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Abstract 

 

The invasion of alien plants into African savannas poses a threat to native biodiversity 

and alters ecosystem functioning. Our current understanding of the factors and 

mechanisms causing invasion in these ecosystems is poor. Yet, this knowledge is 

critical for the development of successful strategies for controlling invasive species and 

conserving native biodiversity. In this thesis, field measurements, a greenhouse 

experiment, field experiments, a long-term burning experiment, remote sensing, and 

Geographical Information System (GIS) techniques were used to understand the 

mechanisms of invasion and ecological factors controlling the susceptibility of African 

savanna systems to invasion by alien species (invasibility). In a nutrient-limited 

Zimbabwean savanna (southern Africa), native termites, which are widely distributed in 

the tropics, enhanced alien plant invasion by boosting nutrient concentrations in top 

soils around their mounds and creating spatial heterogeneity in microsite availability. 

This is the first time that the role of termites in facilitating alien plant invasion in a 

savanna has been reported. In a semi-arid savanna in southern Zimbabwe, the rate of 

spread of an invasive alien shrub was controlled by rainfall. During years of above-

average rainfall, the mean annual rate of spread of the invasive shrub Lantana camara 

was at least twice that of native shrub encroachers, whereas in other years natives 

spread at the same rate as the alien shrub. This is a novel finding suggesting that in 

water-limited African savanna systems, pulses in rainfall may accelerate the spread of 

invasive alien species. In a humid savanna in central Zimbabwe, frequent burning 

promoted invasion by alien plant species. The interaction of human disturbance and 

overgrazing by cattle increased the level of invasion of a degraded savanna in southern 

Zimbabwe. These results combined lead to the general conclusion that the invasibility 

of an African savanna system tends to increase when the availability of key limiting 

resources (water and nutrients) coincides with disturbances like cattle grazing and fire, 

which open up an intact plant assemblage to colonisation by alien plant invaders. This is 

consistent with ecological theory and implies that manipulating resource availability and 

reducing the level of disturbance may be the keys to controlling the spread of invasive 

alien species and conserving native biodiversity in African savannas.  
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Alien species invasions 
 

Invasions of managed and natural systems by alien species pose the second greatest 

threat to biodiversity after habitat loss worldwide (Elton 1958; Vitousek et al. 1996; 

Lonsdale 1999; Mack et al. 2000). Alien plant invasions occur when non-native plants 

or their propagules which are moved by humans either deliberately or by accident 

across major biogeographical barriers, overcome abiotic and biotic filters to survive, 

reproduce, and establish new self-sustaining populations (Richardson et al. 2000; Kolar 

and Lodge 2001). Not all naturalised alien plant species will have profound adverse 

impacts on native biota and ecosystems (Martin et al. 2009). In fact, many show no 

detectable impact at all (Simberloff 1988). In some cases, introduced alien plants may 

play a beneficial role, for example, by providing critical habitats to some endangered 

native fauna (Sax 2002). But this is not always the case. Many introduced alien plant 

species gain the ability to reproduce offspring, often in large numbers and are able to 

disperse rapidly over extensive areas (Pyšek and Richardson 2008). These invasive alien 

species can out-compete native species, alter ecosystem functioning, and cause 

considerable economic damage (Chapin et al. 1997; Pimentel et al. 2001; Yurkonis et al. 

2005). For instance, the economic losses caused by invasive species in the United States 

of America have been estimated to run into billions of United States dollars (Wilcove et 

al. 1998; Pimentel et al. 2000; Pimentel et al. 2005). Estimates for South Africa also 

exceed several billions of United States dollars (Van Wilgen et al. 2001).  

 

Statement of the problem  

 

Savannas are a unique biome characterised by the coexistence of trees and grasses 

(Scholes and Walker 1993; Jeltsch et al. 2000). They cover approximately 12 % of the 

world’s total land area but support the largest diversity of mammal herbivores on the 

planet and as much as half of the total human population in Africa (Scholes and Archer 

1997). The invasion of African savannas by numerous alien plant species is a key 

environmental problem confronting natural resource managers (Foxcroft and 

Richardson 2003; Henderson 2007). Invasive alien plants can alter the structure, 

diversity and functioning of African savanna ecosystems by modifying fire regimes 

(Brooks et al. 2004), nutrient cycling (Ehrenfeld 2003), causing the loss of native



Chapter 1 

 3 

biodiversity (Levine et al. 2003), as well as by changing river flow regimes thus 

exacerbating water scarcity (Enright 2000; Le Maitre et al. 2002). Removing invasive 

plants or controlling their further spread is therefore crucial for conserving native 

biodiversity, maintaining ecosystem functioning and ensuring that savannas continue to 

provide goods and services.  

Two major obstacles hinder the management of invasive alien species in 

African savannas. Firstly, our understanding of the mechanisms of invasion operating in 

these ecosystems is poor (Pyšek et al. 2008). Secondly, very little is known about how 

and why the distribution of invasive aliens change over time (Foxcroft et al. 2009). 

Because the ecological impacts of invasive plants are directly correlated with their 

spread and abundance (Hejda and Pyšek 2008), understanding how invasibility varies 

within and across savanna landscapes is crucial for optimising the allocation of 

resources to control invasive alien species.  

It has been suggested that rainfall, soil nutrient availability, grazing, and fire 

are the four principal determinants of vegetation structure, composition, and dynamics 

in African savannas (Jeltsch et al. 1996; Scholes and Archer 1997; Van Langevelde et al. 

2003; Sankaran et al. 2005). What is unclear, though, is whether these factors play a 

similar role in the invasion of alien plant species in these ecosystems. Therefore, the 

main aim of this thesis was to investigate and gain an understanding of how these four 

co-determinants of vegetation structure and composition govern the invasibility of 

savanna systems in Africa. My initial main hypothesis was: how an alien plant species 

responds to rainfall, soil nutrient availability, fire, and grazing, including their 

spatiotemporal variation, determines its ability to invade. For example, many termite 

species are known to boost nutrient concentrations in the top soil around their mounds 

in savannas (Lee and Wood 1971). Since plant distribution and growth in African 

savannas tend to be limited by the low availability of soil nutrients, one would expect 

that these insects may enhance the invasibility of these savannas. Throughout this thesis, 

savanna invasibility is defined as its susceptibility to invasion by alien plant species 

(Lonsdale 1999) and is variously indexed by the diversity of alien taxa present, number 

of alien species relative to total plant species richness present, frequency of occurrence, 

abundance of alien invaders as well as the proportion of the habitat invaded.  

 



 4 

Methods 

 

A range of approaches consisting of field measurements, a greenhouse experiment, field 

experiments, a long-term burning experiment, remote sensing, and Geographical 

Information System (GIS) techniques were used to understand how the availability of 

two key resources limiting primary productivity in African savannas (water and 

nutrients) as well as major disturbances (i.e., fire and grazing) determine the invasibility 

of these systems. Also, to improve invasive species mapping, traditional image 

classifiers were combined with a simple GIS expert system, yielding a robust hybrid 

algorithm capable of mapping the cover of a target invasive species across the entire 

landscape from satellite imagery more accurately than either the traditional classifiers or 

GIS expert system could by themselves. 

 

Study sites 

 

The study was conducted in the 44 km2 Kyle Game Reserve and the adjacent 344 km2 

Mutirikwi communal area (Fig. 1). They are located between the latitudes 20o 06′ and 

20o 20′ south and the longitudes 30o 58′ and 31o 08′ east in Zimbabwe (southern Africa). 

Precipitation is low and erratic, with a long-term annual mean of 635 mm (100-year 

period: 1906-2006, Masvingo weather station). Soils are predominantly coarse-textured 

sandy loams of low nutrient status, derived from granite (Nyamapfene 1991). The 

vegetation consists of a mosaic of broad-leaved deciduous woodland, bushland thickets, 

and open grassland. Brachystegia spiciformis and Julbernardia globiflora dominate the 

woodland, whereas the bushland is dominated by Dodonaea viscosa, Dichrostachys 

cinerea, and the invasive Lantana camara. Open grassland areas are dominated by 

Hyparrhenia filipendula and Hyperthelia dissoluta (Vincent and Thomas 1960).  

The study sites border onto each other, but their land tenure, management 

practices, and disturbance regimes differ. The game reserve is a relatively pristine 

savanna, which is fenced off primarily to conserve biological diversity. It is managed by 

the Parks and Wildlife Management Authority of Zimbabwe. In contrast, the communal 

area is a degraded savanna (Whitlow 1988; Scherr 1999; Masocha and Kariaga 2001) 

with a high human population density averaging 45 people per km2 (CSO 2004) and an 
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open access tenure regime (Chenje et al. 1998). Subsistence agriculture and continuous 

heavy grazing by cattle are the main disturbances. The juxtaposition of these study sites 

with similar soil types, rainfall conditions but different disturbance regimes makes them 

ideal for testing the effects of anthropogenic disturbance on alien plant invasion in a 

savanna system.  

 

 
 

Fig. 1. Location of the study sites in Zimbabwe. The study sites are separated by Lake Mutirikwi 

(grey shading). The black circle in the insert represents the location of the experimental site at 

Grasslands Research Station near Marondera town.  
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Experimental site  

 

The effects of frequency of burning on alien plant invasion were assessed in a humid 

savanna. The experimental site is located at the Grassland Research Station (18o 65′ S, 

31o 15′ E; altitude 1,630 m) near Marondera town in Zimbabwe (Fig. 1). The climate is 

humid with precipitation averaging 885 mm per year, falling between mid-October and 

mid-April. Mean monthly temperatures range from 12.3o C in June to 19.7o C in 

October (Grundy et al. 1994). The soils are coarse-textured sandy loams derived from 

granite (Barnes 1965). The vegetation is deciduous savanna woodland with 

Brachystegia spiciformis and Julbernardia globiflora as the dominant trees. The 

herbaceous layer is dominated by Hyparrhenia filipendula, Heteropogon contortus, and 

Nidorela uricrata (Campbell et al. 1988; Furley et al. 2008). The botanical 

nomenclature for the flora in the study sites and at the experimental site corresponds 

with authorities in Mapaura and Timberlake (2004). 

 

Outline of the thesis 

 

This thesis consists of several coherent chapters contributing to the understanding of the 

ecological mechanisms and factors controlling the susceptibility of African savanna 

ecosystems to invasion by alien plant species (invasibility). Chapter 2 investigates how 

termites, which modulate the availability of nutrients to plants and create patchiness in 

microsite availability in the landscape, facilitate the invasion of savannas by alien plants. 

The hypothesis tested is: by concentrating soil nutrients around their mounds and 

disturbing the soil, termites create spatial environmental heterogeneity, which may 

promote alien plant invasion in nutrient-limited savannas.  

Chapter 3 assesses the relative importance of germination and seedling survival 

phases to explain the abundance of invasive alien shrubs on termite mounds. This is the 

first time field experiments have been performed to evaluate the effects of termite 

mound soils on alien shrub recruitment in African savannas. 

In Chapter 4, the rates of spread of invasive and native encroaching shrub 

species are quantified over a relatively long period and the link with rainfall variation 

tested in a semi-arid savanna. In these savannas, rainfall is the primary factor 
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controlling vegetation dynamics but whether the response of invasive alien species to 

rainfall variation differed from the response of native, functionally similar species, was 

unknown.  

Chapter 5 evaluates whether the frequency of burning has any impact on the 

invasion of a humid savanna by alien plant species. Fire is one of the key disturbances 

influencing vegetation structure and composition in savannas, yet its role in promoting 

or limiting alien invasions of these systems is poorly understood.  

Chapter 6 deals with the joint effects of human and livestock disturbance on 

savanna invasibility. The hypothesis tested is: high human disturbance and continuous 

heavy grazing by livestock may favour alien plant invaders especially those with a 

ruderal strategy and/or those which are unpalatable to domestic herbivores.  

In Chapter 7, traditional image classifiers are integrated with a simple GIS 

expert system in order to improve invasive species mapping. It is demonstrated for the 

first time that the resultant hybrid classifier can detect and map invasive species across 

the entire landscape from satellite imagery with greater accuracy than either the 

standard classifiers or the GIS expert system alone.  

Finally, in Chapter 8, the main results from the previous chapters are brought 

together in order to gain a better understanding of the major factors controlling the 

invasibility of African savannas. The mechanisms of invasion are highlighted and the 

applicability of our results to other terrestrial ecosystems is discussed. Ultimately, two 

suggestions are made for future research. 
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Abstract 

 

Numerous alien plant species currently invade African savannas, threatening native 

biodiversity and ecosystem functioning. Yet, the mechanisms that cause the widespread 

invasion of savannas are not clear. We tested whether native termites, through 

disturbing the soil and increasing nutrient concentrations, enhance alien plant invasion 

in savannas. We registered the occurrence of all native and alien plant species at 

randomly selected termite mounds and the surrounding non-mound locations in a 

Zimbabwean savanna. Furthermore, we mapped the distribution of two common 

invasive shrub species in African savannas, Lantana camara L. and Duranta erecta L., 

and determined whether their occurrence was associated with termite mounds. We also 

performed a greenhouse experiment to test whether the growth of these two species was 

enhanced in mound soils compared to non-mound soils. Here, we show that alien plant 

species richness increased threefold on termite mounds compared to the surrounding 

non-mound areas. Moreover, both L. camara and D. erecta clustered around termite 

mounds with no individuals occurring farther from the mound peripheries. These 

invasive shrubs grew more rapidly and doubled dry matter production in termite mound 

soils compared to the surrounding non-mound soils. We hypothesise that the increased 

diversity and enhanced performance of alien species was due to higher nutrient 

concentrations in mound soils. By disturbing the soil and boosting soil nutrient 

concentrations, native termites appear to facilitate alien plant invasions in this savanna 

ecosystem. To our knowledge, this is the first evidence that termites facilitate the 

invasion of savannas by alien plant species. 

 

Key words: disturbance, invasive species, resource availability, seedling growth, spatial 

clustering  
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Introduction 

 

Savannas are characterised by the coexistence of grasses and trees. They cover 

approximately 12 % of the world’s total land area but support one fifth of the world’s 

human population and most of its large wild herbivore biomass (Scholes and Archer 

1997; Sankaran et al. 2005). Numerous alien plant species currently invade African 

savannas (Henderson 2007; Van Wilgen et al. 2007), and some, such as the common 

Lantana camara L., are becoming locally dominant, thereby posing a threat to native 

biodiversity and natural ecosystem functioning (Richardson and Van Wilgen 2004). 

Understanding the ecological mechanisms explaining the invasion of savannas is crucial 

for sustainable natural resource management and biodiversity conservation, yet it 

remains poorly addressed (Lonsdale 1999).  

Alien plant invasions are often associated with disturbances and consequent 

increased resource availability (D'Antonio et al. 1999; Davis and Pelsor 2001; Huston 

2004; Rose and Hermanutz 2004). Davis et al. (2000) predicted that a plant assemblage 

becomes more susceptible to invasion by alien plants if disturbances increase the 

amount of unused resources, since for an alien species to invade successfully it has to 

survive and capitalise on resources left unconsumed by native plants (Seabloom et al. 

2003). Disturbances may enhance an ecosystem’s invasibility by increasing the 

availability of the most limiting resources such as soil nutrients (Shea and Chesson 

2002).  

Across African savannas (with the exception of some East African savannas 

where soils are rich in nutrients) plant growth is limited by low soil nutrient availability, 

especially nitrogen and phosphorus (Sankaran et al. 2005). In these ecosystems, termite 

species, such as Macrotermes natalensis Haviland and Macrotermes michaelseni 

Sjöstedt, are important disturbing agents that modify savanna soils via the construction 

of large mounds built to create a suitable microclimate environment and protect their 

nests (Anderson and Wood 1988). These mounds tend to have higher nutrient 

concentrations than the surrounding soils (Konate et al. 1999; Jouquet et al. 2005). 

Nutrient enrichment occurs for two reasons. First, termites construct mounds using soil 

from deeper layers with a higher proportion of clay minerals and a higher cation 

exchange capacity than the coarser textured soils from the surface (Lee and Wood 1971). 
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Second, termites import and incorporate nutrient-rich organic matter into their mounds 

(Wood 1988; López-Hernández et al. 2005). Termite mounds are also prone to further 

disturbance by foraging animals such as aardvarks (Orycteropus afer Pallas), which 

feed on termites, and by mammalian herbivores attracted by the high forage quality of 

plants growing on mounds (Dangerfield et al. 1998).  

We propose that by increasing the availability of soil nutrients to plants and 

disturbing the soil, native termites facilitate the invasion of African savannas by alien 

plant species. To test this hypothesis, we focused on termite mounds constructed by M. 

natalensis - a widespread termite species in African savannas occurring in both 

deciduous woodlands and open savanna grasslands (Uys 2002; Mitchell 2007). We 

registered the occurrence of all native and alien plant species at randomly selected 

termite mounds and the surrounding non-mound locations in a protected savanna of 

southern Zimbabwe. Furthermore, we mapped the distribution of two common invasive 

alien shrub species in southern African savannas, L. camara and Duranta erecta L., and 

determined whether their occurrence was associated with the presence of termite 

mounds. Finally, we performed a greenhouse experiment to test whether the growth of 

these two invasive shrubs differs between mound soils and non-mound soils. 

 

Methods 

 

Study site 

 

The 44 km2 Kyle Game Reserve is situated at 20o 13′ S and 31o 03′ E about 38 km 

southeast of Masvingo town in southern Zimbabwe. It is a relatively flat plain 

(averaging 1,060 m a.s.l.) that stretches northwards from Lake Mutirikwi to the Beza 

mountain range. The climate is semi-arid with three distinct seasons: hot and wet 

(November to April), cool and dry (May to mid-August) and hot and dry (mid-August 

to October). The Masvingo weather station situated about 30 km northwest of the game 

reserve has a long-term (1899 - 2000) average annual rainfall of 635 mm. Summer rains 

(November-April) often fall sporadically and long dry spells are common. The mean 

maximum daily temperature ranges from 21o C in June to 29o C in October and the 

mean daily minimum temperature ranges from 5o C in July to 17o C in January. 
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Our study site is located at the southern part of the game reserve dominated by 

shallow, coarse and nutrient-poor sandy soils derived from granite (Nyamapfene 1991). 

This site is an open savanna grassland dominated by Hyperthelia dissoluta (Steud.) 

Clayton, Hyparrhenia filipendula (Hochst.) Stapf. and Themeda triandra Forssk. 

Woody species dominated by Schotia brachypetala Sond. and Diospyros mespiliformis 

Hochst. ex A. DC., growing mostly at termite mounds, are scattered throughout the 

continuous open grassland matrix. The botanical nomenclature follows Oudtshoorn 

(2006) for grasses and Palgrave (2002) for woody species. The main disturbances are 

fire and herbivory by large grazers and browsers particularly the zebra (Equus burchellii 

Gray) and giraffe (Giraffa camelopardalis L.).  

 

Focal invasive shrub species 

 

We mapped the spatial distribution of two alien shrub species, L. camara and D. erecta, 

both considered aggressive invaders of some African savannas (Henderson 2007) to 

determine whether they were associated with native termites. Lantana camara is a 

multi-stemmed perennial shrub with recurved spines that usually grows up to 2 m tall. 

Mature L. camara plants can produce up to 12,000 seeds per m2 (1995). Seed 

scarification in bird guts (Day et al. 2003) and probably baboons (Papio ursinus Kerr) 

improve germination. Lantana camara was introduced from Central and South America 

into southern Africa in 1858 as an ornamental shrub. It has since escaped and invaded a 

wide range of habitats including watercourses, forest and plantation margins, roadsides, 

pastures, and degraded land (Palgrave 2002).  

Lantana camara invasion poses a threat to native biodiversity and agro-

ecosystems in many countries. Stands of L. camara form dense and prickly 

monospecific thickets with interlocking crowns. These thickets suppress the 

germination and growth of native plants through shading and allelopathy (Gentle and 

Duggin 1998). In addition, L. camara thickets diminish the amenity values of 

recreational parks because they restrict human access and vehicle movement (Fensham 

et al. 1994). Lantana camara clusters are also known to harbour insects including tsetse 

flies and mosquitoes which spread diseases such as trypanosomiasis and malaria to 

livestock and humans, respectively (Syed and Guerin 2004). Lantana camara leaves 
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contain toxic phenolic compounds such as triterperne lantadenes which poison livestock 

and can result in death if ingested (Sharma et al. 1988). For example, in Australian 

savannas, it is estimated that annual losses attributed to L. camara poisoning are about 

1,500 cattle deaths, at a cost of 7.7 million Australian dollars (ARMC-ANZ 2001).  

Duranta erecta is an evergreen or semi-deciduous shrub with spiny branches 

that can grow up to 6 m in height. It usually forms a multi-stemmed clump of trailing 

branches. Although it is reported that the berries are poisonous, they are eaten and 

dispersed by birds (Palgrave 2002). Duranta erecta was also introduced from Central 

and South America into southern Africa as an ornamental shrub but has naturalised and 

invaded savannas and urban open areas (Palgrave 2002). However, little information 

exists about the spatial extent as well the economic and ecological consequences 

associated with its invasion. 

 

Data collection 

 

To determine whether alien plant species diversity and cover differ between termite 

mounds and non-mound areas, we conducted a field survey in March 2008 (during the 

peak of the growing season). A total of sixteen 20 m x 5 m plots were randomly 

selected out of 163 identified in aerial photographs. Half of the plots (8) were centred on 

existing termite mounds while the other half (8) were situated in the surrounding areas 

without termite mounds. One non-mound plot was placed about 60 m away from the 

outer-edge of each of the eight selected termite mounds. Previous research has shown 

that the foraging galleries of many termite species radiate outwards in various directions 

for up to 50 m but tend to be concentrated within 30-40 m from the mound (Lee and 

Wood 1971; Ferrar 1982).  

