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POSTULATES 

A probabilistic model involving an exponential decay similarity function is 
consistent with an observed Gaussian relationship between similarity and distance 
involving confusable stimuli (Nosofsky, 1986,1988; Shepard, 1988). 

Nosofsky, R.M. (1986). Attention, similarity and the identification-categorization 
relationship. Journal of Experimental Psychology: General, 115,39-57. 
Nosofsky, R.M. (1988). On exemplar-based exemplar representations: Comment on Ennis 
(1988). Journal of Experimental Psychology, General, 117,412-414. 
Shepard, R.N. (1988). Time and distance in generalization and discrimination: Comment 
on Ennis (1988). Journal of Experimental Psychology, General, 117,415-416. 
This thesis. 

The expected value of an exponential decay similarity function of city-block 
interstimulus distance will be experimentally insensitive to perceptual dependence 
(correlated psychological dimensions). 

This thesis. 

3. Any psychological task which can be modeled by assuming that subjects choose one of 
two representations based on the smallest Euclidean distance to a third 
representation can be expressed in terms of the distribution of an indefinite 
quadratic form. 

This thesis. 

4. Models based on the entire sequence from stimulus to percept will have greater 
validity, often with fewer parameters, than models which ignore the physicochemical 
parameters of stimuli. 

This thesis. 

5. The power of the triangular and duo-trio discrimination methods is so low, relative 
to 2-alternative and 3-alternative forced choice procedures, that their extensive use 
in testing for small differences between stimuli is not to be recommended. 

Ennis, D.M. (1990). The relative power of difference testing methods in sensory 
evaluation. Food Technology, 44 ,114,116 & 117. 



6. Molecular models of chemical sensing show that molecular parameters, such as binding 
constants, can be estimated directly from perceptual information without using 
biochemical assays. 

Ennis, Djvf. (1989). A binary mixture model applied to the sweetness of fructose and 
glucose mixtures: De Graaf and Frijters revisited. Chemical Senses, 14,597-604. 
Ennis, D M . (1991). Molecular mixture models based on competitive and noncompetitive 
agonism. Chemical Senses, in press. 

7. Biodegradable polymers can be developed by incorporating naturally occurring amino 
acids into synthetic polyamides such as the alternating copolymer of e-amino caproic 
acid and glycine. 

Ennis, D.M. and Kramer, A. (1974). Bacteria capable of degrading polymeric and low 
molecular weight amides. Lebensm. -Wiss. u, TechnoL, 7,214-216. 
Ennis, D.M. and Kramer, A. (1975). A rapid microtechnique for detecting the 
biodegradability of nylons and related polyamides. J. Food Sc., 40,181-185. 

8. All synthetic fertilizers applied to soils with structural problems, caused by high 
exchange capacity clays, should contain up to 10% dicarboxylic acid salts (such as 
magnesium, potassium, ammonium and hexanediamine salts of adipic, glutaric and 
succinic acids) to improve soil structure. 

Ennis, D.M., Kramer, A., Mazzocchi, P.H., Jameson, C.W. and Bailey, WJ. (1975). 
Synthetic N-releasing biodegradable soil conditioners. HortScience, 10,505-506. 
Ennis, DM. 1978. Synthetic N-releasing soil conditioner. US Patent 4066431. 
Ennis, D.M. 1981. Process for improving soil structure. Canadian Patent 1099942. 

9. An outlier detection and elimination procedure should be implemented in international 
judging competitions involving sports such as gymnastics and diving to help to avoid 
the unfair effects of catastrophic errors. 

10. Children should not be introduced by schools to computers until they have completed 
their secondary education. 
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ABSTRACT 

Mental representations of objects may fluctuate or change from moment to moment. Many 
models of similarity, identification, classification, and preferential choice are 
deterministic. These models cannot formally account for perceptual fluctuations. In this 
thesis, it is assumed that there exists a probability density function for psychological 
magnitudes (usually assumed to be multivariate normal) and a judgment function which defines 
how these magnitudes are used to make a particular decision. Based on these ideas, 
probabilistic models of triad discrimination, similarity, identification and preferential 
choice are derived and evaluated. Several of these models can account for differences in 
self-similarity, asymmetric similarities and violations of the triangle inequality because 
the metric axioms are not assumed to apply to proximity measures among stimulus means. A 
paradox, created when deterministic models of identification are compared, concerning the 
universal form of the similarity function and the distance metric, is resolved using a 
probabilistic model The use of nonlinear least squares to estimate parameters is 
illustrated in the case of several of the models. Fechner-Thurstone models, in which 
stimulus variability, a psychophysical transformation, and psychological variability are 
formally included, are discussed. 
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CHAPTER 1 

GENERAL INTRODUCTION 
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A wide range of decision processes, such as those involved in identification, forced 

choice, preferential choice, grouping and categorization, can be mathematically modelled as 

stochastic or probabilistic processes. This means that the momentary psychological magnitudes 

or percepts are treated as if they were drawn from a particular probability distribution. In 

this thesis it will be assumed that this distribution is unidimensional or multidimensional 

normal. The primary goal of the thesis is the development and evaluation of models of several 

different types of subject tasks all of which share a common framework concerning the 

probability distribution of the percepts used in each task. 

The work to be reported in this thesis started with an interest in extending the 

unidimensional Thurstone-Ura model for the triangular method (Frijters J.E.R., 1979, British 

Journal of Mathematical and Statistical Psychology, 32,229-241) to the multidimensional case. 

The triangular method is a tri-stimulus discrimination method commonly used in research on the 

chemical senses and in applications to food and beverage sensory testing. Frijters very clearly 

set out the framework for modelling a task such as the triangular method under the assumption 

that the momentary psychological magnitudes or percepts are univariate normally distributed. 

Once this research was initiated, several new research areas opened up and appeared worthy of 

pursuit These included the development of Thurstonian models for other tristimulus methods, 

models which formally connect physicochemical measures, including variances, to their 

corresponding psychological magnitudes, and multidimensional probabilistic models of other 

perceptual processes such as similarity, identification and preferential choice. 

Given a number of alternative probabilistic models for a particular task, such as 

identification, it has been of interest to compare the models with regard to how they respond to 

changes in the models' parameters (such as the degree of perceptual dependence or correlation 

between dimensions). This has been a fruitful area to pursue. There are large differences 

between the predictions made by several of the newly developed probabilistic models that may be 

related to easily manipulated behavioral variables. 

Other results from the multidimensional model evaluations suggested new interpretations 

for existing identification data sets which may be more plausible than current deterministic 

Probabilistic Models 
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identification models. A paradox concerning the metric which defines distances, and the 

judgment function used to determine similarity for highly confusable objects is resolved. These 

evaluations have led to a justification for the implementation of probabilistic models instead 

of deterministic ones in cases where perceptual noise is large. 

A recurrent theme in many of the papers in this thesis is to extend existing models, 

find underlying connections between models and attempt to reach increasingly higher levels of 

consolidation and simplification. Some areas of perceptual measurement may appear unrelated, 

but actually share identical models. An example is the multidimensional probabilistic model for 

Torgerson's method of triads and a general model for preferential choice. This relationship is 

discussed along with other special cases of this model. 

Organization of the Thesis 

The thesis is divided into three main sections covered in Chapters 2 ,3 and 4. Chapters 

5 ,6 and 7 contain the conclusions and summaries (in English and Dutch). 

Chapter 2 contains an overview of the content of the thesis (in two papers) and will 

give the reader a background on the deterministic precursors of the probabilistic models 

discussed in the thesis. 

There are three papers in Chapter 3 on unidimensional models. In the first of these 

papers, unidimensional models for Torgerson's and Richardson's methods of triads are derived and 

it is shown how the parameters of the models may be estimated using the method of nonlinear 

least squares. Two commonly used methods, the duo-trio and the triangular method are shown to 

be special cases of Torgerson's and Richardson's methods, respectively. In the second paper, 

the consequences of relaxing one of the assumptions concerning resampling within a trial in 

Richardson's method is explored. It is shown how decision conflicts may arise in which the same 

two stimuli may appear to be most alike and most different A model for the probability of 

occurrence of this event is derived. The final paper in this section deals with models (called 

Fechner-Thurstone models) in which physicochemical parameters (means and variances), a 

psychophysical transformation and perceptual variance are included in a single model. Parameter 
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estimates for a sample problem are provided along with a discussion of the parameter efficiency 

of models of this kind. 

