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Minimum volume simplicial enclosure for spectral
unmixing *
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Inmaculada García
Universidad de Almería, igarcia@ual.es

Javier Plaza and Antonio Plaza
Universidad de Extremadura, jplaza@unex.es and aplaza@unex.es

We describe the minimum volume enclosing simplex problem, which is known to be a Global Optimization
problem and illustrate its multimodality. The problem has been used as a basis to estimate so-called end-
members and abundance fractions in unmixing spectral data from remotely sensed hyperspectral sensors.
This estimation problem is a big challenge. We explore the possibility of a new estimation algorithm using
the minimum volume enclosing simplex problem. We investigate its behaviour numerically on designed in-
stances, comparing its outcomes with a maximum volume enclosed simplex approach which is used frequently
in spectral unmixing.

Key words : spectral unmixing, endmembers, princicpal components, optimization, minimum volume

1. Introduction
A challenging problem in interpreting data collected by remotely sensed hyperspectral imaging
sensors is to unfold them into spectrally pure components (Adams et al. (1986)). We study here
the possibility to do so using a minimum volume enclosing simplex approach. Hyperspectral sensors
record scenes in which various disparate material substances contribute to the spectrum measured
for a single pixel (Goetz et al. (1985), Green et al. (1998), Chang (2003)). Given such mixed pixels,
one would like to identify the individual constituent materials present in the mixture, as well as
the proportions in which they appear. Spectral unmixing (Keshava and Mustard (2002)) is a term
to denote a procedure to decompose a measured spectrum of a mixed pixel into a collection of
constituent spectra (endmembers) and a set of corresponding fractions (abundances) that indicate
the proportion of each endmember present in the pixel. Endmembers normally correspond to familiar
macroscopic objects in the scene, such as water, soil, metal, or any natural or man-made materials.
Many methods have been developed and tested to perform endmember extraction and unmix-

ing, see Keshava (2003) and Plaza et al. (2004) for an overview. In practice, analyzing spectral
mixtures can be complicated because of nonlinear e�ects observed in pixel composition and noise.
We will focus on so-called linear unmixing (Heinz and Chang (2001)) and address the question of
how to recover the endmember and abundance data via unbiased estimators. Notice that noise in
hyperspectral imaging instruments is relatively low. Therefore, standard least squares approaches
have been adopted with the additional complication that the abundance estimate should lay on
the unit simplex (nonnegativity). Miao and Qi (2007) describe an approach where two con�icting
objectives, that of least squares and minimizing the volume of an enclosing simplex are combined in
an objective function. The original idea of using a minimum volume enclosing simplex in the �eld of

*This work has been supported by the Spanish Ministry of Science and Innovation through grants TIN2008-01117 and
AYA2008-05965-C04-02. Eligius Hendrix is a fellow of the Spanish "Ramon y Cajal" contract program, co-�nanced
by the European Social Fund.
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remote sensing for endmember extraction, is due to Craig (1994). More recently, Chan et al. (2009)
developed an approach where sequential Linear Programming is applied to solve the minimum vol-
ume enclosing simplex problem. In this paper we use standard available nonlinear optimization
algorithms.
The problem of enclosing a set of points with a minimum volume body leads usually to a Global

Optimization problem. We will illustrate that for the generic simplicial enclosure this is the same.
However, the use of this approach in spectral unmixing is far from worst case behavior; instances
are characterised by low noise and pixel data is well spread. A local search from a well designed
starting body leads to the global optimum soon. We adopt a hierarchical vision: First, we minimize
least squares using principal component analysis (PCA), which is very common in image data
analysis (Richards and Jia (2006)) and, second, we minimize the volume of an enclosing simplex in
the reduced space. The question is how to use such an approach to obtain unbiased estimates of
endmembers and fractional abundances in the case of linear mixtures with white noise.
A benchmark method is to consider a maximum volume �inscribing� simplex searched for by the

so-called n-findr algorithm extensively described in Winter (2003). Given the reduced data, in
principle one looks for all combinations within the given pixels as candidate endmembers such that
the resulting volume of the spanning simplex is maximum. If indeed the endmembers are present in
the data and noise is low, the approach is very promising as analysed in Winter (2003). We can use
the results of such an approach to compare methods numerically.
The remainder of the paper is organized as follows. In Section 2, we describe the estimation

problem under consideration. Section 3 gives the minimum volume enclosing simplex problem and
illustrates its multimodal character. In Section 4, a new procedure is developed and the n-findr
algorithm is sketched. Section 5 illustrates with numerical instances the feasibility of the approach.
Finally, conclusions and hints at plausible future research are given in Section 6.