Vegetation and soil data were collected using the modified-Whittaker plot 

(Barnett and Stohlgren 2003), which had one central 10-m2 (5 m x 2 m) sub-plot and 

four 1-m2 (2 m x 0.5 m)
 
sub-plots located at each side. The occurrence of all native and 

alien plant species was registered in each 1-m2 sub-plot. In addition, the percentage 

cover of each plant species was estimated visually in the four sub-plots by three 

observers with the aid of a graduated rectangular wooden frame and averaged. Plant 
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species that were not detected in the 1-m2 sub-plots but were present in the 100-m2
 
plot 

were also recorded.  

 

Relative richness and abundance of alien plant species  

 

Plant specimens and records kept at the National Herbarium and Botanical Garden in 

Harare (Zimbabwe), as well as local vegetation checklists and regional floras, were used 

to determine whether the plant species identified in the sampled plots were native or 

alien, i.e., those plant species not indigenous to southern Africa (Pyšek et al. 2008). We 

calculated the relative richness of aliens as the number of alien plant species present in a 

plot divided by the total number of plant species present in that plot. We similarly 

calculated the relative cover of aliens.  

 

Soil nutrient analysis 

 

Soil samples were collected from the upper 20 cm of the soil at five random locations in 

the 1-m2 and 10-m2 sub-plots. For each plot, soil samples were mixed to form a 

composite sample and analysed for nitrogen (N), phosphorus (P), calcium (Ca) and 

magnesium (Mg). To estimate the total amount of N that would normally be available 

under field conditions, soil samples were first incubated at 35o C for 14 days. After 

incubation, the acid extraction method was used to estimate total N (ppm). Total P 

(ppm) was measured using the resin extraction method. The atomic absorption method 

was used to measure the total amount of Ca (me/100g of soil) and Mg (me/100g of soil). 

For details of these procedures, see Anderson and Ingram (1989). 

 

Mapping the distribution of invasive shrub species 

 

The distribution of two common invasive shrub species, L. camara and D. erecta, in 

relation to termite mounds was mapped in a 1,000 m by 300 m randomly selected study 

site, using a global position system unit to locate the centre of every M. natalensis 

mound. For each L. camara and D. erecta plant, the distance and bearing to the centre 

of the nearest mound were measured in order to calculate their position relative to the 
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nearest mound. Maps showing the distribution of the two invasive shrub species relative 

to the location of termite mounds were generated using the ILWIS Geographical 

Information System software (version 3.3).  

 

Spatial analysis  

 

The K function (Ripley 1977) was used to test the hypothesis that a significant spatial 

association exists between the distribution of termite mounds and that of L. camara and 

D. erecta. The modified version of the K function, which takes into account spatial 

variation in the densities of mapped point patterns (Diggle 2003), was used to calculate 

and compare the observed and expected number of L. camara and D. erecta plants at 

given distances from the termite mounds. To stabilise the variance and make the results 

easier to interpret, )(ˆ
12 rK  was divided by π, square root-transformed and plotted against 

r (Stoyan and Penttinen 2000). Since the underlying distribution of most spatial point 

processes is not known, Monte Carlo computer simulations were performed to generate 

95 % confidence envelopes. All spatial point pattern analyses were undertaken using 

Spatstat (Baddeley and Turner 2005), which runs under the open source R statistical 

software version 2.9.1 (R Development Core Team 2009).  

 

Greenhouse experimental design 

 

A greenhouse experiment was performed to test whether termite mound soils enhance 

the growth of L. camara and D. erecta compared to the surrounding non-mound soils. 

Soil samples were collected from eight selected termite mounds and eight surrounding 

non-mound (control) locations in the Kyle Game Reserve, using the methods described 

above. Each soil sample was air-dried and, after removal of all visible plant material, 

thoroughly mixed to form one composite sample. A total of 20 pots (20 cm wide and 20 

cm deep) were allocated to each of the two study species, ten filled with mound soil and 

ten filled with non-mound soil.  

Seeds of L. camara and D. erecta were collected from different adult shrubs in 

the Kyle Game Reserve and germinated in a greenhouse. In each pot, a one-week old 

seedling was transplanted and allowed to grow for 13 weeks at a day temperature of 26o 
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C and a night temperature of 21o C. To mimic the average rainfall in the study site 

during the growing season (November to March), each seedling was irrigated with 100 

ml of water every week. Pots were randomly distributed on a bench and randomly 

shifted after every two weeks.  

We measured seedling height weekly and calculated relative height growth 

changes between the first and 13th weeks using the log-transformed height 

measurements (Hoffmann and Poorter 2002). To evaluate plant biomass at week 13, 

pots were cut open, plants were carefully removed and their roots washed. Shoots and 

roots were then dried in an oven at 70o C for 48 hours and weighed separately.  

 

Statistical analysis 

 

Paired t-tests were used to evaluate whether termite mounds and the surrounding non-

mound areas differed in native species richness, alien species richness, relative richness 

of aliens, the absolute cover of natives, the absolute cover of aliens, and the relative 

cover of aliens as well as nutrient concentrations (N, P, Ca, and Mg). For the 

greenhouse experiment, t-tests were used to compare the growth (stem height) and 

biomass of seedlings grown in mound and non-mound soils. Data were transformed 

where necessary to normalise them. Statistical analyses were performed with Statistica 

version 7.0 (StatSoft, Inc.) and data are presented as means ± 95 % confidence level. 

 

Results 

 

Alien species richness and abundance at mounds vs. non-mound areas  

 

We found seventeen alien plant species belonging to eight families in the sampled areas, 

65 % of which occurred more frequently at termite mound plots than in the non-mound 

plots (see Appendix 1; t = 2.78, df = 16, P < 0.05). Termite mounds had significantly 

greater numbers of both native and alien plant species compared to the surrounding non-

mound areas (Table 1). The mean number of alien and native species was 2.7 and 1.3 

times higher respectively in mound plots than in non-mound plots. Consequently, the 

mean proportion of alien species relative to that of total species was significantly higher 
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at termite mounds compared to non-mound plots. Similarly, the mean absolute cover of 

natives and aliens were significantly higher at mounds compared to non-mound plots, 

and alien species accounted for a significantly higher proportion of total vegetation 

cover than in mound plots (Table 1). 

 
Table 1: Native and alien plant species richness and their cover (mean ± 95 % confidence level, n 

= 8) on termite mounds and the surrounding non-mound areas in the Kyle Game Reserve (data on 

percentage cover were arcsine-transformed to normalise them).  

 

Variable termite mound non-mound area t (d.f =7) 

native species richness 43.4 ± 8.1 32.3 ± 5.1 2.49* 

alien species richness 7.5 ± 1.9 2.8 ± 1.3 4.04** 

relative richness of aliens  0.15 ± 0.04 0.07 ± 0.03 3.21* 

absolute cover of natives 1.17 ± 0.07 0.70 ± 0.20 4.80** 

absolute cover of aliens  0.13 ± 0.04 0.03 ± 0.01 5.12** 

relative cover of aliens  0.11 ± 0.04 0.03 ± 0.01 4.93** 

significance levels:  * < 0.05; ** < 0.01  

 

Both L. camara and D. erecta clustered on termite mounds, with no individuals 

occurring farther from the mound peripheries (Fig. 2a, b). Results of spatial analyses 

also indicate significant clustering of these invasive alien shrubs around termite mounds 

(Fig. 3a, b). 
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Fig. 2. Spatial clustering of two invasive shrubs, Lantana camara and Duranta erecta (black 

circles) on termite mounds (grey shaded polygons) in a 30-ha study site located in the Kyle Game 

Reserve, Zimbabwe. The size of polygons corresponds with the areal extent of mounds while the 

bounding rectangle represents the spatial extent of the study site. The average diameter of termite 

mounds at base was 19 m ± 6 m standard deviation. 
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Nutrient concentrations at termite mounds versus non-mound areas 

 

Termite mound soils had consistently higher concentrations of macro-nutrients (N and 

P) and exchangeable bases (Ca and Mg) than the surrounding non-mound soils (Table 

2). The relative magnitude of the increase was larger for the exchangeable bases than 

macro-nutrients. 

 

Effects of mound soil on seedling growth  

 

Both L. camara and D. erecta seedlings growing in mound soil increased in height 

twice as fast and accumulated significantly more dry matter (i.e., shoot and root 

biomass) than seedlings growing in non-mound soil. Seedlings of D. erecta but not L. 

camara produced relatively more root biomass in non-mound soil (Table 3). 

Fig. 3. L functions for two invasive shrub 

species, Lantana camara and Duranta erecta, 

mapped in a 30-ha study site located in the 

Kyle Game Reserve of southern Zimbabwe. 

Observed values of L. camara (bold line) are 

greater than the expected (dotted line) and 

outside the 95 % confidence envelopes up to a 

distance (r) of 18 m from the centre of the 

nearest termite mound (Fig. 3a). This indicates 

significant clustering of this invasive shrub at 

termite mounds. Similarly, observed values of 

D. erecta (bold line) are greater than the 

expected (dotted line) and outside the 95 % 

confidence envelopes up to a distance of 25 m 

from the nearest mound (Fig. 3b). This again 

indicates significant aggregation of this 

invasive shrub at termite mounds.



Chapter 2 

 25

Table 2: Nutrient concentrations (mean ± 95 % confidence level, n = 8) in termite mound soils 

and the surrounding non-mound soils in the Kyle Game Reserve, Zimbabwe (ppm: parts per 

million; me: milligram equivalents per 100 grams of soil). 

 

Nutrients termite mound soil non-mound soil t (d.f =7) 

N (ppm) 4.01 ± 0.33 3.05 ± 0.19 5.23** 

P (ppm) 2.76 ± 0.62 1.50 ± 0.20 3.99** 

Ca (me/100g) 8.89 ± 5.91 0.86 ± 0.20 7.29*** 

Mg (me/100g) 2.96 ± 1.12 0.61 ± 0.13 5.36** 

significance levels:  * < 0.05; ** < 0.01; *** <0.001  

 
Table 3: Relative height growth rate (RHGR) and dry matter (mean ± 95 % confidence level, n = 

10) of Lantana camara and Duranta erecta grown in mound soil and non-mound soil after 13 

weeks.  

 

Species growth indicator mound soil non-mound soil t (d.f. =18) 

L. camara RHGR (cm cm-1 per week) 0.16 ± 0.02 0.08 ± 0.02 5.48*** 

 shoot biomass (g) 2.10 ± 0.38 0.74 ± 0.33 6.13*** 

 root biomass (g) 1.77 ± 0.48 0.91 ± 0.55 2.66* 

 root/shoot biomass ratio 0.92 ± 0.13 0.99 ± 0.18 -0.93ns 

D. erecta RHGR (cm cm-1 per week) 0.16 ± 0.02 0.07 ± 0.02 6.76*** 

 shoot biomass (g) 1.35 ± 0.21 0.23 ± 0.10 10.78*** 

 root biomass (g) 0.89 ± 0.20 0.27 ± 0.10 6.44*** 

 root/shoot biomass ratio 0.65 ± 0.08 1.32 ± 0.47 -3.25** 

significance levels: * < 0.05; ** < 0.01; *** < 0.001; ns = not significant.  

 

Discussion 

 

Our results reveal that in a savanna ecosystem, native termites can facilitate the 

establishment of both native and alien plant species, but the relative effects are stronger 

among alien species. Alien species richness increased threefold on termite mounds, 

while native species richness was on average only 30 % higher on the mounds 

compared to the surrounding non-mound areas. This increased diversity of plant species 

was related to high nutrient concentrations in mound soils, which had consistently 
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higher concentrations of macro-nutrients and exchangeable bases than the surrounding 

non-mound soils. Nutrient enrichment caused by native termites was also associated 

with higher abundance of alien invaders. We showed that the absolute cover of alien 

species was significantly higher at mounds compared to non-mound areas. Moreover, 

the results of our greenhouse experiment confirmed that dry matter production and the 

growth of two invasive shrub species (Lantana camara and Duranta erecta) doubled in 

mound soils compared to the surrounding non-mound soils.  

Termite mounds go through a construction phase in which the insects deposit 

fresh soil at their mounds, which has been reported to suppress the growth of native 

vegetation (Rogers et al. 1999). This increases the availability of microsites, with 

reduced competition of native flora, that are suitable for the germination and survival of 

seedlings of invaders (Eriksson and Ehrlen 1992). Termite disturbance might further 

enhance the diversity of alien species especially of those small-seeded ‘ruderal’ alien 

species that establish on bare mineral soil at open sites (Fridley et al. 2007). The 

microsite effect together with nutrient enrichment may combine to create a positive 

feedback enhancing the invasion of alien plant species. This might have implications for 

the invasion success of alien invaders at mounds because the ability of an alien plant 

species to rapidly increase its biomass at environmentally favourable locations is a trait 

associated with successful invasion (Grotkopp and Rejmánek 2007; Melbourne et al. 

2007).  

In the greenhouse, seedlings of two invasive shrub species survived when 

grown in non-mound soils, yet, in the field these invasive shrubs were restricted to 

termite mounds. This suggests that other mechanisms, interacting with the high nutrient 

concentrations at termite mounds, must facilitate invasion. Due to high nutrient 

availability at mounds, plants growing there tend to be of higher forage quality than 

those growing in the surrounding non-mound areas and this attracts vertebrate 

herbivores searching for high quality forage (Dangerfield et al. 1998; Loveridge and 

Moe 2004). Defecation by these herbivores may further increase nutrient concentrations 

and trigger a positive feedback for nutrient enrichment (Augustine et al. 2003). Also, 

increased grazing pressure at mounds compared to non-mound areas may affect native 

and alien plants differently (Holdo and McDowell 2004; Loveridge and Moe 2004). 

Recently it has been claimed that novel phytochemicals with anti-herbivore properties 
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explain partly the invasion success of alien species (Cappuccino and Arnason 2006). 

Such novel phytochemicals may tilt the outcome of competition in favour of some 

aliens with stronger anti-herbivore adaptations, an effect expected to increase with 

herbivory intensity (Callaway et al. 1999). Indeed, some of the alien species that were 

dominant at mounds, like L. camara, possess toxic phenolic compounds that are 

poisonous to most vertebrate herbivores (Sharma et al. 1988). We did not measure and 

compare differences in herbivore damage between alien and native species in this study, 

but it is documented that some invasive species suffer less herbivore damage than 

natives (Callaway and Ridenour 2004; Cappuccino and Arnason 2006). Hence, the 

evidence of findings so far indicates that it might be plausible that termites, while 

attracting herbivores, increase selection pressure against native plants.  

Also, different impacts of fire on mounds and non-mound areas could further 

accentuate the patterns we found and may explain why both L. camara and D. erecta 

individuals were not found farther away from termite mounds. Reduced fire severity at 

mounds compared to non-mounds areas can contribute to maintaining the spatial 

clumping of woody plants at mounds in African savannas. For example, Barot et al. 

(1999) attributed the spatial aggregation of palm trees (Borassus aethiopum Mart.) in 

west African savannas to reduced fire severity at termite mounds, which translate into 

higher survival rates for seedlings growing on mounds compared to those that recruit in 

the surrounding non-mound locations. Similarly, in east African savannas, Bloesch 

(2008) identified fire protection as one of the main factors facilitating the growth of 

thickets around mounds built by termite species of the Macrotermes genus.  

To our knowledge, this is the first time that a significant association between 

termite mounds and increased alien diversity and abundance in an African savanna has 

been reported. These results improve our understanding of the spatial variation in the 

invasibility of savannas by alien plant species and are consistent with studies in the 

Americas which assessed the association between ant nests and plant invasion. Farji-

Brener and Ghermandi (2008) found that two invasive herbs (Carduus nutans L. and 

Onopordum acanthium L.) accumulated more leaf and root biomass when grown in 

soils collected from nests of a leaf-cutting ant species (Acromyrmex lobicornis Emery) 

compared with the surrounding soils. This explained the association between the 

invasion of roadsides by these two invasive herbs and occurrence of ant nests in a 



 28

protected area in Patagonia (Argentina). Similarly, Wagner and Jones (2006) found that 

in the arid regions of North America, the seed-harvesting ant (Pogonomyrmex rugosus 

Emery) increased soil nutrient concentrations favouring the growth of an invasive grass 

species (Schismus barbatus (Loefl. ex L.) Thellung). These studies provide further 

evidence that soil invertebrates may drive invasion through constructing nests and 

modulating the availability of limiting resources to alien plants.  

Overall, our results suggest that for African savannas, where nutrients are 

known to limit plant production, soils modified by termites tend to be richer in soil 

nutrients than non-mound soils. Both native and alien plant species profit from these 

favourable termite mound conditions, but some invasive shrub species appear to benefit 

more from soil disturbance and increases in nutrient concentrations caused by termites. 

This is consistent with the fluctuating resource hypothesis proposed to explain invasions 

(Davis et al. 2000).  
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Appendix 1: Frequencies of occurrence of 17 alien plant species found at sampled termite 

mounds and the surrounding non-mound plots (n = 8 paired sample plots) in the Kyle Game 

Reserve of Zimbabwe. Nomenclature follows Pooley (1998) for herbs and Palgrave (2002) for 

shrubs and trees. 

 

Species family mound non-mound difference 

herbs     

Acanthospermum australe  Asteraceae 1 0 1 

Acanthospermum hispidum  Asteraceae 0 1 -1 

Ageratum conyzoides  Asteraceae 4 1 3 

Bidens pilosa  Asteraceae 6 2 4 

Conyza sumatrensis  Asteraceae 1 3 -2 

Schkuhria pinnata  Asteraceae 5 1 4 

Sonchus oleraceus  Asteraceae 1 1 0 

Tagetes minuta  Asteraceae 5 3 2 

Gomphrena celosioides  Amaranthaceae 1 1 0 

Richardia scabra  Rubiaceae 4 3 1 

Solanum incanum  Solanaceae 8 3 5 

Verbena bonariensis  Verbenaceae 0 1 -1 

shrubs     

Duranta erecta  Verbenaceae 8 0 8 

Lantana camara  Verbenaceae 7 0 7 

trees     

Jacaranda mimosifolia  Bignoniaceae 2 0 2 

Melia azedarach  Meliaceae 1 0 1 

Psidium guajava  Myrtaceae 0 1 -1 

 

Nomenclature: 

 

Palgrave, K. C. 2002. Keith Coates-Palgrave trees of southern Africa. Struik Publishers, Cape 

Town. 

Pooley, E. 1998. A field guide to wild flowers KwaZulu Natal and the eastern region. Natal Flora 

Publications Trust, Durban. 
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Abstract 

 

Encroachment of savanna ecosystems by alien shrub species can profoundly alter the 

structure, functioning and diversity of these ecosystems. Understanding which habitats 

are favourable to the germination and seedling recruitment is important because these 

two life stages are the most critical for successful invasion. We conducted a field 

experiment in a protected semi-arid savanna in Zimbabwe, southern Africa, to test the 

hypothesis that seed germination and survival of the invasive alien shrub Duranta 

erecta is enhanced by increased microsite availability around termite mounds. Seeds 

and seedlings were introduced to experimental plots located both at termite mounds and 

away from mounds. The germination rate of D. erecta in termite mound soils was twice 

as high as in the surrounding soils. Also the seedling survival rate was significantly 

higher at termite mounds than away from mounds. These results show that termite 

mounds in southern African savannas have increased propensity to invasion by alien 

shrubs. 

 

Key words: disturbance, Duranta erecta, germination, Kyle Game Reserve, 

Macrotermes, plant invasion, seedling survival, shrub encroachment, Zimbabwe 
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Introduction 

 

Increased shrub abundance has been documented in savannas worldwide (Archer et al. 

1988; Brown and Archer 1999; Van Auken 2000; Roques et al. 2001; Rodger and 

Twine 2002). Encroachment by invasive alien shrubs is particularly problematic since 

these shrubs can profoundly alter the structure and functioning of these ecosystems 

(Mack and D'Antonio 1998; Mooney and Cleland 2001; Ehrenfeld 2003; Levine et al. 

2003). Little is understood about the mechanisms causing the spread of invasive shrubs 

across savanna ecosystems (Lonsdale 1999; Pyšek et al. 2008). It has been suggested 

that alien plant invasion is often associated with disturbances and the consequent 

increased resource availability (Hobbs 1989; D'Antonio et al. 1999; Sher and Hyatt 

1999; Blumenthal 2005). Davis et al. (2000) predicted that an ecosystem becomes more 

susceptible to invasion by alien species if disturbances increase the amount of unused 

resources such as soil nutrients, since for an alien species to invade successfully, it has 

to capitalise on resources left unused by resident species (Seabloom et al. 2003; 

Melbourne et al. 2007; MacDougall et al. 2009). Disturbances may further enhance an 

ecosystem’s invasibility by increasing the availability of the most limiting resources 

such as soil nutrients (Shea and Chesson 2002).  

In African savannas, plant growth is often limited by low soil nutrient 

availability, in particular nitrogen and phosphorus (Huston 1993; Sankaran et al. 2005). 

In these ecosystems, termite species, such as Macrotermes natalensis Haviland, are 

important disturbing agents modifying savanna soils by constructing large mounds with 

higher nutrient concentrations than the surrounding soils (Lee and Wood 1971; Konate 

et al. 1999; Jouquet et al. 2005). Consequently, termite mounds tend to harbour a high 

diversity of alien taxa with some invasive alien shrubs clustering at the mounds while 

occurring less frequently beyond their outer edges (Chapter 2 in this thesis).  

