qualitative storylines and quantitative model inputs, an 
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intermediate step was made. In this third step of the SAS method, drivers relevant for 
modeling the scenarios using an N2O emission model were specified in more detail. 
The choice of these drivers was made in close cooperation with experts. In this third 
step of the SAS method, literature and models were used to provide numerical data on 
these drivers (IPCC, 2000b; KNMI, 2006; Koomen et al., 2008; MNP, 2002; MNP, 
2006; MNP, 2007; VROM, 2004). The constructed scenarios were presented to 14 of 
the interviewed stakeholders and experts to check if the storylines were consistent and 
if the underlying assumptions were credible. This iterative process was especially 
important in harmonizing the qualitative and quantitative scenarios.  
 
To incorporate effects of climate change, scenarios from the KNMI (2006) were used 
consistent with the storylines. This national meteorological institute constructed four 
climate change scenarios for the Netherlands using global circulation models (GCMs) 
and climate models for Western Europe. For the Netherlands, they identified two main 
uncertainties concerning climate: change or no change in the air circulation patterns 
and a temperature increase of +1ºC or +2ºC in 2050 (MNP, 2002; MNP, 2006; MNP, 
2007).  
 
To translate the storylines to changes in land use, the Dutch LANDS project (Koomen et 
al., 2008) was used to account for changes in urban land use and land use change 
scenarios from MNP (2007) were used for changes in rural land use.   

5.2.3 Modelling N2O emissions 
The last step is the simulation of N2O emission.  

Quantification of the scenarios for modelling N2O emissions 
The model INITIATOR was used to simulate N2O emissions under the different 
scenarios. INITIATOR (Integrated NITrogen Impact Assessment Tool On a Regional Scale, 
version 3.2) is an integrated nitrogen (N) model (De Vries et al., 2003b), which is 
constructed for the Netherlands. De Vries et al. (2003b) provide an extensive 
description of this model, which is relatively simple and transparent compared to 
biogeochemical models, such as DNDC (Li et al., 1992) and DayCent (Parton et al., 
1998). INITIATOR can simulate CO2 emissions, CH4 emissions, NH3 emissions, and N2O 
emissions from stables, soils, leaching, and runoff; however, this research focuses on 
the emission of N2O from soils. The model uses annual time steps and a spatial 
resolution of 250m. INITIATOR assumes that N2O emission from soils is a function of 
denitrification and nitrification in soils, soil N input, and uptake of N (De Vries et al., 
2003b). INITIATOR has the advantage that mineralization of peat soils is specifically 
taken into account in the model. 
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First, soil subsidence is modelled based on the mean lowest groundwater level (MLW), 
the depth of the peat layer and the occurrence of a clayey top layer. Secondly, the CO2 
emission is estimated based on soil subsidence, organic carbon content, and bulk 
density. At last, the N mineralization is modelled based on the CO2 emission and the 
C/N ratio of the soil. The year 2006 is used as reference year, because all model inputs 
were available for this year.  
 
Approximately one hundred model inputs (input and model parameters) are used to 
estimate the N2O emission. In Chapter 3 was analyzed how large the magnitude of the 
uncertainty of model inputs are and analyzed the sensitivity of modelled N2O emission 
for these model inputs. Key model inputs are soil type, organic matter content, N in 
applied cattle manure, N in manure from grazing cattle, fraction of soil N that is 
denitrified, fraction of soil N that is nitrified, emission factor of N2O due to soil 
denitrification, emission factor of N2O due to soil nitrification, yield of grass and % N in 
grass yield. These results were used to prioritize the importance of the model inputs. In 
this fourth step of the SAS method, quantitative scenarios with all relevant model 
inputs for the model INITIATOR were drawn up in detail based on the information 
collected in earlier steps.   

Modelling with INITIATOR for 2006-2040  
After the definition and specification of the scenarios, both spatial and non-spatial 
model inputs for the reference year 2006 and for 2040 under the different scenarios 
were available. However, to model N2O emissions for the entire period 2006–2040, 
model parameters for all years in-between were needed as well. To quantify these 
model parameters, the changes in the scenarios between 2006 and 2040 were 
assumed to be linear. An example is urbanization; pixels which are non-urban in 2006 
and urban in 2040 were grouped into 33 even classes (i.e. 33 years between 2006 
and 2040) based on the distance to urban areas. The first class represents the pixels 
closest to the urban areas in 2006 and these pixels were assumed to change to urban 
area in 2007. Thus, every class represents pixels undergoing urbanization in a 
specified year. When all model inputs were quantified for all years, the N2O emissions 
were simulated with INITIATOR. Emissions from soils in urban areas were not taken into 
account; therefore, the spatial extent of the fen meadow landscape is assumed to 
decrease due to urbanization. An uncertainty range of plausible future N2O emissions 
was made based on the simulated future N2O emissions.   
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Comparison of sources of uncertainty 
The uncertainty in future N2O emissions was compared to other sources of uncertainty 
in N2O emissions for the fen meadow landscape, such as uncertainty due to model 
inputs, model structure, and land cover databases. This comparison is based on values 
attained from other studies and literature. To indicate the relative importance of these 
sources of uncertainty compared to the range of future emissions, the coefficient of 
variation (c.v.) was estimated for each source and compared. 

5.3 Results 

5.3.1 Results of scenario building process 
Similar to the SRES scenarios (IPCC, 2000b), the scenario storylines are characterized 
by two axis that relate to the dominant differences between the scenarios (Fig. 5.2). 
The respondents unanimously answered that relatively extreme scenarios would be 
best applicable for the goal of this research; which is to quantify the full range of 
possible future N2O emissions. They believe that, for the global context, the IPCC A1 
economic growth & globalization scenario and the B2 environmental protection & 
regionalization scenario were the two most divergent SRES scenarios. The vertical axis 

Fig. 5.2 Schematic overview of the three scenarios for the Dutch fen meadow landscape. The y-axis 
represents the socio-economic drivers at global and national scale. The x-axis represents agricultural drivers 
at landscape scale 
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in Fig. 5.2 represents these SRES scenarios. According to respondents, the assumed 
conditions in the A1 scenario could lead to two alternative futures for the fen meadow 
landscape, which represents the horizontal axis: one scenario in which dairy farming 
continues and has a strong competitive position and one in which dairy farming is not 
able to compete with other regions and declines. These first two steps of the SAS 
method resulted in the construction of three scenario storylines for the fen meadow 
landscape: the rural production scenario, the rural fragmentation scenario, and the 
rural multifunctionality scenario (Fig. 5.2).  
 
Five drivers that differ under the three scenarios were identified to be most important 
for the fen meadow landscape: External drivers and threats, socio-economic 
developments including land use change, governmental intervention, and agricultural 
practices. The storylines, which were based on the respondents’ answers, were 
connected to literature, and data. Basic assumptions for these drivers under the three 
scenarios are listed in Table 5.2. Because the rural production and the rural 
fragmentation scenario are both based on the A1 scenario, many global and national 
drivers are similar. However, at the landscape level, differences become clear. Because 
the rural multifunctionality scenario is derived from the B2 scenario, many global and 
national drivers differ from the other two scenarios. For instance, climate change and 
sea level rise are more dramatic in the rural production and rural fragmentation 
scenarios than in the rural multifunctionality scenario.  
 
Rural production. Under this scenario, the world develops into A1 direction (IPCC, 
2000b) with continued globalization, limited regulation, and emphasis on market 
economy. In the Netherlands, administration, like spatial planning, becomes the 
responsibility of lower authorities, like municipalities and farmers. The pressure on 
space is large, especially in the western part of the Netherlands, because of a 
population growth due to immigration and a because of decreasing household size. 
Maintenance and protection of natural areas is not seen as a priority for the Dutch 
government and is mainly depending on private initiatives. Biofuel will be imported in 
this scenario. So there is no demand for local production of biofuel in this region. Dairy 
farming in the fen meadow landscape has a strong competitive position because of its 
location close to the market. The farms will increase in size (upscaling) in order to be 
competitive. Grassland is used intensively, meaning it will be heavily fertilized and 
frequently mown. The grassland area is drained to increase yield and to maintain 
bearing power. The groundwater levels maintain at the same depth below the soil 
surface; this means in practice, that they are regularly lowered to compensate for soil 
subsidence. Technological innovations will increase productivity and efficiency. Floods 
will be a large threat, due to soil subsidence and rapid sea level rise (Aerts et al., 2008). 
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Salt seepage, droughts, and heavy rain showers will also be threats, especially for 
agriculture (KNMI, 2006).   
 
Rural fragmentation. In this scenario, the region also develops in a context of 
continued globalization, limited regulation, and emphasis on market economy (A1). 
Therefore, the global and national context is the same as in the first scenario. In 
contrast to that scenario, dairy farming in the fen meadow landscape has a weak 
competitive position and declines. Daily fresh milk will be imported mainly from Poland 
and Russia. Within the Netherlands, the northern provinces Groningen and Friesland 
have a stronger competitive position due to better possibilities for upscaling. Only a few 
large-scale intensive farms will be able to survive in the fen meadow landscape. To 
decrease soil subsidence and drainage costs, groundwater levels will be raised at 
locations where dairy farming has stopped. Nature organizations do not have enough 
capital to purchase and manage all former agricultural areas, consequently, areas will 
become fallow and reed and willow vegetation will take over. The area of deciduous 
forest will nearly double. Besides, land abandonment and high water levels will lead to 
new peat swamps and the landscape will have a less open character. Probably entire 
polders are used for water storage, to cope with flood risks (Aerts et al., 2008). Some 
polders will be managed as residential and recreational parks.  
 
Rural multifunctionality. The world develops similar as in the B2 scenario (IPCC, 2000b) 
with focus on regional development and strong regulation towards environmental 
concerns. In the Netherlands, population will decrease and economic growth will 
decline. Production subsidies, however, are largely replaced by subsidies to enhance 
agro-ecological qualities. Provincial and national authorities will be more powerful, 
instead of farmers or municipalities. They make clear choices on spatial planning and 
land use, because they recognize the problems associated with climate change. 
Urbanization will be within or adjacent to existing urban areas and green and blue 
buffers will be constructed around cities. At regional scale, there will be fewer changes 
in land use as compared to the other scenarios. Dairy farming can survive in the fen 
meadow landscape, although the grassland area will be used more extensively. Instead 
of the current strategy in which ditch water levels are adapted to the function of the 
polder, the strategy “Function follows water level” will be implemented. Groundwater 
levels are raised at low-lying meadows; the land use will change into nature. Drainage 
will be continued at higher located meadows, which are still used for dairy farming.  
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Table 5.2 Basic assumptions under the main drivers of the three scenario storylines for the period 2006-
2040. 
Rural production Rural fragmentation Rural multifunctionality 
External drivers and threats 

Climate 
Increase of 2ºC between 1990 and 2050 and a strong change in 
atmospheric circulation (W+ scenario KNMI). Small decrease and 
more variation in annual precipitation (summer -19%, winter +14.2%)1 

Increase of 1ºC between 1990 
and 2050 and a weak change in 
atmospheric circulation (G 
scenario KNMI). Increase in 
annual precipitation (summer 
+2.8%, winter +3.6%)1. 