2. Unmixing and minimum enclosing simplex
We describe the linear unmixing problem using the following notation throughout:

Indices
i index of band, i = 1, . . . ,m
j index of endmember j = 1, . . . , n
k index for pixel k = 1, . . . , r

Assumed model

y = Xa+ ε (1)

where y is an m× 1 observed pixel vector, X is an m× n matrix of endmembers, a is an n× 1
abundance vector and ε is an m× 1 white noise vector with a standard deviation of σ.
The question is how to recover �real� matrix X and abundance ak of observed pixels k. To do

so, usually two objectives are minimized: noise (in a least squares sense) and the volume of the
simplex spanned by the columns of matrix X. Moreover, the abundance should be positive for each
pixel in the given data Y = y1, . . . , yk, . . . , yr. Another question is how to deal with least squares
and minimum volume in such a way that the estimation is unbiased, i.e. the expected value of the
estimator is the real value. This is more or less a statistical question. Literature on unmixing handles
the question usually from an algorithmic perspective (Plaza et al. (2004)). Are the resulting images of
the so-called abundance maps that depict the value of abundance aj for each constituent j in all the
pixels �close to� that of the input image? This is not a hard criterion, but provides the opportunity
to depict the real result. One should keep in mind that instances of the problem consisting of real
images are characterized by pixels being mixtures of generally less than 4�5 constituents, i.e. the
vector a has only a few positive values. Moreover, sensor noise is relatively low.
The idea of least squares in the estimation procedure relies on the fact that, often, the number of

endmember constituents is not known. Therefore, application of PCA is a useful approach. Assuming
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n endmembers means that one should discover an n− 1 dimensional subspace that is responsible
for the main variation, while the rest of the m dimensional space is considered noise.
First of all the data are centralized by the mean y, such that the columns of Y consist of centralized

observations yk−y. The observed variation in the spectral data Y T Y is approximated by (CZ)T CZ
where C is an m×(n−1) matrix of principal components and Z is (n−1)×r a so-called score matrix.
In direction c1 we have the biggest variation, in direction c2 the second biggest, etc. Essentially we
have reduced model (1) to

z = V a+ ξ, (2)

where we expect the endmembers X to lay in the space < C > +y spanned by the columns of C. We
should keep in mind that C represents an estimate of the space in which the endmember spectra
X are located, X = CV + y. To put it in another way, with absense of noise the estimate of C
represents the space spanned by X − y1T , where 1 is the all-ones vector of appropriate dimension.
With noise, ξ is now the projection of ε on < C > and therefore its components also form white
noise. To be consistent, we should theoretically notice that y = Cz + y + ζ where ζ is the part of ε
projected on the orthoplement of < C >; ε = ξ + ζ. From these detailed statistical observations we
will use the idea that the noise of z is componentwise independent.
Miao and Qi (2007) present an elegant matrix factorisation approach. They simultaneously min-

imize least squares and the simplex volume. These objectives are con�icting. For volume reduction
it is good to add a direction without variation to the principal components; zero variation gives zero
volume. The least squares idea gives that we look for directions with maximum variation.
In this work, we follow a two-step approach often found in literature. First we estimate the space

in which the n endmembers are lying. Secondly, in that space, we minimize the volume of a simplex
such that it encloses the projections of the observed bands of the pixels. The n-findr algorithm
follows an approach where the volume of a simplex is maximized on the projected plane. In the
following section, we focus on these two approaches and compare them further.