Several mechanisms may potentially contribute to this clustering of alien 

shrubs on mounds. Termites may enhance seed germination through exposing bare 

mineral soil to the surface around their mounds (Rogers et al. 1999; Fridley et al. 2007), 

and also nutrient-rich mound soils may be favourable for the establishment of seedlings. 

We designed a field experiment in order to assess the relative importance of 

germination and seedling survival phases to explain the abundance of alien shrubs on 
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termite mounds. To our knowledge, this is the first time field experiments have been 

performed to evaluate the effects of termite mound soils on alien shrub recruitment in 

African savannas.  

 

Methods 

 

Study site 

 

The study was conducted in the Kyle Game Reserve (20o 13′ South, 31o 03′ East; 

altitude 1,060 m) located about 38 km southeast of Masvingo town in Zimbabwe. 

Precipitation averages 635 mm annually and falls mostly between November and March 

(c.a. 85 %). Mean monthly temperatures range from 19o C in June to 29o C in October. 

In 2008, the year the field experiment was performed, total annual rainfall was 668 mm. 

The study site is located at the southern part of the game reserve dominated by coarse-

textured sandy soils derived from granite (Nyamapfene 1991). The vegetation 

comprises open savanna grassland, dominated by the perennial grasses Hyperthelia 

dissoluta (Steud.) Clayton, and Hyparrhenia filipendula (Hochst.) Stapf, with the 

woody species Schotia brachypetala and Duranta erecta scattered throughout the open 

grassland matrix.  

 

Study species 

 

Duranta erecta L. (Verbenaceae) is a bird-dispersed semi-deciduous shrub growing up 

to 6 m tall (Navarro and Medel 2009). It was introduced from Central and South 

America into southern Africa as an ornamental garden species but is now one of the 

most widespread terrestrial invaders in the region posing a threat to both natural and 

agro-ecosystems (Palgrave 2002).  

 

Experimental design  

 

Two field experiments were performed to test whether the recruitment of D. erecta 

differed between termite mound and non-mound habitats. The response variables were 
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the proportion of seedlings emerging and seedling survival time. In December 2007, we 

located sixteen termite mounds where D. erecta plants were absent. The mounds had 

been built by Macrotermes natalensis and were evenly distributed across the study site. 

At each termite mound, two 1-m2 plots were placed. At a distance of about 60 m but not 

more than 75 m away from the outer-edge of each selected mound, two other 1-m2 plots 

were located in a randomly assigned direction (north, north-east, east, south-east, south, 

south-west, west, north-west). Previous research has shown that the foraging galleries of 

mound-building termites radiate outwards in various directions for up to 50 m but tend 

to be concentrated within 30-40 m from the mound (Ferrar 1982; Dangerfield et al. 

1998). Therefore, it was assumed that beyond 60 m from the mound, these insects 

would have little effect on the recruitment success or failure of invasive shrub species. 

In total, 64 plots were established; half (32) of which were located at termite mounds 

while the other half (32) were situated in the surrounding non-mound areas (Fig. 4). 

Experimental plots were situated in open places away from the canopy of any resident 

trees or shrubs to avoid the confounding effect of shading.  

 

Experiment 1: seed germination  

 

Fresh seeds of D. erecta were collected during December 2007 from more than 60 

shrubs, found at the study site. Seeds were prepared by being dried in the sun for three 

days, scarified between sandpaper and soaked in water for 24 hours prior to sowing to 

break dormancy (Hagenah et al. 2009). Pilot trails revealed a high germination rate of 

about 80 % regardless of the scarification method (i.e., soaked in concentrated sulphuric 

acid, soaked in boiling water for 20 minutes or just soaked in water for 24 hours). 

In mid-December 2007, 30 scarified seeds were sown approximately 1 cm 

deep in one of the two 1-m2 plots established at 16 selected termite mounds. The same 

protocol was followed in one of the two reference plots established at the 16 off-mound 

locations. Each treatment was replicated 16 times, yielding a total of 960 seeds, half 

sown in mound plots, the other half in non-mound (control) plots. Sowing was done 

during the rains, which continued for three days after sowing. No artificial irrigation 

was used. 
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Fig. 4. Distribution of experimental plots in the study site situated in the Kyle Game Reserve in 

Zimbabwe. Open triangles represent the location of plots at the sixteen selected termite mounds 

(i.e., 2 plots per mound) and open circles represent the location of control plots situated away 

from the mounds (i.e., 2 plots for each non-mound location).  
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Monitoring started three weeks after sowing because germination trials 

conducted in a greenhouse revealed that this was the average seedling emergence time. 

Emergence was monitored every ten days between January and March 2008.  

 

Experiment 2: Seedling survival  

 

In January 2008, 256 two-week old D. erecta seedlings (8 per plot) were planted in 32 

experimental plots; half (16) of which were located at termite mounds while the other 

half (16) were located at off-mound locations. The seedlings were planted in those plots 

where D. erecta seeds had not been sown. Seedlings were not watered as transplanting 

was done on a rainy day. The rains continued to fall for three days after transplanting. 

The transplanted seedlings had germinated ex-situ in a greenhouse from seeds collected 

from plants growing at the study site as described above. Seedlings were surveyed every 

10 days from April to June during the first dry season when drought can severely limit 

tree seedling survival in savannas (Scholes and Archer 1997). At each survey, a 

seedling was recorded to be either alive or dead. At the end of the experiment, all 

surviving seedlings were destroyed. 

 

Statistical analysis 

 

A Z-test was used to compare whether D. erecta seedling emergence differed between 

termite mounds and non-mounds. It was hypothesised that because termites expose bare 

mineral soil of higher nutrient status, the proportion of seeds germinating would be 

higher in mound soil than in non-mound soil.  

To compare seedling survival rates between mound and non-mound locations a 

repeated measures analysis of variance (ANOVA) was performed. Prior to performing 

ANOVA, data on the proportion of seedlings alive at a given census interval were 

arcsine-transformed and tested for normality as well as for homogeneity of variance 

using the Shapiro-Wilk’s test and Levene’s test of equality of variance respectively and 

found to satisfy ANOVA assumptions. Statistical analyses were performed using 

Statistica version 7.0 (StatSoft, Inc.). 
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Results 

 

Seedling emergence and survival on termite mounds vs. away from mounds 

 

Seed germination under field conditions was relatively low (< 30 %), but the proportion 

of seeds that emerged relative to the total number of seeds sown was significantly 

higher in mound plots than in off-mound plots (Z-test, Z = 4.25, P < 0.01; Fig. 5a). 

Seedling survival also differed significantly between termite mounds and off-mound 

areas with seedlings planted in termite mound soil having a longer survival time than 

those planted in non-mound soil (repeated measures ANOVA; F1, 30 = 55.2, P < 0.01; 

Fig. 5b).  
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Fig. 5. Seedling emergence and survival rates of Duranta erecta on termite mounds and away 

from mounds in the Kyle Game Reserve in Zimbabwe: (a) proportion of seedlings emerging from 

seeds sown in mound soil and non-mound soil during the growing season; and (b) final proportion 

of seedlings surviving on mounds and away from mounds at the end of the third month of the first 

dry season (June). For both a and b, bars represent mean percentages, and whiskers represent 

95 % confidence intervals (n = 16). 
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Discussion 

 

The results of this study indicate that the clustering of alien shrub species around 

termite mounds in southern African savannas may be attributed to higher germination 

and seedling survival on the mounds than in the surrounding off-mound areas. 

Germination rate of the invasive alien shrub Duranta erecta in mound soils was twice 

as high as in soils in the surrounding areas undisturbed by termites. In addition, seedling 

survival was consistently higher on termite mounds than away from mounds. These 

findings suggest that some alien woody species may recruit more successfully at termite 

mounds than in the surrounding non-mound areas.  

Termite mounds tend to harbour a higher diversity of alien species than the 

surrounding non-mound areas and invasive alien shrubs spatially aggregate at mounds 

without individuals occurring in the surrounding open grassland areas (Chapter 2 in this 

thesis). The experimental results of this study demonstrate that successful germination 

and survival of alien shrub species are important mechanisms to explain the higher 

diversity and spatial clumping of alien shrubs at termite mounds. Seed dispersal may 

also be a contributing factor, but clearly seeds of alien shrub species reaching termite 

mounds have a higher chance of germinating and growing than seeds dispersed into 

areas away from mounds. 

The enhanced recruitment success of D. erecta at mounds is likely to result 

from higher nutrient concentrations. That mound soils tend to be richer in soil nutrients 

than non-mound soils has been demonstrated throughout tropical savannas (Wood 1988; 

Lobry de Bruyn and Conacher 1990; Dangerfield et al. 1998; López-Hernández et al. 

2005). Consequently, once seedlings germinate in mound soil, they are more likely to 

grow fast and survive the subsequent dry seasons than seedlings growing in non-mound 

soils. Lack of water during the dry season does severely limit seedling survival in 

tropical savannas, representing a major bottleneck in shrub recruitment (Scholes and 

Archer 1997; Bond 2008). Environmental conditions that favour reaching a safe plant 

size become crucial to escape from subsequent drought-induced mortality (Scheffer et al. 

2008).  

Alien shrubs which establish at mounds are likely to produce more seeds than 

plants in non-mound soils. For instance, in a protected national park in northern 
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Patagonia (Argentina), alien plants growing at nutrient-richer dumps created by leaf-

cutting ants produce as much as 300 % more seeds than nearby plants growing in non-

nest areas (Farji-Brener and Ghermandi 2008). Clearly, if this is also the case with alien 

shrubs in southern African savannas, a positive feedback mechanism between enhanced 

recruitment and increased fecundity may result in the spatial clustering of alien woody 

species at mounds. 

 

Conclusion 

 

To our knowledge, this study provided the first field experimental evidence that termites 

may enhance the invasion of southern African savannas by constructing mounds with 

favourable environmental conditions for recruitment of alien shrubs. This contributes 

towards the understanding of the spatial variation in invasibility of savannas by alien 

plant species and suggests that environmental heterogeneity created by termites plays a 

more important role in facilitating alien plant invasions into savannas than previously 

thought. 
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Abstract 

 

Understanding the environmental factors governing the spread of alien shrubs is crucial 

for conserving native biodiversity. In the semi-arid savannas of Africa, alien shrub 

invasion often occurs simultaneously with native shrub encroachment, but it is currently 

unknown whether factors affecting native shrub encroachment, especially rainfall, have 

the same effect on invasive alien shrubs. A combination of historical aerial photographs 

and field measurements was used to compare the spread of the invasive shrub Lantana 

camara L. with that of native encroaching shrubs over a 31-year period in a protected 

semi-arid savanna in Zimbabwe (southern Africa). We tested whether the response of 

this invasive alien shrub to rainfall differs from that of native shrub encroachers. Both 

the invasive shrub L. camara and native encroaching shrubs spread significantly faster 

during high rainfall years than in dry years. However, the response of L. camara to 

annual rainfall was stronger than the response of native encroaching shrubs. During 

years of above-average rainfall, the mean annual rate of spread of L. camara was at 

least twice that of native shrub encroachers, whereas in other years natives spread at the 

same rate as the alien shrub. This is a novel finding suggesting that in water-limited 

savannas, pulses in rainfall may accelerate the spread of some invasive alien species. 

Since climate change will likely alter the precipitation patterns of savanna regions, 

understanding the link between rainfall and the spread of invasive species in savanna 

ecosystems is important to predict the potential changes in savanna species composition, 

structure and dynamics.  

 

Key words: invasive, Lantana camara, Kyle Game Reserve, patch dynamics, rainfall 

variability, shrub invasion 
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Introduction 

 

Increased shrub abundance has been documented in savannas worldwide. Encroachment 

by alien shrubs is particularly problematic since it can profoundly alter the structure and 

functioning of these ecosystems (Archer 1995; Lonsdale 1999; Mack et al. 2000) by 

modifying fire regimes (Brooks et al. 2004) and nutrient cycling (Ehrenfeld 2003) as 

well as by accelerating the loss of native species richness (Levine et al. 2003). 

Surprisingly, little is known about the rates of invasion and the mechanisms causing the 

spread of invasive alien shrubs across savanna ecosystems (Lonsdale 1993; With 2002; 

Pyšek et al. 2008). Understanding these key aspects of the invasion process is crucial 

for managing invasive species and conserving native biodiversity. 

Water availability limits plant growth and productivity in savannas (Prins and 

Loth 1988; Scholes and Archer 1997; Dube and Pickup 2001; Sankaran et al. 2005; 

Bond 2008). Although average rainfall is low and the pattern of precipitation very 

variable, large rainfall pulses can trigger massive tree and shrub recruitment (Holmgren 

and Scheffer 2001; Chesson et al. 2004; Sankaran et al. 2004; Schwinning and Sala 

2004). Successful tree and shrub establishment occurs when seedlings grow fast enough 

to reach a safe size to escape subsequent droughts or ‘topkill’ by herbivores and fire 

(Bond and Midgley 2000; Scheffer et al. 2008). Episodic tree and shrub recruitment 

events caused by rainfall pulses have been observed across semi-arid savannas in Africa 

(Sankaran et al. 2008), North America (Swetnam et al. 1999; Brown and Wu 2005; 

Knapp et al. 2008), South America (Holmgren et al. 2006a; Holmgren et al. 2006b), and 

Australia (Austin and Williams 1988). From these studies, it can be hypothesised that in 

dry savannas, high rainfall facilitates the spread of invasive alien shrubs.  

In semi-arid savannas in Africa, alien shrub invasion often occurs 

simultaneously with native shrub encroachment (Trollope 1974; Prins and Van der 

Jeugd 1993; Jeltsch et al. 1997; Shackleton 2000; Roques et al. 2001; Van Gils et al. 

2006; Wigley et al. 2009). Understanding whether environmental factors play a similar 

role in the spread of invasive alien shrubs and native encroaching shrubs may yield 

insights into alien shrub invasion dynamics, leading to better decisions in invasive 

species management. It has been hypothesised that successful alien and native plant 

species respond in a similar manner to fluctuations in resource availability (Thompson 
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et al. 1995; Daehler 2003; Huston 2004; Meiners 2007). However, since invasive alien 

plants are probably not hindered by their specialist herbivores, parasites or pathogens, 

they may respond more strongly to increases in resource availability (Davis et al. 2000; 

Keane and Crawley 2002; Schumacher et al. 2008; Edward et al. 2009).  

We hypothesised that: (1) since rainfall is the main factor limiting plant growth 

in dry savannas, shrub spread would be significantly higher in wetter periods than drier 

ones, whether species were indigenous to southern Africa or not; and (2) during high 

rainfall years, invasive alien shrubs would spread faster because, less hindered by their 

specialist herbivores, they would suffer less damage. To test these predictions, a 

combination of historical aerial photographs and field measurements was used to 

retrospectively quantify and compare the spread of an invasive shrub and native 

encroaching shrubs during a 31-year period characterised by variable annual rainfall in a 

protected semi-arid savanna in Zimbabwe. This is the first time that, over a relatively 

long period of time, the spatio-temporal patterns of spread of invasive and native 

encroaching shrub species have been quantified in savanna systems and the link with 

rainfall availability tested. Because climate change will likely alter the precipitation 

patterns of extensive savanna regions (Hulme et al. 2001; Christensen et al. 2007), 

understanding the link between rainfall and alien woody species establishment in 

savanna ecosystems is important to be able to predict spread.  

 

Methods  

 

Study site 

 

The study was conducted in the 44 km2 Kyle Game Reserve (20o 13′ S, 31o 03′ E). It 

was proclaimed a nature reserve in 1961 and fenced off, primarily to conserve 

biodiversity. The climate is sub-tropical, with a mean daily maximum temperature 

ranging from 21o C in June to 29o C in October. The long-term average annual rainfall 

is 635 mm (100-year period: 1906-2006, Masvingo weather station) but annual rainfall 

is variable (Table 4).  

The vegetation consists of a mosaic of open savanna grassland, broad-leaved 

deciduous woodland, and bush thickets. The open grassland is dominated by 
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Hyparrhenia filipendula (Hochst.) Stapf, Hyperthelia dissoluta (Steud.) Clayton, and 

Themeda triandra Forssk., whereas the deciduous woodland is dominated by 

Brachystegia spiciformis Benth. and Julbernardia globiflora (Benth.) Troupin. Bush 

thickets are dominated by Acacia karroo Hayne, Dichrostachys cinerea (L.) Wight & 

Arn. and Ziziphus mucronata Willd. as well as the invasive alien shrub Lantana camara 

L. In the study site, these shrubs typically encroach on open grasslands. The botanical 

nomenclature follows Oudtshoorn (2006) for grasses and Palgrave (2002) for woody 

species. 

 
Table 4: Deviation from the long-term mean annual precipitation (635 mm) during the study 

period (1975 - 2006) at the Kyle Game Reserve, Zimbabwe. Census interval boundaries represent 

the years in which the aerial photographs used to calculate the changes in the areal extent of 

encroaching shrubs were made.  

 

census interval (years) mean annual rainfall (mm) rainfall deviation (mm) 

1975 - 1980 761 126 

1980 - 1985 764 119 

1985 - 1996 539 -0.71 

1996 - 2006 585 -0.50 

 

Since its establishment more than 45 years ago, livestock has been excluded 

from the reserve and human interference has been minimal. Browsing by giraffe 

(Giraffa camelopardalis L.), kudu (Tragelaphus strepsiceros Pallas) and mixed feeders 

like impala (Aepyceros melampus Lichtenstein), forms the main disturbance which may 

potentially suppress shrub encroachment, but this does not affect L. camara because it is 

poisonous. This protected game reserve provides an ideal case study for testing the 

effect of rainfall on alien shrub encroachment without the confounding effects of human 

and livestock disturbance.  

 

Field measurements  

 

A field survey was undertaken in October 2006 to identify monotypic patches of the 

invasive shrub L. camara easily distinguishable on aerial photographs. Each L. camara 
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patch located in the field was assigned a unique number and a total of 24 patches were 

randomly selected for detailed measurement. Selected patches were evenly distributed 

over the game reserve. They were checked for spatial autocorrelation and found to be 

uncorrelated (Moran’s test; I value = 0.03, P > 0.5). For each selected L. camara patch, 

a reference patch dominated by a mixture of native encroaching shrubs was selected. To 

ensure that environmental conditions were relatively similar, the reference patches were 

located at least 30 m but not farther than 60 m from each L. camara patch. The direction 

was randomly selected. At each selected patch, a 30 m x 30 m plot was positioned 

centrally, yielding a total of 48 plots half of which were dominated by L. camara (> 

85 % canopy cover), while the other half contained a mixture of native encroaching 

shrub species, but no L. camara.  

In this study, a shrub patch was defined as a discrete cluster of vegetation 

dominated by overlapping canopies of either L. camara or a mixture of two or more 

native shrub species surrounded by herbaceous vegetation (Archer et al. 1988). Native 

shrub patches contained 5 to 20 woody species, dominated by A. karroo, Acacia 

rehmanniana Schinz, D. cinerea, Diospyros lycioides Desf., Lippia javanica (Burm F.) 

Spreng., and Z. mucronata. These shrub species are indigenous to southern Africa, 

whereas L. camara was introduced from South and Central America into southern 

Africa as an ornamental shrub during the 19th century and has since become invasive 

(Cronk and Fuller 2001; Henderson 2007). 

 

Patch dynamics 

 

In the field, a global positioning system unit was used to map sample plots as well as 

the areal extent of shrub patches within plot boundaries. These two maps were used as 

input to a Geographical Information System (GIS). To monitor and quantify changes in 

the areal extent of shrub patches, maps of plot boundaries and the patches they 

contained were overlaid on top of scanned and orthorectified stereo-pairs of black and 

white aerial photographs obtained for the years 1975 (1: 20 000), 1980 (1: 25 000); 

1985 (1: 25 000); and 1996 (1: 40 000) from the Surveyor General’s Office (Harare). 

The Integrated Land and Water Information System GIS software (version 3.5) was 

used to process aerial photographs and calculate the area covered by each patch.  
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Annual rate of spread  

 

To convert changes in the areal extent of patches between each census interval into a 

mean annual rate of spread the following formula was used: 

 

12

12 loglog
tt

AAspreadofrateannualmean
−
−=    (1) 

 

where logA2 and logA1 are the natural-logarithm transformed patch sizes at times t2 and 

t1 (in years), respectively. This formula takes into account differences in the relative 

growth rate of patches attributed to differences in patch size (Archer 1989; Hunt et al. 

2002).  

 

Statistical analysis 

 

To assess the effect of rainfall on the rate of spread of shrubs, each census interval was 

classified as either dry or wet depending on whether the average annual rainfall during 

that census interval was higher or lower than the long-term mean annual rainfall plus or 

minus one standard deviation respectively (Table 4).  

