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1 General introduction 

 

 

 

 

 

1.1 Societal demand for sustainable replacement for oil 

Environmental and economic drivers  

Due to increased human economic activity since the Industrial Revolution, we 

momentarily face two major global constraints to further worldwide economic 

development, both of which are related to burning fossil fuel. The first global 

constraint is warming of the Earth’s surface, an indirect effect of burning 

fossil fuels. By burning captured carbon from deeper earth layers, carbon 

dioxide is released into the atmosphere and accumulates there. Accrual of 

carbon dioxide, a greenhouse gas, is one of the major causes of global 

warming, which is evident by the observed increases in global average air 

and ocean temperatures, widespread melting of snow and ice and rising 

global average sea level (IPCC, 2007). The effects of climate change on the 

natural and human systems are difficult to determine, but can result in, for 

example, changes in temperature and precipitation patterns that affect both 

water supply and food security, and decrease in biodiversity due to extinction 

of species that cannot adapt fast enough to the change in weather patterns. 

To limit or diminish the effects of global warming, carbon dioxide emissions 

should be reduced by employing alternative energy resources that replace 

fossil fuels such as oil, gas or coal. 

 

The second economical global constraint is the limited amount of accessible 

fossil oil for use as an energy resource. Fossil oil was responsible for 42.6% 

of the world energy consumption of 347 EJ in 2007 (IEA, 2009), indicating its 

key position within international energy budgets. According to the latest 

prognosis of the International Energy Agency, it is expected that, with 

growing world population and increase of welfare, the energy consumption in 

2030 will increase 20 to 40% depending on economic growth and political 
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interventions (IEA, 2009). Oil production is expected, though, to have 

reached its peak before 2030, because the global supply of ‘conventional oil’ 

will be constrained by physical depletion (Sorrell and Speirs, 2009). Large 

resources of conventional oil may still be available, but these are unlikely to 

be accessed quickly and may make little difference to the timing of the global 

oil peak. Thus, based on present oil consumption patterns it can be concluded 

that there will be a shortage in crude oil supply somewhere in the near 

future. 

 

The limited supply of oil will drastically affect two sectors that almost 

completely rely on fossil oil as a primary resource: the transport sector and 

the chemical industry. Transportation is a significant energy consuming 

economic activity, which accounted for 26% of the world energy consumption 

in 2007, equal to 90.4 EJ. This accounts to 61.2% of total world oil 

consumption (IEA, 2009). At 16.8%, the chemical industry uses less oil, but 

it is expected that this percentage will grow (IEA, 2009). Since the demand 

for energy will increase, other resources such as natural gas, coal, nuclear, 

geothermal heat and renewables will become progressively more important 

to the energy supply. Demand for mobility will worldwide increase, leading to 

an expected 2.1% annual growth in the transport sector. Thus, the need for 

alternative resources to sustain the current demand and to support growth 

within the transport sector and chemical industry is evident.  

  

As a result of environmental and economic concerns, legislation has been 

formulated to stimulate the production of renewable fuels from biomass as an 

alternative to oil. An EU directive states a minimum share of renewable fuel 

of 10% in 2020 for all member states (2003). The US stipulate expanded 

biofuel production in the Energy Independence and Security Act (2007), 

which requires national annual biofuel production of 79 billion liters in 2022. 

Brazil has set by far the highest goals concerning biofuel use in the 

transportation industry. Since July 2007, it is mandatory for light vehicles to 

use a blend of 25% anhydrous ethanol with 75% gasoline per volume 

(Stephanes, 2007). 

First generation biofuels 

Amongst the renewable fuels, bio-ethanol and bio-diesel are produced on a 

large scale. Primarily driven by government policies, world ethanol production 
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for transport fuel tripled between 2000 and 2007 from 17 billion to more than 

52 billion liters, while biodiesel expanded eleven-fold from less than 1 billion 

to almost 11 billion liters (Bringezu et al., 2009). These sources together 

fueled 1.5% of the world’s transport in terms of energy units (1.42 EJ)(IEA, 

2009). Ethanol can be blended with gasoline as an oxygenate (MTBE) or a 

fuel extender for use in gasoline vehicles; or it can be used alone in “flexible-

fuel vehicles” that run on any blend of ethanol and gasoline. Bio-ethanol is 

mainly produced from sugar containing biomass, most commonly sugar cane, 

corn, grain or other sugar crops. In large scale fermentation processes, sugar 

is converted by yeasts to ethanol. Bio-diesel consists of fatty acid methyl 

esters FAMEs or fatty acid ethyl esters FAEEs and can be blended with normal 

diesel. Bio-diesel is produced by the trans-esterification of oil or fats from 

biological origin with methanol, yielding FAMEs and glycerol as a by-product. 

Currently, bio diesel is mainly produced from vegetable oil from plant seeds.  

Sustainability 

Sustainability and environmental issues have been raised in response to the 

large scale production and use of conventional biofuels (Williams et al., 

2009). First generation biofuel production from sugar-containing crops or 

seed oils competes for arable land with food production, have low energy 

efficiency, requires high rates of chemical and energy input (e.g. fuel, 

fertilizers and pesticides) and reduces biodiversity (Dias De Oliveira et al., 

2005; Engelhaupt, 2007; Groom et al., 2008). Sugar and vegetable oil can 

be used for fuel production, but are also sources of food for humans and 

livestock. This is an important drawback, given the fact that food scarcity is a 

serious problem in certain geographical areas and that the prices of the 

feedstocks will rise due to increasing demand for biofuel production (OECD-

FAO, 2008). The land required to produce enough starting material to supply 

worldwide biofuel demand would be so large that this will compete locally 

with land required for food production and nature resources (Durrett et al., 

2008). Finally, high energy input in the large scale biomass production and 

production processes of biofuels, for example the ethanol distillation, are 

considered to limit the realized benefit of emissions reductions (Dias De 

Oliveira et al., 2005).  
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1.2 Feedstock choice for sustainable biofuels 

The sustainability of biofuels or chemicals is substantially determined by the 

type of biomass feedstock used (Dias De Oliveira et al., 2005; Tilman et al., 

2009). Consequently, the EU directive added to the biofuel directive that the 

biomass used for biofuel production should be produced sustainably. 

According to the Dutch government, sustainable biomass should fulfill criteria 

that are defined for “greenhouse gas balance; competition with food, local 

energy supply, medicine and building materials; biodiversity; economic 

prosperity; social well-being and environment” (Cramer, 2006).  

 

Tilman et al. (2009) distinguished five biomass feedstocks that comply with 

the sustainability criteria and thus can be used to produce substantial 

quantities of biofuels. The five biomass feedstocks are: 

1. Perennial plants grown on degraded lands abandoned by agriculture 

2. Crop residues 

3. Sustainably harvested wood and forest 

4. Double crops and mixed cropping systems  

5. Municipal and industrial organic waste  

The aforementioned biomass feedstocks have a high energy content and are 

abundant in society (Perlack et al., 2005). In this thesis, we focus on the 

employment of the latter biomass feedstock for chemical and fuel production. 

This type of waste can generally not be used for any food of feed 

applications.  

 

In summary, biomass is also a limited resource; and it is a challenge to 

convert biomass in an efficient manner. Efficiency can be defined in terms of 

carbon or energy recovery of biomass in the final product. The chemical 

industry aims at recovering as much as carbon from biomass to replace oil as 

resource, whereas the transport sector focuses on a high energy recovery. 

Without oil, the chemical industry fully relies on biomass as a carbon 

resource. In contrast, the transportation industry can diversify and use other 

sustainable resources than biomass such as solar or wind energy. A careful 

analysis should reveal for which purpose biomass should be used, either for 

biofuel or chemical production (Brehmer, 2008). This thesis studies biomass 

conversions that recover both carbon and energy content of biomass as much 

as possible to serve both sectors. Since biofuels have a larger and emerging 

market than chemicals, the conversion process in this thesis is focused on the 
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production of biofuels. The low value of biofuel compared to some chemicals 

requires a cheap and simple production process. Eventually, the final fuel 

product can still will be used for chemical application depending on the 

market. 

1.3 Technological challenges to convert waste  

Using biomass waste for fuel production requires a large change in chemical 

structure. Biomass waste varies in composition but is mostly solid, polar and 

often has a high water content. Fuels, conversely, are non-polar, fluid and 

have hydrocarbon chains with 5-20 carbon atoms depending on the type of 

fuel (Petrus and Noordermeer, 2006) (Table 1.1). Whereas fuels contain no 

oxygen in their structure, biomass, such as carbohydrates, contains one 

oxygen atom for each carbon atom. Converting biomass like hemicellulose 

[C5(H2O)4]n into hydrocarbons requires removal of oxygen and addition of 

hydrogen.  

 

Table 1.1 Properties of carbohydrates, and hydrocarbon fuels as gasoline, diesel and 

gasoil. 

  Carbohydrate Gasoline Diesel-Gasoil 

Structure Linear/cyclic branched/aromatic 

cyclic/unsaturated 

linear/ 

saturated 

C (5-6)n 5-10 12-20 

O/C molar ratio  1 0 0 

Phase behaviour Solid liquid liquid 

Polarity  Polar non-polar non-polar 

 

To complicate matters, waste is comprised not only of carbohydrates, but of 

a mixture of solid and dissolved organic polymers including proteins, lipids, 

carbohydrates and organic acids. The high water content makes thermal 

conversion economically unfeasible. Similarly challenging is the biological 

conversion of structurally diverse components into a single precursor for 

biofuel with minimum loss of carbon or energy value of the original waste. 

The conversion requires most likely multiple conversion and/or separation 

steps, but the process should be cheap, energy efficient, robust and require 

low chemical input.  
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Anaerobic mixed culture fermentation can deal with the varied composition of 

wet waste and convert this mixture of components in an energy efficient 

manner into one product. The advantage of mixed culture fermentation is 

that it requires no energy input for sterilization and, owing to its ability to 

deal with a wide variety of biomass, it is robust, stable and inexpensive. The 

most widely applied anaerobic mixed culture fermentation is anaerobic 

digestion. During digestion, organic material is converted to biogas, a 

mixture of methane and carbon dioxide. The biogas produced contains up to 

85-90% of the input energy and is easily separated from the liquid slurry, 

making anaerobic digestion a very energy efficient process (Metcalf & Eddy, 

2003). Current developments on the energy market are a drive to innovate 

anaerobic digestion of waste streams and to invent new fuel or chemical 

production processes to provide an alternative to fossil fuels (Kleerebezem 

and van Loosdrecht, 2007). 

 

In anaerobic digestion, four conversion steps can be distinguished; 

hydrolysis, acidogenesis, acetogenesis and methanogenesis (Figure 1.1). 

After each step, the biomass is converted to a smaller molecule by different 

types of microorganisms. To produce liquid fuels from wet waste, part of 

these anaerobic digestion steps can be used. 

 

 
 Figure 1.1 Process steps during anaerobic conversion of biopolymers to biogas. 
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During hydrolysis, polymers are enzymatically converted into smaller 

polymers by enzymes that are excreted by fermentative bacteria. 

Acidogenesis is the process by which the smaller dissolved polymers are 

assimilated by the fermentative bacteria and converted to monomers like 

alcohols, hydrogen, CO2 and volatile fatty acids such as acetate, propionate, 

n-butyrate and valerate. During acetogenesis, the acidogenesis products are 

converted to acetate, hydrogen and carbon dioxide. The last step of 

digestion, methanogenesis, converts acetate, hydrogen and carbon dioxide to 

biogas. For liquid fuel production, these volatile fatty acids (VFA) are suitable 

molecules to use for further fuel conversion. VFA are key molecules within 

anaerobic digestion: each polymer, a lipid, a protein or a carbohydrate, is 

converted via VFA to biogas. VFA are involved in many anaerobic 

conversions. Concluding from this, VFA would be good building blocks for fuel 

and chemical production, as long as methanogenesis can be prevented.  

1.4 VFA as building block: a sustainable alternative 

1.4.1 Introduction 

Volatile fatty acids (VFA) are introduced to serve as a platform molecule for 

liquid fuel or chemicals production. Using VFA as a building block has three 

major advantages for the production of fuel and chemicals. First, VFA offers 

flexibility of feedstock choice, because a variety of cheap and abundantly 

present biomass waste and residues can be used as a sustainable resource. 

Second, the technology used for VFA production is robust, inexpensive and 

most importantly requires less energy and chemical input. Finally, by 

converting VFA to liquid fuels such as alcohols, more carbon is recovered 

than converting VFA to methane.  

 

Figure 1.2 Overview of liquid biofuel production from biomass waste via VFA as a 

building block and hydrogen from electricity as the electron donor.  

Biomass waste 

Acidification 
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Acidification  

and bioelectrolysis 
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The following sections describe the production process from waste to VFA in 

more detail and the further conversion of VFA to fuels with the use of 

electron donors. The production of required electron donors such as hydrogen 

and electrons from the same waste as VFA will be mentioned. Finally each 

VFA conversion will be compared based on its energy and carbon recovery. 

1.4.2 Production process of VFA 

VFA are produced during acidification of biomass. Acidification comprises the 

first three steps of anaerobic digestion: hydrolysis, acidogenesis and 

acetogenesis as described in Figure 1.1. Acidification products can be 

alcohols, hydrogen, CO2 and VFA such as acetate, propionate, n/i-butyrate 

and n/i-valerate. The exact product formation is related to the type of 

bacterium that dominates during the fermentation. For example, 

acidogenesis is a category of reactions that can be accomplished by a large, 

highly diverse group of fermentative bacteria (Rittmann and McCarty, 2002). 

The type of bacteria that will dominate and determine the final product 

compilation, depends on the initial type of substrate and operational 

parameters such as pH (Dinopoulou et al., 1988). Within acidogenesis, there 

are two main fermentations: propionic acid and acetate-butyrate 

fermentation. Each fermentation is performed by different types of 

microorganisms. In general, it can be said that at low pH (<6) more n-

butyrate is produced, at pH 6<pH<8 more acetate, and at a high pH (>8) 

more propionate. Other parameters that influence the product formation are 

hydraulic retention time (HRT), substrate, temperature, influent 

concentration, organic loading rate and reactor type (Hawkes et al., 2002). 

1.4.3 VFA conversion to fuel or chemicals 

VFA themselves are unsuitable for fuel application due to the small carbon 

chain and the high oxygen/carbon ratio. VFA should be further converted, 

which can be done either thermally or biologically. Examples of thermal 

conversion have been described by Levy (1981) and in a MixAlco process 

(Holtzapple et al., 1999). In this process, biomass is first pretreated with lime 

at 100ºC and then converted by mixed cultures to VFA with mainly acetic 

acid (40% wt of total VFA). VFA, that directly precipitate as calcium 

carboxylates, were separated and further converted to alcohols in a thermal 

hydrogenation process. The separation of short carboxylates and conversion 

into fuel requires large input of chemicals and energy.  
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Biological conversion process with mixed cultures requires normally low 

chemical and energy input. There are two enzymatic reactions that increase 

energy density of VFA without carbon loss:  

• biohydrogenation to an alcohol 

• chain elongation to a longer chain fatty acid 

Hydrogenation or elongation of acetate increases the energy density in the 

final products to ethanol or n-butyrate or even longer to caproate or 

caprylate with 6 and 8 carbon atoms, respectively (Figure 1.3). After these 

conversions, products have a higher energy density than VFA or the starting 

biomass material as sugar, but have still a lower energy density than 

gasoline or diesel. Ethanol and butanol can directly be blend in with gasoline, 

whereas caproic and caprylic acids need to be further processed to diesel or 

kerosene-like components by for example ketonization (Gaertner et al., 

2009). 
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Figure 1.3 Volumetric and mass energy density of biomass, liquid fuels and gas. 

 

Both biological reactions, biohydrogenation and chain elongation are 

catalyzed by enzymes present in anaerobic bacteria (Schlegel, 1986). 

However, until now, no experimental data have been published for mixed-

culture fermentations to produce these desired components for 

biotechnological application. 
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Biohydrogenation 

Biohydrogenation of the carboxylic group of aliphatic and aromatic 

compounds has been described for several pure cultures for the synthesis of 

specialty chemicals, including aromatic as well as aliphatic alcohols. The 

reduction of carboxylic acids has been described for a limited number of 

mesophilic microorganisms Nocardia (Chen and Rosazza, 1994; Li and 

Rosazza, 2000), Clostridium formicoaceticum (Fraisse and Simon, 1988), 

Clostridium thermoacticum (Simon et al., 1987) and fungi (Arfmann and 

Abraham, 1993) as well as for hyperthermophilic archaeus Pyrococcus 

furiosus (Ban et al., 1999). The biological reduction of acids to alcohols, as 

described previously, is catalyzed by at least two enzymes in presence of 

formate, carbon monoxide or hydrogen as electron donors. Reduction of a 

VFA by mixed cultures has been mentioned only once in the literature by 

Smith and McCarty (1989). They observed propionate reduction in a reaction 

coupled to ethanol oxidation. According to the authors, this reaction was 

mediated by ethanol oxidizing organisms during high rates of ethanol 

utilization. No literature was found that described an attempt to produce 

alcohols from VFA by mixed cultures with solely hydrogen as an electron 

donor. 

Chain elongation 

Chain elongation of short chain fatty acids to long fatty acids is called 

reversed β-oxidation. Reversed β-oxidation has been described for the strictly 

anaerobic bacteria Megasphera elsdenii, Eubacterium pyruvatiorans (Wallace 

et al., 2003) and different species of Clostridia. Anaerobic bacteria use chain 

elongation as a mechanism to release reducing equivalents in conjunction 

with growth or as a mechanism to detoxify the medium (Wiesenborn et al., 

1989). Bacteria that use chain elongation as a growth mechanism are 

Clostridium Kluyveri (Barker et al., 1945) or Eubacterium pyruvatiorans 

(Wallace et al., 2003). They convert acetate and ethanol to butyric acid or 

even longer medium chain fatty acids such as caproic acid. It was even 

reported that caproate could be produced by co-cultures of Clostridium 

kluyveri with ruminal cellulolytic bacteria from ethanol and cellulose(Kenealy 

et al., 1995). Levy et al. discussed the possibility to produce caproate and 

caprylate with mixed cultures, but no experiments or data were described 

(Levy et al., 1981).  
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Figure 1.4 Fermentation pathway of Clostridium kluyveri (Seedorf et al., 2008). 

 

Chain elongation is a cyclic pathway of four enzymatic steps using acetyl-

CoA, NADH and FADH2 as energy carriers (Figure 1.4). In one cycle, acetyl-

CoA is coupled to another CoA derivative to form a CoA derivative with an 

additional 2 carbon atoms (Lynen and Ochoa, 1953). The key issue in 

elongation is the activation of the fatty acid to a CoA derivative. The 

activation of the fatty acid is performed by either addition of CoA to a fatty 

acid with ATP or via transfer of the CoA group of one CoA derivative to 

another CoA derivative. Acetate, as key molecule in the fermentation, can be 

activated by the addition of an electron donor. This can occur either with 

hydrogen to convert VFA into ethanol via biohydrogenation or by the adding 

ethanol to acetate itself (this mechanism is seen in the C. kluyveri as shown 

in figure 1.4).  
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1.4.4 Electron donor 

Hydrogenation and chain elongation are both energy efficient mechanisms 

performed by anaerobic organisms to convert VFA into products with a higher 

energy density or into biomass. Electron donors and protons are needed in 

this conversion to increase energy density of the product and to eliminate 

oxygen in the form of water. Possible donors that are commonly used in 

biological reactions are mentioned below (Fraisse and Simon, 1988). All 

potentials are given at standard conditions at pH=7 and are expressed versus 

Normal Hydrogen Electrode (NHE):  

 

1. Hydrogen    E0 =   - 414 mV vs NHE 

2. Formate    E0 =  - 432 mV  

3. Carbon monoxide   E0 =  - 520 mV 

4. Ethanol (to CO2)   E0 = - 315 mV 

5. Electricity and protons   E0 =  variable mV 

 

In this thesis only hydrogen, ethanol and electricity were studied as electron 

donor, as only those can be biologically produced from residual biomass.  

Hydrogen 

Hydrogen can be generated from organic waste by acidification (described in 

1.4.1), and by bioelectrolysis. During acidification of carbohydrate, a 

theoretical maximum of 4 mol hydrogen per mol glucose can be obtained 

with acetate as acidification product (Equation 1.6). 

 OH2C  2CO H 4OH2OHC 2422 2 2
-

6126 +→+ +     (1.6) 

 OHC  2CO H 2OHC 2842 2 
-

6126 +→ +      (1.7) 

In practice, hydrogen yields are lower, because a mixture of acetate 

(Equation 1.6) and n-butyrate (Equation 1.7) are formed as fermentation 

products. The hydrogen yield can be very low when propionate or other 

reduced products such as alcohols and lactic acid are formed during 

acidification. As described in 1.4.1, the type of fermentation reaction, and 

therefore the hydrogen yield, depends on the reactor operation, the 

substrate, and the biodegradability of the substrate. A general prediction of 

hydrogen production from organic waste, though, is unreliable and 

systematic studies of the effect of key process parameters, are needed (Li 

and Fang, 2007). One of the first researchers that yielded a significant 
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amount of hydrogen from an organic fraction of municipal solid waste, 

obtained a hydrogen headspace of 60% (Lay et al., 1999). Afterwards many 

researchers followed and produced hydrogen with many other substrates (Li 

and Fang, 2007). Bioelectrolysis is a recently developed method for directly 

converting biodegradable material into hydrogen using bioelectrochemical 

systems (Rozendal et al., 2008). In a bioelectrochemical system, hydrogen 

can be produced at the cathode by using the energy of acetate oxidation at 

the anode. Although electricity is still required as energy input in the 

endothermic reaction, in this way less energy is needed to generate hydrogen 

than by electrolysis of water.  

Electrons 

Microorganisms can also directly and indirectly use electrons from an 

electrode in a bioelectrochemical system as an electron donor. Using an 

electrode directly as an electron source has been demonstrated for several 

inorganic conversions, including the reduction of nitrate to nitrite (Gregory et 

al., 2004), complete denitrification (Peter Clauwert, 2007), reductive 

dechlorination of TCE with a MV modified electrode (Aulenta et al., 2007), 

chromium(VI) reduction (Tandukar et al., 2009) and proton reduction 

(Rozendal et al., 2008). The indirect use of an electrode as an electron donor 

has also been demonstrated in mixed culture environments where iron 

reduction at the cathode was coupled with microbial oxidation of iron(II) to 

iron(Ye et al.) (Ter Heijne et al., 2006). Theoretically, organic compounds 

such as acetate can also be reduced at the cathode by mixed cultures. Direct 

consumption of electrons and protons at the cathode minimizes the amount 

of hydrogen that is needed for biohydrogenation or chain elongation. The use 

of electrodes in a large biofuel producing bioreactor, though, can cause 

electron transport limitations. The current density of an electrode, and 

therefore the productivity, can be enhanced by using a mediator.  

Competition for electrons 

Methane formation is the last step in anaerobic digestion. Without 

intervention, acetate would be utilized by acetoclastic methanogens and 

hydrogen by hydrogenotrophic methanogens. Parameters that reduce 

hydrogen consumption by methanogenesis have been extensively studied in 

research of dark fermentation by mixed cultures (Li and Fang, 2007). One of 

the most effective ways to inhibit methanogenesis is to apply a low pH (Chen 
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et al., 2002; Kim et al., 2004; Oh et al., 2003). Moreover, pretreatment of 

the inoculum with a simple heat shock removed any hydrogen consuming 

non-spore forming bacteria (Oh et al., 2003). 

1.4.5 Energy and carbon conservation in fermentation product 

Biomass conversion to liquid fuels with hydrogenation or coupling, increases 

the energy density of biomass and recovers the carbon of the biomass. 

Subsequently, the conversion reactions should be energy efficient. Energy 

conversion efficiency can be calculated with the Gibbs free energy change. It 

is the energy of the reactants that is recovered into products without losing 

energy in for example heat. The Gibbs free energy change for the reaction 

can be written as  

QRTGG rr ln0 +∆=∆        (1.8) 

with T as temperature, R as the gas constant, and Q the reaction quotient. 

The quotient is the mathematical product of the concentrations (or partial 

pressures) of the products of a reaction divided by the mathematical product 

of the concentrations (or partial pressures) reactants of a reaction. The Gibbs 

free energy should be lower than zero to have a spontaneous reaction. The 

closer the Gibbs free energy is to zero, the more energy is recovered in 

products and the more efficient the reaction is. For example, 

biohydrogenation of acetate with hydrogen, VFA and protons as the reactants 

and alcohol and water as products (Equation 1.10) yields at standard 

conditions -9.1 kJ. 

2
2

0

][

][
ln

pHVFA

Alcohol
RTGG

t

rr +∆=∆       (1.9)  

In this reaction, 99.3% of the combustible energy in acetate and hydrogen is 

converted into ethanol. The energy efficiencies of acetate to n-butyrate chain 

elongation (Equation 1.11) and acetoclastic methanogenesis (Equation 1.12) 

are a bit lower but still above 96%. 
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Table 1.2 Gibbs free energy of VFA conversions and high heating value of reactants. 