Chapter 4 contains six papers. In the first three papers, multivariate models for the 

duo-trio and triangular methods are described. These papers provide both Monte Carlo results as 

well as formal models for these methods which have been solved using numerical integration 

techniques. A fundamental assumption in multidimensional scaling, that there is a monotonic 

relationship between proximity measures and the perceptual distances between objects, is shown 

to be false when the objects are confusable. 

Many commonly used models of similarity and choice are deterministic. The fourth paper 

in Chapter 4 addresses the development of a probabilistic model of similarity applied to same-

different judgments. This paper contains a probabilistic approach to multidimensional scaling 

using both real and artificial data. In the paper, and the one following it, it is pointed out 

that what may appear to be a Gaussian judgment function and the Euclidean metric for distances 

between stimuli using a deterrninistic model may also be thought of as an exponential decay 

function and the city-block metric when perceptual variability is formally included in the 

model. The latter model is also more consistent with a large body of literature concerning the 

judgment function and metric in generalization experiments. Consequendy, hidden structure in a 

data set may be revealed using a probabilistic model, where appropriate. 

The sixth paper in Chapter 4 provides a comparison of three types of stochastic or 

probabilistic models of identification with regard to perceptual dependence or the degree to 

which perceptual dimensions are correlated. It is shown that some of these models are highly 

sensitive to perceptual dependence and others are not The relevance of this result to 

experiments involving trained and untrained subjects is discussed. 
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CHAPTER2 

OVERVIEW 

Modelling similarity and identification when there are momentary fluctuations in 

psychological magnitudes. In F.G. Ashby (Ed.) Probabilistic Multidimensional Models of 

Perception and Cognition. 1991. Hillside, N.J.: Lawrence Erlbaum Associates, Inc, in 

press. 

A general probabilistic model for triad discrimination, preferential choice and two-

alternative identification. In F.G. Ashby (Ed.) Probabilistic Multidimensional Models 

of Perception and Cognition. 1991. Hillside, N.J.: Lawrence Erlbaum Associates, Inc, 

in press. 
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Modelling Similarity and Identification when there are 

Momentary Fluctuations in Psychological Magnitudes 

Daniel M. Ennis 
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To discover the hidden structure in what we observe is a source of great 

enjoyment and a worthy goal for scientists to achieve. This structure is often revealed by 

successively employing models of increasing elegance and generality. The physical attributes 

of any set of objects will never occur at exactly the same value. Similarly, the chemical 

fluctuations in time and space around each cell, the cacophony in the living world, ensure 

that mental representations for the same and different objects will not be identical. 

Explicit models for these fluctuations might be based on known molecular/cellular processes 

and principles. In the absence of this knowledge, it is often useful to employ models that 

can be justified on the basis of experience in model fitting. These models may be shown 

later to have a basis in more fundamental processes, but initially must be viewed as 

operational. The models to be discussed in this chapter fall into this latter class. 

The modest goal of this paper is to describe models which can be used to explore the 

consequences of momentary fluctuations in psychological values, irrespective of the processes 

responsible for these fluctuations. This exploration does indeed lead to the exposition of a 

hidden structure that cannot be seen from the perspective of models that ignore the existence of 

momentary fluctuations. 

General Principles 

An organism's behavior in responding to a stimulus can be modelled as if the organism 

transduced physical and/or chemical information into mental representations and employed some 
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decision process. Many aspects of this sequence can be expressed in alternative mathematical 

forms, from which a particular model can be chosen. This selection would be based on fitting 

the models to experimental findings. 

In general, psychological magnitudes can be treated as vectors in which each element 

of a vector corresponds to a value on a particular psychological continuum. Fluctuations in 

the vector magnitudes for a particular stimulus may occur because the physical stimulus may 

not be constant and/or because the information transduced to a mental representation 

(percept) may change from moment to moment Fluctuations in the object or in the mental 

representation of it can be modelled using particular probability density functions (pdfs). 

In many probabilistic models, attention is paid only to fluctuations at the psychological 

level by assuming that physicochemical stimulus variance is zero and it has been common to 

assume that the psychological pdf is normal. Later in this chapter, the issue of 

physicochemical fluctuation will be discussed. If ƒ is any psychological pdf, g is a 

judgment function for a particular task, and z is a vector which is a function of the 

momentary psychological magnitudes, then a very large number of tasks in psychology can be 

modelled based on the following simple equation: 

(1) 

D 

where P is the probability that a particular decision will be made and D is the joint domain 

off and g. If ƒ is a multivariate normal density function, then 



g 

. i 

(2) 

The superscript,', denotes a row vector and 121 is the determinant of 2. 2 is the variance-

Let x.and x, be vectors (n elements in each vector) of psychological magnitudes 
1 J 

corresponding to two objects presented to a subject on a single trial. If the subject were 

to be presented with exacdy the same objects an instant later, these psychological 

magnitudes might be different Assume that the momentary psychological values are mutually 

independently distributed with x. having density function/, and x, having density function 

i i j 
fj. The probability densities f. and/\ are multivariate normal distributions with means 

and \Lj and variance-covariance matrices Z. and 2^ Based on the momentary psychological 

values, x and Xj, the subject decides whether the stimuli are the same or different Let z = 

x . - x „ 2 is the variance-covariance matrix of z. When n = 2, 

covariance matrix for the z values and ji is their mean. 

Similarity Models 

' J 

0 ? + o J Pi O", + P* <*4 

. Pi 0 1 0 2 + P 2 0 3 0 4 

e x p { - 0. 5 ( z - 2 ( z - j i ) } 
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where a? and a? are the variances of the distributions from which x., and x,„ were drawn 
1 * il i2 

respectively; andoj are the variances of the distributions from which x ^ andx.^ were 

drawn respectively; p, is the correlation coefficient between the dimensions of x.; and p 2 is 

the correlation coefficient between the dimensions of x.. u is a vector of differences 

between the means of the momentary psychological values, jj j t and û .. 

A general formula for the distance between the vectors x. and x. is the y-Minkowski 
i j 

distance, d, where 

n 
d. = [ £ l z , l Y / Y Y * l . (3) 

V *=1 * 

If y is 1, the distance, d, is referred to as the city block distance, and if y is 2, d is 

referred to as the Euclidean distance. 

One can similarly define the distance between population means as 

It is extremely important to distinguish between d.. and 8... The distance, d.., is 
ij U iJ 

only defined for a particular trial. Once that trial is over, d„ has no further meaning as 

far as the subject is concerned. The distance, 8 „, is the distance between the means of the 
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distributions of psychological magnitudes that give rise to d„. The means and the variance-

covariance matrices of these distributions determine the likelihoods of occurrence of 

particular values of d„ within a particular trial, The probability that a subject will ever 

directly experience psychological magnitudes equal to jx̂  or JX^. is zero. In many traditional 

multidimensional scaling models that are not probabilistic (deterministic models), it is 

assumed that a subject will experience psychological magnitudes exactly equal to JX . and jx . 
' / 

whenever the two stimuli are presented. The difference between d.. and 8.. is central to 
if V 

differentiating between probabilistic models, which allow for fluctuations in psychological 

magnitudes from trial to trial, and deterministic models which make no probabilistic 

assumptions. 

The Similarity Function 

In Equation 1 it can be seen that the probability of making a particular decision 

depends on ƒ and g. The function, g, is the judgment function. Suppose that g was concerned 

with perceived similarity between the momentary values, x̂ . and x .̂ Then g could be called 

the similarity function. Similarity can be defined in terms of d (which is a function of z). 

There are many different forms which could be proposed for the function, g. An obvious 

requirement would be that g decreased as d increased. Shepard (1987) proposed an exponential 

decay similarity function as a universal principle. A flexible function which includes the 

exponential decay function is 
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g(d) = cxp(,-d\ a a 0. (5) 

In order to satisfy the earlier stated requirement that g(d) should decrease as d 

increases, a must be 2 0 or g(d) would become larger as d became larger. The particular 

value for o may be different for different subjects and experimental conditions, although it 

is conceivable that a may be a constant 

In order to use Equation 1, it is necessary to specify the probability density 

function for the momentary psychological magnitudes (Equation 2) and the judgment function to 

be used in making a particular decision (Equation 3). Both of these have now been defined 

and it follows from Equation 1 that the similarity of two objects over all possible trials is 

e x p { - 0 . 5 ( z - [ i ) r i ; " 1 ( z - | i ) } 
P = J exp(-<T)dz. (6) 

R* ( 2 , ) w / 2 | z | 1 / 2 

Equation 6 does not include response bias, which can be accounted for by multiplying the 

right had side by a bias parameter. P is the expected value of g. Since Equation 6 

postulates a normal distribution for the psychological magnitudes, originally proposed by 

Thurstone (1927) and then uses a general form to define similarity, which was motivated by 

Shepard's recent (1987) and earlier work, this model of similarity could be called a 

Thurstone-Shepard model. 
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Equation 6 can be evaluated numerically for a broad range of distance metrics (by 

varying y) and similarity functions (by varying a). Computations of this type will be 

discussed a litde later. There is a case, however, that deserves special mention because it 

leads to a closed form for Equation 6. If one assumes that the metric of d is Euclidean (y 

is 2) and that a in the similarity function is 2, then 

- 1 / 2 * -1 
P = (IZIU!) exp[u (2J -Dji] , (7) 

-1 

where J = 2 +21 and I is the identity matrix. 

