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STELLINGEN 

1 . Het stilleggen van het gemotoriseerde verkeer in Nederlandse Steden tijdens 
episoden van wintersmog is geen zinvolle maatregel om gezondheidseffecten 
te beperken. (Dh proefschritt) 

2. De in Nederiand gedurende de winter optredende dagelijkse variaties in P M 1 0 

concentraties gaan bij kinderen gepaard met effecten op de piekstroom die 
door de W H O (1992) als 'matig'worden geclassificeerd. (Dit proefschrift) 

3. Ondanks het gebruik van (extra) luchtwegmedicijnen zijn juist kinderen die 
luchtwegmedicijnen gebruiken gevoelig voor de effecten van fijn stof. 
(Dit proefschrift; Peters et al., 1997) 

4 . De incidentie van griep en griepachtige aandoeningen in de algemene 
populatie zoals geregistreerd door de Nederlandse peilstations, kan in panel 
studies naar acute effecten van luchtverontreiniging worden gebruikt om te 
corrigeren voor het potentieel verstorende effect van het optreden van 
respiratoire infecties. (Dit proefschrift) 

5. Kinderen met chronische luchtwegklachten en allergie lijken een risicogroep te 
vormen voor wat betraft de negatieve effecten van P M 1 0 . (Dit proefschrift) 

6. De Stelling van Hill (1965) dat biologische plausibiliteit in epidemiologische 
studies geen strikte voorwaarde is voor causaliteit omdat "biological 
plausibility depends upon the knowledge of the day" is bij uitstek van 
toepassing op P M 1 0 . 

7 . Uit gezondheidskundig oogpunt is het van belang, dat 'bruin worden' zo snel 
mogelijk weer uit de mode raakt (Elwood & Jopson, 1997; Serraino etal., 1998). 

8. De milieuproblemen rond Schiphol komen niet uit de lucht vallen. 

9 . Als mannen kinderen konden krijgen, zouden de problemen in de Nederlandse 
kraamzorg een stuk kleiner zijn dan nu het geval is. 

10 . Het toenemend gebruik van e-mail is een verrijking voor het sociale leven van 
een AIO. 

1 1 . " ' t Is op de wereld siecht verdeeld: de ene heeft een lieve poes, de ander 
heeft een hond" (Hans Dorrestijn; het complete anti-hondenboek, p. 110). 

Stellingen behorend bij het proefschrift: 'Acute effects of winter air pollution on 
respiratory health'. 
Saskia van der Zee, Wageningen, 29 September 1999. 
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Abstract 

In this thesis, acute respiratory health effects of exposure to winter air pollution are 
investigated in panels of children (7-11 yr) and adults (50-70 yr) with and without 
chronic respiratory symptoms, living in urban and non-urban areas in the Netherlands. 
The study was performed during three consecutive winters starting in 1992 /1993 . 
Each winter, subjects performed twice daily measurements of Peak Expiratory Flow 
(PEF) and registered the occurrence of respiratory symptoms and medication use in a 
diary. Air pollution concentrations were measured daily in both areas. 
The contrast in the concentrations of particulate air pollutants (PM10, Black Smoke and 
sulfate) between urban and non-urban areas was small, but there was more contrast 
in the concentrations of the gaseous pollutants SO2 and NO2, 

In symptomatic children from both areas, significant associations were observed 
between PM10, Black Smoke (BS) and sulfate concentrations and the prevalence of 
lower respiratory symptoms (LRS) and PEF decrements. Particle concentrations were 
also associated with bronchodilator use in the urban areas, but not in the non-urban 
areas. However, differences in use of maintenace medication might be responsible for 
this. In non-symptomatic children, significant associations were observed between 
PM10 and BS concentration and the prevalence of PEF decrements, but of smaller 
magnitude than for symptomatic children. No associations with respiratory symptoms 
were observed. 

In symptomatic adults living in urban areas, PM10, BS, sulfate and SO2 concentrations 
were associated with the prevalence of decrements in morning PEF, but not in 
evening PEF. Although especially BS was also associated with upper respiratory 
symptoms, particle concentrations were not associated with LRS or bronchodilator 
use. In symptomatic subjects living in non-urban areas, and in non-symptomatic 
adults from both urban and non-urban areas, no consistent associations between air 
pollution concentrations and indicators of respiratory health were found. 
Separate analyses in children, based on the presence/absence of objective medical 
characteristics showed that PM10 was most consistently associated with respiratory 
health indicators in symptomatic children who had either high total serum IgE level or 
a positive skin prick test. 

In conclusion, low levels of particulate air pollution were associated with adverse 
effects on respiratory health in 7-11 yr children, while in 50 -70 year old symptomatic 
adults only a weak effect was found. Although there was a tendency of more 
consistent particle effects in the urban panels, the differences with the non-urban 
panels were small and might reflect differences in asthma medication use. 
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Background 

Severe winter air pollution episodes in the Meuse Valley, Belgium in 1 9 3 0 , in 

Donora-Webster, Pennsylvania, USA in 1 9 4 8 and in London, UK in 1 9 5 2 have 

left little doubt that high air pollution concentrations can cause severe health 

effects including mortality 1" 3. Air pollution episodes are caused by stagnant 

weather conditions that generally persist for some days, and can occur both in 

summer and in winter. In summer, high concentrations of ozone (O3) occur due 

to photochemical reactions of air pollutants emitted by traffic and industry. In 

classical winter episodes, increased fossil fuel use due to usually cold weather 

caused high concentrations of sulfur dioxide (SO2) and particulate matter. In this 

thesis, acute respiratory health effects of winter type air pollution in the 

Netherlands are investigated. 

In the winters of 1 9 8 5 and 1 9 8 7 , relatively serious episodes of winter type air 

pollution hit the Netherlands. The episodes were characterized by elevated levels 

of SO2 and particulate matter, to a large extent transported over long distances 

from Germany and source areas in Eastern Europe. In 1 9 8 5 as well as in 1 9 8 7 , 

temporary decreases in lung function in children were observed that were 

associated wi th these episodes 4 , 6 . The same episodes were associated with 

health effects in Germany 6 , 7 . 

In recent years, emissions of SO2 have decreased in Germany and Eastern 

Europe, and it was considered unlikely that winter smog episodes of the same 

magnitude as in 1 9 8 5 and 1 9 8 7 would occur again in the near future in the 

Netherlands. However, at the same time the composition of the air pollution 

mixture was changing; due to the continuing increase in motorized traffic 

intensity, the contribution of traffic related compounds became more important. 

Traffic is an important source of carbon monoxide (CO), nitrogen oxides (NOx), 

volatile organic compounds (VOC) and particulate matter, both direct and 

indirect through the formation of secondary aerosols 8. Studies from the United 

States in the early nineties suggested that particulate matter concentrations, 

expressed as the concentration of particles with a 5 0 % cutoff diameter of 10 

fjm (PM10), were associated wi th acute health effects independently of S O 2 9 , 1 0 . 

In February 1 9 9 1 , a high pressure system with easterly winds and subfreezing 

temperatures occurred for the first t ime since the winter of 1 9 8 7 in the 

Netherlands. SO2 concentrations increased to only about 1 0 0 / / g / m 3 (24 hour 

average), while PM10 concentrations increased to about 1 7 0 ji/g/m 3. In a panel of 
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children wi th chronic respiratory symptoms, Peak Expiratory Flow (PEF) 

decreases and increases in airway symptom prevalence and the use of 

medication were observed in this episode 1 1 . These observations raised the 

question whether the definition of winter air pollution episodes as episodes with 

increased levels of both SO2 and particulate matter is still valid. They also raised 

the question how large the additional effect is of automobile traffic in large cities 

during winter air pollution episodes on the levels of the air pollution components 

that are thought to be of health relevance. 

Recent epidemiological studies in the Netherlands investigating acute health 

effects of winter air pollution episodes have been concentrated on populations 

living outside the big cit ies 1 1 " 1 3 , as the emphasis was on secondary pollutants 

and on long range transport of air pollutants. It was not clear to what extent 

inhabitants of big cities were exposed to higher levels of PM10 and other 

compounds of the complex winter air pollution mixture. Model calculations have 

suggested that during periods of stagnant weather conditions in winter, even 

without predominantly easterly winds, guidelines and standards for a number of 

air pollution components could be exceeded within the largest cities in the 

Netherlands 1 4 . Model calculations also suggested that traffic bans in big cities 

during winter air pollution episodes would result in a considerable decrease in 

the concentration of suspended particulates and other traffic-related pollutants 

inside the biggest c i t ies 1 4 . The Dutch Health Council suggested that not much 

was known about the toxicity of locally produced air pollutants during periods of 

winter smog, and that an adequate evaluation of the health benefits potentially 

associated wi th traffic bans was not possible 1 8 . 

Since the start of the study in 1 9 9 2 , a large number of epidemiological studies 

have been published documenting effects of relatively low levels of PM10 on 

mortality, morbidity, respiratory symptoms and lung function. Those studies 

have been summarized in recent reviews 1 6 " 1 9 . They point clearly and consistently 

to adverse PM10 effects at low levels of exposure, and so far it has not been 

possible to establish a 'safe' PM10 concentration, below which no health effects 

occur. 
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Goals of the study: 

The goals of the study were to: 

- assess the exposure of city dwellers to winter air pollution as characterized by 

the concentrations of fine particulate matter and other components in air 

- document effects on health in selected population groups associated with this 

exposure 

- assess the contribution of traffic exhaust to exposure and health effects 

- identify subgroups of the population that are especially susceptible to the 

effects of winter air pollution 

Study design 

The study was designed as a panel study to detect health effects of short-term 

variations in air pollution concentrations. During three consecutive winters 

starting in 1 9 9 2 / 1 9 9 3 , subjects living in large urban areas in the Netherlands 

were followed for at least 3 months. Simultaneously, subjects living in non-

urban 'control' communities were studied to assess the contribution of traffic 

exhaust in the urban area. Children (7-11 yr) and older adults ( 5 0 - 7 0 yr) with 

and without chronic respiratory symptoms were selected from the general 

population wi th a screening questionnaire. All panel members were examined 

with skin prick test, determinations of total and specific serum IgE, and bronchial 

reactivity to metacholine. During the study periods which generally lasted three 

months, daily measurements of Peak Expiratory Flow (PEF) were made, and the 

occurrence of respiratory symptoms and medication use was registered in a 

diary. Air pollution was monitored daily on central sites in each community. 

The study was performed during three winters, because weather conditions vary 

from winter to winter, and previous experience has shown that one cannot rely 

on observations obtained in just one or t w o winters 2 0 . During the winter of 

1 9 9 3 / 1 9 9 4 , children wi th chronic respiratory symptoms were investigated in the 

framework of the multicenter Pollution Effects on Asthmatic Children in Europe 

(PEACE) s tudy 2 1 . 

As study areas were chosen: Rotterdam and Bodegraven/Reeuwijk in the winter 

of 1 9 9 2 / 1 9 9 3 , Amsterdam and Meppel in the winter of 1 9 9 3 / 1 9 9 4 and 

Amsterdam and Nunspeet in the winter of 1 9 9 4 / 1 9 9 5 . Rotterdam and 
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Amsterdam are the t w o largest cities in the Netherlands wi th approximately 

6 0 0 , 0 0 0 and 7 2 0 , 0 0 0 inhabitants, respectively. 

Because source areas are located to the east of the Netherlands, air pollution 

episodes in the Netherlands are generally associated wi th easterly winds. Thus, 

non-urban areas were selected to the east of the urban areas in order to limit 

transport of polluted air from the Dutch urban to the non-urban area during air 

pollution episodes. During the first winter, the non-urban area was selected close 

( ± 3 0 km) to the urban area. This was done to ensure comparable levels of 

exposure to air pollution transported over long distances. During the second and 

third winters, the non-urban areas were selected at a larger distance from the 

urban area in trying to maximize the contrast in air pollution, which was found to 

be small in the first winter. Small towns were selected instead of small villages, 

because a reasonable number of inhabitants ( ± 2 5 , 0 0 0 ) was necessary to find 

sufficient subjects that fulfilled the selection criteria. The term 'non-urban' area 

will be used throughout this thesis, despite the fact that the 'non-urban' areas 

were in fact small towns. 

Exposure to air pollution was characterized by the concentration of PM10, Black 

Smoke, NO2, SO2 and the major ions of fine particles (sulfate, nitrate, 

ammonium, H + ) in ambient air at fixed sites in each community. During the 

winter of 1 9 9 4 / 1 9 9 5 , PM2.6 was measured as wel l , because of the increased 

interest in health effects of smaller particles in recent years. In the urban areas, 

background sites were used to estimate exposure instead of sites that were 

more influenced by traffic, because background concentrations are more 

representative for exposure of city dwellers than concentrations that are heavily 

influenced by local sources. A series of separate studies was conducted to 

evaluate the association between ambient and personal particle concentrations 2 2 . 

In these studies, indoor particle concentrations were measured too in order to 

evaluate to what extent particles penetrate indoors, where people spend most of 

their t ime. 

Children between 7-11 years of age were selected because at that age, children 

are able to participate in all parts of the study, usually do not smoke and can 

easily be reached in large numbers through the primary school system. 

Moreover, children may be a sensitive subgroup of the population. Children 

generally spend more t ime outside and are more physically active than most 

adults and thus, inhaled pollutant doses will be comparatively larger. 

In addition, older adults between 5 0 - 7 0 years of age were studied. Most time-
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series studies investigating acute effects of air pollution on lung function and 

respiratory symptoms have focused on children. However, studies investigating 

effects of air pollution on mortality have suggested that the elderly are a 

susceptible subgroup 2 3 . To our knowledge, it has never been investigated if older 

adults are also sensitive to acute effects of air pollution on lung function and 

respiratory symptoms. An age range of 5 0 - 7 0 yr was selected because w e had 

doubts if older subjects would be able to complete a long study. 

Children and adults with and without chronic respiratory symptoms were 

selected. A number of studies have suggested that children wi th chronic 

respiratory symptoms are especially susceptible to the effects of PM10 9" 1 1. 

However, those children may modify their response through alterations in 

medication use, so that functional and/or symptomatic responses are repressed. 

In children without chronic respiratory symptoms this will not occur as these will 

not generally be under medication. Morover, comparing effects of air pollution in 

children wi th and without chronic respiratory symptoms simultaneously would 

enable use to investigate if children with chronic respiratory symptoms are 

indeed more susceptible. 

The f e w panel studies that investigated acute effects of air pollution on lung 

function and respiratory symptoms in adults have mainly investigated asthma 

patients 2 4 " 2 8 . It is not clear whether adults with mild chronic respiratory 

symptoms are also susceptible to acute effects of air pollution on these 

respiratory health indicators. The reason to study adults without chronic 

respiratory symptoms was the same as for children wi th chronic respiratory 

symptoms. 

At the beginning of the study period, all subjects were medically characterized 

with a metacholine challenge test in order to assess bronchial hyperreactivity 

(BHR). In addition, atopy was investigated wi th total serum IgE concentrations 

and skin prick tests for major inhalant allergens (house dust mite, cat, dog, 

birch, pollen and fungi). The purpose was to identify objective medical 

characteristics that were associated with the response to air pollution, in 

addition to the presence/absence of chronic respiratory symptoms. It has been 

suggested that exposure to ambient air pollution interacts wi th exposure to 

a l lergens 2 9 , 3 0 , which in turns suggests that atopic subjects may be more 

susceptible to the effects of air pollution. Subjects wi th BHR react to inhalation 

of exogenous stimuli (in this case, metacholine) wi th a significant decline in lung 

function due to acute constriction of the airways. This might indicate that those 
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subjects also react stronger to air pollutants. Therefore, it was evaluated 

whether the response to air pollution was different in subjects characterized not 

only by the presence/absence of chronic respiratory symptoms but also by the 

presence/absence of atopy and BHR. 

Structure of the thesis 

Chapter 2 describes the air pollution concentrations that were measured in the 

urban and non-urban areas. Chapter 3 presents the results of a separate study in 

9-11 yr old children, in which self-recorded PEF measurements were compared 

with supervised PEF measurements. Chapter 4 evaluates if the incidence of 

influenza and influenza-like-illness in the general population can be used to adjust 

for the potential confounding effect of respiratory infections in the analysis of 

panel studies. The chapters 5 and 6 describe the association between short term 

changes in air pollution and respiratory health indicators in children and adults, 

respectively. Chapter 7 evaluates if the response to air pollution was different in 

children characterized by not only the presence of chronic respiratory symptoms, 

but also by objective measurements of atopy and bronchial hyperresponsiveness. 

In chapter 8 , finally, the main results are discussed. 
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Abstract 

During the winters of 1 9 9 2 / 1 9 9 3 , 1 9 9 3 / 1 9 9 4 and 1 9 9 4 / 1 9 9 5 a monitoring study 

was performed in three urban and three non-urban areas in the Netherlands. 

PM10, Black Smoke (BS), sulfate, nitrate, ammonium (non-organic secondary 

aerosols, 'NOSA') and aerosol acidity were measured on a daily basis in both the 

urban and non-urban areas. During the third winter, PM2.5 was measured as well. 

The elemental composition of PM10 was analyzed for one third of the filters 

collected during the winter of 1 9 9 3 / 1 9 9 4 with Inductively Coupled Plasma (ICP). 

PM10 and BS concentrations were on average 1 3 % and 1 9 % higher in the urban 

area than in the non-urban area. NOSA concentrations were on average 8 % lower 

in the urban area. PM2.6 concentrations were similar in the urban and non-urban 

area. Higher elemental concentrations in PM10 were found in the urban area for all 

elements except Si. The contrast between elemental concentrations in PM10 was 

for most elements larger than for PM10 mass concentration. 

The small contrast in particle concentrations between urban and non-urban areas 

in the Netherlands is probably a result of the small size of the country, the high 

population density, the lack of small scale geographical and meteorological 

differences, and the importance of long range transport of air pollutants. 

Both the absolute concentrations of PM10, BS and NOSA and the urban-non-urban 

differences depended strongly on wind direction. Easterly winds resulting in an 

influx of air masses from Central and Eastern Europe were associated with high 

concentrations and minimal urban- non-urban differences. Winds from the sea 

resulted in low concentrations but larger relative differences between urban and 

non-urban areas. 
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Introduction 

In recent years, concern about particulate air pollution has increased. Particulate 

matter wi th a 5 0 % cut off diameter of 1 0 pm (PMio) has been associated in 

epidemiological studies with increased mortality, morbidity and decreased lung 

function 1" 3. Industrial activity and motorized traffic play an important role in the 

formation of particles, both direct and indirect through the formation of secondary 

aerosols 4. Thus, particle concentrations are expected to be higher in urban areas 

compared to non-urban areas. Recently, Hoek et al. 5 reported on wintertime 

concentrations of PM10 and Black Smoke in 14 urban and 14 non-urban locations 

in Europe. Measurements were conducted in the framework of a multicenter 

epidemiological study of Pollution Effects on Asthmatic Children in Europe 

(PEACE) during the winter of 1 9 9 3 / 1 9 9 4 . Differences in median PM10 and Black 

Smoke concentrations between urban and non-urban locations were relatively 

small (on average 2 2 % and 4 3 % ) . Daily PM10 concentrations from all Western and 

Central European locations were significantly correlated. This suggests that the 

formation and subsequent transport of secondary aerosols plays an important role 

in determining particle concentrations. However, no data on secondary aerosols or 

PM2.5 were available in the study described by Hoek et al. B. 

This paper describes a monitoring study of particulate air pollution that was 

performed in three urban and three non-urban areas in the Netherlands during the 

winters of 1 9 9 2 / 1 9 9 3 , 1 9 9 3 / 1 9 9 4 and 1 9 9 4 / 1 9 9 5 . The main purpose of the 

measurements was characterization of human exposures in the framework of an 

epidemiological study. This study was funded by the Dutch government and 

designed to compare acute health effects of episodes of wintertype smog on city 

dwellers and inhabitants of small towns. Part of the study ( 1 9 9 3 / 1 9 9 4 ) was 

performed in the framework of the PEACE study, but the characterization of 

particulate air pollution in the Netherlands was more extensive than was already 

reported by Hoek et al. B . In addition to measurements of PM10 and Black Smoke, 

daily measurements of non-organic secondary aerosols (sulfate, nitrate and 

ammonium) and aerosol acidity were conducted during three consecutive winters 

in both the urban and the non-urban areas. A subset of the PM10 filters measured 

in the winter of 1 9 9 3 / 1 9 9 4 was analyzed for elemental composition. These 

additional data allow a more detailed analysis of differences in PM10 mass 

concentration between urban and non-urban areas. 

PM2.5 was measured in the winter of 1 9 9 4 / 1 9 9 5 because of the increased interest 

in health effects of smaller particles in recent years. In the United States the new 

air quality standard for particulate matter includes PM2.6 limit values 6 . In the 
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European community, PM2.5 monitoring will become obligatory as well . So far, only 

a few studies 7 , 8 have reported on PM2.5 concentrations in Europe. 

The purpose of this paper is (1) to describe particle concentrations and differences 

between particle concentrations in urban and non-urban areas in the Netherlands 

and (2) to relate this to wind direction and episodic weather conditions in order to 

obtain (indirect) information on sources. 

Methods 

Study description 
Table 1 presents a description of locations and study periods. It also shows which 

compounds were measured and at what frequency. W e will use the term 'non-

urban' area throughout this paper, despite the fact that the 'non-urban' areas were 

in fact small towns. 

Table 1. Characteristics of sites of the particulate air pollution study in the Netherlands. 

Winter Location Type Site 
no. 

Inhabitants* Study Period Measured compounds 
and frequency 

92/93 Rotterdam urban 1 596,023 4/2/93-28/4/93 PM10, BS", NOSA* (daily) 

Bodegraven/ 
Reeuwijk 

non-urban 2 31,802 4/2/93-28/4/93 PMio, BS (daily); NOSA 
(3/week; starting 4/3/93) 

93/94 Amsterdam urban 3 719,856 13/11/93-28/2/94 PMio, BS, NOSA (daily); 
elements (1/3 days) 

Meppel non-urban 4 24,217 13/11/93-28/2/94 PMio, BS, NOSA (daily); 
elements (1/3 days) 

94/95 Amsterdam urban 3 719,856 16/11/94-8/3/95 PMio, PM2.5, BS, NOSA 
(daily) 

Nunspeet non-urban 5 25,716 16/11/94-8/3/95 PM10, BS, NOSA (daily); 
PM2.5 (3/week) 

* number of inhabitants on 1/1/93 
Black Smoke 

' NOSA =non organic secondary aerosols (sulfate, nitrate and ammonium) 

Figure 1 shows the locations of the sites. During the first winter, w e selected a 

non-urban area close ( ± 3 0 km) to the urban area. During the second and third 

winters, w e selected the non-urban areas at a larger distance from the urban area 

in trying to maximize the contrast in air pollution, which was found to be small in 

the first winter. Small towns were selected instead of small villages, because for 

the epidemiological purpose of the study, a reasonable number of inhabitants ( i 

2 5 , 0 0 0 ) was necessary. Due to meteorological and emission source distribution 
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2 5 , 0 0 0 ) was necessary. Due to meteorological and emission source distribution 

reasons, air pollution episodes in the Netherlands are generally associated with 

wind directions from south to east. Thus, non-urban areas were selected to the 

east of the urban areas in order to limit transport of polluted air from the urban to 

the non-urban areas during air pollution episodes. 

2 4 Hour measurements were made starting at 3 PM. The measurement sites in 

the urban areas were city background sites. In the Netherlands, an urban site is 

considered a background site if in a circle of 3 5 m around the site less than 2 , 7 5 0 

motor vehicles pass during 2 4 hours 9 . As it was felt that this distance criterion 

might not be strict enough, 1 0 0 m was considered as the distance criterion for 

this study. In addition, within 1 0 0 m of the site no other important emission 

sources should be present (construction work, small industry). 

Figure 1. Location of the measurement sites. 1 = Rotterdam (urban area 1992/1993), 
2 = Bodegraven/Reeuwijk (non-urban area 1992/1993), 3=Amsterdam 
(urban area 1993/1994 and 1994/1995), 4=Meppel (non-urban area 
1993/1994), 5=Nunspeet (non-urban area 1994/1995). 
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The measurement sites in the non-urban areas were also selected so that they 

were not influenced by local air pollution sources. 

Sampling height was approximately 1.5 m at all measurement sites, for all 

compounds, except for Black Smoke that was measured at 3 m. 

Sampling methods 
Measurements of PM10 were made with an instrument described by Liu and Pui 1 0 , 

equipped with an inlet similar to the Sierra Anderson 241 dichotomous sampler, 

using Schleicher & Schuell TE37 teflon filters (pore size 1 pm). The inlet was 

compared to the Sierra Andersen inlet in a series of 3 3 collocated 

measurements 1 1 . The estimated regression equation was 6 .0 + 0.90*Sierra-PMio 

(r = 0 .93 ) , where Sierra-PMio is the PM10 concentration measured with the Sierra 

Anderson sampler. 

PM2.5 measurements were made using a Harvard Impactor 1 2 . The impactor was 

operated at 10 l/min and manufactured by Air Diagnostics and Engineering Inc. 

Naple, Maine, USA. Andersen 3 7 mm teflon filters (pore size 2 yum) were used. 

Only three PM2.5 measurements per week were made in the non-urban area due to 

limited availability of the equipment. 

Both for the PM10 and the PM2.5 measurements, f lows were measured at the 

beginning and end of each 24-h sampling period with a calibrated rotameter. The 

exact sampling period was recorded on a timer with a precision of 1 minute. 

Before and after exposure filters were weighed on an analytical balance with a 

reading precision of 10 pg, after conditioning at 2 0 °C and 4 4 % relative humidity 

for 2 4 hours. After collection from the field, exposed filters were stored in a 

refrigerator at 4 °C before weighing to limit losses of volatile components 6 . 

Black Smoke sampling was performed using the method of the Organization for 

Economic Cooperation and Development 1 3 . The method involves collection of 

particles on a Whatman 1 paper filter using a low volume sampler. Sampling 

volumes were determined using calibrated dry gas meters. The reflectance was 

measured using an EEL 4 3 reflectometer. During the first and second winters, the 

reflectance was set to 1 0 0 using a stack of five blank Whatman 1 filters. Next, 

the reflectance was measured on the same stack of five blank filters. During the 

third winter, the reflectance was measured according to the OECD protocol in 

which the reflectance of a filter is measured directly on top of a white tile, after 

setting the reflectometer to 1 0 0 with one blank Whatman 1 filter. The reflectance 

measured during the first two winters was transformed into reflectances 

measured according to the OECD protocol as described by Hoek et a/.™. The 

reflectance of exposed filters was transformed into /yg/cm 2 using an equation 
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describing the Standard Smoke curve 1 6 . 

Sampling of nitrate, sulfate, ammonium and aerosol acidity was performed with an 

annular denuder filter pack system (ADS). The impactor was designed to remove 

particles with a 5 0 % cut off diameter of 2.1 pm at a f low rate of 1 0 l /min 1 8 . At 

the beginning and end of each 24-h sampling period the inlet f low was measured 

with a calibrated rotameter. The sampling method and the extraction of the filters 

for the determination of sulfate, nitrate and ammonium is described in detail by 

Hoek et a / . 1 7 . Ammonium concentration was determined using a modified 

indophenol method according to NEN 6 4 7 2 1 9 and measured spectrophometrically. 

Sulfate and nitrate were determined by ion chromatography (Dionex DC-100) . H + 

was determined by direct pH measurement using the procedures of Koutrakis et 

a/ . 1 8 . 

Information about the ambient concentrations of sulfur dioxide (SO2) and nitrogen 

dioxide (NO2) were obtained from the nearest measurement sites of the National 

Air Quality Monitoring Network 9 . Data from city background stations in Rotterdam 

and Amsterdam were used for the urban areas. Data for the non-urban areas were 

obtained from Zegveld, Witteveen and Lelystad, located approximately 1 0 , 4 0 and 

3 0 km away from the non-urban areas in the three consecutive winters. SO2 and 

NO2 were measured by continuous monitors based on fluorescence and 

chemiluminescence respectively 9. 

The elemental composition of PM10 was determined for one third of the filters 

during the winter of 1 9 9 3 / 1 9 9 4 . W e were not able to analyze all filters for 

budgetary reasons. The filters were selected so that every third day was analyzed, 

and that the same days were analyzed for the urban and the non-urban area. 

Analyses with ICP (Inductively Coupled Plasma) were conducted by the 

Department of Soil Science and Plant Nutrition of Wageningen University. 

The PM10 filters were extracted with a strong (4.5 N HF + 1 N HCI) acid solution, 

providing total element concentrations. However, this "hard extraction" was 

preceded by a weak extraction (1 :100 dilution of the strong acid solution). With 

the "weak" extraction, only easily soluble ("teachable") elements are extracted. 

This was thought to be a better indicator of the biologically available fraction than 

the total element concentration. Therefore w e have focussed on the "leachable" 

concentrations. Detailed information on the extraction method, and the 

subsequent analysis and calculation of the elemental composition is described by 

Janssen et a/ . 7 . The following 7 elements were analyzed: V , Na, Si, K, Fe, Mn 

and Cu. These elements were selected because they can be considered as tracers 

for specific sources. 
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Meteorology 
Meteorological data for the urban areas were obtained from Rotterdam and 

Amsterdam Airports, respectively. Data for the non-urban areas were obtained 

from Zegveld, Eelde and Lelystad, located approximately 10 , 5 0 and 3 0 km away 

from the non-urban areas in the three consecutive winters. Data were measured in 

1-hour intervals and transformed into 24-h mean values (wind velocity) or 24-h 

minimum values (temperature), from 3 pm to 3 pm. For wind direction, 24-h mean 

wind direction was calculated. If necessary, hourly wind directions were 

transformed (wd = w d + 3 6 0 ° or w d = wd-360° ) to avoid problems in calculating 

the mean of directions ranging from 0° to 3 6 0 ° . Next, w e calculated how many 

hours the wind came from a direction of less than 4 5 ° from the mean wind 

direction. If this was the case during more than 12 hours, the daily mean wind 

direction was classified as: ENE (30-90° ) , ESE (90 -150° ) , S (150 -210° ) , W S W 

(210 -270° ) , W N W (270-330° ) and N (330-30° ) . If not, the wind direction was 

classified as 'Variable'. 

Data analysis 
Since most concentrations were not normally distributed, median concentrations 

are presented instead of mean concentrations. In addition to the maximum 

concentration the 90- th percentile is presented, as a more stable characterization 

of typical high values. To allow direct comparison between the urban and the non-

urban area studied during one winter, only days with valid observations in both 

locations have been included. The ratio between urban and non-urban 

concentration was calculated for each day. Next, the median ratio was calculated. 

In order to assess the statistical significance of the percentage difference between 

urban and non-urban concentrations, w e tested whether the ratios were 

significantly different from unity using Wilcoxon's signed rank test (after 

substracting 1 from the ratios). The sum of the sulfate, nitrate and ammonium 

concentration was calculated and reported as non-organic secondary aerosol 

CNOSA"). 

The concentrations measured during the three winters were combined in order to 

calculate overall concentrations and median ratios between urban and non-urban 

concentrations. Spearman rank correlation coefficients were calculated to describe 

the relationship between concentrations measured in the urban and in the non-

urban area. 

In order to obtain information about the sources of particulate air pollution, median 

concentrations were calculated for different wind directions. Also, the differences 

in concentrations between urban and non-urban areas were investigated by 
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calculating the median ratios for the various wind directions. To allow direct 

comparison only days with the same wind direction in the urban and non-urban 

area were included. The concentrations measured during the three winters were 

combined in order to obtain more data. For PM10, BS and the gaseous precursor 

pollutants SO2 and NO2 enough days of observation were available to calculate 

median concentrations for all 7 wind directions described in the meteorology 

section. For NOSA, for which fewer days of measurements were available, the 

wind directions north and west-north-west, and east-north-east and east-south

east were combined in order to obtain enough days of observation. 

For the elements, with concentrations available for only 3 3 days, south and west-

south-west were combined as well. Thus w e only have information on the 

combined wind directions 'ENE + ESE* and 'S + W S W . 
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Results 

Data quality 
During each winter, between 5 and 15 field blanks and field duplicates were taken 

for PM10, Black Smoke, and ADS compounds. For PM2.5, which was only 

measured during the third winter, 19 field blanks and 13 field duplicates were 

taken. 

Table 2. Detection limits and precision of particle and elemental measurements. 

DL" (//g/rn3) n" RSD* n" 

PM10 12.0 34 8.7 32 
PM2.5 7.7 19 9.7 13 
Black Smoke 1.2 41 7.9 34 
Sulfate 0.07 34 8.6 25 
Nitrate 0.11 34 10.3 24 
Ammonium 0.08 34 6.1 25 
H + 1 0.10 10 - -

Weak extraction DL" (ng/m3 n" RSD* n" 

V 1.6 6 10.9 3 
Na 15.0 6 5.0 3 
Si 21.9 6 30.2 3 
K 29.4 6 9.3 3 
Mn 1.4 6 25.0 3 
Fe 17.8 6 14.3 3 
Cu 2.6 6 26.0 3 
Strong extraction DL* (ng/m3) n" RSD* n" 

V 0.5 6 12.9 3 
Na 8.5 6 6.7 3 
Si 75.7 6 34.1 3 
K 20.0 6 12.0 3 
Mn 1.3 6 24.9 3 
Fe 28.3 6 26.8 2 
Cu 0.7 6 25.6 3 

detection limit, calculated as three times the standard deviation of field blanks. 
number of field blanks or field duplicates taken during the three winters 

f relative standard deviation (coefficient of variation) calculated as the mean percentage 
difference between duplicate samples divided by the square root of 2 

* expressed as H2SO4 
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Detection limits and repeatability, expressed as coefficient of variation (CV) are 

presented in table 2 . Detection limits of "leachable" and total elements are shown 

as well . Detection limits were derived from the study reported by Janssen et al.* 

who used exactly the same method and PMio samplers to analyze PM10 filters that 

had been sampled for 8 hours. Thus, the detection limits reported by Janssen et 

al.* were divided by three. For more information regarding the quality control of 

the ICP analyses w e refer to Janssen et al*. 

The ion balance between cations and anions on the teflon filters was calculated to 

determine the reliability of the sulfate, nitrate, ammonium and FT measurements. 

If the ion balance was below 0 .5 or above 2 . 0 , sulfate, nitrate, ammonium and H + 

data were excluded. However, this criterion was only applied when NOSA 

concentrations were sufficiently high. The rationale for this was that at low NOSA 

concentrations, other ions may be more important. W e arbitrarily determined 

'sufficiently high' as > 3 pg/m3 for sulfate and > 2 pglxv? for nitrate and 

ammonium. No lower limit was set for H + since this contributes little to the ion 

balance. The ion balance criterion resulted in the exclusion of a small percentage 

( < 3 % ) of the data. The median ion balance calculated over the three winters was 

0 . 9 1 . 

Particle concentrations 
Table 3 gives a summary of the concentrations measured during the three winters 

in urban and non-urban areas. It shows that the PM10 concentration was 

respectively 1 7 % , 4 % and 2 0 % higher in the urban area than in the non-urban 

area during the three consecutive winters. The percentage difference in Black 

Smoke concentration was 3 7 % , 1 2 % and 1 1 % . When the three winters were 

combined, the percentage differences were 1 3 % and 1 9 % for PMio and Black 

Smoke, respectively. 

The median concentrations of sulfate, nitrate and ammonium during the second 

and third winter were slightly lower in the urban area than in the non-urban area. 

During the first winter, only 18 days with valid NOSA concentrations for both 

areas were available. Calculated over the three winters, respectively 7 % , 8 % and 

1 0 % lower sulfate, nitrate and ammonium concentrations were measured in the 

urban area than in the non-urban area. 



Table 3. Air pollution concentrations (24 h average) during the three winters In urban 
and non-urban areasfconcentrations in pg/m3) and median of the daily ratio 
between concentration in urban and non-urban areas 

Urban, 92/93 Non-urban, 92/93 Ratio CuTban/CnOTt-urban 

N Median 90-p Max Median 90-p Max Median' 

PM10 74 47 90 143 36 79 104 1 . 1 7 " 

Black Smoke 72 15 29 56 1 0 28 38 1 . 3 7 " 

SO2 98 23 45 152 9 2 1 43 2 . 3 1 " 

NO2 9 3 52 79 94 33 60 83 .2 1 . 5 5 " 

sulfate 18 7 .0 13 .2 13.3 5.7 1 0 . 7 1 2 . 5 1.17" 

nitrate 18 6 .0 13 .2 17 .0 6.8 13.2 14.5 1.05 

ammonium 18 3.8 6.3 7.1 3.8 5.9 6 .2 1 . 1 1 

NOSA 18 16.7 30.8 35.7 16.4 28.4 29.7 1.13 

H + t 17 0 .14 0 .42 0.53 0 .05 0 .24 0 .34 .8 

Urban, 93/94 Non-urban, 93/94 RatlO Curban/Cnon-urban 

PM10 99 36 87 123 33 1 0 0 242 1.04 ' 

Black Smoke 105 1 2 32 65 1 0 36 58 1 . 1 2 " 

SO2 118 1 0 25 34 5 23 42 1 . 8 0 " 

NO2 117 47 61 76 24.1 4 6 . 2 54 1 . 8 2 " 

sulfate 76 2 . 6 1 2 . 1 23.6 2 . 8 14.2 2 2 . 8 0 . 8 9 " 

nitrate 76 2 . 2 1 0 . 8 23.9 2 . 9 1 2 . 0 24.1 0 . 8 4 " 

ammonium 5 3 1.4 6.4 8.6 1.7 6.8 8.9 0 . 8 4 " 

NOSA 53 5.8 26.1 48.5 7.2 30 .2 52.8 0 . 8 4 " 

H- 76 0 .07 0 .47 1.72 0 .07 0 .63 1.68 -

Urban, 94/95 Non-urban, 94/95 Ratio Curban/Cram-urban 

PMio 1 1 1 29 51 90 24 44 97 1 . 2 0 " 

PM2.5 44 14 38 58 15 34 68 1 . 0 1 

Black Smoke 1 0 1 6.9 19.4 36.1 5.8 2 2 4 3 1 . 1 1 " 

SO2 1 1 2 6.1 14.8 24.4 3.7 7.3 17.0 1 . 7 3 " 

NO2 1 1 1 45 65 82 2 1 41 5 7 2 . 0 6 " 

sulfate 81 1.6 5.5 9.5 1.9 5.6 17.7 0.93" 

nitrate 78 1.4 5.0 13.5 1.9 5.6 15.1 0 .94 

ammonium 78 1 . 1 3.5 7.4 1.3 3.7 6.6 0 . 8 8 " 

NOSA 78 4.6 13.7 30.4 5.2 14.4 3 9 0.93* 

H + 81 0 0 .23 1 . 2 2 0 . 0 2 0 . 2 0 0 .63 -

' median of the daily ratios Cmban/Cnanabm is not always equivalent to the ratio of the median 
concentrations 

' expressed as H2SO4 
1 no median ratio Cun,m/Cm«n^an was calculated due to the large number of very low concentrations 

significantly different from 1, p<0.05 (Wilcoxon signed rank test) 
significantly different from 1,p<0.01 (Wilcoxon signed rank test) 
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PM2.5 concentrations were only measured during the third winter and were similar 

in urban and non-urban area. The H + concentrations were very low during the 

three winters. Only a f e w concentrations were above the detection limit and 

therefore, H + concentrations were not used in further analyses. SO2 and NO2, 

which are important precursor pollutants for particles, were found at 

concentrations of approximately a factor t w o higher in the urban areas than in the 

non-urban areas. 

Table 4 gives a summary of the "leachable" and total element concentrations in 

one third of the PM10 samples measured during the winter of 1 9 9 3 / 1 9 9 4 . The 

concentrations of all elements except Si were higher in the urban area than in the 

non-urban area. 

Table 4. "Leachable " and total element concentrations (24 h average) in PM10 
samples from urban and non-urban areas measured In the winter of 
1993/1994 (concentrations in ng m3) 

Urban Non-urban Ratio Curban/Cnon-urban 

Leachable N Median 90-p Max Median 90-p Max Median* 

V 33 7.9 15.5 26.3 6.3 17.0 38.8 1.26" 

Na 33 322 1502 5718 227 946 1553 1.41" 

Si 33 196 583 2041 306 620 4480 0.85 

K 33 252 499 805 201 537 659 1.11 

Mn 33 14 39 94 12 31 74 1.35" 

Fe 33 207 627 893 163 451 1911 1.26" 

Cu 33 19 51 120 24 57 188 1.23 

Total Urban Non-urban Ratio Curban/Cnon-urban 

V 33 7.9 16.8 27.3 5.9 17.8 39.7 1.23" 

Na 33 325 1497 5709 269 943 1548 1 .41" 

Si 33 1560 3039 7504 1735 3868 15773 0.92 

K 33 241 572 882 208 592 1254 1.10 

Mn 33 15 41 98 11 31 82 1.36" 

Fe 9 352 1186 1186 397 815 815 1.07 

Cu 33 21 86 193 27 67 209 1.29 

median of the daily ratios Cuibm/Cnowrtum is not always equivalent to the ratio of the median 
concentrations 
significantly different from 1, P<0.0S (Wilcoxon signed rank test) 
significantly different from 1, P<0.01 (Wilcoxon signed rank test) 
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The differences in ("leachable") Si, K and Cu concentrations between urban and 

non-urban area were not statistically significant. The V , Na, Mn and Fe 

concentrations were significantly higher in the urban area than in the non-urban 

area. The percentage differences between urban and non-urban areas in elemental 

concentrations were consistently larger than for PM10 mass. Except for Si and Fe 

the weak extraction resulted in a near 1 0 0 % extraction of all elements. 

