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Abstract 
 
This thesis is part of the Dutch Milk Genomics Initiative, and the general 
aim was to obtain more insight into the genetic background of bovine milk 
protein composition. Morning milk samples from roughly 2000 cows were 
analyzed for the six major milk proteins (αS1-casein, αS2-casein, β-casein, κ-
casein, α-lactalbumin and β-lactoglobulin) using capillary zone 
electrophoresis.  
The estimated genetic parameters for milk protein composition showed that 
there was considerable genetic variation for milk protein composition and 
that the genetic correlations among the six major milk proteins were low. 
There was a strong negative genetic correlation between β-lactoglobulin 
and total casein in milk. The presence of genetic variation justified the 
performance of in-depth genetic analyses such as linkage and association 
mapping. A linkage study was performed to screen the whole bovine 
genome to identify chromosomal regions affecting milk protein composition. 
This study resulted in ten chromosomal regions, of which regions on BTA6, 
11 and 14 showed the largest effect on milk protein composition. The 
confidence intervals of these regions were large, in general. Therefore, an 
association study was performed to narrow down these chromosomal 
regions and to detect new chromosomal regions affecting milk protein 
composition. The association study resulted in four main regions on BTA5, 
6, 11 and 14, and also new regions were detected. These new regions 
may, in addition to the four main regions, play a role in the genetic 
regulation of milk protein synthesis. 
The milk protein composition is important for technological properties of 
milk. An increase in casein index is preferable for the cheese production. 
Therefore, four scenario’s, to increase casein index in milk, were 
discussed. The first scenario has been termed genetic differentiation, the 
second scenario was genetic selection based on estimated breeding 
values, the third scenario was genetic selection based on genotypes, and 
the last scenario was genomic selection. These four scenarios illustrated 
that there are opportunities to utilize genetic variation in milk protein 
composition.  
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Milk 

Milk, especially cow’s milk is consumed as a food product in many cultures 
and it is a natural source of a whole range of nutrients essential for growth, 
development and maintenance of the human body. Milk provides protein, 
fat, carbohydrates, vitamins and minerals. For many years, cow’s milk has 
been processed into dairy products such as butter, yoghurt and cheese. 
The suitability of milk for the production of different dairy products depends 
upon the composition of milk. For example, for cheese production it is 
important that milk protein contains a high proportion of casein (Wedholm 
et al., 2006). The last decades, cows have been selected mainly for high 
milk, fat and protein production. It is not known, however, what the 
consequences of this selection are on e.g. the composition of the milk fat 
and the milk protein. In this thesis, the focus is on milk protein composition. 
 
Milk protein composition 

Research on milk proteins started around 1814, when the first paper was 
published by J.J. Berzelius (Fox, 2003). In 1838, J.G. Mulder described a 
method for the preparation of protein from milk by acid precipitation (Fox, 
2003). This acid precipitated protein is referred to as casein. About fifty years 
later, whey proteins were separated in soluble and insoluble fractions by 
Seblein (1885; Fox, 2003). At that time two kinds of milk proteins were 
distinguished: caseins and whey proteins. The caseins are insoluble and 
precipitate at pH 4.6 whereas the whey proteins remain soluble at this pH 
(Fox, 2003). The distinction between caseins and whey proteins is still in 
use, however, since then the subdivision of these two main categories has 
been further refined. The caseins can be divided in αS1-casein, αS2-casein, 
β-casein and к-casein, and the whey proteins in α-lactalbumin and β-
lactoglobulin. These are the six major milk proteins in bovine milk and 
represent ±90% of the total milk protein content. The remaining 10% 
consist of minor proteins, like bovine serum albumin, γ-casein, 
immunoglobulins, lactoferrin and many proteins that appear in low 
concentrations (Farrell et al., 2004).  
Detailed milk protein composition can be determined using different 
methods, e.g. high-performance liquid chromatography (HPLC), 
polyacrylamide gel electrophoresis (PAGE) and capillary zone 
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electrophoresis (CZE). The quantification of proteins in different milk 
samples gives a detailed view of the variation in milk protein composition 
between individual cows. However, the quantification of milk proteins in 
individual milk samples is rarely done, because it is laborious and costly. 
For the research described in this thesis, milk protein composition of a 
resource population of nearly 2000 cows was determined using CZE, as 
described by Heck et al. (2008). More detailed information about CZE is 
given in Text box 1. 
 
Variants of milk proteins 

The six major milk proteins originate from their corresponding milk protein 
genes. Genes consist of DNA sequences which are transcribed into 
messenger-RNA. Messenger-RNA (and DNA) consists of four different 
bases and three consecutive bases form a codon. Each codon of the 
messenger-RNA is translated into an amino acid. There are 20 different 
amino acids, and the sequence of amino acids determines the properties of 
the protein. One difference in the amino acid sequence, due to mutations, 
can give the protein different properties. An example of different variants of 
milk proteins was first described for the whey protein β-lactoglobulin. 
Aschaffenburg and Drewry (1955) discovered that β-lactoglobulin protein 
exists in two variants, A and B, which differ from each other by two amino 
acids changes. The variant occurring in the milk of an animal is genetically 
controlled and may be AA, AB or BB depending on the DNA sequence of 
the animal. In subsequent years, variants were detected for most of the 
milk proteins. Only a few studies have examined the effects of genetic 
variants of milk proteins on milk protein composition (e.g., Ng-Kwai-Hang et 

al. 1987; Bobe et al. 1999 and Heck et al. 2009). These authors showed that 
variants in β-CN, κ-CN and β-LG are associated with milk protein 
composition and with total casein in milk. 
 
Genetic variation, heritability and genetic correlation 

Variation has been found for many traits investigated in livestock species. 
Part of this variation is due to genetic factors (heritability). Under the 
infinitesimal model it is assumed that genetic differences are caused by 
many genes, each with a small effect. The infinitesimal model forms the 
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Text box 1 Capillary Zone electrophoresis 

Capillary zone electrophoresis (CZE) is a technique by which proteins can 
be separated based on their size and mainly on their charge.  A protein 
sample is injected into a capillary that is filled with a liquid, and proteins are 
separated by applying an electric field.                  
                                                               
After injection at the 
anode, the proteins with 
the highest positive 
charges are moving with 
the highest speed through 
the capillary to the 
cathode. Large molecules 
will move with a lower 
speed through the 
capillary than smaller 
molecules, but the charge of the molecule is the most important factor 
determining the speed through the capillary. At the end of the capillary 
individual proteins are detected by UV absorption. Figure 1 shows a 
schematic representation of a CZE. 
 

basis of quantitative genetics which is at the heart of present day selective 
breeding.  
The opportunities to change a trait through breeding depend upon the 
amount of genetic variation. The heritability (h2) of a trait expresses the 
genetic variation as a proportion of the phenotypic variation. A low heritability 
means that only a small fraction of the differences observed between animals 
is due to genetics.  
To determine whether it is possible to alter the composition of milk protein 
through selective breeding, it is important to know its heritability. The 
heritability for total milk protein production (kg per cow per lactation) is about 
0.26 (e.g. Chauhan and Hayes, 1991; Lund et al., 1999). The heritability for 
milk protein content is about 0.50 (e.g. Hayes et al., 1984; Ikonen et al., 
1999), while for casein content it is about 0.30 (Hayes et al., 1984; Ikonen et 

al., 2004). Only a few studies have estimated heritabilities for the major milk 

Figure 1 Capillary zone electrophoresis diagram 
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proteins (e.g. Ikonen et al., 1997; Bobe et al., 1999; Graml and Pirchner, 
2003), but no studies have reported genetic correlations among the major 
milk proteins. The limited number of studies is a reflection of the 
technological difficulties of quantifying the major milk proteins 
simultaneously on a large number of cows and daughters of bulls, which is 
a prerequisite for estimating their genetic parameters. 
Genetic variation is needed to gain genetic improvement. However, the 
genetic correlation between traits is also important. Different traits, e.g. 
protein production and casein content, might be partially influenced by the 
same genes. This would mean that selection on protein production would 
lead to both a genetic change in protein production (direct effect) and a 
genetic change in casein content (correlated effect). The size of the 
correlated response depends on the so-called genetic correlation between 
traits (rg). A positive genetic correlation between two traits means that both 
traits are positively affected and will speed up the genetic improvement. 
However, it is also possible that one trait is positively affected and the other 
trait negatively affected (negative genetic correlation). In this case the genetic 
correlation will slow down the genetic improvement.  
 
QTL mapping in dairy cattle 

When it has been established that a trait is influenced by genetic factors, it is 
of interest to identify polymorphisms in genes that contribute to the genetic 
variation. For the milk proteins, some variants (e.g. β-lactoglobulin variants A 
and B) are already known. Bobe et al. (1999) showed that the β-lactoglobulin 

variants A and B explain a major part of the genetic variation of β-
lactoglobulin fraction. Bobe et al. (1999) and Heck et al. (2009) showed that 
variants of β-casein, к-casein and β-lactoglobulin are associated with the 
genetic variation of milk protein composition. However, there might be more 
genes contributing to the genetic variation in milk protein composition. One 
method to identify chromosomal regions affecting the trait of interest 
(quantitative trait loci (QTL)) is linkage mapping. Bovenhuis and Schrooten 
(2002) and Khatkar et al. (2004) have given an overview of QTL for milk 
production traits in dairy cattle (milk, fat and protein yield, and fat and protein 
percentage). There are no publications reporting QTL for milk protein 
composition.  
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Molecular markers 

Until recently, microsatellites were the primary type of markers used for 
QTL mapping in livestock. They are abundant, multi-allelic and occur 
randomly throughout the genome, and, because they are highly 
polymorphic, they are highly informative. Because of these marker 
characteristics, their use over the years has been extremely valuable. The 
increasing availability of Single Nucleotide Polymorphisms (SNPs) provides 
an alternative (Schaid et al., 2004). SNPs are more abundant than 
microsatellites and also occur randomly throughout the genome. A 
disadvantage of SNPs relative to microsatellites is that they have only two 
alleles. As a result SNPs are less informative and, therefore, more SNPs 
are required to achieve the same level of information as compared to using 
microsatellites (Schaid et al., 2004; Kruglyak, 1997). However, the major 
advantage of SNPs is their suitability for high-throughput genotyping. 
Therefore, at present, SNPs are the most abundantly used markers in 
genetic studies of livestock species. 
 
Fine mapping 

QTL regions obtained by linkage mapping are generally large and, thus, will 
contain hundreds of genes. It is impractical to consider hundreds of genes as 
potential candidates for the QTL effect. Therefore, the chromosomal region 
associated with the trait should be narrowed, i.e., the region should be fine 
mapped. To fine map a chromosomal region, more genetic markers are 
needed. The development of new techniques that enable genotyping of 
thousands of SNPs per individual has greatly facilitated fine mapping.  
In April 2009 the bovine genome has been sequenced (The bovine genome 
sequencing and analysis consortium et al., 2009), which is of interest for 
genetics. The sequence of the bovine genome results in the availability of 
the location of many genes and genetic markers. Therefore, the sequence 
of bovine genome makes it easier to point out candidate genes in 
chromosomal regions detected in the linkage study or association study. If 
no sequenced genome would be available, results from the linkage study 
and association study can be used for marker assisted selection. However, 
pointing out candidate genes will than still be a great challenge. 
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Aim and outline of the thesis 

The research described in this thesis is part of the Dutch Milk Genomics 
Initiative. The aim of the Dutch Milk Genomics Initiative is to identify 
opportunities to use natural genetic variation to improve milk quality e.g. 
milk fat composition and milk protein composition. More details on the 
resource population used in the Dutch Milk Genomics Initiative are given in 
Text box 2. The general aim of this thesis was to obtain more insight into 
the genetic background of bovine milk protein composition. 
Chapter 2 describes the estimates of heritabilities and genetic correlations 
of bovine milk protein composition. The presence of genetic variation was a 
prerequisite for performing in-depth genetic analyses such as QTL and 
association mapping. Chapter 3 describes the comparison of microsatellite 
and SNP markers for their use in genetic studies. SNPs turned out to be 
the markers of choice for the subsequent linkage and association studies 
that were performed to identify chromosomal regions affecting milk protein 
composition, as described in chapters 4 and 5. Chapter 6 describes the 
comparison between a single SNP and a multiple SNP association 
analysis. In the general discussion (chapter 7), the results of the research 
described in this thesis are put into a broader perspective and options for 
practical application are presented. 
 

 

Text box 2 Resource Population 

The Dutch Milk Genomics Initiative resource population consisted of 
2000 first lactation cows from 400 herds distributed throughout the 
Netherlands. These cows descended from 5 proven and 50 test bulls, 
which resulted in 5 large paternal half-sib families of about 200 cows 
each and 50 small paternal half-sib families of about 20 cows each. This 
setup was chosen, in order to use the 5 large families for QTL analyses 
and the 50 small families for the estimation of the genetic parameters. In 
total, three morning milk samples were taken from each cow. The first 
sample, taken during the winter of 2005, was used to determine detailed 
milk protein composition. Blood samples of the cows and semen samples 
of the bulls were used to extract DNA.  
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Abstract 
The objective of this study was to estimate genetic parameters for major 
milk proteins. One morning milk sample was collected from 1,940 first-
parity Holstein-Friesian cows in February or March 2005. Each sample was 
analyzed with capillary zone electrophoresis to determine the relative 
concentrations of the six major milk proteins. The results show that there is 
considerable genetic variation in milk protein composition. The intraherd 
heritability for the relative protein concentrations was high and ranged from 
0.25 for β-casein to 0.80 for β-lactoglobulin. The intraherd heritability for the 
summed whey fractions (0.71) was higher than that for the summed casein 
fractions (0.41). Further, there was relatively more variation in the summed 
whey fraction (CV was 11% and SD was 1.23) as compared to the summed 
casein fractions (CV was 2% and SD was 1.72). For the caseins and α-
lactalbumin, the proportion of phenotypic variation explained by herd was 
approximately 14%. For β-lactoglobulin, the proportion of phenotypic 
variation explained by herd was considerably lower (5%). Eighty percent of 
the genetic correlations among the relative protein concentrations were 
between -0.38 and +0.45. The genetic correlations suggest that it is 
possible to change the relative proportion of caseins in milk. Strong 
negative genetic correlations were found for β-lactoglobulin with the 
summed casein fractions (-0.76), and for β-lactoglobulin with casein index 
(-0.98). This study suggests that there are opportunities to change the milk 
protein composition in the cow’s milk using selective breeding. 
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Introduction 

Bovine milk represents a unique source of bioactive components and 
nutrients, which include proteins. The major milk proteins are αS1-casein (αS1-
CN), αS2-casein (αS2-CN), β-casein (β-CN), к-casein (к-CN), α-lactalbumin (α-
LA), and β-lactoglobulin (β-LG). The protein composition of milk plays an 
important role in the profitability of the dairy industry. Specific proteins 
contribute to the production of specific milk products.  Caseins, for example, 
are important for cheese yield, milk coagulation time, and curd firmness 
(Wedholm et al., 2006), whereas β-LG is important for the heat stability of 
milk (Feagan, 1979). To explore the possibilities of altering milk protein 
composition by selective breeding, genetic parameters, such as heritability 
and genetic covariance, are needed. Although many studies have reported 
the genetic variation for protein percentages and protein yields (Hayes et al., 
1984; Bobe et al., 1999; Ikonen et al., 2004), only a few studies have 
estimated the magnitude of the genetic variation of milk proteins (Renner and 
Kosmack, 1975; Kroeker et al., 1985; Ikonen et al., 1997; Bobe et al., 1999; 
Graml and Pirchner, 2003). Furthermore, these studies estimated the 
heritability of the major milk proteins, but no studies have reported genetic 
correlations among the major milk proteins. The limited number of studies is 
a reflection of the technological difficulties of quantifying the six major bovine 
milk proteins simultaneously on a large number of cows and daughters of 
bulls, which is a pre-requisite for estimating their genetic parameters. 
In the present study, capillary zone electrophoresis (CZE) was used to 
separate the major milk proteins. This technique provides rapid separation of 
the proteins, high resolution, and is reproducible (Heck et al., 2008a). Heck 
et al. (2008a) showed that the protein composition of milk varies substantially 
among cows at the phenotypic level. However, it is not known to what extent 
this variation arises from genetic factors.  
The objective of this study was to estimate the heritability of milk protein 
composition, and to estimate the genetic and phenotypic correlations 
among the major milk proteins and of milk protein composition with milk 
production traits in a population of 1,940 Dutch Holstein-Friesian cows.  
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Materials and methods 

 

Animals 

As part of the Dutch Milk Genomics Initiative, information was collected on 
1,940 first-parity cows, distributed over 398 commercial herds throughout 
the Netherlands. At least three cows were selected per herd, and each cow 
was at least 87.5 percent Holstein-Friesian. The cows descended from one 
of five proven bulls (899 cows), from one of 50 test bulls (849 cows), or 
from one of 15 other proven bulls (192 cows). The last group of cows 
ensured sampling of at least three cows per herd. The pedigree of the cows 
was supplied by the NRS (Arnhem, the Netherlands). The cows were 
milked twice daily; and each cow was between day 63 and day 282 of 
lactation at the time of sampling. Almost all animals have also been used in 
previous studies for the genetic analysis of urea (Stoop et al., 2007) and 
milk fatty acid composition (Schennink et al., 2007; Stoop et al., 2008). A 
morning milk sample was collected from each cow during February and 
March 2005, which is the winter period, to be used in the analysis of the 
major milk proteins. 
 
Phenotypes 

Observations of the test-day morning milk yield were obtained from the 
NRS. True protein, fat, and lactose percentages were determined by 
infrared spectroscopy using a Fourier-transformed interferogram 
(MilkoScan FT 6000, Foss Electric, Denmark) at the milk control station 
laboratory (Zutphen, the Netherlands). Protein, fat, and lactose yield were 
calculated by multiplying the respective percentages by the observed milk 
yield. Morning milk yields were missing for 147 cows; therefore, only 1,793 
records were analyzed for protein, fat and lactose yield. 
The relative concentrations of the six major milk proteins were determined 
by CZE, which is a technique used to separate proteins based on 
differences in size and charge. Using this method, we quantified αS1-CN, 
αS2-CN, β-CN, к-CN, α-LA, and β-LG. They were expressed as a 
percentage of the total protein fraction. Heck et al. (2008a) provides a 
detailed description of the CZE technique used in this study.  
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The milk protein к-CN, as determined in our study only consisted of к-CN-
1P (non-glycosylated, mono-phosphorylated state) (Heck et al., 2008a). 
Sum casein (Σcasein) was defined as the sum of the percentages of αS1-
CN, αS2-CN, β-CN, and к-CN. Sum whey (Σwhey) was calculated by adding 
the percentages of β-LG and α-LA. Furthermore, casein yield was 
calculated by multiplying Σcasein by total protein yield. The casein index 
was calculated as: 
 

wheycasein
casein

index casein
ΣΣ

Σ

+
=  x 100 

 
Genotypes 
Blood samples of cows for DNA isolation were collected. Genotypes for the 
κ-CN C5309T, κ-CN A5345C and κ-CN A5365G (the latter 3 to enable 
genotyping of κ-CN variants A, B and E) polymorphisms had been 
genotyped using a SNaPshot assay (Applied Biosystems, Foster City, CA) 
(Schennink et al., 2008; Heck et al., 2008b). Genotypes for к-CN were 
missing for 208 cows, because no DNA sample was available or the DNA 
sample could not be genotyped unambiguously. The β-CN and β-LG 
genotypes were determined by CZE and confirmed by genotyping two β-
CN polymorphisms and one β-LG polymorphism for 849 genotyped cows 
by the Illumina Golden Gate assay (Illumina, San Diego, CA) (Heck et al., 
2008b). 
 

Statistical analysis 

To estimate the genetic parameters and variance components, ASReml 
was used (Gilmour et al., 2002). The following animal model was used in 
the analyses: 
 
yijklmn = µ + b1*lactsti + b2*e

-0.05*lactst
i +b3*caj + b4 *caj

2 + seasonk + 
scodel +  animalm +  herdn+ eijklmn,     
 
where yijklmn was the observation for animal m in herd n with sire-code l, 
season k, calving age j, and lactation day i for the trait of interest. The 
overall mean of the trait was µ, lactsti was a covariate describing the effect 

[1] 
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of day i of lactation, caj was a covariate describing the effect of age at first 
calving in j days, seasonk was the fixed effect of the kth class of calving 
season (three classes: summer [June-August 2004], autumn [September-
November 2004], and winter [December 2004-February 2005]), scodel was 
the fixed effect of the lth class of the three different sire groups,  animalm 
was the random additive genetic effect of animal m, herdn was a random 
herd effect of the nth herd, and eijklmn was the random residual effect. Effects 
of the β-CN, к-CN and β-LG polymorphisms were estimated using the same 
animal model as described above and including a milk protein genotype as 
a fixed effect in the animal model. Ungenotyped animals were included as a 
separate class. 
The variance-covariance structure of the additive genetic effects was 

Var(animal) = σA
2
a , where A was a matrix of additive genetic relationships 

among individuals and σ2
a was the additive genetic variation. The variance-

covariance structure of the herd effects was Var(herd) = σI
2
herd , where I 

was the identity matrix and σ2
herd was the herd variation. Univariate 

analyses were used to estimate the intraherd heritability, which was defined 
as: 
       
 
where σ2

a was the additive genetic variation and σ2
e was the residual 

variation. 
The proportion of the total phenotypic variation due to differences among 
herds was defined as:   
   

                      
where σ2

herd was the herd variation, σ2
a was the additive genetic variation, 

and σ2
e was the residual variation. 

For estimating genetic and phenotypic correlations among the different milk 
proteins and of milk proteins with milk production traits, bivariate analyses 
were performed using model [1].  
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Results 

 

Mean, standard deviation, and coefficient of variation 

The means, SD and CV for the protein composition of milk and traits of milk 
production are in Table 1. The percentage of protein in the 1,940 morning 
milk samples averaged 3.5%. The six major milk proteins evaluated in this 
study made up about 86% of the total protein fraction (Table 1). The 
remaining 14% consisted of glycosylated and multi-phosphorylated к-CN, 
bovine serum albumin (BSA), γ-caseins, proteose peptones, 
immunoglobulins, lactoferrin, and numerous other proteins that occur in 
very low concentrations. Although BSA can be well separated using CZE, it 
is difficult to quantify with CZE due to sticking to the capillary. The other 
proteins are very heterogeneous which could not be quantified with an 
acceptable reproducibility. The glycosylated and multi-phosphorylated к-CN 
form partly co-migrates with β-CN, which leads to a less accurate 
estimation of the total amount of β-CN (Heck et al., 2008). 
From total protein, 75% was made up of the caseins (Σcasein). The main 
caseins were αS1-CN and β-CN, which made up 34% and 27% of the total 
protein, respectively. Four percent of total protein fraction was comprised of 
к-CN, which consisted of only к-CN in the mono-phosphorylated form. The 
CV for αS1-CN was 5% and for β-CN was 6%. There was little variation in 
Σcasein, the SD was 1.72 and the CV was 2%. The SD for к-CN was about 
one-third that of the other three caseins. The major whey protein was β-LG, 
which made up 8% of the total protein fraction, and Σwhey was 11% of the 
total protein. The CV for Σwhey was 11%, nearly five times higher than that 

of Σcasein (2%). The SD for α-LA was about one-fourth that of β-LG. A low 
CV was found for the casein index (2%). We found that 90% of the cows 
had a casein index between 85 and 90. Milk yield averaged 13.5 kg based 
on a test-day morning milk sample (Table 1). 
 
Intraherd heritability 

The intraherd heritability is in Table 2. For the relative contribution of the 
proteins to the total milk protein, the intraherd heritability was moderate to 
high and ranged from 0.25 for β-CN to 0.80 for β-LG. Notably, the intraherd 
heritability for αS1-CN (0.47) was almost twice that for β-CN; but the 
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intraherd heritability for αS2-CN (0.73) was similar to the intraherd heritability 
for к-CN (0.64). The intraherd heritability for β-LG was higher than that for 
α-LA (0.55).  
The extent to which single milk protein polymorphisms (β-CN, к-CN or β-
LG) could explain the additive genetic variation in milk protein fractions 
(Table 2) was explored. Accounting for β-CN genotypes reduced the 
polygenic, additive genetic variance for β-CN concentration from 0.54 to 
0.47. Accounting for к-CN genotypes reduced the polygenic additive 
genetic variance for к-CN concentration from 0.19 to 0.12, and accounting 
for β-LG genotypes reduced the polygenic additive genetic variance for β-
LG from 1.14 to 0.11. Further, milk protein genotypes had a substantial 
effect on the estimated polygenic genetic variance for Σcasein and casein 
index.   
For the traits of milk production, the intraherd heritability was 0.66 for 
protein percentage and 0.24 for protein yield. The intraherd heritability for 
lactose yield was similar to the intraherd heritability for milk yield. 
 
Proportion of phenotypic variation explained by herd   

The proportion of phenotypic variation explained by herd is also given in 
Table 2. For the caseins, the proportion of phenotypic variation was 
approximately 14%. For β-LG, the proportion of phenotypic variation 
explained by herd was 5%; but the variation of α-LA (16%) was similar to 
that of the caseins.  
For the milk production traits, the proportion of phenotypic variation 
explained by herd ranged from 6% for lactose percentage to 36% for 
protein yield.  
To compare the proportions of variation due to genetics and due to herd, 
the ratio of additive genetic variation and herd variation was calculated 
(Table 2). For protein yield and casein yield, herd variation was larger than 
additive genetic variation; but for the other milk proteins and milk production 
traits, additive genetic variation was similar or larger than herd variation.  
 
Genetic correlations among the milk proteins 

Phenotypic correlations were similar to the genetic correlations (Table 3), 
indicating that environmental correlations are similar to genetic correlations. 
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We will focus on the genetic correlations. Among the relative contributions 
of the major milk proteins to total milk protein, 80% of the genetic 
correlations ranged from -0.38 to +0.45. The genetic correlations among 
the four caseins were low to moderate. The strongest genetic correlations 
among the caseins were between αS1-CN and αS2-CN (-0.49), and between 
αS1-CN and к-CN (-0.56). The strongest genetic correlations among all milk 
proteins were found among Σcasein, Σwhey, and the casein index. A strong 
negative correlation was found for Σcasein with β-LG (-0.76) or Σwhey (-
0.70), but Σcasein was strongly positively correlated with the casein index 

(0.77). A strong positive correlation was observed between Σwhey and β-
LG (0.98), but Σwhey was strongly negatively correlated with the casein 
index (-1.00). The casein index was strongly negatively correlated with β-
LG (-0.98). 
Adjusting the data for β-LG genotypes gave similar correlations to those 
reported in Table 3, in most cases. The most important changes were the 
genetic correlation between Σcasein and Σwhey which increased from -0.70 
to -0.28, the genetic correlation between Σwhey and α-LA which changed 

from -0.14 to 0.20, the genetic correlation between Σwhey and αS1-CN 
which changed from -0.07 to 0.35, and the genetic correlation between 
casein index and αS1-CN which changed from 0.10 to -0.25. 
 
Genetic correlations among individual milk proteins and milk 

production traits 

Table 4 has the genetic correlations between the different milk proteins and 
milk production traits. The protein percentage was negatively correlated 
with αS1-CN (-0.61) and α-LA (-0.55), but positively correlated with к-CN 
(0.55). For fat percentage, the genetic correlations with the major milk 
proteins were similar to protein percentage. Protein yield was positively 
correlated with αS1-CN (0.29) and negatively correlated with к-CN (-0.31). 
Milk yield was positively correlated with αS1-CN (0.52) and negatively 
correlated with к-CN (-0.52). Casein yield was positively correlated with αS1-
CN (0.32) and Σcasein (0.35), but negatively correlated with к-CN (-0.29). 
The genetic correlations for protein percentage or fat percentage with the 
major milk proteins were different from the genetic correlations of lactose  
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Table 1 Means, SD, CV, and 5% and 95% quantiles for milk protein 
composition and milk production traits, measured on test-day morning milk 
samples from 1,940 first-lactation cows. 
Trait Mean SD CV(%) 5% 

quantile 

95% 

quantile 

Milk protein composition1     
αS1-Casein  33.62 1.70 5 30.90 36.13 
αS2-Casein  10.38 1.41 14 8.03 12.59 
β-Casein 27.17 1.60 6 24.51 29.70 
к-Casein2 4.03 0.58 14 3.10 4.98 
α-Lactalbumin 2.44 0.32 13 1.94 2.95 
β-Lactoglobulin  8.35 1.20 14 6.29 10.29 
Σcasein3  75.20 1.72 2 72.46 77.76 
Σwhey4  10.79 1.23 11 8.73 12.78 
Casein index5 87.45 1.40 2 85.19 89.79 
Casein yield6 (kg) 0.35 0.07 20 0.24 0.47 
Milk production traits     
Milk yield7 (kg) 13.46 2.73 20 9.00 18.10 
Protein (%) 3.51 0.30 9 3.04 4.01 
Fat (%) 4.36 0.71 16 3.33 5.48 
Lactose (%) 4.64 0.14 3 4.41 4.85 
Protein yield7 (kg) 0.47 0.09 19 0.32 0.61 
Fat yield7 (kg) 0.58 0.11 19 0.40 0.76 
Lactose yield7 (kg) 0.62 0.13 21 0.42 0.84 
1 Expressed as percentage of the total protein fraction (w/w), except casein yield 
2 Only к-casein in the mono-phosphorylated form 

3 Σcasein = αS1-casein + αS2-casein + β-casein + к-casein 
4 Σwhey = α-lactalbumin + β-lactoglobulin 
5 Casein index =  Σcasein / (Σcasein + Σwhey) * 100  
6 Casein yield = Σcasein * protein yield    
7 Based on 1793 morning milk samples    
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percentage with the major milk proteins. The genetic correlations for 
lactose yield or milk yield with the major milk proteins were similar.  
Except for a few correlations, adjusting the data for β-LG genotypes gave 
similar correlations to those reported in Table 4. The most important 
changes in genetic correlations were observed between protein percentage 
and β-LG which increased from 0.07 to 0.27. Further, the genetic 
correlation between protein yield and β-LG decreased from -0.04 to -0.31, 
and between protein yield and casein index increased from 0.09 to 0.49. 

 

Discussion 

This study reports the heritability and the genetic and phenotypic 
correlations for the protein composition of milk. Until now, limited 
information on these parameters was available in the literature. In this 
study, we determined milk protein composition for a large number of cows 
using CZE. 
 
Milk samples 
In this study, only the morning milk sample for cows were analyzed to 
decrease the transport time from the farm to the laboratory. However, milk 
production data are usually analyzed by mixing the morning and evening 
milk sample. Using only the morning sample could have affected our 
results. McLaren et al. (1998) showed that the β-CN, α-LA and β-LG 
concentration of cows kept on unrestricted pasture did not significantly 
differ between morning and evening samples. Although, McLaren et al. 
(1998) found a significant difference in β-CN and β-LG concentration 
between morning and evening samples when the cows had restricted 
pasture intake. 
 
Capillary zone electrophoresis 
CZE has the capacity to simultaneously quantify the caseins and whey 
proteins. The reproducibility for CZE was reported by Heck et al. (2008a) 
and varied between 1.5% for αS1-CN and 5.7% for αS2-CN. These 
reproducibility values for the relative protein fractions were better than the 
repeatability values obtained in previous studies (Bobe et al., 1998; Ortega  
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Table 2 Phenotypic variance (p
2), intraherd heritability1 (h2), proportion of variance explained 

by herd2 (hherd
2), the ratio of additive genetic variation to herd variation (a herd

2), and additive 
genetic variance without accounting for milk protein genotypes (a

2), with accounting for 
single β-CN (aBCN

2), -CN (aKCN
2), or β-LG (aBLG

2) genotypes for milk protein composition and 
milk production traits, measured on test-day morning milk samples from 1,940 first-lactation 
cows. 
Trait σ

2
p h² hherd σ

2
a/ σ

2
herd σ

2
a σ

2
aBCN σ

2
aKCN σ

2
aBLG 

 

Milk protein composition
3
 

αS1-CN 2.58 0.47 0.12 3.5 1.20 1.20 1.06 1.17 

αS2-CN 1.81 0.73 0.13 4.7 1.32 1.19 1.33 1.23 

β-CN 2.14 0.25 0.16 1.4 0.54 0.47 0.49 0.54 

κ-CN4 0.30 0.64 0.12 4.9 0.19 0.20 0.12 0.19 

α-LA 0.09 0.55 0.16 2.8 4.80E-02 4.84E-02 4.07E-02 4.65E-02 

β-LG 1.42 0.80 0.05 13.9 1.14 1.15 1.21 0.11 

∑casein5 2.68 0.41 0.11 3.4 1.10 1.07 1.11 0.62 

∑whey6 1.45 0.71 0.07 9.0 1.03 1.06 1.10 0.10 

Casein 
index7 1.88 0.70 0.07 9.0 1.31 1.36 1.40 0.14 

Casein 
yield8 (kg) 3.01E-03 0.26 0.35 0.5 7.71E-04 7.05E-04 7.75E-04 7.65E-04 

Milk production traits 

Milk yield  
(kg) 5.01 0.41 0.28 1.1 2.05 1.94 2.00 2.06 

Protein 
(%) 7.17E-02 0.66 0.19 2.8 4.72E-02 4.71E-02 3.97E-02 4.71E-02 

Fat 
(%) 0.47 0.50 0.08 5.8 0.24 0.23 0.24 0.24 

Lactose 
(%) 1.95E-02 0.62 0.06 9.6 1.21E-02 1.20E-02 1.19E-02 1.21E-02 

Protein 
yield (kg) 5.07E-03 0.24 0.36 0.4 1.19E-03 1.08E-03 1.19E-03 1.21E-03 

Fat yield 
(kg) 9.15E-03 0.39 0.24 1.2 3.60E-03 3.61E-03 3.53E-03 3.61E-03 

Lactose 
yield (kg) 1.11E-02 0.43 0.28 1.1 4.74E-03 4.55E-03 4.58E-03 4.76E-03 
1SE between 0.08 and 0.12. 
2SE between 0.02 and 0.03. 
3Expressed as percentage of the total protein fraction (wt/wt), except for casein yield. 
4Only κ-CN in the nonglycosylated mono-phosphorylated form. 
5∑casein = αS1-CN + αS2-CN + β-CN + κ-CN. 
6∑whey = α-LA + β-LG. 
7Casein index = ∑casein/(∑casein + ∑whey) x 100. 
8Casein yield = ∑casein x protein yield. 
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 et al., 2003). Moreover, Bobe et al. (1998) could not separate α-LA and 
BSA. 
 
