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Abstract

Background: Genomic selection, the use of markers across the whole genome, receives increasing amounts of
attention and is having more and more impact on breeding programs. Development of statistical and
computational methods to estimate breeding values based on markers is a very active area of research. A
simulated dataset was analyzed by participants of the QTLMAS XIII workshop, allowing a comparison of the ability
of different methods to estimate genomic breeding values.

Methods: A best case scenario was analyzed by the organizers where QTL genotypes were known. Participants
submitted estimated breeding values for 1000 unphenotyped individuals together with a description of the
applied method(s). The submitted breeding values were evaluated for correlation with the simulated values
(accuracy), rank correlation of the best 10% of individuals and error in predictions. Bias was tested by regression of
simulated on estimated breeding values.

Results: The accuracy obtained from the best case scenario was 0.94. Six research groups submitted 19 sets of
estimated breeding values. Methods that assumed the same variance for markers showed accuracies, measured as
correlations between estimated and simulated values, ranging from 0.75 to 0.89 and rank correlations between 0.58
and 0.70. Methods that allowed different marker variances showed accuracies ranging from 0.86 to 0.94 and rank
correlations between 0.69 and 0.82. Methods assuming equal marker variances were generally more biased and
showed larger prediction errors.

Conclusions: The best performing methods achieved very high accuracies, close to accuracies achieved in a best
case scenario where QTL genotypes were known without error. Methods that allowed different marker variances
generally outperformed methods that assumed equal marker variances. Genomic selection methods performed
well compared to traditional, pedigree only, methods; all methods showed higher accuracies than those obtained
for breeding values estimated solely on pedigree relationships.

Background
When methods for selection based on many markers
across the genome, or genomic selection, were first
described [1] the application of genetic marker data in
plant and animal breeding programs was still limited
[2]. In subsequent years the use of individual markers in
breeding programs has increased [3,4]. With the avail-
ability of assays that provide genotypes for 50,000 or
more markers for each individual, the application of

genomic selection has started to take hold in recent
years. Especially in dairy cattle the use of genomic selec-
tion is becoming common practice [5,6]. In other spe-
cies the application of genomic selection is being
considered or evaluated [7-9].
Methods to deal with these large number of markers

in breeding programs were first proposed by [1] after
which a number of alternatives have been suggested; e.g.
[10,11]. Most methods have been evaluated in simula-
tions and sometimes on real data. Analyses applying
genomic BLUP methodology as defined by Meuwissen
et al.[1], or applying Ridge Regression (RR) [12], assume
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the same variance for each marker. A series of well-
known methods are those named BayesA, BayesB, etc.
BayesA assumes the same a priori variance for all mar-
kers, where effects are drawn from one distribution [1].
BayesB divides the markers in 2 groups: one group that
contributes to the genetic variance and have the same a
priori non-zero variance, and another group whose
effect are supposed to be zero [1]. Another variant,
sometimes referred to as “BayesC”, considers two distri-
butions: one with large effect (that are assumed to be
linked to a QTL) and one with small effects (that are
assumed to be not linked to a QTL) [11,13].
The organizers of the previous QTL-MAS workshop

initiated a comparison of methods using a simulated
dataset which resembled a population one might
encounter in litter-bearing animals. They concluded that
models that include markers as fixed effects were unli-
kely to provide any gain from the use of markers, while
random effects models and especially the Bayesian ana-
lyses were most promising [14].
We aimed to compare methods that estimate genomic

breeding values (GEBV) in a dataset that one might
encounter in both plant and animal breeding programs
and added the complexity of repeated measures over time.
Participants of the current QTL-MAS workshop 2009
were invited to predict GEBV and describe their methods
and results. Predicted GEBV from the different methods
were submitted to the QTL-MAS workshop and com-
pared to the simulated or true breeding values (TBV).