Table 5 presents the Spearman correlation coefficients for the particle, gaseous 

and elemental concentrations measured in the urban and the non-urban areas. The 

correlation between PM10, PM2.6, BS and NOSA concentrations measured in the 

urban and the non-urban areas was higher than 0 .7 for all winters. For the 

gaseous pollutants SO2 and NO2, the correlations were higher than 0 . 6 , except for 

SO2 in the third winter (R = 0 .31 ) . SO2 levels were extremely low during this 

winter. The correlation between all elements was higher than 0.5 except for Cu 

(R = 0 .19 ) . 

Table 5. Spearman correlations between air pollution concentrations measured in 
urban and non-urban area 

92/93 93 /94 94/95 

PM10 0.80 0.92 0.75 

PM2.6 - - 0.88 

Black Smoke 0.90 0.94 0.85 

SO2 0.76 0.73 0.31 

NO2 0.83 0.65 0.65 

Sulfate 0.82 0.94 0.91 

Nitrate 0.90 0.93 0.86 

Ammonium 0.82 0.95 0.92 

NOSA 0.83 0.94 0.91 

V - 0.71 -
Na - 0.90 -
Si - 0.55 -
K - 0.68 -

Mn - 0.61 -
Fe - 0.85 -

Cu - 0.19 -
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Wind direction and particle concentrations 
Table 6 shows that three to fivefold higher PM10 and BS concentrations were 

measured With ENE and ESE winds, compared to winds from the N and W N W . 

This was the case for both the urban and the non-urban area. The percentage 

differences between urban and non-urban area were greatest with N and W N W 

winds and least (and non-significant) with ENE winds. The NO2 concentration in 

the urban area was relatively constant for the various wind directions. In the non-

urban area the highest NO2 concentrations were associated with ESE and S winds. 

The difference in SO2 concentration between urban and non-urban area was 

greatest with W N W winds and least with ENE winds. 

Table 6. Median concentrations of PM10, Black Smoke, SO2 and NO2 (in pg/m3) in 
urban and non-urban area, by wind direction 

N 

Urban Non-urban Median ratio Curban/Cnon-urban* 

N PM10 BS SO2 NO2 PM10 BS SO2 NO2 PM10 BS SO2 NO2 

WNW 19 28 6.7 10.9 44 22 4.5 3.6 13 1.26" 1.55" 2.43"" 3.25" 

N 9 23 7.9 4.3 44 19 4.0 2.0 14 1.42 1.70" 1.33" 2.30" 

ENE 14 62 18.5 9.9 47 66 18.4 11.3 23 1.04 1.00 1.24 1.93" 

ESE 27 55 23.1 13.6 52 51 21.9 9.3 33 1.12" 1.20" 1.71" 1.45" 

S 42 39 12.0 12.1 52 30 10.1 5.7 34 1.10" 1.18" 2.12" 1.48" 

WSW 74 29 6.4 7.4 41 25 5.4 5.0 20 1.13" 1.15" 1.61*" 2.04" 

VAR 21 37 14.9 11.9 56 34 11.5 5.6 33 1.09 1.10" 2.29" 1 .71" 

' median of the daily ratios CwtwJCn<m-wb»n is not always equivalent to the ratio of the median 
concentrations 
significantly different from 1, P<0.05 (Wilcoxon signed rank test) 
significantly different from 1, P<0.01 (Wilcoxon signed rank test! 

Table 7 shows that the NOSA concentrations were very low when the wind came 

from the sea (N and W N W , W S W ) . By far the highest concentrations were found 

with easterly winds. This was the case for both the urban and the non-urban area. 

When the wind was from W S W , NOSA concentrations in the urban area were 

significantly lower than in the non-urban area. For the other wind directions, no 

significant differences in NOSA concentrations were found. 

Table 8 shows that for all elements except sodium higher concentrations were 

measured on days with easterly winds compared to days with S and W S W winds, 

both in the urban and the non-urban area. The difference is twofold or more for all 



Table 7. Median concentrations of non-organic secondary aerosols (in fjg/m3)in urban and non-urban area, by wind direction 

N 

Urban Non-urban Median ratio Curban/G ion-urban* 

N Sulfate Nitrate Ammonium NOSA Sulfate Nitrate Ammonium NOSA Sulfate Nitrate Ammonium NOSA 

N + WNW 17 1.01 0.74 0.37 1.97 1.07 0.83 0.45 2.51 1.17* 1.08 1.14 1.18 

ENE + ESE 29 6.57 7.17 3.66 16.23 6.97 6.70 3.99 16.86 0.92 0.93 0.97 0.92 

S 25 2.76 3.07 1.94 8.01 3.10 3.36 2.31 9.20 1.01 0.90 1.06 0.97 

WSW 57 1.33 1.16 0.69 3.12 1.67 1.70 1.05 4.27 0.88" 0.79" 0 . 8 1 " 0.82" 

VAR 13 3.46 1.43 2.18 8.21 2.75 3.38 2.81 11.27 1.05 1.02 0.93 0.87 

median of the daily ratios Curtan/Cmn-unm is not always equivalent to the ratio of the median concentrations 
significantly different from 1, p<0.05 (Wilcoxon signed rank test) 
significantly different from 1, p<0.01 (Wilcoxon signed rank test) 

Table 8. Median concentrations of elements (in ng/m3) in urban and non-urban area, by wind direction 

Urban Non-urban Median ratio Curban/Cnon-urban* 

N V Na Si K Mn Fe Cu V Na Si K Mn Fe Cu V Na Si K Mn Fe Cu 

ENE + ESE 9 9.8 133 564 429 20 404 32 9.0 131 594 479 17 366 29 0.88 1.02 0.88 0.94 1.29 1.06 0.98 

S + WSW 15 8.6 742 123 222 9 157 17 6.2 329 234 171 6 79 13 1.47" 1.60" 0.64 1.16" 1.70" 1 .51" 1.38* 

median of the daily ratios Curbm/Cnoimibm is not always equivalent to the ratio of the median concentrations 
significantly different from 1, p<0.05 (Wilcoxon signed rank test) 
significantly different from 1, p<0.01 (Wilcoxon signed rank test) 
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elements, except Vanadium. No statistically significant differences in elemental 

concentrations between urban and non-urban area were found when the wind was 

from the east. When the wind was from S and W S W , significantly higher 

concentrations were found in the urban area for all elements except Si. 

Air pollution episodes 
During the three winters, four episodes occurred with elevated particle 

concentrations. An episode was arbitrarily defined as a period of at least three 

days with a PM10 concentration higher than 7 0 pg/m3 in either the urban or the 

non-urban area. The end of an episode was defined if the concentration was 

below 7 0 pg/m3 on t w o consecutive days. 

Figure 2 shows a plot of the PM10 and sulfate concentration in the urban and non-

urban area during the four episodes, and during the period before and after the 

episodes. The last episode occurred at the very end of the study period, so that 

concentrations for only two days could be plotted after the episode. 

The first episode ( 1 1 / 2 / 9 3 - 1 6 / 2 / 9 3 ) was characterized by winds from east to 

south-east, a low wind speed (2-3 m/s), minimum temperatures around 0 °C, and 

high barometric pressure ( 1 0 3 7 mbar). Mean PM10 concentration was 1 2 2 ; / g / m 3 

in the urban area and 8 6 pg/m3 in the non-urban area (figure 2 ) . W e started the 

NOSA measurements on March 4 , 1 9 9 3 so w e do not have information on sulfate 

concentrations during the first episode. 

During the second episode ( 1 0 / 3 / 9 3 - 1 6 / 3 / 9 3 ) meteorological conditions were 

different; wind was from the south, barometric pressure was not higher than 

average ( 1 0 2 0 mbar), temperatures were relatively high (around 6 °C), wind speed 

was on average 3 m/s. The episode was preceded by t w o days with easterly 

winds. Mean PM10 concentration during the episode was 8 2 pgim3 in the urban 

area and 6 2 pg/m3 in the non-urban area. Mean sulfate concentration was 10 

pg/m3 in the urban area and 7 pg/m3 in the non-urban area. 

During the third episode ( 2 2 / 1 1 / 9 3 - 2 / 1 2 / 9 3 ) barometric pressure varied between 

1 0 0 9 and 1 0 3 3 mbar, temperature was low (around -5 °C), and winds were from 

south to east in the urban area but predominantly from the east in the non-urban 

area. Wind speed was , on average, lower in the non-urban area (3 .2 m/s) than in 

the urban area (4 .7 m/s). Thus, slightly different meteorological conditions were 

observed in the urban and non-urban area. Not only PM10 but also sulfate 

concentrations were substantially elevated. Both PM10 and sulfate concentrations 

were slightly lower in the urban area than in the non-urban area (mean 

concentration 8 4 resp. 13 pg/m3 in the urban area vs 8 7 resp. 15 pg/m3 in the 

non-urban area). 
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The fourth episode was from 1 8 / 2 / 9 4 untill 2 6 / 2 / 9 4 . A week before the start of 

this episode, temperature dropped (-5 °C), wind was from the east and wind 

speed was high in both the urban and the non-urban area. This resulted in a dust 

storm on 1 4 / 2 and 1 5 / 2 in the non-urban area. This dust storm was reported in 

the local newspapers and caused by strong winds blowing dust from the dry, bare 

agricultural soils. 

Figure 2. Daily PMw and sulfate concentration before, during and after the four air 

pollution episodes 
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On 1 5 / 2 / 9 4 , this resulted in a PM10 concentration of 2 4 2 pg/m3, the highest 

measured during the study period. Sulfate concentration, however, was very low 

(1.7 pg/m3) on this day. PMio concentrations in the urban area were not elevated 

on 1 4 / 2 and 1 5 / 2 despite the even higher wind velocity. After 1 5 / 2 , wind speed 

decreased and reached mean velocities of around 2 m/s in the non-urban area and 

around 4 m/s in the urban area. The direction was still from the east in both areas 

and temperatures remained low (-8 °C in the urban area, -5 °C in the non-urban 

area). Barometric pressure was not elevated. PMio and sulfate concentration 

during this episode were higher in the non-urban area (103 pg/m3 resp. 18 pg/m3) 

than in the urban area (89 pg/m3 resp. 15 pg/m3). During the winter of 

1 9 9 4 / 1 9 9 5 , no air pollution episodes occurred as a result of mild meteorological 

conditions. There were f e w days with easterly winds, compared to the other t w o 

winters. 

Discussion 

Particle concentrations 
The PMio and Black Smoke concentrations measured during the winter of 

1 9 9 3 / 1 9 9 4 have already been discussed and compared to concentrations in other 

European countries by Hoek et a/ . 6 . Since the concentrations measured during the 

three winters were not very different from the concentrations measured during the 

winter of 1 9 9 3 / 1 9 9 4 , w e refer to this paper 5. PM2.5 concentration was on average 

5 5 % of the PM10 concentration. This is very similar to the value of 0 . 6 0 

suggested by Dockery and Pope 1 as a typical North-American PM2.5/PM10 ratio. 

Concentrations of aerosol acidity were very low during the three winters. Median 

concentration was below 0.1 pg/m3 and the maximum concentration was only 1.7 

pg/m3. In previous studies in the Netherlands 1 7 and other European countr ies 2 0 , 2 1 

low levels of aerosol acidity were reported as well . This contrasts with the much 

higher levels that are found in the North-Eastern part of the United States and 

Canada 2 2 . 

Median sulfate, nitrate arid ammonium concentrations measured in the urban areas 

during the three winters were 2 .4 , 1.9 and 1.4 pg/m3, respectively. For the non-

urban areas, this was about 1 0 % higher. During the first winter two- to threefold 

higher NOSA concentrations were found than during the second and the third 

winter. In a previous monitoring study in the Netherlands, performed during the 

period 1 9 8 7 - 1 9 9 0 at 8 sites, Hoek et a/.u reported median sulfate, nitrate and 

ammonium concentrations in the range of 4 -8 pg/m3, 4 -6 pg/m3 and 3-4 pg/m3, 

respectively. No substantial differences were observed between winter and 
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summertime concentrations in this study 1 7 . Brauer et al.21 reported on NOSA 

concentrations measured between December 1 9 9 0 - June 1 9 9 2 in t w o cities in 

Germany (former GDR) and the Czech Republic. During winter mean sulfate 

concentration was 8 pg/m3 in both cities; mean nitrate concentration was 4 pg/m3 

in both cities and mean ammonium concentration was in the range of 4-5 pg/m3. 

No separate winter and summertime concentrations were reported for nitrate and 

ammonium 2 1 . 

The balance between the determined cations and anions was close to unity during 

the three winters, which suggests that the low median NOSA concentrations in 

the second and third winter were not a result of analytical errors. Although the ion 

balance was only calculated for days with sufficiently high NOSA concentrations 

( > 3 pg/m3 for sulfate, > 2 pg/m3 for ammonium and nitrate), those days 

occurred at the beginning and at the end of the study period and thus it is not 

likely that analytical errors occurred during the other days. The low NOSA 

concentrations during the second and third winter are probably also not a result of 

lower emissions of precursor pollutants in Central and Eastern Europe. The large 

concentration difference between the first and the second/third winter and the 

high sulfate and nitrate concentrations observed during episodes in the second 

winter argue against this interpretation. In addition, Central European NO2 

emissions have probably increased in the past decade due to increased motorized 

vehicle use. This is inconsistent with the lower nitrate concentrations compared to 

the study reported by Hoek et al.17. The percentage of days with westerly winds, 

associated with low particle concentrations was 5 0 % , 4 5 % and 6 0 % during the 

three consecutive winters. Thus, the higher NOSA concentrations during the first 

winter can also not be explained by a lower percentage of days with westerly 

winds. W e have no other explanations^ for the fact that during the first winter, two 

to threefold higher NOSA concentrations were measured than during the second 

and third winter. 

W e reported both "teachable" and total elemental concentration of one third of the 

PM10 filters collected during the winter of 1 9 9 3 / 1 9 9 4 . For all elements except Si 

and Fe the major part ( > 8 0 % ) was teachable ( 1 5 % for Si , 5 0 % for Fe). Similar 

percentages were reported by Janssen et al.1. The low percentage of Si that was 

leached with the "weak extraction" is consistent with the notion that Si is part of 

the matrix of resuspended soil particles and thus not easily soluble. The high 

percentages for V and Na were expected on the basis of the surface concentration 

of V and the high solubility of sea salt respectively. M n , K, Cu and Fe 

concentrations are affected by multiple sources, including soil dust. The high 

leachibility compared to Si suggests that either other sources than soil dust are 
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more important or that these elements are less fixed in the matrix of soil particles. 

The first explanation is supported by the fact that higher M n , K, Cu and Fe were 

found in the urban area than in the non-urban area. 

Leachable and total elemental concentrations in PM10 were in the same range as 

reported by Janssen et a/.7. For most elements, total concentrations were lower 

than measured in PM10 at several rural/(sub)urban sites in North Amer ica 2 3 , 2 4 . 

Differences in particle concentrations between urban and non-urban area 
PM10 concentrations were on average 1 3 % higher in the urban areas than in the 

corresponding non-urban areas. Hoek et al.s found on average 2 2 % higher 

concentrations in the urban areas than in the non-urban areas in 14 European 

study locations. Since 1 9 9 3 the Dutch Air Quality Monitoring Network has been 

routinely measuring PM10 at 19 urban and rural sites, spread over the country. 

Small differences < < 2 0 % ) in annual mean PM10 concentration were observed in 

1 9 9 3 and 1 9 9 4 between the North-Eastern part of the Netherlands (lowest 

concentrations) and the more urbanized and industrial southern and western 

part 2 5 . This small contrast is in line with the results of our study. The small size of 

the country ( 2 0 0 x 3 0 0 km), and the absence of mountains are factors that might 

explain the lack of contrast. Consequently, there are no physical barriers or small 

scale meteorological differences that result in different particle concentrations. In 

Switzerland (about the same size as the Netherlands) annual mean PM10 

concentration, measured at a dozen urban, rural and alpine sites ranged between 

3 3 pglm2 (urban) and 10 pglm3 (alpine) 2 6 . In the European study reported by Hoek 

et a/ . 5 , twofold urban- non-urban differences were found for locations with 

mountain ranges between urban and non-urban area, such as Athens (Greece) and 

Teplice (Czech Republic). 

Black Smoke levels were on average 1 9 % higher in the urban area than in the 

non-urban area. In the European study a mean difference of 4 3 % was found 5 . 

Black Smoke concentrations can be used as an estimate for the concentrations of 

elemental carbon ( E C ) 2 7 , 2 8 . Chow et al.29 reported a fourfold difference in EC 

concentration between three urban and three rural areas in San Joaquin Valley, 

California. 

W e had expected to find a larger contrast between urban and non-urban areas, 

because EC is a primary pollutant from motorized traffic (diesel soot) 4 , and traffic 

intensity is higher in the urban areas than in the non-urban areas. The Dutch Air 

Quality Monitoring Network reported twofold higher annual mean Black Smoke 

concentrations in the urbanized Western part of the Netherlands compared to the 

rural North-Eastern part, over the years 1 9 9 3 and 1 9 9 4 3 0 . Due to the 
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epidemiological purpose of our study, w e selected the non-urban areas south of 

this 'cleanest' part, where population density is higher. In addition, our non-urban 

areas were in fact small small towns, with around 2 5 , 0 0 0 inhabitants and thus a 

higher traffic intensity than in rural areas. This possibly resulted in a smaller 

contrast in Black Smoke concentration between the urban and non-urban areas. 

The concentration of sulfate, nitrate and ammonium was on average respectively 

7 % , 8 % and 1 0 % lower in the urban areas than in the non-urban areas. The fact 

that higher NOSA concentrations were observed in the non-urban area contrasts 

with the the fact that the precursor pollutants SO2 and NO2 were found in twofold 

higher concentrations in the urban area. This is consistent with the slow formation 

process of secondary aerosols. During winter conditions in Europe, the 

transformation of gaseous precursor pollutants to secondary aerosols is mainly 

through aqeous phase oxidation. This process is slower than the photochemical 

gas phase oxidation, which is the predominant formation mechanism during 

summer 2 1 , 3 1 - 3 2 . For example, aqueous phase SO2 oxidation rate is 0 . 2 % - 1 % hr"1 

depending on the amount of catalyzation by transition metals on the surface of 

aerosols 3 1. Given this slow oxidation rate and the relative short distance between 

urban and non-urban areas it is not likely that large concentration gradients occur. 

In the study reported by Hoek et a/.", around 1 0 % higher sulfate levels were 

found in an urban location than in a non-urban location. Nitrate and ammonium 

concentrations were similar in the urban and non-urban location. In general, 

NOSA-levels showed small and non-significant differences between sites 1 7 . Suh et 

a/ . 3 3 studied the spatial variation of sulfate measured at 7 sites within the 

metropolitan area of Philadelphia and one 'background' site 3 0 km upwind from 

the city, during the summers of 1 9 9 2 and 1 9 9 3 . Concentrations were uniform 

across all sites including the background location. 

The concentrations of all elements except Si were higher in the urban area 

compared to the non-urban area. Significantly higher concentrations of Na, M n , V 

and Fe were found in the urban area than in the non-urban area. For Na, a tracer 

for marine aerosol 3 4 this is due to the closer proximity of the urban area to the 

sea. Fe is a tracer for both soil dust and heavy industry 3 4 . The 2 6 % higher Fe 

concentration in the urban area is probably a result of its location in the more 

industrialized western part of the country, given the fact that the Si concentration 

is higher in the non-urban area. The same is probably true for V , a tracer for oil 

combustion 3 4 and M n , which is a tracer for several sources including soil dust, 

industry and traff ic 3 6 . In general the differences in element concentration between 

urban and non-urban location were modest, but larger than the differences in PM10 

mass concentration. 
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Wind direction and particle concentrations 
A limitation of this part of the study was that w e used local wind direction data 

only. Back trajectories were not available. This may have resulted in some 

misclassification of days, as local wind direction will not always represent the 

origin of the air mass. 

On days with easterly winds, PMio and Black Smoke concentrations were 2-4 fold 

higher than on days with wind from the sea, both in the urban and the non-urban 

area. The relative difference in PM10 and BS concentration between urban and 

non-urban area was greatest when the wind was north and west-north-west. This 

is caused by the low supply of long range air pollution, and therefore local air 

pollution sources were more important on a relative scale. When circulation was 

from the east, which was usually the case during air pollution episodes, there was 

(almost) no difference between PMio and Black Smoke concentrations in urban 

and non-urban area. This is consistent with long range transport being the most 

important source of air pollution in these conditions. 

The lowest levels of sulfate, nitrate and ammonium were found when relatively 

clean air was coming in from the sea (WSW, N and W N W winds). Six to ten-fold 

higher concentrations were found with easterly winds, caused by the relatively 

high emissions of gaseous precursor pollutants in Central and Eastern Europe and 

the fact that the air was transported over a large continental area providing 

enough time for oxidation. 

The slightly higher NOSA concentrations in the non-urban area were limited to 

days with west-south-westerly winds, especially for nitrate and ammonium ( 2 1 % 

and 1 9 % higher concentrations in the non-urban area, respectively). With west-

south-westerly winds air is transported from the urban to the non-urban area. 

Thus, the difference might be a result of the formation of ammonium nitrate from 

NO2 and NH3, emitted in the urban and surrounding agricultural areas, during its 

transport to the non-urban areas. 

The dataset with elemental concentrations was small which limits the conclusions 

that can be drawn when relating those concentrations to wind direction. However, 

w e found that the highest concentrations of all elements except Na were found 

with easterly winds. This was true for both the urban and the non-urban area, 

suggesting that long distance transport is an important factor in determining 

element concentrations. For the marine aerosol related element Na, concentrations 

were threefold lower with easterly winds compared to days with wind from the 

sea. 
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Air pollution episodes 

On non-episode days, median PM10 concentration in the urban area was 1 5 % 

higher than in the non-urban area. Median sulfate concentration was 7 % lower in 

the urban area compared to the non-urban area. The situation during episode-days 

depended on the type of episode. 

The first episode (11 -16 Feb 1993 ) with stagnant weather conditions resulted in a 

4 2 % higher PM10 concentration in the urban area, compared to the non-urban 

area. This is probably due to the fact that more local sources of particulate air 

pollution were present in the urban area. W e did not have information on sulfate 

concentrations during this episode. The second episode, with southerly winds and 

a relatively high temperature, resulted in a 3 2 % higher PM10 concentration in the 

urban area compared to the non-urban area. Sulfate concentration was 4 3 % 

higher in the urban area. The third and fourth episodes were characterized as 

transport episodes. They both resulted in higher PM10 concentrations in the non-

urban area than in the urban area. Also, the increase in sulfate concentration was 

larger in the non-urban area. This indicates that long distance transport plays an 

important role in determining particle concentrations and that due to its location, 

the non-urban area was affected more by German and Central/Eastern European 

sources. 

In conclusion, urban wintertime PM10 and BS concentrations were only slightly 

higher than simultaneously measured concentrations in non-urban areas. 

Concentrations of sulfate, nitrate and ammonium were slightly lower in the urban 

area. Concentrations of leachable V , Na, Mn and Fe in PM10 samples were 

increased in the urban area. The increase was larger than observed for particle 

mass. Both the absolute concentrations and the urban-non-urban difference 

depended strongly on wind direction. Easterly winds resulting in an influx of air 

masses from Central and Eastern Europe were associated with high concentrations 

and minimal urban-non-urban differences. Winds from the sea resulted in low 

concentrations but larger relative differences between urban and non-urban areas. 
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Abstract 

In the framework of a panel study on acute effects of air pollution, Peak Expiratory 

Flow (PEF) was measured with different methods during a four months study 

period in a panel of 65 Dutch school children, age 9-11 yr. Every week, PEF was 

measured at school with spirometry and with a Mini Wright meter under 

supervision. In addition, children monitored their own PEF at home with a Mini 

Wright meter in the morning and in the evening. 

The aim of this study was to compare within- and between-measurement 

variability between supervised (spirometry, Mini Wright) and unsupervised (Mini 

Wright) PEF measurements. For this purpose, all three measurements that each 

maneuver consisted of were used. 

W e found that, as anticipated, the amount of measurement error was larger in 

unsupervised than in supervised PEF readings, but the differences were not great. 

W e concluded that the larger amount of measurement error is far outweighed by 

the advantages of self-recorded measurements in terms of ease, cost and amount 

of data obtainable. 
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Introduction 

Panel studies investigating acute effects of ambient air pollution on respiratory 

health follow subjects over t ime, so that individuals serve as their own controls. 

This reduces variability in the outcome variables (e.g. lung function) since 

between-individual variability does not play a role. However, data from longitudinal 

studies are still affected by intra-individual variability in the outcome variable. 

Sources of intra-individual variability in pulmonary function can be classified as 

either biologic variation or measurement error 1. 

The contribution of ambient air pollution levels to the biologic variation in 

pulmonary function is usually small. Group mean decrements associated with 

elevated concentration levels are generally in the order of 1 or 2 percent 2 , 3 . Other, 

possibly more important, sources of biologic variation include time of day or year, 

host characteristics (such as increased airway responsiveness) and other 

environmental exposures such as allergen exposure or respiratory infections 4. 

Given the fact that generally, air pollution contributes only to a small part of total 

variability in pulmonary function, it is often hard to detect statistically significant 

effects of air pollution. The power to detect statistically significant effects 

increases with decreasing measurement error in the measurement of the outcome 

variable, and with an increasing number of observations. 

Different instruments, including spirometers and Mini Wright Peak Flow meters 

have been used in longitudinal air pollution studies to measure Peak Expiratory 

Flow (PEF). Mini Wright meters can be used for self-monitoring at home, or for 

measurement of PEF under supervision. Self-monitoring of PEF has great 

advantages in terms of cost, ease and amount of data obtainable. However, a 

number of recent studies have raised concern about the reliability of self-recorded 

PEF measurements 5" 8. In this study, the amount of measurement error in 

supervised (spirometry, Mini Wright) and unsupervised (Mini Wright) PEF 

measurements was compared. 

In the framework of a study on acute effects of air pollution, w e measured PEF 

with spirometry and a Mini Wright meter weekly at school, in a panel of 9-11 yr 

old school schildren, during a study period of four months. In addition, the children 

monitored their own PEF at home twice a day with a Mini Wright meter. Each PEF 

measurement consisted of three maneuvers that were used to assess the 

contribution of measurement error. This study design enabled us to compare 

unsupervised and supervised PEF measurements within subjects, performed on the 
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same days but with differences in measurement device and measurement t ime. 

Methods 

Study population 

The measurements were performed in the framework of a study on acute effects 

of air pollution on childrens respiratory health that w e conducted in the South 

West of the Netherlands. 9 5 children of grades 6 and 7 of t w o selected primary 

schools participated in the study. In these grades, the children are generally 

between 9 and 11 years old. The children were not selected on the basis of 

whether or not they had chronic respiratory symptoms. The study was conducted 

from January 15 to May 14 , 1 9 9 6 . 

Self recorded Peak Flow measurements 

During the study period. Peak Flow was measured with a Mini Wright Peak Flow 

meter (Clement Clarke) in the homes of the children. The childrens parents had 

been instructed on the use of the Mini Wright meter during an information evening 

at school. Parents who could not attend this instruction evening were instructed 

at home. The children were instructed on the first test day at school. PEF was 

measured twice a day, in the morning before breakfast and in the evening before 

going to bed. Children were instructed to perform the PEF measurements before 

any medication was taken. Every test consisted of three maneuvers and 

participants were asked to note all three readings in a diary. 

Spirometry 

Pulmonary function tests (spirometry) were performed each week at school. All 

tests were performed between 8 :30 am and 3 :00 pm, but most tests were perfor

med before noon. Each child was tested about the same time of the day on each 

occasion. Measurements were performed on Mondays in one school and on 

Tuesdays in the other school. Because of school holidays, no measurements could 

be performed during one week in February and during one week in May. The 

maximum number of spirometric tests performed during the study period was 16. 

Spirometry was performed according to the protocol of the ECCS 9 . A more 

detailed description of the protocol has been published before 1 0 . A rolling-seal dry 

spirometer (Vicatest 5) coupled with automatic data acquisition software has been 

used, T w o spirometric devices were used. In total, four technicians have 
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performed lung function tests, but the majority ( 75%) of the measurements was 

performed by t w o technicians. In order to avoid possible differences between 

devices or technicians, children were measured on the same device each week 

and, if possible, by the same technician. 

Peak Flow values obtained from spirometry were transformed to BTPS, using the 

air temperature of the test room. More details can be found elsewhere 1 0 . 

Supervised Mini Wright measurements 

Directly (5 -10 minutes) preceding spirometry, an additional Peak Flow measure

ment was made using a Mini Wright Peak Flow meter (Clement Clarke). This 

measurement was performed under supervision of a technician, who recorded the 

readings of three different maneuvers. The purpose of these additional PEF 

measurements was to compare them to the PEF values measured with spirometry, 

and to the self-recorded Mini Wright PEF-measurements. The same Mini Wright 

meter was used for all children, during the full study period. The same technician 

supervised and recorded the Mini Wright PEF measurements each week. They 

were performed in a class room next to the room where spirometric testing was 

conducted. 

Quality control 

Every t w o weeks, the children were asked to take their diaries with them to 

school. They were inspected by the technician who supervised the PEF-measu

rements at school, and irregularities (i.e. a great number of missing values, strange 

PEF-values) were discussed with the children. In addition, the supervised PEF-

measurements enabled us each week to inspect if the children were able to 

perform technically acceptable PEF-measurements. 

At the end of the study period, all Mini Wright meters were disassembled and 

cleaned in the laboratory. When Mini Wright meters were found to be dirty, for 

example containing food particles that might obstruct the spring mechanism, the 

data collected wi th that meter were not used in the analysis. Data from children 

who had received a new Mini Wright meter during the study period (because the 

old meter was lost or broken) were excluded as well . 
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Data analysis 

For the four PEF variables, the maximum of the three measurements that each 

maneuver consisted of was used in further analyses, unless stated otherwise. 

Diary information about self-recorded PEF was only used for those days when 

spirometry at school was performed. For each child separate plots of self-recorded 

morning and evening PEF were made to check for implausible values. Those were 

arbitrarily defined as: the highest PEF-value is more than 8 0 l/min higher than the 

second highest PEF-value. These values were made missing. The first t w o 

spirometric tests were excluded from the analysis. The rationale for this was to 

allow the children to get used to the procedure. The majority (91 %) of spirometric 

tests and supervised Mini Wright PEF-measurements were performed before noon. 

Tests performed after noon were excluded from the analysis, to reduce the time 

span during which the measurements at school were performed. 

To allow optimal comparison between the four PEF representations, only days 

with four non-missing PEF values were used in the analysis. For each child the 

number of days with four valid PEF values during the study period was calculated. 

Children with less than eight days with four valid PEF values were exluded from 

the analysis. 

To evaluate the time trend in PEF during the study period, the population mean 

deviation in PEF was calculated. This was done by first calculating individual mean 

deviations by substracting the childs mean PEF from each individual PEF value. 

Next, the mean of the individual mean deviations was calculated for each day of 

study. The mean PEF measured in the panel during the whole study period was 

added to these deviations. This gives a mean population PEF for each week of 

measurement, taking into account that the composition of the panel may vary 

from week to week. 

The variation in Peak Flow within subjects was investigated for the four Peak Flow 

variables separately. For this purpose, the variation in Peak Flow within subjects 

was divided into 'within-measurement' and 'between-measurement' variation. The 

variation within-measurements can be used to obtain an estimate of measurement 

error, using the three repeated measurements that each maneuver consisted of. 

One way to describe the within-measurement variation was by calculating the 

Coefficient of Variation within measurements (CVwithin). For each subject and each 

day of measurement, a CV was calculated as the standard deviation of the three 

repeated measurements divided by the mean of the three repeated measurements. 

Next, for each subject the median of those CV's during the study period was 



46 Chapter 3 

calculated and reported as CVwftwn. 

One w a y to describe the between-measurement-variation is by calculating the 

Coefficient of Variation between measurements (CVbetween). CVbetween was calculated 

for each subject as the standard deviation divided by the mean value of all 

measurements, using the maximum of the three repeated PEF measurements. The 

maximum was used because this is general practice when analyzing PEF data 1 1 

and thus enabled us to compare the variation coefficients to values reported in the 

literature. 

CVbetwean was calculated both for the original PEF-values and for PEF-values that 

were adjusted on an individual basis for a linear time trend (CVbetween, defended). This 

was done because part of the 'between-measurement' variation is due to the 

increase of PEF with t ime, and w e wanted to exclude this source of variation from 

some of our analyses. 

Another w a y to describe the between- and within measurement variation is by 

calculating the within- and between measurements variance on an individual basis 

with analysis of variance (ANOVA) . The unit of these variance components is 

(l/min) 2. A N O V A uses the mean of the three repeated PEF-measurements in 

calculating the between measurements variance so in this respect, it differs from 

CVbetween which is based on the maximum of the three values. The contribution of 

'measurement error' to the total variation can be estimated by calculating the 

between/within variance ratio F. The variance ratio F was calculated for the 

original and the detrended PEF-values (Fdetrended). 

Wilcoxon's signed rank test was used to test the differences in C V ' s , variances, 

and variance ratios, since the data were not normally distributed. For C V the mean 

was reported in addition to the median because the mean is usually reported in the 

literature. 

Results 

Analyses were based on data from 6 5 of the 9 5 subjects. Data were excluded 

from 6 subjects that had received a new Mini Wright meter during the study 

period; 7 from subjects whose Mini Wright meter was classified as 'dirty' at the 

end of the study period, and 17 who had valid information for all PEF variables on 

less than eight days of observation. 

Plots of mean population PEF versus week of study (after exclusion of the first 2 

weeks) are shown in figure 1 . There was an increase of around 1 0 % in the PEF-
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variables that were measured under supervision (PEFspiro and PEFMWSUD) during the 

study period. The increase in the self-recorded PEF-variables (PEFMwmo and PEFMWOT) 

was smaller (about 5 % ) . The trend in the four PEF-variables could be described 

sufficiently with a linear trend term. 

325 ^ — I — I — I — I — I — I — i — I — I — I — I — I I I 
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week of study 

Figure 1. Group mean Peak Flow versus week of study, for the four Peak Flow variables 
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Characteristics of the study population and the Peak Flow measurements are 

presented in table 1 . There was little difference in the mean value of PEF 

measured in various ways. Self-recorded Mini Wright PEF was slightly higher in 

the evening than in the morning, as one would expect from circadian variation 

alone (table 1 ) . 

Table 1. Characteristics of the study population and Peak Flow measurements 

# Children 6 5 

# Girls 4 1 ( 6 3 % ) 

Age* 1 0 . 1 ( 9 - 1 2 ) 

# Days/child 1 0 . 8 ( 8 - 1 4 ) 

Recent w h e e z e " 8 ( 1 2 . 5 % ) 

Recent asthma a t tacks" 5 ( 7 . 8 % ) 

Medication use* 7 ( 1 0 . 9 % ) 

PEFspiro* 3 4 5 ( 2 2 0 - 5 0 9 ) 

PEFMWSUP 3 4 6 ( 2 3 5 - 5 1 4 ) 

PEFMWmo 3 3 9 ( 2 2 2 - 5 1 2 ) 

PEFMWSV 3 4 4 ( 2 2 6 - 5 1 2 ) 

Time PEFspiro8 1 0 : 1 0 ( 8 : 5 9 - 1 1 : 1 9 ) 

Time PEFMWSUP 1 0 : 0 3 ( 8 : 5 5 - 1 1 : 1 2 ) 

Time PEFMWmo 7 : 3 8 ( 6 : 3 6 - 8 : 0 9 ) 

Time PEFMWSV 2 0 : 0 7 ( 1 7 : 2 9 - 2 1 : 1 8 ) 

at the beginning of the study period 

in last 12 months (data available for 64 children) 
f current use of airway medication (data available for 64 children) 

* Peak Flow in l/min; mean, minimum and maximum of individual children during the study period (using 

the maximum of the three repeated measurements) 
1 Mean time at which the measurements were performed; mean, minimum and maximum of individual 

children during the study period 
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CVbotween was lower for supervised Mini Wright PEF than for spirometric PEF and 

self-recorded Mini Wright PEF in the morning. The differences were small, but 

significant for both the original and the detrended values. CVbetween for supervised 

Mini Wright PEF did not differ from CVbotween for self-recorded Mini Wright PEF in 

the evening. CVwunin was slightly, but significantly lower for supervised than for 

self-recorded Mini Wright PEF and spirometric PEF (table 2) 

Table 2. Coefficient of variation (%) within- and between measurements; mean and 

range of the individual children 

CVbetween CVbetween, detrended CVwithin* 

Mean Median Range Mean Median Range Mean Median Range 

PEFapIro 6.5 5.8* 3.2-19.7 5.2 4.8* 2.3-17.8 3.1 3.0* 1.6-8.1 

PEFMWSUP 5.3 4.8 8 1.8-12.7 4.2 4.1» 1.5-8.5 2.7 2.5' 0.8-8.0 

PEFMWmo 6.4 5.7* 1.3-17.3 5.3 4.8* 1.2-15.1 3.5 3.2* 0.9-9.6 

PEFMWOV 5.7 5.2 1.5-16.1 4.7 4.2 1.2-14.8 3.4 2.9* 0.6-8.7 

Coefficient of Variation between measurement days, calculated as the standard deviation divided by the 
mean of PEF during the study period, using the maximum of the 3 repeated measurements. Significance 
levels are not reported 

as ", using Peak Flow values that were individually detrended 
' Coefficient of Variation within measurements, calculated for each subject as the median of the CV-

within's for each day of measurement (calculated as the standard deviation divided by the mean for the 
three repeated measurements! 

t sign, different (p<0.01l from PEFm/w (Wilcoxon Signed Hank test) 
1 sign, different (p<0.01) from PEFspim and PEFmimo 
' sign, different fp<0.01) from PEFwim, PEFmimo andPEFiuwev 

Table 3 shows that there were no significant differences in the between-

measurements variance for the four PEF variables, as calculated with ANOVA. 

However, the within-measurement variance was larger for self-recorded PEF 

(PEFMWmo and PEFwiwev) than for supervised PEF (PEFspiro and PEFMWSUP). Also, the 

contribution of within-measurement variation to the total variation was larger for 

self-recorded PEF than for supervised PEF, as indicated by the significantly smaller 

value of F for self-recorded PEF (table 3 ) . 



Table 3. Between- and within-measurement variance, and between/within variance ratio F calculated with ANOVA. 

MSMbetween* MSMbetween, detrended* MSEwithin 8 F 1 Fdetrended' 

Median Range Median Range Median Range Median Range Median Range 

PEFspiro 962 241-8555 6 6 2 75-7494 119* 51-1206 9.0 0.9-27 5.7* 0.9-20 

PEFMWsup 837 175-5673 597 85-4904 113* 20-639 8.6 1.1-52 4.7* 1.0-47 

PEFMWroo 721 71-8823 5 8 4 22-4179 1 8 8 " 28-2883 5.1 0.3-108 3 . 3 " 0.3-108 

PEFMWev 759 71-4307 545 69-3316 1 7 0 " 16-4113 3.6 0 .6-258 2 . 4 " 0.2-203 

' Between-measurements variance component (l/min)2, calculated with ANOVA using the original PEF-values. 
* as using PEF-values that were individually detrended 
1 WHhin-measurements variance component (l/minj2, calculated with ANOVA. 

' Between-within measurements variance ratio F for the individual children. Significance levels are not reported 

"as', using PEF-values that were individually detrended. 

sign, different (p<0.011 from PEFuwmc and PEFMWSY IWilcoxon Signed Rank test] 

sign, different (p<0.01) from PEFspm> and PEFMWW IWilcoxon Signed Rank test) 
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Discussion 

In this study, w e investigated the within- and between-measurement variation of 

supervised and unsupervised PEF measurements. It was shown that within-

measurement variation in PEF was larger for self-recorded Mini Wright 

measurements than for supervised Mini Wright measurements. The differences 

were small, but statistically significant. No consistent differences were observed in 

between-measurement variation. There was a tendency of more within- and 

between measurement variation in spirometric PEF than in supervised Mini Wright 

PEF. However, the difference was only significant when the variation was 

expressed as CV, and not when expressed as variance components derived from 

ANOVA. 

Within- and between measurement variation were expressed as variance 

components derived from A N O V A , ans as CVwithin and CVbetween. The latter was 

done in order to be able to compare the variation to values reported in the 

literature. 

Compared to supervised PEF measurements, self-recorded PEF measurements 

have great advantages in terms of cost, ease and amount fo data obtainable. 

Recently, however, a number of studies comparing self-recorded and 

electronically stored PEF measurements have raised concern about the reliability 

of self-recorded PEF measurements. They reported that errors were made in 

reading and transcribing the PEF values and that a substantial number of the 

values were invented 5" 8 . T w o studies 5 , 6 investigated adult subjects for 

occupational asthma and found that written values corresponded precisely to 

electronically stored values in only approximately 5 0 % of the cases. Verschelden 

et a/.1 compared self-recorded to electronically stored PEF values in 2 0 

asthmatic adults who were asked to asses PEF twice daily during a three month 

period, and reported that 2 2 % of the values were invented. Redline et a/ . 8 

reported that in a panel of asthmatic children in the US, the number of invented 

PEF values increased over t ime during a three weeks study period and was 3 7 % 

in the third week of study. This population differed from our study population 

with respect to socio-economic status, since the children resided in areas with 

4 0 % or more of the population living at or below poverty level. 

W e did not store PEF values electronically and thus, w e can not directly test the 

reliability of unsupervised PEF measurements. However, the design of the study 

enabled us to compare unsupervised with supervised PEF measurements, 



52 Chapter 3 

performed on the same day. The within-measurement variation, and the ratio of 

the within- and between measurement variation were used as indirect estimates of 

the quality of unsupervised PEF measurements. 

Within-measurement variation in PEF may result from measurement error and from 

true, biological variation. Biological variation within a test session can occur in 

subjects with Maneuver Induced Bronchospasm (MIB), which is defined as a 

monotonic decline in recorded PEF within a test session 1 2 , 1 3 . Enright ef a / . 4 found 

evidence for MIB in only 4 . 4 % of tests performed by asthmatics and 3 . 3 % of 

tests performed by healthy subjects. Thus, it is not likely that MIB contributed 

much to the within-test variation. Therefore, w e assumed that the role of 

biological variation was limited and that the within-measurement variation was 

indicative for the amount of measurement error. 

