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ABSTRACT: Large groups of structures like bridges, pavements and sewer systems, are often inspected visually
and their condition is quantified based on a discrete scale. Markov chains have traditionally been used to model
the uncertain rate at which these structures progress through such a condition scale. In order to determine
optimal strategies for inspections and maintenance activities, these Markov chains must be fitted to the data
obtained in the field. For this purpose, quite a few models and methods have been proposed in the past. These
are reviewed here and references to applications in the field of civil engineering are given. A qualitative verdict
of the performance and applicability of the individual models is given at the end of the paper.

1 INTRODUCTION

One of the primary uncertainties involved in asset
management problems, is the uncertainty about the
remaining lifetime of systems and structures. When
the asset base is very large, visual inspections are
commonly used to obtain information on the current
state of the assets. These visual inspections generally
classify the state of structures on an ordinal condition
scale. They present an economically efficient way of
gaining insight into the condition of a large number of
systems or structures. Examples of assets which are
often visually inspected are bridges, pavements, cate-
nary systems and urban sewer systems. However, vi-
sual inspections may be very subjective and they may
not be sufficient to determine the operational reliabil-
ity and safety of a system.

In order to use the information gathered by visual
inspections for estimating the remaining service life
of a structure, one must apply a suitable probabilis-
tic model to represent the uncertain deterioration of
the state of the structure over time. Additionally, one
must statistically estimate the parameters of such a
model. Most commonly, a finite-state Markov process
is used to model the uncertain deterioration. A num-
ber of statistical estimation methods for the estimation
of transition probabilities have been proposed in the
scientific literature. Some of these have been applied
in asset management systems.

The following section gives a very short introduc-
tion to the theory of Markov chains and presents
the notation that will be used throughout this paper.

Section 3 subsequently presents the various models
and their application to visual inspection data. Sec-
tion 3.1 reviews regression models which do not use
the principle of maximum likelihood. Those models
which do, are presented in Section 3.2. Some refer-
ences to models which do not fall within either one
of these two categories are made in Section 3.3. Us-
ing a simple example, Section 4 illustrates the effect
of ignoring dependence between condition states in
a sequence of observations. Finally, Section 5 sum-
marizes the findings and draws conclusions about the
performance and applicability of each model.

2 THEORY OF MARKOV CHAINS

A few essential elements of the theory of Markov
chains are outlined in this section. The primary pur-
pose is to set up the necessary framework and to in-
troduce the notation as it will be used in the remaining
sections. For a more elaborate introduction, the reader
is referred to any textbook on general probability the-
ory or stochastic processes in particular.

As visual inspections generally classify the con-
dition of a structure on a finite and discrete scale,
the uncertain progression through these states is rep-
resented by a finite-state Markov process. This is
commonly referred to as a Markov chain. We will
only consider stationary Markov chains here, which
have time-invariant transition probabilities or rates.
Let {X(t), t ≥ 0} represent the state of the process at
time t. If xk is the observed state of the process at time
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tk, then for a set of observations at successive times
t0 < t1 < · · ·< tk, the Markov property states that:

Pr{Xk+1 = xk+1 |Xk = xk, . . . ,X0 = x0}

= Pr{Xk+1 = xk+1 |Xk = xk} ,
(1)

where Xk is a convenient shorthand notation for X(tk).
The interval transition probability between a pair of
states (i, j) during a time interval of length s is defined
as

pi j(s) = Pr{X(t + s) = j |X(t) = i} , (2)

with s, t ≥ 0. All pairs of interval transition probabili-
ties may be collected in a matrix denoted by P(s). The
probability of being state i at time t is denoted by

p j(t) = Pr{X(t) = i} , (3)

which may be collected in a vector representing the
state distribution at time t: p(t). The expectation of
the process at time t is simply determined by

E [X(t)] = ∑
∀k

j · pk(t). (4)

A differentiation is made between two common types
of Markov chains: discrete- and continuous-time. The
latter is a special type of semi-Markov process. The
structure of a Markov chain and the uncertainty in the
rate of transitions between the states, is defined by a
transition probability matrix (denoted P) for discrete-
time processes and by an intensity matrix (denoted
Q) for continuous-time processes. This means that
the latter is defined in terms of frequencies, whereas
discrete-time transitions are defined by probabilities
over a fixed period of time.