The derivation of Equation 7 is given in Ennis, Palen and Mullen (1988). Naturally, 

Equation 7 is much faster to compute than Equation 6 for the special case of o = 2 and y = 2. 

For 5 decimal place accuracy, computational experience suggests a speed improvement of about 

3 to 4 orders of magnitude. Of course, Equation 7 is only one special case, and not 

necessarily the most important one. A more interesting case may be when a = 1 (g is 

exponential decay) and y = 1 (city block metric). A simpler form for this case has not so 

far been derived. 

Equation 5 gives g as a continuous function of d. Suppose that g was, instead, a 

step function of d. This would mean that G would be 0 or 1 depending on the value of d 

relative to some threshold or criterion, x. In order to meet these objectives, let 

S(d) = 0 . 5 { s g n ( T - d ) + l } , (8) 



1 4 

where sgn is the signum function. The signum function takes on the values 1,1 and -1 

whenever x-d is greater than, equal to or less than zero, respectively. For instance, if x -

d>0, then d < x, sgn(-r-d) is 1 and g(d) is 1. Similarly if t = d, g(d) is 1. However, if 

x - d < 0, then d > x and sgn(T-d) is -1, leading to g(d) = 0. Using Equation 1, with this 

new definition of g results in 

' . i 

e x p { - 0 . 5 ( z - | i ) X ( z - jx) } 
P = ƒ 0.5{sgn(-c-d>l} dz. (9) 

R" ( 2 * ) * / 2 | z | 1 / 2 

x may be a fixed value or may be drawn from a particular probability density function and 

vary from trial to trial. 

Equations 6 and 9 have been discussed in terms of the expected value of the 

similarity function, but also correspond to the probability of giving a same response in a 

same-different task. Data of this kind will be analyzed later using Equations 6 and 7. 

Perceptual Dependence and the Form of the Similarity Function 

Ennis and Ashby (1990) recentiy showed that different probabilistic identification 

models differ gready with regard to their sensitivity to perceptual dependence. It was 

shown that probabilistic identification models based on the idea of response regions 
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(multidimensional signal detection theory) were more sensitive to perceptual dependence than 

models based on distance comparisons or the Shepard-Luce choice rule. See Ashby (1988), 

Ashby and Gott (1988), Ashby and Perrin (1988) and Ashby and Townsend (1986) for a discussion 

of recent developments in multidimensional signal detection theory. An identification model 

based on the exponential decay similarity function was particularly insensitive to perceptual 

dependence. This sensitivity was measured by comparing the difference between identification 

performance predictions when the variance-covariance matrices and mean difference vectors 

varied. Cases in which the correlation coefficients of the distributions being considered 

were either both positive or both negative were of special interest 

Some previous experience in evaluating Equation 9 (the step function) with different 

variance-covariance matrices, and a comparison of these evaluations with Equation 6, 

suggested that the sensitivity observed is related to the degree to which the judgment 

function, g(z), approaches a step function. At the opposite extreme to the step function is 

a linear function of z, the expected value of which (from Equation 1) is a linear function of 

the mean, ji. Multidimensional signal detection identification models can be formulated in 

terms of Equation 1 by integrating over Rn with./(z) as the probe's probability density 

function and g(z) as a step function of the likelihoods that z is a random deviate from the 

two memory distributions. In order to test the step function hypothesis, Equation 6 was 

evaluated for a series of forms of the function, g, and for two cases of perceptual 

dependence and two levels of distributional overlap. Taking the basic form, g(z) = expO-d""), 

a was varied from 1 to 25 in unit increments. These functions include exponential decay, 
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Gaussian, and a series which, at a = 25, approaches a step function. Figure la shows the 

form of g when a is 1 , 2 , 6 and 25. Figure lb gives the difference between the values of P 

(from Equation 6 ) in the two perceptual dependence cases for the two levels of distributional 

overlap. When a is 1, the exponential decay case, the effect of perceptual dependence is 

very small. As a increases, especially if the level of distributional overlap is not great, 

the difference between the perceptual dependence cases increases and ultimately saturates. 

The maximum difference is seen when a step judgment function is operative. 

This result has important implications for a variety of models which use Equation 5 

to define similarity. One example is the Shepard-Luce choice rule, to be discussed in the 

next section. If Shepard's suggestion that the exponential decay similarity function 

formalizes a universal principle, then perceptual dependence will have only a small effect on 

task performance when objects are perceptually confusable. This theoretical result might be 

used to test hypotheses concerning the form of g that would then support or refute Shepard's 

theory concerning the nature of the similarity function. 

Identification Models 

Thurstone-Shepard-Luce Models 

One approach to modelling absolute identification is to assume that there are m 

memory exemplars corresponding to m stimuli, S^, S ,̂—, S . A probe stimulus, S^, which may 
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or may not have been in the original ensemble, is presented. It is assumed that the subject 

compares this probe to stored exemplars by deterrnining the distances, d^, d^,..., d^ and 

then uses them in a similarity function such as Equation 5 to determine the similarities. 

Nosofsky (1986) modelled identification performance on the basis of the Shepard-Luce choice 

rule which models the probability that a subject will respond by identifying stimulus as 

stimulus S.( i.e. respond R̂ . to Sp. As a deterministic model, the choice rule is 

b.h(d ) 
P ( R J S p = _ J (10) 

m 
Z bk(d ) 

j=l J 1 

where P(R.IS A is the probability of responding R. when the stimulus is S,, b. is the 
IK I fC I 

response bias parameter for the response R ,̂ d^. is the distance between stimulus and the 

memory representation of S., and h is a similarity function such as that given in Equation 5, 

a a 0. 

In a probabilistic model of identification, one might assume that the Shepard-Luce 

choice rule was being used within a trial and interest might center then on the expected 

value of the right hand side of Equation 10. Hence, when fluctuations in psychological 

magnitudes are to be accounted for, 
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P(R.IS ) = E 
I fC m 

X b.h{d,) 

(11) 

where E(r) is the expected value of r. 

Consider the special case in which there are only two memory distributions with 

multivariate normal probability density functions,./; and^. and a probe with density 

function/^. Let u = x^ - x., v = x^ - x , and z = (u,v). X is the variance-covariance 

matrix of the joint distribution of u and v, or z, and JA is the vector of mean differences 

previously defined. It can be shown that 

X = V 2 ] > w i t h 

L 2 X 
2 3 

X, = X, + X., X„ = 2 , and X„ = X, + X.. 
1 k i 2 k 3 k j 

The judgment function introduced in Equation 1 can now be defined as a function of z 

using the Shepard-Luce choice rule by rewriting Equation 10 as 

*(z) = 
b.Kdk.) 

(12) 

2 bMd) 
j=l 3 KJ 
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Applying Equation 1 to obtain the choice probability, it is necessary only to 

integrate over the vector space composed of all 2n-tuples represented by z, weighting each 

element of the space by its probability of occurrence (given by the multivariate normal 

density function), or 

e x p { - 0 . 5 ( z - u / I ' ^ z - u H bMd ) 
P(R. |S^= ƒ ƒ _ dz. (13) 

i ki J kj 

Since Equation 13 includes models which are probabilistic extensions of the Shepard-Luce 

choice rule, these models can be referred to as Thurstone-Shepard-Luce models. 

If a = 1 and y = 1, h is an exponential decay function and the metric of d^. is city-

block. If a = 2 and y = 2, h is a Gaussian function and the metric of d is Euclidean. 