Major milk proteins 

In our study, αS1-CN and β-CN were the major caseins, and αS2-CN and к-
CN were less abundant, which is the pattern seen in most ruminant species 
(Bevilacqua et al., 2006). The average relative protein concentration of the 
major milk proteins was in the range of those previously reported for cattle 
(Walstra and Jenness, 1984; Bobe et al., 1998), with the exception of к-CN. 
The mean for к-CN (4.03) was lower than previously reported (10.7 and 
16.9) (Walstra and Jenness, 1984; Bobe et al., 1998).  Only about 50% of 
the к-CN was measured in this study; we measured к-CN in the mono-
phosphorylated form, which constitutes a major fraction of к-CN, without the 
minor к-CN fractions that occur because of different glycosylation or 
phosphorylation (Heck et al., 2008a). We assumed that the relative 
concentration of к-CN in the mono-phosphorylated form was a good 
indicator of the relative concentration of к-CN as a whole. We ignored the 
effect of variation in к-CN phosphorylation and glycosylation between cows 
when estimating the intraherd heritability and the genetic and phenotypic 
correlations. 
 
Intraherd heritability 

In the present study, we modeled herd as a random effect. Including herd 
as a fixed effect into the model did not influenced the heritability estimates 
for the milk protein composition. The intraherd heritability for the protein 
composition of milk ranged from 0.25 to 0.80 in this study and indicated that 
it is feasible to alter the milk protein composition using selective breeding. 
The heritability estimates in this study were similar or higher than those 
previously reported for the protein composition of milk from dairy cattle. In 
particular, 0.25 for β-CN in our study compared to 0.03 (Kroeker et al., 
1985) or 0.33-0.40 (Ikonen et al., 1997), 0.55 for α-LA in our study 
compared to 0.27 (Renner and Kosmack, 1975) or 0.00-0.27 (Ikonen et al., 
1997) or 0.00 (Bobe et al., 1999), and 0.73 for αS2-CN in our study 
compared to 0.00–0.31 (Ikonen et al., 1997) or 0.17 (Graml and Pirchner, 
2003).  
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The discrepancy between our results and those reported by Kroeker et al. 
(1985) is especially remarkable. Kroeker et al. (1985) concluded, based on 
their estimates, that alteration of the detailed composition of the casein 
fraction would not be feasible using conventional selection methods. Their 
study included a data set of over 11,000 test-day records, which suggests 
that their heritability estimates are accurate. Heritability estimates might 
differ between studies for several reasons, one of them being the analytical 
methods used to quantify milk protein composition. We used CZE and 
Kroeker et al. (1985) used polyacrylamide gel electrophoresis combined 
with densitometry. Our CZE method had a superior reproducibility which 
will decrease the random error variance, and subsequently increase the 
heritability estimates in our study. Heritability estimates reported by Renner 
and Kosmack (1975), Ikonen et al. (1997), Bobe et al. (1999) and Graml 
and Pirchner (2003) were also based on analytical methods different from 
the ones used in the present study. The difference in heritability estimates 
among these studies could be from differences in breeds, in population or 
in allele frequencies. In addition, Ikonen et al. (1997) estimated heritabilities 
for only 174 samples from 59 Finnish Ayrshire and 155 samples from 55 
Finnish Friesian. Bobe et al. (1999) reported heritability estimates based on 
592 milk samples from 233 cows on a single farm, and therefore, the 
standard errors of the estimates were relatively large. Graml and Pirchner 
(2003) reported heritability estimates which are closer to our heritability 
estimates, though estimated in Fleckvieh and Braunvieh cattle for roughly 
2000 cows per breed. Graml and Pirchner (2003) combined heritability 
estimates derived from a sire model and a daughter to dam regression for 
both breeds, whereas our heritabilities were derived from an animal model in 
which we accounted for all family relationships among animals. The 
polygenic additive genetic variance of the milk protein fractions decreased 
after adjusting for differences in known β-CN, к-CN or β-LG polymorphisms. 
For αS1-CN, αS2-CN and β-CN, standard errors of estimates were high 
(0.29, 0.26 and 0.17 respectively). The к-CN and β-LG genotypes had no 
effect on the polygenic additive genetic variance for αS1-CN (Table 2), 
whereas Bobe et al. (1999) found that к-CN and β-LG genotypes explained 
a significant part of the genetic control of αS1-CN. The decrease in 
polygenic additive genetic variance for β-LG fraction from 1.14 to 0.11 is in  



Genetic parameters for major milk proteins 
 

 

31 

Table 3 Genetic (below diagonal) and phenotypic (above diagonal) 
correlations1 among the milk proteins,2 measured on test-day morning milk 
samples from 1,940 first-lactation cows. 

 αS1-CN αS2-CN β-CN κ-CN α-LA β-LG ∑casein ∑whey 
Casein 
index 

αS1-CN  –0.50 
(0.03) 

–0.06 
(0.03) 

–0.39 
(0.03) 

0.20 
(0.03) 

–0.13 
(0.04) 

0.39 
(0.03) 

–0.08 
(0.04) 

0.14 
(0.03) 

αS2-CN –0.49 
(0.12)  –0.32 

(0.03) 
0.15 

(0.04) 
–0.02 
(0.04) 

–0.27 
(0.04) 

0.10 
(0.03) 

–0.28 
(0.03) 

0.26 
(0.03) 

β-CN 0.01 
(0.20) 

–0.30 
(0.16)  0.01 

(0.03) 
0.03 

(0.03) 
–0.20 
(0.03) 

0.57 
(0.02) 

–0.19 
(0.03) 

0.27 
(0.03) 

κ-CN3 –0.56 
(0.12) 

0.11 
(0.14) 

–0.04 
(0.19)  –0.07 

(0.04) 
–0.15 
(0.04) 

0.08 
(0.03) 

–0.17 
(0.04) 

0.16 
(0.04) 

α-LA 0.35 
(0.15) 

0.12 
(0.15) 

0.06 
(0.19) 

–0.34 
(0.14)  –0.08 

(0.04) 
0.19 

(0.03) 
0.17 

(0.04) 
–0.12 
(0.04) 

β-LG –0.13 
(0.15) 

–0.38 
(0.12) 

–0.19 
(0.17) 

–0.10 
(0.14) 

–0.34 
(0.14)  –0.58 

(0.02) 
0.97 

(0.00) 
–0.97 
(0.00) 

∑casein4 0.29 
(0.16) 

0.43 
(0.14) 

0.35 
(0.17) 

–0.08 
(0.16) 

0.45 
(0.15) 

–0.76 
(0.08)  –0.53 

(0.02) 
0.65 

(0.02) 

∑whey5 –0.07 
(0.15) 

–0.38 
(0.12) 

–0.18 
(0.18) 

–0.19 
(0.14) 

–0.14 
(0.15) 

0.98 
(0.01) 

–0.70 
(0.09)  –0.99 

(0.00) 
Casein 
index6 

0.10 
(0.15) 

0.40 
(0.12) 

0.21 
(0.17) 

0.16 
(0.14) 

0.18 
(0.15) 

–0.98 
(0.01) 

0.77 
(0.08) 

–1.00 
(0.00)  

1SE in parentheses. 
2Expressed as percentage of the total protein fraction (wt/wt). 
3Only κ-CN in the nonglycosylated mono-phosphorylated form. 
4Ʃcasein = αS1-CN + αS2-CN + β-CN + κ-CN. 
5 Ʃwhey = α-LA + β-LG. 
6Casein index = ∑casein/(∑casein + ∑whey) x100. 

 
agreement with Bobe et al. (1999) who concluded that the genetic control 
of β-LG fraction is nearly complete by β-LG genotypes. Especially for some 
milk protein fractions (к-CN, β-LG, Σcasein and casein index), the milk 
protein polymorphisms explained a considerable part of the genetic 
variance. However, there is still genetic variation in the rest genome to 
change the relative proportions of milk proteins by selective breeding. Bobe 
et al. (1999) indicated that there is no genetic variation in the rest genome 
to change the relative proportions of milk proteins. Moreover, Bobe et al. 
(1999) used 592 milk samples from only 233 cows on a single farm. 
For both protein percentage (0.66) and protein yield (0.24), the intraherd 
heritability was in the range previously reported for Holstein cattle: 0.53 
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(Hayes et al., 1984), 0.61 (Chauhan and Hayes, 1991) and 0.48 (Ikonen et 

al., 1999) for protein percentage and 0.12 (Hayes et al., 1984) and 0.25 
(Chauhan and Hayes, 1991) for protein yield. The intraherd heritability for 
lactose yield was similar to the intraherd heritability for milk yield, which is 
in agreement with a previous study by Miglior et al. (2007). 
 
Table 4 Genetic correlations1 of milk protein composition traits2 with milk 
production traits, measured on test-day morning milk samples from 1,940 
first-lactation cows  

 
Percentage (%)  
 

 Yield
3
 (kg)  

 
Trait Protein Fat Lactose  Protein Fat Lactose Milk Casein

4
 

αS1-CN –0.61 
(0.12) 

–0.60 
(0.13) 

0.22 
(0.15) 

 0.29 
(0.20) 

–0.08 
(0.19) 

0.54 
(0.15) 

0.52 
(0.15) 

0.32 
(0.19) 

αS2-CN 0.20 
(0.14) 

0.17 
(0.15) 

–0.05 
(0.14) 

 0.15 
(0.19) 

0.21 
(0.16) 

0.00 
(0.16) 

–0.00 
(0.16) 

0.21 
(0.18) 

β-CN –0.03 
(0.19) 

0.11 
(0.20) 

0.10 
(0.18) 

 –0.18 
(0.24 

–0.02 
(0.21) 

–0.12 
(0.21) 

–0.13 
(0.21) 

–0.11 
(0.24) 

κ-CN5 0.55 
(0.11) 

0.45 
(0.14) 

–0.21 
(0.14) 

 –0.31 
(0.20) 

–0.09 
(0.17) 

–0.57 
(0.14) 

–0.52 
(0.15) 

–0.29 
(0.19) 

α-LA –0.55 
(0.12) 

–0.36 
(0.14) 

0.40 
(0.13) 

 –0.07 
(0.21) 

–0.08 
(0.18) 

0.29 
(0.16) 

0.22 
(0.17) 

0.02 
(0.20) 

β-LG 0.07 
(0.14) 

0.25 
(0.14) 

–0.04 
(0.14) 

 –0.04 
(0.19) 

0.13 
(0.16) 

–0.07 
(0.16) 

–0.07 
(0.16) 

–0.18 
(0.18) 

∑casein6 –0.07 
(0.17) 

–0.15 
(0.17) 

0.17 
(0.16) 

 0.19 
(0.22) 

0.09 
(0.19) 

0.21 
(0.18) 

0.19 
(0.18) 

0.35 
(0.20) 

∑whey7 –0.05 
(0.15) 

0.19 
(0.15) 

0.05 
(0.14) 

 –0.07 
(0.20) 

0.11 
(0.17) 

–0.02 
(0.17) 

–0.03 
(0.17) 

–0.20 
(0.19) 

Casein 
index8 

0.04 
(0.15) 

–0.19 
(0.15) 

–0.02 
(0.14) 

 0.09 
(0.20) 

–0.08 
(0.17) 

0.04 
(0.17) 

0.06 
(0.17) 

0.23 
(0.19) 

1SE given in parentheses. 
2Expressed as percentage of the total protein fraction (ww%). 
3Based on 1,793 morning milk samples. 
4Casein yield = casein x protein yield. 
5Only κ-CN in the nonglycosylated mono-phosphorylated form. 
6Ʃcasein = αS1-CN + αS2-CN + β-CN + κ-CN. 
7Ʃwhey = α-LA + β-LG. 
8Casein index = ∑casein/(∑casein + ∑whey) x 100. 
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Proportion of phenotypic variation explained by herd 

The proportion of phenotypic variation of the major milk proteins explained 
by herd was relatively small and much lower than that of the individual milk 
fatty acids, which was estimated for the same population of cows and 
ranged between 0.16 and 0.64 (Stoop et al., 2008). This suggests that herd 
has a smaller influence on the milk protein composition than it has on milk 
fat composition. A herd effect may arise from differences in housing, 
management, and feeding between herds, though we expect that a herd 
effect mainly reflects differences in feeding. Similarly, Sutton (1989) 
reported that the scope of changing the milk protein concentration by 
dietary effects is far smaller than changing the milk fat concentration. Our 
results support the conclusion that feeding will not have an important effect 
on the protein composition of milk and confirms results from Coulon et al. 
(1998), who concluded that the proportion of caseins in cow’s milk depends 
mostly on genetic factors. In addition, Walker et al. (2004) reported that 
nutrition appears to have little effect on the major milk proteins. 

 
Genetic correlations among the major milk proteins 

The four casein genes are clustered within a 250 kb region of chromosome 
6 in the following order: αS1-CN, β-CN, αS2-CN, and к-CN (Threadgill and 
Womack, 1990; Bevilacqua et al., 2006). There is homology between the 
promoter region of all the Ca2+ sensitive casein (αS1-CN, αS2-CN and β-CN) 
genes (Groenen et al., 1993).  Based on these findings, one might expect 
strong genetic correlations among caseins. Surprisingly, we found the 
correlations among the caseins to be relatively low, except between αS1-CN 
and αS2-CN (-0.49), and between αS1-CN and к-CN (-0.56). Bevilacqua et 

al. (2006) showed that the transcription of the casein genes occurs at the 
same level, but the translation efficiency of the casein messengers is 
different for the each of the four genes. This suggests that there is a 
general regulation of casein gene expression; but there is a differential 
post-transcriptional regulation, which might lead to low genetic correlations. 
Genetic correlations of casein proteins with whey proteins were relatively 
low. The strongest genetic correlations were found between αS2-CN and β-
LG (-0.38), and between αS1-CN and α-LA (0.35). These two correlations 
support the suggestion that the regulation of casein and whey genes will, to 
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some extent, involve the same co-factors, hormones, and transcription 
factors that are involved in the synthesis of milk proteins (Groenen and van 
der Poel, 1994). The genetic correlations between Σcasein and individual 
whey proteins were stronger than the genetic correlations between Σcasein 
and individual caseins. This confirms results obtained in previous studies 
which reported a negative relationship between β-LG and casein 
concentration (van den Berg et al., 1992; Wedholm et al., 2006). 
Large amounts of casein increase cheese yield and are, therefore, 
profitable for the dairy industry. The strong negative genetic correlation 
between the relative β-LG concentration and the relative proportion of 
casein in milk is, therefore, of importance for the cheese production. Ng-
Kwai-Hang et al. (1987) and Bobe et al. (1999) showed that genetic 
variants of β-LG and κ-CN affect the protein composition of milk, which may 
explain part of the genetic relation that is found. The B-variant of β-LG is 
associated with a lower β-LG concentration (Ng-Kwai-Hang et al., 1987; 
Bobe et al., 1999), with a higher casein content (van den Berg et al., 1992), 
and with a somewhat longer renneting time and less heat stability (van den 
Berg et al., 1992). Boland and Hill (2001) showed in a feasibility study that 
the selection for the B-variant of β-LG increased the milk casein and 
cheese yield per kilogram of milk protein. Thus, selection for the B-variant 
of β-LG will result in more casein in milk, which leads to more cheese 
production, without large influences on cheese properties.  

 
Genetic correlations of major milk proteins with milk production traits 

For the last few decades, breeding and payment schemes for the dairy 
industry have been focused on increasing protein yield (Boland et al., 
2001). The average milk protein yield in the Netherlands has more than 
doubled from 148 kg in 1960 to 320 kg in 2006 per lactation per cow (NRS, 
2007).  Selection for protein yield will have a negligible effect on the relative 
protein concentration of the major milk proteins because the genetic 
correlations are low to very low (Table 4). This result confirms results 
reported by Bobe et al. (2007), who concluded that selection for milk yield 
has little effect on the milk protein composition. Selection for protein 
percentage, however, can be expected to have a small effect on the milk 
protein composition by increasing the relative protein concentration of к-CN 
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and decreasing the relative protein concentrations of αS1-CN and α-LA. 
Selection for milk yield is expected to have a small effect on the relative 
protein concentration of the major milk proteins, which is the opposite of 
protein percentage, by decreasing the relative protein concentration of к-
CN and increasing the relative protein concentrations of αS1-CN and α-LA. 
The protein α-LA is also positively correlated with lactose yield and lactose 
percentage. This might be a consequence of the fact that the amount of 
lactose in milk is influenced by the capacity of α-LA to maximize its 
synthesis (Walstra and Jenness, 1984).  

 

Conclusions 

The heritability for protein composition was moderate to high. Most of the 
genetic correlations among the major milk proteins were low. The relative β-
LG concentration was strongly negatively correlated with the relative 
proportion of casein in milk, which is of importance for the cheese production. 
Our results suggest interesting possibilities to change the cow’s milk protein 
composition using selective breeding. 
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Abstract 

The objective of this study was to compare the information content of 
microsatellites and single nucleotide polymorphisms (SNPs) in commercial 
poultry populations and in cattle populations. Data was available for 12 
microsatellites and 29 SNPs for one poultry chromosome, and for 34 
microsatellites and 36 SNPs for one cattle chromosome. The 
microsatellites and SNPs were compared for their information content. 
Stochastic permutation was used to determine the number of SNPs needed 
to obtain the same average information content as a given number of 
microsatellites for different marker densities. By using all available 
microsatellites and SNPs, the 12 poultry microsatellites provided an 
average information content of 0.71 compared with 0.72 of the 29 poultry 
SNPs. The 34 cattle microsatellites provided an average information 
content of 0.92 compared with 0.79 of the 36 cattle SNPs. For poultry, 
stochastic permutation showed that the number of SNPs needed per 
microsatellite to obtain the same average information content increased 
with increasing average information content required. The number of SNPs 
needed per microsatellite varied between 1 and 2.3 SNPs per 
microsatellite. For cattle, stochastic permutation showed that the number of 
SNPs needed per microsatellite to obtain the same average information 
content fluctuated around 3. This study, therefore, indicates that 3 SNPs 
per microsatellite are needed to obtain the same average information 
content. 
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Introduction 
Several types of molecular markers are available for researchers interested 
in mapping and utilisation of quantitative trait loci (QTL). Microsatellite (MS) 
markers are extremely valuable for linkage analysis because they are 
highly polymorphic, and appear frequently throughout the genome, and 
because techniques are available for large-scale genotyping (Kruglyak 
1997). More recently single nucleotide polymorphism (SNP) markers have 
become available as a result of large genome sequencing projects in a 
number of species, e.g. in poultry (Wong et al. 2004). SNPs are bi-allelic, 
but they appear more frequently throughout the genome than MS (Vignal et 

al. 2002; Schaid et al. 2004), and they can be genotyped with high-
throughput methods.  
In humans, several studies have compared the value of MS and SNPs for 
genome scans to detect QTL. Kruglyak (1997) showed that 2 to 3 SNPs are 
needed per MS to obtain the same information content. Entropy, a measure 
of information content, for 10.423 SNPs was 0.75; for 3.300 SNPs was 
0.65; and for 360 M was 0.57 (John et al. 2004). In simulated nuclear 
human families (two parents with n children), 1 MS with 9 equally frequent 
alleles had the same information rate as 4 to 5 SNPs (Lindholm et al. 
2004).  
Studies comparing the use of MS and SNPs for genome scans are not 
available for livestock, and it might not be possible to translate results 
directly from human to livestock populations due to differences in 
population history and family structure. Large numbers of SNPs are 
available or will soon become available for most livestock species, and 
SNPs are obvious candidates to replace MS in QTL mapping. The objective 
of this study, therefore, was to compare the information content of MS and 
SNP markers in poultry and in cattle. For this purpose, we used a two-
generation design, i.e. a design where parents and their offspring are 
genotyped while phenotypes are collected on the offspring generation only 
(e.g. Van der Beek et al. 1995). 
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Materials and Methods 

 

Information content 

 The value of MS and SNPs was evaluated based on the information 
content (IC) per centimorgan (cM) for the chromosomal region under study. 
The IC is defined as the variance of the probability that an offspring at a 
specific position inherited a given allele from its parent (Spelman et al. 
1996). The IC quantifies how accurately the transmission of alleles from 
parent to offspring can be reconstructed. The IC at position k of a 
chromosome (ICk) was computed as follows: 
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where probi,k is the probability that at position k, offspring i has inherited 
allele A (alleles of the parent are arbitrarily named A and B) from the 
parent, var(probk) is the variance of the probabilities for N offspring at 
position k. 
The probability that the offspring inherits a given allele from its parent was 
calculated based on the genotypic information of marker genotypes of the 
parent and the offspring, flanking position k, and the recombination fraction 
between the flanking informative markers (Knott et al. 1994). Probabilities 
were calculated assuming the linkage map, i.e. the order of markers and 
the recombination fraction between markers, is known. The linkage phase 
in the parents was inferred based on the data, and the most likely linkage 
phase was assumed to be the true linkage phase (Knott et al. 1994).  
The IC was computed at positions that were 1 cM apart for the 
chromosomal region under study. The average IC was computed for the 
chromosomal region under study by summing the IC over all cM and 
dividing by the length of the region (in cM). 
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Polymorphism information content 

The polymorphic information content (PIC) was used to compute the 
degree of polymorphism for each MS and SNP polymorphism, and was 
computed as (Botstein et al. 1980): 
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where pi is the frequency of allele i, pj is the frequency of allele j, and n is 
the number of alleles. 
 
Data 

Both MS and SNP data were available for one chromosomal region in 
poultry and for one chromosomal region in cattle. For poultry, data 
consisted of two full-sib (FS) families with a total of 96 offspring: 42 in one 
family, and 54 in the other family. Genotypes were available for 12 MS and 
29 SNPs, which were distributed over a region from 10-102 cM of 
chromosome 10, based on the chicken consensus genetic linkage map 
(Groenen et al. 2000). The identification and design of the poultry MS have 
been described in detail by  Crooijmans et al. (1993) and Cheng & 
Crittenden (1994). The poultry SNP assays were developed with the 
support of the USDA Agricultural Research Service (USDA, ARS) and the 
USDA-CSREES National Research Initiative Competitive Grants Program, 
and through the efforts of Hans Cheng, William Muir, Gane Wong, Martien 
Groenen and Huanmin Zhang due to their work on the USDA-CSREES-
NRICGP proposal no. 2004-05434. Besides the 29 SNPs, information from 
10 additional SNPs was available, but these SNPs were not segregating in 
our two poultry families, therefore, these SNPs were not included in the 
calculations. Genotypes were available on sires, dams, and the offspring. 
For cattle, data consisted of 29 Dutch Holstein Friesian half-sib (HS) 
families with a total of 1599 offspring. Average number of offspring per sire 
was 55 and ranged from 21 to 118. Genotypes were available for 34 MS 
and 36 SNPs, which were distributed over a region from 68-106 cM of 
chromosome 18, based on the international society for animal genetics 
(ISAG) cattle map (Ihara et al. 2004). The cattle MS were chosen from the 
ISAG genetic map. The cattle SNPs were traced in the same region as the 
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microsatellites, however, no genetic of physical map of the SNPs was 
available. Genotypes were available on sires, and the offspring. 
 

Permutations 

To determine the number of SNPs needed to obtain the same average IC 
as a given number of MS for different markers densities, we used 
stochastic permutation. In each permutation, a predefined number of 
markers was randomly selected, without replacement, out of the available 
markers. For increasing number of MS and SNPs, from 1 to all available 
MS and SNPs, permutations of alternatives were performed. For each 
alternative we performed 1000 permutations, and for each permutation we 
calculated the average IC. For a given number of MS, the average IC was 
compared with the average IC just below and just above the average IC for 
the given number of SNPs. The corresponding number of SNPs required to 
obtain the same average IC for the given number of MS was computed by 
interpolation. 
The marker density in poultry was lower than the marker density in cattle. 
To compare the IC at the same marker density, the average number of MS 
and SNPs per cM was computed for both species. For poultry, there were 
12 MS, 29 SNPs, and a chromosomal region of 92 cM. The minimum 
marker density, therefore, was 1/92 = 0.01 marker per cM and the 
maximum marker density was 29/92 = 0.32 markers per cM. 
For cattle, there were 34 MS, 36 SNPs, and a chromosomal region of 38 
cM. The minimum marker density, therefore, was 1/38 = 0.03 markers per 
cM and the maximum marker density was 36/38 = 0.95 markers per cM. 
 

Results 

 

Polymorphism information content 

For poultry (Figure 1A), the PIC for the 12 MS averaged 0.45, and ranged 
between 0.19 and 0.66. The PIC for the 29 SNPs averaged 0.30, and 
ranged between 0.19 and 0.38. There were no poultry markers with PIC 
values between 0 and 0.1, or between 0.2 and 0.3. The average PIC of the 
SNPs was two-third that of the MS. 
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For cattle (Figure 1B), the PIC for the 34 MS averaged 0.52, and ranged 
between 0.18 and 0.83. The PIC for the 36 SNPs averaged 0.28, and 
ranged between 0.06 and 0.52. The average PIC of the SNPs was about 
half that of the MS. 
The PIC for MS and for SNPs showed more variation for cattle than for 
poultry. 
 
  

 
Figure 1 Histogram of the PIC for MS (■) and SNPs (□), for poultry (A) and 
forcattle (B). 
 
Information content 

An important factor determining the IC is the heterozygosity of the markers 
in the parents. For poultry, a parent was heterozygous for 7 of the 12 MS 
and for 13 of the 29 SNPs, on average. Genotyping was successful for all 
markers in all poultry parents. Genotyping in poultry was not successful for 
16 of the 96 offspring per MS, and for 17 of the 96 offspring per SNP, on 
average, which were randomly distributed over the markers, and over the 
animals. Of the 29 selected SNPs, 12 were segregating in only one of the 
two families. 
For cattle, the 29 sires were heterozygous for 19 of the 34 MS and for 11 of 
the 36 SNPs, on average. For 6 of the 29 sires, genotyping was not 
successful for 2 MS, on average, and for 5 of the 29 sires, genotyping was 
not successful for 3 SNPs, on average. Genotyping was also not successful 
for 293 of the 1599 offspring per MS and 248 of the 1599 offspring per 
SNP, on average. All  unsuccessful genotyping were randomly distributed 

A B 
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over the markers, and over the animals. In contrast with poultry, there were 
no markers that were homozygous in all of the 29 cattle sires.  
The IC for the chromosomal regions under study for poultry and cattle 
based on all available MS and SNPs are in Figure 2. For poultry (Figure 
2A), the IC averaged 0.71 for 12 MS and 0.72 for 29 SNPs. For cattle  
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Figure 2 The IC of the MS (__) and SNPs (- - -) for poultry (A) and for cattle 
(B). The dots (•) at the top indicate the positions of the MS and the triangles 
(▲) at the bottom indicate the positions of the SNPs. 
 
(Figure 2B), the IC averaged 0.92 for 34 MS and 0.79 for 36 SNPs. The IC  
showed more variation across the region under study in poultry than in 
cattle. In cattle, the IC for both marker types was fairly constant and high for 
the whole region.   
 
Permutations 

Permutations were used to determine the number of SNPs needed to 
obtain the same average IC as a given number of MS (Figure 3). For 
poultry, 1 SNP per MS was needed to obtain the same average IC of 0.21. 
To obtain the same average IC of 0.71, however, 2.3 SNPs per MS were 
needed. The number of SNPs needed per MS to obtain the same average 
IC was close to 1 when up to an average IC of 0.41. The number of SNPs 
needed per MS increased from about 1 when the average IC increased 
more than 0.41 to 2.3 when 12 MS were used. 
 For cattle, the number of SNPs needed per MS to obtain the same 
average IC in the studied chromosomal region fluctuated around 3. 
Although the number of SNPs needed per MS decreased from 3.3 to 2.7 
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when increasing the number of MS from 2 to 3, the number of SNPs 
needed per MS increased from 2.7 to 3.0 as the number of MS increased to 
12, which corresponds to an average IC of 0.80. 
Figure 4 shows that the average IC increased with increasing marker 
density. The average IC increased most at low marker densities. For 
poultry, for example, the average IC increased from 0.21 to 0.31 as the 
average number of MS per cM increased from 0.01 to 0.02, whereas, the 
average IC increased from 0.47 to 0.51 as the average number of MS per 
cM increased from 0.05 to 0.07. The average IC of the MS was equal to the 
average IC of the SNPs until about 0.04 markers per cM. From about 0.04 
markers per cM onwards, the average IC increased more for MS than for 
SNPs (Figure 4A). For cattle (Figure 4B), the average IC of the MS was 
always greater than the average IC of the SNPs. From about 0.3 markers 
per cM onwards, the difference in average IC of the MS and the SNPs 
becomes smaller. For the same marker density, the poultry markers (Figure 
4A) had greater average IC than the cattle markers (Figure 4B). For 0.1 
marker per cM, for example, the poultry MS provided an average IC of 
0.63, whereas the cattle MS provided an average IC of 0.58.  
 

Discussion 
In this study, we compared the IC of MS and SNP markers for using linkage 
in a two-generation design in poultry and in cattle. 
 
PIC 

For poultry, the PIC for the 12 MS averaged 0.45, which corresponds 
closely to results of Zhu et al. (2001), who found an average PIC of 0.46 in 
a commercial broiler sire line and 0.44 in a commercial broiler dam line. 
The PIC for the 29 poultry SNPs averaged 0.30; to our knowledge, no 
previous PIC values for SNPs in poultry have been reported.  
For cattle, the PIC for the 34 MS averaged 0.52 and ranged between 0.18 
and 0.83. This range of PIC is larger than those reported previously in 
cattle: 0.35 – 0.86 in Belgian Holstein Friesian (HF) (Peelman et al. 1998), 
0.54 – 0.85 in Polish HF (Radko et al. 2005), and 0.37 – 0.82 in Galloway 
cattle (Herráez et al. 2005). These studies, however, used MS that were 
selected from a kit recommended by the international society for animal 
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genetics (ISAG). These selected MS were highly polymorphic and, 
therefore, had greater PIC values.  
For cattle SNPs, the PIC for the 36 SNPs averaged 0.28. This PIC value is 
lower than those reported previously in cattle: 0.31 in Australian Holstein  
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Figure 3 The number of SNPs per MS needed to obtain the same average 
IC for poultry (▲) and for cattle (�) with increasing number of MS from 1 
(left) to 12 (right). 
 
Friesian (Zenger et al. 2006), and 0.35 in Angus and Hereford cattle (Van  
Eenennaam et al. 2007). Van Eenennaam et al. 2007, however, used beef 
cattle.  
In our study, there were only 2 FS poultry families compared with 29 HS 
cattle families. By chance, therefore, the range of PIC for the poultry 
markers might be lower than that for the cattle markers (Figure 1).  
Differences in marker selection and populations studied contribute to 
differences in average PIC of markers reported in different studies. It can 
be concluded that the PIC for MS and for SNPs in our study are in line with 
reported values in the literature.  
 