Repeated measures analysis of variance (ANOVA) was used to test whether 

rainfall had a significant effect on the rate of shrub spread. Species origin was the 

between-group factor. Prior to statistical analyses, data on annual rate of spread were 

tested for normality using the Shapiro-Wilk’s test and for homogeneity of variance 

using the Levene’s test of equality of variance and found to satisfy ANOVA 

assumptions. Following a significant rainfall effect, Tukey’s difference tests were 

performed to detect significant pairwise differences between groups. Statistical analyses 

were performed using the open source R statistical software version 2.9.0 (R 

Development Core Team 2009). 
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Results 

 

Rainfall had a significant positive effect on the rate of spread of shrubs (Fig. 6). During 

wet periods, both the invasive shrub L. camara and native encroaching shrubs spread 

significantly faster than during dry periods (F3, 44 = 30.2, P < 0.01). However, the 

response of L. camara to rainfall was stronger than that of native encroaching shrubs 

(F1, 44 = 22.7, P < 0.01). During wet periods (i.e., those of above average annual rainfall), 

the mean annual rate of spread of L. camara was at least twice as high as the rate of 

spread of native encroaching shrubs (Fig. 6). However, during dry periods (i.e., those of 

below-average rainfall), natives and the alien shrub spread equally fast. Overall, during 

this 31-year period, shrub cover consistently expanded into the savanna (Fig. 7).  
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Fig. 6. Effects of annual rainfall on rates of spread of an invasive alien shrub Lantana camara 

(grey bars) and native encroaching shrub species (open bars) during a 31-year study period in the 

Kyle Game Reserve, Zimbabwe. Bars represent means and the whiskers represent ± 95 % 

confidence interval (n = 24 for each species type).
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Fig. 7. Spatio-temporal changes in the size of patches dominated by the invasive shrub Lantana 

camara (black) or native encroaching shrub species (grey shading) at four locations (a - d) in the 

Kyle Game Reserve, Zimbabwe. Patch size was calculated from digitised aerial photographs for 

1975, 1980, 1985, 1996 and from field measurements for 2006. 
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Discussion 

 

The results of this study reveal that rainfall pulses facilitate shrub encroachment in 

semi-arid savannas of southern Africa. Shrubs, whether alien or indigenous to southern 

Africa, spread significantly faster during high rainfall years. This finding is consistent 

with the hypothesis that rainfall determines shrub recruitment and establishment in dry 

savannas (Roques et al. 2001; Sankaran et al. 2008) as in other arid and semiarid 

ecosystems around the world (Asner et al. 2003; Chesson et al. 2004; Holmgren et al. 

2006a; Donohue et al. 2009). We found that during years of above-average annual 

rainfall, the annual rate of spread of the invasive shrub Lantana camara averaged at 

least twice that of native encroaching shrubs whereas in other periods, natives and the 

alien shrub spread equally fast. This result is inconsistent with the observation in 

temperate terrestrial systems that alien species and native species had comparable rates 

of landscape spread (Thompson et al. 1995).  

The faster spread of L. camara relative to native colonising shrubs during high 

rainfall years may be attributed to the lack of natural enemies including mammal 

herbivores (Masocha et al. under review). Lantana camara has unique secondary 

metabolites, such as lantadene A, which are absent in native taxa, rendering it 

unpalatable to large mammal browsers (Swarbrick et al. 1998; Sharma et al. 2005). In 

contrast, most native encroaching shrubs, such as D. cinerea and A. Karoo, do not have 

an effective chemical defence against browsing by resident herbivores, like kudu and 

giraffe (Augustine and McNaughton 1998; Bond and Loffell 2001; Hagenah et al. 2009). 

These herbivores select palatable species in a landscape first (Senft et al. 1987; 

Augustine and McNaughton 2004), and they could be avoiding L. camara and 

consuming native palatable shrubs by preference. Such selective browsing may favour L. 

camara growth and facilitate its fast spread, while suppressing the growth and reducing 

the spread of native palatable species.  

Understanding how rainfall variability affects the spread of invasive alien 

shrubs in savannas is critical for predicting and ultimately controlling this spread. As 

shown here, in high rainfall years, the annual rate of spread of the invasive shrub L. 

camara averaged at least twice that of native shrub encroachers. This finding sheds light 

on the dynamics of alien shrub invasion in protected semi-arid savannas and suggests 
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that accelerated spread triggered by rainfall pulses explains why some invasive aliens 

become widespread and locally dominant in these water-limited systems. Predicted 

changes in precipitation patterns induced by global and regional climate changes will 

likely change the species composition and structure of extensive savanna regions. 
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Abstract 

 

Fire is a key disturbance factor, influencing vegetation dynamics and ecosystem 

functioning in mesic savannas. Without disturbances such as fire or grazing, tree cover 

can increase at the expense of grass cover and dominate mesic savannas. Consequently, 

repeated burning is widely used to suppress tree recruitment and control bush 

encroachment. However, the effect of regular burning on invasion by alien plant species 

is little understood. Here, vegetation data from a long-term fire experiment, which 

began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency 

of burning promoted alien plant invasion. The fire treatments consisted of late season 

fires, lit at 1-, 2-, 3-, and 4-year intervals, and these burnt areas were compared with 

unburnt areas. Results show that alien plant species accounted for a significantly higher 

proportion of vascular plant species richness in regularly burnt plots compared with 

unburnt (control) plots. The proportion of alien plant species was highest in the annually 

burnt plots, followed by plots burnt biennially, triennially, and quadrennially. Plots 

protected from fire contained the lowest proportion of alien invaders. Moreover, alien 

forbs occurred more frequently in regularly burnt plots than in the unburnt control plots 

and their abundance increased as the intervals between fires became shorter. All 

together, these results suggest that frequent burning of a mesic savanna enhances 

invasion by alien plants, with short intervals between fires favouring alien forbs. 

Therefore, reducing the frequency of burning may be a key to minimising the risk of 

invasion, which is important because invasive plants are known to threaten native 

biodiversity and alter ecosystem functions. 

 

Key words: exotic forbs, fire, Grasslands Research Station, long-term experiment, 

Zimbabwe 
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Introduction 

 

Fire is one of the major factors controlling vegetation structure, composition, and 

dynamics as well as ecosystem functioning in humid African savannas (Scholes and 

Archer 1997; Bond et al. 2005; Savadogo et al. 2008). Without disturbances such as fire 

or grazing, tree cover can increase at the expense of grass cover and dominate these 

mesic savannas (Van Langevelde et al. 2003; Sankaran et al. 2005). Because tree-grass 

coexistence is essential for savanna functioning, managers of these savannas use fire to 

control bush encroachment (Jeltsch et al. 2000; Govender et al. 2006). The use of fire to 

manage savannas is justified by managers on the grounds that most savanna vegetation 

evolved in the presence of fire and is thus adapted to, or tolerant of, fire (Bond and 

Midgley 2001; Andersen et al. 2005). However, despite decades of research, there is 

still uncertainty and disagreement among ecologists regarding the appropriate fire 

regimes natural resource managers should employ to manage savannas (Trollope 1974; 

O' Connor 1985; Bond et al. 2003; Van Wilgen et al. 2004; Archibald et al. 2009). 

For example, based on current understanding of the relationship between fire 

intensity, its frequency and tree mortality, some ecologists recommend regular burning 

during the dry season to limit tree recruitment and control bush encroachment (Trollope 

1974; Roques et al. 2001). Other fire ecologists, however, suggest that the imposition of 

regular fires of similar intensity can lead to the dominance of grasses. Hence these 

ecologists recommend fires of variable intensities, and they further stress that flexible 

burning is required to promote tree-grass coexistence (Higgins et al. 2000; Bond and 

Archibald 2003). At present, regular burning remains the most popular tool for 

managing savannas, despite the fact that the effects of fire frequency on species 

composition are little understood. Frequent fires in savanna ecosystems may promote 

invasion by non-indigenous (alien) species, since disturbance is known to increase the 

invasibility of plant communities (Hobbs and Huenneke 1992; Valery et al. 2008). Yet, 

this issue remains poorly addressed in fire ecology studies.  

Empirical evidence suggests that in savannas, different fire regimes promote 

particular traits in plants (Bond and Keeley 2005; Watson et al. 2009). For example, 

‘ruderalism’, that is, the specialisation associated with a short life cycle and high seed 

production (Grime 1977), and having pole-like stems are important traits, enabling 
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plants to establish and persist in frequently burnt savannas. These traits are known to 

facilitate rapid colonisation (Lavorel et al. 1997; Hayes and Barry 2008) and bolting 

towards a height that is out of reach of surface fires before the next burn (Bond and 

Keeley 2005).  

The purpose of this study is to test the hypotheses that frequent burning 

favours ruderal alien species and that short intervals between fires select for alien 

species with a short life history. To test these hypotheses, vegetation data from a long-

term fire experiment, which began in 1953 at a mesic Zimbabwean savanna site, were 

used. The fire treatments applied were annual, biennial, triennial, and quadrennial 

burning late in the dry season, and these treatments were compared with an unburnt 

control. This burning experiment was designed to assess the effects of fire on tree 

growth and dominance, but may shed light on the impact of fire on alien plant invasion, 

going beyond the original scope of the study, because the treatments have been applied 

for a more than 50 years. 

 

Methods 

 

Study site  

 

The study was conducted at the Grassland Research Station (18o 65′ S, 31o 15′ E; 

altitude 1,630 m), located 8 km west of Marondera town (see Fig. 1) and about 55 km 

southeast of Harare in Zimbabwe. The climate is seasonal with most of the precipitation, 

averaging 885 mm per year, falling between mid-October and mid-April. Mean monthly 

temperatures range from 12.3o C in June to 19.7o C in October (Grundy et al. 1994). The 

soils are coarse-textured sandy loams derived from granite (Barnes 1965). The 

vegetation is deciduous savanna woodland with Brachystegia spiciformis and 

Julbernardia globiflora as the dominant trees. The herbaceous layer is variable in 

composition, but the dominant grasses are Hyparrhenia filipendula, Melinis minutiflora, 

and Heteropogon contortus. Botanical nomenclature follows Palgrave (2002) for woody 

species and Oudtshoorn (2006) for grasses. 
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Experimental design 

 

In 1953, experimental burning began at the Grassland Research Station to investigate 

the effectiveness of fire as a management tool for controlling coppice regrowth of the 

woody vegetation (Barnes 1965). Before the start of the experiment, all the woody 

vegetation was cut to ground level. A total of 22 experimental plots each measuring 36 

m x 60 m were then established. A 3 m wide firebreak was established around each plot 

and livestock grazing was excluded. The main treatment was burning with late season 

fires lit at 1-, 2-, 3-, and 4-year intervals, to be compared with no burning (control). 

Treatment plots were subdivided into two equal parts (each 18 m x 60 m) and given two 

sub-plot treatments, namely burning after cutting woody growth to ground level 

(slashing), and burning without preliminary slashing. The effects of slashing before 

burning were not considered in this study. The different treatments were replicated as 

follows: burning once every four years was replicated eight times; burning once every 

three years six times; burning once every two years four times; burning once every year 

and the unburnt control twice each. Replication was biased in favour of treatments with 

longer intervals between fires to ensure that for each fire frequency at least one plot was 

burnt every year. Further details about the history of the experiment and its design can 

be found in Strang (1974) and Furley et al. (2008).  

 

Vegetation sampling 

 

In 2007 during the growing season, vascular plant species composition was recorded 

along two diagonal transects (50 m in length and 5 m in width) established in each 

experimental plot. For each species, the number of individuals was counted and 

averaged. National vegetation checklists and regional floras were used to classify plant 

species identified in the experimental plots as natives or aliens (i.e., those species not 

indigenous to southern Africa). The proportion of aliens was calculated as the number 

of alien plant species present in a plot divided by the total number of plant species 

present in that plot.  
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Statistical analysis 

 

One-way analysis of variance (ANOVA) was used to test whether the frequency of fire 

had a significant effect on the proportion of alien species and the abundance of common 

alien forbs. Prior to performing ANOVA, data on the proportion of alien species were 

arcsine-transformed to normalise them and to correct for skewness in the distribution 

arising from the fact that the data were constrained to values between 0 and 1. 

Frequency data were normalised using a logarithm transformation prior to performing 

ANOVA. Following a significant fire treatment effect, Tukey’s difference tests were 

performed to detect significant pairwise differences between groups. All tests were 

carried out in Statistica version 7.0 (StatSoft, Inc.). 

 

Results 

 

Plant species richness and identity of alien invaders  

 

A total of 110 vascular plant species were identified in the experimental plots, nine of 

which were alien species having invaded the experimental plots. The alien species 

consisted of two woody species (Lantana camara and Jacaranda mimosifolia) and 

seven forbs (namely Aster squamatus, Bidens pilosa, Conyza bonariensis, Desmodium 

uncinatum, Richardia brasiliensis, Sida cordifolia, and Tagetes minuta).  

 

Effects of fire frequency on alien plant invasion  

 

The frequency of burning had a profound effect on the proportion of alien species (F4, 12 

= 7.65, P < 0.01). Alien species accounted for a significantly higher proportion of plant 

species richness in regularly burnt plots than in the unburnt control plots (Fig. 8). In the 

burnt plots, the proportion of alien species was highest in the annually burnt plots and 

lowest in plots burnt quadrennially, but did not differ between plots burnt either 

biennially or triennially. 
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Fig. 8. Effect of fire on alien plant invasion at a humid savanna experimental site (Grasslands 

Research Station, Zimbabwe). Black squares indicate the mean proportion of alien species, and 

whiskers represent the 95 % confidence intervals per treatment. Data for the proportion of alien 

species were normalised using an arcsine transformation during statistical analysis, but are 

presented here as percentages to make comparisons between treatments easier.  

 

Effects of frequency of burning on the abundance of alien forbs  

 

Fire frequency also had a significant effect on the abundance of common alien forbs. 

These forbs occurred more frequently in burnt plots than in the unburnt control plots 

and their abundance increased as the interval (in years) between fires became shorter 

(Fig. 9). On average, the frequency of occurrence of these forbs in the annually burnt 

plots was at least twice as high as the frequency in plots protected from fire. 
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Fig. 9. Response of four common alien forbs to the frequency of burning at a mesic savanna 

experimental site (Grasslands Research Station, Zimbabwe). Bars represent means and whiskers 

represent 95 % confidence intervals for: Bidens pilosa (hatched); Conyza bonariensis (dark grey); 

Sida cordifolia (light grey); and Tagetes minuta (white).  

 

Discussion 

 

Data from this long-term fire experiment suggest that frequent burning of mesic 

savannas enhances the invasion by alien plants. Two lines of evidence were presented in 

support of this hypothesis. Firstly, the proportion of alien plant species relative to the 

total species richness was significantly higher in regularly burnt plots than in the 

unburnt control plots, with plots that were burnt annually containing the highest 

proportion of alien species followed by those burnt either biennially or triennially. Plots 

protected from fire had the lowest proportion of alien invaders. Secondly, alien forbs 

occurred more frequently in regularly burnt plots than in those protected from fire, and 

their abundance increased as intervals (in years) between fires shortened. All together, 

these differences in the proportion of alien species and abundance of alien forbs 

between frequently burnt plots and the unburnt control plots suggest that, in savannas, 

frequent burning is a key disturbance providing opportunities for alien species to invade. 
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Previous results published on this fire experiment showed that regular burning 

had a significant effect on vegetation structure. It reduced tree height growth regardless 

of the frequency of burning, but failed to eliminate woody plants, or significantly alter 

tree species diversity at the experimental site (Strang 1974; Furley et al. 2008). These 

results are in line with results from another long-term fire experiment in the Kruger 

National Park of South Africa (Govender et al. 2006). In Australian savannas, Lonsdale 

and Braithwaite (1991) also found that different fire regimes resulted in negligible 

changes in tree composition, because fires were generally of low intensity there. 

However, so far, the effect of the frequency of fire on alien plant invasions had not been 

evaluated. Thus, the present study shed light on the role of fire in facilitating alien plant 

invasion in savannas.  

The fact that, compared to other treatments, the largest differences in the 

proportion of alien plant species, and the frequency of occurrence of alien forbs, were 

between the annually burnt plots and the unburnt control plots, raises the question: 

“Which mechanisms explain the consistent increase in the abundance of alien plant 

species as fire return intervals were shortened?”. Short intervals between fires may 

create vacant niches, thus favouring alien species which can tolerate a wider range of 

fire frequency than dominant grasses (Uys et al. 2004). Further, by killing or damaging 

dominant grass species, frequent fires may prevent their competitive dominance, 

thereby creating niche opportunities for aliens (Huston 1993; Shea and Chesson 2002; 

Alpert 2006; Barney and Whitlow 2008; MacDougall et al. 2009). Frequent fires can 

also create gaps in a plant assemblage suitable for colonisation by alien species, 

particularly those with a relatively short life cycle (Sousa 1984). Thus, reduced 

competition from dominant native species may act in concert with increased availability 

of empty niches to enhance the invadibility of a frequently burnt savanna. This is 

consistent with ecological theory, which predicts that frequent disturbances favour 

ruderal annuals and short-lived perennials (Grime 1977; Lavorel et al. 1997). 

 

Conclusion 

 

This study has shown that fire can have profound effects on the invasion of a humid 

savanna by alien plant species. Data from this rare long-term fire experiment lead to the 
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conclusion that frequent burning of mesic savannas increases the invasion by alien 

plants, with short intervals between fires favouring alien forbs with a short life cycle. 

Reducing the frequency of burning may be necessary to minimise the risk of invasion, 

since alien species pose a threat to native biodiversity. In the past, research on alien 

plant invasion in savannas focused mostly on invaders with a long life span, ignoring 

the less conspicuous forbs. This has tended to limit our understanding of the effects of 

fire on alien plant invasion in savanna ecosystems.  
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Abstract 

 

Understanding the mechanisms driving plant invasions is a widely recognised priority 

for the development of successful strategies for controlling invasive species and 

conserving biodiversity. African savannas are a unique biome, harbouring the largest 

diversity of mammal herbivores on the planet and supporting more than half of the 

African human population. Nevertheless, the mechanisms explaining the increasing 

plant invasion in these ecosystems are practically unknown. Here, a combination of 

field studies and remote sensing was used to assess the impact of anthropogenic 

disturbance on plant invasions in savannas with contrasting disturbance regimes in 

Zimbabwe, namely Kyle Game Reserve (a protected savanna) and Mutirikwi communal 

area (a human-disturbed savanna). To test whether the proportion of alien species 

relative to the total plant species richness differed between the human-disturbed and 

protected savannas, all vascular plant species occurring in randomly selected plots were 

recorded. Furthermore, the cover of the most widespread invasive species in southern 

Africa, Lantana camara L., was successfully mapped using a novel hybrid neural 

network plus expert system classifier. This pioneering method can be applied to assess 

the extent of plant invasions on a large spatial scale through satellite imagery. The 

results showed that alien taxa represented a significantly higher proportion of the total 

species richness in the human-disturbed savanna than in the protected savanna. This 

result was confirmed, when taxonomically closely related species were compared. 

While alien plant species associated positively with the human-disturbed savanna and 

negatively with the protected one, their native confamilial species exhibited a positive 

association with the protected savanna, and a negative association with the human-

disturbed savanna. The most abundant alien species, L. camara, covered a significantly 

higher proportion of the human-disturbed savanna than of the protected savanna. These 

results suggest that anthropogenic disturbance enhances the susceptibility of savannas to 

invasion, and imply that managing disturbance may be the key to reducing plant 

invasions and conserving biodiversity in savanna ecosystems.  

 

Key words: agriculture, alien plant, biodiversity, exotic herbivore, Lantana camara, 

livestock, Zimbabwe
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Introduction 

 

Invasive alien plant species have profound adverse effects on biodiversity, structure and 

functioning of ecosystems (Mooney 1999; Chapin et al. 2000; Mack et al. 2000; Cronk 

and Fuller 2001). Understanding the mechanisms, which explain variations in habitat 

invasibility within and across ecosystems, is a widely recognised priority for the 

development of successful strategies for managing invasive species and conserving 

global biodiversity (Ewel et al. 1999; Huston 2004; Blumenthal 2005).  

Many alien species seem to owe their invasive success to changes in 

disturbance regimes, caused by human activity (Crawley 1987; Hobbs and Huenneke 

1992; D'Antonio et al. 1999; Mack et al. 2000). Both empirical and experimental 

evidence from a wide range of terrestrial biomes suggests that the level of invasion 

tends to increase with human disturbance (Baker 1986; Duggin and Gentle 1998; 

Chytrý et al. 2008a). One proposed explanation is that disturbance favours invasion, as 

it creates gaps and reduces competition from native species (Davis et al. 2000). 

Disturbance may also assist invasion by causing a reduction in resource uptake by 

native species, thereby increasing the availability of limited resources, such as nutrients, 

to invaders (Sher and Hyatt 1999; Davis and Pelsor 2001; Shea and Chesson 2002).  

In well-studied regions of Europe and North America, comparisons between 

the levels of invasion in disturbed and undisturbed habitats generally confirm that 

disturbed habitats tend to contain a higher proportion of exotic species (Stohlgren et al. 

1999; Cadotte et al. 2006; Vilà et al. 2007; Chytrý et al. 2008b). However, generalising 

and projecting this conclusion onto other regions, with a different climate, land use 

history, or species pool, is risky (Chytrý et al. 2008b). Indeed, the role of disturbance in 

plant invasion remains controversial with some studies showing no effect at all 

(Fornwalt et al. 2003). Current knowledge of the processes determining plant invasion 

in African savanna ecosystems is notoriously poor (Lonsdale 1999; Pyšek et al. 2008). 

African savannas form a unique biome, harbouring the largest diversity of mammal 

herbivores on the planet (Scholes and Archer 1997; Sankaran et al. 2005), yet the 

mechanisms responsible for the increase in plant invasion experienced in these 

ecosystems are practically unknown (Lonsdale 1999).  
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This study tests the hypothesis that the level of invasion (i.e., the proportion of 

alien taxa and their dominance) in savannas increases with anthropogenic disturbance. 