Identification Models Based on Ordinal Decision Rules 

An alternative decision making process to the Shepard-Luce choice rule is to select a 

response based on the relative size of the momentary distances, d^. and d^ If d^. < d^. 

then the subject would give R as the response, for instance. The probabilistic model for 

this type of decision rule is identical (with two memory representations) to a Thurstonian 

variant of Torgerson's method of triads (Torgerson, 1958) and to a probabilistic 

generalization of Coombs' preference unfolding model (Coombs, 1964). Special cases of this 
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model have been discussed by Ennis and Mullen (1986), Mullen and Ennis (1987), Mullen, Ennis, 

De Doncker and Kapenga (1988) and Ennis, Mullen and Frijters (1988). A major problem with 

this model had been the computing time needed to handle numerical integration of a 2n-fold 

integral. Reduction of this integral to a single integral, for all values of n, is given in 

Mullen and Ennis (1990) and discussed in Chapter 5. This form of the model contributes 

importantly to solving the computational problem posed by the 2n-fold integral. Reference to 

the use of the model for absolute identification is given in Chapter 5. 

Identification Models Based on Category Distributions 

Nosofsky (1986,1990) discussed a model of categorization which was based on the 

context theory of classification proposed by Medin and Schaffer (1978). In this model, one 

assumes that a subject stores category exemplars in memory and that the probability of giving 

a category I response to stimulus is 

PCR/sp = c / ' , (14) 

XbT s L.(J)s,. 
J JjeCj j kj 

where b is the response bias parameter for category C rL{J) is the likelihood that J J j 

exemplar^ is presented during training as a member of category Cj, and s^. is the similarity 

of exemplar, and exemplar.. 
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In the previous section on Thurstone-Shepard-Luce models, it was assumed that each 

stimulus representation (either a probe or a memory representation) can be treated as a 

random value from a particular probability distribution. In this way, it was possible to 

capture the effect of momentary fluctuations in psychological magnitudes. It was also 

assumed that subjects make within-trial decisions based on single instances of stimulus and 

memory representations which were assumed to have been drawn from these distributions. The 

categorization model given in Equation 14 is a deterministic model with a finite set of 

training exemplars making up each category, and a finite set of likelihoods that each 

exemplar has been presented during training. Imagine, instead, that a category contains an 

infinite number of category exemplars with likelihoods of occurrence determined by a 

probability density function. The categories may now be viewed as the distributions 

corresponding to memory representations of individual stimuli and Equation 14 can be extended 

to yield identification probabilities for particular stimulus values. Hence, 

R n 
P(R.ISp - (15) 

All of the terms in Equation 15 have been defined in the previous section. Note that 

Equation 1 has been used in the numerator and denominator to obtain the expected values of 

the similarity of stimulus S to each of the m memory representations. 
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Equation 14 was a deterministic model for the categorization of a particular 

stimulus, and hence made no allowance for the possibility that the probe's mental 

representation may be a random variable. A more general model than Equation 15 is one in 

which presentation of the probe stimulus evokes a momentary value from a probability 

distribution itself. Thus, it is also necessary to integrate over the probe or stimulus pdf. 

Thinking again in terms of Equation 1 where, 

m 

y=l V 

J f.(x)Kdkj)dx 

this means that 

P ( W = ƒ fkte8k

{X)dX- ( 1 6 ) 

Equation 16 gives the probability of identifying stimulus S, as stimulus S. based on the 

assumption that probes and memory representations of stimuli can be modelled as if they were 

drawn from particular probability distributions. A deterministic categorical model, such as 

that given in Equation 14 can be viewed as a special case of this model in which there are a 



23 

finite number of elements in each category with a corresponding finite set of likelihoods of 

occurrence of each element 

A Resolution of the Shepard-Nosofsky Paradox 

Shepard (1987) has proposed the exponential decay similarity function as a general 

form or universal principle of considerable importance when organisms make decisions about 

how to react to novel stimuli. Shepard has also given arguments in support of the city-block 

metric when psychological dimensions are separable (they can be attended to separately) and 

the Euclidean metric when they are integral (they cannot be attended to separately). Working 

with separable stimuli, Nosofsky (1986) provided very strong support for the Euclidean metric 

and a Gaussian form for the similarity function, which appeared to be incompatible with 

Shepard's theory. Both Nosofsky and Shepard used deterministic models and, therefore, did 

not take momentary fluctuations in the psychological magnitudes into account Nosofsky's 

stimuli were highly similar, suggesting that perceptual variance should be included formally 

in models of his data. Equation 6 presents a form that should lead to a modified Gaussian 

relationship between P and 8. The extent of modification depends on the similarity function 

exponent, a, and the metric defining the within-trial distance, d. As can be seen from 

Figures 2,3a and 3b, when the similarity function within a trial is exponential decay, the 

relationship between P and 8 appear to be much more Gaussian in form than exponential decay. 

These results are discussed in Ennis, Palen and Mullen (1988) and Ennis (1988a,b). Based on 
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these theoretical findings, it would be reasonable to infer a Gaussian similarity function if 

a deterministic model is used to uncover the underlying form in the presence of perceptual 

noise. Thus, although subjects may actually use an exponential decay similarity function in 

making decisions, this function may not be uncovered by using a deterrninistic modelling 

approach to the data. 

It has also been shown (Ennis, 1988a) that if subjects actually use an exponential 

decay similarity function and the city-block metric within a trial to determine d, then the 

Euclidean metric distance between stimulus means, 8, is at least as satisfactory in relating 

similarity to distance as the city-block metric. Thus, the two hidden components - the form 

of the similarity function and the choice of metric - may not be revealed by employing a 

deterministic model in the presence of momentary fluctuations or noise. Further comments on 

this issue are in Nosofsky (1988) and Shepard (1988). 

Nosofsky (1985) used the Shepard-Luce choice rule, Equation 10, to fit the absolute 

identification performance data of Kornbrot (1978) on tones. Both the exponential decay and 

the Gaussian sirnilarity functions were used to model the data. The latter yielded a 

significandy better fit than the former for a neutral condition and a payoff biased 

condition. Equation 16, a probabilistic identification model, was used with a constant 

variance for stimuli and memory distributions of 1.0 to fit the same data. The exponential 

decay function fit the data at least as well the deterministic or probabilistic Gaussian 

models in the neutral condition (based on minimum chi-square and nonlinear least squares 

fits). In the payoff biased condition, the exponential decay probabilistic model fit 
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significantly better than its deterministic counterpart, but not as well as the Gaussian 

probabilistic or deterministic models. However, all of the models were comparable when 

distance or squared distance in the similarity function was multiplied by a rate decreasing 

parameter [i.e. c in g(d) = expC-cd")]. This modelling provides further support for the idea 

that when the exponential decay similarity function is operative, it may require an 

appropriate probabilistic model to reveal i t 

Multivariate Parameter Estimation 

In order to make use of any of the models given earlier in fitting a particular data 

set, it is necessary to have an efficient, reliable procedure for parameter estimation. The 

parameters of interest in the probabilistic models are: y, the metric-defining parameter, a, 

the exponent in the similarity function; ]i. and Z.t the vector of means and the variance-

covariance matrix, respectively, of the stimulus or memory distributions. Hypotheses 

concerning y and a can be tested by specifying particular values of these parameters (for 

example, 1 or 2) rather than allowing them to vary freely. This approach reduces the problem 

to one of estimating means and variance-covariance matrices under assumptions concerning the 

metric and form of the similarity function. There are a number of approaches to solving the 

estimation problem, one of which is to use the Levenberg-Marquardt algorithm for nonlinear 

least squares estimation (Dennis and Schnabel, 1983). Let a be a vector containing the 

parameters to be estimated. 
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Define 

«7..(a)=p..-P.. , 
y y y 

where p.. is the observed proportion of judgments involving a comparison of stimulus S and 
y ' 

stimulus Ŝ . (this could be a ''same-different" judgment or an identification error in which 

the response to presenting S. is stimulus Sj). P„ is the theoretical value obtained by 

solving the equation corresponding to the model being tested at the parameter values, a. Let 

q(a) be a vector with typical element q „(a). The value to be minimized is the residual sum 

t 0 

of squares, q(a) q(a). If a is an initial estimate of a, a series of approximations are 

computed as 

a n + 1 = a n - [ a D + / J ] ' 7 q ( a \ 
n n n n n 

where is the Jacobian matrix (matrix of partial derivatives) evaluated at a1 1, D^ is a 

diagonal matrix with entries equal to the diagonal of J^Jn> arid is the Marquardt 

parameter, a positive constant is usually approximated using finite differences in 

double precision. The Marquardt parameter (a ), initially 0.01, is quadrupled if the 
n 

residual sum of squares increases from one iteration to the next and halved if it decreases. 