Measurement error can arise from a number of factors 4 including instrumental 

characteristics; sub-optimal technical performance of the subject caused by lack of 

cooperation or comprehension; errors in the algorithm formulas used to obtain 

PEF-values from volume-time curves (spirometry); errors in reading precision or 

transcribing of the data (Mini Wright meters). 

In the analysis of variance, the between/within variability ratio F was significantly 

larger for unsupervised than for supervised PEF measurements. The (detrended) 

median values of 3 .2 and 2 . 4 for morning and evening PEF indicate that 

measurement error contributes respectively 2 4 % and 2 9 % to the total intra-

individual variability in PEF. For spirometric PEF and supervised Mini Wright PEF 

these percentages were 1 5 % and 1 7 % , respectively. Although the contribution of 

measurement error to the total variability was significantly larger in unsupervised 

than in supervised PEF measurements, the differences were not great. This was 

especially true when measurement error was expressed as CVwftNn. Median CVwuhin 

was 3 . 2 % and 2 . 9 % for unsupervised morning and evening PEF respectively, 

2 . 5 % for supervised Mini Wright PEF and 3 . 0 % for spirometric PEF. 

A limitation of our study is that the amount of 'measurement-error' was calculated 

using the three repeated measurements that each maneuver consisted of. Howe

ver, when analyzing PEF data in relation to air pollution, generally the highest of 

three repeated measurements is used 1 1 . Since it was not possible to calculate the 

measurement error for the highest value, the measurement error for the mean was 

used as a proxy for the amount of error in the highest value. The crucial 

underlying assumption was that measurement error for the mean and maximum 

of three PEF values are correlated. Although, unfortunately, w e were not able to 
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test this assumption, it seems likely that factors that can lead to errors in the 

measurement of the mean value (such as reading precision and transcription) can 

also lead to errors in the measurement of the highest value. Probably, 

measurement error affects the maximum value even more than the mean value, 

because in the mean value the error can be averaged out. 

The supervised and self-recorded Mini Wright measurements differed not only with 

respect to supervision, but also with respect to measurement time and the Mini 

Wright meter used. However, it does not seem likely that these factors were 

responsible for the observed differences in within-measurement variability. No 

significant differences in within-measurement variability were found between self-

recorded morning and evening PEF, and this does not indicate that measurement 

time was an important factor. 

In our population of children, the absolute value of spirometric PEF agreed closely 

with the absolute value of Mini Wright PEF, in contrast to reports in the literature 

that Mini Wright PEF is usually overestimating volume based spirometric PEF 1 6 , 1 8 . 

Strong increases of PEF with time were observed for all four PEF variables. The 

increase was approximately 1 0 % for supervised PEF readings and 5 % for 

unsupervised PEF readings, significantly more than is expected on the basis of 

lung growth alone". This may be the result of substantial physiological training of 

(the control over) respiratory muscles, since the children performed unsupervised 

PEF measurements at home twice daily during four months. In a previous study 

performed at our department 1 8 in 7-11 yr old children using spirometry, it was also 

found that PEF increased substantially more than expected from normal lung 

growth only during a three months study period. 

The absolute values of CVbetween for the various PEF-variables were comparable to 

values reported in the literature. CVbetween for spirometric PEF (mean 6 .5%) was in 

the same range as reported for other Dutch school chi ldren 1 0 , 1 9 . CVbetween for 

supervised Mini Wright measurements (5 .3%) was well comparable to the value 

of 5 . 2 % reported in another Dutch study where Mini Wright PEF was measured 

under supervision in exercising healthy children 2 0 . CVbetween for self-recorded 

morning-PEF in our study was on average 6 . 4 % . This was in the lower range of 

values documented for children with chronic respiratory symptoms in 13 panels 

from 10 European countries 2 1 . Our study population consisted of healthy school 

children, which is probably the reason for the lower CVbetween observed in our 

study. CVbetween for self-recorded evening PEF was also lower in our panel (5 .7%) 

than in a panel of Dutch children with chronic respiratory symptoms ( 8 . 5 % ) 2 2 . 
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There is less literature concerning within-test session reproducibility of PEF. 

Timonen et a / . 2 3 calculated a mean CVwitwn of 6 . 7 % for spirometric PEF, measured 

in 7 -12 yr old children who performed spirometry on four days. This value is 

substantially higher than the 3.1 % found in our study but this might partly reflect 

the smaller number of tests (n = 4 ) , and the fact that the mean of the CVwraiin's for 

the four test days was calculated while in our study the median of the, on 

average, 11 test days was calculated. 

In two other s tud ies 1 4 , 2 4 the within-session reproducibility was expressed as the 

value below which the difference between two measurements will lie with 

probability 9 5 % . This value was 4 0 l/min in a panel of healthy subjects and 

patients wi th lung disease 1 4 and 3 0 l/min in a study with trained children and 

adults, 1 7 % of which had asthma 2 4 . In both studies PEF was measured with Mini 

Wright meters, recorded by the subjects without supervision. Provided the Peak 

Flow values are from a normal distribution, this is estimated by 1 . 9 6 * V 2 * s d 2 6 

which would, in our study, result in values of 2 8 l/min (morning PEF) and 2 7 l/min 

(evening PEF) so that our values compare favorably with those quoted from the 

literature. To our knowledge, no literature is available reporting the within-test 

session reproducibility of supervised Mini Wright measurements. 

Errors in the measurement of the outcome variable increase the standard error of 

the air pollution coefficients, but, when random, do not lead to biased effect 

estimates. W e have shown that the amount of error in the measurement of self-

recorded PEF was larger than for supervised PEF, but that the differences were 

not great. W e conclude that in this population of Dutch school children, the 

slightly larger amount of measurement error in the self-recorded Peak Flows is far 

outweighed by the advantages of self-recorded measurements in terms of ease, 

cost and amount of data obtainable. 
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Abstract 

The association between the incidence of influenza and influenza-like-illness (ILI) 

in the general population, and respiratory health in selected panels was 

investigated during three consecutive winters starting in 1 9 9 2 / 1 9 9 3 . Eight 

panels of subjects were investigated each winter using a daily diary: children (7-

11 yr) and adults ( 5 0 - 7 0 yr) wi th and without chronic respiratory symptoms, 

living in urban and non-urban areas in the Netherlands. The incidence of ILI in the 

general population was registered by the Dutch network of General Practitioner 

(GP) sentinel stations. The ILI incidence was low (median 0 . 1 % / w e e k , maximum 

1 .2%/week) . Nevertheless, a higher ILI incidence was associated wi th a lower 

level of Peak Expiratory Flow (PEF), and increased reporting of respiratory 

symptoms and bronchodilator use in all groups of panels. The combined effect 

estimates calculated for the three winters indicated that for an influenza 

epidemic reaching peak ILI incidences of 1 2 2 cases /10 ,000 subjects, a 

decrement in PEF of up to 6 % was found, and an increase in symptom reporting 

and bronchodilator use by factors of up to 2 .9 and 4 . 5 , respectively. This 

implies that in panel studies on acute effects of air pollution, the ILI incidence 

might be used to adjust for the potential confounding effect of acute respiratory 

infections. 
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Introduction 

Panel studies follow groups of selected subjects for a certain period of t ime with 

regular observations of respiratory health status, and have been used frequently 

in air pollution epidemiology 1" 3. Changes that occur in respiratory health can also 

be of interest wi th respect to asthma management or occupational exposure. 

Viral airway infections are an important determinant of respiratory health status. 

Virus induced upper respiratory tract infections are the most common triggers of 

acute asthma symptoms in children and induce bronchial hyperresponsiveness 

during and following the infections 4 , 5 . Also in adults there is a correlation 

between asthma severity and concomitant upper respiratory tract infections 6 , 7 . 

In most panel studies, respiratory infections are not the primary variable of 

interest, but given their effect on respiratory health, the need exists to 

adequately control for respiratory infections in the populations studied. Objective 

data on respiratory infections are not easily obtained in panel studies. For this 

reason, w e investigated whether a surrogate variable, the incidence of influenza 

and influenza-like-illness (ILI), registered by the Dutch network of General 

Practitioner (GP) sentinel stations, was associated wi th indicators of respiratory 

health status (Peak Expiratory Flow (PEF), respiratory symptoms, bronchodilator 

use) in panels of children and adults wi th and without chronic respiratory 

symptoms. 

The incidence of ILI is being monitored by the sentinel stations to obtain 

information on influenza virus activity. However, in practice it is not always 

possible to distinguish between influenza and other respiratory viruses such as 

rhino-, respiratory syncitial (RS)-, adeno-, corona-, entero- and parainfluenza 

viruses, as was evident from virological surveillance of respiratory specimens of 

patients diagnosed wi th ILI by the sentinel stations 8" 1 0 . Thus, w e hypothesize 

that the incidence of ILI might be a surrogate variable not only for influenza virus 

activity but for other respiratory virus activity as wel l . 

Data were collected in the framework of a large study investigating the 

association between winter air pollution and respiratory health in panels, 

selected from different urban and non-urban areas in the Netherlands. 
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Materials and methods 

Study design 
The study was carried out during three consecutive winters starting in 

1 9 9 2 / 1 9 9 3 . During each winter, panels of children (7-11 yr) and adults ( 5 0 - 7 0 

yr) with and without chronic respiratory symptoms were selected from an urban 

and a non-urban area, based on a screening questionnaire. Different subjects 

were studied each winter. During the three months study periods daily 

measurements of PEF were made, and the occurrence of acute respiratory 

symptoms and bronchodilator use was registered in a daily diary. As study areas 

were chosen: Rotterdam and Bodegraven/Reeuwijk ( 1 9 9 2 / 1 9 9 3 ) , Amsterdam 

and Meppel ( 1 9 9 3 / 1 9 9 4 ) and Amsterdam and Nunspeet ( 1 9 9 4 / 1 9 9 5 ) . Figure 1 

in chapter 2 of this thesis shows the locations of the areas. Air pollution was 

monitored daily on central sites in each community. A total of 2 2 panels were 

studied during the three winters. A detailed description of the study design and 

the population selection will be described in a separate paper 1 1 . 

Health measurements 
During the study period, participants performed PEF measurements twice daily 

using Mini Wright peak f low meters, once in the morning before breakfast and 

once in the evening before going to bed. Subjects were instructed to perform the 

PEF measurements before any medication was taken. Every test consisted of 

three maneuvers and participants were asked to note all three readings in a 

diary. The highest of the three PEF readings was used for analysis. 

The diary was also used to register the occurrence of acute respiratory 

symptoms and medication use. Symptoms included in the diary were cough, 

phlegm, runny/stuffed nose, woken up with breathing problems, shortness of 

breath, wheeze, attack(s) of shortness of breath wi th wheeze and fever. 

Influenza surveillance 

Data on influenza morbidity were obtained from the Dutch Institute of Primary 

Health Care (NIVEL). This institute operates a registration network of 4 6 sentinel 

general practices (GP), covering about 1 % of the Dutch population. The sentinel 

stations are spread over the country in proportion to population density. The 

number of new patients wi th influenza or influenza-like illness (ILI), and the 

distribution of the patients over 19 different age-groups, is registered by the 
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GP's every week from Monday to Friday. Diagnoses made or advice given by 

telephone are entered in the weekly return form as well . 

ILI must satisfy the three following criteria: 

1 . an acute beginning, i.e. a prodromal stage of no more than three to four days 

2 . the infection must be accompanied by a rise in rectal temperature to at least 

3 8 °C 

3 . at least one of the following symptoms must be present: cough, coryza, sore 

throat, frontal headache, retrosternal pain and myalgia 

Incidences were calculated according to age group per 1 0 , 0 0 0 of the practice 

population per week . They were reported separately for the northern, eastern, 

southern and western part of the country and for three different degrees of 

urbanization 1 2 : 

1 . rural municipalities 2 . urbanized rural municipalities combined wi th 

municipalities wi th urban characteristics and 3 . urban municipalities with a 

population of 1 0 0 , 0 0 0 or more. Due to the relatively small number of sentinel 

General Practices in the country, no combinations of regions and degree of 

urbanization could be made. 

Data analysis 
Influenza data 

For the urban areas, incidences for the highest degree of urbanization were used. 

For the non-urban areas, incidences were used for the appropiate regions. Age-

specific incidences were used for the age-groups 5-9 yr and 1 0 - 1 4 yr (children), 

and the age-groups 5 0 - 5 4 , 5 5 - 5 9 , 6 0 - 6 4 and 6 4 - 6 9 (adults). For the children, a 

weighted average was calculated to obtain an estimate for children in the age of 

7-11 yr by attributing weights to the incidences for age 5-9 and 1 0 - 1 4 of three 

and t w o , respectively. For the adults, the mean incidence for the four age 

groups was calculated. 

These week-specific incidences were assigned to the 7 days of each week, 

assuming that the incidence on each day of the week was the same. The 

association between the incidence of ILI (ILIo) and acute respiratory health was 

examined. In addition, the association between the mean ILI incidence in the 

preceding week and respiratory health was evaluated. For this purpose, a 7-day 

moving average was calculated for each day of study using the ILI incidence of 

the same day and the 6 preceding days (ILIo-e). For example, if the ILI incidence 

(ILIo) is 1 0 in the week from 1-7 January and 3 0 in the week from 8 - 1 4 January, 
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ILIo-6 was calculated as ((1 * 3 0 ) + ( 6 * 1 0 ) ) / 7 = 9 0 / 7 = 1 2 . 9 for 8 January, as 

( ( 2 * 3 0 ) + ( 5 * 1 0 ) ) / 7 = 1 1 0 / 7 = 1 5 . 7 for 9 January etc. 

To evaluate the persistence in t ime of the association between I LI incidence and 

acute respiratory health, the association between the mean ILI incidence of 7 -13 

days earlier {ILI7-13) and the mean of 1 4 - 2 0 days earlier (ILI14-20) and acute 

respiratory health was evaluated as well . 

Symptom diary and PEF measurements 

For each subject, the first t w o days of measurement were removed to eliminate 

a possible training effect. Subjects with missing diary information (PEF or 

symptoms) on more than 4 0 % of the days were removed from the dataset. All 

statistical analyses were conducted using S A S 1 3 . 

The individual PEF values in each panel were transformed into population mean 

deviations to remove the effect of different groups of children contributing to the 

mean on different days. First, each individual PEF reading for subject i was 

transformed into a mean deviation by subtracting the mean PEF for subject i. 

Next, the mean of the individual mean deviations was calculated for each day of 

study. 

After recoding the symptoms in the diary to 0 (no symptom) and 1 (slight or 

moderate/severe symptom), daily prevalence was calculated for each panel as 

the fraction of children for w h o m presence of a respiratory symptom was 

reported, using data only from those children with non-missing diary information 

for each separate day. The symptoms shortness of breath, wheeze and attacks 

of shortness of breath with wheeze were combined as lower respiratory 

symptoms (LRS). Runny/stuffed nose and sore throat were combined as upper 

respiratory symptoms (URS). Medication use was analyzed only with respect to 

bronchodilators (such as salbutamol, fenoterol, terbutalin) and was recoded as 0 

(no bronchodilator use) or 1 (any bronchodilator use). For the study reported 

here, only LRS, URS, cough, phlegm and bronchodilator use were analyzed. 

The association between the incidence of ILI and PEF population mean deviation 

was analyzed wi th linear regression, weighted for the number of reporting 

subjects on each day. Minimum daily temperature, t ime trend and an indicator 

variable for day of week (school/working day versus weekend/holiday) were 

included in the model as potential confounders. In most panels the increase of 

PEF wi th time was non-linear wi th a stronger slope in the beginning of the study 

period, which was interpreted as a learning effect. Therefore, both a linear and a 
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square root term were included to adjust for t ime trend. A first order 

autocorrelation model of the residuals resulted in uncorrelated residuals in all 

panels. The t ime series analysis was performed with PROC MODEL, using the 

Yule-Walker estimation method, for morning and evening PEF separately. 

The association between the incidence of I LI and the daily prevalence of 

symptoms and medication use was evaluated wi th logistic regression but under 

the assumption of normally distributed residuals and modelling of autocorrelation 

using PROC MODEL. This was done because when a binomial distribution was 

assumed the residuals showed substantial underdispersjon. The number of 

subjects reporting on each day was used as weight. The same potential 

confounders were included as in the analysis of PEF data. Time trends in 

symptom prevalence were non-linear as well and were modeled wi th a linear, 

quadratic and cubic term. An exception was made for the adults in 1 9 9 2 / 1 9 9 3 

where the study period was so short (around 5 weeks) that modeling with three 

trend terms led to the removal of short-term trends. In these panels only a linear 

trend term was included. 

Four groups were defined: symptomatic children, non-symptomatic children, 

symptomatic adults and non-symptomatic adults. Urban and non-urban panels 

were combined because w e did not expect the association between ILI incidence 

and respiratory health to differ between urban and non-urban locations. 

A chi-square test was applied to test for heterogeneity in the effect estimates of 

the five or six panels within each of the four groups (symptomatic and non-

symptomatic children and adults). In case of heterogeneity (defined as p < 0 . 2 5 ) , 

combined effect estimates were calculated using random effects est imation 1 4 . 

Odds Ratios for the association between ILI incidence indices and the prevalence 

of symptoms and bronchodilator use were expressed for an increase in ILI 

incidence of 2 0 c a s e s / 1 0 , 0 0 0 , both for children and adults. The regression 

coefficients for the association wi th PEF were expressed as l/min for an increase 

in ILI incidence of 2 0 cases /10 ,000 . This range was selected because during 

influenza epidemics the ILI incidence was generally higher than 2 0 cases /10 ,000 

subjects; an incidence of 2 0 cases /10 ,000 subjects was therefore considered a 

relevant range during winters with and without noticable influenza epidemics 

during the observation periods. 



Table 1. Characteristics of the panels of symptomatic and non-symptomatic children (7-11 yr) and adults (50-70 yr) from urban and 
non-urban areas studied in the Netherlands during the winters of 1992/93, 1993/94 and 1994/95 

Symptom prevalence (%): 
Panel 
size 

Study period 
(dd/mm/yy) 

No of 
days 

Wheeze and 
shortness of 
breath* 

Chronic 
cought 

Use of airway 
medication* 

1992/93 Urban children symptomatic 31 22/01/93-19/04/93 88 37 72 19 
Urban children non-symptomatic 43 as above 0 0 0 
Non-urban children symptomatic 48 21/01/93-19/04/93 89 49 54 26 
Non-urban children non-symptomatic 60 as above 0 0 0 
Urban adults symptomatic 21 10/03/93-19/04/93 41 43 30 26 
Urban adults non-symptomatic 15 as above 0 0 0 
Non-urban adults symptomatic -§ - - - -
Non-urban adults non-symptomatic -§ - - - -

1993/94 Urban children symptomatic 55 03/11/93-06/03/94 124 33 73 11 
Urban children non-symptomatic 56 as above 0 0 0 
Non-urban children symptomatic 71 17/11/93-06/03/94 110 32 71 21 
Non-urban children non-symptomatic 77 as above 0 0 0 
Urban adults symptomatic 63 03/11/93-06/03/94 124 48 38 18 
Urban adults non-symptomatic 56 as above 0 0 0 
Non-urban adults symptomatic 70 20/11/93-06/03/94 107 43 32 26 
Non-urban adults non-symptomatic 73 as above 0 0 0 

1994/95 Urban children symptomatic 56 25/11/94-05/03/95 101 22 98 19 
Urban children non-symptomatic 38 as above 0 0 0 
Non-urban children symptomatic 59 23/11/94-05/03/95 103 32 85 27 
Non-urban children non-symptomatic 39 as above 0 0 0 
Urban adults symptomatic 54 24/11/94-05/03/95 102 39 41 12 
Urban adults non-symptomatic 40 as above 0 0 0 
Non-urban adults symptomatic 58 23/11/94-05/03/95 103 44 29 23 
Non-urban adults non-symptomatic 39 as above 0 0 0 

* In past 12 months 
t Dry cough apart from cold in past 12 months (children); daily cough during day/night in winter for 3 months a year (adults) 
t Daily use of airway medications (children); current use of asthma medication (adults) 
§ Not studied in this winter 
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Results 

In table 1 some characteristics of the panels are shown, for subjects that were 

used in the data analysis. Chronic cough was the screening symptom with the 

highest prevalence for children. For adults, recent wheeze and shortness of 

breath had a slightly higher prevalence than chronic cough. Use of airway 

medication was reported in the screening questionnaire for a minority of the 

subjects. During the winter of 1 9 9 3 / 1 9 9 4 the average panel size was larger than 

during the other winters, and the study period was longer. 

Table 2 presents some characteristics of the age specific incidences of influenza 

and influenza-like-illness (ILIo-e) that were reported by the Dutch Institute of 

Primary Health Care during the study periods. In figure 1 the incidence of ILIo-

e /10 ,000 subjects versus day of study is plotted for children from urban and 

non-urban areas in the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 . 

During the winter of 1 9 9 2 / 1 9 9 3 , an influenza epidemic occurred that started in 

the beginning of February and peaked during the third week of February, 

reaching maximum incidences of 6 7 and 65 cases /10 ,000 children in urban and 

non-urban area, respectively. During the winter of 1 9 9 3 / 1 9 9 4 , an early 

influenza epidemic occurred in November. ILI incidence showed a sharp increase 

starting in the third week of November, peaking during the second week of 

December and decreasing sharply afterwards, reaching background values 

around New Year. The epidemic was more severe in the urban than in the non-

urban area, reaching maximum incidences of 1 2 2 and 56 cases /10 ,000 children, 

respectively. For adults, a similar time-course of ILI incidence was observed. 

Maximum incidences were 7 0 and 3 9 in the urban and the non-urban area, 

respectively. During the third winter no major influenza epidemics occurred. The 

maximum incidence rates were at or below 2 0 cases /10 ,000 subjects. 

As figure 1 shows, there was a strong correlation between the ILI incidence for 

urban and non-urban areas. Pearson correlation coefficients were between 0 . 8 7 

and 0 . 9 6 during the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 , but were lower 

(0 .70 for children and 0 . 1 4 for adults) during the winter of 1 9 9 4 / 1 9 9 5 when no 

influenza epidemics occurred. 

Table 3 presents the mean and range of the prevalence of acute respiratory 

symptoms and bronchodilator use and PEF for the combined panels. 

Symptomatic panels had a higher prevalence of acute respiratory symptoms and 

a lower PEF than non-symptomatic panels. For both children and adults, the 
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prevalence of LRS and bronchodilator use in the non-symptomatic panels was so 

low that they could not be analyzed. 

125 i : 1 

125 

01-11-93 22-11-93 13-12-93 03-01-94 24-01-94 144)2-94 07-03-94 
date 

Figure 1. Mean incidence of influenza and influenza-like illness (ILI) versus day of 

study in children in the general population, registered by the Dutch network 

of sentinel stations during the winter of 1992/1993 (upper plot) and 

1993/1994 (lower plot). ILI incidence was expressed per 10,000 children of 

the practice population per week, using data from sentinel stations 

representative for urban areas (solid line) and non-urban areas (dotted line). 
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Figure 2. Prevalence of cough (solid line) and Lower Respiratory Symptoms (dotted 

line) versus day of study, for symptomatic children (upper plot) and 

symptomatic adults (lower plot) from the urban area studied during the 

winter of 1993/1994. The prevalence during the first days is not plotted 

because not all subjects participated during these days. 
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Table 2. Mean, median and range of the incidence of influenza and influenza-like 

illness (/LI) in the general population, registered by the Dutch network of 

sentinel stations during the study periods that the panel study was 

performed. ILI incidence was calculated as the mean of the same day and 

the 6 preceding days (ILIo-e) according to age group (7-11 yr and 50-70 yr), 

per 10,000 of the practice population per week, using data from sentinel 

stations representative of the urban and non-urban areas studied in each 

winter. 

Study period Mean Median Range 
(dd/mm/yy) 

1992/93 Urban children 22 /01 /93-19 /04 /93 34 37 10-67 
Non-urban children 21 /01 /93-19 /04 /93 25 23 5-65 
Urban adults 10 /03 /93-19/04 /93 17 12 6-34 
Non-urban adults -" . . . 

1993/94 Urban children 03 /11 /93-06 /03 /93 26 9 0-122 
Non-urban children 17/11 /93-06/03 /93 12 3 0-56 
Urban adults 03 /11 /93-06 /03 /94 16 6 0-70 
Non-urban adults 20 /11 /93-06 /03 /94 11 6 0-39 

1994/95 Urban children 25 /11 /94-05 /03 /95 3 2 0-10 
Non-urban children 23 /11 /94-05 /03 /95 4 2 0-20 
Urban adults 24 /11 /94-05 /03 /95 4 4 0-10 
Non-urban adults 23 /11 /94-05 /03 /95 8 8 2-13 

Not relevant, because no panels of adults from a non-urban area were studied during 
this winter 

For most symptoms there was a large difference between the minimum and 

maximum of prevalence, which is partly a result of strong time trends. A number 

of examples of t ime trends in the prevalence are presented in figure 2 , where the 

prevalence of LRS and cough is plotted against day of study during the winter of 

1 9 9 3 / 1 9 9 4 for symptomatic children and adults in the urban area. It shows that 

non-linear t ime trends occurred, especially for the children panels. In general, the 

more commonly reported symptoms like cough, URS and phlegm showed 

stronger t ime trends than LRS and bronchodilator use. 



Table 3. Mean and range of pooled' Peak Expiratory Flow (PEF) and prevalence (%) of acute respiratory symptoms and 
bronchodilator use in the combined panels of symptomatic and non-symptomatic children and adults! studied during the 
winters of 1992/1993, 1993/1994 and 1994/1995. 

Morning PEF* Evening PEF Cough Phlegm URS LRS Bronchodilator use 

Symptomatic children 323(205-444)329(207-453)35(17-55) 17(7-32) 36(20-54) 9(2-20) 4(0-11) 

Non-symptomatic children 348(245-463)352(252-471) 17(5-35) 7(0-17) 22(7-41) 1(0-5) 

Symptomatic adults 428(183-662) 435(183-662) 33(24-45) 35(26-47) 29(19-43) 25(17-35) 12(8-17) 

Non-symptomatic adults 491 (325 -695 )497 (334 -704 )7 (1 -19 ) 6(2-16) 10(2-21) 2(0-9) 

* Pooled PEF and prevalences were calculated as the mean of the panel-specific prevalences and Peak Flow, weighted for the number of person-days 
that each panel contributed. Similarly, the minimum and maximum of panel-specific prevalences were used to calculate a weighted minimum and 
maximum for the combined panels. Only the period when the composition of the panel was more or less constant was used. 

t Urban and non-urban panels were combined 
t In l/min 



Influenza incidence and respiratory health 71 

The Pearson correlation coefficients between ILIo-e and the potential confounding 

variables that were included in the model, are presented in table 4 . A strong 

negative correlation was observed between ILIo-a and day of study for the adults 

in the urban area in 1 9 9 2 / 1 9 9 3 , and for both children and adults in the non-

urban area in 1 9 9 3 / 1 9 9 4 . In the urban area in 1 9 9 3 / 1 9 9 4 , a moderately strong 

negative correlation between ILIo-e and day of study was observed for children 

and adults. The correlation between ILIo-e and daily minimum temperature was 

weak in all panels, except for children in the winter of 1 9 9 2 / 1 9 9 3 when 

moderate associations were observed. 

Table 4. Spearman correlation coefficients between the mean Incidence of 
influenza-like-illness of 0-6 days earlier (ILIo-e) and day of study, and 
between ILIo-e incidence and ambient temperature, in panels children and 
adults from urban and non-urban areas during the winters of 1992/1993, 
1993/1994 and 1994/1995 

Children 
Day of study T f 

Adults 
Day of study T 

1992/93 Urban - 0 . 3 6 " - 0 . 4 9 " - 0 . 8 6 " -0 .14 

Non-urban - 0 . 3 0 " - 0 . 4 5 " - -
1993/94 Urban - 0 . 6 8 " 0.12 -0.52** 0.03 

Non-urban - 0 . 8 5 " -0.01 - 0 . 8 4 " 0.16 
1994/95 Urban - 0 . 3 0 " 0.23* 0.07 -0.06 

Non-urban -0.08 0.09 - 0 . 3 2 " -0.25" 

f Minimum hourly temperature (in °C) of 24-hr values 
" P<0.05 
" P<0.01 

The association between ILI incidence and indicators of respiratory health was 

analyzed for both same day (ILIo) and previous week (ILIo-e) incidence. Although 

the results were fairly similar, ILIo-e tended to be more strongly associated with 

respiratory health indicators. Therefore, only the results of the analyses with ILIo-

e are presented here. 

Table 5 presents the combined effect estimates for the association between ILIo-

6 and PEF, and the prevalence of symptoms and bronchodilator use. The results 

of the chi-square test for homogeneity are shown as well . Table 5 shows that in 

all four groups of panels, a higher ILIo-e incidence was associated wi th a lower 

level of PEF and a higher prevalence of respiratory symptoms and bronchodilator 



Table 5. Combined1 effect estimates and Odds Ratios (OR) with 95% confidence 
intervals (95% CI) for the association between an increase in ILIo-e 
incidence* of 20 cases/10,000 subjects and Peak Expiratory Flow (PEF), 
symptom prevalence and bronchodilator use 

Change in l/min (95% CI) OR (95% CI) PhomS 

Symptomatic children Morning PEF -2.72 (-5.13 to -0.31)' - <0.01 
Evening PEF -3.18 (-5.69 to -0.67)" - <0.01 
LRS - 1.02 (0.82-1.27) 0.06 
URS - 1.11 (0.93-1.33) <0.01 
Cough - 1.17 (0.96-1.42) <0.01 
Phlegm - 1.14 (0.91-1.41) <0.01 
Bronchodilator - 1.07 (0.98-1.18) 0.41 

Non-symptomatic children Morning PEF -1.56 (-3.48 to 0.36) - <0.01 
Evening PEF -2.16 (-4.00 to -0.32)" - <0.01 
URS - 1.14 (1.00-1.30)" 0.18 
Cough - 1.19 (1.05-1.34)" 0.06 
Phlegm - 1.09 (0.85-1.40) 0.02 

Symptomatic adults Morning PEF -2.28 (-5.73 to 1.17) - <0.01 
Evening PEF -1.40 (-3.26 to 0.46) - 0.05 
LRS - 1.12 (0.93-1.35) 0.01 
URS - 1.10 (0.85-1.43) <0.01 
Cough - 1.21 (0.90-1.63) <0.01 
Phlegm - 1.13 (0.87-1.46) <0.01 
Bronchodilator - 1.28 (1.09-1.52)" 0.06 

Non-symptomatic adults Morning PEF -1.10 (-2.02 to -0.18)" - 0.37 
Evening PEF -0.64 (-3.19 to 1.91) - 0.06 
URS - 1.09 (0.88-1.35) 0.31 
Cough - 1.26 (0.82-1.94) 0.02 
Phlegm - 1.16 (0.81-1.66) 0.16 

* In case of heterogeneity (p<0.25, chi-square test on homogeneity), results of random effects 
models are presented, otherwise fixed effect models. Combined effect estimates were 
calculated for panels studied during the winters of 1992/93, 1993/94 and 1994/95 in urban 
and non-urban areas in the Netherlands, for panels of symptomatic and non-symptomatic 
children and adults separately 

* Mean ILI incidence of 0-6 days earlier 
! P-value chi-square test on homogeneity 
' P<0.05 
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use. In some cases the associations reached statistical significance. Considerable 

heterogeneity was present in the panel-specific effect estimates within each 

group of panels, indicating that there was more than random variation (due to 

sampling error) between panels. The panel-specific effect estimates are 

presented in table 6 for evening PEF, URS, LRS and bronchodilator use. Table 6 

shows that there was indeed considerable variation in the panel-specific effect 

estimates and corresponding confidence intervals. However, the vast majority of 

the panel-specific effect estimates were in the expected direction of lower PEF 

and more symptoms and bronchodilator use, a number of them reaching 

statistical signifance. During the third winter, the smaller range in ILI incidence 

generally resulted in larger confidence intervals but despite this, significant 

associations wi th URS and LRS were observed. For morning PEF, cough and 

phlegm a similar pattern was observed (not shown). 

In table 7 the association of the mean ILI incidence of 7 -13 days earlier (ILh-13) 

and of 1 4 - 2 0 days earlier (ILI14-20) and a number of respiratory health indicators is 

shown. It shows that ILh-13 was also associated with a lower evening PEF and a 

higher prevalence of URS and bronchodilator use, but compared to ILIo-e the 

effect estimates were generally smaller. ILI14-20 was not associated with 

indicators of respiratory health. The same pattern was observed for morning PEF 

and the other respiratory symptoms (not shown). 

To evaluate whether ILIo-e and ILh-13 were associated wi th respiratory health 

indicators independently, the t w o variables were both included in the same 

model. The effect estimates and standard errors were comparable to the models 

where the ILI indices were analyzed separately. For example, in non-

symptomatic children the effect estimates for an increase in ILIo-e and ILh-13 

incidence of 2 0 cases /10 ,000 subjects in association wi th evening PEF were -

2 . 1 6 ( 9 5 % CI: - 4 . 0 0 to -0 .32 ) and - 3 . 0 0 ( 9 5 % CI: - 5 . 4 6 to -0 .54 ) when 

analyzed separately, and - 2 . 2 2 ( 9 5 % CI: - 3 . 7 8 to -0 .66 ) and - 2 . 4 2 ( 9 5 % CI: -

4 . 9 0 to 0 .06 ) when both variables were included in the same model. Although 

the correlation between ILIo-e and ILh-13 was high, especially during the winters 

of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 when influenza epidemics occurred, these results 

indicate that collinearity was apparently not a major problem, and that the ILI 

incidence 0-6 days earlier and 7 -13 days earlier were associated with respiratory 

health independently. 



Table 6.. Panel specific and combined' effect estimates and Odds Ratios (OR) with 95% confidence intervals (95% CI) for the association 
between an increase in ILIo-e-incidence' of 20 cases/10,000 subjects and evening Peak Flow, and the prevalence of Upper Respiratory 
Symptoms (URS), Lower Respiratory Symptoms (LRS) and bronchodilator use 

Change in l/min {95% CI) 
Evening PEF 

OR (95% CI) 
URS LRS Bronchodilator 

Symptomatic children Urban 1992/93 0.54 (-3.81 to 4.89) 0.72(0.50-1.03) 1.59(0.80-3.16) 0.90(0.42-1.90) 
Non-urban 1992/93 -3.32 (-5.77 to-0.87)" 1.12(0.93-1.34) 0.97(0.61-1.54) 1.21(0.82-1.80) 
Urban 1993/94 -1.83 (-2.63 to-1.03)" 1.10 (1.05-1.16)" 1.05 (0.98-1.12) 1.03(0.94-1.14) 
Non-urban 1993/94 -7.91 (-10.48 to-5.34)* 1.41 (1.19-1.66)" 1.02 (0.77-1.35) 1.50(1.02-2.21)" 
Urban 1994/95 -4.49 (-11.49 to 2.51) 3.16 (1.28-7.84)* 6.16 (1.15-32.9)" 0.80(0.14-4.49) 
Non-urban 1994/95 -1.06 (-7.06 to 4.94) 0.77(0.47-1.25) 0.63(0.39-1.00) 2.01(0.54-7.49) 
Combined -3.18 (-5.69 to -0.67)' 1.11 (0.93-1.331 1.02(0.82-1.27) 1.06(0.97-1.16) 

Non-symptomatic children Urban 1992/93 -2.01 (-5.62 to 1.60) 1.20(0.67-2.15) -
Non-urban 1992/93 -3.00 (-5.06 to -0.94)' 0.88(0.64-1.21) -
Urban 1993/94 -0.34 (-3.51 to 0.05) 1.15 (1.07-1.24)* -
Non-urban 1993/94 -3.12 (-4.65 to-1 .59) ' 1.30 (1.10-1.54)" -
Urban 1994/95 -14.2 (-28.0 to-0.36)" 3.03 (0.45-20.7) -
Non-urban 1994/95 -1.36 (-6.24 to 3.52) 0.77(0.44-1.37) -
Combined -2.16 (-4.00 to -0.32)" 1.14 (1.00-1.30)' -

Symptomatic adults Urban 
Non-urban 
Urban 
Non-urban 
Urban 
Non-urban 
Combined 

1992/93 
1992/93 
1993/94 
1993/94 
1994/95 
1994/95 

-14.3 (-25.0 to-3 .58) ' 

-1.16 (-1.42 to -0.40)' 
-0.18 (-1.63 to 1.27) 
0.30 (-10.3 to 10.9) 

-7.13 (-12.9 to-1 .33) ' 
-1.40 (-3.26 to 0.46) 

3.05(1.40-6.63) 1.30(0.82-2.08) 1.95(1.32-2.87)" 

1.12(1.00-1.24)' 1.08(1.00-1.18)" 1.18(1.03-1.35)" 
1.03(0.89-1.21) 1.05(0.94-1.17) 1.15(1.04-1.27)' 
0.53(0.29-0.98) 1.63(0.83-3.20) 1.75(0.97-3.17) 
1.36(0.78-2.38) 1.54(1.06-2.22)' 1.68(0.97-2.91) 
1.10 (0.85-1.43) 1.12 (0.93-1.35) 1.28 (1.09-1.52)' 

Non-symptomatic adults Urban 
Non-urban 
Urban 
Non-urban 
Urban 
Non-urban 
Combined 

1992/93 
1992/93 
1993/94 
1993/94 
1994/95 
1994/95 

4.56 (-2.18 to 11.3) 

-1.17 (-2.09 to-0 .25) ' 
1.43 (-2.14 to 5.00) 

-0.38 (-5.65 to 4.89) 
-5.99 (-12.9 to 0.97) 
-0.64 (-3.19 to 1.91) 

0.50(0.20-1.26) -

1.13(0.95-1.33) -
1.22(0.77-1.94) -
0.62(0.23-1.71) -
3.72 (0.53-26.2) -
1.09(0.88-1.35) -

t 

* 
In case of heterogeneity (P< 0.25, chi-square test on homogeneity), results of random effects models are presented, otherwise fixed effect models. 
Mean IU incidence of 0-6 days earlier 
P<0.05 



Table 7. Combined* effect estimates and Odds Ratios with 95% confidence intervals (95% CI) for the association between an 
increase in ILI incidence (mean of 7-13 days earlier: ILh-is and mean of 14-20 days earlier: /L/14-20) of 20 cases/10,000 
subjects and evening PEF, the prevalence of Upper Respiratory Symptoms (URS) and bronchodilator use. 

ILI7-13* ILI14-208 

Symptomatic children Evening PEF" -1 .30 (-3.42 to 0.82) 0 .26 (-1.34 to 1.86) 
URS 1.08 (0.94 to 1.24) 0 .96 (0.90 to 1.02) 
Bronchodilator use 1.22 (0.88 to 1.70) 0.98 (0.81 to 1.20) 

Non-symptomatic children Evening PEF -3.00 (-5.46 to -0.54)" -0 .52 (-2.14 to 1.10) 
URS 1.15 (0.96 to 1.37) 1.01 (0.88 to 1.16) 

Symptomatic adults Evening PEF -0 .84 (-2.42 to 0.74) 0 .00 (-0.66 to 0.66) 
URS 1.05 (0.96 to 1.14) 0 .94 (0.76 to 1.16) 
Bronchodilator use 1.07 (1.00 to 1.15)" 0.77 (0.57 to 1.03) 

Non-symptomatic adults Evening PEF 0.28 (-0.64 to 1.20) 0 .62 (-0.30 to 1.54) 
URS 1.14 (0.99 to 1.31) 1.21 (0.85 to 1.73) 

1 In case of heterogeneity (P< 0.25, chi-square test on homogeneity), results of random effects models are presented, 

otherwise fixed effect models 

* Mean ILI incidence of 7-13 days earlier 
5 Mean ILI incidence of 14-20 days earlier 
1 Change in l/min 

" P<0.05 
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Discussion 

In this study, w e have shown that the incidence of influenza and influenza-like-

illness (ILI), registered by the Dutch network of GP sentinel stations, was 

associated wi th respiratory health in panels of symptomatic and non-

symptomatic children and adults selected from defined geographical areas. 

The combined effect estimates calculated for the three winters indicated that an 

increase in ILI incidence of 2 0 cases /10 ,000 subjects was associated with a 0.1 

- 1 % lower level of PEF, and wi th an increase in the prevalence of respiratory 

symptoms and bronchodilator use in the range of 2 % - 2 8 % . For a major 

influenza epidemic reaching peak ILI incidences of 1 2 2 cases /10 ,000 subjects, 

this corresponds to PEF decrements of up to 6 % , and to an increase in symptom 

reporting and bronchodilator use by factors of up to 2 .9 and 4 . 5 , respectively. 

The most consistent associations wi th respiratory health were found if the 

incidence of ILI w a s expressed as the mean of the preceding week (ILIo-e). ILI7-13 

was also independently associated with indicators of respiratory health, but no 

association between ILI14-20 and respiratory health was found. 

A positive association was found between the incidence of ILI and the 

prevalence of the respiratory symptoms URS (runny/stuffed nose, sore throat), 

LRS (wheeze, shortness of breath, attacks of shortness of breath wi th wheeze) , 

cough and phlegm. This is consistent wi th the knowledge of the mechanisms of 

respiratory viruses, including influenza viruses 1 5 . In first instance respiratory 

viruses cause upper respiratory tract infections. This frequently triggers a 

response in the lower airways leading to prolonged morbidity, especially in 

subjects wi th pre-existing airway disease. The induction or amplification of 

bronchial hyperresponsiveness may be an important mechanism by which lower 

respiratory symptoms are produced 4 , 5 . Epidemiological studies have also shown 

that several types of viral infection can exacerbate asthma symptoms in 

children 1 6 " 1 8 . The importance of respiratory infections in adult asthamtic attacks 

is less clear, although associations have been reported as w e l l 8 , 7 . 