VFA conversions ∆Gr
0  HHV reactants 

 kJ mol-1 kJ mol-1 

 OH + OHC →H 2 + H+OHC 2622
+-

232
    (1.10) -9.1 1329 

 OH  OHC →OHCOHC 2
-
27462

-
232 ++ (1.11) -40.6 2206 

4
-
32

-
232 HC+CHO →OH +OHC            (1.12) -31.5 858 

 

This high energy efficiency becomes clear, when the three reactions are 

compared to sugar fermentation to ethanol (∆Grº= -226,1 kJ/mol). During 

sugar fermentation, 92% of the combustible energy in sugar (-2844 kJ/mol) 

is converted in ethanol. This shows that biohydrogenation and chain 

elongation are very efficient processes, but also that ∆Grº at standard 

conditions is close to the thermodynamical limit of 0 kJ. Thermodynamical 

calculations are needed to reveal under which conditions the reactions will be 

still spontaneous.  

1.5 Scope of the thesis 

1.5.1 Objective 

This thesis is focused on the proof of principles of three biological conversions 

of VFA to precursors of liquid biofuels by mixed culture fermentation. The 

principle of mixed culture fermentation technology is based on the theory 

that application of the right process conditions in the bioreactor will select a 

microbial population that gives the desired product concentration, rate and 

selectivity. Process conditions and parameters that were tested in the 

fermentation experiments were substrate type, electron donor, pH and the 

implementation of temperature pretreatment. Table 1.3 outlines the content 

of each chapter in terms of biological conversion, VFA substrate, electron 

donor type and the research questions to be answered. The final aim was to 

determine the conditions at which VFA can be converted at a high rate to a 

liquid fuel in such a high concentration that the downstream processing can 

be performed efficiently.  
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Table 1.3 Overview of experimental research presented in chapters 2-6. 

Biological 

Conversion 

VFA E-donor   Research questions  

   

2 Acetate, 

propionate 

and n-

butyrate 

H2 -How does pH, substrate and product 

concentration influence the 

thermodynamics of biohydrogenation?  

-Can VFA be biohydrogenated by mixed 

cultures with hydrogen as an electron 

donor? 

3 Acetate H2 -How can methanogenesis be inhibited 

while acetate biohydrogenation is 

enhanced?  

-What is the influence of pH and heat 

shock on acetate biohydrogenation? 

B
io

h
y
d
ro

g
e
n
a
ti
o
n
 

4 Acetate e- -What is the effect of mediators on 

acetate biohydrogenation? 

-Can acetate bioelectrochemically be 

reduced to ethanol? 

5 Acetate H2 

and/or 

ethanol 

-Can acetate be elongated to MCFA?  

-What is the effect of different pH and 

electron donors on product 

concentration, reaction rate and 

efficiency?  

-Which organisms are involved in the 

biological conversions? 

C
h
a
in

 e
lo

n
g
a
ti
o
n
 

6 Acetate H2 and 

ethanol 

-What is the effect of continuous flow 

reactor operation on MCFA production? 

-Can medium chain fatty acids be 

selectively separated from the 

fermentation broth? 
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1.5.2 Outline 

In chapter 2, the aim was to experimentally show that ethanol, propanol 

and butanol could be produced from volatile fatty acids (VFA) with solely 

hydrogen as electron donor. The challenge was to establish the 

environmental conditions and bioreactor setup that allows a sufficiently high 

alcohol concentration at a reasonable rate with good efficiency. In chapter 2, 

methanogenesis appeared to be a side-process that consumed both substrate 

VFA and the electron donor hydrogen, which reduces the efficiency. The aim 

of the experimental research in chapter 3 was to simultaneously avoid 

methanogenesis and enhance acetate reduction by varying pH and applying a 

thermal heat shock on the inoculum as pretreatment. As hydrogen is a 

valuable energy source, chapter 4 was used to demonstrate the feasibility of 

using electricity via an electrode as the electron donor in the 

biohydrogenation of acetate to ethanol. The thesis continues with another 

anaerobic conversion, chain elongation of VFA to medium chain fatty acids. In 

chapter 5, biological conversion of acetate into medium chain fatty acids 

was demonstrated with the different electron donors hydrogen and ethanol. 

Subsequently, medium chain fatty acid fermentation was stimulated in 

presence of both electron donors in a controlled fed-batch reactor at different 

pH. The microbial population within the best performing reactor was 

characterized. Through continuous addition of substrate and nutrients, 

growth limitations could be avoided and the specific production rate of 

caproate and caprylate was calculated. In chapter 6, the performance of a 

medium chain fatty acids fermentation in continuous reactor operation was 

studied for the best functioning pH. Additionally, the products were 

selectively removed from the fermentation effluent to demonstrate that 

medium chain fatty acids can be produced at such high concentration that 

downstream processing is possible.  
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2 Biohydrogenation of VFA with hydrogen  

Proof of principle study 

 

 

 

 

 

Abstract 

In this research we demonstrated a new method to produce alcohols. It was 

experimentally feasible to produce ethanol, propanol and butanol from solely 

volatile fatty acids (VFA) with hydrogen as electron donor. In batch tests, 

VFA such as acetic, propionic and butyric acids were reduced by mixed 

microbial cultures with a headspace of 1.5 bar of hydrogen. Observed alcohol 

concentrations were 3.69 ± 0.25 mM of ethanol, 8.08 ± 0.85 mM of propanol 

and 3.66 ± 0.05 mM of n-butanol. The conversion efficiency based on the 

electron balance was 55.1 ± 5.6% with acetate as substrate, 50.3 ± 4.7% 

with propionate and 46.7 ± 2.2% with n-butyrate. Methane was the most 

predominant by-product in each batch experiment, 33.6 ± 9.6% of VFA and 

hydrogen was converted to methane with acetate as substrate; which was 

27.1 ± 7.1% with propionate and 36.6 ± 2.2% with n-butyrate. This VFA 

reducing renewable fuel production process does not require carbohydrates 

like fermentable sugars, but uses biomass with high water content or low 

sugar content that is unsuitable as feedstock for current fermentation 

processes. This so-called low-grade biomass is abundantly present in many 

agricultural areas and is economically very attractive feedstock for the 

production of biofuels. 

 

 

 

 

 

A modified version of this chapter was published as: 

Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N., 2008. Alcohol production 

through volatile fatty acids reduction with hydrogen as electron donor by mixed 

cultures. Water Research, 42, 4059-4066 
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2.1 Introduction 

Among renewable fuels, alcohols as ethanol are a viable option as it can be 

directly incorporated into the existing transport infrastructure in different 

blends with gasoline. The use of ethanol produced from biomass offers 

significant greenhouse gas benefits (Niven, 2005). At present, the ethanol 

production process depends on the use of raw materials containing high 

levels of fermentable sugars. Crops like sugar cane, beet, wheat and corn are 

typical feedstock materials. The use of these crops has a number of serious 

disadvantages: (i) it creates high feedstock prices (Ueno et al.); crop 

production has a high (fossil) energy consumption lowering system efficiency 

(Ye et al.); and competition with food production for arable soil raising ethical 

issues related to food scarcity (Granda et al., 2007). The use of a different 

feedstock as lignocellulose would offer significant benefits regarding the 

reduction of feedstock price, system energy efficiency and competition for 

arable land (Cardona and Sanchez, 2007). The difficulty of using 

lignocellulosic biomass is that a cost-effective pretreatment step to access 

the biomass still needs to be developed, therefore cellulosic ethanol 

production is still in pilot phase (Angenent, 2007). 

 

Solid organic waste materials are abundantly present in many agricultural 

areas. The use of these materials for fuel production would be economically 

very attractive. The production of fuel from waste materials is considered 

sustainable as the waste is turned from an environmental burden into a 

benefit. Waste materials are, however, often unsuitable for ethanol 

production as their sugar content is low. In this chapter, we propose alcohol 

production from organic waste materials through biological reduction of 

volatile fatty acids derived from fermentative biomass acidification. 

Acidification of waste materials containing lipids, proteins and carbohydrates 

is a cheap reliable step known from anaerobic digestion. This step within 

anaerobic digestion produces an effluent containing volatile fatty acids (VFA) 

such as acetic, propionic and butyric acids together with a gas phase 

containing carbon dioxide and hydrogen (Metcalf & Eddy, 2003). As 

acidification is a well-known process, this study focuses on the biological 

reduction of the carboxylic group of a VFA to an alcohol. The reduction is 

driven by hydrogen as single electron donor. Hydrogen is a co-product of the 

same acidification process of organic material, in which VFA are produced (Li 
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and Fang, 2007). Lay et al. (1999) were one of the first to yield large 

amounts of hydrogen from the organic fraction of municipal solid waste, and 

to obtain a hydrogen headspace of 60%.  

 

For the reduction of 1 mol of VFA, 2 mol of hydrogen are needed. Considering 

the fact that hydrogen is a fuel, it may sound contradictorily to use hydrogen 

for fuel alcohol production. But, ethanol production with hydrogen through 

VFA reduction recovers a larger share of the energy content of the organic 

material, compared to hydrogen production only from the same material; 1 

mol of ethanol has two times higher heating value than 2 mol of hydrogen. 

Another advantage of ethanol over hydrogen, is the high energy density of 

23.4 GJ m-3 of ethanol compared to compressed hydrogen at 200 bar of 1.95 

GJ m-3. Besides, using VFA and hydrogen instead of fermentable sugars for 

fuel production, diversifies the type of raw materials for the alcohol 

production process. 

 

Hydrogen is used as single electron donor for mixed cultures to reduce the 

carboxyl group in VFA, being acetate, propionate and n-butyrate as they are 

the most common products of acidification process (Dinopoulou et al., 1988). 

The biological reduction of the carboxylic group of aliphatic and aromatic 

compounds has been described for several pure cultures for the synthesis of 

specialty chemicals (Arfmann and Abraham, 1993; Ban van den et al., 1999; 

Fraisse and Simon, 1988; Li and Rosazza, 2000; Simon et al., 1987). Our 

study differs considerably from these studies as we use firstly mixed cultures 

instead of a pure culture, and secondly hydrogen as electron donor instead of 

carbon monoxide or formate. Reduction of a VFA by mixed cultures has been 

mentioned earlier by Smith and McCarty (1989); they observed propionate 

reduction in a reaction coupled to ethanol oxidation. According to the authors 

this reaction was mediated by ethanol oxidizing organisms during high rates 

of ethanol utilization. To our knowledge, present study is the first attempt to 

produce alcohols from VFA by mixed cultures with solely hydrogen as 

electron donor. The objective of this paper was to study and examine 

whether it is feasible to convert acetate, propionate and n-butyrate into 

alcohol by mixed cultures with solely hydrogen as electron donor. 

 

The biological reduction of acetate (Equation 2.1), propionate (Equation 2.2) 

and n-butyrate (Equation 2.3) yields little energy at standard conditions 
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(∆Gr
0=-9.1, -9.4 and -5.4 kJ mol-1, respectively at p0= 1 atm. and pH 7). The 

value at standard condition is exothermic, but is close to 0 kJ compared to 

glucose fermentation (-225.5 kJ). Therefore the concentrations and partial 

pressure of reactants VFA, hydrogen and protons should be controlled such 

that a sufficient low actual Gibbs free reaction energy is created. 

 OH  OHC H 2  HOHC 2622
-

232 +→++ +  ∆Gr 
0 = -9.1 kJ mol-1 (2.1) 

 OH  OHC H 2  HOHC 2832
-

253 +→++ +  ∆Gr 
0 = -9.4 kJ mol-1 (2.2) 

 OH  OHC H 2  HOHC 21042
-

274 +→++ +  ∆Gr 
0 = -5.4 kJ mol-1 (2.3) 

Thermodynamic calculations were first used to determine values for hydrogen 

pressure and pH to have a sufficient low actual Gibbs free energy to enable 

VFA reduction. Based on these values the experimental conditions were 

chosen and applied in the batch test so that VFA reduction would be at least 

thermodynamically feasible. Alcohol production capacity of the mixed cultures 

was evaluated on alcohol concentration, rate and reaction efficiency. 

 

2.2 Materials and Methods 

2.2.1 Thermodynamic calculations 

An exothermic reaction has a reaction Gibbs free energy lower than 0 kJ. 

Schink (1997) and Thauer et al. (1977) reported that organisms are taking 

part of the metabolized energy to grow or to maintain cell functions. So the 

minimum energy quantity to have a microbial reaction, should be lower than 

0 kJ. Schink and Thauer et al. discussed a minimal energy quantity in the 

range of -15 to -20 kJ mol-1 reaction. This last value -20 kJ mol-1 was used as 

upper limit for the thermodynamical calculations on VFA reduction. Process 

variables as VFA concentration, hydrogen pressure and pH were calculated at 

which the biological reaction would still be thermodynamically feasible. The 

reaction Gibbs free energy change of the reduction of VFA was defined by 

equation 2.4. The derivation of equation 2.4 is shown in the Supporting 

Information (Steinbusch et al., 2008): 

]H[K

]H[+K
lnRT+

pH]VFA[

]Alcohol[
lnRT+G∆=G∆ +

a

+
a

2
2t

0
r

'
r    (2.4) 
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Standard Gibbs free energy change (∆Gr
0) of components was given by 

Amend and Shock (2001). During the experiment, reactants are converted 

and ∆Gr
0 increases with time until an equilibrium has been reached at posed 

limit of -20 kJ. With Equation 2.4, we can calculate a maximum concentration 

of alcohol that can be produced. Then we assume that reactants are solely 

converted to alcohol and that the pH remains constant. 

2.2.2 Experimental setup 

Inoculum 

Based on preliminary experiments (data not shown) granular sludge from up-

flow anaerobic sludge blanket (UASB) reactors was selected as inoculum. The 

anaerobic granular sludge was obtained from an UASB reactors treating 

wastewater from a distillery (Royal Nedalco, Bergen op Zoom, the 

Netherlands, 2004). Granular sludge was washed with medium solution and 

sieved with a mesh of 500 mm. 

Batch experiments setup 

Serum bottles (120 ml) were filled with 37.5 mL medium having a 

concentration of 50 mM of either acetic, propionic or butyric acid. Medium 

was prepared according to Phillips et al. (1993), which has a low sulfate 

content to prevent sulfate reduction. To each bottle 0.5 g TS sludge was 

added. The pH of the liquid was set on 5 with 2 M of sodium hydroxide or 

hydrochloric acid, since thermodynamical calculations pointed out that a low 

pH value increases the ∆Gr
0. The bottles were sealed with rubber inlets and 

capped with aluminum crimp caps. The headspace was replaced five times 

with pure hydrogen to a final overpressure of 0.5 bar, since thermodynamical 

calculations pointed out that high hydrogen pressure decreases the ∆Gr
0. 

Four controls were included in the setup to identify the effect of hydrogen, 

VFA, sludge or a combination of them on the alcohol production capacity 

(Table 2.1). The bottles were incubated at 30°C in a rotating shaker (170 

rpm). Samples of gas and liquid phase were taken with a syringe to 

determine the composition of both phases. The ratio of gas/liquid volume was 

corrected for sampling. The pH and pressure were measured at each 

sampling. The batches were performed in triplicate with exception of the 

controls of acetate which were done in duplicate. 
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Table 2.1 Composition of solution and gas phase in the experimental setup 

  Nutrients VFA Hydrogen Nitrogen Inoculum 

Experiment x x x  x 

Control 1 x  x  x 

Control 2 x x  x x 

Control 3 x   x x 

Control 4 x x x   

2.2.3 Analysis 

Hydrogen, oxygen and methane were measured with a HP 5890A gas 

chromatograph by injecting 100 mL of gas-sample on a molsieve column  

 (30m x 0.53mm x 0.25mm) with thermal conductivity detection (TCD). The 

oven temperature was 40˚C, the injection gate 110˚C and the TCD 150˚C. 

The carrier gas was argon and had a flow rate of 20 mL min-1. Carbon 

dioxide, methane and oxygen were measured with a Finsons Instruments GC 

8340 gas chromatograph. Gas was splitted (1:1) over a molsieve column 

(30m x 0.53mm x 25 mm) and a porabond Q column (25m x 0.53mm x 10 

mm). The oven temperature was 40˚C, injection gate 110˚C and the TCD 

90˚C. The carrier gas was helium and had a flow rate of 45 mL min-1. 

Alcohols (C2–C5) and VFA (C2–C5) were measured by gas chromatography 

(HP 5890 series II) with ATTM aquawax-DA glass column (30m x 0.32mm x 25 

mm) and a flame ionization detector (FID). Liquid samples were centrifuged 

for 5 min at 10,000 rpm and diluted fivefold with 3% w/w formic acid water 

solution. Prepared sample (1.0 ml) was injected into the injection port at 

280˚C and was splitted into a ratio of 1:50 with a flow of 60 mL min-1. The 

oven temperature was 5 min on 60˚C then to 210˚C at 25˚C min-1 ramp and 

held for 2 min. FID had a temperature of 300˚C. The carrier gas was nitrogen 

and had a flow rate of 2.6 mL min-1. The pH was measured with a pH 

electrode Sentix 21 with pH range (0–14) stored in a 3 M KCl solution. 

Pressure of headspace of the bottles was measured with the GMH 3150, 

digital pressure meter from Greisinger electronic (Germany). 

2.2.4 Electron equivalents balance 

An electron balance gives insight into the direction of the electron flow from 

electron donor towards products. Moreover, the conversion efficiency of 

reduction can be defined with the electron balance. Following McCarty 

(1972), the electron balance was expressed in electron equivalents (in mol e) 
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which is based on concentration, carbon atoms and degree of reduction of 

each individual compound. The degree of reduction indicates the capacity of a 

compound to reduce other compounds. It is expressed in number of electrons 

that are involved in the half reaction of the compound with the compounds in 

the reference oxidation state. These components are HCO3
-, NO3

-, SO4
2-, 

water and protons, and have by definition a degree of reduction zero. 

Knowing the degree of reduction, the electron equivalents of a compound 

were calculated by multiplying the degree of reduction with the concentration 

and number of carbon atoms of the compound. 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

t= 0 t= t

rest
methane
ethanol
H2
Ac

∆er

∆er

∆eb

 
Figure 2.1 Distribution of electron equivalents (mol L-1) among analyzed components 

at t=0 days and t=25 days with acetate and hydrogen as reactants and ethanol, 

methane and rest as products with ∆eb as the electron equivalents available from the 

sludge. 

 

Electron equivalents in the experiment were initially present in the form of 

reactants (carboxylic acid and hydrogen) and biomass. At time greater than 

zero, the total amount of electron equivalents remained equal to the 

beginning situation, only the division among reactants, products and biomass 

may have changed (Figure 2.1). The total amount of electron equivalents 

(etotal) is defined as the summation of the electron equivalents of reactants 

(r) i (eri), of products (p) j (epj) and of the biomass (eb) (Equation 2.5). 
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bi

n

1=j
rjipi e∆β+e∆α=e∆ ∑

)t(e+)t(e+)t(e=e b

n

1=j
j,p

m

1=i
i,rtotal ∑∑      (2.5) 

The electron equivalents of reactants and products were known by analyzing 

VFA, alcohol and biogas concentrations. The absolute amount of electron 

equivalents in the sludge, however, could not be measured. Instead of the 

absolute amount, the change in electron equivalents of the sludge was 

estimated. The change in the electron equivalents (∆e) was defined as the 

value at time t compared to the time t= 0, such as ∆eb in Equation 2.6. 

)0(e-)t(e=e∆ bbb        (2.6) 

Solving 2.5 for eb(t) and substituting this result in Equation 2.6 gives the 

following result in Equation 2.7. 

∑∑∑∑∑∑
n

1=j
j,p

n

1=i
i,r

n

1=j
j,p

n

1=i
i,rtotal

n

1=j
j,p

n

1=i
i,rtotalb e∆-e∆-=)0(e+(0)e+e-)t(e-(t)e-e=e∆   (2.7) 

The change in sludge electron equivalents (∆eb) is defined consequently by 

the change in reactant (∆eri) and product (∆ep,j) electron equivalents. Here 

we assumed that all reactants and products were detected in the gas and 

liquid phase and that the change in total electron equivalents was allotted to 

the change in electron equivalents of the sludge.  

 

Regarding product formation, alcohol was produced either via VFA reduction 

or via sludge degradation. This implies that part of the electron equivalents in 

alcohol could derive from reactants (αi) or from sludge (βi) (Equation 2.8). 

  

with  0≤ αi ≤ 1 Λ 0 ≤ βi ≤ 1          (2.8) 

The fraction of converted VFA and hydrogen (αi) that contributed to alcohol 

product was indirectly calculated using βi, which derived from the controls 

without VFA (control no. 1). Products in these controls were assumed to 

derive only from the sludge as no VFA was added as reactant. The 

contribution of electron equivalents of hydrogen here was disregarded (αH2 = 

0). Parameter βi was calculated for each product i according to Equation 2.9. 

b

pi

pi e∆

e
=β         (2.9) 
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To determine the occurrence of biological reduction of VFA, a conversion 

efficiency and a recovery of VFA and hydrogen into alcohol product were 

defined from Equation 2.8. The recovery is defined as the percentage of 

electron equivalents of the product that derived from VFA and hydrogen 

(Equation 2.10). 

pi

bipi

pi

n

1=j
rji

i e∆

e∆β-e∆
=%100*

e∆

e∆α

=)p(erycovRe

∑
             (2.10) 

The efficiency is defined as the fraction of consumed VFA and hydrogen that 

was converted to product i (Equation 2.11). 

%100*

e∆

e∆β-e
==)p(Efficiency

∑
n

1=j
rj

bipi

i
              (2.11) 

Equation 2.10 and 2.11 were applied to main products formed in the bottles 

as alcohol and methane, noting that for each product i, a specific βi was used 

that was calculated from the controls. 

 

2.3 Results and discussion 

VFA reduction is thermodynamically feasible at elevated hydrogen pressure 

and low pH. According to the thermodynamic limit of Schink (1997), 

biological reduction of acetic, propionic and butyric acids would not be 

feasible at standard conditions with 1 M of all components and pH 7. As 

Figure 2.2 shows, ∆Gr’ of reduction of acetic acid becomes more negative at 

higher hydrogen pressure and lower pH, though ∆Gr’ leveled off when the pH 

becomes 5 or lower. The limit of -20 kJ at a hydrogen partial pressure of 1 

bar is reached when the pH is 4.36. A further decrease of pH results finally in 

a minimal reaction energy of ∆Gr’= -20.7 kJ, which is close to the required 

energy quantity for maintenance and growth. In other words, only low pH 

cannot contribute further to stimulate biological reduction, instead hydrogen 

pressure or the acetic acid/ethanol ratio should be increased. Equation 2.4 

revealed that the hydrogen pressure has a stronger effect on the Gibbs free 

energy change than ethanol/acetate concentration ratio. 
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Figure 2.2 Gibbs free energy change of bio reduction of acetic acid as function of pH 

at different H2 partial pressure of 0.01 bar ( ), 0.1 bar ( ), 1 bar ( ) and 10 

bar ( ) at 1M acetic acid (sum of dissociated and undissociated) and ethanol and 

horizontally the thermodynamic limit of -20 kJ/mol ( ). 
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Figure 2.3 Gibbs free energy of biohydrogenation of acetate ( ), propionate ( ) 

and n-butyrate ( ) as function of pH at 1 bar of hydrogen and 1 M of ethanol and 

(un)dissociated acid, and the thermodynamical limit of -20 kJ/mol ( ). 
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Similar trends were found for reduction of propionic and n-butyric acids as 

the reaction formula is similar to acetic acid reduction (Figure 2.3). 

Consequently, an elevated hydrogen partial pressure of 1.5 bar was used in 

the batch tests. With applied conditions as described in materials and 

methods section and a low pH of 5, a theoretical maximum ethanol 

concentration of 24.3 mM can be reached (Figure 2.4). In case of propionic 

acid reduction the maximum propanol concentration would be 24.7 mM and 

with n-butyric acid reduction it is 9.4 mM n-butanol. 

 

 
Figure 2.4 Contour plot of ∆Gr

’ (kJ mol-1) of the reduction reaction of acetic acid to 

ethanol with hydrogen as electron donor as function of the pH (x-axis) and the molar 

ethanol concentration (y-axis). 

 

Granular sludge with acetate, propionate or n-butyrate in the presence of 

hydrogen results in corresponding alcohol production. Figures 2.5, 2.6 and 

2.7 and Table 2.2 all show a decrease in VFA and hydrogen concentration in 

each batch experiment together with an increase in alcohol concentration. 

The type of alcohol produced corresponds to the chain length of the VFA 

present in the medium (Table 2.2); only ethanol was detected with acetate 

as substrate (Figure 2.6), only propanol with propionate (Figure 2.7) and only 

n-butanol with n-butyrate (Figure 2.8). The highest measured alcohol 

concentration was 8.08 ± 0.85 mM propanol, which is 33% of the theoretical 

maximum. This concentration is high considering that reactants are not only 

used for the production of alcohol, but for by-products as well. By-product 
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formation lowered hydrogen pressure or caused an increase of pH, which 

consequently lowers the theoretical maximum alcohol concentration. Similar 

results were found for the butanol concentration which was 39% of the 

theoretical maximum. The obtained ethanol concentration was 15% of the 

theoretical maximum that could have been produced from present acetate 

and hydrogen. 