Difference between poultry and cattle 

From our results (Figure 3), the number of SNPs needed per MS to obtain 
the same average IC was greater for cattle than for poultry. For poultry, the 
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number of SNPs needed per MS increased with increasing average IC 
required, whereas, for cattle, the number of SNPs needed per MS 
fluctuated around 3 independent of the average IC required. The average 
IC was higher in poultry than in cattle with the same marker density (Figure 
4). A number of factors might have contributed to these differences: the two 
datasets differed in family structure (FS poultry families versus HS cattle 
families), the way in which the markers were selected, the distribution of the 
markers across the chromosomal region under study, and the PIC for the 
markers.  
We theoretically derived the consequences of having a FS or HS family 
structure for the IC. For simplicity, we assumed a population in Hardy 
Weinberg-equilibrium and equi-frequent marker alleles. The theoretical 
calculations showed that the IC in a FS family was greater than in a HS 
family. For SNPs, the IC was 1.5 times greater in a FS family than in a HS 
family. For a MS with 5 equi-frequently alleles the IC was 1.2 times greater 
in a FS family than in a HS family. The results of the theoretical calculations 
showed that the family structure had an effect on the IC, and that the 
number of alleles has a different effect on HS and FS families. 
A genetic map of MS was available for each species. The poultry MS were 
identified and designed as described by Crooijmans et al. (1993) and 
Cheng et al. (1994), whereas the cattle MS were chosen from the ISAG 
genetic map (Ihara et al. 2004). The cattle MS were chosen, based on their 
position and on the minor allele frequency (>0.05) as reported in the USDA 
MARC cattle reference families (Bishop et al. 1994), which is expected to 
result in a higher IC of the cattle MS than the poultry MS. For SNPs, a 
physical map was available for poultry (Wong et al. 2004), whereas such a 
map was not available for cattle. The poultry SNPs were selected at equal 
physical distance, although, the recombinant rate between adjacent poultry 
SNPs might still differ. The used selection procedure for the SNPs might 
have an effect on the outcome of this study. Ten additional SNPs that were 
monomorphic in all poultry parents, were excluded from the analysis. Had 
they been included, the average heterozygosity of poultry SNPs would be 
reduced from 45% to 33%, which is similar to the average heterozygosity of 
31% of cattle SNPs, the average IC of 0.72 would have stayed equal, only 
for 39 SNPs in stead of 29 SNPs, and the number of SNPs needed per MS 
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to obtain the same average IC would have increased by a factor of 1.34. 
Opportunities to exclude monomorphic SNPs, however, are not possible 
when standard arrays are being applied for genotyping SNPs. The SNPs, 
however, used for standard arrays will be common SNPs which are 
expected to be informative in many populations. The genotyping of the 
selected MS and SNPs in each species was not always successful, 
however, the number of unsuccessful genotypes for poultry and for cattle 
was quite similar. 
The distribution of the MS and of the SNPs over the studied chromosomal 
region was different for poultry, whereas the distribution of the MS and of 
the SNPs over the studied chromosomal region was quite similar for cattle. 
The poultry MS were further apart and less equally distributed than the 
poultry SNPs. The difference in distribution of the markers might have an 
effect on the increasing number of SNPs needed per MS to obtain the 
same average IC with increasing average IC for poultry. 
The PIC for the markers is influenced by the effective population size. The 
effective population size will have an effect on the number of alleles present 
in the population. In our study the effective population size, and the number 
of alleles were smaller for poultry than for cattle. This might explain the 
smaller range of PIC for poultry than for cattle. 
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Figure 4 The average IC for increasing marker density (average number of 
markers per cM) for MS (♦) and SNPs (◊), for poultry (A) and for cattle(B). 
 
IC and permutations 

For poultry, the IC of the 12 MS averaged 0.71, which was similar to the IC 
of the 29 SNPs (0.72). For cattle, the IC of the 34 MS averaged 0.92, which 

A B 

Average number of markers per cM Average number of markers per cM 
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was 0.13 greater than that of the 36 SNPs (0.79). There was more variation 
in IC across the chromosomal region for poultry than for cattle (Figure 2), 
due to the distribution of the markers and the marker density. The poultry 
markers covered a larger chromosomal region than the cattle markers and 
consequently the average distances between markers were larger for 
poultry than for cattle. A large distance between markers decreases the IC 
between those markers, and, therefore, decreases the average IC of the 
chromosomal region.  
To determine the number of SNPs needed for a given number of MS to 
obtain the same average IC, we used permutations based on the two data 
sets. The permutations of each species showed that, with equal marker 
density, the MS had a greater average IC than the SNPs (Figure 4) due to 
higher polymorphisms in MS than in SNPs. For QTL mapping, therefore, it 
would be better to use MS, however, there are limited MS available for 
performing a whole genome scan, especially for fine mapping. There is a 
decreasing benefit in average IC when adding more markers, and if even 
enough markers are available, it is difficult to get an average IC of 1 (Figure 
4). 
For poultry, the number of SNPs needed to obtain the same average IC as 
a given number of MS increased from 1 to 2.3 (Figure 3). With increasing 
marker density, the average IC increased more for the MS than for the 
SNPs (Figure 4A), which resulted in higher number of SNPs per MS 
needed to obtain the same average IC. We expect that the number of 
SNPs needed per MS to obtain the same average IC will increase further 
when the average required IC increase further.  
For cattle, the number of SNPs needed to obtain the same average IC as a 
given number of MS fluctuated around 3 (Figure 3). The average IC 
increased more for the MS than for the SNPs until 0.3 markers per cM 
(Figure 4B). When using more than 0.3 markers per cM, the average IC 
increased equally for the MS and for the SNPs. Based on paternity 
exclusion, Herrázes et al. (2005) found that 2.65 SNPs were needed per 
MS for Galloway cattle. This is comparable to our result. In human studies 
the number of SNPs needed for 1 MS is 2.25-2.5 (Kruglyak 1997), 1.7 
(Goddard & Wijsman 2002), 2-3 (John et al. 2004), 2.76 (Matise et al. 
2003), and 4-5 (Lindholm et al. 2004). Lindholm et al. (2004), however, 
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used MS with 9 equally frequent alleles. Our poultry results show very 
clearly that the number of SNPs needed per MS to obtain the same 
average IC depends on the average IC required, which makes it difficult to 
compare directly between studies of different species. The general trends 
reported in our study are expected, however, to apply to other species. 
Based on our study, we indicate that 3 SNPs are needed per MS to obtain 
the same amount of information about the inheritance of chromosomal 
segments from parents to offspring to perform a whole genome scan. 
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Abstract 

The objective of this study was to perform a whole genome scan to detect 
quantitative trait loci (QTLs) for milk protein composition in 849 Holstein-
Friesian cows originating from seven sires. One morning milk sample was 
analyzed for the major milk proteins using capillary zone electrophoresis. A 
genetic map was constructed with 1,341 single nucleotide polymorphisms, 
covering 2,829 centimorgans (cM) and 95% of the cattle genome. The 
chromosomal regions most significantly related to milk protein composition 
(Pgenome<0.05) were found on Bos taurus autosome (BTA) 6, 11 and 14. 
The QTL on BTA6 was found at about 80 cM, and affected αS1-casein, αS2-
casein, β-casein and к-casein. The QTL on BTA11 was found at 124 cM, 
and affected β-lactoglobulin, and the QTL on BTA14 was found at 0 cM, 
and affected protein percentage. The proportion of phenotypic variance 
explained by the QTL was 3.6% for β-casein and 7.9% for к-casein on 
BTA6, 28.3% for β-lactoglobulin on BTA11, and 8.6% for protein 
percentage on BTA14. The QTLs affecting αS2-casein on BTA6 and 17 
showed a significant interaction. We investigated the extent to which the 
detected QTLs affecting milk protein composition could be explained by 
known polymorphisms in β-casein, к-casein, β-lactoglobulin, and DGAT1 
genes. Correction for these polymorphisms decreased the proportion of 
phenotypic variance explained by the QTLs previously found on BTA6, 11, 
and 14. Thus, several significant QTLs affecting milk protein composition 
were found, of which some QTLs could partially be explained by 
polymorphisms in milk protein genes.  
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Introduction 
Bovine milk protein is important because of its nutritional value for humans. 
Bovine milk protein is composed primarily (±90%, w/w) of six major proteins; 
αS1-casein (αS1-CN), αS2-casein (αS2-CN), β-casein (β-CN), к-casein (к-CN), 
α-lactalbumin (α-LA) and β-lactoglobulin (β-LG).  
Aschaffenburg & Drewry (1955) were the first to report that the whey 
protein β-LG is polymorphic. Later, polymorphisms for β-CN (Aschaffenburg 
1961), αS-CN (Thompson et al. 1962) and к-CN (Neelin 1964) were 
identified. Since then, several genetic variants have been described; eight 
for αS1-CN, four for αS2-CN, 12 for β-CN, 11 for к-CN, three for α-LA and 11 
for β-LG (Farrell et al. 2004). The four casein genes have been located next 
to each other at Bos taurus autosome (BTA) 6 (Threadgill & Womack 
1990), α-LA has been located at BTA5 (Hayes et al. 1993) and β-LG has 
been located at BTA11 (Hayes & Petit 1993).  
Several studies examining the effects of milk protein polymorphisms found 
that polymorphisms in β-CN are associated with concentration of β-CN, 
polymorphisms in κ-CN are associated with concentration of κ-CN, and 
polymorphisms in β-LG are associated with concentration of β-LG. 
Furthermore, polymorphisms in β-CN, κ-CN and β-LG are associated with 
other milk proteins, and with total casein in milk (e.g., Ng-Kwai-Hang et al. 
1987; Bobe et al. 1999 and Heck et al. 2009). It has also been shown that 
polymorphisms in milk proteins are related to manufacturing properties of 
milk. Cheese-making properties, e.g., milk coagulation time and curd 
firmness, are associated with polymorphisms in milk proteins (e.g., Marziali & 
Ng-Kwai-Hang 1986; Mayer et al. 1997; Wedholm et al. 2006). Moreover, the 
B variant of β-LG has been associated with an increase in cheese yield 
(Schaar et al. 1985; van den Berg et al. 1992; Wedholm et al. 2006).  
Schopen et al. (2009) found that there was substantial genetic variation 
among cows with regard to milk protein composition. However, the genes 
contributing to this variation are largely unknown. Many quantitative trait loci 
(QTL) studies have been conducted for protein percentage and protein yield; 
QTLs for protein percentage on BTA6 (e.g., Spelman et al. 1996; Zhang et 

al. 1998; Kühn et al. 1999) and BTA14 (e.g., Coppieters et al. 1998) have 
been reported (for a review, see Khatkar et al. 2004). However, no whole 
genome scan for milk protein composition has been conducted thus far. 
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Therefore, the objective of our study was to screen the whole bovine 
genome to detect QTLs for milk protein composition (αS1-CN, αS2-CN, β-CN, 
к-CN, α-LA and β-LG) in Dutch Holstein-Friesians. 
 

Materials and methods 

 

Animals 

As part of the Dutch Milk Genomics Initiative, phenotypic data on 1,912 first 
parity cows distributed among 398 commercial herds throughout the 
Netherlands were collected. The cows were descended from one of five 
proven sires representing five large half-sib families (873 cows), from one 
of 50 test sires representing 50 small half-sib families (848 cows), or from 
15 other proven sires (191 cows). The last group of 191 cows ensured 
sampling of at least three cows per herd. The pedigrees of the cows were 
supplied by the CRV (Arnhem, The Netherlands). Each cow was at least 
87.5% Holstein-Friesian. Further details of the animals used in this study 
are provided by Stoop et al. (2007). 
 
Phenotypes 

Cows were milked twice a day and from each cow, a morning milk sample 
was collected between February and March 2005, which is the winter 
period when cows are kept indoors. Each cow was between day 63 and 
282 of their first lactation at the time of sampling. 
Protein percentage was determined by infrared spectroscopy using a 
Fourier-transformed interferogram (MilkoScan FT 6000, Foss Electric, 
Denmark) at the milk control station laboratory (Zutphen, The Netherlands). 
Protein yield was calculated by multiplying protein percentage with the test-
day morning milk yield (Table 1), which was obtained from the official milk 
recording organization CRV (Arnhem, The Netherlands). Morning milk 
yields were missing for 141 cows; therefore, only 1,771 records were 
analyzed for protein yield. Milk protein composition was determined by 
capillary zone electrophoresis (CZE), as described by Heck et al. (2008). 
Using CZE, we quantified αS1-CN, αS2-CN, β-CN, к-CN, α-LA and β-LG. All 
six major milk protein fractions were expressed as the weight-proportion of 
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total protein weight (100%). The protein fraction αS1-CN comprised αS1-CN 
with eight phosphate groups (αS1-CN-8P) and nine phosphate groups (αS1- 
 
Table 1 Means and standard deviations (SD) for milk protein 
composition and milk production traits, measured on test-day morning 
milk samples from 1,912 first-lactation Holstein-Friesian cows. 
Trait Mean SD 

Milk protein composition1  

αS1-casein 33.62 1.70 

αS2-casein 10.38 1.41 
β-casein 27.17 1.59 
к-casein2 4.03 0.58 
α-lactalbumin 2.44 0.32 
β-lactoglobulin 8.34 1.21 
Σcasein3 75.20 1.72 
Σwhey4 10.79 1.24 
Casein index5 87.46 1.40 
Casein yield6 (kg) 0.35 0.07 
Milk production traits  
Protein (%) 3.51 0.30 
Protein yield7 (kg) 0.47 0.09 
1Expressed as percentage of the total protein fraction (ww%), except for casein 
yield. 
2к-casein in the mono-phosphorylated form only. 

3
Σcasein = αS1-casein + αS2-casein + β-casein + к-casein. 

4
Σwhey = α-lactalbumin + β-lactoglobulin. 

5Casein index = Σcasein / (Σcasein + Σwhey) x 100. 
6Casein yield = Σcasein x protein yield. 
7Based on 1,771 morning milk samples. 

 
CN-9P). The protein fraction αS2-CN comprised αS2-CN with ten phosphate 
groups (αS2-CN-10P), 11 phosphate groups (αS2-CN-11P) and 12 
phosphate groups (αS2-CN-12P). In our study, we measured к-CN in the 
mono-phosphorylated non-glycosylated form only; this constitutes the 
largest single fraction of к-CN but does not include the minor fractions that 
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occur due to differences in glycosylation or phosphorylation. We measured 
about 50% of к-CN (Heck et al. 2008). Sum of casein (Σcasein) was defined 
as the sum of the percentages of αS1-CN, αS2-CN, β-CN, and к-CN. Sum of 
whey (Σwhey) was calculated by adding the percentages of α-LA and β-LG. 
Casein yield was computed by multiplying Σcasein with protein yield. 
Furthermore, the casein index was calculated as: 

ΣwheyΣcasein

Σcasein
indexcasein 

+
=  x 100 

The means and standard deviations (SD) for milk protein composition, 
protein percentage and protein yield are given in Table 1, and are 
described in more detail by Schopen et al. (2009). 
 

Genotypes 

DNA was isolated from blood samples of cows and semen samples of 
sires. For this study DNA was available for the five large paternal half-sib 
families (199, 188, 180, 179 and 100 cows) and for two smaller paternal 
half-sib families (29 and 24 cows).  
Genotypes for a set of 3,072 single nucleotide polymorphisms (SNPs) for 
four of the five proven sires were obtained from CRV and were used as a 
starting point for the selection of the SNPs included in the present study. 
We aimed for an even distribution of the SNPs, which were evaluated 
based on their position on the Bosmap composite map 
(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/fasta/ 
Btau20060815−freeze/) and on the bovine genome assembly (build 3.1; 
ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/fasta/Btau20060815−freeze/Re
adMeBovine.3.1.txt). Further, the information content of the SNPs was 
evaluated based on heterozygosity in these four sires. Gaps between 
adjacent markers larger than about 10 cM were filled with markers from the 
dbSNP database (N=276; http://www.ncbi.nlm.nih.gov/projects/SNP). SNPs 
from the dbSNP database were filtered for availability of frequency data in 
Holsteins contained in the database. The resulting set of 1,536 SNPs was 
genotyped with the Golden Gate assay (Illumina, San Diego, CA, USA). 
In addition, all 1912 animals were genotyped for a number of 
polymorphisms in candidate genes. The DGAT1 K232A polymorphism was 
determined using an allelic discrimination assay (Schennink et al. 2007). 
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The SCD1 A293V, κ-CN C5309T, κ-CN A5345C and κ-CN A5365G 
polymorphisms were genotyped using a SNaPshot assay (Schennink et al. 
2008; Heck et al. 2009). The latter three polymorphisms enabled 
genotyping of the κ-CN variants A, B and E. The β-CN genotypes (A1, A2, 
A3 and B) and β-LG genotypes (A and B) were determined by CZE and 
confirmed by genotyping two β-CN polymorphisms and one β-LG 
polymorphism for the 849 successfully genotyped cows using the Golden 
Gate assay (Heck et al. 2009). All of the genotypes for all of the SNPs were 
independently scored by two researchers and discrepancies were resolved.  
 

Genetic maps 

Genotypes were used to construct linkage maps for all 29 autosomes with 
CriMap (version 2.4; Green et al. 1990). The paternal half-sib design of our 
study did not allow us to construct linkage maps for the sex chromosomes. 
Markers were assigned to linkage groups based on pair-wise LOD > 3.0 
scores obtained from the TWO−POINT option. Assigned markers were 
ordered within each linkage group using multipoint linkage analysis. Marker 
order was established with the BUILD option, in which markers were added 
in order of decreasing numbers of informative meioses. Alternative marker 
orders were evaluated with the FLIPS option, analyzing up to nine markers 
at a time. Genetic distances were estimated in the BUILD option, using the 
Kosambi mapping function. When CriMap positioned two or more markers 
at the same position, markers were placed 0.1 cM apart to ensure that all 
markers were included in the subsequent QTL analysis.  
The BLAT sequence alignment tool (Kent 2002) was used to trace back 
SNP DNA sequences to reference SNP accession numbers (rs#) in the 
dbSNP database, and was used to determine the position of the SNPs on 
the genome (physical map). This was done for the Baylor College of 
Medicine BTAU4 version (fftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/ 
fasta/Btau20070913−freeze/README.Btau20070913.txt). 
 
QTL analysis 

QTL analysis was performed based on seven half-sib families consisting of 
849 daughters. To detect QTLs, we used a multimarker regression 
approach for half-sib families, as described by Knott et al. (1996). The 
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regression analysis was performed for each trait on each chromosome 
using the following model: 

Yij = µ + si + bikXijk + eijk 
where Yij is the phenotype adjusted for systematic environmental effects: 
day of lactation, age at first calving, season of calving, and herd (Schopen 
et al. 2009) for daughter j nested within sire i, µ is the overall mean, si is the 
fixed effect of sire i,  bik is the allele substitution effect of sire i at position k, 
Xijk is the probability of daughter j inheriting gamete 1 from sire i at position 
k and eijk is the random residual effect for daughter j.  
The systematic environmental effects were estimated using an animal 
model in ASReml (Gilmour et al. 2002) on all 1,912 cows (1,771 for protein 
yield) with phenotypes as described by Schopen et al. (2009). The adjusted 
phenotypes of the 849 successfully genotyped cows were subsequently 
used for the QTL analysis. The multimarker regression approach contained 
several steps. In brief, the paternal alleles of every offspring were identified 
for all informative (i.e., heterozygous) sire SNPs and the most likely linkage 
phase in the parent was inferred based on the frequency of recombination 
events in the offspring. The probability that the offspring inherited a given 
allele from its parent was calculated conditional on the informative marker 
genotypes of the parent and the offspring flanking position k, and the 
recombination fraction between the flanking informative markers based on 
our genetic map. A test statistic across families was calculated every 0.1 
cM of the chromosome to test for the presence of a QTL. The most likely 
position for a QTL was the position with the highest test statistic. 
Based on the probabilities that a daughter inherited gamete 1 from its sire, 
the information content (IC) of the SNPs, defined as the variance of the 
probability that an offspring at a specific position inherited a given allele 
from its parent, was calculated (Spelman et al. 1996).  
In the present study, a sire was considered to be heterozygous for the QTL 
if the estimated allele substitution effect at the most likely position divided 
by its standard error had a value higher than 1.96 or lower than −1.96. 
These thresholds correspond to a P value < 0.05 when assuming a t-
distribution. The proportion of phenotypic variance explained by a 
significant QTL was calculated as the difference in R2 (proportion of 
variance explained by the model) between the model with and without a 
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QTL (bikXijk) at the best position using PROC GLM procedure in SAS 9.1 
(2002). In the case of multiple significant QTLs for one trait, we calculated 
the proportion of phenotypic variance explained by multiple QTLs using a 
model without QTLs and a model with multiple QTLs ((bik1Xijk1) + (bik2Xijk2)  + 
..). In addition, we used the model with multiple QTLs, in which we also 
modeled interaction effects for all pairwise QTL combinations at their most 
likely positions. 
It has been shown that polymorphisms in β-CN, к-CN, and β-LG are 
associated with milk protein composition, and that a polymorphism in 
DGAT1 is associated with milk protein percentage and milk protein yield. 
Therefore, we performed additional analyses in which we examined 
whether these polymorphisms could (partially) explain variation assigned to 
chromosomal regions identified in the genome scan. In this analysis, the 
phenotypes were corrected for systematic environmental effects and 
additionally corrected for known β-CN genotypes (A1A1, A1A2, A2A2, A2A3, 
A1B and A2B), к-CN genotypes (AA, AB, BB, EE, AE and BE), β-LG 
genotypes (AA, AB and BB), and DGAT1 genotypes (AA, AK and KK) by 
including these genotypes as a fixed effect in the animal model. The к-CN 
genotypes were missing for 180 out of the 1912 cows (Heck et al. 2008) 
and DGAT1 genotypes were missing for 153 out of the 1912 cows 
(Schennink et al. 2008). We conducted analyses in which we corrected for 
single genotypes and one analysis in which we corrected for all these 
genotypes simultaneously. Subsequently, the QTL regression was 
repeated for all traits and all 29 autosomes. 

 
Significance thresholds and confidence intervals 

Significance thresholds were obtained empirically by permutations as 
described by Churchill & Doerge (1994). A total of 10,000 permutations of 
the phenotypic data within sire families were performed to estimate 
chromosomewise P values. The genomewise P values were calculated by 
applying the Bonferroni correction using the formula (de Koning et al. 
1999):     

Pgenomewise = 1 – (1 – Pchromosomewise)
1/r 

where r is the contribution of a chromosome to the total length of the 
genome. This was obtained as the length of a specific chromosome divided 
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by the length of the whole genome. In this study, a 5% genomewise 
significance threshold was used to indicate significant QTLs, and a 5% 
chromosomewise significance threshold was used to indicate suggestive 
QTLs. To estimate the 95% confidence intervals (CI) of the location of the 
QTL, 1,000 bootstraps were performed.  
 

Results 

 

Genotypes 

Of the 1,536 SNPs genotyped with the Golden Gate assay, 121 could not 
be called in any of the samples or were not polymorphic in our population. 
The remaining 1,415 SNPs were called in over 95% of all samples, 1,390 
SNPs were called in over 99% of all samples, and 1,301 SNPs were called 
in all samples. 
In total, 946 samples were genotyped with the Golden Gate assay, of which 
40 (the same four on each 96-well plate) were included to check technical 
repeatability. Based on the results of these 40 samples, the error rate was 
0.03%. Of the remaining 906 samples, 50 were excluded: 26 because they 
could not be called for more than 1% of the 1,415 SNPs and 24 because 
they showed pedigree errors for more than 1% of the 1,415 SNPs. For the 
final 856 samples genotypes were called for over 99% of all 1,415 SNPs, of 
which 500 samples were called for all 1415 SNPs. Out of the final 856 
samples, the number of missing genotypes was 5 for DGAT1 K232A, 22 for 
SCD1 A293V, 2 for κ-CN C5309T, 3 for κ-CN A5345C and 4 for κ-CN 
A5365G. The latter three polymorphisms enabled genotyping of the κ-CN 
variants A, B and E. 
The final dataset contained genotypes for 1,420 SNPs from 856 animals 
(cows and sires). Samples represented 193, 179, 170, 166, and 91 cows 
from the five large half-sib families, 29 and 21 cows from the two small half-
sib families, and the seven sires. Average heterozygosity of the seven sires 
for the 1,420 SNPs was 50%. Only 1.5% of the SNPs showed a minor 
allele frequency of less than 0.1%, which shows that the SNP selection 
process worked well. The average minor allele frequency was 0.34.  
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Genetic maps 

Pair-wise analysis to assign markers to chromosomes resulted in the 
exclusion of 41 markers that did not meet the LOD > 3.0 score. Another 38 
markers were removed because these were typed in duplo and yielded 
identical genotypes. The remaining 1,341 markers were ordered within the 
29 autosomes and covered 2,829 cM (supporting information available 
online at Animal Genetics 40: 524-537). The length of the linkage groups 
ranged from 44 cM (BTA27) to 145 cM (BTA1), and the average length of 
marker intervals varied between 2.6 cM (BTA27) and 5.8 cM (BTA19). On 
average, each linkage group contained one marker interval larger than 10 
cM. This demonstrates that our attempts to fill these gaps with markers 
from the dbSNP database failed in a number of cases. Many of these 
markers ended up at positions surrounding the gaps rather than within the 
gaps.  
The correlation between marker order in our genetic map and the bovine 
physical map (BTAU4) ranged from 0.99 to 1.00 for all chromosomes. The 
genetic map covered 95% of the expected length of the bovine genome 
(2410/2545 Mbp assigned to linear scaffolds).  
The IC across all 29 autosomes averaged 0.83 per cM across half-sib 
families with a minimum value of 0.54 and a maximum value of 0.97 
(supporting information available online at Animal Genetics 40: 524-537). In 
small chromosomal regions on chromosomes 6, 9, 14, and 19, the IC was 
lower than 0.60.  
 
Detected QTLs 

In total, ten distinct significant chromosomal regions on BTA1, 3, 5, 6, 9, 10, 
11, 14, 15 and 17 were found (Table 2). Some of these chromosomal 
regions affected multiple traits. Ten traits out of the 12 traits analyzed 
showed significant evidence for the presence of one or more QTLs 
affecting milk protein composition (Pgenome < 0.05). No significant QTLs 
affecting protein yield and casein yield were found. Most of the significant 
chromosomal regions affecting multiple traits were found on BTA6, 11 and 
14. Figure 1A−1C shows the graphs of the test statistics for the significant 
traits on BTA6, 11, and 14. 
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On BTA6 at a position of about 80 cM, we found significant evidence for a 
QTL affecting αS1-CN, αS2-CN, β-CN, and κ-CN fractions and protein 
percentage (Table 2). The number of sires which were identified as being 
heterozygous for the QTL on BTA6 affecting αS1-CN was four, affecting αS2-
CN was three, affecting β-CN was two, and affecting κ-CN was four (Table 
3). For four of the five large half-sib families, the QTL affecting αS1-CN on 
BTA6 had a positive allele substitution effect, whereas the same QTL 
affecting αS2-CN, β-CN and κ-CN had a negative allele substitution effect. 
For half-sib family 1, the allele substitution effects of the QTL affecting αS1-
CN and β-CN were the opposite compared to the other four large half-sib 
families (Table 3). The proportion of phenotypic variance explained by the 
QTL on BTA6 was 6.8% for αS1-CN, 6.7% for αS2-CN, 3.6% for β-CN, 7.9% 
for κ-CN, and 3.6% for protein percentage (Table 4).  
On BTA11, at position 124 cM, we found significant evidence for a QTL 
affecting β-LG fraction, Σcasein, Σwhey, and casein index (Table 2). The 
QTL affecting β-LG fraction, Σcasein, Σwhey, and casein index on BTA11 
significantly segregated within large half-sib family 1, 3, and 5 (Table 3). 
The QTL affecting β-LG and Σwhey on BTA11 had a negative allele 
substitution effect for half-sib family 1 and 5, and a positive allele 
substitution effect for half-sib family 3 and 6, which is the opposite of the 
allele substitution effects for casein index (Table 3). The proportions of 
phenotypic variance explained by the QTL on BTA11 were very high: 
28.3% for β-LG, 10.4% for Σcasein, 25.0% for Σwhey, and 25.3% for casein 
index (Table 4).  
On BTA14 at position 0 cM, we found significant evidence for a QTL 
affecting protein percentage (Table 2). The QTL affecting protein 
percentage on BTA14 significantly segregated within large half-sib family 1, 
2, 3, and 4 (Table 3). The QTL affecting protein percentage on BTA14 had 
a negative allele substitution effect for half-sib family 1, 2, 3 and 4, and a 
positive allele substitution effect for half-sib family 6 (Table 3).  The 
proportion of phenotypic variance explained by the QTL affecting protein 
percentage on BTA14 was 8.6% (Table 4).  
In addition to these three chromosomal regions affecting milk protein 
composition, we also found significant evidence for QTLs affecting αS1-CN 

on BTA9, αS2-CN on BTA1, 10, and 17, β-CN on BTA3, α-LA on BTA5, and 
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protein percentage on BTA15 (Table 2). On BTA5, the best position of the 
QTL affecting α-LA fraction was 41 cM, which is close to the position of the 
α-LA gene on BTA5.  
In addition to the ten significant chromosomal regions, we found 11 
chromosomal regions with suggestive evidence for QTLs affecting milk 
protein composition (Pchromosomewise<0.05) (Table 2). We detected suggestive 
or significant QTLs affecting milk protein composition on  most of the 
chromosomes, except for BTA2, 4, 8, 18, 20, 21, 22 and 29. For each of 
the six major milk proteins, we found more than one chromosomal region 
with significant or suggestive evidence for a QTL; there were five regions 
affecting the αS1-CN fraction, seven regions affecting αS2-CN fraction, two 
regions affecting the β-CN fraction, three regions affecting the κ-CN 
fraction, five regions affecting the α-LA fraction, and three regions affecting 
the β-LG fraction (Table 2). 
 
Total variance explained by detected QTL 

The proportion of phenotypic variance explained in a multiple QTL analysis 
for αS1-CN fraction on BTA6 and 9 (9.1%) was very similar to the sum of the 
single QTL analyses (9.6%) (Table 5). Also for β-CN fraction on BTA3 and 
6, the proportion of phenotypic variance explained in a multiple QTL 
analysis (6.4%) was similar to the sum of the single QTL analyses (7.2%) 
(Table 5). The proportion of phenotypic variance explained in a multiple 
QTL analysis for αS2-CN fraction on BTA1, 6, 10, and 17 was 14.4%, which 
is 2.0% lower than the sum of the single QTL analyses (16.4%) (Table 5). 
Analyses revealed that this difference of 2.0% can be explained by the 
significant interaction (P = 0.04) between the QTLs affecting αS2-CN on 
BTA6 and 17. This suggests a negative covariance between these two 
QTLs. 
 
Accounting for known polymorphisms in β-CN, κ-CN, β-LG and 

DGAT1 genes 

We investigated whether polymorphisms in the β-CN, к-CN, β-LG, and 
DGAT1 genes could (partially) explain the detected QTLs affecting milk 
protein composition. Figure 2A−2C shows the profiles of the test statistics 
for the β-CN and к-CN fractions on BTA6, and for the β-LG fraction on 
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BTA11 without and with corrections for known β-CN, к-CN, or β-LG 
genotypes. 
Both β-CN and к-CN genes are located on BTA6, the β-LG gene is located 
on BTA11, and the DGAT1 gene is located on BTA14. Therefore, we 
focused on the consequences of the corrections for the known β-CN, к-CN, 
β-LG, or DGAT1 genotypes on BTA6, 11, and 14. 
On BTA6, the correction for known β-CN genotypes resulted in elimination 
of the previously significant QTL affecting β-CN fraction (Figure 2A). 
Correction for known β-CN genotypes decreased the proportion of 
phenotypic variance explained by the QTL affecting the β-CN fraction on  
BTA6 from 3.6% to 1.8% (Table 4). A previously suggestive QTL affecting 
Σwhey on BTA6 became significant after correcting for β-CN genotypes. In 
addition, correction for known β-CN genotypes resulted in detection of one 
new significant QTL affecting β-CN on BTA7, a previously suggestive QTL 
became significant (Σcasein on BTA1), and five previously significant QTLs 
became suggestive (αS1-CN on BTA9, αS2-CN on BTA10 and 17, β-CN on 
BTA3 and α-LA on BTA5). Correction for known к-CN genotypes on BTA6 
resulted in the remaining of the previously significant QTL affecting к-CN on 
BTA6 (Figure 2B). Correction for known к-CN genotypes decreased the 
proportion of phenotypic variation explained by the QTL affecting the к-CN 
fraction on BTA6 from 7.9% to 3.2% and also decreased the proportion of 
phenotypic variance explained by the QTL affecting the αS1-CN and αS2-CN 
fraction (Table 4). With correction for known к-CN genotypes, one 
previously suggestive QTL became significant (Σcasein on BTA1), and 
three previously significant QTLs became suggestive (αS1-CN on BTA9, 
αS2-CN on  BTA10, and α-LA on BTA5). 
On BTA11, correction for known β-LG genotypes resulted in remaining of 
the significant QTL affecting the β-LG fraction on BTA11 (Figure 2C). 
Correction for known β-LG genotypes enormously decreased the proportion 
of phenotypic variance explained by the QTL affecting the β-LG fraction 
from 28.3% to 4.5%, and consequently also enormously decreased the 
proportion of phenotypic variance explained by the QTL affecting Σwhey 
and casein index (Table 4). In addition, correction for known β-LG 
genotypes resulted in the elimination of one previously significant QTL (α-
LA on BTA5, four previously suggestive QTLs became significant (β-LG, 
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Σwhey and casein index on BTA6, and αS2-CN on BTA14), and one 
previously significant QTL became suggestive (β-CN on BTA3). 
On BTA14, correction for known DGAT1 genotypes resulted in elimination 
of all of the significant and suggestive QTLs previously found on that 
chromosome. The correction for known DGAT1 genotypes decreased the 
proportion of phenotypic variance explained by the QTL affecting protein 
percentage from 8.6% to 1.6% (Table 4). In addition, correction for known 
DGAT1 genotypes resulted in detection of three new suggestive QTLs (αS2-
CN on BTA9, αS2-CN on BTA27, and α-LA on BTA17), and one previously 
significant became suggestive (protein percentage on BTA6). 
 