Sea level rise 
+40 cm (including 5 cm soil subsidence)1,2. Increased salt seepage in 

drained grasslands and increased flood risks. 
 Entire polders are used for water 

storage. 

+0.20 cm (including 5 cm soil 
subsidence)1,2. The strategy 
‘Function follows water level’ is 
implemented to cope with flood 
risks and soil subsidence. 

Socio-economic developments 
Economic growth 

2.9% per year for the Netherlands3 2.3% per year for the 
Netherlands3 

Population 
19.7 million in the Netherlands4 15.8 million in the Netherlands4 

Social coherence 
Weak, emphasis on individual freedom3 Strong, emphasis on regional 

3
Economic orientation 

Free market prevails3,5 Government intervenes3,5 
Governmental intervention 

Common Agricultural Policy (CAP) 
CAP subsidies and cohesion policy are phased out by 20306 CAP subsidies: increase of 10%, 

linked to environmental and 
social targets (production 
subsidies are replaced by nature 
subsidies). Export subsidies are 
eliminated.6 

Spatial policy 
Less restrictive policies3 Restrictive policies for rural 

3
Nature protection policy 
Protection of most valuable areas only. Acquisition by private owners 
and organisations3. 
 Large areas become unmanaged 

nature reserves. 

Large areas are protected; 
nature restoration and land 
reclamation for new nature3. 
Acquisition by national 
government3.  

National ecological network (NEN) 
The NEN is fragmented, which 
causes a risk of decreasing 
biodiversity. 

Many peat swamps come into 
existence; the planned ecological 
links between the natural areas 
are not finished.  

The NEN is finished in 20187 to 
preserve biodiversity. 
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Water management 
Continued drainage of peat soils; 
consequently salt seepage 
increases1. In general due to 
continuing drainage of peat soils, 
the mineralization of peat soils 
continues. 

Continued drainage of peat soils 
at large scale farms; consequently 
salt seepage increases 1. 
Groundwater levels are raised in 
abandoned areas. Large areas 
become wetter and change into 
peat swamps.  

Water levels are managed by 
local water boards8 following 
‘Function follows water level’. 
Groundwater levels are raised in 
wet areas, the mineralization of 
peat soils decreases. 

Land use and land cover changes 
Land cover change (map) 

The total urban area in the Netherlands increases with 190,000 ha 
between 2010 and 20405. Urban sprawl (recreational and residential 

parks) in rural areas, strong increase in low-density dwellings8.  
.  More swamps. Large-scale farms 

on clay-on-peat soils. 

Concentration of urban areas 
near existing urban areas.8 More 
lakes and natural areas. 

Land use change (map) 
Small decline in agricultural land 
use. 

Strong decline of agricultural land 
use.4,8 

Small decline in agricultural land 
use8.Increase of natural areas at 
low areas; especially flowery hay 
lands and bird meadows.  

Agricultural practices 
Agricultural sector 

Industrial dairy farming and greenhouse farming8 and upscaling of 
farms9. 

More extensive small-scale 
farming8 

Fertilization 
Optimal fertilizer rates at large scale farms. Fertilizer rates decline by 50%. 

 
Animals 

In the Netherlands: Dairy cows +25%4 and pigs -5%4 
Similar trend in the fen meadow 
landscape. 
 

A large increase in cows in 
Northern provinces, consequently 
the amount of cows in the fen 
meadow landscape decreases. 

The Netherlands: Dairy cows -
15%4 and pigs -55%4. Similar 
trend in the fen meadow 
landscape. 
 

1 KNMI (2006)   

 2 Kabat et al. (2009) 
3 MNP (2002) 
4 MNP (2006) 
5 MNP (2007) 
6 De Vries et al. (2008) 
7 VROM (2004) 
8 Koomen (2008) 
9 Provinces (2009) 
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Farmers will receive subsidies to manage the wet meadows as high nature valued 
farmland e.g. as meadow bird reserves or flowery hay lands. Because farmers have to 
pay for GHG emissions of their farm, they consider measures to reduce emissions; e.g. 
by using submerged drains (Pleijter & Van den Akker, 2007), by changing the cattle’s 
diet, and by building low-emission stables. The NEN will be completed in 2018 as 
planned and nature is combined with recreation and biofuel cultivation of reed or 
willow vegetation. New lakes will be made, because they have a large recreational 
value and can contribute to preserve biodiversity.  

5.3.2 Model results 
All model inputs for INITIATOR were quantified in order to model N2O emissions. Most 
model inputs could be directly quantified based on the scenarios, but some model 
inputs needed extra work. Therefore, the assumptions underlying these inputs are 
presented (Table 5.2). 

Future changes in model inputs 
The major land use change in the rural production and the rural fragmentation 
scenarios is urbanization. In the rural fragmentation scenario, new nature is also 
abundant, because agricultural grassland will be either replaced by urban area or will 
be abandoned and taken over by deciduous forest. In the rural multifunctionality 
scenario, nature restoration and land reclamation for new nature is the major land use 
change, which is mainly due to the completion of the NEN (Fig. 5.3). In this scenario, 
the nature reserves are predominantly extensively managed meadows. They are 
classified as nature in Fig. 5.3, because nature organizations own these areas. In the 
rural production scenario, groundwater tables were assumed to remain the same as in 
the reference year. In fact, this means that groundwater tables are lowered annually to 
compensate for soil subsidence. In the rural fragmentation scenario, the groundwater 
levels are raised 2 cm per year in areas covered by deciduous forest, mainly alder and 
willow, which can stand wet conditions. In the rural multifunctionality scenario, the 
groundwater levels are increased in all low-lying areas (lower than 1.5 m below mean 
sea level (MSL)). This rise in groundwater level is assumed to be related to the absolute 
location of the area compared to MSL, for instance, areas which are located 1.5 m 
below MSL were assumed to have a rise in groundwater level of 0.5 cm per year, while 
areas which are located 6 m below MSL were assumed to have a rise in groundwater 
level of 2 cm per year.  



 Uncertainty in future N2O emission due to land use change 

 119
 

 

Fig. 5.3 Land use under different scenarios for (a) the reference year 2006, (b) the rural production 
scenario in 2040, (c) the rural fragmentation scenario in 2040 and (d) the rural  multifunctionality scenario in 
2040.
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Changes in N2O emission 
Under all scenarios, the soil subsidence was considerable. The rural production 
scenario had the largest soil subsidence of 20.7 cm on average, while the rural 
multifunctionality scenario had the smallest soil subsidence of 17.6 cm as a result of 
the higher groundwater levels. In the top layer, due to oxidation of peat, mineral parts 
will be left over that will lead to a gradual evolvement from a peat layer into a clay layer 
(Table 5.3). 
 
Table 5.3. Distribution of soil types in the Dutch fen meadow landscape for 2006 and for 2040 under 
different scenarios. 

 Reference year1 Rural production Rural fragmentation Rural multifunctionality 
Soil type 2006 2040 2040 2040 
Clay 4% 4% 3% 4% 
Thick peat 86% 65% 67% 68% 
Thin peat 4% 3% 3% 3% 
Peaty clay 2% 13% 7% 11% 
Water/Urban 3% 15% 20% 13% 
1 See also Table 5.1 
 
All scenarios show a decrease in aggregated N2O emissions (Fig. 5.4). However, the 
decrease in the rural production scenario is caused by rapid urbanization, which 
causes a decrease of the area of agricultural land. Therefore, this scenario shows a 
small increase of +4% in N2O emission per hectare of agricultural land. For the period 
2006 to 2025, the trends in N2O emissions under the rural fragmentation and in the 
rural multifunctionality scenarios are comparable. However, between 2026 and 2040 
the N2O emissions under these two scenarios diverge. Under the rural 
multifunctionality scenario, the N2O emission continues to decrease to 1110 t N2O-N 
yr-1 in 2040, whereas the emission under the rural fragmentation scenario decreases 
less rapidly and is assumed to be 1336 t N2O-N yr-1 in 2040. The decrease in the rural 
multifunctionality scenario can be mainly attributed to the policy on agricultural 
management, while the decrease in the rural fragmentation is mainly due to a 
decrease in nitrogen mineralization, because of increased groundwater levels. The rise 
in groundwater levels clearly reduces emissions in the first decade, but the extra rise in 
groundwater level in the following decades shows less effect. 
 
The rapid urbanization under the rural production scenario is also visible in the spatial 
distribution of N2O emissions by pixels with zero emission around Amsterdam and 
around The Hague (Fig. 5.5). Average N2O emission in rural areas increases due to 
intensification of agriculture. Under the rural fragmentation scenario, many locations 
have low or zero emission due to a strong decrease in dairy farms and due to 
urbanization. The few remaining dairy farms are located in the centre of the fen  
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meadow landscape. Under the rural multifunctionality scenario, the NEN is clearly 
visible by its low emissions. These emissions are small because of the absence of 
agricultural practices (fertilization, manure application, and grazing) and low 
mineralization rates due to high groundwater levels. The eastern part and a small area 
in the northwest part of the fen meadow landscape emit more N2O than the rest of the 
landscape, because these parts are located at higher altitudes and are therefore 
assumed to be better drained and more suitable for intensive dairy farming.  

Emission sources 
While the total aggregated emissions differs considerable between the scenarios (Fig. 
5.4), their shares among N2O emission sources stay quite similar (Fig. 5.6). This shows 
that the assumptions under the scenarios are strongly correlated. For instance, 
intensive agriculture in the fen meadow landscape is only possible on land with deep 
groundwater levels to bring about enough bearing capacity. Due to deep drainage, 
oxidation and mineralization of the soil will be large. Large emissions from agricultural 
management are therefore closely related to large emissions from mineralization. 
Under all scenarios, mineralization remains the major source of emission, although the 
total amount of emission due to mineralization decreases under all scenarios. Under 
the rural multifunctionality scenario, the emission due to mineralization even halves. 

Fig. 5.4 N2O emission (ton N2O-N  yr-1) between 2006 and 2040 under different scenarios. 
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Fig. 5.5 Maps of N2O emissions from the Dutch fen meadow landscape for (a) reference year 2006, (b) the 
change in emission in the rural production scenario in 2040, (c) the change in emission in the rural 
fragmentation scenario in 2040 and (d) the change in emission in the rural multifunctionality scenario in 
2040 
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Comparison with other sources of uncertainty 
Table 5.4 presents an overview of estimates in uncertainty in N2O emission inventories 
based in three different studies for the same area. Although the different uncertainty 
sources are difficult to compare due to differences in scale of assessment, the 
coefficient of variation provides an indication of their relative importance. Compared to 
the other uncertainties, the uncertainty due to differences in possible land use changes 
is a significant source. However, the largest source of uncertainty in emissions is due to 
uncertainties in model inputs (especially emission factors and soil parameters) at point 
scale, which also affects landscape scale estimates. More details on the different 
sources of uncertainty can be found in the chapters referred to in Table 5.4. 