Methods
Simulated data
18 QTL were simulated affecting a trait called yield that
followed a logistic growth curve. The growth curve was
determined by 3 parameters and for each parameter, 6
QTL determined the genetic value with one large QTL
(50% of genetic variance) and 5 smaller QTL. Phenoty-
pic values for the parameters were simulated with a her-
itability of 0.50. Workshop participants were provided
with genotypes for a set of biallelic markers that did not
include the genotypes for the 18 QTL. Data available to
participants of QTLMAS XIII consisted of 100 full-sib
families which resulted from factorial mating of 20
female and 5 male parents. Each full-sib family consisted
of 20 offspring. Parent-offspring relationships were pro-
vided, but relationships between parents were not. All
offspring had genotypes for 453 markers, distributed
over 5 chromosomes of 1 Morgan each. Phenotypes
were provided for the offspring of 50 full-sib families
and consisted of cumulative yield values at 5 different
points in time, the last time point being 530. Further
details of the simulation are described elsewhere [15]
and the dataset is available from http://www.qtlmas2009.
wur.nl/UK/Dataset.

Best-case analysis
The workshop organizers applied a “best-case” analysis
to the simulated data to provide an upper bound of the
expected accuracies of the contributed analyses. This
best-case analysis made use of additional information
which was not provided to the workshop participants.
The correct model, a logistic growth curve, was used to
estimate 3 growth curve parameters from phenotypes
for each individual. More importantly, the true geno-
types of the QTL were used. Workshop participants
could apply the correct growth model without knowing
this was the case, but the actual genotypes could not be
used. In the best-case analysis, the true QTL genotypes
were used as the only variables in a multitrait fixed
regression model to estimate the QTL effects on the 3
growth curve parameters. The estimated growth curve
QTL effects were subsequently used to predict breeding
value for yield on time point 600 for the unphenotyped
individuals.

Prediction strategies
QTLMAS XIII participants were asked to predict breed-
ing values for the unphenotyped offspring (n = 1000) at
time point 600. Timepoint 600 was outside the range of
time points for which phenotypes were provided. Several
strategies could be followed: 1) predict phenotypes at
time point 600, using any of several methods, and use
these to predict breeding values, 2) use a function to
describe the observed phenotypes, predict breeding
values for the parameters of this function and use those
to calculate EBV at time point 600, 3) predict breeding
values for the 5 different time points and use these to
extrapolate to time point 600, using any of several
methods.

Comparison of predicted breeding values
Accuracies of GEBV, reported by workshop participants
on unphenotyped offspring, were calculated as the cor-
relation between the GEBV and the TBV. Bias was
assessed from the regression of TBV on the GEBV. The
ability of methods to identify the best individuals was
assessed from the rank correlations of predicted and
TBV of individuals in the top 10% of TBV. Mean
squared prediction error was calculated after predicted
and TBV were centered on zero. The variances of
GEBV were calculated and reported as a proportion of
the variance of TBV.

Results
Best-case analysis
The regression model applied directly to the QTL geno-
types resulted in the highest accuracy (0.985) and rank
correlation (0.935) of GEBV with TBV of unphenotyped
individuals. However, regression of TBV on GEBV
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resulted in a regression coefficient of 0.847, relatively far
away from 1 compared to other methods, The variance
of GEBV was also higher (34.3) than the variance of the
TBV (25.3) and higher than the variance from any other
estimation method.

Prediction strategies
All authors applied a procedure with two or three steps.
In most cases two steps were used with one step to pre-
dict phenotypes or breeding values at time point 600
and one step to estimate genetic effects for the markers.
The order of these two steps varied and various meth-
ods were applied for both extrapolation to time point
600 as well as for the estimation of marker effects.
Two step strategies
Three authors [16-18] started with predicting pheno-
types on time point 600 which were then used to pre-
dict breeding values. Phenotypes were predicted using a
Logistic model (model 5) or a Gompertz model (models
1 to 4). Predicted phenotypes at time point 600 were
subsequently used in single trait analyses to predict EBV
at time point 600.
Three authors [19-21] started by predicting EBV in

single trait analyses applied to each of the time points at
which phenotypes were available and subsequently used
those EBV to extrapolate to an EBV at time point 600.
Extrapolation to time point 600 was done using quadra-
tic regression (model 6) or linear regression (models 7
to 18). Linear regression models only used the last 3
time points.
Three step strategy
One author [17] (model 19) applied a three step strategy
where first a growth model was used, then a model to
estimate marker effects and finally again a growth
model to predict EBV at time point 600. In step 1 the
parameters of a Gompertz model were estimated for
each of the individuals with phenotypes. Marker effects
were estimated for each of the 3 parameters in the
Gompertz model in the second step. The third step
used these estimated SNP effects to calculate the EBV
of individuals at time point 600.