 

Table 2.2 Molar concentration changes of products and substrates per liter medium 

with acetic acid as carbon source after 21 days, and with propionic or n-butyric acid 

after 25 days 

System conditions Substrate 

 Acetic acid Propionic acid n-Butyric acid 

Products (mM)    

  Acetate *-4.33 ± 0.58 2.54 ± 0.45 1.59 ± 0.16 

  Propionate - *-11.06 ± 0.43 0.94 ± 0.08 

  i-Butyrate - - 0.09 ± 0.15 

  n-Butyrate - 0.71 ± 0.12 *-4.33 ± 0.58 

  i-Valyrate - 0.34 ± 0.05 - 

  n-Valyrate - 0.61 ± 0.31 - 

  Ethanol 3.69 ± 0.25 - - 

  Propanol - 8.08 ± 0.85 - 

  n-Butanol - - 3.66 ± 0.05 

  Methane 5.65 ± 0.48 11.33 ± 1.15 9.68 ± 0.16 

  Hydrogen *-16.33 ± 0.58 *-64.33 ± 6.43 *-48.00 ± 1.00 

    

C recovery (%) 97.2 ± 1.3 110.4 ± 3.7 106.1 ± 1.0 

E recovery (%) 103.5 ± 1.2 101.3 ± 2.5 100.8 ± 0.7 

Recovery alcohol (%) 83.4 ± 4.6 98.1 ± 3.2 99.0 ± 0.9 

Bioreduction 

efficiency (%)  

55.1 ± 5.6 50.3 ± 4.7% 47.6 ± 2.2 

* negative values indicates an overall consumption of the component during the 

experiment 
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Figure 2.5 Concentrations of 

acetate as substrate (primary y-axis) 

along with product ethanol 

(secondary y-axis) in batch 

experiment with hydrogen as 

electron donor in time. 
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Figure 2.6 Concentrations of 

propionate as substrate (primary y-

axis) along with products propanol 

and acetate (secondary y-axis) with 

hydrogen as electron donor in time. 
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Figure 2.7 Concentration of n-

butyrate as substrate (primary y-

axis) along with products butanol 

and acetate with hydrogen as 

electron donor in time. 

 

In the four controls, no alcohol was produced when hydrogen was left out. In 

another control without VFA, small amounts of propanol and n-butanol were 

detected. Propanol concentration (1.2 ± 0.02 mM) was, however, eight times 

lower than in the presence of 50 mM propionate. n-Butanol concentration 

(0.34 ± 0.02 mM) was 10 times lower than in the presence of 50 mM n-

butyrate. Alcohol production in the control is assumed to attribute fully to the 

release of electron equivalents from the sludge, which was used to calculate 

βi. Parameter βi was 0.334 for ethanol, 0.223 for propanol and 0.084 for n-
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butanol. Parameter βi was determined under experimental conditions of the 

control no.1, though the conditions differ somewhat from the experiment. In 

the absence of VFA (control 1), 10-31 times more electron equivalents were 

measured in the aqueous and gas phase than in the presence of VFA. These 

electron equivalents are estimated to derive from the change in electron 

equivalents of the sludge. Without substrate, the sludge decay is higher as 

the release of electron equivalents was larger. Given this, β derived from the 

control might not be fully representative, but gives an overestimation of the 

influence of sludge decay on alcohol production. The mass balance based on 

electron equivalents was almost closed, while the carbon recovery was in 

some cases much higher (110.4 ± 3.7%). It is known that granular sludge in 

anaerobic wastewater treatment systems can contain high amount of calcium 

carbonate precipitates even up to an ash content of 90% (Van Langerak et 

al., 1998). Release of the carbonates present in sludge causes a positive 

carbon balance and while the electron balance remains unaffected by the 

carbonates.  

 

The highest alcohol production rate during the first 10 days was observed for 

propanol amounting to 0.459 ± 0.026 mmol L-1 d-1 compared to ethanol with 

0.309 ± 0.042 mmol L-1 d-1 and n-butanol with 0.211 ± 0.009 mmol L d-1. 

The production rate was not limited by hydrogen transport from gas to liquid 

phase as the transport rate even by diffusion in a stagnant medium would be 

higher. The highest conversion efficiency of reactants to alcohol was 

observed for propionate and hydrogen. It was found that minimally 50.3 ± 

4.7% of the converted propionate and hydrogen is reduced to propanol based 

on the electron balance (Table 2.2). When taking β=1 the reduction efficiency 

is underestimated, and would be 32.5 ± 5.2% for ethanol, 46.6 ± 5.3% for 

propanol and 42.2 ± 2.7% for n-butanol. Thus even with an overestimation 

of the influence of electron equivalents of sludge, one-third of the electron 

equivalents of the carboxylic acid and hydrogen are converted to alcohol 

product. 

 

Positive value for alcohol recovery indicates reduction of VFA. High recovery 

was observed in alcohol products: at least 83.4 ± 4.6% of the electron 

equivalents in alcohol derived from VFA and hydrogen (Table 2.2). The high 

positive values for recovery of reactants in alcohol give evidence that the 

majority of the alcohols were products of biological reduction. The residual 
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percentage of the total electron equivalents in alcohol products might 

originate from the sludge. When taking β=1, the recovery would be 50.2 ± 

13.6% for ethanol, 91.6 ± 14.5% for propanol and 88.2 ± 10.3% for n-

butanol. 

 

Methane was the most predominant by-product in the presence of acetate, 

propionate and n-butyrate (Table 2.2). The conversion efficiency of reactants 

to methane was 33.6 ± 9.6% with acetate as substrate (Equation 2.11), 

while 27.1 ± 7.1% for propionate and 36.6 ± 2.2% for n-butyrate. 

Contribution of released electron equivalents from the sludge to methane 

formation is calculated to be maximum (β =1) for all controls. Methane 

formation with granular sludge as inoculum is not remarkable as the sludge 

was taken from a UASB reactor treating brewery wastewater that converted 

VFA among others into methane daily. The substrates in present experiment 

are either direct or indirect substrates for methanogenesis: hydrogen for 

hydrogenotrophic and acetate for acetoclastic methanogenesis. In addition to 

that, from a thermodynamical point of view, the most favorable reaction to 

occur spontaneously is hydrogenotrophic methanogenesis (∆Gr
0= -110 kJ 

mol-1) compared to acetic acid reduction (∆Gr
0= -37 kJ mol-1) calculated for 

initial experimental conditions. Propionic and n-butyric acids, however, 

cannot directly be converted to methane, but first need to be oxidized to 

acetic acid. The oxidation of propionic and n-butyric acid is suppressed by the 

high hydrogen partial pressure applied in the experiments consequently. Here 

the actual free energy for propionic acid oxidation (+13.9 kJ mol-1) is 

endothermic and higher than reduction of propionic acid (-37.5 kJ mol-1). 

 

Comparably, oxidation of n-butyric acid (-9.73 kJ mol-1) has a higher actual 

Gibbs free energy than reduction of n-butyric acid (-33.7 kJ mol-1). This could 

explain the high efficiency for propionic and butyric acid reductions compared 

to acetic acid reduction especially in the beginning of the experiment. 

Although we can explain methane formation it was not likely to occur at a low 

pH, for the reason that Kim et al. (2004) found that a pH below 5 sincerely 

inhibit hydrogenotrophic methanogenesis. With the aim of preventing 

methanogenesis, the medium of present study had initially a pH of 5. 

Nevertheless, during the experiment the pH slowly increased to 5.6 with 

acetate as substrate, to 6.1 with propionate and to 5.7 with n-butyrate. The 

pH increase canceled the inhibiting effect on methanogenesis and made 
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simultaneously VFA reduction energetically less favorable. The pH increase 

was not expected regarding the buffer capacity of the remaining VFA in the 

medium. An explanation for the increase would be carbonate release from 

the granular sludge. As described earlier, granular sludge contains metal 

precipitants as metal carbonates that will dissolve at pH shocks. A shock of 

pH 5, as done in the initial phase of the experiment, already strongly affects 

metal content as iron in the anaerobic sludge was concluded by Zandvoort et 

al. (2005). 

 

2.4 General discussion 

Acetate, propionate and n-butyrate were reduced to alcohols by mixed 

anaerobic cultures with solely hydrogen as electron donor. As far as we could 

find in literature this is for the first time demonstrated. The propionate 

reducing capacity of mixed cultures is also reported by Smith and McCarty 

(1989). They observed propanol formation in methanogenic ethanol- and 

propionate-fed CSTR after sudden increase in ethanol concentration in the 

effluent. After perturbation with ethanol, the hydrogen partial pressure 

increased, where after propanol was formed and a shift towards more 

reduced products occurred. The highest observed pH of 2 (7.6�10-3 atm.), 

however, is thermodynamically still too low to initiate propionate reduction 

with hydrogen. Smith and McCarty attributed propanol formation to a coupled 

ethanol oxidation/ propionate reduction, whereas we demonstrated direct 

propionate reduction with hydrogen. 

Maintaining a high hydrogen pressure for reduced product formation seems 

crucial as Smith and McCarty observe that the reduced products were 

oxidized as soon as hydrogen pressure decreased again. In the present study 

partial pressure of hydrogen decreased in the batch tests and might even 

have become limited for VFA reduction. Further research could study the 

influence of maintaining a high hydrogen partial pressure on VFA reduction 

and increase alcohol concentration and production rate. 

 

Reduced organic products as alcohols might substantially contribute to 

sustainable bioenergy production from waste even if hydrogen is used as 

electron donor. The heating value of the fuel is higher with alcohol production 

from waste than with hydrogen production from the same waste. This is 

demonstrated by a calculation based on the research of Fang et al. (2006) 
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who determined the hydrogen production potential of a carbohydrate-rich 

food waste with mixed cultures at pH 5; it was calculated that acidification of 

1 kg of rice food waste yields 3.0 mol n-butyrate, 2.8 mol acetate and 10.4 

mol of hydrogen. When assuming that all produced hydrogen is used to bio 

catalytically reduce acetate and n-butyrate, it was estimated that 2.7 mol 

butanol and 2.5 mol ethanol can be produced from the same kilogram of food 

waste. Compared to the production of only hydrogen, this process would 

recover 4.3 times more energy from the food waste. The energy requirement 

to separate the fuel from fermentation liquid is not included in this 

calculation. 

 

More research is needed to determine whether this new method to produce 

alcohols can substantially contribute to the mixed-culture biotechnology for 

bioenergy purposes. Measured concentrations and production rates in the 

batch test are still very low compared to conventional alcohol production. 

Further research should focus on inhibition of methane formation to increase 

the conversion efficiency, e.g. by pretreatment of the inocolum to decrease 

carbonate release. Further attention should be paid on increasing alcohol 

concentrations and production rate for example by maintaining a high 

hydrogen pressure and by optimizing pH. 

2.5 Conclusions 

• Results of batch experiments showed that acetic, propionic and butyric 

acids could biologically be reduced to alcohols with hydrogen as electron 

donor in the presence of granular sludge. Highest measured alcohol 

concentration was 3.69 ± 0.25 mM ethanol, 8.08 ± 0.85 mM propanol 

and 3.66 ± 0.05 mM n-butanol produced from the reactants with an 

efficiency of 55.1 ± 5.6%, 50.3 ± 4.7% and 47.6 ± 2.2%, respectively. 

As far as reported in literature this is the first research that showed that 

alcohol was produced with solely acetate, propionate or n-butyrate as 

substrate and hydrogen as electron donor using mixed cultures. 

• Methane was the largest by-product. The conversion efficiency of acetate 

and hydrogen to methane was 33.6 ± 9.6%, of propionate and hydrogen 

it was 27.1 ± 7.1% and of n-butyrate and hydrogen it was 36.6 ± 2.2%.  

• Alcohol production from VFA allows the use of a wide diversity of organic 

raw materials, though the alcohol concentrations and reaction rate should 

be increased to become competitive with current alcohol production.
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3 Selective inhibition of methanogenesis during 

acetate biohydrogenation 

 

 

 

 

 

Abstract 

Acetate reduction is an alternative digestion process to convert organic waste 

into ethanol. Using acetate for fuel ethanol production offers the opportunity 

to use organic waste materials instead of sugar-containing feedstock. 

Methanogenesis, however, competes with acetate reduction for acetate and 

hydrogen and lowers the final efficiency. The aim of this research is to 

selectively inhibit methanogenesis and to enhance acetate reduction. Acetate 

reduction was stimulated in batch tests at pH between 4.5 and 8; and at pH 

6 with and without thermal pre-treatment. It was found that methanogenesis 

was selectively inhibited while acetate reduction was enhanced after thermal 

pre-treatment incubated at pH 6. Initially the acetate reduction yielded 7.7 ± 

3.2 mM ethanol with an efficiency of 60.2 ± 8.7%, but later on it was 

consumed to form 7.02 ± 0.85 mM n-butyrate with an efficiency of 76.2 ± 

14.0%. It was the first time demonstrated that n-butyrate can be produced 

by mixed cultures from only acetate and hydrogen. 

 

 

 

 

 

 

 

 

A modified version of this chapter was published as: 

Steinbusch, K.J.J., Arvaniti, E., Hamelers, H.V.M., Buisman, C.J.N., 2009. Selective 

inhibition of methanogenesis to enhance ethanol and n-butyrate production through 

acetate reduction in mixed culture fermentation. Bioresource Technology, 100, 3261-

3267. 
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3.1 Introduction 

Organic waste is abundant in society and represents a large source of 

renewable energy if suitable technology to convert this source into valuable 

energy-carriers would be in place. The use of specially grown crops for 

energy production gives only a limited or no greenhouse gas emissions 

reduction because of the energy use in agriculture and changed land use 

(Khosla et al., 2008; Searchinger et al., 2008). There is also a concern that 

production of biomass for energy will compete with food production 

(Doornbosch and Steenblik, 2007). The use of waste has no such 

disadvantages, it leads to a substantially higher greenhouse gas emission and 

would not compete for land with food production. Organic waste consists of a 

mixture of solid and dissolved organic polymers as lipids, proteins and 

carbohydrates. Because of this versatile composition and the often high water 

content, it is difficult to recover the chemical energy of organic waste 

streams in one single product. An established process that recovers energy 

from those diluted complex organic waste streams is anaerobic digestion. 

Digestion is an efficient mixed culture process in which mixed cultures 

convert the composition of wet waste into biogas. Biogas is easy to separate 

from the liquid slurry. The demand for liquid sustainable biofuels are a drive 

to innovate anaerobic digestion in such a way that other energy carriers than 

methane can be produced from waste streams (Angenent, 2007; 

Kleerebezem and van Loosdrecht, 2007) 

 

Alcohols like ethanol and butanol are an example of alternative energy 

carriers that can be obtained from organic waste materials. Steinbusch 

reports production of these alcohols from acidification products through 

reduction of VFA with hydrogen using mixed cultures (Steinbusch et al., 

2008). This newly exploited ethanol production process consists of two 

biological conversion steps. In the first step, solid organic waste materials are 

acidified to acetate and hydrogen similar to the acidification step in the 

digestion process. In the second step, the produced acetate and hydrogen 

are converted to ethanol Equation 3.1. 

 OH  OHC H 2  HOHC 2622
-

232 +→++ +   ∆Gr
0
 =- 9.1 kJ mol-1  (3.1) 

The standard Gibbs free reaction energy of equation 3.1 is close to zero and 

therefore a high hydrogen pressure is needed to enhance the reaction. 
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Although hydrogen is a fuel by itself, using it to produce ethanol recovers 

twice as much energy from the organic waste; 1 mol of ethanol contains 

twice as much energy as the two moles of hydrogen that are needed to 

reduce acetate. Yet, the separation of ethanol from the fermentation broth is 

more energy consuming than the separation of hydrogen. Hydrogen can be 

generated from organic waste during aforementioned acidification or by 

microbial electrolysis. The yield of hydrogen during acidification depends on 

process parameters and substrate composition, this has been extensively 

reviewed by (Li and Fang, 2007). Microbial electrolysis is a recently 

developed process that converts biodegradable material almost 

stoichiometrically into hydrogen using modified microbial fuel cells (Logan et 

al., 2008). Previous work yielded in 20 days 3.69 ± 0.25 mM ethanol through 

acetate reduction at a pH of 5 with a reaction rate of 0.50 ± 0.03 mM d-1. 

The ethanol conversion efficiency, defined as the share of consumed acetate 

and hydrogen that was converted into ethanol, was 55.1 ± 5.6% (Steinbusch 

et al., 2008). The remainder of the converted substrate ended up mainly in 

methane via methanogenesis, resulting in a methane production efficiency of 

33.6 ± 9.6%. To become competitive with digestion, the acetate reduction 

process should have at least conversion efficiency comparable to digestion. 

For now, methane formation takes away a significant portion of the reactants 

acetate and hydrogen, so methanogenesis should be prevented. The aim of 

this research was therefore to selectively inhibit methanogenesis to increase 

the efficiency of acetate reduction by mixed cultures. How to reduce 

hydrogen consumption by methanogenesis, is extensively studied in research 

of dark fermentation by mixed cultures (Li and Fang, 2007). One of the most 

effective ways to inhibit methanogenesis is to apply a low pH (Chen et al., 

2002; Kim et al., 2004; Oh et al., 2003). Moreover a simple heat shock as 

pre-treatment of the inoculum removed any hydrogen consuming non-spore 

forming bacteria (Oh et al., 2003). 

 

We study the effect of pH and heat shock treatment of the inoculum on the 

inhibition of methanogenesis under acetate reducing conditions. The 

effectiveness of these treatments has not yet been studied before under 

these conditions. Furthermore we try to understand the dynamics of mixed 

culture conversions by using energetic calculations with the experimental 

work.  
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3.2 Materials and method 

3.2.1 Experimental setup 

Granular sludge from up-flow anaerobic sludge blanket reactors (UASB) was 

selected as inoculum. The anaerobic granular sludge was obtained from an 

UASB treating distillery wastewater (Royal Nedalco, Bergen op Zoom, The 

Netherlands, 2004). The inoculum was selected based on previous results 

(unpublished results). Preparation of sludge included washing with phosphate 

buffer (20 mM potassium phosphate) of pH 5, 6 or 7 and sieving the granules 

with a mesh of 500 µm for three times. The granular sludge washed at pH 6 

had after the last washing step a dry matter content of 4.87 ± 0.43%, which 

had an ash content of 10.6 ± 0.3%.  

3.2.2  Batch experiments setup 

pH experiment 

For these experiments, an experimental setup was build similar to that of 

Steinbusch et al. (2008). Different was the size of the serum bottle to 

decrease the pH variation in the bottle. Serum bottles (250 ml) were filled 

with 75 mL medium with 50 mM of acetic acid. Medium with low content 

sulfate was prepared according to Phillips (1993) to prevent sulfate 

reduction. The pH of the medium in the bottles was set on 4.5, 5, 6, 7 and 8 

with 2 M of sodium hydroxide or hydrochloric acid. Controls without acetic 

acid, at pH 5 and 7, were included. To each bottle 5.0 g of wet weight 

granular sludge was added; the washed sludge with pH 5 buffer was added to 

the media with pH 4.5, 5 and 6; the washed sludge disregarding other with 

pH 7 buffer to the media of pH 7 and 8. The bottles were sealed with rubber 

inlets and capped with aluminum crimp caps. The headspace was replaced 

five times with pure hydrogen to a final pressure of 1.5 bar. The bottles were 

incubated under mesophilic conditions at 30°C in a rotating shaker (170 rpm) 

for 30 days. Samples of gas- and liquid-phase were taken with a syringe to 

determine the composition of both phases. The pressure and pH were 

measured at each sampling; and the pH was controlled with sodium 

hydroxide or hydrochloride solution. Both gas and liquid volume were 

corrected for liquid sampling. The batches were performed in triplicates. To 

refine the pH optimum for acetate reduction and inhibition of 
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methanogenesis, the experiment was repeated at pH 5, 5.5 and 6. The 

batches were prepared according to the same method as described above.  

Pre-treatment experiment 

The experimental setup was equal to the pH experiment; only the working 

volume of the serum flasks was 120 ml, which were filled with 35 mL of 

medium. To each bottle 2.5 g of wet weight granular sludge was added with 

a final content of 3.48 g L-1 total solids and 3.11 g L-1 total volatile solids. 

Finally the pH of each bottle was adjusted to 6. The bottles were sealed with 

rubber inlets and capped with aluminum crimp caps. The headspace was 

replaced five times with pure hydrogen to a final pressure of 1.5 bar. One 

triplicate was exposed to thermal pre-treatment and was boiled in water for 

15 min. The bottles were incubated at 30˚C in a rotating shaker (170 rpm) 

for 34 days. Sampling was done according to the same method as the pH 

experiment. 

3.2.3 Analysis 

Gas analyses of hydrogen, oxygen, nitrogen, methane and carbon dioxide; 

and alcohols (C2-C5) and VFA C2-C6) were analyzed with gas chromatography 

(Steinbusch et al., 2008). Pressure of headspace of the bottles was measured 

with the GMH 3150, digital pressure meter from Greisinger electronic 

(Germany).  

3.2.4 Calculations 

Efficiency 

The effectiveness of biological conversions was described by the efficiency, 

which is defined as the share of the consumed reactants acetate and 

hydrogen that is converted into ethanol. The efficiency was calculated with 

the electron balance and was corrected for a minimal share of products 

deriving from the granular sludge (Steinbusch et al., 2008). The correction 

was made to exclude the contribution of granular sludge as reactant. Due to 

bacterial cell decay, sludge could break down in degradation products as 

acetate, hydrogen and/or ethanol. The share of electrons that might derive 

from the sludge via degradation was expressed in parameter β and was 

calculated from the controls without acetate addition at pH 5 and 7. The 

control at pH 5 was used for calculation of β of the batches at pH 4.5, 5 and 
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6; whereas the control at pH 7 was used for β calculation of the batches at 

pH 7 and 8. 

Thermodynamical calculations 

Acetate reduction is hydrogen driven reaction of which the Gibbs free energy 

is close to zero in Equation 3.1. The thermodynamical limit for an exothermic 

reaction is 0 kJ. An organism that catalyzes this reaction uses part of the 

reaction energy for maintenance and growth. So the thermodynamical limit 

for an exothermic reaction catalyzed by organisms is lower than 0 kJ and is 

assumed to be around -15 and -20 kJ (Amend and Shock, 2001; Schink, 

1997). Based on the upper and lower thermodynamical limit, being 0 and -20 

kJ, respectively, a maximum ethanol concentration was calculated 

disregarding other side-reactions consuming acetate and hydrogen 

(Steinbusch et al., 2008). The Gibbs free reaction energy is calculated with 

the Standard Gibbs free energy change (∆Gr
0) of components given by 

Amend and Shock (2001). 

 

3.3 Results 

Ethanol, methane and n-butyrate were the three main products of the mixed 

culture fermentation experiments (Table 3.1). The three products were 

present at each pH also after heat pre-treatment and contributed together for 

at least on average 73.6 ± 13.2% to the total product electron equivalents. 

Because of this large product share of ethanol, methane and n-butyrate, only 

the formation of these three products will be described in the next part. 
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Figure 3.1 Conversion of hydrogen 

(primary y-axis) and acetate 

(secondary y-axis) at pH 6 as 

function of time with the main 

products ethanol, n-butyrate and 

methane (secondary y-axis). 
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Figure 3.1 shows the course of the concentrations of substrate and the three 

main products in the batch at pH 6: ethanol is first produced and later 

consumed again, while methane partial pressure and n-butyrate 

concentration gradually increased in time. This typical product formation in 

time was seen for all the batches, it only differed in concentration and rate. 

Other products as propionate, i- and n-valerate are formed in smaller 

amounts. 
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Figure 3.2 Highest methane 

concentration (■) in log scale and 

rate (∆) expressed in mmol per liquid 

medium as function of applied pHs; 

the heat pre-treated triplicate are 

indicated in bullets (● as 

concentration and ○ as rate). 
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Figure 3.3 Highest ethanol 

concentration (■) and rate (∆) as 

function of applied pHs in batches of 

the pH experiment; the heat pre-

treated triplicate are indicated in 

bullets (● as concentration and ○ as 

rate). 
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Figure 3.4 Highest n-butyrate 

concentration (■) and rate (∆) as 

function of applied pHs in batches of 

the pH experiment; the heat pre-

treated triplicate are indicated in 

bullets (● as concentration and ○ as 

rate). 
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3.3.1 Effect of pH on methanogenesis and acetate reduction  

Figure 3.2 shows in log scale the methane production at each pH from 4.5 to 

8. Methane production differed strongly between the various pHs; methane 

production at pH 7 and 8 was more than 4 times higher than at pHs 4.5, 5 

and 6. The highest methane partial pressure was 1.02 bar measured in the 

batches at pH 7 after 7 days, which was 97.8 ± 0.5% of the total headspace. 

At this pH, all acetate and hydrogen were consumed after 7 days and 

converted mainly to methane, while at other pH’s there was still acetate and 

hydrogen present. After 30 days, 58.0 ± 5.8% of the reactants was left at pH 

6 and 83.3 ± 4.3% at pH 5. The highest methane production rate of 26.6 ± 

1.8 mmol L-1 d-1 was also observed at pH 7, which is 33 times higher 

compared to the rate at pH 6. 

 

The maximum ethanol concentration at each pH increased with increasing pH 

up to 6 (Figure 3.3). At a pH 7 and 8, the maximum ethanol concentration is 

lower compared to pH 6. The highest alcohol concentration is measured at pH 

6 amounting to 7.40 ± 1.36 mM after 13 days of incubation. In Figure 3.3, 

the pattern of the ethanol production rate curve is similar to the curve of the 

maximum ethanol concentrations as function of pH. So just like the 

concentration, the production rate increased with increasing pH to a 

maximum of 1.50 ± 0.25 mmol ethanol L-1 d-1 at pH 6. At pH 7 the ethanol 

production was remarkably lower than at other pHs. 