Condition states are usually given numeric codes
which represent the increasing (or decreasing) or-
der of quality of the structure. For example, bridge
inspections in the United States use a scale which
ranges from 9 (excellent) to 0 (failed); see FHWA,
p.38. With this kind of categorical data, it is some-
what unnatural to speak of an expectation of 1.3 at
some time t. It could be interpreted as being some-
where between 1 and 2, with an inclination towards
1. If however, the states are given non-numeric codes,
e.g. A, B, C, etc., then the expectation in Eq. (4) be-
comes meaningless.

3 REVIEW OF ESTIMATION METHODS

The use of Markov processes with a finite number of
states has become quite common in civil engineering
applications. In order to fit the deterioration process to
the available data, several statistical models and cor-
responding estimation methods have been proposed to

determine the optimal values of the model parameters.
The parameters in a Markov process are the transition
probabilities or intensities, depending on whether a
discrete- or continuous-time process is used. This re-
view is divided in three parts with the division being
based on the method of estimation: regression-based
estimation methods (Sec. 3.1), methods based on the
maximum likelihood principle (Sec. 3.2), and less
common methods like those using Bayesian statistics
are also briefly mentioned (Sec. 3.3).

Classical statistical models include the linear and
generalized linear models, which relate a response (or
dependent) variable to one or more explanatory (or
independent) variables using a linear function in the
parameters. Generalized linear models form a broader
class than the class of linear models. Besides the lin-
ear models as a special case, generalized linear mod-
els include the binary probit (logit), ordered probit
(logit), and Poisson models amongst others. This area
of statistical analysis is commonly known as regres-
sion analysis.

3.1 Regression-based methods

Fitting a Markov chain deterioration model by mini-
mizing the distance between the observed states and
the expectation of the model, is by far the most com-
mon approach found in the literature on infrastructure
management. Assume that the condition of structures
is modeled by the Markov chain {X(t), t = 0,1,2, . . .}
and let xk(t) denote the k-th observation of a state at
age t. In other words, the population of bridges is as-
sumed to be homogeneous and for each t in a finite set
of ages, there are one or more observations of the con-
dition state. As the name suggests, the method of least
squares minimizes the sum of squared differences be-
tween the observed state at age t and the expected
state at the same age. This is formulated as follows:

min
pi j

∑
t

∑
k

{

xk(t)−E [X(t)]
}2

, (5)

under the constraints 0≤ pi j ≤ 1 and ∑ j pi j = 1. The
expectation is defined in Eq. (4). The model in Eq. (5)
is a nonlinear model as the expectation of X(t) is a
nonlinear function of the parameters, which are the
transition probabilities.

The earliest references of the application of the
least squares method in infrastructure management
can be found in the area of pavement management. An
overview of the early development is given by Car-
nahan et al. (1987) and Morcous (2006) also refers
to Butt et al. (1987) as an example of the application
in pavement management. Carnahan et al. (1987) and
Morcous (2006) also discuss the use of the least ab-
solute deviation regression, which minimizes the sum
of the absolute value of the differences. A more re-
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cent application to pavement management is given by
Abaza et al. (2004) and the regression onto the state
expectation is also applied to sewer system manage-
ment by Wirahadikusumah et al. (2001).

In Cesare et al. (1994), least squares minimization
is applied to a slightly different model compared to
the one presented in (5). This approach consists of
minimizing the weighted sum of squared differences
between the observed proportion of states and the
state distribution. The objective function is the follow-
ing:

min
pi j

∑
t

n(t)∑
k

{

yk(t)− pk(t)
}2

, (6)

where n(t) is the number of observed states at time t,
yk is the observed proportion of structures in state k,
and pk(t) is the state distribution as in Eq. (3). The
weights n(t) are used to assign more weight to those
proportions which have been determined with more
observations.

Probably the most significant objection against us-
ing these approaches is the fact that successive ob-
servations are treated as being independent. This is
in contradiction with the Markovian assumption of
the underlying deterioration process. Another objec-
tion against the formulation of the model in (5), is the
fact that the expectation of X(t) depends on the def-
inition of the condition scale. From this perspective,
the model formulated in (6) is more appropriate.