5.4. Discussion 

5.4.1 Scenario construction process 
Research on future trends and GHG emission at landscape scale is usually focused on 
one part of the Story And Simulation approach; either on thorough scenario 
construction or on the simulation of biophysical properties. Garb et al. (2008) also 
pinpointed to the growing imbalance between environmental modelling of scenarios 
and a proper social analysis of scenarios. Scenario developers are mainly focusing on 
the construction of plausible and consistent scenarios for simulating social-economic 
developments and land use change (Rounsevell et al., 2005; Soliva & Hunziker, 2009; 
Tress & Tress, 2003); while GHG researchers mainly simulate future GHG emissions by 
estimating the effect of one or more specific measures (Johnson et al., 2007; Oenema 
et al., 2001; Weiske et al., 2006). For the fen meadow landscape both parts of the SAS 
approach are equally important to determine the range of future emissions. These 
parts are also strongly linked, because N2O emission is strongly related to land use. 
Therefore, this research did not only focus on the estimation of possible future N2O 
emission, but also on the construction of plausible and coherent scenarios in close 
cooperation with stakeholders and experts. In this way, stakeholders are also “owner” 
of the constructed scenarios and they are more open to adopt the study’s results 
(Mahmoud et al., 2009). The outcomes of this study can be used as a platform for 
discussion on adaptation and mitigation and can enhance decision-making processes. 
Kok (2009) stated that although the SAS method combines advances of qualitative 
and quantitative scenarios, the link between these qualitative and quantitative 
scenarios is still weak. To strengthen this link, qualitative scenarios were translated to 
main drivers before model inputs were quantified. 
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Fig. 5.6 Distribution of sources of N2O emission (a) in the reference year 2006 and in 2040 under different 
scenarios and (b) under different scenarios compared to the reference year. The emission sources of the
reference year 2006 were all set at 100%. 
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Land use change results from scenarios of the LANDS project (Koomen et al., 2008), 
were applied, because this project has incorporated climate change in the scenarios 
and it has a strong focus on the ‘Randstad’ in the Netherlands, which is largely 
corresponding to the location of the fen meadow landscape. In their global economy 
scenario, derived from the IPCC SRES A1 scenario, agriculture will drastically reduce 
around the cities of Amsterdam and Utrecht in 2030 while there is a strong increase in 
urban land use, recreational area, and nature reserves. In their regional community 
scenario, derived from the IPCC SRES B2 scenario, the decrease in agricultural area is 
less pronounced and the focus is in on preserving open areas for recreation and on 
new opportunities for farming. Because the LANDS project is mainly focused on socio-
economic developments and urban land use, land use change scenarios from MNP 
(2007) were used for rural land use. De Nijs et al. (2004) also constructed land use 
change scenarios based on IPCC scenarios; however, they did not include climate 
change effects. In their ‘Individual World’ scenario, agricultural subsidies are 

Table 5.4 Sources of variability for N2O emission from the Dutch fen meadow landscape and their 
coefficient of variation (C.V.) and, if applicable, their range of C.V.’s at different spatial scales. 
Sources of variability Scale C.V. Range 
Variability due to inventory method/model    
        - due to model formulation (using Tier 3a, Tier 3b)a Parcel 32% 8%-123% 
        - due to inventory method (using Tier 1, Tier2a,Tier2b, Tier 3a)b Polder 33% 21%-41% 
        - due to inventory method (using Tier 1, Tier 2a) b Polder 6% 4%-9% 
        - due to inventory method (using Tier 1, Tier 2a) b Landscape 7% 7.0%-7.4% 
Variability due to model inputsc    
      Variability due to all model inputs, divided into: Point 78%  
       - due to emission factors Point 32%  
       - due to soil parameters Point 30%  
       - due to manure management parameters Point 11%  
       - due to crop parameters Point 5%  
      Variability due to all model inputs, divided into: Landscape 52%  
       - due to emission factors Landscape 35%  
       - due to soil parameters Landscape 7%  
       - due to manure management parameters Landscape 5%  
       - due to crop parameters Landscape 5%  
Variability due to variability in land cover datab    
       - using Tier 1, Tier 2a, Tier 2b, Tier 3a Polder 6%  3%-14% 
       - using Tier 1, Tier 2a Polder 4%  2.9%-4.4% 
       - using Tier 1, Tier 2a Landscape 8% 8.0%-8.2% 
Variability in timea    
       - due to between-year variation in models (using  

Tier 3a, Tier 3b) Parcel 30%  7%-54% 

Variability due to future scenarios    
       - due to land  use change induced by socio-economic  
         developments Landscape 26%  
a Chapter 3 of this thesis 
b Chapter 2 of this thesis 
c Chapter 4 of this thesis 
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diminished and therefore the agricultural area will sharply decrease. This land will be 
left fallow or bought by nature conservation organizations for nature protection and by 
private investors to build rural estates. This ‘Individual World’ scenario is closely related 
to our rural fragmentation scenario. In their study, the increase in natural areas for the 
year 2030 will be larger, especially in the northern part of the landscape. This is mainly 
caused by classification differences, e.g. green rural residential areas are classified as 
natural area, whereas LANDS classifies them as urban. Rounsevell et al. (2005) 
estimated land use change under the IPCC scenarios at European scale until 2080, 
using a simple supply/demand model. In 2080, the Dutch agricultural area is assumed 
to decline by 29% under the B2 scenario. For our rural multifunctionality scenario a 
comparable decline in agricultural area of 30% was simulated; however, this decline is 
already reached in 2040. This can be explained by the large pressure on space in the 
fen meadow landscape compared to the rest of the country. The same applies when 
comparing land use change in other scenarios to the study of Rounsevell et al. (2005). 
For instance, in both studies the area of grassland declines under all scenarios due to 
urbanization and the increase of natural areas.  

5.4.2 Implications of the model results 
The large and uncertain N2O emissions are typical for the Dutch fen meadow landscape 
(Langeveld et al., 1997; Velthof, 1997) and emphasize the need to research 
uncertainties in future N2O emissions for this landscape. Roelandt et al. (2007) 
estimated future N2O emissions from Belgium until 2050. They used simple statistical 
models, which required land use data, climate data, and N management data. 
Roelandt et al. (2007) concluded that N2O emissions from Belgian agricultural soils will 
be more affected by changes in agricultural land cover than by other factors that affect 
emissions. In this study, it was found that although the decline in agricultural land 
cover does not differ much between the scenarios (between 21% and 30%), the 
differences in estimated N2O emission between the scenarios are considerable 
(between -44% and -7%). The differences in land use change (land cover and land 
management) between the scenarios had much a larger effect on N2O emissions than 
differences in climate conditions between the scenarios. The small difference between 
temperatures has no influence on N2O emissions; whereas the differences in N input 
and ground water level have a large influence on N2O emissions. The differences 
between the rural production scenario and the other scenarios (Fig. 5.4) can be 
attributed to the difference in the dairy farming sector. The rural production scenario 
showed a decrease in aggregated emissions, whereas it showed a small increase in 
emission per hectare. The clayey peat soils and peaty clay soils are more favorable for 
urban expansion due to a larger bearing capacity than thick peat soils, whereas the 
thick peat soils together with an intensification of agricultural use have the highest 
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emission potential. Therefore, the trend in N2O emission per hectare can be opposite to 
the trend at landscape scale.   
 
The importance of the different sources related to agricultural management (manure 
application, fertilization, and grazing) differ between the scenarios (Fig. 5.6). Under the 
rural fragmentation scenario, these emission sources all have a small share, because 
dairy farming is outcompeted by other regions. Under the rural multifunctionality 
scenario, the share of fertilization is low, due to measures to reduce fertilizer 
application while the ratio grazing/manure application is larger compared to the other 
scenarios due to an increase in grazing time. The assumptions underlying the 
scenarios are strongly correlated. For instance, if groundwater levels are raised, the 
mineralization will be reduced but the area is also less suitable for intensive dairy 
farming; therefore, a small N2O emission from mineralization is correlated to a small 
N2O emission from fertilization (Fig. 5.6). Measures to mitigate agricultural N2O 
emissions should not focus on the effect of one source of N2O emissions, but should 
focus on the interplay between the different sources. A raise in groundwater levels 
does therefore not only decrease soil subsidence, decrease salt seepage and decrease 
flood risks, but can also contribute to mitigation of N2O emissions in two ways: by 
decreasing the mineralization rate and by decreasing agricultural N inputs. The 
disadvantage of higher groundwater levels is an increased CH4 emission (Hargreaves & 
Fowler, 1998; Hendriks et al., 2007; Van den Pol- van Dasselaar et al., 1999).  
 
The change in soil types in the fen meadow landscape between 2006 and 2040 is 
remarkable. Many peat soils in the fen meadow landscape already have a clayey top 
layer. If, over the years, this layer becomes thicker than 40 cm, the soil is classified as 
a peaty clay soil (Table 5.3). The rate of this mineralization process is positively related 
to the rate of soil subsidence. The process of peat oxidation is also discussed in Nol et 
al. (subm.), Finke et al. (1996), and Van Kekem et al. (2005). Lately, this change in soil 
type has been recognized in the Netherlands and therefore the provinces of Utrecht 
(Stouthamer et al., 2008) and Drenthe (Kempen et al., 2009) have updated their soil 
database. In these new soil databases, many former peat soils with a thin mineral top 
layer are now classified as peat soils with a thick mineral top layer and former peat 
soils with thick mineral layers are now classified as mineral soils. The process of peat 
mineralization and the resulting decline of peat soils create difficulties for N2O 
emission inventories; soil type can no longer be assumed as a static parameter, it is 
changing in time and depending on the rate of mineralization. As a consequence, the 
amount of N2O emitted from these landscapes is not linearly related to variables, like 
agricultural area and management intensity, but also depending on the driving forces 
of the mineralization rate.  
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Examples of comparable areas with comparable soil types and hydrology can be found 
in Germany (Augustin et al., 1998; Goldberg et al., 2010), Finland (Alm et al., 2007), 
Canada (Wray & Bayley, 2007), Denmark (Blicher-Mathiesen & Hoffmann, 1999). 
However, most of these landscapes have lower N2O emissions because they are not 
used for agriculture or the N-input to these landscapes is lower. Most of these 
landscapes are wetlands, while the fen meadow landscape in the Netherlands is 
drained for agricultural purposes.  
 
This research focused on the soil-bound N2O emissions. However, if one is interested in 
the full GHG balance and in the most favorable scenario in terms of GHG mitigation, 
this study should be extended with N2O emissions from stables, leaching, and runoff 
and also from open water, urban, and industrial areas. In the Netherlands, about 61% 
of the total N2O emission is originating from agriculture (Van der Maas et al., 2009). 
The other sources of N2O emission are mainly from point sources, such as industrial 
processes and solvents, which are easier to measure and result in more accurate 
estimates than dispersed sources, such as agriculture. Agricultural soils in the 
Netherlands are responsible for 91% of the N2O emissions from agriculture, therefore 
N2O emissions from agricultural soils are identified as a key source in the National 
Inventory Report and are for a large part responsible for the uncertainty in the overall 
GHG estimates (Van der Maas et al., 2009).  
 