 

n-Butyrate was also found at every pH from 4.5 to 8 as shown in Figure 3.4. 

The maximum n-butyrate concentration at different pH values has a similar 

pattern as the curve of the maximum ethanol concentration curve in Figure 

3.2. The highest n-butyrate concentration was also obtained at pH 6 

amounting to 10.4 ± 2.19 mM. The electron and carbon balances were closed 

for the batches at all pHs; except for pH 7 and 8 with a higher methane 

production (Table 3.1). At pH 7 and 8, the electron as well as the carbon 

balance was positive. The excess of carbon and electrons equivalents most 

certainly derived from the solid phase due to sludge decay. This seems in 

agreement with Veeken et al. (2000), who concluded that the hydrolysis rate 

is pH dependent and was higher at higher pH for solid organic waste. The 

electron access is taken into account during efficiency calculations. Table 3.2 

shows the efficiencies of the main products ethanol, methane and n-butyrate 

calculated with the highest concentrations in the batch. The highest methane  
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Table 3.2 Efficiencies of ethanol, n-butyrate and methane formation calculated for the 

highest concentration of product in the pH and the thermal pre-treated experiment. 

 Ethanol Butyrate Methane 

pH % % % 

4.5 5.2 ± 1.1 47.8 ± 7.0 23.8 ± 5.1 

5 23.4 ± 9.7 57.7 ± 8.4 4.7 ± 8.1 

6 55.0 ± 12.2 65.3 ± 6.7 5.2 ± 4.6 

7 0.0 ± 0.0 0.0 ± 0.0 97.8 ± 0.5 

8 0.7 ± 0.5 1.5 ± 1.1 53.8 ± 1.0 

5 21.0 ± 2.9 58.5 ± 4.8 22.7 ± 5.4 

5.5 7.3 ± 7.3 87.2 ± 3.5 5.7 ± 0.6 

6 30.9 ± 7.8 61.0 ± 9.6 3.8 ± 3.4 

Therm. 6 58.6 ± 7.4 76.2 ± 14.0 0.0 ± 0.0 

 

production efficiency was calculated for pH 7 and the lowest efficiency was 

calculated for low pH 5 and 6. The highest efficiency for ethanol as well as n-

butyrate was at most at pH 6, while the methane production efficiency was 

one of the lowest values 5.2 ± 4.6%. In the batch at pH 6, 55.0 ± 12.2% of 

consumed acetate and hydrogen was converted into ethanol at 13 days, 

where after ethanol concentration decreased. At that moment n-butyrate 

production increased to a total conversion efficiency of 65.3 ± 6.7% at 30 

days. 

3.3.2 Effect of thermal pre-treatment on methanogenesis and 

acetate reduction 

The influence of heat pre-treatment on the fermentation was determined at 

the best performing pH. The best results were achieved at pH 6 at which the 

ethanol production was the highest in concentration, rate and efficiency, 

while methane formation remained low. Methane formation was almost 

completely inhibited in the heat pre-treated batches. Methanogenesis was 

excluded in two of the heat pre-treated triplicate. The remaining 

methanogenic activity in one of the triplicate can be explained by infection 

with methanogens during sampling. Ethanol was still produced after thermal 

pre-treatment of the batches. The ethanol production was even higher in 

concentration and production rate than in the untreated batch at the pH 6 

(Figure 3.3). The ethanol production efficiency of 58.6 ± 7.4% was higher 

compared to the non-treated batches which had an efficiency of 30.9 ± 
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7.8%. n-Butyrate formation was not inhibited by thermal pre-treatment. The 

efficiency of n-butyrate formation was even higher with 76.2 ± 14.0% due to 

the methane inhibition than the non-treated batch at pH 6 with 61.0 ± 9.6%. 

3.3.3 Thermodynamics and acetate reduction 

The Gibbs free reaction energy of acetate reduction to ethanol at different pH 

rises with increasing ethanol concentration (Figure 3.5). At a certain level of 

ethanol concentration, the Gibbs free reaction energy is higher than -20 kJ 

and becomes biological limited, or is higher than 0 kJ and becomes 

exothermic. For both Gibbs free energy values, the maximum achievable 

ethanol concentration is calculated.  
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Figure 3.5 Actual Gibbs free reaction energy of acetate reduction as function of the 

ethanol concentration (in mol) calculated starting with 50mM acetate and 1.5 bar 

hydrogen at pH 8 ( ),7 ( ), 6( ), 5( ), and 4.5 ( ) and the 

horizontal thermodynamic limit of -20 kJ/mol ( ). 

 

Table 3.3 shows those theoretical maximum ethanol concentrations together 

with the experimental ethanol concentrations at the different pHs. At pH 6 

and 8, the experimental ethanol concentrations exceeded the theoretic 

maximum calculated for the limit of -20 kJ mol-1. At pH 4.5, 5 and 7, the 

actual ethanol concentrations remained below the theoretical maximum 

concentrations calculated with both limits. Figure 3.6 shows the actual Gibbs 

free reaction energy of the three dominant reactions; acetate reaction with 
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Table 3.3 Highest ethanol concentrations that are experimental determined and that 

are theoretical maximally at a reaction Gibbs free energy of 0 and -20kJ. 

 Max. ethanol conc.(mM) 

pH 
Experimental Experimental 

 

Theoretical  

with -0kJ 

Theoretical  

with -20kJ 

4.5 0.41 ± 0.04  49.9 23.2 

5 2.09 ± 0.13 1.50 ± 0.32 49.8 18.7 

5.5  2.95 ± 0.57 48.8 12.2 

6 7.40 ± 1.36 5.20 ± 1.17 48.7 5.8 

Therm 6   7.72 ± 3.17   

7 0.63 ± 0.01  43.5 0.8 

8 1.62 ± 0.16  30.5 0.1 

 

hydrogen to ethanol, acetate reduction with ethanol to n-butyrate and 

acetoclastic methanogenesis. Hydrogenotrophic methanogenesis was not 

considered as only little CO2 is available. The Gibbs free energy values were 

calculated with data of a batch run at pH 6. Methane formation was 

energetically the most favorable reaction during the whole run. Ethanol 

formation was more favorable than n-butyrate production when if only little 

ethanol was present in the batch. Only as soon as ethanol was produced, 

from the second day on, it was thermodynamically more favorable to produce 

n-butyrate as end-product.  
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Figure 3.6 Gibbs free reaction energy per mol electron of the three product formations 

as function of time with experimental data of the batch at pH 6 without thermal pre-

treatment: R1(♦) for ethanol (Equation 1.10) and R2 (■) for n-butyrate (Equation 

1.11) and R3 (x) for methane via acetoclastic methanogenesis (Equation 1.12). 
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3.4 Discussion 

Three dominant biological conversions of hydrogen and acetate were 

observed in all experiments: methanogenesis, ethanol production and n-

butyrate formation. Methanogenesis was selectively inhibited while ethanol 

production was enhanced at a controlled pH of 6 or lower and after a heat 

pre-treatment of 15 minutes before incubation at pH 6. 

 

3.4.1 Effect of pH 

The pH influenced all three anaerobic processes; methanogenesis was 

inhibited by a pH 6 or lower, ethanol production and n-butyrate production 

from ethanol were optimal at pH 6. Observed inhibition of methanogenesis at 

pH 6 corresponds to literature values of Van Haandel and Lettinga (1994). 

According to them, the methanogenesis rate decrease or stops at a pH lower 

than 6.3. Similar findings were found in this study as the methanogenesis 

rate was 33 times smaller at pH 6 compared to that at pH 7. So lowering the 

pH decreased the methane production, however, it also affected eventually 

the ethanol production. Ethanol production increased with increasing pH 

between 4.5 and 6 and decreased again at a pH higher than 6. Considering 

the effect of pH on ethanol production, it was not possible to compare the 

results with previous research on ethanol by acetate reduction by Steinbusch 

et al. (2008), wherein, despite the buffer, the pH had risen from 5 to 5.6 in 

21 days. But it was clearly shown that from the perspective of ethanol yield 

and production rate, acetate reduction at pH 6 was optimal for ethanol 

production, while acetate and hydrogen consumption towards methane was 

prevented.  

 

Methanogenesis could be inhibited by lowering the fermentation pH, though 

the final ethanol production efficiency remained low due to production of n-

butyrate. n-Butyrate production was not reported in the similar set up by 

Steinbusch et al. (2008). They did not detect n-butyrate during 21 days of 

fermentation at uncontrolled pH starting at 5. Whereas in this experiment, n-

butyrate was the most dominant product to be found at pH 4.5, 6 and 7 after 

30 days. Apparently, n-butyrate producing populations were present in this 

research or were earlier active in the experiment. That n-butyrate production 

started 9 days later than the ethanol production, which was formed directly 

after starting-up the experiment in Figure 3.1. The formation of n-butyrate 
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seems though, related to ethanol production. First of all, n-butyrate 

production started when ethanol was already present, and progresses as 

ethanol was consumed over time. Second, there is a relation between ethanol 

and n-butyrate formations, regarding the product concentration and rate. The 

highest n-butyrate and ethanol concentrations and production rates were 

both observed at pH 6. Third, the high deviation in ethanol and n-butyrate 

concentrations can be explained by the fact that ethanol consumption/n-

butyrate production in each batch was initialized at a slightly different time. 

Based on this, we assume that ethanol was consumed to produce n-butyrate. 

The influence of pH on n-butyrate production is hard to predict as the 

production rate is most likely limited by the ethanol production rate. This 

assumption is supported by the fact that the n-butyrate conversion efficiency 

is higher than the ethanol conversion efficiency at pH 4.5, 5 and 6. 

 

3.4.2 Effect of thermal pre-treatment 

The thermal pre-treatment almost completely inhibited methane formation, 

while ethanol formation remained unaffected. As noted by Schlegel, 

methanogens are heat sensitive and are together with many other heat 

sensitive microorganisms killed when they are exposed to temperatures over 

80°C (1986). The exposure to heat did not inhibit ethanol and n-butyrate 

production. On the contrary, the heat pre-treated batches yielded even 1.5 

times higher ethanol concentrations after thermal pre-treatment compared to 

without pre-treatment. It is therefore very likely that both the organisms 

producing ethanol and the organisms producing n-butyrate are heat-resistant 

bacteria that can survive high temperature by for example forming spores. A 

reasonable explanation for the high ethanol concentration in the experiment 

with heat pre-treatment is the difference in hydrogen partial pressure. The 

hydrogen pressure in the heat pre-treated batch was higher (1.18�105 ± 

0.09�105 Pa) than the final pressure in the batch without heat treatment 

(0.99�105 ± 0.03�105 Pa). As hydrogen pressure is a driving force of acetate 

reduction, it means that the higher the pressure is, the higher ethanol 

concentrations can be reached. Not all can be explained by thermodynamics: 

a decrease of pH decreases the Gibbs free reaction energy and therefore 

higher final ethanol concentration would be expected at lower pH. From 

Figure 3.3, however, it is clearly that the ethanol concentration decreased 

with a decreasing pH from 6 to 4.5. Most likely also other phenomena limit 
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the ethanol production at low pH such as toxicity and a different internal pH 

(Schlegel, 1986). 

3.4.3 n-Butyrate production 

The n-butyrate production dominance can be explained by thermodynamics. 

First, ethanol production through acetate reduction becomes 

thermodynamically limited by the ethanol concentration itself. That may have 

happened in the experiments at pH 6 or 8, in which the Gibbs free energy for 

acetate reduction reaction exceeds the lower limit of -20 kJ mol-1 reaction. 

Second, it was thermodynamically more favorable to produce n-butyrate 

from acetate and hydrogen over ethanol. Thermodynamics determine the 

limit of the reactions and within the boundaries of constraints the process can 

be steered by regulating environmental conditions like pH, temperature or 

concentrations. For example, of the three dominant processes, actually 

methane formation was energetically the most favorable process, but could 

be prevented by removing methanogens physically with heat. 

A known n-butyrate producing bacterium using acetate and ethanol was first 

described by Barker et al. (1945) who reported the discovery of the 

anaerobic soil bacterium Clostridium kluyveri. A typical fermentation balance 

of C. kluyveri is described by Gottschalk (1986): 

++4+2++3→3+ HOHHOHC OHCOHC OH6C 22
-

2116
-

274
-

23262
  (3.2) 

Caproate was also detected in this research only in very little amounts to 

0.26 ± 0.11 mM. As a result, the production ratio caproate/n-butyrate was 

with 0.002 far lower than the 0.33 of the typical fermentation balance of 

Gottschalk. So, n-butyrate production in this research seems comparable to 

the fermentation of C. kluyveri only less caproate is produced. However, to 

produce n-butyrate from only acetate and hydrogen has not been 

demonstrated before, by combining the acetate bio-reduction to ethanol and 

n-butyrate fermentation. This opens new perspectives for the conversion of 

organic wastes that not only alcohols can be formed, but pure products as n-

butyrate as well. The product n-butyrate can be used as chemical or food: in 

the food, chemical and pharmaceutical industry as pure acid or in the form of 

esters as a food additive to increase fruit fragrance (Zigova and S ̌turdík, 

2000). According to them, n-butyric acid plays also an important role in the 

plastic materials and textile fibers industries. The production of pure n-

butyrate from organic waste materials would have the biggest advantage that 
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uses, instead of sugars, raw material that is cheap and abundantly present. 

Further research on ethanol should focus on how to prevent losses of 

hydrogen and acetate via n-butyrate production. Ethanol producing 

organisms can be enhanced by applying different process conditions such as 

temperature and SRT, and by finding inhibiting factors for n-butyrate 

production organisms. Laboratory studies can be combined with the use of 

molecular techniques to selective remove other hydrogen or ethanol 

consuming bacteria. Besides, if n-butyrate production increase from acidified 

waste, it can be harvested and purified and used as chemical. Purification of 

organic acids determines their costs. The potential of both ethanol and n-

butyrate production conversion from organic waste can be studied by 

coupling an acidification tank to acetate reduction reactor. 

 

3.5 Conclusions 

Methanogenesis was selectively inhibited at pH 6 or lower and with a thermal 

pre-treatment of the inoculum, while the production of ethanol and of n-

butyrate from waste products acetate and hydrogen was enhanced. After 

heat pre-treating the inoculum, the ethanol concentration was reached of 7.7 

± 3.2 mM at a production rate of 1.22 ± 0.04 mmol L-1 d-1 with an efficiency 

of 58.6 ± 7.4%. Ethanol was converted into n-butyrate, which was finally the 

most dominant reaction during acetate reduction at all pHs. Highest n-

butyrate concentration after pre-treatment was reached at pH 6 and was 

7.02 ± 0.85 mM at a production rate of 0.38 ± 0.02 mmol L-1 d-1 with an 

efficiency of 76.2 ± 14.0%. The dominant effect of n-butyrate over ethanol 

production was supported by thermodynamical data. With this research, a 

potential new method to produce n-butyrate from acidified organic waste 

material was demonstrated. 
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4 Bioelectrochemical acetate reduction  

Proof of principle 

 

 

 

 

 

Abstract 

Biological acetate reduction with hydrogen is a potential method to convert 

wet biomass waste into ethanol. Since the ethanol concentration and reaction 

rates are low, this research studies the feasibility of using an electrode, in 

stead of hydrogen, as an electron donor for biological acetate reduction in 

conjunction of an electron mediator. Initially, the effect of three selected 

mediators on metabolic flows during acetate reduction with hydrogen was 

explored; subsequently, the best performing mediator was used in a 

bioelectrochemical system to stimulate acetate reduction at the cathode with 

mixed cultures at an applied cathode potential of -550 mV. In the batch test, 

methyl viologen (MV) was found to accelerate ethanol production 6-fold and 

increased ethanol concentration 2-fold to 13.5 ± 0.7 mM compared to the 

control. Additionally, MV inhibited n-butyrate and methane formation, 

resulting in high ethanol production efficiency (74.6 ± 6%). In the 

bioelectrochemical system, MV addition to an inoculated cathode led directly 

to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode 

(0.0035 normalized m3 hydrogen m-2 d-1), so it remained unclear whether 

acetate was reduced to ethanol by electrons supplied by the mediator or by 

hydrogen. As MV reacted irreversibly at the cathode, ethanol production 

stopped after 5 days. 

 

 

 

 

 

A modified version of this chapter has been published: 

K. J. J. Steinbusch, H. V. M. Hamelers, J. D. Schaap, C. Kampman and C. J. 

N. Buisman, 2010. Environmental Science & Technology, 44, 513-517. 



Chapter 4 

 60 

4.1 Introduction 

Sustainably produced biofuel is of great demand in our society. The 

sustainability of biofuel production is substantially determined by the 

feedstock choice (Tilman et al., 2009). The chosen raw material has 

implications for food production as well as for the eventual reduction of 

greenhouse gas emissions of the biofuel as compared to traditional fossil fuel. 

Using biomass waste for biofuel production potentially emits less greenhouse 

gases than using cultivated energy crops and does not compete for land with 

food production (Searchinger et al., 2008). Furthermore, exploiting waste as 

biomass feedstock is estimated by the US Department of Energy to have the 

largest potential for biofuel production (Perlack et al., 2005), as it is a cheap 

resource and is abundantly present in all rural areas. Biomass waste can be 

converted by two general conversion types: biological and thermal conversion 

(Cantrell et al., 2008). Thermal conversion is considered to be only applicable 

to dry waste, whereas biological conversion can also be applied to waste with 

a high moisture content. Biological conversion such as anaerobic digestion 

that converts wet biomass waste into biogas is a well established technology, 

whereas conversion of biomass waste to liquid fuels as ethanol is only in the 

exploratory research phase (Kleerebezem and van Loosdrecht, 2007). 

Ethanol has been produced by microbial reduction of acetate as the main 

intermediate of anaerobic digestion with hydrogen as electron donor 

(Steinbusch et al., 2009). Hydrogen can be produced by acidification of wet 

biomass but also by bioelectrolysis in a bioelectrochemical system (Logan, 

2004). A BES oxidizes acetate at the anode and biologically reduces protons 

at a cathode to hydrogen. Hydrogen production in such a system has been 

shown to be energy efficient and highly selective. Here we propose to reduce 

the acetate to ethanol in the cathode compartment of a BES. Our objective is 

to study the feasibility of using the cathode as electron donor for biological 

acetate reduction by mixed cultures. Mediators are used namely to accelerate 

electron transport from the cathode to organisms; moreover, they can 

influence the metabolism of organisms and block parasitic reactions such as 

methanogenesis. Thus, initial work studied the influence of three selected 

mediators on the metabolic flows of mixed cultures during acetate reduction. 

Here, hydrogen was used as electron donor so that the electron transfer 

capacity of each mediator did not influence the outcome of the experiment. 

Subsequently, the best performing mediator was used in the cathode of a 



Bioelectrochemical acetate reduction 

 61 

BES to stimulate acetate reduction at the cathode mixed cultures to prove 

the principle that the cathode is used as electron donor.  

4.2 Materials and Methods 

Inoculum  

Acetate-reducing inoculum was obtained from an upflow anaerobic sludge 

blanket reactor treating distillery wastewater (Royal Nedalco). Before 

inoculation, the sludge was washed three times with tap water and three 

times with medium.  

Mediator Selection  

Mediators for biological acetate reduction were selected on the basis of the 

criteria of Fultz and Durst (1982). They compiled a list of appropriate electron 

mediators that are soluble, completely reversible, stable, and do not interact 

with other molecules. Mediators from the list should be selected that have an 

electrochemical potential (118 mV from the electrochemical potential of 

studied reaction and involved biocomponent. In this way, the ratio between 

reduced and oxidized form of mediator is in the range of 0.01-100 (according 

to the Nernst equation), in which the mediator is assumed to be applied most 

effectively. The actual potential of acetate reduction is -433 mV calculated 

with the Nernst equation using actual conditions of previous experiments: pH 

5.5, acetate 50 mM, 2 mM ethanol at 30°C (Steinbusch et al., 2008). The 

biocomponent that is most likely involved in biological reduction reactions is 

NADH with-320 mV. All potentials are reported against normal hydrogen 

electrode (NHE). Three different mediators that comply with the described 

criteria and cover the potential of acetate reduction and NADH were chosen: 

anthraquinone-2,6-disulfonate (AQDS, E0= -184 mV), neutral red (NR, E0= -

325 mV), and 1,1′-dimethyl-4,4′-bipyridyl dichloride (methyl viologen, MV, 

E0= -440 mV). All mediators were demonstrated to be biologically active in 

strict or facultative anaerobic conversions (Günther and Simon, 1995).  

Mediator Tests 

Serum bottles (120 mL) were filled in triplicate with 0.24 g of VSS sludge and 

50 mL of medium containing 50 mM acetic acid and 1 mM mediator of each 

mediator: NR (Sigma), AQDS (Aldrich), or MV hydrate (Aldrich). To identify 

the mediator effect on ethanol production, a control triplicate without 



Chapter 4 

 62 

mediator was included in the setup. The pH of the final medium was adjusted 

to pH 5.5 with 2M sodium hydroxide. The bottles were sealed with rubber 

stoppers and capped with aluminum crimp caps. The headspace was purged 

five times with pure hydrogen to a pressure of 1.5 bar. The bottles were 

incubated at 30°C in a rotating shaker (170 rpm) for 22 days. At day 0, 1, 2, 

5, 8, 16, and 22, the gas pressure was measured by a pressure meter GMH 

3150 (Greisinger Electronics) and a gas sample (0.1 mL) was taken with a 

gas syringe to analyze the gas composition directly at the GC. Additionally, a 

liquid sample (0.5 mL) was taken anaerobically with a syringe and collected 

in a reaction tube that was centrifuged for 5 min at 10 000 rpm. After 

spinning down the solids, the liquid was diluted with formic acid solution to 

1.5% (v/v) for VFA analysis and with water for alcohol analysis. 

Setup of BES 

The BES was a flat plate reactor of Plexiglas described by Ter Heijne et al. 

(2006). Both cathode and anode were a graphite felt electrode (21.9 × 21.9 

× 0.3 cm, FMI Composites Ltd.) with a projected effective surface area of 

290 cm2. The reference electrode was a Ag/AgCl, 3MKCL electrode (QM 711, 

4×50 mm PVC, Qis). The compartments were separated by a monovalent 

selective anion-exchange membrane (Neosepta ACS; Tokuyama Co.). The 

cathode compartment was connected to a MilliGascounter type MGC-1 

(Ritter) via an injection port and an overflow bottle by Marprene tubings. The 

anode compartment was closed by a waterlock. Including the gas outlet, 

injection parts, and tubes, the cathode volume was 0.870 L and the anode 

volume was 0.802 L. 

Operation of the BES 

The anode compartment was filled with 0.2 M hexacyanoferrate 

[K4(Fe(CN)6)�3H2O] and the cathode compartment with growth medium as 

described in the mediator tests. The pH of the cathode medium was 

regulated at 6.0 with 2 M NaOH and 2 M HCl solutions with a pH controller. 

The BES was operated in batch mode as a three-electrode system with a 

working electrode (cathode), a reference electrode in the cathode 

compartment, and a counter electrode (anode). The BES was operated at 

constant cathode potential of -550 mV vs NHE. The cell voltage, that is the 

working electrode compared to the counter electrode, was adjusted by a DC 

power supply (HP 6632A, Hewlett-Packard Development). Cell voltage, 
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cathode potential (working electrode compared to reference electrode), and 

current were recorded every 30 s on a PC via a data acquisition unit (HP 

3421A, Hewlett-Packard Development). Data were collected using LabVIEW, 

which was programmed to maintain the cathode potential stable at -550 mV 

by correcting cell voltage with the power supply in an internal loop. The BES 

was cleaned with 6% hydrogen peroxide water solution to oxidize biological 

material before operation (Rozendal et al., 2006). Three days after filling 

both compartments the cathode potential was controlled at -550 mV. The 

voltage of the applied potential was adapted from a polarization test of the 

BES. Four days after filling the reactor, inoculum was added. After 1 day 

more MV was added to 1 mM. In the control run, the potential was applied 

directly after filling the reactor and MV was added after 3 days. Two pumps 

(505U Watson Marlow) recycled anode and cathode media through the BES 

at 30 rpm. Sludge concentration in the cathode was 9.1 g VSS L-1 and 4.0 g 

VSS L-1 in the control run. 

MV exposure test 

Batch tests were performed to see if MV reacted with one of the components 

it was subjected to in the BES. These components were medium, light, air, 

N2, H2, hexacyanoferrate (0.1 M), inoculum, tubing, membrane, electrode, 

and Plexiglas. In total, 11 different combinations of agents and a control with 

demineralized water were exposed to MV in triplicate in 120 mL serum 

bottles, as described in Table 4.1. Each bottle contained 80 mL of liquid and 

40 mL of gas and was closed with a rubber stopper. In all batches, MV 

concentration at t=0 d was 1.0 mM and the pH was adjusted to 6. The bottles 

were shaken at 100 rpm at 30 °C. At day 8, 20, and 46, 0.5 mL samples 

were taken to analyze MV concentration. 

Chronoamperometry 

The cathode potential for the BES was selected on the basis of the results of 

chronoamperometry. With chronoamperometry, the electrochemical activity 

of the system with and without microorganisms was measured at different 

cathode potentials with an IviumStat (type 10 V/5A, Ivium Technologies). 