Assume that the condition of the component is
modeled by a Markov chain {X(t), t = 0,1,2, . . .}
and that at least two successive observations of the
proportions, denoted by y(t − 1) and y(t), are avail-
able. In the ideal situation, we would like to deter-
mine the transition probabilities pi j such that y j(t) =
∑i yi(t−1)pi j holds. In reality, we will have to accept
that we will only be able to do so up to a certain er-
ror e(t) at each time t. The objective function may be
defined as follows:

min
pi j

∑
t

‖y(t)−P ·y(t−1)‖, (7)

where P is the transition probability matrix over a sin-
gle time unit and ‖ · ‖ is a vector norm.

For this model, Lee et al. (1970, Chapter 3) derive
the classic least squares estimator p̂ = (X′X)−1X′Y
with appropriately defined matrices X and Y. Unfor-
tunately, this approach does not explicitly take into
account the constraints for the transition probabili-
ties. The row sum constraint holds, but 0≤ pi j may be
violated. Alternative approaches are to use Lagrange
multipliers (as it is an equality constrained optimiza-
tion problem) or to use the method of maximum like-
lihood with an appropriate probability distribution for
the errors e(t). Intuitively, the model in Eq. (7) is quite

appealing as it incorporates the progressive nature of
the Markov process. It does so by directly relating an
observed condition state to the condition state at the
previous inspection, using the transition probability.

3.2 Maximum likelihood methods

In most situations, the method of estimating model
parameters by maximizing the likelihood of the obser-
vations, is a possible approach. This is the case is if,
for example, the error term in the model is assigned a
probability distribution, or if the parameters are prob-
abilities themselves.

3.2.1 Poisson regression
If an object has performed one or more transitions
during the time between two periodic inspections,
only the number of transitions and not the times of
these transitions are known. In order to use count data
to estimate transition probabilities, it is often assumed
that the transitions are generated according to a Pois-
son process. A Poisson process is a stochastic process
which models the random occurrence of events dur-
ing a period of time. If the time between the occur-
rence of each event is exponentially distributed with
parameter λ > 0, then the probability of n events oc-
curring during a period with length t ≥ 0 has a Pois-
son distribution. The probability density function of
the Poisson distribution is given by Pr{N(t) = n} =
(λ t)n(n!)−1 exp{−λ t}, with mean λ t such that the
expected number of events per unit time is E [N(1)] =
λ . If there are m = 1,2, . . . independent observations
(t1,n1), (t2,n2), . . . , (tk,nm), the likelihood of these
observations is given by

L(n |λ ) = Pr{N(t1) = n1, . . . ,N(tm) = nm}
= ∏

m
k=1(λ tk)

nk(nk!)−1 exp{−λ tk}.
(8)

The maximum likelihood estimator for λ is simply

λ̂ = ∑
m
k=1 nk

/

∑
m
k=1 tk .

The term ‘Poisson regression’ stems from the fact
that the parameter λ is often assumed to depend on
one or more covariates in a multiplicative model:
λ = exp{β ′x}, where x is a vector of covariates and
β the vector of coefficients to be estimated. Poisson
regression is therefore a generalized linear regression
method with the logarithm as the link function; that
is, log(λ ) = β ′x, which is also known as a log-linear
regression model.

The Poisson process counts the number of events
and does not account for different types of events. The
assumption is therefore that each event is the same,
namely a transition to the next state after an exponen-
tial waiting time. The model is therefore necessarily
sequential (because it is not possible to distinguish be-
tween different target states) and the (random) wait-
ing time in each state is the same. Another often men-
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tioned limitation of the Poisson process is the fact that
the variance of N(t) is equal to its mean (and therefore
increases when the mean increases), whereas the data
may be more dispersed such that the variance should
be greater than the mean.

Madanat and Wan Ibrahim (1995) used the likeli-
hood in (8) while acknowledging the fact that N(t)
is actually finite for the model under consideration.
They mention the possibility of truncating the Poisson
distribution as a possible correction, but assert that
observations of the last state are very rare such that
they do not influence the resulting estimator signifi-
cantly. To account for possible overdispersion, the au-
thors suggest the use of the negative binomial distri-
bution instead of the Poisson distribution for the count
of transitions. Compared to the Poisson distribution,
which it has as a special case, the negative binomial
distribution includes an extra parameter which allows
the variance to be adjusted independently of the mean.
This is a common approach to account for overdisper-
sion, see e.g. (Cameron and Travedi, 1998, Chapter
4). In a Bayesian framework, the negative binomial
distribution is derived by assuming that the intensity
λ is gamma distributed.