Discussion 
This study reports on QTLs affecting the milk protein fractions (αS1-CN, αS2-
CN, β-CN, к-CN, α-LA and β-LG) of dairy cattle. This is, to our knowledge, 
the first time that the results of a genome wide scan to detect QTLs for 
casein and whey composition have been reported.  
 
Genetic maps 

The genetic map that we constructed to enable the genome scan described 
in this paper comprised 1,341 markers and covered 2,829 cM. This length 
corresponds with previously published bovine genetic maps based on 
comparable numbers of markers (Kappes et al. 1997; Ihara et al. 2004; 
Snelling et al. 2005). However, comparisons with other genetic maps 
revealed that the length of the genetic maps of individual chromosomes 
was relatively short for BTA12 and 27. This is supported by the relatively 
low percentage of coverage of the bovine physical map for BTA12 (87%) 
and 27 (74%). Thus, the resolution of our genome scan may have been 
somewhat low at both ends of BTA12 and 27. Further comparisons with the 
bovine physical map also showed relatively low percentages of coverage of 
the bovine physical map for our genetic maps for BTA15 (87%), 19 (88%), 
and 25 (88%). The marker order in our genetic map is in good accordance 
with the marker order of the bovine physical map. The few differences may 
be due either to undetected poor marker quality in our study, or to 
imperfections in the physical map. The high average heterozygosity (50%) 
and consequently high average information content (0.83) in this study 
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Table 2 Significant (Pgenomewise < 0.05) and suggestive (Pchromosomewise < 0.05) QTL 
per chromosome (BTA: Bos taurus autosome) for the six milk proteins, Σcasein1, 
Σwhey2, casein index3, casein yield4, protein yield and protein percentage with their 
F-value, best QTL location (cM), 95% confidence interval (CI) for location QTL and 
genome-wise P-value before (Pgenome) and after correction for β-casein, κ-casein, β-
lactoglobulin and DGAT1 genotypes simultaneously (Pall). A genome-wise P-value 
indicates that the QTL is at least chromosome-wise significant.  

BTA Trait F-value 
Location 
QTL (cM) 

CI for location 
QTL P genome  P all  

1 αS2-casein 4.63 129.1 58.8–141.1 0.012 0.012 
1 Σcasein 4.42 57.2 21.6–133.6 0.070 0.432 
1 κ-casein 2.11 75.2 0.0–144.7 – 0.523 
3 β-casein 4.49 48.2 13.5–125.9 0.038 0.220 
3 β-lactoglobulin 2.70 11.0 0.0–125.9 – 0.446 
3 Casein index 2.52 11.0 0.0–125.9 – 0.584 
5 α-lactalbumin 4.46 40.7 20.2–123.4 0.043 0.034 
5 Protein yield 3.56 73.6 16.1–114.1 0.455 0.278 
5 Casein yield 3.59 87.0 14.2–112.8 0.476 0.408 
6 αS1-casein 10.37 81.8 76.0–99.7 0.000 0.041 
6 αS2-casein 9.27 81.5 74.9–97.5 0.000 0.047 
6 β-casein 4.66 98.5 50.6–122.3 0.023 – 
6 κ-casein 12.89 80.3 77.1–89.5 0.000 0.321 
6 α-lactalbumin 3.93 71.0 29.9–80.2 0.122 – 
6 β-lactoglobulin 3.24 80.5 9.9–111.1 0.584 – 
6 Σwhey 4.13 80.5 10.0–91.6 0.116 – 
6 Casein index 3.65 80.5 9.9–96.9 0.282 – 
6 Protein (%) 4.20 79.5 39.9–83.6 0.041 – 
7 β-casein 2.98 0.9 0.0–114.3 – 0.038 
7 Casein index 3.18 28.2 0.0–125.4 0.642 – 
9 αS1-casein 4.40 71.8 21.8–103.5 0.027 0.168 
9 αS2-casein 2.99 0.0 0.0–90.7 – 0.626 
10 αS1-casein 3.72 70.1 3.4–113.3 0.153 0.168 
10 αS2-casein 4.41 60.3 31.6–113.3 0.027 0.051 
11 αS2-casein 3.01 123.6 20.4–123.6 0.590 – 
11 β-lactoglobulin 57.61 123.6 123.6–123.6 0.000 0.005 
11 Σcasein 15.18 123.6 122.6–123.6 0.000 0.000 
11 Σwhey 48.4 123.6 123.6–123.6 0.000 0.007 
11 Casein index 48.8 123.6 123.6–123.6 0.000 0.011 
12 αS2-casein 2.81 44.9 0.0–78.0 0.843 – 
13 α-lactalbumin 2.88 7.8 0.1–89.0 0.734 – 
13 Σcasein 3.25 77.5 11.9–107.8 0.674 – 
13 Protein (%) 3.65 62.2 11.6–78.3 0.168 0.617 
14 αS1-casein 3.57 14.5 0.0–75.9 0.216 – 
14 αS2-casein 4.16 0.0 0.0–64.9 0.051 – 
14 Protein (%) 11.90 0.0 0.0–0.0 0.000 – 
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Table 2 Continued 

BTA Trait F-value 
Location 
QTL (cM) 

CI for location 
QTL P genome  P all  

15 Protein (%) 4.66 44.4 36.0–60.7 0.018 0.000 
16 α-lactalbumin 3.03 105.4 1.2–105.4 0.624 – 
16 Protein (%) 3.46 29.6 1.2–104.0 0.296 0.541 
17 αS2-casein 4.45 37.8 0.0–97.9 0.017 0.157 
17 κ-casein 2.45 83.4 0.0–97.9 – 0.447 
17 Protein (%) 3.02 98.0 0.0–98.0 0.538 0.704 
19 Casein yield 3.50 103.9 0.0–103.9 0.491 0.262 
19 Protein yield 3.63 103.9 0.0–103.9 0.325 0.132 
23 β-casein 2.62 14.0 0.0–75.9 – 0.575 
23 κ-casein 3.00 40.3 1.7–56.4 0.738 – 
23 α-lactalbumin 3.8 35.7 18.1–54.2 0.158 0.307 
23 Σwhey 2.97 15.3 0.0–72.9 0.796 – 
23 Protein (%) 2.95 43.0 9.5–72.9 0.750 – 
24 κ-casein 2.82 9.8 0.2–68.3 0.861 0.794 
24 β-lactoglobulin 3.35 0.0 0.0–59.4 0.521 0.465 
24 Σcasein 3.26 20.2 0.0–43.4 0.678 – 
25 Protein yield 3.08 23.6 0.0–64.2 0.838 0.850 
26 α-lactalbumin 2.38 19.9 2.5–67.6 – 0.536 
26 Protein (%) 3.42 28.7 5.8–64.3 0.282 0.807 
27 αS1-casein 2.70 44.3 0.0–44.3 0.890 0.236 
27 αS2-casein 2.52 31.6 2.2–44.3 – 0.226 
27 β-casein 2.38 0.0 0.0–44.3 – 0.948 
27 κ-casein 2.00 44.3 0.0–44.3 – 0.741 
28 Casein yield 3.69 20.3 11.1–65.7 0.402 0.440 
28 Protein yield 3.69 18.9 10.6–65.9 0.395 0.449 
29 β-lactoglobulin 2.49 8.4 0.0–65.7 – 0.719 
29 Σwhey 2.23 8.4 0.0–65.7 – 0.831 
29 Casein index 2.42 8.4 0.0–65.7 – 0.849 
– = Pchromosomewise > 0.05. 
Genome-wise significant QTL are in bold. 
1Σcasein = αS1-casein + αS2-casein + β-casein + κ-casein. 
2Σwhey = α-lactalbumin + β-lactoglobulin. 
3Casein index = Σcasein/(Σcasein + Σwhey) × 100. 
4Casein yield = Σcasein × protein yield. 
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 were most likely due to our knowledge of the heterozygosity of four of the 
five proven sires that we used in the selection of our SNPs. 
 

Power of design used in present study 

For a heritability of 25%, QTLs explaining 5% − 7.5% of the phenotypic 
variance can be detected with a power higher than 0.80 for a daughter 
design of 5 large half-sib families consisting of 200 daughters each. The 
two small families in our study will not contribute much to this power. 
Schopen et al. (2009) showed that the heritabilities for the six major milk 
proteins ranged from 25% for β-CN to 80% for β-LG. The proportion of 
phenotypic variance explained by our significant QTLs ranged from 2.7% to 
28.3% (Table 4). The power calculations suggested that we could not 
detect QTLs explaining a small fraction (< 3%) of the total phenotypic 
variance. However, the detected QTL for αS2-CN on BTA10 explained only 
2.7% of the phenotypic variation, and indicates that our design to detect 
QTLs affecting milk protein composition was adequate. 
To examine whether the β-CN, к-CN, β-LG and DGAT1 genotypes partly 
explain the variance of the significant QTLs, we included the four 
genotypes simultaneously as a fixed effect in the animal model. This 
reduces the residual variation in our dataset. Decreasing residual variance 
is expected to result in a higher power of detection of other (smaller) QTLs 
(de Koning et al. 2001). In our study, correction for β-CN known genotypes 
resulted in one new significant QTL affecting β-CN on BTA7, which 
previously was not even suggestive. Correction for known DGAT1 
genotypes resulted in three new suggestive QTLs affecting αS2-CN on 
BTA9 and 27, and α-LA on BTA17. However, for some proteins, the test 
statistic decreased. 
 
Protein percentage 

Significant evidence for the presence of a QTL affecting protein percentage 
was detected on BTA6, 14, and 15. On BTA6 and 14, the significant QTL 
affecting protein percentage is in agreement with previously reported QTLs 
affecting protein percentage on BTA6 (e.g., Spelman et al. 1996; Zhang et 

al. 1998; Kühn et al. 1999; Khatkar et al. 2004) and on BTA14 (Coppieters 
et al. 1998). The chromosomal region affecting protein percentage on 
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Figure 1 Test statistics and information content (IC) for each cM of the genetic 
map for Bos taurus autosome (BTA) 6 (A), 11 (B), and 14 (C) from the across-
family analysis for the traits with Pchromosomewise < 0.05. The triangles on the x-axis 
indicate the position of the SNPs. ΣCasein = αS1-casein + αS2-casein + β-casein + 
к-casein, Σwhey = α-lactalbumin + β-lactoglobulin, and casein index = Σcasein / 
(Σcasein + Σwhey) x 100. 
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BTA15 has not been reported before, while Khatkar et al. (2004) reported 
strong evidence of a QTL affecting protein percentage on BTA3, and 20. 
Suggestive evidence for the presence of a QTL affecting protein 
percentage was detected on BTA13, 16, 17, 23, and 26. The chromosomal 
region on BTA23 was detected previously by Olsen et al. (2002), whereas 
the other four chromosomal regions that were found to affect protein 
percentage were not detected in previously performed genome scans for 
protein percentage (e.g. Ashwell et al. 2001; Mosig et al. 2001; Olsen et al. 
2002; Schrooten et al. 2004).  

 
Six major milk proteins 

There was one chromosomal region on BTA6 that was significantly related 
to the four casein fractions and one chromosomal region on BTA11 that 
was significantly related to the β-LG fraction, Σcasein, Σwhey, and casein 
index. 
On BTA6, the position of the significant QTLs affecting the αS1-CN, αS2-CN, 
and к-CN fractions was 80cM; and for the β-CN fraction, the position was 99 
cM (Table 2). The CIs suggest that the same locus may underlie the QTLs 
for all four casein fractions. The CI of the QTL includes the location of the 
casein locus on BTA6. Correction of the data for known β-CN genotypes 
decreased the proportion of phenotypic variance explained by the detected 
QTL on BTA6 affecting the β-CN fraction by 50% (Table 4). This suggests 
that the genotypes for β-CN are associated with the significant QTL 

affecting the β-CN fraction on BTA6. Correction of the data for known к-CN 
genotypes decreased the proportion of phenotypic variance explained by 
the detected QTL on BTA6 affecting the к-CN fraction by 59% (Table 4). 
This suggests that the genotypes for к-CN are associated with the 
significant QTL affecting the к-CN fractions on BTA6. However, after 
correction for known β-CN or к-CN genotypes, the QTLs affecting αS1-CN 
and αS2-CN remained significant and there was still a significant QTL 
detected for к-CN after correction for known к-CN genotypes. Therefore, in 
this study, we found evidence for the presence of other polymorphisms, 
besides the β-CN A1, A2, A3and B, and the к-CN A, B and E 
polymorphisms,  in the chromosomal region on BTA6 that have an effect on
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Table 3 Residual phenotypic standard deviation (σp), and significant allele substitution effects with standard errors within each 
sire for the significant QTL (Pgenomewise < 0.05), expressed in phenotypic standard deviation, after adjusting for systematic 
environmental effects (BTA: Bos taurus autosome).  

BTA 
Location 

(cM) Trait σp 
Sire1 

(n = 193) 
Sire2 

(n = 179) 
Sire3 

(n = 170) 
Sire4 

(n = 166) 
Sire5 

(n = 91) 
Sire6 

(n = 29) 
Sire7 

(n = 21) 
1 129.1 αS2-casein 1.15 −0.320.14 – 0.480.15 −0.290.16 0.480.21 – −1.220.47 
3 48.2 β-casein 1.31 −0.410.15 – 0.410.15 – 0.580.21 0.860.37 – 
5 40.7 α-lactalbumin 0.25 0.510.16 – – 0.550.16 – – – 
6 81.8 αS1-casein 1.42 −0.430.13 0.490.13 0.680.14 0.690.14 – – – 
6 81.5 αS2-casein 1.15 – −0.700.14 – −0.730.15 −0.490.22 – – 
6 98.5 β-casein 1.31 0.660.15 – −0.480.17 – – – – 
6 80.3 κ-casein 0.51 −0.860.14 – −0.450.14 −0.720.14 – 0.800.39 – 
6 79.5 Protein (%) 0.23 −0.690.13 – – – – – – 
9 71.8 αS1-casein 1.42 – 0.280.14 – −0.370.14 −0.660.19 – – 
10 60.3 αS2-casein 1.15 – −0.400.15 – 0.550.15 0.490.21 – – 
11 123.6 β-lactoglobulin 1.11 −1.710.13 – 1.380.13 – −1.500.18 1.740.32 – 
11 123.6 Σcasein1 1.44 1.130.15 – −0.740.16 – 0.950.21 – – 
11 123.6 Σwhey2 1.13 −1.660.12 – 1.270.13 – −1.360.19 1.540.34 – 
11 123.6 Casein index3 1.29 1.690.12 – −1.270.14 – 1.380.18 – −1.500.33 
14 0.0 Protein (%) 0.23 −0.520.17 −0.600.17 −0.820.17 −0.860.17 – 1.210.56 – 
15 44.4 Protein (%) 0.23 0.470.13 – – −0.470.17 0.600.22 – – 
17 37.8 αS2-casein 1.15 – −0.620.15 – 0.480.17 0.490.23 – – 
–No significant evidence that the sire is heterozygous for the detected QTL. 
1Σcasein = αS1-casein + αS2-casein + β-casein + κ-casein. 
2Σwhey = α-lactalbumin + β-lactoglobulin. 
3Casein index = Σcasein/(Σcasein + Σwhey) × 100. 



Chapter 4 

 

80 

αS1-CN, αS2-CN, and κ-CN. This chromosomal region on BTA6 seems to be 
involved in the regulation of all four casein fractions. Besides the casein 
genes, a possible BTA6 candidate gene is osteopontin (OPN), which is 
associated with milk protein percentage (Schnabel et al. 2005; Leonard et 

al. 2005, Olsen et al. 2007) and is located in the CI of the detected QTLs 
for the four casein fractions. Nemir et al. (2000) showed that mice, which 
suppress OPN production in the mammary epithelia, significantly reduce  

 
Table 4 Percentage of phenotypic variance explained by the QTL without 
correction (VQTL) and with correction for β-casein genotypes (VQTL-β), κ-
casein genotypes (VQTL-κ), β-lactoglobulin genotypes (VQTL-βlg), and DGAT1 
genotypes (VQTL-D) individually and simultaneously (VQTL-All) for all significant 
QTL (Pgenomewise < 0.05) across half-sib families (BTA: Bos taurus 
autosome).  

BTA Trait 
VQTL 
(%) 

VQTL-β 
(%) 

VQTL-κ 
(%) 

VQTL-βlg 
(%) 

VQTL-D 
(%) 

VQTL-All 
(%) 

1 αS2-casein 3.3 3.4 3.5 3.6 3.2 3.5 
3 β-casein 3.6 3.0 3.2 3.1 3.4 2.9 
5 α-lactalbumin 3.4 3.4 3.3 3.7 3.5 3.5 
6 αS1-casein 6.8 6.1 4.3 6.9 6.9 2.8 
6 αS2-casein 6.7 5.8 4.5 6.3 7.4 3.1 
6 β-casein 3.6 1.8 3.7 3.4 3.5 1.8 
6 κ-casein 7.9 6.2 3.2 8.5 8.2 2.4 
6 Protein (%) 3.6 3.5 1.5 3.2 2.8 1.1 
9 αS1-casein 2.8 2.6 2.5 2.8 3.2 2.4 
10 αS2-casein 2.7 3.1 2.8 3.3 3.2 3.1 
11 β-lactoglobulin 28.3 28.1 27.8 4.5 28.2 4.3 
11 Σcasein1 10.4 10.6 10.3 1.9 10.5 10.8 
11 Σwhey2 25.0 24.9 24.5 3.6 25.0 3.6 
11 Casein index3 25.3 25.2 24.8 3.7 25.2 3.7 
14 Protein (%) 8.6 8.6 8.7 8.6 1.6 1.7 
15 Protein (%) 3.6 3.6 3.6 3.5 3.6 3.8 
17 αS2-casein 3.7 2.8 3.3 3.1 3.2 2.8 
1Σcasein = αS1-casein + αS2-casein + β-casein + κ-casein. 
2Σwhey = α-lactalbumin + β-lactoglobulin. 
3Casein index = Σcasein/(Σcasein + Σwhey) × 100. 
 
the synthesis of β-CN. This indicates that OPN could be a possible 
candidate gene underlying the QTL for the four caseins on BTA6. 
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On BTA11, the best position of the QTL affecting the β-LG fraction, 
Σcasein, Σwhey, and casein index was 124 cM, which is very close to the 
position of the β-LG gene at 123 cM on BTA11. Correction for β-LG 
genotypes decreased the proportion of phenotypic variance explained by 
the detected QTL on BTA11 affecting β−LG fraction with 84% (Table 4). 

This result is in agreement with Heck et al. (2009), who reported that the β- 

LG genotype explained 90% of the total genetic variation in the β-LG  
 
Table 5 The percentage of phenotypic variance explained by multiple 
significant QTL (Pgenomewise < 0.05) for one trait, with single QTL analysis 
and multiple QTL analysis across half-sib families (BTA: Bos taurus 
autosome).  

Detected QTL 
 

Single QTL analysis1 
 

Trait BTA 1 2 3 4 Sum2 
Multiple QTL 

analysis3 

αS1-casein 6, 9 6.8 2.8 – – 9.6 9.1 
αS2-casein 1, 6, 10, 17 3.3 6.7 2.7 3.7 16.4 14.4 
β-casein 3, 6 3.6 3.6 – – 7.2 6.4 
Protein (%) 6, 14, 15 3.6 8.6 3.6 – 15.8 14.5 
1The QTL numbers correspond to the BTA numbers in the second column. 
2Sum is the phenotypic variance explained by single QTL 1 + single QTL 2 + single 
QTL 3 + single QTL 4. 
3For multiple QTL analysis, the proportion of phenotypic variance explained by the 
multiple QTL was calculated by using the model with multiple QTL [(bik1Xijk1) + 
(bik2Xijk2) + ...] for that trait. 

 

fraction. The effect of correction for the β-LG genotype on Σcasein, Σwhey, 
and casein index (Table 4) is in agreement with the strong genetic 
correlation between β-LG and Σcasein (−0.76), between β-LG and Σwhey 
(0.98), and between β-LG and casein index (−0.98), as reported by 
Schopen et al. (2009). These results suggest that the detected QTL on 
BTA11 affecting β-LG can, to a large extent, be attributed to the A and B 
variant of β-LG. However, the QTL affecting β-LG remained significant after 

correction for the known β-LG genotypes, and therefore, we found evidence 
that this chromosomal region contains additional polymorphisms, besides 
the β-LG A and B polymorphisms, with an effect on the β-LG fraction. This 
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Figure 2 Test statistics for each cM of the genetic map for Bos taurus 
autosome (BTA) 6 for β-casein (A) and к-casein (B), and for BTA11 for β-
lactoglobulin (C) before (▲) and after (∆) correction for β-casein or к-casein 
or β-lactoglobulin genotypes, respectively, from the across-family analysis. 
The triangles on the x-axis indicate the positions of the SNPs. 
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confirms recent findings by Ganai et al. (2009), who reported 33 new 
polymorphisms in the coding and promoter regions of the β-LG gene. We 

did not detect any significant chromosomal regions affecting the β-LG 
fraction other than the chromosomal region on BTA11. Thus, the 
chromosomal region on BTA11 appears to be the most important region for 
controlling the β-LG fraction content of cow’s milk. 
Significant QTLs affecting all four casein fractions were detected on BTA6, 
and one QTL affecting the β-LG fraction was detected on BTA11. The other  
significant QTLs affecting the six major milk protein were mainly located on 
different chromosomes: BTA1, 3, 5, 9, 10, and 17. These results suggest 
that other than the “master control” chromosomal region on BTA6, there is 
remarkably little overlap in the regions controlling the expression of the 
different casein fractions. For example, for κ-CN, we detected a significant 
region on BTA6 only, whereas for αS2-CN, we detected significant 
chromosomal regions on BTA1, 6, 10, and 17. These results suggest that, 
for the most part, different genes are involved in the regulation of the six 
major milk proteins, which is in agreement with the low genetic correlations 
among the six major milk proteins, as reported by Schopen et al. (2009), 
except for αS1-CN and αS2-CN. Two chromosomal regions (BTA10 and 14) 
affected both the αS1-CN and the αS2-CN fraction. The allele substitution 
effects of the QTL affecting αS1-CN and αS2-CN on both BTA10 and 14 
were, in general, opposite from one another, which is in agreement with the 
genetic correlation of −0.49 between the αS1-CN and αS2-CN fractions 
(Schopen et al. 2009). 
 

Conclusions 

We detected ten significant chromosomal regions affecting milk protein 
composition. The QTLs detected on BTA6 that affected the αS1-CN, αS2-CN, 
β-CN, and к-CN fractions were partially explained by the polymorphisms in 
the casein genes. The QTL detected on BTA11 that affected the β-LG 
fraction and Σcasein, Σwhey, and casein index were partially explained by 
the polymorphism in the β-LG gene. The QTLs detected on BTA14 that 
affected the αS1-CN and αS2-CN fractions, and protein percentage were 
mostly explained by the polymorphism in the DGAT1 gene. The regions on 
BTA6, 11, and 14 as well as regions on other chromosomes where we 
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detected QTLs affecting major milk proteins, will be a fruitful source of data 
in the future. Fine mapping will be required to further narrow the 
chromosomal regions in order to find the underlying genes causing the 
QTLs.  
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Abstract 

Our objective was to perform a genome-wide association study for milk 
protein composition, casein index, protein percentage, and protein yield 
using a 50K single nucleotide polymorphism (SNP) chip in 1,713 Dutch 
Holstein-Friesian cows. DNA was isolated from the blood samples of cows, 
and a total of 49,643 SNPs were used in a two-step procedure. The first 
step involved a general linear model while a mixed model was used in the 
second step. Chromosomal regions with SNPs significantly associated with 
milk protein composition were distributed over 15 bovine autosomes. The 
main regions with SNPs significantly associated with milk protein 
composition were found on Bos taurus autosomes (BTAs) 5, 6, 11, and 14. 
The number of chromosomal regions with SNPs significantly associated 
with a trait ranged from two for β-casein (CN) to nine for αS2-CN. Two 
regions (on BTA6 and 11) were significantly associated with the caseins 
and at least with one of the whey proteins. However, some regions were 
significantly associated with SNPs that were unique for αS1-CN (region 

13_1), αS2-CN (regions 1_2, 9_2, 10_2, and 17_2), к-CN (regions 13_2 and 
21), α-lactalbumin (regions 1_1, 5_1, and 26), and β-lactoglobulin (LG) 
(region 14). The proportion of genetic variance explained by the SNP most 
significantly associated with a trait ranged from 1.1% for αS2-CN on BTA29 
to 65.8% for β-LG on BTA11. The proportion of genetic variance explained 
by known genotypes ranged from 1.7% for к-CN genotypes for β-CN and β-
LG fraction on BTA6 to 64.9% for β-LG genotypes for the β-LG fraction on 
BTA11. The results indicate that in addition to the four main regions on BTA 
5, 6, 11 and 14, also other regions play a role in the genetic regulation of 
milk protein synthesis. 
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Introduction 

Because of their nutritional value, dairy products (e.g., milk and cheese) 
make a significant contribution to human diets. In the dairy industry, the 
protein composition of milk is important; for example, high casein content in 
milk results in a higher cheese yield per kilogram of milk protein. This 
implicates that it is possible to produce more cheese from the same amount 
of milk protein with high casein content. In the Netherlands, the protein 
content of milk is of relevance to dairy farmers, who are paid based on the 
amount of protein in milk. 
Several studies have examined the effects of milk protein variants on milk 
protein composition (e.g., Ng-Kwai-Hang et al., 1987; Bobe et al., 1999; 
Heck et al., 2009). Heck et al. (2009) showed that variants of the β-CN and к-
CN genes, which are both located on Bos taurus autosome (BTA) 6, were 
associated with milk protein composition (αS1-CN, αS2-CN, β-CN, к-CN, α-LA, 
and β-LG). Variants of the β-LG gene, which is located on BTA11, also 
affect milk protein composition. A clear example is the positive effect of the β-

LG B variant on cheese yield (Heck et al., 2009).  
In addition to the known genetic variants of milk proteins that are associated 
with milk protein composition, the results of a genome-wide linkage study 
that we previously reported revealed significant QTLs on BTA3, 5, 9, 10, 
15, and 17 that affect milk protein composition (Schopen et al., 2009b). 
However, which genes are responsible for these detected QTLs remains 
unknown. The confidence intervals of the QTLs reported by Schopen et al. 
(2009b) were in general large, but they can be reduced by using high-
density SNP genotyping per individual, which has recently become 
available. Moreover, other chromosomal regions with small effects on milk 
protein composition can be detected due to the higher power offered by 
high-density SNP genotyping. Thus, these high-density SNP arrays can 
facilitate identification of new candidate genes that affect milk protein 
composition. The objective of this study, therefore, was to perform a 
genome-wide association analysis for milk protein composition (αS1-CN, 
αS2-CN, β-CN, к-CN, α-LA, and β-LG), casein index, protein percentage, 
and protein yield using a 50K SNP chip in Dutch Holstein-Friesian cows. 
 

 



Chapter 5 
 

 

94 

Materials and methods 

 

Phenotypes 

As part of the Dutch Milk Genomics Initiative, the phenotypic data of 1,912 
first lactation Holstein-Friesian cows from 398 commercial herds throughout 
the Netherlands were collected. Details about the animals used in this 
study are available in Schopen et al. (2009a). 
Protein percentage was determined by infrared spectroscopy. To calculate 
protein yield, we multiplied protein percentage by the morning milk yield. 
Milk yields were missing for 141 cows, leaving only 1,771 cows available 
for protein yield determination. Milk protein composition was evaluated 
using capillary zone electrophoresis (CZE), as described by Heck et al. 
(2008). Using CZE, we quantified αS1-CN, αS2-CN, β-CN, к-CN, α-LA, and 
β-LG. All six major milk proteins were expressed as the weight-proportion 
of total protein (ww%). Furthermore, the casein index was calculated as 
follows: 

ΣwheyΣcasein

Σcasein
indexcasein 

+
=  × 100  

where Σcasein was defined as the sum of the percentages of αS1-CN, αS2-
CN, β-CN, and к-CN, and Σwhey was calculated by adding the percentages 
of α-LA and β-LG. Table 1 gives the mean, phenotypic standard deviation, 
and intraherd heritability for milk protein composition, casein index, protein 
percentage, and protein yield.  
 
Genotypes 

DNA was isolated from the blood samples of cows. For this study, DNA 
was available from cows in five large paternal half-sib families (214, 187, 
175, 174, and 97 cows) and from cows in 53 small paternal half-sib families 
(with 9–29 cows). A 50K SNP chip was designed by CRV (cooperative 
cattle improvement organization, Arnhem, the Netherlands) and obtained 
from Illumina and used to genotype all animals with the Infinium assay 
(Illumina, San Diego, CA, USA). Charlier et al. (2008) provide more 
information about the 50K SNP chip. This approach resulted in 50,856 
technically successful SNPs, which were mapped using the bovine genome 
assembly (BTAU4.0, Liu et al., 2009). Of the 50,856 SNPs, a total of 778 

[1] 
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were not mapped to any of the 29 bovine autosomes, and 589 SNPs were 
mapped to chromosome X. The SNPs on chromosome X were not included  
 
Table 1 Mean, phenotypic standard deviation1 (σp), and intraherd 
heritability (h2) for the six major milk proteins2, casein index, protein 
percentage, and protein yield for 1,912 Dutch Holstein-Friesian cows in 
their first lactation. 

1Phenotypic standard deviation after adjusting for systematic environmental effects: 
day of lactation, age at first calving, season of calving, and herd. 
2Expressed as a percentage of the total protein fraction (ww%). 
3к-CN in the monophosphorylated form only. 
4Casein index = Σcasein / (Σcasein + Σwhey) * 100. 
 
in the association study, and chromosome null is defined as the 
chromosome that contains the unmapped SNPs. Of the remaining 50,267 
SNPs, 231 SNPs were monomorphic and 393 SNPs had a genotyping rate 
<80%. The final dataset consisted of 49,643 SNPs for use in the 
association study.   
A total of 1,868 animals were genotyped and formed a large part of a 
subset of the 1,912 animals with phenotypes. Thus, not all phenotyped 
animals had genotypes, and not all genotyped animals had phenotypes. Of 
the 1,868 genotyped animals, 155 animals did not have phenotypes for milk 
protein composition, casein index, protein percentage, and protein yield. 
The dataset that was used in the whole association study consisted of 
1,713 animals, and 130 of these had no record for protein yield.  

Trait  Mean σp h2 

αS1-CN 33.62 1.59 0.47 

αS2-CN  10.38 1.34 0.73 

β-CN 27.17 1.46 0.26 
к-CN3 4.03 0.55 0.63 
α-LA 2.44 0.29 0.57 
β-LG  8.34 1.19 0.80 
Casein index4 87.46 1.37 0.69 
Protein (%) 3.51 0.27 0.66 
Protein (kg) 0.47 0.07 0.25 
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Genotypes for polymorphisms in the β-CN, к-CN, β-LG, and DGAT1 genes 
were known. The polymorphisms in к-CN, β-LG, and DGAT1 genes were 
included on the 50K SNP chip; however, for the β-CN gene, not all 
polymorphisms were on the chip. The genotypes for polymorphisms in the 
β-CN gene were determined using a SNaPshot assay (Visker et al., 2010).  
 