The cathode potential was decreased every 200 s by 50 mV starting from -

200 to -600 mV and increased again to -200 mV again by 50 mV. At each 

potential, the current production was averaged over the last 15 s. 
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Table 4.1 Addition scheme of the exposure test with the agents or combinations of 

agents to which MV was subjected to in the BES. 
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Analyses  

Hydrogen, methane, carbon dioxide, nitrogen, oxygen, C2-C5 alcohols, and 

C2-C5 VFA were measured by gas chromatography (Steinbusch et al., 2008). 

MV+• and MV2+ were measured spectrophotometrically according to AOAC 

method 969.09 (1996). Small adaptation was made: the dilution step with 

sodium dithionite solution was directly performed in a cuvette of 1 mL, so 

that prepared sample could immediately be analyzed, as rapid oxidation of 

the MV occurred. 

Calculations 

Conversion efficiencies were described as the efficiency of electron flow from 

reactants to products. Following McCarty, the electron flow was expressed in 

electron equivalents (in mol e) based on concentrations, carbon atoms, and 

degree of reduction of each individual compound (1972). Conversion 

efficiency in the mediator test is defined as the proportion of consumed 

electron equivalents of acetate and hydrogen that was converted to electron 

equivalents of ethanol or other products as n-butyrate. The efficiency was 

corrected for electron equivalents that entered the liquid phase due to sludge 

decay (Steinbusch et al., 2008). The Coulombic efficiency in the BES is 
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defined as the percentage of supplied electrons that was converted to P 

product in the cathode: 

%100

dtI

FnV)]P[]P([

=e

∫
2t

1t

1t2t

    (4.1) 

with [P]t product concentration at time = t (mol L-1), n number of electrons 

involved in the reduction, F the Faraday constant (C mol-1), and I the current 

(A). The electron equivalents that might derive from the inoculum were 

disregarded in the calculation. 

 

4.3 Results 

MV and NR increased ethanol concentration and production rate.  

Addition of MV and NR in batch experiments resulted in higher ethanol 

concentration and production rate compared to the control (Figure 4.1 and 

4.2). The highest ethanol concentration was obtained with MV was 2.0 times 

higher than in the control and with NR this was 1.2 times higher. Ethanol 

concentrations in the presence of NR decreased again after 8 days due to 

formation of n-butyrate, and experiments with MV showed increased ethanol 

concentrations. The concentration of the major products of this batch 

experiment, especially ethanol, n-butyrate, and methane, were dependent on 

the type of mediator added (Figure 4.3). Methane was only formed in the  
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Figure 4.1 Ethanol production in 

presence of mediators NR, MV, 

AQDS and without mediator 

(control) over the course of 22 

days. 
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Figure 4.2 Ethanol production 

rate in presence of mediators NR, 

MV, AQDS and without mediator 

(control) over the course of 22 

days. 

control and with AQDS. The ethanol production rate in the presence of MV 

and NR was also higher compared to the control; the rate over the first two 

days was 6.0 times higher with MV and 3.2 times higher with NR. Addition of 

mediator AQDS did not affect ethanol production in concentration nor in 

production rate compared to the control. Hydrogen was consumed in all 

batches. The highest hydrogen consumption rate occurred in MV experiments 

over the first two days and was 2.4 times higher than the control. 

High ethanol production efficiency with MV due to inhibition of n-butyrate 

production and methanogenesis 

Table 4.2 shows the conversion efficiency of the three dominant processes in 

the mediator test after 22 days: ethanol and n-butyrate production and 

methanogenesis. Ethanol production efficiency in the presence of MV was the 

highest at 74.6 ± 6.3%, an improvement of 3.4 times over the control. This 
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Figure 4.3 Highest ethanol concentrations during the experiment of ethanol, n-

butyrate and methane with mediators NR, MV, AQDS and without mediator (control). 
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can be explained by the fact that in the presence of MV no significant 

quantity of side products was found. Methanogenesis was inhibited by 

addition of MV as well as NR. In contrast, in control batches and experiments 

with AQDS, high efficiencies of 41.3 ± 8.3% and 47.3 ± 25.4%, respectively, 

were observed for the side products n-butyrate and methane. 

Methanogenesis was inhibited by addition of NR and MV and had a conversion 

efficiency of nearly 0. n-Butyrate production was the most dominant reaction 

in the presence of NR, but was hardly observed in the presence of MV 

experiments. The conversion efficiency of ethanol production in the presence 

of NR was first 82.5 ± 2.6% after 8 days but declined to 38.3 ± 16.7% after 

22 days when n-butyrate was produced with a conversion efficiency of 58.9 ± 

8.2%. n-Butyrate production in the presence of NR was even higher in 

concentration, rate, and efficiency than in the controls.  

 

The conversion efficiencies were corrected for the amount of electrons or 

carbons that were derived from the sludge, since the carbon recovery (107.6-

110.4%) and the electron recovery (98.2-120.6%) were higher than 100% 

except for the batches with MV. This indicates that more carbon and 

electrons were recovered in the gas and liquid phase than was initially 

present in hydrogen and acetate.  

 

Table 4.2 Conversion efficiency (%) of products in batch experiments with or without 

mediator after 22 days 

Products Efficiency per mediator (%) 

 NR MV AQDS Control 

Ethanol 38.3 ± 16.7 74.6 ± 6.3 8.7 ± 7.9 21.8 ± 5.2 

Methane 0.4 ± 0.3 1.5 ± 0.1 21.5 ± 2.8 20.8 ± 1.1 

Butyrate  58.9 ± 8.2 0.5 ± 0.5 25.8 ± 22.6 19.5 ± 7.2 

Ethanol and H2 produced by mixed cultures at the cathode in presence of MV 

In the BES containing inoculum, ethanol and current production started 

directly after MV addition. Initial rapid ethanol production during the first 2 

days was followed by a slower phase to a concentration of 1.82 mM (Figure 

4.4a). A similar trend was observed for the current, which peaked at 1.33 A 

m-2 (Figure 4.5). The decrease in current production may be related to the 

decline in MV concentration from initially 1 mM to <0.05 mM in 5 days 

(Figure 4.5). At the moment MV dropped below the detection limit, current  
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Figure 4.4 (a) Ethanol, propionate and n-butyrate production and (b) biogas 

production in time during acetate consumption at the cathode. 

 

density was nearly zero and ethanol production stagnated, whereas VFA 

production as n-butyrate started at low MV concentration. MV addition 

affected the gas composition, as shown in Figure 4.4b. Hydrogen production 

started also directly after MV addition, peaked at 9.2�103 Pa in 3 days, and 

then gradually decreased until finally a vacuum was created. In the abiotic 

control run, MV addition caused neither ethanol nor hydrogen production.  
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Figure 4.5 Current density (primary y-axis) and MV concentration (secondary y-axis) 

as a function of time both changed as soon as MV was added to the BES. 
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Moreover, the current density in the first 25.3 h after MV addition was 3 

times lower than in the BES with inoculum. It most be noted that in the 

exposure tests MV concentration remained the same before and after 

exposure to the materials and agents of the BES. 

Performance of the BES with cathode potential of - 0.55 V 

In the polarization test, it was found that the current density increased as the 

cathode potential decreased from -450 to -600 mV (Figure 4.6). Increasing 

the potential from -600 to -200 mV, it was found that until -550 mV the 

current density was still substantial. At a cathode potential higher than -500 

mV, the current density decreased fast. Therefore, the cathode potential in 

the BES was set at -550 mV for both reactor runs. The peak current density 

was 1.33 A m-2 directly after MV addition and decreased to 0.27 A m-2 after 

10 days, whereas the cathode voltage was kept stable at -550 mV. The 

current density was high compared to the current density for a biocathode 

producing hydrogen, which has been shown to be less than 0.2 A m-2 at a 

similar over potential (Jeremiasse et al.). The highest production rate of 

ethanol was 1.26 mmol m-3 cathodic compartment d-1 or, expressed per 

projected effective cathode surface area, was 0.377 mmol m-2 d-1. Hydrogen 

was produced in 0.012 normalized (N)m3 m-3 cathodic compartment d-1 or in 

0.0035 Nm3 hydrogen m-2 d-1. 
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Figure 4.6 Polarization curve of the a cathode potential with 1 mM MV with or without 

sludge as function of the current density in the chronoamperiometry test. 
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Ethanol production had a coulombic efficiency of 49%. 

In total, four major products were formed at the cathode: ethanol, hydrogen, 

n-butyrate, and the nonreversible reduced MV2+. All products were detected 

simultaneously with the start of current production directly after MV addition. 

Therefore, it is assumed that the four products are a result of reduction 

reactions, as shown in Equation 4.2-4.5, in which the electrons are supplied 

directly by the cathode or indirectly via MV, hydrogen, or ethanol. 

 

 OH + OHC →e4+5H + OHC 262
_+-

232
    (4.2) 

2
_+ H  →e2+2H       (4.3) 

0__2 Me   MV2MV Ve leirreversibreversible  →+ →+ •++   (4.4)  

 O2H + OHC →e4+5H + OH2C 2
-
274

_+-
232

   (4.5) 

 

On the basis of these reactions, the distribution of electrons among the 

products is calculated and shown in Figure 4.7. Ethanol took the largest 

product share of total amount of electrons, which was 49% on the first day 

after MV addition and decreased to 12% after 5 days of batch operation. 
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Figure 4.7 Distribution of electrons supplied to the cathode among products during 

the first 5 days after MV addition. 
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4.4 Discussion 

MV enhanced ethanol production compared to the control with respect to 

concentration, production rate, and efficiency, while NR enhanced ethanol 

production in rate and efficiency only in the short term. The high efficiency of 

MV could be reached due to the fact that two dominant side processes, 

methanogenesis and n-butyrate production, were inhibited by MV. Inhibition 

of methanogenesis by MV was reported earlier by Wolin et al. (1964). 

Working with Methanobacillus omelianskii, they showed that methane 

formation from ethanol or hydrogen and carbonate was suppressed with 1.6 

µM MV. The inhibiting mechanism of MV on n-butyrate production was also 

claimed for Clostridium acetobutylicum. Peguin et al. (1994) reported that MV 

addition to the fermentation directly stopped growth and shifted product 

formation from n-butyrate to butanol production. Ethanol production 

enhancement of NR was short-term, because the mediator seemed to inhibit 

only methanogenesis and not the ethanol-consuming reaction to n-butyrate. 

So MV seemed to be a suitable mediator to transport electrons for acetate 

reduction at the cathode, as it inhibited side reactions and it enhanced 

ethanol production. 

 

High electron and carbon recovery is explained by the increase of electrons 

and carbons from decomposing sludge. Also the solubilization of carbonate 

salts from the granular sludge may be a plausible explanation for the higher 

carbon recovery than the electron recovery (Van Langerak et al., 1998). This 

research showed that it was feasible to produce ethanol from acetate at the 

cathode of a BES in the presence of mixed cultures and MV. MV initiated 

ethanol production at the inoculated cathode in the BES at an applied 

cathode potential of -550 mV. Ethanol production was only achieved when 

the cathode was inoculated and MV was added. Ethanol production lasted 2 

days and reached a concentration of 1.82 mM. The Coulombic efficiency 

decreased from 49% on the first day to 12% after 5 days of operation. This 

decline can be related to biomass growth or product loss by diffusion. The 

diffusive hydrogen loss over the membrane, for example, plays also a 

dominant role as an electron sink (Rozendal et al., 2006). At current 

densities lower than 0.5 A m-2, electron lost via hydrogen diffusion over the 

membrane increases. Still, the measured Coulombic efficiencies in similar 

BES design are found to be comparable to Rozendal et al. (2008). Leakage of 

hydrogen might have also occurred. In both the experiment and the control, 
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oxygen was present in small amounts in the gas phase. Presumably, the BES 

was not a completely closed system, and oxygen is entering the cell between 

the plates. 

 

Both MV and mixed microbial cultures were not only necessary for the 

production of ethanol but also for the production of hydrogen. As hydrogen 

and ethanol were only produced after the addition of the inoculum, it is 

concluded that hydrogen is biologically produced in the cathode and was 

induced by MV. Biological hydrogen production in a biocathode without 

mediator was first reported by Rozendal et al. (2008). They produced more 

hydrogen, 0.63 Nm3 H2 m
-3 at pH 7, but at a lower cathode potential of -700 

mV and at a current density of 1.1 A m-2. With the presence of a mediator in 

this study, a higher current density of 1.33 A m-2 at a lower potential was 

achieved to produced 0.035 Nm3 H2 m
-2 and other products at pH 6. So, the 

presence of the mediator increases the reaction speed (current) and it avoids 

a long start-up period of 30 days (Jeremiasse et al.). 

 

The exact electron donor of ethanol formation by acetate reduction remains 

unknown, since both reduced MV and hydrogen are present in the cathode 

compartment and both reduction mechanisms are possible. MV can diffuse 

into bacterial cells, where it can substitute natural electron donor NADH in 

enzymatic reactions with, for example, hydrogenases (Günther and Simon, 

1995); hydrogen can serve as electron donor in acetate reduction by mixed 

cultures (Steinbusch et al., 2008). MV was obviously not stable in the 

cathode compartment, considering that after 8 days only 1% was left and the 

dark blue color of reduced MV was not visible anymore. The disappearance of 

MV stagnated ethanol and hydrogen production, allowing methanogenesis 

and n-butyrate production to become dominant. Whereas MV completely 

inhibited methanogenesis and n-butyrate production in the mediator 

experiment, most likely, the low residual MV concentration was not sufficient 

here. Loss of MV2+ cannot be explained by adsorption to any of the materials 

or chemicals in the BES, as was shown in the exposure test. An untested yet 

possible factor is the chemical potential. Previous work indicates that soluble 

MV was irreversibly converted into its most reduced form, MV0 (Bird and 

Kuhn, 1981; Peguin et al., 1994). It is difficult to prevent MV0 formation 

during MV2+ reduction to MV+•, because of the small difference in potential 

between the first and the second reduction reactions. Peguin used MV and a 
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graphite electrode during Acetone, Butanol, and Ethanol fermentation and 

observed complete MV loss after 100 h at a redox potential of -560 mV 

(Peguin et al., 1994). We applied a potential of -550 mV at pH 6, which is 

lower than the redox potential of MV2+ to MV+•. Higher redox potential may 

impede MV losses. Another explanation for the MV loss at the cathode is 

given by Bowden and Hawkridge, who claimed that MV+• strongly adsorbs to 

nickel and gold in pH 6-8 electrolytes (1981). This is also a plausible 

mechanism of MV removal, as three golden wires connected the graphite felt 

inside the BES to the electric wire outside.  

 

About 93% of the electrical current on the first day was recovered in products 

such as ethanol, reduced MV, and hydrogen. The MV concentration decrease 

coincided with electron recovery, which decreased to 42% after 10 days. It 

should be noted that products such as ethanol, hydrogen, or n-butyrate could 

have been lost via transport through or absorption at the anion exchange 

membrane. However, the anode medium was changed the day after MV 

addition, so products that were transported through the membrane to the 

anode compartment were removed and disregarded in the efficiency 

calculations. Biomass growth is also an important electron sink for the 

“nonrecovered” 36.2 mmol of e. This amount of electrons would be involved 

during biomass growth at a biomass concentration of 9 g VSS/L and a net 

growth rate of 0.006 d-1, which is a conceivable rate for anaerobic reactions 

(Rittmann and McCarty, 2002). In the present feasibility study, product 

concentrations and rates are still very low in the BES compared to other 

waste conversion processes, such as anaerobic digestion. To improve the 

ethanol production process in a BES, further research should focus on 

nonmediated reduction of acetate at the cathode itself by growing 

microorganisms at the electrode or on immobilization of methyl viologen on 

the electrode (Aulenta et al., 2007). 
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Abstract 
There is an increasing global demand for sustainably produced biodiesel. 

Expansion of the present biodiesel production, which is mainly based on seed 

oil production, is limited by crop yields and sufficient arable land. Preferably, 

the growing biodiesel demand should be met by sustainable feedstocks that 

are cheap and widely available, and do not interfere with food production or 

nature conservation. This research introduces a new fermentation that 

converts agricultural residues into precursors for biodiesel or chemicals. It 

was found that acetate, a main intermediate of anaerobic conversion, can be 

elongated to medium chain fatty acids with 6 and 8 carbon atoms in a simple 

mixed-culture fermentation. Mixed microbial cultures were able to produce 

8.17 g L-1 caproate and 0.32 g L-1 caprylate under methanogenesis-

suppressing conditions in a stable reactor run. The highest production rate 

was 25.6 mM C caproate per day with a product yield of 0.6 mol C per mol C. 

This elongation process was performed with two electron donors, ethnol and 

hydrogen, demonstrating the flexibility of the process. Microbial 

characterization revealed that the microbial populations were stable and 

dominated by relatives of Clostridium kluyveri. 
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5.1 Introduction 

The present biodiesel production from seed oil crops will not be able to meet 

the increasing global biodiesel demand in the next decennia (Ohlrogge et al., 

2009). Expansion of seed oil production is limited by a shortage of suitable 

arable land, high feedstock prices, as well as the competition with food 

production and nature conservation (Durrett et al., 2008). To overcome the 

growth limitations of the biodiesel supply on the one hand, but lower 

greenhouse gas emissions with little or no competition with food production 

on the other hand, different feedstock sources than seed oils should be 

explored (Tilman et al., 2009). In a recent technical feasibility study of the 

US (Perlack et al., 2005), waste and agricultural residues were addressed as 

high-potential feedstock for sustainable biofuel and chemical production due 

to their large availability (Perlack et al., 2005). The conversion techniques for 

processing waste and agricultural residues into diesel are limited and should 

be further exploited (Fortman et al., 2008).  

  

Diesel fuels are long hydrocarbons (C12-C20) characterized by their cetane 

number (around 45) and a boiling range of 250-360°C (Petrus and 

Noordermeer, 2006). Converting biomass like hemicellulose [C5(H2O)4]n to 

hydrocarbons requires removal of oxygen and addition of hydrogen. Thermic 

processes as gasification and Fischer-Tropsch process have demonstrated to 

convert biomass to diesel fuels. This technology is rather expensive and 

energy inefficient at small scale applications and can not deal with wet 

biomass. Biological conversion can deal with a diversity of wet biomass and 

has already demonstrated to be energy-efficient and cheap on small scale for 

anaerobic digestion. In this study, we investigate the possibility to convert 

biomass biologically to precursors of biodiesel or chemicals.  

 

Biological conversions of biomass to liquid fuel or chemicals by an mixed 

cultures process have been described earlier by Levy et al. (1981) and by 

Holtzapple (1997). They use volatile fatty acids (VFA) as precursor for fuel 

alcohol, which can be blend with gasoline. VFA, carboxylic acids with 2 to 5 

carbon atoms, are key intermediates in anaerobic digestion of organic matter 

and are produced during acidification of biomass. VFA can not be used as fuel 

directly because of the high oxygen-to-carbon ratio. Levy et al.(1981) also 

mentioned another possibility to produce medium-chain fatty acids (MCFA) 
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from the same organic matter. MCFA with 6 or 8 carbon atoms have a higher 

energy density than VFA because of their longer carbon chain and a lower 

oxygen/carbon ratio of 0.33 or even 0.25. Caproic and caprylic acids are 

interesting as they can be further processed to diesel or kerosene-like 

components by ketonization (Gaertner et al., 2009). In this way, residual 

biomass is converted to a long-chain ketone C15H30O, in three steps in which 

the number of carbons in the chain is increased to 15 and oxygen is almost 

completely eliminated. Based on these properties, MCFA would be superior 

intermediates for further processing to diesel (better than VFA). However, 

until now, no experimental data have been published for mixed-culture 

fermentations to produce these desired components for biotechnological 

application.  

 

Some anaerobic bacteria are able to ferment acetate plus ethanol by the fatty 

acid synthase complex, also called reversed β-oxidation to fatty acids with 

longer chains. Butyric and caproic acid are produced from ethanol and 

acetate by pure cultures of, for example, Clostridium Kluyveri (Barker et al., 

1945) or Eubacterium pyruvatiorans (Wallace et al., 2003) or from ethanol 

and cellulose by co-cultures of Clostridium kluyveri with ruminal cellulolytic 

bacteria (Kenealy et al., 1995). In a mixed-culture fermentation, not only 

ethanol can be used as electron donor (Equation 5.1), but also hydrogen 

(Equation 5.2), as hydrogen and acetate together are also converted to 

ethanol (Steinbusch et al., 2008). 

 O4H + OHC  →H 4 + H2+OH3C 2
-

21162
+-

232   ∆G´
r= -177 kJ  (5.1) 

 O2H + OHC→OH2C +OHC 2
-

211662
-

232       ∆G´
r = - 79 kJ (5.2) 

Ethanol and hydrogen are products of anaerobic conversions of biomass. 

Hydrogen is co-produced during acidification of biomass (Li and Fang, 2007), 

or by bio-electrolysis (Logan et al., 2008), whereas ethanol can be generated 

from biomass by either acetate reduction with hydrogen (Steinbusch et al., 

2008) or sugar fermentation of lignocellulose. Ethanol and hydrogen are fuels 

themselves, but using them to produce MCFA increases the energy content; 1 

mol of caproic acid of 3452 kJ contains more energy than 2 moles of ethanol 

of 2638 kJ that is needed to produce caproic acid. An expected advantage of 

MCFA production from biomass is most likely the easy separation. Owing to 

the aliphatic tail, MCFA are not very soluble in water; the solubility of 
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undissociated caproic and caprylic acid in water is 10.6 g L-1 and 0.68 g L-1, 

respectively (Yalkowsky, 2003). Production of MCFA above the solubility level 

allows product removal by simple phase separation. The combination of 

higher energy content and an easy phase separation makes MCFA an 

economically attractive and sustainable precursor for biodiesel.  

 

The objective of the research described in this paper was to demonstrate the 

feasibility of MCFA production by mixed-culture fermentation from acetate, 

the main intermediate in organic waste treatment. The production of MCFA 

such as caproic and caprylic acid was stimulated using mixed cultures in a 

suppressed-methane anaerobic environment. To investigate the feasibility, 

two different experimental setups were chosen. The first experiment was a 

batch test in which MCFA production was stimulated with acetate with or 

without the electron donors ethanol and hydrogen. The second experiment 

was performed with a controlled (fed-)batch reactor in which MCFA 

production was stimulated with both electron donors at pH 5.5 and 7.0. From 

the best MCFA-producing bioreactor, the microbial population was 

characterized using Denaturing Gradient Gel Electrophoresis (DGGE), 

combined with cloning and sequencing. 

 

5.2 Materials and Methods 

Inoculum 

The inoculum was an enrichment derived from granular sludge of a UASB 

reactor treating brewery wastewater.  

Medium 

The medium for the batch experiment contained substrate (see next 

paragraph) with additionally per liter: 3600 mg NH4H2PO4, 330 mg 

MgCl2�6H2O, 200 mg MgSO4�7H2O, 150 mg KCl, 200 mg CaCl2�2H2O, 1 mL of 

vitamin B solution (Phillips et al., 1993), 1 mL of trace element solution 

(Phillips et al., 1993) and 10 g of 2-bromoethanosulfonic acid as inhibiter of 

methanogenesis (Soubes et al., 1994). For the fed-batch run, medium was 

prepared as described above, but the 330 mg MgCl2�6H2O and 200 mg 

MgSO4�7H2O were replaced by 600 mg MgCl2. 



Chain elongation of acetate 

 79 

Batch experiment 

MCFA production from acetate was stimulated with hydrogen, ethanol or with 

a combination of hydrogen and ethanol. The experiment was performed in 

triplicate and one control was left without electron donor. In total 12 serum 

flasks of 125 mL with rubber stoppers and aluminum caps were used. Each 

flask contained 37.5 mL of growth medium plus 50 mM acetate and 6 flasks 

contained also 50 mM ethanol. Before inoculation, the pH was adjusted to pH 

5.5 with 2 M NaOH solution. After inoculation with 4.8 g of wet sludge, the 

flasks were closed and capped. The headspace was flushed 8 times between 

500-1500 mbar with nitrogen or hydrogen to finally 1500 mbar. The bottles 

were incubated at 30°C in a rotating shaker (170 rpm) for 105 days. At day 

0, 2, 7, 14, 21 and 105 the gas pressure was measured by a GMH 3150 

meter (Greisinger Electronics, Germany) and a gas sample (0.1 mL) was 

taken to analyze the gas composition directly at the GC. Meanwhile, a liquid 

sample (0.5 mL) was anaerobically taken and collected in a reaction tube. 

The pH was measured in the liquid sample with a pH microelectrode BlueLine 

16 pH (Schott, Germany) and corrected manually in the bottles with either 

2M HCl or 2M NaOH solution to maintain its value between 5.35 and 5.65. 

Then the liquid sample was centrifuged for 5 min at 10.000 rpm and diluted 

with formic acid solution to 1.5% (v/v) for FA analysis and with water for 

alcohol analysis.  

Setup of controlled (fed-)batch reactors 

The fermentation was performed in controlled (fed-)batch reactors in an 

experimental setup as shown in Figure 5.1. Each reactor was made of glass 

with a total volume of 1 liter. Reactors 1 and 2 were filled with respectively 

471 and 541 mL medium containing 50 mM acetate and 50 mM ethanol. The 

reactors were positioned on a magnetic stirrer for agitation of medium at 200 

rpm. Medium was continuously flushed with hydrogen (200 mL h-1) using a 

mass flow controller (Brooks 5850E, PA, USA) with a small pore size sparger. 