In a full GHG balance, CO2 and CH4 emissions should also be included (Brink et al., 
2001; Luo et al., 2010). The N2O emission under the rural production scenario would 
probably increase faster when stable N2O emission was included because of the 
increase in cattle combined with a decrease in grazing time. The CO2 emission will 
probably stay high under this scenario due to continued draining of the peat soils. 
Under the rural fragmentation scenario, the decrease in N2O emission will, to a some 
extent, be counterbalanced by an increase in CH4 emissions due to raised groundwater 
levels and resulting peat swamps in large parts of the fen meadow landscape 
(Hendriks et al., 2007). In time, the CO2 emission will decrease due to a decrease in 
peat mineralization. Carbon will perhaps even be sequestered in 2040. The N2O 
emission from stables under the rural multifunctionality scenario will probably decrease 
due to a decrease in cattle numbers and an increase in grazing time. The CO2 and CH4 
emission in the rural multifunctionality scenario will probably be in between the 
emissions for the rural production and rural fragmentation scenarios, given the 
development of groundwater levels in this scenario. 
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5.4.3 Uncertainty Assessment 
This study was focused on the uncertainty due to future land use change. However, 
other uncertainties such as uncertainty due to model inputs, uncertainty due to model 
structure, and uncertainty due to spatial and temporal upscaling can also cause 
uncertainty in modelled N2O emissions (Table 5.4). Rapid land use change and the 
question if dairy farming can be sustained contribute to the variation in future 
emissions estimated for the fen meadow landscape. It is important to account for such 
changes in designing policies for emission reduction. The importance of land use 
change and the implications on uncertainty of future emission estimates varies 
between landscapes and between countries, e.g., the results of this study are different 
from the findings of Dendoncker et al (2008) who estimated for Luxembourg that 
uncertainty due to diverging scenarios is small as compared to uncertainty resulting 
from data processing.  

5.5. Conclusion 
This study combines theory and models from social and natural sciences to make an 
assessment of future emissions of N2O in the western part of the Netherlands. By 
means of the Story And Simulation method, stakeholders and experts were consulted 
to construct future scenarios for the fen meadow landscape. The main scenario drivers 
were translated to model inputs and a biogeochemical model was used to simulate 
N2O emissions under the different scenarios. The participatory and iterative method for 
building scenarios resulted in a series of plausible scenarios that were accepted by a 
wide range of experts and stakeholders. 
 
Changes in future N2O emission from agricultural soils in the fen meadow landscape 
may range between 1110 (-44%) and 1839 (-7%) t N2O-N yr-1 for 2040 compared to the 
emission in 2006. The scenario in which dairy farming in the area will continue and 
intensify (rural production scenario) causes the largest N2O emissions, although 
urbanization will rapidly decrease the size of the fen meadow area. The scenario in 
which dairy farming continues in an extensive way (rural multifunctionality) has lower 
N2O emissions than the scenario in which the dairy farming sector is marginalized 
(rural fragmentation). For the fen meadow landscape, sources of N2O emission are 
strongly and positively related to each other. When implementing mitigation strategies 
to reduce N2O emissions from one source, N2O emissions from other sources are also 
reduced, which should be accounted for in designing policies. As compared to other 
sources of uncertainty in N2O emission inventories the uncertainty due to future 
changes in land use is high. Therefore, the uncertainty of N2O emission for the fen 
meadow landscape, as result of possible diverging land use change trajectories should 
be accounted for in mitigation and adaptation strategies. 
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6.1 Uncertainty and N2O emission inventories 

6.1.1 Main findings 
In this thesis, the uncertainties in inventories of the GHG N2O were assessed for a peat 
area in the Netherlands, the Dutch fen meadow landscape. An overview of the main 
conclusions is given in this chapter. The importance of the different sources of 
uncertainty and the relationships between the different sources of uncertainty is 
discussed. In addition, the relevance of these findings for science and society will be 
discussed. The main findings of the research presented in the previous chapters are: 
 

1. Uncertainties in emission inventories are affected by spatial scale effects; 
- The choice of a certain land cover database (with a specific spatial 

resolution) can have large effects on N2O inventories; differences in 
estimated surface areas of landscape elements between different 
land cover databases sometimes exceed 20% for the fen meadow 
landscape while each landscape element has its own emission 
characteristics (§2.4). 

- At polder scale, the differences in estimated N2O emissions were 
larger between the inventory techniques than between land cover 
data. At landscape scale, the opposite applies because errors in land 
cover data were mainly systematic (bias) and errors in inventory 
techniques were mainly random. Bias is consistently in the same 
direction and does not cancel out when estimates are scaled up; 
therefore, at larger scales these systematic errors are more distinct 
compared to random errors in emission factors (§2.4). 

 
2. Besides issues of spatial upscaling, uncertainties can also be related to 

temporal upscaling; 
- Data on the distribution of rainfall within a year is crucial for 

estimating annual N2O emissions from intensively managed 
grasslands in the fen meadow landscape. In years with a relatively 
large summer rainfall, N2O emission estimated with a high temporal 
resolution model was larger than estimated with a low temporal 
resolution model. In years with a relatively small summer rainfall, the 
opposite occurred (§3.5).  

- Low temporal resolution models such as INITIATOR (and other Tier 2 
methods) may be improved for intensively managed grasslands on 
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peat soils by adjusting N2O emission estimates for years with 
relatively dry summers or wet summers (§3.5).  

- Exact timing of nitrogen application is not important for estimating 
annual N2O emissions for intensively managed grasslands on peat 
soils, because the application has a prolonged effect of weeks or 
even months. Therefore, more detailed information about timing of 
nitrogen application does not directly yield more accurate results. It 
is sufficient to know in which month the application took place (§3.5).  

- Emission factors estimated from the two models (INITIATOR and 
DNDC) varied largely between the models and between years. It is 
therefore recommended to derive emission factors over a large 
period of time (decades) and to be cautious with emission factors 
from years with very large of very small summer rainfall (§3.5). 

 
3. Uncertainty also results from uncertainty in model inputs; 

- The uncertainty in N2O emission in the Dutch fen meadow landscape 
due to model inputs is substantial and ranges between 52% at 
landscape scale and 78% at point scale (§4.5). 

- The contribution of uncertainty sources is scale-dependent. Non-
systematic uncertainty in spatial variables (such as soil inputs) can 
average out (i.e., decrease) with upscaling, while for variables that 
are constant in space the uncertainty remains the same (§4.5).  

 
4. Uncertainty in estimates of future emissions can originate from differences in 

land use change induced by future socio-economic developments; 
- Changes in future N2O emissions from agricultural soils in the fen 

meadow landscape ranges between -875 (-44%) and -144 (-7%) 
t N2O-N yr-1 for 2040 compared to the emission in 2006. A scenario 
in which dairy farming will continue and intensify (‘rural production’ 
scenario) causes the largest N2O emissions, even though 
urbanization rapidly decreases the spatial extent of the fen meadow 
area. The scenario in which dairy farming continues in an extensive 
mode (‘rural multifunctionality’) has smaller N2O emissions than the 
scenario in which the dairy farming sector has almost disappeared 
(‘rural fragmentation’), because the former scenario employs 
measures to decrease peat mineralization and policies to reduce 
agricultural emissions (§5.5).  

- For the fen meadow landscape, sources of N2O emission are strongly 
and positively related to each other. When implementing mitigation 
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strategies to reduce N2O emissions from one source, N2O emissions 
from other sources are in many cases also reduced (§5.5). 

- Given the significant uncertainty in future emissions compared to 
other uncertainties, the uncertainty in land use change should be 
accounted for in mitigation and adaptation strategies (§5.5).  

6.1.2 Sources of uncertainty 
In this thesis, various sources of uncertainty in N2O emission inventories were 
discussed. Large uncertainties in N2O emission estimates (at point support) were found 
as a result of uncertainty in model inputs at point support (Tables 5.4; 6.1). These 
model inputs can be divided into emission factors, soil parameters, manure 
management parameters, and crop parameters. At landscape support, especially 
emission factors are a large source of uncertainty, because other factors partially 
cancel out when scaling up. This was also found for many other ecosystems and 
countries (Mosier et al., 1998; Payraudeau et al., 2007; Ramírez et al., 2008). At point 
support, not only emission factors are a main source of uncertainty, but soil 
parameters as well. For Germany, Jungkunst (2006) found that soil properties 
influenced N2O emissions at site scale, while no relation was found at national scale. 

Table 6.1 Simplified version of Table 5.3; different sources of uncertainty for N2O emission from the Dutch 
fen meadow landscape, their scale, and their coefficient of variation (C.V.) 
Sources of uncertainty support resolution extent C.V. 
Uncertainty due to:     
- all key model inputs  point 250m f.m.l.b 78% 
- all key model inputs  f.m.l.b f.m.l.b f.m.l.b 52% 
- N2O measurements; choice of the regression methoda   point point point 40% 
- emission factors  f.m.l.b f.m.l.b f.m.l.b 35% 
- inventory method (using Tier 1,Tier2a,Tier2b,INITIATOR)  0.2-100m 0.2-100m polder 33% 
- emission factors  point 250m f.m.l.b 32% 
- model formulation (using INITIATOR and DNDC)  parcel parcel parcel 32% 
- soil parameters  point 250m f.m.l.b 30% 
- between-year variation in INITIATOR and DNDC  parcel parcel parcel 30% 
- socio-economic developments and land use change  point 250m f.m.l.b 26% 
- manure management parameters  point 250m f.m.l.b 11% 
- land cover data (using Tier 1, Tier 2a)  0.2-100m polder f.m.l.b 8% 
- inventory method (using Tier 1, Tier 2a)  1-25m polder f.m.l.b 7% 
- soil parameters  f.m.l.b f.m.l.b f.m.l.b 7% 
- land cover data (using Tier 1,Tier2a,Tier2b,INITIATOR) 0.2-100m 0.2-100m polder 6% 
- inventory method (using Tier 1, Tier 2a) 0.2-100m 0.2-100m polder 6% 
- crop parameters  point 250m f.m.lb 5% 
- manure management parameters  f.m.l.b f.m.l.b f.m.l.b 5% 
- crop parameters  f.m.l.b f.m.l.b f.m.l.b 5% 
aKroon et al. (Kroon et al., 2008) 
bf.m.l. = fen meadow landscape 
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Although this thesis deals with the effect of uncertainty in soil parameters on 
uncertainty in N2O emissions, the similarity is that soil parameters have more influence 
on N2O emissions at small scale than at large scale. For the fen meadow landscape, 
the uncertainty in soil parameters is mainly caused by changes in parameters due to 
mineralization of peat soils. Most Dutch soil data were derived in the 1960’s and 
1970’s. However, peat soils are subject to change and therefore soil parameters 
derived from these data for the fen meadow landscape have large uncertainties. 
Recently, fieldwork and research have started to update the Dutch soil data and soil 
maps. When the updated soil map is available and used to derive soil parameters, the 
uncertainty due to soil parameters can be reduced. In the Netherlands, many data on 
manure management parameters are available. For countries which do not have as 
detailed manure management data, the uncertainty due to manure management 
parameters will probably be larger. Uncertainties due to the inventory method or model 
used are also considerable. The uncertainty due to model formulation was estimated 
as 32%, but it should be noted that this uncertainty estimate was based on a 
comparison of two models only. To improve the reliability of the uncertainty estimate, 
other models should be included too. When comparing Tier 1 and Tier 2a methods, the 
uncertainty due to inventory method is underestimated, because these methods have 
the same model structure and produce similar results. The uncertainty due to 
uncertainty in land cover data is also quite small; however, this uncertainty is 
systematic and does not average out when aggregating. This uncertainty is relatively 
easy to reduce by using high-resolution land cover data for landscapes with many linear 
landscape elements. The variation due to between-year variation in models is 
considerable (30%). However, the uncertainty between years modelled by INITIATOR 
was larger (45%) than modelled by DNDC (14%). The uncertainty due to socio-economic 
developments and land use change was estimated as 24%, future projections for 2040 
ranged between 1.1 and 1.8 kt N2O-N yr-1. This uncertainty source is an outsider 
compared to the other sources, because it does not directly influence current N2O 
inventories.  
 