27 

Parameter Estimation using "Same-Different" Judgments 

36 means and standard deviations were selected so that pairwise similarity values, 

P„, would be in the range 0.5 to 1.0. This selection ensured a high degree of 

distributional overlap. Figure 4 shows the 36 distributions with 2 standard deviation equal 

probability contours. One of the stimuli was assigned the mean vector 0. All correlation 

coefficients were assigned the value 0.0. Setting a = 2 and y = 2, the matrix of 666 

similarity values (all stimulus pairs including self-comparisons) was obtained by solving 

Equation 7 for the selected means and standard errors. An iterative nonlinear least squares 

algorithm, as described above, was used to estimate die means and variance-covariance 

matrices from the matrix of paired simulated similarity values. A key to solving this 

problem and avoiding local minima is the generation of good initial estimates of the 

parameters. 

An attempt to accurately recover all of the parameters for the 36 stimuli (all means 

and standard deviations) in one stage failed. Various strategies for estimating the 

parameters led to a successful analysis that was conducted in three stages. In the first 

stage, randomly generated values of the means were obtained and it was assumed that all 

standard deviations were 0.2 and that correlation coefficients were 0.0. The value of 0.2 

for the standard deviations was chosen because this value yields a self-similarity value of 

about 0.85, which roughly corresponded to the average diagonal value of the same-different 

matrix. Parameter estimates were obtained which rmnimized the residual sum of the squares, 
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q(a) q(a). The parameter values at this minimum were then used as the starting configuration 

for a second stage in which all standard deviations were assumed to be equal across 

dimensions for a particular stimulus, but may vary across stimuli. The parameter estimates 

at the minimum from this stage were used as the starting configuration for the final stage in 

which the standard deviations were allowed to vary across both stimuli and dimensions. The 

residual sum of squares at this minimum was < 0.001. 

The results of this analysis are given in Ennis, Palen and Mullen (1988) in which it 

is shown that estimates of the parameters differed from the original values only in the third 

decimal place. A plot of the recovered configuration was indistinguishable from a mirror 

image of Figure 4. It is interesting to note that the configuration obtained was a mirror 

image of the original configuration. Unlike traditional multidimensional scaling analysis 

based on deterministic models, the solution configuration from the type of probabilistic 

model used may not be invariant to rotation. This orientational uniqueness is a consequence 

of variance inequality. 

An analysis of the Rothkopf (1957) Morse code data using Equation 7 to model the 

same-different judgments is given in Ennis, Palen and Mullen (1988). It was pointed out in 

that paper that differences between pairs of identical stimuli obtained from same-different 

judgments can be viewed as a consequence of differences in variances on one or more of the 

dimensions involved in the decision process. Ashby and Perrin (1988) have also provided this 

kind of interpretation of self-similarity. This means that P will be closer to 1.0 when 

the variance is small than when it is large. In the Rothkopf Morse code data, many of the 
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same-different judgment proportions for pairs of identical stimuli differ from each other and 

many are less than 1.0. In a deterministic model in which the proportions depend on 8, the 

probability for self-similarity must always be 1.0 when 8 = 0 and a judgment function of the 

form, g(8) = exp(-8 a ) , is used. This is not the case for a probabilistic model, such as that 

given in Equations 6 and 7. In these models, the within-trial distance, d, will almost 

always be different from zero when 8 is zero because psychological magnitudes for a 

particular stimulus will vary from moment to moment 

Using the closed form, Equation 7, where a = 2 and y = 2, the Rothkopf Morse code 

data was modelled for the cases of equal and unequal variance within a stimulus distribution. 

The unequal variance model gave a slightly lower residual sum of squares than the equal 

variance model, but the configurations of means for the stimuli were almost identical and the 

fit improvement was not significant at p < 0.05. Ennis, Palen and Mullen (1988) plotted the 

relationship between the size of the standard error for a stimulus distribution and the 

degree to which that stimulus is isolated from the other stimuli in the set under study 

(measured by the average Euclidean distance between a stimulus and all the other stimuli). 

The size of the standard error was shown to decrease with increasing degree of isolation of a 

stimulus from the others in the ensemble. Stimuli which were located in close proximity to a 

large number of other stimuli had, therefore, distributions with the largest variance. 

Shepard's (1963) nonmetric multidimensional scaling analysis of the same data yielded a 

configuration of points which were quite similar to the location of the means of the 

distributions from probabilistic modelling. Certainly, the same interpretation of the 
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dimensions (number of signal components and the dots/dashes ratio) would have resulted from 

both analyses. This result is consistent with the fact that many of the same-different 

judgment probabilities were less than 0.5 suggesting, in the absence of response bias, that 

many pairs of signals were not highly confusable. 

An analysis of the Rothkopf data when a = 1 and y = 1 (the exponential decay, city-

block metric model) using Equation 6, solved numerically, resulted in a configuration with a 

lower residual sum of squares than that obtained when a = 2 and y = 2 (p < 0.01). Some 

problems still remain to be solved with respect to local minima and computing efficiency for 

this case, and these will be taken up in a future paper. Based on the previous discussion 

concerning the judgment function and metric, the a = 1 and y = 1 case should fit the data 

best if the perceptual dimensions are separable. If the dimensions are integral, one would 

expect y to be 2. 

Fechner-Thurstone Models 

In all of the models discussed so far, momentary fluctuations have been assumed to 

occur in the psychological magnitudes. Where specific probability density functions have 

been considered, attention has been restricted to multivariate normal functions, although 

Equation 1 is not necessarily restricted to this model. It is valuable to attempt to model 

performance in psychological tasks in terms of both psychological and physicochemical 

parameters because such models are likely to shed light on the material basis for 
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perceptions. From the standpoint of modelling efficiency, it can be shown also that in many 

cases this type of model requires fewer parameters than models that ignore physicochemical 

parameters. Ennis and Mullen (1990) recendy developed a general structure for connecting 

Fechnerian models with Thurstonian models. The purpose of this section is to introduce some 

of these ideas and to point the discussion in this chapter beyond probabilistic models which 

have all been based on Thurstonian concepts. 

Assume that there are a number of objects with a common attribute that can be 

measured on a single physicochemical continuum. (A generalization to many continua will be 

mentioned later.) A stimulus magnitude, q>., is the value on this continuum for a particular 

stimulus object Let/^((p.) be some probability density function of (p.. Following a 

psychophysical transformation, the stimulus magnitude is represented mentally by a 

psychological magnitude, y. . Let g Op.) be any one-to-one function of <p. which can operate 

on the entire domain oif^. If any psychophysical transformation that connects 

physicochemical measures to mental representations is called a Fechnerian function, then 

g is such a function. Since g is one-to-one, it is invertible because for g (<p̂ ) = g Op^). 

the only solution is q>̂  = q>̂ . All monotonic functions are one-to-one. The pdf of \jf., 

^(Vj), is 

/ ^ g - ' ^ ^ - ' ^ y d v . i , 

where 0 g~l (\(f.) is a composition function. If variation inherent in the biological system 

of the organism was zero, then each time an object with a particular physicochemical value 

was presented, it would be represented mentally by exactly the same psychological magnitude 
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after the action of the transduction mechanism. However, it is more realistic to imagine 

that this value is a parameter, such as the mean, of a distribution of psychological 

magnitudes. The psychological magnitude, y. , is then, a parameter in a probability density 

function of momentary psychological magnitudes, x , which may occur if central or 

peripheral noise is present, for instance. I^t/^(xly.) be any pdf of x ty.. Since the 

pdfs of \y. and xty. are and ƒ , the pdf of x is 

\ f^x.^h^.^ (17) 

D 

where D is the domain of h^. 

The function ƒ^ may be a multivariate pdf of a vector of physicochemical measures 

instead of the single variable, <p.. The function g, a one-to-one function, would map 

vectors from the domain space o f t o either single values (if g is a real-valued function) 

or vectors (if g is a vector-valued function) in the range space of g. Since g is a one-to-

one function, g would have an inverse. Similar steps to those taken in deriving Equation 17 

can be taken to derive the pdf of x. (the vector equivalent of x , the momentary 

psychological magnimde). If z is some function of the momentary values in a trial, in terms 

of Equation 1, its pdf would be/. Returning to Equation 1, models for a great many 

psychological measures and tasks can be derived, such as similarity and identification 

performance. However, unlike many of the specific models discussed in this chapter, very 

special requirements for ƒ , ƒ , and g would be needed to ensure a multivariate normal pdf 
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for the momentary psychological magnitudes, x.. Ennis and Mullen (1990) discuss one such 

case leading to a unidimensional normal pdf. 