Effluent gas volume was determined using a gas meter type MilliGascounter 

MGC-1 (Ritter, Germany). The redox potential was monitored by a 

radiometer type PHM210 (Meterlab, France) with an Ag/AgCl redox electrode 

type QR480x (QIS, the Netherlands). Reactor temperature was controlled at 

30°C. The pH was measured and controlled at pH 5.5 or 7 by a pH controller 

with 2 M NaOH or HCl solutions. 
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Fig. 5.1 Schematic representation of setup of the bioreactor: 1) Hydrogen gas bottle, 

2) Mass flow controller, 3) Redox potential meter, 4) Redox electrode, 5) Water bath, 

303K, 6) Water mantle, 7) Gas inlet, 8) Magnetic stirrer, 9) Sampling, 10) pH 

electrode, 11) pH controller, 12) Base stock (NaOH, 2M), 13) Acid stock (HCl, 2M), 14) 

Overflow and gas valve, 15) Gas volume meter. 

Operation of the reactors 

Reactors 1 and 2 were operated over a period of 116 days. Liquid and gas 

phases were sampled regularly and analyzed for alcohol, VFA and headspace 

gas composition using similar method as described above; and for DNA 

composition. At each sampling instant the redox potential, the pH and the 

total volume of gas effluent were measured. Whenever the ethanol 

concentration was lower than 100 mg L-1, concentrated ethanol solution (40 g 

L-1) was added to the reactor to obtain a concentration of 2.5-3 g L-1. The 

yield calculations are based on the consumed amount of substrate. This 

amount was corrected for the mol amount of ethanol evaporated from the 

reactor fluid by the continuous gas flow. The calculation is based on the 

vapor pressure of ethanol and the gas flow using the ideal gas law. The vapor 

pressure was calculated by multiplying the mol fraction of ethanol in the 

water times the saturation pressure of ethanol of 1.03�104 Pa at 30°C. 

Chemical analysis 

Hydrogen, oxygen, nitrogen, methane and carbon dioxide were analyzed by 

gas chromatography (Steinbusch et al., 2008). Fatty acids (C2-C8) were 
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analyzed by gas chromatography using a Hewlett Packard 5890 series II 

equipped with a glass column (2m x 6mm x 2mm) packed with 10% Fluorad 

431 on Supelco-port 100-120 mesh. Prepared samples (1.0 µL) were injected 

directly on the column at 200˚C. The carrier gas was nitrogen saturated with 

formic acid at 40 mL min-1. The column temperature was 130°C for 4 min, 

raised linearly at 12°C min-1 ramp to 160ºC for 6.5 min. FA were detected 

with a FID at 280˚C using hydrogen at 30 mL min-1 and air at 400 mL min-1. 

Alcohols (C2-C6) were eluted using the same settings, but at constant column 

temperature of 70ºC.  

Protein concentration determination with modified Hartree-Lowry method was 

used to quantify bacterial cell concentration in a small sample volume 

(Caprette, 1995). One mL of reactor liquid was transferred in a 2 mL vial and 

centrifuged for 5 min at 10.000 rpm. Supernatant was removed and the 

pellet was resuspended with 1 mL of 1 M NaOH. The vial was left for 30 min 

at 50ºC in a water bath to hydrolyze cells. Accordingly, protein concentration 

of the hydrolyzed cells was quantified using modified Hartree-Lowry method. 

It was experimentally found that 1.0 g of protein equals 3.0 g of volatile 

suspended solids (VSS). 

DNA extraction, amplification and DGGE 

The microbial population of reactor R1, with the highest MCFA production, 

was characterized. Bacterial genomic DNA was extracted from weekly taken 

reactor liquid samples using a FastDNA® SPIN Kit for Soil (Qbiogene, 

Carlsbad, CA). DNA concentration and integrity were measured with the 

NanoDrop® spectrophotometer. From extracted DNA, bacterial 16S rRNA 

was amplified with primers U968-f and L1401-r using the GoTaq polymerase 

kit (Promega, Madison, WI) with 5x Green buffer as described by the 

Promega instructions. The fragments were amplified with using the following 

PCR program: 94°C for 2 min, 35 cycles of 94°C for 30 s, 56°C for 40 s, and 

72°C for 60 s, and 72°C for 5 min. All primers used were synthesized 

commercially by Biolegio (Nijmegen, the Netherlands). Bacterial amplicons 

were subsequently separated by DGGE as described by Zoetendal (2001) 

using the D-code system (Bio-Rad, Hercules, CA) with 8% (v/v) 

polyacrylamide gels having a denaturant gradient of 30-60%.  
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Cloning and sequencing 

On basis of the DGGE, two out of thirteen DNA samples of the reactor run R1 

were selected for further analysis. Before cloning, bacterial 16S rRNA was 

amplified from the genomic DNA using primers 27f en 1492r. The fragments 

were amplified with using the following PCR program: 94°C for 2 min, 35 

cycles of 94°C for 30 s, 52°C for 40 s, and 72°C for 90 s, and 72°C for 5 min. 

The amplicons were purified using a DNA Clean & Concentrator™-5 kit (Zymo 

Research, Orange, CA). The purified amplicons were ligated in pGEM-T easy 

vector (Promega, Madison, WI) and cloned into E. coli JM109 by 

transformation. After blue white screening, 96 white colonies of each 

bioreactor sample were transferred on medium containing 200 µl of LB plus 

20 µg ampicillin and grown overnight on a shaker at 37°C. For the lysis, 45 µl 

Tris-EDTA buffer was added to 5 µl of each culture. After centrifuging for 1 

min at 10,000 rpm, the cells were lysed at 95°C in a PCR. The inserts were 

amplified with primers T7 and Sp6 using the following PCR program: 94°C for 

2 min, 35 cycles of 94°C for 30 s, 52°C for 40 s, and 72°C for 90 s, and 72°C 

for 7 min. The PCR products were screened with ARDRA using restriction 

enzymes AluI, CfoI and MspI (Promega, Madison, WI) according to 

Sousa(Sousa et al., 2007) to check the distribution and the number of 

phylotypes present. Amplicons with unique ARDRA patterns were purified 

using DNA Clean & Concentrator™-5 kit again and subjected to DNA 

sequence analysis. The analyzed 16S rRNA sequences were compared with 

sequences in the GenBank database using the NCBI Blast search program 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Closest relatives and cultured 

relatives were retrieved from the database, with the degree of similarity. 

5.3 Results  

5.3.1 Effect of substrate on MCFA production 

In the batch experiment, fatty acid to a chain length of 8 carbon atoms and 

alcohols to a chain length of 6 carbon atoms were produced from acetate 

with hydrogen and/or ethanol. Depending on the substrate combination, 

different products were formed, which all had an even number of carbon 

atoms. Figure 5.2 shows the exact product distribution after 116 days. 

Caproate was formed in all experiments with electron donor and not in the 

control. Caprylic acid, the product with the highest caloric value, was formed 

in two experiments: containing acetate with hydrogen; and acetate with  
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Fig. 5.2 Product distribution in moles carbon of converted carbon during acetate 

fermentation to MCFA and alcohols with different electron donor: hydrogen (ED1) 

and/or ethanol (ED2) — indicates the initially added amount of substrate in carbon. 

 

ethanol and hydrogen. Table 5.1 shows the stoichiometrie for the production 

of 1 mol of caproate in each of the three experiments. From an economical 

point of view, the reaction mixture that uses the highest acetate/ethanol ratio 

is most interesting to study further. Moreover, we selected the substrate 

combination acetate, hydrogen plus ethanol to sufficient electron supply. 

5.3.2 Effect of pH on MCFA production  

In the controlled reactor experiment, the substrate combination of acetate 

with hydrogen and ethanol was fermented at pH 5.5 and 7. Caproate was 

produced at both pH 5.5 and 7, while caprylate was produced surprisingly 

only at pH 7. Table 5.2 shows that the MCFA concentration and production  

 

Table 5.1 Balance of mixed-culture fermentation of acetate and/ or ethanol with or 

without hydrogen normalized to caproate  

 Acetate, H2 Acetate, 

ethanol 

Acetate, 

ethanol, H2 

Hydrogen -19.3 0.0 -5.1 

Acetate -11.8 -10.3 -8.1 

Butyrate 1.8 7.2 3.1 

Caproate 1.0 1.0 1.0 

Caprylate 1.3 0.0 0.8 

Ethanol 0.1 -11.4 -7.5 

Butanol 0.1 0.0 0.3 
a Negative values indicate overall consumption of the component 
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Figure 5.3 Concentration of ethanol and C2-C8 fatty acids in time of the fed-batch 

reactor operation at pH 7, with initially acetate and ethanol as substrate. The red arrow 

indicates the times of ethanol addition. 

 

rate were higher at pH 7 than at pH 5.5. Figure 5.3 shows the substrate and 

product concentrations of the best performing reactor at pH 7. Caproate and 

caprylate were produced in three active periods. In the active periods, 

ethanol was consumed fast and extra ethanol was added 3 times to prevent 

depletion. Production of n-butyrate started after a lag time of 20 days. 

During that period, the redox potential decreased from initially 39 mV to -500 

mV vs. Ag(s)/AgCl. When the n-butyrate concentration reached 450 mg L-1, 

caproate production started and increased exponentially. When caproate 

reached 501 mg L-1, caprylate production started. After 40 days, ethanol was 

completely consumed, and the production of n-butyrate and caproate 

stopped. Ethanol dosage did not lead directly to a continuation of the 

fermentation. It took 7 days before production of caproate and caprylate was 

restored. Remarkable is that the n-butyrate concentration did not increase 

further, but remained 2.0 g L-1. After the second time that ethanol was 

almost consumed completely, ethanol was added immediately, which avoided 

a lag in conversion. A third ethanol addition after 75 days, however, was too 

late as it took 19 days until the microbial activity was recovered. After 115 

days, the reactor run was stopped.  
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Table 5.2 Concentration and production rate of caproic and caprylic acid in controlled 

batch reactors 

Substrate pH Concentration  

(g l-1) 

Rate  

(mmol C l-1 d-1) 

  C6a C8a C6 C8 

acetate, ethanol, H2 5.5 0.12 0 3.9  

acetate, ethanol, H2 7 8.27 0.318 25.6 2.98 

 

Figure 5.4 shows the carbon distribution over the products of the total 

converted substrate. Caproate was the main product of the fermentation. 

After each ethanol addition, this yield increased from 0.36, 0.51, 0.58, to 

finally 0.60 mol C caproate per mol C of the converted substrates; the 

product caprylate yield was 0.02 mol C caproate per mol at the end. Whereas 

the caproate yield increased in time, the n-butyrate yield decreased in time. 

This suggests that n-butyrate was further converted to caproate. At the end 

of the run, 29% of the converted substrate carbon was not recovered as VFA 

or MCFA product, but had been converted to biomass and CO2. A remaining 

9% of the converted carbon could not be assigned to any product. Biomass 

production contributed for 6.5% of the converted carbon. The biomass yield 

was at maximum 0.064 mol C per mol C, based on protein concentration. 

CO2 was measured at a very low percentage around 0.01%. However, this 

value is close to the detection limit. In this way, CO2 would account for 

approximately 14% of the converted carbon. For one mol of caproate, 3.8 

moles of ethanol and 1.09 moles of acetate were consumed, and 0.14 mol n-

butyrate, 0.03 mol caprylate and 0.45 mol biomass were formed. 

 

lost
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nC8
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nC6
62%

nC4
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CO2
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Figure 5.4 Product distribution 

in carbon among n-butyrate 

(nC4), caproate (nC6), caprylate 

(nC8), other VFA (such as 

propionate, i-butyrate and (i/n)-

valerate); biomass and CO2 at 

the end of the fermentation at 

pH 7, with initially acetate and 

ethanol as substrate. 
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5.3.3 Growth and microbial characterization  

Microbial growth was determined by the increase in DNA concentration in the 

reactor. The growth rate was 0.06 d-1 on average and was highest on day 32 

at 0.35 d-1. The growth yield was difficult to determine over the three active 

periods as the active periods were sometimes shorter then the time between 

biomass measurements. Figure 5.5 shows the bacterial population dynamics 

in time by means of a DGGE gel of 16S rRNA. Based on the ARDRA pattern of 

all clones and the sequencing of part of the clones, 15 different phylotypes 

among a total 86 detected phylotypes are shown in Table 5.3. Relatives of 

Clostridium kluyveri were most abundant in both samples: 57% and 40% of 

all clones analyzed showed high homology with bands of no. 1. All sequenced 

clones with their closest relative and the closest cultured relative together 

with the GenBank accession number are listed in Table 5.4. Comparison of 

the DGGE pattern of the reactor samples with patterns of the sequenced 

clones revealed that bacteria closely related to Clostridium kluyveri (98% 

similarity) and Azospira oryzae (99% similarity) were the dominant species. 

Visual comparison of the DGGE profiles of each sample over time revealed 

that after 17 days in all samples bands 

 

Table 5.3 Phylogenetic affiliation and number of bacterial 16S rRNA gene clones 

generated from 2 selected reactor samples. 

Closest bacterial relative 16S rRNA phylotypes  Amount 

 S1 a S2 a 

1  Clostridium kluyveri  26 16 

2  Azospira oryzae 18 14 

3  Uncultured Rhodocyclaceae from MFC-B162-F06  2 

4  Uncultured Rhodocyclaceae   1 

5  Clostridiaceae bacterium FH052 1  

6  Uncultured Clostridiales from MFC-B162-F04  1  

7  Uncultured clone LC30 1  

8  Propionibacterium acidipropionici 1  

9  Propionivibrio limicola  1 

10 Uncultured clone 16saw35-1b12.p1k  1 

11 Uncultured clone ANTLV1_C11   1 

12 Uncultured clone MES_rTCB90  1 

13 Unidentified ZF3   1 

14 Bacterium Te16R  1 

15 Sedimentibacter sp. C7  1 

Total clones 46 40 
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Figure 5.5 DGGE band patterns of bacterial 16S rRNA gene amplicons from 12 reactor 

samples taken at different time (days). M is a Marker. The numbers along the vertical 

boarder indicating DGGE bands correspond to clones listed in Table 5.3. 

 

Clostridium kluyveri and Azospira oryzae proliferated. After these 17 days, 

only small shifts in numbers of bands and their intensity were observed, 

indicating a quite stable microbial population in the bioreactor.  

 

5.4 Discussion 

This research clearly demonstrates that it is technical feasible to produce 

MCFA by mixed-culture fermentation from acetate, the main intermediate in 

organic waste treatment. For the caproate and caprylate production, both 

ethanol and/ or hydrogen can be used as electron donor. Since hydrogen and 

ethanol are produced from different biomass feedstocks, MCFA and ultimately 

diesel is not depending on the availability of solely one type of feedstock. As 

the feedstock price determines a large portion of the costs, flexibility in 

electron donor choice and therefore in biomass feedstock choice can help to 

reduce costs. In the long term experiment, both electron donors were used to 

produce MCFA to avoid growth limitations. It was found that ethanol was 

preferred by the organisms over acetate and hydrogen as substrate and  
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electron donor. In the controlled reactor that was operated with acetate and 

addition of both electron donors (to avoid growth limitation), 3.8 times more 

ethanol was consumed than acetate. This ratio is not the stoichiometric value 

of the MCFA formation, since ethanol is most likely being consumed by 

another metabolic process to CO2. 

 

Very likely, a relative of Clostridium kluyveri is responsible for the MCFA 

production in the experiment as it dominated the microbial population in the 

MCFA producing bioreactor. Besides genetic similarities, also the product 

formation during the fed-batch operation is a strong indication that 

Clostridium kluyveri is involved in the fermentation. The ethanol-acetate 

metabolism of C. kluyveri can be described by three coupled reactions 

(Seedorf et al., 2008). First, ethanol is converted to acetate, the only 

reaction where ATP can be generated. This reaction is endergonic, and is 

coupled by two exergonic reactions. First, n-butyrate is produced from 

acetate and ethanol through the coupling of two acetyl CoA moieties to butyl 

CoA. Second, caproate is formed from n-butyrate and ethanol in a similar 

loop by coupling butyl CoA with acetyl CoA. A similar pattern can be seen in 

Figure 5.1. First n-butyrate was detected, then caproate and finally caprylate. 

Caprylate formation has not been reported before for C. kluyveri. Most likely, 

in our experiment, caprylate was formed in a similar loop with hexyl CoA and 

acetyl CoA.  

 

Besides Clostridium kluyveri species, the microbial population in the 

bioreactor was dominated by a species related to Azospira oryzae. Azospira 

oryzae (also known as Dechlorosoma oryzaes), is a nitrogen-fixing beta-

proteo bacterium that is also able to reduce chlorate or selenate (Hunter, 

2007). Presumably, Azospira in the experiment converted ethanol to CO2 with 

the inhibiter BES as electron acceptor in the absence of other electron 

acceptors. With the tetrahedral structure with three oxygen bonds in the 

sulfonate part, BES is comparable to the chemical structure of electron 

acceptor selenate. Ye et al. showed that long-term exposure to BES not only 

eliminated Archaea but also altered the bacterial community structure by 

acting as a competing electron acceptor for sulfate-reducing bacteria or 

dehalogenating microorganisms (Chiu and Lee, 2001; Ye et al., 1999). 

Leaving out the inhibiter will probably out compete A. oryzae, which as a 

result increases the product yield and the ethanol:acetate consumption ratio 
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as less ethanol is converted to CO2. The shift in microbial population can 

affect MCFA formation, but it is expected that MCFA producing bacteria will 

be active in mixed culture fermentation, since caproate production was also 

observed without inhibiter where methanogenesis was prevented by heat 

pre-treatment (Steinbusch et al., 2009). 

 

MCFA product formation was pH dependent. It was found that MCFA 

production was higher at pH 7 than at pH 5.5 in the controlled reactor. At pH 

5.5 even no caprylate was formed, whereas at the same pH in the batch 

experiment the caprylate concentration was almost equal to that of caproate. 

Since the experimental set-ups were different, the results are difficult to 

compare. An explanation for the different product formation might be the 

difference in ethanol and acetate concentration or hydrogen partial pressure; 

in the controlled batch hydrogen was continuously sparged into the stirred 

reactor, whereas in the batch experiment hydrogen headspace was limited. 

We know that hydrogen limits the metabolic step of Clostridium kluyveri in 

which ATP is formed: the oxidation of ethanol to acetate. It might be the case 

that the partial pressure of hydrogen was too high in the controlled batch 

experiment at pH 5.5, that the first reaction became exergonic, and 

consequently, growth was inhibited.  

 

On the one hand, a high hydrogen partial pressure inhibits growth of 

Clostridium kluyveri, on the other hand a certain hydrogen partial pressure is 

needed to prevent oxidation of MCFA by other organisms in the mixed culture 

fermentation. The high hydrogen pressure or ethanol concentration makes it 

energetically favorable for microorganisms to use VFA as electron acceptors 

(equations 5.1 and 5.2). At these reduced conditions, coupling of fatty acids 

is presumably the best mechanism for an organism to release its electrons 

(Kunau et al., 1995; Seedorf et al., 2008). The redox potential of the 

NADH/NAD in C. kluyveri is around near -300 mV vs. NHE, about the same 

value that is measured during the controlled batch run.  

 

The highest MCFA concentration obtained in the controlled reactor operation 

at pH 7 was 8.2 g caproate L-1. Such a high concentration has never been 

reported before; Kenealy et al. (1995) produced 2.6 g n-butyrate L-1 and 4.6 

g caproate L-1 from 4.4 g L-1 ethanol and 6.0 g L-1 cellulose with a yield of 

0.647 mol C per mol C. Since the production of MCFA in the fed-batch reactor 
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was ethanol-limited, further research may show what concentration can be 

achieved if ethanol is present in abundance. Sufficient ethanol present may 

show the maximum achievable concentration in the bioreactor and the 

potential of this fermentation technology. High caproate concentration is 

important as it makes selective removal of caproate possible. Selective 

removal of MCFA together with recirculation of substrate and n-butyrate into 

the bioreactor could increase the yield because recycled n-butyrate might be 

converted to MCFA again in the bioreactor. This way, it may be possible to 

obtain an efficiency higher than 60%.  

 

Of the converted substrate carbon, 9% was neither recovered as n-butyrate, 

caproate and caprylate, nor as biomass or CO2. Possibly, this can be 

attributed to inaccurate CO2 measurements below the detection limit. 

Another explanation might be that not all grown biomass was taken into 

account by calculating the growth yield. Only suspended biomass was 

measured, while in the reactor also a biofilm on the glass was formed, which 

could not be taken into account in the overall calculations. Improvements in 

experimental setup may resolve these uncertainties. 

 

A major drawback of our MCFA fermentations as shown here is that 

methanogenesis was inhibited by the addition of BES. Further studies should 

emphasize on the prevention of methanogenesis in mixed culture 

fermentations (Steinbusch et al., 2009). This could be achieved by heat pre-

treatment of the inoculum. In contrast to methanogens, the Clostridia in our 

process, will survive heat treatment due to their capacity to form spores. 

From a concentration and rate point of view, this anaerobic conversion shows 

possibilities for application in a biotechnological process to produce biodiesel 

or chemicals. The peak caproate production rate we found was 2.6 g COD g-1 

VSS d-1, which is comparable to that of other applied anaerobic processes 

such as anaerobic digestion. The conversion rate of methanogenesis from 

acetate at a similar temperature of 30ºC is only two times higher: 5.12 g 

COD g-1 VSS d-1 (Rittmann and McCarty, 2002). As our fermentation process 

is not optimized yet, the caproate production rate as shown here may still 

increase more.  



Chapter 5 

 92 

5.5 Conclusions 

In the present study, medium chain fatty acids were produced from acetate 

with hydrogen and/or ethanol as electron donor. At pH 7, mixed microbial 

cultures that were dominated by relatives of Clostridium kluyveri were able to 

produce 8.17 g L-1 caproate and 0.32 g L-1 caprylate under methanogenesis 

suppressed conditions in a stable reactor run. The highest production rate 

was 0.485 g L-1 caproate d-1 with a product yield of 0.6 mol C per mol C. 
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6 Chain elongation of acetate: continuous flow 

with selective product removal 

 

 

 

 

 

Abstract 

By producing medium chain fatty acids (MCFA), acidification products of low 

grade biomass such as acetate can be converted with hydrogen or ethanol to 

precursors of biodiesel or chemicals. To avoid long lag times and substrate 

limitations associated with batch fermentations, this research investigated 

MCFA production in a continuous flow operating reactor followed by MCFA 

separation out of the effluent. Two CSTR were operated for 61 and 67 days 

continuously at an HRT of 22 days with stable growth conditions. During the 

operation period, the specific MCFA production activity increased to 2.9 g 

caproate and 0.09 g caprylate per gram VSS d-1, independent of the different 

start-up methods of the CSTR reactors. Final caproate concentration in the 

fermentation broth was 10.5 g L-1 and caprylate was 0.48 g L-1, which were 

demonstrated to be selectively removable by calcium precipitation and 

solvent extraction with ethyl hexanoate and petroleum ether.  
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6.1 Introduction 

There is a high demand for large quantities of sustainably produced fuel and 

chemicals from biomass resources to decrease the dependency on fossil fuel 

and reduce carbon dioxide emissions. The sustainability of fuel and chemical 

production is substantially determined by the type of biomass feedstock 

chosen (Tilman et al., 2009). Using biomass waste as feedstock for fuel 

production prevents competition with food production while simultaneously 

reducing carbon dioxide emissions most effectively (Searchinger et al., 

2008). Furthermore, employing biomass waste as feedstock is estimated by 

the US Department of Energy to have the largest potential for biofuel 

production (Perlack et al., 2005) as it is a cheap resource and is abundantly 

present in rural areas. Recently, we described a fermentation to convert wet 

biomass waste into medium chain fatty acids like caproic acid (MCFA) 

(Chapter 5). With a higher carbon/oxygen ratio and a longer aliphatic tail, 

MCFA have a higher energy density than the original biomass. Additionally, 

MCFA can easily be processed into diesel-like components by ketonization 

(Gaertner et al., 2009; Renz, 2005). It was found that MCFA could be 

produced from acetate, an abundant intermediate in anaerobic conversions. 

By combining the anaerobic conversion steps hydrolysis and acidification with 

MCFA fermentation, residual biomass can be transformed in a simple non-

sterile process to precursors of biodiesel. The three step process involves, (1) 

hydrolysis and acidification of biomass to volatile fatty acids (VFA) such as 

acetate and hydrogen, (2) conversion of VFA with the electron donors 

hydrogen or ethanol to medium chain fatty acids (Chapter 5) and (3) MCFA 

separation with a potentially more energy efficient removal process than 

distillation.  

 

The proof of principle of MCFA fermentation was demonstrated in a fed-batch 

reactor. Here, mixed microbial cultures were able to produce 8.17 g L-1 

caproate and 0.32 g L-1 caprylate with a yield of 0.63 mol C per mol C under 

methanogenesis suppressed conditions. The volumetric production rate 

peaked at 3.0 g caproate L-1 d-1, but could not be sustained due to rapid 

substrate depletion. However, the combination of a significant lag time of 20 

days and the long recovery time after substrate depletion, makes the fed-

batch system unsuitable for studying the actual potential of the fermentation. 