We tested this hypothesis at different spatial scales in two adjacent savanna landscapes 

of southern Zimbabwe with contrasting disturbance regimes. In randomly selected field 

plots, we recorded all vascular plant species and calculated the proportion of alien 

species relative to the total plant species richness. Alien plant species numbers were also 

compared to the numbers of their native confamilial species to determine whether the 

frequency of their occurrence differed significantly between the human-disturbed and 

the protected savannas. For both study areas, the cover of Lantana camara L., the most 

widespread invasive shrub species in southern Africa (Henderson 2007), was mapped 

from satellite imagery, using a novel hybrid neural network plus expert system classifier 

to test whether alien shrub dominance was significantly higher in human-disturbed than 

in protected savannas. Mapping the cover of invasive species across landscapes is of 

great relevance to resource managers, as cover is directly related to ecological impact 

(Hejda and Pyšek 2008). Thus, accurate estimates of the spatial extent of invasion may 

help land managers to prioritise resource allocation in their struggle against invasive 

species.  

 

Methods 

 

Study sites 

 

The study was conducted in the 44 km2 Kyle Game Reserve and the adjacent 344 km2 

Mutirikwi communal area (Fig. 1). The study sites are located between latitudes 20o 06′ 

and 20o 20′ south and longitudes 30o 58′ and 31o 08′ east in southern Zimbabwe. Lake 

Mutirikwi separates the study sites. Annual rainfall is low and erratic, with a mean of 

635 mm (Vincent and Thomas 1960). The rainy season is relatively short, extending 

from November to March, while the dry season (April-October) is prolonged.  

Soils are predominantly coarse-textured sandy soils of low nutrient status, 

derived from granite (Nyamapfene 1991). The vegetation consists of a mosaic of broad-

leaved deciduous woodland, bushland, and open savanna grassland (Vincent and 

Thomas 1960). Brachystegia spiciformis Benth. and Julbernardia globiflora (Benth.) 
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Troupin form the dominant canopy species in the broad-leaved woodland, whereas the 

bushland is dominated by Dodonaea viscosa Jacq., Dichrostachys cinerea (L.) Wight & 

Arn., and L. camara. Perennial grasses, such as Hyparrhenia filipendula (Hochst.) Stapf 

and Hyperthelia dissoluta (Steud.) Clayton, dominate the open grassland areas. The 

nomenclature for woody species and grasses corresponds with authorities in Palgrave 

(2002) and Oudtshoorn (2000), respectively. 

Although the study sites border onto each other, they have contrasting land 

management practices and disturbance regimes. The Kyle Game Reserve is a relatively 

pristine, protected savanna. It was fenced in 1961 to protect biological diversity. Since 

then, human interference has been minimal. In contrast, the communal area is a 

fragmented and degraded agricultural landscape with a history of over 150 years of 

continuous human settlement (Whitlow 1988; Masocha and Kariaga 2001). The 

estimated total human population in the communal area is 14,923, with an average 

density of 45 people per km2 (CSO 2004). Subsistence farming and continuous grazing 

by introduced domestic herbivores, such as cattle, goats and sheep, form the main 

disturbances. Cattle density is approximately 11 heads per km2 (Chenje et al. 1998). 

Arable farming and vegetable gardening are both practised mainly along the perennial 

rivers. From here onwards, the Kyle Game Reserve will be referred to as the protected 

savanna, and the communal area as the human-disturbed savanna. 

 

Floristic inventories  

 

All vascular plants occurring in the 65 (20 m x 20 m) randomly selected plots were 

identified at species level and recorded during the growing season in March 2008. 

Thirty five plots were located in the protected savanna while the remainder were 

situated in the adjacent, human-disturbed savanna landscape. In both landscapes, plots 

were selected in a stratified random fashion. The strata identified were broad-leaved 

woodland, bushland, and open grassland.  

Plant specimens and records kept at the National Herbarium and Botanical 

Garden in Harare (Zimbabwe), as well as vegetation checklists and regional floras, were 

used to determine whether the plant species identified in the field plots were native or 

alien to southern Africa. Plant species were considered alien, if they were not 
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indigenous to southern Africa and introduced either deliberately or unintentionally by 

humans (Chytrý et al. 2008a). The relative richness of aliens was calculated as the 

number of alien plant species divided by the total number of plant species present in a 

plot. The proportion of alien species was used as a direct measure of the level of habitat 

invasion, because it is easy to measure and not affected by other confounding factors, 

such as propagule pressure (Chytrý et al. 2008a).  

In order to compare whether the frequency of occurrence of alien species in the 

human-disturbed and protected savannas differed from that of native confamilial species, 

information on phylogeny was extracted from national and regional floras (Chapano 

2002; Palgrave 2002; Mapaura and Timberlake 2004; Henderson 2007). The species 

native to the region represented ‘control’ species in the comparisons, as recommended 

by previous studies (Cadotte et al. 2006; Pyšek and Richardson 2007). 

 

Mapping the cover of invasive Lantana camara 

 

In another test to ascertain whether invasive species were more dominant in human-

disturbed than in protected savannas, the cover of the most widely distributed invasive 

species in southern Africa, Lantana camara (Henderson 2007), was mapped using 

supervised classification of satellite imagery. To facilitate image classification, 

presence/absence, number of stems and cover of L. camara were recorded for 187 (30 m 

x 30 m) field plots. Field data were divided into three Lantana cover classes, namely 

absent (0 % cover), low (1-50 % cover), and high (> 50 % cover). The high cover class 

corresponded with more than 1,000 stems per 900 m2 and indicated that L. camara was 

the dominant species in that plot. The data set was split into a training set (n = 90) and a 

testing set (n = 97). 

To map the cover of L. camara, cloud free Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) imagery of October 22, 2006, was 

obtained. Three spectral bands (1, 2, and 3) in the visible and near-infrared range (0.52 - 

0.86 µm), with a 15 m spatial resolution, were corrected for geometric distortions using 

15 ground control points (Abrams 2000). The ground control points were evenly spread 

across the study area at points with features, obvious on both the image and in the field, 

such as road intersections and river bifurcations. Each ground control point had its field 
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location measured using the global positioning system. The image was re-sampled to a 

Universal Transverse Mercator coordinate system (zone 36 South), using the nearest 

neighbour interpolation technique. A root mean square error of 0.4 of a pixel was 

achieved. The ASTER image used provided the most recent data set available at the 

time field work was undertaken.  

 

Neural network classification 

 

A three-layer feed-forward and error-back propagation artificial neural network was 

used to map Lantana cover from the ASTER image (Atkinson and Tatnall 1997; 

Skidmore et al. 1997). The neural network was presented with three ASTER bands and 

trained using 30 training samples for each of the three cover classes of L. camara. The 

training phase involved empirically establishing the best combination of optimum 

learning rate and momentum to yield the lowest root mean square error (RMSE) 

between the observed and the predicted cover (Skidmore et al. 1997). The optimal 

results were achieved with a learning rate of 0.2, a training momentum of 0.7, and one 

hidden layer. The RMSE stabilised after 15,000 epochs. In total, 30 classifications each 

consisting of 15,000 epochs were performed, and the classification with the lowest 

RMSE was selected. The neural network yielded a thematic cover map and a rule image 

with three bands. Each band in the rule image represented the probability that a pixel 

belonged to one of the three cover classes of L. camara. The neural network algorithm 

was programmed using the Interactive Data Language (IDL; Research Systems Inc.).  

 

Hybrid neural network plus expert system  

 

The image classification by the neural network was based entirely on the spectral 

signatures of the training samples. Consequently, due to the environmental 

heterogeneity and the complexity of the vegetation cover, some pixels became 

misclassified (Lu and Weng 2007). In order to further improve classification, the cover 

map and the associated rule image produced by the neural network were input into an 

expert system. These input layers together with two ancillary Geographical Information 
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System (GIS) layers (i.e., habitat type and terrain position) were used to infer the most 

probable cover of L. camara occurring at each grid location. 

Habitat types (see Table 5) were distinguished from an ASTER image 

(obtained on the 22nd of October 2006) using the support vector machine algorithm 

(Sanchez-Hernandeza et al. 2007). A digital elevation model (DEM) with a grid 

resolution of 30 m was used to deduce terrain position. Using the algorithm developed 

by Skidmore (1990), each grid cell in the DEM into was classified into one of five 

terrain classes, namely gully, lower midslope, midslope, upper midslope, and ridge. The 

terrain position raster map was resampled to a 15 m grid size, using nearest neighbour 

interpolation to match the spatial resolution of the ASTER image. 

A spreadsheet containing the rules (Table 5) was accessed by the expert system. 

The rules represented conditional probabilities that an item of evidence (for example a 

gully) was present, for instance, when it was known that the cover of L. camara at a 

location was high. Thus, the rules provided the direct link between a priori knowledge 

about the distribution of L. camara and the ancillary GIS layers used to predict its cover 

(Skidmore 1989). Field data in combination with literature on L. camara ecology 

(Gentle and Duggin 1997; Day et al. 2003; Foxcroft and Richardson 2003) were used to 

derive these rules, from which the expert system inferred the probable L. camara cover.  

Using Bayes’ theorem, the expert system inferred the most probable cover of L. 

camara to occur at each grid cell location, given a certain item of evidence (e.g., a 

gully) being present at that location, as follows: 
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where P(Eb/Ha) is the conditional probability that any grid cell location has an item of 

evidence (Eb) given Ha (e.g., that the cover of L. camara at that grid cell location is 

high); and P(Ha) is the prior probability of the cover of L. camara at grid cell location. 

The probability of the evidence P(Eb) was calculated as:  
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where a = 1…n represent the cover classes of L. camara, and the other notations are as 

defined above. 

 
Table 5: Rules used to predict the cover of the invasive shrub Lantana camara from a GIS 

database in the Kyle Game Reserve and the adjacent Mutirikwi communal area, Zimbabwe. 

 

Item of evidence 

(habitat type & terrain 

position) 

Lantana camara cover 

high low absent 

surface standing water 0.1 0.1 0.9 

dense broad-leaved woodland 0.20 0.40 0.5 

sparse broad-leaved woodland 0.4 0.6 0.4 

bush thicket 0.7 0.6 0.4 

sparse bushland 0.2 0.4 0.4 

dry open grassland 0.1 0.2 0.7 

seasonally-wet grassland 0.1 0.2 0.5 

bare soil 0.1 0.2 0.6 

cliffs/rock outcrop 0.1 0.2 0.7 

gully 0.6 0.6 0.4 

lower midslope 0.4 0.4 0.4 

midslope 0.2 0.2 0.4 

upper midslope 0.1 0.3 0.6 

ridge 0.1 0.2 0.8 

 

The inference worked forward from the data (items of evidence) to the 

hypothesis (the most probable cover of L. camara) and the search was terminated only 

after all the evidence had been evaluated (Skidmore et al. 1996). The cover class, which 

had the highest posterior probability of occurring at grid cell location, was assigned to 

that grid cell location. To calculate the proportion of each study site covered by L. 

camara and evaluate classification accuracy, the cover map generated by the hybrid 

neural network plus expert system was exported to the ENVI 4.3 software package (ITT 

Visual Information Solutions). 
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Accuracy assessment 

 

To assess map accuracy, the overall accuracy and Kappa coefficient were calculated 

from an independent test data set. The overall accuracy is the ratio of the sum of 

correctly classified pixels in each class to the total number of pixels tested. The Kappa 

coefficient, which ranges from 0 to 1, measures the level of agreement between the 

classified map and the ground truth data (Congalton 1991; Skidmore 1999). A Kappa 

value of one indicates perfect agreement, whereas a value of zero indicates total 

disagreement between ground truth data and the classification result (Congalton 1991).  

 

Statistical analysis 

 

A two sample t-test was used to test whether the mean proportion of alien species 

differed significantly between the human-disturbed and the protected savannas. The 

proportion of alien species was transformed using a square-root, in order to comply with 

the assumption of normality for the t-test. The Wilcoxon matched pairs test was used to 

test for significant differences in the frequency of occurrence of alien species, common 

to both the human-disturbed and protected savannas. In order to test whether alien 

plants as well as their native confamilial species were significantly associated with the 

human-disturbed savanna, the Pearson’s chi-square (χ2) test was used. This test was 

restricted to species for which the observed frequency of occurrence was five or greater 

(Crawley 2002). Finally, the Z-test was used to determine whether the proportion of the 

savannas invaded by L. camara differed significantly between the human-disturbed and 

the protected savannas. All statistical analyses were performed using Statistica version 

7.0 (StatSoft, Inc.). 

 

Results 

 

Variation in the level of invasion  

 

A total of 355 vascular plant species, belonging to 80 families, were found. Of these, 22 

species (6 % of the total species pool) were alien taxa. Alien plant species represented a 
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significantly higher proportion of the total species richness in the human-disturbed 

savanna than in the protected savanna (t = 3.13, d.f. = 63; P < 0.01; Fig. 10). Fourteen 

alien plant species were common to both the human-disturbed and the protected 

savannas. However, results of the Wilcoxon matched pairs test show that these common 

alien species occurred more frequently in the human-disturbed savanna than in the 

protected savanna (Z = 2.39; P < 0.05).  
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Fig. 10. Proportion of alien plant species (mean ± SE) in the human-disturbed savanna (Mutirikwi 

communal area) and the adjacent protected savanna (Kyle Game Reserve), Zimbabwe.  

 

Contrasting effects of disturbance on alien and native confamilial species  

 

Table 6 presents the observed frequencies of occurrence of four alien species versus 

their native confamilial species in the human-disturbed savanna and the protected 

savanna. Results of χ2 tests show that, alien species had a significant positive 

association with the human-disturbed savanna, whereas their association with the 

protected savanna was negative (P < 0.05; Table 6). By contrast, their native 

confamilial species were positively associated with the protected savanna, whereas their 

association with the human-disturbed savanna was negative (P < 0.01; Table 6). 
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Table 6: Frequencies of occurrence of alien and native confamilial species in the human-

disturbed savanna (Mutirikwi communal area) and the protected savanna (the Kyle Game 

Reserve), Zimbabwe (* = significant positive association; underlined values represent significant 

negative association; P < 0.01). 

 

Family species status human-disturbed 

savanna 

protected 

savanna 

Asteraceae Acanthospermum 
australe 

alien herb 14* 5 

 Bidens pilosa alien herb 11* 5 

 Dicoma kirkii native herb 5 9* 

 Nidorella resedifolia native herb 5 12* 

χ2 = 10.3; P < 0.01 

Rubiaceae Richardia scabra alien herb 18* 7 

 Agathisanthemum bojeri native herb 5 13* 

χ2 = 9.4; P < 0.01 

Verbenaceae Lantana camara alien shrub 27* 11 

 Lippia javanica native 
shrub 13 29* 

χ2 = 12.8; P < 0.01 

 

Spatial patterns of Lantana camara invasion  

 

Fig. 11 presents the L. camara cover map produced by the hybrid neural network plus 

expert system classifier. This map has an overall accuracy of 87 % and Kappa of 0.80 

and clearly shows that L. camara was more widely distributed in the human-disturbed 

savanna, with denser and more extensive clusters along perennial rivers. From this 

cover map (Fig. 11), the area invaded by L. camara was calculated separately for each 

study site and cover class to allow Z-tests to be performed.  
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Fig. 11. Distribution and abundance of the invasive alien shrub Lantana camara in (a) the Kyle 

Game Reserve (a protected savanna) and (b) the adjacent Mutirikwi communal area (a human-

disturbed savanna), Zimbabwe. Red represents high L. camara cover (>50 %), green represents 

low L. camara cover (1-50 %) while areas not yet invaded by L. camara are grey.  

 

Results of the Z-test confirmed that the area covered by L. camara differed 

significantly between the two study sites (Table 7). A quarter of the human-disturbed 

savanna had been invaded by L. camara, whereas of the protected savanna 15 % had 

been invaded; the difference is significant (P < 0.01; Table 7). Furthermore, 4 % of the 
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human-disturbed savanna was now dominated by L. camara, versus 1 % of the 

protected savanna. This difference is also significant (P < 0.01; Table 7).  
 

Table 7: Estimates of the proportion of the human-disturbed savanna (Mutirikwi communal area) 

and the protected savanna (the Kyle Game Reserve) covered by the invasive alien shrub Lantana 

camara, in hectares (ha) and as a percentage of the total area. Note, high cover indicates that L. 

camara is the dominant species, whereas low cover indicates that it is a subordinate species. 

 

Lantana camara  human-disturbed savanna protected savanna Z statistic 

absent 23,839 ha (75 %) 3,685 ha (84 %) -13.87* 

low cover 7,436 ha (21 %) 628 ha (14 %) 11.02* 

high cover 1,082 ha (4 %) 37 ha (1 %) 8.04* 

total invaded  8,518 ha (25 %) 665 ha (15 %) 13.87* 

total area 34,357 ha 4,351 ha  

significance level: * < 0.01 

 

Discussion  

 

The results of this study indicate that anthropogenic disturbance enhances alien plant 

invasion in these southern African savannas. Five pieces of evidence were presented. 

First of all, the mean ratio of alien plant species to total plant species richness was twice 

as high in the human-disturbed savanna (Mutirikwi communal area) as in the adjacent 

protected savanna (Kyle Game Reserve). Secondly, although most (64 %) of the alien 

taxa recorded were common to both the human-disturbed and the protected savanna, 

their frequency of occurrence was significantly higher in the human-disturbed savanna 

than in the protected savanna. Thirdly, alien plant species were positively associated 

with the human-disturbed savanna, whereas their association with the protected savanna 

was negative. By contrast, their native confamilial species showed the opposite pattern, 

namely a negative association with the human-disturbed savanna and a positive one 

with the protected savanna. Fourthly, a quarter of the human-disturbed savanna 

landscape had now been invaded by the invasive shrub Lantana camara, compared to 

15 % of the protected reserve. Finally, the proportion of the human-disturbed savanna 

dominated by L. camara was four times higher than of the protected savanna. These 
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results support a global study, which revealed that sites outside nature reserves were 

twice as likely to be invaded as nature reserves (Lonsdale 1999). Our findings in 

tropical savannas are consistent with those of Chytrý et al. (2008a), who reported that 

agricultural land use, high population density, and a long history of human settlement 

increased the level of plant invasion in temperate ecosystems. Similar results were also 

reported in Mediterranean ecosystems (Vilà et al. 2007). 

The fact that some alien plant species were significantly associated with the 

human-disturbed savanna, while their native confamilial were significantly associated 

with the protected savanna, clearly suggests that anthropogenic disturbance has 

opposing effects on alien versus native flora. Multiple human disturbances may 

constantly reset succession, depleting the seed bank of native species, while at the same 

time creating the conditions that favour the recruitment of alien species, especially those 

with a ruderal strategy (D'Antonio and Meyerson 2002; Martin et al. 2009). Invaders 

may also be better adapted to grazing by introduced mammal herbivores, such as cattle, 

whereas native plants may not have strong defences against these novel herbivores 

(Maron and Vila 2001; Chaneton et al. 2002; Holmgren 2002). Introduced herbivores 

may selectively consume native species, while avoiding alien plant species with 

stronger anti-herbivore adaptations. Indeed, the most widespread invader, L. camara, 

contains toxic phenolic compounds that render it unpalatable to most domestic 

herbivores (Sharma et al. 1988). Such preferential consumption of native species may 

suppress their competitiveness and favour invaders (Parker et al. 2006). Overgrazing by 

introduced domestic herbivores has been found to promote plant invasions in a wide 

variety of other terrestrial systems, such as temperate grasslands (Chaneton et al. 2002), 

temperate woodlands (Cross 1981), Mediterranean shrublands (Holmgren et al. 2000; 

Holmgren 2002), and dry rainforests (Fensham et al. 1994; Gentle and Duggin 1997). 

These studies suggest that changing the abiotic environment and introducing one or 

more alien species may facilitate the establishment and spread of other exotic species, 

which is consistent with the invasional meltdown hypothesis (Simberloff and Von Holle 

1999; Simberloff 2006). Clearly observational studies are insufficient to reveal the 

causal mechanisms involved, and controlled field experiments comparing the responses 

of exotic and native congeners should be conducted in both the native and introduced 
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ranges to be able to assess the relative importance of herbivory, disturbance, and 

propagule pressure (Hierro et al. 2005).  

In this study, for the first time, the cover of the most widespread invasive alien 

species in southern Africa, L. camara (Henderson 2007), was successfully mapped at a 

landscape scale through supervised classification of satellite imagery. The results 

indicate that both the protected and human-disturbed savannas had been invaded by L. 

camara, but the extent of the invasion was significantly higher in the human disturbed 

savanna. A similar pattern was reported in a field study conducted in the Kruger 

National Park of South Africa and the communal areas upland of the park (Foxcroft and 

Richardson 2003). The enhanced invasion of the human-disturbed savanna by L. 

camara could be attributed partly to direct human activities, since communal farmers 

deliberately propagate L. camara around their vegetable gardens to keep livestock out. 

The vegetable gardens are mostly located along rivers and are watered throughout the 

dry season. Because L. camara is known to grow and reproduce throughout the year, if 

moisture is available, and a mature plant typically produces about 12,000 seeds per m2 

per year (Swarbrick et al. 1995; Day et al. 2003), it is likely that the high propagule 

pressure, assisted by moisture availability, accelerates invasion along rivers. Other 

studies have also shown that, because of enhanced seed dispersal and eutrophication, 

riparian areas tend to be hotspots of invasion (Stohlgren et al. 1998; Alpert et al. 2000; 

Tickner et al. 2001; Foxcroft et al. 2009). 