The uncertainty due to measurement errors or limitations in measurement equipment 
was not assessed in this thesis. However, many researchers that work on this theme 
and indicate that measurement error can be a large source of uncertainty. Especially in 
the Dutch fen meadow landscape, where many measurement campaigns are being 
executed (Hendriks et al., 2007; Kroon et al., 2008; Schrier-Uijl et al., 2008). For 
instance, Kroon et al. (2008) showed that the choice of regression method used for 
closed chamber measurements considerably influences N2O emission estimates. 
Estimates of an exponential regression method and a linear regression method differ 
up to 40%. 
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Uncertainty in inventory data can also be a result of processes that are not 
incorporated in N2O emission inventories. These processes are ignored because they 
are unknown or because modellers think they are not relevant. For instance, the effect 
of dredging of ditches is usually not incorporated in emission inventories, whereas 
recent measurements suggest that this can be an important source of GHG emission 
(Rietra et al., 2009). Research on which processes are relevant and which are not and 
on whether the relevant processes are described properly by the model, is important. 
 
Less important uncertainty sources are the variability in crop parameters and in 
manure management, mainly because in the Netherlands much high-resolution up-to-
date information about these model inputs is available. The uncertainty due to 
variability in land cover data is also small compared to other uncertainty sources. 
However, as mentioned above, this uncertainty source is systematic and does not 
cancel out by aggregation; while it is easy to reduce by using high-resolution land cover 
data.   

6.1.3 Uncertainty interactions 
Most uncertainties in N2O emission inventories are spatially autocorrelated, related to 
each other, and related to the scale of inventory. In this section, some important 
identified interactions are discussed.  
 
The preceding chapters showed that for N2O emission inventories, spatial and temporal 
uncertainties are related. At the extent of a polder, the temporal variation and 
uncertainty at field support can be large, while at polder support small-scale variation 
can average out (because e.g. farmers fertilize at different days). The systematic error 
of overestimating the grassland area (Chapter 2) has probably a larger effect on high-
temporal resolution models than on low-temporal resolution models. These high-
temporal resolution models usually include many spatially explicit inputs, which are 
necessary to include processes with large temporal and spatial dependencies. An 
example of such a process is fertilization; since weather, soil moisture content 
(temporal variables), land use, and groundwater table (spatial variables) can all 
influence the N2O emission. 
 
Another important interaction exists between spatial uncertainty and model input 
uncertainty. Much of the uncertainty within the model inputs originates from spatial 
variation (Chapter 4). Most model inputs were measured at a different spatial scale 
than the scale at which the model describes processes. Therefore, aggregation and 
disaggregation were necessary. For (dis)aggregation assumptions are needed based on 
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the relation between the measurement and model scale, which causes an increase in 
uncertainty in model outcomes. The same applies for the temporal scale. In Chapter 4, 
the LGN4 land use database was used as input for INITIATOR. However, in Chapter 2, it 
was shown that the systematic error in the LGN4 database because of the omission of 
ditches is about +18% at landscape scale. Therefore, the estimated emission in 
Chapter 4 is probably an overestimation of the real N2O emission. Unfortunately, more 
accurate land cover data used in Chapter 2 did not have the proper extent or did not 
include sufficient detail in land cover categories and could therefore not be used as 
input for INITIATOR at landscape scale. 
 
Uncertainty in model structure is, of course, closely related to uncertainty in model 
inputs. The model structure defines which inputs are used. Different N2O emission 
models rely much on the same model inputs, however the spatial and temporal scale of 
the models and corresponding inputs can be different, with consequences for the 
uncertainty. For example, DNDC and INITIATOR (Chapter 3) both need management 
parameters, but the input for INITIATOR is the amount of N applied by grazing cows in 
kg N ha-1 yr-1, whereas DNDC needs the number of grazing cows (heads ha-1) and the 
dates and number of hours that they grazed. A disadvantage of the use of the same 
data for different models is that if a model input contains bias, this bias is propagated 
by all models, resulting in bias in the N2O emission, which is undiscovered because all 
models suffer from the same bias. 
 
Sources of N2O emission in the fen meadow landscape are likely to change in the 
future. How they change and in which direction depends on socio-economic 
developments and land use change. How the uncertainty will change in future is 
uncertain as well. The reduction of uncertainty from different sources depends on 
investments in scientific modelling and measurement techniques, on change of 
sources due to e.g. policy measures or market orientation, and on unforeseen 
processes. In future, unforeseen processes can also influence the uncertainty in N2O 
inventories. For instance, a financial crisis can cause a bankruptcy of farmers, which 
can cause a large decrease of N input to soils and consequently of N2O emissions. 
These developments and forces may be dependent on changes in society at large. To 
give an idea of these processes, the storylines presented in Chapter 5 were translated 
in terms of developments of the uncertainty in emission inventories. All assumption are 
based on a thought experiment in which the driving factors of the scenarios are 
translated into changes that are likely to affect the practice of emission inventory. In 
Table 6.2 an overview of possible changes in uncertainty of future N2O emissions is 
given. Whereas technological innovations can decrease measurement uncertainty and 
improve our knowledge of N2O emission processes, the scale discrepancy between the 
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scale at which N2O is measured and at which it affects climate change (global) will 
probably also in next decades cause uncertainties to be considerable. 

6.1.4 Implications for uncertainty and full GHG balance 
The discussion has mainly focused on the uncertainty in N2O emission inventories; 
however, CO2 and CH4 are also important GHG sources in the fen meadow landscape. 
The uncertainty in CO2 and CH4 is usually much smaller than in N2O (Jacobs et al., 
2007; Ramírez et al., 2008; Van der Maas et al., 2009). Recommendation to decrease 
the uncertainty in N2O emission estimates can also affect the uncertainty in CO2 and 
CH4 estimates. In Chapter 2, the effect of overestimation of grassland area on N2O 
emission is shown. In the suggested field map, ditches, ditch banks, and grassland 
were distinguished. These data were used by Schrier-Uijl (2010) in combination with 
CH4 emission measurement on the landscape elements. The effect of overestimation 
of grassland and underestimation of ditches and ditch banks by regular land cover data 
is even larger for CH4 inventories than for N2O inventories. The emissions of CH4 from 
ditches and ditch banks are much larger than from the grassland and are responsible 
for about 64% of the terrestrial CH4 emissions. This means that the CH4 emission is 
strongly underestimated when using regular land cover databases for CH4 inventories. 
Inventories from conventional land cover databases are 12–46% smaller (depending 
on the database) than inventories based on accurate data on ditch and ditch bank 
areas from field maps. CO2 emission is expected to be smaller when using a field map, 
because CO2 is mainly emitted due to mineralization (in aerobic environments). It is 
also important to estimate CO2 and CH4 emissions for the scenarios in Chapter 5. For 
example, in the rural fragmentation scenario, large areas will be abandoned by dairy 
farmers and will become swamps. As a result, the N2O emission will decrease, but the 
CH4 emission will increase. Hendriks (2006) measured emissions from an abandoned 
peat meadow in the fen meadow landscape with a groundwater level of about 10 cm 
below surface. N2O emissions were absent, but CH4 emissions were larger than 
compared to intensively managed peat meadows. The peat meadow acts as a sink of 
CO2. An important difference between N2O, CO2, and CH4, is that N2O is very strongly 
linked to management, whereas CO2 and CH4 to a much smaller degree. Fertilization, 
manure application, and grazing directly influence N2O emissions. In general, when the 
N input stops, N2O emissions quickly decrease to negligible amounts (Hendriks et al., 
2007; Schrier-Uijl et al., 2010). When groundwater levels are increased in the fen 
meadow landscape CH4 emissions will increase, whereas CO2 respiration can become 
larger than the CO2 emission. 
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Table 6.2 Overview of possible changes  in uncertainty sources for future scenarios until 2040 (§5.3.1) 
based on a thought experiment (– is a decrease in uncertainty, O is no change in uncertainty, + is an 
increase in uncertainty) 
 Rural production Rural fragmentation Rural multifunctionality 
Measurement uncertainty 
 (O) Uncertainty will decrease, 

due to technological 
innovations in measurement 
techniques; on the other hand, 
environmental issues do not 
have priority and investments 
in GHG research will be 
minimal, which will increase 
uncertainty. 

(O) Uncertainty will decrease, 
due to technological innovations 
in measurement techniques; on 
the other hand, environmental 
issues do not have priority and 
investments in GHG research 
will be minimal, which will 
increase uncertainty. 

(–) Uncertainty will decrease, 
because environmental issues 
have high priority; on the other 
hand, innovations in 
measurement techniques are 
lacking.  

Spatial uncertainty 
 (–) At the landscape scale, 

uncertainty will decrease, due 
to technical innovations in 
mapping techniques (GIS). At 
the field scale, uncertainty will 
decrease because grazing will 
decrease and grazing of cattle 
is a main source of spatial 
uncertainty at field scale. 

(O) At the landscape scale, 
uncertainty will decrease, due to 
technical innovations in mapping 
techniques (GIS). However, due 
to the fragmentation of the 
landscape, uncertainty will 
increase. New swamps will on 
the other hand have higher 
uncertainties in CH4.  

(–) At landscape scale, 
uncertainty will slightly decrease. 
At field scale, uncertainty will 
decrease, because of smaller 
agricultural N inputs for soils with 
large N2O emission potentials. 

Temporal uncertainty 
 (O) Uncertainty will stay large, 

because the temporal variation 
will also stay large; agricultural 
N inputs to soil will be large. 
However, new continuous 
measurement techniques will 
improve knowledge on 
processes driving temporal 
variation. 

(–) Uncertainty will decrease 
because agricultural N inputs to 
soil will largely stop and 
mineralization of N will decrease 
due to higher groundwater 
levels. New continuous 
measurement techniques will 
improve knowledge on 
processes driving temporal 
variation. 

(–) Uncertainty will decrease, 
because agricultural N inputs are 
decreased.  

Model structure 
 (O) Uncertainty will decrease 

slightly, because of a few new 
insights and a few new 
models. Because of a lack of 
resources for GHG research, 
development goes slow. 

(+) Uncertainty will increase, 
because model development 
cannot anticipate fast changes in 
land use and ecosystems. 

(–) Uncertainty will decrease, 
because of new insights and new 
models. However, when new 
sources of uncertainty are 
identified, overall uncertainty can 
increase. 

Model input uncertainty 
 (O) Uncertainty will decrease 

due to new measurement 
techniques, which are closer to 
the spatial and temporal scale 
of interest. 

(+) Uncertainty will increase, 
because new model inputs are 
defined due to the new situation 
in the area.  

(–) Uncertainty from N inputs will 
decrease, because the 
management will be less 
intensive.  