Comparison of predicted breeding values
A number of different estimation methods were applied
by participants (Table 1). Apart from the prior knowl-
edge analysis performed by the organizers, no fixed
effect models were applied to obtain GEBV. One partici-
pant [19] applied a pedigree BLUP model (model 8) as
one of their approaches which ignored all marker data.
We termed 2 models as being a “genomic BLUP” imple-
mentation, which meant that each marker was assumed
to have the same variance that was not (re-)estimated in
the model. The other 16 models were termed “Bayes”
models, which meant that they considered a priori

assumptions for the marker variances, and estimated the
marker variances conditional on the a priori assump-
tions and the estimated marker effects. All implementa-
tions differed in some aspect. The two genomic BLUP
implementations used either a genomic relationship
matrix [20] (model 6) or a Ridge Regression approach
[18] (model 5) both of which are equivalent to a geno-
mic BLUP implementation [22,23]. It needs to be noted
that model 6 did not use all available marker informa-
tion but limited itself to a single chromosome. The 16
models classified as Bayes applied various forms of mar-
ker selection or separating markers into groups with dif-
ferent expected effect sizes. Only one group [19] applied
the use of haplotype information in some of their mod-
els using either identity by descent matrices based on 2
locus haplotypes (model 9) or identity by state haplo-
types (models 10 and 11).
Accuracy
The lowest accuracy was 0.647, obtained with pedigree
BLUP (model 8), clearly below the second lowest model
(model 6) with an accuracy of 0.751. All other methods
performed markedly better than the genomic BLUP
model 6 (Figure 1). The other genomic BLUP model
(model 5) showed an accuracy of 0.889 which was
within the lower half of the range of the Bayes models.
Accuracies obtained with the Bayes models were
between 0.857 to 0.945. The model with the most accu-
rate predictions (model 3) had an accuracy just 4 per-
cent below the results of the best-case analysis.
Rank correlations
Rank correlations were calculated from the ranking of
the top 10% of individuals, based on TBV. The range
of rank correlations for the Bayes methods was 0.691
to 0.816 (Figure 2). The two best methods switched
positions when measured on rank correlation versus
accuracy but overall the evaluation of methods based
on accuracy was very similar to evaluation based on
their ability to rank the top individuals (correlation =
0.91).
Bias
The pedigree BLUP analysis was found to have a regres-
sion coefficient that was closest to 1 (Figure 3). The
genomic BLUP method by Schulz-Streek 5 also yielded
a regression coefficient very close to 1, while the var-
iance of GEBV from that model was approximately
twice the variance of EBV obtained with pedigree BLUP
(Table 2, Figure 4). Regression coefficients of Bayes
models ranged from 0.804 for a Bayesian implementa-
tion of LASSO (model 2) to 1.16 for a BayesB imple-
mentation (model 16).
Prediction error
Average prediction error was largest for the pedigree
BLUP EBV, which is due to the relatively low accura-
cies for this method and hence significant shrinkage
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of the resulting EBV (Figure 5). Smallest prediction
errors were obtained with the most accurate predic-
tion method (model 3). Average prediction error
showed a very strong correlation with accuracy (r =
-0.99).

Discussion
2-step and 3-step methods
Accuracy of GEBV from the 3-step method (model 19)
was 0.897, which was very similar to the average accu-
racy, 0.893, of all the other Bayes methods. Because the
simulated QTL affect the parameters of the true logistic
growth curve it might have been expected that methods
that look for associations of markers with these underly-
ing parameters had an advantage. In this dataset this
does however not appear to be the case. It was found
that extrapolation to time point 600 was not a big chal-
lenge because for most individuals this time point was
within the part of the growth curve where growth was
almost linear. In fact, two authors extrapolated exactly
this way, by linear regression on the last three time-
points and obtained high accuracies. The impact of

methods for extrapolation would have been bigger when
a time-point closer to the asymptote would have been
chosen. However, extrapolation of the data was a sec-
ondary objective of the QTLMAS workshop whereas
comparison of methods to obtain GEBV was a primary
objective.