Invasive plant species are becoming increasingly common in tropical African 

savannas, reducing native biodiversity and productivity of agro-ecosystems (Le Maitre 

et al. 2002; Richardson and Van Wilgen 2004; Henderson 2007). Hence, invasive 

species might also negatively affect the livelihoods of rural people who rely on the 

income from livestock production, as many invasive species are avoided by domestic 

livestock (Parker et al. 2006). Given that savannas support more than half of the African 

human population and most of its large herbivore biomass (Scholes and Archer 1997), 

further studies are needed to gain a better understanding of the impact of invasive 

species on rural livelihoods and the functioning of these ecosystems. Such studies 

should also explore ways in which invasion might interact with other processes such as 

climate change so that possible adaptation and mitigation measures can be developed. 
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Conclusion 

 

Because studies comparing the occurrence of alien taxa in nature reserves and non-

reserve sites are scarce in African savannas, this study has shed light on the role of 

human disturbance in facilitating alien plant invasion in tropical savannas. The results 

suggest that the susceptibility of savannas to invasion increases with anthropogenic 

disturbance, and although alien taxa often account for a small proportion of the total 

plant diversity, the few that become invasive can dominate landscapes. Hence, 

managing the intensity of disturbance is crucial for the reduction of plant invasions in 

these savanna ecosystems. 
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Abstract 

 

Mapping the cover of invasive species using remotely sensed data alone is difficult, 

because many invaders occur as mid-level canopy species or as subtle understorey 

species and therefore contribute little to the spectral signatures captured by remote 

sensing devices. In this study, two common non-parametric classifiers, namely the 

neural network and the support vector machine, were each combined with identical 

expert system rules, in order to test whether the new hybrid methods produced 

significantly more accurate invasive species cover maps than the single classifiers. The 

neural network, when used on its own, mapped the cover of the invasive species 

Lantana camara in a nature reserve of southern Zimbabwe with an overall accuracy of 

79 % and a Kappa of 0.69. However, when the neural network was combined with an 

expert system, the overall accuracy and Kappa increased to 87 % and 0.80, respectively. 

Similarly, the support vector machine algorithm achieved an overall accuracy of 71 % 

with a Kappa of 0.56, whereas the hybrid support vector machine and expert system 

achieved a higher overall accuracy of 81 % and a Kappa of 0.72. Pair-wise comparisons 

based on the Kappa Z-test confirmed that these increases in mapping accuracy were 

significant. Overall, the results suggest that integrating conventional classifiers with an 

expert system results in the mapping of invasive species with a greater statistical 

confidence. It is hoped that others, who wish to detect and map cryptic invasive species 

with improved accuracy, may now also consider combining different classifiers with 

GIS expert systems. 

 

Key words: accuracy, invasion, Lantana camara, management, savanna, Zimbabwe 
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Introduction 

 

Numerous alien plants are invading natural and agro-ecosystems resulting in loss of 

native biodiversity (Mooney 1999; Mack et al. 2000; Levine et al. 2003). When native 

biodiversity, the driving force in ecosystem functioning, is lost, this in turn reduces the 

ability to provide environmental services (Sala et al. 2000; Hooper et al. 2005). In order 

to control the spread of invasive alien species and conserve biodiversity, natural 

resource managers require accurate maps about the extent and severity of invasions (Le 

Maitre et al. 1996; Ewel et al. 1999). Accurate mapping of invasions may also assist 

resource managers in optimising resource allocation, thereby making the management 

of invasive species cost-effective and achievable (Anderson et al. 1993; Le Maitre et al. 

2002).  

Traditionally, quantitative estimates of the cover of invasive species are 

obtained from ground-based surveys (Mack et al. 2007). However, ground-based 

surveys tend to be time consuming and inefficient, and in addition some parts of the 

landscape may be inaccessible (Hierro et al. 2005). Consequently, remote sensing is 

increasingly being used to detect and map the cover of invasive species, especially those 

with distinct morphological or phenological features (Anderson et al. 1993; Underwood 

et al. 2003; Madden 2004; Asner and Vitousek 2005; Ustin et al. 2005; Hamada et al. 

2007; Mack et al. 2007; Pellikka et al. 2009). Many invasive species, however, occur as 

subtle understorey species or as mixed-canopy invaders (Joshi et al. 2006). On its own, 

remote sensing has little capability to detect these invasive species, because they do not 

dominate the canopy and therefore contribute little to the spectral signatures captured by 

remote sensing devices (Asner et al. 2008).  

This problem may potentially be overcome by integrating conventional image 

classification methods, that rely entirely on the spectral signatures of remotely sensed 

data, with expert systems (Lu and Weng 2007). Expert systems can handle ancillary 

data from diverse sources as well as capture prior knowledge about the distribution of 

the target invasive species in the form of rules (Skidmore 1989). Expert systems are 

computer programmes using symbolic logic to mimic human experts, and are 

consequently expected to arrive at the same conclusion as human experts (Skidmore et 

al. 1996). When implemented in a Geographical Information System (GIS) environment, 
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expert systems can infer the most probable cover of a target invasive species at a 

specific location.  

Previous research has shown that combining conventional image classification 

methods with expert systems for the purpose of vegetation mapping often yields results 

that are comparable or superior to, those obtained from single classification methods 

(Stefanov et al. 2001; Liu et al. 2002; Lu and Weng 2007). For example, Schmidt et al. 

(2004) combined hyperspectral imagery with topographic data and successfully mapped 

19 vegetation types in the salt marshes of the Netherlands, using a hybrid spectral angle 

mapper and expert system. In another study, Vaiphasa et al. (2006) combined soil pH 

data with ASTER imagery and discriminated mangrove species in Thailand, using a 

hybrid maximum likelihood and expert system. Recently, Wang et al. (2009) combined 

an artificial neural network with an expert system and successfully mapped understorey 

bamboo species in the Qinling mountains of south-western China. However, to date the 

integration of conventional image classification methods and expert systems has not 

been extended to mapping the cover of invasive species.  

This study tests the hypothesis that integrating conventional image 

classification methods with an expert system significantly improves invasive species 

mapping. To test this hypothesis, the cover of the invasive Lantana camara was mapped 

in a nature reserve situated in southern Zimbabwe, using two common non-parametric 

classifiers, namely the neural network and the support vector machine (Lu and Weng 

2007). These classifiers were then each combined with identical expert system rules, in 

order to test whether the new hybrid methods produced significantly more accurate 

cover maps than the single classifiers. Unlike probabilistic classifiers such as the 

maximum likelihood, the neural network and support vector machine classifiers do not 

make any explicit assumptions about the distribution of training data (Atkinson and 

Tatnall 1997; Skidmore et al. 1997; Karimi et al. 2006), hence one does not need to 

collect training data from all classes occurring in a study area during classification 

(Sanchez-Hernandeza et al. 2007). This saves time and reduces research costs. 

Moreover, these non-parametric classifiers are often able to classify a data set with 

higher accuracy than statistical classifiers can, because of their ability to detect subtle 

and non-linear patterns in a data set (Foody and Mathur 2004; Lu and Weng 2007).  
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Lantana camara is a good model species for comparing the relative 

performance of individual versus hybrid methods, because it exhibits a complex growth 

pattern (Day et al. 2003), making it difficult to detect and map its cover from remotely 

sensed data alone. In open and disturbed sites, for instance, this invasive species may 

typically form dense monotypic stands easily detectable via remote sensing. However, 

under the shade and canopy of tall trees, it can either grow as a climber or as a mid-level 

canopy species, or even as an understorey invader (Foxcroft and Richardson 2003). 

Remote sensing alone has limited capability to detect and map invasive species hidden 

beneath the canopy (Joshi et al. 2006; Asner et al. 2008). 

 

Methods 

 

Study species 

 

Lantana camara L. (Verbeneceae) is native to the tropical and sub-tropical regions of 

South and Central America (Swarbrick et al. 1995). It is a perennial polycarpic shrub, 

growing to 4 m tall and flowering throughout the year, if sufficient moisture and high 

temperature conditions prevail (Day et al. 2003). A single plant is capable of producing 

up to 12,000 seeds per m2 per year (Swarbrick et al. 1995). The seeds are dispersed 

mostly by birds which feed on the ripe fruit.  

Lantana camara is invasive or naturalised in 60 countries and island groups 

worldwide (Cronk and Fuller 2001). It was introduced into southern Africa around 1858 

as an ornamental shrub, but is now one of the most widespread terrestrial invaders in the 

region (Foxcroft and Richardson 2003; Henderson 2007). Lantana camara invasion 

poses a threat to both natural and agro-ecosystems, because the species suppresses the 

growth of other plants through shading and nutrient sequestration (Gentle and Duggin 

1998). It is also unpalatable to livestock and native vertebrate herbivores and often 

results in death if ingested (Day et al. 2003). Furthermore, it can harbour insects such as 

tsetse flies and mosquitoes, which spread diseases to domestic stock and humans (Holm 

et al. 1997; Syed and Guerin 2004).  

Due to its widespread geographical distribution and the environmental and 

economic damages associated with its rapid spread, many countries including 
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Zimbabwe (Chenje et al. 1998), Australia (ARMC-ANZ 2001) and South Africa 

(Cilliers and Neser 1999) have declared L. camara a weed of national significance. 

However, the lack of accurate spatial information concerning the extent and severity of 

its invasion hampers management and control. 

 

Study area 

 

The study was conducted in the 44 km2 Kyle Game Reserve (20o 13′ S and 31o 03′ E), 

established in 1961 and fenced off with the management objective to conserve 

biological diversity. It is situated about 30 km southeast of Masvingo town in southern 

Zimbabwe and encompasses an undulating plain with isolated hills stretching 

northwards from Lake Mutirikwi to the Beza mountain range (1,080 to 1,485 m). The 

climate is semi-arid with a relatively short growing season (November to March) and a 

long dry season (April to October). Annual rainfall averages 635 mm, but is variable 

within and between seasons (Vincent and Thomas 1960). The mean daily maximum 

temperature ranges from 21o C in June to 29o C in October while the mean daily 

minimum temperature ranges from 5o C in July to 17o C in January. 

Soils are predominantly coarse-textured sandy soils of low nutrient status 

derived from granite (Nyamapfene 1991). The vegetation consists of a small area of 

evergreen forest found at the Beza spring and a complex mosaic of broad-leaved 

deciduous woodland, bushland, and open savanna grassland. The deciduous woodland 

is dominated by Brachystegia spiciformis and Julbernardia globiflora, whereas the 

open grassland is dominated by perennial grasses such as Hyparrhenia filipendula 

(Vincent and Thomas 1960). Woody species such as Schotia brachypetala and 

Diospyros mespiliformis, which occur frequently at termite mounds, are scattered 

throughout the open grassland matrix. Bushlands are characterised by closely spaced 

shrubs and small trees, consisting of various species such as Dichrostachys cinerea and 

Lantana camara. The botanical nomenclature for woody species and grasses follows the 

taxonomy described by Palgrave (2002) and Oudtshoorn (2006), respectively. 
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Data sets  

 

The GIS data sources used in this study were: an ASTER image from 22 July 2006; a 

digital elevation model; and geo-referenced point data representing the percentage cover 

of L. camara measured in the field. The ASTER image (path 169, row 74) contained 15 

spectral bands, but only three bands (1, 2, and 3N) in the visible and near-infrared range, 

with a spatial resolution of 15 m, were used (Abrams 2000). The spatial resolution of 

the remaining bands was considered too coarse to enable accurate detection and 

mapping of L. camara, and hence these were excluded. The selected bands were 

corrected for geometric distortions using 15 ground control points (GCPs). An affine 

transformation was applied and a root mean square error of 0.42 pixels (i.e., 

approximately 6 m) was achieved. The GCPs were located evenly across the image at 

obvious features on both the image and field such as road intersections and river 

bifurcations. Each GCP had its field location measured using global positioning system. 

After geometric rectification, the image was re-sampled to a Universal Transverse 

Mercator coordinate system (zone 36 South) using the nearest neighbour interpolation 

technique. The ASTER image used provided the most recent data set available at the 

time field work was undertaken.  

 

Habitat types 

 

The support vector machine algorithm (Vapnik 1999) was used to classify the ASTER 

image into nine habitat types (Sanchez-Hernandeza et al. 2007). The habitats 

distinguished were: surface standing water; dense broad-leaved woodland; sparse broad-

leaved woodland; bush thicket; sparse bushland; dry open grassland; seasonally-wet 

grassland; bare soil; and rock outcrop. The classifier was trained using 20 training cases 

per habitat. The testing data set, which was used to evaluate classification results, 

consisted of 15 training cases per habitat. The classification yielded a habitat map with 

an overall accuracy of 82 % and a Kappa of 0.72. The habitats differed in the level of 

invasion by L. camara. Table 8 captures the variation in the level of invasion of these 

nine habitats in the form of conditional probabilities that a specific habitat occurs if, for 

example, the cover of L. camara is high or low. 



 110 

Table 8: Rules used by the expert system to predict the cover of Lantana camara from a raster 

GIS database in the Kyle Game Reserve of Zimbabwe. 

 

GIS layers Item of evidence Lantana camara cover 

high low absent 

Habitat type surface standing water 0.1 0.1 0.8 

 dense broad-leaved woodland 0.2 0.4 0.5 

 sparse broad-leaved woodland 0.4 0.6 0.4 

 bush thicket 0.7 0.6 0.4 

 sparse bushland 0.2 0.4 0.4 

 dry open grassland 0.1 0.2 0.7 

 seasonally-wet grassland 0.1 0.2 0.5 

 bare soil 0.1 0.2 0.6 

 rock outcrop 0.1 0.2 0.7 

 

Terrain position 

gully 0.6 0.6 0.4 

lower midslope 0.4 0.4 0.4 

midslope 0.2 0.2 0.4 

upper midslope 0.1 0.3 0.6 

ridge 0.1 0.2 0.8 

 

Terrain position 

 

Using the algorithm developed by Skidmore (1990), five terrain position classes, 

namely gully, lower midslope, midslope, upper midslope, and ridge, were derived from 

a digital elevation model with a grid resolution of 30 m. The output terrain position 

raster map was re-sampled to a 15 m grid size, using nearest neighbour interpolation to 

match the spatial resolution of the ASTER bands. Terrain position influences the 

availability of soil moisture, which is critical for L. camara establishment and growth 

(Gentle and Duggin 1997; Fowler 2002). For instance, gullies receive more run-off 

from the upper slopes and hence tend to be more infested with L. camara than ridges, 

which are often drier (Foxcroft and Richardson 2003).  

 



Chapter 7 

 111

Field plots 

 

Presence/absence, number of stems and cover of L. camara were recorded for 187 (30 

m x 30 m) field plots during the growing season in December 2006. The field plots were 

selected in a stratified random manner, strata being based upon habitat type and terrain 

position. To minimise the problem of spatial autocorrelation, the plots were placed at 

least 800 m apart. Moran’s I index was used to check for spatial autocorrelation and 

field data were found to be uncorrelated (Moran’s I = 0.01; Z = 1.02; P > 0.1).  

In order to facilitate image classification, the field data were divided into three 

Lantana cover classes, namely: absence (0 % cover), low (1 to 50 % cover), and high (> 

50 % cover). The high cover class corresponded with more than 1,000 stems per 900 m2 

and indicated that L. camara was the dominant species in that plot. The data set was 

split into a training set (n = 90) and a testing set (n = 97). Field data in combination with 

documented literature on L. camara distribution and growth (Gentle and Duggin 1997; 

Day et al. 2003; Foxcroft and Richardson 2003) were used to derive the rules the GIS 

expert system needed to infer L. camara cover throughout the study area.  

 

Image classification 

 

Neural network  

 

A three-layer feed-forward and error-back propagation artificial neural network 

(Skidmore et al. 1997) was used to map the cover of L. camara. The algorithm 

minimised the root mean square error (RMSE) between the observed and the predicted 

cover (Atkinson and Tatnall 1997). The neural network (with 30 training samples for 

each of the three cover classes of L. camara and three ASTER bands) was trained, and 

the best combination of optimum learning rate and momentum to yield the lowest 

RMSE was established empirically, following Skidmore et al. (1997). Optimal results 

were achieved with a learning rate of 0.2, a training momentum of 0.7, and one hidden 

layer. The RMSE stabilised after 15,000 epochs. A total of 30 classifications, each 

consisting of 15,000 epochs, was performed and the classification with the lowest 

RMSE was selected. The neural network yielded a thematic cover map and a rule image 
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with three bands, where each band in the rule image represented the probability that a 

pixel belonged to one of the three cover classes of L. camara. The classified map and 

the associated rule image were input into a GIS expert system to improve classification. 

The neural network algorithm was programmed using the Interactive Data Language 

(IDL; Research Systems Inc.).  

 

Support vector machine classifier 

 

The support vector machine algorithm was also used to classify the ASTER image into 

three cover classes of L. camara. The algorithm fits an optimal separating hyperplane 

between classes of interest, focusing only on training samples that lie at the edge of the 

class distributions, known as the support vectors; those samples that lie in the centre of 

the class distribution do not play any part in the classification and are therefore 

redundant (Foody and Mathur 2006). The classifier was trained with 30 training cases 

per cover class. It yielded a cover map and a rule image with three bands, where each 

band represented the probability that a pixel belonged to one of the three cover classes 

of L. camara. Both the classified map and the rule image were input into the GIS expert 

system to improve the classification. Image pre-processing and classification were 

performed using the ENVI 4.3 software package (ITT Visual Information Solutions). 

 

GIS expert system  

 

Thirdly, an expert system was used to predict the cover of L. camara from a raster GIS 

database. The raster layers accessed by the expert system were habitat types and terrain 

position classes. The rules for all the items of evidence, viz. habitat types and terrain 

position classes, were stored in a spreadsheet (Table 8), which was accessed by the 

expert system. The rules represented conditional probabilities that an item of evidence 

(for example a rock outcrop) was present, for instance, when it was known that L. 

camara was absent. Thus, the rules provided the link between the abundance of L. 

camara and the GIS data layers used to predict its cover (Skidmore et al. 1991).  

The expert system algorithm was programmed using the Interactive Data 

Language (IDL; Research Systems Inc.). It was described in detail by Skidmore (1989) 
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and is therefore not repeated here. The algorithm worked forward from the data (item of 

evidence) to the hypothesis (the most probable cover of L. camara) and terminated the 

search only after all the evidence had been evaluated. The cover class, which had the 

highest posterior probability of occurring at a grid cell location, was assigned to that 

grid cell location (Skidmore et al. 1991; Beven 2008).  

 

Hybrid classifiers  

 

To construct hybrid classifiers, the thematic cover map and the associated probability 

rule image, produced by the neural network and support vector machine, were presented 

to the expert system separately. These input layers together with ancillary GIS data 

layers were used by the expert system to infer the most probable cover of L. camara 

occurring at each grid cell location. The expectation was, that the expert system would 

correct misclassifications generated by the individual classifiers due to spectral 

confusion between L. camara and other plants. In total, five methods were used to map 

the cover of L. camara, viz. neural network, support vector machine, expert system, 

hybrid neural network plus expert system, as well as hybrid support vector machine plus 

expert system.  

 

Assessing the accuracy and performance of classification methods 

 

To evaluate the accuracy of cover maps produced by each of the five methods used, the 

overall accuracy and Kappa statistics were calculated from an independent testing data 

set (Congalton 1991; Skidmore 1999). Error matrices of the ground truth data versus the 

classification results were generated to allow calculation of additional measures of map 

accuracy, such as user accuracy. Pair-wise comparisons based on the Kappa Z-test were 

performed to test for significant differences in the accuracies of the maps generated by 

the three individual methods and the two hybrid methods (Congalton 1991; Skidmore 

1999; Foody 2004). 
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Results 

 

Maps of the distribution and cover of L. camara in the Kyle Game Reserve produced by 

the three individual classifiers and the two hybrid methods (i.e., neural network; support 

vector machine; expert system; hybrid neural network plus expert system; and hybrid 

support vector machine plus expert system) are presented in Fig. 12 (a, b, c, d, and e 

respectively). Table 9 presents the error matrices of the classification generated by each 

method. The error matrices have a label sequence (from ‘a’ to ‘e’) corresponding with 

the one used in Fig. 12.  

 
Table 9: Error matrices for the classification produced by three individual classifiers and two 

hybrid methods, used to map the cover of the invasive Lantana camara in the Kyle Game Reserve, 

Zimbabwe. The main diagonal presented boldface in each matrix shows the number of correctly 

allocated pixels. The overall accuracy (OA), Kappa coefficient, omission error (OE), producer 

accuracy (PA), commission error (CE), and user accuracy (UA) are also shown. 

 

9a. Neural network  

Lantana camara cover high  low  absent CE UA 

high  29 1 0 3 % 97 % 

low  1 19 7 30 % 70 % 

absent 0 11 29 28 % 73 % 

OE 3 % 39 % 19 % OA 79 % 

PA 97 % 61 % 81 % Kappa 0.689 

 

9b. Support vector machine  

Lantana camara cover high  low  absent CE UA 

high  26 1 0 4 % 96 % 

low  4 13 6 43 57 % 

absent 0 17 30 36 64 % 

OE 13 % 58 % 17 % OA 71 % 

PA 87 % 42 % 83 % Kappa 0.562 
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9c. GIS expert system 

Lantana camara cover high  low  absent CE UA 

high  8 1 0 11 % 89 % 

low  11 23 3 38 % 62 % 

absent 11 7 33 35 % 65 % 

OE 73 % 26 % 8 OA 66 % 

PA 27 % 74 % 92 % Kappa 0.480 

 

9d. Hybrid neural network and expert system 

Lantana camara cover high  low  absent CE UA 

high  28 1 0 3 % 97 % 

low  2 22 2 15 % 85 % 

absent 0 8 34 19 % 81 % 

OE 7 % 29 6 OA 87 % 

PA 93 % 71 % 94 % Kappa 0.797 

 

9e. Hybrid support vector machine and expert system 

Lantana camara cover high  low  absent CE UA 

high  28 1 0 3 % 97 % 

low  1 17 2 15 % 85 % 

absent 1 13 34 29 % 71 % 

OE 7 % 45 % 6 % OA 81 % 

PA 93 % 55 % 94 % Kappa 0.718 

 

The results show that, among the three individual classifiers, the highest 

mapping accuracy was achieved by the neural network with an overall mapping 

accuracy of 79 % and a Kappa of 0.689 (Table 9a), followed by the support vector 

machine, which achieved an overall mapping accuracy of 71 % and a Kappa of 0.562 

(Table 9b). These methods mapped the high cover class with much higher producer and 

user accuracies than the expert system. However, the expert system predicted the non-

Lantana and low cover classes better than the neural network and the support vector 

machine (Table 9c).  
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Comparisons of the performance of individual versus hybrid classifiers 

 

The hybrid neural network achieved an overall accuracy of 87 % and a Kappa of 0.797 

(Table 9d). The Kappa Z-test was used to test the research hypothesis that combining 

the neural network with the expert system improves invasive species cover mapping. 