Whole genome association study 

The whole genome association study was performed using a two-step 
procedure. In the first step, a single SNP analysis was performed using the 
SNPassoc package (González et al., 2007) in R using the following general 
linear model:  

Yij = Sirei +
 SNPj + eij,    

  
where Yij was the phenotype adjusted for systematic environmental effects: 
day of lactation, age at first calving, season of calving, and herd; Sirei was 
the fixed effect of sire i; SNPj was the fixed effect of the jth class of the 
SNP; and eij was the random residual effect (eij ~ N(0,σ2

e)).  
The systematic environmental effects, which were used to adjust the 
phenotypes, were estimated by using an animal model in ASReml (Gilmour 
et al., 2002) for all 1,912 cows with phenotypes, as described by Schopen 
et al. (2009a). Furthermore, the sire effect was included in the general 
linear model to account for a family effect. 
Additional genetic relationships among individuals might exist that were not 
accounted for in the general linear model, possibly leading to false-positive 
associations. To reduce the number of false-positive associations (Kennedy 
et al., 1992), we accounted for all genetic relationships among individuals in 
the second step of the whole genome association study. For this step, we 
analyzed regions containing SNPs that were significantly (false discovery 
rate, FDR < 0.01) associated with one of the traits using the linear model. In 
this analysis, a single SNP was simultaneously adjusted for systematic 
environmental effects and for all genetic relationships among individuals in 
ASReml (Gilmour et al., 2002) by using the following animal model:  
 
 
 

[2] 
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yijklmno = µ + b1*lactsti + b2*e
-0.05*lactst

i +b3*caj + b4 *caj
2 + seasonk +  

scodel + SNPo + animalm + herdn+ eijklmn,     
   
where yijklmno was the dependent variable; µ was the overall mean; lactsti 
was a covariate describing the effect days in lactation; caj was a covariate 
describing the effect of age at first calving; seasonk was the fixed effect with 
three classes for calving season (June–August 2004, September–
November 2004, and December 2004–February 2005); scodel was the 
fixed effect accounting for possible differences in genetic level between 
proven bull daughters and young bull daughters; SNPo was the fixed effect 
of the SNP; animalm was the random additive genetic effect of animal m; 
herdn was a random herd effect; and eijklmn was the random residual effect. 
The variance-covariance structure of the additive genetic effects was 
Var(animal) = Aσ2

a, where A was a matrix of additive genetic relationships 
among individuals and σ2

a was the additive genetic variation. 
 

Significance thresholds and SNP variance 
Significance thresholds were obtained by calculating the FDR based on the 
qvalue package (Storey and Tibshirani, 2003) in R. The FDR was 
calculated based on the P values obtained from the general linear model 
for all 49,643 SNPs for each trait separately. SNPs with an FDR < 0.01 
were considered to be significantly associated with the traits.  
The proportion of genetic variance explained by an SNP was calculated 
from the estimated genotype effects and the observed genotype 
frequencies. The result was expressed as a percentage of the phenotypic 
variance.  

 
Results 

 

Genotypes 
In total, 50,267 SNPs for 1,713 animals were distributed over 29 bovine 
autosomes; of these, 231 SNPs were monomorphic and 393 SNPs had a 
genotyping rate <80%. The number of monomorphic SNPs per 
chromosome ranged from 1 on BTA27 to 20 on BTA2, and the number of 

[3] 
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SNPs with a genotyping rate <80% varied from 4 on BTA29 to 25 on BTA1 
and 6 (Table 2).  
 
Detected associations using the general linear model 

Using a general linear model in the association study resulted in significant 
associations of SNPs (FDR < 0.01) with at least one of the traits on all 29 
bovine autosomes (Figure 1). The main regions of SNPs significantly 
associated with the six major milk proteins were found on BTA5, 6, 11, and 
14. On BTA6, significant associations of SNPs were found with all traits, 
except for protein yield. The regions of SNPs significantly associated with 
casein index and β-LG were similar.  
On the null chromosome (unmapped SNPs), SNPs were significantly 
associated with all traits, except with β-CN and protein yield. Only one SNP 
was significantly associated with αS1-CN, к-CN, and α-LA; three were 
associated with β-LG, casein index, and protein percentage; and four were 
associated with αS2-CN. There was overlap in the SNPs significantly 
associated with the traits and, therefore, nine different SNPs were 
significantly associated with the milk protein composition on chromosome 
null. 
The regions of SNPs with an FDR < 0.01 were selected for further analyses 
using a mixed model in addition to the general linear model. All SNPs (also 
SNPs with FDR > 0.01) located within the selected regions were analyzed. 
For each chromosome, the same region was used for all traits. For the null 
chromosome, the nine SNPs were analyzed for all traits using the mixed 
model. Ultimately, a total of 3,655 SNPs were distributed over 32 regions 
on 22 bovine autosomes. Table 3 gives the start and end positions and the 
number of SNPs for each region. 

 
Detected associations using the mixed model 

Using a mixed model in the association study resulted in SNPs that were 
significantly associated (FDR < 0.01) with at least one trait for 20 out of 32 
regions distributed over 15 chromosomes (Table 4). For 15 regions 
(regions 1_1, 1_2, 5_1, 5_2, 5_3, 9_2, 10_2, 13_1, 13_2, 15, 17_2, 20, 21, 
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Table 2 Map length1, number of markers, number of monomorphic 
markers, and number of markers with a genotyping rate <80% 
(#GenotRate) for all 29 Bos taurus autosomes (BTAs). 
BTA Length (Mbp) # Markers # Monomorphic #GenotRate 

NULL - 778 1 8 
1 160.91 3,012 4 25 
2 140.64 2,451 20 19 
3 127.13 2,342 12 11 
4 124.09 2,300 11 20 
5 125.78 2,215 5 18 
6 122.51 2,844 12 25 
7 111.67 2,017 8 14 
8 116.93 2,131 14 16 
9 108.05 1,860 14 20 
10 106.10 1,911 14 11 
11 110.01 2,193 18 12 
12 85.22 1,512 6 14 
13 84.00 1,689 11 12 
14 81.29 2,122 9 17 
15 84.23 1,446 5 7 
16 77.83 1,455 6 14 
17 76.40 1,561 5 14 
18 66.04 1,282 3 8 
19 65.13 1,452 5 7 
20 75.41 1,479 2 9 
21 69.08 1,246 5 15 
22 61.75 1,256 4 10 
23 53.27 1,169 5 12 
24 64.93 1,296 9 14 
25 43.44 1,256 6 9 
26 51.00 1,131 5 7 
27 48.73 933 1 15 
28 46.01 899 5 6 
29 51.78 1,029 6 4 
1Based on bovine physical map BTAU4.0. 
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24, and 26), only one trait showed a significant association with SNPs, 
whereas for the other five regions (regions 6, 10_1, 11, 14, and 29), 
multiple traits showed a significant association with SNPs. The region on 
BTA6 was significantly associated with all traits, except for protein yield 
(Table 4).  
For all investigated traits in this study, except for protein yield, we found 
more than one chromosomal region with significantly associated SNPs. The 
number of chromosomal regions with SNPs significantly associated with a 
trait ranged from two for β-CN to nine for αS2-casein (Table 4). There were 
similarities between the chromosomal regions with SNPs significantly 
associated with the six major milk proteins. In addition, two regions (regions 
6 and 11) were significantly associated with the caseins and at least one of 
the whey proteins. However, some regions with significantly associated 
SNPs were unique for αS1-CN (region 13_1), αS2-CN (regions 1_2, 9_2, 
10_2, and 17_2), к-CN (regions 13_2 and 21), α-LA (regions 1_1, 5_1 and 
26), and β-LG (region 14) (Table 4). 
For protein percentage, four regions (regions 6, 10_1, 14, and 29) were 
significantly associated with at least one of the six major milk proteins. 
However, some regions had significant associations with SNPs that were 
unique for protein percentage (regions 5_2, 5_3, 15, and 20) (Table 4).  
On the null chromosome (unmapped SNPs), SNPs were significantly 
associated with αS1-CN, αS2-CN, к-CN, α-LA, β-LG, casein index, and 
protein percentage (Table 5).  
 
Six major milk proteins 

αS1-CN. The number of chromosomes with SNPs significantly associated 
with a trait was different for each of the six major milk proteins. SNPs on 
BTA6, 7, 10, 11, 12, 13, 14, 16, 22, and 29 (Fig. 1) and one unmapped SNP 
were significantly associated with αS1-CN (FDR < 0.01). On BTA12 and 22, 
the SNP significantly associated with αS1-CN involved only one animal in one 
of the genotype classes. The phenotype of the animal on BTA12 was also an 
outlier for αS1-CN. Removing the genotype of this single animal and 
rerunning the mixed model (a kind of sensitivity test) for the SNPs on BTA1 
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Table 3 The regions on Bos taurus autosomes (BTAs) analyzed using the mixed 
model in the association study with the number of regions, the name of each 
region, the length of each region, and the total number of SNPs located in each 
region1 
BTA  # Regions Name_Region Length (Mbp) # SNPs 

Null - Null  9 
1 2 1_1 109.7 – 110.2 10 
  1_2 146.6 – 150.3 90 
2 1 2 67.4 – 67.4 5 
5 3 5_1 13.5 – 42.9 438 
  5_2 75.3 – 75.3 1 
  5_3 97.5 – 98.5 16 
6 1 6 61.1 – 97.7 672 
9 2 9_1 17.4 – 17.4 1 
  9_2 80.6 – 80.6 1 
10 2 10_1 51.4 – 52.4 17 
  10_2 91.8 – 91.8 1 
11 1 11 84.3 – 110.2 472 
13  13_1 38.2 – 38.2 1 
  13_2 60.5 – 60.5 1 
14 1 14 0.0 – 13.6 842 
15 1 15 41.4 – 61.6 330 
16 1 16 53.6 – 53.6 5 
17 2 17_1 19.4 – 19.4 1 
  17_2 29.6 – 36.0 116 
19 1 19 32.9 – 39.3 110 
20 1 20 27.3 – 39.1 200 
21 1 21 47.1 – 47.1 1 
22 2 22_1 40.0 - 40.1 6 
  22_2 52.3 – 52.3 1 
23 1 23 25.2 – 25.2 1 
24 1 24 35.7 – 35.7 1 
25 2 25_1 9.4 – 9.4 1 
  25_2 35.0 – 39.6 90 
26 1 26 33.1 – 33.1 1 
28 2 28_1 18.6 – 26.1 120 
  28_2 43.2 – 43.2 1 
29 1 29 39.4 – 45.5 93 
    3,655 
1On some chromosomes, three regions were defined: _1 is the first region, _2 is 
the second region, and _3 is the third region on the chromosome. 
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and 22 resulted in elimination of significance for the SNPs in this BTA12 
region (P value from 1.8E-06 to 0.132) and on BTA22 (P value from 4.1E-05 
to 4.0E-04). On BTA7, 10, 16, and 29, no SNPs were significantly associated 
with αS1-CN after the running of the mixed model. The remaining SNPs 
significantly associated with αS1-CN were located on BTA6, 11, 13, and 14 
(Table 4) and the null chromosome (Table 5). The proportion of genetic 
variance explained by the SNP most significantly associated with αS1-CN on 
these five chromosomes varied from 1.2% on BTA13 to 7.7% on BTA6 
(Table 6). Including these five SNPs simultaneously in the mixed model 
resulted in elimination of significance of the unmapped SNP. The sum of the 
proportion of the genetic variance explained by the remaining four SNPs was 
13.9%, which was similar to the proportion of the genetic variance (14.4%) 
explained by these four SNPs when they were simultaneously included 
(multiple SNP analysis) in the mixed model (Table 7).  
In addition, we investigated whether polymorphisms in the β-CN and к-CN 
genes on BTA6, the β-LG gene on BTA11, and the DGAT1 gene on BTA14 
could explain the detected association for milk protein composition on BTA6, 
11, and 14, respectively. Therefore, we performed additional single SNP 
analyses including the known genotypes as an extra fixed effect in the 
mixed model. Accounting for known DGAT1 genotypes on BTA14 resulted 
in elimination of the significance for SNPs previously associated with αS1-
CN on BTA14. The proportion of genetic variance of αS1-CN explained by 
known genotypes varied from 2.8% for DGAT1 genotypes to 14.7% for β-CN 
genotypes (Table 8). 
αS2-CN. For αS2-CN, SNPs on BTA1, 6, 9, 10, 11, 14, 17, 19, 28, and 29 (Fig. 
1) and four unmapped SNPs were significantly associated (FDR < 0.01). On 
BTA19 and 28, no SNPs were significantly associated with αS2-CN after the 
running of the mixed model. The remaining SNPs were located on BTA1, 6, 
9, 10, 11, 14, and 17 (Table 4) and the null chromosome (Table 5). The 
proportion of genetic variance explained by the SNP most significantly 
associated with αS2-CN on these eight chromosomes ranged from 1.1% on 
BTA29 to 11.1% on BTA6 (Table 6). Including these 11 SNPs (four SNPs on 
the null chromosome) simultaneously in the mixed model resulted in 
elimination of significance of the four unmapped SNPs. The sum of the 
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Figure 1 The –log10(P-values) for all 48.874 SNPs, for all 29 Bos taurus 
autosomes (BTA) for the six major milk proteins, casein index, protein 
percentage, and protein yield. The horizontal grey line is the threshold level 
where FDR = 0.01. A -log10(P value) > 21 was set to 21 to retain an 
overview of the SNPs that exceeded the threshold level. The -log10(P value) 
was based on the general linear model in the association study using  R. 
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proportion of the genetic variance explained by the remaining seven SNPs 
was 25.7%, which was higher than the proportion of the genetic variance 
(21.8%) explained by the multiple SNP analysis (Table 7). Accounting for 
known DGAT1 genotypes on BTA14 resulted in elimination of significance 
of the SNPs previously associated with αS2-CN on BTA14. The proportion of 

genetic variance of αS2-CN explained by known genotypes varied from 2.0% 
for к-CN genotypes to 12.6% for β-CN genotypes (Table 8). 
β-CN. For β-CN, SNPs on BTA6, 11, and 23 (Fig. 1) were significantly 
associated (FDR < 0.01); however, on BTA23, no SNPs were significantly 
associated with β-CN after the running of the mixed model. The remaining 
SNPs were located on BTA6 and 11 (Table 4). The proportion of genetic 
variance explained by the SNP most significantly associated with αS2-CN on 
BTA6 was 24.7%, and on BTA11, it was 3.0% (Table 6). The sum of the 
proportion of the genetic variance explained by these two SNPs was 27.7%, 
which was similar to the proportion of the genetic variance (26.8%) explained 
by the multiple SNP analysis (Table 7). Accounting for known β-CN 
genotypes on BTA6 resulted in a decrease in significance of SNPs 
previously associated with β-CN on BTA6. The proportion of genetic 
variance for β-CN explained by known genotypes varied from 1.7% for к-CN 
genotypes to 26.6% for β-CN genotypes (Table 8). 
к-CN. For к-CN, SNPs on BTA1, 6, 11, 13, 20, 21, 24, and 29 (Fig. 1) and 
one unmapped SNP were significantly associated (FDR < 0.01). On BTA1 
and 24, the SNP significantly associated with κ-CN contained fewer than 10 
animals in one of the genotype classes. Setting the genotype of these 
animals to missing and rerunning the mixed model resulted in elimination of 
the significance of the SNP association on BTA1 (P value from 2.8E-05 to 
1.1E-02) and on BTA24 (P value from 1.39E-05 to 1.61E-04). On BTA20, no 
SNPs were significantly associated with к-CN after the running of the mixed 
model. The remaining SNPs significantly associated with к-CN were located 
on BTA6, 11, 13, 21, and 29 (Table 4) and the null chromosome (Table 5). 
The proportion of genetic variance explained by the SNP most significantly 
associated with к-CN on these six chromosomes varied from 1.2% on BTA21 
to 16.4% on BTA6 (Table 6). The sum of the proportion of the genetic 
variance explained by these six SNPs was 27.0%, which was similar to the  
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Table 4 SNPs with the most significant association with the six major milk proteins, 
casein index, protein percentage, and protein yield with the position, the name, and 
the –log10(P value) for each trait in each region using the mixed model in the 
association study, and the false discovery rate (FDR)1,2 

Region Trait Position 

(Mbp) 

SNP_Name -log10 

(P value) 

FDR 

1_1 α-LA 109.7 ULGR_BTA-120188 5.96 1.62E-03 

1_2 αS2-CN 149.2 ARS-BFGL-NGS-8140 6.30 2.85E-05 

5_1 α-LA 34.4 ULGR_SNP_U63109_19663 21.45 4.39E-13 

5_2 Protein 
(%) 

78.5 ULGR_rs29012209 4.45 1.25E-02 

5_3 Protein 
(%) 

98.5 ULGR_BTA.15561 4.72 1.98E-03 

6 αS2-CN 83.6 ULGR_BTC-053514 38.09 5.34E-36 

6 αS1-CN 88.1 ULGR_BTC-043582 26.87 5.43E-20 

6 β-CN 88.3 ULGR_BTC-0605504 100.69 1.66E-105 

6 Casein 
index 

88.5 ULGR_SNP_X14908_53455 10.19 5.79E-10 

6 Protein 
(%) 

88.5 ULGR_SNP_X14908_5345 11.28 3.08E-06 

6 β-LG 88.5 ULGR_SNP_X14908_5345 6.31 6.56E-06 

6 к-CN 88.5 ULGR_SNP_X14908_5345 63.88 4.12E-57 

6 α-LA 88.5 ULGR_rs29024684 16.36 6.92E-12 

9_2 αS2-CN 80.6 ULGR_AAFC03001453_132183 4.40 2.79E-03 

10_1 Protein 
(%) 

51.6 ULGR_AAFC03042309_74455 4.60 3.55E-04 

10_1 αS2-CN 52.4 ARS-BFGL-NGS-91094 4.23 2.75E-02 

10_2 αS2-CN 91.8 ULGR_BTA-109153 4.42 3.85E-04 

11 Casein 
index 

107.2 ULGR_SNP_X14710_17406 134.37 7.61E-304 

11 αS1-CN 107.2 ULGR_SNP_X14710_1740 8.04 1.88E-05 

11 αS2-CN 107.2 ULGR_SNP_X14710_1740 9.00 1.41E-05 

11 β-CN 107.2 ULGR_SNP_X14710_1740 9.10 2.40E-07 
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Table 4 Continued 

Region Trait Position 

(Mbp) 

SNP_Name -log10 

(P value) 

FDR 

11 β-LG 107.2 ULGR_SNP_X14710_1740 153.23 7.63E-304 

11 к-CN 107.2 ULGR_SNP_X14710_1740 7.91 2.92E-06 

13_1 αS1-CN 38.2 BTA-32346-no-rs 4.65 3.60E-03 

13_2 к-CN 60.5 ULGR_BTA-33109 5.47 1.47E-03 

14 αS1-CN 0.4 ULGR_SNP_AJ318490_1c7 10.19 2.35E-06 

14 αS2-CN 0.4 ULGR_SNP_AJ318490_1c 15.23 5.08E-12 

14 Protein 
(%) 

0.4 ULGR_SNP_AJ318490_1c 45.23 5.41E-42 

15 Protein 
(%) 

51.9 ARS-BFGL-NGS-107234 8.21 1.08E-06 

17_2 αS2-CN 19.4 ULGR_AAFC03022572_96396 4.26 3.51E-03 

20 Protein 
(%) 

38.3 ULGR_BTA-50418 6.88 3.83E-04 

21 к-CN 47.1 BTB-00821654 4.44 6.88E-03 

24 β-LG 35.7 ULGR_rs29016076 5.01 9.73E-03 

26 α-LA 33.1 ULGR_BTA-61176 5.08 6.17E-03 

29 αS2-CN 45.2 ULGR_SNP_CAPN1-
AF248054-7813 

4.51 3.71E-03 

29 Protein 
(%) 

45.5 ULGR_rs29026584 5.08 5.59E-04 

29 к-CN 45.9 ULGR_BTA-65731 5.87 3.18E-03 
1FDR was calculated based on the general linear model in the association study. 
2On some chromosomes, three regions were defined: _1 is the first region, _2 is 
the second region, and _3 is the third region on the chromosome. 
3SNP is located within the promoter region of the α-LA gene. 
4SNP is located in intron 7 of the β-CN gene and is in full linkage disequilibrium 
with an SNP in exon 7, which causes the protein variants A1 and A2 for β-CN. 
5SNP causes the protein variants A and B for к-CN.  
6SNP is located in the promoter of the β-LG gene and is in full linkage 
disequilibrium with another SNP. Both SNPs gave similar results and yield the 
protein variants A and B for β-LG. 
7SNP is in full linkage disequilibrium with another SNP. Both SNPs gave similar 
results and are located in the DGAT1 gene. 
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proportion of the genetic variance (24.5%) explained by the multiple SNP 
analysis (Table 7). Accounting for known к-CN genotypes on BTA6 resulted 
in decreased significance for SNPs previously associated with к-CN on 
BTA6. The proportion of genetic variance of к-CN explained by known 
genotypes varied from 2.0% for β-LG genotypes to 16.3% for к-CN 
genotypes (Table 8). 
 

Table 5 Unmapped SNPs with significant association with all traits, except 
with β-CN and protein percentage with the name, the –log10(P value), the 
false discovery rate (FDR),1 and the proportion of the genetic variance2 
(VarSNP) for each trait. 
Trait SNP_Name -log10 

(P value) 

FDR VarSNP 

αS1-CN ULGN_SNP_AJ318490_2 9.70 5.89E-06 2.6 

αS2-CN ULGN_SNP_AJ318490_2 14.90 1.13E-11 4.1 

αS2-CN ULGR_MARC_31463_612 9.91 1.72E-07 2.9 

αS2-CN ULGR_rs29024688 5.59 3.07E-03 1.5 

αS2-CN ULGR_rs29017638 4.67 6.33E-03 1.3 

κ-CN ULGR_MARC_31463_612 5.93 2.48E-04 1.8 

α-LA BTA.117471.no.rs 7.34 1.65E-03 2.1 

β-LG ULGR_MARC_12075_173 27.33 5.52E-22 7.2 

β-LG ULGR_rs29018273 19.01 3.84E-13 5.3 

β-LG ULGR_BTA.15485 13.26 3.10E-10 3.7 

Casein index ULGR_MARC_12075_173 23.10 1.73E-18 6.4 

Casein index ULGR_rs29018273 15.00 2.52E-10 4.4 

Casein index ULGR_BTA.15485 13.17 4.87E-10 3.9 

Protein (%) ULGN_SNP_AJ318490_2 45.30 6.38E-42 12.5 

Protein (%) ULGR_rs29024688 19.38 6.62E-17 5.4 

Protein (%) ULGR_BTC.049604 7.84 2.99E-06 2.3 
1FDR was calculated based on the general linear model in the association study. 
2This value is expressed as the phenotypic variance after adjusting for the 
systematic environmental effects: day of lactation, age at first calving, season of 
calving, and herd. 

 
1.3% on BTA26 to 6.2% on BTA5 (Table 6). The sum of the proportion of the 
genetic variance explained by these five SNPs was 13.6%, which was similar 
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α-LA. For α-LA, SNPs on BTA1, 5, 6, 9, 16, 17, and 26 (Fig. 1) and one 
unmapped SNP were significantly associated (FDR < 0.01). On BTA9, 16, 
and 17, no SNPs were significantly associated with α-LA after the running of 
the mixed model. The remaining SNPs significantly associated with α-LA 
were located on BTA1, 5, 6, and 26 (Table 4) and the null chromosome 
(Table 5). The proportion of genetic variance explained by the SNP most 
significantly associated with α-LA on these five chromosomes varied from  
to the proportion of the genetic variance (12.0%) explained by the multiple 
SNP analysis (Table 7). The proportion of genetic variance of α-LA explained 
by known genotypes varied from 2.9% for β-CN genotypes to 4.4% for κ-CN 
genotypes (Table 8). 
β-LG. For β-LG, SNPs on BTA2, 6, 11, 20, and 24 (Fig. 1) and three 
unmapped SNPs were significantly associated (FDR < 0.01). On BTA2, the 
SNP significantly associated with β-LG had a minor allele frequency <2%, 
and on BTA20, no SNPs were significantly associated with β-LG after the 
running of the mixed model. The remaining SNPs significantly associated 
with β-LG were located on BTA6, 11, and 24 (Table 4) and the null 
chromosome (Table 5). The proportion of genetic variance explained by the 
SNP most significantly associated with β-LG on these four chromosomes 
varied from 1.3% on BTA24 to 65.8% on BTA11 (Table 6). Including these 
six SNPs (three SNPs on the null chromosome) simultaneously in the mixed 
model resulted in elimination of the association significance of the three 
unmapped SNPs. The sum of the proportion of the genetic variance 
explained by the remaining three SNPs was 68.8%, which was similar to the 
proportion of the genetic variance (65.5%) explained by the multiple SNP 
analysis (Table 7). Accounting for known β-LG genotypes on BTA11 
resulted in a decrease in significance of SNPs associated with β-LG on 
BTA11. The proportion of genetic variance of β-LG explained by known 
genotypes varied from 1.7% for κ-CN genotypes to 64.9% for β-LG 
genotypes (Table 8). 
 

Discussion 

This study reports on associations between SNPs and the major milk 
proteins (αS1-CN, αS2-CN, β-CN, к-CN, α-LA, and β-LG), casein index, 
protein percentage, and protein yield of dairy cattle. This work is, to our 
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Table 6 The proportion of genetic variance1 explained by the SNP most 
significantly associated with the six major milk proteins, casein index, 
protein percentage, and protein yield for each region2  

Region αS1-CN αS2-CN β-CN к-CN α-LA β-LG 
Casein 

index 

Protein 

(%) 

1_1     1.6    

1_2  1.7       

5_1     6.2    

5_2        1.0 

5_3        1.4 

6 7.7 11.1 24.7 16.4 4.5 1.6 2.8 3.2 

9_2  1.2       

10_1  1.2      2.2 

10_2  1.3       

11 2.3 2.6 3.0 2.4  65.8 60.6  

13_1 1.2        

13_2    1.6     

14 2.8 4.2      12.5 

15        2.7 

17_2  1.3       

20        2.1 

21    1.2     

24      1.3   

26     1.3    

29  1.1  3.6    1.5 
1This value is expressed as the phenotypic variance after adjusting for the 
systematic environmental effects: day of lactation, age at first calving, season of 
calving, and herd. 
2On some chromosomes, three regions were defined: _1 is the first region, _2 is 
the second region, and _3 is the third region on the chromosome.  
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knowledge, the first to describe the results of a genome-wide association 
study for milk protein composition.  
The whole genome association was performed using a two-step procedure. 
In the first step, a general linear model was used, and in the second step, a 
mixed model was used. The P values of the SNPs for each trait using the 
general linear model were on average lower than those of the SNPs for 
each trait using the mixed model, except for β-CN and к-CN. The average 
difference in P values between the general linear model and the mixed 
model ranged from -2.73E-02 for β-LG to 4.66E-03 for к-CN, and the 
correlation ranged from 0.85 for α-LA to 0.92 for к-CN. This result suggests 
that the use of a mixed model in the association study decreased the 
number of SNPs significantly associated with milk protein composition. This 
finding is in agreement with Kenney et al. (1992) and Yu et al. (2005), who 
both showed that the use of a mixed model will decrease the number of 
false positives. 
SNPs significantly associated (FDR < 0.01) with milk protein composition 
were found on 15 bovine autosomes (BTA1, 5, 6, 9, 10, 11, 13, 14, 15, 17, 
20, 21, 24, 26, and 29), which is in agreement with our previously reported 
linkage study performed on a subset of the same population (Schopen et 

al., 2009b), except for BTA20 and 21. The identification of these two new 
regions on BTA20 and 21 illustrates the increased power that we achieved 
in this association study (because of the inclusion of around 1000 additional 
animals from roughly 50 families) compared to the linkage study. On 
BTA20, the SNPs identified as being significantly associated with protein 
percentage are in agreement with previously reported QTLs affecting 
protein percentage on BTA20 (e.g., Georges et al., 1995; Blott et al., 2003; 
Boichard et al., 2003).   
The inclusion in the mixed model of the unmapped SNPs for a trait together 
with the SNP most significantly associated with the same trait in each 
region resulted in the elimination of significance of the unmapped SNPs for 
all traits, except for к-CN and α-LA. This outcome suggests that the 
unmapped SNPs are located in regions that were defined in this study and 
that the unmapped SNPs are in linkage disequilibrium with at least one 
SNP located in the defined regions. Therefore, we performed a BLAST  
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Table 7 The proportion of genetic variance1 explained by multiple 
significantly associated SNPs for one trait in different regions, with the sum 
of the single SNP analysis and the multiple SNP analysis2. 
Trait Region Sum3 Multiple SNP 

analysis4 

αS1-CN 6, 11, 13_1, 14 13.9 14.4 

αS2-CN 
1_2, 6, 9_2, 10_1, 10_2, 11, 14, 
17_2, 29 

25.7 21.8 

β-CN 6, 11 27.7 26.8 
к-CN Null, 6, 11, 13_2, 21, 29 27.0 24.5 
α-LA Null, 1_1, 5_1, 6, 26 15.7 11.7 
β-LG 6, 11, 24 68.8 65.5 
Casein index 6, 11 63.4 61.1 
Protein (%) 5_2, 5_3, 6, 10_1, 14, 15, 20, 29 26.5 25.9 
1This value is expressed as the phenotypic variance after adjusting for the 
systematic environmental effects: day of lactation,  age at first calving, season of 
calving, and herd. 
2On some chromosomes, three regions were defined: _1 is the first region, _2 is 
the second region, and _3 is the third region on the chromosome. 
3Sum is sum of the genetic variance explained by the SNP most significantly 
associated with each trait for each region. 
4For multiple SNP analysis, the proportion of genetic variance explained by multiple 
SNPs was calculated by including the most significantly associated SNP for each 
trait for each region simultaneously as a fixed effect in the model for that trait. 

 
analysis, comparing the 50K SNP chip to the new physical bovine map 
(UMD3.0). As a result, the nine unmapped SNPs could be mapped to 
positions on BTA5, 6, 11, and 14, which were located in the regions defined 
in this study on BTA5 (5_1), 6, 11, and 14. 
 
BTA5 

Region 5_1 on BTA5 starts at 13.5 Mbp and ends at 42.9 Mbp, and the 
SNP most significantly associated with α-LA was located at 34.4 Mbp in 
region 5_1, at the same position as the α-LA gene on BTA5. The SNP most 
significantly associated with α-LA is located within the promoter region of 
the α-LA gene; therefore, the α-LA gene is a good candidate gene for the 
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Table 8 The proportion of genetic variance1 explained by known 
polymorphisms in the genes for β-CN and к-CN on Bos taurus autosome 
(BTA)6 (BTA6_BCN and BTA6_KCN), β-LG on BTA11 (BTA11_BLG), and 
DGAT1 on BTA14 (BTA14_DGAT1) for the traits that were significantly 
associated with SNPs on BTA6, 11, and 14 

Trait BTA6_BCN BTA6_KCN BTA11_BLG BTA14_DGAT 

αS1-CN 14.7 4.8 2.6 2.8 
αS2-CN 12.6 2.0 2.1 4.1 
β-CN 26.6 1.7 3.0 - 
к-CN 9.7 16.3 2.0 - 
α-LA 2.9 4.4 - - 
β-LG  3.0 1.7 64.9 - 
Casein index 4.8 2.7 60.2 - 
Protein (%) 2.6 2.8 - 12.2 
1This value is expressed as the phenotypic variance after adjusting for the 
systematic environmental effects: day of lactation, age at first calving, season of 
calving, and herd. 

- = no SNP was significantly associated with this trait. 

 
detected association of α-LA on BTA5. The protein α-LA is one of the two 
proteins involved in lactose synthesis, and a high concentration of α-LA is 
necessary to ensure maximum synthesis of lactose (Fitzgerald et al., 1970). 
Menzies et al. (2009a) reported that lactose, cultured in mammary explants, 
increased with increased α-LA gene expression. An additional analysis, 
therefore, was performed for lactose percentage on BTA5. Results showed 
that 18 SNPs were associated (P < 0.01) with lactose percentage. The SNP 
most associated (P = 1.74E-04) with lactose percentage was located at 
33.0 Mbp and had a significant effect on lactose percentage (0.0352% less 
lactose for AA animals compared to GG animals). This SNP was located 
close to the α-LA gene and to the SNP most significantly associated with 
the α-LA fraction. Therefore, these results confirm the results from Menzies 
et al. (2009a), who reported that lactose is related to α-LA gene expression.  
In addition to the α-LA gene, two other possible candidate genes, the 
lysosyme gene and Socs2 gene, are located close to the SNP most 
significantly associated with α-LA at 34.4 Mbp on BTA5. The lysosyme 
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gene is located at 48 Mbp on BTA5 and has strong similarities with the 
sequence of the α-LA gene (Kumagai et al., 1992; Qasba and Kumar, 
1997). Socs2 is a gene belonging to the group of prolactin-regulated genes 
and is located at 26 Mbp on BTA5. A Socs2 deficiency in mice results in 
recovery of α-CN and β-CN production (Harris et al., 2009), which suggests 
that Socs2 has an effect on milk protein composition and might be a 
candidate gene for the SNPs significantly associated with α-LA on BTA5.  
 
BTA6 

Region 6 on BTA6 starts at 61.1 Mbp and ends at 97.7 Mbp, and SNPs 
located within this region were significantly associated with all traits except 
for protein yield. For β-CN, Fig. 1 shows two peaks; one around 88 Mbp 
(casein locus) and one around 42 Mbp. The osteopontin (OPN) gene and 
the ABCG2 gene are located around 38 Mbp on BTA6, possibly suggesting 
that OPN or ABCG2 might be a candidate gene for the first peak for β-CN 
and the casein locus for the second peak for β-CN on BTA6. An additional 
analysis, therefore, was performed in which the SNP most significantly 
associated with β-CN in the first and in the second peaks was 
simultaneously included in the mixed model. This approach eliminated the 
significance of the SNP that was previously most significantly associated 
with β-CN in the first peak (P value from 6.57E-22 to 0.07). The result 
suggests that the SNP most significantly associated with β-CN in the first 
peak and in the second peak might be in linkage disequilibrium and that 
there is only one QTL for β-CN, around 88 Mbp on BTA6.   
 