3. Minimum volume versus maximum volume simplices
The estimate of the matrix of endmembers X = CV +y appears from an estimate of V based on the
projected bands (scores) Z. We �rst focus on the minimum volume enclosing simplex problem and
then show its relation with the maximum volume approach of the n-findr method. The problem of
�nding the minimim volume enclosing simplex of a set of points zk, k = 1, . . . , r in (n−1)-dimensional
space is

min
V
{f(V ) := det

(
V
1T

)
} (3)

subject to

ak =
(

V
1T

)−1 (
zk

1

)
≥ 0, k = 1, . . . , r (4)

where 1 is the all-ones vector.
Enclosing a set of points with shapes has speci�c mathematical characteristics. For any convex

shape where one minimizes the volume, the points in the interior of the convex hull do not matter.
However, the determination of points on the boundary and in the interior of the convex hull is as
hard to determine as the minimum volume shape. Moreover, the number of active points on the
boundary of the minimum volume shape is limited. Hendrix and Toth (2010) give several examples
for enclosing with spheres (the Chebychev problem) and with hyper-rectangles.
The next property to discuss is that we are dealing with a Global Optimization problem. This is

a general characteristic of minimizing the volume of enclosing shapes and maximizing the volume of
enclosed shapes. Enclosing a set of points by a minimum sphere is a convex problem and therefore
relatively easy to solve. Khachiyan and Todd (1993) and Sun and Freund (2004) discuss for instance
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the complexity of enclosing and enclosed ellipsoids. Hendrix and Toth (2010) use a small instance
with only 4 points to illustrate the complexity of the enclosing hyperrectangle problem. We follow
the same approach for the minimum volume enclosing simplex problem.

Example 1. Given matrix of points Z =
(

0 4 4 1
0 0 4 4

)
. Problem (3) has several local minima for

this instance. Moreover, the global minimum solution is not unique. In Figure 1, three enclosing

simplices are given. Vertex matrices

(
0 6 2
0 0 8

)
,

(
−2 4 4

0 0 8

)
give volume 48 and

(
−2 6 2

4 4 −4

)
repre-

sents a simplex of volume 64. The latter is called a local minimum solution as moving the vertices a
bit such that it still encloses the points increases its volume. Further analysis shows that the number
of global minimum solutions is in�nite.

z2

z1

Figure 1 Three enclosing simplices of 4 pixels. Two have a minimum volume. The other is a local nonglobal solution

First of all one should keep in mind that the set of global optimum solutions of (3) and (4)
contains n! solutions as any permutation of the columns in V represents the same solution. It is
usual in spectral unmixing that one has to allocate the endmembers to the constituents during an
interpretation of estimation results. Besides symmetry, generic problem (3) may be hard when we
think of a �round� cloud of points as in Example 1. To illustrate bad case behaviour we construct
an instance where the points are distributed over the unit ball.
Example 2. To give a good picture of mutimodality is not straightforward; even in the 2-

dimensional cases the minimum simplicial volume problem has 6 parameters to optimize. Therefore
we construct a parametrized example where the angle of the �rst edge α of the simplex is �xed
and we optimize over the other parameters as illustrated in Figure 2. The basis of the bad case is
enclosing the unit ball (any ellips also would do) with a (regular) simplex of volume 3

√
3≈ 5.2. For

the illustration we generate 10 points over the unit ball and solve problem (3), (4) �xing α and
the corresponding edge minimizing over the rest of the parameters. The result of this exercise is
Figure 3 which shows the minimum volume varying the value of α. The visible local minima are
local minima of problem (3), (4). The instance shows that the number of optima when points zk are
2-dimensional increases with the number r of points as long as they are in the convex hull. This is
con�rmed by �ndings of Zhou and Suri (2002) who construct a speci�c algorithm for 3-dimensional
instances.
The use of the minimum volume problem for endmember identi�cation is illustrated next. In

general, we will call V the real values of endmembers de�ning simplex S = conv(V ) and use for the
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v1

v2

v3

α

Figure 2 Enclosing 10 points on the unit ball. Dotted simplex is �rst guess as starting point of a local search agorithm
with �xed line simplex as result

outer enclosing estimate V̂ o and corresponding simplex Ŝo. In case all pixels would be convex com-
binations of (few) endmembers without any noise, the enclosing simplex Ŝo obtains the endmembers
V as vertices despite they do not appear in the pixels. Noise complicates the estimation. The bad
case example instances show that the generic problem may have many optima. On the other hand
in the speci�c case of unmixing, the pixels are spread well in the originating simplex and noise is
low; the orientation of the simplex is more or less given. We will illustrate this in Example 3, where
even not many pixels are present nor well spread. With many points, local non-global optima may
exist, but they are close to the global one. Local nonlinear optimisation may generate good guesses
of the endmembers and gives correct estimates if noise is absent.

