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Chapter 1   
General introduction, aim and
outline of the thesis



Chapter 1
General introduction
Bioavailability can be defined as the fraction of an administered dose of a
compound that reaches the systemic circulation. Two important factors
determining this bioavailability of a compound upon oral intake are its transport
across the intestinal barrier and its first-pass metabolism. For most compounds the
predominant route for intestinal absorption is through transcellular transport.
Several mechanisms contribute to the efficiency of the transcellular transport and
include passive diffusion, facilitated diffusion and active transport. Many factors
can be of importance during this process, including the physical properties of a
compound, e.g. size, hydrophobicity, acid dissociation constant, and solubility, but
also the interaction with transport proteins and metabolizing enzymes.
Passive and facilitated diffusion occur along a concentration gradient and result in a
net flux from the intestinal lumen at the apical side of the intestinal cells, to the
blood at the basolateral side of the intestinal cells. The role of active transport in the
overall outcome of the transcellular transport is more complex. First, because the
transporters involved are able to transport compounds against a concentration
gradient, and second, because they are located in either the apical or the basolateral
membrane of the epithelial cells. Furthermore, some of these active transporters
transport compounds into the intestinal cell, such as the sodium dependent glucose
transporter (SGLT1) involved in active cellular uptake of for example certain
flavonoid glycosides[1-3], but others, such as the ATP binding cassette (ABC)
transporters preferentially result in efflux of compounds from the intestinal cell. In
addition, transport from the intestinal cells by transporters in the basolateral
membrane of the cells facilitates uptake thereby increasing bioavailability, whereas
transport from the intestinal cells by transporters located in the apical membrane of
the cells opposes uptake thereby decreasing bioavailability. Additionally, whenever
a compound has entered the epithelial cells it is susceptible to conversion by
intestinal metabolizing enzymes and this metabolism can be another important
factor contributing to the limited bioavailability of the parent compound upon oral
intake.
Compounds for which a limited bioavailability hampers their efficient use as
functional food ingredients are flavonoids[4-6]. Even upon oral intake of doses up to
several hundred milligrams, plasma levels achieved are generally in the low μM
range and often even do not represent the parent compound but rather its
glucuronidated, sulfated, and/or methylated metabolites[4,5]. Defining ways to
increase the bioavailability of flavonoids is important in the development of their
use as functional food ingredients. Therefore, the aim of this thesis was to
investigate whether the bioavailability of the selected model flavonoid hesperetin
could be increased by modulation of its intestinal metabolism and transport.
10



General introduction, aim and outline
Flavonoids
Flavonoids consist of a large group of polyphenols that can be divided into different
subclasses, including flavones, flavonols, isoflavones, flavanones, flavanols and
anthocyanins and chalcones (Figure 1.1). Many of these compounds are present in
plants and are believed to protect the plant against a variety of stress factors, and to
have a role in plant pigmentation and flavoring[7]. Flavonoids are widely distributed
in the human diet through fruits, vegetables and plant-derived products such as soy,
wine, tea, coffee and cacao[7]. In plants and plant-derived food items flavonoids
often occur as ß-glycosides, which become deglycosylated upon ingestion.
Flavonoid glucosides can already be deglycosylated in the small intestine by lactase
phloridzin hydrolase (LPH) or cytosolic ß-glucosidase, while disaccharides, such as
rutinosides, are being deglycosylated by microbiota in the colon[8]. Upon uptake in
the intestinal cells, flavonoids can be metabolized into glucuronidated, sulfonated
or methylated derivates. Flavonoids, as well as their metabolites can be high affinity
substrates for ABC transport proteins, which can facilitate uptake when located at
the basolateral side of the intestinal cell, but also transport the flavonoid
metabolites back to the intestinal lumen, opposing bioavailability[9].
Apart from substrates, flavonoids are also known as inhibitors or modulators of ABC
transport proteins[10,11] and intestinal metabolizing enzymes[12] and therefore are
compounds which can interact with the processes influencing the intestinal
transport and metabolism of other compounds, thereby modulating their respective
bioavailability.

Figure 1.1  Basic chemical flavonoid structure and basic chemical structures of different flavonoid
subclasses.
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Chapter 1
Hesperetin
The flavanone hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 1.2) is the
aglycone of hesperidin (hesperetin 7-O-rutinoside) (Figure 1.2) which is present in
high amounts in sweet oranges (Citrus sinensis), orange juice and other citrus fruits
including lemon, lime and mandarin[13]. Also certain herbs, spices, teas and other
products have been reported to contain hesperidin, including rosemary[14],
honeybush tea[15], and a large number of Chinese traditional medicinal products[16].
Hesperidin must by hydrolyzed by colonic microbiota before absorption whereas
the aglycone hesperetin, as well as the monosaccharide hesperetin 7-O-glucoside,
are already taken up earlier in the digestive tract[17,18]. Hesperetin 7-O-glucoside can
be hydrolyzed by LPH followed by migration of the aglycone into the intestinal cell
and/or the hesperetin 7-O-glucoside could be transported into the intestinal cell via
a sodium-dependent glucose transporter (e.g. SGLT1) after which it is deglycosylated
within the intestinal cell[1-3,19]. The resulting intracellular hesperetin aglycone is
metabolized by UDP-glucuronosyl transferases (UGTs) and sulfotransferases (SULTs)
into glucuronidated and sulfated metabolites which have been detected in human
and rat plasma[20-25]. These conjugation reactions occurring in the intestinal cells
have been reported to play an important role during the first pass metabolism of
hesperetin[26] and the subsequent efflux of hesperetin metabolites to the intestinal
lumen by apically located ABC transporters is believed to play an important factor
in the limited bioavailability of hesperetin.

Figure 1.2  Chemical structures of the rutinoside hesperidin and its aglycone hesperetin
((+/-)-4'-methoxy-3',5,7-trihydroxyflavone).

Hesperidin, hesperetin 7-O-glucoside and hesperetin have been reported to provide
several beneficial health effects, including anti-carcinogenic and anti-inflammatory
effects and the capacity to reduce the chance on osteoporosis[27-30] and in addition
also health beneficial effects have been reported for hesperetin glucuronides[31,32]. 
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General introduction, aim and outline
In general, hesperetin can make up an important part of the total flavonoid intake
and its daily intake has been estimated to amount to 15.1 mg/day (after hydrolysis of
glycosides)[33], although this daily intake is largely dependent on dietary habits
because of the predominant occurrence of hesperidin in citrus fruits. The daily
intake could be much higher since orange juice can easily contain up to 500 mg/l
hesperidin[13]. Despite the potential high intake, plasma levels of hesperetin usually
do not reach levels higher than 2 μM[22,34], indicating the limited bioavailability of
hesperetin. Increasing the bioavailability of hesperetin is important to better exploit
its beneficial properties. The conversion of hesperidin into hesperetin 7-O-glucoside
prior to consumption has already shown to results in a 3-fold increase in the
bioavailability of hesperetin[18].
Of importance to note is also that, unlike some other classes of flavonoid, flavanones
like hesperetin have a chiral carbon atom in position 2 and therefore exist in an S(-)-
and R(+)-configuration (Figure 1.3)[35,36], of which, in the case of hesperidin, one is
naturally predominant in citrus fruits[37]. 

Figure 1.3  Chemical structure of R(+)-hesperetin and S(-)-hesperetin.

In sweet orange juice, hesperidin has been reported to exist in an epimeric ratio of at
least 92:8 in favor of the 2S-epimer[38-40]. Although in nature the 2S-epimer of
hesperidin, and subsequently the S-hesperetin enantiomers, are predominantly
occurring, the 'pure' compounds are currently only commercially available as
racemic mixtures. As a result, studies on hesperetin and hesperidin generally do not
take the chirality into account whereas it can be foreseen that the two enantiomers
may display distinct kinetic and dynamic properties[41]. For flavonoids, specific
stereochemical properties have been demonstrated to influence for instance the
bioavailability of the flavanol catechin[42], the estrogenic activity of the isoflavone
metabolite equol[43,44] and the plasma and urinary kinetics of hesperetin[40,45], and
may thus very well affect both the intestinal metabolism and transport of
hesperetin, as well as its biological effects.
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Chapter 1
Aim and outline of the thesis
The aim of the present thesis was to investigate whether the bioavailability of the
selected model flavonoid hesperetin could be increased by modulation of its
intestinal metabolism and transport. It was hypothesized that, since other
flavonoids may be converted by the same metabolic enzymes and transported by
the same transporters as hesperetin, interactive effects upon simultaneous
exposure may increase hesperetin bioavailability by modulating its intestinal
metabolism and transport. 
To further support this hypothesis chapter 2 of the thesis presents a literature study
on the capacity of flavonoids to modulate the oral bioavailability of other
compounds. In subsequent chapters of the thesis the concept is tested using
different in vitro and in vivo model systems. The in vitro models used for these
studies include a two-compartment transwell model with Caco-2 cell monolayers,
simulating the intestinal transport barrier. After differentiation, Caco-2 cells are
known to display morphological and biochemical characteristics of human
enterocytes, including the expression of ABC transporters and phase II metabolizing
enzymes, and to form a tight layer of polarized intestinal cells[46]. Grown on a
membrane separating an apical compartment (simulating the intestinal lumen
side) and a basolateral compartment (simulating the blood/plasma side) they form a
well accepted model to study intestinal transport[47]. 
In chapter 3, the intestinal transport and metabolism of hesperetin was defined in
vitro using Caco-2 cell monolayers in a two-compartment transwell model system
simulating the intestinal transport barrier. The metabolites of hesperetin formed by
the Caco-2 cells were identified using a combination of analytical techniques and
available reference compounds combined with specific enzymatic deconjugation
reactions. The ABC transporters responsible for the efflux of hesperetin metabolites
were determined by co-administrating a series of transport inhibitors, and their
cellular expression was confirmed using reverse transcription quantitative
polymerase chain reaction (RT-qPCR) techniques. In chapter 4, the effect of
co-administering other flavonoids, reported to be efficient modulators of ABC
mediated transport, on the metabolism, transport and disposition of hesperetin and
its metabolites by Caco-2 cell monolayers was studied. In chapter 5, the effect of
co-administering quercetin, which proved to be a potent modulator in vitro, on the
bioavailability of hesperetin was further studied in vivo using Sprague-Dawley rats.
In Chapter 6 focus was on the phase II metabolism of hesperetin comparing its
conversion by different model systems and identifying the UGT and SULT
isoenzymes involved. The results provided insight in the relative importance of
intestinal metabolism as compared to metabolism by liver tissue, both contributing
to the reduced systemic availability of hesperetin aglycone.
14



General introduction, aim and outline
Additionally, in chapter 7 the transport and metabolism characteristics so far
studied for the commercially available racemic mixture of hesperetin were
investigated for the S- and R-hesperetin enantiomers. To this end a chiral separation
method on an analytical and semi-preparative scale was developed allowing small
scale in vitro studies. Differences in intestinal metabolism and transport were
studied by incubating S- or R-hesperetin with small intestinal microsomes and
cytosol, and by exposing Caco-2 cell monolayers to either of the hesperetin
enantiomers. In addition, to test stereochemical differences in bioactivity, mouse
Hepa-1c1c7 cells transfected with human EpRE-controlled luciferase were exposed to
S- or R-hesperetin to study induction of EpRE-mediated gene expression, a
mechanism which is associated with some of the health beneficial effects associated
with flavonoids[48].
The thesis concludes with chapter 8 presenting a summary of the results and
conclusions, concluding remarks and future perspectives.
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Chapter 2
Abstract
The transcellular transport of ingested food ingredients across the intestinal
epithelial barrier is an important factor determining bioavailability upon oral
intake. This transcellular transport of many chemicals, food ingredients, drugs or
toxic compounds over the intestinal epithelium can be highly dependent on the
activity of membrane bound ATP binding cassette (ABC) transport proteins, able to
export the compounds from the intestinal cells. The present review describes the
ABC transporters involved in the efflux of bioactive compounds from the intestinal
cells, either to the basolateral blood side, facilitating absorption, or back into the
intestinal lumen, reducing bioavailability. The role of the ABC transporters in
intestinal transcellular uptake also implies a role for inhibitors of these transporters
in modulation of the bioavailability upon oral uptake. The present paper focuses on
the role of flavonoids as important modulators or substrates of intestinal ABC
transport proteins. Several examples of such an effect of flavonoids are presented. It
can be concluded that flavonoid-mediated inhibition of ABC transporters may affect
the bioavailability of drugs, bioactive food ingredients and/or food-borne toxic
compounds upon oral uptake. All together it appears that the flavonoid-mediated
interactions at the level of the intestinal ABC transport proteins may be an
important mechanism for unexpected food-drug, food-toxin or food-food
interactions. The overview also indicates that future studies should focus on 
i) in vivo validation of the flavonoid-mediated effects on bioavailability of drugs,
toxins and beneficial bioactive food ingredients detected in in vitro models, and on
ii) the role of flavonoid phase II metabolism in modulating the activity of the
flavonoids to act as ABC transporter inhibitors and/or substrates.

Introduction
The transport of ingested food ingredients across the intestinal barrier is an
important factor determining bioavailability upon oral intake. This holds for
biofunctional food ingredients, drugs and also for toxic compounds. For these small
and generally hydrophilic compounds the predominant route for intestinal
absorption is through transcellular transport. Several mechanisms contribute to the
ultimate efficiency of this transcellular transport. These include passive diffusion,
facilitated diffusion, and active transport. Passive and facilitated diffusion occur
along a concentration gradient. Both processes result in a net flux from the
intestinal lumen at the apical side of the intestinal cells, through the cytoplasm of
the intestinal cells, to the blood stream at the basolateral side of the intestinal cells.
The role of active transport in the ultimate outcome of the transcellular transport is
more complex. This is because (1) the transporters involved are able to transport
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compounds against a concentration gradient, (2) they are located in either the apical
or the basolateral membrane of the epithelial cells, and (3) some of these active
transporters transport compounds into the intestinal cell, such as the sodium
dependent glucose transporter (SGLT1) involved in active cellular uptake of for
example certain flavonoid glycosides[1-3], but others preferentially result in efflux of
compounds and/or their metabolites from the intestinal cell. The overall absorption
of a chemical, food ingredient, drug or toxic compound across the intestinal
epithelium by transcellular transport can be largely dependent on the activity of
these membrane bound transport proteins. The present review focuses especially on
the ABC transporters involved in the efflux of bioactive compounds from the
intestinal cells either to the basolateral blood side, facilitating absorption, or back
into the intestinal lumen, reducing bioavailability. 

Active transport proteins involved in efflux of chemicals 
from the intestinal cells
The intestinal ABC transporters involved in the efflux of chemicals from the
intestinal cells include P-glycoprotein (Pgp/MDR1/ABCB1), Multidrug Resistance
Proteins (MRPs/ABCCs) and Breast Cancer Resistance Protein
(BCRP/ABCG2/ABCP/MXR)[4-7] (Table 2.1 on page 22). These transporters are generally
located specifically in the apical (intestinal luminal side) or basolateral
(blood/plasma side) membrane of the enterocytes (Figure 2.1). Pgp/MDR1, MRP2
(ABCC2) and BCRP are localized in the apical membrane[4,6,8], whereas MRP1 (ABCC1),
MRP3 (ABCC3) and MRP5 (ABCC5) are localized in the basolateral membrane of the
intestinal enterocytes[5,9-11]. Little is known about MRP4 (ABCC4) which could be
located in the apical as well as in the basolateral membrane of the intestinal
cells[4,12,13]. 

Figure 2.1  Cellular localization of intestinal ABC transporters. P-glycoprotein (Pgp/MDR1/ABCB1),
Multidrug Resistance Proteins MRP2 (ABCC2) and Breast Cancer Resistance Protein
(BCRP/ABCG2/ABCP) are localized in apical membranes [4,6,8]. MRP1 (ABCC1), MRP3 (ABCC3) and MRP5
(ABCC5) are localized in basolateral membranes of enterocytes [5,9-11]. MRP4 (ABCC4) has been
suggested to be located in the apical as well as in the basolateral membrane of the intestine [4,12,13].
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Flavonoids may inhibit ABC transporters and affect oral bioavailability
Finally, MRP6 (ABCC6) seems to be located on the basolateral side[14,15] although it
may only be expressed in the mucosal cells of the intestine[16]. More MRP
homologues have been defined[17-19], but their function and location of expression is
still uncertain.
Examples of the involvement of the transporters in the bioavailability of chemical
compounds and bioactive ingredients can be found in the literature. There are
several ways to study the food-drug interaction on transporters in vitro and these
studies can use, for example, specific inhibitors of ABC transporters to show the
effect on the transepithelial transport through monolayers of cultured epithelial
cells (Caco-2, HCT8, MDCK)[20] in a two-compartment cell culture system
(Figure 2.2)[21]. Such in vitro systems have been widely used to simulate interactions
of chemical compounds with drugs or food ingredients and the effect on the human
intestinal barrier function. Some other studies also provide in vivo data that support
a role for the ABC transporters in bioavailability.
Transport by ATP dependent transporters has been well recognized as a
determinant of drug absorption from the gastrointestinal tract[22,23]. Drug
administration to Pgp knock-out mice demonstrated for example a role for Pgp in
reducing the oral bioavailability of several drugs that are known substrates of Pgp,
including cyclosporin, digoxin, quinidine, talinolol, vinblastine and HIV protease
inhibitors[22,23]. Studies in humans indicated a role for intestinal Pgp in limiting the
intestinal uptake of cyclosporine[24].
  

Figure 2.2  The two-compartment cell culture system consists of a permeable cell culture filter insert
that is placed in a well of a normal cell culture plate. The cells are seeded on the filter inserts and are
cultured to cover the whole surface area. Caco-2 cells are known to display morphological and
biochemical characteristics of human enterocytes after differentiation and form a layer of polarized
intestinal cells [151]. The two compartments are designated the apical (luminal) compartment and the
basolateral (serosal) compartment. Several advantages of this system include [152]: (1) that only small
amounts of the compound suffice to perform a transport or effect experiment, (2) the experiments are
relatively rapid and reproducible compared to other absorption models, (3) and real intestinal epithelial
permeation rates can be determined (without gastrointestinal degradation, hepatic metabolism or
complicating whole body kinetics).
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Chapter 2
Furthermore, the reduced oral bioavailability of digoxin upon combination therapy
with rifampicin has now been ascribed to rifampicin-mediated induction of
Pgp[22,25]. 
Efficient transport of saquinavir, ritonavir and indinavir by MRP2 transfected
Madin-Darby Canine Kidney (MDCK)II cells, compared to MDCKII cells
over-expressing other ABC transporters, indicated an important role for MRP2 in the
efflux of these HIV protease inhibitors, thereby presumably limiting their oral
bioavailability[26]. Merino et al. demonstrated a two-fold increase in the plasma
concentration of the fluoroquinolone antibiotic ciprofloxacin after oral
administration to Bcrp1 (the murine homologue of human BCRP) deficient Bcrp1(-/-)
mice compared to wild-type mice, which suggests that Bcrp1 restricts the oral
bioavailability of ciprofloxacin[27]. Also, the oral bioavailability of the NMDA
receptor antagonist GV196771[28], and topotecan[29], seems affected by Bcrp1 and is
increased in Pgp knockout mice by GF120918, an inhibitor of both Pgp and Bcrp1[30].
In humans co-administration with GF120918, in this case inhibiting BCRP as well as
Pgp, increases the bioavailability of oral topotecan as well[31].
In addition to studies on the role of ABC transporters in the oral bioavailability of
drugs more recent studies also focus on a role for the ABC transporters in
determining the bioavailability of food ingredients, including toxic and bioactive
compounds.
For the pro-carcinogen 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) it
has been suggested that the apical ABC transporters MRP2, BCRP and probably Pgp
reduce its oral bioavailability. The interaction of PhIP with these transport proteins
was studied using various model systems such as the Caco-2 monolayers in a
two-compartment system with specific inhibitors of Pgp- or MRP-associated
transport proteins[32,33], MRP2 deficient rats[34], MRP2 knockout mice[35], and
Bcrp1(-/-) mice[36]. Following uptake in the intestine, PhIP has been demonstrated to
be transported back into the lumen by apical ABC transporters, thereby providing
the first line of defence against this harmful compound. In another study with
Caco-2 cells it was demonstrated that an apical ABC transporter (not Pgp or MRP2)
might be involved in luminal excretion of polar metabolites of the polycyclic
aromatic hydrocarbon (PAH) benzo(a)pyrene formed by CYP1A1 or CYP1B1 inside the
Caco-2 cells[37]. The authors suggest that this active transport of the intestinal
benzo(a)pyrene metabolites may indicate a biochemical barrier function against
potential mutagenic compounds through metabolism and luminally-directed
transport. In subsequent studies, Ebert et al.[38] identified BCRP as an important
transporter of benzo(a)pyrene conjugates metabolically formed in Caco-2 cells.
Results from an in vitro system with Caco-2 cell monolayers and the MRP-associated
transport inhibitor MK-571 suggest that MRP2 plays a role in the transport of the
flavonoid genistein-7-O-glucoside from intestinal cells back into the intestinal
24



Flavonoids may inhibit ABC transporters and affect oral bioavailability
lumen, thereby limiting its bioavailability[39]. Using MRP2 deficient rats and in situ
intestinal perfusion, as well as the specific Bcrp1 inhibitor fumitremorgin C (FTC)
and MDCKII cells transfected with either human MRP2 or murine Bcrp1, it was
demonstrated that especially Bcrp1 and not MRP2 limits the net intestinal
absorption of the flavonoid quercetin. This because of an efficient efflux of quercetin
by Bcrp1-transfected MDCKII cells compared to control and MRP2-transfected cells,
and of quercetin glucuronide metabolites from intestinal cells of MRP2 deficient rats
back into the intestinal lumen, which could be inhibited by FTC[40]. Using the
specific Pgp inhibitor verapamil and Bcap37/MDR1 cells which are transfected with a
Pgp gene construct Wang et al.[41] demonstrated that the flavonoids quercetin,
kaempferol and isorhamnetin from Ginkgo biloba leaves were substrates for Pgp
and that Pgp-mediated efflux of these flavonols might limit their bioavailability. A
similar role for MRP2 in the bioavailability of epicatechin and possible other tea
flavonoids is suggested by Vaidyanathan & Walle[42] based on studies with Caco-2
cells and the MRP inhibitor MK-571.
Thus given the wide substrate selectivity of the intestinal ABC transporters an
influence of these transporters on the bioavailability of not only a wide number of
drugs, but also of many bioactive food ingredients and/or toxic compounds, can be
foreseen. Although widely overlapping, the substrate specificities of Pgp, BCRP and
the MRPs differ markedly (Table 2.1 on page 22). Pgp has a very broad spectrum of
substrates including e.g. many anticancer drugs, cardiac drugs,
immunosuppressants and antibiotics[4,43]. Most Pgp substrates are hydrophobic,
neutral or mildly positive lipophilic compounds with a planar structure[44], whereas
MRPs are able to transport lipophilic anions. MRP1 transports anionic conjugates of
lipophilic compounds including glutathione (GSH), glucuronide and sulphate
conjugates[45], but also some cations and neutral compounds using GSH as a
co-factor[46,47]. MRP1 substrates also include lipid peroxidation products, herbicides,
tobacco specific nitrosamines, mycotoxins, heavy metals, natural product and
antifolate anticancer agents[48]. MRP2 and the other MRPs share similar but not
identical substrate specificity with MRP1[4]. The importance of MRP4 and MRP5 as
drug transporters and their role in intestinal drug disposition is unclear at present.
BCRP seems to have an overlapping substrate specificity with Pgp, and like Pgp,
substrates for BCRP include many anticancer agents like daunorubicine,
doxorubicine, mitoxantrone and topotecan[4,29,43].
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Role of the active transporters in multidrug resistance: 
need for non-cytotoxic inhibitors
Given the role of the various drug transporters in the cellular efflux of chemicals,
including anticancer drugs, initial focus in the field of ABC transporters and ABC
transport inhibitors was on multidrug resistance (MDR), rather than on intestinal
uptake and oral bioavailability of drugs, food-borne toxic compounds and food
ingredients. As a result, the role of the ABC efflux pumps and their inhibitors have
been investigated in detail in studies on methods to overcome MDR. MDR is the
resistance of a tumor cell population against drugs differing in chemical structure
and cellular target, and is considered one of the major causes of failure of
chemotherapy[49]. Upregulation of transport proteins involved in cellular efflux of
compounds, against a concentration gradient with ATP-hydrolysis as a driving
force, has shown to be of particular clinical importance in clinical multidrug
resistance[50,51]. This includes resistance against anticancer drugs such as
doxorubicine, etoposide, methotrexate, vincristine[48,52,53], irinotecan (CPT-11) and
the unconjugated and conjugated forms of its metabolite SN-38[53], chlorambucil,
cyclophosphamide, mephalan and thiotepa [54], flutamide and its metabolite
hydroxyflutamide[55], and the HIV protease inhibitors ritonavir and
saquinovar[56,57]. Over-expression of BCRP in cell lines confers resistance to a wide
variety of anticancer drugs including daunorubicine, doxorubicine, epirubicin,
mitoxantrone and topotecan[58], and the expression of BCRP has been implicated in
multidrug resistance of acute myeloid leukemia and some solid tumors[58-60].
Because of the role of these transporters in multidrug resistance, one strategy to
overcome transporter mediated drug resistance relies on the identification of
transport inhibitors. Numerous compounds that inhibit Pgp, MRPs or BCRP transport
activity have been described[61-63]. Different mechanisms by which these inhibitors
might interact with the transporter proteins have been suggested and include an
effect on drug binding, ATP binding, ATP hydrolysis, drug transport, and ADP
release[64]. However, many of the inhibitors appeared to be relatively non-specific
and exerted unwanted drug-drug interactions or interference with other
physiological systems reducing their potential use in clinical settings[65,66]. This
stimulated the quest for relatively non-cytotoxic inhibitors and the interest in
flavonoids as relatively non-cytotoxic inhibitors of ABC transporters[67-69].

Flavonoids as inhibitors of transporter proteins
Flavonoids (Figure 2.3) consist of a large group of polyphenolic antioxidants found in
fruits, vegetables and plant-derived beverages such as tea and red wine[70], as well
as in dietary supplements. In foods, flavonoids are often present as ß-glycosides of
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Flavonoids may inhibit ABC transporters and affect oral bioavailability
aglycones and methoxylated forms. Upon ingestion, flavonoid glycosides are
deglycosylated and the aglycones are metabolized into glucuronide-, sulfate- and
methylated conjugates[71-75]. Flavonoids and flavonoid-rich extracts have been
implicated as beneficial agents in a multitude of disease states[76-78], including
cancer[79-81], cardiovascular disease[82-84], neurodegenerative disorders[85-87] and
osteoporosis[88].

Figure 2.3  Structural formula of examples of dietary flavonoid derivates representing the major
classes of flavonoids (chalcones, flavanols, flavanones, flavones, flavonols and isoflavones) which are,
apart from chalcones which have a different orientation and numbering, based on the different
substitution and the oxidation status of ring C.
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Chapter 2
Table 2.2  Overview of selected literature on inhibition of ABC transporters
 present in the intestine by dietary flavonoids.

Table 2.2 presents an overview of dietary flavonoids known to inhibit the activity of
the various ABC transporter proteins. It has become clear that flavonoids or their
metabolites are important modulators or substrates of intestinal membrane bound
transport proteins including PgP, MRPs and BCRP (Figure 2.4). Their properties to
modulate ABC transport proteins and multidrug resistance make them interesting
therapeutic candidates[89].

Figure 2.4  Schematic presentation of the role of flavonoids, or their metabolites formed within
intestinal cells, as substrates or inhibitors of apical intestinal ABC transport proteins (Pgp, MRP2 and
BCRP).

Transporter Flavonoid inhibitor References

Pgp (MDR1) biochanin A, EGCG, epigallocatechin, 
epicatechin-gallate, hesperetin, isoquercitrin, 
kaempferol, morin, naringenin, phloretin, quercetin.

[106,112,134-139]

MRP1 apigenin, baicalein, biochanin A, chalcone, galangin, 
genistein, hesperetin, kaempferol, luteolin, morin, 
myricetin, naringenin, phloretin, quercetin, robinetin.

[68,94,95,140-142]

MRP2 myricetin, quercetin-4'-O-glucoside, robinetin. [94,95,138]
MRP3 -
MRP4 daidzin, hesperetin, naringenin, quercetin, resveratrol. [142]
MRP5 daidzin, hesperetin, naringenin, quercetin. [142]
BCRP acacetin, apigenin, biochanin A, chalcone, chrysin, 

daidzein, diosmetin, fisetin, flavone, galangin, 
genistein, hesperetin, kaempferide, kaempferol, 
luteolin, luteolin-4'-O-glucoside, 7-methoxyflavanone, 
naringenin, naringenin-7-O-glucoside, phloretin, 
quercetin, theaflavine, theaflavine-3-O-gallate.

[90-92,111,143-145]
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Flavonoids may inhibit ABC transporters and affect oral bioavailability
Effect of flavonoids as ABC transporter inhibitors on MDR, 
intracellular accumulation and bioavailability of 
bioactive chemicals
Given the involvement of the transport proteins in the efficiency of intestinal
transport, it can be envisaged that the ABC transport inhibitors may not only affect
multidrug resistance of tumor cells, but may also affect the bioavailability of a
variety of drugs, bioactive food ingredients and/or toxic compounds upon oral
uptake.
Some examples of such a role for flavonoids as ABC transport inhibitors affecting
the bioavailability of drugs, toxic compounds or beneficial food ingredients can be
found in recent literature. These include in vitro studies on the effect of flavonoids
on intracellular accumulation of substrates for ABC transporters using for example
BCRP over-expressing MCF-7 MX100 cells[90-92], and MRP1- or MRP2-transfected
MDCKII cells[93-95]. Table 2.3 on page 32 presents an overview of studies reporting an
effect of dietary flavonoids on intracellular accumulation and/or bioavailability of
drugs, or food-borne toxins and bioactive ingredients. Some of the studies are
discussed in more detail hereafter. For instance, the ethyl acetate extract of Seville
orange juice containing the Pgp-inhibiting methoxyflavones tangeretin,
heptamethoxyflavone and nobiletin, was shown to increase the uptake of
vinblastine in Caco-2 cells and other cell types[96,97]. Also, the addition of
epigallocatechin-gallate was shown to increase the accumulation of vinblastine in
Caco-2 cells and potentiated the cytotoxicity of vinblastine in CHRC5 cells, effects
similar as observed for the Pgp inhibitor valspodar[98]. Co-treatment of MRP1
over-expressing MDCKII cells, and HT-29 human colon adenocarcinoma cells with
isoflavones, increased epigallocatechin-3-gallate accumulation significantly, an
effect also achieved by co-incubation of MRP1 over-expressing MDCKII cells with the
MRP inhibitors indomethacin or probenecid[92]. These results suggest that MRP
efflux pumps may limit the bioavailability of the tea polyphenol
epigallocatechin-3-gallate, whereas isoflavonoid inhibitors of the apical MRPs may,
as a consequence, increase its bioavailability. In addition, in MRP1- and
MRP2-transfected MDCKII cells, it was shown that myricetin can inhibit cellular
vincristine efflux by MRP1 and MRP2 thereby sensitizing the cells towards
vincristine[94]. Further it has been shown that, quercetin and
3',4',7-trimethoxyquercetin, but not rutin, the naturally occuring
3-rhamosylglucoside of quercetin, were able to potentiate the effects of adriamycin
on a multidrug resistant MCF-7 human breast cancer cell line, in which the MDR
was associated to high levels of Pgp[99]. Using a sensitive and multidrug resistant
human breast cancer MCF-7 cell line, it was demonstrated that biochanin A,
genistein, morin quercetin, phloretin, chalcone, chrysin and silymarin significantly
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increased the accumulation of daunomycin in the MDR resistant cells[100]. Di Pietro
et al.[64] demonstrated the effect of various flavonoids on the intracellular
accumulation of daunomycin in Pgp over-expressing K562/R7 cells, concluding that
prenylation of the flavonoids increases both their affinity for Pgp and their effect on
the duanomycin accumulation. Genistein inhibited Pgp-mediated transport thereby
increasing the intracellular accumulation of rhodamine 123 and daunorubicin in Pgp
expressing multidrug resistant BC19/3 cells, which are MCF-7 cells transfected with
human MDR1 [101].
In addition to these studies showing the effect of flavonoids on intracellular
accumulation of chemicals, several other studies have investigated the effect of
flavonoids on the intestinal transport of compounds using Caco-2 cells in transwell
dishes as an in vitro model for the human intestinal barrier (Table 2.3 on page 32).
Last, but not least, studies have shown this effect of flavonoids in in vivo models
including rats and healthy volunteers. For instance, in Caco-2 cell monolayers,
naringin was reported to increase the apical to basolateral transport of the HIV
protease inhibitor saquinavir by inhibition of the Pgp mediated apical saquinavir
efflux[102]. Furthermore, a significant increase in apical to basolateral transport as
well as cellular accumulation, of ochratoxin A, a food-borne mycotoxin, in Caco-2
cells, was observed upon co-incubation with chrysin, quercetin, genistein,
biochanin A or resveratrol, all at concentrations that can be expected in the
gastrointestinal tract[103]. The authors hypothesise that the polyphenols may exert
their effect though competitive inhibition of the MRP efflux pump involved,
previously proposed to be MRP2[104].
Schutte et al.[32] demonstrated that addition of the flavonoid myricetin to Caco-2 cell
monolayers exposed to the food-borne pro-carcinogen 2-amino-1-methyl-6-phenyl-
imidazo[4,5-b]pyridine (PhIP) resulted in an increase in the transport of PhIP from
the apical to the basolateral compartment. This effect was observed at
physiologically relevant concentrations of PhIP and myricetin. The results indicate
that myricetin inhibits the ABC transporter-mediated excretion of PhIP from the
intestinal cells back to the apical luminal side, resulting in increased possibilities for
transport to the basolateral side and a possibly increased bioavailability of the
pro-carcinogen PhIP. In subsequent studies it was demonstrated that other
flavonoids exert a similar effect on the transport of PhIP through Caco-2
monolayers[105] indicating a possible adverse effect of these supposed beneficial
food ingredients. As an example, Figure2.5 on page31 depicts an increase in the
apical to basolateral transport of PhIP in the presence of quercetin compared to the
apical to basolateral transport of PhIP in the absence of quercetin through Caco-2
monolayers (Schutte et al., unpublished results). In a study with Caco-2 cells, the
apical to basolateral transport of digoxin was significantly increased, whereas the
basolateral to apical transport was significantly decreased by biochanin A or
30
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silymarin due to inhibition of the Pgp-mediated transport of digoxin by these
flavonoids[106]. This suggests that these flavonoids could increase the absorption
and bioavailability of co-administered drugs that are Pgp substrates. Furthermore,
botanical ingredients other than flavonoids may result in altered absorption and
bioavailability of drugs that are ABC transporter substrates because of their
interaction with the ABC transport protein[107,108].

Figure 2.5  PhIP transport through Caco-2 monolayers from the apical (AP) to the basolateral (BL)
compartment. Caco-2 monolayers were exposed to 5 μM PhIP in the apical compartment in the
absence ( ) or presence ( ) of 20 μM quercetin in both compartments, all in the presence of 1mM
ascorbic acid (unpublished results, Schutte et al.. For experimental details see Schutte et al., 2006 [32] ).