In the previous models discussed in this chapter, no attention was given to stimulus 

parameters or to processes which might have led to the percepts. In this sense, the 

probabilistic models already discussed are much more restrictive than the Fechner-Thurstone 

models. These latter models, however, require a great deal of work before they can be put to 

use in modelling experimental results. 

Some Computing Notes 

Integral expressions such as Equations 6 ,9 ,13, and 16 were evaluated numerically on 

both Gould 32/97 and Trace Multiflow computers. An adaptive routine by Genz and Malik (1980) 

was found to be useful for multiple integration. A check for gross errors in the numerical 

computations was achieved by conducting large scale (100,000 trials per estimate) Monte Carlo 

evaluations. 

In some cases, such as the evaluation of Equation 13, significant savings in computer 

time can be achieved by using Cholesky factorization to avoid the need to compute/(z). 

Taking the standard multivariate normal pdf, a selection of values on each dimension (for 

example, the median of equal probability intervals) can be taken and converted to values in 

probabilistically equivalent intervals from the multivariate normal pdf of interest This is 

achieved by computing z = Ly + ji, where L is a lower triangular matrix such that LL l = I , y 
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is a vector with a standard multivariate normal pdf, and u- is the mean of the desired pdf. 

Since the interval bounding each z is probabilistically equivalent to each corresponding 

interval bounding y, it is only necessary to compute the probability contents of these 

intervals once. Numerical integration offlz)g(z) then becomes a dot product operation with 

a constant vector of probability weights [a vector computed from flz) at particular values 

of z] for all values of 2 and ji. These values can be computed once, stored and reused as 

needed. It is still necessary, of course, to compute g(z) for all values of z. In some 

cases, this approach to numerical integration can lead to significant improvements in 

computing speed compared with adaptive numerical integration of the entire function. 

Concluding Remarks 

Changes occur continuously in the physical and chemical properties of stimuli in the 

world in which we live. Our biological transduction and information processing systems do 

not remain static from moment to moment either. Although universal principles governing 

acquisition of information, judgment and behavior may exist, they may not be revealed by 

using deterministic or static models of these processes. One approach to modelling 

fluctuations or changes in psychological magnitudes from moment to moment is to treat the 

information-containing vectors probabilistically. A general approach to thinking about and 

formulating probabilistic models for many psychological tasks was presented in this chapter 

with specific applications to similarity and identification performance. It was shown that 
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probabilistic models may be useful in revealing the nature of the judgment function and the 

distance metric when stimuli are perceptually similar and this led to a resolution of a 

paradox created when a deterministic model had been used to model identification performance. 

As a self-criticism, it must be pointed out that the probabilistic models chosen are somewhat 

arbitrary. A framework for building models with more concrete connections to 

physicochemical measures, however, has been sketched in the Fechner-Thurstone models. 
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Figure 1. The effect of the form of g, the judgment function, on the sensitivity of its 

expected value, similarity, to perceptual dependence, (a) Four judgments of the 

form, g(d) = exp(-da), where a = 1,2,6 and 25. (b) The difference between the 

similarities of two pairs of distributions: In the first pair, correlation 

correlations between dimensions are both -0.8; in the second pair, correlation 

coefficients between dimensions are both +0.8. In both cases, 8 =1.0. The curve 

with the higher asymptote corresponds to distributions with a standard deviation 

of 0.2, the lower curve corresponds to distributions with a standard deviation of 

1.0. 
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Figure 2. Expected value of similarity as a function of the Euclidean distance between the 

means of the distributions of psychological magnitudes for values of a of 1,2 and 

3 in the similarity function g(d) = exp{- A 
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Figure 3. Expected value of similarity as a function of the city-block distance between the 

means of the distributions of psychological magnitudes for values of a of 1,2 and 

3 in the similarity function g(d) = expi-d0"). a) Means differ on one axis 

only; b) means differ equally on both axes. 
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Figure 4. Thirty six highly overlapping distributions with different variance-covariance 

matrices. Each distribution is represented by its 2 standard deviation equal 

probability contour. 
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From a mathematical modelling viewpoint, there are very close parallels between triad 

discrimination, preferential choice and two-alternative identification under certain assumptions 

concerning the decision rules employed. The purpose of this chapter is to introduce a very 

general probabilistic model in a computationally simple form which can be used to model results 

obtained from several different types of psychological tasks. Chapter 16 contains a discussion 

of a number of probabilistic models of identification. One of these models, based on ordinal 

decision rules, will be covered in this chapter. 

It might be useful to begin by providing a general overview of tasks involving three 

alternatives. First consider the situation in which all three alternatives are stimuli. 

Depending on the instructions, these tasks are variants of the method of triads. There are 

two methods which have been commonly discussed in the literature. Torgerson (1958) refers to 

one of them as the "complete method of triads", which we will call Torgerson's method of 

triads and the other as "Richardson's method of triadic combinations" (1938), which we will 

call Richardson's method of triads. In Torgerson's method of triads, the three objects are 

presented to the subject in three independent trials with the instruction to select one of 

the two objects most similar to the third. The third object is a different one of the three 

objects in the three trials. For instance, in the first trial, the subject's task might be 

to select which of S. or S is most similar to S.. JP is the probability that S. is more 
J IC IX J/C I 

similar to S. than S . The three trials are independent and may give rise to different 
J * 

psychological magnitudes from trial to trial for the same stimulus object Richardson's 
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method of triads involves a single presentation of the three objects and the subject's task 

is to judge which two objects are most alike perceptually and which two are most different 

It is important to point out that the psychological magnitudes are assumed to remain zt fixed 

values during a trial for both Torgerson's and Richardson's methods. If this is not the case 

(which is not unlikely for Richardson's method because two decisions are required per trial), 

the same two objects may appear to be most alike and most different A model for this kind 

of result has been derived and is given in Ennis, Mullen, Frijters and Tindall (1989). A 

very common practice in the sensory evaluation of foods and beverages is to present three 

stimuli, two of which are (presumptively) physically identical. Three methods are commonly 

used: the duo-trio method, the ABX method and the triangular method. In the duo-trio method, 

one of the two "identical" stimuli is chosen as a standard and the subject's task is to 

decide which of the other two stimuli is most like the standard. In the ABX method, the two 

"different" stimuli are chosen as standards (A and B) and the task is to pick the standard 

which is most like the third stimulus (X). Both the duo-trio method and the ABX method are 

variants of Torgerson's method of triads. The third method, called the triangular method, 

involves the selection of "the most different" stimulus and is a special case of Richardson's 

method of triads. 

The three alternatives just discussed do not have to be mental representations of 

physical stimuli presented during a trial. They could be memory representations of stimuli 

previously formed by subjects following presentation of the stimuli at a different time. 
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They could also be representations of objects or concepts that the subject never experienced 

materially. For example, one alternative might be an ideal point or ideal point 

distribution. Tasks which make use of the idea of memory representations occur in 

identification and categorization experiments. The concept of the ideal point is used in 

preference modelling. In a two-alternative identification experiment, a subject might be 

assumed to compare a stimulus representation with two memory representations and to 

"identify" the stimulus by naming the memory representation most similar to the stimulus. A 

model for paired preference might be based on the assumption that the preferred stimulus, of 

two, is the one which is most similar to an ideal point 

Due to the large number of applications for a viable model involving the comparison 

of three alternatives, a computationally tractable form would seem to be highly desirable. 

This model could then unify a large number of special cases dealing with a variety of 

experimental methods under one umbrella. 

In a previous paper (Ennis, Palen & Mullen, 1988), it was mentioned that the 

wandering ideal point (WTP) model (De Soete, Carroll & DeSarbo, 1986) is closely related to a 

Thurstonian variant of Torgerson's method of triads (Ennis, Mullen & Frijters, 1988). The 

WIP model is a probabilistic interpretation of Coombs' (1964) preference unfolding model. In 

the WIP model one assumes that the stimulus points are fixed and that the ideal point 

"wanders" by supposing that momentary ideal point values within each trial in a preference 

task are drawn at random from a multivariate normal distribution. The preference decision 
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depends on the Euclidean distances between the ideal point value and the stimulus values. 