In our study an increase in ILI incidence of 2 0 cases /10 ,000 subjects was 

associated wi th a significant increase in bronchodilator use of 2 8 % and a non

significant increase in asthma symptoms (LRS) of 6 % in adults. This suggests 

that respiratory viruses play a role in the exacerbations of asthma in adults, too. 

In children an increase in ILI incidence of 2 0 cases /10 ,000 subjects was 

associated wi th a smaller, and non-significant increase in bronchodilator use and 
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LRS of 6 % and 2 % , respectively. 

Can some sort of bias have produced the association between ILI incidence and 

respiratory health? Potential confounders that might bias the observed 

associations are meteorologic variables (mainly ambient temperature), air 

pollution and long term t ime trend. Air pollution is a potential confounder since it 

might be associated independently wi th both respiratory infections and 

respiratory health. However, exposure to low level air pollution is probably not a 

major determinant of respiratory infections; in addition, the correlation between 

PM10 (as an indicator for air pollution) and ILI incidence was low. W e have 

adjusted for ambient temperature, and for long term time trend (generally in the 

order of weeks) in PEF and the prevalence of symptoms. However, those factors 

might be associated wi th respiratory infections in the panels and thus, the 

potential of overadjustment exists, resulting in an underestimation of the 

coefficients for ILI incidence. 

In the Netherlands, the occurrence of major influenza epidemics is generally 

reported by the mass media. Reporting bias might have occurred due to 

subject's increased awareness of respiratory symptoms during influenza 

epidemics. However, it is not likely that this type of bias was an important 

factor because our study was focusing on effects of air pollution. Moreover, 

associations between ILI incidence and respiratory health were also observed 

during the third winter when no influenza epidemics occurred. 

The panel-specific effect estimates within the four groups (symptomatic and 

non-symptomatic children and adults) showed considerable heterogeneity. When 

the third winter, wi th a small range in ILI incidence was excluded, heterogeneity 

was still present. 

This heterogeneity may have different reasons. First, the influenza viruses 

involved in influenza epidemics may differ from season; virological surveillance 

has confirmed that this was indeed the case 8 , 9 . Second, the amount of 

misclassification that occurs when using the incidence of ILI, registered by the 

sentinel stations, as an indicator for the respiratory infection load in selected 

panels might differ between panels. Third, wi th the statistical models used the 

potential of overadjustment for t ime trend exists, as mentioned before; and the 

extent to which this occurred might differ between panels. 

The ILI incidence was below 0 . 1 % / w e e k on most days during the study period 

wi th a maximum of 1 .2%/week . This is probably an underestimation of the true 

ILI incidence in th Dutch population, as not all patients will seek medical 
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assistance. No information was available about the incidence of less serious 

respiratory infections (e.g. common cold); ILI is the only respiratory illness that is 

monitored by the sentinel stations. 

During the third winter, when the ILI incidence was lowest, relatively large effect 

estimates were found. This indicates that the associations are not only observed 

during influenza epidemics. Rather, it raises the question whether the association 

between ILI incidence and respiratory health is the result of influenza virus 

activity or whether ILI incidence might reflect the activity of other respiratory 

viruses too. Virological surveillance of respiratory specimens of patients 

diagnosed wi th ILI by the sentinel stations has shown that during the winters of 

1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 , in those patients where respiratory viruses could 

be isolated, the influenza virus was detected in 6 9 % and 7 3 % of the cases, 

respectively 8 , 8 . In the winter of 1 9 9 4 / 1 9 9 5 , when no influenza epidemics 

occurred, this was only 3 6 % 1 0 . Rhinoviruses were detected in respectively 1 4 % , 

1 2 % and 2 6 % of the patients during the three consecutive winters. 

Rhinoviruses are the most common causative agent of common cold in the 

community. They peak in early autumn and spring, but are perennial in their 

occurrence 4 . Comparing rhinoviruses and influenza, there is no doubt that 

influenza viruses produce the most severe symptoms 1 9 . Thus, the majority of the 

people suffering from rhinovirus infection will not seek medical assistance. 

Other respiratory viruses (including adeno-, corona-, entero-, RS-, and 

parainfluenza viruses) were detected in 1 3 % , 1 5 % and 3 8 % of the patients wi th 

ILI during the three winters 8 " 1 0 . When interpreting these data, it should be noted 

that the virological surveillance has only been carried out in 1 5 - 2 5 % of the total 

number of patients wi th ILI, and the number of respiratory specimens taken was 

not completely proportional to the ILI incidence. Of those patients wi th ILI for 

which respiratory specimens were taken, a respiratory virus could be isolated in 

only 3 3 % , 3 1 % , and 3 4 % of the cases during the three winters, respectively. 

Also, the respiratory surveillance refers to the period October-April, which is 

longer than our study period, and respiratory specimens were taken from all 

sentinel stations and all age groups, while w e have used data from selected 

regions and age groups. Nevertheless, these results suggest that during winters 

without influenza epidemics, the incidence of ILI is mainly an indicator for other 

respiratory viruses than the influenza virus. However, when influenza epidemics 

occur, the pattern of ILI incidence seems to reflect mainly influenza activity and 

to a lesser extent, the activity of other respiratory viruses. 
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The observed association between I LI incidence and respiratory health in 

selected panels implies that in panel studies, the incidence of ILI might be used 

to adjust for the potential confounding effect of respiratory infections. For 

example, when investigating the effect of ambient air pollution on respiratory 

health, respiratory infections can confound the association if they coincide with 

periods wi th high or low air pollution. Since the effect of air pollution on 

respiratory health is in the same order of magnitude, or l e s s 2 0 , 2 1 than the effect 

of elevated ILI incidence, this might lead to substantial over- or underadjustment 

of the effect of air pollution. Our study has also shown that the ILI incidence of 

the previous week (0-6 days earlier) and of t w o weeks earlier (7 -13 days earlier) 

were independently associated wi th indicators of respiratory health thus, should 

both be taken into account when adjusting for the potential confounding effect 

of respiratory infections. 

In conclusion, the incidence of ILI, registered by the Dutch sentinel station 

registration network was associated wi th reduced PEF and increased reporting of 

symptoms and bronchodilator use in panels of symptomatic and non-

symptomatic children and adults, selected from defined geographical regions in 

the Netherlands. 
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Abstract 

The goal of this study was to investigate to what extent different air pollution 

components are associated with acute respiratory health effects in children with 

and without chronic respiratory symptoms ('symptomatic' and 'non-symptomatic' 

children). 

During three consecutive winters starting in 1 9 9 2 / 1 9 9 3 , Peak Expiratory Flow 

(PEF) and respiratory symptoms were registered daily in panels of symptomatic 

and non-symptomatic children (7-11 yr), living in urban areas with high traffic 

intensity in the Netherlands. Simultaneously, panels of children living in non-urban 

areas were studied. Daily measurements of PM10, Black Smoke (BS), sulfate, SO2, 

and NO2 were performed in both areas. 

The contrast in particle concentrations (PM10, BS and sulfate) between urban and 

non-urban areas was small, but there was more contrast in the concentrations of 

SO2 and NO2. In symptomatic children from both areas, significant associations 

were observed between PM10, BS and sulfate concentrations and the prevalence 

of lower respiratory symptoms (LRS) and PEF decrements. Particle concentrations 

were also associated with bronchodilator use in the urban areas, but not in the 

non-urban areas. After stratification by medication use, stronger associations were 

found in medicated children than in non-medicated children. The magnitude of the 

estimated effects was in the order of a twofold increase in bronchodilator use, a 

5 0 % increase in LRS and an 8 0 % increase in PEF decrements for a 1 0 0 ug/m 3 

increase of the 5-day mean PM10 concentration. In non-symptomatic children, 

significant associations were observed between PM10 and BS concentration and 

PEF decrements in both areas, but of smaller magnitude than for symptomatic 

children. No associations with respiratory symptoms were observed. 

The results suggest that symptomatic children are more susceptible to the effects 

of particulate air pollution than non-symptomatic children, and that use of asthma 

medication does not prevent the adverse effects of particulate air pollution in 

symptomatic children. 
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Introduction 

Severe winter air pollution episodes in the past have been associated with serious 

health effects, such as increased hospital admissions and mortality 1. Over the last 

decades, concentrations of 'traditional' winter air pollution components such as 

SO2 and airborne coarse particulates have decreased in the Netherlands and other 

European countries. This decrease can be ascribed to emission abatement 

measures and changes in energy production for industrial processes and space 

heating. Levels of other pollutants such as NO2 and O3 have increased during the 

same period, mostly due to higher intensity of motorized traffic. Motorized traffic 

also plays an important role in the formation of particulate air pollution, both direct 

and indirect through the formation of secondary aerosols 2. Recent studies have 

demonstrated that current levels of particulate air pollution are associated with 

adverse health outcomes, even at concentrations well below the 1 9 8 7 W H O Air 

Quality Guidelines for Europe 3 , 4 . 

Also in the Netherlands associations were reported between low levels of winter 

air pollution and respiratory health among children5"7. However, those studies have 

mainly been conducted in non-urban areas. It was not clear to what extent such 

associations would be different in urban areas where the contribution of local 

sources to the air pollution mixture is greater than in non-urban areas. 

The uncertainties surrounding acute effects of wintersmog episodes in large urban 

areas, led us to perform a large epidemiological 'winter smog' study that was 

conducted during three consecutive winters starting in 1 9 9 2 / 1 9 9 3 . The study 

was designed to compare acute health effects of winter air pollution in selected 

panels of children and adults, with and without chronic respiratory symptoms, 

living in urban and non-urban areas. This paper describes the results for the panels 

of children. The results for the panels of adults will be described in a separate 

paper. 

Methods 

Study design 
The study was carried out during three consecutive winters starting in 

1 9 9 2 / 1 9 9 3 . During each winter, panels of children (7-11 yr) with and without 

chronic respiratory symptoms were selected from an urban and a non-urban area. 

The children were selected from the general population of children with a 
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screening questionnaire. During the three months study periods daily 

measurements of Peak Expiratory Flow (PEF) were made, and the occurrence of 

acute respiratory symptoms and bronchodilator use was registered in a daily diary. 

Air pollution was monitored daily on central sites in each community. 

Study population 

As study areas were chosen: Rotterdam and Bodegraven/Reeuwijk ( 1 9 9 2 / 1 9 9 3 ) , 

Amsterdam and Meppel ( 1 9 9 3 / 1 9 9 4 ) , and Amsterdam and Nunspeet 

( 1 9 9 4 / 1 9 9 5 ) . Figure 1 in chapter 2 of this thesis shows the locations of the areas. 

The Netherlands is a country with a very high population density. The southern, 

and especially the western parts, are most urbanized. The north-eastern part has a 

relatively low population density. All major cities are located in the western part. 

Rotterdam is an industrialized city with approximately 6 0 0 , 0 0 0 inhabitants. It is 

located in the center of the Rijnmond area (an agglomeration of industrial cities). 

Amsterdam ( 7 2 0 , 0 0 0 inhabitants) has a relatively small industrial area; local air 

pollution is caused primarily by emissions from motorized traffic. In addition to 

local air pollution, transport of air pollution from other parts of the Netherlands and 

from other European countries contributes to air pollution levels in Dutch cities. 

For the urban panels the objective was to select children with high exposure to 

traffic related air pollution. Therefore, both in Rotterdam and Amsterdam areas in 

the inner city were selected with a high traffic intensity and a high population 

density, and with no industrial sources. 

The non-urban panels were selected from communities which had no major traffic 

emissions, no large industrial sources and had sufficient size to select enough 

children. 

During the first winter ( 1 9 9 2 / 1 9 9 3 ) , w e selected a non-urban area close (± 3 0 km) 

to the urban area. During the second and third winters, w e selected the non-urban 

areas at a larger distance from the urban area in trying to maximize the contrast in 

air pollution, that was found to be small in the first winter. 

Screening questionnaires were used to obtain information on chronic respiratory 

symptoms. The questionnaires were distributed through the schools or by mail to 

all children aged 7-11 yr, and had to be filled out and returned by their parents. 

The screening questionnaire was an adapted version of questions from the W H O 

questionnaire for children 8. During the first winter ( 1 9 9 2 / 1 9 9 3 ) , a slightly different 

questionnaire was used compared to the second and third winters. The reason for 

this was that during the winter of 1 9 9 3 / 1 9 9 4 , the study was performed in the 
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framework of the Pollution Effects of Asthmatic Children in Europe (PEACE) study 

and thus the PEACE protocol was fol lowed 9 . Children were considered 

'symptomatic' if they had a positive answer to one or more of the screening 

questions listed in table 1 . 

Table 1. Selection questions of screening questionnaire during the three winters 

1992/93 1993/94 and 1994/95 

recent asthma: 

chronic cough: 

doctor diagnosed 
asthma: 

recently treated by a 
specialist for asthma: 

recent wheeze: 

Has your child been 
bothered in the past year 
by attacks of shortness of 
breath with wheezing? 

Does your child cough like 
this almost daily for three 
months a year? (this 
question follows two other 
questions on cough during 
the day or night, on most 
days during the 
autumn/winter season) 

Has a doctor ever said your 
child has asthma? 

Has your child been treated 
for asthma by a specialist 
during the past year? 

Has your child been 
bothered in the past 12 
months by attacks of 
shortness of breath with 
wheezing? 

Has your child had a dry 
cough at night in the past 
12 months, apart from 
coughing with a cold or 
chest infection? 

Has a doctor ever said your 
child has asthma? 

Has your child been 
bothered in the past 12 
months by a wheezy chest, 
apart from cold? 

Children without any reported symptoms on the screening questionnaire were 

considered 'non-symptomatic'. Symptomatic and non-symptomatic children were 

selected randomly from those who met the selection criteria. Target panel size for 

both symptomatic and non-symptomatic panels was 75 subjects per panel during 

the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 . During the winter of 1 9 9 4 / 1 9 9 5 

target panel size was 6 0 subjects for symptomatic panels and 4 0 subjects for 

non-symptomatic panels. A detailed questionnaire on chronic respiratory 

symptoms, sources of indoor air pollution (smoking, housing characteristics) and 

parental education was administered to the parents. To further characterize the 
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children they were examined with skin prick test, determination of IgE, number of 

peripheral blood eosinophils, lung function and bronchial reactivity to metacholine. 

Methods and results of these analyses will be published elsewhere. The study was 

approved by the Medical Ethical Committee of the Groningen University Hospital 

and the Medical Ethical Committee of the Municipal Health Service in Amsterdam. 

Informed consent was signed by the parents of all children. 

Exposure assessment 

24-Hour measurements of PM10 and Black Smoke were made at fixed sites in both 

the urban and non-urban areas. In addition, 24-hour measurements of non-organic 

secondary aerosols (sulfate, nitrate and ammonium) and aerosol acidity were 

made. Measurements were from 3 PM to 3 P M . The particle measurement sites 

were chosen such that they were close to the residence of the participating 

children, and not strongly influenced by local sources such as traffic and industry 

in the direct vicinity ('background sites'). Information about the ambient 

concentrations of SO2 and NO2 in Rotterdam was obtained from a city-background 

station of the National Air Quality Monitoring Network, operated by the National 

Institute of Public Health and Environmental Protection. In Amsterdam, information 

was obtained from a city-background station of the Air Quality Monitoring 

Network operated by the Environmental Research Institute of the City of 

Amsterdam. Data for the non-urban areas were obtained from the nearest 

measurements sites of the National Air Quality Monitoring Network, located in 

Zegveld, Witteveen and Lelystad during the three consecutive winters. Those 

measurement sites were located approximately 10 , 4 0 and 3 0 km away from the 

non-urban areas, respectively. SO2 and NO2 concentrations were provided as 1 -

hour means and transformed into 24-hour average concentrations from 3 PM to 3 

PM. More information about the measurement methods is reported elsewhere 1 0 . 

Temperature was measured in 1-hour intervals and the minimum between 3 PM 

and 3 PM was recorded. Data for the urban areas were obtained from Rotterdam 

and Amsterdam Airports, respectively. Data for the non-urban areas were obtained 

from Zegveld, Eelde and Lelystad, located approximately 1 0 , 4 0 and 3 0 km away 

from the non-urban areas in the three consecutive winters. 

Data on the weekly incidence of influenza and influenza-like illness (ILI) were 

obtained from the Dutch Institute of Primary Health Care (NIVEL). A detailed 

analysis of the ILI incidence data in relation to the health data collected in our 

panels will be reported elsewhere 1 1 . 
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Health measurements 
During the study period, participants performed PEF measurements twice daily 

using Mini Wright peak f low meters, once in the morning before breakfast and 

once in the evening before going to bed. Subjects were instructed to perform the 

PEF measurements before any airway medication was taken. Every test consisted 

of three maneuvers and participants were asked to note all three readings in a 

diary. The highest of the three PEF readings was used for analysis. 

The diary was also used to register the occurrence of acute respiratory symptoms 

and medication use. Symptoms included in the diary were cough, phlegm, 

runny/stuffed nose, woken up with breathing problems, shortness of breath, 

wheeze, attack(s) of shortness of breath with wheeze and fever. During the 

winters of 1 9 9 3 / 1 9 9 4 and 1 9 9 4 / 1 9 9 5 , the symptoms eye irritation and sore 

throat were included as well . Subjects were instructed to indicate whether the 

symptoms were absent, slight, or moderate/severe on each day. In order to assess 

medication use, subjects had to write down the name of the medication and the 

number of units taken. The use of the diary and Mini Wright meter was demon

strated during a home visit in presence of the child and at least one of the parents. 

Data analysis 

All panels were analysed separately. Next, combined effect estimates were 

calculated for symptomatic and non-symptomatic panels, and for urban and non-

urban areas separately. 

For each subject, the first t w o days of measurement were removed to eliminate a 

possible training effect. Subjects with missing diary information (PEF or 

symptoms) on more than 4 0 % of the days were removed from the dataset. All 

statistical analyses were conducted using S A S 1 2 . 

For the analysis of PEF data, a different approach was used compared to other 

panel studies, including the PEACE s t u d y 0 ' 9 ' 1 3 , u . Those studies were focusing on 

population average responses, whereas our approach is focusing on the fraction of 

children that is experiencing substantial PEF-decrements. A comparison between 

the t w o approaches is described by Hoek ef a / . 1 8 . In short, it shows that small 

decrements in population mean PEF are accompanied by large increases in the 

fraction of children that have a substantial decrease in PEF. 

For each individual subject the median morning and evening PEF was calculated. 

Percentage morning decrements were calculated for each measurement day for 

each subject by subtracting the individual median of morning PEF from the 
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morning PEF measured on that day and dividing the difference by the individual 

median of morning PEF. The prevalence of morning decrements larger than 1 0 % 

and 2 0 % respectively was calculated as the number of children experiencing such 

a decrement divided by the total number of children reporting valid PEF 

measurements on each day of study. The percentage evening decrements were 

calculated the same way . 

After recoding the symptoms in the diary to 0 (no symptom) and 1 (slight or 

moderate/severe symptom), daily prevalence was calculated for each panel as 

the fraction of children for w h o m presence of a respiratory symptom was 

reported, using data only from those children wi th non-missing diary information 

for each separate day. The symptoms shortness of breath, wheeze and attacks 

of shortness of breath with wheeze were combined as lower respiratory 

symptoms (LRS). Cough was analysed separately. Runny/stuffed nose and sore 

throat were combined as upper respiratory symptoms (URS). Medication use 

was divided into bronchodilators (such as salbutamol, fenoterol, terbutalin), 

maintenance medication (such as cromoglycate, theophyllin, anti-histaminica and 

inhaled corticosteroids) and an "other" category, and was recoded as 0 (no 

medication use) or 1 (any medication use), for bronchodilator and maintenance 

medication use separately. For the study reported here, only LRS, URS, cough, 

phlegm and bronchodilator use were analysed. 

The explanatory variables were 2 4 hour average concentration of PM10, Black 

Smoke, SO2, NO2, sulfate and nitrate, analysed separately. Current day 

concentration (lag 0 ) , previous day concentration (lag 1) , concentration of two 

days before (lag 2) and the average concentration of 0-4 days before (5 day mean) 

were analyzed separately. 

The association between air pollution and the prevalence of PEF decrements, 

symptoms and bronchodilator use was evaluated with logistic regression but under 

the assumption of normally distibuted residuals using PROC MODEL. This was 

done because when a binomial distribution was assumed the residuals showed 

considerable underdispersion. The number of subjects reporting on each day was 

used as weight, and correction for autocorrelation of residuals was made 

assuming a first order autoregressive structure. Minimum daily temperature, an 

indicator variable for day of week (school day versus weekend/holiday), time 

trend, and the incidence of influenza and influenza-like-illness (ILI) in the general 

population were included in the model as potential confounders. Time trend was 

included as a linear, quadratic and cubic term because in most panels strong non-
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linear t ime trends were observed in the prevalence of symptoms, medication use 

and PEF-decrements. 

The incidence of ILI, registered by the Dutch network of sentinel stations, was 

included in the model with t w o variables representing respectively the mean 

incidence of 0-6 days earlier and 7 -13 days earlier. A motivation of the selection 

of these variables, as well as an association between ILI incidence and respiratory 

health in the panels will be reported elsewhere 1 1 . 

Combined effect estimates were calculated for symptomatic and non-symptomatic 

panels, and for urban and non-urban areas separately, using the regression slopes 

from the panel-specific logistic regression models for the three winters. Combined 

effect estimates were calculated as the weighted mean of the panel-specific 

slopes, wi th the weights being the inverse of the panel-specific variances of the 

slopes. The standard error of the combined slope was calculated as the inverse of 

the square root of the sum of weights. Odds Ratios were calculated for an 

increase of 1 0 0 ug/m 3 in PMio concentration, an increase of 4 0 ug/m 3 in Black 

Smoke, SO2 and NO2 concentration and an increase of 15 ug/m 3 in sulfate 

concentration. 

To test whether the association between air pollution and respiratory health 

differed significantly between urban and non-urban areas, a weighted linear 

regression was performed with the panel-specific regression slopes as the 

dependent variable and an indicator for area (urban vs non-urban area) as the 

independent variable. The inverse of the panel-specific variances of the slopes 

were used as weights. The weighted regression analysis was performed for 

symptomatic and non-symptomatic children separately. 

A number of multiple regression models including two pollutants simultaneously 

have been specified for the symptomatic panels, in an attempt to separate effects 

from specific components of the air pollution mixture. This was done for the 

following combinations of pollutants: PM10 and SO2, PM10 and BS, PM10 and 

sulfate, and BS and sulfate. The same lags were evaluated simultaneously for both 

pollutants. 
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Results 

From the 1 2 , 3 3 1 screening questionnaires handed out during the three winters, 

5 , 7 7 0 (47%) were returned. The response was slightly lower in the urban areas 

(42%) than in the non-urban areas ( 5 2 % ) . Of the 5 , 7 7 0 children who returned 

questionnaires, 9 3 1 (16%) were eligible and willing to participate in the 

symptomatic panels, whereas 1 ,198 (21%) were eligible and willing to participate 

in the non-symptomatic panels. From the 3 9 6 symptomatic and 3 9 9 non-

symptomatic children that were enrolled, respectively 3 2 0 and 3 1 3 were included 

in the final analysis. 

In the tables 2a , 2b and 2c some characteristics of the panels are shown. 

Table 2a. Characteristics of the panels, three winters combined 

Symptomatic Non-symptomatic 

Urban area Non-urban area Urban area Non-urban area 

Original sample size 193 203 196 203 

Final sample size* 142 178 137 176 

winter 1992/1993 31 48 43 60 

winter 1993/1994 55 71 56 77 

winter 1994/1995 56 59 38 39 

* smaller than original sample size because subjects with >40% missing diary information were 
excluded 

Table 2b. Screening prevalence of symptoms and medication use (% in final sample) 

Symptomatic Non-symptomatic 

Urban area Non-urban area Urban area Non-urban area 

% Recent wheeze 44 46 0 0 

% Recent asthma 29 37 0 0 

% Chronic cough 83 71 0 0 

% Doctor diagnosed asthma 26 38 0 0 

% Daily medication use 16 24 0 0 
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Table 2c. Mean daily prevalence (%) of symptoms, medication use and PEF-decrements, and 

mean PEF" 

Symptomatic Non-symptomatic 

Urban 
area 

Non-urban 
area 

Urban area Non-urban 
area 

Lower Respiratory Symptoms 8.4 9.1 0.8 1.1 

Upper Respiratory Symptoms 37 35 21 23 

Cough 35 35 16 18 

Phlegm 15 19 7.4 6.3 

Bronchodilator use 4.8 3.4 - -

Maintenance medication use 8.5 15.5 - -

>10% decrements in evening PEF 10.5 10.8 9.4 7.3 

Mean evening PEF (!/min) 329 329 346 358 

pooled prevalences and PEF were calculated as the mean of the panel-specific prevalences 
and PEF, weighted for the number of person-days that each panel contributed 

Table 2c shows that the prevalence of > 1 0 % decrements in evening PEF was 

on average 1 0 . 6 % in the symptomatic panels and 8 . 3 % in the non-symptomatic 

panels. Symptomatic panels had a higher prevalence of acute respiratory 

symptoms than non-symptomatic panels. In symptomatic urban panels the 

prevalence of maintenance medication was almost twofold lower than in 

symptomatic non-urban panels ( 8 . 5 % and 1 5 . 5 % , respectively). Bronchodilator 

use was not reported in the non-symptomatic panels during the three winters. 

Lower Respiratory Symptoms (LRS) were rarely reported in the non-symptomatic 

panels; during the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 4 / 1 9 9 5 , the panel-specific 

prevalences of LRS were too low to be analyzed. Only during the winter of 

1 9 9 3 / 1 9 9 4 the mean panel-specific prevalence of LRS was relatively high ( 1 . 2 % 

in the urban area and 2 . 0 % in the non-urban area). In table 3 the results of the 

air pollution measurements are presented. The median concentrations of PMio 

and BS were only slightly higher in the urban areas than in the non-urban areas. 

There was more contrast in the concentration of the gaseous pollutants SO2 and 

NO2. The median concentration of sulfate was slightly lower in the urban than in 

the non-urban areas. Concentrations of aerosol acidity were very low during the 

three winters (not shown). Only a f e w concentrations were above the detection 

limit ( 0 . 1 0 u.g/m3) and therefore, concentrations of aerosol acidity were not used 
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in further analyses. 

During the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 , air pollution episodes occurred 

resulting in elevated particle concentrations in both the urban and non-urban areas. 

During the winter of 1 9 9 4 / 1 9 9 5 no air pollution episodes occurred as a result of 

mild meteorological conditions. For a more detailed description of the air pollution 

concentrations and episodes w e refer to another paper 1 0 . 

Spearman correlations between the various air pollutants and potential 

confounding variables were calculated separately for the urban and non-urban 

areas during the three winters (not shown). During the first t w o winters, when air 

pollution episodes occurred, a high correlation ( R > 0 . 7 ) was observed between 

PMio and the other indicators of particulate air pollution Black Smoke and sulfate. 

The correlation between SO2 and indicators of particulate air pollution varied 

between 0.5 and 0 .8 and was slightly higher than the correlation between NO2 

and indicators of particulate air pollution (except for Black Smoke). The correlation 

between SO2 and NO2 was approximately 0 .5 . During the winter of 1 9 9 4 / 1 9 9 5 , 

lower than the above correlations were found between all air pollutants. There 

were no clear differences in correlations between urban and non-urban areas. Air 

pollutants and temperature were moderately high correlated, while low 

correlations were observed between air pollutants and the potential confounders 

day of study and incidence of influenza-like-illness. 

Table 4 presents the associations between air pollution indices and the prevalence 

of > 1 0 % decrements in evening PEF, respiratory symptoms and bronchodilator 

use in symptomatic children. In the urban areas, the prevalence of > 1 0 % 

decrements in evening PEF, LRS and bronchodilator use was positively associated 

with PM10, Black Smoke and sulfate. Many associations reached statistical 

significance. SO2 was also positively associated with those respiratory health 

indicators but less consistent than the particulate pollutants. NO2 was positively 

associated with bronchodilator use but not with LRS or > 1 0 % decrements in 

evening PEF. No associations were observed between air pollution indices and the 

prevalence of URS and cough. With phlegm and the prevalence of > 1 0 % 

decrements in morning PEF, no associations were observed either (not shown). In 

the non-urban areas, associations between particle concentrations and > 1 0 % 

decrements in evening PEF and LRS were in the same direction as in the urban 

area, but statistically significant associations were reached less frequently. As 

opposed to what was found in the urban areas, particle concentrations were not 

consistently associated with bronchodilator use. However, the differences in 



Table 3. Median and maximum of 24-hr average air pollution concentrations, and median and range of temperature and incidence of 
influenza-like illness observed during the study periods in urban and non-urban areas 

Study period 

dd/mm/yy 

no of 
days 

PMio Black 
Smoke 

Sulfate SÖ2 NO2 r IL/o-6* 

1992/1993 Urban 22/1 /93-19/4 /93 88 4 8 (146) 15 (56) 5.3 (17) 23 (152) 51 (94) 4 .2 (-2.9; 9.8) 37 (10-67) 

Non-urban 21 /1 /93-19 /4 /93 89 35 (104) 10 (38) 5.9 (15) 8.9 (43) 33 (83) 2.8 (-4.4; 9.8) 23 (5-65) 

1993 /1994 Urban 3/11/93-6/3 /94 124 37 (123) 12 (65) 2.7 (24) 11 (34) 4 8 (76) 2.7 ( -8 .1; 10.0) 9 (0-122) 

Non-urban 17/11/93-6 /3 /94 110 35 (242) 10 (58) 2.8 (23) 5.0 (42) 25 (54) 1.0 (-10.9; 9.3) 3 (0-56) 

1994/1995 Urban 25/11/94-5 /3 /95 101 29 (90) 6.9 (28) 1.7 (10) 6.0 (24) 4 7 (82) 3.8 (-5.0; 11.5) 2 (0-10) 

Non-urban 23/11/94-5 /3 /95 103 24 (97) 5.8 (43) 1.9 (18) 3.6 (17) 22 (57) 3.1 ( -11.1; 11.3) 2 (0-20) 

air pollution concentrations in pg/m3 

f minimum hourly temperature (in °C) of 24-hr values 
' mean of incidence of influenza-like illness in the previous week 



Table 4. Odds Ratios (OR) with 95% confidence int ervals (95% CI) for the association between air pollution and the prevalence of> 10% decrements, 
acute respiratory symptoms and bronchodilator use in symptomatic children, calculated from combined effect estimates. OR's for an increase of 
100 fjg/m3 in PMio, 40 fjg/m3 for Black Smoke, SO2 and NO2 and 15 pg/m3 for sulfate. 

Urban areas Non-urban areas 

Evening PEF Cough Evening PEF Cough 

PM10 

lag 0 

lag 1 

lag 2 

5 day mean 

Black Smoke 

lag 0 

lag 1 

lag 2 

5-day mean 

Sulfate 

lag 0 

lag 1 

lag 2 

5-day mean 

SOi 

lagO 

lag 1 

lag 2 

5-day mean 

NOi 

lagO 

tag 1 

lag 2 

5-day mean 

1.42 11.06-1.921" 

1.28 (0.97-1.68) 

1.54 (1.19-1.98)* 

1.83 (1.24-2.70)' 

1.29 (0.94-1.76) 

1.14(0.87-1.48) 

1.21 (0.95-1.53) 

1.51 (1.01-2.26)« 

1.27 (0.93-1.73) 

1.04(0.78-1.38) 

1.30 (1.01-1.68)« 

1.99 (1.18-3.34)« 

1.32(0.96-1.80) 

0.83 (0.60-1.14) 

1.67 (1.28-2.19)* 

1.60(0.90-2.51) 

0.96 (0.78-1.19) 

0.88 (0.73-1.06) 

1.01 (0.84-1.22) 

0.76 (0.62-1.10) 

1.34(1.02-1.751* 

1.48 (1.15-1.89)* 

1.30(1.03-1.661* 

1.62 (1.07-2.18)* 

1.17 (0.89-1.64) 

1.16 (0.91-1.49) 

1.29 (1.04-1.61)* 

1.64(1.14-2.36)* 

1.15 (0.86-1.54) 

1.28 (1.00-1.63)" 

1.22 (0.96-1.64) 

1.83 (1.16-2.87)" 

1.35 (1.01-1.79)" 

1.23 (0.93-1.64) 

1.18 (0.90-1.63) 

1.56 (0.97-2.52) 

1.12(0.92-1.36) 

0.91 (0.76-1.09) 

1.11 (0.93-1.32) 

1.05 (0.70-1.68) 

1.00(0.86-1.18) 

1.04(0.89-1.21) 

1.11 (0.95-1.30) 

0.95 (0.71-1.26) 

1.04(0.88-1.23) 

1.03 (0.89-1.21) 

1.01 (0.87-1.17) 

1.03 (0.78-1.37) 

1.08 (0.92-1.27) 

1.13 (0.97-1.33) 

1.01 (0.87-1.19) 

0.90(0.64-1.27) 

0.97 (0.82-1.14) 

1.10 (0.94-1.28) 

1.03 (0.88-1.19) 

1.08 (0.78-1.49) 

0.96 (0.87-1.071 

0.92(0.84-1.01) 

0.98 (0.89-1.08) 

0.96 (0.76-1.22) 

1.05 (0.90-1.23) 

0.94(0.81-1.10) 

1.05 (0.91-1.22) 

1.02(0.79-1.331 

1.11 (0.96-1.30) 

0.93 (0.80-1.08) 

1.05 (0.91-1.21) 

1.04(0.79-1.36) 

0.95 (0.81-1.11) 

0.98 (0.84-1.14) 

1.02 (0.88-1.19) 

0.75 (0.54-1.03) 

0.90(0.77-1.05) 

1.12 (0.96-1.30) 

0.98 (0.85-1.13) 

1.12 (0.83-1.60) 

1.02 (0.93-1.13) 

0.93 (0.85-1.02) 

1.03 (0.94-1.13) 

1.02 (0.81-1.27 

1.29 (0.99-1.67) 

1.17 (0.90-1.52) 

1.30 (1.01-1.66)* 

2.10(1.36-3.281* 

1.41 (1.12-1.78)* 

1.16(0.92-1.45) 

1.36 (1.09-1.69)" 

1.82(1.19-2.801" 

1.03(0.78-1.36) 

1.12(0.86-1.46) 

1.12(0.88-1.43) 

1.77 (1.10-2.841* 

0.92(0.72-1.18) 

1.46 (1.13-1.861* 

1.02(0.81-1.30) 

1.17 (0.89-1.971 

1.16 (0.98-1.38) 

1.24(1.06-1.44)* 

1.14(0.98-1.33) 

1.37(0.96-1.98) 

1.32(1.02-1.701* 1.01(0.84-1.22) 1.08(0.97-1.21) 

1.10(0.86-1.41) 1.04(0.87-1.24) 0.95(0.85-1.06) 

1.10 (0.87-1.38) 1.04 (0.87-1.23) 1.00 (0.90-1.11) 

1.89(1.17-3.031* 1.61(1.09-2.361* 0.88(0.69-1.13) 

0.96(0.75-1.23) 

1.18 (0.98-1.42) 

1.05 (0.86-1.27) 

1.33 (0.87-2.03) 

0.89 (0.66-1.21) 

0.85 (0.65-1.10) 

1.11 (0.86-1.42) 

1.18 (0.68-2.06) 

1.20(0.91-1.68) 

0.89 (0.68-1.17) 

0.84(0.65-1.08) 

0.64(0.34-1.23) 

1.10 (0.93-1.29) 

0.99 (0.86-1.16) 

0.93 (0.81-1.08) 

0.99 (0.71-1.39) 

0.96 (0.76-1.20) 

1.02(0.84-1.24) 

0.89 (0.73-1.10) 

1.56 (1.09-2.21)* 

0.93 (0.70-1.22) 

1.30 (1.01-1.67)* 

1.26 (0.99-1.61) 

1.68 (0.96-2.60) 

0.91 (0.89-1.19) 

0.91 (0.69-1.22) 

1.06 (0.83-1.37) 

1.16 (0.64-2.12) 

1.07 (0.93-1.23) 

1.04(0.91-1.20) 

1.01 (0.89-1.16) 

1.46 (1.12-1.89)" 

1.02(0.89-1.16) 

1.01 (0.90-1.13) 

1.00 (0.89-1.12) 

0.99 (0.76-1.29) 

1.03 (0.89-1.20) 

1.02(0.88-1.19) 

1.00(0.86-1.15) 

1.26 (0.98-1.62) 

0.94(0.81-1.09) 

0.97 (0.83-1.13) 

0.98 (0.85-1.13) 

1.07 (0.97-1.19) 

1.09(0.98-1.20) 

1.01 (0.91-1.13) 

1.09 (0.86-1.39) 

1.04(0.92-1.18) 

1.11 (1.00-1.231* 

1.02(0.91-1.13) 

1.10(0.86-1.42) 

0.82 (0.61-1.10) 

1.09 (0.82-1.46) 

1.03 (0.78-1.36) 

0.72 (0.40-1.29) 

0.99 (0.71-1.39) 

1.06 (0.76-1.46) 

0.82 (0.60-1.12) 

0.82 (0.46-1.47) 

1.14(1.00-1.31)* 1.18(0.70-2.00) 

1.09 (0.95-1.28) 1.53 (0.97-2.40) 

0.96 (0.84-1.10) 

1.14(0.88-1.49) 

1.08 (0.94-1.23) 

0.98 (0.86-1.12) 

0.94(0.82-1.08) 

0.67 (0.47-0.94)" 1.06 (0.75-1.49) 

0.99 (0.92-1.07) 1.03 (0.96-1.111 

0.97 (0.90-1.04) 1.01 (0.94-1.09) 

1.02 (0.95-1.10) 1.01 (0.96-1.08) 

0.89 (0.75-1.08) 1.02 (0.86-1.20) 

0.87(0.68-1.30) 

2.76 (1.34-6.70)» 

0.88 (0.69-1.25) 

1.18 (0.80-1.74) 

0.99 (0.70-1.39) 

0.57 (0.26-1.30) 

0.88 (0.72-1.09) 

1.07 (0.87-1.32) 

0.97 (0.80-1.18) 

1.12(0.74-1.70) 

Off significantly different from I (P<0.06l 
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effect estimates between urban and non-urban panels were generally small and the 

confidence intervals showed considerable overlap. There was essentially no 

association with SO2 and NO2 in the non-urban areas. The prevalence of > 1 0 % 

decrements in morning PEF showed a consistent positive association with PM10 

and BS (not shown in table 4 ) . Statistically significant associations were found 

with lag 2 and 5-day mean concentrations, and for BS also with previous day 

concentration. For example, Odds Ratios for lag 2 of PM10 and BS were 1.23 ( 9 5 % 

CI: 1 .01-1 .50) and 1.26 ( 9 5 % CI: 1 .06 -1 .49 ) , respectively. 

Both in the urban and the non-urban areas, 5-day mean concentrations appeared to 

be more related to respiratory health indicators than present day or lagged 

exposure variables. 

Separate analyses for medicated and non-medicated symptomatic children were 

conducted to evaluate differences in response to air pollution. For this purpose, 

children were divided in those who did or did not report use of bronchodilators or 

maintenance medication during the study period. 

Table 5 presents the associations between PM10 concentrations and evening PEF, 

LRS and bronchodilator use after stratification for medication use. It shows that In 

the urban panels, PM10 was strongly associated with LRS in the medicated 

children, but not in the non-medicated children. The association between PM10 and 

decrements in evening PEF was not more pronounced in medicated children, 

however. Medicated children reported significantly more LRS and bronchodilator 

use with increasing PM10 concentration in the urban areas, but not in the non-

urban areas. Although results are only presented for PM10, similar results were 

found for BS and to a lesser extent for SO2. 

The associations between air pollution indices and respiratory health indicators in 

non-symptomatic children are presented in table 6. In both the urban and non-

urban areas, air pollution indices were positively associated with the prevalence of 

> 1 0 % decrements in evening PEF. The most consistent associations were 

observed for PM10 and Black Smoke. Positive associations were also found 

between air pollution indices and the prevalence of > 1 0 % decrements in morning 

PEF in the urban areas, but not in the non-urban areas (not shown). No 

associations were observed between the prevalence of cough, phlegm and URS, 

and air pollution indices in the urban areas. In the non-urban areas, there was a 

tendency towards associations in the unexpected direction of a lower prevalence 

with higher air pollution concentrations for all pollutants except sulfate. 
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Table 5. Odds Ratios (OR) with 95% confidence intervals (95% CI) for the association 
between air pollution and the prevalence of > 10% decrements in evening PEF and 
acute respiratory symptoms in medicated and non-medicated symptomatic children, 
calculated from combined effect estimates. OR's for an increase of 100 pg/m3 in 
PMw, 40 pg/m3 for Black Smoke, SO2 and NO2 and 15 pg/m3 for sulfate. 