It is also important to emphasise that the various effects observed in cells in vitro
need in vivo validation. Only a few studies actually demonstrate a role for
flavonoids as ABC transporter inhibitors or substrates leading to modulation of the
in vivo bioavailability of other bioactive ingredients (Table 2.3 on page 32). Zhang et
al.[90], for example, used Sprague-Dawley (SD) rats and mdr1a/1b(-/-) mice to
investigate the bioavailability of topotecan in the presence and absence of the
flavonoids chrysin or 7,8-benzoflavone. Neither chrysin nor 7,8-benzoflavone altered
topotecan bioavailability in rats or in mdr1a/1b(-/-) mice after oral
co-administration. The authors indicate that this might be due to the fact that the
two flavonoids are only weak inhibitors of mouse or rat Bcrp1-mediated topotecan
transport. This suggestion was based on the observation that chrysin and
7,8-benzoflavone inhibited the human BCRP mediated transport of topotecan in
human BCRP over-expressing MCF-7 MX100 cells to a level comparable to that
observed for the potent BCRP inhibitor FTC, but not in MDCK/Bcrp-1 cells
over-expressing mouse Bcrp-1[90]. 
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In the same study, co-administration of topotecan with GF120918, a potent BCRP and
Pgp inhibitor[30], to the SD rats or mdr1a/1b(-/-) mice appeared to significantly
increase the bioavailability of topotecan by more than 4-fold, indicating the
possibility to increase oral bioavailability in vivo by inhibitors of ABC transport
proteins. Choi et al.[109] showed that the pre-treatment with quercetin in male SD
rats significantly increased the bioavailability of paclitaxel or its water soluble
prodrug. Furthermore, co-administration with flavone resulted in a significant
increase of the bioavailability of this drug and the authors suggest that this might
be caused by the inhibition of Pgp or CYP3A[110].
Another example of validation of in vitro data by in vivo studies can be found in the
results reported for the effects of flavonoids from fruit juices on the bioavailability
of chemicals. The effects of morin, grapefruit juice and/or naringin on the
pharmacokinetics of several drugs in vitro, resulting in, for example, increased
cellular accumulation of topotecan and increased cellular toxicity of vinblastine in
cultured cells[111,112], have also been observed in in vivo models resulting in increased
bioavailability upon oral administration of diltiazem in rats[113,114], or of cyclosporine
in man[115]. These effects have been ascribed to inhibition of Pgp-mediated
transport, in addition to inhibition of the CYP3A4 drug oxidation[97,115,116].
Flavonoid containing ethyl acetate extracts of grapefruit and orange juice were also
able to inhibit the Pgp-mediated efflux of saquinavir, rhodamine-123 and
fexofenadine from everted sacs of rat intestine[117].
Grapefruit juice was able to enhance the intestinal absorption of the Pgp substrate
talinolol both in vitro in the Caco-2 cell transport model, and also in vivo in
rats[118,119]. Also, grapefruit juice and Seville orange juice increased the
bioavailability of dextromethorphan in healthy volunteers via inhibition of Pgp and
CYP3A[120]. In contrast, in another study, grapefruit juice consumption showed no
significant effect on the pharmacokinetics of digoxin in 12 healthy subjects[121], or
even enhanced the Pgp mediated efflux of cyclosporine, digoxin, fexofenadine and
losartan across MDCK/MDR1 cell monolayers[122].
In an everted gut sac model, quercetin was able to stimulate the absorption of
etoposide[123]. However, when rats were fed a flavonoid containing “natural” rodent
diet there was no effect on the absorption of etoposide as compared to the rats fed
the synthetic flavonoid-free diet[123]. These examples clearly illustrate the
importance of in vivo validation of in vitro data on the effect of ABC transporter
inhibitors on bioavailability. This validation is also important because of possible
consequences of the extensive in vivo phase II metabolism of the flavonoids for
their ultimate activity as ABC transporter inhibitors and/or substrates.
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Physiological relevance of flavonoid interactions
All together it can be concluded that flavonoid-mediated inhibition of ABC
transporters may affect the bioavailability of drugs, bioactive food ingredients
and/or food-borne toxic compounds upon oral intake. Flavonoids, which are an
important class of bioactive food ingredients, are expected to result in these
interactions at physiologically relevant levels of intake. The relevance of this finding
is further supported if one takes into consideration the actual (permitted) use level
in food products and currently marketed food supplements. It can be calculated that
intestinal levels that might be reached upon intake of a supplement capsule
containing 100 to 200 mg flavonoids, may amount to about 35 to 70 μM. Thus,
reported Ki values of e.g. 2.4 to 20.8 μM for the competitive inhibition of MRP1
activity mediated by different dietary flavonoids, using LTC4 as substrate[68], or
similar Ki values for the flavonoid-mediated inhibition of the efflux of
calcein-acetoxymethyl ester (calcein-AM) by MRP1 or MRP2[95] are within a
physiologically relevant range. This indicates that flavonoid intake might be an
important factor in the regulation of the uptake of compounds, including drugs but
also pro-carcinogens and bioactive beneficial food ingredients.

Conclusions
Inhibition of ABC transporters has originally been studied within the framework of
multidrug resistance. Many of the inhibitors appeared to exert unwanted side
effects, and this stimulated the interest in flavonoids as relatively non-cytotoxic
inhibitors of ABC transporters. It has become clear that flavonoids are important
modulators or substrates of intestinal transport proteins including Pgp, MRPs and
BCRP. 
Flavonoids are a ubiquitous component in the human diet with an intake level of
about two thirds of the total intake of polyphenols, which has been estimated to be
about 1g/day[124], The precise amount and composition are largely dependent on
specific food contents, dietary habits and the possible use of flavonoids as dietary
supplements. Because of their ubiquity it can be concluded that flavonoid mediated
inhibition of ABC transporters may affect the bioavailability of a variety of drugs,
bioactive food ingredients and/or toxins upon oral uptake. Since this reflects an
increased bioavailability it will depend on the transported compound of interest as
to whether this effect of flavonoids can be considered beneficial or adverse. For the
effect on bioavailability of the pro-carcinogen PhIP, benzo(a)pyrene or the
mycotoxin ochratoxin A it would imply an adverse side effect of supposed beneficial
food ingredients. On the other hand, flavonoid mediated inhibition of ABC
transporters might be a simple and safe approach of increasing the oral
35
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bioavailability of beneficial food ingredients and/or drugs that are substrates of
these ABC transporters. It is clear that these interactions at the level of the transport
proteins may be an important mechanism for unexpected food-drug, food-toxin or
food-food interactions in the field of risk and safety assessment. Future studies
should focus especially on (1) in vivo validation of the flavonoid-mediated effects on
bioavailability of drugs, toxins and beneficial bioactive food ingredients detected in
in vitro models, and on (2) the role of flavonoid phase II metabolism in modulating
the activity of the flavonoids to act as ABC transporter inhibitors and/or substrates.
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Chapter 3
Abstract
Metabolism and transport from intestinal cells back into the lumen by ATP binding
cassette (ABC) transporters is believed to limit the bioavailability of flavonoids. We
studied metabolism and transport of the citrus flavonoid hesperetin, the aglycone of
hesperidin, using a two-compartment transwell Caco-2 cell monolayer system,
simulating the intestinal barrier. The role of apically located ABC transporters
P-glycoprotein (Pgp/MDR1/ABCB1), Multidrug Resistance Protein 2 (MRP2/ABCC2)
and Breast Cancer Resistance Protein (BCRP/ABCG2) in the efflux of hesperetin and
its metabolites was studied by co-administration of compounds known to inhibit
several classes of ABC transporters, including cyclosporin A, GF120918, Ko143, MK571,
and PSC-833. Apically-applied hesperetin (10 μM) was metabolized into hesperetin
7-O-glucuronide and hesperetin 7-O-sulfate, identified using HPLC-DAD,
uPLC-DAD-MS-MS and authentic standards, which were transported predominantly
to the apical side of the Caco-2 cell monolayer (1.12 cm2), at average (SD) rates of 14.3
(3.7) pmol/min/monolayer and 2.1 (0.8) pmol/min/monolayer, respectively.
Hesperetin aglycone also permeated to the basolateral side, and this process was
unaffected by the inhibitors used, possibly implying a passive diffusion process.
Inhibition studies, however, showed that efflux of hesperetin conjugates to the
apical side involved active transport, which from the pattern of inhibition, appeared
to involve mainly BCRP. Upon inhibition by the BCRP inhibitor Ko143 (5 μM), the
apical efflux of hesperetin conjugates was 1.9-fold reduced (P≤0.01) and transport to
the basolateral side was 3.1-fold increased (P≤0.001). These findings elucidate a
novel pathway of hesperetin metabolism and transport, and show that
BCRP-mediated transport could be a limiting step for hesperetin bioavailability.

Introduction
Flavonoids consist of a large group of polyphenols which can be divided into
different classes and are present in fruits, vegetables and other plant-derived
products. In foods, flavonoids often occur as ß-glycosides of aglycones, which
become deglycosylated upon ingestion. The flavanone hesperetin (Figure 3.1 on
page 47) is the aglycone of hesperidin (hesperetin-7-O-rutinoside), which is the
major flavonoid present in sweet oranges (Citrus sinensis) and orange juice[1]. Both
hesperidin and hesperetin exhibit some anti-inflammatory and anti-microbial
effects[2].
Flavanones occur in the diet almost exclusively in citrus fruits or citrus fruit derived
products, and as a result the daily intake of hesperidin is largely dependent on
dietary habits. In general, the amount of hesperidin can form an important part of
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the total flavonoid intake, and has been estimated 15.1 mg/day (after hydrolysis of
glycosides)[3]. According to data on urinary and plasma concentrations, however,
bioavailability of hesperetin is limited[4-7].
It is believed that hesperidin (Figure 3.1), which has a disaccharide rutinoside at
position C7, has to be hydrolyzed by colonic microflora prior to its absorption
whereas hesperetin aglycone, as well as the monosaccharide hesperetin
7-O-glucoside, can already be absorbed in the small intestine[6]. Passive diffusion,
absorption of hesperetin 7-O-glucoside, as well as hydrolysis of hesperidin by
colonic microflora, result in occurrence of intestinal intracellular hesperetin
aglycone[6], which is subsequently conjugated into glucuronidated and sulfated
metabolites, which were detected in human blood and urine[4,5,7]. 
Flavonoids and/or their metabolites are well known substrates of ATP binding
cassette (ABC) transporters[8], which are present in epithelial cells throughout the
intestinal tract[9,10]. In general, ABC transporters are specifically located in the apical
(lumen side) or basolateral (blood/plasma side) membrane of enterocytes and
facilitate excretion back into the intestinal lumen or uptake into the blood,
respectively.

Figure 3.1  Chemical structures of the rutinoside hesperidin and its aglycone hesperetin
(4'-methoxy-3',5,7-trihydroxyflavanone) and an illustration of possible pathways for their intestinal
uptake.
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Chapter 3
Intestinal ABC transporters that have been related to flavonoid transport include
P-glycoprotein (Pgp/MDR1/ABCB1), multidrug resistance proteins (MRPs/ABCCs) and
breast cancer resistance protein (BCRP/ABCG2), of which Pgp, MRP2 and BCRP are
localized in the apical membrane[8].
A common way to investigate the role of ABC transporters is co-exposure to
compounds which more or less specifically inhibit individual ABC transport
proteins. In the present study we used cyclosporin A, GF120918, Ko143, MK571 and
PSC-833 (Table 3.1 on page 49). Cyclosporin A is a broad-spectrum inhibitor reported
to inhibit Pgp, MRPs as well as BCRP[11,12], GF120918 is a dual inhibitor of both Pgp
and BCRP[13], PSC-833 is a more specific inhibitor of Pgp[11], Ko143 is a highly specific
inhibitor of BCRP[14,15], and MK571 is an MRP inhibitor[16,17].
Efficient intestinal metabolism and efflux mediated by ABC transporters located in
the apical membrane are believed to be the main reasons for poor bioavailability of
flavonoids and their metabolites[18]. Metabolites of the flavonoid quercetin, for
instance, have been demonstrated to interact with MRP2[19] and BCRP[20]. In the
present study, we focused on intestinal metabolism and transport of hesperetin in
vitro, using Caco-2 cell monolayers grown on a permeable filter separating a
two-compartment cell culture system, simulating the intestinal membrane barrier.
Differentiated Caco-2 cells are known to display morphological and biochemical
properties of intestinal enterocytes, including expression of Pgp, MRP2 and
BCRP[9,10,21,22], of which we studied the mRNA expression levels in Caco-2 cell
monolayers with RT-qPCR. By exposing Caco-2 cell monolayers to hesperetin
(10 μM), in absence or presence of inhibitors, we studied formation and transport of
hesperetin conjugates, which were identified by HPLC and uPLC retention times and
diode-array detector (DAD) spectra, by co-elution with authentic synthesized
standards, by confirmation with uPLC-DAD-MS-MS and by specific enzymatic
de-conjugation. By co-administering hesperetin with a range of different inhibitors
we investigated the role of Pgp, MRP2 and BCRP, in the transport of hesperetin and
its metabolites in Caco-2 cell monolayers.
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Materials and methods
Materials
Chloroform, hesperetin (purity ≥95%), L-ascorbic acid and sulfatase (from Helix
pomatia) were purchased from Sigma (St.Louis, MO). GF120918 was a generous gift
from GlaxoSmithKline (Hertfordshire, UK), Ko143 from Dr. Alfred H. Schinkel from
the Netherlands Cancer Institute (Amsterdam, The Netherlands) and PSC-833 from
Novartis Pharma AG (Basel, Switzerland). MK571 was purchased from Biomol
(Plymouth Meeting, PA) and cyclosporin A from Fluka (Buchs, Switzerland).
Acetonitrile for the HPLC system and methanol were purchased from Sigma-Aldrich
(Steinheim, Germany), acetontrile for the uPLC system and trifluoroacetic acid from
J.T. Baker (Philipsburg, NJ), isopropanol (for molecular biology) from Acros (Geel,
Belgium) and TRIzol reagent from Invitrogen (Paisley, UK). Di-potassium hydrogen
phosphate, dimethyl sulfoxide (DMSO), ethanol (for molecular biology), ethylene
dinitrilotetraacetic acid (EDTA) disodium salt dihydrate, ethyl acetate, formic acid,
glacial acetic acid, hydrochloric acid, potassium di-hydrogen phosphate and sodium
acetate were purchased from Merck (Darmstadt, Germany), and ß-glucuronidase
(from Escherichia coli) from Roche (Mannheim, Germany). All cell culture reagents
were purchased from Gibco (Paisley, UK). Authentic standards of hesperetin
7-O-glucuronide (purity 92.8%) and hesperetin 7-O-sulfate (purity <50%) were
obtained from Nestlé Research Center (Lausanne, Switzerland). 

Cell culture
Caco-2 cells were obtained from ATCC (Rockville, MD) and cultured in a humidified
atmosphere of 5% CO2 and 95% air at 37°C in Dulbecco's Modified Eagle Medium
(DMEM) containing 25 mM HEPES buffer, 4500 mg/l glucose, L-glutamine and
phenol red, and was supplemented with 10% (v/v) heat inactivated (30 min at 56°C)
fetal bovine serum, 1% (v/v) MEM non-essential amino acids and 0.2% (v/v)
50 mg/ml gentamycin. When the cell culture reached 70 to 90% confluency, it was
rinsed with phosphate buffered saline (PBS) containing 22 mg/l EDTA and split
using trypsin. The cell density of the suspension was determined using a
Bürker-Türk counting chamber from Labor Optik (Friedrichsdorf, Germany). For
transport experiments, 1*105 cells per cm2 (0.5 ml of 2.24*105 cells/ml) were seeded
in Costar 12-well transwell plate inserts from Corning (Corning, NY) with an insert
membrane pore size of 0.4 μm and a growth area of 1.12 cm2. The passage number of
the cells used in the experiments was between 37 and 47. The medium was changed
3 times a week and the transport experiments were performed 18 or 19 days post
seeding.
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RNA isolation
Medium was removed from a culture flask containing a Caco-2 cell monolayer
(passage number 46) and the cells were lyzed in TRIzol reagent (100 μl/cm2) and
stored at -80°C. After defreezing, 200 μl chloroform was added to 1 ml aliquots,
which were shaken (1 min), incubated at room temperature (3 min) and centrifuged
at 15500 g and 4°C (15 min). The aqueous phases were transferred to a sterile tube,
followed by addition of an equal volume isopropanol to precipitate the RNA. The
samples were mixed and left to incubate at room temperature (10 min), after which
they were centrifuged at 15500 g and 4°C (10 min). After removing the supernatant
the pellets were washed with 70% (v/v) ethanol. After centrifugation at 12000 g and
4°C (5 min), the supernatant was removed and the pellets were air dried and
resuspended in 100 μl RNase free water. The samples were pooled, cleaned and
concentrated using a RNeasy Mini kit from Qiagen (Hilden, Germany) following the
instructions of the manufacturer. The RNA concentration was spectophoto-
metrically determined using a Nanodrop ND-1000 from Nanodrop Technologies
(Wilmington, DE).

Real time RT-qPCR
A 5 μl mix containing 2 μg total RNA was reverse transcribed using 0.25 μg random
primers from Invitrogen (Paisley, UK), 2 μl dNTPs (10 mM) from Fermentas (Vilnius,
Lithuania) and RNase free water, together incubated at 65°C for 5 min in an iCycler
from Bio-Rad (Hercules, CA). The product was added to a 9 μl enzyme mix
containing RT-buffer, 2 μl DTT (100 mM), 0.5 μl RNase OUT (40 units/μl), 1 μl M-MLV
(200 units/μl) from Invitrogen (Paisley, UK) and RNase free water, and incubated for
10 min at 25°C, 50 min at 37°C, 15 min at 70°C and cooled to 4 °C, in the iCycler. To
quantify the amount of mRNA of Pgp, MRP2 and BCRP real time qPCR was performed
in duplicate with a dilution series (5, 10, 20, 40, 80, 160 times) of the cDNA using the
iCycler and iQ SYBR Green from Bio-Rad (Hercules, CA). Each 25 μl PCR reaction
contained 5 μl cDNA, 12.5 μl Mastermix SYBR Green, RNase free water and 1 μl of
both the specific forward and reverse primers (10 mM) which were synthesized by
Biolegio (Nijmegen, The Netherlands). The sequences of the primers used were
described by Taipalensuu et al.[9] and are given in Table 3.2 on page 52. Villin, an
actin cross-linking structural protein, was used to normalize the mRNA expression
levels[23]. The amplification program consisted of a 15 min pre-incubation at 95°C,
followed by 45 amplification cycles with denaturation at 95°C for 30 s, annealing at
60°C (MDR1, MRP2 and BCRP) or 56°C (villin) for 30 s, and extension at 72°C for 45 s.
The cycle number at the threshold (CT),  was used for semi-quantification of the PCR
product and the relative ABC transporter mRNA expression levels, normalized to
villin, are given by ΔCT=CT ABC transporter -CT villin, converted to 2-ΔCT.
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Metabolism and transport of hesperetin by Caco-2 cell monolayers
Transport experiments
Before experiments were started, Caco-2 cell monolayers were washed with DMEM
(without phenol red). The integrity of the monolayers was checked by measuring
trans-epithelial electrical resistance (TEER) values with a Millicell ERS
volt/ohmmeter from Millipore (Bedford, MA). Only monolayers that demonstrated a
TEER value between 500 and 1000 ΩMcm2 were used. Transport experiments were
carried out with transport medium consisting of DMEM (without phenol red)
supplemented with 1% (v/v) MEM non-essential amino acids and 1 mM ascorbic acid
to prevent auto-oxidation, which was filtered through a sterile 0.2 μm filter unit
from Schleicher & Schuell (Dassel, Germany). To study the transport of hesperetin
and the formation of metabolites with time, transport studies were performed in
which the monolayers were exposed at the apical side to 10 μM hesperetin for 0, 20,
40, 60, 80, 100 or 120 min, whereupon samples of medium were taken from both the
apical and basolateral compartment. To study the role of metabolism and different
ABC transporters, Caco-2 cell monolayers were exposed at the apical side to 10 μM
hesperetin, in the absence or presence of an inhibitor, all added from 400 times
concentrated stock solutions in DMSO. Cyclosporin A, GF120918, Ko143, MK571 and
PSC-833 were used in concentrations which are often used in inhibition studies and
have demonstrated to potently inhibit specific ABC transporters (Table 3.1 on
page 49). The concentration of DMSO at the apical side was kept at 0.5% in each
transport experiment. After 120 min exposure, in which the apical efflux of
hesperetin metabolites was linear with time, 150 μl samples were taken from both
basolateral and apical compartment. Finally, the TEER value was re-checked to
confirm the quality of the monolayer after the experiment. On some occasions the
filters covered with Caco-2 cell monolayers were washed with PBS, cut out of the
insert, dissolved in 250 or 500 μl 65% (v/v) methanol and sonificated for 15 min in a
Bandelin Sonorex RK100 (Berlin, Germany) in order to collect the intracellular
contents. All samples were stored at -80°C until further analysis.

HPLC-DAD analysis
The HPLC system consisted of a Waters (Milford, MA) Alliance 2695 separation
module connected to a Waters 2996 photodiode array detector, equipped with an
Alltech (Breda, The Netherlands) Alltima C18 5 μm 150*4.6 mm reverse phase
column with 7.5*4.6 mm guard column. Before injection, samples were centrifuged
at 16000 g for 4 min and 50 μl was injected and eluted at a flow rate of 1 ml/min
starting at 0% acetonitrile in nanopure water containing 0.1% trifluoroacetic acid,
increasing to 10% acetonitrile in 5 min, to 15% in the following 16 min, and to 50% in
the next 16 min. Thereafter the percentage acetonitrile was increased to 80% in
1 min, which condition was kept for 1 min, followed by a decrease to 0% acetonitrile
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in 1 min, keeping this condition for 10 minutes allowing the column to re-equilibrate
at the initial conditions (total run time: 50 min). DAD spectra were detected
between 200 and 420 nm and HPLC chromatograms acquired at 280 nm were used
for quantification and presentation.

uPLC-DAD analysis
The uPLC system consisted of a Waters Acquity binary solvent manager, sample
manager and photodiode array detector, equipped with a Waters BEH C18 1.7 μm
50*2.1 mm column. After centrifugation at 16000 g for 4 min samples of 10 μl were
injected and eluted at a flow rate of 0.440 ml/min starting at 95% millipore water
and 5% acetonitrile, both containing 0.1% formic acid, increasing to 21% acetonitrile
in 2 min, keeping this condition for 1.5 min, followed by an increase to 25%
acetonitrile in 0.25 min, which condition was kept for 1.75 min, and followed to 80%
acetontrile in 0.5 min. This percentage was kept for 0.5 min after which the
percentage acetonitrile was decreased to 5% in 0.5 min, keeping this condition for
1 min allowing the column to re-equilibrate at the initial conditions (total run time:
8 min). DAD spectra were detected between 230 and 400 nm and UPLC
chromatograms acquired at 280 nm were used for quantification.

uPLC-DAD-MS-MS analysis
Before injecting, samples were pre-treated by a solvent extraction in which 300 μl of
sample was mixed with an equal volume of 200 mM HCl/methanol and 3 times
extracted with 900 μl ethyl acetate. The collected organic fractions were pooled,
dried under nitrogen and dissolved in 60 μl in millipore water containing 5%
acetonitrile and 0.1% formic acid. A sample injection of 1.5 μl was eluted according to
the uPLC-DAD method described above, however, with a 1 mm inner diameter
column at a flow rate of 0.1 ml/min, on a similar Waters Acquity UPLC system
connected to a Micromass (Manchester, UK) Quattro Micro Triple Quadrupole
equipped with an electrospray ionization (ESI) probe. The instrument was operated
on negative ion scan mode. The following parameters were used for the ion source
for the MS Scans: 3kV capillary needle voltage, 38V cone voltage, source block
temperature 100°C, desolvation temperature 400°C, cone gas (nitrogen) flow 50 L/h,
and desolvation gas (nitrogen) flow 500 L/h. The scanned mass range was between
200-700 m/z and the scan time 0.4 s with interscan delay of 0.05 s. For the selective
ion recording mode (SIR) the following masses of metabolites were monitored: 217,
301, 381, 395, 463, 477, 491, and 609 m/z. For the SIR mode, the cone voltage change
was between 30 to 40V depending on the analyte. Dwell time was 0.02 s and the
other parameters as above.
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Metabolism and transport of hesperetin by Caco-2 cell monolayers
Enzymatic deconjugation
To confirm the presence of glucuronide or sulfate conjugates, samples were treated
with ß-glucuronidase or sulfatase/ß-glucuronidase. For ß-glucuronidase
incubations 50 μl sample was added to 50 μl 400 mM potassium phosphate buffer
(pH 6.2) and after addition of 4 μl ß-glucuronidase solution (0.8 units), the mixture
was incubated for 60 min at 37°C. To hydrolyze both glucuronide and sulfate
conjugates, samples were treated with sulfatase (containing ß-glucuronidase
activity). A sample volume of 50 μl was added to 50 μl 1 M sodium acetate buffer (pH
4.5) and upon addition of 4 μl sulfatase/ß-glucuronidase solution (0.8 units) the
sample was incubated for 18 h at 37°C. Control samples were given the same
treatment but with 4 μl water instead of enzyme solution. After incubation the
mixtures were stored at -80°C until further analysis by HPLC-DAD. 

Quantification
Hesperetin was quantified by peak area measurement using HPLC-DAD analysis,
based on detection at 280 nm, using a ten-point linear (R2>0.99) calibration line of a
concentration range of 0.02 to 20 μM hesperetin in transport medium containing a
final concentration of 0.5% DMSO. Similarly, the amount of hesperetin
7-O-glucuronide was quantified based on an eight-point linear (R2>0.99) calibration
curve of a concentration range of 0.02 to 2.5 μM with the authentic synthesized
standard of hesperetin 7-O-glucuronide. The limit of detection of both compounds in
transport medium was 0.02 μM (injection volume 50 μl). The amount of hesperetin
7-O-sulfate was quantified using the calibration curve of hesperetin 7-O-glucuronide
since the authentic hesperetin 7-O-sulfate sample was not pure enough to allow
definition of a calibration curve and the enzymatic deconjugation of hesperetin
metabolites with sulfatase/ß-glucuronidase, compared with the deconjugation
with only ß-glucuronidase, demonstrated a comparable molar extinction coefficient
for hesperetin 7-O-sulfate and hesperetin 7-O-glucuronide metabolites.

Stability
The stability of hesperetin, hesperetin 7-O-glucuronide and 7-O-sulfate standards
under experimental conditions was tested separately by taking samples with time
(at 0, 1, 2, 3, 6 and 24 hours) from wells on a Corning Costar 12-well plate (Corning,
NY) which was stored in the incubator used for cell culture and contained in each
well 2 ml transport medium supplemented with known concentrations of
hesperetin aglycone, hesperetin 7-O-glucuronide or hesperetin 7-O-sulfate standards
(final concentration 0.5% DMSO). The samples were stored at -80°C until analysis by
HPLC-DAD.
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Partition coefficient determination
The log P value of hesperetin was calculated using the online LogKow (KowWin)
program (available at http://www.syrres.com/esc/est_kowdemo.htm) from
Syracuse Research Corporation (Syracuse, NY). This program uses fragmental
analysis of the chemical structure for the prediction and obtained log P values
demonstrate high correlation with quoted experimental log P values (R2=0.98).

Statistical analysis
Student's two-tailed unpaired t-test was used to evaluate statistical differences.
Differences were considered significant when p-values were less than 0.05. Values
are expressed as mean ± standard deviation (SD).

Results
Metabolism and transport of hesperetin by Caco-2 cell monolayers
Using the Caco-2 cell monolayer two-compartment transwell system we studied
transport and metabolism of hesperetin. Figure 3.2 shows representative sections of
HPLC chromatograms of samples taken from the 0.5 ml apical (A) and 1.5 ml
basolateral (B) compartment of a Caco-2 cell monolayer upon 120 min exposure to
10 μM hesperetin added to the apical compartment. Hesperetin was detected at the
basolateral side (tR 36.7 min), as well as 2 major metabolites, M1 (tR 30.9 min) and
M2 (tR 31.4 min), which were detected at about 3.9- and 3.1-fold higher amounts in
the apical compartment compared with the basolateral compartment, respectively.
 

Figure 3.2  Representative sections of the HPLC chromatograms of medium samples from the apical
(A) and basolateral (B) side of a Caco-2 monolayer 120 min upon exposure to 10 μM hesperetin added to
the apical medium. The volume of the apical and basolateral compartment is 0.5 and 1.5 ml,
respectively. M1 = hesperetin 7-O-glucuronide, M2 = hesperetin 7-O-sulfate.
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Metabolism and transport of hesperetin by Caco-2 cell monolayers
Upon further analysis by uPLC-DAD, the major metabolite M1 (amounting to 86% of
the total amount of metabolites determined by peak area), demonstrated the same
retention time (3.50 min) and DAD spectrum (UVmax 284.1 nm) as the authentic
hesperetin 7-O-glucuronide standard, and metabolite M2 demonstrated the same
retention time (4.30 min) and UV spectrum (UVmax 280.5 nm, sholder at 335 nm) as
the authentic hesperetin 7-O-sulfate standard. Equal retention times and DAD
spectra for M1 and the hesperetin 7-O-glucuronide standard, as well as for M2 and
the hesperetin 7-O-sulfate standard, were demonstrated by co-elution on the
HPLC-DAD system as well.
Additional identification of M1 as hesperetin 7-O-glucuronide was achieved by
confirming the correct molecular mass by uPLC-DAD-MS-MS. Both M1 from the
transport medium and the corresponding peak from the metabolite standard
showed an [M-H]- ion of m/z 477, consistent with the molecular mass of hesperetin
(302 Da) containing a deprotonated additional glucuronic acid moiety (175 Da). The
mass of M2, however, could not be determined on the uPLC-DAD-MS-MS system,
due to instability of the sulfate moiety during the required sample preparation.
However, enzymatic deconjugation with sulfatase (which contains also
ß-glucuronidase activity) hydrolysed both M1 and M2, as well as the corresponding
standards, into hesperetin aglycone, whereas treatment with ß-glucuronidase
deconjugated only M1. In control incubations, without enzyme activity added, M1
and M2 were unaffected.
We also tested the stability of the hesperetin derivates dissolved in transport
medium and incubated under applied experimental conditions. The concentration
of hesperetin 7-O-glucuronide from the authentic standard was stable and present
after 120 min at 97% and after 24 hours at 95% of its initial concentration.
Hesperetin 7-O-sulfate from the authentic standard also was very stable and present
after both 120 min and 24 hours at >98% of its initial concentration. Hesperetin
aglycone, however, seemed less stable (or soluble) and after 120 min was present at
88%, and after 24 hours at only 67% of the initial concentration.
Hesperetin was extensively metabolized into hesperetin 7-O-glucuronide and
hesperetin 7-O-sulfate, which were predominantly excreted to the apical side, linear
with time up to 120 min (Figure 3.3 on page 58), at average rates of 14.3±3.7
pmol/min/monolayer and 2.1±0.8 pmol/min/monolayer, respectively, in the
transport experiments (Figure 3.4 on page 58). Figure 3.4 shows the amounts of
hesperetin, hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate in the apical and
basolateral compartment of the transwell system, 120 min upon exposure to 10 μM
hesperetin (5 nmol/0.5 ml). Upon 120 min incubation, the residual amount of
hesperetin at the donor side amounts to only 0.78 nmol (15.5% of the initial amount
added). The amount of hesperetin appearing in the basolateral compartment and
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the amount of both hesperetin metabolites transported to the apical and basolateral
compartment together make up for only 59.3% of the initial amount hesperetin
added. The residual 25.2% may be accounted for by the amount of hesperetin and/or
hesperetin metabolites accumulating in the cellular compartment of the Caco-2
monolayer transwell system. Indeed, we detected intracellular amounts of
hesperetin, hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate. The total
amount, however, accounted for only 6% of the initial dose. At least part of the
explanation for the residual 19.2% loss of hesperetin that remained unaccounted for
could be the apparent instability or insolubility of hesperetin aglycone under
experimental conditions, or during storage, leading to losses in the overall amount
of hesperetin plus metabolites.

Figure 3.3  Amounts of hesperetin 7-O-glucuronide (M1), hesperetin 7-O-sulfate (M2) and hesperetin
aglycon in the apical compartment (A) and basolateral compartment (B) with time upon exposure to 5
nmol (=10 μM / 0.5 ml) apically-applied hesperetin. Data are the average of 2 determinations.

Figure 3.4  Mean amounts of hesperetin 7-O-glucuronide (M1), hesperetin 7-O-sulfate (M2) and
hesperetin aglycone in the apical compartment and basolateral compartment 120 min upon exposure
to 5 nmol (=10 μM / 0.5 ml) apically-applied hesperetin (n=7), *** = p<0.001 significantly different.
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Metabolism and transport of hesperetin by Caco-2 cell monolayers
Real time RT-qPCR
From the cDNA dilution series, the CT values were for all genes most stable between
10- and 40-fold dilution, and so the real time qPCR data from the 20-fold diluted
cDNA was used for the calculations. Figure 3.5 depicts the relative mRNA expression
levels of Pgp, MRP2 and BCRP normalized to villin. All three ABC transporter genes
are expressed, with the relative levels of Pgp and MRP2 mRNA being respectively 12-
and 41-fold higher compared to the mRNA expression level of BCRP.

Figure 3.5  Relative ABC transporter mRNA expression levels in Caco-2 cells normalized to the
expression of villin. Mean ±SD values of two determinations are shown.

Effect of ABC transporter inhibitors on hesperetin metabolism and efflux by 
Caco-2 cell monolayers
Since flavonoids and/or their metabolites are known to be substrates of ABC
transporters, the effect of co-administering different ABC transporter inhibitors to
the apical compartment on the transport of hesperetin aglycone and the hesperetin
metabolites was investigated. Figure 3.6 on page 60 demonstrates no significant
effect of the range of several co-administrated inhibitors on the appearance of
hesperetin aglycone at the basolateral side, which could indicate that hesperetin
moves through the Caco-2 monolayer by passive paracellular or transcellular
diffusion. The relatively high lipophilicity of hesperetin, represented by the
calculated log P value of 2.44, and the molecular weight (302 Da), would imply the
latter.
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Chapter 3
Figure 3.6  Effect of different ABC transport inhibitors on basolateral amounts of hesperetin detected
120 min upon apical addition of 10 μM hesperetin compared with the control (10 μM hesperetin
without inhibitors). Mean ±SD values are shown (n=4, control n=7). CsA = cyclosporin A.

The efflux of hesperetin metabolites (Figure 3.7, and Table 3.3 on page 62), however,
was affected by the dual Pgp/BCRP inhibitor GF120918, which caused a
concentration-dependent decrease in the apical efflux, accompanied by a
concentration-dependent increase in basolateral efflux, of hesperetin
7-O-glucuronide. Relevant doses of other Pgp inhibiting compounds did not alter the
efflux of hesperetin metabolites significantly, which suggested BCRP to be the major
ABC transport protein involved in the apical efflux of hesperetin metabolites. This
was corroborated by the effect of co-administration of the highly specific BCRP
inhibitor Ko143, which caused an even greater decrease in the apical efflux, for both
hesperetin 7-O-glucuronide (Figure 3.7A) and hesperetin 7-O-sulfate (Figure 3.7B),
and a concomitant increase in basolateral efflux of both hesperetin metabolites.
Co-administration of 5 μM Ko143 resulted in a 1.9-fold decrease (P≤0.01) in the total
amount of hesperetin metabolites transported to the apical side of the Caco-2 cell
monolayer and in a 3.1-fold increase (P≤0.001) in the total amount of hesperetin
metabolites transported to the basolateral compartment (Figure 3.7C).