α

M
in

im
um

en
cl

os
in

g 
su

rfa
ce

Figure 3 Minimum volume of enclosing simplex when �xing angle α of �rst edge

Example 3. A matrix of endmembers is given by V =
(

1 4 5
1 4 0

)
depicted in Figure 4 as green

dots and 20 pixels are generated as convex combinations depicted as crosses of which 10 are a
combination of 2 endmembers and 10 a combination of 3. Only for a very low number of pixels
enclosing simplex Ŝo does not re�ect matrix V as vertices. Simplex S has a volume of 15. We add
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noise with σ = 0.1 and obtain the pixels in the rightmost picture of Figure 4. They are enclosed
by a simplex Ŝo with a volume of 17. Notice that less points are now located at the boundary. It
may be intuitively clear that there should be at least 4 active points to obtain the minimum volume
simplex in 2D.

Without noise 10 points on edge With noise

z2

z1z1

Figure 4 Three endmembers, 20 pixels in 2D with enclosing simplex Ŝo, with and without noise

If we intend to use the minimum volume formulation (3) and (4) to estimate the endmembers, noise
will make the volume bigger. Like in regression, one would like to draw the bounding facets through
the exterior of the cloud of points instead of enclosing it. In Section 4 a method is developed to deal
with that.
Literature on spectral unmixing also uses a maximum volume simplex perspective (Winter (2003),

Plaza et al. (2004)). The idea is that pure pixels representing the endmembers are present in the
data set Z. Consider the pixel data now as a set Z. One wants to �nd that subset V with |V|= n
such that the corresponding simplex is of maximum volume. Using notation of sets and matrices,
one can express this as

max
V⊂Z

{f(V ) := det
(

V
1T

)
}, (5)

where V is a matrix with the columns of V. This de�nes a combinatorial optimization problem.
Use of the maximum volume problem does not guarantee that abundance is positive. However,

the basic assumption is that the endmembers are present and that negative abundance simply may
be caused by noise. We will call the estimate of V by maximum volume formulation (5) V̂ i and
the corresponding simplex Ŝi. n-findr is a heuristic algorithm that generates a (not necessarily
optimal) solution of problem (5). We refer here to n-findr as an underlying algorithm and not to
the commercial software that has been constructed around it.
Example 4. Consider the setting of Example 3; 20 pixels are generated with a noise of σ = 0.3.

Figure 5 gives minimum volume simplex Ŝo with volume 18.5 enclosing the pixels and the maximum
volume simplex Ŝi with volume 11.25 where 3 pixels are selected out of 20, such that the resulting
simplex has maximum volume.
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z2

z1

Figure 5 Maximum volume Ŝi (solid line) and minimum volume Ŝo (dotted line). Green dots are endmember values V
and crosses are 20 noisy pixels zk derived from them.

As illustrated by Example 4, the minimum enclosing simplex Ŝo will always contain the maximum

volume simplex Ŝi. However, there is no �xed relation with the simplex S determined by the real

endmember spectra V that we intend to estimate. It may be clear that lower noise and more

pixels as random combinations of the endmembers make Ŝi go to S. Given �xed noise variance σ2

and increasing the number of uniformly spread pixels, leads in limit to an overestimate of S, as

observations fall outside S.

To determine the maximum volume estimate, problem (5) de�nes a combinatorial optimisation

problem, where we select n pixels out of r. The number of possibilities grows as an n-degree polyno-

mial in r. Usually, heuristic methods are used to �nd a good solution. The n-findr algorithm is a

so-called local search heuristic in the context of literature on combinatorial optimisation, e.g. Aarts

and Lenstra (1997). The algorithm has been extensively described in Plaza and Chang (2006), Plaza

(2008) and Winter (2003) claims that under circumstances it converges to the optimum solution

of problem (5). We will use a matlab implementation of the algorithm as a reference method to

compare to the minimum volume procedure as described in Section 4.