The subject chooses the stimulus closest (smallest Euclidean distance) to the ideal point 

when making a preference judgment In a different context, Hefner (1958) had postulated 

multivariate normal distributions (with identity variance-covariance matrices) for momentary 

psychological values for stimuli. If, unlike the WTP model, it is assumed that psychological 

values for both the stimuli and the ideal point are drawn from multivariate normal 

distributions (for which the variance-covariance matrix need not be the identity matrix), 

then the resulting choice model is more general than the WTP model and also more general with 

regard to the stimulus distributions than Hefner's model or the model of Zinnes and Griggs 

(1974), where it was assumed that the stimulus distribution variances are equal. 

Consider the decision process specified in Torgerson's method of triads. The subject 

is presented with three stimulus objects, S.,S. and 5, and given S., for instance, is asked 

i j k i 
to decide which of S. or S, is most like S.. If S. is assumed to be the ideal point then J k i i 

the probability of selecting S. instead of is the probability of preferring 5y over S^. 

This decision is based on the Euclidean distances between the momentary values. An equation 

for computing the probability of this event called P , is given in Ennis, Mullen and 
l JK 

Frijters (1988) for the unidimensional case. In an identification experiment S might 

represent a probe and Sj and might represent the memory of stimuli S. and that have 

been established through training. An identification decision based on the distance between 

momentary values corresponding to S. and S., and S. and S could be modelled in exactly the 



55 

same way as triad discrimination and preferential choice. Consequendy, these three 

psychological tasks - triad discrimination, preferential choice and two-alternative 

identification - have exactly the same mathematical model under appropriate assumptions. 

Model Assumptions 

Multidimensional tri-stimulus models for the duo-trio and triangular methods have 

recently been developed (Ennis & Mullen, 1986a,b; Mullen & Ennis, 1987; Kapenga, de Doncker, 

Mullen & Ennis, 1987; and Mullen, Ennis, de Doncker & Kapenga, 1988). A useful starting 

point in developing a multidimensional extension of Torgerson's method of triads is to begin 

with a special case, the duo-trio method. 

In the duo-trio method, one assumes that the distributions for two of the stimuli are 

identical. For instance, the distributions corresponding to S. and S might be identical and 

one of these stimuli, say S., is designated as a standard. The subject's task is to decide 

which of S. or S is most like S.. The means of the distributions corresponding to the three 
J *c I 

stimuli are jx., ji. and jx and )x. = jx.; their variance-covariance matrices are 2., 2 . and 2 

and 2j = 2̂ .. If x̂ .and x̂ . are the momentary psychological values corresponding to two 

stimuli, S. and 5., and x represents the corresponding magnitudes for a third stimulus, S , 
I J K K 

then in a particular trial, a correct overt response (with probability, P .A will be 
l JK 

obtained if 
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(i) l x . -x , l< lx . -x , l if S. is the standard, or 
i J i k i 

(ii) lx.-x.l < lx . -x , l i fS . i s the standard. i J J k j 

Cases (i) and (ii) give identical results, so the following discussion will focus on case 

(i). 

Mathematical Forms 

Let (x. - x.) = u and (x. - x ) = v. As shown in Mullen and Ennis (1987), P.. 

corresponds to the probability density content of the hypervolume inside the n-dimensional 

hypersphere lul = R centered at 0, (where R = Ivl), or 

ƒ « jflu,v)d(u)d(y) (1) 

C 

where C is the region for which lul < Ivl 

and 

e x p { - 0 . 5( z - jx ) ' 2 l(z-\i)} 
AW) = 

.„ .n l „ l l / 2 
( 2JC) | 2 | 
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z = (u,v), 

£ = 
r £ £ i 1 2 

£ £ 
2 3 

, with 

£, = £ . + £ . , £ = £ . and £ = £ . + £ . . 1 i / 2 j 3 * 

When Equation 1 is used to model the duo-trio method, jx. = |X^ and 2. = £* However, 

this does not have to be the case. If we assume that the distributions corresponding to S. 

and Ŝ . are not the same, then Equation 1 models the multidimensional Thurstonian variant of 

Torgerson's method of triads. Recalling that the probability of selecting S. instead of S, 
J * 

as the stimulus most similar to S. is identical to the probability of preferring Sj to if 

S. represents the ideal point, it can be seen that Equation 1 also predicts preference 

probabilities. Note also that if ]x. and £^ are the mean vector and variance-covariance 

matrix of the probe's distribution, then Equation 1 is also an identification model with JX^, 

[x̂ , X, and £^ representing the memory distributions. 

Equation 1 can be transformed to constant limits of integration as shown in Mullen, 

Ennis, de Doncker and Kapenga (1988), but still requires the evaluation of a 2«-fold 
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integral. The 2n-fold integral given in Equation 1 can be simplified significantly by 

defining the integral in terms of an mdefinite quadratic form (Mullen & Ennis, 1991) which 

leads to a single integral, irrespective of the dimensionality of the vector space of 

psychological magnitudes. From Equation (1), 

e x p { - 0 . 5 ( z - j x ) f x f ^ z - u ) } 
. P . . - f dz. 

C<0 ( 2 * ) " | x | 1 / 2 

C = u « u - v » v 

= z'jz, 

where, J = J J ' 

The goal of the following linear algebra steps is to reduce Equation (1) to a 

standard canonical form (i.e. with a diagonal matrix in the limit of integration) for which 

there is a known computationally simple solution. This reduction to a standard form is 

achieved in two stages: (a) Cholsky factorization to transform the density function to a 

standard multivariate normal and, (b) diagonalization of the matrix in the quadratic form 

which defines one of the limits of integration. 

The first step involves Cholesky factorization. 

Let M be a non-singular lower triangular matrix defined by MM' = X. 

Letz* = M"1(z-ji). Then, 
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e x p ( - 0 . 5z*«z*) 

'jk = f 
P.. = f dz* 
i jk J • 

EXO ( 2 J C ) " 

where 

D = (z*+jp WjM(z*+§) 

with 

i = M " 1 ( l i ) 

The next stage achieves the desired diagonalization. 

a> = P f(z*) 

d = -P?(p, 

where P is the matrix of normalized eigenvectors of M^JM. 

D = (a - d) fprM fJMP(co - d) 

= ( M - d ) r A ( © - d ) . 

exp( - 0. 5©«(o) 
P., = f ~ ~da 
i jk J * 

D<0 ( 2TC) N 

= Pr[i"5.(ra.-d.)J <0] 

= PrflSx <0], 
j=l i m.,a, 

i i 

where, 

5̂ . are the eigenvalues of Z [ Q j ]» 

m. are the degrees of freedom of the ith non-central chi-
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d is the non-centrality parameter of the ith chi-square and 

r is the number of distinct eigenvalues. 

In this form, from the work of lmhof (1961), the probability of choosing S. or S is 
J * 

<*> s i n 9( t) 

P., = 0.5 - - f T-—dt, (2) 
i jk % J f p( t) 

0 

where, 

r -1 -1 
9(0 = 0.5 S [m. fan (8 .f) + cf. S XI + 82. f*) ] , 

i"=l 

P ( 0 - n (l + 8! t) 
L i=l 1 

mJ4-\ 
i exp{0.5 £ (d.S .f)2 /(l + 8J. f )}, 

;=1 7 7 3 

Relationships Among Triad and Preference Models 

Figure 1 summarizes the relationships between the model formulated in Equation 1 and 

other triad and preference models. It can be seen that the model presented in this paper is 

the general case for any model that specifies that a subject will choose the psychological 

magnitude from two alternatives that has the smaller Euclidean distance to a third 

psychological magnitude when the distributions of all magnitudes are assumed to be 

multivariate normal. The model includes the following special cases: The Thurstonian 
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variant of Torgerson's method of triads, the duo-trio method model, the wandering ideal point 

model, the preference model of Zinnes and Griggs (1974) and Coombs' (1964) preference 

unfolding model. Also included is the two-alternative identification model based on a 

comparison of distances between a probe and the memory representations. 