3.2.2 Multinomial model

Assume that all structures are continuously moni-
tored. For Markov chains this implies that each tran-
sition for every structure is observed. Let all ob-
servations be pooled by age t ≥ 0 and let the set
Ni(t) = {Ni1(t),Ni2(t), . . . ,Nin(t)} represent the ran-
dom count of transitions to state j = 1, . . . ,n from
state i for all structures at age t. Because the deteriora-
tion process is continuously monitored, these counts
are observed and are multinomially distributed for
each state i. The probability of the observations ni(t)
at age t is given by a multinomial distribution.The
maximum likelihood estimator for the transition prob-
abilities is p̂i j = ni j/∑

n
j=1 ni j, where ni j is the total

number of observed transitions between states i and j
over all ages of the structures.

This result was derived by Anderson and Good-
man (1957) and Billingsley (1961). See also Lee et al.
(1970) who refer to this type of data as ‘micro data’.
In the context of estimating bridge deterioration, Mor-
cous (2006) referred to this method as the ‘percentage
prediction method’. The model has one fundamental
disadvantage: it assumes that transitions are observed
as they occur. In other words: the deterioration pro-
cess must be continuously monitored. If this is not the
case, the model should not be used.

3.2.3 Panel data models

When structures or systems are inspected periodi-
cally, we get a type of data which is commonly re-
ferred to as panel data. With this type of data, there

is only information about the state of the structures at
discrete points in time. There is no information about
the exact timing of the transitions. Figure 1 shows
a sample path of a Markov chain (“degrading” from
state 0 to state 5) which is inspected at two points in
time. Two transitions have taken place between the
times of these inspections, but it is unknown at what
time these transitions occurred.

time

st
at

e

Markov chain sample path

transition

observed state

0 10 20 30 40 50 60
5

4
3

2
1

0
t1 t2

Figure 1. Sample path of a Markov chain with observed
states at times t1 and t2.

If the random process of transitions is modelled by
a Markov chain X(t), the probability of each pair (i, j)
of observed states, is given by the interval transition
probability in Eq. (2). The likelihood of a sequence
of observations on a single structure is given by the
product over these interval transition probabilities:

L(P |x) = ∏
k

pxk,xk+1
(tk, tk+1). (9)

If structures within a larger group may be considered
as mutually independent, the likelihood of all obser-
vations in the group of structures is obtained by taking
the product of the likelihoods of the individual struc-
tures.

This method was used by Kallen and van Noortwijk
(2006) in order to estimate the transition intensities in
a continuous-time Markov chain for road bridges in
the Netherlands. For example, Figure 2 shows a com-
parison between the expected value (Eq. 4) of two
Markov chains fitted to a database containing 20 years
of observed bridge conditions.

The weigted least-squares model used by Cesare
et al. (1994) follows the sample average quite well,
but results in an expected lifetime (if state 5 is con-
sidered to be a failure state) of over 200 years. The
maximum likelihood model for panel data results in
an expected lifetime of 45 years, which is closer to the
lifetime at which bridges in the Netherlands generally
require significant repairs. This difference is a direct
consequence of the fact that the regression model ig-
nores the observed transitions between states. Sec. 4
gives a simple example which illustrates the effect
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Figure 2. Expected value of a Markov chain for modelling
the evolution of bridge conditions in the Netherlands us-
ing the weighted least-squares regression (Eq. 6) and the
maximum likelihood model for panel data (Eq. 9)

of ignoring the dependences between successive state
observations.

3.2.4 Probit and logit models
The binary probit and ordered probit models are linear
regression models in which a continuous latent (unob-
servable) variable is observed to be in two (binary) or
more (ordered) discrete categories. These models are
appealing for the application in maintenance model-
ing, as the condition states are often assumed to be re-
lated to some underlying deterioration process which
can not be measured directly.