Urban areas, medicated children In=341 Non-urban areas, medicated children ln=47l 

Evening PEF LBS Bronchodilator use Evening PEF LBS Bronchodilator use 

PM10 

lagO 1.37(0.81-2.31) 1.80(1.17-2.75)' 1.44 (1.07-1.93)' 1.45(0.93-2.25) 0.96(0.76-1.22) 0.83(0.59-1.17) 

lag 1 1.41(0.86-2.32) 2.09(1.43-3.07)» 1.30(0.97-1.741 1.37(0.94-1.99) 1.09(0.87-1.37) 1.04(0.75-1.45) 

lag 2 1.40(0.87-2.26) 1.72(1.19-2.60)» 1.37(1.02-1.83)» 1.33(0.92-1.91) 1.04(0.83-1.31) 1.07(0.78-1.46) 

5 day mean 1.41 (0.68-2.94) 2.67(1.52-4.70)* 2.25(1.34-3.79)« 2.25 (1.05-4.81)* 1.24 (0.76-2.02) 0.75(0.38-1.50) 

Urban areas, non-medicated children In = 1071 Non-urban areas, non-medicated children (n= 1291 

Evening PEF LBS Bronchodilator use Evening PEF LBS Bronchodilator use 

PMio 

lag 0 1.36 (0.92-2.00) 1.09 (0.76-1.56) 

lag 1 1.23 (0.86-1.75) 1.15 (0.80-1.63) 

lag 2 1.55(1.12-2.13)» 1.31 (0.94-1.83) 

5-day mean 2.00(1.15-3.47)« 1.24(0.76-2.04) 

1.20 (0.88-1.64) 0.94 (0.68-1.30) 

1.00 (0.76-1.32) 0.78 (0.57-1.08) 

1.04 (0.80-1.36) 0.93 (0.69-1.24) 

1.90(1.10-3.30)* 3.70(1.84-7.44)» 

OR significantly different from 1 IP< 0.051 

There were no statistically significant differences between the Odds Ratios in urban and 

non-urban areas (table 6 ) . In contrast to the findings among the symptomatic children, 

statistically significant associations among the non-symptomatic children were mainly 

found at 0- and 1 -day lags, and not when using the 5-day means as exposure variables. 

In the non-symptomatic panels, the prevalence of LRS was so low that analyses resulted 

in extreme effect estimates and standard errors in all winters except 1 9 9 3 / 1 9 9 4 , when 

the mean prevalence was relatively high. The combined effect estimates for the three 

winters were (nearly) identical to the panel-specific effect estimates for the winter of 

1 9 9 3 / 1 9 9 4 , since the other winters hardly contributed to the weight. Therefore, the 

associations with LRS are not presented in the tables. However, in the winter of 

1 9 9 3 / 1 9 9 4 , a generally positive correlation between particle indices and respiratory 

health was observed, especially in the non-urban panel where the effect estimates were 

more stable due to the higher prevalence. For example, the effect estimates for LRS in 

association with PMio-lag1 were 1.44 ( 9 5 % CI: 0 .54 -3 .83 ) in the urban area and 1.58 in 



Table 6. Odds Ratios (OR) with 95% confidence intervals (95% CI) for the association between air pollution and the 
prevalence of > 10% decrements in evening PEF and acute respiratory symptoms in non-symptomatic 
children, calculated from combined effect estimates. OR's for an increase of 100 pg/m3 in PMio, 40 pg/m3 

for Black Smoke, SO2 and NO2 and 15 pg/m3 for sulfate. 

Urban areas Non-urban areas 

Evening PEF URS Cough Evening PEF URS Cough 

PM10 

lag 0 

lag 1 

lag 2 

5 day mean 

Black Smoke 

lag 0 

lag 1 

lag 2 

5-day mean 

Sulfate 

lag 0 

lag 1 

lag 2 

5-day mean 

SO: 

lag 0 

lag 1 

lag 2 

5-day mean 

NO2 

lag 0 

lag 1 

lag 2 

5-day mean 

1.32 11.04-1.67)' 

1.06 (0.84-1.34) 

1.15 (0.93-1.42) 

1.27 (0.93-1.74) 

1.45 (1 .12-1 .87) ' 

1.13 (0.90-1.43) 

1.26 (1.03-1.54)» 

1.42 (1 .01-1 .99) ' 

1.15 (0.87-1.51) 

1.11 (0.86-1.44) 

1.10 (0.86-1.40) 

1.29 (0.87-2.15) 

1.13 (0.88-1.47) 

1.16 (0.90-1.50) 

1.10 (0.87-1.39) 

1.33 (0.89-2.00) 

1.13 (0.94-1.35) 

1.14(0.97-1.34) 

1.05 (0.89-1.23) 

1.17 (0.84-1.63) 

1.07 (0.87-1.31) 

1.08 (0.88-1.32) 

0.97 (0.80-1.19) 

1.06 (0.71-1.59) 

1.09 (0.88-1.36) 

1.17 (0.96-1.43) 

0.91 (0.74-1.11) 

1.18 (0.78-1.80) 

1.21 (0.97-1.51) 

0.97 (0.79-1.19) 

1.06 (0.85-1.30) 

1.23 (0.75-2.01) 

0.92 (0.76-1.11) 

1.10 (0.91-1.34) 

1.09 (0.90-1.31) 

0.92 (0.76-1.11) 

0.94 (0.79-1.13) 

0.90 (0.64-1.27) 

0.92 (0.75-1.12) 

1.06 (0.88-1.27) 

1.05 (0.88-1.25) 

0.99 (0.71-1.38) 

1.09 (0.89-1.34) 

0.87 (0.71-1.07) 

1.10 (0.90-1.33) 

0.81 (0.52-1.26) 

0.93 (0.78-1.11) 

1.02 (0.84-1.23) 

0.83 (0.70-0.99) * 0.97 (0.83-1.15) 

0.66 (0.42-1.03) 1.04 (0.69-1.57) 

1.05 (0.92-1.20) 

0.97 (0.86-1.11) 

0.95 (0.84-1.08) 

1.08 (0.75-1.56) 

1.02 (0.89-1.17) 

0.91 (0.81-1.041 

1.01 (0.89-1.14) 

1.05 (0.74-1.48) 

1 .40(1 .09-1 .80) ' 1.13(1.00-1.28) 1.00(0.91-1.11) 

1.30 (1 .03-1.64) ' 0.95 (0.83-1.08) 0.88 (0 .80-0.97) ' 

1.14(0.90-1.44) 0 .87(0 .77-0 .99)* 0 .95(0.86-1.04) 

1.41(0.93-2.14) 0.86(0.63-1.17) 0 .96(0.81-1.14) 

1.60 (1 .29-2.00) ' 

0.92 (0.76-1.12) 

1.14(0.94-1.38) 

1.14(0.80-1.76) 

1.33 (0.95-1.86) 

0.93 (0.69-1.24) 

1.19 (0.92-1.55) 

1.35 (0.63-2.88) 

1.10 (0.87-1.39) 

1.07 (0.85-1.35) 

1.10 (0.88-1.38) 

1.14(0.66-1.96) 

1.14(0.98-1.33) 

1.08 (0.94-1.25) 

0.99 (0.85-1.15) 

1.21 (0.89-1.63) 

1.04(0.90-1.20) 

0.98 (0.86-1.12) 

0.90 (0.79-1.03) 

0.92 (0.67-1.24) 

1.09 (0.90-1.32) 

0.96 (0.79-1.15) 

0.96 (0.80-1.14) 

1.34(0.98-1.84) 

1.07 (0.92-1.25) 

0.85 (0.72-1.00) 

0.94 (0.80-1.10) 

0.78 (0.52-1.18) 

1.03 (0.94-1.13) 

0.97 (0.89-1.07) 

1.01 (0.92-1.09) 

0.98 (0.80-1.21) 

0.94 (0.84-1.05) 

0.90 (0.82-0.99)* 

0.92 (0.83-1.01) 

0.87 (0.74-1.03) 

1.17 (1.01-1.35)* 

1.05 (0.90-1.23) 

0.95 (0.83-1.10) 

1.15 (0.86-1.53) 

0.86 (0 .76-0.97) ' 

0.95 (0.83-1.08) 

0.94 (0.82-1.06) 

0.87 (0.68-1.12) 

0.93 (0.87-1.00) 

0.90 (0 .84-0 .97) ' 

0.96 (0.90-1.03) 

0.93 (0.82-1.05) 

OR significantly different from 11P<0.05) 



Table 7. Odds Ratios (OR) with 95% confidence intervals (95% CI) for the association between air pollution and the prevalence 
of >10% decrements in evening PEF and acute respiratory symptoms in symptomatic children from the urban area, 
calculated from combined effect estimates obtained in two-pollutant models. OR's for an increase of 100 pg/m3 in PMw, 
40 pg/m3 for Black Smoke and SO2 and 15 pg/m3 for sulfate. 

first pollutant second pollutant 

Evening PEF LRS Bronchodilator use Evening PEF LRS Bronchodilator use 

PM10 SO2 

lag 0 1.33 (0.95-1.87) 1.24 (0.91-1.68) 1.29 (0.97-1.71) lag 0 1.14(0.80-1.61) 1.29 (0.94-1.76) 0.95 (0.72-1.25) 

lag 1 1.45 (1.05-2.01)« 1.48 (1.10-1.99)« 0.84 (0.62-1.15) lag 1 0.75 (0.51-1.09) 1.04 (0.75-1.46) 1.71 (1.26-2.32)« 

lag 2 1.22 (0.89-1.67) 1.27 (0.95-1.71) 1.29 (0.96-1.74) lag 2 1.56 (1.13-2.13)« 1.05 (0.77-1.43) 0.94 (0.70-1.28) 

5 day mean 1.81 (1.04-3.16)« 1.46 (0.89-2.42) 1.84(1.06-3.19)« 5 day mean 1.03 (0.50-2.10) 1.13 (0.60-2.13) 0.76 (0.45-1.30) 

PM10 Black Smoke 

lag 0 1.28 (0.85-1.93) 1.51 11.04-2.18)* 1.16 (0.86-1.57) lag 0 1.04 (0.71-1.55) 0.94 (0.65-1.36) 1.31 (0.98-1.75) 

lag 1 1.03 (0.69-1.56) 1.86 (1.30-2.67)* 1.33 (1.00-1.76)« lag 1 1.04 (0.72-1.50) 0.76 (0.54-1.07) 1.05 (0.79-1.38) 

lag 2 1.59 (1.07-2.35)* 1.22 (0.84-1.78) 1.00 (0.74-1.34) lag 2 0.85 (0.60-1.20) 1.14 (0.82-1.57) 1.34(1.03-1.76)« 

5-day mean 0.74 (0.27-2.05) 1.80 (0.68-4.77) 2.49 (0.80-7.81) 5-day mean 0.86 (0.37-1.86) 1.07 (0.47-2.42) 1.45 (0.58-3.64) 

PM10 Sulfate 

lag 0 1.39 (0.92-2.09) 1.61 (1.08-2.40)« 1.59 (1.13-2.24)« lag 0 1.06 (0.73-1.55) 0.87 (0.61-1.25) 0.77 (0.55-1.06) 

lag 1 1.22 (0.78-1.88) 1.42 (0.98-2.07) 1.05 (0.74-1.49) lag 1 0.97 (0.66-1.42) 1.02 (0.78-1.42) 1.11 (0.79-1.56) 

lag 2 1.32 (0.88-1.97) 1.24 (0.87-1.76) 1.27 (0.91-1.78) lag 2 1.18 (0.84-1.67) 1.07 (0.78-1.47) 1.05 (0.76-1.44) 

5-day mean 1.11 (0.53-2.32) 1.76 (0.95-3.28) 2.21 (1.21-4.05)« 5-day mean 1.58 (0.73-3.40) 1.21 (0.62-2.37) 0.95 (0.50-1.79) 

Black Smoke Sulfate 

lag 0 1.23 (0.83-1.83) 1.21 (0.85-1.72) 1.58 (1.20-2.09)« lagO 1.19 (0.82-1.73) 1.06 (0.76-1.49) 0.90 (0.67-1.20) 

lag 1 1.10 (0.77-1.58) 0.91 (0.65-1.27) 1.17 (0.88-1.56) lag 1 1.03 (0.71-1.49) 1.32 (0.95-1.84) 1.04 (0.78-1.40) 

lag 2 0 .94(0.67-1.31) 1.17 (0.86-1.58) 1.32 (1.00-1.73)* lag 2 1.37 (0.95-1.96) 1.09 (0.79-1.50) 0.93 (0.71-1.23) 

5-day mean 1.02 (0.49-2.10) 1.47 (0.82-2.62) 1.82 (0.90-3.68) 5-day mean 1.96 (0.82-4.70) 1.23 (0.62-2.45) 1.10 (0.50-2.41) 

OR significantly different from 1 fP<0.05). 
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The association between nitrate concentration and respiratory health was analysed 

as well . However, due to the high correlation with sulfate (R between 0 .75 and 

0 .87) the effect estimates for nitrate were nearly identical to those for sulfate, and 

therefore, the results are not presented. Sulfate was chosen to serve as an 

indicator for secondary aerosols, representing particles that mainly result from long 

distance transport. 

Table 7 presents the associations between air pollution indices and selected 

respiratory health indicators in symptomatic children in urban areas, calculated 

from two-pollutant models. In two-pollutant models where PM10 and SO2 were 

included simultaneously, an independent effect of PM10 remained whereas no 

consistent pattern was observed for SO2. In models of PM10 with BS, and of PM10 

with sulfate, the PM10 effects generally remained, whereas the estimates for BS 

and sulfate often became non-significant. In models of BS with sulfate no 

consistent pattern emerged. Two-pollutant models in the symptomatic panels from 

the non-urban areas also indicated that the associations wihth PM10 were most 

consistent (not shown), but the pattern was less clear than for the urban panels, 

as less consistently positive assocations were also observed in the one-pollutant 

models. 

The associations with 5-day mean concentrations generally became less consistent 

in the two-pollutant models, probably because of the high correlation among these 

variables. 

Discussion 

In this study, w e have found that in symptomatic children living in urban areas, the 

daily prevalence of lower respiratory symptoms (LRS), bronchodilator use and 

decrements in evening PEF had a consistent positive association with the 

concentration of PM10, Black Smoke and sulfate. There was also a positive 

association with SO2, but not with NO2. After stratification for medication use r the 

prevalence of LRS was strongly associated with particle concentrations in 

medicated children, but not in non-medicated children. In two-pollutant models 

evaluating indicators of particulate air pollution (PM10, BS and sulfate) and SO2 

simultaneously, independent effects were found more consistently for particles 

than for SO2. In symptomatic children living in non-urban areas weaker and less 

consistent positive associations were observed with indicators of particulate air 

pollution. No associations with the gaseous pollutants SO2 and NO2 were found. In 
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non-symptomatic children, the daily prevalence of PEF decrements was positively 

correlated with PMio and BS in both the urban and non-urban areas. The 

prevalence of upper respiratory symptoms (URS), cough and phlegm was not 

associated with air pollution in any of the subgroups. 

In a review article, Dockery and Pope 3 combined the results of the then available 

panel studies from the US and Europe, and calculated that an increase in PMio 

concentration of 1 0 0 pqlm3 was associated with an increase in the prevalence of 

LRS and bronchodilator use of respectively 3 0 % and 2 9 % . Although the definition 

of LRS was not exactly the same as in our study, these effect estimates 

correspond well to the ones from our study; w e found that for symptomatic 

children in the urban area an increase in same-day PMio concentration was 

associated with an increase of 3 4 % and 2 9 % in the prevalence of LRS and 

bronchodilator use, respectively. For URS and cough, smaller increases of 7 % and 

1 2 % were reported by Dockery and Pope 3 . Thus, the fact that in our study, larger 

relative increases were found for LRS and bronchodilator use than for URS and 

cough is in agreement with earlier panel studies. 

Both in the urban and non-urban symptomatic panels, 5-day mean concentrations 

appeared to be more related to respiratory health indicators than present day or 

lagged exposure variables. This is in line with other s tud ies 1 4 , 1 8 and suggests that 

changes in respiratory status might reflect cumulative exposure of several days 

prior to the measurement. 

Although the medicated children in the urban areas increased their bronchodilator 

use in association with elevated particle concentrations, the strongest increase in 

LRS was observed in this subgroup. Apparently, increased bronchodilator use did 

not prevent the adverse effects of particles on respiratory health. This is in 

agreement with the results of stratified analyses based on medication use in a 

panel study of mild asthmatic children in Sokolov, Czech Republic 1 7. Medicated 

children increased their beta-agonist use in association with increased particle 

concentrations, but this did not prevent adverse effects on other health outcomes 

(in that case decreases in PEF and increases in the prevalence of cough 1 7 . The 

authors speculated that this was a result of inadequate supplies of asthma 

medication in the Czech Republic. In the Netherlands, however, this is not a 

plausible explanation. Apparently, medication use does not suppress the adverse 

effects of particulate air pollution in asthmatics, as was suggested in other 

studies 1 3 , 2 8 . 

Compared to other panel studies, a different approach was used to analyse PEF 
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data, focusing not on decrements in population average PEF but on the fraction of 

children that is experiencing substantial PEF decrements. In a re-analysis of data 

from seven panels including school children, symptomatic and non-symptomatic 

children, Hoek et a / . 1 5 have compared the t w o approaches. It was demonstrated 

that an increase of 1 0 u.g/m3 of the same day PM10 concentration was associated 

with a decrement in the population mean PEF of 0 . 0 7 % . A significant increase of 

the prevalence of > 1 0 % PEF decrements of 2 . 7 % was associated with the same 

exposure. For an increase of 1 0 0 ug/m 3 this corresponds to an Odds Ratio of 1 . 3 1 , 

a value very similar to the Odds Ratios found in our study. An advantage of the 

approach proposed by Hoek et a / . 1 6 is that, as in symptom analysis, it provides 

effect estimates that focus on the fraction of the population experiencing a specific 

(adverse) response. 

Can some sort of bias have caused the associations between particle 

concentration and respiratory health observed in our study? It is unlikely that 

selection processes could have caused bias in this time series study because each 

child served as its own control. Bias due to the low response may have occurred in 

the unlikely case that within the subgroup of children with/without chronic 

respiratory symptoms, response was associated with susceptibility to winter air 

pollution. 

Observer bias in symptom reporting might have occurred when parents of the 

children were informed by the mass media about air pollution episodes. However, 

during the study period all air pollutant concentrations were below the limits used 

in the Dutch smog alert system, and no warnings were issued. Potential 

confounders that might bias the association between air pollution and respiratory 

health in t ime series studies are meteorologic variables (mainly ambient 

temperature), respiratory infections and long term time trends. All associations 

were adjusted for ambient temperature and for non-linear long term time trends 

(generally in the order of weeks) in the prevalence of symptoms, bronchodilator 

use and PEF decrements. The adjustment for time trends was more detailed than 

in previous panel studies which either specified no time trend or a linear trend. The 

incidence of influenza-like illness (ILI) in the general population, registered by a GP 

sentinel system, was used to adjust for the potential confounding effect of 

respiratory infections. In previous panel studies, no adjustments for the potential 

confounding effect of respiratory infections were made. W e will report in a 

separate paper 1 1 that the ILI incidence in the general population was associated 

with respiratory health in selected panels. 
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In our study, effects on PEF were somewhat larger for symptomatic than for non-

symptomatic children. In a previous Dutch study in school children, the association 

between particulate air pollution and lung function was reported to be similar in 

children with and without chronic respiratory symptoms 7 . In contrast, Neas et a / . 1 8 

found that children without chronic respiratory symptoms appeared to be less 

susceptible to the effects of air pollution on PEF than were symptomatic children. 

Pope and Dockery 1 4 observed effects on PEF in both symptomatic and 

asymptomatic children, but in symptomatic children stronger associations were 

found. 

In our study, air pollution indices were not associated with respiratory symptoms 

in the non-symptomatic panels, whereas in symptomatic panels an association 

with LRS and bronchodilator use was found. However, both LRS and 

bronchodilator use were never or rarely reported in the non-symptomatic panels. 

The finding that air pollution indices were not associated with respiratory 

symptoms in the non-symptomatic panels is in agreement with other studies. In 

t w o Dutch studies 6 , 7 no association between particulate air pollution and 

respiratory symptoms was observed in mainly healthy school children. Pope and 

Dockery 1 4 reported positive associations between PM10 and the prevalence of URS, 

LRS and cough in both symptomatic and non-symptomatic panels, but the 

associations were weaker, and generally non-significant, in the non-symptomatic 

panels. LRS could be analyzed in the asymptomatic panel 1 4 because the definition 

was different from ours (i.e. trouble breathing, wheeze, dry cough instead of 

shortness of breath, wheeze, asthma attacks). 

Thus, non-symptomatic children appear less susceptible to the acute effects of air 

pollution than symptomatic children because these do not develop the asthmatic 

symptoms that are most affected by increasing levels of air pollution. 

It can not easily be concluded from the one-pollutant models which indicator for air 

pollution (PM10, Black Smoke, sulfate or SO2) was most consistently associated 

with respiratory health in the panels, although the associations with sulfate were 

less consistent in the non-symptomatic panels. Therefore, two-pollutant models 

evaluating t w o air pollution indicators simultaneously were specified for the 

symptomatic panels in an attempt to separate effects from specific components. 

The concentrations of PM10, BS sulfate and SO2 were intercorrelated, as 

meteorology is a dominating factor in determining day-to-day variations in air 

pollution concentrations. However, as indicated by the standard errors associated 

with the regression coefficients, this did not lead to collinearity problems. The two-
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pollutant models indicated that SO2 was less consistently associated with 

respiratory health than indicators for particulate air pollution, which was expected 

given the low SO2 concentrations that were observed in our study. They also 

indicated that in symptomatic panels in the urban areas, PM10 was more 

consistently associated with health outcomes than BS and sulfate. BS can be 

considered as an indicator of fine black particles (elemental carbon) emitted by 

diesel engines which is generally found in the fine particle fraction. Sulfate is also 

present in the fine fraction and serves as an indicator for secondary aerosols, 

representing particles that mainly result from long-range transport. The finding that 

the most consistent assocations were found with PM10 contrasts with two 

previous time series studies performed in Amsterdam which found that BS was 

more strongly associated with health outcomes than PMio 1 8 , 1 9 . 

In symptomatic children, PM10 and BS concentrations were more strongly and 

consistently associated with bronchodilator use, and to a lesser extent LRS, in the 

urban areas than in the non-urban areas. After stratification by medication use it 

was shown that the differences in response between urban ans non-urban panels 

were restricted to the medicated children. W e can not rule out that differences in 

use of maintenance medication are responsible for this. Calculated over the three 

winters, the mean prevalence of maintenance medication was almost twofold 

lower in the urban areas (8 .5%) than in the non-urban areas ( 1 5 . 5 % ) . As a result, 

children in the urban areas might have to rely more on bronchodilators during 

periods with high air pollution than children in the non-urban areas. Separate 

analyses for children who used only bronchodilators during the study period, and 

for children who used both bronchodilators and maintenance medication could 

demonstrate if use of maintenance medication diminishes the response to air 

pollution, but the number of children that used bronchodilators only was too small 

for a meaningful analysis. Moreover, in such an analysis the amount of 

maintenance medication used by each child during the study period should be 

taken in account. The percentage of the medicated children that ever reported use 

of maintenance medication did not differ between urban and non-urban panels 

( 7 6 . 5 % and 7 8 . 7 % , respectively), but children in the non-urban areas obviously 

took their maintenance medication more often, given the higher prevalence. Thus, 

w e can not conclude that the tendency of stronger particle effects on LRS and 

especially bronchodilator use in the urban areas reflects a more toxic air pollution 

mixture in the urban area, since w e can not exclude that differences in medication 

use are responsible for this. Moreover, in the non-symptomatic panels no tendency 
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of stronger associations in the urban areas was observed. The results of our study 

are to some extent at variance with the results of the PEACE study; in 14 urban 

and 14 non-urban symptomatic panels, including the 1 9 9 3 / 1 9 9 4 panels of our 

study, generally no clear effects of air pollutants on PEF, respiratory symptoms or 

bronchodilator use were found in both urban and non-urban panels 2 0 . The main 

difference between the t w o studies is that in the Dutch studies, w e were able to 

combine findings from three different winter periods whereas in the PEACE study, 

the observation period was about t w o months in one winter only. The Dutch 

studies may therefore have been less vulnerable to the effect of unmeasured 

events during that particular period. Another difference is that w e were able to 

control at least to some extent for the role of respiratory infections through the 

data from the GP sentinel system on ILL 

In this study, exposure assessment was based on fixed site ambient air 

concentrations measured at one location in both areas. In the urban areas, a 

background location was selected instead of a site more directly influenced by 

traffic emissions, because the measurement site needed to be representative for 

other locations in the study area. It might be questioned whether exposure to air 

pollution was adequately characterized by fixed site ambient air concentrations 

only. However, the resulting misclassification would probably result in a downward 

bias of the observed association between air pollution and health endpoints. 

Recent studies in the Nether lands 2 9 , 3 0 have shown that the time series correlation 

between ambient and personal PM10 was reasonably high. No consistent 

differences were found in the strength of the correlation between ambient and 

personal PM10 between children living in Amsterdam and children living in the non-

industrial small town Wageningen 2 9 . 

Transient decrements of FVC and FEVi of 1 0 % have been considered as the 

border between mild and moderate response 3 1 , 3 2 . The effect estimates observed in 

our study indicate that in symptomatic children, an increase of 8 3 % in the number 

of subjects with a PEF response of that magnitude was associated with an 

increase in 5-day mean PM10 concentration of 1 0 0 ug/m 3 . An increase of 5 2 % is 

observed for the prevalence of LRS in symptomatic children, whereas a twofold 

increase in bronchodilator use is associated with a 1 0 0 ug/m 3 increase in 5-day 

mean PM10 concentration. In non-symptomatic children in both urban and non-

urban areas, particle effects on PEF were of smaller magnitude than for 

symptomatic children, and no associations with respiratory symptoms were 

observed. 
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In conclusion, this study suggests that symptomatic children are more susceptible 

to particulate air pollution than non-symptomatic children, and that use of asthma 

medication does not suppress the adverse effects of particulate air pollution. 
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Abstract 

Elderly subjects, and subjects wi th pre-existing disease are often considered to 

be at higher risk of experiencing adverse effects of air pollution than young, 

healthy adults. The air pollution mixture in cities may be different from the 

mixture in non-urban areas, due to the concentration of sources in urban areas. 

W e therefore investigated the association between daily changes in respiratory 

health and air pollution in 5 0 - 7 0 year old adults with and without chronic 

respiratory symptoms, living in urban and non-urban areas. 

Subjects were selected from the general Dutch population wi th a screening 

questionnaire. During three consecutive winters starting in 1 9 9 2 / 1 9 9 3 , Peak 

Expiratory Flow (PEF) and respiratory symptoms were registered daily in a diary. 

Daily measurements of PM10, Black Smoke, sulfate, SO2 and NO2 were 

conducted. 

The contrast in particle concentrations (PM10, Black Smoke and sulfate) between 

urban and non-urban areas was small, but there was more contrast in the 

concentrations of the gaseous pollutants SO2 and NO2. In symptomatic subjects 

living in urban areas, PM10, Black Smoke, sulfate and SO2 concentrations were 

associated wi th the prevalence of large decrements in morning PEF (more than 

2 0 % below the median). Especially Black Smoke was also associated with upper 

respiratory symptoms. In symptomatic subjects living in non-urban areas, no 

significant and consistent associations between air pollution indicators and the 

health endpoints were observed. The differences in effect estimates between 

urban and non-urban symptomatic panels were small and non-significant, 

however. In non-symptomatic adults from both urban and non-urban areas, no 

consistent associations between air pollution and respiratory health were found. 

In conclusion, weak air pollution effects were found only in symptomatic adults 

in the urban area, but the differences in effect estimates wi th the non-urban area 

were small. 
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Introduction 

Severe winter air pollution episodes in the past have been associated wi th 

serious health effects, such as increased hospital admissions and mortality 1 . 

Over the last decades, concentrations of 'traditional' winter air pollution compo

nents such as sulfur dioxide (SO2) and airborne coarse particulates have 

decreased in the Netherlands and other European countries. This decrease can 

be ascribed to emission abatement measures and changes in energy production 

for industrial processes and space heating. Levels of other pollutants such as 

nitrogen dioxide (NO2) and ozone (O3) have increased during the same period, 

mostly due to higher intensity of motorized traffic. Motorized traffic also plays 

an important role in the formation of particulate air pollution, both direct and 

indirect through the formation of secondary aerosols 2. Recent studies have 

demonstrated that current levels of particulate air pollution are associated with 

respiratory morbidity and lung function, even at concentrations well below the 

1 9 8 7 World Health Organization (WHO) Air Quality Guidelines for Europe 3 , 4 . 

Previous studies conducted in the Netherlands have also demonstrated associa

tions between low levels of winter air pollution and respiratory health of 

children 6" 7. These studies have mainly been conducted in non-urban areas. It was 

not clear to what extent such associations would be different in urban areas 

where the contribution of local sources to the air pollution mixture is greater 

than in non-urban areas. 

Most time-series studies investigating acute effects of air pollution on lung 

function and respiratory symptoms have focused on children. The f e w studies 

that have been performed in adults have mainly investigated asthma patients 8 " 1 1 ; 

one study focused on a random sample of the general population 1 2 . Previous 

panel studies in children have demonstrated acute effects of air pollution in, 

among others, children wi th mild chronic respiratory s y m p t o m s 6 , 1 3 , 1 4 . It is not 

clear whether adults wi th mild chronic respiratory symptoms are also susceptible 

to acute effects of air pollution such as transient changes in lung function and 

respiratory symptoms. One study reported that pulmonary function of smoking 

adults wi th mild to moderate chronic obstructive pulmonary disease was 

affected by exposure to particles wi th a 5 0 % cutoff aerodynamic diameter of 10 

um (PM10), but this study was based on only t w o measurements of pulmonary 

function per subject 1 6 . 

Studies investigating effects of air pollution on mortality have suggested that the 
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elderly are a susceptible subgroup 1 6 . To our knowledge, it has never been 

investigated if older adults are also sensitive to acute effects of air pollution on 

lung function and respiratory symptoms. These considerations led us to perform 

a large study during three consecutive winters starting in 1 9 9 2 / 1 9 9 3 . The study 

was designed to compare acute health effects of winter air pollution of subjects 

living in urban and non-urban areas. Selected panels of school children (7-11 yr) 

and older adults ( 5 0 - 7 0 yr) with and without chronic respiratory symptoms were 

studied. This paper describes the results for the adult panels. The results for the 

children are reported elsewhere 1 7 . 

Methods 

Study design 

The study was carried out during three consecutive winters starting in 

1 9 9 2 / 1 9 9 3 . During each winter, panels of adults ( 5 0 - 7 0 yr) wi th and without 

chronic respiratory symptoms were selected from an urban and a non-urban 

area. During the first winter the study had a pilot character, and no panels were 

studied in the non-urban area. 

The adults were selected from the general population wi th a screening 

questionnaire. During study periods which generally lasted three months, daily 

PEF measurements were made, and the occurrence of respiratory symptoms and 

bronchodilator use was registered in a diary. Air pollution was monitored daily on 

central sites in each community. 

Study population 

As study areas w e chose: Rotterdam ( 1 9 9 2 / 1 9 9 3 ) , Amsterdam and Meppel 

( 1 9 9 3 / 1 9 9 4 ) , and Amsterdam and Nunspeet ( 1 9 9 4 / 1 9 9 5 ) . Figure 1 in chapter 2 

of this thesis shows the locations of the areas. Rotterdam is a port and industrial 

city wi th approximately 6 0 0 , 0 0 0 inhabitants. Amsterdam, the nation's capital 

( 7 2 0 , 0 0 0 inhabitants), has a relatively small industrial area; local air pollution is 

caused primarily by emissions from motorized traffic. In addition to local air 

pollution, transport of air pollution from other parts of the Netherlands and from 

other European countries contributes to air pollution levels in Dutch cities. 

Meppel ( 3 2 , 0 0 0 inhabitants) and Nunspeet ( 2 4 , 0 0 0 inhabitants) are small non-

industrial towns. As w e wanted to maximize exposure contrasts between urban 

and non-urban sites, both in Rotterdam and Amsterdam parts of the inner city 
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were selected wi th a high traffic intensity and a high population density, and no 

local industrial sources. 

A random sample of names and addresses from subjects with the Dutch 

nationality and an age between 5 0 and 7 0 yr was obtained from the respective 

municipal authorities. Subjects were approached by mail. Screening 

questionnaires were used to obtain information on chronic respiratory symp

toms. The screening questionnaire consisted of selected questions from the 

questionnaire used in the European Community Respiratory Health Survey 1 8 . 

Subjects were considered eligible for the panel wi th chronic respiratory 

symptoms if they reported a positive answer to one or more of six questions 

about wheeze/asthma (wheeze with shortness of breath; wheeze without a cold; 

shortness of breath at normal walking pace; need to recover breath while 

walking at own pace; asthma attacks in last 12 months; current use of asthma 

medication), or to one or more of five questions about cough/phlegm (last 12 

months: daily cough upon rising, or during day/night for 3 months a year; last 12 

months: daily production of phlegm upon rising, or during day/night for 3 months 

a year; 3 weeks of productive cough during last 3 years). During the winter of 

1 9 9 4 / 1 9 9 5 , the selection question of productive cough was omitted as it was 

felt that it selected subjects wi th 'smokers cough' primarily. Subjects without 

any reported symptoms on the screening questionnaire were considered eligible 

for the 'non-symptomatic' panels. Only subjects who signed informed consent 

letters were included in the study. Symptomatic and non-symptomatic subjects 

were selected randomly from those who fulfilled the selection criteria. The panel 

size w e aimed for was 3 0 subjects in the pilot-study in 1 9 9 2 / 1 9 9 3 , and 7 5 

subjects in each panel in 1 9 9 3 / 1 9 9 4 , 6 0 symptomatic and 4 0 non-symptomatic 

subjects in 1 9 9 4 / 1 9 9 5 . In addition, a detailed questionnaire on chronic 

respiratory symptoms, sources of indoor air pollution (smoking, housing 

characteristics) and socio-economic status was administered to the subjects. 

The study was approved by the Medical Ethical Committee of the University 

Hospital Groningen and the Medical Ethical Committee of the Municipal Health 

Service in Amsterdam. 

Exposure assessment 

Detailed information about the measurement sites and methods is given 

elsewhere 1 9 . Briefly, 24-hour measurements of P M 1 0 , Black Smoke and fine 

aerosol sulfate, nitrate, ammonium and strong acidity were made at fixed sites in 
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the urban and non-urban areas. Measurements ran from 3 PM to 3 P M . The 

particle measurement sites were chosen such that they were close to the living 

area of the participating subjects, and not strongly influenced by local sources 

such as traffic and industry. Information about the ambient concentrations of 

SO2 and NO2 was obtained from the nearest routine monitoring network station. 

SO2 and NO2 concentrations were transformed into 24-hour average 

concentrations from 3 PM to 3 PM. Minimum temperature between 3 PM and 3 

PM was used in the analysis. Temperature data from the nearest site of the 

Dutch Royal Meteorological Society were used. 

Data on the weekly incidence of influenza-type illnesses were obtained from a 

sentinel system operated by the Dutch Institute of Primary Health Care (NIVEL). 

W e recently documented that these data were associated wi th the outcome 

variables measured in our panels 2 0 , for which reason w e include them as 

potential confounders of the association between air pollution and respiratory 

health in this study. 

Health measurements 

During the study period, participants performed PEF measurements twice daily 

using Mini Wright peak f low meters, once in the morning before breakfast and in 

the evening before going to bed. Subjects were instructed to perform the PEF 

measurements before any medication was taken. Every test consisted of three 

maneuvers and participants were asked to note all three readings in a diary. The 

highest of the three PEF readings was used for analysis. The diary was also used 

to register the occurrence of acute respiratory symptoms and medication use 

(cough, phlegm, runny/stuffed nose, woken up with breathing problems, 

shortness of breath, wheeze, attack(s) of shortness of breath wi th wheeze and 

fever). During the winters of 1 9 9 3 / 1 9 9 4 and 1 9 9 4 / 1 9 9 5 , the symptoms eye 

irritation and sore throat were included as well . Subjects were instructed to 

indicate whether the symptoms were absent, slight, or moderate/severe on each 

day. Medication use was assessed by having the subjects indicate the name of 

the medication and the number of units taken. The appropriate use of the diary 

and Mini Wright meter was demonstrated during a home visit. 

Data analysis 

The methods of the PEACE study were used to analyse the association between 

air pollution and respiratory h e a l t h 2 1 , 2 2 . Here only a brief overview and the 
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deviations are discussed. All panels were analysed separately. Next, combined 

effect estimates were calculated for symptomatic and non-symptomatic panels, 

and for urban and non-urban areas separately. 

The symptoms shortness of breath, wheeze and attacks of shortness of breath 

with wheeze were combined as lower respiratory symptoms (LRS). 

Runny/stuffed nose and sore throat were combined as upper respiratory 

symptoms (URS). Only LRS, URS, cough, phlegm and bronchodilator use were 

analysed. For the analysis of Peak Expiratory Flow data, w e analysed the daily 

prevalence of 1 0 % and 2 0 % decrements below the individual median of morning 

and evening PEF 2 3 . W e preferred this method to the analysis of population mean 

P E F 2 1 , 2 2 because it better demonstrates the clinical significance of PEF 

associations. The explanatory variables were 2 4 hour average concentration of 

PMio, Black Smoke, SO2, NO2 sulfate and nitrate, analysed separately. Current 

day concentration (lag 0 ) , previous day concentration (lag 1) , concentration of 

two days before (lag 2) and the average concentration of 0 -4 days before (5 day 

mean) were analysed separately. 

The association between air pollution and the prevalence of PEF-decrements, 

symptoms and bronchodilator use was evaluated wi th logistic regression, 

adjusting for first order autocorrelation. The number of subjects reporting on 

each day was used as weight. Minimum daily temperature, an indicator variable 

for day of week (Monday-Friday vs Saturday/Sunday), t ime trend, and the 

incidence of influenza and influenza-like-illness (ILI) in the general population 

were included in the model as potential confounders. Time trend was included as 

a linear, quadratic and cubic term. This was done because in some panels non

linear t ime trends were observed in the prevalence of symptoms, medication use 

and PEF-decrements. An exception was made for the 1 9 9 2 / 1 9 9 3 pilot study, in 

which the study period was so short (around 6 weeks) that modeling with three 

time trends resulted in removal of short term time variations. For this winter only 

a linear trend was specified. The incidence of ILI, registered by the Dutch 

network of sentinel practices, was included in the model with t w o variables 

representing respectively the mean incidences of 0-6 days earlier, and 7 -13 days 

earlier 2 0. ILI was an addition to the confounders used in the PEACE s t u d y 2 1 , 2 2 . 

Combined effect estimates were calculated for symptomatic and non-

symptomatic panels, and for urban and non-urban areas separately, using the 

regression slopes from the panel-specific logistic regression models for the three 

winters. Combined effect estimates were calculated as the weighted mean of 
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the panel-specific slopes, wi th the weights being the inverse of the panel-

specific variances of the slopes. The standard error of the combined slope was 

calculated as the inverse of the square root of the sum of weights. All statistical 

analyses were conducted using S A S 2 4 . 

Results 

From the 1 1 , 5 1 9 screening questionnaires handed out during the three winters, 

4 , 4 6 4 ( 3 9 % ) were returned. The response was similar in the urban and non-

urban areas ( 3 8 % and 4 0 % , respectively). Of the 4 , 4 6 4 returned questionnaires, 

7 5 1 subjects ( 1 7 % ) were eligible and willing to participate in the symptomatic 

panels, whereas 6 0 1 subjects ( 1 3 % ) were eligible and willing to participate in 

the non-symptomatic panels. From the 3 2 6 symptomatic and 2 7 4 non-

symptomatic subjects that were enrolled, respectively 2 6 6 and 2 2 3 were 

included in the final analysis, the remainder generally having too f e w 

observations. 

In table 1 some characteristics of the panels are shown. Mean age was about 6 0 

years in all panels. Recent shortness of breath and wheeze, chronic cough and 

chronic phlegm were the symptoms with the highest prevalences in the 

symptomatic panels. Symptomatic panels had a higher prevalence of acute 

respiratory symptoms than non-symptomatic panels. The prevalence of > 1 0 % 

decrements in morning PEF was on average 6 . 3 % in the symptomatic panels 

and 4 . 1 % in the non-symptomatic panels, but was substantially higher for non-

symptomatic panels from the urban area ( 6 . 0 % ) than for non-symptomatic 

panels in the non-urban area ( 2 . 2 % ) . In the non-symptomatic panels, 

bronchodilator use was not reported, whereas Lower Respiratory Symptoms 

were rarely reported. In the symptomatic panels, bronchodilator use was higher 

in the non-urban area ( 1 7 % ) than in the urban area ( 8 % ) . 

For both symptomatic and non-symptomatic panels, t ime trends occurred in the 

prevalence of acute respiratory symptoms and decrements in PEF that were not 

always linear. Therefore, t ime trend was adjusted for by specifying a third order 

polynomial of day of study. 