4. Estimation procedure

As illustrated in the former sections, the minimum volume simplex Ŝo gives an accurate estimate

of the endmembers if noise is absent. That is, su�ciently many pixels should lay on the boundary

of S. Mathematically, this means that abundance values aj,k = 0 i.e. pixel k does not contain any

constituent j. If pixels would have been generated uniformly over S, it is well known in literature

on random sampling that with increasing dimension n, relatively more points have at least one

abundance value close to zero; less points can be found in the interior of the simplex, see e.g. Hendrix

and Toth (2010). However, we are not interested in completely randomly generated pixels, but in

spectral images. In that area, it is known that in reality a pixel spectrum consists of a mix of at

most 4�5 constituents. Reasoning the other way around, at least n−5 values aj,k = 0 for each pixel.

Why is the latter of any importance? As soon as noise is added, one can approximate with

probability theory the chance ρ that a pixel lays inside S. Let N abundance values of pixel k be 0.

For each element with a value of zero, the probability after adding noise that the observation of âj,k
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of the abundance value is positive is taken as 1
2
. The probability the observation âk of the pixel is

inside S is at most

pN =
(

1
2

)N

. (6)

This is not completely correct. Given model (2) and estimator (4)

â = a+
(

V
1T

)−1 (
ξ
1

)
(7)

such that one should consider the probability mass of the corresponding positive orthant of â.
Equation (6) gives an approximation for all abundance vectors with N zeros. Moreover, we say �at
most�, because also low values of aj,k may yield observations outside S. Therefore it is relevant that
in realistic images the noise is relatively low and real abundance (positive value) is at least noticed.
We want to estimate the number of observations P = ρ× r located inside simplex S. This number
depends on the distribution of zero abundance values over the pixels (without noise). Let rN denote
the number of pixels that have N zero values N = 0,1, . . . , n− 1 such that

∑
rN = r. The number

of pixels inside S is at most

P =
n−1∑
N=0

rNpN . (8)

Of course in real images the distribution is unknown. However, with synthetic data one can exper-
iment with these proportions. The relevance of P is that an outer approximation Ŝo of S should
in fact ignore the r − P pixels outside S and enclose the P that are located in S. But how to
know which ones are in and which ones are out? This consideration is the basis of a new estimation
algorithm.

4.1. Estimate V̂ of endmember matrix V
The idea is to base the �nal estimate of endmembers on the ρ = P

r
fraction of pixels that we expect to

be interior with respect to S. Iteratively the endmembers are estimated from the minimum volume
problem and the active pixels at its boundary are removed up to a ρ fraction is left over. We start
with an initial simplex that does not enclose the points, but has an orientation in the same way
if one repeats the algorithm with the same instance. To obtain a starting simplex V , we take the

Algorithm 1 : minvest

Inputs: Z: (n− 1)× r matrix of pixel scores
ρ: percentage of interior pixels
Outputs: V : (n− 1)×n matrix of endmembers
Funct MinVol estimator
1. Z0 := Z, R: number of pixels in Z0, generate starting simplex V
2. while (R > ρr)
3. Generate V by solving (3) and (4) for Z0, former V is starting value
4. remove active pixels at boundary conv(V ) from Z0, update R
5. endwhile

extreme values of the cloud de�ned by Z setting �rst:

Vi,j = min
k

zi,k i = 1, . . . , n− 1, j = 1, . . . , n (9)

and further
Vi,i+1 = max

k
zi,k i = 1, . . . , n− 1. (10)
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Example 5. Given the simplex of endmembers of Example 3 we are going to estimate with the
new algorithm. r = 100 pixels are generated on its boundary, such that they have one zero abundance
value each. After adding noise (we take σ = 0.2), at least half of the pixels is located outside; we take
ρ = 0.5. One can observe the starting simplex which is parallel to the axes given by a dashed line
in Figure 6. We use the fmincon routine to generate the enclosing minimum volume simplices Ŝo,
dotted lines. About 6 points are active and removed from the set of pixels. Ŝo is determined again
using the former estimate as starting value. This process proceeds up to the �nal estimate in this

case is based on 56 pixels. The estimated matrix of endmembers is given by V̂ =
(

1.02 5.03 4.00
1.03 −0.02 4.26

)
with a volume of 16.07 and its simplex is depicted by a solid line in Figure 6.

z2

z1

starting simplex

Ŝo

Figure 6 Iterative estimates of S

4.2. Estimate Â of abundance matrix A
To recover the abundance values from the estimated endmembers V the term linear spectral unmixing

(LSU) is used when nonnegativeness of estimated abundance is not taken into account. In the space
of scores this can be done by calculating