BTA14 

Region 14 on BTA14 starts at 0.0 Mbp and ends at 13.9 Mbp, and the SNP 
most significantly associated with αS1-CN, αS2-CN, and protein percentage 
was located at 0.4 Mbp, at the same position as the DGAT1 gene on 
BTA14. Accounting for known DGAT1 genotypes eliminated the 
significance for SNPs previously associated with αS1-CN, αS2-CN, and 
protein percentage. This result suggests that DGAT1 affects protein 
percentage and, surprisingly, also milk protein composition, influencing αS1-
CN and αS2-CN. The effect of DGAT1 on milk protein composition showed 
that the A allele of DGAT1 was associated with higher αS1-CN (0.7464 



Chapter 5 
 

 

114 

ww%) and lower αS2-CN (-0.7431 ww%) and protein percentage                  
(-0.2561%).  
 

BTA15 

Region 15 on BTA15 starts at 41.4 Mbp and ends at 61.6 Mbp, and the 
SNP most significantly associated with protein percentage was located at 
51.9 Mbp on BTA15, close to the Elf5 gene and FOLR1 gene. The Elf5 
gene is a single transcription factor located at 65 Mbp on BTA15. Harris et 

al. (2009) showed that an Elf5 deficiency in mice (partly) rescued lactation 
failure induced by prolactin. Moreover, Sheehy (2008) showed that an 
inhibition of the Elf5 gene decreased levels of Elf5 mRNA, consequently 
increasing expression of β-CN and к-CN by twofold. Furthermore, Elf5 is a 
mechanism by which insulin regulates milk protein synthesis (Menzies et 

al., 2009a). Next to Elf5, insulin also facilitates the FOLR1 gene, which is 
located at 51 Mbp on BTA15; expression of the FOLR1 gene increases 
rapidly during lactation and regulates milk protein synthesis in mammary 
gland (Menzies et al., 2009b). Although SNPs were not significantly 
associated with the six major milk proteins on BTA15, some SNPs were 
associated (P < 0.01) with the six major milk proteins around 54 Mbp on 
BTA15 (data not shown). Elf5 and FOLR1, therefore, might be possible 
candidate genes for the detected SNPs significantly associated with protein 
percentage on BTA15. 
 
Regulation of the six major milk proteins 
The results of the whole genome association study showed that the six 
major milk proteins are associated with SNPs in more than one 
chromosomal region. For the casein fractions, the number of chromosomal 
regions with SNPs exhibiting a significant association ranged from two for 
β-CN to nine for αS2-casein. Although the casein genes are sequentially 
arranged on BTA6, the difference in regions with SNPs significantly 
associated with the four casein fractions suggest that regulation of the 
expression of the casein genes is complex. In addition, some regions had 
significantly associated SNPs that were unique for each of the four casein 
fractions. For the whey proteins, the number of chromosomal regions with 
SNPs significantly associated with α-LA was four; for β-LG, it was three. In 
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addition, some regions had significantly associated SNPs that were unique 
for α-LA (regions 1_1, 5_1, and 26) and β-LG (region 24).  
The different number of chromosomal regions and the unique regions 
associated with a specific milk protein suggest that some regions of the 
bovine genome contain genes that are more involved in casein composition 
and some regions contain genes that are more involved in whey 
composition. These results showed that the regulation of milk protein 
synthesis is complex and that the number of genes to be considered as 
candidates involved in this regulation is therefore greater. A better 
understanding of the regulation of milk protein synthesis, even by further 
clarification of the detected regions to identify the actual mutation, might be 
achieved by studying haplotypes. 

 
Conclusions 

In total, 15 bovine autosomes contained SNPs that were significantly 
associated with milk protein composition. One chromosomal region on 
BTA6 contained SNPs that were significantly associated with all six major 
milk proteins. For the other chromosomal regions, the number of major milk 
proteins significantly associated with SNPs differed. This variation in the 
number of chromosomal regions with SNPs significantly associated with 
one of the six major milk proteins implies that next to the “master regulator” 
on BTA6 also other regions are important. The results suggest instead that 
different genes are involved in the regulation of what appears to be the 
complex process of milk protein synthesis.  
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Abstract 

The objective of this study was to compare the SNPs showing the most 
significant effects, the location, and the fraction of variance explained by 
these SNPs between single SNP analysis and multiple SNP analysis in the 
Dutch Holstein-Friesian population for the relative concentrations of the six 
major milk proteins. In total, 1713 cows with genotypes and phenotypes 
were available. DNA was isolated from blood samples of cows. In total, 
45,999 SNPs distributed across 29 bovine autosomes were used in the 
single and multiple SNP analyses. The same main four chromosomal 
regions on BTA5, 6, 11, and 14 were detected in the single and multiple 
SNP analysis. The proportion of genetic variance explained by each of the 
SNPs in the single SNP analysis was higher compared to the SNP with the 
highest posterior probability in the multiple SNP analysis, except for β-CN. 
For β-CN, the proportion of genetic variance explained by the most 
significantly associated SNP in the single SNP analysis explained 42.7 %, 
whereas the SNP with the highest posterior probability in the multiple SNP 
analysis explained only 1.88%. Summing up the proportion of genetic 
variance explained by adjacent SNPs next to the SNP with the highest 
posterior probability in the multiple SNP analysis, resulted in an increase of 
the genetic variance explained similar to the SNP most significantly 
associated in the single SNP analysis, except for β-CN. There was one 
additional region on BTA7 detected in the multiple SNP analysis. The 
number of SNPs with effects is considerably lower in the multiple SNP 
analysis as compared to the single SNP analysis. These results indicate 
that multiple SNP analysis result in higher power and in higher mapping 
precision to detect QTL as compared to single SNP analysis. 
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Introduction 

Single SNP genome wide association analyses have been widely used 
(e.g. Aulchenko et al., 2007; Kolbehdari et al., 2008; Daetwyler et al., 
2008). The main advantage of a single SNP analysis is the ease of 
implementation and calculation. However, there are a number of drawbacks 
associated with the single SNP models. The first one is that the calculation 
of the phenotypic variance explained by the QTL is not straightforward 
which is partly due to differences in estimated residual variances across 
models. The second one is that there is no simultaneously adjustment for 
all the genetic variation that is captured by all SNPs which decreases the 
power to detect (smaller) QTL. The third one is the issue of multiple testing, 
meaning that without correcting the significance threshold, the number of 
false positive QTLs is high. 
These difficulties can at least to some extent be overcome by fitting all 
SNPs simultaneously into a multiple SNP analysis. With multiple SNP 
analysis there is simultaneously adjustment for all the genetic variation that 
is captured by all SNPs. This will reduce the residual genetic variance, 
which is expected to result in higher power to detect other SNPs associated 
with the trait of interest. The increase in power is similar to the principles of 
multiple QTL mapping (e.g. Jansen, 1993; Zeng, 1994; De Koning et al., 
2001). The increase in power can lead to detection of new chromosomal 
regions associated with the trait of interest, which will not be detected in a 
single SNP analysis. Furthermore, two simulation studies (Sillanpää and 
Arjas, 1998, and Uleberg and Meuwissen, 2007) showed that the likelihood 
peaks became smaller when information from all QTL positions was used in 
multiple QTL analysis as compared to single QTL analysis. 
Schopen et al. (2010) performed a genome wide association study for milk 
protein composition using 50K SNPs in 1713 Holstein-Friesian cows. They 
used single SNP analysis which resulted in many regions which affected 
one or more of the six major milk proteins. The use of real data to compare 
single SNP analysis with an analysis where thousands of SNPs across the 
whole genome are simultaneously used to detect QTL would be a good 
addition to the simulation studies, and such a comparison has not yet been 
performed. The objective of this study, therefore, was to compare the SNPs 
showing the most significant effects, the location, and the fraction of 
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variance explained by these SNPs between single SNP analysis and 
multiple SNP analysis in the Dutch Holstein-Friesian population for the 
relative concentrations of the six major milk proteins. 
 

Materials and methods 

 
Animals 

This study is part of the Dutch Milk Genomics Initiative. Phenotypic data of 
1,912 first lactation Holstein-Friesian cows were collected. The cows were 
daughters of five proven sires (873 cows), 50 test sires (848 cows) or 15 
other proven sires (191 cows). The full pedigree of the cows was supplied 
by CRV (Arnhem, the Netherlands). Further details of the animals used in 
this study are provided by Schopen et al. (2009). 
 
Phenotypes 

Milk protein composition was determined by capillary zone electrophoresis 
(CZE), as described by Heck et al. (2008). Using CZE, we quantified αS1-
casein (αS1-CN), αS2-casein (αS2-CN), β-casein (β-CN), к-casein (к-CN), α-
lactalbumin (α-LA) and β-lactoglobulin (β-LG). All six major milk protein 
fractions were expressed as a percentage of the total protein fraction 
(ww%). 
The mean, phenotypic variance and intraherd heritability for the relative 
concentrations of the six major milk proteins are given in Table 1.  

 
Genotypes 

DNA was isolated from blood samples of cows. A 50K SNP chip was 
designed by CRV and obtained from Illumina, and was used to genotype 
the animals with the Infinium assay (Illumina, San Diego, CA, USA). This 
assay resulted in 50,856 technically successful SNPs which were mapped 
using the bovine genome assembly (BTAU4.0, Liu et al., 2009). In total, 
4,857 SNPs (6% of all available SNPs) were excluded because one of the 
following criteria:  percentage of missing genotypes across animals > 5%, 
minor allele frequency < 2%, monomorphic, gene calling score (provided by 
Beadstudio software, Illumina) < 0.20, gene train score (provided by 
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Beadstudio software, Illumina) < 0.55, deviation from Hardy-Weinberg 
equilibrium (Hardy-Weinberg χ2 value > 600, Hayes et al., 2009), mapped  
 

Table 1 The mean, phenotypic variance1 (σ2
p), and intraherd heritability (h2) 

for the six major milk proteins2 for 1912 first-lactation Dutch Holstein-
Friesian cows. 
Trait Mean σ2

p h2 

αS1-casein 33.62 2.53 0.47 

αS2-casein 10.38 1.80 0.73 

β-casein 27.17 2.13 0.26 
к-casein 4.03 0.30 0.63 

α-lactalbumin 2.44 0.08 0.57 
β-lactoglobulin 8.34 1.42 0.80 
1Phenotypic variance after adjusting for systematic environmental effects: day of 
lactation, age at first calving, season of calving, and herd. 
2Expressed as percentage of the total protein fraction (ww%). 
 
on the X-chromosome or not mapped on any of the 29 autosomes (Table 
2). Most SNPs were excluded because of a minor allele frequency lower 
than 2%. The final dataset for the SNP analysis resulted in 45,999 SNPs 
distributed across 29 bovine autosomes. 
The dataset, which was used in the single and multiple SNP analysis 
consisted of 1,713 animals with both phenotypic and genotypic information. 
 
Systematic environmental effects 

To account for systematic environmental effects, the phenotypes of 1,912 
cows were adjusted for day of lactation, age at first calving, season of 
calving, and herd. These systematic environmental effects were estimated 
using an animal model in ASReml (Gilmour et al. 2002) for all 1,912 cows 
with phenotypes, as described by Schopen et al. (2009). The adjusted 
phenotypes of cows were subsequently used for both the single and 
multiple SNP analyses.  
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Single SNP analysis 

The single SNP analysis was performed using the SNPassoc package 
(González et al., 2007) in R using the following general linear model:  

Yij = Sirei +
 SNPj + eij,    

where Yij was the phenotype adjusted for systematic environmental effects, 
Sirei was the fixed effect of sire i, SNPj was the fixed effect of the jth class 
of the SNP, and eij was the random residual effect (eij ~ N(0,σ2

e)).  
Sire was included in the general linear model to account for family effects. 
The SNPs most significantly associated with one of the six major milk 
proteins using the linear model were consecutively analyzed in ASReml, to 
account for all genetic relationships among animals, using the following 
animal model: 

Yij = µ + SNPj + animali + eij,   
where Yij was the phenotype adjusted for systematic environmental effects, 
µ was the overall mean, SNPj was the fixed effect of the SNP, animali was 
the random additive genetic effect of animal i, and eij was the random 
residual effect. The variance-covariance structure of the additive genetic 
effects was Var(animal) = Aσ2

a, where A was a matrix of additive genetic 
relationships among individuals and σ2

a was the additive genetic variance. 
 
Table 2 Criteria for the SNP quality with the threshold and the number of 
SNPs excluded for each criterium.  
Criterium Threshold Number of excluded SNPs 

% of missing genotypes >5% 541 
Minor allele frequency <2% 2724 
Monomorphic  193 
Gen Calling-score1 <0.20 10 
Gen Train-score1 <0.55 75 
Hardy-Weinberg χ2 values >600 15 
Mapped on X-chromosome  563 
Not mapped on BTAU4.0  736 

Total removed SNPs  4857 
1 provided by Beadstudio software (Illumina) 

 
 

[1] 

[2] 
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Multiple SNP analysis 

The multiple SNP analysis was performed using the following model 
(Meuwissen and Goddard, 2004): 

( )
ieanimalvqqµY ij

45999

1j ij2ij1i ++++= ∑ =
   

where Yi was the phenotype adjusted for systematic environmental effects, 
µ was the overall mean, vj was the scale parameter of the QTL effect of the 
SNP at putative QTL position j, qij1 (qij2) was the size of the QTL effect for 
the paternal (maternal) allele of animal i at SNP j drawn from a standard 
normal distribution N(0,1), animal was the random polygenic effect of 
animal i (Var(animal) = Aσ2

a, where A was a matrix of additive genetic 
relationships among individuals and σ2

a was the residual polygenic 
variance), and ei was the random residual effect (ei ~ N(0,σ2

e)). Per SNP, 
qij1 and qij2 had three categories: one category for each of the two 
segregating alleles, and one additional category in which all missing 
genotypes were combined. 
The multiple SNP analysis was performed using a Markov chain Monte 
Carlo method using Gibbs sampling to obtain posterior estimates for all the 
effects in the model. The scale parameter of a putative QTL at SNP j, vj, 

was sampled from a normal distribution )σN(0, 2

V , if a QTL was present at 

SNP j, whereas vj was sampled from /100)σN(0, 2

V  if no QTL was present 

at SNP j. The variance of vj,
2

Vσ , was sampled from a scaled  inverse chi-

square distribution with a prior variance. This prior variance was calculated 
as the additive genetic variance, divided by 58, i.e. assuming 58 additive 
and independent QTL affecting the trait, across the 29 chromosomes. The 
number 58 reflects a prior assuming two QTL on each chromosome.  
The presence of a QTL at SNP j was sampled from a Bernoulli distribution 

with probability equal to 
)Pr1()100/σ|(PPr)σ|(P
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 , and Prj 

is the prior probability of the presence of a QTL at SNP j. More details on 
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the prior distributions and the full conditional distributions can be found in 
Meuwissen and Goddard (2004) and Calus et al. (2008). Visual inspection 
showed that there was mixing of the posterior probabilities. The Gibbs 
sampler, therefore, was run for all models for 30,000 iterations and 2,000 
iterations were removed as burn-in. The posterior probability and estimates 
for allelic effects for each SNP used in this study was the average over the 
28,000 post burn-in iterations. 
  

Significance threshold 

Significance threshold for the single SNP analysis was obtained by 
calculating the false discovery rate (FDR) based on the qvalue package 
(Storey & Tibshirani, 2003) in R. The FDR was calculated based on the p-
values obtained from the single SNP analysis for all 45,999 SNPs for each 
trait separately. SNPs with a FDR < 0.05 were considered to be 
significantly associated with the trait. 
For the multiple SNP analysis, a posterior probability level of > 0.05 was 
used as an arbitrary threshold to determine whether a SNP was associated 
with a trait. 
 
Variance explained by SNP and linkage disequilibrium 

The proportion of genetic variance explained by a SNP in the single SNP 
analysis was calculated from the estimated genotype effects obtained from 
ASReml and the observed genotype frequencies. In this way, the additive 
genetic variance and the dominance variance are taken into account. 
For the multiple SNP analysis, the proportion of additive genetic variance 
explained by a SNP was calculated using the following formula (Falconer 
and MacKay, 1996):  

      
22 aqpVarSNP ∗∗∗=    

where p was the allele frequency of one allele of the SNP, q was the allele 
frequency of the other allele of the SNP and a was the allele substitution 
effect. The allele substitution effect was calculated by the difference in 
estimated effects of both alleles (vj*qij1 - vj*qij2). 
Using formula 3 it is assumed that there is no dominance at the SNP under 
consideration.  

[4] 
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To determine the level of linkage disequilibrium (LD), the pairwise r2 was 
calculated and plotted using Haploview version 4.1 (Barret et al., 2005) for 
some regions.  
 

Results 

 
Identified SNPs in single and multiple SNP analysis 

Single SNP analysis resulted in four main regions (FDR < 1.00E-05) with 
SNPs significantly associated with one or more of the six major milk 
proteins. These main regions were located on Bos taurus autosomes (BTA) 
5, 6, 11 and 14. The SNPs most significantly (FDR < 0.05 in the single SNP 
analysis) associated within a region with each of the six major milk proteins 
are given in Table 3.  
Multiple SNP analysis resulted in nearly the same four main regions 
containing SNPs with high posterior probabilities for the six major milk 
proteins (Table 3). On BTA6, SNPs had a posterior probability > 0.05 for all 
milk proteins, except for β-LG (Table 3). The posterior probability for β-LG 
was 0.042 (Table3). Besides the four main regions, multiple SNP analysis 
resulted in an additional chromosomal region on BTA7. Further, on BTA27, 
an association with α-LA was detected in the multiple SNP analysis which 
was not significant in the single SNP analysis. 
Figure 1 shows the graphs of SNPs associated with each of the six major 
milk proteins on BTA6 for the single and multiple SNP analysis. For some 
chromosomal regions (e.g. on BTA6), the most significant SNP in the single 
SNP analysis was not always the same as the SNP with the highest 
posterior probability in the multiple SNP analysis. For example on BTA6, 
the SNP (ULGR_BTC-053514) most significantly associated with αS2-CN in 
the single SNP analysis was located at 83.6 Mbp whereas the SNP 
(ULGR_BTC-060527) with the highest posterior probability in the multiple 
SNP analysis was located at 88.3 Mbp (Table 3). For αS2-CN, the posterior 
probability of SNP ULGR_BTC-05351 was 2.10E-04 and the FDR of SNP 
ULGR_BTC-060527 was 0.43. The difference in position of the SNPs 
between single and multiple SNP analysis was highest for к-CN and β-LG 
on BTA20 (Table 3). In the single SNP analysis the SNP (ULGR_BTA-
50132) most significantly associated with к-CN on BTA20 was located at 
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28.6 Mbp whereas in the multiple SNP analysis the SNP (ULGR_ BTA-
27776) with highest posterior probability was located at 6.0 Mbp (Table 3). 
For к-CN on BTA20, the posterior probability of SNP ULGR_BTA-50132 
was 2.07E-03 and the FDR of SNP ULGR_BTA-27776 was 0.06. 
 
Variance explained by SNP 

The proportion of genetic variance explained by each of the SNPs with the 
strongest association with one of the six major milk proteins in the four 
main regions was higher in the single SNP analysis than in the multiple 
SNP analysis (Table 4). There is an enormous difference in genetic 
variance explained by the SNP with the strongest association with β-CN on 
BTA6 in the multiple SNP analysis (1.88%) compared to the single SNP 
analysis (42.70%). On BTA11, a similar result for β-CN was obtained; 
5.11% in the multiple SNP analysis as compared to 0.42% in the single 
SNP analysis. In addition, the additive genetic variance explained by the 
SNP with the highest posterior probability for к-CN on BTA7 (2.17E-02), 
BTA13 (1.31E-01), BTA20 (7.73E-03) and BTA27 (3.01E-03), for α-LA on 
BTA27 (1.15E-03), and for β-LG on BTA20 (5.11E-02) was very low (Table 
4). 
In the single SNP analysis each SNP gets the possibility to explain all of the 
genetic variance, whereas in the multiple SNP analysis, the genetic 
variance is divided across several SNPs due to LD of several SNPs with 
the QTL. Therefore, the proportions of additive genetic variance explained 
by each of the adjacent SNPs on the right and left side of the SNP with the 
highest posterior probability were added to the proportion of additive 
genetic variance explained by the SNP with the highest posterior 
probability. When the proportion of genetic variance of more adjacent SNPs 
on the right and left side were added up to the proportion of genetic 
variance explained by the SNP with the highest posterior probability, the 
proportion of additive genetic variance increased or stayed equal (Table 4). 
For example for αS2-CN on BTA6, the proportion of additive genetic 
variance explained by the SNP with highest posterior probability was 3.40% 
and increased to 11.64% when the proportions of additive genetic variance 
of 50 adjacent SNPs (25 SNPs left and 25 SNP right from the SNP with the 
highest posterior probability) were added. However, for β-CN on BTA6 and 
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Figure 1 Graphical overview of the single SNP analysis1 (left column) and 
the multiple SNP analysis (right column) for Bos taurus autosome 6 for 
each of the six major milk proteins. A -log10(pvalue) > 21 was set to 21 to 
retain an overview of the SNPs that exceeded the threshold level. 
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11, the enormous difference in proportion of additive genetic variance 
between single SNP analysis and the sum of proportion of adjacent SNPs 
in the multiple SNP analysis remained, even after adding up the variances 
of all SNPs for β-CN on BTA6 (1.89%) and BTA11 (0.67%). 
 

Linkage disequilibrium 
The multiple SNP analysis (Figure 1) indicates that there might be two 
QTLs for αS2-CN; one at 83.6 Mbp and one at 88.3 Mbp. Therefore, 
pairwise LD between adjacent SNPs in the chromosomal region on BTA6 
was calculated and given in Figure 2. In this chromosomal region on BTA6 
there are blocks of SNPs which show higher LD (black spots in Figure 2A) 
than others. In Figure 2B, one of these blocks is enlarged. This enlarged 
block starts at 88.35 Mbp (SNP ULGR_BTC-060507) and ends at 88.43 
Mbp (SNP ULGR_BTC-072885), and contained 21 SNPs. There is high 
pairwise LD between these 21 SNPs (Figure 2B), and within this region 
several SNPs were significantly associated with the six major milk proteins. 
The r2 between the two SNPs located at 83.6 Mbp and 88.3 Mbp was 0.24. 
 

Discussion 

This study compares results from a single and multiple SNP genome wide 
association study to detect QTL for milk protein composition in Holstein 
Friesian cows. Until now, limited information on such a comparison using 
real data was available in the literature. 
 

 

Identified SNPs 

The same four main regions on BTA5, 6, 11 and 14 showing associations 
with the six major milk proteins were detected in the single and multiple 
SNP analyses. Additional associations on BTA7 and 27, however, were 
detected in the multiple SNP analysis compared to the single SNP analysis. 
The SNP with the highest posterior probability for κ-CN on BTA7 had a 
FDR of 0.44, and for β-LG on BTA27 had a FDR of 0.55 in the single SNP 
analysis (Table 4). This suggests that multiple SNP analysis has a greater 
power to detect QTL than single SNP analysis.  
On BTA6, 11, 14 and 20, the SNP most significantly associated with a trait 
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Table 3 The SNP most significantly1 associated with each of the six major milk proteins in the single SNP analysis and 
the SNP with the highest posterior probability2 for each of the six major milk proteins in the multiple SNP analysis, with the 
position (Mbp), the name3 (SNP_Name), the false discovery rate (FDR) for the single SNP analysis and the posterior 
probability for the multiple SNP analysis. Bos taurus autosomes (BTA). 

    Detected SNPs  

  Single SNP analysis Multiple SNP analysis 

BTA Trait 
Position 

(Mbp) 
SNP_Name FDR 

Position 

(Mbp) 
SNP_Name 

Posterior 

probability 

5 α-lactalbumin 34.4 SNP_U63109_1966 4.39E-13 34.4 SNP_U36109_1966 1.00 

6 αS1-casein 88.1 BTC-043582 5.43E-20 88.5 AAFC03044644_5880 0.92 

6 αS2-casein 83.6 BTC-053514 5.34E-36 88.3 BTC-060527 0.59 

6 β-casein 88.3 BTC-060550 1.66E-105 88.4 BTC-060513 1.00 

6 к-casein 88.5 SNP_X14908_5345 4.12E-57 88.1 SNP_X14908_5345 1.00 

6 α-lactalbumin 88.5 rs29024684 6.92E-12 88.5 rs29024684 1.00 

6 β-lactoglobulin 88.5 SNP_X14908_5345 6.56E-06 - SNP_X14908_5345 0.04 
 7 к-casein - BTA-79042 4.42E-01 

 
11.6 BTA-79042 0.31 

11 αS1-casein 107.2 SNP_X14710_1740 1.88E-05 107.2 SNP_X14710_3984 1.00 

11 αS2-casein 107.2 SNP_X14710_1740 1.41E-05 107.2 SNP_X14710_1740 1.00 

11 β-casein 107.2 SNP_X14710_1740 2.40E-07 107.2 BTA-116267 0.44 

11 к-casein 107.2 SNP_X14710_1740 2.40E-07 107.2 SNP_X14710_1740 0.84 

11 β-lactoglobulin 107.2 SNP_X14710_1740 7.63E-304 107.2 SNP_X14710_1740 1.00 

13 к-casein 60.5 BTA-33109 1.47E-03 60.5 BTA-33109 0.69 

14 αS1-casein 0.4 SNP_AJ318490_1c 2.35E-06 0.4 SNP_AJ318490_1c 1.00 

14 αS2-casein 0.4 SNP_AJ318490_1c 5.08E-12 0.4 SNP_AJ318490_1c 1.00 

14 к-casein 11.1 BTC-059786 4.67E-02 
 

0.4 SNP_AJ318490_1c 0.29 
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Table 3 Continued 

     Detected SNPs 

  Single SNP analysis Multiple SNP analysis 

BTA Trait 
Position 

(Mbp) 
SNP_Name FDR 

Position 

(Mbp) 
SNP_Name 

Posterior 

probability 

20 к-casein 28.6 BTA-50132 2.83E-03 6.0 BTA-27776 0.17 

20 β-lactoglobulin 53.3 BTA-111508 4.15E-03 36.4 BTA-50240 0.31 

27 к-casein 42.0 BTA-98604 1.05E-02 
101101- 

42.0 BTA-98604 0.13 

27 α-lactalbumin - AAFC03016002_47078 5.52E-01 12.6 AAFC03016002_47078 0.14 
1The SNP was considered significant if FDR < 0.05 in the single SNP analysis. 
2 The posterior probability had to be > 0.05 in the multiple SNP analysis. 
3 In front of all SNP names ‘ULGR_’ should be placed, except for the SNP names starting with rs (e.g. rs29024684) 
- means that no SNP was significantly associated 
 

Table 4 The proportion of genetic variance (VarSNP) explained by the SNPs (1) most significantly1 associated with each of the six major 
milk proteins for the single SNP analysis, and the proportion of genetic variance explained by the SNPs (1) with the highest posterior 
probability2 and 10, 20 and 50 adjacent3 SNPs together with the length of the chromosome covered (Mbp) for each of the SNP with the 
highest posterior probability3 for the six major milk proteins in the multiple SNP analysis. Bos taurus autosomes (BTA). 

  Single Multiple 

  VarSNP VarSNP 

BTA Trait 1 1 10 

 

(Mbp) 20 

 

(Mbp) 50 

 

(Mbp) 

5 α-lactalbumin 0.44 0.34 0.34 1.48 0.34 1.85 0.34 2.84 

6 αS1-casein 17.02 5.72 5.72 0.88 5.72 1.59 6.34 2.32 

6 αS2-casein 16.37 3.40 3.40 0.04 8.90 0.07 11.64 0.53 

6 β-casein 42.70 1.88 1.88 0.04 1.88 0.07 1.88 0.33 

6 к-casein 4.11 4.70 4.72 0.26 4.73 0.64 4.86 1.95 
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Table 4 Continued 

  Single Multiple       

  VarSNP VarSNP       

BTA Trait 1 1 10 

 

(Mbp) 20 

 

(Mbp) 50 

 

(Mbp) 

6 α-lactalbumin 0.33 0.26 0.26 0.55 0.26 1.14 0.26 2.13 

6 β-lactoglobulin 2.15 - - - - - - - 

7 к-casein - 2.17E-02 0.03 1.08 0.03 1.76 0.03 3.17 

11 αS1-casein 4.80 4.14 4.14 0.58 4.14 1.09 4.14 2.46 

11 αS2-casein 3.87 2.96 2.96 0.56 2.96 1.04 2.96 2.58 

11 β-casein 5.11 0.42 0.42 0.49 0.65 1.21 0.66 2.72 

11 к-casein 0.58 0.26 0.26 0.56 0.26 1.04 0.26 2.58 

11 β-lactoglobulin 83.36 79.6 79.56 0.56 80.25 1.04 80.25 2.58 

13 к-casein 0.39 1.31E-01 0.13 0.66 0.13 1.17 0.13 3.11 

14 αS1-casein 6.02 3.77 3.77 0.64 3.77 0.73 3.77 1.18 

14 αS2-casein 6.14 4.16 4.16 0.64 4.16 0.73 4.16 1.18 

14 к-casein - 0.02 0.02 0.64 0.02 0.73 0.02 1.18 

20 к-casein 0.27 7.72E-03 0.01 0.26 0.01 0.70 0.01 2.36 

20 β-lactoglobulin 1.39 5.11E-02 0.05 0.62 0.05 1.31 0.05 2.98 

27 к-casein - 3.01E-03 4.33E-03 0.60 4.35E-03 1.05 4.42E-03 2.61 

27 α-lactalbumin - 1.15E-03 1.18E-03 0.51 1.19E-03 1.27 1.22E-03 3.47 
1The SNP was considered significant if FDR < 0.05 in the single SNP analysis. 
2 The posterior probability had to be > 0.05 in the multiple SNP analysis. 
3 The SNP with the highest posterior probability was located in the middle 
- means that no SNP significantly associated. 
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in the single SNP analysis was not always the same SNP with the highest 
posterior probability in the multiple SNP analysis. The SNPs with the 
highest posterior probabilities for αS1-CN and β-CN on BTA6, for β-CN on 
BTA11, and for к-CN on BTA14, however, were also significant in the single 
SNP analysis (FDR was 1.58E-16 for αS1-CN and 4.58E-40 β-CN on BTA6, 
1.05E-4 for β-CN on BTA11, and 3.16E-02 for к-CN on BTA14). The SNPs 
with the highest posterior probabilities for αS2-CN on BTA6, and for к-CN 
and β-LG on BTA20 were not significant in the single SNP analysis (FDR 
was 0.43 for αS2-CN on BTA6, and 0.06 for к-CN and 0.44 for к-CN on 
BTA20). However, for к-CN on BTA20, the SNP most significantly 
associated was at the border of significance (as determined in this study). 
For αS2-CN on BTA6, the SNP most significantly associated in the single 
SNP analysis was located at 83.6 Mbp, whereas the SNP with the highest 
posterior probability in the multiple SNP analysis was located at 88.3 Mbp. 
The position of 88.3 Mbp is close to the casein cluster, especially to the 
αS2-CN gene which is located at 88.4 Mbp on BTA6 (NCBI, Map viewer). 
There could, however, also be two QTL for αS2-CN on BTA6. This is 
supported by the multiple SNP analysis (Figure 1) which indicates that 
there might be one QTL at 83.6 Mbp (ULGR_BTC-053514) and one QTL at 
88.3 Mbp (ULGR_BTC-060527). The r2 between the SNP at 83.6 Mbp and 
the SNP at 88.3 Mbp was 0.24. However, it is unlikely that the SNP at 83.6 
Mbp is due to LD with the SNP at 88.3 Mbp, because in this region (83.6 – 
88.3 Mbp) other SNPs have a higher LD value with the SNP at 88.3 Mbp 
(e.g. ULGR_BTC-043266 with r2=0.82 and ULGR_BTC-043259 with 
r2=0.82) than the SNP at 83.6 Mbp (Figure 3). In addition, pre-adjusting αS2-
CN for the SNP at 88.3 Mbp and rerun the multiple SNP model resulted in 
the remaining of the significance of the SNP (posterior probability = 
0.29436) at 83.6 Mbp. However, when pre-adjusting αS2-CN for the SNP at 
83.6 Mbp and rerun the multiple SNP model resulted in the elimination of 
the significance of the SNP (posterior probability = 0.00121) at 88.3 Mbp 
This suggests that there is only 1 QTL for αS2-CN on BTA6. 
The region on BTA6 in which the SNPs, showing association with the six 
major milk proteins in the multiple SNP analysis, were located ranged from 
88.1 Mbp to 88.5 Mbp and in this region there is high LD among the SNPs  
(Figure 2). Due to the high LD among SNPs in the region on BTA6, one
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Figure 2 Graphical overview of pairwise LD for a region (54.5 Mbp – 104.3 
Mbp) on Bos taurus autosome 6 (A) and for a region (88.3 – 88.4 Mbp) with 
the SNPs most significantly associated with the milk proteins on Bos taurus 
autosome 6 (B). Deeper black colours mean more LD between the SNPs; 
dark black means that two SNPs are in complete LD (r2=1.0). The values in 
the graph are the r2 values times 100. 