Bayes and genomic BLUP methods
QTL contributing to the three parameters of the growth
curve were unequal in size. This was expected to favor
Bayes methods over genomic BLUP methods that
assume the same variance for all markers. This differ-
ence was not directly apparent from the results pre-
sented in this comparison as one of the genomic BLUP
models (model 6) resulted in a lower accuracy (0.751)
compared to all other marker methods while the accu-
racy (0.889) from the other genomic BLUP method
(model 5) was higher than some of the Bayes methods.
The GEBV from model 6 were obtained using a genetic
covariance matrix build from a subset of 90 markers
that were selected from only the first of the five chro-
mosomes. The resulting GEBV may have reduced

Table 1 Extrapolation, prediction and estimation methods

Step 1 Step 2

Method Paper Model Extrapolation Prediction

1 Cleveland Bayes-A Gompertz Bayes-A

2 Cleveland Lasso Gompertz Bayes-Lasso

3 Cleveland Student- t Gompertz Bayes-Student-t

4 Pong-Wong GEBV2 Gompertz Bayes-B

5 Schulz-Streeck Ridge Logistic BLUP \ RR

Step 1 Step 2

Method Paper Model Prediction Extrapolation

6 Mucha SNPL GRM quadratic 5 points

7 Veerkamp 14.SNP Bayes-C linear 3 points

8 Veerkamp BLUP A matrix linear 3 points

9 Veerkamp IBD Bayes-C linear 3 points

10 Veerkamp IBS2 Bayes-C linear 3 points

11 Veerkamp IBS5 Bayes-C linear 3 points

12 Veerkamp SNP1 Bayes-A linear 3 points

13 Veerkamp SNP2 Bayes-C linear 3 points

14 Veerkamp SNP3 Bayes-C (3dist) linear 3 points

15 Verbyla Bayes.BLUP Bayes linear 3 points

16 Verbyla BayesA Bayes-A linear 3 points

17 Verbyla BayesA.B Bayes linear 3 points

18 Verbyla BayesC Bayes-C linear 3 points

Step 1 Step 2 Step 3

Method Paper Model Estimation Prediction Extrapolation

19 Pong-Wong GEBV1 Gompertz Bayes-B Gompertz

20 QTLMAS Best case Logistic Regression Logistic
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accuracies compared to other methods because not all
information was used. However, a method which only
selected 14 markers (model 7) still gave a high accuracy
(0.930). These 14 markers were selected based on a
QTL analysis while the 90 markers selected for model 6
were selected solely on the fact that they map to chro-
mosome one.
Most likely the use of a polygenic component

increased the accuracy of model 5. While a polygenic
component was not used by model 6, some of the Bayes
methods did include polygenes (models 7 to 18). In
addition to the relatively high accuracy, the best geno-
mic BLUP model (model 5) produced unbiased GEBV
where many of the other methods showed moderately
to severely biased results.
The structure of the data was such, that full sib

families were either completely genotyped, or completely
not genotyped. This structure was chosen, to avoid that
models would benefit too much from close relationships
between the animals in the training and validation data.

The larger the distance between training and validation,
the more emphasis on LD information to predict GEBV
of animals without phenotypes [24]. Bayes methods can
employ LD to focus variance on specific parts of the
genome, where genomic BLUP methods only employ
the genomic relation over the whole genome. Therefore,
in addition to the small number of QTL with relatively
large effect, most likely the population structure was
also more beneficial for the Bayes compared to the
genomic BLUP models.

Figure 1 Accuracy of contributed GEBV Ordered values for
accuracy of predicted breeding values for phenotype at time point
600. Prediction using pedigree (▼), genomic BLUP (○), Bayes (●),
best case (▲) models and true breeding values (♦).