A =
(

V
1T

)−1 (
Z
1T

)
. (11)

For the fraction of pixels located in the �nal set Z0 or geometrically within simplex Ŝ we have
automatically positive abundance values. For pixels zk outside Ŝ, we have at least one corresponding
ajk < 0. The term fully constrained linear spectral unmixing (FCLSU) is used if we want to force
abundance values to be nonnegative (Heinz and Chang (2001)). One way to do so is described here.
With the idea that the noise of zk is componentwise independent we choose to project zk on

the facet of Ŝ closest to zk and determine the abundance for the endmembers in the plane of that
facet. This can be done by determining the endmembers vj in the facet corresponding to aj > 0 and
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putting them in a selection matrix U . After constructing a matrix W which gives the directions in

the plane of the facet with columns wj = uj −u1, the abundance can be derived from the projection

coe�cients b = (W T W )−1W T z as outlined in Algorithm 2. In the result of Example 5, Figure 7

Algorithm 2 : abundance

Inputs: V : (n− 1)×n matrix of endmember scores
z: n− 1 vector of pixel scores
Outputs: a: nonnegative vector of abundance
Funct Abund estimator
1. Determine a via (4)
2. while not (a≥ 0)
3. Select vj with aj > 0 and put into matrix U
4. make spanning matrix W with columns wj := uj+1−u1

5. determine projection coe�cients b := (W T W )−1W T z
6. abundance aj corresponding to uk is bk

7. abundance aj corresponding to u1 is 1−
∑

bk

8. for aj < 0, aj := 0
9. endwhile

z2

z1

Ŝo

Figure 7 Estimates of S and the interior and projected pixels in red

shows interior pixels and projected versions of outside pixels by red dots as a result of Algorithm 2.
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5. Computer simulated data experiments
In this section, we use computer simulations in order to test the accuracy of minvest in comparison
to another popular endmember extraction method, n-findr, in a controlled setting. The reason for
using simulations is that all details of the scenario are known. Consequently, they can be systemati-
cally investigated. We develop several experiments, where the �rst two experiments represent simple
examples in which the advantages of minvest over methods that assume the presence of pure pixels
in the scene (such as n-findr) are illustrated graphically. Then, we perform experiments using a
computer simulated hyperspectral scene constructed from real spectral observations.
To measure the performance, one should de�ne the exact performance indicator. The quality of

estimation V̂ of V is measured as the standard deviation estimate assuming V̂ is unbiased also
called root mean squared error (RMSE):

σV =
√

(
1

n(n− 1)

∑
i

∑
j

(V̂ij −Vij)2). (12)

The quality of estimation Â of A is measured as standard deviation (RMSE):

σA =
√

(
1

r(n− 1)

∑
i

∑
k

(Âik −Aik)2). (13)

To distinguish, we will use σA if Â is generated by linear spectral unmixing (11) and σAp if Â is
generated by the procedure described to generate FCLSU-based abundances.

Table 1 Standard deviation estimates (RMSE) of endmembers V and abundance A obtained by n-findr and minvest

algorithms given noise σ.

n-findr minvest

σ 0.01 0.1 0.2 0.5 0.7 0.01 0.1 0.2 0.5 0.7

σV .030 .118 .233 .857 1.359 .013 .111 .194 .486 .922
σA .011 .063 .114 .259 .323 .007 .058 .105 .204 .266

σAp .008 .048 .092 .224 .281 .005 .048 .086 .174 .234

5.1. Small experiment

Our research question in this experiment is: How good can a method reproduce the endmembers V
and the abundance matrix A? To test this we build a small experiment with the following ingredients:
• The case has n = 5 endmembers and r = 500 pixels.

• The endmember matrix to be estimated is �xed on V =


0 1 2 3 5
5 1 3 5 4
0 1 1 2 0
0 0 2 1 0

. We keep the order of

endmembers �xed by sorting the �rst row. In this way, estimate V̂ and V are easily compared.
• To mimic the idea of combinations of a few constituents, a ground truth abundance matrix A is

generated consisting for 50% of mixtures of 2 endmembers and for 50% of mixtures of 3 endmembers.
• The input score matrix Z is taken as Z = V A+σ× ξ, with ξ generated standard white noise.
• The value of the parameter ρ can be derived from the experimental data; ρ = 18.25%.
• Given that the performance indicators depend on (pseudo-)randomly drawn white noise, we

replicate for each generated matrix A, i.e. generate replications for Z, and take the average of the
measures. For each ground-truth matrix A we replicated white noise 100 times.
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Figure 8 Toy data set without pure pixels.