Figure 3.7  Effect of different ABC transport inhibitors on amounts of hesperetin 7-O-glucuronide (A),
hesperetin 7-O-sulfate (B) and on the sum of both hesperetin metabolites (C) in the apical and
basolateral medium 120 min after addition of 10 μM hesperetin to the apical side of Caco-2 monolayers
compared to the control (10 μM hesperetin without inhibitors). Mean ±SD values shown (n=4, control
n=7), (1) = p<0.05, (2) = p<0.01 and (3) = p<0.001 significantly different compared to the control. CsA =
cyclosporin A.
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Chapter 3
As a result, the predominant side of both hesperetin 7-O-glucuronide and hesperetin
7-O-sulfate efflux was reversed from the apical to the basolateral side. Although not
significant, co-administration of MK571 (24 μM) decreased the apical efflux of
hesperetin 7-O-glucuronide by 19% (Figure 3.7A and Table 3.3), implying a minor role
for apically localized MRP transporters (i.e. MRP2) in the transport of hesperetin
7-O-glucuronide as well.

Table 3.3  Effect of different ABC transport inhibitors on amounts of hesperetin 7-O-glucuronide and
hesperetin 7-O-sulfate in the apical and basolateral medium 120 min after addition of 10 μM hesperetin
at the apical side of Caco-2 monolayers compared to the control (10 μM hesperetin without inhibitors)
Mean + SD values (n=4, control n=7), (1)= p<0.05 , (2)= p<0.01,  (3)= p<0.001 significantly different
compared to the control. CsA = cyclosporine A.
.

Inhibitor (μM) hesperetin 7-O-glucuronide
(nmol)

hesperetin 7-O-sulfate
(nmol)

Apical Basolateral Apical Basolateral

Control 1.71 ± 0.44 0.44 ± 0.12 0.25 ± 0.10 0.08 ± 0.05

MK571 2.4 1.68 ± 0.42 0.41 ± 0.09 0.27 ± 0.06 0.09 ± 0.05

24 1.39 ± 0.44 0.46 ± 0.15 0.32 ± 0.06 0.12 ± 0.08

CsA 10 1.66 ± 0.43 0.53 ± 0.12 0.29 ± 0.09 0.11 ± 0.06

PSC-833 5 1.70 ± 0.31 0.48 ± 0.10 0.32 ± 0.09 0.09 ± 0.05

GF120918 1 1.39 ± 0.28 0.71 ± 0.17(1) 0.17 ± 0.03 0.10 ± 0.04

5 1..11 ± 0.25(1) 0.85 ± 0.30(1) 0.16 ± 0.03 0.14 ± 0.08

10 1.09 ± 0.34(1) 0.88 ± 0.17(3) 0.14 ± 0.05 0.14 ± 0.09

Ko143 1 1.50 ± 0.23 0.82 ± 0.12(3) 0.23 ± 0.05 0.16 ± 0.04(1)

2 0.89  ± 0.31(2) 1.14 ± 0.40(2) 0.14 ± 0.06 0.25 ± 0.11(2)

5 0.96 ± 0.13(2) 1.34 ± 0.18(3) 0.10 ± 0.04(1) 0.26 ± 0.09(2)
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Metabolism and transport of hesperetin by Caco-2 cell monolayers
Discussion
The present study showed that hesperetin was intensively metabolized by Caco-2
cells into 7-O-glucuronide and 7-O-sulfate metabolites. Other studies describing
metabolism of flavonoids by Caco-2 cells also reported a relatively high rate of
conjugation into glucuronidated, sulfated and/or methylated metabolites, the
relative formation of all these metabolites depending on the type of flavonoid[24-27].
About 86% of the total amount of hesperetin metabolites formed consisted of
hesperetin 7-O-glucuronide, a percentage similar as reported in a study in which the
rutinoside hesperidin was given to humans and 87% of hesperetin in plasma
consisted of glucuronides[5]. The remaining 13% in this human study consisted of
sulfoglucuronides, while no conjugates were detected which were only sulfated[5].
Systemic plasma analysis does not reveal the organs in which conjugation has
taken place, but likely at least part of the conjugation reactions of hesperetin take
place in the intestinal epithelia. The results with the Caco-2 cells in the present
study would support a role for intestinal cells in phase II metabolism of hesperetin
and of hesperidin after its deglycosylation.
Co-administration of compounds known to potently inhibit BCRP-mediated
transport, including the specific BCRP inhibitor Ko143 and the dual BCRP/Pgp
inhibitor GF120918, decreased efflux of hesperetin metabolites to the apical
compartment and consequently increased efllux of hesperetin metabolites to the
basolateral side, while co-administration of PSC-833, MK571 and cyclosporin A,
known to inhibit several other classes of ABC transporters (Table 3.1 on page 49), did
not modify the efflux of hesperetin metabolites significantly (Figure 3.7 on page 60,
Table 3.3 on page 62). Co-administration of 10 μM cyclosporin A, which is generally
regarded as a non-specific inhibitor of Pgp but has been reported to inhibit BCRP as
well[11,12], did not demonstrate any effect on disposition of hesperetin metabolites in
the present study. A reason for this could be that its BCRP inhibiting properties were
demonstrated in a cell line specifically overexpressing BCRP, whereas in Caco-2 cells,
cyclosporin A might have a higher affinity for other ABC transporters present. In
addition, Ejendal and Hrycyna did not demonstrate inhibition of BCRP by
cyclosporin A in BCRP overexpressing HeLa and MCF-7 derived cells[28]. The addition
of Ko143 seemed to have a more profound effect on inhibition of the apical efflux of
hesperetin 7-O-sulfate than hesperetin 7-O-glucuronide, which further supports a
role of BCRP in the transport of hesperetin metabolites, since the affinity of BCRP for
sulfated metabolites has been reported to be greater than that for glucuronidated
metabolites[29]. Altogether, our results suggest that efflux of hesperetin metabolites
to the apical compartment in our Caco-2 cell transwell system mainly involves
BCRP.
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Specific flavonoids, and/or their metabolites, interact with apically located ABC
transporters, especially with Pgp and BCRP[8], representing high affinity substrates.
Hesperetin, and/or its metabolites, have been demonstrated to interact with BCRP in
vitro[30,31], while co-administration of up to 50 μM hesperetin did not interact with
Pgp-mediated transport in Caco-2 cell monolayers[32] and interactions of hesperetin
with MRP2, on the basis of structural similarity to other flavonoids, seem
unlikely[33], together further supporting a role for BCRP in the efflux of hesperetin
metabolites. The important role for BCRP in the intestinal efflux of sulfate and
glucuronide conjugates has also been established for other compounds[34,35],
including glucuronide metabolites of the flavonol quercetin[20]. 
Previous studies on the transport and metabolism of flavonoids other than
hesperetin by Caco-2 cell monolayers demonstrated a decreased apical efflux of
flavonoids and their metabolites by co-administration of MK571, suggesting MRP2 to
be responsible for the transport of flavonoid metabolites back to the intestinal
lumen[25,26,36]. For instance, 10 μM MK571 inhibited both the apical and basolateral
efflux of glucuronidated and sulfated metabolites of the flavone apigenin in Caco-2
monolayers[36]. Our findings do not rule out a role for MRP2 in the transport of
flavonoid hesperetin conjugates completely, since co-administration of 24 μM
MK571 did seem to negatively affect the apical efflux of hesperetin 7-O-glucuronide,
although not significantly. Both BCRP and MRP2, as well as other ABC transporters,
have an overlapping substrate specificity[37,38], thus, the class of transporter
contributing most to specific transport will depend on the available dose of a
substrate and the specific affinity, together with the specific levels of transporter
expression. Earlier studies did not always focus on BCRP mediated transport, and
other studies sometimes used concentrations of 50 μM MK571, or higher, which
could be problematic when studying the metabolism of the flavonoid together with
transport of its metabolites because MK571 has shown to inhibit glucuronidation at
concentrations higher than 25 μM[36]. 
Since BCRP is a highly expressed ABC transporter throughout the intestinal
tract[9,10,22,39], an important role for BCRP in the intestinal efflux of hesperetin
conjugates in vivo is very likely. Furthermore, the expression of BCRP in Caco-2 cells
is often considered to be relatively low compared with the expression level of other
classes of ABC transporters, including Pgp and MRP2, and with expression of BCRP in
the intestine[9,10,22], which could both result in an underestimation of its relevance
in in vitro experiments. The real time RT-qPCR analyses in the present study
demonstrated a 12- and 41-times lower mRNA expression of BCRP compared to the
expression of Pgp and MRP2, respectively. This MRP>Pgp>>BCRP rank order of gene
expression is in line with earlier studies on Caco-2 cells[10,22]. The expression of
ultimate BCRP protein in Caco-2 cells has been demonstrated by Western blotting by
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Xia et al.[15], making the Caco-2 cells used in the present study represent a good
model to study intestinal BCRP mediated transport, keeping in mind that effects
observed may even be of greater importance in vivo.
Our experiments demonstrated that a portion of the apically-applied hesperetin
aglycone appeared at the basolateral side unconjugated. Administration of the
different inhibitors did not affect this process, which could indicate that the small
and relatively lipophilic hesperetin molecule moves through the Caco-2 monolayer
by passive transcellular diffusion (i.e. non-transporter mediated). This suggests that
passive diffusion of hesperetin could play a role in permeation across intestinal
cells, not only in the Caco-2 monolayers, but possibly also in vivo. Lipophilicity is an
important determinant of flavonoids for transfer across the intestinal barrier, as
demonstrated in situ in rat models[40], however, in a study by Silberberg et al. , in
which hesperetin (15 μM) was perfused in situ in rats, more than 95% of the
hesperetin found in the mesenteric vein was conjugated[41]. In the study of Manach
et al., in which humans were given hesperidin, no unconjugated hesperetin was
detected in plasma[5] and in the study of Gardana et al., in which juice from blood
oranges was given to humans, also more than 95% of hesperetin in plasma was
conjugated[7]. Unfortunately, the only study in which the aglycone itself was given
to humans did not study the chemical forms present in plasma[42], thus, the fate of
hesperetin in vivo in humans remains to be elucidated.
In conclusion, hesperetin is extensively metabolized by Caco-2 cell monolayers into
7-O-glucuronide and 7-O-sulfate metabolites, which are predominantly transported
to the apical side. Hesperetin aglycone, however, also permeates to the basolateral
side of the Caco-2 cell monolayer unconjugated. The pattern of inhibition by
different ABC transporter inhibitors suggests the apical efflux of hesperetin
metabolites involves mainly BCRP. Moreover, inhibition of BCRP results not only in a
decreased apical efflux, but also in an increased transport of hesperetin metabolites
to the basolateral side of Caco-2 cell monolayers. Altogether, these findings
elucidate a novel pathway of hesperetin metabolism and transport, and show that
BCRP mediated transport could be one of the main limiting steps for hesperetin
bioavailability.
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Chapter 4
Abstract
Metabolism by phase II enzymes and transport from intestinal cells back into the
lumen by ATP binding cassette (ABC) transporters limits the bioavailability of the
flavanone hesperetin, the aglycone of hesperidin. This study investigates to what
extent other flavonoids modulate the metabolism and transport of hesperetin by
characterizing the effect of co-administrating a series of flavonoids using Caco-2 cell
monolayers in a two-compartment transwell system. Flavonoids may interfere with
hesperetin metabolism and can also inhibit the apically located ABC transporter
BCRP (ABCG2) which was previously shown to be responsible for the apical
transport of hesperetin metabolites. Co-exposure of Caco-2 cell monolayers to
hesperetin with specific flavonoids reduced the ratio of apical efflux to basolateral
transport of hesperetin metabolites, and in some cases, also reduced the amount of
hesperetin metabolites detected extracellularly. Because intracellular accumulation
of hesperetin metabolites did not account for this decrease, inhibition of
metabolism of hesperetin is likely the underlying mechanism for the reduced
metabolite formation and excretion. In spite of the reduction in metabolism the
amount of hesperetin metabolites transported to the basolateral side significantly
increased upon co-exposure with specific flavonoids and therefore
co-administration of specific flavonoids could be a strategy to improve the
bioavailability of hesperetin.

Figure 4.1  Basic chemical flavonoid structure and basic chemical structures of different flavonoid
subclasses.
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Introduction
Flavonoids are polyphenols and can be divided into different classes including
flavones, flavonols (3-hydroxyflavones), isoflavones, flavanones, flavanols,
chalcones and anthocyanins (Fig. 4.1 on page 70). They are present in fruits,
vegetables and plant derived products, often occurring as ß-glycosides[1]. Flavonoids
and flavonoid-rich products have been implicated as beneficial agents to reduce the
risk of chronic diseases[2]. Despite their relatively high dietary intake, the
bioavailability of many flavonoids and/or their metabolites is relatively poor[3].
Dependent on the type of flavonoid, a significant proportion can be attributed to
efficient intestinal metabolism and/or efflux mediated by ATP binding cassette
(ABC) transport proteins located in the apical membrane of enterocytes, including
P-glycoprotein (Pgp/MDR1/ABCB1), multidrug resistance proteins (MRPs/ABCCs) and
breast cancer resistance protein (BCRP/ABCG2)[4-7].
The flavanone hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone) is the aglycone of
hesperidin (hesperetin 7-O-rutinoside) which contains a disaccharide moiety
(Figure 4.2), which is present in high amounts in sweet oranges (Citrus sinensis) and
orange juice, but also in other citrus fruits including lemon, lime and mandarin[8].
For example, orange juice may contain more than 500 mg/l hesperidin[8]. Both
hesperidin and hesperetin have been reported to provide beneficial health effects,
as has been reviewed by Garg et al.[9]. The reported beneficial health effects of
hesperetin include a reduced risk of osteoporosis, which has been demonstrated by
an increased bone mineral density in ovariectomized or sham operated rats or mice
given hesperidin[10,11]. Although the exact molecular mechanism for these effects
have not yet been elucidated, some explanation arises from the anti-oxidant and
anti-inflammatory properties of hesperetin affecting nuclear factor (NF)-KB and
related signal transduction pathways[12].

Figure 4.2  Chemical structures of the rutinoside hesperidin and its aglycone hesperetin
((+/-)-4'-methoxy-3',5,7-trihydroxyflavone).
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Hesperidin must be hydrolyzed by colonic microflora before it can be absorbed,
whereas the hesperetin aglycone, as well as the monosaccharide hesperetin
7-O-glucoside, is already taken up earlier in the digestive tract[13,14]. The latter could
be hydrolyzed by lactase phlorizin hydrolase whereafter the hesperetin aglycone
can migrate into the intestinal cells and/or the hesperetin glucoside could be
transported into the intestinal cells via the sodium-dependent glucose transporter
(SGLT1) after which it is deglucosylated by ß-glucosidase activity within the
intestinal cell[13,15,16]. The resulting intracellularly located hesperetin aglycone is
conjugated by UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT)
enzymes into glucuronidated and sulfated metabolites, respectively, which have
been detected in human and rat plasma[17-20]. An increased bioavailability of
hesperetin by exposure to hesperetin 7-O-glucoside, which is already taken up in the
small intestine, rather than to hesperidin[13], has been demonstrated to more
efficiently prevent bone loss in ovariectomized rats[21].
Recently, we studied the intestinal metabolism and extracellular transport of
hesperetin in vitro using Caco-2 cell monolayers in a two-compartment transwell
system, simulating the intestinal transport barrier, and demonstrated that
hesperetin was metabolized into hesperetin 7-O-glucuronide and hesperetin
7-O-sulfate metabolites which were preferentially transported to the apical
compartment, simulating the intestinal lumen side[7]. Inhibition of the apically
expressed BCRP by standard inhibitors reversed the predominant side of hesperetin
metabolite efflux to the basolateral compartment, simulating the blood/plasma
side[7]. Since intestinal BCRP-mediated apical efflux of hesperetin metabolites could
be a limiting factor in the bioavailability of hesperetin, co-administration of
hesperetin with dietary compounds inhibiting BCRP mediated efflux could be a
strategy to increase hesperetin bioavailability. Some dietary flavonoids are potent
BCRP inhibitors[22,23]. Furthermore, these flavonoids may also modulate the
enzymes catalyzing phase II biotransformation thereby influencing the
bioavailability of hesperetin and/or its metabolites by a second mechanism. The
aim of the present study was to investigate to what extent other flavonoids
modulate the metabolism and intestinal transport of hesperetin. To this end we
tested the ability of a selection of different flavonoids (Table 4.1 on page 73) to
modulate the metabolism and transport of hesperetin in Caco-2 cell monolayers as
an intestinal in vitro model system. The results obtained provide insight in the
flavonoid-mediated modulation of the two processes influencing hesperetin
bioavailability: its metabolism by phase II enzymes and the extracellular transport
of its conjugates. They also provide a possible strategy to improve the
bioavailability of hesperetin.
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Chapter 4
Materials and methods
Materials
The flavonoids acacetin (purity ≥ 85 %), chrysin (purity ≥ 99%) and genistein
(purity ≥ 98 %) were obtained from ICN Biomedicals (Aurora, OH), biochanin A
(purity ≥ 97 %), (+)-catechin hydrate (purity ≥ 98 %), (-)-epigallocatechin gallate
(EGCG) (purity ≥ 97%), (-)-epicatechin (purity ≥ 90%), hesperetin (purity ≥ 95%),
hesperidin (purity ~90%), phloretin (purity ≥ 98%) and quercetin dihydrate
(purity ≥  95%) from Sigma (St. Louis, MO), daidzein (purity ≥  98%) from Indofine
Chemical Company (Belle Mead, NJ), isorhamnetin (purity ≥ 99%) and kaempferide
(purity ≥ 99%) from Extrasynthèse (Genay, France), galangin (purity ≥ 95%) from
Aldrich (Milwaukee, WI) and rutin (purity ≥ 97%) from Acros (Morris Plains, NJ).
Authentic standards of hesperetin 7-O-glucuronide (purity 92.8%) and hesperetin
7-O-sulfate (purity <50%) were obtained from the Nestlé Research Center (Lausanne,
Switzerland). L-ascorbic acid was purchased from Sigma (St. Louis, MO), acetonitrile
and methanol from Sigma-Aldrich (Steinheim, Germany), trifluoroacetic acid from
J.T. Baker (Philipsburg, NJ), DMSO and EDTA disodium salt dihydrate from Merck
(Darmstadt, Germany) and all cell culture reagents from Gibco (Paisley, UK). 

Cell culture
Caco-2 cells from ATCC (Manassas, VA) were cultured in a humidified atmosphere of
5 % CO2 and 95 % air at 37°C in Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% heat inactivated fetal bovine serum, MEM non-essential
amino acids and 0.1 mg/ml gentamycin, as described before[7]. For transport
experiments, 1*105 cells per cm2 were seeded in Corning Costar 12-well transwell
plate inserts with an insert membrane pore size of 0.4 μm and a growth area of
1.12 cm2. The medium was changed 3 times a week and the experiments were
performed 18 or 19 days post seeding. The passage number of the cells used in the
experiments was between 39 and 50.

Caco-2 cell monolayer experiments
Before exposure, Caco-2 cell monolayers were washed with DMEM (without phenol
red). The integrity of the monolayers was checked by measuring trans-epithelial
electrical resistance (TEER) values with a Millicell ERS volt/ohmmeter from Millipore
(Bedford, MA). Only monolayers demonstrating a TEER value between 500 and
1000 ΩMcm2 were used. Transport experiments were carried out with medium
consisting of DMEM (without phenol red) supplemented with 1% (v/v) MEM
non-essential amino acids and 1 mM ascorbic acid to prevent auto-oxidation of the
flavonoids, which was filtered through a cellulose acetate sterile syringe filter
(0.2 μm) from VWR (West Chester, PA). To study the effect of co-administration of
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Effect of flavonoids on hesperetin metabolism and transport
flavonoids, Caco-2 cell monolayers were exposed at the apical side to 10 μM
hesperetin, in the absence or presence of 10 μM of a specific flavonoid added to the
apical side. The flavonoids tested are listed in Table 4.1 on page 73, and include
flavonoids reported to inhibit BCRP as well as flavonoids reported not to inhibit
BCRP. References reporting these flavonoid characteristics with respect to BCRP are
also presented in Table 4.1. The concentration of 10 μM reflects a physiologically
relevant dose and corresponds with our earlier study[7]. All flavonoids were added to
the exposure medium from 400 times concentrated stock solutions in DMSO. The
concentration of DMSO at the apical side was kept at 0.5% in each transport
experiment. After 120 min exposure, 150 μl samples were taken from both the
basolateral and apical compartment and the TEER value was re-checked to confirm
the quality of the monolayer after the experiment. In an additional experiment
Caco-2 cell monolayers were exposed to hesperetin in the presence or absence of
quercetin and in addition to the hesperetin metabolites in the basolateral and apical
media also the intracellular levels of hesperetin metabolites and hesperetin were
determined. To determine the intracellular hesperetin and hesperetin metabolite
levels, the filters of 2 transwell plates covered with Caco-2 cell monolayers exposed
for 120 minutes to 10 μM hesperetin with or without 10 μM quercetin added at the
apical side were washed with phosphate-buffered saline containing 22 mg/l EDTA,
cut out of the insert, suspended in 200 μl of 65 % (v/v) methanol and sonicated for 15
min using a Bandalin Sonorex RK100 (Berlin, Germany). All samples were stored at
-80°C until further analysis by HPLC-DAD.

HPLC-DAD analysis
The HPLC system consisted of a Waters (Milford, MA) Alliance 2695 separation
module with autosampler connected to a Waters 2996 photodiode array detector
and was equipped with an Alltech (Breda, The Netherlands) Alltima C18 5 μm
150*4.6 mm2 reverse phase column with 7.5*4.6 mm2 guard column. Before
injection, samples were centrifuged at 16,000 g for 4 min and 50 μl of the
supernatant was injected and eluted at a flow rate of 1 ml/min. The gradient of the
method to analyze the medium samples from the Caco-2 monolayer transport and
metabolism experiments was reported previously[7]. The HPLC chromatograms of
the medium from Caco-2 cell monolayers co-exposed with other flavonoids
demonstrated no peak overlap of hesperetin or hesperetin metabolite peaks with
other peaks resulting from the simultaneously added flavonoids, which was
confirmed by analysis of medium from Caco-2 monolayers exposed only to the
flavonoids used for co-administration (data not shown). All DAD spectra were
recorded between 200 and 420 nm, and HPLC chromatograms acquired at 280 nm
were used for quantification.
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Quantification
Hesperetin and hesperetin 7-O-glucuronide were quantified by peak area
measurement using calibration curves (R2>0.99) of relevant concentration series of
available reference compounds. The limit of detection was 0.02 μM, and the lower
limit of quantification was 0.06 μM (injection volume 50 μl). Hesperetin 7-O-sulfate
was quantified on the basis of the hesperetin 7-O-glucuronide calibration curve,
since it demonstrated a comparable molar extinction coefficient and maximum
absorption wavelength[7]. 

Statistics
The Student's two-tailed paired t-test was used to evaluate statistical differences
between the hesperetin metabolite transport in Caco-2 monolayers exposed to
hesperetin in the presence of another flavonoid and the control (only exposed to
hesperetin) from the same transwell plate. Statistical differences in the experiment
analyzing the intracellular content were evaluated using Student's two-tailed
unpaired t-test. Differences were considered significant when p-values were less
than 0.05. Values are expressed as mean and variances as standard deviation (SD).

Results
When hesperetin (10 μM) is incubated for 120 min with Caco-2 cell monolayers, it is
efficiently metabolized into hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate,
of which the efflux is linear with time, and 28% of the initial amount of hesperetin
aglycone can be recovered from the apical, basolateral and intracellular
compartment[7]. On average (±SD) 1.73 (±0.48) nmol and 0.47 (±0.18) nmol of
hesperetin 7-O-glucuronide were transported to the apical and basolateral side,
respectively, and 0.34 (±0.24) nmol and 0.19 (±0.36) nmol of hesperetin 7-O-sulfate
were transported to the apical and basolateral side, respectively (average values of
all controls, n= 18).
On co-incubation with 10 μM of several of the tested flavonoids the efflux of
hesperetin metabolites to the apical side of the Caco-2 cell monolayer decreased,
while the transport to the basolateral side increased (Table 4.2 on page 77 and
Figure 4.3 on page 78). Co-incubation with hesperetin and especially flavonols,
including galangin, isorhamnetin, kaempferide and quercetin, as well as with the
flavones acacetin and chrysin, had the most pronounced effect. Significant effects
were also demonstrated upon co-incubation of Caco-2 cell monolayers with
hesperetin and the isoflavones biochanin A, daidzein and genistein. Interestingly,
the apical efflux of specifically hesperetin 7-O-sulfate was increased instead of
decreased by the co-administration of the isoflavones (Table 4.2 on page 77). 
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Chapter 4
Co-incubation with hesperetin and the chalcone phloretin significantly decreased
the apical efflux of hesperetin metabolites only by 13.3%, and co-incubation with
flavanols including (+)-catechin, EGCG and (-)-epicatechin, as well as with the
rutinosides hesperidin and rutin, did not affect the disposition of hesperetin
metabolites under the applied experimental conditions (Table 4.2 on page 77) and
Figure 4.3.

Figure 4.3  Effect of different flavonoids, grouped per class, on the apical ( ) and basolateral ( )
efflux of hesperetin metabolites (hesperetin 7-O-glucuronide plus hesperetin 7-O-sulfate) as
percentage of the control, detected after 120 min incubation of Caco-2 cell monolayers with 10 μM
hesperetin with or without 10 μM of the respective flavonoids added to the apical side. Mean ± SD
values shown (n= 9-11). (2) = p<0.01; (3) = p<0.001 significantly different compared with the paired
controls.

In the controls, the average basolateral/apical (BL/AP) ratio of hesperetin metabolite
transport was 0.36 (Figure 4.4 on page 79). Co-incubation of the Caco-2 cell
monolayers with hesperetin and chrysin, isorhamnetin or quercetin increased this
ratio above 1 which effectively reverses the predominant side of hesperetin
metabolite efflux (Figure 4.4 on page 79), with quercetin being the most potent
modulator (BL/AP ratio 1.7). 
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Effect of flavonoids on hesperetin metabolism and transport
Figure 4.4  Effect of co-administration of different flavonoids, grouped per class, on the ratio
basolateral/apical efflux of hesperetin metabolites (hesperetin 7-O-glucuronide plus hesperetin
7-O-sulfate), detected after 120 min incubation of Caco-2 cell monolayers with 10 μM hesperetin with
or without 10 μM of the respective flavonoids added to the apical side. Mean ± SD values shown (n=
9-11, control n=18). (1) = p<0.05; (2) = p<0.001 significantly different compared with the paired controls.

However, co-administration of the flavonoids affecting the disposition of hesperetin
metabolites also negatively affected the sum of amounts of hesperetin metabolite
transported to the apical and basolateral side (Figure 4.5 on page 80). The possible
mechanism underlying this effect was investigated further for the experiments
with co-administration with quercetin, which significantly (p<0.01) decreased the
total amount of hesperetin metabolites detected in the apical and basolateral side
by 23% (Figure 4.5 on page 80). An additional experiment was performed in which
the intracellular contents of the Caco-2 cell monolayers exposed to hesperetin or the
combination of hesperetin and quercetin after 120 min was analyzed. Only small
amounts (~3%) of the total amount of hesperetin metabolites detected were present
inside the Caco-2 cells (Figure 4.6 on page 81). Although co-administration of
quercetin showed a significant (p<0.05) increase of 16% in the amount of hesperetin
metabolites inside the cell, this amount accounts for only 5% of the total decrease of
hesperetin metabolites detected extracellularly, demonstrating that the major part
of the decrease (95%) in the total amount of hesperetin metabolites (0.69 nmol) is
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Chapter 4
likely caused by inhibition of the phase II conjugation by co-exposure to quercetin.
This is also reflected by a 70% higher total amount of hesperetin aglycone (0.68
nmol) (Figure 4.6 on page 81). 

Figure 4.5  Effect of co-administration of different flavonoids, grouped per class, on the sum of
hesperetin metabolites at the basolateral and apical side of Caco-2 cell monolayers, detected after 120
min incubation of Caco-2 cell monolayers with 10 μM hesperetin with or without 10 μM of the
respective flavonoids added to the apical side. Mean ± SD values shown (n= 9-11, control n=18).
(1) = p<0.05; (2) = P<0.01; (3) = p<0.001 significantly different compared with the paired controls.

The amount of 3.5 nmol of hesperetin and hesperetin metabolites recovered 120 min
upon exposure in the apical, basolateral and intracellular compartments account for
only 70% of the initial dose (5 nmol). At least part of the explanation for the residual
loss of hesperetin unaccounted for could be the apparent instability or insolubility
of hesperetin aglycone under experimental conditions or during storage, leading to
losses in the overall amount of hesperetin plus metabolites[7].
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Effect of flavonoids on hesperetin metabolism and transport
Figure 4.6  Effect of co-administration of quercetin (10 μM) on the amount of hesperetin metabolites
(hesperetin 7-O-glucuronide plus hesperetin 7-O-sulfate) ( ) and hesperetin aglycone ( ) detected in
the apical (AP), intracellular (IC) and basolateral (BL) compartment of the Caco-2 cell monolayers, and
the sum of amounts in these compartments (AP+IC+BL), detected after 120 min, compared with the
Caco-2 cell monolayers only exposed to hesperetin (control). Mean + SD values shown (n=10).
(1) = p<0.05; (3) = p<0.001 significantly different compared with the control.

Discussion
Metabolism by phase II enzymes and transport from intestinal cells back into the
lumen by ATP binding cassette (ABC) transporters limit the bioavailability of
flavonoids[4-7]. Recently we demonstrated an important role for the ABC transporter
BCRP in the efflux of hesperetin metabolites to the apical side of Caco-2 cell
monolayers, an in vitro model of the intestinal barrier, by co-administration of
standard BCRP inhibitors such as GF120918 and Ko143[7]. The objective of the present
study was to identify whether this effect could also be achieved by
co-administration of hesperetin with other flavonoids, since certain flavonoids were
demonstrated to be potent inhibitors of BCRP (Table 1 and references therein), and
also to define to what extent flavonoids may affect the phase II metabolism of
hesperetin, representing the second mechanism that may influence the
bioavailability of hesperetin[24].
Hesperetin is metabolized by Caco-2 cell monolayers into hesperetin
7-O-glucuronide and hesperetin 7-O-sulfate which are mainly transported to the
apical side[7], and hesperetin partly migrates through the monolayer
passively[7,25,26]. Co-administration of hesperetin with flavonoids, previously
reported to inhibit BCRP in vitro, decreased the apical efflux of hesperetin
metabolites and increased the transport to the basolateral side, while flavonoids
from classes reported not to inhibit BCRP (flavanols, rutinosides) did not affect the
disposition (Table 4.1 on page 73 and Table 4.2 on page 77, Figure 4.3 on page 78 and
Figure 4.4 on page 79). 
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Chapter 4
In general, the order of potency was flavonols>flavones>isoflavones. This order is in
line with structure-activity relationships which have been proposed for
flavonoid-mediated BCRP inhibition: the 2,3-double bond in ring C as well as ring B
attached at position 2, are structural requirements for effective BCRP inhibition,
although the lack of hydroxylation at position 3, as in flavones, not flavonols, has
been defined as an important structural requirement as well[27-29]. The rutinoside
hesperidin is probably not taken up by Caco-2 cells[25], although there is one report
where rutin has been proposed to occur intracellularly in Caco-2 cells[26]. Moreover,
rutin has been described to decrease the apical to basolateral transport of genistein
through Caco-2 cell monolayers, albeit at relatively high concentrations of 50 and
150 μM rutin[30]. This effect might be due to an inhibitory effect of rutin on a
basolateral transporter, which is in line with the slight decrease in the basolateral
amount of hesperetin 7-O-glucuronide detected in our studies upon co-exposure to
rutin (Table 4.2).
Under the applied experimental conditions in this study, that include the use of only
a single dose, quercetin, isorhamnetin and chrysin were demonstrated to be the
most potent modulator of hesperetin metabolite disposition, reversing the
predominant side of efflux from the apical to the basolateral side (Figure 4.4).
Co-exposure to flavonoids that significantly modulated the BL/AP ratio also resulted
in a decreased amount of hesperetin metabolites excreted from the cells (Figure 4.5
on page 80), but intracellular accumulation of hesperetin metabolites did not
account for this decrease (Figure 4.6 on page 81). In fact, only a small amount of the
total amount of hesperetin metabolites was detected in the cellular compartment,
which indicates a high affinity of ABC transporters towards conjugates of
hesperetin, a conclusion advanced previously to explain the negligible amounts of
metabolites of the flavone baicalein in Caco-2 cells[31]. Since quercetin is also known
to be metabolized by Caco-2 cells into glucuronidated and sulfonated
metabolites[32,33], a (competitive) inhibitory effect of quercetin on the phase II
metabolism of hesperetin might be the reason for the 27% decrease in the total
amount of hesperetin metabolites formed by the Caco-2 cells upon co-exposure with
quercetin.
Specific flavonoids have been described as potent modulators of BCRP-mediated
activity[22,23], including hesperetin itself[27,34-37], and specific combinations of
flavonoids have demonstrated an additive effect on the inhibition of BCRP in
vitro[37], although the exact mechanism of interaction is not precisely defined.
Flavonoids and/or their metabolites could interact directly with BCRP associated
ATP-ase activity[34], however, as high affinity substrates they probably also
(competitively) inhibit BCRP-mediated transport. Since different flavonoids are
substrates and/or modulators, interaction between different flavonoids may affect
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Effect of flavonoids on hesperetin metabolism and transport
their respective bioavailability.
Inhibition of murine BCRP (Bcrp1) has been demonstrated to increase the
bioavailability of total plasma quercetin while limiting the intestinal efflux of
quercetin glucuronide metabolites[5], indicating a role for BCRP in vivo in the efflux
of quercetin glucuronides to the intestinal lumen and bioavailability of total plasma
quercetin. In a study on the bioavailability of biochanin A, a single oral
co-administration of biochanin A together with the combination of quercetin and
EGCG did increase the bioavailability of biochanin A in Sprague-Dawley rats[38]. This
could be explained by the fact that BCRP plays an important role in limiting the
bioavailability of both quercetin[5] and biochanin A[39], and that both have been
demonstrated to interact with BCRP[34,36,37]. In another study, a 3-week period of
co-administration of quercetin and (+)-catechin, the latter was reported not to
interact with BCRP[27,35], did not result in an increased bioavailability of both
compounds in Wistar rats fed a diet containing (+)-catechin, quercetin, or both[40].
Flavanols including (+)-catechin, (-)-epicatechin and EGCG, and/or their metabolites,
preferably interact with other classes of ABC transporters such as MRPs[41-43].
Modulation of the intracellular amount or bioavailability of EGCG has been
successfully demonstrated in HT-29 cells and CF-1 mice, respectively, in combination
with genistein[44], which could be explained by the fact that both compounds have
been reported to be substrates of MRPs[41,45].
In conclusion, the amount of hesperetin metabolites excreted to the basolateral side
of the Caco-2 cell monolayer, representing the blood/plasma side of the intestinal
barrier, was doubled upon co-exposure with μM concentrations of quercetin, in
spite of the 27% reduction in phase II metabolite formation also resulting from the
co-exposure with quercetin. Since the effect of quercetin on transport dominates
over the effect on metabolism, co-administration of quercetin, or other specific
flavonoids, could be a strategy to improve the limited bioavailability of hesperetin,
which in turn could lead to an improved bioefficacy. Altogether, whether
co-administration of other flavonoids could indeed increase the bioavailability of
hesperetin in vivo remains to be elucidated and is currently under investigation in
our laboratory.
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Chapter 5
Abstract
The citrus flavonoid hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) has been
associated with beneficial health effects including a reduced risk of osteoporosis. In
spite of the relative high dietary intake of hesperetin from citrus consumption, the
bioavailability of this flavonoid is limited. This is partly due to its efficient intestinal
phase II metabolism and ABC transporter-mediated excretion from the intestinal
cells back into the intestinal lumen during uptake. Our previous in vitro study
revealed that co-administration of quercetin may increase the basolateral transport
of hesperetin through intestinal cell monolayers at the cost of its apical transport,
pointing at a possible way to increase hesperetin bioavailability. The objective of
the present study was to investigate whether this observation could be confirmed in
an in vivo rat model. Quercetin was previously shown to exert this effect in part by
acting as an inhibitor of BCRP mediated apical intestinal transport. In the present
study hesperetin 7-O-glucoside (15 or 3 mg/kg body weight (bw)) was administrated
by oral gavage to Sprague-Dawley rats in the presence or absence of quercetin
(15 mg/kg bw), and systemic blood was taken 15, 30, 45, 60, 90, 120, 240 and 480 min
after dosing. The concentration of plasma hesperetin and its demethylated and
remethylated metabolites (eriodictyol and homoeriodictyol) after treatment of
blood samples with ß-glucuronidase/sulfatase were determined by uPLC-DAD.
Co-administration of quercetin did increase total hesperetin plasma concentrations
especially in the early phase of the concentration time curve when elimination was
not yet dominating over uptake, but did not significantly increase the AUC0-8h (area
under the concentration time curve from 0 to 8 hours). It is concluded that the effect
of co-administration of quercetin as an inhibitor of apical intestinal ABC transporter
mediated transport may result in an increased bioavailability of hesperetin
especially during the early phase of exposure when absorption processes still
dominate over elimination processes.