In table 2 the results of the air pollution measurements are presented. The 

median concentrations of PMio and Black Smoke were only slightly higher in the 

urban areas than in the non-urban areas. There was more contrast in the 

concentration of the gaseous pollutants SO2 and NO2. The median 
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Table 1. Characteristics of the panels, three winters combined 

symptomatic 
, urban area 

symptomatic, 
non-urban area 

non-
symptomatic, 
urban area 

non-
symptomatic, 
non-urban area 

Original sample size 173 153 140 134 

Final sample size* 138 128 111 112 

Winter 1992/1993 21 - 15 -

Winter 1993/1994 63 70 56 73 

Winter 1994/1995 54 58 40 39 

Gender (% men} 50 48 40 46 

Mean age (s.d.) 59.1 (6.1) 61.0 (6.2) 58.9 (5.6) 60.1 (6.3) 

Screening prevalence of symptoms 
and medication use 

(% in final sample) 

% Recent wheeze and shortness 
of breath 

43 44 0 0 

% Chronic cough 38 31 0 0 

% Chronic phlegm 40 33 0 0 

% Recent asthma attacks 8 12 0 0 

% Current use of asthma 
medication 

17 25 0 0 

Mean daily prevalence (%) of 
symptoms, medication use and 
PEF-decrements, and mean PEF" 

Lower Respiratory Symptoms 20 27 1.8 1.8 

Upper Respiratory Symptoms 35 26 13 8.6 

Cough 36 31 8.6 7.8 

Phlegm 34 35 7.4 3.9 

Bronchodilator use 7.7 17 - -

>10% decrements in morning PEF 6.8 5.7 6.0 2.2 

> 20% decrements in morning PEF 1.5 0.8 0.2 0.4 

Mean morning PEF (l/min) 439 425 487 507 

" smaller than original sample size because subjects with >40% missing diary information 
were excluded 
pooled prevalences and PEF were calculated as the mean of the panel-specific 
prevalencesand PEF, weighted for the number of person-days that each panel contributed 



Table 2. Median and maximum of 24-hr average air pollution concentrations (pg/m3), and median and range of temperature (°CJ, and incidence 
of influenza-like-illness (incidence/10,000 subjects per week), observed during the study periods in urban and non-urban areas. 

study period 
dd/mm/yy 

Ndays PMio Black 
Smoke 

sulfate SC-2 N O 2 r ILIo-e" 

1992/1993 urban 10/3/93-19/4/93 41 53 (106) 14 (44) 6.3 (13.5) 25 (61) 52 (94) 5.6 (-0.3;9.8) 12 (6-34) 

non-urban - - - - - - - - -

1993/1994 urban 3/11/93-6/3/94 124 37 (123) 12 (65) 2.7 (24) 11 (34) 48 (76) 2.7 (-8.1 ;10.0) 6 (0-70) 
non-urban 20/11/93-6/3/94 107 34 (242) 10 (58) 2.7 (23) 5.0 (42) 25 (54) 1.2 (-10.9;9.3) 6 (0-39) 

1994/1995 urban 24/11/94-5/3/95 102 29 (90) 6.9 (28) 1.6 (10) 6.0 (24) 47 (82) 3.8 (-5.0;11.3) 4 (0-10) 
non-urban 23/11/94-5/3/95 103 24 (97) 5.8 (43) 1.9 (18) 3.6 (17) 22 (57) 3.1 (-11.1;11.3) 8 (2-13) 

minimum daily temperature 
mean of incidence of influenza-like-illness in the previous week 

Table 3. Range of Spearman correlation coefficients between 24-hr average concentration of air pollutants and potential confounding variables, 
calculated separately for the three winters in urban and non-urban areas (n=S). 

P M 1 0 Black Smoke sulfate S O 2 N O 2 V day of study ILIrW ILI7-13" 

P M 1 0 1 0.45 to 0.84 0.54 to 0.78 0.31 to 0.78 0.16 to 0.72 -0.57 to 0.19 -0.31 to 0.30 -0.37 to 0.51 -0.49 to 0.05 

Black Smoke- 1 0.52 to 0.84 0.21 to 0.75 0.54 to 0.88 -0.64 to 0.03 -0.43 to 0.17 -0.31 to 0.43 -0.36 to 0.04 
sulfate - - 1 0.29 to 0.69 0.25 to 0.65 -0.58 to 0.41 -0.26 to 0.08 -0.25 to 0.24 -0.32 to 0.02 

S O 2 - - - 1 0.47 to 0.51 -0.53 to 0.23 -0.53 to 0.25 -0.21 to 0.43 -0.37 to 0.50 

N O 2 - - - - 1 -0.53 to -0.08 -0.51 to 0.20 -0.23 to 0.40 -0.27 to 0.20 

T - - - - - 1 -0.14 to 0.25 -0.25 to 0.16 -0.25 to 0.18 

day of study - - - - - - 1 -0.86 to 0.07 -0.81 to 0.21 
ILIo-e - - - - - - - 1 0.16 to 0.76 
ILI7-13 - - - - - - 1 

mean of incidence of influenza-like-illness in the previous week (mean of 0-6 days before) 
mean of incidence of influenza-like-illness in week before previous week (mean of 7-13 days before) 

* daily minimum temperature 
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concentration of sulfate was slightly lower in the urban than in the non-urban 

areas. Concentrations of aerosol acidity were very low during the three winters 

(not shown). Only a f e w concentrations were above the detection limit of 0 . 1 0 

pglrc? and therefore, concentrations of aerosol acidity were not used in further 

analyses. 

Table 3 presents the range of the Spearman correlations between the various air 

pollutants and potential confounding variables, calculated separately for the 

urban and non-urban areas during the three winters. A high correlation was 

observed between P M 1 0 and the other indicators for particulate air pollution 

Black Smoke and sulfate. The correlations between other air pollutants, and 

between air pollutants and temperature were moderately high. Low correlations 

were observed between air pollutants and the potential confounders day of 

study and influenza-like illness incidence. The correlation between the 

concentrations measured for the same component in the urban and the non-

urban areas was for P M 1 0 , Black Smoke and sulfate higher than 0 .7 for all 

winters. For S O 2 and N O 2 , the correlations were higher than 0 . 6 , except for S O 2 

in the third winter (R = 0 .31 ) when S O 2 levels were extremely low. 

Both for symptomatic and non-symptomatic subjects, the association between 

nitrate concentration and respiratory health was analysed as well . However, due 

to the high correlation wi th sulfate (P. between 0 . 7 5 and 0 .87 ) the effect 

estimates for nitrate were nearly identical to those for sulfate, and therefore, the 

results are not presented. Sulfate was chosen to serve as an indicator for 

secondary aerosols, representing particles that mainly result from long distance 

transport in the Netherlands. 

Table 4 presents the associations between air pollution and the prevalence of 

> 1 0 % and > 2 0 % decrements in morning PEF, respiratory symptoms and 

bronchodilator use in symptomatic subjects. It shows that , in the urban areas, 

consistently positive associations were found between the prevalence of > 2 0 % 

decrements in morning PEF and the concentration of P M 1 0 , Black Smoke, sulfate 

and S O 2 , w i th many associations reaching statistical significance. However, no 

associations were observed with the prevalence of > 1 0 % decrements in 

morning PEF, and wi th the prevalence of both > 1 0 % and > 2 0 % in evening PEF 

(not shown). Only for BS the association was more consistent across the 

different PEF variables. For previous day Black Smoke (borderline) significant 

associations were found for all PEF variables. For the 1 0 % and 2 0 % evening 

PEF decrements OR were 1 .32 ( 0 .98 -1 .77 ) and 4 . 2 4 ( 2 . 4 7 - 7 . 2 9 ) respectively. 



Table 4. Odds Ratios (OR) with 95% confidence intervals for the association between air pollution and the prevalence of >10% decrements, acute respiratory 
symptoms and bronchodilator use in symptomatic adults, calculated from combined effect estimates. OR's for an increase of 100 pg/m3 in PMto, 40 
pg/m3 for Black Smoke, SO2 and /VO2 and 15 pg/m3 for sulfate. 

Urban areas Non-urban areas 

> 10% In pefmo >20% In pefmo LBS URS Broncho > 70% In pefmo >20% m pefmo LUS URS Broncho 

PM10 

lagO 0.84(0.55-1.28) 2.08 (1.06-4.12)« 0.97 (0.80-1.17) 1.09 (0.93-1.29) 0.98 (0.82-1.17) 0.99 (0.67-1.45) 1.11 (0.43-2.81) 1.02 (0.91-1.14) 0.99 (0.85-1.14) 0.98 (0.90-1.06) 

lag 1 0.93(0.63-1.37) 1.49 (0.80-2.77) 0.97(0.81-1.16) 1.12 (0.96-1.32) 0.97 (0.82-1.16) 0.98 (0.70-1.39) 1.36 (0.62-2.97) 1.06 (0.96-1.16) 1.13 (0.99-1.28) 1.06 (0.97-1.13) 

lag 2 0.69 (0.47-1.00) 1.31 (0.69-2.51) 1.02 (0.86-1.22) 1.09(0.93-1.27) 0.93 (0.79-1.10) 1.10(0.81-1.49) 0.72 (0.28-1.84) 0.95 (0.86-1.06) 1.04(0.92-1.19) 1.00(0.93-1.08) 

5 day mean 0.62(0.32-1.21) 1.35 (0.41-4.43) 0.91 (0.67-1.24) 1.37 (1.01-1.87)* 0.73 (0.53-1.01) 1.07 (0.63-1.81) 0.69 (0.16-2.94) 0.99 (0.82-1.18) 1.27 (0.99-1.62) 1.10(0.94-1.28) 

Black Smoke 

lag 0 1.10(0.79-1.56) 1.82 (1.05-3.16)' 0.96 (0.80-1.15) 1.18 (1.01-1.38)" 0.99 (0.84-1.16) 1.10(0.73-1.68) 2.77 (0.89-8.60) 1.07 (0.93-1.22) 0.96(0.82-1.12) 0.96 (0.87-1.07) 

Iag1 1.40 (1.05-1.86)' 1.93 (1.22-3.04)' 0.95 (0.81-1.11) 1.29 (1.12-1.48)' 1.02(0.87-1.18) 0.94(0.67-1.33) 1.09 (0.47-2.53) 1.09 (0.97-1.22) 1.08 (0.95-1.23) 1.04(0.95-1.13) 

lag 2 0.93 (0.69-1.25) 1.27 (0.78-2.06) 0.99 (0.85-1.16) 0.97 (0.84-1.12) 0.89 (0.77-1.03) 1.07 (0.77-1.47) 0.84 (0.34-2.08) 0.99 (0.89-1.11) 0.99 (0.87-1.13) 1.01 (0.93-1.11) 

5-dey mean 1.60 (0.94-2.40) 4.24 (2.46-7.29)' 0.96 (0.76-1.24) 1.61 (1.17-1.95)' 0.78 (0.59-1.03) 1.09 (0.60-1.99) 1.31 (0.28-6.26) 1.00(0.81-1.22) 1.14(0.86-1.60) 1.05 (0.87-1.26) 

Sulfate 

lag 0 0.90(0.64-1.25) 1.79 (1.00-3.20)" 0.93 (0.79-1.11) 1.08 (0.93-1.26) 0.99 (0.86-1.16) 1.16 (0.80-1.68) 0.79 (0.29-2.16) 0.99 (0.87-1.12) 0.92 (0.79-1.07) 1.04(0.94-1.15) 

lag 1 1.10 (0.82-1.49) 1.63 (1.04-2.66)' 1.00(0.85-1.18) 1.10 (0.96-1.27) 0.99 (0.86-1.16) 1.04(0.74-1.45) 1.22(0.60-2.49) 1.05 (0.93-1.18) 1.03 (0.89-1.19) 1.03 (0.94-1.13) 

lag 2 0.83 (0.60-1.15) 1.39 (0.83-2.34) 1.02 (0.87-1.20) 0.99 (0.86-1.14) 0.97 (0.84-1.12) 0.96 (0.68-1.31) 1.51 (0.76-2.99) 0.97 (0.87-1.08) 1.09 (0.94-1.26) 1.02 (0.93-1.13) 

5-day meen 

SO: 

lag 0 

1.38 (0.76-2.48) 

0.86 (0.60-1.23) 

3.66 (1.02-12.48)' 

1.33 (0.66-2.71) 

0.94(0.67-1.30) 

1.01 (0.84-1.20) 

1.46 (1.06-2.01)' 

1.15 (0.97-1.37) 

0.93 (0.67-1.30) 

1.09 (0.93-1.28) 

1.31 (0.69-2.46) 

0.79 (0.48-1.29) 

2.40 (0.75-7.69) 

0.79 (0.22-2.88) 

0.94(0.77-1.14) 

1.11 (0.94-1.30) 

1.23(0.91-1.65) 

0.97 (0.79-1.20) 

1.07 (0.89-1.29) 

1.04(0.91-1.18) 

legi 0.97 (0.68-1.39) 1.98 (1.03-3.79)' 0.97 (0.82-1.16) 1.06 (0.90-1.26) 1.06 (0.89-1.24) 1.08 (0.68-1.72) 0.71 (0.13-4.02) 1.04(0.88-1.22) 1.20(0.98-1.47) 1.08 (0.95-1.22) 

lag 2 0.87 (0.63-1.20) 1.16(0.61-2.19) 0.94(0.80-1.10) 0.97 (0.82-1.14) 0.85 (0.72-0.99)' 0.84(0.38-1.86) 1.23 (0.16-9.45) 0.92(0.80-1.07) 0.99 (0.81-1.21) 1.02(0.88-1.18) 

5-day mean 1.06 (0.67-1.98) 1.76 (0.46-6.91) 0.71 (0.53-0.95)' 1.27 (0.91-1.76) 0.91 (0.65-1.25) 0.82(0.37-1.82) 0.64 (0.08-6.40) 1.01 (0.77-1.32) 1.26 (0.86-1.83) 1.14(0.91-1.41) 

NO* 

lag 0 0.98 (0.78-1.22) 0.96 (0.59-1.57) 0.96 (0.86-1.07) 1.11 (1.01-1.23)' 1.02(0.93-1.12) 1.21 (0.97-1.53) 2.65 (1.50-4.66)' 1.00(0.93-1.09) 1.04(0.96-1.14) 1.01 (0.96-1.07) 

lag 1 1.19 (0.96-1.46) 1.18 (0.77-1.82) 0.92(0.83-1.01) 1.06 (0.97-1.16) 0.98 (0.90-1.07) 0.98(0.77-1.23) 0.97 (0.68-1.63) 1.00(0.92-1.07) 1.08 (0.96-1.16) 0.96 (0.90-1.02) 

lag 2 0.97 (0.79-1.21) 0.81 (0.53-1.24) 0.96 (0.87-1.06) 0.96 (0.88-1.04) 0.96 (0.88-1.04) 0.97 (0.78-1.20) 0.92(0.68-1.46) 0.99 (0.92-1.07) 1.00(0.91-1.10) 1.02 (0.96-1.08) 

5-day mean 0.90 (0.58-1.41) 0.24 (0.08-0.74) ' 0.74 (0.69-0.96)' 0.97 (0.75-1.26) 0.85 (0.67-1.08) 0.92(0.61-1.40) 1.18 (0.54-2.56) 0.92(0.80-1.06) 1.09 (0.89-1.33) 0.95 (0.83-1.08) 

' OR significantly different from 1 lp<0.051 
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Table 5. Odds Ratios (OR) with 95% confidence intervals (95% CI) for the association between 
air pollution and the prevalence of > 10% decrements in evening PEF and acute 
respiratory symptoms in non-symptomatic adults, calculated from combined effect 
estimates. OR's for an increase of 100 pg/m3 for PMw, 40 pg/m3 for Black Smoke, 
SO2 and NO2 and 15 pg/m3 for sulfate. 

Urban areas Non-urban areas 

> 70% in pefmo URS > 70% in pefmo URS 

PM10 

lag 0 1.14(0.59-2.19) 1.00 (0.73-1.37) 0.30 (0.11-0.86)' 0.98 (0.76-1.26) 

lag 1 2.03 (1.16-3.56) 1.22 (0.92-1.61) 1.28 (0.63-2.62) 1.22 (0.97-1.53) 

lag 2 0.68 (0.38-1.21) 0.89 (0.66-1.20) 0.37 (0.16-0.85)" 0.91 (0.70-1.19) 

5 day mean 1.13 (0.47-2.76) 1.04 (0.58-1.86) 0.09 (0.02-0.37)" 1.34 (0.70-2.54) 

Black Smoke 

lag 0 1.27 (0.72-2.24) 1.01 (0.76-1.35) 0.73 (0.42-1.27) 1.00 (0.71-1.40) 

lag 1 1.10 (0.68-1.77) 1.03 (0.79-1.33) 1.44 (0.94-2.21) 1.45 (1.11-1.89)* 

lag 2 0.94 (0.59-1.48) 0.96 (0.75-1.24) 0.86 (0.55-1.34) 0.67 (0.50-0.89)" 

5-day mean 0.89 (0.41-1.91) 0.98 (0.59-1.61) 0.34 (0.10-1.18) 1.31 (0.60-2.86) 

Sulfate 

lag 0 1.87 (1.11-3.15)* 0.92 (0.69-1.23) 0.86 (0.38-1.93) 1.12 (0.81-1.53) 

lag 1 1.69 (1.08-2.66)" 1.13 (0.88-1.46) 1.08 (0.58-2.00) 1.30 (0.96-1.78) 

lag 2 0.97 (0.58-1.62) 0.99 (0.76-1.29) 0.66 (0.35-1.231 0.87 (0.62-1.21) 

5-day mean 2.63 (0.82-8.45) 1.08 (0.61-1.92) 0.13 (0.04-0.50)" 1.47 (0.74-2.92) 

SO2 

lag 0 0.77 (0.39-1.52) 1.10 (0.81-1.48) 2.12 (0.98-4.62) 0.73 (0.49-1.07) 

lag 1 0.94 (0.51-1.73) 1.23 (0.92-1.65) 0.87 (0.38-1.99) 1.71 (1.18-2.46)' 

lag 2 0.86 (0.48-1.55) 0.85 (0.64-1.13) 0.13 (0.04-0.36)' 0.65 (0.44-0.97)' 

5-day mean 1.01 (0.35-2.95) 1.01 (0.56-1.79) 0.03 (0.00-0.24)" 1.06 (0.43-2.61) 

NO2 

lag 0 0.85 (0.57-1.26) 0.95 (0.79-1.16) 0.71 (0.48-1.04) 1.05 (0.87-1.27) 

lag 1 1.00 (0.69-1.49) 0.95 (0.80-1.12) 1.12 (0.76-1.65) 1.00 (0.82-1.21) 

lag 2 0.81 (0.56-1.17) 1.00 (0.85-1.17) 1.09 (0.76-1.58) 0.88 (0.73-1.06) 

5-day mean 0.44 (0.18-1.08) 0.98 (0.63-1.51) 0.54 (0.25-1.20) 0.90 (0.50-1.62) 

* OR significantly different from 1 (P<0.05) 

In the urban areas there was also a tendency towards a positive association 

between the prevalence of URS and indicators for particulate air pollution, 

especially Black Smoke. No consistent associations were observed between air 

pollution and the prevalence of LRS and bronchodilator use. With phlegm and 

cough no associations were observed either (not shown). 

In the symptomatic panels in the non-urban areas no consistent associations 
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were observed between air pollution and respiratory health (table 4 ) . Especially 

for P M 1 0 and sulfate effect estimates for the > 2 0 % decrements in morning PEF 

were similar to those of the urban area however. 

The associations between air pollution and respiratory health in non-symptomatic 

subjects are presented in table 5. It shows that in the urban areas there was a 

tendency towards a positive association between sulfate and the prevalence of 

> 1 0 % decrements in morning PEF. This association was not found in the non-

urban areas. No consistent associations between other respiratory health 

indicators and air pollution were observed in non-symptomatic subjects from the 

urban and the non-urban areas. The prevalence of > 2 0 % decrements in PEF 

was so low in the non-symptomatic panels that it could not be analyzed. 

Discussion 

In this study, w e have found that in symptomatic adults living in urban areas the 

daily prevalence of > 2 0 % decrements in morning PEF had a positive association 

wi th SO2 and indicators of particulate air pollution, especially Black Smoke. The 

prevalence of URS was also positively associated wi th BS and, to a lesser 

extent, wi th P M 1 0 and sulfate. No associations were observed between air 

pollution and the prevalence of other respiratory health indicators, including 

bronchodilator use, LRS, > 1 0 % decrements in morning PEF and > 1 0 % and 

> 2 0 % decrements in evening PEF. NO2 was not related to any of the health 

endpoints. In symptomatic adults living in non-urban areas, no significant and 

consistent associations between air pollution concentrations and indicators of 

respiratory health were observed. The differences in effect estimates between 

urban and non-urban were generally small and non-significant however. In non-

symptomatic adults, no consistent associations were observed at all. 

No consistent pattern of associations with air pollution was found for most of 

the health endpoints that w e studied. However, for > 2 0 % morning PEF 

decrements consistent associations were found in the symptomatic urban panel. 

W e do not believe that these associations represent chance findings resulting 

from the large number of evaluated associations. The consistent pattern of 

associations wi th the different evaluated lags supports this. In addition, an 

association wi th URS is observed as wel l . The lack of associations with 1 0 % 

morning PEF decrements and both evening PEF variables casts some doubt on 

the observed associations however. Only for Black Smoke, some (borderline) 
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significant associations were observed for the other PEF variables. The fact that 

no particle effects on evening PEF were observed is not in agreement wi th other 

studies that were mostly performed in children 3 . The same is true for the lack of 

association wi th LRS and bronchodilator use. The f e w panel studies that focused 

on adult symptomatic (mainly asthmatic) subjects also found that increased 

particle concentrations were most consistently associated wi th increased 

reporting of shortness of breath 8 , 9 , lower respiratory symptoms and 

bronchodilator use 1 0 . W e therefore interpret the observed pattern of associations 

wi th caution, indicating at most a weak effect of outdoor air pollution. 

Potential confounders that might bias the association between air pollution and 

respiratory health in t ime series studies are meteorologic variables (mainly 

ambient temperature), respiratory infections and long term time trends. All 

associations were adjusted for ambient temperature and for non-linear long term 

time trends in the prevalence of symptoms, bronchodilator use and PEF-

decrements. The adjustment for t ime trends was more detailed than in previous 

panel studies which either specified no time trend or a linear trend. The 

incidence of influenza-like illness (ILI) in the general population, registered by a 

GP sentinel system, was used to adjust for the potential confounding effect of 

respiratory infections. In previous panel studies, no adjustments for the potential 

confounding effect of respiratory infections were made. W e report in a separate 

paper 2 0 that the ILI incidence in the general population was associated with 

respiratory health in selected panels. 

It is unlikely that the low response rate to the screening questionnaire resulted in 

a biased effect estimate. In t ime series studies each subject serves as his/her 

own control thus effect estimates are valid for the selected panel. Only in the 

unlikely case that w e preferentially selected subjects that were more (or less) 

susceptible to air pollution, the effect estimates for the panel could be different 

from that of the base study population. 

In this study, exposure assessment was based on fixed site ambient air 

concentrations measured at one location in both areas. It might be questioned 

whether exposure to air pollution was adequately characterized by fixed site 

ambient air concentrations only; if not, the resulting misclassification would 

probably result in a downward bias of the observed association between air 

pollution and health endpoints. Compared to children, adults generally spend less 

time outdoor and consequently, the amount of misclassification in exposure 

assessment might be larger. A number of recent studies in the Netherlands 2 5 " 2 7 
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have shown that the t ime series correlation between ambient and personal P M 1 0 

and especially P M 2 . 6 is high. For 1 0 - 1 2 yr old children and 5 0 - 7 0 yr old adults, 

the median correlation coefficient between ambient and personal P M 1 0 was 0 . 6 3 

and 0 . 5 0 , respectively, which shows that the amount of misclassification in 

adults was only slightly higher than for children. 

Compared to other panel studies, a different approach was used to analyse Peak 

Expiratory Flow data, focusing not on decrements in population mean PEF but on 

the fraction of subjects that is experiencing substantial PEF decrements. In a re-

analysis of data from seven panel studies of school children, symptomatic and 

non-symptomatic children, Hoek and co-workers 2 3 have compared the t w o 

approaches and demonstrated that an increase of 1 0 0 ug /m 3 of the same-day 

P M 1 0 concentration was associated with a decrement in population mean 

evening PEF of 0 . 7 % . The corresponding Odds Ratios for the prevalence of 

> 1 0 % and > 2 0 % decrements were 1.31 and 1 . 4 1 , respectively. Morning PEF 

data were not available in all studies and were therefore not included in the re-

analysis 2 3 . In our panels of symptomatic adults from the urban areas, the Odds 

Ratios for the association between an increase of 1 0 0 ug /m 3 in same-day P M 1 0 

concentration and the prevalence of > 1 0 % and > 2 0 % decrements in evening 

PEF were 1 .05 and 0 . 7 1 , respectively (both non-significant). For morning PEF 

Odds Ratios of 0 . 9 5 (non-significant) and 2 .41 ( 9 5 % CI: 1 .22 -4 .78 ) were found 

for > 1 0 % and > 2 0 % decrements, respectively. A possible explanation for the 

observed association wi th morning PEF, rather than with evening PEF might be 

that morning PEF is less affected by medication used during the day. Since 

morning PEF is more determined by allergen exposure at n ight 2 8 than is evening 

PEF, pollution-allergen interaction might be another explanation. Controlled 

human exposure studies have indicated that exposure to gaseous air pollutants 

may increase the airway responsiveness of asthmatics to inhaled allergen such 

as house dust m i t e s 2 9 , 3 0 . Recently, it has been reported that in a murine model of 

allergic asthma, PM was able to enhance mite-induced airway responsiveness 3 1 , 

suggesting that this might be a reasonable explanation. To our knowledge, no 

controlled human exposure studies investigating pollution-allergen interactions 

have been performed wi th particulate air pollution. Allergic reactions to indoor 

allergens include irritation of the upper respiratory tract, which might also 

explain the observed association between particles and URS. 

No association between indicators of air pollution and respiratory health was 

observed in the panels of non-symptomatic adults. To our knowledge, only one 
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other panel s tudy 1 2 has been performed on adults not selected for chronic 

respiratory symptoms. In that study, sulfate concentration was associated with 

lower respiratory symptoms, while coefficient of haze (a more general measure 

of particulates) w a s not. Neither sulfates nor coefficient of haze were associated 

with upper respiratory symptoms. SO2 and NO2 were not associated with any 

respiratory health outcome. The results of this study agree with the results of 

our study in non-symptomatic adults, although in our study no association with 

LRS was observed. 

Associations between particulate air pollution and respiratory health indicators 

were observed in symptomatic adults from the urban areas, but not from the 

non-urban areas. However, especially for sulfate the 2 0 % morning PEF effect 

estimates in the non-urban areas were similar. In addition, confidence intervals 

for the urban and non-urban areas overlapped widely. If the observed difference 

is interpreted as a true difference between the urban and non-urban areas, it 

might be explained by the higher asthma medication use in the non-urban 

symptomatic panels, as it has been suggested that medication use attenuates 

the association between air pollution and respiratory h e a l t h 1 3 , 3 2 . Bronchodilator 

use was not associated wi th particle concentrations and the health outcomes for 

which particle effects were observed in the urban panels (morning PEF and URS) 

are probably least affected by asthma medication use. Despite this, it can not be 

ruled out that differences in asthma medication use are responsible for the 

observed differences in response between urban and non-urban panels. The 

differences in response between urban and non-urban symptomatic panels is not 

explained by differences in the fraction of atopic subjects ( 4 9 % in urban and 

4 6 % in non-urban area). Exclusion of the data from the first winter from the 

calculation of a combined estimate for the urban panel, resulted in effect 

estimates that were similar to those presented. Most estimates were even 

slightly larger when the first winter was excluded. Thus, the difference is not 

due to the fact that in the first winter, wi th relatively high particle and SO2 

concentrations, only subjects in the urban area were studied. Another, more 

speculative explanation might be that urban particles are more toxic, per ug /m 3 , 

than the non-urban particles. This might be due to the larger number of ultrafine 

particles (UFP; < 0 . 1 urn) in urban air, or to a more toxic chemical composition 

of urban particles. 

Transient decrements of FVC and FEV1 of 2 0 % have been considered as the 

border between moderate and severe response 3 3 , 3 4 . The effect estimates 
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observed in our study indicate that in symptomatic adults from urban areas, an 

increase in 5-day mean BS concentration of 4 0 ug/m 3 is associated wi th a 

fourfold increase in the number of subjects with a response that could be 

characterized as severe. Although the prevalence of > 2 0 % decrements in 

morning PEF was low ( 1 . 5 % ) , this refers to a substantial 6 0 events per 1 0 0 0 

person-days that are attributable to elevated BS concentrations. 

The association between S O 2 and morning PEF w e observed in symptomatic, 

urban panels was found at very low S O 2 concentrations, with medians of 2 5 , 11 

and 6 ug /m 3 during the three winters, respectively, and maximum concentrations 

never higher than 61 ug /m 3 . Although within 2 4 hour time periods, higher short-

term concentrations are observed, direct S O 2 effects seem unlikely at these 

levels 1 . W e think that S O 2 in these circumstances serves as an indicator for a 

more complex mixture which contains the actual responsible component(s). 

Black Smoke was more consistently associated wi th the prevalence of > 2 0 % 

decrements in morning PEF and URS than P M 1 0 and sulfate. BS can be 

considered as an indicator of fine black particles (elemental carbon) emitted by 

diesel engines which is generally found in the fine to ultrafine particle fraction. 

In conclusion, weak particle effects were observed in symptomatic adults from 

urban areas, but not from non-urban areas. The differences in effect-estimates 

between urban and non-urban symptomatic panels were small and non

significant, however. In non-symptomatic adults from both urban and non-urban 

areas no particle effects were observed. 
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Abstract 

Studies in various locations have found effects of daily variations of ambient air 

pollution on acute respiratory symptoms and Peak Expiratory Flow (PEF). Some 

panel studies have suggested that subjects wi th chronic respiratory symptoms 

reported in a questionnaire experience stronger effects than non-symptomatic 

subjects. Panel members have not usually been characterized with objective 

tests, however. The purpose of this study was to evaluate whether the response 

to air pollution differed across subgroups defined by questionnaire and objective 

medical characteristics. 

With a screening questionnaire, 7-11 year old children wi th and without chronic 

respiratory symptoms were selected. Medical characterization included skin prick 

testing for common allergens and determination of total serum IgE as measures 

of atopy, and measurement of bronchial hyperresponsiveness (BHR) to 

methacholine. Participants reported PEF measured twice-daily at home, 

bronchodilator use and acute respiratory symptoms in a daily diary. Daily 

measurements of P M 1 0 were performed at fixed sites. Logistic regression 

analyses adjusting for confounders were conducted in four subgroups for each 

medical characteristic: symptomatic with/without BHR, elevated total IgE or 

positive skin prick test , and non-symptomatic with/without these 

characteristics. 

The most consistent association between P M 1 0 and respiratory health was found 

in symptomatic children who had either high total serum IgE or a positive skin 

prick test. In these children associations both wi th PEF and acute respiratory 

symptoms was found. Associations between P M 1 0 and PEF were found both in 

symptomatic and non-symptomatic children and in atopic and non-atopic 

children. Presence of high serum IgE or a positive skin prick test was not related 

to a stronger response to P M 1 0 in non-symptomatic children. 
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Introduction 

Studies in a variety of locations have observed associations between daily 

changes of ambient air pollution concentrations and respiratory hea l th 1 , 2 . Effects 

of especially particulate matter on daily mortality, hospital admissions, 

medication use, respiratory symptoms and lung function have been f o u n d 1 , 2 . An 

important issue in characterizing health effects of ambient air pollution is 

whether specific subgroups of the population experience more serious effects 

than others. Sensitive subgroups of the population may differ in their response to 

air pollution both qualitatively (i.e., having responses that others do not 

experience) and quantitatively (larger magnitude of the same response). Effects 

on respiratory symptoms and lung function have mostly been studied using the 

panel study design: a group of selected subjects report on a daily basis 

respiratory symptoms, medication use and Peak Expiratory Flow in a diary for 

several months. Characterization of panel study participants has in most studies 

been limited to information available from questionnaires, such as presence of 

specific chronic respiratory symptoms, medication use, age and gender. Several 

panel studies have suggested that children wi th chronic respiratory symptoms 3 , 4 

or as thma 8 , 6 are a sensitive subgroup. Controlled exposure studies have 

confirmed that asthmatics are more sensitive to exposure to S O 2 and sulfuric 

acid 7 . Asthmatics are not a homogenous group, however, and it is possible that 

specific subgroups respond more strongly than others. 

The present study was performed in the framework of a series of panel studies 

of children selected to have either specific chronic respiratory symptoms or no 

chronic respiratory symptoms 8 . In non-symptomatic children associations 

between especially P M 1 0 and evening PEF were found. In symptomatic children 

associations between P M 1 0 and evening PEF, lower respiratory symptoms and 

bronchodilator use were found 8 . The purpose of the present analysis was to 

evaluate whether the response to ambient air pollution was qualitatively and/or 

quantitatively different in children characterized by not only the presence / 

absence of chronic respiratory symptoms, but also by objective measurements of 

atopy and bronchial responsiveness. 
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Methods 

Study design and methods 
The design of the study and methods of exposure and health effect 

characterization have been reported before 8 , 9 . Briefly, during three consecutive 

winters starting in 1 9 9 2 / 1 9 9 3 selected panels of children reported the presence 

of acute respiratory symptoms, medication use and PEF in a daily diary. With a 

screening questionnaire panels of approximately equal size of children wi th and 

without chronic respiratory symptoms were selected. Children were selected into 

the 'symptomatic' panel if they had one or more positive answers to the 

questions about attacks of shortness of breath wi th wheeze in the past 12 

months, cough at night in the past 12 months, wheeze in the past 12 months, 

doctor diagnosed asthma ever. Children were selected into a 'non-symptomatic' 

panel if they had no positive answer at all. In each winter children were selected 

from one urban and one non-urban area. Thus the study included six panels of 

symptomatic and six panels of non-symptomatic children (three winters, one 

urban and non-urban area per winter). 

During the approximately three months study periods, participants performed PEF 

measurements twice daily using Mini Wright peak f low meters, in the morning 

before breakfast and in the evening before going to bed. Subjects were 

instructed to perform the PEF measurements before any medication was taken. 

The highest of the three PEF readings at each test was used for analysis. Only 

evening PEF was analyzed in this paper, since evening PEF was most strongly 

related to air pollution in the main study 8 . For the PEF analysis w e first calculated 

the individual median PEF over the study period for each subject. Next PEF 

decrements of > 1 0 % were calculated below the individual median. The diary 

was also used to record the occurrence of lower respiratory symptoms (LRS = 

shortness of breath, wheeze and attacks of shortness of breath with wheeze) , 

upper respiratory symptoms (URS = runny/stuffed nose and sore throat), cough 

and phlegm and bronchodilator use. Daily prevalence of > 1 0 % evening PEF 

decrements, respiratory symptoms and bronchodilator use were next calculated. 

Exposure to ambient air pollution was characterized by daily 24-hour average 

measurements of P M 1 0 , Black Smoke and fine aerosol sulfate and nitrate at fixed 

sites in the selected urban and non-urban areas during the full study period 9 . 

Measurements were conducted from 3 pm to 3 pm. Information about the 

ambient concentrations of S O 2 and N O 2 was obtained from the nearest routine 
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monitoring network station. Temperature data from the nearest site of the Dutch 

Royal Meteorological Institute were obtained. Data on the weekly incidence of 

influenza-type illnesses were obtained from a sentinel system operated by the 

Dutch Institute of Primary Health Care (NIVEL). 

Subject characterization 
Children were characterized at baseline by measurement of bronchial 

responsiveness to methacholine, determination of total serum IgE and skin prick 

testing wi th common allergens. Methods of determination of bronchial 

responsiveness and total IgE were reported be fo re 1 0 , 1 1 . Subjects wi th a fall of 

2 0 % or greater in FEVi at a cumulative dose of 2 . 0 mg methacholine or less 

were considered to have bronchial hyperresponsiveness (BHR). Serum total IgE 

was measured wi th a sandwich enzyme immunoassay 1 2 . The median (60 kll/l) 

was used as the cutoff to define subjects with 'high' and ' low' IgE levels 1 1 . Skin 

prick testing was performed using the methods of the PEACE s tudy 1 3 , which 

were based upon the European Community Respiratory Health Survey 1 4 . Briefly, 

children were tested wi th allergens from house dust mite, cat fur, dog fur, birch, 

pollen of t imothy grass and Cladosporium herbarum. Each test included a positive 

control (histamine) and a negative control (diluent). All allergens were obtained 

from ALK laboratories, Denmark. A child was considered atopic if there was a 

wheal reaction of more than 2 mm to one of the tested allergens and the positive 

control was more than 0 m m and the negative control was equal to or less than 

1 m m . 

Data analysis 

For each evaluated medical characteristic separately, children were divided into 

four subgroups based upon symptom status and presence/absence of a medical 

characteristic. For BHR w e thus defined symptomatic children wi th BHR; 

symptomatic children without BHR; non-symptomatic children with BHR and non-

symptomatic children without BHR. The association between air pollution and 

respiratory health was analyzed for the different winters and towns separately. 

Logistic regression wi th additional modeling of first order autocorrelation of the 

residuals was performed. All associations were adjusted for non-linear time 

trends (linear, quadratic and cubic terms), influenza epidemics, minimum 

temperature and day of the week (weekdays versus weekend/holidays). These 

methods were the same as used in the main study 8 . For each subgroup six 



Air pollution effects in symptomatic, atopic children 137 

logistic regression slopes were available for each combination of health outcome 

and exposure variable. These estimates were combined into a weighted average 

slope per subgroup, using the inverse of the square of the standard error as the 

weight. The standard error of the combined mean slope was calculated as the 

inverse of the square root of the sum of the weights. 

Because the focus of this paper is on comparing responses across subgroups of 

the children, w e will only report on associations between P M 1 0 and respiratory 

health. Associations between air pollution and respiratory health were most 

consistent for P M 1 0 in the main study 8 . W e evaluated the concentration of the 

same day (lag 0 ) , previous day (lag 1) , t w o days ago (lag 2) and the mean of the 

previous five days in separate models. In evaluating the responses in the 

subgroups w e considered the statistical significance of the association between 

the evaluated lag and a specific health endpoint and the consistency of the 

association for the four lags. For example, a significant Odds Ratio above unity 

for one lag accompanied by three non-significant Odds Ratios below unity was 

not considered as evidence for a consistent association between the specific 

health endpoint and P M 1 0 . 

All calculations were performed using the Statistical Analysis System (SAS) 

version 6 . 1 2 on an Alpha mainframe computer. 

Results 

Population of children 

In total 6 3 3 children were included in the study of which 3 2 0 were symptomatic 

and 3 1 3 were non-symptomatic according to the baseline questionnaire. Valid 

data on total serum IgE, bronchial responsiveness and skin prick test were 

obtained from 7 9 , 8 7 and 9 6 % of the children respectively. The percentage of 

children wi th valid data did not differ between symptomatic and non-

symptomatic children for bronchial responsiveness and skin prick test. There was 

a tendency (p-value of a Chi square test 0 .07 ) towards a lower percentage of 

valid data for non-symptomatic children ( 7 6 % ) compared to symptomatic 

children ( 8 2 % ) for total serum IgE. 

Symptomatic children more frequently had high serum total IgE, a positive skin 

prick test and bronchial hyperresponsiveness than non-symptomatic children. 

Among symptomatic and non-symptomatic children, the prevalence of elevated 

serum total IgE was 5 9 % versus 4 1 % , a positive skin prick test 4 9 % versus 
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2 7 % and of BHR 5 5 % versus 3 0 % respectively. All these differences were 

statistically significant (p < 0 . 0 1 ) . Thus there was a reasonable number of 

children in all subgroups defined on the basis of both symptom status and 

objective clinical measurements. 

There was considerable overlap between the presence/absence of high total 

serum IgE, a positive skin prick test and bronchial hyperresponsiveness. 

Percentage agreement and Kappa values for the agreement between total IgE and 

skin prick test were 7 1 % and 0 . 4 3 ; 6 5 % and 0 . 2 6 for the agreement between 

bronchial hyperresponsiveness and skin prick test; 6 1 % and 0 .21 for the 

agreement between total IgE and bronchial hyperresponsiveness. 

A description of the subgroups for which the association wi th air pollution was 

analyzed is presented in table 1 . Children with bronchial hyperresponsiveness 

were younger than children without BHR, both in symptomatic and in non-

symptomatic children. Among symptomatic children wi th high IgE there were 

fewer girls than in the other subgroups. 

Table 1. Population characteristics of different subgroups of children 

Age, - yr Girls, % N 

non-symptomatic Low IgE 9.7 (1.1) 4 7 * 142 

non-symptomatic High IgE 9.6 (1.2) 55 97 

symptomatic Low IgE 9.7 (1.1) 62 108 

symptomatic High IgE 9.5 (1.1) 40 155 

non-symptomatic SPT- 9.6 (1.1) 52 217 

non-symptomatic SPT + 9.7 (1.2) 50 82 

symptomatic SPT- 9.4 (1.1) 57 158 

symptomatic SPT + 9.6 (1.1) 4 4 149 

non-symptomatic BHR- 9.8 (1 .2)* 52 190 

non-symptomatic BHR + 9.3 (1.0) 55 82 

symptomatic BHR- 9.8 (1.2) 59 126 

symptomatic BHR + 9.3 (1.0) 45 155 

Note: Presented are mean and SD in parentheses; SPT = skin prick test; BHR = 

bronchial hyperresponsiveness, low IgE is total serum IgE < 60 kU/l. 

* differences between four subgroups statistically significant (p < 0.05) 
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The prevalence of large PEF decrements was highest in the subgroup of 

symptomatic children who also had high total IgE or a positive skin prick test or 

BHR. Prevalences were similar in the other subgroups (Table 2 ) . Cough 

prevalence was highest among the symptomatic children, wi th a small increase 

in children wi th especially high IgE. Prevalence of LRS and especially 

bronchodilator use was very low among non-symptomatic children. The highest 

prevalence of LRS and bronchodilator use occurred among symptomatic children 

who also had high total IgE or a positive skin prick test or BHR. 

Table 2. Mean prevalence (%) of 10% evening PEF decrements and acute respiratory 

symptoms in subgroups of children defined by presence/absence of chronic 

respiratory symptoms according to a baseline questionnaire and objective 

medical characteristics 

Subgroup 10% PEF Cough LRS Bronchodilator N 

decrements use 

Non-symptomatic, low IgE 7.6 14.2 0.5 0.0 142 

Non-symptomatic, high IgE 8.3 19.3 1.8 0.3 97 

Symptomatic, low IgE 7.7 29.9 4 .0 1.3 108 

Symptomatic, high IgE 11.6 38.5 12.4 6.6 155 

Non-symptomatic, SPT- 7.8 16.2 0.9 0.0 217 

Non-symptomatic, SPT + 9.2 19.2 1.3 0.4 82 

Symptomatic, SPT- 8.9 32.3 4.4 1.4 158 

Symptomatic, SPT + 11.1 38.6 13.1 6.7 149 

Non-symptomatic, no BHR 8.0 17.3 0.8 0.0 190 

Non-symptomatic, BHR 8.3 16.6 1.6 0.4 82 

Symptomatic, no BHR 7.7 33.5 6.0 2.9 126 

Symptomatic, BHR 11.7 36.2 10.9 5.2 155 

Note: LRS = shortness of breath, wheeze and attacks of shortness of breath with 

wheeze 

Air pollution data 

The average P M 1 0 concentration ranged from 2 7 ug /m 3 in the non-urban area in 

winter three to 55 u g / m 3 in the urban area in winter o n e 8 , 1 1 . Twenty-four hour 

average P M 1 0 concentrations of 9 0 u g / m 3 and higher were observed in all three 
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winters. On only one day the daily average PMio concentration exceeded 1 5 0 

•xg/m 3, the 24-hr Air Quality Standard in the USA. 