A 

B 
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SNP may explain variation which can not be explained by another linked 
SNPs. Once one SNP has a large effect in a region, the posterior 
probability of this SNP may then not change anymore in the following 
iterations. These results suggest that the LD in a chromosomal region 
might explain differences in position between the SNP most significantly 
associated in the single SNP analysis and the SNP with the highest 
posterior probability in the multiple SNP analysis. Note that for the 
identification of candidate genes, the location of the SNP most significantly 
associated or with the highest posterior probability is very important. A 
difference in the position may lead to wrong identification of candidate 
genes. Therefore, pointing out candidate genes will than still be a great 
challenge. 
In the multiple SNP analysis, the genetic variance explained by one SNP 
can not be explained anymore by another SNP. This is not the case in the 
single SNP analysis. Therefore, the number of SNPs with effects is 
considerably lower in the multiple SNP analysis than the single SNP 
analysis. This suggests that the number of genes located within the 
chromosomal region of interest is lower by using multiple SNP analysis in 
stead of using single SNP analysis. The lower number of genes in a region 
is preferable because this might more easily lead to identification of 
possible candidate genes underlying the QTL. 
 

Comparison between FDR and posterior probability 

Differences in position of the SNP most significantly associated in the 
single SNP analysis and the SNP with the highest posterior probability in 
the multiple SNP analysis could be due to differences in threshold levels. In 
the single SNP analysis the FDR was used, whereas in the multiple SNP 
analysis the posterior probability was used.  The FDR controls the expected 
proportion of false positives among all significant hypotheses of having a 
QTL (type I errors), whereas the posterior probability of having a QTL is 
based on the combination of the likelihood of the QTL and the prior 
probability (Meuwissen and Goddard, 2004). The results of both analyses 
using FDR (single) and posterior probability (multiple) are hard to compare. 
In this study, however, the FDR was calculated using the q-value package 
in R in which the q-value was defined as the minimum positive FDR at 
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which a hypothesis can be called significant (Storey & Tibshirani, 2003). 
Previous studies showed that the positive FDR (conditioned on at least one 
positive finding; Storey, 2003) and FDR (Efron et al., 2001) can be written 
as a posterior probability. 
When plotting the FDR of the SNPs against the posterior probabilities 
(Figure 3), SNPs with the lowest FDR in the single SNP analysis had the 
highest posterior probability in the multiple SNP analysis, in general. For 
αS2-CN, κ-CN, α-LA and β-LG, there were some SNPs with a FDR of about 
0.50 in the single SNP analysis whereas their posterior probability in the 
multiple SNP analysis was about 0.40. However, in general, an increase in 
the FDR of the SNPs resulted in an exponential decrease in the posterior 
probability of the SNPs. This suggests that the multiple SNP analysis does 
partly solved the problem of multiple testing. 
 

 
Figure 3 Graphical overview of pairwise LD for the region from 83.6 Mbp 
(ULGR_BTC-053514) to 88.3 Mbp (ULGR_BTC-060527) on Bos taurus 
autosome 6. Deeper black colours mean more LD between the SNPs; dark 
black means that two SNPs are in complete LD (r2=1.0). The values in the 
graph are the r2 values times 100. 
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Prior distribution 

A prior QTL variance was specified for each trait. The prior distribution will 
not completely match the true QTL distribution. However, Verbyla et al. 
(2009) showed that this will not affect results from models assuming 
unequal variances across SNPs. In this study, the multiple SNP analysis 
was based on a Bayesian approach which also assumed unequal 
variances across SNPs. For β-LG, using different priors for the QTL 
distribution resulted each time in the same SNP (ULGR_ 
SNP_X14710_1740) on BTA11 with the highest posterior probability of 1. 
For the SNP ULGR_ SNP_X14710_1740 for β-LG on BTA11, the evidence 
in the data was already so large that the prior did not have any influence 
anymore. However, using different priors for the QTL distribution for β-LG 
on BTA20 resulted not always in the same SNP having the highest 
posterior probability. Using a QTL variance of 0.05 resulted in another SNP 
(ARS-BFGL-NGS-98321) with the highest probability for β-LG than the 
SNP (ULGR_BTA-50240) with the highest probability using a QTL variance 
of 1.32E-03 or 2.132E-02. However, SNP ARS-BFGL-NGS-98321 was only 
2 Mbp away from SNP ULGR_BTA-50240. In all three analyses, SNP 
ULGR_BTA-50240 still had a posterior probability > 0.05. These results 
suggest that the choice of the prior distribution is more important when the 
data itself is less informative. 
In addition, Meuwissen et al. (2001) reported that an uncorrected prior 
hardly affects the accuracy of estimated breeding values. This illustrates 
that when the interest is not on individual SNP effects, but on the sum of 
SNP effects, the choice of prior QTL distribution is also less important. 
 
Variance explained by SNP 

The proportion of genetic variance explained by a SNP most significantly 
associated with a trait in the single SNP analysis was higher than the 
proportion of additive genetic variance explained by the SNP with the 
highest posterior probability in the multiple SNP analysis. In particular for β-
CN on BTA6: 42.70% in the single SNP analysis compared to 1.88% in the 
multiple SNP analysis. The difference in genetic variance explained by the 
SNP between single and multiple SNP analysis could be explained by 
important differences between these two analyses. One difference is that in 



Single and multiple SNP analysis 

 

139 

the single SNP analysis the additive genetic variance and the dominance 
variance were taken into account, whereas in the multiple SNP analysis 
only the additive genetic variance was taken into account. Heck et al. 
(2009) and Visker et al. (2010) showed that dominance is important in 
associations with β-CN variants. This might explain part of the difference in 
proportion of genetic variance between single and multiple SNP analysis. A 
second difference is that in the single SNP analysis each SNP gets the 
possibility to explain all of the genetic variance, whereas in the multiple  

 
Figure 4 Graphical overview of the relation between the false discovery 
rate (FDR) and the poster probability for each of the six major milk proteins. 
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SNP analysis, the genetic variance can only be explained once. The 
genetic variance explained by one SNP can not be explained anymore by 
another SNP in the multiple SNP analysis. In the multiple SNP analysis, 
some SNPs (e.g. the SNP ULGR_ SNP_X14710_1740 for β-LG on BTA11) 
have an enormous effect on a trait. Adjacent SNPs on the right and left side 
of the SNP with the highest posterior probability, however, will due to LD 
still explain part of the additive genetic variance, as was illustrated in Table 
4. When more adjacent SNPs on the right and left side of the SNP with the 
highest posterior probability were added up to the proportion of genetic 
variance explained by the SNP with the highest posterior probability, the 
proportion of additive genetic variance increased to the level of genetic 
variance explained by a single SNP in the single SNP analysis, except for 
β-CN on BTA6 and 11. 
A third difference between the single and multiple SNP analysis was that in 
the single analysis the SNP was fitted as a fixed effect, whereas in the 
multiple analysis the SNP was fitted as a random effect. To test whether 
this affected the results, additional analyses were performed in which some 
of the SNPs most significantly associated in the single SNP analysis on 
BTA5, 6, 11 and 14 were separately fitted in the MCMC analysis. The 
proportion of genetic variance explained by each of these SNPs was 
calculated and results (data not shown) were similar to those from the 
single SNP analysis, except for β-CN on BTA6. The SNP most significantly 
associated with β-CN on BTA6 explained 42.70% of the genetic variance in 
the single SNP analysis. Running this SNP separately in the MCMC 
analysis, the proportion of the genetic variance explained by this SNP was 
1.89%, which is similar to the 1.88% from the multiple SNP analysis. Fitting 
the SNP most significantly associated with β-CN as a random effect in the 
ASReml analysis resulted in similar proportion of genetic variance 
explained by this SNP as compared to fitting the SNP as a fixed effect. 
Thus making the results more comparable actually resulted in most cases 
in the same proportion of genetic variance explained by the SNP.   
 

Conclusions 

The same four main regions on BTA5, 6, 11 and 14 showing association 
with the six major milk proteins were detected in the single SNP analysis 
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and in the multiple SNP analysis. The multiple SNP analysis, however, 
identified a limited number of SNPs showing an effect as compared to the 
single SNP analysis. Furthermore, additional associations on BTA7 and 27 
were detected with multiple SNP analysis compared to single SNP 
analysis. Thus, multiple SNP analysis results in higher power and in higher 
mapping precision to detect QTL as compared to the single SNP analysis.  
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Introduction 

The general aim of this thesis was to study the extend in which bovine milk 
protein composition is determined by genetic factors, and to look for 
opportunities to utilize this genetic variation to improve milk protein 
composition. For this thesis, milk protein composition was determined in 
morning milk samples from nearly 2000 cows. In addition, blood samples of 
cows and semen samples of bulls were taken for DNA analysis. 
Heritabilities and genetic correlations were estimated for the relative 
concentration of the six major milk proteins (αS1-casein (αS1-CN), αS2-casein 

(αS2-CN), β-casein (β-CN), к-casein (к-CN), α-lactalbumin (α-LA) and β-
lactoglobulin (β-LG)), and the milk production traits (Chapter 3). The results 
show that there is considerable genetic variation in relative concentration of 
the six major milk proteins. Genetic correlations among the six major milk 
proteins were low, in general. The latter indicates that genes affecting two 
different milk protein fractions only partly overlap. A genome-wide screen 
was used to identify chromosomal regions associated with milk protein 
composition (Chapters 4 and 5). Important chromosomal regions have 
been detected on chromosomes 5, 6, 11 and 14. Some of these regions 
harbor genes that have been reported in literature to influence milk protein 
composition. We, for example, confirmed the important role of the casein 
genes on BTA6 and the β-LG gene on BTA11.  
In this final chapter, the general discussion, the first section deals with the 
composition of milk and dairy products, the second section deals with the 
impact of using relative or absolute concentrations for milk protein 
composition, and the third section concentrates on casein index. In the last 
section, the opportunities to use the genetic variation of the milk protein 
composition are explored.  
 
Milk and dairy products 
Bovine milk is the basis for a large variety of consumer products, like liquid 
milk, fermented milk (e.g. yoghurt), cheese (many varieties), butter, creams 
and condensed milk (coffee milk) as well as dairy ingredients. The 
consumption of dairy products is an important contribution to the nutrient 
supply, especially for calcium, vitamin B2 and B12, protein, zinc and to less 
extend for magnesium, phosphor, vitamin A, B1, B6, B11 and D, and 
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selenium. Dairy products provide about 15 % of the energy intake. This 
high nutrient density and relatively low energy supply are preferable for the 
prevention of obesity (Kok, 2009). The Dutch centre for food products, 
therefore, recommends consuming 450 – 650 ml milk and 20 to 30 gram 
cheese each day for people who are at least 19 years old (Kok, 2009).  
Although some people are oversensitive (cow’s milk allergy) to milk protein, 
milk has a high nutritional value because the milk proteins contain many 
essential amino acids. The most important essential amino acids are 
cysteine, methionine, and tryptophan (de Wit, 1998). People need amino 
acids for a number of essential biological functions, i.e. to grow, to maintain 
their body, and to build and repair muscles. Next to the proteins, milk is 
also a very important and unique source of vitamins and minerals. An 
important mineral is calcium which is needed for development of bones and 
teeth. Calcium, protein, vitamin B2 and vitamin B12 contribute significantly 
to the high nutrient richness score of milk, cheese and yoghurt (Steijns et 

al., 2008). Thus bovine milk contains a surplus of major nutritional 
components for the consumer.   
Calcium and milk protein composition also have an effect on the 
technological properties of milk. Calcium is important for the coagulation of 
milk during cheese manufacturing. Furthermore, several studies (e.g. 
Schaar et al., 1985; van den Berg et al., 1992; St-Gelais and Haché, 2005; 
Wedholm et al., 2006) have shown that casein composition has an effect 
on the renneting process of milk and on the technological properties of 
cheese. For example, milk with a high content of β-CN will result in poorer 
coagulation and, as moisture content decreases, harder cheeses (St-Gelais 
and Haché, 2005) Another example is milk with a high content of к-CN 
which has a better coagulation and a firmer curd which increases cheese 
yield (Wedholm et al., 2006) The protein к-casein stabilizes the surface of 
the casein micelle while the other three caseins form the core. The amount 
of к-CN determines the size of the casein micelle and a higher amount of к-
CN results in smaller casein micelles (Dalgleish et al., 1989) Smaller casein 
micelles may increase the ability to entrap milk constituents (Niki et al., 
1994; Walsh et al., 1998), aggregate more rapidly and have a higher rennet 
gelation rate than large casein micelles (Park et al., 1999)  
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Whey protein is a high quality protein in cow’s milk. Whey protein is the 
richest source of essential amino acids like methionine and cysteine and, 
therefore, has a high nutritional value (de Wit, 1998) Whey protein products 
are used to replace egg proteins in confectionery and bakery products, and 
as milk replacers in products, such as ice cream (de Wit, 1998). Whey 
consists mainly of α-LA and β-LG. The biological function of α-LA is to 
support the synthesis of lactose (Walstra and Jennes, 1984), whereas the 
biological function of β-LG is a transporter of retinol (provitamin A) from the 
cow to the calf (de Wit, 1998). This function of β-LG might be less important 
for human babies (de Wit, 1998), which might be an explanation for the fact 
that human milk does not contain β-LG. The protein β-LG is a rich source of 
cysteine, an essential amino acid that appears to stimulate glutathione 
synthesis. Although the protein composition is different between bovine and 
human milk, bovine milk is the most used nutrient source in infant milk. 
Bovine α-LA is a rich source of cysteine and tryptophan, and therefore used 
to increase the amount of cysteine and tryptophan in infant milk.  
For most dairy products heat treatment is part of the production process. 
However, heat treatments of proteins lead to fouling of the heating 
equipment. Elofsson et al. (1996) showed that a lower β-LG concentration 
in bovine milk is associated with a lower fouling rate of the heating 
equipment. This will reduce the costs to clean the heating equipment, which 
is interesting from an economical point of view.  
In summary, different applications of milk require different milk protein 
compositions. From a nutritional (infant milk) and economical (reduce 
cleaning cost of heating equipment) point of view, the optimal milk protein 
composition is less casein and a whey protein composition with more α-LA 
and less β-LG. For some technological properties, however, the optimal 
milk protein composition is not that straightforward because the different 
caseins have different effects on the technological properties. For more 
cheese production, however, the optimal milk composition is more casein 
and less whey protein. This suggests that there is no single milk 
composition that suits each product direction. Therefore, an optimum needs 
to be found between nutritional value, technological value and economical 
value as a driver to change the milk protein composition. 
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Relative versus absolute concentrations of major milk proteins 
We used capillary zone electrophoresis (CZE) to obtain relative 
concentrations of the different proteins.  CZE was used because this 
method can simultaneously separate the casein and whey proteins, 
including some protein variants (Heck et al., 2008). Furthermore, protein 
percentage is routinely recorded. This information can be used to calculate 
the relative as well as the absolute concentration of the different milk 
proteins. For the dairy industry and selective breeding, protein percentage 
and the relative protein composition are complementary information 
sources. We have chosen to use the relative protein composition in our 
analysis, i.e. the amount of a certain protein expressed as a fraction of the 
total amount of milk protein. A disadvantage of using relative 
concentrations is the fact that correlations are introduced by calculating 
relative concentration. When the total protein fraction consists of two 
independent proteins A and B, the relative concentrations of A and B are 
fully dependent. The relative concentration of B is equal to 1 minus the 
relative concentration of A and consequently, the correlation between these 
two relative concentrations is -1. In this thesis, however, six instead of two 
protein fractions were used. This reduces the auto-correlations among the 
relative concentrations. When the concentration of one of the six proteins 
decreases, this does not mean that the concentration of only one other 
protein increases with the same magnitude, but it can be divided over some 
or all of the other five major milk proteins. The autocorrelations complicates 
the interpretations of the relative concentrations, a problem that does not 
occur when using absolute concentrations.   
From a biological point of view, absolute as well as relative concentrations 
of individual proteins are of interest. A disadvantage of using absolute 
concentrations is that relationships between different protein fractions are a 
combined effect of the total protein production and the relative composition. 
Using absolute concentrations or relative concentrations for the six major 
milk proteins have both advantages and disadvantages. However, the 
question rises, what is the difference between using relative or absolute 
protein concentrations. 
The absolute concentrations were calculated by multiplying the relative 
concentrations of the six major milk proteins with protein percentage. The 



Chapter 7 

 

 

150 

phenotypic correlation between relative and absolute concentrations for the 
six major milk proteins ranged from 0.29 for αS1-CN to 0.91 for κ-CN (Table 
1). Especially, the phenotypic correlations for αS1-CN and for β-CN were 
low. The genotypic correlation between relative and absolute 
concentrations ranged from 0.41 for β-CN to 0.93 for κ-CN (Table 1). This 
demonstrates that ranking of cows based on absolute and relative 
concentrations are different to very different. This holds for both ranking on 
phenotypes as well as ranking on genotypes. The difference is caused by 
the variation between cows in protein percentage. 
The heritability for absolute β-CN concentration was twice as high as the 
heritability for the relative β-CN concentration, whereas the heritabilities for 
the other five milk proteins were similar for absolute and relative 
concentrations (Table 2). This indicates that genetic factors are more 
important for the absolute β-CN concentration than the relative β-CN 
concentration. Therefore, different genes might affect the absolute β-CN 
concentration compared to the relative β-CN concentration, which is also 
supported by the low genetic correlation between the absolute and relative 
β-CN concentration. The differences in genetic parameters (Table 1 and 2) 
between relative and absolute concentrations of the six major milk proteins 
illustrate that the two concentrations are not the same trait.  
 

Table 1 Phenotypic (rP) and genetic (rG) correlations between relative 
concentration (ww%) and absolute concentration (g/L) for the six major milk 
proteins. 
Trait rP rG 

αS1-casein 0.29 (0.03) 0.64 (0.14) 
αS2-casein 0.90 (0.01) 0.89 (0.03) 
β-casein 0.49 (0.03) 0.41 (0.16) 
к-casein 0.92 (0.01) 0.93 (0.08) 
α-lactalbumin 0.81 (0.01) 0.80 (0.00) 
β-lactoglobulin 0.88 (0.01) 0.92 (0.02) 
 
To illustrate that there is a difference in using relative or absolute 
concentrations, I repeated the association study for only BTA6 using 
absolute concentrations for the six major milk proteins. For αS2-CN, β-CN, 
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κ-CN, the most significantly associated SNP was identical to the most 
significantly associated SNP using the relative concentrations on BTA6. 
However, for αS1-CN, α-LA and β-LG, additional associations were found. 
The most significantly associated SNP using absolute concentrations was 
located at 85.8 Mbp for αS1-CN and at 92.0 Mbp for α-LA, whereas the most 
significantly associated SNP using relative concentrations was located at 
88.1 Mbp for αS1-CN and at 88.5 Mbp for α-LA. For β-LG, the SNP most 
significantly associated using absolute concentrations was only 0.1 Mbp 
away from the SNP most significantly associated using relative 
concentrations.  
 
Table 2 Heritabilities for the relative concentration  
and absolute concentration of the six major milk proteins. 
Trait relative absolute 

αS1-casein 0.47 0.42 
αS2-casein 0.73 0.66 
β-casein 0.25 0.59 
к-casein 0.64 0.66 
α-lactalbumin 0.55 0.38 
β-lactoglobulin 0.80 0.81 
 
The above described results of the relative and absolute concentrations of 
the six major milk proteins suggests that performing calculations using 
relative protein concentrations is not the same as performing calculations 
using absolute protein concentrations. Analysing both the relative as well 
as the absolute concentration will help to increase our understanding of the 
genetic background of differences in protein composition. 
 

Casein index 
In this thesis, casein index is used as a parameter for the amount of cheese 
that can be produced out of milk. In literature, the casein number is often 
used. Casein index as defined in this thesis is the total caseins in milk 
divided by the sum of total caseins and total whey proteins in milk, whereas 
casein number is defined as the difference between protein content in milk 
and protein content in whey. There are two main differences between 
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casein index and casein number. The first one is the difference in 
determination method.  Casein index was calculated based on the six major 
milk proteins which were determined using CZE. Using CZE, the amount of 
total nitrogen is not measured, whereas determination of casein number is 
based on the method of Rowland (1938), which involves precipitation of 
casein at pH=4.6 and measuring the Kjeldahl nitrogen in milk and in whey. 
Using the Kjeldahl method, the amount of total nitrogen, including non 
protein nitrogen (NPN), is determined. The amount of NPN varies between 
0.1% and 0.3% (Heinrichs et al., 1997) and including NPN will increase the 
casein number. However, casein number is neither a perfect indicator for 
cheese production efficiency because the к-CN tails are included in the 
casein number, whereas during cheese production, the к-CN tails end up in 
the whey.  
The second difference is that the six major milk proteins as evaluated in 
this research made up about 86% of the total protein fraction. The 
remaining 14% consists of proteins which for a large part belong to the 
whey proteins (e.g. BSA, lactoferrin, immunoglobulins), which were now not 
taken into account with the calculation of the casein index. The casein 
index (87.45, chapter 3) as defined in this research, therefore, is higher 
than the casein number as reported in literature (e.g. 81.5, Coulon et al., 
1998; 78.2, Lindmark-Månsson et al., 2003).  
 
Opportunities to increase casein index using genetic selection 

In this thesis (chapter 3) we showed that there is substantial genetic 
variation in milk protein composition. Furthermore, we have shown that 
known protein variants are associated with quantitative variation in milk 
protein composition. For example, the B allele of β-LG is associated with a 
lower relative concentration of β-LG protein. Heck et al. (2009) found that 
the B allele of β-LG is also associated with an increased casein index. In 
chapter 4, we reported a whole genome scan for milk protein composition 
in which we found a number of genomic regions that contribute to genetic 
variation in milk protein composition. These findings open opportunities for 
selection aimed at increasing the casein index in milk. 
For the Dutch dairy industry, cheese production is very important. The 
casein content of milk has a direct effect on cheese properties; cheese 
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yield, milk coagulation time, and curd firmness (Wedholm et al., 2006). The 
milk payment scheme for the farmers in the Netherlands is based on 
protein (and fat) yield. Protein yield is positively correlated with casein index 
(chapter 3) and, therefore, selection on protein yield is in an indirect way to 
improve the amount of casein in their milk. In this section, I will explore a 
number of scenarios to improve the casein index in milk.   
There are several opportunities to use genetic variation to increase the 
casein index of milk. The first option that I will explore is differentiation 
(scenario 1, (§7.5.1). In this scenario, farmers use the 10% bulls with the 
highest estimated breeding value (EBV) for casein index to breed a subset 
of cows to produce the next generation. In this scenario, the breeding 
program is not changed but the variation between bulls in casein index is 
exploited.  
In the second scenario the breeding program is focused on improving 
casein index, i.e. casein index is the only trait in the breeding goal. In this 
scenario, the bulls with the highest merit for casein index are used to 
produce the next generation of bulls which will lead to genetic improvement 
of the population over time. Genetic selection of bulls can be based on their 
EBVs calculated from performances on female relatives (scenario 2, 
§7.5.2), or based on their genotypes for protein genes (scenario 3, §7.5.3). 
Finally, in scenario 4 (§7.5.4), I have explored the consequences of using 
genomic selection in which bulls are selected based on their genomic 
breeding values. In all four scenarios, the genetic parameters as calculated 
in chapter 3 were used. 
 
Scenario 1:  Differentiation of bulls based on EBV 

In the first scenario, 10% bulls with the best EBV for casein index are used 
to breed a subset of cows to produce the next generation. It is assumed 
that a limited number of farms will only use these 10% best bulls for casein 
index. In this way, these farms will improve their herd average for casein 
index and produce milk more suitable for cheese production. The genetic 
herd levels of the participating farms in this scenario will change over time. 
However, there will be no change in genetic level for casein index on the 
non-participating farms because it is assumed that the breeding program 
for the population is not changed. This scenario capitalizes on the variation 
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between bulls and uses the bulls with high EBV for casein index on the 
specialized group of farms.  
The 10% best bulls can be selected within the group of progeny tested 
bulls, based on their estimated breeding values (EBV) for casein index. To 
quantify the consequences of this scenario, I used the dataset of the Dutch 
Milk Genomics Initiative. In this dataset, the EBV for 50 young test bulls 
was estimated using an animal model.  The 10% best bulls for casein index 
have an average EBV of 1.84 (Table 3). This means that their offspring on 
average will have ½ * 1.84 is 0.92 higher casein index than the herd 
average (a casein index of 88.4 instead of 87.5). Due to genetic 
correlations between traits, these 10% best bulls also had positive EBVs for 
αS2-CN, β-CN, α-LA and milk yield, and negative EBVs for αS1-CN, к-CN, β-
LG and slightly lower EBV for protein percentage (Table 3). The EBV for 
the four casein fractions summed up to an increase of 1.095 ww% casein in 
milk and the two whey proteins summed up to an decrease of -1.668 ww% 
whey in milk.  
 
Table 3 Estimated breeding values (EBVs) of 10% young bulls in the Dutch 
Milk Genomics dataset with the best EBV for casein index and its 
correlated responses. 
Trait EBV 

Casein index +1.84 
   Correlated responses  
αS1-casein (ww%) -0.31 
αS2-casein (ww%) +0.64 
β-casein (ww%) +0.80 
к-casein (ww%) -0.04 
α-lactalbumin (ww%) +0.04 
β-lactoglobulin (ww%) -1.71 
Protein (%) -0.05 
Milk1 (kg) +0.92 
1 Test-day morning milk yield 

 
The example illustrated with Table 3 is based on a relatively small group of 
bulls (10% of 50 bulls) with a relative small number of offspring each. 
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Furthermore, the genetic level will increase over time when the farmer 
keeps on using bulls with superior EBV for casein index. However, the 
genetic improvement will level off and the asymptotic improvement is equal 
to the selection differential of the 10% best bulls. Figure 1 shows the 
increase in herd level for casein index when each year one third of 100 
cows are replaced by the offspring of 10% best bulls with the highest EBV 
for casein index.  
As showed in Figure 1, it will take about 3 years before the first daughters 
will start producing milk with a higher casein index. 
 

Casein index

87.0

87.5

88.0

88.5

89.0

89.5

0 5 10 15 20 25 30
Year

H
e
rd

 l
e
v
e
l 

  
  

 

 
Figure 1. Herd level for casein index when each year one third of the cows 
are replaced by offspring of bulls with 10% highest EBV for casein index 
produced from cows in the herd.  
 
The asymptote of Figure 1 is equal to the maximum level of casein index 
which can be reached by selecting 10% best bulls on a herd each year. 
The accuracy (rIH) of the EBV for casein index was calculated using 100 
progeny with information on casein index and a heritability of 0.70 for 
casein index (chapter 3). The expected breeding values of the 10% best 
bulls for casein index (selection differential) is equal to i * rIH * σa, where i is 
the selection intensity corresponding to selected fraction of 10%, rIH is the 
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accuracy and σa is the additive genetic standard deviation. For casein index 
this selection differential becomes 1.755 * 0.98 * 1.14 = + 1.96%. In 10 
years of time, casein index will increase with 1.29 % (from 88.74 to 87.45, 
Figure 1) which means that 73% of the maximum level has been reached. 
Assuming a farm with 100 cows producing 900.000 kg milk each year and 
using the average protein percentage of 3.51% as found in the Dutch Milk 
Genomics Initiative, this farm will produce 31.500 kg protein each year. 
With current population level for casein index of 87.45%, this farm produces 
27.547 kg casein and 3.953 kg whey. Under scenario 1, the maximum 
improvement in casein index is 1.96% which corresponds to an 
improvement of 31.500 * 0.0196 = 617 kg of casein and a decrease of 617 
kg whey. In this calculation, correlated response in other traits, as observed 
in Table 2 were ignored. At this moment, 1 kg of casein has a value of 
€6.00 and 1 kg of whey has a value of €2.50 (Heck, personal 
communication). Using these prices, selecting the 10% bulls with highest 
EBV for casein index will result in an increase in profit of 2160 euro each 
year. When 50% of the farmers will select the 10% bulls with the highest 
EBV for casein index, this will lead to an increase in profit of 2.7 million 
each year. 
This scenario can be relatively easily be implemented by a group of 
interested farmers, which want to produce milk with higher casein content. 
This interested group of farmers could decide to specifically start producing 
milk more suited for cheese production. This differentiation could be 
implemented by farmers that produce cheese themselves or by a cheese 
producing company who stimulates farms to pay more attention to protein 
composition, for example by changing the milk payment scheme. Note that 
this scenario assumes that EBVs of bulls are available. To estimate these 
breeding values, phenotypes on casein index need to be collected on 
offspring of bulls.  
 
Scenario 2: New breeding programme for casein index 

In the second scenario, a new breeding program is developed which has as 
its only objective to increase the casein index of milk. In this breeding 
program, the cows and bulls with highest EBV for casein index are selected 
to produce the next generation. This breeding program will lead to 
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continuous genetic improvement over generations. The computer 
programme SelAction (Rutten et al., 2002) was used to calculate the 
selection response resulting from this breeding programme. The 
heritabilities, phenotypic variance, and phenotypic and genetic correlations 
as estimated in chapter 3 were used as input parameters for SelAction. 
More information about the parameters used in SelAction is given in Text 
box 1. Simulation showed that the breeding program with selection for an 
increased casein index will result in a genetic improvement of casein index 
of 0.22% per year (Table 4). Single trait selection on casein index might 
lead to correlated response in other traits due to genetic correlations with 
casein index. Correlated response shows that selection for casein index will 
result in an increase of five of the major milk protein fractions and a 
decrease in β-LG content (Table 4). Selection for a higher casein index 
hardly affects protein percentage and milk yield.  
 
Table 4 Expected genetic change of the population with selection for an 
increased casein index and its correlated response.  
Trait Response per year 

Casein index +0.22 
   Correlated response  
αS1-casein (ww%) +0.02 
αS2-casein (ww%) +0.09 
β-casein (ww%) +0.03 
к-casein (ww%) +0.01 
α-lactalbumin (ww%) +0.01 
β-lactoglobulin (ww%) -0.20 
Protein (%) +0.00 
Milk (kg) +0.02 
1 Test-day morning milk yield 

 
In the Netherlands, we produce 12 billion kg milk each year, of which 50% 
is used for cheese making. The average protein percentage in the Dutch 
Milk Genomics population was 3.51% (chapter 3). Thus each year, there is 
12·109 * ½ * 0.0351 = 210,6·106 kg protein.  The annual genetic 
improvement for casein index was +0.22, which corresponds to an annual 
increase of 0.0022 * 210.6·106 = 4.63·105 kg casein and an annual 
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decrease of 4.63·105 kg whey. Using the same economic values for casein 
and whey as described in scenario 1, the genetic improvement for casein 
index will result in an increase in annual profit of 1.6·106 euro each year. 
Genetic progress in this scenario is cumulative. 
 
Text box 1 Input parameters SelAction 
Simulated population: 25 bulls x 200 dams 
 
Information sources Index 
age 
class  

male 
candidates 

male information 
source 

female 
candidates 

female 
information 

1 0 BLUP 0 BLUP 
2 0 BLUP 0 BLUP 
3 0 BLUP, HS4 100 BLUP,HS3,OP 
4 0 BLUP, HS4 95 BLUP,HS3,OP 
5 100 BLUP, HS4, Progeny 90 BLUP,HS3,OP 
6 99 BLUP, HS4, Progeny 85 BLUP,HS3,OP 
7 98 BLUP, HS4, Progeny 80 BLUP,HS3,OP 
8 97 BLUP, HS4, Progeny 75 BLUP,HS3,OP 

1HS4 = Half sib group with 4 female half sibs; HS3 = Half sib group with 3 
female half sibs; OP = Own performance; Progeny = Progeny group with 
100 female progeny; BLUP = Best Linear Unbiased Prediction. 
 
To implement this scenario, breeding values of cows and bulls have to be 
estimated which requires the collection of information on casein index. In 
this scenario, the whole breeding scheme is changed and consequently all 
participating farms (also the farms which produce liquid milk products) will 
produce milk with a modified milk protein composition.  
In this scenario, I used casein index as the only trait in the breeding goal. 
This scenario resulted in an annual genetic improvement of 0.22% increase 
for casein index. This response should be regarded as upper bound of what 
can be achieved by selection based on phenotypes collected for casein 
index. In real life, however, selection of animals will never be done on only 
one trait but animals will be selected for several traits. Therefore, more 
traits will be included in the breeding goal and the genetic progress for 
casein index will become smaller.  
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Scenario 3: Selection based on known genotypes. 