Introduction
Flavonoids are a large class of polyphenols present in fruits, vegetables and plant
derived products, in which they often occur as ß-glycosides[1]. Despite their
relatively high dietary intake (~1 g/day)[2], the bioavailability of many flavonoids
and/or their metabolites is limited[3]. Dependent on the type of flavonoid, this
limited bioavailability can for an important part be attributed to efficient intestinal
metabolism and/or efflux from intestinal cells to the intestinal lumen mediated by
ATP-binding cassette (ABC) transporters located in the apical membrane of
enterocytes.
The flavanone hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 5.1) is the
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Effect of quercetin on hesperetin 7-O-glucoside bioavailability
aglycone of hesperidin (hesperetin 7-O-rutinoside) which is present in high amounts
in sweet oranges, orange juice and other citrus fruits including lemon, lime and
mandarin[4]. Also certain herbs, spices, teas and other products have been reported
to contain hesperidin: such as rosemary[5], honeybush tea[6], and a large number of
Chinese traditional medicinal products[7]. Hesperidin must by hydrolyzed by colonic
microbiota prior to absorption whereas the aglycone hesperetin, as well as the
monosaccharide hesperetin 7-O-glucoside, are already taken up earlier in the
digestive tract[8,9]. Hesperetin 7-O-glucoside can be hydrolyzed by lactase phloridzin
hydrolase (LPH) followed by migration of the aglycone into the intestinal cell
and/or the hesperetin 7-O-glucoside could be transported into the intestinal cell via
a sodium-dependent glucose transporter (e.g. SGLT1) after which it is deglucosylated
within the intestinal cell[10,11]. 

Figure 5.1  Chemical structures of hesperetin, hesperidin, hesperetin 7-O-glucoside, eriodictyol,
homoeriodictyol, quercetin, isorhamnetin and tamarixetin.
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The resulting intracellular hesperetin aglycone is conjugated into glucuronidated
and sulfonated metabolites which have been detected in human and rat
plasma[12-17]. These conjugation reactions occurring in the intestinal cells have been
reported to play an important role during first pass metabolism[18,19]. In rat, after
oral administration of hesperidin (50 mg/kg body weight (bw)), hesperetin is mainly
present in plasma as hesperetin 7-O-glucuronide and hesperetin 3'-O-glucuronide,
and as glucuronides of homoeriodictyol[15], which can be formed after
demethylation of hesperetin into eriodictyol[20], and remethylation into
homoeriodictyol or hesperetin[21].
Although largely dependent on dietary habits (i.e. citrus consumption), the amount
of hesperidin can form a major part of the total flavonoid intake since orange juice
can reach 0.5 to 1 g/l hesperidin[4,22]. Conversion of hesperidin in citrus juice into
hesperetin 7-O-glucoside by enzymatic-treatment has demonstrated to increase the
bioavailability of hesperetin from orange juice substantially[9]. Hesperidin,
hesperetin as well as hesperetin conjugates have been reported to provide
beneficial health effects including the reduction of the risk of osteoporosis[23-25]. 
Previously we studied the intestinal metabolism and transport of hesperetin in vitro
using Caco-2 cell monolayers in a two-compartment transwell system as a model for
the intestinal barrier[26]. We demonstrated that hesperetin is metabolized and
transported back to the apical compartment, simulating the intestinal lumen side,
by the ABC transporter Breast Cancer Resistance Protein (BCRP)[26]. In addition, we
demonstrated that co-administering hesperetin with flavonoids reported to inhibit
BCRP, reduced the apical efflux of hesperetin metabolites and increased the
transport of hesperetin metabolites to the basolateral side, simulating the
blood/plasma side. This increase in basolateral transport was up to 2-fold in the case
of co-administration of hesperetin with quercetin, resulting in reversal of the
preferential side for cellular efflux of hesperetin metabolites from Caco-2 cell
monolayers, and preferentially basolateral instead of apical excretion[27]. Based on
this in vitro result one might postulate that co-administration with specific
flavonoids could be a strategy to improve the limited bioavailability of hesperetin in
vivo. Therefore, the objective of the present study was to investigate the effect of
co-administration of quercetin on the bioavailability of hesperetin 7-O-glucoside. In
this in vivo study hesperetin 7-O-glucoside was used instead of hesperetin itself,
because previous studies in rats revealed hesperetin to be already absorbed to a
significant extent in the stomach excluding the possibility to study the effects of
co-administering quercetin on the intestinal uptake of hesperetin (unpublished
results). Hesperetin 7-O-glucoside was found to be absorbed in the small intestine
and thus provided a better model compound to study the effect of quercetin on its
intestinal uptake and subsequent bioavailability[9]. In the present study rats were
orally administered hesperetin 7-O-glucoside (15 or 3 mg/kg bw), in the presence or
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absence of quercetin (15 mg/kg bw). Systemic blood was taken at different time
points upon dosing (15, 30, 45, 60, 90, 120, 240 and 480 min) and after enzymatic
hydrolysis the plasma concentrations of hesperetin, eriodicyiol and homoeriodictyol
were determined by uPLC-DAD. Quercetin was chosen for co-administration since it
was found to be a potent inhibitor of BCRP in vitro[28,29], able to significantly
influence and even reverse the preferential side for cellular efflux of hesperetin
metabolites from Caco-2 cell monolayers[27]. In a previous study in rats[30], in vivo
co-administration of quercetin (10 mg/kg bw) resulted in a 1.3-fold increased oral
bioavailability of the procarcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]-
pyridine (PhIP), which is also a substrate of BCRP[31,32].

Materials and Methods
Materials
L-ascorbic acid, eriodictyol (purity ≥95%), ß-glucuronidase from Helix pomatia (type
HP-2, aqueous solution), hesperetin (purity ≥95%) and quercetin dihydrate were
obtained from Sigma (St. Louis, MO), homoeriodictyol (purity ≥ 99%), isorhamnetin
(purity ≥ 99%) and tamarixetin (purity ≥ 99%) were purchased from Extrasynthése
(Genay, France), and daidzein (purity ≥ 98%) from Indofine Chemical Company
(Belle Mead, NJ), hesperetin 7-O-glucoside from Nestlé Research Center (Lausanne,
Switzerland), dimethyl sulfoxide (DMSO), glacial acetic acid and sodium acetate
trihydrate from Merck (Darmstadt, Germany), ethyl acetate and
2-hydroxypropyl-ß-cyclodextrin from Aldrich (Steinheim, Germany), trifluoroacetic
acid (TFA) from Fluka (Buchs, Switzerland), and acetonitrile and methanol from
Biosolve (Valkenswaard, The Netherlands).

Animal experiment
The animal study complied with the Dutch Act on Animal Experimentation (Stb.
1977, 67; Stb. 1996, 565), revised February 5, 1997. The study has been approved by the
animal experimentation committee of Wageningen University; all procedures used
were considered to avoid or minimize discomfort, distress and pain to the
animals[33]. Five week old male Sprague-Dawley rats were obtained from Harlan
(Horst, The Netherlands) and acclimatized for 1 wk. The rats were housed, multiple
rats per cage, under standard conditions, including a temperature of ± 20°C, a 12 hrs
light/dark cycle and a humidity of 55%. Rats were fed ad libitum with standard
Harlan Teklad diet, but fasted the night prior to the experiment. The rats had
unlimited access to water at all times.
First, an experiment was done with 4 rats in 2 groups: a control group only receiving
hesperetin 7-O-glucoside (15 mg/kg bw) (n=2), and a group co-administrated with
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quercetin (15 mg/kg bw) (n=2). This experiment was repeated three times with a
lower dose of hesperetin 7-O-glucoside (3 mg/kg bw), co-administered or not with
quercetin (15 mg/kg bw) including 3 rats in each dose group.
The rats were randomly divided over the dosing groups. The experiment was started
by weighing the rats, housing them separately. The average (±SD) weight of the rats
was 172.3 ± 20.3 g (n=22). The rats received 1 ml test solution by oral gavage
containing hesperetin 7-O-glucoside in the presence or absence quercetin in 25%
(w/v) 2-hydroxypropyl-ß-cyclodextrin in fresh tap water. Blood samples of ~ 0.15 ml
were taken from the tail vein at 15, 30, 45, 60, 90, 120, 240 and 480 min after dosing
and collected in Microvette CB 300 tubes containing lithium-heparin from Sarstedt
(N¸mbrecht, Germany) and stored on ice. The plasma was separated by
centrifugation at 2000 g for 5 min in a cooled centrifuge and stored at -20°C. After
the last blood sample was taken, the rats were euthanized by CO2/O2 gas.

Plasma sample preparation
Plasma samples (50 μl) were spiked with 2.5 μl daidzein (200 μM / DMSO) as internal
standard (IS), and to this solution 5 μl 0.78 M sodium acetate (pH 4.8), 5 μl 1.0 M
ascorbic acid in water, 135 μl nanopure water, and 2.5 μl ß-glucuronidase from Helix
pomatia (type HP-2, aqueous solution, containing sulfatase activity) were added.
The mixture was incubated for 18 hrs at 37°C in a shaking water bath, after which
the water phase was extracted with 0.5 ml ethyl acetate followed by centrifugation
at 16,000 g for 4 min. The ethyl acetate was removed and this extraction was
repeated twice. The collected ethyl acetate fractions were pooled and  evaporated to
dryness under a stream of nitrogen, at 30°C. The residue was re-suspended in 100 μl
50:50  methanol:0.1% trifluoroacetic acid (TFA) in nanopure water by sonication for
4 min. Spiking samples with daidzein allowed adjustment of the concentration
according to the extraction efficiency from the plasma (recovery of daidzein was
always > 85%).

uPLC-DAD analysis
The uPLC-DAD system consisted of a Waters (Milford, MA) Acquity binary solvent
manager, sample manager, and photodiode array detector, equipped with a Waters
BEH C18 1.7μm 50- * 2.1-mm column. After centrifugation of the samples at 16,000 g
for 4 min, 3.5 μl of the supernatant was injected and eluted at a flow rate of 600
μl/min using 20% acetonitrile in 0.1% trifluoroacetic acid in nanopure water for 2
min. Thereafter the percentage of acetonitrile was increased to 25% in 4 min, and to
80% in 30 sec, which condition was kept for 30 sec as a cleaning step. Thereafter the
percentage of acetonitrile was brought back to its initial value in 30 sec, a condition
that was kept for 42 sec to re-equilibrate the column (total run time 8.12 min).
DAD spectra were detected between 210 and 420 nm, and uPLC chromatograms
92



Effect of quercetin on hesperetin 7-O-glucoside bioavailability
acquired at 280 nm were used for quantification. Hesperetin, homoeriodictyol and
eriodictyol were quantified on the basis of calibration curves made with the pure
compounds.

Pharmacokinetics
The plasma peak concentration (Cmax), the time to reach the peak concentration
(Tmax) and the area under the plasma concentration-time curve was determined
from time zero to 2 hours or to the time of the last sample which was 8 hours after
dosing (AUC0-2hr and AUC0-8hr, respectively). Values were calculated for hesperetin,
homoeriodictyol and eriodictyol, using Graphpad Prism (version 5.02) from
Graphpad Software (San Diego, CA). The Student's two-tailed unpaired t test was
applied to evaluate statistical differences. Differences were considered significant
when p values were less than 0.05.

Results
Plasma analysis
Figure 5.2 on page 94 shows a uPLC chromatogram (Figure 5.2A on page 94) of a
mixture containing standards of the compounds of interest which were to be
expected in the plasma samples from the animal experiment after enzymatic
hydrolysis: hesperetin (tR 5.2 min, UVmax 287.7 nm), homoeriodictyol (tR 4.7 min,
UVmax 287.1 nm) and eriodictyol (tR 2.5 min, UVmax 287.7 nm), as well as the
compounds to be expected in the plasma after enzymatic hydrolysis of the animals
co-exposed to quercetin: quercetin (tR 2.7 min, UVmax 255.1 and 371.3 nm),
isorhamnetin (tR 5.5 min, UVmax 254.5 and 369.4 nm) and tamarixetin (tR 5.7 min,
UVmax 254.5 and 373.2 nm). The uPLC method was able to separate hesperetin from
its demethylated and remethylated metabolites, eriodictyol and homoeriodictyol, as
well as from quercetin and its methylated metabolites isorhamnetin
(3'-O-methylquercetin) and tamarixetin (4'-O-methylquercetin). The internal
standard daidzein exhibited a tR of 2.0 min (UVmax 249.0 nm, shoulder at 303.1 nm).
Figure 5.2B on page 94 shows a representative uPLC-DAD chromatogram of a
hydrolyzed plasma sample from a rat exposed to hesperetin 7-O-glucoside
co-administered with quercetin. The presence of hesperetin and quercetin is clearly
demonstrated, as well as small amounts of  eriodictyol, homoeriodictyol,
isorhamnetin and tamarixetin (Figure 5.2B).
93



Chapter 5
Figure 5.2  uPLC chromatogram of a mixture containing standards of the compounds expected in the
plasma samples from the animal experiment after enzymatic hydrolysis (A), and a representative uPLC
chromatogram of a hydrolyzed plasma sample from a rat exposed to hesperetin 7-O-glucoside and
quercetin (B). 1 = daidzein, 2 = eriodictyol, 3 = quercetin, 4 = homoeriodictyol, 5 = hesperetin, 6 =
tamarixetin, 7 = isorhamnetin. AU = absorption units.

Pharmacokinetics
Figure 5.3A depicts the total plasma hesperetin in rats exposed to 15 mg/kg bw
hesperetin 7-O-glucoside in the presence or absence of quercetin (15 mg/kg bw), and
Table 5.1 on page 95 shows the pharmacokinetic parameters derived from these
measurements. The AUC0-8hr as determined for total plasma hesperetin in rats
exposed to 15 mg/kg bw was 53.8 μmol/L/h (Table 5.1 on page 95, Figure 5.3A).
Co-administration of quercetin did not result in a significantly increase in Cmax or
the AUC values, although both the AUC0-2hr and AUC0-8hr did show a tendency to be
increased, amounting to respectively 118% and 119% of the corresponding value
obtained for rats exposed to hesperetin 7-O-glucuronide alone (Table 5.1, Figure 5.3A).
Hardly any eriodictyol was detected, whereas homoeriodictyol was present up to a
plasma concentration of 1.5 μM at 30 min (Figure 5.3B), amounting to about 5% of the
hesperetin plasma concentration.

Figure 5.3  Plasma concentration vs. time of A) total hesperetin and B) homoeriodictyol (thick line)
and eriodictyol (thin line) in rats after oral exposure to 15 mg/kg bw hesperetin 7-O-glucoside in the
absence ( ○) or presence ( □) of 15 mg/kg bw quercetin. Values are mean ± SD, n=2.
94



Effect of quercetin on hesperetin 7-O-glucoside bioavailability
Table 5.1  Pharmacokinetic parameters for total plasma hesperetin in rats (n=2) given 15 mg/kg bw
hesperetin 7-O-glucoside by oral gavage in the absence or presence of quercetin (15 mg/kg bw). Mean
(±SD) values shown.

In order to investigate whether the effect of quercetin on the bioavailability of
hesperetin 7-O-glucoside would be more significant when the relative ratio between
quercetin and hesperetin 7-O-glucoside would be increased enabling easier
competition by quercetin for the relevant ABC transporter, the experiment was
repeated using a lower dose of hesperetin 7-O-glucoside (3 mg/kg bw) but keeping
the dose of quercetin at 15 mg/kg bw. Figure 5.4 on page 96 depicts the total plasma
hesperetin from an experiment in which three rats were exposed to the lower dose
of 3 mg/kg hesperetin 7-O-glucoside either in the presence or in the absence of
quercetin (15 mg/kg bw) and Table 5.2 on page 96 presents the corresponding
pharmacokinetic parameters. The results of this experiment demonstrated that
co-administration of 15 mg/kg bw did result in a significant 1.3-fold higher Cmax and
a significant 1.3-fold higher AUC0-2hr (Table 5.2, Figure 5.4), whereas the 1.4 fold
increase in the AUC0-8hr appeared not to be significant. To increase the sensitivity of
the analysis the experiment was repeated twice. However, in these subsequent
experiments an increased plasma concentration of hesperetin and its metabolites
upon co-administration with quercetin was only observed for the samples at 15
minutes following exposure and a significant increase in the AUC0-2hr or AUC0-8hr
were not observed. 

Parameter unit control +quercetin
n 2 2

Cmax (μmol/L) 24.4 (±0.4) 30.5 (±4.7)

Tmax (min) 30 15

AUC0-2hr (μmol/L/h) 29.2 (±2.8) 34.6 (±4.2)

AUC0-8hr (μmol/L/h) 53.8 (±10.5) 63.8 (±16.8)
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Figure 5.4  Plasma concentration vs. time of hesperetin in rats after oral exposure to 3 mg/kg bw
hesperetin 7-O-glucoside in the absence ( ○) or presence ( □) of 15 mg/kg bw quercetin. Values are
mean (± SD), n=3.

Figure5.5 on page97 presents a summary of the combined data of all 4 experiments
(n=11 for all data points), expressing the plasma concentrations of hesperetin and its
metabolites observed upon co-administration with quercetin as percentage of the
amount detected in the plasma of the corresponding rats dosed with hesperetin
7-O-glucoside alone. From these results it can be concluded that a statistically
significant 32 % (p<0.05) increase in hesperetin bioavailability is observed especially
at 15 min post dosing, whereas at subsequent time points the relative increase was
no longer statistically significant (Figure 5.5).

Table 5.2  Pharmacokinetic parameters for total plasma hesperetin in rats (n=3) given 3 mg/kg bw
hesperetin 7-O-glucoside per oral gavage in the absence or presence of quercetin (15 mg/kg bw). Mean
(±SD) values shown. *, p < 0.05 significantly different compared to the control group.

Parameter unit control +quercetin
n 3 3
Cmax (μmol/L) 2.6 (±0.2) 3.3 (±0.3)*
Tmax (min) 30 30
AUC0-2hr (μmol/L/h) 3.5 (±0.2) 4.4 (±0.3)*
AUC0-8hr (μmol/L/h) 7.7 (±1.8) 10.7 (±2.3)
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Figure 5.5  Plasma hesperetin levels in rats exposed to hesperetin 7-O-glucoside in the presence of
quercetin, expressed as percentage of the plasma hesperetin levels in the corresponding controls
exposed to hesperetin 7-O-glucoside in the absence of quercetin. Mean values (±SEM) (n=11). *, p <0.05
significantly different compared to the control.

Discussion
Flavonoids can be potent modulators of intestinal metabolism and ABC transporter
mediated transport, which can affect the oral bioavailability of other compounds[34].
Co-administration of quercetin in vitro to a Caco-2 cell monolayer, as a model
system for the intestinal transport barrier, increased the transport to the basolateral
side of several compounds including drugs such as talinolol[35] or cimetidine[36], as
well as toxins such as ochratoxin A[37] and PhIP[38]. These effects were confirmed in
in vivo studies using rats demonstrating that co-administration with quercetin
resulted in an increased relative oral bioavailability (AUC0-24hr) of paclitaxel[39] and
PhIP (AUC0-8hr)[30]. In the present paper we studied whether co-administration of
quercetin resulted in an increased oral bioavailability of hesperetin 7-O-glucoside.
Sprague-Dawley rats were dosed by gavage to hesperetin 7-O-glucoside rather than
to hesperetin because hesperetin, having a logP value of 2.44[26] and a molecular
weight of 302 g/mol, is already taken up in the stomach (unpublished results)
excluding the possibility to study the effects of co-administration of quercetin on
intestinal uptake. Hesperetin 7-O-glucoside was found to be absorbed in the small
intestine and thus provides a better model compound to study the effect of
quercetin on intestinal uptake and subsequent bioavailability of hesperetin. Our
previous studies using Caco-2 cells[26,27] were performed with hesperetin aglycone
since Caco-2 cells, in contrast to the intestinal cells, have a very low LPH activity[10]
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resulting in a slow hydrolysis and hence uptake of hesperetin 7-O-glucoside, making
hesperetin 7-O-glucoside an adequate model compound in vivo but not in vitro
using Caco-2 cells.
Results of the present study revealed that only the rats exposed to the highest
concentration of hesperetin 7-O-glucoside (15 mg/kg bw) showed quantifiable
plasma concentrations of homoeriodictyol (Figure 3B), but only low plasma levels of
eriodictyol, often below the limit of quantification. In the rats exposed to lower
concentrations of hesperetin 7-O-glucoside (3 mg/kg bw), no eriodictyol and only a
little homoeriodictyol, mostly below quantification limits, were detected.
Interestingly, the presence of homoeriodictyol conjugates (mainly glucuronides) in
addition to hesperetin conjugates amounted to about 40% of the total flavanone
metabolites in the plasma of Wistar rats exposed to 50 mg/kg bw hesperidin [15], or
to 0.25 or 0.5% (v/v) hesperidin in the diet[41], a level that was not observed in our
experiments. Given that hesperidin, in contrast to hesperetin 7-O-glucoside, is
believed to be deconjugated and absorbed in the colon, this observation suggests
that hesperetin might not be primarily demethylated into eriodictyol, and
remethylated into hesperetin or homoeriodictyol in the liver, but that this
conversion may be mainly performed by gut microbiota, which have been reported
before to efficiently transmethylate hesperetin into homoeriodictyol[42].
In the present study the Cmax values were observed at the first two time points
collected (15 or 30 min) and in the first case it cannot even be excluded that the real
Cmax already occurs even before 15 min post dosing. In human studies in which
healthy volunteers (after fasting) were given enzymatically-treated orange juice
containing hesperetin 7-O-glucoside (1.21 mg/kg bw), the Cmax of 2.6 μM plasma
hesperetin was detected at 30 min, the first time point measured[9]. Similar results
were obtained for the flavanone naringenin 7-O-glucoside, both indicating a rapid
uptake of hesperetin 7-O-glucoside in human as well[40].
Co-administration of quercetin did increase total hesperetin plasma concentrations
especially in the early phase of the concentration time curve when elimination was
not yet dominating over uptake, but did not significantly increase the AUC0-8hr. At
15 min post dosing, the amount of total plasma hesperetin was 32% higher (p<0.05)
compared to the control, whereas at subsequent time points the relative increase
was no longer statistically significant (Figure 5). It is concluded that the effect of
co-administration of quercetin as an inhibitor of apical intestinal ABC transporter
mediated transport may result in an increased bioavailability of hesperetin
especially during the early phase of exposure when absorption processes still
dominate over elimination processes. In addition, the uptake of hesperetin at
relatively later time points will occur in a reduced presence of quercetin, since this
compound is taken up as well, which could also help to explain the transient effect
of the co-administration of quercetin.
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Other groups studied the effect of co-administration of other flavonoids on
flavonoid bioavailability. Moon & Morris[43] demonstrated that co-administration of
the isoflavone biochanin A with both quercetin and the flavanol
(-)-epigallocatechin-3-gallate (EGCG) (50 mg/kg bw each via oral gavage in 1:20
DMSO:olive oil) significantly increased the AUC0-24hr of biochanin A by 2-fold in
Sprague Dawley rats. This effect could be explained by the fact that BCRP plays an
important role in limiting the bioavailability of both biochanin A and
quercetin[44,45], and that both have been demonstrated to interact with
BCRP[28,29,46]. However, in another study, a 3-week period of co-administration of
quercetin and (+)-catechin did not result in an increased bioavailability of both
compounds in Wistar rats fed a diet containing (+)-catechin, or quercetin or both
[47]. This might be explained by the fact that flavanols such as catechin and/or their
metabolites preferably interact with other classes of ABC transporters such as
MRPs[48].
Altogether it is concluded that co-administration of quercetin as an inhibitor of
apical intestinal ABC transporter mediated transport may result in increased
bioavailability of hesperetin especially during the early phase of exposure when
absorption processes still dominate over elimination processes. 
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Chapter 6
Abstract
Phase II metabolism by UDP-glucuronosyltransferases (UGTs) and sulfotransferases
(SULTs) is the predominant metabolic pathway during the first pass metabolism of
hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone). In the present study we have
determined the kinetics for glucuronidation and sulfonation of hesperetin by 12
individual UGT and 12 individual SULT enzymes as well as by human or rat small
intestinal, colonic and hepatic microsomal and cytosolic fractions. Results
demonstrate that hesperetin is conjugated at positions 7 and 3', and that major
enzyme-specific differences in kinetics and regioselectivity for the UGT and SULT
catalyzed conjugations exist. UGT1A9, UGT1A1, UGT1A7, UGT1A8 and UGT1A3 are the
major enzymes catalyzing hesperetin glucuronidation, the latter only producing
7-O-glucuronide, while UGT1A7 mainly produced 3'-O-glucuronide. Furthermore,
UGT1A6 and UGT2B4 only produce hesperetin 7-O-glucuronide, while UGT1A1,
UGT1A8, UGT1A9, UGT1A10, UGT2B7 and UGT2B15 conjugate both positions. SULT1A2
and SULT1A1 catalyze preferably and most efficiently the formation of hesperetin
3'-O-sulfate, and SULT1C4 preferably and most efficiently the formation of
hesperetin 7-O-sulfate. Based on expression levels also SULT1A3 and SULT1B1 will
likely play a role in the sulfo-conjugation of hesperetin in vivo. The results help to
explain discrepancies in metabolite patterns determined in tissues or systems with
different expression of UGTs and SULTs, e.g. hepatic and intestinal fractions or
Caco-2 cells. The incubations with rat and human tissue samples support an
important role for the intestinal cells during first pass metabolism in the formation
of hesperetin 3'-O-glucuronide and 7-O-glucuronide, which appear to be the major
hesperetin metabolites found in vivo.

Introduction
The flavanone hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 6.1 on
page 105) is the aglycone of hesperidin (hesperetin 7-O-rutinoside), which is the
major flavonoid present in sweet oranges (Citrus sinensis) and orange juice, and
also occurs in other citrus fruits and some herbs[1]. Hesperidin and hesperetin have
been reported to provide beneficial effects on health, including a reduced risk of
osteoporosis[2].
Upon ingestion, hesperidin has to be hydrolyzed into hesperetin aglycone by colonic
microbiota prior to its absorption[3]. Enzymatic conversion of hesperidin prior to
consumption to the monosaccharide hesperetin-7-O-glucoside has been
demonstrated to result in absorption already in the small intestine after
deglucosylation by phloridzin hydrolase and/or facilitated transport into the
intestinal cells by a sugar transporter such as SGLT1 followed by intracellular
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Phase II metabolism of hesperetin
deglucosylation[4]. In the intestinal cells, or during further first pass metabolism,
hesperetin aglycone is metabolized by UDP-glucuronosyltransferases (UGTs) and
sulfotransferases (SULTs) into respectively glucuronidated and sulfonated
metabolites, which have been detected in human and rat plasma[5-8]. The intestinal
barrier is believed to play a dominant role in the phase II conjugation during the
first pass metabolism of hesperetin[9], and in its limited bioavailability because of
efflux of the metabolites back to the intestinal lumen by ABC transport
proteins[10,11].

Figure 6.1  Chemical structure of hesperetin (4'-methoxy-3',5,7 trihydroxyflavanone).

UGTs form a gene superfamily and currently a total of 22 different UGT proteins
have been detected in human tissues, belonging to either the UGT1A (UGT1A1,
UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9 and UGT1A10), the
UGT2A (UGT2A1, UGT2A2 and UGT2A3), the UGT2B (UGT2B4, UGT2B7, UGT2B10,
UGT2B11, UGT2B15, UGT2B17 and UGT2B28), the UGT3 (UGT3A1 and UGT3A2) or the
UGT8 (UGT8A1) family[12]. SULTs form a gene superfamily and a total of ten different
SULT proteins have been detected in human tissues including SULT1A1, SULT1A2,
SULT1A3 (encoded by SULT1A3 and SULT1A4 and therefore also called SULT1A3/4),
SULT1B1, SULT1C2, SULT1C4, SULT1E1, SULT2A1, SULT2B1_v2 and SULT4A1_v2[13,14]. In
addition, there are some SULTs which have only been detected at the mRNA level:
SULT2B1_v1, SULT1C3 and SULT6B1[15], the latter solely in testis[16]. SULT1C2, SULT1C4,
SULT2B1_v1, SULT2B1_v2 and SULT4A1_v2 are respectively also referred to as SULT1C1,
SULT1C2, SULT2B1a, SULT2B1b and SULT4A1 in literature not following the
nomenclature proposed by Blanchard et al.[17].
We previously characterized the metabolism of hesperetin in vitro using Caco-2 cell
monolayers as a model for the small intestinal barrier and reported that hesperetin
is metabolized into 7-O-glucuronide and 7-O-sulfate metabolites[11]. However,
analysis of metabolites in plasma demonstrated the existence of other glucuronide
and sulfo-conjugates as well[6-8]. Different individual UGTs and SULTs probably
possess different kinetics and regioselectivity for the conjugation of hesperetin, as
has been reported for the glucuronidation and sulfonation of other flavonoids[18-21],
and therefore different levels of expression of UGTs and SULTs might lead to
different metabolite patterns.
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Chapter 6
In the present paper we determined the kinetics for the conversion of hesperetin
into glucuronidated and sulfonated metabolites by individual UGT and SULT
enzymes, respectively. The metabolites formed were identified by HPLC-DAD in
combination with authentic standards or 1H-NMR. The UGT isoforms tested include
12 individual UGTs reported to be expressed, at least at the mRNA level, in human
intestinal and hepatic cells: UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8,
UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17[22-25]. The SULT isoforms
tested include 12 individual SULTs which have been detected in human intestinal
and hepatic tissues: SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C2, SULT1E1, SULT1C4
and SULT2A1[13,14,26], and in addition SULT1C3, SULT2B1_v1, SULT2B1_v2 and
SULT4A1_v2 which have not been detected on the protein level in these tissues[15,27].
Furthermore, we studied the apparent kinetics of glucuronidation and sulfonation
using respectively microsomes and cytosol derived from tissues from human and
rat playing a role during the first pass metabolism of hesperetin after ingestion of
hesperidin or hesperetin 7-O-glucoside: the small intestine, the colon and the liver.

Materials and Methods
Materials
Alamethicin (from Trichoderma viride), hesperetin (purity ≥ 95%), L-ascorbic acid
and uridine 5'-diphosphoglucuronic acid (UDPGA) were obtained from Sigma (St.
Louis, MO), 3'-phosphoadenosine 5'-phosphosulfate (PAPS) from Fluka (Buchs,
Switzerland), deuterated acetic acid, dimethyl sulfoxide (DMSO), dipotassium
hydrogen phosphate trihydrate, hydrochloric acid and potassium dihydrogen
phosphate from Merck (Darmstadt, Germany), acetonitrile and methanol from
Sigma-Aldrich (Steinheim, Germany), Tris from Invitrogen (Carlsbad, CA), and
trifluoroacetic acid from J.T. Baker (Philipsburg, NJ). Deuterated methanol-d4
(99.96% d) was obtained from Euriso-Top (Gif-sur-Yvette, France). Authentic
standards of hesperetin 7-O-glucuronide (purity > 90%), hesperetin 3'-O-glucuronide
(purity > 90%) and hesperetin 7-O-sulfate (purity < 50%) were provided by Nestlé
Research Center (Lausanne, Switzerland).
UGT supersomes from cDNA transfected insect cells expressing individual human
UGTs were obtained from Gentest (Woburn, MA) and their glucuronidation
activities toward standard substrates as described by the supplier were as follows:
UGT1A1 (lot 95244) and UGT1A3 (lot 70200): 817 and 190 pmol min-1 mg protein-1

estradiol 3-glucuronidation activity, respectively; UGT1A4 (lot 95375): 1100 pmol
min-1 mg protein-1 trifluoperazine glucuronidation activity; UGT1A6 (lot 70201),
UGT1A7 (lot 68106), UGT1A8 (lot 95862), UGT1A9 (lot 81291), UGT1A10 (lot 96097),
UGT2B4 (lot 93808), UGT2B7 (lot 83494) and UGT2B15 (lot 70203): 5200, 12000, 630,
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Phase II metabolism of hesperetin
7200, 86, 180, 1200 and 3000 pmol min-1 mg protein-1 7-hydroxy
4-trifluoromethylcoumarin glucuronidation activity, respectively; UGT2B17 (lot
09302): 1100 pmol min-1 mg protein-1 eugenol glucuronidation activity. SULTs from
cDNA transfected bacteria expressing quantified concentrations of individual
human SULT enzymes were prepared as described elsewhere in detail[28].
Pooled human small intestinal microsomes (batch MIC318012), pooled rat (male
Sprague-Dawley) small intestinal microsomes (batch MIC323019), pooled human
small intestinal cytosol (batch CYT318004), and pooled rat (male Sprague-Dawley)
small intestinal cytosol (batch CYT323008), were obtained from Biopredic (Rennes,
France), without quantified glucuronidation or sulfonation activities. Human single
donor colon microsomes from a 64 year old male (batch MIC317008), pooled colon
microsomes from rat (male Sprague-Dawley) (batch MIC322003), human single
donor colon cytosol from a 64 year old male (batch CYT317005), and pooled colon
cytosol from rat (male Sprague-Dawley) (batch CYT322003) were provided by
Biopredic (Rennes, France), without quantified glucuronidation or sulfonation
activities. Ethical permission for the use of the human tissue extract was obtained
by Biopredic (Rennes, France). Pooled human liver microsomes (lot 28831) with 920
pmol min-1 mg protein-1 estradiol 3-glucuronidation activity, 890 pmol min-1 mg
protein-1 trifluoroperazine glucuronidation activity and 2400 pmol min-1 mg
protein-1 propofol glucuronidation activity, pooled rat (male Sprague-Dawley) liver
microsomes (lot 83481) without quantified glucuronidation activity, pooled human
liver cytosol (lot 99925) and pooled rat (male Sprague-Dawley) liver cytosol (lot
08003) with 320 and 1900 pmol min-1 mg protein-1 7-hydroxycoumarin
sulfotransferase activity, respectively, as described by the supplier, were provided
by Gentest (Woburn, MA).