Associations in subgroups based on serum total IgE 
In non-symptomatic children wi th low IgE, a significant positive association 

(Odds Ratio above unity) between P M 1 0 and PEF was found for all four evaluated 

lags (Table 3 ) . No association between PMio and cough was found. In non-

symptomatic children wi th high IgE, borderline significant associations wi th PEF 

and cough were found wi th PMio lagO, but not with the other lags. Prevalences 

of LRS and bronchodilator use were too low to be analyzed for both subgroups 

of non-symptomatic children. 

Table 3. Association between PMio and prevalence of >10% evening PEF decrements, cough. 
bronchodilator use and lower respiratory symptoms (LRS) in subgroups of children defined 
by presence (+) or absence (-) of chronic respiratorysymptoms from a baseline 
questionnaire ISy) and high total serum IgE (IgE), adjusted for confounders. Odds Ratios 
(OR) with 95% confidence intervals (95% CI) for an increase of 100 pg/m3 in PMio 
concentration. 

Pollutant Effect variable 
PMiolagO 10% PEF 1.36(1.05-1.751* 1.38(0.97-1.97) 1.37(0.93-2.02) 1.30(1.00-1.68)* 

Sy-lgE-
(n = 142) 

Sy-lgE + 
(n = 97) 

Sy+lgE-
(n = 108) 

Sy + lgE+ 
(n = 155) 

PMiolagl 10% PEF 
PMiolag2 10% PEF 
PMio mean 10% PEF 
PMio lagO Cough 
PMio Iag1 Cough 
PMio Iag2 Cough 
PMio mean Cough 
PMio lagO Bronchodilator 
PMio Iag1 Bronchodilator 
PMto Iag2 Bronchodilator 
PMio mean Bronchodilator 
PMiolagO LRS 
PMio Iag1 LRS 
PMiolag2 LRS 
PMio mean LRS 

1.36 (1.08-1.73)* 0.88 (0.63-1.22) 
1.54 (1.21-1.95)* 0.77 (0.56-1.07) 
2.02 (1.40-2.92)* 0.68 (0.41-1.13) 
0.94(0.81-1.10) 1.17(0.99-1.38) 
0.80 (0.68-0.94)* 0.91 (0.77-1.07) 
1.03 (0.89-1.20) 0.94 (0.80-1.10) 
0.92 (0.66-1.28) 0.99 (0.75-1.31) 

1.05 (0.72-1.52) 
1.24 (0.90-1.72) 
1.18 (0.65-2.16) 
1.16 (1.00-1.35)* 
0.97 (0.83-1.13) 
0.98 (0.84-1.14) 
0.98 (0.72-1.34) 
1.01 (0.80-1.27) 
0.83 (0.63-1.10) 
1.01 (0.80-1.27) 
0.64 (0.35-1.18) 
0.85 (0.64-1.14) 
1.09 (0.82-1.46) 
1.31 (1.01-1.69)* 
1.86 (1.20-2.89)* 

1.40 (1.11-1.76)* 
1.40 (1.12-1.75)» 
2.32 (1.58-3.39)* 
1.11 (0.98-1.26) 
1.06 (0.94-1.20) 
1.04 (0.92-1.17) 
1.24 (0.98-1.66) 
1.06 (0.87-1.29) 
1.09 (0.90-1.32) 
1.13 (0.95-1.35) 
1.40 (0.95-2.06) 
1.22 (1.02-1.45)* 
1.20 (1.02-1.42)* 
1.17 (0.99-1.37) 
1.71 (1.29-2.25)* 

* OR significantly different from 1 (P<0.05) 
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In symptomatic children wi th low IgE, no consistent association of P M 1 0 with 

PEF and bronchodilator use was found. There was one significant association 

between P M 1 0 and cough at lagO, but Odds Ratios for the other lags were below 

1 . There was a consistent association with LRS, being significant for t w o of the 

evaluated lags. In symptomatic children with high total IgE consistently positive 

associations between P M 1 0 and PEF and LRS were found. Odds Ratios for 

bronchodilator use and cough were above unity as wel l , wi th some of them 

borderline significant. 

Associations in subgroups based on skin prick test 

In non-symptomatic children without a positive skin prick test, only a weak 

association of P M 1 0 wi th PEF was found. No association between P M 1 0 and 

cough was found. In the non-symptomatic children with a positive skin prick test 

consistently positive associations were found between P M 1 0 and PEF and cough. 

Bronchodilator use and LRS prevalences were too low to be analyzed in both 

subgroups of non-symptomatic children. 

In symptomatic children without a positive skin prick test , most Odds Ratios 

were above unity for PEF, cough and LRS but only one of them was statistically 

significant (cough with P M 1 0 lagO). In symptomatic children wi th a positive skin 

prick test consistent associations were found between P M 1 0 and PEF, LRS and 

bronchodilator use (Table 4 ) . The magnitude of the effect estimates was similar 

to those observed for symptomatic children wi th high IgE (table 3 ) , wi th the 

exception of the lack of association wi th cough. 

Associations in subgroups based on bronchial hyperresponsiveness 

In non-symptomatic children without hyperresponsiveness a tendency towards a 

positive association wi th PEF was found but none of the associations was 

statistically significant (table 5) . Non-symptomatic children with 

hyperresponsiveness had a consistently positive association with PEF, but not 

with cough. Bronchodilator use and LRS prevalences were too low to be 

analyzed in both subgroups of non-symptomatic children. 

In symptomatic children without hyperresponsiveness consistently positive 

associations with PEF and LRS were found. In symptomatic children who were 

hyperresponsive consistent associations were found wi th LRS. The associations 

in this subgroup were less consistent than observed in the subgroups of 

symptomatic children wi th high IgE or a positive skin prick test (tables 3 and 4) . 



Table 4. Association between PMw and prevalence of >10% evening PEF decrements, cough, 
bronchodilator use and lower respiratory symptoms (LPS) in subgroups of children defined by 
presence (+] or absence (-/ of chronic respiratory symptoms from a baseline questionnaire 
(Sy) and a positive skin prick test (SPT), adjusted for confounders. Odds Ratios (OR) with 
95% confidence intervals for an increase of 100 pg/m3 in PMw concentration. 

_ _ _ Sy-SPT+ Sy + SPT- Sy + SPT + 

(n = 217) (n = 82) (n = 158) (n = 149) 
Pollutant Effect variable 
PMiolagO 10% PEF 1.33 (1.08-1.64)* 1.50 (1.04-2.18)* 1.28 (0.98-1.67) 1.25(0.94-1.67)* 
PMtolagl 10% PEF 1.12(0.93-1.36) 1.33(0.95-1.88) 1.05(0.82-1.34) 1.27(0.98-1.64) 
PMiolag2 10% PEF 1.02(0.85-1.23) 1.13(0.80-1.59) 1.01(0.80-1.26) 1.35(1.05-1.73)* 
PMio mean 10% PEF 1.17(0.87-1.58) 1.73(0.96-3.13) 1.45(0.95-2.21) 2.21(1.43-3.42)* 
PMiolagO Cough 1.09(0.97-1.22) 1.10(0.91-1.35) 1.14 (1.01-1.29)" 1.01 (0.88-1.16) 
PMiolagl Cough 0.85 (0.76-0.96)* 1.06 (0.87-1.30) 1.03(0.91-1.16) 1.02(0.90-1.17) 
PM10 Iag2 Cough 0.95 (0.85-1.07) 1.07 (0.88-1.29) 0.96 (0.85-1.09) 1.05 (0.92-1.19) 
PM10 mean Cough 0.93 (0.73-1.19) 1.46 (1.06-2.01)* 1.03 (0.80-1.33) 1.05 (0.81-1.36) 
PMiolagO Bronchodilator 1.08(0.85-1.37) 1.03(0.83-1.28) 
PMiolagl Bronchodilator 0.95(0.72-1.25) 1.15(0.93-1.42) 
PMiolag2 Bronchodilator 1.08(0.83-1.39) 1.11(0.92-1.34) 
PM10 mean Bronchodilator 0.99 (0.58-1.69) 1.56 (1.03-2.37)* 
PMiolagO LRS 0.99(0.74-1.34) 1.22(1.02-1.47)* 
PMiolagl LRS 1.26(0.95-1.66) 1.28(1.08-1.52)* 
PMiolag2 LRS 1.09(0.85-1.39) 1.26(1.08-1.48) 
PM10mean LRS 1.60(0.87-2.95) 1.76(1.32-2.33)* 

Table 5. Association between PMw and prevalence of >10% evening PEF decrements, cough, 
bronchodilator use and lower respiratory symptoms (LRS) in subgroups of children defined by 
presence (+) or absence (-) of chronic respiratory symptoms from a baseline questionnaire 
(Sy) and bronchial hyperresponsiveness (BHR), adjusted for confounders. Odds Ratios (OR) 
with 95% confidence intervals for an increase of 100 pg/m3 in PMw concentration. 

_ _ _ Sy-BHR+ Sy + BHR- Sy + BHR + 
(n = 217) (n=82) (n = 126) (n = 155) 

Pollutant Effect variable 
PMiolagO 10% PEF 1.21(0.98-1.51) 2.03 (1.25-3.31)* 1.51 (1.09-2.09)* 1.23 (0.93-1.62) 
PMiolagl 10% PEF 1.16(0.95-1.41) 1.24(0.80-1.91) 1.24(0.92-1.66) 1.16(0.89-1.51) 
PM10 Iag2 10% PEF 1.09 (0.90-1.33) 1.48 (1.00-2.18)* 1.70 (1.30-2.22)* 1.16 (0.90-1.48) 
PM10 mean 10% PEF 1.27(0.93-1.72) 1.66(0.81-3.42) 3.06 (1.91-4.91)* 1.45 (0.91-2.30) 
PMiolagO Cough 1.09(0.97-1.21) 0.91(0.71-1.16) 1.10(0.96-1.26) 1.02(0.89-1.17) 
PMiolagl Cough 0.89 (0.80-0.99)* 0.86 (0.67-1.10) 0.91(0.80-1.04) 1.09(0.96-1.24) 
PMtolag2 Cough 0.96(0.86-1.07) 0.98(0.79-1.23) 0.93(0.81-1.06) 0.98(0.86-1.12) 
PM10 mean Cough 0.95(0.79-1.14) 0.90(0.56-1.42) 0.88(0.68-1.16) 0.88(0.68-1.15) 
PMiolagO Bronchodilator 1.06(0.91-1.23) 0.90(0.69-1.16) 
PMiolagl Bronchodilator 0.98(0.83-1.14) 1.19(0.94-1.52) 
PMiolag2 Bronchodilator 0.99(0.87-1.12) 0.97(0.76-1.24) 
PM10 mean Bronchodilator 0.86(0.63-1.18) 1.24(0.81-1.90) 
PMiolagO LRS 1.21(0.93-1.58) 0.99(0.81-1.22) 
PMtolagl LRS 1.23(0.92-1.64) 0.98(0.98-1.42) 
PMiolag2 LRS 1.06(0.80-1.41) 1.28(1.07-1.52)* 
PMiomean LRS 1.63 (1.07-2.49)* 1.92 (1.37-2.69)* 

OR significantly different from 1 (P<0.05) 
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Discussion 

The prevalence of acute respiratory symptoms, medication use and 1 0 % evening 

PEF decrements recorded in a daily diary differed both wi th symptom status and 

objective clinical characteristics. Associations between P M 1 0 and respiratory 

health were found for most of the evaluated subgroups. In non-symptomatic 

children with and without high IgE (or a positive skin prick test or BHR), 

associations were found wi th PEF and generally not wi th acute respiratory 

symptoms. In symptomatic children wi th high IgE (a positive skin prick test) , 

associations were found wi th PEF, lower respiratory symptoms and 

bronchodilator use. Associations in this subgroup were more statistically 

significant and consistent than in symptomatic children without high IgE (positive 

skin prick test) . Symptomatic children with bronchial hyperresponsiveness did 

not have a more consistent association with PMio than the other subgroups. 

Subgroups of children were defined based upon both reporting of (chronic) 

respiratory symptoms in a baseline questionnaire and objective clinical 

characteristics. 

Several studies have documented significant associations between the presence 

of respiratory symptoms, low lung function, atopy, increased serum IgE and 

bronchial responsiveness in children 1 5 " 1 7 . In a longitudinal study Clough et a / . 1 5 

showed that in 7-8 yr old children, both atopy derived from a skin prick test and 

the type of symptom (cough vs wheeze) were independently associated with 

bronchial responsiveness, FEVi, diurnal variability of PEF and symptoms reported 

in a diary 1 5 . In a study of 11-yr old children, Burrows et al.18 found that BHR was 

associated wi th an asthma diagnosis, high IgE and baseline lung function. In a 

study of 11 -yr old New Zealand children a significant correlation between 

bronchial responsiveness and serum IgE was found, both for children with and 

without asthma / w h e e z e 1 7 . While the clinical characteristics and symptom 

reporting evaluated in the present study are mutually correlated, there is 

considerable discrepancy as well . 

Reporting of acute respiratory symptoms in a daily diary was most strongly 

determined by the symptom status of the child. Presence of a clinical 

characteristic further increased the prevalence of acute respiratory symptoms 

and medication use, especially in symptomatic children. In contrast, the 

prevalence of 1 0 % evening PEF decrements was only increased in symptomatic 

children wi th high IgE or a positive skin prick test or BHR. Symptomatic children 
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without these clinical characteristics had similar PEF decrements as the non-

symptomatic children. One explanation for this contrast is that parents of the 

child completed both the baseline questionnaire and the daily diary whereas PEF 

is the result of a more objective measurement. The subgroup of symptomatic 

children without presence of a clinical characteristics may either reflect 

misclassification or symptoms without associated lung function decrements. 

Fifty-seven of the symptomatic children did not have any of the three evaluated 

clinical characteristics. 

One implication of the present study is that especially the PEF associations with 

P M 1 0 are not restricted to one sensitive subgroup. In fact , the magnitude of the 

Odds Ratios in the non-symptomatic children wi th low IgE were similar to those 

for the symptomatic children wi th high IgE. Neither symptom status nor presence 

of a clinical characteristic was strongly related to the PEF response. Small 

population mean lung function decrements associated wi th ambient air pollution 

have been observed before in children without chronic respiratory 

s y m p t o m s 4 , 1 8 , 1 9 . The present study shows that P M 1 0 is also related to the 

prevalence of decrements of PEF of > = 1 0 % below the individual median in 

non-symptomatic children. W e have suggested before that this is a clinically 

more relevant measure than the small changes ( < 1 % ) in population mean PEF 2 0 . 

The Odds Ratios found in non-symptomatic are comparable and sometimes even 

higher than the overall Odds Ratio of 1.31 reported for a number of panel studies 

of children wi th chronic respiratory symptoms 2 0 . 

It has been documented before that symptomatic children experience stronger 

effects of exposure to ambient air pollution than non-symptomatic children 4 . W e 

earlier reported similar findings for the present study population when w e only 

classified the children wi th respect to symptoms from the baseline 

questionnaire 8. The main difference wi th the non-symptomatic children was that 

in symptomatic children associations with both PEF and acute respiratory 

symptoms and bronchodilator use were found 8 . The present study documents 

that symptomatic children wi th high serum total IgE had a more consistent 

association wi th P M 1 0 than symptomatic children wi th low serum total IgE. In the 

symptomatic children wi th high IgE more associations were statistically 

significant ; all Odds Ratios were above unity and the Odds Ratio were generally 

larger for the corresponding lag - health endpoint combination. The latter 

differences were most striking for PEF and bronchodilator use. Results for skin 

prick testing were very similar to those for total serum IgE. 
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W h y do symptomatic children wi th high IgE or a positive skin prick test 

experience stronger effects from P M 1 0 ? In general, subjects in a population may 

be more sensitive to air pollution because of increased exposure, increased 

inhaled dose at the target organ, decreased reserve capacity and/or increased 

sensitivity of receptors. Wi th the exception of increased exposure to air 

pollution, any of these mechanisms may explain the findings of the present 

study. T w o controlled human exposure studies have suggested that exposure to 

gaseous air pollutants may increase airway responsiveness to inhaled allergens 

such as house dust m i t e 2 1 , 2 2 . To our knowledge no similar data exist for 

particulate air pollution. If this interaction is also valid for P M 1 0 , it is plausible that 

children wi th high serum IgE or atopy have a stronger response to P M 1 0 . 

Polyaromatic hydrocarbons (PAH) extracted from diesel exhaust particles (DEP) 

were shown to directly enhance IgE production from human B-cells 2 3. PAH-DEP 

did not induce IgE production but enhanced ongoing IgE production. This fits 

wi th our observation of increased responses in subjects wi th high total serum 

IgE. 

In a controlled exposure study of normal, atopic non-asthmatic, mild asthmatic 

and moderate/severe asthmatic adults to high concentrations of S O 2 , decrements 

in F E V 1 , increases in airway resistance were mostly found in the t w o asthmatic 

subgroups 2 4 . Much smaller responses occurred in the atopic subgroup and no 

response was found in the normals. Respiratory symptoms in association with 

S O 2 were found in asthmatics but not in non-asthmatic atopics and normal 

subjects, which is in agreement wi th our s tudy 2 4 . In agreement with our study, 

atopic subjects did not experience a stronger overall effect than non-atopic 

normal subjects. 

The subgroup of symptomatic children with BHR had less consistent associations 

with P M 1 0 than the symptomatic children with high serum IgE or a positive skin 

prick test. In addition, hyperresponsive symptomatic children did not have more 

consistent associations wi th air pollution than the other subgroups defined by 

symptoms and BHR. This does not imply that bronchial responsiveness is 

irrelevant for the response of children to air pollution. In an analysis of the same 

children as included in the present study, w e showed that the response to 

outdoor air pollution in the subgroup of children wi th high IgE and BHR was more 

consistent than in the subgroup of children wi th high IgE without BHR 1 1 . A study 

among adults showed that presence of BHR was associated wi th an increased 

response to air pollution 1 0 . 
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In conclusion, the most consistent association between P M 1 0 and respiratory 

health was found in symptomatic children who had either high total serum IgE or 

a positive skin prick test. In these children associations both wi th PEF and acute 

respiratory symptoms were found. Associations between P M 1 0 and PEF were 

found both in symptomatic and non-symptomatic children and in atopic and non-

atopic children. Presence of high serum IgE or a positive skin prick test was not 

related to a stronger response to P M 1 0 in non-symptomatic children. 
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Main findings 

Air pollution measurements, performed in urban and non-urban areas during three 

consecutive winters have shown that the contrast in particle concentrations 

between both areas was small. P M 1 0 and Black Smoke (BS) concentrations were 

on average 1 3 % and 1 9 % higher in the urban areas than in the non-urban areas, 

whereas sulfate concentrations were 7 % lower in the urban than in the non-

urban areas. There was more contrast in the concentrations of the gaseous 

pollutants S O 2 and N O 2 ; about twofold higher concentrations were found in the 

urban areas than in the non-urban areas. 

Self-recorded Mini Wright Peak Expiratory Flow (PEF) measurements were an 

important outcome variable in our panel study. In a separate study in 9 -11 yr old 

children, self-recorded morning and evening Mini Wright PEF measurements were 

compared wi th spirometric and supervised Mini Wright PEF measurements, 

performed at school. An estimate of measurement error was made using the 

three maneuvers that each of the measurements consisted of. The amount of 

measurement error was only slightly larger for self-recorded than for supervised 

PEF measurements. 

The incidence of influenza and influenza-like-illness (ILI) in the general population, 

registered by the Dutch network of General Practitioners sentinel stations, was 

associated wi th respiratory health in all four groups of panels (symptomatic and 

non-symptomatic children and adults) that were investigated in this study. 

Therefore, the incidence of ILI in the general population was used to adjust for 

the potential confounding effect of acute respiratory infections in the analysis of 

the association between air pollution and indicators of respiratory health. 

In symptomatic children (7-11 yr) positive associations were observed between 

particle ( P M 1 0 , BS and sulfate) and S O 2 concentrations and the prevalence of 

defined (below 1 0 % of median) decrements in evening PEF and lower 

respiratory symptoms (LRS). In symptomatic children from urban areas, but not 

from non-urban areas, particle concentrations were also positively associated 

with bronchodilator use. Stratified analyses for medicated and non-medicated 

symptomatic children showed that in the urban areas, the prevalence of LRS was 

strongly associated wi th particle concentrations in medicated children, but not in 

non-medicated children. In non-symptomatic children, P M 1 0 and BS 

concentrations were significantly associated wi th > 1 0 % decrements in evening 
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PEF in both urban and non-urban areas. No associations with respiratory 

symptoms were observed. 

In the panels of adults ( 5 0 - 7 0 yr) the associations between air pollutants and 

respiratory health were generally less clear than in the panels of children. As 

opposed to what was found for symptomatic children, air pollution 

concentrations were not associated wi th LRS, bronchodilator use or decrements 

in evening PEF in symptomatic adults. However, an association between 

increased particle and S O 2 concentrations and large (below 2 0 % of median) 

decrements in morning PEF, and between BS and upper respiratory symptoms 

(URS) was found in symptomatic, urban adults. Those associations were not 

found in the non-urban areas. In non-symptomatic adults from both urban and 

non-urban areas, no consistent associations between air pollution and respiratory 

health were found. 

Thus, consistent wi th the small differences in air pollution concentrations 

between urban and non-urban areas, the associations between air pollution and 

health endpoints did not differ significantly between urban and non-urban panels. 

For symptomatic children and adults, however, significant associations were 

found more often in the urban panels, although the differences with non-urban 

panels were generally small and non-significant. 

In the panels of children, w e also investigated if the response to air pollution 

differed across subgroups based on the presence/absence of certain medical 

characteristics. It was demonstrated that the strongest associations between 

P M 1 0 and respiratory health occurred in symptomatic children with increased 

serum total IgE level or a positive skin prick test. For symptomatic children with 

bronchial hyperresponsiveness (BHR), less consistent associations wi th P M 1 0 

were found. This documents that there was heterogeneity of response within the 

subgroup of symptomatic children that could be explained by objectively 

determined allergy status. 

Interpretation and comparison of air pollution effects with other studies 

Air pollution concentrations 
Median P M 1 0 concentration measured during the three winters was 3 6 pg/m3 in 

the urban areas and 3 0 pglm3 in the non-urban areas. P M 1 0 concentrations were 

in the high range of the concentrations measured in North-America 1 , where 

mean winter P M 1 0 concentration measured in 2 3 communities varied between 14 
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and 3 3 / / g / m 3 . During the winter of 1 9 9 3 / 1 9 9 4 , the measurements were 

performed in the framework of a multicenter epidemiological study of Pollution 

Effects on Asthmatic Children in Europe (PEACE). Air pollution measurements 

were performed simultaneously in 14 urban and 14 non-urban locations across 

10 European countries 2 . PMio concentrations measured in the Netherlands were 

higher than those measured in Scandinavia, but lower than those measured in 

Central European and Southern European countries, where median P M 1 0 

concentrations were on average 1 4 , 4 8 and 6 5 / / g / m 3 , respectively 2 . 

In our study, median BS concentration measured during the three winters was 

11 / / g / m 3 in the urban areas and 8.5 / / g / m 3 in the non-urban areas. This is 

substantially lower than the concentrations measured in the PEACE study in 

Central and Southern European locations, where median concentrations were on 

average 3 3 and 4 2 / / g / m 3 , respectively 2. The median BS concentration was on 

average 8 / / g / m 3 in the Scandinavian locations 2 . 

Concentrations of aerosol acidity were very low during the three winters. Median 

concentration was below 0.1 / / g / m 3 and the maximum concentration was only 

1.7 / / g / m 3 . In previous studies in the Netherlands 3 and other European 

countries 1 , 4 low levels of aerosol acidity were reported as wel l . This contrasts 

with the much higher levels that are found in the North-Eastern part of the 

United States and Canada. In these regions, annual mean concentrations of 2 .5 

/ / g / m 3 and 24-hour mean concentrations of 3 9 / / g / m 3 have been measured 5 . 

The contrast in particle concentrations between urban areas (Rotterdam and 

Amsterdam) and non-urban areas was relatively small. The concentrations of the 

secondary aerosols sulfate and nitrate were on average 8 % and 7 % lower in the 

urban areas than in the non-urban areas, which contrasts wi th the fact that 

twofold higher concentrations were found in the urban areas of the precursor 

pollutants SO2 and NO2 . This probably reflects the importance of long range 

transport in determining their concentrations; the formation of secondary 

aerosols from gaseous precursor pollutants is a slow process which therefore can 

occur at large distance from the source area. 

P M 1 0 concentration was on average 1 3 % higher in the urban areas than in the 

non-urban areas. This small contrast is consistent wi th the results of the PEACE 

study, where on average 2 2 % higher concentrations were found in the urban 

areas than in the corresponding non-urban areas. Twofold urban-non-urban 

differences were found for locations wi th mountain ranges between urban and 
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non-urban area, such as Athens in Greece and Teplice in the Czech Republic, 

however 2 . 

BS levels were on average 1 9 % higher in the urban areas than in the non-urban 

areas. In the PEACE study a mean difference of 4 3 % was found 2 . BS 

concentrations can be used as an estimate for the concentrations of elemental 

carbon 6 , 7 (EC). W e had expected to find a larger contrast between urban and 

non-urban areas, because EC is a primary pollutant from motorized traff ic 8 (diesel 

soot) and traffic intensity is higher in the urban areas than in the non-urban 

areas. Apparently, EC concentrations were also largely determined by long range 

transport. Another explanation might be that so-called background sites were 

used to estimate exposure in the urban areas instead of sites that were more 

influence by traffic. Previous work has shown clearly higher concentrations of BS 

in roadside measurements than at some distance from the r o a d 9 , 1 0 . 

The small contrast in particle concentrations between urban and non-urban areas 

in the Netherlands is, in addition to the small size of our country and the 

importance of long-range transport of air pollutants, probably a result of the high 

population density and the lack of small scale geographical and meteorological 

differences. As a result, the whole country can be considered to be part of one 

single airshed. 

During the winter of 1 9 9 4 / 1 9 9 5 , P M 2 . 6 was measured as well because of the 

increased interest in health effects of smaller particles in recent years. Median 

P M 2 . 6 concentration was 1 4 pglm3 in the urban area and 15 pg/m3 in the non-

urban area. P M 2 . 6 concentration was on average 5 5 % of the P M 1 0 

concentrations, which is very similar to the value of 0 . 6 0 suggested by Dockery 

and Pope 1 1 as a typical North-American P M 2 . 5 / P M 1 0 ratio. 

Comparison of P M 2 . 8 concentrations to levels measured in other countries is 

hampered by the fact that P M 2 . 8 was measured only in the winter of 1 9 9 4 / 1 9 9 5 , 

when air pollution levels were relatively low. Data collected in six US cities over 

an eight year period indicated a range of annual mean P M 2 . 5 concentrations of 11 

to 3 0 pglm312. European data on P M 2 . B concentrations are scarce. Measurements 

in Kuopio, Finland indicated a median P M 2 . 5 concentration of 15 pglm3 during a 

six weeks period in the spring of 1 9 9 5 1 3 . During the winter of 1 9 9 1 / 1 9 9 2 , P M 2 . 5 

concentration measured in Erfurt, Eastern Germany, was on average 4 6 pglm314. 
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Air pollution and respiratory health; comparison with other studies 

In a review article, Dockery and Pope 1 1 combined the results of the then available 

panel studies from the US and Europe, and calculated that an increase in PMio 

concentration of 1 0 0 pg/m3 was associated wi th an increase in the prevalence of 

LRS and bronchodilator use of respectively 3 0 % and 2 9 % . For URS and cough, 

smaller increases of 7 % and 1 2 % were reported. Thus, the fact that in our 

panels of children, associations were found mainly for LRS and bronchodilator 

use is in agreement wi th earlier panel studies. In symptomatic children in the 

urban areas an increase of 1 0 0 ug /m 3 in same-day PMio concentration was 

associated wi th an increase of 3 4 % and 2 9 % in the prevalence of LRS and 

bronchodilator use, respectively, which corresponds well to the numbers reported 

by Dockery and Pope 1 1 . In a re-analysis of data from seven panel studies, Hoek 

et al. 1 5 found that an increase in PMio concentration of 1 0 0 pglm3 was 

associated wi th an increase of 3 1 % in the prevalence of > 1 0 % decrements in 

evening PEF. This corresponds well to the Odds Ratios of 1 .42 and 1 .32 that 

were found in the panels of symptomatic and non-symptomatic children, 

respectively. The results of our study do not correspond wi th the results of the 

PEACE study, however. In 2 8 panels of 6 -12 yr old symptomatic children, 

including the 1 9 9 3 / 1 9 9 4 panels of our study, no clear association could be 

established between changes in air pollution indices including PMio and changes 

in PEF, respiratory symptoms and bronchodilator use 1 8 . The main difference 

between the t w o studies is that in our study, the findings from three different 

winters wi th relatively long study periods were combined whereas in the PEACE 

study, the observation period was about t w o months during one winter only. Our 

study may therefore have been less vulnerable to the effects of unmeasured 

events during the study period. Another difference is that w e were able to 

control at least to some extent for the role of respiratory infections through the 

data from the GP sentinel system on ILL 

The f e w panel studies that have focused on adult subjects have found that 

increased particle concentrations were most consistently associated with lower 

respiratory symptoms 1 7 ' 2 1 . This is not in agreement wi th the results of 

symptomatic adults in our study, where the clearest associations were found 

with upper respiratory symptoms. The fact that no consistent associations 

between particles and evening PEF were found is also not in agreement with 

other studies 1 5 . W e do not have a good explanation for the fact that in our panels 

of symptomatic adults effects were found on URS rather than on LRS, and on 
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morning PEF rather than on evening PEF. The lack of particle effects on LRS and 

bronchodilator use, which contrasts wi th the results of other panel studies in 

adults, might be explained by differences in composition of the panels. The other 

studies 1 7 " 2 1 have focused on asthmatic patients whereas our study focused on 

relatively healthy, symptomatic adults most of w h o m did not have asthma. Other 

factors that may explain discrepancies between the results of panel studies such 

as: differences in air pollution levels, statistical power, length of the study 

period, adjustment for t ime trends or respiratory infections are described in detail 

by Roemer et al.22. However, it does not seem likely that these factors apply 

here. 

No associations between indicators of air pollution and respiratory health was 

observed in the panels of non-symptomatic adults. To our knowledge, only one 

other panel s tudy 2 3 has been performed in adults not selected for chronic 

respiratory symptoms. In that study, indicators of particulate air pollution were 

not consistently associated with respiratory health outcomes 2 3 , which is in 

agreement wi th the results of our study. 

Air pollution and respiratory health; urban-non-urban differences 
In symptomatic children, a similar pattern of particle effects on evening PEF and 

LRS w a s observed in urban and non-urban panels, but statistically significant 

associations were observed more frequently in the urban panels. However, the 

differences in effect estimates between urban and non-urban panels were 

generally small and the confidence intervals showed considerable overlap. For 

bronchodilator use, more consistent differences were found: particle 

concentrations were associated wi th increased bronchodilator use in the urban 

panels but not in the non-urban panels. After stratification for medication use, it 

was shown that these differences were restricted to the medicated children. W e 

can not rule out that differences in use of maintenance medication are 

responsible for this. Calculated over the three winters, the mean prevalence of 

maintenance medication was almost twofold lower in the urban areas (8 .5%) 

than in the non-urban areas ( 1 5 . 5 % ) . As a result, children in the urban areas 

might have to rely more on bronchodilators during periods wi th high air pollution 

than children in the non-urban areas. 

Separate analyses for children who used bronchodilators only during the study 

period, and for children who used both bronchodilators and maintenance 

medication could demonstrate if use of maintenance medication diminishes the 
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association between air pollution and bronchodilator use, but the number of 

children that used bronchodilators only was too small for a meaningful analysis. 

Moreover, in such an analysis the amount of maintenance medication used by each 

child during the study period should be taken in account. The percentage of 

children that ever reported use of maintenance medication did not differ between 

urban and non-urban panels { 1 8 % and 2 1 % , respectively), but children in the non-

urban areas obviously took their maintenance medication more often, given the 

higher mean daily prevalence. 

Anti-inflammatory medication (inhaled corticosteroids and cromoglycates), anti-

histaminica and theophyllin were classified as maintenance medication. Theofyllin 

is in fact a bronchodilator, but was considered as maintenance medication 

because of its longlasting effect. Anti-inflammatory medication was not 

considered separately because, like anti-histaminica and theophyllin, it is 

generally prescribed on a daily basis. Use of medication that is prescribed 'as 

needed' is more likely to vary with air pollution concentrations. 

W e did not perform separate analyses for subjects using anti-inflammatory 

medication, because the subgroups per panel would become too small for a 

meaningful analysis. 

To our knowledge, our study and the PEACE study are the only studies that 

systematically evaluated if acute effects of ambient air pollution differ between 

urban and non-urban panels. The results of our study are at variance with the 

results of the PEACE study, where neither for bronchodilator use nor for any of 

the other respiratory health indicators a tendency of larger effect estimates in the 

urban areas was observed 1 6 . However, the comparison with the PEACE study is 

hampered by the fact that no clear air pollution effects were found in both urban 

and non-urban panels 1 8 . 

Associations between particle concentrations and some respiratory health 

indicators (morning PEF and URS) were observed in symptomatic adults from the 

urban areas, but not from the non-urban areas. The differences in effects 

estimates between urban and non-urban panels were generally small and the 

confidence intervals showed considerable overlap If, nevertheless, the observed 

difference is interpreted as a true difference between the urban and non-urban 

panels, it might be explained by the higher prevalence of bronchodilator use in 

the non-urban panels ( 1 7 % , compared to 8 % in the urban panels), although 

bronchodilator use was not associated with particle concentrations. 
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For both non-symptomatic children and adults, there were no indications that the 

observed associations between air pollution and respiratory health differed 

between urban and non-urban panels. 

The lack of clear differences in response to air pollution between urban and non-

urban panels does not indicate that the urban air pollution mixture is more toxic 

than the non-urban air pollution mixture. 

Air pollution and respiratory health in children and adults 

In the panels of 5 0 - 7 0 yr old adults, the associations between air pollutants and 

indicators of respiratory health were less clear than in the panels of 7 - 1 1 yr old 

children. Several factors might be responsible for this. Compared to children, 

adults generally spend less t ime outdoor and consequently, the amount of 

misclassification in exposure might be larger. The mean t ime spent outside, 

recorded in the diaries, was approximately 2 hours per day for children, and 1 

hour per day for adults. Recent studies in the Netherlands have documented that 

the median t ime series correlation coefficient between ambient and personal 

P M i o was 0 . 6 3 for 1 0 - 1 2 yr old children and 0 . 5 0 for 5 0 - 7 0 yr old adul ts 2 4 - 2 5 . 

This shows that the amount of misclassification was only slightly higher for 

adults than for children. However, the above mentioned study in adults included 

only non-smoking subjects wi th no smokers in the household 2 5 . Our panels of 

adults also included smokers, so the amount of misclassification of exposure 

might be larger than reported above 2 5 . 

Compared to adults, children have a relatively high physical activity, which 

results in high inhaled pollution doses. This is especially true when the pollution 

dose is expressed per kg bodyweight or per c m 2 lung surface area. In addition, 

children's lungs are growing and not yet completely developed, which might also 

explain w h y they appear more sensitive to the adverse effects of air pollution. 

Another explanation for the observed less clear effects of air pollution in 

symptomatic adults than in symptomatic children might be that the selection 

criteria used to define adults as 'symptomatic' were not strict enough. Different 

screening questionnaires and criteria were used for children and adults, although 

in both groups the purpose was to select subjects with asthmatic symptoms or 

chronic cough (and phlegm, for adults). Comparison of objective medical 

characteristics between symptomatic and non-symptomatic panels however, 

does not suggest that the screening criteria used to identify symptomatic adults 

were less stringent than for children (table 1 ) . 
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Table 1. Medical characteristics of symptomatic and non-symptomatic children and 

adults that took part in the Dutch study on the effects of winter air pollution 

on respiratory health 

Children Adults 

symptomatic non-symptomatic symptomatic non-symptomatic 

(n = 3 1 1 ) (n = 3 0 0 ) (n = 2 6 1 ) (n = 2 1 7 ) 

F E V i * 2 . 1 7 2 . 2 6 2 . 8 6 3 . 2 4 

F E V i , % pred" 1 0 5 1 0 6 1 0 0 1 1 5 

F E V i / F V C f 0 . 8 8 0 . 9 1 0 . 7 5 0 . 8 0 

B H F U 1 0 % * 7 3 % 5 5 % 7 1 % 4 9 % 

B H F U 2 0 % 9 5 5 % 3 0 % 4 1 % 1 4 % 

SPT + ' 4 9 % 2 7 % 3 3 % 2 6 % 

lgE + " 5 9 % 4 1 % 5 5 % 4 4 % 

Forced Expiratory Volume in 1 second, in liters 

FEVi as percentage of predicted 
f ratio between FEVi and Forced Vital Capacity 

* bronchial hyperreactivity defined by a decrement of more than 10% in FEVi after 

inhalation of a cumulative methacholine dose of 2 mg 
s bronchial hyperreactivity defined by a decrement of more than 20% in FEVi after 

inhalation of a cumulative methacholine dose of 2 mg. 
v skin prick test positive: a positive skin prick test to at least one of the six tested 

common allergens 
n above median total serum IgE level (established separately for children and adults) 

Subgroup analyses based on symptom-status and an objective medical 

characteristic in the children panels indicated that allergic, symptomatic subjects 

were most susceptible to the effects of air pollution. The fraction of allergic 

subjects (defined as a positive skin prick test) in the symptomatic panels was 

lower for adults ( 3 3 % ) than for children ( 4 9 % ) , which might partly explain the 

observed weaker effects of air pollution effects in symptomatic adults. 

Another explanation might be that the symptomatic adults in our study were well 

medicated, possibly better than the children. Although the mean daily prevalence 

of maintenance medication use was only slightly larger for symptomatic adults 

( 1 5 % ) than for symptomatic children ( 1 2 % ) , the mean prevalence of 

bronchodilator use was three times larger ( 1 2 . 4 % and 4 . 1 % , respectively). The 

percentage of symptomatic subjects that reported asthma attacks in the previous 
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12 months in the screening questionnaire, was substantially lower for adults 

(9%) than for children ( 3 3 % ) . Although the wording of the question was 

different for children and adults, this might reflect that the adults were better 

medicated than the children. 

To our knowledge, only one other study reported by Peters ef a / . 2 1 has directly 

compared acute health effects of air pollution in panels of children and adults. In 

that study, asthmatic children (7 -15 yr) and non-smoking asthmatic adults (32-

8 0 yr), recruited from children's hospitals and outpatient clinics, were followed 

during t w o consecutive winters in three Eastern European cities. Five-day mean 

concentrations of S O 2 were associated wi th an increased respiratory symptom 

score in both children and adults, but consistent particle effects were not 

observed in both groups. Associations wi th medication use were not reported. 

Five-day mean concentrations of P M 1 0 , sulfate and S O 2 concentrations were 

significantly associated wi th decreased evening PEF in children, but not in 

adul ts 2 1 , which is in agreement wi th the results of our study. However, the 

association between 5-day mean P M 1 0 , sulfate and S O 2 concentrations and 

respiratory symptoms appeared to be stronger in adults than in children. For 

example, an increase in 5-day mean P M 1 0 concentration of 4 8 pqlrc? (interquartile 

range) was associated wi th a 0 . 4 3 % decrease in evening PEF in both children 

and adults, but only in children this decrement was statistically significant. The 

same increase in 5-day mean P M 1 0 concentration was associated with a 

significant increase of 1 4 . 5 % in respiratory symptom score in adults, and with a 

non-significant increase of 6 . 1 % in children. Thus, the differences in response 

between children and adults were more pronounced in our study than in the 

study reported by Peters et a/.2\ 

Susceptible subgroups 

The results of our study suggested that symptomatic children were more 

susceptible to the adverse effects of ambient air pollution than non-symptomatic 

children. In symptomatic children, particle concentrations were most consistently 

associated wi th LRS and bronchodilator use. In non-symptomatic children, 

however, both LRS and bronchodilator use were never or rarely reported. Thus, 

non-symptomatic children appear less susceptible to the effects of air pollution 

than symptomatic children because they do not develop the asthmatic symptoms 

that are most affected by increasing levels of air pollution. 
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Children were considered symptomatic if they had reported either chronic cough 

or asthmatic symptoms {wheeze or doctor diagnosed asthma) in the previous 

year. Thus, symptomatic children are not a homogenous group, and it is possible 

that specific subgroups respond more strongly than others. A number of previous 

studies have suggested that asthmatic children are more susceptible to the 

effects of air pollution than children wi th chronic c o u g h 2 7 , 2 8 . W e did not perform 

separate analyses for children selected for chronic cough and for asthmatic 

symptoms, as in the above mentioned studies. However, separate analyses were 

performed for symptomatic children who did and did not report use of asthma 

medication during the study period. The strongest associations between particle 

concentrations and respiratory health indicators were observed in children using 

medication. This suggests that children wi th asthmatic symptoms, serious 

enough to receive medication, are especially susceptible to the effects of 

particulate air pollution, and that medication use does not prevent the effects on 

respiratory health. This is in agreement with the results of stratified analyses 

based on medication use in a panel study of mild asthmatic children in Sokolov, 

Czech Republic 2 8 . Medicated children increased their beta-agonist use in 

association wi th increased particle concentrations, but this did not prevent 

adverse effects on other health outcomes 2 8 . 