Let the unobservable amount of deterioration be
given by the random variable Y , then the probit model
regresses this variable onto a linear model with stan-
dard normal errors ε:

Y = β ′x+ ε, with ε ∼ N(0,1), (10)

where x is the vector of the explanatory variables (also
referred to independent or exogeneous variables) with
error ε . The row vector β contains the coefficients to
be estimated and the first parameter, which is β0, is
usually taken as the intercept by setting x0 = 1. Now
let Z be a discrete random variable which represents
the actual observed states, then Z = 0 if Y ≤ τ and Z =
1 otherwise. The threshold τ is a model parameter and
must be determined by the estimation procedure. For
the ordered probit model with n + 1 states it follows
from

Z =



























0 if Y ≤ τ1,

1 if τ1 < Y ≤ τ2,
...

n−1 if τn−1 < Y ≤ τn,

n if τn < Y .

(11)

Because Y ∈ (−∞,∞) for all k = 1,2, . . ., the thresh-
olds τ and τi, i = 1,2, . . . for the state conditions must

be located between −∞ and ∞. Note that the thresh-
olds do not have to be equidistant. From these rela-
tionships, the probability of each observation can be
determined. For the binary probit model this is simply
Pr{Z = 1 |x} = Pr{Y > τ |x}, where Pr{Y > τ} =
Pr{β ′x+ ε > τ} = Pr{ε > τ−β ′x} = 1 − Φ(τ −
β ′x). Here Φ(x) is the cumulative standard normal
distribution function. The notation Pr{Z = 1 |x} =
Φ(β ′x − τ) is also often used, which is equiva-
lent as the normal distribution is symmetric with
Φ(−x) = 1−Φ(x). Obviously Pr{Z = 0 |x} = 1−
Pr{Z = 1 |x}. Similarly, for the ordered probit model,
the probabilities of observing each condition state is
given by

Pr{Z = 0 |x}= Φ(τ1−β ′x)

Pr{Z = 1 |x}= Φ(τ2−β ′x)−Φ(τ1−β ′x)

...

Pr{Z = n−1 |x}= Φ(τn−β ′x)−Φ(τn−1−β ′x)

Pr{Z = n |x}= 1−Φ(τn−β ′x)

Under the assumption that the observations are inde-
pendent, the likelihood function for the coefficients β
and the thresholds τ , given the observations z and the
explanatory variables xk is simply

L(β ,τ |z) = ∏
k

Pr{Z = zk |xk} , (12)

which can be maximized to estimate the unknown co-
efficients and thresholds. Before doing so, the model
must be ‘identified’ by setting either the intercept β0

or one of the thresholds τi equal to zero or some
other constant. Fixing either the intercept or one of the
thresholds will influence the other, but not the prob-
ability of the outcome zk; see (Long, 1997, pp.122–
123).

The logit model takes the same approach as the pro-
bit model, but assumes that the errors have a standard
logistic distribution. Like the standard normal distri-
bution, the standard logistic distribution is symmetric,
but has a slightly larger variance.

The ordered probit model is generally not used to
estimate transition probabilities in a Markov process,
but Madanat et al. (1995) made some assumptions in
order to apply this method to a Markov chain for mod-
eling bridge deterioration. The first assumption is that
the Markov chain is progressive (sometimes also re-
ferred to as monotonic, which means that it only pro-
ceeds in one direction). Then, the observations zk are
assumed to be the number of transitions between two
consecutive inspections: zk = j− i. A different Z is de-
fined for each row except for the last in the transition
probability matrix, thus allowing for different dete-
rioration mechanisms in each (transient) state. There-
fore, Pr{Zi = z}= Pr{X(1) = i+ z |X(0) = i} for i =
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0,1, . . . ,n−1 and the authors introduce additional no-
tation to allow the transition probabilities to be esti-
mated for each individual bridge. Also, Madanat et al.
(1995) use a log-linear model instead of the linear
model in (10) to ensure that the unobserved condition
is non-negative: log(yk) = β ′xk + εk. Then, the latent
variable Y has a lognormal distribution with support
[0,∞) and the thresholds for the condition states are
also within this range. The software that the authors
have used for the estimation, identified the model by
setting the first threshold equal to 0, which corre-
sponds to setting log(τ1) = 0 ⇒ τ1 = 1. This model
was later extended by Madanat et al. (1997) to a ran-
dom effects model by the inclusion of another error
term to reflect the differences (heterogeneity) between
structures.