Incubations with UGTs or rat or human microsomes
To study glucuronidation of hesperetin by individual UGTs or microsomal
preparations, incubation mixtures (total volume 200 μl) were prepared containing
10 mM MgCl2, 25 μg/ml alamethicin added from a 200 times concentrated stock
solution in methanol (final concentration 0.5% methanol), 0.1, 0.2 or 0.5 mg/ml
protein and 1 mM UDPGA, in 50 mM Tris-HCl (pH 7.5) [18]. The reaction was started
by addition of hesperetin from a 200 times concentrated stock solution in DMSO
(final concentration 0.5% DMSO) and incubated for 5 min (UGT1A10, UGT2B7 and
human and rat liver microsomes), 10 min (UGT1A1, UGT1A3, UGT1A7, UGT1A8,
UGT1A9, UGT2B15 and human and rat small intestinal microsomes), 15 min (human
and rat colon microsomes) or 30 min (UGT1A4, UGT1A6, UGT2B4 and UGT2B17) at
37 °C. The final concentration series were 1, 2.5, 5, 10, 15, 25, 35 and 50 μM (n=1-2), or
2.5, 5, 10, 15, 25 and 50 μM (n=1-3) hesperetin for all UGTs tested. The reaction was
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terminated by addition of 50 μl acetonitrile. Under these conditions metabolite
formation was linear in time and with the amount of protein added (data not
shown). Activity is expressed in nmol min-1 mg protein-1.

Incubations with SULTs or rat or human cytosol
To study sulfonation of hesperetin, incubation mixtures (total volume 100 μl) were
prepared containing 5 mM MgCl2, 100 μM PAPS and 0.04-0.23 mg/ml protein
(cytosol) or 0.03-0.1 mg/ml protein (individual SULTs) in 50 mM potassium
phosphate (pH 7.4). The reaction was started by addition of hesperetin (the final
concentration series were 1, 2.5, 5, 10, 15, 25, 35 and 50 μM hesperetin) from a 100-fold
concentrated stock solution in DMSO (final concentration 1% DMSO) and incubated
for 3 min (SULT1A1, SULT1A2, SULT1C4 and human and rat liver cytosol), 5 min
(SULT1E1 and human small intestinal cytosol), 9 min (SULT1A3), 10 min (SULT1B1), 90
min (human colon cytosol), 120 min (SULT1C2 and SULT2A1), 150 min (rat small
intestinal and colon cytosol) or 180 min (SULT1C3, SULT2B1_v1, SULT2B1_v2 and
SULT4A1_v2) at 37°C. Because SULT1A1, SULT1A2, SULT1C4, SULT1E1 and some
cytosolic fractions showed substrate inhibition at concentrations > 1 μM, > 1 μM and
> 3 μM, respectively, additional series of 0.1, 0.15, 0.25, 0.35, 0.5, 0.75, 1 and 1.5 μM
hesperetin (SULT1A1, SULT1A2 and SULT1C4), or a series of 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2.5,
3.5 μM hesperetin (SULT1E1 and cytosolic fractions) were used. The reaction was
terminated by addition of 25 μl acetonitrile. Under these conditions metabolite
formation was linear with time and the amount of protein added (data not shown).
Activity is expressed in nmol min-1 mg protein-1 for the cytosolic fractions and in
nmol min-1 mg SULT protein-1 for the individual SULTs[28].

Enzyme kinetics
To determine the kinetics for glucuronidation and sulfonation, incubations were
performed as described above. The maximum velocity (Vmax) and Michaelisñ
Menten constant (Km) for the formation of the different phase II metabolites of
hesperetin were determined by fitting the data to the Michaelis-Menten
steady-state model v = Vmax / (1 + (Km / [S])), with [S] being the hesperetin
concentration, using the LSW data analysis toolbox (version 1.1.1) from MDL
Information Systems (San Ramon, CA). For reactions demonstrating substrate
inhibition the Vmax, Km and inhibition constant (Ki) were determined by fitting the
data to the substrate inhibition equation v = Vmax · [S] / (Km + [S] · (1 + [S] / Ki)) using
Graphpad Prism (version 5.02) from Graphpad Software (San Diego, CA).
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HPLC analysis
To analyze the formation of hesperetin metabolites in the enzymatic incubations,
reaction mixtures were centrifuged for 4 min at 16,000 g and samples of 50 μl of the
supernatant were injected on a Waters Alliance 2695 separation module connected
to a Waters 2996 DAD with an Alltech (Breda, The Netherlands) Alltima C18 5-μm
150- x 4.6 mm column with 7.5- x 4.6 mm guard column. Elution was at a flow rate of
1 ml/min. The gradient for the analysis of samples from the incubations with cytosol
or SULTs started at 0% acetonitrile in nanopure water containing 0.1%
trifluoroacetic acid, increasing to 10% acetonitrile in 5 min, to 15% in the following 16
min, and to 50% in the next 16 min, and to 80% in 1 min, followed by a cleaning and
re-equilibration step. The gradient to analyze the samples from the incubations
with microsomes or UGTs started at 0% acetonitrile in nanopure water containing
0.1% trifluoroacetic acid, increasing to 25% acetonitrile in 10 min, which condition
was kept for 21 min, whereafter the percentage of acetonitrile was increased to 60%
in 7 min, and to 80% in 1 min, followed by a cleaning and re-equilibration step.
DAD-UV spectra were recorded between 200 and 420 nm, and chromatograms
acquired at 280 nm were used for presentation and quantification.

Metabolite identification and quantification
Hesperetin 7-O-glucuronide, hesperetin 3'-O-glucuronide and hesperetin 7-O-sulfate
were identified using authentic standards by their HPLC-DAD retention times and
UV-spectra. Using the HPLC gradient for the analysis of the samples from the
glucuronidation reactions, the retention times were as follows: hesperetin 37.2 min
(UVmax 285.9 nm); hesperetin 7-O-glucuronide 17.7 min (UVmax 285.9 nm); hesperetin
3'-O-glucuronide 18.5 min (UVmax 285.9 nm). Using the HPLC gradient for the
analysis of the samples from the sulfonation reactions, the retention times were as
follows: hesperetin 36.7 min (UVmax 285.9 nm); hesperetin 7-O-sulfate 31.6 min
(UVmax 281.2 nm, shoulder at 338 nm). Another metabolite resulting from the
cytosolic and SULT incubations with PAPS at a retention time of 30.7 min
(UVmax 290.7 nm) was repeatedly collected during HPLC-DAD separation, freeze
dried and resolved in acidified, deuterated methanol for 1H-NMR analysis. 1H-NMR
analysis revealed this metabolite to be hesperetin 3'-O-sulfate (for details see results
section). Hesperetin 7-O-glucuronide and hesperetin 3'-O-glucuronide were
quantified on the basis of a calibration curve made with authentic standards.
Hesperetin 7-O-sulfate and hesperetin 3'-O-sulfate were quantified indirectly using
the calibration curve for hesperetin and multiplication factors determined by
enzymatic hydrolysis of hesperetin 7-O-sulfate (factor 1.27) and hesperetin
3'-O-sulfate (factor 0.86) into unconjugated hesperetin, which could be quantified
with a calibration curve.
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1H-NMR analysis
1H-NMR analysis was performed using a Bruker Avance III 600 MHz (Ettlingen,
Germany) with cryoprobe. A Noesygppr1d pulse sequence with 3 s delay, 0.1 s
mixing time and a 1.8 s acquisition time was used (18,028 Hz sweep width, 64 K data
points). Spectra were obtained at 25°C. Resonances are reported relative to
methanol-d4 at 3.34 ppm.

Results
Identification of hesperetin metabolites
Figure 6.2 depicts part of a chromatogram from the HPLC-DAD analysis of the
supernatant of an incubation of hesperetin with UGT1A9 and UDPGA. Two
metabolites were formed and identified as hesperetin 7-O-glucuronide (tR, 17.7 min;
UVmax, 285.9 nm) and hesperetin 3'-O-glucuronide (tR, 18.5 min; UVmax, 285.9 nm) on
the basis of analysis of the corresponding authentic metabolite standards. Figure 6.3
on page 111 depicts part of a chromatogram from the HPLC-DAD analysis of the
supernatant from an incubation of hesperetin with SULT1A3 and PAPS. Two
metabolites were formed, one of which was identified as hesperetin 7-O-sulfate (tR,
31.6 min; UVmax, 281.2 nm, shoulder at 338 nm) on the basis of analysis of the
corresponding authentic metabolite standard. The fraction containing the second
metabolite (tR, 30.7 min; UVmax, 290.7 nm) which could not be identified with the
available authentic standards, was collected, freeze dried, dissolved in acidified
methanol and analyzed by 1H-NMR. Modern NMR instruments with dedicated
cryoprobes provide excellent sensitivity with relatively small amounts of material,
provided that this material is of high purity. The sample analyzed contained about
0.5 nmol (150 ng) of the unknown sulfonated metabolite.

Figure 6.2  Representative section of the HPLC chromatogram of the supernatant from the
incubation of hesperetin with UGT1A9 and UDPGA showing the hesperetin glucuronide conjugates.
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Phase II metabolism of hesperetin
Figure 6.3  Representative section of the HPLC chromatogram of the supernatant from the
incubation of hesperetin with SULT1A3 and PAPS showing the hesperetin sulfo conjugates.

Table 6.1 summarizes the 1H-NMR data of this unknown sulfonated hesperetin
metabolite, as well as of the parent compound hesperetin. Comparison of the
chemical shift values and J-values of the corresponding protons in hesperetin and in
the unknown sulfonated hesperetin metabolite reveals changes in especially the
1H-NMR data of the protons of the B-ring upon conjugate formation: a relative shift
of +0.66 ppm for H2', and a relative shift of +0.33 ppm for H6' (Table 6.1). This
indicates a modification of the hydroxyl moiety at C3' resulting in a relatively large
change in the chemical shift values of the protons H2' and H6' at the positions ortho
and para with respect to the modified hydroxyl moiety. This is in line with earlier
1H-NMR studies on metabolites of quercetin[29]. The signals of the protons H6 and
H8 remained unchanged, excluding modification of the other hydroxyl-groups at
position 5 or 7 of the hesperetin molecule. Together these data identify the unknown
metabolite as hesperetin 3'-O-sulfate.

Table 6.1  1H-NMR data of hesperetin and the metabolite (identified as hesperetin 3'-O-sulfate) formed
in the incubation mixture of hesperetin with specific SULT isoforms and human small intestinal cytosol
and PAPS. The differences in chemical shift values of the protons in the metabolite as compared to the
chemical shift values of the same protons in hesperetin are given in parentheses. d = doublet, dd =
doublet of doublets.

compound 1H-NMR chemical shift (ppm), J-values (Hz) and peak splitting

H6 H8 H3 a H3 b H2 H2' H5' H6'

hesperetin 5.91
J=2.2

d

5.95
J=2.2

d

3.11
J=17.0;
J=12.9

dd

2.74
J=17.0;
J=3.0

dd

5.36
J=12.9;
J=3.0

dd

6.98
J=1.7

d

6.96
J=8.4

d

6.94
J=1.7;
J=8.4

dd

metabolite 5.91
J=2.1

d

5.95
J=2.1

d

3.10 (-0.01)
J=17.1;
J=12.9

dd

2.80 (+0.06)
J=17.1;
J=3.0

dd

5.41 (+0.05)
J=12.9;
J=3.0

dd

7.64 (+0.66)
J=2.1

d

7.08 (+0.12)
J=8.4

d

7.27 (+0.33)
J=2.1;
J=8.4

dd
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Chapter 6
Glucuronidation by individual UGT enzymes
Glucuronidation of hesperetin was characterized using human recombinant UGT
enzymes. The Vmax and Km values obtained for the formation of hesperetin
7-O-glucuronide and hesperetin 3'-O-glucuronide by the various UGT enzymes are
shown in Table 6.2, as well as the catalytic efficiencies (Vmax/Km) derived from these
values. The results reveal that hesperetin is most efficiently glucuronidated by
UGT1A9. The efficiency of glucuronidation (Vmax/Km) decreases in the order of
UGT1A9 > UGT1A1 > UGT1A7 > UGT1A3 > UGT1A8 > UGT1A10 > UGT2B7 = UGT2B15 >
UGT2B4. The rate of formation of hesperetin 7-O-glucuronide by UGT1A6 was
virtually linear with the applied concentration: 0.018 nmol min-1 mg protein-1

7-O-glucuronide formed per μM hesperetin, which excluded the determination of
the kinetic parameters Vmax and Km by fitting the data to the Michaelis-Menten
equation. Higher doses of hesperetin could not be tested because of the limited
solubility of hesperetin in aqueous solutions. 

Table 6.2  Vmax and Km values (mean ± SEM) determined from 3-4 independent curves, and the
catalytic efficiencies (Vmax/Km) derived from these values, for the glucuronidation of hesperetin (1
up to 50 μM) by individual UGT enzymes. n.d. = not detectable.

a) UGT1A4 very poorly glucuronidated hesperetin into solely hesperetin 7-O-glucuronide, only
measurable at the highest test concentration (50 μM), precluding determination of kinetics.
b) Conjugation velocity by UGT1A6 of hesperetin into hesperetin 7-O-glucuronide occurred in a linear
manner with dose (0.018 nmol min-1 mg protein-1 μM hesperetin-1), precluding determination of the
individual Michaelis-Menten parameters Vmax and Km, but allowing the definition of the catalytic
efficiency because the slope of the linear relationship between the rate of formation as a function of
the substrate concentration equals Vmax/Km. c) UGT2B17 very poorly glucuronidated hesperetin, only
measurable at the highest test concentrations (50 μM).

UGT isoform 7-O-glucuronidation 3'-O-glucuronidation
Km 

(μM)
Vmax

(nmol min-1 
mg protein-1)

(Vmax/Km)
(μl min-1 

mg protein-1)

Km 
(μM)

Vmax
(nmol min-1 

mg protein-1)

(Vmax/Km)
(μl min-1 

mg protein-1)

UGT1A1 4.0 ± 1.3 1.35 ± 0.29 339 1.2 ± 0.5 0.46 ± 0.06 376

UGT1A3 16.5 ± 4.6 3.94 ± 0.74 239 n.d. n.d. -

UGT1A4 n.d.a n.d.a - a n.d. n.d. -

UGT1A6 - b - b 18 b n.d. n.d. -

UGT1A7 105 ± 67.9 0.47 ± 0.04 5 8.7 ± 1.6 2.47 ± 0.63 285

UGT1A8 63.3 ± 11.8 2.33 ± 1.20 37 19.2 ± 3.9 3.18 ± 1.78 166

UGT1A9   5.3 ± 0.8 2.19 ± 0.10 411 4.0 ± 0.3 3.89 ± 0.20 981

UGT1A10 30.4 ± 8.2 2.82 ± 0.69 93 31.2 ± 12.6 0.89 ± 0.29 28

UGT2B4 119 ± 43.7 0.42 ± 0.09 4 n.d n.d -

UGT2B7 53.9 ± 17.6 1.53 ± 0.25 28 42.4 ± 13.9 0.88 ± 0.23 21

UGT2B15 34.5 ± 1.6 0.28 ± 0.01 8 29.9 ± 0.3 1.19 ± 0.02 40

UGT2B17 n.d.c n.d.c -c n.d.c n.d.c -c
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Phase II metabolism of hesperetin
The enzymes UGT1A4 and UGT2B17 only demonstrated very poor glucuronidation
activity towards hesperetin under the conditions used in this study, precluding
determination of the kinetics. Figure 6.4 presents an overview of the regioselectivity
of the glucuronidation of hesperetin by the individual UGTs at a concentration of
10 μM hesperetin. For all UGTs the regioselectivity at 1 μM or 50 μM hesperetin was
similar to that obtained at 10 μM. UGT1A3, UGT1A6 and UGT2B4 catalyze
glucuronidation specifically at the hydroxyl moiety at C7 of hesperetin, while
UGT1A7 almost solely conjugated the hydroxyl moiety at C3'. UGT1A1, UGT1A10 and
UGT2B7 converted hesperetin into both hesperetin 3'-O-glucuronide and hesperetin
7-O-glucronide, however preferentially into the latter, while UGT1A8, UGT1A9 and
UGT2B15 preferentially conjugated the hydroxyl moiety of hesperetin at position 3'.
Overall, relatively more hesperetin 7-O-glucuronide is formed at higher substrate
concentrations (Table 6.2).

Figure 6.4  Regioselectivity of the glucuronidation of hesperetin at position 7 ( ) or position 3' ( ) by
different UGT enzymes and human and rat microsomes expressed as percentage of the total amount
of hesperetin glucuronides formed at a 10 μM hesperetin concentration. HLM = human liver
microsomes, RLM = rat liver microsomes, HSIM = human small intestinal microsomes, RSIM = rat small
intestinal microsomes, HCM = human colon microsomes, RCM = rat colon microsomes.
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Chapter 6
Sulfonation by individual SULT enzymes
The Vmax and Km values determined for the formation of hesperetin 7-O-sulfate and
hesperetin 3'-O-sulfate by individual human SULTs are shown in Table 6.3, as well as
the catalytic efficiencies (Vmax/Km) derived from these values. SULT1A1
demonstrated strong substrate inhibition already at hesperetin concentrations >
0.15 μM precluding determination of kinetic parameters. The high rate of
3'-O-sulfonation up to 117 nmol min-1 mg SULT1A1-1 (at 0.15 μM hesperetin) indicates
that SULT1A1 mediated sulfonation could likely play an important role in the
conjugation of hesperetin at low concentrations. SULT1A2, SULT1C4 and SULT1E1 also
demonstrated substrate inhibition at concentrations > 1 μM, > 1 μM and > 3 μM,
respectively. The catalytic efficiency of sulfonation (Vmax/Km) of the SULTs (other
than SULT1A1) decreases in the order of SULT1C4 > SULT1A2 > SULT1E1 > SULT1A3 >
SULT1B1 > SULT1C2 > SULT2A1. The isoenzymes SULT1C3, SULT2B1_v1, SULT2B1_v2 and
SULT4A1_v2 did not show any sulfonation activity toward hesperetin under the
conditions used in this study. 

Table 6.3  Vmax and Km values (mean ± SEM) determined from 3 independent curves, and the
catalytic efficiencies (Vmax/Km) derived from these values, for the sulfonation of hesperetin (1 up to
50 μM unless stated otherwise) by individual SULT enzymes. n.d. = not detectable.

a) SULT1A1 demonstrated strong substrate inhibition at concentrations > 0.1 μM precluding
determination of kinetic parameters. b) SULT1A2 showed substrate inhibition at concentrations > 1 μM
hesperetin; Ki = 1.9 μM. c) SULT1C4 showed substrate inhibition at concentrations > 1 μM hesperetin;
Ki = 23.5 μM. d) SULT1E1 showed substrate inhibition at concentrations > 3 μM hesperetin; Ki = 12.9 μM.

SULT isoform 7-O-sulfonation 3'-O-sulfonation
Km 

(μM)
Vmax

(nmol min-1 
mg SULT-1)

(Vmax/Km)
(μl min-1 

mg SULT-1)

Km 
(μM)

Vmax
(nmol min-1 
mg SULT-1)

(Vmax/Km)
(μl min-1 

mg SULT-1)

SULT1A1 n.d. n.d. - < 0.15a -a -a

SULT1A2 n.d. n.d. - 0.5 ± 0.2b 454 ± 94.8b 881,553b

SULT1A3 12.5 ± 3.3 89.9 ± 7.43 7,178 13.2 ± 3.0 276 ± 24.8 20,964

SULT1B1 3.9 ± 0.5 3.54 ± 0.66 899 4.3 ± 0.2 21.5 ± 2.14 5,003

SULT1C2 66.7 ± 16.1 18.8 ± 6.83 282 28.3 ± 14.5 1.45 ± 0.46 51

SULT1C3 n.d. n.d. - n.d. n.d. -

SULT1C4 0.1 ± 0.0c 87.4 ± 8.13c 1,117,263c n.d. n.d. -

SULT1E1 n.d. n.d. - 2.5 ± 1.0d 538 ± 134d 219,242d

SULT2A1 80.2 ± 21.0 10.2 ± 1.96 127 n.d. n.d. -

SULT2B1_v1 n.d. n.d. - n.d. n.d. -

SULT2B1_v2 n.d. n.d. - n.d. n.d. -

SULT4A1_v2 n.d. n.d. - n.d. n.d. -
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Phase II metabolism of hesperetin
SULT1C4 and SULT2A1 selectively catalyzed the sulfonation at the hydroxyl moiety
of position 7 of hesperetin, while SULT1A1, SULT1A2 and SULT1E1 solely conjugated
the hydroxyl moiety at position 3' (Figure 6.5). SULT1C2 converted hesperetin into
both hesperetin 3'-O-sulfate and hesperetin 7-O-sulfate, however preferentially into
the latter, while SULT1A3 and SULT1B1 preferentially conjugated the hydroxyl
moiety of hesperetin at position 3' (Figure 6.5). For all SULTs the regioselectivity at
1 μM or 50 μM hesperetin was similar to that obtained at 10 μM.

Glucuronidation by human and rat tissue samples
The apparent Vmax and Km values for the formation of hesperetin 7-O-glucuonide
and hesperetin 3'-O-glucuronide by human and rat microsomal fractions from
different tissues are shown in Table 6.4 on page 116, as well as the apparent catalytic
efficiencies (Vmax/Km) derived from these values. Hesperetin was converted into
both glucuronide metabolites by microsomes from all human and rat tissues tested.
Generally, the affinity was higher (Km lower) for glucuronidation at position 3',
whereas the capacity (Vmax) was higher for glucuronidation at position 7 (Table 6.4),
and as a result, at higher hesperetin concentrations relatively more hesperetin
7-O-glucuronide than hesperetin 3'-glucuronide is formed.
.

Figure 6.5  Regioselectivity of the sulfonation of hesperetin at position 7 ( ) or position 3' ( ) by
different SULT enzymes and human and rat cytosol expressed as percentage of the total amount of
hesperetin sulfates formed at a 10 μM hesperetin concentration. HLC = human liver cytosol, RLC = rat
liver cytosol, HSIC = human small intestinal cytosol, HCC = human colon cytosol, RCC = rat colon
cytosol.
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Phase II metabolism of hesperetin
Sulfonation by human and rat tissue samples
The apparent Vmax and Km values determined for the formation of hesperetin
7-O-sulfate and hesperetin 3'-O-sulfate by human and rat cytosol from different
tissues are shown in Table 6.4 on page 116, as well as the apparent catalytic
efficiencies (Vmax/Km) derived from these values. Hesperetin was predominately
converted into hesperetin 3'-O-sulfate by human small intestinal cytosol with a Km
of 0.6 μM and a capacity of 0.79 nmol min-1 mg protein-1, while rat small intestinal
cytosol did not show sulfonation activity toward hesperetin (Table 6.4). Rat as well
as human colonic cytosol showed low catalytic efficiencies. Liver cytosol of both
species converted hesperetin into hesperetin 3'-O-sulfate already at low
concentrations, and demonstrated substrate inhibition at hesperetin concentrations
> 0.25 μM. Remarkably, rat liver cytosol also demonstrated efficient conversion of
hesperetin into hesperetin 7-O-sulfate at low concentrations, with substrate
inhibition at hesperetin concentrations > 0.25 μM, while the sample of human liver
cytosol demonstrated very little 7-O-sulfate formation (Table 6.4).

Discussion
In the present study the kinetics for the conjugation of hesperetin by individual UGT
and SULT enzymes and rat or human microsomes and cytosol from small intestine,
colon and liver, were characterized. Hesperetin was conjugated at the C7 and C3'
hydroxyl moieties. It is interesting to note that the conjugation at the C5 hydroxyl
moiety was not catalyzed. This phenomenon can be explained by the strong
intramolecular hydrogen bond between this hydroxyl moiety and the C4 carbonyl
moiety preventing the phase II conjugation[30]. Of all UGTs tested, UGT1A9, UGT1A1,
UGT1A7, UGT1A3 and UGT1A8 demonstrated the highest catalytic efficiencies
(Table 6.2 on page 112). These UGTs have been reported to efficiently catalyze the
glucuronidation of other flavonoids as well, as was recently reviewed by Zhang et
al.[31], although the relative efficiency of different UGTs seems highly dependent on
the flavonoid structure involved. Hesperetin, as other flavonoids, appears not to be a
suitable substrate for UGT1A4[18,21,32]. The regioselectivity of hesperetin
glucuronidation varied enzyme-specifically (Table 6.2 on page 112). Differences in
the regioselectivity of the flavonoid conjugation by different individual UGTs has
also been reported for the conjugation of other flavonoids[18-21], the regioselectivity
being dependent on the isoenzyme involved, the flavonoid converted, and the
substrate concentration. For instance luteolin (3',4',5,7-tetrahydroxyflavone) was
almost solely (98% of HPLC chromatogram peak area) converted into a
7-O-glucuronide metabolite by UGT1A6, while quercetin (3,3',4',5,7-tetrahydroxy-
flavone) bearing one extra hydroxyl moiety, was metabolized into its
4'-O-glucuronide (32%), 7-O-glucuronide (30%), 3'-O-glucuronide (22%) and
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3-O-glucuronide (16%) by UGT1A6[18].
Of the SULT enzymes (apart from SULT1A1) SULT1A2, SULT1C4 and to a lesser extent
SULT1E1 and SULT1A3 demonstrated the highest catalytic efficiencies for the
sulfonation of hesperetin (Table 6.3 on page 114). SULT1A1, SULT1A3 and SULT1E1 have
been reported to sulfonate other flavonoids as well[19,33,34]. In the present study,
SULT1A1, SULT1A2 and SULT1E1 solely catalyzed the formation of hesperetin
3'-O-sulfate while SULT1C4 and SULT2A1 solely catalyzed the formation of hesperetin
7-O-sulfate (Figure 6.5 on page 115). The regioselectivity of flavonoid sulfonation
appears to be dependent on the SULT isoenzyme as well as on the flavonoid studied:
daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone) were
reported to be predominantly sulfated by SULT1A1 at position 7 rather than at
position 4', while the hydroxyl moieties at both positions were sulfonated with
similar efficiency by SULT1E1[33]. At low concentrations of hesperetin SULT1A2,
SULT1C4, SULT1E1 (Table 6.3 on page 114) and especially SULT1A1 demonstrated
substrate inhibition. This property of SULTs in the conjugation of flavonoids at low
concentrations is also reported for the SULT1A1 mediated sulfonation of daidzein
(> 1.5 μM) and genistein (> 2 μM)[33], and for the SULT1E1 mediated sulfonation of
quercetin and chrysin[34]. 
Incubations of hesperetin with human and rat microsomal fractions in the presence
of UDPGA resulted in formation of hesperetin 7-O-glucuronide and hesperetin
3'-O-glucuronide (Table 6.4 on page 116). Based on the kinetics of the individual
human UGTs (Table 6.2 on page 112) and the data on UGT mRNA expression
levels[22-25], the 7-O-glucuronidation of hesperetin in human tissue fractions is likely
catalyzed by UGT1A1 and UGT1A9. The 3'-O-glucuronidation of hesperetin by human
microsomes is likely catalyzed by UGT1A9 and UGT1A1, whereas in the human small
intestinal and colonic microsomes UGT1A7 and UGT1A8 may contribute as well.
However, one should keep in mind that selectivity profiles by single UGTs in
complete systems, in which protein-protein interactions may occur, may be
different from those in in vitro model systems[35]. Taking the catalytic efficiencies
(Table 6.2) and the mRNA expression levels of the rat orthologue UGTs into
account[36], it can be foreseen that, in rat liver and rat intestinal microsomes, rat
UGT1A1 and rat UGT1A7 are likely responsible for the glucuronidation of hesperetin.
Incubations with the human cytosolic fractions demonstrated a preferential
sulfonation of position 3' of hesperetin (Table 6.4). Although SULT1A2, SULT1C4 and
SULT1E1 demonstrate high catalytic efficiencies, based on expression levels[13,14] they
are minor SULT isoforms in the intestine and liver. It is concluded that especially
SULT1A1 is involved in the sulfonation of hesperetin in the human liver, while
SULT1B1 and SULT1A3 will preferably contribute to the intestinal sulfonation of
hesperetin. Our incubations with human cytosol demonstrating predominant
formation of hesperetin 3'-O-sulfate, the major metabolite formed by SULT1A1 as
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well as by SULT1B1 and SULT1A3, support such a notion. Hesperetin was not
sulfonated by rat small intestinal cytosol, which corresponds with the negligible
SULT expression in the small intestine of rats[26]. The hepatic expression of the rat
ortholog of SULT1C4, a form not detected in human liver[37], probably explains the
formation of hesperetin 7-O-sulfate by rat liver cytosol.
When both SULTs and UGTs play a role at the same time, such as in the in vivo
situation, the existence of mixed conjugates has been reported as well. In a study in
which human volunteers were given up to 1 liter of orange juice providing 444 mg/l
hesperidin the circulating forms of hesperetin in the plasma consisted of
glucuronides (87%) and sulfoglucuronides (13%) as determined after specific
enzymatic hydrolysis[5]. In another study in which human volunteers were given
250 ml orange juice containing 410 mg/l hesperidin, only hesperetin glucuronides
were detected in the plasma, however, substantial amounts of hesperetin
sulfoglucuronides were detected in the urine as indicated by LC-MS/MS[8]. The
authors argue that the kidney may be involved in post-absorption phase II
metabolism, which could be explained by the expression of SULT1A1 in the
kidneys[14,28], the enzyme for which we found a high affinity towards hesperetin
resulting in sulfonation already at very low concentrations. In a third study in
which human volunteers were given oranges or orange juice providing respectively
161 or 145 mg hesperidin, hesperetin 7-O-glucuronide and 3'-O-glucuronide were
detected in blood and plasma, as well as hesperetin 3'-O-sulfate, as qualified by
LC-MS/MS and metal complexation techniques[6]. The absence of hesperetin
7-O-sulfate in these human volunteers is supported by the sulfonation kinetics
found in the present study.
Recently we analyzed the metabolism of hesperetin in vitro using Caco-2 cell
monolayers as a model of the intestinal barrier. Interestingly, after incubations of
hesperetin with Caco-2 cell monolayers formation of hesperetin 7-O-glucuronide
and 7-O-sulfate was observed, while no metabolites of hesperetin conjugated at
position 3' were detected. These observations could be explained by the relatively
strong expression of SULT1C4[27,38] and UGT1A6[39], both enzymes specifically
catalyzing the conjugation at position 7, compared to other SULT or UGT-forms in
Caco-2 cells. Moreover, siRNA-mediated UGT1A6 silencing in this cell line heavily
decreased the glucuronidation of the flavonoid apigenin demonstrating an
important role for UGT1A6 in the glucuronidation by Caco-2 cells of a structurally
related compound[40]. 
In conclusion, the results of the present study show that individual UGTs and SULTs
demonstrate marked regioselective kinetics for conjugation of hesperetin. As a
result variation in expression levels of these UGTs and SULTs give rise to different
metabolite patterns in different biological systems. Since different flavonoid
conjugates may have different physiological and/or biological properties, this
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regioselective conjugation by different UGT and SULT enzymes should not be
ignored in flavonoid research. Finally, given the high catalytic efficiency and
expression levels of UGTs in intestinal tissue, it can be concluded that first pass
metabolism within the intestinal cells contributes significantly to the formation of
hesperetin 3'-O-glucuronide and 7-O-glucuronide, the major hesperetin metabolites
found in vivo.
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Chapter 7
Abstract
The flavanone hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone) is the
aglycone of the rutinoside hesperidin which is the major flavonoid present in sweet
oranges. Like other flavanones, hesperetin contains a chiral C-atom and so can exist
as an S- and R-enantiomer. In nature 2S-hesperidin and its S-hesperetin aglycone are
the predominant chemical forms. In spite of this, many studies have been
performed with the commercially available racemates of hesperidin and hesperetin.
The present study reports a chiral HPLC method to separate S- and R-hesperetin on
an analytical and semi-preparative scale. This allowed characterization of the
stereoselective differences in metabolism and transport in the intestine and activity
in a selected bioassay of the separated hesperetin enantiomers in in vitro model
systems. To this end S- or R-hesperetin were treated in several assays: (1) with
human small intestinal fractions containing UDP-glucuronosyl transferases (UGTs)
or sulfotransferases (SULTs) and their cofactors; (2) with Caco-2 cell monolayers as a
model for the intestinal transport barrier; (3) with mouse Hepa-1c1c7 cells
transfected with human EpRE-controlled luciferase to test induction of
EpRE-mediated gene expression. Although the results obtained indicate some
significant differences in metabolism, the differences in the metabolism and
transport characteristics of the two hesperetin enantiomers are relatively small,
whereas at physiologically relevant concentrations the activation of EpRE mediated
gene expression was similar. This indicates that for these endpoints, including
intestinal metabolism and transport, experiments performed with racemic
hesperetin may adequately reflect what can be expected for the naturally occurring
S-enantiomer.

Introduction 
The flavanone hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 7.1 on
page 125) is the aglycone of hesperidin (hesperetin 7-O-rutinoside), which is the
major flavonoid present in sweet oranges (Citrus sinensis) and orange juice, but
which can also be found in other citrus fruits including lemon, lime and mandarin
and some herbs[1]. Hesperetin and hesperidin have been reported to provide health
beneficial effects, including anticarcinogenic properties and a reduced risk of
osteoporosis[2-4].
Upon ingestion, hesperidin has to be hydrolyzed into hesperetin aglycone by colonic
microbiota prior to its absorption. Conversion of the disaccharide hesperidin into
the monosaccharide hesperetin 7-O-glucoside prior to consumption has been
demonstrated to lead to absorption already in the small intestine after
deglucosilation by phloridzin hydrolase and/or by facilitated transport into the
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intestinal cells by a sodium dependent glucose transporter (e.g. SGLT1) followed by
intracellular deglucosylation[5]. In the intestinal cells, hesperetin aglycone can be
conjugated by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs)
into glucuronidated and sulfonated metabolites respectively, which have been
found in vivo in both rat and human plasma[6,7]. The intestinal barrier is believed to
play a dominant role in the conjugation of hesperetin[8], and in its limited
bioavailability because of efflux of the metabolites back to the intestinal lumen by
ABC transport proteins[9,10].

Figure 7.1  Chemical structure of (-)-S- and (+)-R-hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone).

Unlike many other classes of flavonoids, flavanones, as well as flavanols, share a
chiral carbon atom in position 2 and therefore exist in an S- and R-configuration
(Figure 7.1). 2S-hesperidin is naturally predominant in citrus fruits[11-13], and
hesperidin is present in fresh, sweet orange juice in an S:R ratio of at least 92:8 in
favor of the 2S-epimer[14-16]. Although in nature the 2S-epimer of hesperidin, and
subsequently the S-hesperetin enantiomer, is dominant, hesperetin and hesperidin
are currently only commercially available as a mixture of both stereoisomers. As a
result, studies on hesperetin and hesperidin generally do not take the chirality into
account whereas in theory the two enantiomers may display distinct kinetic and
dynamic properties[17]. For flavonoids, stereochemical properties have been reported
to influence, for example, the bioavailability of the flavanol catechin[18], the
estrogenic activity of the isoflavone metabolite equol[19,20] and the plasma and
urinary kinetics of hesperetin[16,21], and may thus very well affect both the intestinal
metabolism and transport of hesperetin, as well as its biological effects.
Although several studies reported analytical methods to analyze S- and
R-enantiomers of hesperetin, as reviewed by Yáñez et al.[11], the kinetic differences of
S- and R-hesperetin were only studied indirectly. After intravenous administration
of racemic hesperetin to rats, R-hesperetin had a significant 3.3-fold higher area
under the serum concentration-time curve (AUC) and a 1.9-fold longer half-life,
compared to S-hesperetin (after enzymatic hydrolysis of the metabolites in plasma
samples)[16].
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The aim of the present study was to develop a method for separation of S- and
R-hesperetin on an analytical and semi-preparative scale using chiral HPLC with
α1-acid glycoprotein (AGP) as chiral selector, and to characterize differences in the
intestinal conjugation and transport, and the activity in a selected bioassay, of the
two hesperetin enantiomers in in vitro models. To that end we performed
incubations with microsomal and cytosolic fractions of human small intestine with
the separated enantiomers in order to determine the apparent kinetics for
glucuronidation and sulfonation of S- and R-hesperetin. Furthermore, the
stereoselective differences in intestinal metabolism and transport were assessed
using Caco-2 cell monolayers in a two-compartment transwell system as a model for
the intestinal barrier. In order to test differences in a selected bioassay S- and
R-hesperetin were tested in a reporter gene based bioassay quantifying
EpRE-(electrophile responsive element) mediated activation of gene expression.
EpRE-mediated activation of gene expression is considered to contribute to the
cancer preventive action of chemo-protective dietary compounds including
flavonoids[22,23].