This may be stated formally as Ho: к1 = к2 versus the alternative hypothesis Ha: к2 > к1, 

where к1 is the Kappa statistic representing the accuracy achieved by the neural network, 

while к2 is a measure of the map accuracy achieved by the hybrid neural network plus 

expert system. The null hypothesis was rejected at P < 0.05; so it was concluded that 

combining the neural network with the expert system resulted in a significant increase 

in mapping accuracy.  

The hybrid support vector machine plus expert system achieved an overall 

mapping accuracy of 81 % and a Kappa of 0.718 (Table 9e). The Kappa Z-test was used 

to test the research hypothesis that the hybrid support vector machine plus expert system 

yields a more accurate invasive species cover map, compared to the one produced by 

the support vector machine alone. Formally, this may be stated as Ho: к1 = к2 versus the 

alternative hypothesis Ha: к2 > к1, where к1 is the Kappa coefficient representing the 

map accuracy achieved by the support vector machine alone, while к2 is a measure of 

the map accuracy achieved by the hybrid support vector machine plus expert system. 

The null hypothesis was rejected at P < 0.05. The conclusion from this test is that 

integrating the support vector classifier with the expert system significantly increased 

mapping accuracy.  

 

Patterns and extent of invasion 

 

All the maps generated by the five methods (Fig. 12) indicate a clear gradient of 

invasion, with the north-eastern and southern sections of the game reserve under sparse 

broad-leaved woodland being invaded more heavily than the central section dominated 

by grasses. Estimates of the extent of invasion derived from the cover map generated by 

the hybrid neural network and expert system, which achieved the highest mapping 

accuracy, showed that L. camara had invaded 665 hectares (ha) of land, representing 
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15 % of the total area of the game reserve and was the dominant species in about 37 ha 

of the game reserve.  

 

 
 

Fig. 12. Distribution and cover of the invasive alien shrub Lantana camara predicted by (a) 

neural network; (b) support vector machine; (c) GIS expert system; (d) hybrid neural network and 

expert system; and (e) hybrid support vector machine and expert system classification methods in 

the Kyle Game Reserve of Zimbabwe.
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Discussion 

 

The results of this study suggest that combining conventional image classification 

methods with an expert system improves invasive species cover mapping. When the 

neural network was combined with the expert system in order to map the cover of the 

invasive Lantana camara in a nature reserve of southern Zimbabwe the overall accuracy 

increased by 8 %. Similarly, when the support vector machine classifier was integrated 

with the expert system the overall mapping accuracy increased by 10 %. The Kappa Z-

tests confirmed that these increases in mapping accuracy were significant. While the 

neural network and the support vector machine alone were able to map the high cover 

class more accurately than the expert system could, the expert system predicted the low 

cover and non-Lantana classes more accurately. Consequently, integrating the 

individual methods with the expert system produced an overall more accurate invasive 

species cover map. The best classification result was achieved by the hybrid neural 

network plus expert system method (overall accuracy of 87 % and a Kappa of 0.797). 

This exceeds the overall mapping accuracy of 85 % recommended in the literature 

(Mather 1999) and indicates that the performance of this hybrid method was excellent 

and its results are of practical use.  

The results reported here corroborate the work of other researchers, who also 

combined conventional classification methods (e.g., the maximum likelihood and 

spectral angle mapper) with an expert system to map vegetation and land cover and 

reported an improvement in mapping accuracy (Stefanov et al. 2001; Schmidt et al. 

2004; Vaiphasa et al. 2006; Nangendo et al. 2007; Wang et al. 2009). However, this is 

the first time the neural network and support vector machine classifiers have been 

integrated with a GIS expert system in order to successfully map the cover of an 

invasive alien species. This approach made it possible to accurately estimate, for the 

first time, the extent and severity of L. camara invasion at a landscape scale. In other 

words, this study demonstrates that combining the spectral signatures of remotely 

sensed data with ancillary spatial data and knowledge about the distribution of the target 

invasive species, enhances the capability of remote sensing to detect and map invasive 

alien species.  



Chapter 7 

 119

Apart from demonstrating the superiority of hybrid methods over individual 

classification methods, the present study indicates that 15 % of the total area of the 

reserve has been invaded by L. camara, making this alien species the most widespread 

terrestrial invader in the Kyle Game Reserve. In the Kruger National Park (South 

Africa), Foxcroft and Richardson (2003) also reported that L. camara is the most widely 

distributed invasive alien species, although quantitative estimates of the extent of the 

invasion were not provided. The high cover class mapped in this study corresponds with 

approximately 3,000 stems per ha. Similar densities (i.e., about 5,000 individuals per 

ha) were also reported in the Forty Mile Scrub National Park of Australia (Fensham et 

al. 1994). Such high densities suggest that L. camara could start to dominate native 

flora, resulting in a biologically impoverished environment, and thus making its control 

crucial (Richardson et al. 2000; Foxcroft and Richardson 2003).  

Furthermore, this study revealed a gradient of L. camara invasion, with the 

sparse broad-leaved woodland tending to be more susceptible, and the open grassland 

more resistant to its invasion. The higher susceptibility of the sparse woodland to 

invasion may be attributed to the interaction effects of physical disturbance of the soil 

by feral pigs, which creates bare patches suitable for L. camara recruitment and 

enhanced seed dispersal by birds. Lantana camara seeds are mostly dispersed by birds 

such as the dark-capped bulbul (Pycononotus tricolor), which often perch, nest, and 

roost in tall trees, thereby increasing seed supply beneath canopies (Milton et al. 2007). 

Indeed, high propagule pressure has been frequently invoked to explain the invasion 

success of numerous alien species, because it increases the probability that the arrival of 

propagules coincides with suitable environmental conditions (Rouget and Richardson 

2003; Lockwood et al. 2005; Von Holle and Simberloff 2005; Thomsen et al. 2006; 

Melbourne et al. 2007).  

At the same time, bottom-up (direct) interactions, such as competition for 

water and nutrients, with fast growing grass species might limit L. camara invading the 

open grassland areas. Research has shown that most savanna grasses have dense fibrous 

root systems and easily out-compete seedlings of woody plants, where they exploit the 

same resource base (Scholes and Archer 1997; Van der Waal et al. 2009). In addition, 

high grass biomass may increase fuel loads, thereby resulting in more intense fires 

(Scholes and Archer 1997; Van Langevelde et al. 2003), which may potentially cause 
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high seedling mortality among L. camara recruits. Further studies would be needed to 

disentangle the mechanisms of invasion. 

 

Management implications  

 

Since the cover of invasive plant species is directly related to their dominance and 

ecological impact (Hejda and Pyšek 2008), the quantitative estimates of the extent of 

invasion and cover of L. camara provided here have implications for its management 

and control. The clear gradient of invasion revealed here leads to two recommendations. 

Firstly, a management approach in stages, involving the targeting of areas of light 

infestation first before moving to areas of dense infestation, may be necessary. Secondly, 

an integrated management programme, to be sustained long-term (given the high risk of 

re-invasion), may be the best strategy for tackling the spread of L. camara. This may 

include a careful blend of mechanical control methods, such as the uprooting of light 

infestations and controlled burning, followed by the re-vegetation of cleared areas with 

native species, in order to provide shade to suppress the recruitment of L. camara 

(ARMC-ANZ 2001). 

 

Conclusion 

 

This study explicitly revealed areas of a nature reserve in southern Zimbabwe which are 

more susceptible to invasion by Lantana camara. Importantly, the study demonstrated 

the superiority of hybrid classification methods over single classifiers when mapping 

invasive species from remotely sensed data. The best classification result was obtained 

when the neural network was combined with a GIS expert system. The conclusion from 

this study is, that integrating conventional image classification methods with a GIS 

expert system results in the mapping of invasive species with a greater statistical 

confidence. It is hoped that others, who wish to detect and map cryptic invasive species 

with improved accuracy, may now also consider combining different classifiers with 

GIS expert systems. 
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Introduction 

 

The main aim of this thesis was to investigate and gain an understanding of how rainfall, 

soil nutrient availability, fire, and grazing influence the invasibility of African savanna 

systems by alien plants. Rainfall, nutrient availability, grazing, and fire are the four 

principal factors determining vegetation structure, composition, and distribution in 

African savannas (Scholes and Archer 1997; Sankaran et al. 2005) but whether these 

factors play a similar role in the invasion and rates of spread of alien plants in these 

ecosystems is unclear. Davis et al. (2000) predicted that the susceptibility of an 

ecosystem to invasion by alien species (invasibility) increases with resource availability. 

Fig. 13 shows that resource availability and consequently invasibility can increase due 

to a pulse in resource supply or a decline in resource uptake by resident species caused 

by disturbance, or both (Hobbs 1989; Sher and Hyatt 1999; Davis et al. 2000).  

This thesis brings together several chapters on how rainfall, which replenishes 

soil moisture, and termites which modulate nutrient availability to plants, as well as 

major disturbances (fire and grazing), determine the invasibility of African savanna 

ecosystems. In this final chapter, the main results from the previous chapters are 

brought together in order to gain a better understanding of the major factors controlling 

the invasibility of African savannas. In addition, the mechanisms of invasion are 

highlighted and the applicability of our results to other terrestrial ecosystems is 

discussed. Finally, the practical relevance of this thesis for managing invasive species is 

emphasised and two suggestions are made for future research. 
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Fig. 13. The theory of fluctuating resource availability predicts that a plant assemblage’s 

susceptibility to invasion by alien species (invasibility) increases with resource availability. 

Resource availability is the difference between gross resource supply and resource uptake. It can 

increase due to a pulse in resource supply (A → B), a decline in resource uptake (A → C) or both 

(A → D). In the plot shown, resource availability, and hence invasibility, increases as the 

trajectory moves further right and/or below the resource supply-uptake isocline. At the resource 

supply-uptake isocline resource uptake by resident species equals gross resource supply hence 

invasion is inhibited. After Davis et al. (2000).  

 

Do native termites facilitate alien plant invasions of African savannas? 

 

Primary productivity in African savannas is limited by low soil nutrient availability, 

particularly nitrogen and phosphorus (Huston 1993; Vitousek et al. 1997; Sankaran et al. 

2005). This has been confirmed by many fertilisation experiments (O' Connor 1985). 

However, mound-building termites such as Macrotermes natalensis, which are widely 

distributed in African savannas (Uys 2002), can substantially increase soil nutrient 
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concentrations at their mounds. This creates ‘islands of fertility’ (Lee and Wood 1971; 

Lobry de Bruyn and Conacher 1990). Nutrient enrichment of mound soils occurs 

because termites incorporate large amounts of organic matter into their mounds. Mound 

soils are also rich in nutrients because termites use soil from deeper layers in the 

construction with a higher proportion of clay minerals and a higher cation exchange 

capacity than the coarser textured soils at the surface (Wood 1988; López-Hernández et 

al. 2005). Termites also deposit fresh soil around their mounds, which suppresses the 

growth of resident flora and creates small gaps (microsites) suitable for colonisation by 

alien plants (Rogers et al. 1999).  

These changes in the patterns of nutrient and microsite availability in the 

landscape caused by termites can have a profound effect on vegetation structure and 

composition in savannas (Wild 1952; Lee and Wood 1971; Moe et al. 2009). Field 

studies have revealed that throughout the savannas in Africa, many plant species cluster 

around termite mounds (Barot et al. 1999; Loveridge and Moe 2004; Grant and Scholes 

2006). It was therefore hypothesised that, termites, by amassing nutrients at their 

mounds and disturbing the soil, create spatial environmental heterogeneities, which may 

facilitate the invasion of nutrient-limited savannas by alien plants. This hypothesis was 

tested in a semi-arid savanna in Zimbabwe (southern Africa) by sampling and 

comparing vegetation as well as nutrient concentrations in plots located at mounds and 

in off-mound areas (Chapter 2). A greenhouse experiment was also performed to test 

whether two common invasive alien shrubs (Lantana camara and Duranta erecta) grow 

better in nutrient-richer mound soils than in soils from the off-mound areas. 

Furthermore, seeds and seedlings of D. erecta were introduced to experimental plots 

located both at termite mounds and away from mounds in the Kyle Game Reserve 

(southern Zimbabwe) to test the hypothesis that seed germination and survival of the 

invasive alien shrubs is enhanced by increased microsite availability around termite 

mounds (Chapter 3).  

Mound soils had significantly higher concentrations of macronutrients and 

exchangeable bases than soils from the surrounding off-mound areas did. Consequently, 

the vegetation at mounds differed significantly in species composition, richness, and 

abundance from the vegetation at off-mound areas. Alien plant species richness 

increased threefold on termite mounds compared to the surrounding non-mound areas. 
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On average, the cover of alien plants in plots located at termite mounds was at least 

twice the cover at nearby off-mound plots of a similar size. Both L. camara and D. 

erecta aggregated around termite mounds with no individuals occurring farther than 25 

m from the centre of the nearest termite mound. These invasive alien shrubs 

accumulated twice the amount of dry matter and grew at least twice as fast in mound 

soils than in soils from off-mound areas (Fig. 14a, b).  
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Fig. 14. Effect of mound soil on the growth of two invasive alien shrubs Duranta erecta (a) and 

Lantana camara (b). Black squares represent mean height of seedlings grown in mound soils and 

open circles represent mean height of seedlings grown in non-mound (control) soils. The whiskers 

represent 95 % confidence levels (n = 10 replicates per species).  
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Field experiments revealed that the germination rate of the invasive shrub D. 

erecta in mound soils was twice as high as in soils in the surrounding areas undisturbed 

by termites. In addition, seedling survival of D. erecta was consistently higher on 

termite mounds than away from mounds. These results combined support our 

hypothesis and provide the first quantitative evidence that termites enhance the invasion 

of African savannas by alien plant species. 

It is suggested here that the interaction effect of elevated nutrient levels and 

increased microsite availability explains the enhanced performance of alien plant 

species at termite mounds and the higher diversity of alien taxa recorded there. Termites 

may further promote alien plant invasion into savannas by exposing bare mineral soil of 

higher nutrient status to the surface, which is favourable for the germination of seeds of 

numerous alien species (Eriksson and Ehrlen 1992). Hence, it is concluded that termites 

enhance alien plant species invasions into savannas by creating new habitats that differ 

fundamentally from the surrounding habitats in abiotic conditions such as fertility and 

microsite availability. Because nutrient limitation is widespread in tropical savannas 

(Huston and Wolverton 2009) and mound-building termites are ubiquitous in these 

systems (Lobry de Bruyn and Conacher 1990; Uys 2002), nutrient enrichment of 

savanna soils by these insects may be an important mechanism of invasion operating 

across tropical savanna systems. The mechanism through which termites engineer the 

environment, modulate the availability of nutrients and microsites and thus facilitate 

invasions of alien plants into tropical savanna systems is illustrated in Fig. 15.  

In other terrestrial systems, it has also been reported that ecosystem engineers, 

i.e., organisms that modulate the availability of resources to other organisms by causing 

physical state changes in the abiotic environment (Jones et al. 1994, 1997) promote 

alien plant invasions (Crooks 2002; Badano et al. 2007; Hastings et al. 2007). For 

example, Wagner and Jones (2006) reported that seed-harvesting ants (Pogonomyrmex 

rugosus) increased soil nutrient concentrations, which then favoured the invasion of an 

alien grass Schismus barbatus into arid grassland systems of North America. Likewise, 

Farji-Brener and Ghermandi (2008) reported that the nests of leaf-cutting ants 

(Acromyrmex lobicornis) were richer in nutrients and invaded to a larger extent by two 

alien herbs (Carduus nutans and Onopordum acanthium) than the surrounding off-nest 

areas.  
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Fig. 15. A conceptual model of physical ecosystem engineering depicting how termites promote 

the invasion of savannas by alien plants through creating patches with increased nutrient and 

microsite availability. Boxes represent state variable, arrows indicate state changes and control 

pathways are shown with solid lines. The symbol    represents points of modulation. Modified 

from Jones et al. (1994). 

 

The link between rates of spread of invasive aliens and rainfall variability 

 

African savannas are heterogeneous and hence soil nutrient availability is not the only 

key factor determining their invasibility. It has been suggested that rainfall can have an 

overriding effect on primary production in these ecosystems (Sankaran et al. 2008). 

Fluctuations in plant species abundance driven by variations in rainfall patterns are the 

norm in Africa savannas (O' Connor 1985). In semi-arid savannas, temporal variation in 

moisture availability can exert a stronger influence on plant species’ composition, 

abundance, and distribution than edaphic factors such as fertility (Scholes and Archer 

1997; Sankaran et al. 2005). Therefore, in a semi-arid savanna in Zimbabwe under 

nature conservation (Kyle Game Reserve; c.a. 600 mm mean annual rainfall), the link 

was tested between the rates of spread of an alien invasive shrub L. camara and rainfall 
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variation (Chapter 4). To gain a better understanding of the effect of rainfall on the rates 

of spread and the dynamics of invasion, historical aerial photographs and field 

measurements were used to compare the rate of spread of this invasive alien shrub with 

that of the native shrubs over a long period with variable rainfall in a protected semi-

arid savanna in southern Africa.  

It was found that during years of above-average rainfall, the mean annual rate 

of spread of the invasive alien shrub L. camara was at least twice that of native shrub 

encroachers, whereas in other years natives spread at the same rate as the invasive alien 

shrub. This is a novel finding suggesting that rainfall pulses trigger accelerated spread 

of invasive alien shrubs in water-limited savannas. Most studies investigating shrub 

encroachment in African savannas invoked overgrazing by livestock to explain this 

phenomenon (Van Vegten 1984; Jeltsch et al. 1997; Roques et al. 2001; Wigley et al. 

2009). As this study was conducted in a protected nature reserve from which livestock 

had been excluded for more than 50 years, the results reported here imply that rainfall is 

the primary factor controlling the rate of spread of invasive alien shrubs in semi-arid 

savannas and overgrazing by cattle may play a secondary role.  

 

Role of fire in promoting the invasion of savanna systems  

 

Not all savannas in Africa are water-limited. In mesic savannas receiving more than 650 

mm of annual rainfall where water is not a limiting resource (Sankaran et al. 2005), 

disturbances such as fire can have pronounced effects on vegetation structure (Sankaran 

et al. 2008). In these systems, fire is commonly used to suppress tree growth and 

promote tree-grass coexistence, which is important for savanna functioning as these two 

plant life forms provide different ecosystem services (Barnes 1965; Campbell et al. 

1997; Bond and Keeley 2005). However, the impacts of fire on ecosystem processes are 

not understood well enough to recommend appropriate fire regimes for managing 

savannas without risking promoting invasion by invasive aliens (D'Antonio 2000; 

Govender et al. 2006). Therefore, at a mesic savanna site in central Zimbabwe 

(Grasslands Research Station; c.a. 850 mm annual rainfall), where fire is frequently 

used to suppress bush encroachment, vegetation data were used from a long-term fire 

experiment, beginning in 1953, to test two hypotheses namely, (1) frequent burning of 
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mesic savannas may reduce the competitiveness of resident species and thereby promote 

the invasion by alien plants; (2) because alien plants may vary, both within and between 

species, in which degree they respond to fire, short intervals between fires may favour 

alien forbs with short life spans and/or a ruderal strategy (Chapter 5). The fire 

treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and burnt 

plots were compared with unburnt control plots.  

More than fifty years of experimental burning of a mesic savanna enhanced the 

invasion by alien plant species. The proportion of alien species relative to the total 

vascular plant species richness was significantly higher in regularly burnt plots than in 

the unburnt control plots. It increased as the intervals between fires shortened. Alien 

forbs occurred more frequently in regularly burnt plots than in the unburnt control plots 

and their abundance also increased as the intervals between fires (in years) became 

shorter. These results support both hypotheses and are consistent with well-known 

effects of fire on savanna vegetation. Previous results published on this fire experiment 

revealed that regular burning significantly reduced tree height, but did not alter tree 

species diversity (Strang 1974; Furley et al. 2008). The effect of the frequency of 

burning on alien plant invasion had not been assessed. Hence, this study shed light on 

the role of fire in promoting invasion of mesic savannas by alien plant species. Field 

experiments performed at several other savanna sites in southern Africa have also 

revealed that fire reduces the cover of competitive dominants, resulting in substantial 

increases in the abundance of forbs (O' Connor 1985; Fynn et al. 2009). However, to 

our knowledge this is the first experimental evidence that frequent burning promotes 

invasion of a mesic savanna by alien plants.  