The approach suggested by Madanat et al. (1995),
which was later applied by Baik et al. (2006) to the
problem of modeling deterioration of wastewater sys-
tems, has a number of shortcomings. In what they
see as an advantage, the option to estimate transi-
tion probability matrices for individual bridges re-
quires a significant amount of inspection data and the
suggested averaging of transition probabilities to ob-
tain transition matrices for groups of bridges is faulty.
Transition probabilities for groups of bridges should
be directly estimated using the inspection data from
all bridges within the group and not by averaging the
transition probabilities of the individual bridges. A
more fundamental shortcoming is related to the de-
pendence of transition probabilities on bridge ages.
The authors state that ‘the transition probabilities are
explicitly ... nonstationary’, because they are a func-
tion of time or the age of the bridge. The truth is that
the aspect of time is included as an explanatory vari-
able in the linear model and it is used to estimate a
transition probability matrix of a stationary Markov
chain. For example, take

Y (t) = β0 +β1t +R, with R∼ N(0,1) (13)

as a simple model to describe the uncertainty in de-
terioration over time t. The probability of no transi-
tion between time t0 = 0 and the first inspection at
time t1 is given by the probability that the amount
of deterioration at time t1 has not exceeded the first
threshold τ1: Pr{Z = 0 | t1} = Pr{Y (t1)≤ τ1}. How-
ever, this probability is taken as the probability p00

of no transition out of the initial state 0 during a
unit time. Subsequently, p01 is the probability that the
amount of deterioration is somewhere between τ1 and
τ2, p02 that it is somewhere between τ2 and τ3, etc.
Therefore, each transition probability in a row of the
transition probability matrix is related to a different
age, but they are used in a transition matrix for a sin-
gle unit time which is used to model transitions at all
ages.

Under the assumption that the Markov chain is se-
quential (monotonic and without skipping a state),
Bulusu and Sinha (1997) proposed to use a binary
probit model for fitting the Markov chain to inspec-
tion data. A restrictive requirement for the application
of this model is that only one transition occurs dur-
ing the time between two successive inspections. The
problems previously described for the probit model
suggested by Madanat et al. (1995) are further ag-
grevated by the inclusion of a binary random variable
in the linear model from (10), which equals one if a
transition took place in the previous inspection inter-
val and zero otherwise. This attempt at incorporating
time dependence into the model, directly violates the
Markov property, which must hold if a Markov chain
is used.

Similar to Bulusu and Sinha (1997), Yang et al.
(2005) apply the same model, but without the extra
binary variable and the errors R are assumed to have
a logistic distribution. This is therefore a binary logit
model as described earlier. The authors refer to this
approach as ‘logistic regression’, although this termi-
nology is also used by some to refer to regression with
a log-linear model.

3.3 Other methods

Other methods which will not be further treated here
are non-parametric models and estimation methods
using a Bayesian approach. An example of the ap-
plication of the non-parametric Kaplan-Meier estima-
tor to bridge condition states is presented in DeSte-
fano and Grivas (1998). The problem of estimating
the transition probabilities in the multinomial model
(see Sec. 3.2.2), using a Bayesian approach, is de-
scribed in Lee et al. (1970). Bulusu and Sinha (1997)
compare the application of this approach to the ap-
plication of a binary probit model to bridge deterio-
ration modeling. Finally, Micevski et al. (2002) use a
different formulation of the Bayesian likelihood func-
tion for the estimation of transition probabilities in a
Markov model for the condition of storm waterpipes.

4 IGNORING THE DEPENDENCE BETWEEN
TRANSITIONS

We have seen that a number of estimation models ig-
nore the dependence between transitions. The follow-
ing simple example shows how this may give very
different results. Take a discrete-time Markov chain
{X(t), t ≥ 0} with transition probability matrix

P =

[

0.5 0.5 0
0 0.5 0.5
0 0 1

]

,
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where we assume that the process starts in state 2 and
ends in state 0. Figure 3 shows how this process is
observed at times t=0, 1 and 4 to be in states 2, 1 and 1
respectively. A model which ignores the dependence
between successive states is a model which ignores
the fact that the probability of being in state 1 at time
t = 4 depends on the process previously being in state
1 at time t = 1.