To further access the potential of MCFA production for biotechnological 
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applications, knowledge is needed about (i) the specific MCFA production 

rate, and (ii) the ease of caproic and caprylic acid removal from the 

fermentation broth. The specific production rate and the biomass growth rate 

can be easily determined in a constantly operating CSTR. Continuous addition 

of fresh medium with nutrients and substrate enables stable growth 

conditions which therefore stimulate natural selection of the MCFA producing 

bacteria.  

 

Employing such a MCFA production process is only of use if the product can 

be separated from the fermentation broth. Separation methods that were 

described for the removal of mixed acid fermentation products with mainly 

acetate are ion exchange, precipitation, extraction, and membrane diffusion 

(Levy et al., 1981). It is expected that the aliphatic tail of MCFA makes 

removal from water easier than, for example, from acetate or ethanol, as 

reflected in the low water solubility of 10.6 g L-1 for caproic acid and 0.68 g L-

1 for caprylic acid as compared to full solubility of acetate and 101 g L-1 of n-

butyrate. Techniques that take advance of the low solubility in water are 

liquid-liquid extraction and precipitation.  

 

The objective of this study is to continuously produce and selectively remove 

caproic and caprylic acid from acetate and ethanol by mixed culture 

fermentation in a CSTR. The specific sludge activity was determined in two 

reactors that were started up in a different manner: one operated 

continuously directly from the beginning, whereas the other operated first in 

batch mode, and was then switched to continuous mode. From the effluent of 

one of the reactors, two different separation techniques were experimentally 

tested to selectively remove caproic and caprylic acid. The two fermentations 

were compared based on the MCFA concentration, the production rate per 

volume and per gram cells and the yield.  
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6.2 Materials and methods 

6.2.1 Biological MCFA production 

Inoculum 

Enrichment out of a caproate producing bioreactor, that originally came from 

a UASB reactor treating brewery wastewater, was used to inoculate. Reactor 

1 was filled under anaerobic conditions with 0.33 g VSS L-1 and reactor 2 

started with a biomass concentration of 0.30 g VSS L-1. 

Medium 

1 liter of medium was prepared by adding 3600 mg NH4H2PO4, 330 mg 

MgCl2�6H2O, 200 mg MgSO4�7H2O, 150 mg KCl, 200 mg CaCl2�2H2O, 1 mL of 

trace element solution (Phillips et al., 1993) and 10 g of sodium 2-

bromoethanosulfonate as a methanogenesis inhibiter to just under one liter 

of demineralized water. The medium was boiled for 5 minutes and cooled 

down under a deoxygenated nitrogen atmosphere. Subsequently, 50 mM of 

acetate, 50 mM of ethanol and 1 mL of vitamin B solution (Phillips et al., 

1993) were added to the medium, which was then filled up to 1 liter with 

demineralized water. In the continuous mode, medium with a higher 

substrate concentration was added to both reactors containing 350 mM 

ethanol and 150 mM acetate in a ratio of 2.3: 1, according to the 

consumption ratio observed in chapter 5. Reactor 2 already contained 

medium that was used in a prior continuous operation, so the starting 

substrate concentrations were different from reactor 1, 90 mM ethanol and 

36 mM acetate. 

Experimental setup of reactors 

The fermentation was performed in two CSTRs made of glass with a total 

volume of 1 liter and a liquid volume of 471 and 457 mL for reactor 1 and 2, 

respectively. The reactors were positioned on a magnetic stirrer for agitation 

of the medium. The medium was continuously flushed with hydrogen (200 

mL h-1) using a mass flow controller (Brooks 5850E, PA, USA) with a small 

pore size sparger. The effluent gas volume was determined using a gas meter 

type MilliGascounter MGC-1 (Ritter, Germany). In continuous mode, medium 

addition was computer controlled to allow a stable low medium feed with the 
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Watson Marlow 101U/R pumps (Cornwall, England). The weight of each 

medium vessel was logged by connecting the balance to computer program 

control EG. Every 4 hours the pumps were switched on until the medium 

vessels were 4 grams lighter. Redox potential was monitored by a radiometer 

type PHM210 (Meterlab, France) with an Ag/AgCl redox electrode type 

QR480x (QIS, the Netherlands). The reactor temperature was controlled at 

30°C by a recirculating water jacket. The pH was controlled at pH 7 by a pH 

controller with 2 M NaOH or HCl solutions. Liquid and gas phases were 

sampled and analyzed for alcohol, VFA, and protein concentrations as well as 

headspace gas composition. Also, at each sample point, the redox potential, 

pH and the total volume of effluent gas were measured. 

Operation of the reactors 

Reactor 1 was first flushed with hydrogen for several hours, then filled with 

the anaerobic medium and finally inoculated. After inoculation, the reactor 

was operated continuously for 67 days. Reactor 2 operated first 49 days in 

batch mode, after which it was switched to continuous mode for an additional 

61 days. The medium composition of reactor 2 was similar to the composition 

of reactor 1, but had a higher ethanol (90 mM) and lower acetate (36 mM) 

concentration because of the crash in the previous continuous run 

experiment. In continuous mode, concentrated medium was added at an 

average flow of 22 mL d-1 to a HRT 21 days.  

6.2.2 Calculations 

The volumetric and specific production rates were calculated by averaging the 

cumulative caproate production. The cumulative caproate production was 

averaged, using the supsmooth function of the computer program Mathcad 

(Mathsoft version 13). The function returns a vector created by the piecewise 

use of a symmetric nearest neighbor linear least-squares fitting on each 

element in the cumulative caproate production vector, for which the number 

of nearest neighbors is adaptively chosen. 

6.2.3 MCFA separation 

Two separation techniques, liquid-liquid extraction and precipitation, were 

tested for their capacity to selectively remove caproate and caprylate from 

the effluent of reactor 2. Effluent was collected throughout the whole 

fermentation experiment. The effluent contained per liter 9.4 g caproic acid 
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and 0.26 g caprylic acid and had a pH of 6.52. The pH determines the 

efficiency of each separation technique; extraction only separates 

undissociated acids from the water phase, whereas precipitation only occurs 

with the dissociated form. Therefore, the separation tests were performed 

with the fermentation medium at pH 5, 6.52 and 7, which was adjusted by 

titrating with 2 M NaOH or HCl solutions.  

 

 

Extraction 

Liquid-liquid extraction is a separation technique in which the target 

component is transported from one liquid, namely the fermentation broth, 

into another liquid, specifically a solvent that can be removed easily. Two 

different solvents, ethyl hexanoate and petroleum ether, were tested for their 

suitability to selectively remove caproate and caprylate from the fermentation 

broth by extraction. The extraction was performed in 50 mL separation 

funnels of glass (Schott, Germany), which were washed 3 times with acetone 

before usage. After filling the funnels with 27 mL of fermentation broth and 6 

mL of solvent, they were shaken for 15 min at 150 rpm. After shaking, the 

funnels were left for 15 minutes to separate into two phases. Then 1 mL 

samples were taken from the fermentation broth to analyze the residual VFA 

concentration. All extractions were performed in duplicate. 

Distribution coefficient calculations 

After extraction, the undissociated acid in the solvent phase [HA]s is in 

equilibrium with the undissociated acid in the water phase [HA]w. The 

distribution of the undissociated acid among both phases is expressed in the 

distribution coefficient. We calculated the effective distribution coefficient 

based on the total acid concentrations as in Equation 6.1. The solvent 

concentration (HAs
Tot) is calculated from the difference in acid concentration 

before (initial) and after the extraction per volume fermentation broth (Vw), 

divided by the solvent volume (Vs). The effective distribution coefficient was 

calculated for each extraction with initial pH values of 5, 6.52 and 7. 

[ ]
[ ]Tot

w

Tot
s

HA

HA
D =  (6.1) whereas [ ]
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Activity test in extracted medium  

After extraction, the fermentation medium was tested for the ability to act as 

a substrate again for bacterial growth. Residues of the solvent in the medium 

could be toxic for bacteria and thus impede fermentation with recycled 

medium. Bottles were filled with the extract and with non-extracted 

fermentation medium (control), sealed with rubber inlets and capped with 

aluminum crimp caps. After purging the headspace 8 times with pure 

hydrogen to a final pressure of 1.5 bar, 1 mL of inoculum was injected 

anaerobically. At day 0 and day 58, the pressure of the headspace was 

measured and a liquid sample was taken to analyze the VFA and alcohol 

concentrations.  

 

Precipitation 

The separation technique precipitation relies on differences in solubility 

products, with the requirement that the target component has a lower 

solubility product compared to other components in the system. Precipitation 

with a divalent cation was preferred over a monovalent cation in order to 

reduce the amount of salt addition and to maintain a lower solubility product. 

Of the common divalent cations, copper, magnesium, barium and calcium, 

calcium was selected as ligand for the precipitation of caproate and caprylate. 

Calcium, like the divalent cation copper, had a lower solubility product with 

caprylate than Mg and Ba salt (Papageorgiou, unpublished results), and, 

unlike copper, is not a highly toxic ion.  

Precipitation was performed with fermentation broth at pH 5, 6.52 and 7 with 

different amounts of calcium to estimate the solubility product and the 

amount of calcium needed to separate caproate and caprylate as calcium 

carboxylates from the fermentation broth. To a 100 mL bottle containing 50 

mL of fermentation broth. 0.05, 0.1, 0.5, or 1 g of calcium chloride dihydrate 

was added. Additionally, in the case of the fermentation broth at an unaltered 

pH 6.52, experiments adding 2, 3 and 4 g were performed. After gentle 

mixing, the bottles were kept in a 20ºC room for 15 hours. After the 

suspension was filtrated by gravity, the filtrates were analyzed for residual FA 

concentration. Before and after precipitation experiments, the pH of solutions 

and filtrate was measured. 
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6.2.4 Analysis 

Hydrogen, oxygen and methane were analyzed by gas chromatography as 

previously described (Steinbusch et al., 2008). Fatty acids (C2-C8) were 

analyzed by gas chromatography using a HP 5890 serie II with a glass 

column (2m x 6mm x 2mm) packed with 10% Fluorad 431 on Supelco-port 

100- 120 mesh. Prepared samples (1.0 µl) were injected directly on the 

column at 200˚C. The carrier gas was 40 mL min-1 nitrogen saturated with 

formic acid. Oven temperature was 130°C for 4 min, raised at 12°C min-1 

ramp to 160ºC for 6.5 min. Fatty acids were detected with a FID at 280˚C 

using hydrogen at 30 mL min-1 and air at 400 mL min-1. Alcohols (C2-C6) 

were measured using the same column, but at a constant oven temperature 

of 70ºC. 

 

Protein concentration determination with modified Hartree-Lowry method 

(Caprette, 1995) was used to quantify bacterial cell concentration in a small 

sample volume. One mL of reactor liquid was transferred in a 2 mL vial and 

centrifuged for 5 min at 10.000 rpm. The supernatant was removed and the 

pellet was resuspended in 1 mL of 1 M NaOH. The vial was left for 30 min at 

50ºC in a water bath to hydrolyze cells. Subsequently, protein concentration 

of the hydrolyzed cells was quantified using modified Hartree-Lowry method. 

It was experimentally found that 1.0 g of protein equals 3.0 g of volatile 

suspended solids (VSS).  

6.3 Results and discussion 

6.3.1 Continuous caproate production  

Caproate and caprylate were produced in both continuous flow CSTRs. The 

reactors were operated anaerobically: no oxygen was detected and the redox 

potential in reactor 2 remained below -500 mV. Results of both reactors 

operations are discussed separately.  

Reactor 1 

Caproate production was detected first at day 6 with 0.1 g g-1 VSS d-1 (Figure 

6.1). During a continuous operation of 62-days, the specific caproate 

production rate increased from 0.1 to 1.6 g g-1 VSS d-1. Caproate was 

produced up to a concentration of 10.5 g L-1 and caprylate to 0.48 g L-1 

within 47 days, while ethanol and acetate were consumed (Figure 6.2). The  
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Figure 6.1 Caproate production 

rate per gram VSS in a continuous 

flow CSTR R1 (left) operating 67 

days. 

consumption ratio of ethanol versus acetate to products n-butyrate, caproate 

and caprylate changed over time, but was calculated to be 4.0: 1 over the 

course of the total experiment. The main product of the fermentation is 

caproate, for which the product yield increased in time to 0.6 mol C per mol 

C. The n-butyrate and caprylate production yield were 0.10 and 0.03 mol C 

per mol C, respectively. Initially, the n-butyrate yield was higher, at 0.26 mol 

C per mol C, but part of the n-butyrate was converted to caproate. 
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Figure 6.2 Concentration of substrate ethanol and acetate (C2) and products n-

butyrate (nC4), caproate (nC6) on the primary y-axis and caprylate (nC8) on the 

secondary y-axis in a continuous flow CSTR of 67 days. The arrow indicates the timing 

of the pump failure. 
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On day 47, the medium pump was not switched off by the computer due to 

power failure. Instead of 4 grams, the pump added 73 grams of medium 

during half an hour. This event caused a sudden increase in substrate 

concentration and a decrease in MCFA concentration and production rate. To 

maintain a HRT of 21 days the pump remained switched off for the following 

62 hours. Nevertheless, the sudden high medium dosage caused the biomass 

concentration to decrease from 0.32 to 0.013 g VSS L-1, far more then was 

expected based on the dilution. In principle, the biomass dilution would only 

affect the volumetric production rate. However, the specific caproate 

production rate was also significantly lower than before the pump failure. The 

sudden high ethanol and acetate concentrations might have negatively 

influenced the bacterial population.  

Reactor 2 

Starting on the first day, caproate was produced and ethanol and acetate 

were consumed in reactor 2 (Figure 6.3). During the first 48 days, reactor 2 
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Figure 6.3 Concentration of substrate ethanol and acetate (C2) and products n-

butyrate (nC4) and caproate (nC6) on the primary y-axis and caprylate (nC8) on the 

secondary y-axis in a CSTR reactor that was operated in batch for 49 days, followed by 

61 days of continuous operation. 
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operated in batch mode until the ethanol was almost completely consumed. 

The specific caproate production rate increased slowly in the first 50 days, 

but remained below 1.0 g caproate g-1 VSS d-1 (Figure 6.4). As soon as the 

ethanol concentration was 650 mg L-1, the pump was switched on and the 

reactor operated continuously for 62 days. After this mode switch, it took 10 

days until the rate increased enough to convert all incoming ethanol and 

acetate. Then the specific production rate increased to a final rate of 2.94 g 

caproate g-1 VSS d-1. After 80 days, 2 M NaOH solution was added by the pH 

controller, which caused a pH shock up to 8.3. Caproate production 

continued, though the specific production rate decreased to a level similar to 

the average production level previously observed in batch mode, namely 1.1 

g caproate g-1 VSS d-1. The consumption ratio of ethanol versus acetate over 

the total experiment was 4.4: 1. Overall caproate yield increased during the 

experiment from 0.28 to 0.60 mol C per mol C, whereas the n-butyrate yield 

decreased from 0.36 to 0.14 mol C per mol C. The caprylate yield was 0.02 

mol C per mol C. The biomass concentration was stable at an average of 0.1 

g VSS L-1. When the reactor was operated in batch mode without biomass 

wash out, the biomass concentration did not increase, which might indicate a 

lack of nutrients. After switching the reactor operation from batch to 

continuous run, the biomass growth increased together with the specific 

caproate production rate. 
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Figure 6.4 Caproate production 

rate per gram VSS in batch 

followed by a continuous flow 

CSTR R2 operating 116 days. 

The performance of both reactors runs is summarized in Table 6.1. The start-

up of the fermentation is not a point of concern, since the continuous 

operation on similar medium in the end resulted in comparable caproate 

concentrations and yields.  
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Table 6.1 Characteristics of caproate (C6) and caprylate (C8) production in two 

continuous flow CSTR runs. 

 R1 R2 

  C6 C8 C6 C8 

Conc. (g l-1) 10.5 0.48 10.6 0.26 

Rate (g l-1 d-1) max 0.57 0.03 0.30 0.01 

Rate (g g-1 VSS d-1) max 2.86 0.09 2.94 0.09 

Yield in carbon 0.5-0.71 0.03 0.6 0.03 

6.3.2 MCFA Separation 

Extraction 

Solvent extraction with petroleum ether and ethyl hexanoate could selectively 

remove caprylic and caproic acid from the fermentation broth. The effective 

distribution coefficient of caprylic and caproic acid between water and the 

solvents ethyl hexanoate as well as petroleum ether were significant higher 

than those for acetic and butyric acid (Figure 6.5). Caprylic acid had the 

highest effective distribution coefficient in both solvents and was thus most 

easily removed from the fermentation broth. The pH influenced the effective 

distribution coefficient strongly by influencing the amount of undissociated 

acid. Decreasing the pH of the broth before the extraction to 5 increased the 

effective distribution coefficient for both solvents with all the fatty acids, 

though the distribution coefficient of acetate and n-butyrate remained around 

or below 1.0 for both solvents. Extrapolating the results at pH 5, the real 

distribution coefficient for both solvents for caprylic acid is around 300 and 

for caproic acid 22. The high distribution coefficient of the target compound 

and low coefficient for the other compounds, combined with a low solubility of 

the solvent in the water phase, makes solvent extraction a suitable method 

to remove MCFA from the fermentation broth. The actual quantity of MCFA 

ultimately removed depends on the pH and on the water/solvent volume 

ratio. For example in the extraction experiment at pH 5, caproic and caprylic 

acid were concentrated 2.4 and 4.0 times, respectively, in the solvent.  
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Figure 6.5 Distribution of acetic acid (C2▲), butyric acid (C4●), caproic acid (C6 ■) 

and caprylic acid (C8 �) among ethyl hexanoate (E.H.) and petroleum ether (P.E.) and 

water as function of pH. 

Precipitation 

Caprylate was selectively removed from the fermentation broth by calcium 

chloride addition. Adding calcium to the fermentation broth decreases 

caprylate concentration in the water phase, but hardly influences caproate 

concentrations (Figure 6.6). Addition of calcium in concentrations up to 22 g 

L-1 removed 64% of caprylate from the water phase, 8% of caproate, but no 

n-butyrate and acetate. In order to achieve an efficiency over 90%, much 

more calcium is needed than would be expected based on the solubility 

product. From earlier experiments, the calciumcaproate solubility product 

was determined to be 6.31�10-07 mol-3 L-3 with an ionic strength of 0.1 M. In 

the present study, the solubility product was higher, between 2.24 - 4.48�10-

05 mol-3 L-3 at pH 6.52. This phenomenon is explained by the fact that 

addition of Ca influences the pH. Calcium carbonate precipitation upon 

calcium addition competes with caprylate reactions. The reduction in 

carbonate in the system associated with the aforementioned reaction 

decreases the buffer capacity and thus the pH of the system. At this lower 

pH, less caprylic acid dissociates, which reduces calcium caprylate  
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Figure 6.6 Calcium addition 

lowered the residual 

dissociated caproic acid 

(upper graph) and caprylic 

acid (lower graph) 

concentrations in 

fermentation broth, with an 

initial pH of 6.52, through 

both precipitation and by 

lowering the initial 

dissociated acid concentration 

through indirectly decreasing 

the pH. 

 

 

 

precipitation. In summary, both separation techniques demonstrated 

selective removal of caprylic acid and caproic acid. Caprylic acid with its 

longer hydrophobic tail, is less soluble in water and was therefore easier to 

separate than caproic acid. Depending on the pH, the amount of calcium salt 

or the volume of extraction liquid, a higher removal efficiency can be 

achieved. Whereas calcium precipitation does provide higher product purity 

than solvent extraction, the effluent contains elevated calcium 

concentrations. Although solvent extraction requires an additional step to 

remove the desired compound, the solvents are either, like petroleum ether, 

insoluble in water or, in the case of ethyl hexanoate, moderate soluble in 

water (0.63 g L-1), but can be removed by wastewater treatment. 

6.3.3 MCFA fermentation and separation in general 

The proof of principle of MCFA production by mixed cultures was 

demonstrated in a fed-batch operating CSTR (Chapter 5). Comparing the fed 
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batch operation mode of the CSTR with the continuous flow, more caproate 

was produced in the continuous flow than in the fed-batch operation. 

Although the volumetric caproate production rates were similar in both 

modes, this high rate was maintained over a longer period in the continuous 

operation, whereas the high rate in the fed-batch operation represents a 

peak during two days in one of the three active periods (Chapter 5). The 

specific production rate during continuous operation in both reactors was 

significantly higher than during batch operation. The better performance of 

the continuous flow operation can be explained by the stable growth 

conditions obtained by continuously adding medium and nutrients. In this 

way, substrate depletion, suspected of limiting caproate production in the 

fed-batch, was prevented. The yield in the continuous flow reactor was 

similar to the fed batch reactor. 

Increasing yield by combining process production and separation 

Based on the results of the activity test in the extracted medium, it was 

demonstrated that the extracted fermentation broth was fermentable after 

re-inoculation. In the effluent, significant amounts of n-butyrate were 

present, 1.7-2.1 g L-1 in reactor 1 and 2.1-2.6 g L-1 in reactor 2. If the n-

butyrate and the non-extracted MCFA could be recycled back into the 

elongation reactor, a higher efficiency could be achieved. Similarly, increased 

efficiency can be achieved by improving the efficiency of the carbon balance. 

Part of the converted substrate (acetate and ethanol) was not detected, 

neither in products as VFA, MCFA, and alcohols nor in biomass. A share of 

20-25% of carbon was “missing” in the carbon balance of both reactors. The 

“missing” carbon can be attributed to bacterial growth that was not 

suspended in the liquid phase. Another explanation is that part of the carbon 

in the form of ethanol was converted to CO2 by dechlorinating bacteria using 

2-bromoethanosulfonic acid as an electron acceptor (Chapter 5). There we 

saw that in addition to the MCFA producing relatives of Clostridium kluyveri, 

the microbial population in a MCFA producing reactor was dominated by a 

dechlorinating bacterium closely related to Azospira oryzae.  

Implications 

This research shows that MCFA as caproate and in small amounts caprylate 

were produced in higher concentrations, at higher specific production rates 

and with similar but more stable volumetric rates during continuous flow 
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operation than in fed-batch operation. Higher MCFA production could be 

achieved 1) by increasing influent concentrations, or 2) by increasing the flow 

rate. In case of higher influent concentration, ethanol concentration needs to 

be monitored, because as soon as the MCFA production activity stops the 

ethanol concentration will reach values that are toxic for organisms. 

Anaerobic conversion with low biomass growth on the order of 0.006 d-1, 

demand high sludge retention times in order to have sufficient biomass for 

high production rates. Further research, MCFA fermentation can be 

performed in anaerobic systems with high biomass retention and a low 

growth rate while processing a high flow such as gas lift reactors or 

membrane bioreactors.  

6.4 Conclusion 

Caproate and caprylate were produced in a continuous flow CSTR by mixed 

cultures. Biological conversion of ethanol and acetate led finally to 10.5 g L-1 

caproate and 0.48 g L-1 caprylate. The production yield was 0.6 mol C per 

mol C for caproate and 0.03 mol C per mol C for caprylate and the biomass 

growth was estimated to be 0.01 g g-1. The conversion rate was found to be 

stable at 3.2 g caproate and 0.09 g caprylate g-1 VSS d-1. Both caproate and 

caprylate were demonstrated to be selectively removed by calcium 

precipitation and solvent extraction with ethyl hexanoate and petroleum 

ether. 
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7 General discussion 

 

 

 

 

 

7.1 Introduction  

This thesis describes three new processes to convert volatile fatty acids to 

precursors of liquid compounds with a higher energy content by using mixed 

culture fermentations. VFA are involved in many anaerobic conversions. They 

are intermediates in the degradation processes of organic materials such as 

carbohydrates, proteins and lipids. Using VFA as building blocks for fuel or 

chemical production enables municipal and industrial waste to be utilized as 

sustainable biomass feedstock. VFA cannot directly be used as fuel, but an 

energy efficient biological conversion can decrease the quantity of oxygen to 

create a product with a higher energy content than VFA. Fermentation is a 

method to decrease the oxygen content of VFA without sacrificing the carbon 

or energy present in the starting material. During fermentation, bacteria 

release their electrons and protons using their organic products as acceptors, 

or using the hydrogenase enzymes to produce hydrogen (Rittmann and 

McCarty, 2002). By applying a high hydrogen pressure, hydrogen production 

is limited and the reduction of organic products such as VFA becomes 

thermodynamically more attractive. In this thesis, mixed cultures were fed 

with VFA at a hydrogen partial pressure of 1.5 bar, which resulted in the 

formation of the alcohols ethanol, propanol, butanol and hexanol, and the 

fatty acids n-butyrate, caproate and caprylate. Most importantly, conditions 

were found that mixed cultures successfully converted VFA at a high rate to 

caproate and caprylate in such a high concentration that the downstream 

processing could be performed efficiently.  
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In section 1.2 of the discussion, an update is given on the status of the 

proof-of-principle experiments. In 1.3, the use of thermodynamics as a tool 

to investigate ways to steer the mixed culture is discussed. In section 1.4, 

the possibility of using the process in practice is analyzed; the case of 

caproate production is further developed, as this product was produced fast 

and in high quantity and has an advantage in terms of separation. 