Materials and Methods
Materials
Alamethicin (from Trichoderma viride), ß-glucuronidase (from Helix pomatia) type
HP-2, hesperetin (purity ≥95%, batch 015K1099), L-ascorbic acid and uridine
5'-diphosphoglucuronic acid (UDPGA) were obtained from Sigma (St. Louis, MO),
3'-phosphoadenosine 5'-phosphosulfate (PAPS) from Fluka (Buchs, Switzerland),
dimethyl sulfoxide (DMSO), di-potassium hydrogen phosphate trihydrate, EDTA
disodium salt dehydrate, glacial acetic acid, hydrochloric acid, potassium
dihydrogen phosphate and sodium acetate trihydrate from Merck (Darmstadt,
Germany), acetonitrile, isopropyl alcohol and methanol from Sigma-Aldrich
(Steinheim, Germany), Tris from Invitrogen (Carlsbad, CA), and ammonium acetate
and trifluoroacteic acid from J.T. Baker (Philipsburg, NJ). Authentic standards of
hesperetin 7-O-glucuronide (purity >90%), hesperetin 3'-O-glucuronide (purity
>90%) and hesperetin 7-O-sulfate (purity <50%) were provided by Nestlé Research
Center (Lausanne, Switzerland). An orange (Citrus sinensis) from South-Africa was
bought at a local store. All cell culture reagents were purchased from Invitrogen
(Paisley, UK). Pooled human small intestinal microsomes (batch MIC318012) and
pooled human small intestinal cytosol (batch CYT318004) were purchased from
Biopredic (Rennes, France). 
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Cell lines
Caco-2 human colon carcinoma cells were obtained from the American Type Culture
Collection (Manassas, VA), and were cultured as described earlier[9]. Passage number
39 to 47 were used for the experiments.
Hepa-1c1c7 mouse hepatoma cells stably transfected with the reporter vector
pTI(hNQO1-EpRE)Luc+ from Promega (Leiden, The Netherlands) carrying the EpRE
from the human NQO1 gene regulatory region between -470 to -448 (5'-AGT CAC
AGT GAC TCA GCA GAA TC-3') coupled to a luciferase reporter gene, were obtained
as described previously[24]. These transfected Hepa-1c1c7 cells will further be
referred to as EpRE-LUX cells.

Identification of S-hesperetin
Hesperidin naturally occurs predominantly as the 2S-epimer[14-16]. To acquire
S-hesperetin, 2S-hesperidin from an orange (Citrus sinensis) was deglycosylated. To
this end, freshly prepared orange juice (0.5 ml) was added to 1 ml nanopure water,
110 μl 0.78 M sodium acetate (pH 4.8), 100 μl 0.1 M ascorbic acid and 200 μl crude
preparation from Helix pomatia type HP-2 and incubated overnight at 37°C[16,25].
Then, 1 ml acetonitrile was added to precipitate the proteins, the mixture was
vortexed for 1 min, and centrifuged at 16,000 g for 5 min. The supernatant was
collected, the solvent evaporated under nitrogen gas and the residue was dissolved
in the mobile phase for chiral HPLC analysis.

Chiral HPLC-DAD analysis
Chiral analyses of hesperetin were performed on an HPLC system consisting of a
Waters (Milford, MA) Alliance 2695 separation module connected to a Waters 2996
photodiode array detector (DAD) equipped with a ChromTech (Cheshire, UK)
analytical 150* 4 mm Chiral-AGP column connected to a 10* 4 mm guard column.
Samples were centrifuged at 16,000 g for 4 min, and 20 μl was injected and
isocratically eluted at a flow rate of 0.9 ml/min in 10 mM ammonium acetate
(pH 5.0) containing 2% (v/v) isopropyl alcohol, filtered through a membrane filter
with a pore size of 0.45 μm from Schleicher and Schuell (Dassel, Germany). The
column was equilibrated for 10 min before injection, and washed with 15% (v/v)
isopropyl alcohol in nanopure water. DAD-UV spectra were detected between 200
and 420 nm, and HPLC chromatograms acquired at 280 nm were used for
quantification and presentation.

Semi-preparative separation of S- and R-hesperetin
Semi-preparative HPLC separation of the S- and R-enantiomers of hesperetin was
performed on an HPLC system consisting of an Uniflows Degasys DG-2410 degasser
(Tokyo, Japan), a Waters 600 fluid unit and controller connected to a Waters 996
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DAD (Milford, MA), equipped with a ChromTech semi-preparative 100* 10.0 mm
Chiral-AGP column (Cheshire, UK). An injection volume of 100 μl of 500 μM of
racemic hesperetin in 25% (v/v) isopropyl alcohol in nanopure water was injected
and eluted at a flow rate of 5.6 ml/min in 10 mM ammonium acetate (pH 5.0)
containing 2% (v/v) isopropyl alcohol, filtered through a membrane filter with a
pore size of 0.45 μm from Schleicher and Schuell (Dassel, Germany). Elution of both
hesperetin enantiomers was followed at 280 nm. Fractions containing the separate
enantiomers were collected and divided into Eppendorf tubes, and freeze dried. The
resulting products were dissolved in a small amount of methanol, pooled and dried
under a flow of nitrogen and re-dissolved in a small amount of DMSO. In order to
check the enantiomeric purity (>95%), a sample of each preparation, 100-fold diluted
with 25% (v/v) isopropyl alcohol in nanopure water, was analyzed by chiral
HPLC-DAD. To precisely determine the hesperetin concentration a 100- or 1000-fold
diluted sample of each preparation in 20% acetonitrile (v/v) in 0.1% trifluoroacetic
acid in nanopure water was analyzed by a-chiral HPLC-DAD based on detection at
280 nm using a 10-point linear (R2>0.99) calibration line of relevant concentrations
of racemic hesperetin. Based on the outcome of this quantification, the separated S-
and R-hesperetin solutions in DMSO were further diluted with DMSO to create 10
mM stock solutions. A sample dissolved in cell culture medium did not demonstrate
racemization after incubation at 37°C for 2 h (data not shown).

Microsomal and cytosolic incubations
To study intestinal glucuronidation of S- and R-hesperetin, incubations with human
intestinal microsomes were performed as described before for racemic
hesperetin[26]. The incubation mixtures (total volume 200 μl) contained 10 mM
MgCl2, 25 μg/ml alamethicin added from a 200 times concentrated stock solution in
methanol (final concentration 0.5% methanol), 0.1 mg/ml microsomal protein and 1
mM uridine 5'-diphosphoglucuronic acid (UDPGA), in 50 mM Tris-HCl (pH 7.5). The
reaction was started by addition of S- or R-hesperetin from a 200 times concentrated
stock solution in DMSO (final concentration 0.5% DMSO) and incubated for 5 min at
37°C. The reaction was terminated by addition of 50 μl acetonitrile. Under these
conditions formation of hesperetin glucuronides was linear in time and with the
amount of protein (data not shown).
To study intestinal sulfonation of S- and R-hesperetin, incubations with human
intestinal cytosol were performed as described before for racemic hesperetin[26]. The
incubation mixtures (total volume 100 μl) contained 5 mM MgCl2, 0.5 mg/ml
cytosolic protein and 100 μM 3'-phosphoadenosine 5'-phosphosulfate (PAPS), in 50
mM potassium phosphate (pH 7.4). The reaction was started by addition of S- or
R-hesperetin from a 100 times concentrated stock solution in DMSO (final
concentration 1% DMSO) and incubated for 5 min at 37 °C. The reaction was
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terminated by addition of 25 μl acetonitrile. Under these conditions formation of
hesperetin sulfates was linear in time and with the amount of protein (data not
shown).

Metabolism and transport by Caco-2 cell monolayers
Caco-2 cells were cultured in a humidified atmosphere of 5% CO2 and 95% air at 37°C,
and seeded at a density of 1* 105 cells/cm2 in Costar 12-well transwell plate inserts
from Corning (Corning, NY) with an insert membrane pore size of 0.4 μm and
growth area of 1.12 cm2. The culture medium consisted of Dulbecco's modified
Eagle's medium (DMEM) containing 25 mM HEPES buffer (pH 7.4), 4500 mg/ml
glucose, L-glutamine, and phenol red, supplemented with 10% (v/v) heat inactivated
(30 min at 56°C) fetal bovine serum, 1% (v/v) minimal essential medium
nonessential amino acids (NEAA), and 0.1 mg/ml gentamicin. The medium was
changed three times a week. Eighteen to 19 days post-seeding the transport
experiment was performed for which the monolayers were washed and further
incubated with DMEM without phenol red. The integrity of the monolayers was
checked by measuring the trans-epithelial electrical resistance (TEER) values with a
Millicell ERS volt/ohmmeter from Millipore (Bedford, MA). Only monolayers that
demonstrated a TEER value between 500 and 1000 Ω·cm2 were used. For the
experiment, exposure medium was prepared consisting of DMEM (without phenol
red) supplemented with 1% (v/v) NEAA and 1 mM L-ascorbic acid which was filtered
through a sterile 0.2-μm filter unit from VWR (West Chester, PA). The monolayers
were exposed at the apical side to exposure medium containing 10 μM S-hesperetin
or R-hesperetin (final concentration 0.5% DMSO). Samples of 150 μl were taken from
the apical and basolateral side 120 min upon addition, where after integrity of the
monolayer was re-confirmed. All samples were stored at -80 °C until further
HPLC-DAD analysis carried out as described earlier[9].

a-Chiral HPLC analysis
a-Chiral gradient HPLC on a C18 column was used to detect and quantify the
amounts of hesperetin, hesperetin 7-O-glucuronide, hesperetin 3'-O-glucuronide,
hesperetin 7-O-sulfate and hesperetin 3'-O-sulfate using methods previously
described[9,26].

Enzyme kinetics
To determine the kinetics for glucuronidation and sulfonation, microsomal and
cytosolic incubations were performed as described above varying the concentration
of S- or R-hesperetin from 1 to 50 μM. Under the applied conditions the formation of
hesperetin 7-O-glucuronide, hesperetin 3'-O-glucuronide, hesperetin 7-O-sulfate and
hesperetin 3'-O-sulfate conjugates was linear in time and with the amount of
129



Chapter 7
microsomal protein added (data not shown). The apparent maximum velocity
(Vmax(app)) and apparent Michaelis-Menten constant (Km(app)) for the formation of
the different phase II metabolites of S- and R-hesperetin were determined by fitting
the data to the Michaelis-Menten steady-state model v = Vmax / (1 + (Km / [S])), with
[S] being the hesperetin concentration, using the LSW data analysis toolbox
(version 1.1.1) from MDL Information Systems (San Ramon, CA).

EpRE-lux assay
EpRE-mediated induction of gene expression by S- and R-hesperetin was tested
using the EpRE-LUX luciferase reporter gene assay as described earlier[24,27]. The
EpRE-LUX cells were cultured in alpha modified Eagle's medium supplemented with
10% fetal bovine serum, 50 μg/ml gentamicin and 0.5 mg/ml G418 from Duchefa
(Haarlem, The Netherlands), in a humidified atmosphere of 5% CO2 and 95% air at
37°C. 100 μl Cell suspension with a density of 3*105 cells/ml was seeded per well in a
96 well view-plate (Corning, NY) and incubated for 24 h whereafter the cells had
attached to the bottom and formed a confluent monolayer. The plates were exposed
to different concentrations of S- or R-hesperetin. To this end the culture medium
was removed and replaced by 100 μl of medium containing hesperetin at the
required concentration (0.5% DMSO). The plates were incubated for another 24 h
whereafter the cells were washed with 0.5 x PBS and lysed by addition of low salt
buffer (10 mM Tris, 2 mM DTT and 2 mM trans-1,2-diaminocyclohexane-N,N,N',N'-
tetra-acetic acid monohydrate, pH 7.8). After lysis, luciferase reagent (20 mM tricine,
1.07 mM (MgCO3)4Mg(OH)2, 2.67 mM MgSO4, 0.1 mM EDTA, 2 mM DTT, 0.47 mM
D-luciferin, 5mM ATP; pH 7.8) was added and the luciferase activity was measured
using a Luminoskan Ascent luminometer from Thermo electron corporation
(Helsinki, Finland).

Results
Analytical and semi-preparative chiral HPLC-DAD analyses
Figure 7.2A depicts a chromatogram of the analytical chiral HPLC analysis of racemic
hesperetin, demonstrating the two enantiomers at retention time (tR) 25.5 min and
29.0 min in a 41:59 ratio. Both peaks demonstrated equivalent UV spectra with a
UVmax at 285.9 nm. The limit of detection, defined as the lowest concentration
which can be detected (signal-to-noise ratio 3) of this method was 0.6 μM, the limit
of quantification, defined as the lowest concentration which can be quantitatively
determined (signal-to-noise ratio 10) was 2 μM. To identify the S- and R-hesperetin
enantiomers, hesperidin from fresh orange juice, mainly present as 2S-epimer, was
deglycosylated to yield predominantly S-hesperetin and analyzed (Figure 7.2B). The
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peak at tR 29.0 min (UVmax 285.9 nm), was dominant in the hydrolyzed citrus
sample identifying the corresponding metabolite as S-hesperetin. S- and
R-hesperetin were successfully separated on a semi-preparative scale and
concentrated, yielding sufficient amounts to perform small scale in vitro
experiments. The racemic purity after vacuum concentration and pooling of the
collected samples was >95% for both S- and R-hesperetin.

Figure 7.2  Chiral HPLC chromatograms of A) racemic hesperetin, B) hesperetin resulting from
deglycosylation of the 2S-hesperidin epimer from citrus.

A

B
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Microsomal glucuronidation
Hesperetin is glucuronidated by small intestinal microsomes into hesperetin
7-O-glucuronide and 3'-O-glucuronide metabolites[26]. The apparent Vmax and Km
values derived from the concentration dependent formation of S-hesperetin
7-O-glucuronide and S-hesperetin 3-O-glucuronide (Figure 7.3A), and R-hesperetin
7-O-glucuronide and R-hesperetin 3'-O-glucuronide (Figure 7.3B) by human small
intestinal microsomes are presented in table 1, as well as the apparent catalytic
efficiencies (Vmax/Km). For comparison, Table 7.1 on page 133 also presents the
kinetic data obtained previously for racemic hesperetin[26]. For the glucuronidation
of both hesperetin enantiomers the relative contribution of the conjugation at
position 7 and 3' is comparable. However, the affinity was higher (Km lower) for the
glucuronidation of S-hesperetin as compared to the glucuronidation of R-hesperetin.
Together with a slightly higher capacity (Vmax), this results in a 5.2-fold higher
catalytic efficiency for the glucuronidation of S-hesperetin compared to
R-hesperetin (Table 7.1). The catalytic efficiencies obtained for 7-O-glucuronide
formation from S- and R-hesperetin were respectively 2.7-fold higher and 2.5-fold
lower than the catalytic efficiencies observed with the racemic mixture, and the
catalytic efficiencies obtained for 3'-O-glucuronide formation from S- and
R-hesperetin were respectively 2.5-fold higher and 1.6-fold lower compared to the
catalytic efficiencies observed with the racemic mixture.

Figure 7.3  Concentration dependent formation of hesperetin 7-O-glucuronide (●), hesperetin
3'-O-glucuronide (■) and total hesperetin glucuronides (▲) from S-hesperetin (A) and R-hesperetin (B)
enantiomers by human small intestinal microsomes. Data points represent average activities of 2
measurements ± SD.
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Cytsosolic sulfonation
Hesperetin is sulfonated by human small intestinal cytosol into hesperetin
3'-O-sulfate and 7-O-sulfate metabolites[26]. The apparent Vmax and Km values
derived from the concentration dependent formation of S-hesperetin 3'-O-sulfate
and S-hesperetin 7-O-sulfate (Figure 7.4A), and R-hesperetin 3'-O-sulfate and
R-hesperetin 7-O-sulfate (Figure 7.4B) by human small intestinal microsomes are
shown in Table 7.2 on page 133, as well as the apparent catalytic efficiencies
(Vmax/Km). For comparison, Table 7.2 also presents the kinetic data obtained
previously for racemic hesperetin[26]. Both hesperetin enantiomers are
predominantly sulfonated at position 3', although the capacity and the relative
contribution of the formation of 7-O-sulfonation to the total sulfonation of
R-hesperetin is higher as compared with the sulfonation of S-hesperetin (Table 7.2).
The catalytic efficiency obtained for 3'-O-sulfate formation from S- and R-hesperetin
were respectively 1.2-fold lower and 1.5-fold higher than the catalytic efficiencies
observed with the  racemic mixture, and the catalytic efficiency obtained for
7'-O-sulfate formation from S- and R-hesperetin were respectively equal and 2.8-fold
higher compared to the catalytic efficiencies observed with the  racemic mixture[26].

Figure 7.4  Concentration dependent formation of hesperetin 7-O-sulfate (■), hesperetin 3'-O-sulfate
(●) and total hesperetin sulfates (▲) from S-hesperetin (A) and R-hesperetin (B) enantiomers by
human small intestinal cytosol. Data points represent average activities of 2 measurements ± SD.
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Metabolism and transport by Caco-2 cell monolayers
Caco-2 cell monolayers apically exposed to hesperetin metabolize it into hesperetin
7-O-glucuronide and hesperetin 7-O-sulfate, which are predominantly transported
to the apical side of the monolayer[9]. Figure 7.5 shows  the percentages of the
applied amount of S-hesperetin or R-hesperetin that is metabolized into
7-O-glucuronide or 7-O-sulfate metabolites as well as the percentage which
remained unmetabolized, and the disposition of the metabolites to the apical or
basolateral side of the Caco-2 cell monolayer. Exposure to R-hesperetin resulted in a
significantly (p <0.001) higher amount of hesperetin 7-O-sulfate formed amounting
to 129% (at the apical plus basolateral side) of the amount of hesperetin 7-O-sulfate
formed upon exposure to S-hesperetin (Figure 7.5). The total amount of R-hesperetin
7-O-glucuronide formed was 8% lower compared to the amount of S-hesperetin
7-O-glucuronide formed, and this difference was not significant (Figure 7.5). The
total amount of hesperetin metabolites and/or aglycone transported over the Caco-2
monolayer did not differ significantly for S- and R-hesperetin.

Figure 7.5  Amount of hesperetin 7-O-glucuronide (glucuronide), hesperetin 7-O-sulfate (sulfate) and
hesperetin aglycone detected at the apical and basolateral side of Caco-2 cell monolayers incubated for
120 min with 10 μM S-hesperetin or R-hesperetin added to the apical side. Mean ± SD values shown
(n=8). ***, p<0.001 significantly different.
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Activation of EpRE-controlled gene expression by hesperetin
Figure 7.6 shows the concentration dependent induction of EpRE-mediated
luciferase expression by S-hesperetin and R-hesperetin. Exposure to both hesperetin
enantiomers resulted in a dose dependent induction of EpRE mediated gene
expression: exposure to S-hesperetin led to an 8.2-fold (±0.6) induction at 50 μM, and
exposure to R-hesperetin to a maximum induction of 6.0-fold (±0.2) at 25 μM and
higher (Figure 7.6). Although at some of the concentrations significant differences
are found between the induction factors by S- and R-hesperetin, the overall
induction however, especially at lower, and thus physiologically relevant
concentrations, does not demonstrate notable differences in activation of EpRE
mediated gene expression between both hesperetin enantiomers.

Figure 7.6  Induction of EpRE-mediated gene transcription by R-hesperetin (õ) and S-hesperetin (ö).
Data are presented as mean (±SD) (n=4). *, p <0.05; **, p <0.01 significantly different compared with the
induction by the corresponding concentration of the other hesperetin enantiomer.

Discussion
Although hesperidin naturally exists mainly as the 2S-epimer, which upon intake is
subsequently transformed into S-hesperetin, practically all research on hesperidin
and hesperetin using 'pure' compounds is actually on racemic mixtures, which are
currently the only forms of hesperidin and hesperetin commercially available.
Stereochemical differences have been proven to affect the bioavailability of
flavonoids, as was shown for example for catechin. (+)-Catechin (2R,3S-catechin) has
been demonstrated to be up to 2.1-fold more bioavailable compared to (-)-catechin
(2S,3R-catechin), partly due to increased intestinal absorption[18]. 
In order to study the differences between the 'natural' S-hesperetin and
R-hesperetin, the present paper reports a method to separate both enantiomers on
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an analytical and semi-preparative scale, allowing small-scale in vitro experiments
with the separated enantiomers. This allowed characterization of possible
differences in intestinal metabolism and transport and the activity in a selected
bioassay of S- and R-hesperetin, by incubating S- or R-hesperetin with human small
intestinal microsomes and cytosol and cofactors for phase II conjugation, with
Caco-2 cell monolayers in a transwell transport model, and with a transfected cell
line to test induction of EpRE-mediated gene expression.
Although the results obtained indicate some significant differences in metabolism,
the differences in the metabolism and transport of the two hesperetin enantiomers
are relatively small. The higher affinity and capacity towards S-hesperetin resulted
in an overall 5.2-fold higher catalytic efficiency for the formation of S-hesperetin
glucuronides as compared to R-hesperetin glucuronides by human small intestinal
microsomes (Table 7.1 on page 133). The differences between the sulfonation kinetics
of S-hesperetin and R-hesperetin are marginal, although the capacity for the
formation of 7-O-sulfate from R-hesperetin is 2.8-fold higher compared with the
formation of 7-O-sulfate from S-hesperetin (Table 7.2 on page 133, Figure 7.4 on
page 134). Although relatively small, together these kinetic differences might
explain the increased formation of hesperetin 7-O-sulfate and reduced formation of
hesperetin 7-O-glucuronide by Caco-2 cell monolayers exposed to R-hesperetin as
compared to monolayers exposed to S-hesperetin (Figure 7.5 on page 135).
Differences in the kinetics between S-hesperetin and R-hesperetin have been
observed indirectly in vivo after intravenous administration of racemic hesperetin
(20 mg/kg bodyweight (bw)) to male Sprague-Dawley rats, demonstrating a
significant (p<0.05) 3.2-fold higher area under the serum concentration-time curve
(AUC) and 1.9-fold (p<0.05) longer serum half-life for R-hesperetin, compared to
S-hesperetin which had a  3.3 fold (p<0.05) higher total clearance from serum[16]. The
cumulative urinary excretion of R-hesperetin was 2.3-fold (p<0.05) higher compared
to S-hesperetin[16]. In an earlier study, however, oral administration of racemic
hesperidin (200 mg/kg bw) to a single rat revealed only slightly (~15%) increased
cumulative 24 h urinary excretion of R-hesperetin compared to S-hesperetin, while
the cumulative urinary excretion of R-hesperetin compared to S-hesperetin was
only ~20% lower following the administration of orange juice (containing 7.3 mg/kg
bw hesperidin in an S:R ratio of 6.8:1) to a healthy volunteer[21].
Although several of these effects appeared significant, they were moderate in size,
showing, similar to the observations in the present study, differences between the
kinetic parameters for the S- and R-enantiomer of less than 5-fold. In addition, the
differences never resulted in the complete absence of a biochemical pathway or
kinetic route for one of the hesperetin enantiomers. From this it is concluded that
kinetic data obtained with the racemic mixture do give insight into what may
happen to the naturally predominant S-enantiomer of hesperetin. It is of interest to
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note that interindividual variation in kinetics may be in the same order of
magnitude as or even larger than the differences now observed between S- and
R-hesperetin.
In addition to possible differential kinetics for S- and R-hesperetin, it is of interest to
study whether different hesperetin enantiomers would lead to different biological
effects. It has been reported for instance that stereochemical differences greatly
affect the estrogenic activity of the isoflavone metabolite equol: S(-)-equol
demonstrated high affinity for estrogen receptor ERß (Ki = 0.73 nM), whereas
R(+)-equol had a Ki of only 15.4 nM[19].
It has been reported that flavonols and catechins can activate EpRE mediated gene
expression because of their pro-oxidant properties under certain conditions[27,28], by
which these flavonoids could exert their chemopreventive action[23,27]. The present
study revealed that, at physiologically relevant concentrations, S- and R-hesperetin
were both able to induce EpRE mediated gene expression to a similar extent
(Figure 7.6 on page 136). However, this assay represents only one of the possible
mechanisms by which hesperetin could exert biological effects.
In conclusion, in the case of hesperetin, whenever differences were observed in the
kinetics of S- and R-hesperetin they turned out to be moderate and generally within
a 5-fold difference between the two enantiomers. The differences never resulted in
the complete absence of a biochemical pathway or kinetic route for one of the
hesperetin enantiomers. Also in a selected bioassay there the two enantiomers were
equally active. Taken together, it is concluded that for the endpoints tested,
including intestinal metabolism and transport, experiments performed with
racemic hesperetin may adequately reflect what can be expected for the naturally
occurring S-enantiomer.
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Chapter 8
Summary and conclusions
Summary
The aim of the present thesis was to investigate whether the bioavailability of the
selected model flavonoid hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone)
could be increased by modulation of its intestinal metabolism and transport by
co-administering other flavonoids. Flavonoids form a large class of polyphenolic
compounds omnipresent in plant derived products, often present in the form of
ß-glycosides[1]. They have been frequently proposed to be associated with possible
beneficial effects on health[2]. Hesperetin is the aglycone of the rutinoside
hesperidin, which is present in large amounts in citrus fruits and orange juice (500
mg/L) and is deglycosylated upon oral uptake[3]. Hesperetin has been proposed to
provide anti-carcinogenic effects[4], and also to reduce the risk of osteoporosis,
which has been demonstrated in in vivo models[5-7]. Although the dietary intake can
be considerable, the bioavailability of hesperetin is limited, a phenomenon observed
for most subclasses of flavonoids[8]. An important mechanism behind this limited
bioavailability is the metabolism and transport in intestinal cells: flavonoids are
conjugated by phase II enzymes such as UDP-glucuronosyl transferases (UGTs),
sulfotransferases (SULTs) or catechol-O-methyltransferases (COMT), and are
subsequently transported from the intestinal cells back into the intestinal lumen by
apically located ATP binding cassette (ABC) transporters[9]. Because specific
flavonoids are known modulators of phase II metabolism and of ABC transporter
activity, in this thesis it was hypothesized that simultaneous exposure to hesperetin
and selected other flavonoids may increase hesperetin bioavailability by
modulating its intestinal metabolism and transport.
To further support this hypothesis, chapter 2 of the thesis presents a literature
overview on the capacity of flavonoids to modulate the oral bioavailability of other
compounds. This review reveals that the transport of compounds across the
intestinal epithelial can be highly dependent on the activity of ABC transporters,
especially those involved in the transport from the intestinal cells, either to the
basolateral blood side, facilitating absorption, or back into the intestinal lumen,
opposing bioavailability. The function of the ABC transporters in intestinal
transcellular uptake also implies a role for inhibitors of these transporters in
modulation of the bioavailability upon oral uptake. The role of flavonoids as
important modulators or substrates of intestinal ABC transport proteins and their
effect on the intestinal transport and bioavailability of other compounds is
illustrated by several examples from in vitro and some in vivo studies. Chapter 2
concludes that future studies should focus on (1) in vivo validation of the
flavonoid-mediated effects on bioavailability of drugs, toxins and beneficial
bioactive food ingredients detected in in vitro models, and (2) on the role of the
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phase II metabolism of flavonoids in modulating the activity of the flavonoids to act
as ABC transporter inhibitors and/or substrates.
In the subsequent chapters of the thesis the concept of increasing the bioavailability
of a compound by co-administration of inhibitors of phase II metabolism and/or
ABC transporters, is tested for hesperetin using different in vitro and in vivo model
systems. The in vitro models used to study intestinal metabolism and transport
included a two-compartment transwell model with Caco-2 cell monolayers,
simulating the intestinal transport barrier. After differentiation, Caco-2 cells are
known to display morphological and biochemical characteristics of human
enterocytes, including the expression of ABC transporters and phase II metabolizing
enzymes, and to form a tight layer of polarized intestinal cells[10]. Grown on a
membrane separating an apical compartment (simulating the intestinal lumen
side) and a basolateral compartment (simulating the blood/plasma side) they form a
well accepted in vitro model to study intestinal transport[11]. 
In chapter 3, this Caco-2 cell monolayer in a two-compartment transwell model
system simulating the intestinal transport barrier was used to define the
characteristics of the intestinal transport and metabolism of hesperetin in vitro. The
metabolites of hesperetin formed by the Caco-2 cells were identified using
HPLC-DAD and uPLC-DAD-MS-MS techniques and available reference compounds
combined with specific enzymatic deconjugation reactions. The role of the apically
located ABC transporters P-glycoprotein (Pgp), Multidrug Resistance Protein 2
(MRP2) and Breast Cancer Resistance Protein (BCRP) in the efflux of hesperetin and
its metabolites was studied by co-administration of compounds known to inhibit
several classes of ABC transporters. Furthermore, the cellular expression of these
ABC transporters in Caco-2 cells was confirmed using reverse transcription
quantitative polymerase chain reaction (RT-qPCR) analysis. It was shown that
apically-applied hesperetin was metabolized into hesperetin 7-O-glucuronide and
hesperetin 7-O-sulfate, which were transported predominantly to the apical side of
the Caco-2 cell monolayer. Hesperetin aglycone permeated to the basolateral side,
and this process was unaffected by the inhibitors used, possibly implying a passive
diffusion process. The inhibition studies, however, showed that efflux of hesperetin
conjugates to the apical side involved active transport, which from the pattern of
inhibition, appeared to be mediated mainly by BCRP. Upon inhibition by the specific
BCRP inhibitor Ko143[12], the apical efflux of hesperetin conjugates was significantly
reduced by 1.9-fold and transport to the basolateral side was significantly increased
by 3.1-fold. These findings elucidated a novel pathway of hesperetin metabolism
and transport, and indicated that BCRP-mediated transport can be a limiting step for
hesperetin bioavailability.
Because flavonoids can be expected to be converted by the same phase II enzymes
and thus to interfere with hesperetin metabolism, and because, as reviewed in
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chapter 2,  specific flavonoids can also inhibit the apically located ABC transporter
BCRP, it was studied in chapter 4 to what extent flavonoids can modulate the
metabolism and transport of hesperetin. To this end the effect of their co-
administration with hesperetin on hesperetin metabolism and transport was
studied using the Caco-2 cell monolayers two-compartment transwell model
system. It was shown that co-administration of hesperetin with specific flavonoids
reduced the ratio of apical to basolateral transport of hesperetin metabolites, and in
some cases, also reduced the amount of hesperetin metabolites detected
extracellularly. Flavonols and flavones were more potent inhibitors than
isoflavones, with quercetin being the most potent compound, while
co-administration of flavanols or glycosylated derivatives, reported not to inhibit
BCRP, did not modulate the transport of hesperetin metabolites. Because
intracellular accumulation of hesperetin metabolites did not account for the
decrease in hesperetin metabolites detected extracellularly, inhibition of
metabolism of hesperetin is likely the underlying mechanism for the reduced
metabolite formation and excretion. In spite of the reduction in metabolism the
amount of hesperetin metabolites transported to the basolateral side significantly
increased upon co-exposure with specific flavonoids and therefore
co-administration of specific flavonoids could be a strategy to improve the
bioavailability of hesperetin.
In chapter 5 it was investigated whether this in vitro observation, showing that
co-administration of quercetin may increase the basolateral transport of hesperetin
through Caco-2 cell monolayers at the cost of its apical transport, could be confirmed
in an in vivo rat model. Therefore hesperetin 7-O-glucoside, a monosaccharide
derivative of hesperidin, was administrated by oral gavage to Sprague-Dawley rats
in the presence or absence of quercetin. In this in vivo study hesperetin
7-O-glucoside was used instead of hesperetin itself, because previous studies in rats
revealed hesperetin to be already absorbed to a significant extent in the stomach
excluding the possibility to study the effects of co-administering quercetin on
intestinal uptake, while hesperetin 7-O-glucoside was found to be absorbed in the
small intestine[13] and thus provided a better model compound to study the effect of
quercetin on its intestinal uptake and subsequent bioavailability. Rats were orally
administered hesperetin 7-O-glucoside (15 or 3 mg/kg bw), in the presence or
absence of quercetin (15 mg/kg bw). Systemic blood was taken on 8 time points after
dosing from 15 min up to 8 hr in order to determine the area under the concentration
time curve (AUC) of plasma hesperetin and its demethylated and remethylated
metabolites eriodictyol and homoeriodictyol after treatment of blood samples with
ß-glucuronidase/sulfatase. Hesperetin, eriodictyol and homoeriodictyol were
determined and quantified by uPLC-DAD. Co-administration of quercetin did
especially increase hesperetin bioavailability in an early phase of the concentration
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time curve (at 15 min) when elimination was not yet dominating over uptake, but
did not significantly increase the AUC from time zero to 8 hr. It is concluded that the
effect of co-administration of quercetin as an inhibitor of the intestinal BCRP
mediated transport might result in increased bioavailability, especially during the
early phase of exposure when absorption processes still dominate over elimination
processes.
In chapter 6 the phase II metabolism of hesperetin was further studied by
determining the kinetics of hesperetin conversion by human or rat small intestinal,
colonic and hepatic microsomal and cytosolic fractions. Furthermore, the kinetics for
glucuronidation and sulfonation of hesperetin by, respectively, 12 individual UGT
and 12 individual SULT enzymes were determined in order to identify the
responsible UGT and SULT isoforms, of which the expression levels in different
tissues are relatively well documented in literature[14-17]. Results obtained
demonstrate that hesperetin is conjugated at positions 7 and 3', and that major
enzyme-specific differences in kinetics and regioselectivity for the UGT and SULT
catalyzed conjugations exist. UGT1A9, UGT1A1, UGT1A7, UGT1A8 and UGT1A3 are the
major enzymes catalyzing hesperetin glucuronidation, the latter only producing
7-O-glucuronide, while UGT1A7 mainly produced 3'-O-glucuronide. Furthermore,
UGT1A6 and UGT2B4 only produce hesperetin 7-O-glucuronide, while UGT1A1,
UGT1A8, UGT1A9, UGT1A10, UGT2B7 and UGT2B15 conjugate both positions. SULT1A2
and SULT1A1 catalyze preferably and most efficiently the formation of hesperetin
3'-O-sulfate, and SULT1C4 preferably and most efficiently the formation of
hesperetin 7-O-sulfate. Based on expression levels SULT1A3 and SULT1B1 will likely
play a role in the sulfo-conjugation of hesperetin in vivo. The results help to explain
discrepancies in metabolite patterns determined in tissues or systems with
different expression levels of UGTs and SULTs, e.g. hepatic and intestinal fractions or
Caco-2 cells. The incubations with rat and human tissue samples support an
important role for the intestinal cells during first pass metabolism in the formation
of hesperetin 3'-O-glucuronide and 7-O-glucuronide, which appear to be the major
hesperetin metabolites found in vivo, as compared to metabolism by liver tissue.
Additionally, chapter 7 pays attention to the stereochemistry of hesperetin which
contains a chiral C-atom and therefore can exist as an S- and R-enantiomer. This is of
importance because in nature 2S-hesperidin and its S-hesperetin aglycone are the
predominant chemical forms. However, in spite of this, many studies have been
performed with the commercially available racemates of hesperidin and hesperetin.
In chapter 7 the transport and metabolism characteristics so far studied for the
commercially available racemic mixture of hesperetin were investigated for the S-
and R-hesperetin enantiomers. To this end a chiral separation method on an
analytical and semi-preparative scale was developed allowing characterization of
the stereoselective differences in metabolism and transport in the intestine and
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activity in a selected bioassay of the separated hesperetin enantiomers in in vitro
model systems. S- or R-hesperetin were compared in several assays: (1) in
incubations with human small intestinal fractions containing UGTs or SULTs and
their cofactors; (2) with Caco-2 cell monolayers as a model for the intestinal
transport barrier; and (3) with mouse Hepa-1c1c7 cells transfected with human
EpRE-controlled luciferase to test induction of EpRE-mediated gene expression. The
results obtained indicate that although there are some significant differences in
metabolism and transport characteristics between S- and R-hesperetin, these
differences are relatively small. This indicates that for these endpoints, including
intestinal metabolism and transport, experiments performed with racemic
hesperetin may adequately reflect what can be expected for the naturally occurring
S-enantiomer.