X(0)

X(1) X(4)

A

C

B

X(t)

t0 1 2 3 4
0

1

2

Figure 3. Example of a discrete-time Markov chain X(t)
observed at times t = 1,2 and 5.

The probability of the individual transitions A, B
and C is 0.5, 0.125, and 0.8125 respectively. A model
which treats the transitions as dependent, would as-
sign a likelihood of Pr{A} ·Pr{B} ≈ 0.1, whereas a
model which ignores this dependence would result in
a likelihood of Pr{A} ·Pr{C} ≈ 0.4. In other words,
the latter model would assign a likelihood approxi-
mately four times greater to this particular sequence
of state observations. What we see is that there are
many possible sequences which result in transition C
and the sequence formed by transitions A and B is just
one of these.

5 SUMMARY AND CONCLUSIONS

Since the 1980’s, there have been many different
models and methods which have been applied for
the estimation of Markov chain models in civil engi-
neering problems. Most of these have been reviewed
here and references to publications describing their
application are given. Because visual inspections al-
most always rate the quality of structures on a dis-
crete scale, Markov chains have been the traditional
choice for representing the uncertain progression of
these structures through these condition scales.

A direct comparison of the performance of these
models and methods is not possible as they operate
under different assumptions. The primary difference
between each of these methods is the type of infor-
mation that is available to the modeller. Three types
of data may be distinguished:

Type I: observations of the state itself and repre-
sented by realizations x(t) of the process X(t),

Type II: aggregated data in the form of relative frac-
tions of proportions represented by y(t), and

Type III: count data in the form of the number of
transitions represented by realizations n(t) of
some counting process N(t).

Although they have been used for the purpose of
estimating transition probabilities in Markov chains,
both the multinomial model described in Sec. 3.2.2
and the (ordered) probit or logit models described in
Sec. 3.2.4 are not suited for this purpose. The multi-
nomial model requires continuous monitoring of the
structure and even then it is difficult to determine
when a transition actually takes place, because the
interpretation of the different condition catergories is
subjective. The probit and logit models are suited for
categorial data, but their application to data generated
by a Markov chain is unnatural.

Ideally, an estimation model will account for the
fact that successive observations are dependent. In
Sec. 4 we have given an example which shows the
effect of ignoring this dependence. These are the re-
gression model represented by the objective function
in Eq. (7) and the maximum likelihood methods de-
scribed in Sections 3.2.1 and 3.2.3. All three of these
approaches represent the three different types of data
that may be available to the modeller, namely types II,
III and I respectively. The two other regression mod-
els represented by the objective functions in Eqs. (5)
and (6) do not explicitely account for this dependence.
They are therefore less suited for the purpose of esti-
mating transition probabilities or intensities.

With the storage capability and the flexibility of to-
day’s databases, it is possible to store the actual states
of individual structures after each inspection. Aggre-
gating this kind of detailed information would be a
shame and therefore there is no reason not to use a
statistical estimation method that can cope with this
kind of information. In this respect, the maximum
likelihood-based methods for panel and count data de-
scribed in Sections 3.2.1 and 3.2.3 are most suited for
this purpose. In general, maximum likelhood methods
allow for great flexibility in model building. Transi-
tions probabilities or intensities may depend on co-
variates which may include time- or age-dependency.

In practical situations, the data will include a lot of
noise. This may be due to typing or other kinds of er-
rors made during the registration of inspection results.
This may also be due to differences of opinion be-
tween inspectors. Together with the omission of main-
tenance activities in a database, the latter will result in
quite a few condition improvements which can not be
accounted for. We are primarily interested in estimat-
ing the rate at which a structure progresses through
condition states due to aging and usage. It is there-
fore advised to include a flag in the database, which
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the inspector may use to identify the (suspected) rea-
son for the condition improvement. He may suspect
that maintenance was performed since the previous
inspection or he may disagree with the condition eval-
uated at the previous inspection. Such a flag makes it
easier for a modeller to filter out data which is not of
interest to him.

REFERENCES

Abaza, K.A., Ashur, S.A., & Al-Khatib, I.A., 2004. Inte-
grated pavement management system with a Markovian
prediction model. Journal of Transportation Engineer-

ing, 130(1):24–33.