The measured performance for n-findr and minvest is given in Table 1. It shows standard de-
viation estimates σV of endmembers, σA of fractional abundances calculated via (11) and σAp via
FCLSU. One can observe in Table 1 that the standard deviation of the estimates is in the same
order of magnitude as that of noise. This means that the procedures give results as accurate as the
input data. Deviation of endmembers and abundances estimations provided by n-findr are higher
than those obtained with minvest.

5.2. Scenario without pure pixels

The presence of pure pixels in a hyperspectral image is rare due to several reasons, such as the
available spatial resolution of imaging spectrometers, typically various meters per pixel (Green et al.
(1998)). This compromises the assumption that pure pixels should be present in the original scene
adopted by algorithms such as n-findr. In this subsection, we illustrate graphically the advantages
of minvest over n-findr in this kind of instances, which is typical in practice due to such spatial
resolution considerations. We generated a toy data set which is illustrated graphically in Figure 8.
As shown in Figure 8, the simulated data set does not include any pure pixels, and the mixtures

yk of the three endmembers designated as `A', `B' and `C' have a maximum degree of purity of
70% of an endmember. So, although the pure observations `A', `B' and `C' have been used to create
the simulated mixtures, they are not included in the data to be processed. As a result, �nding the
endmembers in this toy example is a challenging problem.
Fig. 9(a) shows a representation of the simulated data set in two dimensions, obtained by rep-

resenting the scores zk of the �rst two principal components. Since the mixtures are formed using
three endmembers (designated as `A', `B' and `C'), the goal is to �nd a simplex formed by three
vertices that can enclose all the observations. Figure 9(b) shows the endmembers found by minvest
(red color) and by n-findr (green color) after applying both algorithms to the data set in Figure
9(b). The n-findr algorithm selects real observations i.e., pixels present in the data, as endmem-
bers, while the minvest algorithm selects endmembers which are not present. The corresponding
simplices are given in Figure 9(c). One can observe that the endmembers produced by minvest

are almost identical to the ground-truth endmembers used to construct the data, de�ning a simplex
(red color) that includes all observations. However, the endmembers extracted by n-findr from
real observations cannot enclose all other observations, resulting in negative fractional abundance
estimations for those observations not included in the simplex (green color).
This simple but revealing example illustrates the advantages of using minimum enclosing volume-

based approaches over maximum volume-based approaches when pure observations are not present



E.M.T. Hendrix et al.: Minimum volume simplicial enclosure for spectral unmixing

13

Figure 9 (a) Two-dimensional representation of the toy data set without pure pixels. (b) Endmembers extracted by min-
vest (red) and n-findr (green). (c) Coordinates of the endmembers and simplices de�ned by the endmembers
extracted by minvest (red) and n-findr (green).

in the input hyperspectral data set, a common situation in practice given sensor spatial resolution
considerations. Further experiments are required to compare both types of approaches when pure
pixels are present in the input hyperspectral data.

5.3. Scenario with pure pixels

In this experiment, the re�ectance spectra of �ve U.S. Geological Survey (USGS) ground-truth
mineral spectra (alunite, buddingtonite, calcite, kaolinite and muscovite) have been managed for
computer simulations. All signatures are available online1 and have been used to simulate a square
synthetic image scene with a size of 100× 100 pixels. Mixtures of the �ve endmembers have been
simulated based on ground-truth fractional maps constructed so that the endmembers are located
at the four corners and at the center of the image, and signature abundance decreases linearly away
from the pure pixels, a simulation scenario already considered in Plaza et al. (2004). Gaussian noise
with a signal-to-noise ratio (SNR) ranging from 30 : 1 to 110 : 1 was added to the scene to simulate
contributions from ambient (clutter) and instrumental sources.
Figure 10(a) shows ground-truth fractional abundance maps compared with the maps obtained by

minvest for the simulated image without noise in Figure 10(b) and with an SNR of 30:1 in Figure
10(c). As shown, the visual appearence of the fractional abundance maps obtained after using the
minvest algorithm is in very good compromise with the ground-truth fractional abundance maps,
even for a scenario with high noise. It should be noted that the estimated fractional abundance
maps are always highly correlated in terms of the spatial distribution of abundances in the fractional
maps with regards to the corresponding ground-truth maps.
Figure 11 displays the fractional abundance estimations obtained by n-findr combined with the