Our study was the first in which panel members were extensively medically 

characterized wi th respect to both bronchial hyperreactivity (BHR) and atopy. 

Stratified analyses were performed in subgroups based on the presence/absence 

of objective medical characteristics, for symptomatic and non-symptomatic 

children separately. It was demonstrated that the strongest effects of P M 1 0 on 

respiratory health occurred in symptomatic children wi th elevated total serum IgE 

level or a positive skin prick test. For symptomatic children with BHR less 

consistent associations wi th P M 1 0 were found. This documents that there was 

heterogeneity of response within the subgroup of symptomatic children that 

could be explained by objectively determined allergy status. 

In a separate publication w e have reported the results of stratified analyses 

based on the presence/absence of t w o objective medical characteristics (elevated 

IgE and BHR) in this group of children, regardless of the presence of chronic 

respiratory symptoms 2 9 . It was documented that the strongest associations 

occurred in the subgroup wi th both BHR and elevated total serum IgE level. The 

strength of the observed associations between P M 1 0 and respiratory health 
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indicators was of the same magnitude as was found in the subgroup of 

symptomatic children wi th elevated total serum IgE level. 

BHR is related to (the severity of) asthma. Asthmatic children have been reported 

to have a higher prevalence of BHR than children wi th dry cough as their only 

respiratory s y m p t o m 3 0 , 3 1 . Thus, it appears that allergic asthmatic children (with 

BHR) are most susceptible to the adverse effects of ambient air pollution. This is 

consistent with several controlled exposure studies that suggested an interaction 

between exposure to ambient air pollutants and major allergens. Prior exposure 

to gaseous air pollutants appeared to increase the airway responsiveness of 

asthmatics to inhaled allergen such as house dust m i t e 3 2 , 3 3 . However, since w e 

do not have data on indoor allergen exposure, w e can not verify this hypothesis 

in this epidemiological study. 

Mechanisms of particle effects 
The results of our study add to the large data base of studies that have reported 

on health effects associated with acute exposure to particulate air pollution 1 1 . 

The exact mechanisms for the observed particle effects are still unknown, 

however. One explanation is that the acidity of particles determines their health 

ef fects 3 4 . In our study, this is not a likely explanation, since the acidity 

concentrations were very low. An alternative explanation is that the number of 

ultrafine particles ( < 0 .1 pm) is the major factor contributing to the health 

effects of particulate air pollution. The relatively large surface area and surface 

reactivity would play a major role in causing effects in pulmonary t issue 3 5 . Data 

from animal experiments have suggested that ultrafine particles have higher 

deposition chance and lower clearance rates in lower airways and have a larger 

pulmonary toxicity per unit mass than fine- and coarse mode part ic les 3 6 , 3 7 . A time 

series study from Germany in asthmatic adults suggested that exposure to 

ultrafine particles was more closely associated with some respiratory health 

indicators than exposure to P M i o 3 8 . A panel study from Finland conducted among 

children could not replicate this finding, however 3 9 . Since ultrafine particles were 

not measured in our study, w e can not investigate if they were more closely 

associated wi th respiratory health outcomes than other indicators of particulate 

air pollution. However, if ultrafine particles would be primarily responsible for the 

observed particle effects in our study, one might expect stronger associations 

wi th BS than wi th the other indicators for particulate air pollution. BS is a 

measure of diesel exhaust, which is known to contain large numbers of ultrafine, 
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black particles 4 0 . Measurements performed in an urban area in Finland showed 

that the number of ultrafine particles in ambient air was indeed more closely 

correlated to the BS concentration than to the P M 1 0 concentration 3 9 . 

In our study, BS appeared to be more consistently associated wi th decrements in 

morning P E F and URS than P M 1 0 and sulfate in symptomatic adults from the 

urban areas. However, in symptomatic children from the urban areas, P M 1 0 was 

more consistently associated wi th health outcomes than BS (and sulfate), as was 

indicated by the results of the two-pollutant models including t w o indicators for 

particulate air pollution simultaneously. This does not strongly support the 

hypothesis that the number of ultrafine particles was the major factor 

contributing to the health effects, although w e have no data to test this. 

Another hypothesis is that the chemical composition of the particles, especially 

soluble transition metals attached to the surface of the particles, determines their 

health effects. Toxicological studies in rats have suggested that iron attached to 

the surface of fly ash particles can cause inflammatory reactions in the lung, 

possibly through the formation of free radicals 4 1 . Another study confirmed that 

the free radical activity of P M 1 0 causes inflammatory reactions in rats, and that 

iron may play a role in this react ion 4 2 . A panel study from the Netherlands among 

adult asthma patients found that ambient iron concentrations were related to 

respiratory health indicators independently of P M i o 1 8 . In the P E A C E study, it was 

evaluated whether soluble elemental concentrations in P M 1 0 , including iron, were 

related to acute respiratory health ef fects 4 3 , iron and silicium concentrations 

tended to be negatively associated with P E F and positively wi th the prevalence 

of phlegm, but not with the prevalence of other respiratory symptoms and 

bronchodilator use. No associations were found wi th the other elements 

including the transition metals zinc, vanadium and nickel 4 3 . Thus, the results of 

the P E A C E study do not provide strong evidence for the hypothesis that soluble 

transition metals would be responsible for P M 1 0 effects. However, interpretation 

is hampered by the fact that no P M 1 0 effects were observed in the P E A C E 

study 1 8 . 

Alternatively, the observed particle effects may not be attributable to one 

compound (or factor) but to the combined action of the diverse components in 

the pollutant mix. The fact that P M 1 0 effects have been observed consistently 

across so many communities in different countries, wi th different sources of 

particulate air pollution and different chemical and physical characteristics of the 

particles might support this last hypothesis. 



164 Chapter 8 

The most consistent particle effects were oberved in allergic, symptomatic 

children, which might be explained by particle-allergen interactions. Several 

studies have suggested that diesel exhaust particles can alter the allergic 

respiratory response 4 4 . One explanation for this might be that the particles 

adsorb allergens and then function as adjuvants by prolonging the retention of 

the allergen so as to provide for an enhanced immune response. In addition, 

diesel exhaust particles may divert the immune response toward IgE 

production 4 4 . Both in vitro and in vivo experiments 4 4 , also in humans 4 8 , have 

shown that exposure to diesel exhaust particles preferentially enhances the IgE 

response. 

Potential biases and limitations 

Selection bias 

It is unlikely that the low response could have caused bias in our study, because 

each subject served as its own control. Bias due to the low response may only 

have occurred in the unlikely case that within the subgroup of subjects 

with/without chronic respiratory symptoms, response was associated with 

susceptibility to air pollution. 

Subjects who are experiencing relatively f e w respiratory symptoms during the 

study period may have lost their motivation and may have stopped to fill out 

their diary. If this happened, at the end of the study period only subjects with 

relatively high symptom prevalence would be reporting. This was limited by 

removing subjects wi th missing diary information (PEF or symptoms) on more 

than 4 0 % of the days from the dataset. In addition, non-linear t ime trends were 

specified. 

If removal of subjects from the dataset is associated wi th susceptibility to air 

pollution it might also lead to bias. Subjects who lost motivation because they 

never experienced symptoms might be the subjects that are less susceptible to 

air pollution. However, symptom reporting did not appear to be related to 'drop

out' during the study, because the fraction of subjects that were removed from 

the dataset was similar in the symptomatic and non-symptomatic panels. 

information bias 
Observer bias in symptom reporting might have occurred when subjects were 

informed by the mass media about air pollution episodes. However, during the 
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study period all air pollutant concentrations were below the limits used in the 

Dutch smog alert system, and no warnings were issued. 

It is possible that a subject was suffering from respiratory symptoms in such a 

degree that he or she was not able to perform the PEF measurements. This could 

have led to underestimation of the association between air pollution and PEF. The 

results of our study do not indicate that more consistent associations were found 

between air pollution and respiratory symptoms than between air pollution and 

PEF, however. 

In this type of data it is possible that the prevalence of reported symptoms 

declines over time due to decreasing motivation. Trend adjustment with a linear, 

quadratic and cubic trend term in the analysis makes it unlikely that decreasing 

motivation has biased effect estimates. 

Mini Wright meters with a range from 6 0 to 8 0 0 l/min were used in our study to 

measure daily variations in PEF. It is known that Mini Wright meters may give 

inaccurate readings, and that the inaccuracy varies across the range of the 

meters: they may overread by about 7 0 l/min in the middle range and underread by 

about 5 0 l/min in the high range 4 8 . Because each subject serves as its own control, 

this can only lead to biased effect estimates when there is a large variation in PEF 

within a subject between days. The degree of overestimation is relatively constant 

between 3 0 0 - 4 5 0 l/min and for most children, PEF varies within this range. 

However, w e can not exclude that for children with a low mean PEF decrements in 

PEF can be slightly overestimated. Similarly, w e can not exclude that for adults 

with a high mean PEF decrements in PEF can be slightly underestimated. However, 

w e do not expect that this form of bias is very important since the degree in which 

the difference in PEF is incorrectly estimated is limited. 

Compliance 

Recently, a number of studies comparing self-recorded and electronically stored 

PEF measurements have raised concern about the reliabiity of self-recorded PEF 

measurements. They reported that errors were made in reading and transcribing 

the PEF values and that a substantial number of the values were invented 4 7 " 8 0 . 

T w o s tud ies 4 7 , 4 8 investigated adult subjects for occupational asthma and found 

that written values corresponded precisely to electronically stored values in only 

approximately 5 0 % of the cases. Verschelden ef a / . 4 9 compardd self-recorded to 

electronically stored PEF values in 2 0 asthmatic adults who were asked to asses 

PEF twice daily during a three month period, and reported that 2 2 % of the values 

were invented. Redline ef al.80 reported that in a panel of asthmatic children in 
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the US, the number of invented PEF values increased over t ime during a three 

weeks study period and was 3 7 % in the third week of study. This population 

differed from our study population with respect to socio-economic status, since 

the children resided in areas wi th 4 0 % or more of the population living at or 

below poverty level. 

W e did not store Mini Wright PEF values electronically and thus, w e do not know 

the amount of error in the measurement of this outcome variable in our study. 

However, in a separate study in 9 -11 yr old children, w e attempted to obtain an 

indirect estimate of the quality of self-recorded PEF measurements. The 

contribution of measurement error to the total intra-individual variability was 

compared between self-recorded and supervised PEF measurements. Self-

recorded Mini Wright measurements were performed in the morning and the 

evening at home during a 4 months study period. In addition, weekly PEF 

measurements were made at school during morning hours wi th spirometry and a 

Mini Wright meter under supervision. To obtain an estimate of measurement 

error all three maneuvers that each measurement consisted of were used. 

It was calculated that the contribution of measurement error to the total 

variability in self-recorded Mini Wright PEF measurements was 2 4 % in the 

morning and 2 9 % in the evening. For Mini Wright measurements that were 

performed at school under supervision this percentage was 1 7 % , and for 

spiromteric PEF 1 5 % . Thus, although the contribution of measurement error to 

total variability was larger in self-recorded than in supervised PEF measurements, 

the difference was not great. W e concluded that the advantage of self-recorded 

measurements in terms of ease, cost and amount of data obtainable far 

outweighs this disadvantage. 

A limitation of the separate study w a s , that measurement error was calculated 

for the mean of the three repeated measurements, whereas the maximum of 

three repeated PEF measurements was used to investigate the association wi th 

air pollution in our main study. Since it is, by definition, not possible to calculate 

measurement error for a maximum value, the measurement error for the mean 

was used as a proxy for the amount of error in the maximum. An important 

underlying assumption was that measurement error for the mean and the 

maximum of three PEF's are correlated. 

Another limitation is that errors in reading precision and transciption of the data 

are reflected in our definition of measurement error, but that this is not 

necessarily true for invented values. Invented values may even lead to an 
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underestimation of 'measurement error' if the same invented value is recorded 

for the three maneuvers. 

In our main study, a number of attempts were made to optimize data quality. 

The diaries were inspected in the presence of the participating subject every 4 

weeks and irregularities (i.e. a great number of missing values, strange PEF-

values) were discussed. At the end of the study period, all individual plots of PEF 

versus day of study were inspected. W e tried to identify subjects that 'invented' 

PEF values by checking for long periods with no variation and on extremely high 

values. These checks did not detect invented values which vary around the mean 

PEF value. Invented values in symptom diary data are more difficult to detect and 

it is possible that these were present in the analyzed data. 

In conclusion, information bias may have played a role, particularly through errors 

in the measurement of the outcome variable. However, when random, those 

errors increase the standard errors of the air pollution coefficients but do not lead 

to biased effect estimates. 

Confounding 

Because in this study only associations between time varying variables were 

studied, t ime invariant variables such as age, sex and socio-economic status can 

not confound associations between exposure and effect. Potential confounders 

that might bias the association between air pollution and respiratory health are 

meteorologic variables (mainly ambient temperature), respiratory infections, long 

term time trends, medication use and day of week. Adjustment for low ambient 

temperature was made by including minimum daily temperature as an 

independent variable in the regression models. Respiratory infections are an 

important determinant of respiratory health status, both in ch i ldren 8 1 , 5 2 and in 

adu l ts 6 3 , 5 4 . If respiratory infections coincide wi th periods wi th high or low air 

pollution this can confound the association between air pollution and health. 

Objective data on respiratory infections are not easily obtained in panel studies. 

For this reason, w e investigated whether a surrogate variable, the incidence of 

influenza and influenza-like-illness (ILI), registered by the Dutch network of 

General Practitioner (GP) sentinel stations, was associated wi th respiratory health 

in panels selected from defined geographical areas. W e showed that a higher ILI 

incidence was associated with a decrease in PEF and an increase in the reporting 

of respiratory symptoms in panels of symptomatic and non-symptomatic children 

and adults. To our knowledge, an attempt to adjust for the potential confounding 
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effect of respiratory infections was made in only t w o previous panel s t u d i e s 2 1 6 5 . 

In these studies, the presence of fever 6 5 and the presence of respiratory 

infections wi th fever 2 1 , recorded in the diaries were used. However, asking about 

fever may not be a sensitive tool for assessing respiratory infections, which may 

often lead to symptoms and reduced lung function without causing fever. Only 

the prevalence of the same day were used in the analysis; previous lags were not 

eva lua ted 2 1 , 6 5 . W e found that the most consistent associations wi th respiratory 

health were found if the incidence of ILI was expressed as the mean of the 

preceding week. 

The incidence of ILI is being monitored by the sentinel stations to obtain 

information on influenza virus activity, but virological surveillance has shown that 

in practice, it is not always possible to distinguish between influenza- and other 

respiratory viruses. Analysis of the three winters suggested that during the 

winter of 1 9 9 4 / 1 9 9 5 , when no influenza epidemics occurred, the incidence of ILI 

was mainly an indicator for other respiratory viruses than the influenza virus 5 6 . 

However, during the winters of 1 9 9 2 / 1 9 9 3 and 1 9 9 3 / 1 9 9 4 , when influenza 

epidemics occured, the pattern of ILI incidence seemed to reflect mainly influenza 

activity and to a lesser extent the activity of other v i ruses 6 7 , 6 8 . 

Trends were observed in PEF measurements and the prevalence of respiratory 

symptoms and bronchodilator use. Especially in the children panels, strong and 

non-linear trends were observed for a number of outcome variables. Trends in 

symptom or medication reporting can occur due to decreased motivation, 

seasonal effects or respiratory infections. Trends in PEF measurements can occur 

due to training effects and (in children) due to growth. For each subject, PEF 

values were expressed as percentage of that subjects median PEF value during 

the whole study period. Next the prevalence of PEF values that were more than 

1 0 % and more than 2 0 % below the median PEF was calculated. It is possible 

that due to the increase of PEF wi th time (especially in children) the days with 

defined PEF decrements occurred mainly in the beginning of the study period. 

However, all associations were adjusted for non-linear long term time trends with 

a third order polynomial in the prevalence of PEF decrements, symptoms and 

bronchodilator use. The adjustment for time trends was more detailed than in 

previous panel studies which either specified no time trend or a linear trend. 

An indicator variable for day of week (school/working day versus 

weekend/holiday) was included in all models. This was done because 
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weekends/holidays might be independently associated wi th both air pollution 

concentrations and the reporting of symptoms/timing of the PEF measurements. 

Use of airway medication can diminish the association between air pollution and 

respiratory health, because subjects can increase their medication use in 

response to air pollution. Rather than adjusting for medication use in the models 

w e chose to analyze medication use as an endpoint. In addition, stratified 

analyses were performed for medicated and non-medicated children. Although 

this evaluation suggests the absence of serious confounding bias, it can not be 

excluded that due to error in the measurement of confounders, some bias may 

have occurred 8 0 . 

Exposure assessment 
Exposure was estimated by measuring the concentrations of ambient air 

pollutants at fixed urban and non-urban background sites. This may not 

adequately reflect exposures of individual subjects, because people spend most of 

their time indoors. Moreover, exposure is affected by activity patterns. 

Measurements of personal exposure are therefore considered a more accurate 

estimate of the subjects true exposura In panel studies, day-to-day variations in 

exposure to air pollution are related to day-to-day variations in respiratory health. 

Therefore, the correlation in t ime between fixed site and personal concentration 

within persons determines if fixed sites can be used as a measure of exposure. 

Recent studies in the Netherlands have shown that the t ime series correlation 

between ambient and personal PMio was reasonably h i g h 2 4 , 2 6 , while a high 

correlation was found between ambient and personal P M 2 . B 8 9 . Personal P M 2 . 5 

concentrations were also highly correlated with ambient P M 1 0 concentrations 8 9 . 

No consistent differences were found in the strength of the correlation between 

ambient and personal P M 1 0 between children living in Amsterdam and children 

living in the non-industrial small town Wageningen 2 4 . Nevertheless, it is obvious 

that fixed site concentrations on some days underestimate and on other days 

overestimate the true personal exposure. However, random errors in the 

measurements of the exposure variable have been shown to result in a bias 

towards the null value of the association between exposure and e f fec t 8 0 . 

In the urban areas, background sites were used to estimate exposure instead of 

sites that were more influence by traffic. For subjects who live along busy roads 

this may lead to an underestimation of exposure. Nevertheless, background sites 

were preferred because background concentrations are more representative for 
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exposure of city dwellers than concentrations at sites that are heavily influenced by 

local sources. 

Twenty-four hour mean concentrations were used as exposure estimates. One 

might argue if this is the best averaging time of the biologically relevant exposure. 

The highest peak value during the day might, for example, provide a better estimate 

of exposure. However, previous s t u d i e s 6 1 6 2 have shown that, especially for particles, 

cumulative exposures over several days were most consistently associated with 

health outcomes. Moreover, since air pollution was mainly dominated by long range 

transport, it is likely that the maximum and the mean of the concentration are 

highly correlated. For S O 2 and N O 2 it has been documented that the 

concentration between 1 -hour maximum and 24-hour average concentration was 

above 0 . 9 5 8 3 . 

Implications 

Previous panel studies have found that an increase in P M 1 0 concentration of 1 0 0 

/ / g / m 3 was associated wi th a decrease in population mean PEF of 0 . 8 % 1 1 . The 

medical importance of such small effects, that are not necessarily adverse, have 

been discussed b e f o r e 8 4 , 6 6 . In our study, a different approach was used to 

analyze PEF data, focusing not on decrements in population mean PEF but on the 

fraction of subjects that is experiencing substantial PEF decrements. Hoek et a/.18 

have compared the t w o approaches and demonstrated that , in a re-analysis of 

seven panel studies, an increase of 1 0 0 / / g / m 3 of the same day P M 1 0 

concentration was associated wi th a decrement in population mean of 0 . 7 % , 

while the relative increase in the prevalence of PEF decrements greater than 1 0 % 

associated wi th the same exposure was 3 1 % . This demonstrates that 

susceptible individuals in the population show a much larger response than the 

population mean response. Transient decrements of FVC and F E V 1 of 1 0 % and 

2 0 % have been considered as the border between mild and moderate response, 

respect ively 6 4 , 6 6 . The effect estimates observed in our study indicate that in 

symptomatic children, an increase in same day P M 1 0 concentration of 1 0 0 / / g / m 3 

is associated wi th an increase of 4 2 % in the number of subjects with an evening 

PEF response that could be characterized as moderate. This PEF response is 

accompanied by a similar increase of 3 4 % in the prevalence of LRS and 2 9 % in 

bronchodilator use. 
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The results of our study suggest that 5 0 - 7 0 yr old adults are less susceptible to 

the effects of ambient air pollution than 7-11 yr old children. They also suggest 

that symptomatic children are more susceptible to the adverse effects of ambient 

air pollution than non-symptomatic children. Moreover, combination of the results 

of several subgroup analyses in children raises the suggestion that allergic 

asthmatic children are most susceptible to the effects of PMio. Future studies 

investigating particle-allergen interactions, including controlled exposure studies, 

are needed to further elucidate the mechanisms that might be responsible for 

this. 

The results of our study also demonstrate that use of asthma medication does 

not always prevent the adverse effects of particulate air pollution. Moreover, 

they suggest that there are differences in asthma treatment regimes between 

urban and non-urban areas, which might explain why the adverse effects of 

particulate air pollution were mainly found in the urban areas. Further research 

investigating acute effects of air pollution in children using maintenance 

medication, and simultaneously in children using bronchodilators only is needed 

to answer this question. 

In our study, adverse effects of P M 1 0 were found at average concentrations that 

ranged from 2 7 / / g / m 3 in the non-urban area in the winter of 1 9 9 4 / 1 9 9 5 to 55 

/ / g / m 3 in the urban area in the winter of 1 9 9 2 / 1 9 9 3 . The in 1 9 8 7 established 

Dutch 24-hour P M 1 0 standard of 1 4 0 / / g / m 3 was exceeded on only t w o days, and 

all air pollution concentrations were well below the limits used in the Dutch 

winter smog alert system. The present study and several other recent studies 

support the need of revised air quality guidelines, that have already been 

developed for the European Union. 

Conclusions 

This study has shown that low levels of particulate air pollution were associated 

with adverse effects on respiratory health in 7-11 yr old symptomatic children. In 

5 0 - 7 0 yr old symptomatic adults a weak effect of particulate air pollution on 

respiratory health was found. Symptomatic children appeared to be more 

susceptible to the effects of ambient air pollution than non-symptomatic children. 

No association between air pollution and respiratory health was found in non-

symptomatic adults. Subgroup-analyses based on medical characteristics in the 

panels of children indicated that symptomatic children wi th atopy were most 
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susceptible to the effects of P M 1 0 . The contrast in particle concentrations 

between urban and non-urban areas was small. Although there was a tendency 

of more consistent particle effects in the urban panels, the differences wi th the 

non-urban panels were small and might reflect differences in asthma medication 

use. 
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Summary 

Chapter 1 describes the background and design of the study presented in this 

thesis. In classical winter air pollution episodes, increased fossil fuel use due to 

usually cold weather caused high concentrations of S O 2 and particulate matter. 

Over the last decades, however, the composition of the winter air pollution mixture 

has changed due to a continuing decrease in S O 2 emissions and a continuing 

increase in motorized traffic intensity. As a result, the contribution of traffic related 

compounds to the air pollution mixture became more important. Especially in the 

past decade, awareness about the health effects of particulate matter with a 

diameter smaller than 10 / /m ( P M 1 0 ) has increased. Studies in the early nineties 

reported acute health effects of relatively low levels P M 1 0 , independently of S O 2 . 

This raised the question whether the definition of winter air pollution episodes as 

periods with high concentrations of both S O 2 and particulate matter (not defined 

as P M 1 0 ) was still valid. They also raised the question to what extent inhabitants of 

urban areas with high traffic intensity were exposed to P M 1 0 and other 

components of the air pollution mixture. The study described in this thesis was 

designed to provide answers to these questions. It was performed simultaneously 

in urban areas and in smaller 'control' communities during three consecutive 

winters. As study areas were chosen: Rotterdam and . Bodegraven/Reeuwijk 

( 1 9 9 2 / 1 9 9 3 ) , Amsterdam and Meppel ( 1 9 9 3 / 1 9 9 4 ) , and Amsterdam and 

Nunspeet ( 1 9 9 4 / 1 9 9 5 ) . Each winter, panels of children (7-11 yr) and adults (50-

7 0 yr) with and without chronic respiratory symptoms were followed in both 

areas. Subjects performed twice daily measurements of Peak Expiratory Flow 

(PEF) and registered the occurrence of respiratory symptoms and medication use in 

a diary. Air pollution concentrations were measured daily in both areas. 

Chapter 2 describes the results of the air pollution measurements. The contrast in 

the levels of particulate air pollutants between urban and non-urban areas was 

relatively small. Median P M 1 0 concentration, measured during the three winters 

was 3 6 / / g / m 3 in the urban areas and 3 0 / / g / m 3 in the non-urban areas. Median 

Black Smoke (BS) concentration was 11 / / g / m 3 and 8.5 / / g / m 3 , respectively. The 

concentrations of the secondary aerosols sulfate and nitrate were on average 8 % 

and 7 % lower in the urban areas than in the non-urban areas, which contrasts 

with the fact that twofold higher concentrations were found in the urban areas of 

the precursor pollutants S O 2 and N O 2 . 
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The small contrast in particle concentrations between urban and non-urban areas in 

the Netherlands can be explained by the high population density and the 

importance of long-range transport of air pollutants. Due to the small size of the 

country and the absence of mountain ranges, there are no physical barriers or 

small-scale meteorological differences that result in different particle 

concentrations. 

In our main study, the participating children and adults performed twice daily PEF 

measurements at home with a Mini Wright meter. However, a number of recent 

studies had raised concern about the reliability of such unsupervised PEF 

measurements. Chapter 3 describes the results of a separate study in 9-11 yr old 

children comparing supervised and unsupervised PEF measurements. In the study 

described in chapter 3 , PEF was measured every week at school with spirometry 

and with a Mini Wright meter under supervision. In addition, children monitored 

their own PEF at home with a Mini Wright meter in the morning and in the 

evening. The aim was to compare within- and between-measurement variability 

between supervised (spirometry, Mini Wright) and unsupervised (Mini Wright) PEF 

measurements. For this purpose, all three measurements that each maneuver 

consisted of were used. The within-measurement variability was considered as a 

proxy for the amount of measurement error. W e found that, as anticipated, the 

amount of measurement error was larger in unsupervised than in supervised PEF 

readings, but the differences were not great. W e concluded that the advantages of 

self-recorded measurements in terms of ease, cost and amount of data obtainable 

far outweighs this disadvantage. 

In chapter 4 , w e investigated whether the incidence of influenza and influenza-like-

illness (ILI) in the general population, registered by the Dutch network of General 

Practitioners, could be used to adjust for the potential confounding effect of 

respiratory infections in panel studies. A higher ILI incidence was associated with a 

lower level of PEF, and increased reporting of respiratory symptoms and 

bronchodilator use in all groups of panels. The combined effect estimates 

calculated for the three winters indicated that for an influenza epidemic reaching 

peak ILI incidences of 1 2 2 cases/10 ,000 subjects, a group mean decrement in PEF 

of up to 6 % was found, and an increase in symptom reporting and bronchodilator 

use by factors of up to 2 .9 and 4 . 5 , respectively. This implies that in panel studies 
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on acute effects of air pollution, the ILI incidence might be used to adjust for the 

potential confounding effect of acute respiratory infections. 

Chapter 5 describes to what extent différents components of the winter air 

pollution mixture were associated with acute respiratory health effects in children 

with and without chronic respiratory symptoms ('symptomatic' and 'non-

symptomatic' children). In symptomatic children from both urban and non-urban 

areas, significant associations were observed between particle concentrations 

( P M 1 0 , BS and sulfate) and the prevalence of lower respiratory symptoms (LRS) 

and PEF decrements. Particle concentrations were also associated with 

bronchodilator use in the urban areas, but not in the non-urban areas. W e can not 

rule out that differences in use of maintenance medication were responsible for 

this, since the mean daily prevalence of maintenance medication use was almost 

twofold lower in the urban areas than in the non-urban areas. 

In non-symptomatic children, significant effects of P M 1 0 and BS concentrations on 

PEF were observed in both areas, but of smaller magnitude than for symptomatic 

children. No associations with respiratory symptoms were observed. 

Chapter 6 describes the association between air pollution and respiratory health in 

adults. In symptomatic adults living in urban areas, P M 1 0 , BS, sulfate and S O 2 

concentrations were associated with the prevalence of large decrements in 

morning PEF (more than 2 0 % below the median) but not in evening PEF. Although 

especially Black Smoke was also associated with upper respiratory symptoms, 

particle concentrations were not associated with lower respiratory symptoms or 

bronchodilator use. In symptomatic subjects living in non-urban areas, and in non-

symptomatic adults from both urban and non-urban areas, no consistent 

associations between air pollution concentrations and respiratory health indicators 

were found. 

In the panels of children, w e also investigated if the response to air pollution 

differed across subgroups based on the presence/absence of the following medical 

characteristics: a positive skin prick test against one of a number of common 

allergens, elevated serum total IgE level, and bronchial hyperresponsiveness (BHR) 

against metacholine. The results are described in chapter 7 . Separate analyses 

were performed in four subgroups for each of the medical characteristics 

separately: symptomatic with/without the characteristic, and non-symptomatic 
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with/without the characteristic. The most consistent associations between P M 1 0 

and indicators of respiratory health were found in symptomatic children who had 

either high total serum IgE or a positive skin prick test. Presence of high serum IgE 

or a positive skin prick test was not related to a stronger response to P M 1 0 in non-

symptomatic children. 

In chapter 8 the results of the study are summarized, compared with findings 

from other studies and interpreted. In addition, potential biases and limitations of 

the study design are discussed, and the implications and conclusions are 

presented. This study has demonstrated that there was a small contrast in particle 

concentrations between urban and non-urban areas in the Netherlands. In 7-11 

year old children, particle concentrations were associated with adverse effects on 

respiratory health. Symptomatic children appeared to be more susceptible to the 

effects of particulate air pollution than non-symptomatic children. In 5 0 - 7 0 year 

old symptomatic adults only a weak effect of particulate air pollution on respiratory 

health was found, while no effect was found in non-symptomatic adults. Although 

there was a tendency of more consistent particle effects in the urban panels, the 

differences wi th the non-urban panels were small and might reflect differences in 

asthma medication use. 

Subgroup analyses based on medical characteristics in the panels of children 

indicated that symptomatic children with atopy were most susceptible to the 

effects of P M 1 0 . 
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Samenvatting 

Hoofdstuk 1 geeft de achtergrond en opzet weer van net onderzoek dat in dit 

proefschrift beschreven wordt. In het verleden werden episoden van wintersmog 

gekenmerkt door hoge concentrates zwaveldioxide ( S O 2 ) en zwevend stof, als 

gevolg van het toegenomen gebruik van fossiele brandstoffen tijdens perioden met 

doorgaans koud weer. In de afgelopen decennia echter is de S O 2 uitstoot fors 

afgenomen, terwijl de intensiteit van het gemotoriseerde verkeer sterk is 

toegenomen. Als gevolg daarvan werd de bijdrage van verkeersgerelateerde 

componenten aan het wintersmogmengsel steeds belangrijker. Vooral in het 

afgelopen decennium is de bezorgdheid over gezondheidseffecten van fijn stof met 

een diameter kleiner dan 10 / /m ( P M 1 0 ) toegenomen. Studies uit het begin van de 

jaren negentig hebben laten zien dat al bij relatief läge P M 1 0 concentraties acute 

effecten op de gezondheid optraden, onafhankelijk van de concentratie S O 2 . Dit 

riep de vraag op of de definitie van wintersmog episoden als perioden met hoge 

concentraties van zowel S O 2 als zwevend stof (niet gedefinieerd als P M 1 0 ) nog wel 

juist was. Ook riep het de vraag op in welke mate bewoners van grote Steden met 

veel verkeer blootgesteld worden aan P M 1 0 en andere componenten uit het 

wintersmogmengsel. Het onderzoek dat in dit proefschrift wordt beschreven is 

opgezet om deze vragen te beantwoorden. Het werd gelijktijdig in grote Steden en 

in kleinere 'controle'plaatsen uitgevoerd gedurende drie opeenvolgende winters. 

Als onderzoeksgebieden werden gekozen: Rotterdam en Bodegraven/Reeuwijk 

( 1 9 9 2 / 1 9 9 3 ) , Amsterdam en Meppel ( 1 9 9 3 / 1 9 9 4 ) en Amsterdam en Nunspeet 

( 1 9 9 4 / 1 9 9 5 ) . De deelnemers aan het onderzoek voerden een winter lang dagelijkse 

piekstroommetingen uit en noteerden het optreden van luchtwegklachten en 

medicijngebruik in een dagboekje. In beide gebieden werden 'panels' kinderen (7-

11 jaar) en volwassenen (50 -70 jaar) met en zonder chronische luchtwegklachten 

gevolgd. De gehaltes luchtverontreinigende Stoffen werden dagelijks gemeten in 

beide gebieden. 

Hoofdstuk 2 beschrijft de resultaten van de luchtmetingen. Het verschil in fijn stof 

concentraties tussen stedelijke en niet-stedelijke gebieden was relatief klein. De 

mediane (« gemiddelde) P M 1 0 concentratie, gemeten tijdens de drie winters was 3 6 

/ / g / m 3 in de stedelijke en 3 0 / / g / m 3 in de niet-stedelijke gebieden. De mediane 

zwarte rook (ZWR) concentratie was respectievelijk 11 en 8 .5 {/g/m3. De 
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concentraties van de secundaire aerosolen sulfaat en nitraat waren in de stedelijke 
gebieden zelfs respectievelijk 8 % en 7 % lager dan in de niet-stedelijke gebieden. 
Dit Staat in contrast met het feit dat de concentratie SO2 en NO2, waaruit sulfaat 
en nitraat gevormd wordt, tweemaal zo hoog was in de stedelijke gebieden. Het 
geringe verschil in stofconcentraties tussen stedelijke en niet-stedelijke gebieden 
kan worden verklaard doordat Nederland een klein land is zonder fysieke barrières 
(bergen) en met nauwelijks meteorologische verschillen die zouden kunnen leiden 
tot verschillen in stofconcentraties. Over grote afstanden (vanuit het buitenland) 
getransporteerde luchtverontreiniging is daarom bepalend voor de fijn stofgehaltes 
die in Nederland worden gemeten. Doordat Nederland bovendien dichtbevolkt is en 
bijna als één groot stedelijk gebied beschouwd kan worden zijn de verschillen 
tussen in grote Steden en in kleinere plaatsen gemeten concentraties gering. 

In het onderzoek werd door alle deelnemende kinderen en volwassenen tweemaal 
per dag, thuis, de piekstroom (PEF) gemeten met behulp van een Mini Wright 
meter. In een aantal récente publikaties werd echter getwijfeld aan de 
betrouwbaarheid van dergelijke, niet onder toezicht uitgevoerde PEF metingen. 
Hoofdstuk 3 beschrijft de resultaten van een aparte studie in 9-11 jaar oude 
kinderen, waarbij gedurende één winter PEF metingen die onder toezicht van de 
onderzoekers op school werden uitgevoerd, zijn vergeleken met PEF metingen die 
door de kinderen op dezelfde dag thuis werden uitgevoerd. Op school werd de PEF 
elke week gemeten met Spirometrie en met een Mini Wright meter onder toezicht. 
Thuis werd door de kinderen 's ochtends en 's avonds een PEF meting uitgevoerd 
met een Mini Wright meter. Het doel was het vergelijken van de variabiliteit binnen 
en tussen de beide onder toezicht uitgevoerde metingen (Spirometrie, Mini Wright) 
en de beide niet onder toezicht uitgevoerde metingen thuis. Hiertoe werden alle 
drie de pogingen waaruit een meting bestaat geanalyseerd. De variabiliteit binnen 
een meting werd beschouwd als benadering voor de grootte van de meetfout. 
Zoals verwacht vonden we dat de 'meetfout' groter was in zelf-gerapporteerde dan 
in onder toezicht uitgevoerde metingen, maar de verschillen waren niet heel groot. 
W e concludeerden dat de voordelen van zelf-gerapporteerde metingen in termen 
van eenvoud, kosten en hoeveelheid data die verzameld kunnen worden hier 
ruimschoots tegen opwegen. 

In hoofdstuk 4 is onderzocht of de incidentie van griep- en griepachtige 
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aandoeningen ('ILI') in de algemene populatie, gebruikt kan worden om te 

corrigeren voor het potentieel verstorende effect van luchtweginfecties in panel 

studies. De ILI incidentie wordt in Nederland geregistreerd door een network van 

huisartsenpraktijken (peilstations). Een hogere ILI incidentie in de algemene 

populatie bleek gepaard met een lager niveau van de PEF, en toegenomen 

luchtwegklachten en medicijngebruik in alle panels. De gecombineerde 

effectschattingen geven aan dat tijdens een griepepidemie met een maximale ILI 

incidentie van 1 2 2 geval len/10.000 inwoners, een groepsgemiddelde PEF daling 

tot 6 % optrad, en dat de rapportage van Wachten en medicijngebruik toenam met 

factoren tot respectievelijk 2 ,9 en 4 ,5 . Dit geeft aan dat de ILI incidentie in panel 

studies gebruikt kan worden om te corrigeren voor het potentieel verstorende 

effect van acute luchtweginfecties. 

Hoofdstuk 5 beschrijft in welke mate de verschillende componenten uit het 

wintersmogmengsel geassocieerd waren met acute luchtwegeffecten bij kinderen 

met en zonder chronische luchtwegklachten ('symptomatische' en 'niet-

symptomatische' kinderen). Bij symptomatische kinderen uit zowel stedelijke als 

niet-stedelijke gebieden werden statistisch significante verbanden gevonden tussen 

stofconcentraties (uitgedrukt als P M 1 0 , ZWR en sulfaat) en de prevalentie van 

Symptomen van de onderste luchtwegen en PEF dalingen. Alleen in de stedelijke 

gebieden waren stofconcentraties ook geassocieerd met een toegenomen gebruik 

van luchtwegverwijdende medicijnen (bronchodilatoren). Het kan echter niet 

worden uitgesloten dat verschillen in het gebruik van onderhoudsmedicijnen tussen 

beide gebieden hiervoor verantwoordelijk zijn. Deze werden in de niet-stedelijk 

gebieden namelijk bijna t w e e keer zoveel gebruikt als in de stedelijke gebieden. Bij 

niet-symptomatische kinderen uit beide gebieden hing de P M 1 0 en zwarte rook 

concentratie samen met een significant verlaagde PEF, maar het effect was minder 

sterk dan bij symptomatische kinderen. Er werden geen associaties met 

luchtwegklachten gevonden. 

In hoofdstuk 6 wordt de relatie tussen luchtverontreiniging en gezondheidseffecten 

bij volwassenen beschreven. Bij symptomatische volwassenen uit stedelijke 

gebieden hingen P M i o , ZWR, sulfaat en S O 2 concentrates samen met het optreden 

van grote dalingen van de ochtend PEF (meer dan 2 0 % beneden de mediaan), 

maar niet van de avond PEF. Hoewel vooral zwarte rook ook geassocieerd was met 

Symptomen van de bovenste luchtwegen, waren de stofconcentraties niet 
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geassocieerd met een toename in Symptomen van de onderste luchtwegen en 

medicijngebruik. Bij symptomatische volwassenen uit de niet-stedelijke gebieden, 

en bij niet-symptomatische volwassenen uit zowel stedelijke als niet-stedelijke 

gebieden, werden geen consistente en significante associaties gevonden. 

In de kinderpanels is ook onderzocht of de respons op luchtverontreiniging 

verschilde tussen subgroepen, gebaseerd op de aan/afwezigheid van de volgende 

medische kenmerken: een positieve huidpriktest tegen tenminste een van een 

aantal veel voorkomende allergenen, een verhoogd totaal serum IgE gehalte, en 

bronchiale hyperreactiviteit (BHR) tegen metacholine. De resultaten worden 

beschreven in hoofdstuk 7 . Er werden aparte analyses uitgevoerd in vier groepen 

voor elk van de medische kenmerken afzonderlijk: symptomatisch/niet

symptomatisch, met/zonder het betreffende kenmerk. Het meest consistente 

verband tussen P M 1 0 en indicatoren van de respiratoire gezondheid werd gevonden 

bij symptomatische kinderen met ofwel een verhoogd IgE gehalte, ofwel een 

positieve huidpriktest. Bij niet-symptomatische kinderen hing de aanwezigheid van 

een verhoogd IgE gehalte of positieve huidpriktest niet samen met een sterkere 

respons op luchtverontreiniging. 

In hoofdstuk 8 worden de resultaten van het onderzoek samengevat, vergeleken 

met bevindingen uit de literatuur en gefnterpreteerd. Ook worden potentiele 

bronnen van vertekening en beperkingen van het onderzoek bediscussieerd, en 

worden de implicaties en conclusies gegeven. Dit onderzoek heeft laten zien dat er 

een gering verschil was in fijn stofconcentraties tussen stedelijke en niet-stedelijke 

gebieden in Nederland. Bij 7-11 jarige kinderen waren hogere stofconcentraties 

geassocieerd met negatieve effecten op de respiratoire gezondheid. 

Symptomatische kinderen leken gevoeliger te zijn voor de effecten van fijn stof dan 

niet-symptomatische kinderen. Bij 5 0 - 7 0 jaar oude volwassenen werd slechts een 

zwak effect op de respiratoire gezondheid gevonden, terwijl bij niet-

symptomatische volwassenen geen effect werd aangetoond. Hoewel er een 

tendens bestond van meer consistente associaties met fijn stof in de stedelijke 

gebieden, waren de verschillen met de niet-stedelijke gebieden klein en zouden ze 

veroorzaakt kunnen worden door verschillen in medicijngebruik. Subgroep analyses 

gebaseerd op medische kenmerken bij de kinderen suggereerden dat 

symptomatische kinderen met atopie het meest gevoelig waren voor de effecten 

van P M 1 0 . 
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