Information at DNA level can be collected. In the third scenario, selection is 
based on DNA information on milk protein genes. I assumed that the 
protein variants are the casual mutations in the protein genes and used the 
effects of the protein variants estimated by Heck et al. (2009). Animals 
were selected based on their known genotypes for the milk protein genes 
which will lead to an increase of the frequency of the alleles with favorable 
effects on milk protein composition.  
In this scenario, I concentrated on genotypes for к-CN and β-LG proteins. 
Genotypes for к-CN and β-LG were chosen because variants for these 
proteins are associated with total casein in milk (Ng-Kwai-Hang et al., 1987; 
Bobe et al., 1999; Heck et al., 2009), with casein yield milk (Schaar et al., 
1985; Van Den Berg et al., 1992; Wedholm et al., 2006), and with cheese-
making properties (Marziali and Ng-Kwai-Hang 1986; Mayer et al., 1997; 
Wedholm et al., 2006).  
For к-CN, the B allele has favorable effect on casein index and I 
determined the potential improvement in casein index when the whole 
population will be homozygous for the B-allele of κ-CN. A population with 
only κ-CN BB animals is expected to have a 0.145 ww% higher casein 
index in milk compared to the current population (Table 5). 
 
Table 5 Expected genetic change in milk protein composition of population 
homozygous for the B- allele of κ-CN (B-allele к-CN) compared to the 
current population.  

Trait Current population Fixation at к-CN BB 

Casein index 87.45 +0.145 
αS1-casein (ww%) 33.62 -0.917 
αS2-casein (ww%) 10.38 +0.244 
β-casein (ww%) 27.17 +0.059 
к-casein (ww%) 4.03 +0.536 
α-lactalbumin (ww%) 2.44 -0.125 
β-lactoglobulin (ww%) 8.35 -0.029 
Protein (%) 3.51 +0.060 
Milk1 (kg) 13.46 -0.134 

1 Test-day morning milk yield 
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For β-LG, the favorable allele for casein index is the B allele. Selection for 
only β-LG BB animals is expected to increase casein index with 1.927% 
(Table 6).  
Ganai et al. (2009) identified two additional polymorphisms which 
segregate within the B-allele for β-LG: g.-462G>A and g.3748G>A. The g.-
462G>A polymorphism showed the biggest effect (0.44, Ganai et al., 2009) 
on the β-LG concentration. For animals that are already homozygous for 
the B-allele of B-LG, additional selection for animals that are homozygous 
for the A allele of the g.-462G>A polymorphism is expected to increase 
casein index with an additional 0.099% (Table 6). 
 
Table 6 Potential for genetic change using animals which are homozygous 
for the B allele of β-LG (B-allele β-LG) and animals which are homozygous 
for the A allele of the g.-462G>A polymorphism in β-LG (g.-462G>A β-LG). 
Trait Current 

population 

Fixation at 

β-LG BB 

Fixation at 

g.-462G>A 
Casein index 87.44 +1.927 +0.099 
αS1-casein (ww%) 33.62 +0.453 -0.046 
αS2-casein (ww%) 10.38 +0.386 +0.085 
β-casein (ww%) 27.17 +0.386 -0.063 
к-casein (ww%) 4.03 +0.133 +0.020 
α-lactalbumin (ww%) 2.44 +0.066 -0.025 
β-lactoglobulin (ww%) 8.35 -1.762 -0.071 
Protein (%) 3.51 -0.019 +0.006 
Milk1 (kg) 13.46 -0.077 -0.009 
1 Test-day morning milk yield 

 
I have looked at effects of selection based on single genotypes but the 
effects of the three genotypes can be combined.  This means that the 
estimated potentials can be summed. For casein index, this will results in 
an increase of 0.145 + 1.927 + 0.099 = 2.171 %. 
The genetic improvement for casein index of 2.171% corresponds to an 
increase of 0.02171 * 210,6·106 = 4.6 ·106 kg casein. Using the same 
economic values for casein and whey as described in scenario 1, the 
genetic improvement for casein index will result in an increase in profit of 
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1.6·106 euro. However, once all animals in the population have the 
favorable genotype, the genetic improvement will stop. 
To implement this scenario, there is no need to collect phenotypes and 
selection can be based on genotypes. It is relatively easy to collect 
genotypes for sires and cows. 
 
Scenario 4: Genomic selection 

In dairy cattle, breeding is largely based on phenotypic records of the 
individual itself and its relatives. Breeding values are estimated based on 
the phenotypic records and pedigree relationships using Best Linear 
Unbiased Prediction (BLUP, Henderson 1985), like in scenario 2. 
Meuwissen et al. (2001) have shown that genetic progress can be 
improved by using genomic selection, a breeding scheme in which 
information on a large number of markers is used. Since a few years, 
individual cows and/or bulls can be genotyped for thousands of single 
nucleotide polymorphisms (SNPs), like for example the 50K bovine SNP 
chip (chapter 5), at relatively low costs. This has enabled the introduction of 
genomic selection in dairy cattle (Goddard and Hayes, 2009). 
The linkage study (chapter 4) showed several significant and suggestive 
QTLs for milk protein composition. Some of these QTLs were confirmed in 
the whole genome association study using 50K SNPs (chapter5). These 
QTLs, therefore, add to the potential for genetic change for milk protein 
composition. The benefit of using QTL information depends on the amount 
of genetic variance explained by the QTL. Spelman et al. (1999) reported 
an increase in genetic gain ranging from 10 to 55% in different breeding 
structures in dairy cattle when 50% of the genetic variances can be 
explained.  
To exploit the genetic variance explained by all QTL, genomic selection 
(Meuwissen et al., 2001) can be used. Implementation of genomic selection 
proceeds in two steps. The first step is the estimation of marker effects in a 
reference population, which has been phenotyped and genotyped. The 
second step is the prediction of genomic estimated breeding values (gEBV) 
for bulls in subsequent generations that usually only have genotypic and no 
phenotypic information. The gEBVs of a group of bulls are predicted using 
the estimated marker effects obtained in the reference population. Using 
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the 2000 cows of the Dutch Milk Genomics Initiative, which have been 
genotyped and phenotyped, as reference population, the accuracy of gEBV 
can be estimated as described by Daetwyler et al. (2008) using the 
following prediction equation: 

)/( 22
qNhNhrIH += , 

where N is the number of individuals genotyped and phenotyped (N=2000), 
h2 is the heritability of the trait and q is the number of independent 
chromosome segments in the population. I used this prediction equation to 
determine the accuracy of gEBV for milk protein composition The value of q 
is equal to 2NeL, where L is the length of the genome (30 Morgan) and Ne 
is the effective population size (Ne = 64, de Roos et al., 2008).  
 
Table 7 The expected accuracy (rIH) of genomic selection using the 2000 
cows of the Dutch Milk Genomics Initiative as reference population and the 
maximum increase in herd level when selecting 10% bulls with the best 
gEBV for each of the different traits. 
Trait rIH Maximum level 

αS1-casein (ww%) 0.44 0.846 
αS2-casein (ww%) 0.52 1.048 
β-casein (ww%) 0.34 0.438 
к-casein (ww%) 0.50 0.382 
α-lactalbumin (ww%) 0.47 0.181 
β-lactoglobulin (ww%) 0.54 1.012 
Casein index 0.52 1.045 
Protein (%) 0.51 0.194 
Milk1 (kg) 0.42 1.055 
1 Test-day morning milk yield 

 
The expected accuracies of genomic selection using our data as reference 
population ranged from 0.34 for β-CN to 0.54 for β-LG (Table 7). The value 
of q was equal to the number of independent chromosome segments, 
whereas q can also be the number of independent segments affecting the 
trait. This number actually could be rather small for some of the traits, 
especially for β-LG where there is one gene with a major effect. Using the 
number of independent segments affecting the trait for the value of q will 
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increase the accuracy of the genomic breeding values for the six major milk 
proteins. VanRaden et al. (2009) reported reliabilities of genomic 
predictions for milk production traits ranging from 0.50 for fat yield to 0.72 
for fat percentage. These reliabilities, however, were based on roughly 
3600 bulls in a training dataset which was used to compute predictions, 
which were tested on roughly 1800 bulls in a test dataset. In addition, de 
Roos et al. (2009) reported reliabilities of genomic predictions for 
production traits ranging from 0.61 to 0.78 (fat percentage). VanRaden et 

al. (2009) and de Roos et al. (2009) showed that an increase in reference 
population also increased the reliability of the genomic predictions. To 
obtain an accuracy of about 0.75 for β-LG, 6000 animals with genotyped 
and phenotypes are needed as a reference population. This would mean 
that also the other two milk samples that have been collected as part of the 
Dutch Milk Genomics Initiative should be phenotyped. 
The expected accuracies of genomic selection were calculated for the six 
major milk proteins, casein index, protein percentage and milk yield (Table 
7). Based on these genomic accuracies, the maximum potential (i * rIH * σa, 
as described in more detail in scenario 1) for each of the traits by selecting 
the 10% best bulls with gEBV were calculated (Table 6). For casein index 
this will mean a selection differential of 1.755 * 0.52 * 1.14 = + 1.05%.  
To implement genomic selection, many SNP genotypes across the genome 
are needed. It is nowadays no problem to obtain a large number of SNP 
genotypes and the genotyping costs per SNP marker reduced 
considerably. However, for genomic selection also phenotypes are required 
to estimate effects of chromosome segments in the reference population.  
Note that the recombination between the SNP markers and the QTL, the 
gEBV accuracy using chromosome segment effects obtained in the 
reference population will reduce. This suggests that the chromosome 
segments have to be re-estimated after several years. Meuwissen et al. 
(2001) showed with simulations that the gEBV accuracy decreases from 
0.85 to 0.76 after three generations. This might suggest that re-estimation 
of the chromosome segment effects in the reference population should at 
least take place every 3 generations. However, the phenotypes of the 2000 
cows of the Dutch Milk Genomics Initiative were collected in 2005, which is 
five years ago and is more or less equal to one generation. This means that 
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the phenotypes (and genotypes) from the 2000 cows of the Dutch Milk 
Genomics Initiative can be used as reference population to predict accurate 
gEBV for milk protein composition for a group of animals that only have 
genotypes.  
 
Summarizing the scenarios 
In scenario 1 it is possible to obtain a genetic improvement for casein index 
of 1.29% within 10 years. This increase in casein index can relatively easily 
be adapted by a group of interested farmers, which will differentiate from 
other farmers (producing e.g. liquid milk products), whereas in scenario 2, 
the whole population is changed into one direction. However, the annual 
genetic improvement for casein index is 0.249%. This means that within 10 
years, it is possible to increase the casein index with 2.49%, which is twice 
as high as compared to scenario 1. Note, that the selection in scenario 2 
was based on one trait, which is not very realistic. In both scenarios 1 and 2 
phenotypes are required to estimate the breeding values.  
No phenotypes are required for scenario 3, which also had the highest 
genetic improvement for casein index of 2.2%. However, this increase is 
dependent on the time required to change the allele frequency in the 
population from current level to fixation. The fact that only genotypes are 
required, which can easily be collected on cows and bulls, makes scenario 
3 relatively easy to implement.  
Scenario 4 is also based on genotypes, however, also phenotypes are 
required. Every three generations (about 15 years), phenotypes have to be 
collected to re-estimate the chromosome segments of the reference 
population, whereas in scenario 1 and 2 phenotypes have to be collected 
annually to estimate breeding values. For this thesis, milk protein 
composition has been quantified using CZE (Heck et al., 2008). CZE is a 
good and reliable technique to separate milk proteins, however, this 
method is costly and time consuming. This makes CZE not a good method 
for routinely measuring milk protein composition. To obtain phenotypes 
routinely, therefore, infrared spectroscopy (IR) might be useful. Ghiroldi et 

al. (2004), showed that the use of IR method is reliable and can be used for 
routinely record the phenotypes for casein content in milk. In addition, 
Rutten et al. (2009) showed that it is possible to predict individual fatty 
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acids with a desired r2 value > 0.6 (concentration > 2.54 g/100g) or > 0.8 
(concentration > 0.19 g/dL) based on infrared spectroscopy. IR to predict 
milk protein composition accurately, however, is more difficult than fat 
composition which results in lower accuracies (Rutten, personal 
communication). Evaluation of accuracy and options to improve the 
accuracy are very important for implementation of selection for 
improvement of milk protein composition.   
For scenario 3 and 4, DNA testing of the animals is required. Based on 
these DNA tests, the best cows and bulls with an improved milk protein 
composition are selected. Especially for bulls, selection based on 
genotypes is very interesting as bulls have no phenotypic information on 
milk protein composition. For scenario 3 and 4, therefore, the bulls can be 
selected at a young age without having information on the performance of 
the daughters. This will reduce the generation interval from around 6 years 
to around 2 years. This will increase the genetic improvement each year. 
The optimal scenario to increase casein index in milk would be a 
combination of scenario 3 and 4, i.e. a scenario in which the effects of 
known genes as well as anonymous genes (genomic selection) are used.  
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Summary 
 

Milk, especially cow’s milk, is consumed as a food product in many 
cultures. Besides consumption as liquid milk, milk is also consumed in the 
form of processed dairy products such as butter, yoghurt and cheese. For 
many years dairy cows have been selected for high milk, fat and protein 
production. It is not known, however, what the consequences of this 
selection policy are on e.g. the composition of the milk fat and the milk 
protein. This thesis is part of the Dutch Milk Genomics Initiative which 
investigates the possibilities to use natural genetic variation for changing 
milk composition. The focus of this thesis has been on milk protein 
composition, and the objectives were to estimate genetic parameters for 
milk protein composition, to detect chromosomal regions affecting milk 
protein composition, and to fine map these chromosomal regions. For this 
purpose morning milk samples of about 2000 first lactation cows were 
collected in the winter of 2005. From these 2000 cows, also a blood sample 
was taken for DNA analyses. The morning milk samples were analyzed for 
the six major milk proteins (αS1-casein, αS2-casein, β-casein, κ-casein, α-
lactalbumin and β-lactoglobulin) using capillary zone electrophoresis. Blood 
samples were taken from all cows to extract DNA for genotyping. 
In chapter 2 genetic parameters for milk protein composition were 
estimated and the relationships among the six major milk proteins as well 
as between milk proteins and milk production traits were studied. Results 
showed that there was considerable genetic variation for milk protein 
composition with heritabilities ranging from 0.25 for β-casein to 0.80 for β-
lactoglobulin. Genetic correlations among the six major milk proteins were 
low, in general. Protein percentage was negatively correlated with αS1-
casein and α–lactalbumin and positively correlated with κ-casein. There 
was a strong negative genetic correlation between β-lactoglobulin and total 
casein in milk. The presence of genetic variation justified the performance 
of in-depth genetic analyses such as linkage and association mapping. 
In chapter 3, two types of molecular markers were compared for their use 
in genetic studies. Microsatellites are very informative due to the large 
number of alleles that each microsatellite can have. Single nucleotide 
polymorphisms (SNPs) are less informative than microsatellites because 
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SNPs usually have only two alleles. However, SNPs have the major 
advantage of being more suitable for high-throughput genotyping. The 
results of this study showed that three SNPs are required to achieve the 
same information content as one microsatellite. In chapters 4, 5 and 6, 
SNPs were used as genetic markers to detect chromosomal regions that 
affect milk protein composition. 
In chapter 4, a linkage study was performed to screen the whole bovine 
genome to identify chromosomal regions affecting milk protein composition. 
In total, ten significant chromosomal regions were detected. The 
chromosomal regions most significantly related to milk protein composition 
(Pgenome < 0.05) were found on Bos taurus autosomes (BTA) 6, 11 and 14. 
The proportion of the phenotypic variance explained by these chromosomal 
regions ranged from 4% for β-casein on BTA6 to 28% for β-lactoglobulin on 
BTA11. Effects of these chromosomal regions could be partially explained 
by known polymorphisms in milk protein genes. The confidence intervals 
for chromosomal regions as detected in this linkage study, however, were 
rather large. To narrow down the chromosomal regions and to detect new 
chromosomal regions affecting milk protein composition, a whole genome 
association study using 50k SNPs was performed (chapter 5). 
Chromosomal regions with SNPs significantly associated with milk protein 
composition were distributed over 15 bovine autosomes. The main regions 
significantly associated with milk protein composition were found on BTA5, 
6, 11 and 14. The proportion of genetic variance explained by the SNP 
most significantly associated with on of the trait on these four 
chromosomes ranged from 24.7% for β-CN on BTA6 to 65.8% for β-LG on 
BTA11. Besides the four main regions, several other chromosomal regions 
affecting one of six major milk proteins were detected. Although these 
regions only explain a small part of the genetic variance, they might in 
addition to the four main regions also play a role in the genetic regulation of 
milk protein synthesis.  
In chapter 6, a single SNP association study as used in chapter 5 was 
compared to a multiple SNP association study. Results of both analyses for 
the six major milk proteins were compared. The number of SNPs with 
effects is considerably lower in the multiple SNP analysis than in the single 
SNP analysis. In addition, the multiple SNP analysis detected chromosomal 



Summary 

 

171 

regions which were not detected in the single SNP analysis. These results 
suggest that multiple SNP analysis has a higher power to detect 
associations as compared to a single SNP analysis. 
The last chapter discusses different scenarios to increase the casein 
index, which is preferable for the cheese production. Four different 
scenarios were described. The first scenario has been termed genetic 
differentiation. In this scenario it is assumed that a group of farmers use the 
top 10% of the bulls with respect to their estimated breeding value (EBV) 
for casein index. In the second scenario the current breeding goal was 
adjusted and selection is only aimed at an increased casein index. 
Selection can be based on EBVs, which is scenario 2, or based on genetic 
information of genes known to affect the casein index, which is scenario 3. 
In scenario 4, genomic selection was used and bulls are selected based on 
genomic breeding values. These four scenarios illustrated that there are 
opportunities to utilize genetic variation in milk protein composition. In 
practice also a combination of scenario 3 and 4 might be feasible. This 
would imply selection based on information of known genes as well as 
anonymous genes (genomic selection).  
 
The main conclusions of this thesis are: 

- There is considerable genetic variation for milk protein composition 
and the genetic correlations among the six major milk proteins are 
in general low. 

- Genomic regions on chromosome 5, 6, 11 and 14 are significantly 
associated with milk protein composition. Effects detected in these 
regions can be partially explained by polymorphisms in known milk 
protein genes. 

- Besides the four main regions, several other chromosomal regions 
have been detected that significantly affect one of the six major milk 
proteins.  

- The use of a multiple SNP analysis as compared to single SNP 
analysis results in a higher power to detect association with milk 
protein composition. 

This thesis provides new insight in the genetic regulation of for milk 
protein composition and it shows that there are interesting possibilities 
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to change the cow’s milk protein composition by means of selective 
breeding.
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Samenvatting 
 

Melk, in het bijzonder koemelk, wordt in veel culturen geconsumeerd als 
voedingsproduct. Naast consumptiemelk wordt melk ook geconsumeerd in 
andere melkproducten zoals boter, yoghurt en kaas. Melkkoeien zijn de 
afgelopen jaren sterk geselecteerd op een hoge melkproductie met een 
hoog vet en eiwitgehalte. Maar het is niet bekend wat de gevolgen zijn van 
deze selectie op de melkvet en melkeiwit samenstelling. Dit proefschrift is 
onderdeel van het Nederlandse Milk Genomics Initiatief wat gericht is op de 
mogelijkheden om de natuurlijke genetische variatie van de 
melksamenstelling te gebruiken om de melksamenstelling te veranderen. 
Dit proefschrift is gericht op melkeiwitsamenstelling en had de volgende 
doelen: het schatten van genetische parameters voor 
melkeiwitsamenstelling, het identificeren van gebieden op het DNA die een 
effect hebben op de melkeiwitsamenstelling en het kleiner maken van deze 
gebieden. Om deze doelen te bereiken zijn ochtend melkmonsters van 
2000 koeien in hun eerste lactatie verzameld in de winter van 2005. De 
ochtend melkmonsters zijn geanalyseerd voor de zes grote melkeiwitten 
(αS1-caseïne, αS2-caseïine, β-caseïne, κ-caseïne, α-lactalbumine en β-
lactoglobuline) met behulp van capillaire zone electroforese. Naast de 
melkmonsters zijn er ook bloedmonsters genomen van alle 2000 koeien. 
Uit deze bloedmonsters is DNA geïsoleerd om alle koeien te kunnen 
genotyperen. 
In hoofdstuk 2 zijn de genetische parameters voor melkeiwitsamenstelling 
geschat, zijn de relaties tussen de zes verschillende melkeiwitten 
bestudeerd en zijn de relaties tussen de melkeiwitten en de melkproductie 
kenmerken bestudeerd. De resultaten lieten zien dat er een behoorlijke 
genetische variatie is voor de melkeiwitten, met erfelijkheidsgraden die 
variëren van 0.25 voor β-caseïne tot 0.80 β-lactoglobuline. De genetische 
correlaties tussen de zes melkeiwitten waren in het algemeen laag. Eiwit 
percentage was negatief gecorreleerd met αS1-caseïne en α-lactalbumine, 
en positief gecorreleerd met κ-caseïne. Verder was er een sterke negatieve 
genetische correlatie tussen β-lactoglobuline en het totaal aan caseïne in 
de melk. De aanwezigheid van genetische variatie was nodig om 
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gedetailleerde genetische analyses te doen zoals een linkage studie en 
een associatie studie. 
In hoofdstuk 3, twee verschillende soorten moleculaire merkers zijn 
vergeleken op basis van hun gebruik in genetische analyses. 
Microsatellieten zijn erg informatieve merkers omdat iedere microsatelliet 
een groot aantal allelen bevat. Single Nucleotide Polymorfismen (SNPs) 
zijn minder informatief dan microsatellieten omdat SNPs gebruikelijk maar 
twee allelen bevatten. Maar, SNPs hebben het grote voordeel dat ze 
geschikter zijn voor het genotyperen van duizenden merkers. De resultaten 
van de deze studie laten zien dat 3 SNPs nodig zijn om dezelfde informatie 
te krijgen als een microsatelliet. In de hoofdstukken 4, 5 en 6 zijn SNPs als 
genetische merkers gebruikt om gebieden op het DNA te identificeren die 
een effect hebben op de melkeiwitsamenstelling.  
In hoofdstuk 4 is een linkage studie gedaan waarbij het hele koeien 
genoom is gescreend om gebieden op het DNA te vinden die een effect 
hebben op de melkeiwitsamenstelling. In totaal zijn er 10 significante 
gebieden op het DNA gevonden. De DNA gebieden met het grootste effect 
op de melkeiwitsamenstelling lagen op de Bos taurus autosomen (BTA) 6, 
11 en 14. Het percentage van de fenotypische variatie verklaard door deze 
DNA gebieden varieerde van 4% voor β-caseïne op BTA6 tot 28% voor β-
lactoglobuline op BTA11. De effecten van de DNA gebieden op de 
melkeiwitsamenstelling konden gedeeltelijk worden verklaard door bekende 
polymorfismen in de melkeiwit genen. De betrouwbaarheidsintervallen van 
de DNA gebieden zoals die in de linkage studie geïdentificeerd zijn, waren 
vrij lang. Om deze DNA gebieden kleiner te maken en om nieuwe DNA 
gebieden met een effect op de melkeiwitsamenstelling te identificeren, is er 
een associatie studie voor het hele koeien genoom gedaan met behulp van 
50.000 SNPs (hoofdstuk 5). De DNA gebieden die SNPs bevatten die een 
effect hebben op de melkeiwitsamenstelling waren verdeeld over 15 Bos 

taurus autosomen. De DNA gebieden met de grootste effecten op de 
melkeiwitsamenstelling waren gevonden op BTA 5, 6, 11 en 14. Het 
percentage genetische variatie verklaard door de SNP die het grootste 
effect had op een van de kenmerken op deze vier chromosomen varieerde 
van 24.7% voor β-caseïne op BTA6 tot 65.8% voor β-lactoglobuline op 
BTA11. Naast deze vier DNA gebieden met enorme effecten, waren er ook 
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DNA gebieden op andere chromosomen gevonden die een effect hadden 
op een van de zes grote melkeiwitten. Ondanks dat deze gebieden maar 
een klein gedeelte van de genetische variatie verklaarde, kunnen ze als 
toevoeging aan de vier DNA gebieden met enorme effecten, een rol spelen 
bij de genetische regulatie van de melkeiwit synthese. 
In hoofdstuk 6 was de single SNP associatie studie (zoals gebruikt in 
hoofdstuk 5) vergeleken met een multiple SNP associatie studie. De 
resultaten van beide analyses voor de zes grote melkeiwitten zijn 
vergeleken. In zowel de single SNP analyse als de multiple SNP analyse 
zijn de DNA gebieden met de grootste effecten gevonden op BTA5, 6 11 
and 14. Het aantal SNPs met een effect op de melkeiwitsamenstelling was 
aanzienlijk lager in de multiple SNP analyses dan in de single SNP 
analyse. Bovendien zijn in de multiple SNP analyse DNA gebieden 
geïdentificeerd die niet waren geïdentificeerd in de single SNP analyse. 
Deze resultaten suggereren dat multiple SNP analyse een hogere power 
heeft om associaties te vinden dan single SNP analyse. 
Het laatste hoofdstuk bediscussieert verschillende scenario’s om de 
caseïne index in melk te verhogen. Een verhoogde caseïne index in melk is 
gewenst voor de kaas productie. In totaal worden er vier scenario’s 
besproken. Het eerste scenario is genetische differentiatie. In dit scenario 
wordt aangenomen dat een groep boeren de 10% beste stieren gebruiken 
op basis van hun fokwaarde voor caseïne index. In het tweede scenario 
wordt het huidige fokdoel aangepast en zal selectie alleen gebaseerd zijn 
op een verhoging van de caseïne index. Deze selectie kan gebaseerd zijn 
op fokwaardes, zoals in scenario 2, of kan gebaseerd zijn op genetische 
informatie van genen waarvan bekend is dat ze een effect hebben op 
caseïne index, zoals in scenario 3. In scenario 4, worden stieren 
geselecteerd op basis van genomische fokwaardes voor caseïne index. Dit 
wordt selectie op basis van merker informatie genoemd (‘genomic 
selection’). Alle vier de scenario’s illustreren dat er mogelijkheden zijn om 
de genetische variatie in melkeiwitsamenstelling te gebruiken. In de praktijk 
is het ook goed mogelijk om een combinatie van scenario 3 en 4 uit te 
voeren. Dit zou betekenen dat er selectie plaats vindt op basis van 
informatie van bekende genen als onbekende genen (genomic selection). 
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De belangrijkste conclusies van dit proefschrift zijn: 
- Er is een behoorlijke genetische variatie voor 

melkeiwitsamenstelling en de genetische correlaties tussen de 
zes grote melkeiwitten waren in het algemeen laag. 

- DNA gebieden op chromosoom 5, 6, 11 en 14 hebben een groot 
effect op de melkeiwitsamenstelling. De effecten van de SNPs in 
deze DNA gebieden kunnen gedeeltelijk worden verklaard door 
polymorfismen in bekende melkeiwit genen. 

- Naast de vier DNA gebieden met de grootste effecten, zijn er 
ook verschillende andere DNA gebieden die een effect hebben 
op een van de zes grote melkeiwitten. 

- Het gebruik van multiple SNP analyse zal een hogere power 
hebben om associaties met de melkeiwitsamenstelling te 
identificeren dan het gebruik van single SNP analyse. 

Dit proefschrift geeft nieuwe inzichten in de genetische regulatie van de 
melkeiwitsamenstelling en het laat zien dat er interessante 
mogelijkheden zijn om de melkeiwitsamenstelling van de koe te 
veranderen met behulp van selectieve fokkerij.  
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Dankwoord 
 
December 2005 ben ik bij de leerstoelgroep fokkerij en genetica begonnen 
als kwantitatieve aio op het Milk Genomics project. Het leuke, uitdagende 
en interessante van dit project was dat er een nauwe samenwerking was 
tussen de leerstoelgroep fokkerij en genetica, de leerstoelgroep zuivel en 
de verschillende bedrijven. Hierdoor kwamen verschillende disciplines 
meerdere malen bij elkaar, waardoor er van een andere hoek naar de 
behaalde resultaten werd gekeken. Dit leverde leuke en boeiende 
discussies op en leidden vaak tot extra analyses om nog verder in het 
diepe te duiken. Het voordeel was ook dat door de samenwerking met de 
leerstoelgroep zuivel en de bedrijven, het uitleggen van de resultaten soms 
een uitdaging was om dit begrijpbaar te maken voor de niet genetica 
mensen. Graag wil ik iedereen van het Milk Genomics project bedanken 
voor de leuke, gezellige en fijne samenwerking van de afgelopen 4 jaar. 
Mijn dagelijkse begeleiders wil ik nog in het bijzonder bedanken. Henk, 
jouw kennis, ervaring en ideeën hebben een belangrijke bijdrage geleverd 
aan de tot standkoming van dit proefschrift. Hartstikke bedankt! Marleen, 
ook jou wil graag bedanken voor jouw bijdrage aan dit proefschrift. Naast 
de spel en grammatica fouten die jij eruit haalde, had jij ook inhoudelijk een 
goede bijdrage (zeker als je bedenkt dat jij uit de plantenwereld komt). 
Naast mijn dagelijkse begeleiders, wil ik ook graag Johan bedanken voor 
zijn ideeën en suggesties, die vaak tot extra analyses leidden die weer een 
positieve bijdrage aan de artikelen leverde. Naast jullie inhoudelijk en 
begeleidende bijdrage, wil ik jullie ook bedanken voor jullie bijdrage aan 
mijn persoonlijke ontwikkeling. Deze ontwikkeling zal ik zeker voort zetten 
in mijn huidige baan bij CRV. 
Tijdens mijn promotie onderzoek heb ik een aantal maanden in Lelystad 
gewerkt. Ik wil Roel bedanken die mij de mogelijkheid heeft gegeven om 
een tijdje in Lelystad te werken om zo te ervaren hoe het is om bij een 
andere organisatie te werken. Ook al zit er veel overlap tussen Lelystad en 
Wageningen, zijn er ook veel verschillen. Zeker het carpoolen naar 
Lelystad kost veel tijd en is best wel vermoeiend. Mario, bedankt voor jouw 
steun en begeleiding tijdens mijn werkzaamheden in Lelystad.  
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De laatste maanden van 2009 was het soms wel stressen om alles op tijd 
af te krijgen, zeker het feit dat ik al een nieuwe baan bij CRV had 
gevonden. Graag wil ik bij deze ook CRV bedanken die mij de mogelijkheid 
heeft gegeven om de leesversie van mijn proefschrift zo goed als af te 
ronden voordat ik bij CRV aan de slag zou gaan. 
Ik heb de leerstoelgroep fokkerij en genetica als een plezierige, gezellige, 
fijne en warme leerstoelgroep ervaren. Naast de ontspannen sfeer tijdens 
werktijd, waren er ook vele leuke, sportieve en gezellige momenten tijdens 
de vele ‘uitjes’, bier- en spelavonden en home-made diners. Hiervoor wil ik 
iedereen van de leerstoelgroep fokkerij en genetica bedanken. In het 
bijzonder wil ik Albart, Raoul, en Aniek bedanken die de afgelopen 4 jaar 
voor een leuke, gezellige en rustige sfeer op onze kamer hebben gezorgd. 
Albart en Patrick, ik heb het al meerdere malen gezegd, maar ik vind het 
super leuk dat jullie vandaag naast mij op het podium willen staan. 
Zoals jullie hierboven hebben kunnen lezen, hebben veel mensen 
bijgedragen aan de tot standkoming van dit proefschrift en aan de leuke 
werksfeer van de afgelopen vier jaar, maar dit alles zou nooit hebben 
plaats gevonden zonder mijn ouders. Pap en mam, jullie hebben mij de 
mogelijkheid gegeven om te gaan studeren en die mogelijkheid heb ik met 
beide handen aangepakt. Ik wil jullie bedanken voor deze mogelijkheid en 
voor jullie steun tijdens mijn studie en promotie onderzoek. Ook de 
gezellige, sportieve en leuke weekendjes weg met z’n allen waren altijd 
goede momenten om het werk even helemaal te vergeten. Yvette, jouw 
steun aan mij is ook altijd aanwezig evenals jouw betrokkenheid (ook al 
was het niet altijd begrijpbaar wat ik deed). Bedankt! Wilbert, bedankt voor 
jouw interesse in mijn werk. Ook al ben jij, Maud, pas anderhalf jaar op 
deze aardbol, jouw vrolijkheid en ontdeuglijkheid hebben bijgedragen aan 
vele ontspannende momenten, zeker tijdens het afronden van dit 
proefschrift. 
Last, but not least wil ik jou, Joshua, bedanken. Als ik weer eens op 
congres was, moest jij alleen voor Chika zorgen en daar heb ik jou nooit 
over horen klagen. Jouw steun die je mij geboden hebt om in de avonduren 
en in het weekend (voornamelijk in de afgelopen maanden) aan mijn 
proefschrift te werken, hebben een positieve bijdrage geleverd aan de tot 
standkoming van dit proefschrift. Net zo goed als jouw betrokkenheid en 
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interesse in mijn promotie onderzoek. Ik ben ook super blij met jouw 
creatieve bijdrage aan het ontwerp van de cover. Jij bent mijn steun en 
toeverlaat, bedankt voor alles!! 
 
 
Ghyslaine
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