Other uncertainty 
 (+) New sources of uncertainty will probably be identified by new measurement and model techniques. 

Unforeseen processes can cause an increase or decrease in the uncertainty of N2O inventories. 
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Not only other GHGs (CO2 and CH4) are related to N2O emission, but also NH3 emission 
and NO3¯ leaching. Climate policies to reduce N2O emission can increase NH3 
emissions (Oenema et al., 2009; Sonneveld et al., 2008). In the Netherlands, 
application of manure in wet periods is a common measure to reduce NH3 emissions. 
However, as a consequence of this, N2O emission increases. The N2O emission in 
sandy regions in the Netherlands is much smaller than in the fen meadow region. The 
N applied to sandy soils is for a large part leached as NO3¯ (Boumans et al., 2007). 

6.2 Relevance and research perspectives 
The Dutch fen meadow landscape is a unique area. This area is a hotspot of N2O 
emissions in combination with large uncertainties in N2O emissions. Therefore, it is 
difficult to extrapolate outcomes of this thesis directly to other landscapes and other 
countries. However, some results from this thesis are generally applicable.  

6.2.1 The National Inventory Report (NIR) 
In the NIR of the Netherlands for 2007 (Van der Maas et al., 2009), direct and indirect 
N2O emissions from agriculture were identified as the two most important sources of 
uncertainty in Dutch GHG emissions at Tier 2 level. Although the shares on the Dutch 
GHG balance are small (both 2%), their uncertainty levels (61% for direct and 206% for 
indirect agricultural N2O emissions) makes them the most important uncertainty 
sources of GHG emission. In this thesis, suggestions were given to cope with these 
large uncertainties. Using accurate data on grassland area for estimating the N2O 
emission from the cultivation of histosols and adapting N2O emission estimates from 
intensively managed grasslands for years with a very dry summer or a very wet summer 
are straightforward measures to decrease the uncertainty in the national inventory. 
 
For annual emission estimates at landscape and national extent, it may not always be 
the best option to use models with a high temporal resolution. Many high-resolution 
parameters, which have a large effect on daily N2O emission, have negligible effects on 
annual N2O emission. For example, fertilization can cause an emission peak; however, 
on annual scale it is sufficient to know the total annual quantity to estimate the annual 
N2O emission. Therefore, countries that want to use Tier 3 methods for reporting 
annual GHG emissions, should carefully examine the trade-off between the increase in 
uncertainty due to the inclusion of processes with a high temporal resolution and high-
resolution data on the one hand and the improvement of the GHG estimate due to 
inclusion of these processes on the other hand. They should be aware that many 
processes that are important at small spatial and temporal scales are less important at 
larger scales, because data values can average out in space and time. 
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6.2.2 Landscape elements  
Landscapes with many linear elements will suffer more from over- and underestimation 
of landscape elements and land use types than landscapes with large landscape units 
and less linear or small elements. In landscapes with linear elements, the systematic 
error caused by underestimation of the area of linear elements should be estimated. 
Results can be corrected for this effect or higher resolution data can be used. 

6.2.3 Methodology 
Computers are increasingly better suited for simulation with high-resolution spatial 
data. Monte Carlo uncertainty analysis can also be executed more easily with fast 
computers. The combination of Monte Carlo analysis and (new) methods of estimating 
and simulating categorical data and auto-correlated and spatially correlated model 
inputs (Chapter 4) is innovative. Many environmental models include spatial 
information and include categorical model inputs. When ignoring auto-correlation in 
spatial model inputs, the uncertainty will be underestimated. When ignoring (spatial) 
correlation between model inputs the uncertainty will be underestimated or 
overestimated. For spatially explicit categorical data, Bayesian Maximum Entropy (BME, 
Bogaert, 2002; Christakos, 1990a; Christakos, 1990b) is a very useful tool in 
uncertainty propagation analysis. 
 
For the fen meadow landscape, the Monte Carlo uncertainty analysis could probably be 
improved when groundwater level is also included as an uncertain parameter. The 
choice of uncertain parameters was based on a quickscan (Table 4.1). Because the 
INITIATOR model uses groundwater classes and soil wetness classes almost 
everywhere instead of groundwater levels, the model was assumed not as sensitive for 
groundwater level as for other variables. Therefore, the Monte Carlo analysis was 
executed as described in Chapter 4. However, when results of the Monte Carlo analysis 
were assessed, the fact that the highest groundwater level (MHW) was used in the 
estimation of the mineralization rate and the mineralization was identified as a large 
source of uncertainty indicated that the analysis points to a possible improvement by 
including uncertainty in the MHW. 
 
Generally, the INITIATOR model performed better than the DNDC model for the fen 
meadow landscape. This is probably due to the fact that INITIATOR was developed for 
Dutch situations. DNDC had to be parameterized extensively to acquire reliable 
outcomes (Chapter 3). Alm (2007) experienced the same problems with DNDC for a 
peat area in Finland. Unfortunately, most N2O emission models are not suitable for 
simulating the specific situation of the fen meadow landscape. When the Netherlands 
decides to report N2O emissions at Tier 3 level, DNDC (or a similar model) should be 
better equipped to simulate N2O emissions from the Dutch fen meadow landscape or 
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INTIATOR (or a similar model) should be upgraded to Tier 3 level. The model 
comparison (Chapter 3) could be improved by including more models.  

6.2.4 Emission factors 
Throughout this thesis, it was indicated that the source of uncertainty depends on scale. 
The uncertainty in emission factors found is large, especially at landscape support 
(Fig. 4.10, Table 6.1), but for Tier 1 and Tier 2 inventory methods this is in fact quite 
common (Olsthoorn & Pielaat, 2002; Van der Maas et al., 2009). In INITIATOR, the 
emission factors are divided into denitrification and nitrification emission factors and 
distinguished based on soil type (Table 4.2). To improve emission factors in Tier 1 and 
2 inventories, many suggest to divide these into more classes with smaller uncertainty 
intervals. Soil temperature and soil moisture content are usually measured in N2O 
emission campaigns and could probably improve the use of emission factors. However, 
for many countries measurement data are lacking to make (more) reliable divisions in 
emission factors. The division in INITIATOR between emission factors for denitrification 
and nitrification is understandable, because these are two different processes. 
However, these different emission factors cannot be based on measurements, because 
most measurements cannot distinguish between these two processes. It may be more 
effective to divide emission factors based on measurement strategies. The shape of 
the probability distribution of the emission factors can also be improved. INITIATOR 
assumes a uniform distribution of the emission factors, while a normal or lognormal 
distribution would probably be more realistic, based on uncertainty management 
advice (IPCC, 2000a; Olsthoorn & Pielaat, 2002).  

6.2.5 Soil parameters 
At landscape support, the largest sources of uncertainty are the emission factors, while 
at point support uncertainty in soil parameters is equally important (Fig. 4.10; 
Table 6.1). This means that when a study focuses on point support, e.g. when the 
objective is to indicate hotspots of N2O emissions (locations with large N2O emissions), 
the uncertainty could easily be decreased by improvement of soil data. When the 
objective of a study focuses on landscape support, e.g., when the objective is to assess 
the N2O emission of the fen meadow landscape, improvement of soil data will hardly 
decrease the uncertainty in the N2O emission estimates and only improvement of 
emission factors can significantly decrease uncertainty. This type of scale dependent 
uncertainty analysis can also be used for other GHGs and other environmental models. 
Sometimes uncertainties can be reduced with relatively small effort. A result can be 
that at a certain spatial scale, uncertainties mainly arise from sources that can be 
improved with relatively small effort. Chapter 4 has also shown that soil type cannot be 
assumed as a stationary parameter in time for the Dutch fen meadow landscape. For 
most landscapes and ecosystems, soil type does not change within a few decades, 
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however, drained peat soils do. It is therefore important that Dutch soil map 1:50,000 
is up-to-date (Kempen et al., 2009). Much environmental research makes use of soil 
data. When such research takes place in areas with drained peat soils, it should 
include a decline in peat soils due to mineralization (as was done in Chapter 5) and it 
should use up-to-date soil data. A strong linkage was made between environmental 
science and socio-economic studies. Most research on future projections is only 
focusing on one part, but by using the Story-And-Simulation method, projected socio-
economic developments and land use change could be translated into model inputs for 
INITIATOR. 

6.2.6 The future of the fen meadow landscape 
A recent development in the fen meadow landscape is the enormous increase in fodder 
maize cultivation (from about 960 ha in 2000 to about 1940 ha in 2009). This 
development is contrary to what most experts and stakeholders expected and what 
most policy makers have in mind. The area loses its openness and its specific 
character. Maize cultivation also increases mineralization rates, consequently soil 
subsidence increases and N2O and CO2 emissions increase. The ideal picture of the fen 
meadow landscape for many Dutch people is small-scale dairy farms with cows grazing 
in the meadows, like it was in the 1950s. Nowadays, small-scale dairy farms are not 
profitable in this area unless they are subsidized (Chapter 5, ‘rural multifunctionality 
scenario’). Large-scale farms can be profitable (Chapter 5, ‘rural production scenario’); 
however, the area will remain a hotspot of N2O emission and in the long run the peat 
will disappear. When the focus is on reduction of GHG emissions in combination with 
conservation of the dairy farming sector, dairy farming is only possible on the higher 
(more clayey) parts of the area, while the lower parts of the areas should be rewetted.  

6.3 Main conclusion 
Uncertainty matters. Therefore, the uncertainty in GHG emissions should be quantified. 
This thesis made a considerable contribution to the uncertainty estimation of N2O 
emissions. The quantification is complex due to scale effects and spatial and temporal 
correlations; however, this research lays a foundation for proper uncertainty 
management in future GHG modelling and IPCC inventories. Especially given the recent 
debate on the reliability of the IPCC reports, proper uncertainty quantification is of vital 
importance. 
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Model and input 
parameters 