Figure 2 Rank correlations of contributed GEBV Ordered values
for rank correlations between the predicted and true breeding
values of the top 100 TBV individuals. Prediction using pedigree (▼),
genomic BLUP (○), Bayes (●), best case (▲) models and true
breeding values (♦).

Figure 3 Bias of contributed GEBV Ordered values for regression
of simulated on predicted breeding values. Prediction using
pedigree (▼), genomic BLUP (○), Bayes (●), best case (▲) models and
true breeding values (♦).

Table 2 Results from comparison to simulated breeding
values (TBV)

Analysis Method Var Acc MSEP Rank Regr

0 TBV 25.346 1 0 1 1

1 Cle_Bayes.A 26.490 0.916 4.369 0.749 0.896

2 Cle_Lasso 32.909 0.916 5.337 0.716 0.804

3 Cle_Student.t 30.554 0.945 3.322 0.791 0.860

4 Pon_GEBV21 18.638 0.901 4.794 0.726 1.051

5 Sch_EBV600 20.354 0.889 5.303 0.700 0.992

6 Muc_SNPL 23.204 0.751 12.101 0.578 0.785

7 Vee_14.SNP 20.166 0.930 3.460 0.764 1.043

8 Vee_BLUP 10.763 0.647 14.728 0.485 0.993

9 Vee_IBD 19.009 0.931 3.475 0.767 1.075

10 Vee_IBS2 18.344 0.932 3.504 0.816 1.095

11 Vee_IBS5 19.579 0.929 3.517 0.781 1.057

12 Vee_SNP1 24.975 0.912 4.433 0.719 0.919

13 Vee_SNP2 17.974 0.925 3.828 0.793 1.098

14 Vee_SNP3 17.928 0.927 3.744 0.779 1.102

15 Ver_Bayes.BLUP 20.721 0.885 5.479 0.691 0.979

16 Ver_BayesA 13.783 0.857 7.092 0.696 1.162

17 Ver_BayesA.B 17.124 0.889 5.435 0.730 1.081

18 Ver_BayesC 17.914 0.861 6.561 0.710 1.024

19 Pon_GEBV1 19.726 0.897 4.971 0.709 1.016

20 best_case 34.256 0.985 1.572 0.935 0.847
1After the QTLMAS workshop an error in the implemented software was
found by the participant. The adjusted implementation yielded an accuracy of
0.947.
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Number of markers included in the model
The proportion of markers, π, selected into the model or
into the distribution of large marker effects was reported
by Pong-Wong and found to be relatively high, even
close to 1 for one of their methods where they tried to let
the model decide on the value of π . Nevertheless, the
proportion of markers that was included in the distribu-
tion of markers with large effect in more than half of the
cycles (i.e. that had a posterior probability > 0.5), was
limited. The posterior proportions in the various distri-
butions were not reported by the other authors. Results
obtained with a method that solely included 14 markers
(model 7) show that very high accuracies could be
obtained, at least in this dataset, with a small number,
and a small proportion of the total number of markers
selected into the model. The 14 SNPs included in model
7 were selected based on their association with the phe-
notype and analysed with a Bayes model. Preselection of
SNPs and analysing them as fixed effects has not been
considered by any of the participants. Results from
QTLMAS comparison in 2008 [14] as well as the first
comparison to genomic BLUP, BayesA and BayesB [1]

already showed a low accuracy for these fixed effects
models which can be expected when many markers are
available to be selected into the model.

Conclusions
Accuracies of GEBV were always higher than those esti-
mated based on pedigree alone (model 8). Methods that
allow different variances of markers generally performed
better than genomic BLUP methods that assume equal
variance for all markers but differences were not very
large, except when only a portion of the genome was
used (model 6). The best Bayes method achieved an
accuracy that was 0.056 higher than the best genomic
BLUP method. The simulated QTL varied strongly in
size which will have favored the Bayes methods in the
comparison of accuracies between the two types of
methods. The highest accuracies obtained were very
close to those from the best case analysis, where knowl-
edge about QTL genotypes was used. Methods to extra-
polate to time point 600 from the observed phenotypes
at time points up to 530 appear to have had a minor
impact on the accuracies of GEBV.
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