Conclusions
From the studies described in this thesis, the following can be concluded:
- Literature demonstrates that certain flavonoids are important modulators of
intestinal ABC transporter proteins and therefore can modulate the bioavailability
of other compounds upon oral uptake (chapter 2).
- The flavonoid hesperetin is metabolized into 7-O-glucuronide and 7-O-sulfate
metabolites by Caco-2 cell monolayers, and these metabolites are predominantly
transported to the apical side of the monolayer, representing the intestinal lumen
side, by BCRP. Inhibition of this ABC transporter results in an up to 3.1-fold increased
transport of hesperetin metabolites to the basolateral side of the monolayer,
representing the blood side (chapter 3).
- Co-administration of specific flavonoids reported to inhibit BCRP, such as
quercetin, results in an increased transport of hesperetin metabolites towards the
basolateral side of  Caco-2 cell monolayers, pointing at a possible way to increase in
vivo bioavailability  (chapter 4).
- The effect of co-administering quercetin in vivo in rat may result in an increased
bioavailability of hesperetin, especially during the early phase of exposure when
absorption dominates over elimination of hesperetin (chapter 5).
- Major differences in kinetics and regioselectivity of hesperetin by individual UGTs
and SULTs exist, and incubations with rat and human tissue samples support an
important role for the intestinal cells during first pass metabolism (chapter 6).
- Although there are some significant differences in metabolism and transport
characteristics between S- and R-hesperetin, these differences are relatively small
indicating that intestinal transport and metabolism performed with racemic
hesperetin adequately reflects what can be expected from the naturally occurring
S-enantiomer of hesperetin (chapter 7).
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Concluding remarks and future perspectives
Flavonoid research dates back to the nineteen thirties, to the research of Dr. Albert
Szent-Györgi and co-workers, who identified a compound in citrus peel that reduced
capillary permeability and was effective in the treatment of purpura patients[18].
The compound was named vitamin P (P for 'Permeabilitätsfaktor')[18]. This
compound was later reported to be a mixture of the flavonoids hesperidin and
eriodictyol glucoside[19]. In the years onwards, the flavonoids hesperidin and
hesperetin and its various derivatives were reported to possess a significant
potential as therapeutic agents for a wide range of diseases and disorders, often
explained by their  anti-oxidant properties[4]. However, as for the biological effects
of flavonoids in general, these biological activities are often assessed using in vitro
test systems exposed to high concentrations of hesperetin aglycone. There are
several flaws in this approach: the metabolism during first pass metabolism is
ignored, and often non-physiologically relevant concentrations are being used. As a
result, even up to date, research groups are ascribing health beneficial effects to the
anti-oxidant properties of hesperetin or other flavonoids, based on data from in
vitro assays in which biological systems are exposed to extremely high
concentrations of flavonoids in a chemical form which cannot be detected in the
blood. Given the actual physiological levels of flavonoids reached in plasma and
most tissues in vivo, compared to the actual levels of other well known antioxidants
like vitamin E, vitamin C and glutathione, it might be questioned whether
flavonoids really exert their beneficial effects on health through their antioxidant
activity. Recently, the biological effects of flavonoids are ascribed more and more to
other mechanisms of action such as for example the modulation of factors within
cell signaling pathways or the modulation of specific gene expression patterns,
rather than to direct radical scavenging and antioxidant effects[20,21]. The induction
of Electrophile Responsive Element (EpRE)-mediated gene expression by flavonoids,
considered a beneficial response because its results in increased levels of phase II
enzymes and other enzymes detoxifying electrophile compounds, has even been
ascribed to their pro-oxidant chemistry[22].
During the first pass metabolism following intake, hesperetin is extensively
metabolized and therefore only limited amounts, if any, of hesperetin aglycone are
likely to be present in the systemic circulation. Since flavonoid conjugates and thus
also the hesperetin conjugates are likely to possess different biological activities, as
well as different distribution patterns than the parent aglycones, the results
obtained in in vitro assays with the aglycones may not be extrapolated to the in
vivo situation without taking the consequences of phase II metabolism into
account. For hesperetin, apart from the aglycone, also its glucuronidated
metabolites have been reported to provide some beneficial health effects such as the
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protection against UV-A induced necrotic cell death in human skin fibroblasts[23],
and recently, effects on several mechanisms or factors playing a role during
osteoblast differentiation[24]. The latter may help to explain the role of hesperetin in
the reduction of the risk on osteoporosis, which has been demonstrated in in vivo
models with ovariectomized rats and mice[5-7]. Although the exact mechanism of
action is still unknown, some research indicates that suppression of nuclear factor
(NF)-KB activated mechanisms might play an important role[25].
Given this state-of-the-art it is concluded that future research on the biological
activities of flavonoids should be directed at the phase II conjugates, which are the
main circulating forms in vivo, and should define their mechanism and side of
action as well as possibilities for their deconjugation upon or before cellular uptake.
It can be envisaged that phase II metabolites of hesperetin may become
deconjugated into the parent compound in order to exert their biological effects, as
was demonstrated for the biological activity of quercetin glucuronides in the
induction of EpRE-mediated gene expression [26]. Such a deconjugation may occur
because cells can contain ß-glucuronidase able to deconjugate quercetin
glucuronides[26,27].
In addition, further research should also take the physiologically relevant levels of
hesperetin metabolites into account. Many of the effects reported in in vitro test
systems result from exposure to concentrations up to thousand fold higher than the
concentrations which can be detected in the blood after oral intake of hesperidin
containing foods; e.g. consumption of 0.5 to 1 liter orange juice has been reported to
result in maximum plasma concentrations (Cmax) of only ~2 μM[28,29]. An important
reason behind this low plasma concentration after consumption of orange juice is
the fact that hesperidin is taken up only gradually after deglycosylation by
microbiota in the colon. By enzymatic treatment hesperidin can be converted into
hesperetin 7-O-glucoside, a form of hesperetin that is already taken up in the small
intestine, at a faster rate, by which the Cmax of hesperetin can be increased 4-fold[13].
However, even when co-administration with other flavonoids, as investigated in
the present thesis, could potentially increase the Cmax of hesperetin even further,
the in vivo plasma levels of hesperetin metabolites would still be expected to
amount to levels of at most 10 μM, consisting of mainly hesperetin phase II
metabolites, and this should be taken into account when designing and interpreting
in vitro studies.
A final issue which is generally overlooked in the research on hesperetin and some
other flavonoids, and which should receive more attention in future research, is the
fact that hesperetin has a chemical structure containing a chiral center, and
therefore exists as S- and R-hesperetin enantiomers. While in nature S-hesperetin is
predominant, most studies applying 'pure' compounds use a racemic mixture,
containing two isomers with potentially distinct kinetic and dynamic behavior. This
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not only applies to hesperetin but also to other flavanones such as naringenin, or
other classes of flavonoids containing a chiral center in their structure, e.g.
flavanols. In our studies on stereochemical differences in the metabolism and
bioactive effects of the hesperetin enantiomers, using EpRE-mediated gene
expression as a model assay, some significant differences were detected although
they were generally small, leading to the conclusion that differences in metabolism
and transport characteristics between S- and R-hesperetin are relatively small,
indicating that intestinal transport and metabolism performed with racemic
hesperetin adequately reflects what can be expected from the naturally occurring
S-enantiomer of hesperetin. In the selected EpRE-reporter gene assay at
physiologically relevant levels no major differences between the S- and
R-enantiomer were detected. However, it should be recognized that bioassays that
depend on selected receptor interactions may be more sensitive to stereochemical
differences than the EpRE-reporter gene assay and the conversion of hesperetin by
the phase II biotransformation enzymes or the ABC transporters with their wide
substrate specificities. Thus, the possible impact of stereochemistry on the biological
effects of flavonoids should be investigated to a further extent taking also other
end-points into account.
Altogether, the studies described in this thesis belong to the only way forward in
understanding and applying the physiological effects of flavonoids, and provide an
insight in the mechanisms of bioavailability of hesperetin and the effect of
co-administering other flavonoids hereon.
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Het doel van dit promotieonderzoek was te onderzoeken in welke mate de
biobeschikbaarheid van de geselecteerde modelflavonoïde hesperetine
((+/-)-4'-methoxy-3',5,7-trihydroxyflavonone) zou kunnen worden verhoogd door het
beïnvloeden van het metabolisme en het transport van hesperetine in de
darmwand, door middel van gelijktijdige blootstelling aan andere flavonoïden.
Flavonoïden vormen een grote groep polyfenolen en zijn aanwezig in veel
voedingsmidden die afkomstig zijn van planten. Vaak zijn flavonoïden hierin
aanwezig in de vorm van ß-glycosiden[1]. Flavonoïden zijn veelvuldig geassocieerd
met allerhande, mogelijk gezondheidsbevorderende, effecten[2]. Hesperetine is het
aglycon van de rutinoside hesperidine, dat in aanzienlijke hoeveelheden aanwezig
kan zijn in citrusfruit en in sinaasappelsap[3]. Hesperidine wordt, na inname, in de
darm gedeglycosyleerd tot hesperetine[3]. Hesperetine is in verband gebracht met
anticarcinogene effecten[4], en ook met het verminderen van het risico op
osteoporose, wat is aangetoond in in vivo modelsystemen[5-7]. Hoewel de inname
via het dieet aanzienlijk kan zijn, is de biobeschikbaarheid van hesperetine beperkt;
een fenomeen dat geldt voor de meeste subgroepen van flavonoïden[8]. Een
belangrijk mechanisme dat hieraan ten grondslag ligt is het metabolisme en
transport in de darmwand: flavonoïden worden geconjugeerd door zogenaamde
fase-II-enzymen, zoals UDP-glucuronosyl tranferasen (UGT), sulfotransferasen
(SULT) of catechol-O-methyltransferasen (COMT), in de cellen van de darmwand en
worden vervolgens teruggetransporteerd naar het darmlumen door apicaal gelegen
ABC-transporters[9]. Omdat specifieke flavonoïden bekendstaan als modulatoren
van fase-II-enzymen en ABC-transporters, is in dit proefschrift de hypothese
onderzocht of gelijktijdige blootstelling aan hesperetine en specifieke andere
flavonoïden de biobeschikbaarheid van hesperetine zou kunnen verhogen door het
moduleren van het metabolisme en het transport van hesperetine in de darmwand.
Om deze hypothese te ondersteunen, geeft hoofdstuk 2 van dit proefschrift een
overzicht weer van literatuur over het vermogen van flavonoïden om de orale
biobeschikbaarheid van bepaalde stoffen te moduleren. Het overzicht toont aan dat
het transport van stoffen door de darmwand in grote mate afhankelijk kan zijn van
de activiteit van ABC-transporters. Deze kunnen gelegen zijn aan de basolaterale
zijde en absorptie faciliteren, of aan de apicale zijde en betrokken zijn bij het
transport naar het darmlumen en daarmee de biobeschikbaarheid van bepaalde
stoffen verminderen. Deze functie van de ABC- transporters houdt ook een rol in
voor stoffen die deze transporters remmen (inhibitors) in het moduleren van orale
biobeschikbaarheid. De rol van flavonoïden hierin kan worden geïllustreerd aan de
hand van verschillende voorbeelden van in vitro- en in vivo-studies waarin
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dergelijke effecten zijn waargenomen. Hoofdstuk 2 besluit met de conclusie dat
toekomstige studies zich tevens zouden moeten richten op (1) in vivo-validatie van
de effecten van flavonoïden op de biobeschikbaarheid van medicijnen, toxinen en
bioactieve stoffen in het voedsel die zijn aangetoond in in vitro-modelsystemen, en
(2) op de rol van het fase-II-metabolisme van flavonoïden op de functie van
flavonoïden als ABC- transporter-inhibitor en/of -substraat.
In de daaropvolgende hoofdstukken van het proefschrift is het concept van het
verhogen van de biobeschibaarheid van hesperetine door simultane blootstelling
aan inhibitors van fase-II-metabolisme en/of ABC-transport onderzocht met behulp
van verschillende in vitro- en in vivo-systemen. Als in vitro-modelsysteem is onder
meer een tweecompartimenten transwellmodel met monolagen van Caco-2 cellen
gebruikt om de darmwand te simuleren. Caco-2 cellen vertonen, na differentiatie,
morfologische en biochemische karakteristieken van enterocyten, inclusief de
expressie van ABC- transporters en fase II enzymen, en vormen een aaneengesloten
laag van gepolariseerde cellen[10]. Gekweekt op een membraan dat een apicaal
compartiment (dat het darmlumen vertegenwoordigt) scheidt van een basolateraal
compartiment (dat de zijde van het bloed vertegenwoordigt), vormen monolagen
van Caco-2 cellen een geaccepteerd in vitro-model om de opname door de
darmwand te bestuderen[11].
In hoofdstuk 3 zijn monolagen van Caco-2 cellen in het tweecompartimenten
transwellmodel gebruikt om de eigenschappen van het metabolisme en het
transport van hesperetine in de cellen van de darwmand in vitro te definiëren. De
metabolieten van hesperetine, gevormd door de Caco-2 cellen zijn, daarbij
geïdentificeerd door middel van HPLC-DAD en uPLC-DAD-MS-MS-technieken en
beschikbare referentiestoffen in combinatie met specifieke deconjugatiereacties. De
rol van de apicaal gelegen ABC-transporters P-glycoproteïne (Pgp), “Multidrug
Resistance Protein 2” (MRP2) en “Breast Cancer Resistance Protein” (BCRP) in het
transport van hesperetine en haar metabolieten is bestudeerd door gelijktijdige
blootstelling aan remmers voor bepaalde klassen van ABC transporters. De cellulaire
expressie van deze ABC-transporters in Caco-2 cellen is bevestigd door middel van
RT-qPCR-analyse. De monolagen van Caco-2 cellen (apicaal blootgesteld)
metaboliseerden hesperetine tot hesperetine 7-O-glucoronide en hesperetine
7-O-sulfaat, die voornamelijk naar de apicale zijde van de monolaag werden
getransporteerd. Ongemetaboliseerd hesperetine drong door tot de basolaterale
zijde en dit proces werd niet beïnvloed door de gebruikte remmers van
ABC-transport, wat mogelijk op een passief diffusieproces duidt. Echter, de studies
met de remmers toonden aan dat het transport van de metabolieten van
hesperetine naar de apicale zijde een actief transport betrof, dat op basis van het
patroon van remming hoofdzakelijk aan BCRP kon worden toegeschreven. Als
gevolg van de specifieke BCRP-remmer Ko143[12], werd het transport van de
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hesperetine metabolieten naar de apicale zijde met een factor 1.9 verlaagd, en naar
de basolaterale zijde met een factor 3.1 verhoogd. Deze resultaten werpen een nieuw
licht op het metabolisme en transport van hesperetine, en tonen aan dat het
transport door BCRP een beperkend mechanisme kan zijn in de biobeschikbaarheid
van hesperetine.
Omdat verwacht kan worden dat andere flavonoïden worden omgezet door gelijke
fase- II-enzymen als hesperetine en daarmee het metabolisme van hesperetine
zouden kunnen beïnvloeden, en omdat bepaalde flavonoïden ook de apicaal gelegen
ABC-transporter BCRP kunnen remmen, is in hoofdstuk 4 het effect van
verschillende flavonoïden op het metabolisme en het transport van hesperetine
onderzocht. Dat is getest door monolagen van Caco-2 cellen in het
tweecompartimenten transwellsysteem bloot te stellen aan combinaties van
hesperetine met andere flavonoïden. Daarbij werd aangetoond dat blootstelling aan
hesperetine in combinatie met specifieke flavonoïden de ratio van apicaal naar
basolateraal transport verminderde, en in sommige gevallen ook de hoeveelheid
gevormde, extracellulair gemeten hesperetine metabolieten verminderde.
Flavonolen en flavonen hadden hierbij een groter effect dan isoflavonen, en de
flavonol quercetine veroorzaakte het grootste effect, terwijl blootstelling aan
flavanolen of geglycosyleerde derivaten, die volgens de literatuur BCRP niet
remmen, geen effect hadden op het transport van de hesperetine metabolieten.
Omdat intracellulaire ophoping van hesperetine metabolieten niet de verminderde
hoeveelheid extracellulair gemeten hesperetine metabolieten kon verklaren, werd
geconcludeerd dat remming van het metabolisme van hesperetine waarschijnlijk
het mechanisme is voor de verminderde vorming en excretie van hesperetine
metabolieten. Ondanks de reductie in metabolisme, was de hoeveelheid hesperetine
metabolieten die naar de basolaterale zijde werden getransporteerd significant
verhoogd door de gelijktijdige blootstelling aan specifieke flavonoïden en daarom
zou gelijktijdige blootstelling aan bepaalde andere flavonoïden een strategie
kunnen zijn waarmee de biobeschikbaarheid van hesperetine kan worden
verhoogd.
In hoofdstuk 5 is onderzocht of de in vitro bevindingen in het Caco-2 model, die
aantoonden dat gelijktijdige blootstelling aan quercetine het basolaterale transport
van hesperetine metabolieten vergrootte, zouden kunnen worden bevestigd in een
in vivo-model. Daartoe werd hesperetine 7-O-glucoside, een
monosaccharidederivaat van hesperetine, oraal toegediend aan Sprague-Dawley
ratten in de aan- of afwezigheid van quercetine. In deze in vivo-studie werd
hesperetine 7-O-glucoside gebruikt in plaats van hesperetine, omdat eerdere studies
met ratten lieten zien dat hesperetine al voor een groot deel wordt opgenomen in de
maag, wat de mogelijkheid uitsluit om het effect van quercetine op de opname in de
darm te onderzoeken. Van hesperetine 7-O-glucoside is bekend dat het opgenomen
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wordt in de dunne darm[13], en daarom is het een betere modelstof om het effect van
quercetine op de opname en biobeschikbaarheid van hesperetine in de darm te
onderzoeken. Ratten werd oraal hesperetine 7-O-glucoside (15 of 3 mg/kg
lichaamsgewicht) toegediend, in de aan- of afwezigheid van quercetine (15 mg/kg
lichaamsgewicht). Systemisch bloed werd afgenomen op 8 tijdspunten na
toediening, tussen de 15 minuten en 8 uur, om de oppervlakte onder de
concentratietijdcurve (AUC) van plasma-hesperetine en haar gedemethyleerde en
geremethyleerde derivaten eriodictyol en homoeriodictyol te bepalen na
behandeling van de bloedmonsters met ß-glucuronidase/sulfatase. De
concentraties hesperetine, eriodictyol en homo-eriodictyol werden bepaald en
gekwantificeerd middels uPLC-DAD. Gelijktijdige blootstelling aan hesperetine en
quercetine verhoogde in het bijzonder de biobeschikbaarheid van hesperetine in de
vroege fase van de concentratietijdcurve (bij 15 min) waar eliminatie nog niet
domineert over opname, maar verhoogde niet de AUC van tijdstip nul tot 8 uur. Er
kan worden geconcludeerd dat het effect van gelijktijdige blootstelling aan
quercetine als een remmer van het transport van BCRP in de cellen van de
darmwand, zou kunnen resulteren in een verhoogde biobeschikbaarheid van
hesperetine, zeker tijdens de vroege fase van blootstelling waar absorptieprocessen
nog domineren boven het proces van eliminatie.
In hoofdstuk 6 werd het fase-II-metabolisme van hesperetine verder bestudeerd. In
deze studie werd de kinetiek van de omzetting van hesperetine door microsomale
en cytosolaire fracties van de dunne darm, dikke darm en lever van de mens en de
rat bepaald. Ook werd de kinetiek onderzocht van de glucuronidering en sulfonering
van hesperetine door respectievelijk 12 individuele UGT- en 12 individuele
SULT-enzymen teneinde de verantwoordelijke UGTs en SULTs te bepalen. Van deze
UGTs en SULTs zijn de expressieniveaus in verschillende weefsels betrekkelijk goed
beschreven in de literatuur[14-17]. De verkregen resultaten toonden aan dat
hesperetine wordt geconjugeerd op positie 7 en 3', en dat er belangrijke
enzymspecifieke verschillen bestaan in de kinetiek en regioselectiviteit voor de door
de UGTs en SULTs gekatalyseerde conjugatiereacties. UGT1A9, UGT1A1, UGT1A7,
UGT1A8 en UGT1A3 zijn de belangrijkste UGTs die de glucuronidering van
hesperetine katalyseren, waarvan de laatste alleen 7-O-glucuronide vormt, terwijl
UGT1A7 hoofdzakelijk 3'-O-glucuronide produceert. UGT1A6 en UGT2B4 vormen
enkel hesperetine 7-O-glucuronide, terwijl UGT1A1, UGT1A8, UGT1A9, UGT1A10
UGT2B7 en UGT2B15 beide posities conjugeren. SULT1A2 en SULT1A1 katalyseren het
meest efficiënt de vorming van hesperetine 3'-O-sulfaat, en SULT1C4 vormt
voornamelijk en het meest efficiënt de vorming van hesperetine 7-O-sulfaat.
Gebaseerd op expressieniveaus ligt het ook voor de hand dat SULT1A3 en SULT1B1
een belangrijke rol spelen in de sulfonering in de darmcellen. Deze resultaten
helpen verschillen in metabolietpatronen te verklaren die worden waargenomen in
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weefsels of systemen met verschillende expressieniveaus van UGTs en SULTs,
bijvoorbeeld lever- en darmfracties of Caco-2 cellen. Resultaten verkregen op basis
van incubatie van hesperetine met de weefselfracties ondersteunden een
belangrijke rol voor de darmcellen in het metabolisme van hesperetine tijdens de
opname, resulterend in de vorming van hesperetine 3'-O-glucuronide en
hesperetine 7-O-glucuronide, welke de belangrijkste metabolieten van hesperetine
zijn die in vivo worden aangetroffen.
Hoofdstuk 7 belicht de stereochemie van hesperetine. Hesperetine bevat een chiraal
C-atoom waardoor het kan voorkomen als S- en R-enantiomeer. Dit is van belang
omdat in de natuur 2S-hesperidine en het afgeleide S-hesperetine verreweg de
meest voorkomende chemische vormen zijn. Desondanks worden veel studies
uitgevoerd met de commercieel verkrijgbare racemische mengsels van hesperidine
en hesperetine. In hoofdstuk 7 zijn de eigenschappen van het transport en van het
metabolisme die tot nu toe waren bestudeerd voor het commercieel beschikbare
racemische mengsel van hesperetine, bestudeerd voor S- en R-hesperetine
afzonderlijk. Hiertoe werd een chirale scheidingsmethode ontwikkeld die het
mogelijk maakte op een analytische en semi-preperatieve schaal S- en
R-hesperetine te isoleren. Vervolgens konden de stereoselectieve verschillen in
metabolisme en transport tussen de twee hesperetine-enatiomeren in in
vitro-modellen worden bestudeerd en tevens de activiteit van beide vormen in een
geselecteerde in vitro-bioassay. S- en R-hesperetine zijn vergeleken in verschillende
assays: (1) in incubatie met humane dunnedarmfracties die UGTs en SULTs bevatten,
en de relevante co-facoren, (2) in het transwellsysteem met monolagen van Caco-2
cellen als model voor het metabolisme en het transport in de darmwand; en (3) in
muizen Hepa-1c1c7-cellen getransfecteerd met humane EpRE-gereguleerde
luciferase om de inductie van EpRE-gemedieerde genexpressie te onderzoeken. De
resultaten lieten zien dat er enige significante verschillen bestaan tussen de
kinetiek en de biologische activiteit van S- en R-hesperetine in deze assays, maar dat
deze verschillen relatief klein zijn. Dit betekent dat voor de onderzochte eindpunten,
namelijk darmmetabolisme en -transport, experimenten uitgevoerd met racemisch
hesperetine, adequaat kunnen weergeven wat kan worden verwacht voor het
natuurlijk voorkomende S-hesperetine.

Conclusies
Uit het onderzoek beschreven in dit proefschrift kan het volgende worden
geconcludeerd:
- De literatuur toont aan dat bepaalde flavonoïden belangrijke modulatoren zijn van
ABC-transporters in de darmwand en daarom de biobeschikbaarheid van andere
stoffen na orale opname kunnen beïnvloeden (hoofdstuk 2).
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- De flavonoïde hesperetine wordt door monolagen van Caco-2-cellen
gemetaboliseerd in 7-O-glucuronide- en 7-O-sulfaat-metabolieten. Deze
metabolieten worden hoofdzakelijk getransporteerd naar de apicale zijde van de
monolaag, de zijde die het darmlumen simuleert, door de ABC-transporter BCRP.
Remming van BCRP leidt in een tot 3.1-keer verhoogd transport van hesperetine
metabolieten naar de basolaterale zijde van de monolaag, de zijde die het bloed
vertegenwoordigt (hoofdstuk 3).
- Gelijktijdige blootstelling aan bepaalde flavonoïden die beschreven zijn als
remmers van BCRP, waaronder quercetine, leidt tot een verhoogd transport van
hesperetine metabolieten naar de basolaterale zijde van de monolagen van Caco-2
cellen, hetgeen wijst op een mogelijke manier om de biobeschikbaarheid in vivo te
verhogen (hoofdstuk 4).
- Het effect van gelijktijdige blootstelling aan quercetine in vivo in ratten zou
kunnen leiden tot een verhoogde biobeschikbaarheid van hesperetine, in het
bijzonder gedurende de vroege fase van blootstelling wanneer de absorptie van
hesperetine belangrijker is dan de uitscheiding (hoofdstuk 5).
- Er bestaan grote verschillen in kinetiek en regioselectiviteit van de omzetting van
hesperetine door afzonderlijke UGTs en SULTs, en incubatie met weefselfracties van
rat en mens ondersteunen een belangrijke rol voor de darmcellen tijdens het
metabolisme van hesperetine gedurende de opname (hoofdstuk 6).
- Hoewel er enige significante verschillen bestaan in de karakteristieken van
metabolisme en transport tussen S- en R-hesperetine, zijn deze relatief klein wat
aantoont dat studies naar transport en metabolisme uitgevoerd met racemisch
hesperetine adequaat weerspiegelen wat kan worden verwacht voor de natuurlijk
voorkomende S-enanatiomeer van hesperetine (hoofdstuk 7).
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	Finally, MRP6 (ABCC6) seems to be located on the basolateral side[14,15] although it may only be expressed in the mucosal cells of the intestine[16]. More MRP homologues have been defined[17-19], but their function and location of expression is still...
	The two-compartment cell culture system consists of a permeable cell culture filter insert that is placed in a well of a normal cell culture plate. The cells are seeded on the filter inserts and are cultured to cover the whole surface area. Caco-2 ce...

	Furthermore, the reduced oral bioavailability of digoxin upon combination therapy with rifampicin has now been ascribed to rifampicin-mediated induction of Pgp[22,25]. Efficient transport of saquinavir, ritonavir and indinavir by MRP2 transfected Mad...
	Thus given the wide substrate selectivity of the intestinal ABC transporters an influence of these transporters on the bioavailability of not only a wide number of drugs, but also of many bioactive food ingredients and/or toxic compounds, can be fore...


	Role of the active transporters in multidrug resistance: need for non-cytotoxic inhibitors
	Given the role of the various drug transporters in the cellular efflux of chemicals, including anticancer drugs, initial focus in the field of ABC transporters and ABC transport inhibitors was on multidrug resistance (MDR), rather than on intestinal ...
	Because of the role of these transporters in multidrug resistance, one strategy to overcome transporter mediated drug resistance relies on the identification of transport inhibitors. Numerous compounds that inhibit Pgp, MRPs or BCRP transport activit...

	Flavonoids as inhibitors of transporter proteins
	Flavonoids (Figure 2.3) consist of a large group of polyphenolic antioxidants found in fruits, vegetables and plant-derived beverages such as tea and red wine[70], as well as in dietary supplements. In foods, flavonoids are often present as §-glycos...
	Structural formula of examples of dietary flavonoid derivates representing the major classes of flavonoids (chalcones, flavanols, flavanones, flavones, flavonols and isoflavones) which are, apart from chalcones which have a different orientation and ...

	Overview of selected literature on inhibition of ABC transporters present in the intestine by dietary flavonoids.
	Table 2.2 presents an overview of dietary flavonoids known to inhibit the activity of the various ABC transporter proteins. It has become clear that flavonoids or their metabolites are important modulators or substrates of intestinal membrane bound t...
	Schematic presentation of the role of flavonoids, or their metabolites formed within intestinal cells, as substrates or inhibitors of apical intestinal ABC transport proteins (Pgp, MRP2 and BCRP).



	Effect of flavonoids as ABC transporter inhibitors on MDR, intracellular accumulation and bioavailability of bioactive chemicals
	Given the involvement of the transport proteins in the efficiency of intestinal transport, it can be envisaged that the ABC transport inhibitors may not only affect multidrug resistance of tumor cells, but may also affect the bioavailability of a var...
	PhIP transport through Caco-2 monolayers from the apical (AP) to the basolateral (BL) compartment. Caco-2 monolayers were exposed to 5 µM PhIP in the apical compartment in the absence ( ) or presence ( ) of 20 µM quercetin in both compartments, all...

	It is also important to emphasise that the various effects observed in cells in vitro need in vivo validation. Only a few studies actually demonstrate a role for flavonoids as ABC transporter inhibitors or substrates leading to modulation of the in v...
	Overview of the literature on the effect of dietary flavonoids on cellular accumulation, transport or bioavailability of drugs and other xenobiotics in different model systems.
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	mitoxantrone, rhodamine-6G
	calcium-AM, cyclosporine A, vinblastine
	mitoxantrone, SN-38, topotecan
	vinblastine
	daunorubicin, rhodamine-123
	paclitaxel, rhodamine-123, vinblastine
	doxorubicin
	daunomycin
	daunomycin
	topotecan
	mitoxantrone
	daunomycin, doxorubicin
	mitoxantrone
	EGCG
	vincristine
	daunomycin, vinblastine
	rhodamine-123
	digoxin, vinblastine
	ochratoxin A
	PhIP
	saquinavir
	talinolol
	vinblastine
	vinblastine
	cycolosporin A, digoxin
	etoposide
	fexofenadine, rhodamine-123, saquinavir
	diltiazem
	paclitaxel
	talinolol
	cyclosporine
	dextromethorphan
	In the same study, co-administration of topotecan with GF120918, a potent BCRP and Pgp inhibitor[30], to the SD rats or mdr1a/1b(-/-) mice appeared to significantly increase the bioavailability of topotecan by more than 4-fold, indicating the possibi...


	Physiological relevance of flavonoid interactions
	All together it can be concluded that flavonoid-mediated inhibition of ABC transporters may affect the bioavailability of drugs, bioactive food ingredients and/or food-borne toxic compounds upon oral intake. Flavonoids, which are an important class o...

	Conclusions
	Inhibition of ABC transporters has originally been studied within the framework of multidrug resistance. Many of the inhibitors appeared to exert unwanted side effects, and this stimulated the interest in flavonoids as relatively non-cytotoxic inhibi...
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	Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers
	Walter Brand, Petronella A. I. van der Wel, Maarit J. Rein, Denis Barron, Gary Williamson, Peter J. van Bladeren, and Ivonne M.C.M. Rietjens
	Drug Metabolism and Disposition 36(9): 1794-1802, 2008
	Abstract
	Metabolism and transport from intestinal cells back into the lumen by ATP binding cassette (ABC) transporters is believed to limit the bioavailability of flavonoids. We studied metabolism and transport of the citrus flavonoid hesperetin, the aglycone...

	Introduction
	Flavonoids consist of a large group of polyphenols which can be divided into different classes and are present in fruits, vegetables and other plant-derived products. In foods, flavonoids often occur as §-glycosides of aglycones, which become deglyc...
	Chemical structures of the rutinoside hesperidin and its aglycone hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) and an illustration of possible pathways for their intestinal uptake.

	Intestinal ABC transporters that have been related to flavonoid transport include P-glycoprotein (Pgp/MDR1/ABCB1), multidrug resistance proteins (MRPs/ABCCs) and breast cancer resistance protein (BCRP/ABCG2), of which Pgp, MRP2 and BCRP are localized...
	Overview from selected literature on the ability of the inhibitors used in this study to inhibit different ABC transporters in different specific model systems.

	Materials and methods
	Materials
	Chloroform, hesperetin (purity ³95%), L-ascorbic acid and sulfatase (from Helix pomatia) were purchased from Sigma (St.Louis, MO). GF120918 was a generous gift from GlaxoSmithKline (Hertfordshire, UK), Ko143 from Dr. Alfred H. Schinkel from the Neth...

	Cell culture
	Caco-2 cells were obtained from ATCC (Rockville, MD) and cultured in a humidified atmosphere of 5 % CO2 and 95 % air at 37 ¡C in Dulbecco's Modified Eagle Medium (DMEM) containing 25 mM HEPES buffer, 4500 mg/l glucose, L-glutamine and phenol red, an...

	RNA isolation
	Medium was removed from a culture flask containing a Caco-2 cell monolayer (passage number 46) and the cells were lyzed in TRIzol reagent (100 µl/cm2) and stored at -80 ¡C. After defreezing, 200 µl chloroform was added to 1 ml aliquots, which were...

	Real time RT-qPCR
	A 5 µl mix containing 2 µg total RNA was reverse transcribed using 0.25 µg random primers from Invitrogen (Paisley, UK), 2 µl dNTPs (10 mM) from Fermentas (Vilnius, Lithuania) and RNase free water, together incubated at 65 ¡C for 5 min in an iCy...
	Gene specific PCR primers.


	Transport experiments
	Before experiments were started, Caco-2 cell monolayers were washed with DMEM (without phenol red). The integrity of the monolayers was checked by measuring trans-epithelial electrical resistance (TEER) values with a Millicell ERS volt/ohmmeter from ...
	HPLC-DAD analysis
	The HPLC system consisted of a Waters (Milford, MA) Alliance 2695 separation module connected to a Waters 2996 photodiode array detector, equipped with an Alltech (Breda, The Netherlands) Alltima C18 5 µm 150 * 4.6 mm reverse phase column with 7.5 *...

	uPLC-DAD analysis
	The uPLC system consisted of a Waters Acquity binary solvent manager, sample manager and photodiode array detector, equipped with a Waters BEH C18 1.7 µm 50 * 2.1 mm column. After centrifugation at 16000 g for 4 min samples of 10 µl were injected a...

	uPLC-DAD-MS-MS analysis
	Before injecting, samples were pre-treated by a solvent extraction in which 300 µl of sample was mixed with an equal volume of 200 mM HCl/methanol and 3 times extracted with 900 µl ethyl acetate. The collected organic fractions were pooled, dried u...