SE1 Description 

Areal parameters 
OPP Yes Surface area of pixel (250 m x 250 m = 6.35 ha) 
PROV Yes Province 
MESTGEB Yes Manure district 
REGIO Yes Hydrological region 
BOU Yes Distribution of crop types 
Soil parameters and CO2 background emission  
SOIL  Yes Soil type 
PTRHOalt  Yes Bulk density of peat layer until MLW 
PTOMalt Yes Organic matter of peat layer until MLW 
PTCNalt  Yes C/N ratio of peat layer until MLW 
PTLD/VEENTOT  Yes Thickness of peat layer of thin peat soils 
PTLDCOV/VEENDEK  Yes Mineral cover depth of soil profile 
PTLDtot/VEENALL  Yes Total depth of peat layer, also for thick peat soils 
frox  No Oxidation fraction of peat 
frC  No Fraction organic carbon of peat 
CNmo  No C/N ratio micro-organisms for decomposing the substrate 
DAmo  No Dissimilation – Assimilation ratio of micro-organisms) 
Pfrim [1,2] No Min and max fraction immobilization of N 
Landuse   
VEG  Yes Vegetation type (grass, maize, other crop, or nature) 
frNAT_deciduous  Yes Fraction area deciduous in nature 
frNAT_spruce  Yes Fraction area spruce in nature 
frNAT_pine  Yes Fraction area pine in nature 
frNAT_heath  Yes Fraction area heath in nature 
frNAT_natural grass  Yes Fraction area grass in nature 
N management parameters  
Ninam[1]  Yes N in manure from cow stables, without application emission 
Ninam[2]  Yes N in manure from pig stables, without application emission 
Ninam[3]  Yes N in manure from poultry stables, without application emission 
Ninam[4]  Yes N in manure from grazing cows, without application emission 
Nkmini  Yes N in fertilizers 
Muit[1]  Yes N production in cow stables 
Muit[2]  Yes N production in pig stables 
Muit[3] Yes N production in poultry stables 
frwg  Yes fraction N uptake of N due to grazing 
PfN2Oemh[1,2]  Yes Min and max fraction N2O emission from stables 
PfNOxemh[1,2]  Yes Min and max fraction NOx emission from stables 
PfN2emh[1][1,2]  Yes Min and max fraction N2 emission from stables for cows 
PfN2emh[2][1,2]  Yes Min and max fraction N2 emission from stables for pigs 
PfN2emh[3][1,2]  Yes Min and max fraction N2 emission from stables for poultry 
PfNH3emg[1,2]  Yes Min and max NH3 from grazing 
PfNH3emf[1,2] Yes Min and max NH3 emission from fertilizers 
LMestAdv  Yes Manure advice for animal manure and fertilizers 
Lfrwamorg [1]  Yes Fraction organic N in cow manure 
Lfrwamorg [2]  Yes Fraction organic N in pig manure 
Lfrwamorg[3] Yes Fraction organic N in poultry manure 
Deposition 
NDEP Yes Deposition of NOx and NHx 
NHDEP  Yes Deposition of NHx 
NODEP Yes Deposition of NOx 
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frwdep  No Fraction uptake N of N deposition 
PNdepmin[1,2]  No Min and max fraction deposition min 
PNdepmax[1,2]  No Min and max fraction deposition max 
Ammonia emissions 
fNH3ema  No Fraction NH3 emission from animal manure application 
PfNH3emh[1][1,2]  No Min and max NH3 emission from housing of cows 
PfNH3emh[2][1,2]  No Min and max NH3 emission from housing of pigs 
PfNH3emh[3][1,2]  No Min and max NH3 emission from housing of poultry 
N2O emissions 
N2Oref Yes Reference N2O =1 
PfrN2Ode[1,2]  Yes2 Min and max fraction N2O emission factor due to denitrification soil 
PfrN2Oni[1,2]  Yes2 Min and max fraction N2O emission factor due to nitrification soil 
Pfrni[1,2]  Yes2 Min and max fraction nitrification of soil N 
Pfrdes[1,2]  Yes2 Min and max fraction denitrification of soil N 
Yield grass and crops 
LBYIELD[1..5]  Yes2 Fresh yield crops 
BDS[1..5] Yes2 Dry weight crops 
ctNB  Yes2 % N in crops 
LNfi  Yes2 N fixation 
LctN  Yes2 % N in grass 
LYIELD  Yes2 Yield grass 
LfrNmin  Yes2 Fraction mineral N/total N in vegetation 
Lfrup  
Nature fractions   
Nfric [1..5]  No Fraction interception precipitation per vegetation type 
Nrhost [1..5] No Density of stem wood per vegetation type 
Nstmin[1..5]  No Min N content stem wood 
Nstmax[1..5] No Max N content stem wood 
LNkrgc[1..5]  Yes2 Growth rate constant 
PNfrni[1,2]  Yes2 Min and max fraction nitrification soil 
PNfrdes[1,2]  Yes2 Min and max fraction denitrification soil 
PNfrdedi[1,2]  Yes2 Min and Max denitrification ditch 
PNfrdegw[1,2]  Yes2 Min and Max denitrification groundwater 
Hydrology (Precipitation, transpiration, evapotranspiration, leaching and runoff) 
PREC  Yes Precipitation 
gt  Yes Groundwater table 
GHG  Yes Mean Highest Waterlevel, MHW 
GLG  Yes Mean Lowest Waterlevel, MLW 
GTPL  Yes Groundwater table in symbols 
NN Yes Precipitation excess 
frro(1)  Yes Fraction horizontal transport water out of layer 0-5 cm 
frro(2)  Yes Fraction horizontal transport water out of layer 5-20 cm 
frro(3)  Yes Fraction horizontal transport water out of layer 20-50 cm 
frro(4)  Yes Fraction horizontal transport water out of layer >50 cm 
frlel(4)  Yes Fraction leaching vertical transport out of layer >50 cm 
Lfrrol[1]  Yes2 Fraction runoff of soil layer 0-5 cm 
Lfrrol[2]  Yes2 Fraction runoff of soil layer 5-20 cm 
Lfrrol[3]  Yes2 Fraction runoff of soil layer 20-50 cm 
Lfrrol[4]  Yes2 Fraction runoff of soil layer 50 cm-deeper 
Lfrlel[4]  Yes2 Fraction leaching soil layer 50 cm- deeper 
NEs[1..5]  No Evaporation soil of vegetation type 
LNEtref[1..5] Yes2 Reference transpiration vegetation type 
Pfrdedi[1,2] Yes2 Min and max denitrification ditch 
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Pfrdegw[1,2]  Yes2 Min and max denitrification groundwater 
Pfrtr [1…5] [1,2]  Yes2 Fraction transpiration of precipitation per vegetation type 
PcNO3min [1,2]  Yes2 Min and max percentage mineral NO3¯ in precipitation 
Organic products (e.g. compost, sewage sludge) 
LOMinoptot[1..4]  No Organic matter input due to organic products 
LOMop[1..4]  No Organic matter % 
LNop[1..4] No N content 
LfrNminop[1..4]  No Ammonia fraction 
Lfrwop[1..4] No N efficiency 
LfNH4emaop[1..4]  No Ammonia emission 
Lfrhop[1..4] No Humification fraction 
1 SE = Spatial explicit 
2 Yes, because depending on soil type, vegetation type and/or soil wetness class 
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Summary 
Nitrous oxide (N2O) is a long-lived greenhouse gas (GHG) with a large global warming 
potential. While it has a modest share of about 8% in the total global GHG balance, the 
uncertainty of N2O emission inventories are large. The major source of N2O emission on 
global and national scale is agriculture. A hotspot of agricultural N2O emission is the 
Dutch fen meadow landscape; therefore, it is worthwhile to focus on N2O emissions 
from this landscape for improving uncertainty estimates in GHG inventories. The main 
objective of this PhD thesis is to quantify the uncertainty of N2O emission inventories 
for the Dutch fen meadow landscape.  

 
After the general introduction (Chapter 1), Chapter 2 analyses how different land cover 
representations introduce systematic errors into the results of regional N2O emission 
inventories. Landscape representations based on land cover databases differ 
significantly from the real landscape. Using a land cover database with high uncertainty 
as input for emission inventory analyses can cause propagation of systematic and 
random errors. Surface areas of grassland, ditches, and ditch banks were estimated for 
two polders in the Dutch fen meadow landscape using five land cover representations: 
four commonly used databases and a detailed field map, which most closely resembles 
the real landscape. These estimated surface areas were scaled up to the Dutch fen 
meadow landscape. Based on the estimated surface areas agricultural N2O emissions 
were estimated using different inventory techniques. All four common databases 
overestimated the grassland area when compared to the field map. This caused a 
considerable overestimation of agricultural N2O emissions, ranging from 9% for more 
detailed databases to 11% for the coarsest database. The effect of poor land cover 
representation was larger for an inventory method based on a process model than for 
inventory methods based on simple emission factors. Although the effect of errors in 
land cover representations may be small compared to the effect of uncertainties in 
emission factors, these effects are systematic (i.e.,, cause bias) and do not cancel out 
by spatial upscaling. Moreover, bias in land cover representations can be quantified or 
reduced by careful selection of the land cover database. 
 
Chapter 3 focused on the effect of temporal resolution of an inventory method on N2O 
emission estimates. Most countries use a one-year-resolution emission factor approach 
to estimate terrestrial N2O emissions as part of their national GHG inventory, either by 
applying default values (Tier 1 method) or nationally derived values (Tier 2 methods). 
This method employs an annual temporal resolution and uses yearly averaged inputs to
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predict emission. Little attention has so far been paid to the effect of the temporal 
resolution of the approach (e.g. day, season, year) on N2O emission estimates. The 
effect of lumping temporal variation can be very large due to daily or seasonal 
variations of processes causing N2O emissions. Therefore, annual N2O emissions from 
a model (DNDC) with daily time steps were compared with those of a model (INITIATOR) 
with annual time steps. N2O emissions were simulated for two intensively managed 
grassland plots in the Dutch fen meadow landscape in the period 2001-2006. The 
years with the largest differences in model results were used in to estimate the effect 
of the within-year temporal distribution of rainfall, fertilization, and manure application 
on the annual N2O emission. Emission factors based on DNDC and INITIATOR N2O 
results for the six simulation years were estimated using the available management 
and climate data. Annual N2O emissions from the investigated grasslands were 
sensitive to rainfall distribution within the year, especially to summer rainfall. It is 
recommended to adjust Tier 2 N2O emission estimates from intensively managed 
grasslands on peat soils in the temperate climate zone for relative summer rainfall. 
 
The goal of Chapter 4 was (i) to quantify the uncertainties of modelled N2O emissions 
caused by model input uncertainty at point and landscape scale (i.e., resolution), and (ii) 
to identify the main sources of input uncertainty at both scales. A Monte Carlo 
uncertainty propagation analysis using the INITIATOR model was performed. Spatial 
auto- and cross-correlation of uncertain numerical inputs that are spatially variable 
were represented by the linear model of coregionalization. Bayesian Maximum Entropy 
was used to quantify the uncertainty of spatially variable categorical model inputs. 
Stochastic sensitivity analysis was used to analyse the contribution of groups of 
uncertain inputs to the uncertainty of the N2O emission at point and landscape scale. 
The average N2O emission at landscape scale had a mean of 20.5 kg N2O-N ha-1 yr-1 
and a standard deviation of 10.7 kg N2O-N ha-1 yr-1, producing a relative error of 52%. 
At point scale, the relative error was on average 78%, indicating that upscaling 
decreases uncertainty. Soil inputs and denitrification and nitrification inputs were the 
main sources of uncertainty in N2O emission at point scale. At landscape scale, 
uncertainty in soil inputs averaged out and uncertainty in denitrification and 
nitrification inputs was the dominant source of uncertainty. Experiments at landscape 
scale are needed to assess the spatial variability of these fractions and analyse how a 
more realistic representation influences the uncertainty budget at landscape scale. 
This research confirms that results from uncertainty analyses are often scale 
dependent and that results for one scale cannot directly be extrapolated to other 
scales. 
 