FCLSU algorithm for abundance estimation. It can be observed that the use of n-findr endmembers

1 http://speclab.cr.usgs.gov/spectral-lib.html
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Figure 10 (a) Ground-truth fractional abundance maps. (b) Fractional abundance estimations for the simulated image
without noise using minvest algorithm. (c) Fractional abundance estimations for the simulated image with
SNR of 30:1 using minvest algorithm.

resulted in fractional maps which are not as properly distributed (in spatial terms) as those provided
by minvest. In particular, this is the case for the simulated scene with SNR of 30:1 in Figure 11(c).
Despite the fact that the estimations resulting from n-findr appear less similar, visually, to those
in Figure 11(a), an investigation in terms of the RMSE of the estimated abundance fractions with
regards to the true ones is needed in order to substantiate if there are any scaling issues involved
as was the case for some of the minvest estimations.

Table 2 RMSE values that compare the fractional abundances estimated by di�erent methods with the true abundance
fractions using simulated scenes with di�erent SNRs

SNR minvest n-findr

∞ 0.0000 0.0020
110 0.0172 0.0039
90 0.0206 0.0053
70 0.0262 0.0067
50 0.0347 0.0117
30 0.0522 0.0331

Table 2 gives the RMSE between the fractional abundance maps estimated for the endmembers
extracted using n-findr (combined with FCLSU) and minvest. As shown by Table 2, the best
estimations for the simulated scene without noise are provided by minvest, while the best estima-
tions for the scenes with simulated noise are provided by n-findr. This seems not to be consistent
with the visual appearance of the fractional abundance maps estimated by the di�erent methods, in
particular for the maps displayed in Figure 11(c) and their visual agreement with the ground-truth
maps. However, this is merely a scaling issue. Due to the dependence of minvest on a parameter ρ
that gives the number of pixels fallen inside the original simplex, the estimate may over or underes-
timate its volume. This means that all abundance values are either too big or too small resulting in a
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Figure 11 (a) Ground-truth fractional abundance maps. (b) Fractional abundance estimations for the simulated image
without noise using n-findr algorithm followed by FCLSU. (c) Fractional abundance estimations for the
simulated image with SNR of 30:1 using n-findr algorithm followed by FCLSU.

higher RMSE value. The visual correspondance (correlation) tells us that apparently the orientation
of the generated simplex by minvest is better than that generated by n-findr. The scaling issue
should be further investigated in future work in order to establish a better correspondence between
the minvest estimations and the ground-truth maps in Figure 10(a) and thus con�rm the good
visual impression provided by the minvest-derived fractional maps.

6. Conclusions
We explored the possibility of using the minimum volume simplicial enclosure problem as a basis for
a new algorithm called minvest for joint endmember extraction and spectral unmixing and found
the following results.
• The problem of unmixing hyperspectral data may be a hard to solve problem.
• The minimum volume simplicial enclosure problem is a Global Optimization problem where the

number of optima depends in worst case on the number of points in the convex hull of the instance.
• The resulting simplex of the (combinatorial) maximum volume simplex problem is enclosed in

the result of the minimum volume enclosing simplex problem.
• Local search from a good starting simplex leads in general to the global optimum for the case

of spectral unmixing due to well spread data in the originating simplex and low noise in practice.
• The new minvest algorithm does not require pure pixels to be present in the scene of the

instance unlike the n-findr and other similar endmember extraction algorithms.
• In the case that there is no noise and we have well spread data over the boundary of the spectral

simplex, minvest successfully recovers the original endmembers and ground truth abundances.
• The root mean squared error perfomance indicator is sensitive to scaling in its use for measuring

abundance discrepancies.
• The results of minvest seem more correlated to ground truth abundance data than the ones

of n-findr.
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Further research can focus on the relation between the used values for parameter ρ (the estimated
fraction of points in the originating simplex) and the scaling e�ects observed in the abundance
measure. A detailed investigation of computational complexity and possible parallelization strategies
for the discussed methods is also a topic deserving future research.
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