	Enzymatic deconjugation
	To confirm the presence of glucuronide or sulfate conjugates, samples were treated with §-glucuronidase or sulfatase/§-glucuronidase. For §-glucuronidase incubations 50 µl sample was added to 50 µl 400 mM potassium phosphate buffer (pH 6.2) and ...

	Quantification
	Hesperetin was quantified by peak area measurement using HPLC-DAD analysis, based on detection at 280 nm, using a ten-point linear (R2>0.99) calibration line of a concentration range of 0.02 to 20 µM hesperetin in transport medium containing a final...

	Stability
	The stability of hesperetin, hesperetin 7-O-glucuronide and 7-O-sulfate standards under experimental conditions was tested separately by taking samples with time (at 0, 1, 2, 3, 6 and 24 hours) from wells on a Corning Costar 12-well plate (Corning, N...

	Partition coefficient determination
	The log P value of hesperetin was calculated using the online LogKow (KowWin) program (available at http://www.syrres.com/esc/est_kowdemo.htm) from Syracuse Research Corporation (Syracuse, NY). This program uses fragmental analysis of the chemical st...

	Statistical analysis
	Student's two-tailed unpaired t-test was used to evaluate statistical differences. Differences were considered significant when p-values were less than 0.05. Values are expressed as mean ± standard deviation (SD).


	Results
	Metabolism and transport of hesperetin by Caco-2 cell monolayers
	Using the Caco-2 cell monolayer two-compartment transwell system we studied transport and metabolism of hesperetin. Figure 3.2 shows representative sections of HPLC chromatograms of samples taken from the 0.5 ml apical (A) and 1.5 ml basolateral (B) ...
	Representative sections of the HPLC chromatograms of medium samples from the apical (A) and basolateral (B) side of a Caco-2 monolayer 120 min upon exposure to 10 µM hesperetin added to the apical medium. The volume of the apical and basolateral com...

	Upon further analysis by uPLC-DAD, the major metabolite M1 (amounting to 86 % of the total amount of metabolites determined by peak area), demonstrated the same retention time (3.50 min) and DAD spectrum (UVmax 284.1 nm) as the authentic hesperetin 7...
	Amounts of hesperetin 7-O-glucuronide (M1), hesperetin 7-O-sulfate (M2) and hesperetin aglycon in the apical compartment (A) and basolateral compartment (B) with time upon exposure to 5 nmol (=10 µM / 0.5 ml) apically-applied hesperetin. Data are th...
	Mean amounts of hesperetin 7-O-glucuronide (M1), hesperetin 7-O-sulfate (M2) and hesperetin aglycone in the apical compartment and basolateral compartment 120 min upon exposure to 5 nmol (=10 µM / 0.5 ml) apically-applied hesperetin (n=7), *** = p<0...


	Real time RT-qPCR
	From the cDNA dilution series, the CT values were for all genes most stable between 10- and 40-fold dilution, and so the real time qPCR data from the 20-fold diluted cDNA was used for the calculations. Figure 3.5 depicts the relative mRNA expression ...
	Relative ABC transporter mRNA expression levels in Caco-2 cells normalized to the expression of villin. Mean ±SD values of two determinations are shown.


	Effect of ABC transporter inhibitors on hesperetin metabolism and efflux by Caco-2 cell monolayers
	Since flavonoids and/or their metabolites are known to be substrates of ABC transporters, the effect of co-administering different ABC transporter inhibitors to the apical compartment on the transport of hesperetin aglycone and the hesperetin metabol...
	Effect of different ABC transport inhibitors on basolateral amounts of hesperetin detected 120 min upon apical addition of 10 µM hesperetin compared with the control (10 µM hesperetin without inhibitors). Mean ±SD values are shown (n=4, control n=...

	The efflux of hesperetin metabolites (Figure 3.7, and Table 3.3 on page 62), however, was affected by the dual Pgp/BCRP inhibitor GF120918, which caused a concentration-dependent decrease in the apical efflux, accompanied by a concentration-dependent...
	Effect of different ABC transport inhibitors on amounts of hesperetin 7-O-glucuronide (A), hesperetin 7-O-sulfate (B) and on the sum of both hesperetin metabolites (C) in the apical and basolateral medium 120 min after addition of 10 µM hesperetin t...

	As a result, the predominant side of both hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate efflux was reversed from the apical to the basolateral side. Although not significant, co-administration of MK571 (24 µM) decreased the apical efflux of ...
	Effect of different ABC transport inhibitors on amounts of hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate in the apical and basolateral medium 120 min after addition of 10 µM hesperetin at the apical side of Caco-2 monolayers compared to the ...
	.



	Discussion
	The present study showed that hesperetin was intensively metabolized by Caco-2 cells into 7-O-glucuronide and 7-O-sulfate metabolites. Other studies describing metabolism of flavonoids by Caco-2 cells also reported a relatively high rate of conjugati...
	About 86 % of the total amount of hesperetin metabolites formed consisted of hesperetin 7-O-glucuronide, a percentage similar as reported in a study in which the rutinoside hesperidin was given to humans and 87 % of hesperetin in plasma consisted of ...
	Specific flavonoids, and/or their metabolites, interact with apically located ABC transporters, especially with Pgp and BCRP[8], representing high affinity substrates. Hesperetin, and/or its metabolites, have been demonstrated to interact with BCRP i...
	In conclusion, hesperetin is extensively metabolized by Caco-2 cell monolayers into 7-O-glucuronide and 7-O-sulfate metabolites, which are predominantly transported to the apical side. Hesperetin aglycone, however, also permeates to the basolateral s...
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	The effect of co-administered flavonoids on the metabolism of hesperetin and the disposition of its metabolites in Caco-2 cell monolayers
	Walter Brand, Beatriz Padilla, Peter J. van Bladeren, Gary Williamson, and Ivonne M.C.M. Rietjens
	Molecular Nutrition & Food Research, in press (doi 10.1002/mnfr.2009 00183)
	Abstract
	Metabolism by phase II enzymes and transport from intestinal cells back into the lumen by ATP binding cassette (ABC) transporters limits the bioavailability of the flavanone hesperetin, the aglycone of hesperidin. This study investigates to what exte...
	Basic chemical flavonoid structure and basic chemical structures of different flavonoid subclasses.


	Introduction
	Flavonoids are polyphenols and can be divided into different classes including flavones, flavonols (3-hydroxyflavones), isoflavones, flavanones, flavanols, chalcones and anthocyanins (Fig. 4.1 on page 70). They are present in fruits, vegetables and p...
	Chemical structures of the rutinoside hesperidin and its aglycone hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavone).

	Hesperidin must be hydrolyzed by colonic microflora before it can be absorbed, whereas the hesperetin aglycone, as well as the monosaccharide hesperetin 7-O-glucoside, is already taken up earlier in the digestive tract[13,14]. The latter could be hyd...
	Flavonoids used in the present study which have been reported to inhibit (+), or not to inhibit (-), BCRP in different in vitro studies.

	Materials and methods
	Materials
	The flavonoids acacetin (purity ³ 85 %), chrysin (purity ³ 99 %) and genistein (purity ³ 98 %) were obtained from ICN Biomedicals (Aurora, OH), biochanin A (purity ³ 97 %), (+)-catechin hydrate (purity ³ 98 %), (-)-epigallocatechin gallate (EGCG...

	Cell culture
	Caco-2 cells from ATCC (Manassas, VA) were cultured in a humidified atmosphere of 5 % CO2 and 95 % air at 37¡C in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10 % heat inactivated fetal bovine serum, MEM non-essential amino acids and...

	Caco-2 cell monolayer experiments
	Before exposure, Caco-2 cell monolayers were washed with DMEM (without phenol red). The integrity of the monolayers was checked by measuring trans-epithelial electrical resistance (TEER) values with a Millicell ERS volt/ohmmeter from Millipore (Bedfo...

	HPLC-DAD analysis
	The HPLC system consisted of a Waters (Milford, MA) Alliance 2695 separation module with autosampler connected to a Waters 2996 photodiode array detector and was equipped with an Alltech (Breda, The Netherlands) Alltima C18 5 µm 150 * 4.6 mm2 revers...

	Quantification
	Hesperetin and hesperetin 7-O-glucuronide were quantified by peak area measurement using calibration curves (R2>0.99) of relevant concentration series of available reference compounds. The limit of detection was 0.02 µM, and the lower limit of quant...

	Statistics
	The Student's two-tailed paired t-test was used to evaluate statistical differences between the hesperetin metabolite transport in Caco-2 monolayers exposed to hesperetin in the presence of another flavonoid and the control (only exposed to hespereti...


	Results
	When hesperetin (10 µM) is incubated for 120 min with Caco-2 cell monolayers, it is efficiently metabolized into hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate, of which the efflux is linear with time, and 28 % of the initial amount of hesper...
	Effect of different flavonoids (10 µM) on the apical and basolateral amounts of hesperetin metabolites as percentage of the control detected after 120 min incubation of Caco-2 cell monolayers with 10 µM hesperetin with or without 10 µM of the resp...
	Co-incubation with hesperetin and the chalcone phloretin significantly decreased the apical efflux of hesperetin metabolites only by 13.3 %, and co-incubation with flavanols including (+)-catechin, EGCG and (-)-epicatechin, as well as with the rutino...
	Effect of different flavonoids, grouped per class, on the apical ( ) and basolateral ( ) efflux of hesperetin metabolites (hesperetin 7-O-glucuronide plus hesperetin 7-O-sulfate) as percentage of the control, detected after 120 min incubation of Caco...

	In the controls, the average basolateral/apical (BL/AP) ratio of hesperetin metabolite transport was 0.36 (Figure 4.4 on page 79). Co-incubation of the Caco-2 cell monolayers with hesperetin and chrysin, isorhamnetin or quercetin increased this ratio...
	Effect of co-administration of different flavonoids, grouped per class, on the ratio basolateral / apical efflux of hesperetin metabolites (hesperetin 7-O-glucuronide plus hesperetin 7-O-sulfate), detected after 120 min incubation of Caco-2 cell mono...

	However, co-administration of the flavonoids affecting the disposition of hesperetin metabolites also negatively affected the sum of amounts of hesperetin metabolite transported to the apical and basolateral side (Figure 4.5 on page 80). The possible...
	Effect of co-administration of different flavonoids, grouped per class, on the sum of hesperetin metabolites at the basolateral and apical side of Caco-2 cell monolayers, detected after 120 min incubation of Caco-2 cell monolayers with 10 µM hespere...

	The amount of 3.5 nmol of hesperetin and hesperetin metabolites recovered 120 min upon exposure in the apical, basolateral and intracellular compartments account for only 70 % of the initial dose (5 nmol). At least part of the explanation for the res...
	Effect of co-administration of quercetin (10 µM) on the amount of hesperetin metabolites (hesperetin 7-O-glucuronide plus hesperetin 7-O-sulfate) ( ) and hesperetin aglycone ( ) detected in the apical (AP), intracellular (IC) and basolateral (BL) co...



	Discussion
	Metabolism by phase II enzymes and transport from intestinal cells back into the lumen by ATP binding cassette (ABC) transporters limit the bioavailability of flavonoids[4-7]. Recently we demonstrated an important role for the ABC transporter BCRP in...
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	Effect of co-administering quercetin on the bioavailability of hesperetin 7-O-glucoside in rats
	Walter Brand, Bert Spenkelink, Marelle G. Boersma, Sylvie Pridmore-Merten, Fabiola Dionisi, Peter J. van Bladeren, Gary Williamson, and Ivonne M.C.M. Rietjens
	in preparation
	Abstract
	The citrus flavonoid hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) has been associated with beneficial health effects including a reduced risk of osteoporosis. In spite of the relative high dietary intake of hesperetin from citrus consumption, t...

	Introduction
	Flavonoids are a large class of polyphenols present in fruits, vegetables and plant derived products, in which they often occur as §-glycosides[1]. Despite their relatively high dietary intake (~1 g/day)[2], the bioavailability of many flavonoids an...
	Chemical structures of hesperetin, hesperidin, hesperetin 7-O-glucoside, eriodictyol, homoeriodictyol, quercetin, isorhamnetin and tamarixetin.

	The resulting intracellular hesperetin aglycone is conjugated into glucuronidated and sulfonated metabolites which have been detected in human and rat plasma[12-17]. These conjugation reactions occurring in the intestinal cells have been reported to ...

	Materials and Methods
	Materials
	L-ascorbic acid, eriodictyol (purity ³95%), §-glucuronidase from Helix pomatia (type HP-2, aqueous solution), hesperetin (purity ³95%) and quercetin dihydrate were obtained from Sigma (St. Louis, MO), homoeriodictyol (purity ³ 99%), isorhamnetin ...

	Animal experiment
	The animal study complied with the Dutch Act on Animal Experimentation (Stb. 1977, 67; Stb. 1996, 565), revised February 5, 1997. The study has been approved by the animal experimentation committee of Wageningen University; all procedures used were c...

	Plasma sample preparation
	Plasma samples (50 µl) were spiked with 2.5 µl daidzein (200 µM / DMSO) as internal standard (IS), and to this solution 5 µl 0.78 M sodium acetate (pH 4.8), 5 µl 1.0 M ascorbic acid in water, 135 µl nanopure water, and 2.5 µl §-glucuronidase ...

	uPLC-DAD analysis
	The uPLC-DAD system consisted of a Waters (Milford, MA) Acquity binary solvent manager, sample manager, and photodiode array detector, equipped with a Waters BEH C18 1.7µm 50- * 2.1-mm column. After centrifugation of the samples at 16,000 g for 4 mi...

	Pharmacokinetics
	The plasma peak concentration (Cmax), the time to reach the peak concentration (Tmax) and the area under the plasma concentration-time curve was determined from time zero to 2 hours or to the time of the last sample which was 8 hours after dosing (AU...


	Results
	Plasma analysis
	Figure 5.2 on page 94 shows a uPLC chromatogram (Figure 5.2A on page 94) of a mixture containing standards of the compounds of interest which were to be expected in the plasma samples from the animal experiment after enzymatic hydrolysis: hesperetin ...
	uPLC chromatogram of a mixture containing standards of the compounds expected in the plasma samples from the animal experiment after enzymatic hydrolysis (A), and a representative uPLC chromatogram of a hydrolyzed plasma sample from a rat exposed to ...


	Pharmacokinetics
	Figure 5.3A depicts the total plasma hesperetin in rats exposed to 15 mg/kg bw hesperetin 7-O-glucoside in the presence or absence of quercetin (15 mg/kg bw), and Table 5.1 on page 95 shows the pharmacokinetic parameters derived from these measuremen...
	Plasma concentration vs. time of A) total hesperetin and B) homoeriodictyol (thick line) and eriodictyol (thin line) in rats after oral exposure to 15 mg/kg bw hesperetin 7-O-glucoside in the absence ( ○) or presence ( □) of 15 mg/kg bw quercetin...

	Pharmacokinetic parameters for total plasma hesperetin in rats (n=2) given 15 mg/kg bw hesperetin 7-O-glucoside by oral gavage in the absence or presence of quercetin (15 mg/kg bw). Mean (±SD) values shown.
	In order to investigate whether the effect of quercetin on the bioavailability of hesperetin 7-O-glucoside would be more significant when the relative ratio between quercetin and hesperetin 7-O-glucoside would be increased enabling easier competition...
	Plasma concentration vs. time of hesperetin in rats after oral exposure to 3 mg/kg bw hesperetin 7-O-glucoside in the absence ( ○) or presence ( □) of 15 mg/kg bw quercetin. Values are mean (± SD), n=3.

	Figure 5.5 on page 97 presents a summary of the combined data of all 4 experiments (n=11 for all data points), expressing the plasma concentrations of hesperetin and its metabolites observed upon co-administration with quercetin as percentage of the ...

	Pharmacokinetic parameters for total plasma hesperetin in rats (n=3) given 3 mg/kg bw hesperetin 7-O-glucoside per oral gavage in the absence or presence of quercetin (15 mg/kg bw). Mean (±SD) values shown. *, p < 0.05 significantly different compar...
	Plasma hesperetin levels in rats exposed to hesperetin 7-O-glucoside in the presence of quercetin, expressed as percentage of the plasma hesperetin levels in the corresponding controls exposed to hesperetin 7-O-glucoside in the absence of quercetin. ...



	Discussion
	Flavonoids can be potent modulators of intestinal metabolism and ABC transporter mediated transport, which can affect the oral bioavailability of other compounds[34]. Co-administration of quercetin in vitro to a Caco-2 cell monolayer, as a model syst...
	In the present study the Cmax values were observed at the first two time points collected (15 or 30 min) and in the first case it cannot even be excluded that the real Cmax already occurs even before 15 min post dosing. In human studies in which heal...
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	Phase II metabolism of hesperetin by individual UDP-glucuronosyl transferases and sulfotransferases and rat and human tissue samples
	Walter Brand, Marelle G. Boersma, Hanneke Bik, Elisabeth F. Hoek-van den Hil, Jacques Vervoort, Denis Barron, Walter Meinl, Hansruedi Glatt, Gary Williamson, Peter J. van Bladeren, and Ivonne M.C.M. Rietjens
	Drug Metabolism and Disposition 38(4): 617-625, 2010
	Abstract
	Phase II metabolism by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) is the predominant metabolic pathway during the first pass metabolism of hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone). In the present study we have determi...

	Introduction
	The flavanone hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 6.1 on page 105) is the aglycone of hesperidin (hesperetin 7-O-rutinoside), which is the major flavonoid present in sweet oranges (Citrus sinensis) and orange juice, and also oc...
	Chemical structure of hesperetin (4'-methoxy-3',5,7 trihydroxyflavanone).

	UGTs form a gene superfamily and currently a total of 22 different UGT proteins have been detected in human tissues, belonging to either the UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9 and UGT1A10), the UGT2A (UGT2A1, UGT2A2...
	In the present paper we determined the kinetics for the conversion of hesperetin into glucuronidated and sulfonated metabolites by individual UGT and SULT enzymes, respectively. The metabolites formed were identified by HPLC-DAD in combination with a...

	Materials and Methods
	Materials
	Alamethicin (from Trichoderma viride), hesperetin (purity ≥ 95%), L-ascorbic acid and uridine 5'-diphosphoglucuronic acid (UDPGA) were obtained from Sigma (St. Louis, MO), 3'-phosphoadenosine 5'-phosphosulfate (PAPS) from Fluka (Buchs, Switzerland)...
	Pooled human small intestinal microsomes (batch MIC318012), pooled rat (male Sprague-Dawley) small intestinal microsomes (batch MIC323019), pooled human small intestinal cytosol (batch CYT318004), and pooled rat (male Sprague-Dawley) small intestinal...

	Incubations with UGTs or rat or human microsomes
	To study glucuronidation of hesperetin by individual UGTs or microsomal preparations, incubation mixtures (total volume 200 µl) were prepared containing 10 mM MgCl2, 25 µg/ml alamethicin added from a 200 times concentrated stock solution in methano...

	Incubations with SULTs or rat or human cytosol
	To study sulfonation of hesperetin, incubation mixtures (total volume 100 µl) were prepared containing 5 mM MgCl2, 100 µM PAPS and 0.04-0.23 mg/ml protein (cytosol) or 0.03-0.1 mg/ml protein (individual SULTs) in 50 mM potassium phosphate (pH 7.4)....

	Enzyme kinetics
	To determine the kinetics for glucuronidation and sulfonation, incubations were performed as described above. The maximum velocity (Vmax) and Michaelis– Menten constant (Km) for the formation of the different phase II metabolites of hesperetin were...

	HPLC analysis
	To analyze the formation of hesperetin metabolites in the enzymatic incubations, reaction mixtures were centrifuged for 4 min at 16,000 g and samples of 50 µl of the supernatant were injected on a Waters Alliance 2695 separation module connected to ...

	Metabolite identification and quantification
	Hesperetin 7-O-glucuronide, hesperetin 3'-O-glucuronide and hesperetin 7-O-sulfate were identified using authentic standards by their HPLC-DAD retention times and UV-spectra. Using the HPLC gradient for the analysis of the samples from the glucuronid...

	1H-NMR analysis
	1H-NMR analysis was performed using a Bruker Avance III 600 MHz (Ettlingen, Germany) with cryoprobe. A Noesygppr1d pulse sequence with 3 s delay, 0.1 s mixing time and a 1.8 s acquisition time was used (18,028 Hz sweep width, 64 K data points). Spect...


	Results
	Identification of hesperetin metabolites
	Figure 6.2 depicts part of a chromatogram from the HPLC-DAD analysis of the supernatant of an incubation of hesperetin with UGT1A9 and UDPGA. Two metabolites were formed and identified as hesperetin 7-O-glucuronide (tR, 17.7 min; UVmax, 285.9 nm) and...
	Representative section of the HPLC chromatogram of the supernatant from the incubation of hesperetin with UGT1A9 and UDPGA showing the hesperetin glucuronide conjugates.
	Representative section of the HPLC chromatogram of the supernatant from the incubation of hesperetin with SULT1A3 and PAPS showing the hesperetin sulfo conjugates.

	Table 6.1 summarizes the 1H-NMR data of this unknown sulfonated hesperetin metabolite, as well as of the parent compound hesperetin. Comparison of the chemical shift values and J-values of the corresponding protons in hesperetin and in the unknown su...
	1H-NMR data of hesperetin and the metabolite (identified as hesperetin 3'-O-sulfate) formed in the incubation mixture of hesperetin with specific SULT isoforms and human small intestinal cytosol and PAPS. The differences in chemical shift values of t...

	Glucuronidation by individual UGT enzymes
	Glucuronidation of hesperetin was characterized using human recombinant UGT enzymes. The Vmax and Km values obtained for the formation of hesperetin 7-O-glucuronide and hesperetin 3'-O-glucuronide by the various UGT enzymes are shown in Table 6.2, as...
	Vmax and Km values (mean ± SEM) determined from 3-4 independent curves, and the catalytic efficiencies (Vmax/Km) derived from these values, for the glucuronidation of hesperetin (1 up to 50 µM) by individual UGT enzymes. n.d. = not detectable.
	a) UGT1A4 very poorly glucuronidated hesperetin into solely hesperetin 7-O-glucuronide, only measurable at the highest test concentration (50 µM), precluding determination of kinetics. b) Conjugation velocity by UGT1A6 of hesperetin into hesperetin ...
	The enzymes UGT1A4 and UGT2B17 only demonstrated very poor glucuronidation activity towards hesperetin under the conditions used in this study, precluding determination of the kinetics. Figure 6.4 presents an overview of the regioselectivity of the g...
	Regioselectivity of the glucuronidation of hesperetin at position 7 () or position 3' () by different UGT enzymes and human and rat microsomes expressed as percentage of the total amount of hesperetin glucuronides formed at a 10 µM hesperetin concen...



	Sulfonation by individual SULT enzymes
	The Vmax and Km values determined for the formation of hesperetin 7-O-sulfate and hesperetin 3'-O-sulfate by individual human SULTs are shown in Table 6.3, as well as the catalytic efficiencies (Vmax/Km) derived from these values. SULT1A1 demonstrate...
	Vmax and Km values (mean ± SEM) determined from 3 independent curves, and the catalytic efficiencies (Vmax/Km) derived from these values, for the sulfonation of hesperetin (1 up to 50 µM unless stated otherwise) by individual SULT enzymes. n.d. = n...
	a) SULT1A1 demonstrated strong substrate inhibition at concentrations > 0.1 µM precluding determination of kinetic parameters. b) SULT1A2 showed substrate inhibition at concentrations > 1 µM hesperetin; Ki = 1.9 µM. c) SULT1C4 showed substrate inh...
	SULT1C4 and SULT2A1 selectively catalyzed the sulfonation at the hydroxyl moiety of position 7 of hesperetin, while SULT1A1, SULT1A2 and SULT1E1 solely conjugated the hydroxyl moiety at position 3' (Figure 6.5). SULT1C2 converted hesperetin into both...


	Glucuronidation by human and rat tissue samples
	The apparent Vmax and Km values for the formation of hesperetin 7-O-glucuonide and hesperetin 3'-O-glucuronide by human and rat microsomal fractions from different tissues are shown in Table 6.4 on page 116, as well as the apparent catalytic efficien...
	.
	Regioselectivity of the sulfonation of hesperetin at position 7 () or position 3' () by different SULT enzymes and human and rat cytosol expressed as percentage of the total amount of hesperetin sulfates formed at a 10 µM hesperetin concentration. H...

	Apparent Vmax and Km values (mean ± SEM) determined from 2-3 independentcurves of the glucuronidation or sulfonation of hesperetin (up to 50 µM unless stated otherwise) by microsomes or cytosol, respectively, from human and rat tissue fractions. n....
	a) Human and rat colon cytosol showed 3'-O-sulfonation substrate inhibition at concentrations > 25 µM and > 15 µM, respectively; Ki human colon cytosol = 446 µM, Ki rat colon cytosol = 22.2 µM. b) Human and rat liver cytosol demonstrated strong 3...


	Sulfonation by human and rat tissue samples
	The apparent Vmax and Km values determined for the formation of hesperetin 7-O-sulfate and hesperetin 3'-O-sulfate by human and rat cytosol from different tissues are shown in Table 6.4 on page 116, as well as the apparent catalytic efficiencies (Vma...


	Discussion
	In the present study the kinetics for the conjugation of hesperetin by individual UGT and SULT enzymes and rat or human microsomes and cytosol from small intestine, colon and liver, were characterized. Hesperetin was conjugated at the C7 and C3' hydr...
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	Abstract
	The flavanone hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone) is the aglycone of the rutinoside hesperidin which is the major flavonoid present in sweet oranges. Like other flavanones, hesperetin contains a chiral C-atom and so can exist as ...

	Introduction
	The flavanone hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone) (Figure 7.1 on page 125) is the aglycone of hesperidin (hesperetin 7-O-rutinoside), which is the major flavonoid present in sweet oranges (Citrus sinensis) and orange juice, but w...
	Chemical structure of (-)-S- and (+)-R-hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone).

	Unlike many other classes of flavonoids, flavanones, as well as flavanols, share a chiral carbon atom in position 2 and therefore exist in an S- and R-configuration (Figure 7.1). 2S-hesperidin is naturally predominant in citrus fruits[11-13], and hes...
	Although several studies reported analytical methods to analyze S- and R-enantiomers of hesperetin, as reviewed by Y‡–ez et al.[11], the kinetic differences of S- and R-hesperetin were only studied indirectly. After intravenous administration of ...
	The aim of the present study was to develop a method for separation of S- and R-hesperetin on an analytical and semi-preparative scale using chiral HPLC with α1-acid glycoprotein (AGP) as chiral selector, and to characterize differences in the intes...

	Materials and Methods
	Materials
	Alamethicin (from Trichoderma viride), §-glucuronidase (from Helix pomatia) type HP-2, hesperetin (purity ³95%, batch 015K1099), L-ascorbic acid and uridine 5'-diphosphoglucuronic acid (UDPGA) were obtained from Sigma (St. Louis, MO), 3'-phosphoade...

	Cell lines
	Caco-2 human colon carcinoma cells were obtained from the American Type Culture Collection (Manassas, VA), and were cultured as described earlier[9]. Passage number 39 to 47 were used for the experiments. Hepa-1c1c7 mouse hepatoma cells stably transf...

	Identification of S-hesperetin
	Hesperidin naturally occurs predominantly as the 2S-epimer[14-16]. To acquire S-hesperetin, 2S-hesperidin from an orange (Citrus sinensis) was deglycosylated. To this end, freshly prepared orange juice (0.5 ml) was added to 1 ml nanopure water, 110 ...

	Chiral HPLC-DAD analysis
	Chiral analyses of hesperetin were performed on an HPLC system consisting of a Waters (Milford, MA) Alliance 2695 separation module connected to a Waters 2996 photodiode array detector (DAD) equipped with a ChromTech (Cheshire, UK) analytical 150 *  ...

	Semi-preparative separation of S- and R-hesperetin
	Semi-preparative HPLC separation of the S- and R-enantiomers of hesperetin was performed on an HPLC system consisting of an Uniflows Degasys DG-2410 degasser (Tokyo, Japan), a Waters 600 fluid unit and controller connected to a Waters 996 DAD (Milfor...

	Microsomal and cytosolic incubations
	To study intestinal glucuronidation of S- and R-hesperetin, incubations with human intestinal microsomes were performed as described before for racemic hesperetin[26]. The incubation mixtures (total volume 200 µl) contained 10 mM MgCl2, 25 µg/ml al...

	Metabolism and transport by Caco-2 cell monolayers
	Caco-2 cells were cultured in a humidified atmosphere of 5% CO2 and 95% air at 37¡C, and seeded at a density of 1 * 105 cells/cm2 in Costar 12-well transwell plate inserts from Corning (Corning, NY) with an insert membrane pore size of 0.4 µm and g...

	a-Chiral HPLC analysis
	a-Chiral gradient HPLC on a C18 column was used to detect and quantify the amounts of hesperetin, hesperetin 7-O-glucuronide, hesperetin 3'-O-glucuronide, hesperetin 7-O-sulfate and hesperetin 3'-O-sulfate using methods previously described[9,26].

	Enzyme kinetics
	To determine the kinetics for glucuronidation and sulfonation, microsomal and cytosolic incubations were performed as described above varying the concentration of S- or R-hesperetin from 1 to 50 µM. Under the applied conditions the formation of hesp...

	EpRE-lux assay
	EpRE-mediated induction of gene expression by S- and R-hesperetin was tested using the EpRE-LUX luciferase reporter gene assay as described earlier[24,27]. The EpRE-LUX cells were cultured in alpha modified Eagle's medium supplemented with 10% fetal ...


	Results
	Analytical and semi-preparative chiral HPLC-DAD analyses
	Figure 7.2A depicts a chromatogram of the analytical chiral HPLC analysis of racemic hesperetin, demonstrating the two enantiomers at retention time (tR) 25.5 min and 29.0 min in a 41:59 ratio. Both peaks demonstrated equivalent UV spectra with a UVm...
	Chiral HPLC chromatograms of A) racemic hesperetin, B) hesperetin resulting from deglycosylation of the 2S-hesperidin epimer from citrus.


	Microsomal glucuronidation
	Hesperetin is glucuronidated by small intestinal microsomes into hesperetin 7-O-glucuronide and 3'-O-glucuronide metabolites[26]. The apparent Vmax and Km values derived from the concentration dependent formation of S-hesperetin 7-O-glucuronide and S...
	Concentration dependent formation of hesperetin 7-O-glucuronide (●), hesperetin 3'-O-glucuronide (■) and total hesperetin glucuronides (▲) from S-hesperetin (A) and R-hesperetin (B) enantiomers by human small intestinal microsomes. Data points ...

	Apparent Vmax, Km (±SEM) (n=2) and catalytic efficiency, calculated as Vmax(app)/Km(app), for glucuronidation of S- and R-hesperetin by human small intestinal microsomes, as well as the kinetic data for racemic hesperetin, the latter taken from our ...
	Apparent Vmax, Km (±SEM) (n=2) and catalytic efficiency, calculated as Vmax/Km for sulfonation of S- and R-hesperetin by human small intestinal cytosol, as well as the kinetic data for racemic hesperetin, the latter taken from our previous work [26].

	Cytsosolic sulfonation
	Hesperetin is sulfonated by human small intestinal cytosol into hesperetin 3'-O-sulfate and 7-O-sulfate metabolites[26]. The apparent Vmax and Km values derived from the concentration dependent formation of S-hesperetin 3'-O-sulfate and S-hesperetin ...
	Concentration dependent formation of hesperetin 7-O-sulfate (■), hesperetin 3'-O-sulfate (●) and total hesperetin sulfates (▲) from S-hesperetin (A) and R-hesperetin (B) enantiomers by human small intestinal cytosol. Data points represent avera...


	Metabolism and transport by Caco-2 cell monolayers
	Caco-2 cell monolayers apically exposed to hesperetin metabolize it into hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate, which are predominantly transported to the apical side of the monolayer[9]. Figure 7.5 shows the percentages of the applie...
	Amount of hesperetin 7-O-glucuronide (glucuronide), hesperetin 7-O-sulfate (sulfate) and hesperetin aglycone detected at the apical and basolateral side of Caco-2 cell monolayers incubated for 120 min with 10 µM S-hesperetin or R-hesperetin added to...


	Activation of EpRE-controlled gene expression by hesperetin
	Figure 7.6 shows the concentration dependent induction of EpRE-mediated luciferase expression by S-hesperetin and R-hesperetin. Exposure to both hesperetin enantiomers resulted in a dose dependent induction of EpRE mediated gene expression: exposure ...
	Induction of EpRE-mediated gene transcription by R-hesperetin (›) and S-hesperetin (š). Data are presented as mean (±SD) (n=4). *, p <0.05; **, p <0.01 significantly different compared with the induction by the corresponding concentration of the ...



	Discussion
	Although hesperidin naturally exists mainly as the 2S-epimer, which upon intake is subsequently transformed into S-hesperetin, practically all research on hesperidin and hesperetin using 'pure' compounds is actually on racemic mixtures, which are cur...

	References


	Summary and conclusions, concluding remarks and future perspectives
	Summary and conclusions
	Summary
	The aim of the present thesis was to investigate whether the bioavailability of the selected model flavonoid hesperetin ((+/-)-4'-methoxy-3',5,7-trihydroxyflavanone) could be increased by modulation of its intestinal metabolism and transport by co-ad...

	Conclusions
	From the studies described in this thesis, the following can be concluded: - Literature demonstrates that certain flavonoids are important modulators of intestinal ABC transporter proteins and therefore can modulate the bioavailability of other compo...
	- The flavonoid hesperetin is metabolized into 7-O-glucuronide and 7-O-sulfate metabolites by Caco-2 cell monolayers, and these metabolites are predominantly transported to the apical side of the monolayer, representing the intestinal lumen side, by ...
	- Co-administration of specific flavonoids reported to inhibit BCRP, such as quercetin, results in an increased transport of hesperetin metabolites towards the basolateral side of Caco-2 cell monolayers, pointing at a possible way to increase in vivo...
	- The effect of co-administering quercetin in vivo in rat may result in an increased bioavailability of hesperetin, especially during the early phase of exposure when absorption dominates over elimination of hesperetin (chapter 5).
	- Major differences in kinetics and regioselectivity of hesperetin by individual UGTs and SULTs exist, and incubations with rat and human tissue samples support an important role for the intestinal cells during first pass metabolism (chapter 6).
	- Although there are some significant differences in metabolism and transport characteristics between S- and R-hesperetin, these differences are relatively small indicating that intestinal transport and metabolism performed with racemic hesperetin ad...


	Concluding remarks and future perspectives
	Flavonoid research dates back to the nineteen thirties, to the research of Dr. Albert Szent-Gyšrgi and co-workers, who identified a compound in citrus peel that reduced capillary permeability and was effective in the treatment of purpura patients[18...
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	Om deze hypothese te ondersteunen, geeft hoofdstuk 2 van dit proefschrift een overzicht weer van literatuur over het vermogen van flavono•den om de orale biobeschikbaarheid van bepaalde stoffen te moduleren. Het overzicht toont aan dat het transpor...

	Conclusies
	Uit het onderzoek beschreven in dit proefschrift kan het volgende worden geconcludeerd:
	- De literatuur toont aan dat bepaalde flavono•den belangrijke modulatoren zijn van ABC-transporters in de darmwand en daarom de biobeschikbaarheid van andere stoffen na orale opname kunnen be•nvloeden (hoofdstuk 2).
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