In Chapter 5, insight is provided in the possible range of future N2O emissions that can 
help to construct mitigation and adaptation strategies and to adapt land use planning 
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to climate objectives. For the Dutch fen meadow landscape, changes in land use 
induced by socio-economic developments are expected to be large in future and have 
major impacts on N2O emission. The goals of this study are to estimate changes in N2O 
emissions for the period 2006–2040 under different scenarios and to quantify the 
share of different emission sources. Three scenarios were developed and quantified 
based on the Story-And-Simulation approach. The rural production and the rural 
fragmentation scenarios are characterized by globalization and economic growth; 
however, in the fen meadow landscape under the rural production scenario dairy 
farming has a strong competitive position and under the rural fragmentation scenario 
agriculture is declining. Under the rural multifunctionality scenario, the global context is 
characterized by more regionalization and environmental protection. Under the rural 
production scenario, the N2O emission decreased between 2006 and 2040 with 7%. 
Due to measures to decrease peat mineralization and policies to reduce agricultural 
emissions, the rural multifunctionality scenario shows a larger decrease in N2O 
emissions (-44%) as compared to the rural fragmentation in which the dairy farming 
sector is diminished (-33%). Compared to other uncertainties involved in N2O emission 
estimates, the uncertainty in future socio-economic developments and land use 
change is relatively large and assuming a constant emission with time is therefore not 
appropriate.  
 
Chapter 6 is a synthesis of the results and main findings from Chapters 2-5. All types of 
uncertainty, discussed in Chapter 2-5 are ranked and relations between uncertainties 
are described. The implications for uncertainty on the full GHG are given and the 
research perspectives are discussed. At last, some future perspectives for the fen 
meadow landscape are given. 
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Samenvatting 
Lachgas (N2O) is een broeikasgas (BKG) dat lang in de atmosfeer blijft voordat het 
wordt afgebroken. Lachgas heeft verder een 310 keer zo groot potentieel om de aarde 
op te warmen als koolstofdioxide (CO2). Hoewel het gas een middelmatig aandeel heeft 
van ongeveer 8% in de totale BKG balans, zijn de onzekerheden van lachgasemissie-
inventarisaties groot. De grootste bron van lachgasemissie op mondiale en nationale 
schaal is landbouw. Een hotspot van lachgasemissies uit landbouw is het Nederlandse 
veenweidegebied waardoor het waardevol is om voor het verbeteren van 
onzekerheidsberekeningen in BKG-inventarisaties te focussen op dit landschap. Het 
belangrijkste doel van dit proefschrift is om de onzekerheid van lachgasemissie-
inventarisaties voor het Nederlandse veenweidegebied te kwantificeren.  

 
Na de algemene introductie (Hoofdstuk 1), is er in Hoofdstuk 2 geanalyseerd hoe 
verschillende representaties van landbedekking systematische fouten veroorzaken in 
regionale inventarisaties van lachgasemissie. Representaties van databases die 
informatie over landbedekking bevatten verschillen significant van het werkelijke 
landschap. Wanneer een dergelijke database met informatie over landbedekking 
onzekerheden bevat en wordt gebruikt als invoer voor emissie-inventarisaties, kan er 
voortplanting optreden van systematische en toevallige fouten. In dit tweede hoofdstuk 
zijn de oppervlaktes grasland, sloten en slootkanten gemeten en berekend voor twee 
polders in het Nederlandse veenweidegebied. Dit is gedaan met behulp van vijf 
verschillende representaties van landbedekking: vier veelgebruikte databases en een 
gedetailleerde veldkaart welke het beste overeenkomt met het werkelijke landschap. 
Deze oppervlaktes zijn opgeschaald naar het hele veenweidegebied en gebruikt om 
lachgasemissies uit landbouw te bereken met behulp van verschillende 
inventarisatietechnieken; variërend van simpele methodes gebaseerd op 
emissiefactoren tot complexere methodes gebaseerd op een procesmodel. Alle vier de 
veelgebruikte databases overschatten het oppervlakte grasland vergeleken met de 
veldkaart. Dit zorgde voor een aanzienlijke overschatting van de lachgasemissies uit 
landbouw, variërend van 9% voor de meest gedetailleerde database tot 11% voor de 
grofste database. Het effect van een slechte representatie van landbedekking was 
groter voor een inventarisatiemethode gebaseerd op een procesmodel dan voor een 
simpele inventarisatiemethode. Hoewel het effect van fouten in representaties van 
landbedekking relatief klein is ten opzichte bijvoorbeeld het effect van fouten in 
emissiefactoren, zijn deze effecten systematisch (d.w.z. ze veroorzaken bias) en wegen
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niet tegen elkaar op door ruimtelijke opschaling (wat wel voor emissiefactoren geldt). 
De systematische fouten in representaties van landbedekking kunnen worden 
gekwantificeerd en verminderd met een zorgvuldige selectie van de juiste database.  
 
Hoofdstuk 3 gaat over het effect van temporele resolutie van een 
inventarisatiemethode op lachgasemissieschattingen. De meeste landen gebruiken 
een emissiefactorenbenadering met een temporele resolutie van een jaar om hun 
terrestrische lachgasemissies te schatten als deel van hun nationale BKG-
inventarisatie; door middel van standaardwaarden (Tier 1 methode) of nationaal 
afgeleide waarden (Tier 2 methode). Deze Tier methodes gebruiken een temporele 
resolutie van een jaar en daarvoor worden gemiddelde waardes over een jaar gebruikt 
om de emissies te schatten. Het effect van de temporele resolutie (bijvoorbeeld dag, 
seizoen, jaar) van een methode op lachgasemissieschattingen heeft tot nu toe weinig 
aandacht gehad. Het effect van het samenvoegen van temporele variatie kan erg groot 
zijn door dagelijkse variatie of seizoensvariatie van processen die zorgen voor 
lachgasemissie. Daarom is de jaarlijkse lachgasemissie van een model met dagelijkse 
tijdstappen (DNDC) vergeleken met een model met jaarlijkse tijdstappen (INITIATOR). 
De lachgasemissie is gesimuleerd voor twee intensief beheerde weilanden in het 
Nederlands veenweidegebied voor de periode 2001 t/m 2006. De jaren met de 
grootste verschillen in modelresultaten zijn gebruikt om het effect van de temporele 
distributie van neerslag en bemesting met kunstmest en dierlijke mest binnen een jaar 
op de jaarlijkse lachgasemissieschatting te bepalen. Emissiefactoren, gebaseerd op 
lachgasemissieberekeningen van DNDC en INITIATOR voor de zes simulatiejaren, zijn 
berekend met behulp van beschikbare beheers- en klimaatsdata. Jaarlijkse 
lachgasemissies van de onderzochte weilanden waren gevoelig voor neerslagverdeling 
binnen het jaar, zeker de hoeveelheid neerslag in de zomer heeft een grote invloed 
gehad op de jaarlijkse N2O emissie. Er wordt aangeraden om de Tier 2 
emissieschattingen voor intensief beheerde weilanden op veengronden aan te passen 
voor de relatieve neerslag in de zomer en opzichte van de neerslag in de andere 
seizoenen.  
 
Het doel van Hoofdstuk 4 was ten eerste om de onzekerheden van gemodelleerde 
lachgasemissies veroorzaakt door onzekerheid ten gevolge van modelinvoer op punt- 
en landschapschaal (d.w.z. resolutie) te kwantificeren en ten tweede om de 
belangrijkste bronnen van invoeronzekerheid op beide schalen te identificeren. Een 
Monte Carlo onzekerheidsanalyse werd uitgevoerd met behulp van INITIATOR. 
Ruimtelijke auto- en crosscorrelatie van onzekere numerieke invoergegevens die 
ruimtelijke variabel zijn, zijn bepaald met het “lineair model of coregionalization” 
(LMCR). De “Bayesian Maximum Entropy” (BME) methode is gebruikt om de 
onzekerheid van ruimtelijk variabele categorische invoergegevens te kwantificeren. 
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Een stochastische gevoeligheidsanalyse is gebruikt om de bijdrage van groepen 
onzekere invoergegevens op de onzekerheid in de lachgasemissieberekening op punt- 
en landschapschaal te analyseren. De gemiddelde emissie van N2O op 
landschapschaal is 20,5 kg N2O-N ha-1 yr-1 en de standaard deviatie is 10,7 kg N2O-N 
ha-1 yr-1, dus de relatieve fout is 52%. Op puntschaal, is de relatieve fout gemiddeld 
78%. Opschaling verlaagt dus de onzekerheid. Invoergegevens over bodem en 
denitrificatie en nitrificatie zijn de belangrijkste bronnen van onzekerheid op 
puntschaal. Op landschapschaal wegen de onzekerheden in bodemgegevens tegen 
elkaar op en is de groep denitrificatie- en nitrificatiegegevens de dominante bron van 
onzekerheid. Experimenten op landschapschaal zijn nodig om de ruimtelijke 
variabiliteit van deze emissiefracties te bepalen. Dit onderzoek stelt vast dat resultaten 
van onzekerheidsanalyses vaak schaalafhankelijk zijn en dat resultaten op een 
bepaalde schaal niet direct geëxtrapoleerd kunnen worden naar andere schalen.  
 
In Hoofdstuk 5 is inzicht verworven in de reeks van mogelijke toekomstige 
lachgasemissies dat kan helpen om mitigatie- en adaptatiestrategieën op te stellen en 
om landgebruikplanning aan te laten sluiten bij klimaatsdoelstellingen. In het 
Nederlandse veenweidegebied zullen veranderingen in landgebruik, voortkomend uit 
sociaaleconomische ontwikkelingen, naar verwachting in de toekomst groot zijn en een 
groot effect hebben op de lachgasemissie. De doelstellingen van dit onderzoek waren 
om veranderingen in lachgasemissies voor de periode 2006-2040 voor verschillende 
scenario’s te voorspellen. Drie scenario’s zijn ontwikkeld en gekwantificeerd op basis 
van de zogenaamde “Story-And-Simulation” methode. De landelijke productie- en 
versnipperingscenario’s worden gekenmerkt door globalisering en economische groei, 
maar in het veenweidegebied is er onderscheid tussen beide scenario’s. In het 
landelijke productiescenario heeft de melkveesector een sterke concurrentiepositie 
terwijl in het landelijke versnipperingscenario de landbouw in het gebied afneemt. Het 
derde scenario is het landelijke multifunctionaliteitscenario waarin de mondiale context 
wordt gekenmerkt door regionalisering en milieubescherming. Volgens het landelijke 
productiescenario daalt de lachagsemissie tussen 2006 en 2004 met 7%. Door 
maatregelen om mineralisatie van het veen te verlagen en beleid om emissies uit 
landbouw verminderen, laat het landelijke multifunctionaliteitscenario de grootste 
afname van lachgasemissie zien (44%) vergeleken met het landelijke 
versnipperingscenario (33%) waarin de melkveesector toch ook sterk is afgenomen. De 
onzekerheid over toekomstige sociaaleconomische ontwikkelingen en veranderingen in 
landgebruik is vergeleken met andere onzekerheden in ramingen van de 
lachgasemissie relatief groot. De aanname dat emissies constant blijven in de tijd is 
dan ook niet juist.  
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Hoofdstuk 6 is tot slot een synthese van de resultaten en bevat de belangrijkste 
bevindingen uit de hoofdstukken 2 t/m 5. Alle soorten van onzekerheid, besproken in 
de eerdere hoofdstukken, zijn gerangschikt en de relaties tussen onderzekerheden 
worden beschreven. De gevolgen voor onzekerheid op de gehele BKG-balans worden 
besproken en perspectieven voor onderzoek worden besproken. Afsluitend zijn enkele 
toekomstperspectieven voor het veenweidegebied gegeven.  
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