 

7.2 Liquid biofuel production by VFA conversion 

Biohydrogenation with hydrogen 

In chapter two, it was thermodynamically calculated and experimentally 

demonstrated that mixed culture bacteria can be directed to produce alcohol 

from volatile fatty acids (VFA) with hydrogen as an electron donor, a 

mechanism called biohydrogenation. In batch tests, acetic, propionic and 

butyric acids were reduced by mixed microbial cultures with a headspace of 

1.5 bar of hydrogen. Alcohol concentrations were observed to be 3.69 ± 0.25 

mM for ethanol, 8.08 ± 0.85 mM for propanol and 3.66 ± 0.05 mM for n-

butanol. The conversion efficiency based on the electron balance was 55.1 ± 

5.6% with acetate as the substrate, 50.3 ± 4.7% with propionate and 46.7 ± 

2.2% with n-butyrate. Methane was the predominant by-product in each 

batch experiment, 33.6 ± 9.6% of VFA and hydrogen was converted to 

methane with acetate as the substrate, 27.1 ± 7.1% with propionate and 

36.6 ± 2.2% with n-butyrate. In chapter 3, methanogenesis was successfully 

inhibited and acetate reduction was enhanced after thermal pretreatment and 

incubation at pH 6. Initially, more ethanol (7.7 ± 3.2 mM) was produced than 

in the first experiment with a higher efficiency (60.2 ± 8.7%). However, 

during the experiment ethanol was converted to n-butyrate (7.02 ± 0.85 

mM) with an efficiency of 76.2 ± 14.0%.  

Biohydrogenation with electrons 

Chapter 4 studied the possibility of using an electrode instead of hydrogen as 

an electron donor for biological acetate reduction. Biohydrogenation of 

acetate was stimulated in the cathodic compartment of a bioelectrochemical 

system with the same mixed cultures as was used in chapter 2 and 3. Methyl 

viologen was selected as mediator to accelerate electron transport from the 

cathode to the bacteria. As soon as methyl viologen was added to the 



General discussion 

 

 111 

bioelectrochemical system with an applied cathode potential of -550 mV, 

ethanol was produced (0.084 g L-1). Hydrogen was co produced at the 

cathode (0.0035 normalized m3 hydrogen m-2 d-1), making it unclear what 

the exact electron donor of biohydrogenation was, MV or hydrogen. The 

advantages of MV addition were that it inhibited n-butyrate production and 

that it lowered the overall potential required for both ethanol and hydrogen 

production. The current density of 1.33 A m-2 at the potential of -550 mV vs 

NHE was high compared to the current density of a biocathode producing 

hydrogen (0.2 A m-2) at a similar potential (Jeremiasse et al.). A drawback to 

this setup was that MV irreversibly reacted at the surface of the electrode. 

Only 20% of MV was left two days after addition, which inhibited the ethanol 

production and initiated n-butyrate production in the bioelectrochemical 

system. Since the mediator is highly toxic and continuous addition of MV is 

not a sustainable way to produce ethanol, further research on this topic 

should be focused on immobilizing MV at the electrode or on non-mediated 

ethanol production. It is expected, though, that without MV in the 

fermentation broth ethanol will most likely be converted to n-butyrate or 

longer chain products.  

Chain elongation of acetate with hydrogen or ethanol 

The third process to convert VFA to high energy liquid compounds is the 

coupling of acetate to longer chain fatty acids. The proof–of-principle of chain 

elongation by mixed cultures was described in chapter 5. It was found that 

acetate as the main intermediate of anaerobic conversion can be elongated to 

medium chain fatty acids with 6 or 8 carbon atoms in a simple mixed-culture 

fermentation. Mixed microbial cultures were able to produce 8.17 g L-1 

caproate and 0.32 g L-1 caprylate under methanogenesis-suppressing 

conditions in a stable reactor. The highest caproate production rate was 25.6 

mM C per day with a product yield of 0.6 mol C per mol C. The production of 

caprylate in any significant amount has not been previously reported in the 

literature. Caproate production by mixed cultures was found before in co-

cultures of C. Kluyveri with ruminal cellulolytic bacteria, but such a high 

concentration has never been reported before. Kenealy et al. (1995) 

produced 2.6 g n-butyrate L-1 and 4.6 g caproate L-1 from 4.4 g L-1 ethanol 

and 6.0 g L-1 cellulose with a yield of 0.647 mol C per mol C.  
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In this thesis, chain elongation was performed with two electron donors, 

ethanol and hydrogen, which demonstrated the flexibility of this process. 

Microbial characterization revealed that the microbial populations were stable 

and dominated by relatives of Clostridium kluyveri. To avoid long lag times 

and substrate limitations of batch fermentations, it was investigated if MCFA 

production is possible in a continuous flow operating reactor, as described in 

chapter 6. Two CSTRs operated 61 and 67 days continuously at an HRT of 22 

days. During the operation period, the specific MCFA production activity 

increased to 2.9 g caproate and 0.09 g caprylate per gram VSS d-1, which 

was independent of the different start-up method of the CSTR reactors. The 

final caproate and caprylate concentrations in the fermentation broth were 

10.5 g L-1 and 0.48 g L-1, respectively. Those concentrations were 

demonstrated to be high enough to be removed selectively by calcium 

precipitation and solvent extraction with ethyl hexanoate and petroleum 

ether. 

7.3 Steering mixed culture fermentation 

VFA are involved in many anaerobic reactions (Thauer et al., 1977), in 

metabolism as well as in catabolism. In mixed culture fermentation, the 

highly diverse population of fermentative bacteria can perform there 

reactions (Rittmann and McCarty, 2002). As we saw in the chapter 2 and 3, 

acetate was converted to ethanol, n-butyrate and to methane, while a single 

product was preferred. Since many reactions are possible with VFA and 

microorganisms are present that can perform these reactions, it is difficult to 

predict how the fermentation must be steered in order to drive the desired 

reaction. Thermodynamics can help to understand mixed culture 

fermentations by knowing the energy limits of reactions, which determines 

what is possible or impossible under given conditions. Also, it can help in 

predicting the dominant fermentation under the assumption that the most 

energy consuming reaction will dominate. Accordingly, the process can be 

steered by manipulating environmental conditions like pH, temperature or 

concentration. For example, of the three dominant processes ethanol, n-

butyrate and methane formation, methanogenesis was energetically the most 

favorable process and would dominate the fermentation without intervention. 

The process could be steered toward ethanol and n-butyrate production 

through physical pretreatment with heat to kill the heat-sensitive 

methanogens and thus enriching for the resistant ethanol and n-butyrate 
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producing organisms. It must be noted, though, that such a sterilization step 

is energy costly, which will negatively influence the overall energy efficiency 

of a process. 

 

Comparing biohydrogenation and chain elongation, it shows that it is 

thermodynamically more favorable to produce n-butyrate than ethanol from 

acetate and hydrogen. Other than the addition of toxic chemicals such as MV, 

methods to prevent ethanol consumption by n-butyrate production were not 

found. Neither varying the pH nor applying a thermal heat pretreatment 

inhibited n-butyrate production. Production of ethanol by biohydrogenation 

from acetate will not be realizable with mixed cultures fermentation at 

applied conditions, because it is thermodynamically more favorable for 

organisms to produce n-butyrate or medium chain fatty acids. Most likely 

acetate reduction in mixed culture fermentation at high hydrogen pressure 

will always lead to medium chain fatty acids or longer chain alcohols such as 

butanol and hexanol (Chapter 5).  

 

7.4 MCFA fermentation as a fuel production technology 

Medium chain fatty acid production is a promising technology to produce 

liquid precursors of fuel or chemicals. Using MCFA fermentation in a biomass 

conversion process, the production chain will consist of 2 fermentation 

reactors, acidification and fermentation reactor, followed by a liquid-liquid 

separation step. The ultimate potential of MCFA fermentation as a viable 

technology depends on each individual step in the production chain: 

acidification of the biomass, the MCFA fermentation, and separation of the 

desired product, but also on the integration of all steps together. The 

sustainability of the biofuel production process is determined by the 

feedstock choice for VFA and electron donor production as well as the energy 

consuming separation step.  

 
Figure 7.1 Process scheme of integrated MCFA production from organic waste. 
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7.4.1 Fuel properties of MCFA 

MCFA fermentation has a high potential both in terms of the desirable fuel 

characteristics of MCFA and the good performance of the fermentation with 

respect to specific MCFA rate, concentration and efficiency. In the conversion 

of biomass to fuels, the most important change in chemical structure is the 

removal of oxygen. The ratios of oxygen and carbon or oxygen and hydrogen 

in a molecule determine some important characteristics of a fuel. For 

example, the lower the oxygen content is, the higher the heating value. 

Biomass components such as carbohydrates have a oxygen to carbon ratio of 

1:1, while ethanol has a oxygen/carbon ration of 0.5. A comparison of 

caproate and caprylate based on oxygen/hydrogen (O/H) ratio and 

oxygen/carbon (O/C) ratio shows that these MCFA have lower O/C ratios than 

ethanol, but butanol has yet a lower O/H ratio (Table 7.1). Higher than 

ethanol, the MCFA have a similar energy density to that of butanol. The 

advantage of MCFA over butanol is the low water solubilities of caproic and 

caprylic acid, which are, respectively, a factor of 6 and 100 lower than of the 

solubility of butanol. Therefore, we expect that better and more efficient 

separation from the fermentation broth is possible with MCFA than with 

butanol. 

 

Table 7.1 Properties of fermentation products that can be used as liquid fuel. 

Biofuel Carbon 

atoms 

O/H ratio O/C ratio Energy density 

(MJ kg-1) 

Solubility  

(g L-1) 

Ethanol 2 0.17 0.5 23.1  

Butanol 4 0.1 0.25 29.2 63.4 

Caproic acid 6 0.17 0.33 28.1 9.67 

Caprylic acid 8 0.13 0.25 30.5 0.68 

 

Regarding the MCFA performance, the highest caproic acid concentration 

(10.5 g L-1) produced in chapter 6 was high enough to selectively remove 

acids from the fermentation broth using liquid-liquid extraction. It is expected 

that the caproic acid concentration can still be increased during fermentation, 

since the production was thus far substrate limited. The specific caproate 

production rate could be increased through constant addition of fresh 

medium in continuous flow operating reactors. The highest specific caproate 

production rate was 2.9 g caproate g-1 VSS d-1 in a continuous running 
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reactor. The further increase in the rate was limited by an operational error, 

which prevented a full realization of the potential of the MCFA fermentation 

technology. Further research is needed to study the full capabilities of MCFA 

production in a more stable reactor run with a higher cell density. For a 

proof-of-principle study, however, the specific production rate is already quite 

high compared to the anaerobic conversion rate of optimized acetoclastic 

methanogenesis, which is 7 g acetate g-1 VSS d-1 at 35°C (Rittmann and 

McCarty, 2002).  

7.4.2 Electron donor: ethanol and hydrogen  

Chain elongation is flexible in electron donor choice, both ethanol and 

hydrogen can be used (Chapter 5). In the controlled fed-batch and 

continuous flow reactors where both electron donors were added to the 

fermentation, ethanol was preferred over hydrogen. The ethanol:acetate 

consumption ratio of 4:1 was higher than the expected ratio of 2:1 based on 

equation 5.2. The high ethanol consumption could be explained by an ethanol 

oxidizing side reaction with the inhibiter 2-bromoethanosulfonic acid as an 

electron acceptor. This assumption is supported by the fact that little CO2 was 

found in the effluent and by the dominance of Azospira oryzae in the MFCA 

producing bioreactor. This nitrogen-fixing beta-proteobacterium can use 

chlorate or selenate as electron donors (Hunter, 2007), which are comparable 

to the chemical structure of the methanogenesis inhibiter 2-

bromoethanosulfonic acid. Exclusion of the inhibiter is expected to lower the 

ratio and increase the MFCA product yield. Still, a considerable amount of 

ethanol will be consumed for the production of MCFA. Depending on the 

feedstock, ethanol can be prepared sustainably. Ethanol is preferably 

produced from organic waste via biohydrogenation of acetate, but the most 

proven ethanol production technology is sugar fermentation by yeasts. With 

yeast fermentation, ethanol can still be produced sustainably from cellulosic 

biomass that is sustainably produced, the so-called second generation biofuel 

production. Hydrogen can be produced more sustainably from waste during 

acidification or by bioelectrolysis, or from water via electrolysis.   

 

An alternative to the large amount of ethanol needed for MCFA production 

can be n-butyrate. In the experiments described in chapters 5 and 6, a 

portion of the n-butyrate that was formed in the beginning was later 

converted to caproate. n-Butyrate, like acetate, is produced during the 
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acidification of waste. Thus, perhaps the presence of n-butyrate in the 

influent of the MFCA reactor reduces the amount of ethanol needed for 

caproate or caprylate production.  

7.4.3 Potential of fermentation from low-grade biomass 

This thesis studies the possibilities to convert biomass to liquid fuel and or 

chemicals via VFA. The research focused mainly on proof-of-principle studies 

on the conversion step of VFA to the liquid fuel. The experiments were 

performed with synthetic medium containing acetate, and not with effluent 

from an acidification tank. To give an indication of the potential of biofuel 

production from real acidified waste, the MCFA production potential was 

calculated with data from this thesis together with literature data reporting 

VFA production during solid waste acidification. The potential MCFA 

production is compared to other anaerobic conversions that can be used to 

process low grade organic waste to energy rich components such as 

hydrogen, methane, or liquid biofuel as MCFA. The processes are compared 

on carbon and energy recovery of the original waste in the final product.  

 

As was discussed in the introduction, the exact acidification products depend 

on the type of organic waste, and the experimental conditions applied during 

the acidification. Fang et al. (2006) were one of the few researchers who 

carried out acidification on food waste using mixed cultures at different 

applied pH, and who reported the exact VFA composition and hydrogen 

production at each pH. Fang et al. acidified food waste rice slurry using mixed 

cultures (sludge) at pHs between 4 and 7 at 0.5 unit intervals to study 

hydrogen production potential. The rice was composed of carbohydrate 

(78.3%), protein (6.6%), lipid (3.2%) and water (11.9%). Acidification of 1 

kg of rice food waste at pH 5.5 yielded 3.7 mol acetate, 2.66 mol n-butyrate, 

0.65 mol ethanol and 9.62 mol of hydrogen. Based on the caproate and n-

butyrate yield in chapter 6, the conversion efficiency of MCFA production is 

together 0.75. The efficiency of VFA conversion to methanogenesis is 90%.  

 

If these acidification products would be converted to caproic acid with a 

conversion yield of 0.75, then 280 g caproate can be produced. The highest 

energy recovery occurs when the rice slurry is converted to methane. The 

most carbon is recovered when the rice slurry is converted to caproate. The 
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Table 7.2 Energy content of conversion of acidification products of 1 kg cooked rice 

(Fang et al., 2006) HHV Energy 

recovery  

Carbon 

recovery 

 MJ kg-1  % % 

0.783 kg carbohydrate - 12.379a 100 100 

9.62 mol H2 -  2.188b 17.7 - 

11.2 mol CH4 + 9.62 mol H2 - 10.430c 84 39 

2.41 mol caproic acid and 1.12 H2 -  8.636d 69.7 55 
a assumed that 1 mol of [C6(H2O)5]n has the same HHV as 1 mol of Glucose 
b assumed that the headspace has a temperature of 37°C as is described in the article.  

 

least efficient application of organic waste is sole hydrogen production, where 

only 17% of the total energy in the carbohydrate is recovered and no carbon. 

In these energy calculations, the separation process is disregarded. This will 

negatively affect the overall energy balance for caproic acid production, 

because the gas methane is easier to separate from the fermentation broth.  

7.5 Technology comparison 

This thesis studies the conversion processes required to utilize organic waste 

for liquid fuel and or chemical production. In this section, a rough comparison 

was made with commonly practiced technologies that use organic waste for 

energy production and with those that use organic waste for fuel. It must be 

noted that it is difficult to compare MCFA fermentation with current 

technologies, since the work presented here has yet to be optimized.  

MCFA fermentation as competing process for feedstock for energy production 

Based on energy recovery, anaerobic digestion is the most energy efficient 

process: the most energy is recovered from the biomass and the process 

itself requires low energy input since gas separates naturally from the liquid 

slurry very easy. Biogas is, however, difficult to transport and has a low 

economical value. The biogas composition is different from the natural gas 

and needs energy intensive upgrading before it can be transported in the gas 

grid. The low energy density of gas makes transport with a truck energy 

inefficient; it would better to use biogas locally for heat or electricity 

production.  
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Costs are mainly determined by the variable cost of feedstock, and fixed 

costs which include operational cost and maintenance, as determined by the 

process design. The feedstock costs for anaerobic digestion are the same as 

those for MCFA production, but the process costs of MCFA production are 

higher, since a liquid-liquid separation is needed instead of gas-liquid 

separation. However, considering that the economical value of the product is 

higher than heat or electricity, the production cost can be higher without 

influencing the economic viability of MCFA production. 

MCFA fermentation as competing process for feedstock for fuel production 

The energy input of bio-ethanol production is mainly determined by the 

feedstock choice and the down-stream process distillation. Using waste 

biomass saves a considerable amount of energy in comparison to using 

lignocellulose. This was seen in the study of Granda et al. (2007), where they 

compared the waste converting MixAlco process with cellulosic ethanol 

production on energy use to produce ethanol. Here, the ratio between the 

energy output in ethanol and the energy input during the production process 

were calculated for different second generation ethanol production processes. 

It appeared that the MixAlco process, with a ratio of 18.87, was comparable 

to the cellulosic manufacturing technologies with a ratio between 15-19 

depending on the technology (Granda et al., 2007). 

 

We refer to the MixAlco process because it, like MCFA fermentation, uses the 

same low grade biomass feedstock and mixed cultures to ferment the 

biomass. The difference between MCFA fermentation and the MixAlco process 

is that the latter only produces volatile fatty acids with mainly acetic acid. 

Volatile fatty acids precipitate directly with calcium to calcium carboxylates, 

which are separated and further converted to ethanol and other alcohols in a 

thermal hydrogenation process (Holtzapple et al., 1997). The advantage of 

MCFA production over both MixAlco process and cellulosic ethanol 

fermentation is the product is a precursor for biodiesel compound. 

7.6 Concluding remarks 

Chain elongation is a promising technology to convert cheap, low-grade 

biomass into medium chain fatty acids as precursors for liquid fuels or 

chemicals. This process converts biomass that is unsuitable as feedstock for 

sugar fermentations or thermal conversions. This so-called low grade 
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biomass is abundantly present in many agricultural areas and its use is 

economically very attractive. The proposed process is straightforward, as it 

requires two simple and robust mixed culture fermentation steps for 

acidification and chain elongation. The best application of the processes 

demonstrated in this thesis should lead to caproate and caprylate production 

in such a concentration that separation by precipitation or extraction could be 

performed efficiently. To estimate the potential of the technology, further 

research is needed to optimize the MCFA production and separation step.
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The production of renewable fuels and chemicals reduces the dependency on 

fossil fuels and limits the increase of CO2 concentration in the atmosphere 

only if a sustainable feedstock and an energy efficient process are used. The 

thesis assesses the possibility to use municipal and industrial waste as 

biomass feedstock to have little of no competition with food production, and 

to save greenhouse gasses emissions. Waste is a complex substrate with a 

diverse composition and high water content. It can be homogenized without 

losing its initial energy value by anaerobic conversion to volatile fatty acids. 

Using VFA gives the opportunity to process cheap and abundantly present 

biomass residues to a fuel and chemical instead of sugar containing crops or 

vegetable oil. This thesis describes the feasibility to convert VFA to 

compounds with a higher energy content using mixed culture fermentations 

by eliminating of oxygen and/or increasing the carbon and hydrogen content. 

At high hydrogen pressure, protons and electrons release via the reduction of 

organic products such as VFA becomes thermodynamically more attractive. 

Three VFA reduction reactions were studied: hydrogenation to an alcohol with 

1) hydrogen and 2) an electrode as electron donor, and 3) by chain 

elongation with hydrogen and ethanol.  

 

Based on concentration, production rate and efficiency, elongation of acetate 

with hydrogen and/or ethanol was the best technique to convert VFA into a 

fuel. In a continuous flow CSTR, 10.5 g L-1 caproic acid and 0.48 g L-1 caprylic 

acid were produced with ethanol and/or hydrogen at a specific MCFA 

production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d-1. 

The products were selectively removed by calcium precipitation and solvent 

extraction with ethyl hexanoate and petroleum ether. Microbial 

characterization revealed that the microbial populations were stable and 

dominated by relatives of Clostridium kluyveri.  
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VFA could also be reduced to alcohols. Acetic, propionic and butyric acids 

were biohydrogenated with hydrogen and acetic acid also with an electrode. 

Observed alcohol concentrations were 0.62 g L-1 ethanol, 0.49 g L-1 propanol 

and 0.27 g L-1 n-butanol. Methanogenesis was successfully inhibited after 

thermal pre-treatment incubated at pH 6, while acetate reduction was 

enhanced. In the second study, ethanol (0.084 g L-1) was produced at the 

cathodic compartment of a bioelectrochemical system, in which the electron 

transport was mediated by methyl viologen. The ethanol production activity 

at the cathode was only of very short term, since the mediator irreversibly 

reacted at the surface of the cathode.  

 

Of the two VFA conversion processes, biohydrogenation and chain elongation, 

chain elongation was a more dominant process that consumes ethanol with 

acetate to medium chain fatty acids. With this technology, wet organic waste 

can be converted to biofuels carbon and energy efficient. The technology is 

promising due to the good fuel and separation properties of medium chain 

fatty acids, and the possibility to produce them at high concentrations and 

specific production rates comparable to other anaerobic conversions.
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De productie van duurzame biobrandstoffen en chemicaliën vermindert de 

afhankelijkheid van fossiele brandstoffen en beperkt de toename van de CO2 

concentratie in de atmosfeer mits duurzame grondstoffen en een energie-

efficiënt proces hiervoor worden gebruikt. Het proefschrift beoordeelt de 

mogelijkheid om stedelijk en industrieel organisch afval te gebruiken als 

grondstof voor de productie van duurzame biobrandstoffen om zo weinig of 

geen concurrentie aan te gaan met voedselproductie, en om de uitstoot van 

broeikasgassen te verminderen ten opzichte van eerste generatie 

biobrandstoffen. Organisch afval is een complexe grondstof met een 

gevarieerde samenstelling en een hoog vochtgehalte. Het afval kan zonder 

verlies van haar oorspronkelijke energetische waarde gehomogeniseerd 

worden door anaërobe omzetting naar vluchtige vetzuren. Door het gebruik 

van deze vluchtige vetzuren voor brandstof productie kunnen goedkope en 

overvloedig aanwezige organische afvalstromen gebruikt worden in plaats 

van suikerhoudende gewassen of plantaardige oliën. Dit proefschrift beschrijft 

drie haalbaarheidstudies om vluchtige vetzuren om te zetten naar voorlopers 

van biobrandstoffen of chemicaliën met een hogere energetische dichtheid. 

Onder hoge waterstofspanning kunnen organismen met hun protonen en 

elektronen, die vrijkomen tijdens het metabolisme, vluchtige vetzuren 

omzetten naar gereduceerde verbindingen. Drie reductiemechanismen van 

vluchtige vetzuren werden bestudeerd: biohydrogenering tot een alcohol met 

1) waterstof en 2) een elektrode als elektronen donor, en 3) door de 

microbiële ketenverlenging met waterstof en ethanol als elektronen donor. 

 

Op basis van concentratie, productiesnelheid en omzettingsefficiëntie, is 

ketenverlenging met waterstof en/ of ethanol de beste techniek om azijnzuur 

om te zetten naar een brandstof. Een continue draaiende CSTR met azijnzuur 

als substraat, en ethanol en/of waterstof als elektronen donor, produceerde 

10.5 g l-1 capronzuur en 0.48 g l-1 caprylzuur met een specifieke productie 

activiteit van 2.9 g caproaat en 0.09 g caprylate per gram VSS d-1. De 
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producten konden selectief verwijderd worden door precipitatie met calcium 

en door vloeistof-vloeistof extractie met ethylhexanoaat en petroleumether. 

Uit karakterisering van de microbiële populatie in de CSTR bleek dat de 

microbiële populaties stabiel waren en werden gedomineerd bacteriën die 

gerelateerd zijn aan Clostridium kluyveri.  

 

Een ander mechanisme om vluchtige vetzuren om te zetten naar 

biobrandstoffen is biohydrogenatie naar alcoholen. Azijnzuur, propionzuur en 

boterzuur werden met waterstof omgezet naar 0.62 g l-1 ethanol, 0.49 g l-1 

propanol en 0.27 g l-1 n-butanol. Methaanvorming verminderde de 

biohydrogenatie efficiency, maar kon selectief geremd worden na thermische 

voorbehandeling en incubatie bij lage pH. In het tweede biohydrogenerings 

studie werd azijnzuur aan de kathode van een bioelectrochemisch systeem 

omgezet naar ethanol (0.084 g l-1). In het systeem werd het elektron 

transport versneld door een mediator methyl viologen. Door een instabiele 

mediator echter hield de ethanol productie aan de kathode niet stand 

Concluderend, hoewel biohydrogenation van azijnzuur met waterstof mogelijk 

was, domineerde microbiële ketenverlening in de fermentatie door ethanol en 

azijnzuur om te zetten naar de middellange vetzuren ketens als capron- en 

caprylzuur. Door de goede brandstof eigenschappen en scheidings-

mogelijkheden van deze middellange vetzuren, en de mogelijkheid om deze 

verbindingen koolstof- en energieefficiënt tot hoge concentraties en 

snelheden te produceren, biedt deze technologie een nieuwe mogelijkheid om 

natte organische afvalstromen te verwerken tot biobrandstoffen. 
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