Anderson, T.W. & Goodman, L.A., 1957. Statistical in-
ference about Markov chains. Annals of Mathematical

Statistics, 28:89–110.

Baik, H.S., Jeong, H.S., & Abraham, D.M., 2006. Estimat-
ing transition probabilities in Markov chain-based de-
terioration models for management of wastewater sys-
tems. Journal of Water Resources Planning and Man-

agement, 132(1):15–24.

Billingsley, P., 1961. Statistical models in Markov chains.
Annals of Mathematical Statistics, 32:12–40.

Bulusu, S. & Sinha, K.C., 1997. Comparison of method-
ologies to predict bridge deterioration. Transportation

Research Record, 1597:34–42.

Butt, A.A., Shahin, M.Y., Feighan, K.J., & Carpenter, S.H.,
1987. Pavement performance prediction model using
the Markov process. Transportation Research Record,
1123:12–19.

Cameron, A.C. & Travedi, P.K., 1998. Regression analysis

of count data. Cambridge University Press, Cambridge,
United Kingdom.

Carnahan, J.V., Davis, W.J., Shahin, M.Y., Keane, P.L., &
Wu, M.I., 1987. Optimal maintenance decisions for
pavement management. Journal of Transportation En-

gineering, 113(5):554–572.

Cesare, M., Santamarina, J.C., Turkstra, C.J., & Vanmar-
cke, E., 1994. Risk-based bridge management: opti-
mization and inspection scheduling. Canadian Journal

of Civil Engineering, 21(6):897–902.

DeStefano, P.D. & Grivas, D.A., 1998. Method for estimat-
ing transition probability in bridge deterioration mod-
els. Journal of Infrastructure Systems, 4(2):56–62.

Kallen, M.J. & van Noortwijk, J.M., 2006. Statistical
inference for Markov deterioration models of bridge
conditions in the Netherlands. In Cruz, P.J.S., Fran-
gopol, D.M., & Neves, L.C., (eds.), Bridge Mainte-

nance, Safety, Management, Life-Cycle Performance

and Cost: Proceedings of the Third International Con-

ference on Bridge Maintenance, Safety and Manage-

ment, 16-19 July, Porto, Portugal, 2006., pages 535–
536, London. Taylor & Francis.

Lee, T.C., Judge, G.G., & Zellner, A., 1970. Estimating

the parameters of the Markov probability model from

aggregate time series data. North-Holland, Amsterdam.

Long, S.J., 1997. Regression models for categorical and

limited dependent variables. Sage Publications, Thou-
sand Oaks, CA.

Madanat, S., Mishalani, R., & Wan Ibrahim, W.H., 1995.
Estimation of infrastructure transition probabilities
from condition rating data. Journal of Infrastructure

Systems, 1(2):120–125.

Madanat, S. & Wan Ibrahim, W.H., 1995. Poisson re-
gression models of infrastructure transition probabili-
ties. Journal of Transportation Engineering, 121(3):
267–272.

Madanat, S.M., Karlaftis, M.G., & McCarthy, P.S., 1997.
Probabilistic infrastructure deterioration models with
panel data. Journal of Infrastructure Systems, 3(1):4–9.

Micevski, T., Kuczera, G., & Coombes, P., 2002. Markov
model for storm water pipe deterioration. Journal of

Infrastructure Systems, 8(2):49–56.

Morcous, G., 2006. Performance prediction of bridge deck
systems using Markov chains. Journal of the Perfor-

mance of Constructed Facilities, 20(2):146–155.

FHWA, 1995. Recording and coding guide for the struc-

ture inventory and appraisal of the nation’s bridges. Re-

port No. FHWA-PD-96-001. U.S. Department of Trans-
portation, Federal Highway Administration, Washing-
ton, D.C.

Wirahadikusumah, R., Abraham, D., & Iseley, T., 2001.
Challenging issues in modeling deterioration of com-
bined sewers. Journal of Infrastructure Systems, 7(2):
77–84.

Yang, J., Gunaratne, M., Lu, J.J., & Dietrich, B., 2005. Use
of recurrent Markov chains for modeling the crack per-
formance of flexible pavements. Journal of Transporta-

tion Engineering, 131(11):861–872.

8

3242