 

Impact of anthropogenic disturbance on savanna invasibility 

 

It would be negligent not to assess the impact of anthropogenic disturbance on alien 

plant invasions into African savannas. After all, alien organisms are introduced into 

novel environments by humans in the first place (Lodge 1993). The introduction of 

cattle from Europe into Africa and the Americas is a classic example. These exotic 

herbivores may reduce the competitiveness of native flora, thereby paving the way for 

other alien species to invade (Holmgren 2002), a phenomenon that is often referred to as 
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invasional meltdown (Simberloff and Von Holle 1999; Nunez et al. 2008). Whether the 

introduction of alien plants or their propagules by humans into savannas is deliberate or 

accidental is not the issue here.  

Humans also engage in a wide range of activities, including agriculture, which 

substantially alter savanna vegetation structure and cover and may lead to invasion by 

alien plants, especially those adapted to anthropogenic disturbance. It was therefore 

hypothesised that the interaction of human disturbance and cattle grazing might 

facilitate alien plant invasion into disturbed savannas. We tested this hypothesis along a 

gradient of human-and-livestock disturbance in two savanna landscapes in southern 

Zimbabwe (Chapter 6). The study sites were adjacent to each other, but differed as one 

is a communal area sustaining a high human population density and the other is a 

protected nature reserve with a low human population density. In addition, the 

communal area is grazed by cattle all year round, whereas cattle are excluded from the 

nature reserve.  

Alien taxa represented a significantly higher proportion of the total vascular 

species richness in the human-disturbed savanna (Mutirikwi communal area) than in the 

protected savanna (Kyle Game Reserve). A quarter of the human-and-livestock 

disturbed savanna (8,518 ha) had been invaded by the unpalatable invasive alien shrub L. 

camara, compared to 15 % of the protected reserve (665 ha). These results indicate that 

intensive (communal) land management practices increase alien plant invasion and are 

comparable to those reported for South African savannas. Although estimates of the 

areal extent and intensity of invasion were not provided, Shackleton (2000) also 

reported that in a South African savanna, L. camara was more common in the 

communal areas than in the adjacent protected nature reserves. Van Gils et al. (2006) 

similarly observed that unpalatable invasive alien species were more common in the 

communal areas of South Africa than in the nature reserves.  

It has been suggested that selective grazing of palatable resident species results 

in increased dominance of unpalatable invasive aliens (Augustine and McNaughton 

1998). Hence, the enhanced invasion success of L. camara in savannas continuously 

grazed by cattle may be attributed in part to its toxicity to cattle (Day et al. 2003; 

Sharma et al. 2005). In the African savannas with heavy grazing by cattle, unpalatable 

invasive aliens like L. camara may gain a competitive advantage over palatable natives 
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whose growth is hindered by these introduced domestic herbivores. The association 

between cattle grazing and invasive aliens has also been reported in Australian savannas 

(Fensham et al. 1994; Gentle and Duggin 1997; Duggin and Gentle 1998), tropical 

rainforests and savannas in India (Kohli et al. 2006), temperate grasslands (Chaneton et 

al. 2002), and Mediterranean shrublands (Holmgren et al. 2000; Holmgren 2002). Thus, 

the preponderance of the evidence suggests that worldwide ecosystems with disturbance 

regimes altered by human activity are more prone to alien species invasion than those 

less altered.  

Anthropogenic disturbance promotes alien plant invasion through a variety of 

mechanisms (Hobbs 1989). For example, since an alien plant invader cannot occupy 

space that is already taken by resident species (Sousa 1984), neither can it establish 

successfully if resident species utilise available resources completely; resource pre-

emption is one of the key mechanisms limiting the invasion of intact plant assemblages 

(Alpert et al. 2000; Davis et al. 2000; Von Holle et al. 2003; Pyšek and Richardson 

2008). Disturbances can break this biotic resistance to invasion by damaging or causing 

mortality of resident species, thereby creating vacant niches and preventing competitive 

exclusion (Levine et al. 2004; Catford et al. 2009). In other words, disturbance can 

directly or indirectly create niche opportunities for alien species to invade (D'Antonio et 

al. 1999; Hobbs 2000; Shea and Chesson 2002; MacDougall et al. 2009). Other 

mechanisms through which disturbance promotes alien plant invasions can be found in 

Hobbs and Huenneke (1992), Huston (2004), Lake and Leishman (2004) as well as 

Eschtruth and Battles (2009), and will not be repeated here. 

 

Which are the main factors controlling savanna invasibility? 

 

Three key factors namely, propagule pressure, abiotic characteristics of the environment, 

and biotic characteristics of the environment likely interact to determine the outcome of 

invasion and hence the invasibility of an African savanna (Fig. 16). Propagule pressure, 

which is the combined measure of the number of propagules per introduction event and 

the number of introduction events (Lonsdale 1999), can have an overriding effect on 

savanna invasibility since invasion cannot occur without propagules of alien taxa. High 

propagule pressure may enable alien species to establish successfully through seed 
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saturation (Crawley et al. 1999). However, because alien plant invasions were studied 

post-hoc in this thesis and data on the number of propagules of alien taxa introduced 

into African savannas per introduction event as well as the number of introduction 

events are scarce (Barney and Whitlow 2008), the role of propagule pressure in 

enhancing invasibility was not explicitly studied. Nevertheless, the findings presented in 

Chapter 6 in conjunction with available literature (Rouget and Richardson 2003; 

Lockwood et al. 2005; Von Holle and Simberloff 2005; Edward et al. 2009) imply that 

high propagule pressure in interaction with frequent disturbances tend to make African 

savannas more prone to invasion by alien plants.  

The abiotic or physical characteristics of the environment, particularly the 

availability of the most limiting resources, also influence the invasibility of African 

savannas, because if abiotic conditions are inhospitable, invasion will fail regardless of 

the number propagules of an alien species reaching a site (Catford et al. 2009). On the 

other hand, if environmental conditions are benign, very little propagule pressure may 

be necessary for successful invasion (Theoharides and Dukes 2007). Because African 

savannas are heterogeneous, resource availability tends to vary over time and space. 

This variation inevitably has an effect on invasibility, because an alien invader needs 

access to resources to establish successfully. For example, the spatial variation in soil 

moisture, which is a key resource limiting plant growth in African savannas, may 

explain why in a semi-arid savanna in southern Zimbabwe, stands of an invasive alien 

shrub L. camara were denser and more linear along perennial rivers than in non-riparian 

areas (Chapter 6), a pattern observed in South African savannas as well (Foxcroft et al. 

2009). This suggests that in African savannas, riparian habitats tend to be more 

invadable than non-riparian habitats. That riparian habitats tend to harbour more alien 

taxa than non-riparian areas is also the case in other systems (Stohlgren et al. 1998; 

Tickner et al. 2001; Truscott et al. 2008).  
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herbivory, pathogen attack (+/-)
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Level of invasion

1 2 34
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Fig. 16. Key factors determining the susceptibility of savanna systems to invasion by alien plant 

species (invasibility). These principal determinants are: propagule pressure (P), abiotic 

characteristics of the environment (A), and biotic characteristics of the environment (B). A plus 

symbol (+) indicates that the factor or the underlying mechanism(s) of invasion associated with 

that factor has a positive effect on invasibility whereas a plus or minus symbol (+/-) indicates the 

effect could either be positive or negative depending on the outcome of interactions between the 

factors or causative mechanisms involved. Potential invasion pathways represented by labelled 

arrows increase in complexity from 1 to 4. For pathway 1, the level of invasion is controlled by 

propagule pressure only; for pathway 2, the main effects of propagule pressure and abiotic 

conditions (e.g., actual amount of available resources like soil nutrients) and their two-way 

interaction (i.e., P+A+P*A) determine invasibility; for pathway 3, invasibility is a function of 

P+B+P*B; whereas for pathway 4 all three factors including their two-way and three-way 

interactions determine invasibility. The notation follows the figure and * indicates interaction of 

factors. Note more invaded does not necessarily mean more invadable, hence the term level of 

invasion is used here to simply denote the number of alien plant species a habitat or ecosystem 

harbours (Pyšek and Richardson 2008). Modified from Catford et al. (2009).  
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Likewise, the spatial variation in soil nutrient availability, another key factor 

limiting primary productivity in African savannas, influences invasibility. It was shown 

in Chapter 2 that termites create spatial heterogeneity in nutrient concentrations thus 

causing the invasibility of savannas to vary spatially. Disturbances such as overgrazing 

by cattle, which severely damage or cause mortality of plants thereby reducing resource 

uptake by native species, also increase the amount of resources available and 

consequently the proneness of a savanna to invasion by alien plants. It was revealed that 

savannas which are burned frequently or grazed heavily by cattle tend to be more 

invaded by alien plants, especially those ruderal alien forbs capable of coping with these 

disturbances (Chapters 5, 6). Temporal variation in resource supply, for example soil 

moisture, driven by rainfall variability, also causes the invasibility of savannas to vary 

temporally, as was shown in Chapter 4.  

Biotic interactions, for example competition between native and alien species 

for environmental resources, although not explicitly studied in this thesis, also have a 

profound effect on savanna invasibility. For example, pathogen attack and/or herbivory 

of alien invaders by generalist resident herbivores may make a savanna less susceptible 

to invasion (Fig. 16). However, if alien taxa (for example L. camara) have more potent 

chemical defences against the generalist herbivores than their native competitors, then 

herbivory may suppress the competitiveness of native flora and enhance invasibility as 

suggested in Chapter 6. Evidently the invasibility of a savanna tends to vary over time 

and space in conjunction with fluctuations in resource availability and disturbance 

regimes which alter biotic interactions (Crawley 1987; Richardson and Cowling 1992; 

Davis et al. 2000).  

 

Practical relevance of this thesis 

 

Land managers in Africa are concerned with the threats to ecosystems posed by 

invasive alien species and would like to remove or control invasive aliens in order to 

conserve native biodiversity and ensure that ecosystems continue to provide goods and 

services (Cronk and Fuller 2001; Le Maitre et al. 2002). However, they lack accurate 

information on how the spatial extent and intensity of invasions vary within and across 

entire landscapes. This makes it difficult for them to plan how to allocate resources 
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towards controlling the spread of invasive plants. Ground measurements and remote 

sensing are the two main sources of spatial data on the level of infestation of a 

landscape by invasive plants but both present major problems which limit their 

usefulness.  

Firstly, ground measurements are labour-intensive and expensive. Secondly, 

some areas are not easily accessible, making acquisition of reliable data on the 

occurrence and cover of invasive plants difficult (Blumenthal et al. 2007). Remote 

sensing, which gives a synoptic view of the landscape (Skidmore 2001), is a more 

efficient method for mapping invasive species (Everitt et al. 1995; Underwood et al. 

2003; Asner and Vitousek 2005; Barnett et al. 2007). However, it only works well if the 

invaders have phenological or morphological features that are distinct from those of the 

native plants (Mack et al. 2007). Unfortunately, many invasive species do not have 

distinct morphological and phenological characteristics and mapping their cover from 

remotely sensed data is not a straightforward task. Invasive plants are also often hidden 

beneath the canopy and contribute little to the spectral signatures captured by remote 

sensing devices, making them difficult to detect using remote sensing alone (Joshi et al. 

2006). The capability of remote sensing to detect invasive plants is further limited by 

the fact that most alien invaders do not form homogenous stands larger than the spatial 

resolution of readily available remotely sensed data (Fig. 17). 

These problems can be overcome by integrating standard image classifiers with 

a geographical information system (GIS) expert system. It was demonstrated in Chapter 

7 that the resultant hybrid expert system classifier can map invasive plants more 

accurately than either the standard classifiers or the GIS expert system. The hybrid GIS 

expert system classifier is superior to traditional methods because it combines remotely 

sensed data as well as other ancillary data with prior knowledge about the distribution of 

the target invasive species in a single bayesian prediction framework (Skidmore 1989; 

Schmidt et al. 2004). This is achieved through the use of expert rules that provide the 

link between the data and consequent hypothesis to be tested (Skidmore et al. 1996). 
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Fig. 17. Limitations of remote sensing in detecting invasive alien plants in heterogeneous 

environments. The bold arrow indicates that as the morphology or growth habit of the invasive 

alien plant changes, it becomes more difficult to detect the invader through direct remote sensing. 

At location a, the invasive plant forms homogenous stands easily detectable with remote sensing 

but from locations b to d, the invasive plant contributes less to the spectral signatures captured by 

a remote sensing device than the resident species. This makes it difficult to detect its presence 

using direct remotely sensing alone.  

 

With regard to invasive species mapping, the main question to be answered by 

the hybrid GIS expert system classifier is: “What is the probability of finding an 

invasive species X given that a certain piece of evidence (e.g., a termite mound) is 

available at a given location?”. The hybrid GIS expert system classifier was used to map 

the cover of an invasive shrub L. camara across two landscapes, enabling us to test 

whether the level of invasion differed significantly between an anthropogenically 

altered savanna and a protected one (Chapter 6). This was the first time that this 

widespread alien invader of southern Africa savannas (Henderson 2007) was 

successfully mapped from satellite imagery at a landscape scale. 
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Remote sensing has the potential to broaden our understanding of alien plant 

invasions in poorly studied ecosystems like African savannas. This can be justified on 

four grounds. Firstly, field data are scarce in Africa. Hence, remotely sensed data such 

as historical archives of aerial photographs and satellite images may be the only data 

source available for studying dynamics of invasion (Foxcroft et al. 2004). Secondly, 

remote sensing can reveal spatiotemporal patterns of invasion, enabling ecologists to 

infer mechanisms of invasion and understand the factors controlling the rates of spread 

of invasive aliens (see Chapter 4 in this thesis). Thirdly, as satellite images are now 

more freely available, other researchers may use the hybrid expert system classifier 

presented in this thesis to map invasive alien species in other systems at spatial or 

temporal scales of their choice. The beauty of this hybrid expert system classifier lies in 

its simplicity and robustness, making it implementable in any standard GIS software. 

The proposed mapping method offers a final important benefit. It is suitable for 

detecting nascent invasions as it performs better than standard methods, especially when 

the target alien species to be mapped is sparsely distributed or does not form extensive 

monotypic stands. Because early detection of an invasion is the key to successful 

invasive species management (Mack et al. 2007), other researchers are encouraged to 

make use of this method in order to generate accurate maps about the extent and 

intensity of alien species invasions, helping land managers prioritise resource allocation, 

which will lead to more efficient invasive species management. 

 

General conclusion 

 

The main aim of this thesis was to investigate and understand how rainfall, soil nutrient 

availability, fire, and grazing influence the invasibility of African savannas by alien 

plants. The general conclusion of this thesis is that the invasibility of African savannas 

tends to increase when the availability of limiting resources (water and nutrients) 

coincides with disturbances like cattle grazing and fire, which open up intact plant 

assemblages to colonisation by alien plant species. This is consistent with ecological 

theory (Davis et al. 2000) and implies that human alteration of disturbance regimes as 

well as the introduction of novel disturbances, for example, cattle grazing, offer 

increased opportunities for alien plant invasions of savannas (Hobbs 2000). Therefore, 
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reducing the level of anthropogenic disturbance may be the key to controlling the spread 

of invasive alien species across savanna landscapes. The most important contribution of 

this study to invasion ecology is that it showed for the first time that native termites, 

which are widely distributed in tropical savannas, facilitate alien plant invasions of 

these ecosystems by creating patches in the landscape with increased nutrient and 

microsite availability suitable for colonisation by numerous alien species. 

 

Suggestions for future research 

 

Two suggestions can be made for future research. Firstly, the interactions between the 

major factors controlling savanna invasibility namely propagule pressure, resource 

availability (i.e., water, nutrients), grazing, and fire were not explicitly investigated here. 

Hence, to gain a better understanding of the relative importance of these factors factorial 

experiments performed under field conditions at multiple sites are crucial. The results 

from such experiments may go a long way in elucidating the mechanisms causing alien 

plant invasions into savanna ecosystems and so contribute towards invasive species 

management.  

Secondly, climate change is predicted to significantly alter carbon dioxide 

(CO2) levels and precipitation patterns over extensive savanna regions (Christensen et al. 

2007). An apparent drying trend over southern Africa has already been detected 

(Sheffield and Wood 2008). At the same time, a three- to fourfold increase in nitrogen 

deposition is occurring in many parts of southern Africa (Scholes et al. 2003; Dentener 

et al. 2006). The likely impacts of these changes in the biogeochemical cycles on native 

and alien flora are not known (Dukes 2000). Therefore, fully-crossed factorial 

greenhouse and field experiments, in which rainfall, CO2 and nitrogen are manipulated 

to mimic their projected levels, need be performed in order to be able to predict the 

spread of native and alien flora. Insights from these experiments may contribute towards 

our understanding of the dynamics of invasion and help to shape the way we manage 

invasive species in savannas in the future. 
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Summary 

 

Numerous alien plant species are invading African savannas causing loss of biodiversity 

and altering ecosystem functioning. The ecological factors and underlying mechanisms 

causing these invasions are poorly understood. This hinders invasive species 

management and biodiversity conservation. In this thesis, a range of approaches (i.e., 

field measurements, a greenhouse experiment, field experiments, a long-term burning 

experiment, remote sensing, and Geographical Information System (GIS) techniques) 

was used to understand how the availability of two key resources limiting primary 

productivity in African savannas (water and nutrients) and how major disturbances (i.e., 

fire, grazing) determine the invasion of these systems by alien plant species. 

In a nutrient-limited Zimbabwean savanna, native termites facilitated alien 

plant invasion by boosting nutrient concentrations in top soils around their mounds and 

creating a patchy distribution of microsites in the landscape. Alien plant species 

richness increased threefold on termite mounds compared to surrounding off-mound 

areas. In addition, two invasive alien shrubs, Lantana camara and Duranta erecta, 

clustered around termite mounds without any occurring beyond the periphery of the 

nearest termite mound. These invasive shrubs grew more rapidly and doubled dry 

matter production in termite mound soils compared to the surrounding non-mound soils. 

Field experiments revealed that the germination rate of the invasive alien shrub D. 

erecta in mound soils was twice as high as in soils in the surrounding areas undisturbed 

by termites. In addition, seedling survival of D. erecta was consistently higher on 

termite mounds than away from mounds. These findings combined provide the first 

quantitative evidence that termites, which are widely distributed in tropical savannas, 

facilitate plant invasion by creating patches in the landscape with increased nutrient and 

microsite availability suitable for colonisation by alien species. 

Rainfall had a profound effect on the rate of spread of an invasive alien species. 

In a semi-arid savanna in southern Zimbabwe, during years of above-average rainfall, 

the mean annual rate of spread of the invasive L. camara was at least twice that of 

native shrub encroachers, whereas in other years natives spread at the same rate as the 

alien shrub. This is the first time that, over a relatively long period, the spatio-temporal 

patterns of spread of invasive and native encroaching shrub species have been 
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quantified in savanna systems and the link with rainfall variation tested. These results 

suggest that in semi-arid savannas, pulses in rainfall may accelerate the spread of 

invasive alien species.  

Data from a long-term fire experiment performed at a humid savanna site in 

central Zimbabwe, in which plots were burnt at 1-, 2-, 3-, and 4-year intervals for more 

than 50 years and compared with unburnt controls, revealed that frequent burning of 

savannas promotes invasion. Alien species accounted for a significantly higher 

proportion of plant species richness in regularly burnt plots than in the unburnt control 

plots. The proportion of alien plant species was highest in the annually burnt plots, 

followed by plots burnt biennially, triennially, and quadrennially. Plots protected from 

fire contained the lowest proportion of alien invaders. Also, alien forbs occurred more 

frequently in regularly burnt plots than in the unburnt control plots and their abundance 

increased as the intervals between fires in years became shorter. These results suggest 

that frequent burning of mesic savannas enhances invasion by alien plants, with short 

intervals between fires favouring alien forbs. Previous results published on this fire 

experiment showed that regular burning had a significant effect on vegetation structure 

but the effect of fire frequency on alien plant invasion had not been evaluated. Hence, 

this thesis sheds light on the role of fire in promoting alien plant invasion in savannas.  

When the susceptibility to invasion by alien plants of a southern African 

savanna degraded by human activity and continuous grazing by cattle was compared 

with that of an adjacent protected savanna, it was found that alien taxa represented a 

significantly higher proportion of the total species richness in the human-disturbed 

savanna than in the protected one. While alien plant species associated positively with 

the human-disturbed savanna and negatively with the protected one, their native 

confamilial species exhibited a positive association with the protected savanna, and a 

negative association with the human-disturbed savanna. The most abundant and widely 

distributed invasive species, L. camara, covered a significantly higher proportion of the 

human-disturbed savanna than of the protected savanna. These results clearly suggest 

that anthropogenic disturbance increases the invasibility of African savannas. 

The findings of this study lead to the general conclusion that the susceptibility 

of African savanna systems to invasion by alien species increases when the availability 

of key limiting resources (water and nutrients) coincides with disturbances, like cattle 
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grazing and fire, which open up an intact plant assemblage for colonisation by alien 

invaders. This is consistent with ecological theory and implies that manipulating 

resource availability and reducing the level of disturbance may be the keys to 

controlling the spread of alien species across savanna landscapes. 

Finally, to improve invasive species mapping, conventional image classifiers 

were combined with a simple GIS expert system to yield a hybrid classifier. It was 

demonstrated for the first time that this hybrid classifier can map the cover of invasive 

plant species from satellite imagery across the entire landscape with greater statistical 

accuracy than either the standard image classifiers or the GIS expert system alone. 

Hence, it has the potential to address the data needs of natural resource managers, who 

require accurate information about the occurrence and abundance of invasive species in 

order to make invasive species management more cost effective.  
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