Computing 

Numerical integration and parameter estimation techniques for equations such as 

Equations 1 and 2 have been discussed in Mullen and Ennis (1987), Mullen, Ennis, de Doncker 

and Kapenga (1988), and Ennis, Palen and Mullen (1988): The numerical evaluation of Equation 

1 is fairly computationally intense, pardy because it involves the numerical evaluation of a 

2n-fold integral, where n is the number of dimensions. A comparison of the computational 

efficiency of Equations 1 and 2, on a Gould 32/97 computer when n = 2, revealed that equation 

2 could be computed 101 to 10* times faster (to the same accuracy) than adaptive numerical 

integration of Equation 1, depending on the specific parameters chosen. When n is larger 

than 2, the relative efficiency of Equation 2 should become even greater because the 

computing time will be directly proportional to n rather than a function involving n as an 

exponent 
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Parameters of the distributions corresponding to S., and can be estimated using 

nonlinear least squares as outlined in chapter 16. It would be interesting to simultaneously 

fit triad and preference matrices using Equation 2 for an ensemble of stimuli. 

Concluding Remarks 

Triad discrimination, preferential choice and two-alternative identification share a 

common mathematical model. This model is based on the assumption that subjects make choices 

between stimuli or memory representations based on Euclidean distances between stimuli, 

stimuli and ideal points, or probes and memory representations. These ideas were presented 

in the context of a probabilistic model that assumes multivariate normal probability density 

functions for stimuli, ideal points or memory representations. A computationally simple form 

to compute decision probabilities has been given. 
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Figure 1. The relationship among triad and preference choice models as special cases of the 

general triad model. 
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Variants of the method of triads: 
Unidimensional Thurstonian models 
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Kenneth M u l l e n 
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Jan E . R- Frijters 
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This papier deals with a theory for two variants of the method of triads —Torgerson's 
and Richardson's methods. For both methods, the relationship between the decision 
probabilities and the parameters of the momentary psychological magnitudes is 
derived under the assumption that these magnitudes can be modelled as if they were 
drawn from normal distributions with particular means and variances. This 
approach differs from previous theoretical work on the methods of triads, where it 
has been assumed that distances between momentary psychological magnitudes are 
normally distributed. Cases where the variances of the distributions of psychological 
magnitudes are unequal can be handled by the models. It is shown that the duo-trio 
and triangular methods are special cases of Torgerson's and Richardson's methods of 
triads, respectively. Using non-linear least squares minimisation, estimates of the 
means of the distributions of a sample problem are obtained for random samples of 
size 200. Decision conflicts, which may occur when using Richardson's method, are 
discussed. 

1. Introduct ion 

Since the work of Thurstone (1927), there has been a great deal of theoretical work 
dealing with unidimensional and multidimensional stochastic models for scaling 
psychological magnitudes. Generally, mental representations of physical or non-
physical stimulus objects are modelled as if the momentary psychological magnitudes 
are random values from normal distributions. Having first derived the relationship 
between the behavioural response and the parameters of interest (means, variances, 
correlation coefficients), the scaling problem involves estimating these parameters for 
particular behavioural values obtained experimentally. There is a voluminous 
literature on this topic, particularly as it applies to two-stimulus methods such as the 
method of paired comparisons. With respect to three-stimulus methods, Torgerson 
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(1958) set out the unidimensional theory for two versions of the method of triads, a 
tri-stimulus procedure of some interest in the early development of multidimensional 
scaling. Unlike traditional assumptions formulated by Thurstone in this area, where it 
is assumed that the psychological magnitudes are randomly drawn from normal 
distributions. Torgerson assumed that the psychological distances between pairs of 
stimuli could be modelled as normal deviates. In this paper we deal with both versions 
of the method of triads from the more classical Thurstonian viewpoint and show how 
they are related to other tri-stimulus models. The models of interest focus on 
discrimination tasks involving decisions which depend only on the psychological 
magnitudes evoked in a particular triad, which would be the case for confusable 
stimuli, for instance. 

2. Methods of triads — M e t h o d o l o g y and as sumpt ions 

Let S,, S 2 , . . . , S, represent n sets of stimulus objects, and suppose that within each set 
the objects are physicochemically identical. Without using unique subscripts for each 
of the objects within each set, let Su S2,..., S, represent randomly selected stimulus 
objects from each of the n sets respectively. A triad is composed of three of the 
stimulus objects, S„ S} and Sk, i ^ j # k # /. Each object is assumed to be represented 
mentally by corresponding univariate psychological magnitudes, xu x2,,.., x„ which 
may- vary from moment to moment but which are assumed to be drawn randomly 
from normal distributions with means jiu fa,..., fin and variances a\, o\,..., a2,. The 
distributions of momentary psychological magnitudes are assumed to be independent. 

From a methodological standpoint, there are two versions of the method of triads. 
Torgerson (1958) refers to one of them as the 'complete method of triads', which we 
will call Torgerson's method of triads and the other as 'Richardson's method of triadic 
combinations' (Richardson, 1938), which we will call Richardson's method of triads. 
In Torgerson's method of triads, the three objects are presented to the subject in three 
independent trials with the instruction to select one of the two objects most similar to 
the third. The third object is a different one of the three objects in the three trials. For 
instance, in the first trial, the subject's task might be to select which of J} or 5 t is most 
similar to 5,. Let jPJk denote the probability that 5, is more similar to S} than Sk. The 
three trials are independent and may give rise to different psychological magnitudes 
from trial to trial for the same stimulus object. Richardson's method of triads involves 
a single presentation of the three objects and the subject's task is to judge which two 
objects are most alike perceptually and which two are most different. It is important to 
point out that the psychological magnitudes are assumed to remain at fixed values 
during a trial for both Torgerson's and Richardson's methods. If this is not the case 
(not unlikely for Richardson's method because two decisions are required per trial), 
the same two objects may appear to be most alike and most different. If the subject is 
unaware of this possibility, the subject may develop strategies to cope with what 
would appear to be illogical responses. This problem will be dealt with in a later 
section of the paper. 

3. Torgerson's m e t h o d o f triads 

Let PJk represent the probability that S, will be perceived to be more similar to JV than 
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4. Richardson's m e t h o d of triads 

In Richardson's method, the subject's task is to judge which two stimulus objects are 
most alike perceptually and which two are most different. Once again, assume that the 
three objects are Sh Sj and Sk. The corresponding momentary psychological 
magnitudes are x„ xy and xk in a particular trial. These values are assumed to be 
randomly drawn from normal distributions of means fa, fa and fa respectively and 
variances o f , o f and 0 ^ . It is assumed that only one sample of xt, xs and xk occurs 
during a trial. In a given trial, if i", and J) are reported to be most alike, represent this 
decision by a^ and if they are most different by dr In the case of three particular 
objects, Su S2 and S3, six different decision pairs are possible: 

a u d\3', « 1 2 ^ 2 3 ' a n d\2 '•> a n ^z> '•> a n d\2 > a z i 

Variants of the method of triads 

the momentary psychological values, fa, fa,..., fa are their 
means and o f , o f , . . . , o f are their variances. Thus, x„ fa and o f are associated with J", 
for /' = 1 , . . . , «. 

,P* = J J / ( r , d r d x + J J f{r,s) drdx, (1) 
0 0 — 0 0 — 0 0 

where 

r = (xj—Xi) and J = (2x,- — X) — xk), 

e x P { - 0 . 5 [ ( 2 - / i ) ' F - 1 ( 2 - ^ ) ] } 
/ u ; (2it)\V\^ 

and 

Lol-<r? 4 o f + o f + o j _ ' 

A proof of equation (1) is in Appendix 1. 
The complement of {P;k (that J, is more similar to J"4 than J}) is 

In the case of three particular objects, Su S2 and i"3, the three probabilities, ^P^, iPn 
and ,P, 2 can be obtained using equation (1). 

When fff = ff|=... = o i = o - 2 , 

tPJk = l-(t>[(fa-^2]-<i>[(rik + fa-2fa)l<Ts/6] 

+2®{(fa - fa) /oV2]<D[(^ + fa - 2fa) ,/<7V6], 

where <&>(*•) represents the area under the normal curve from — 0 0 to x. 
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Since we assume that resampling does not occur, the probability that the same pair of 
objects are most alike and most different is zero. A particular decision pair, such as 
(an dn) will occur with a certain probability, P(an dxi). 

Let u =s (xt —Xj) and w = (xj — xk). 

P{av d*) = P(0 <u< w) +P{w<u< 0) 

33 X I 0 * 
= J ƒƒ(* .») d»'d«+ J J f(u,a)4wdu, (2) 

0 * — 0 0 — 0 0 

where / ( a , a>) is the bivariate normal distribution of « and a or 

e x p { - 0 . 5 [ ( 2 - / I ) ' - # ] } 
ƒ ( * , » ) = • (2w)| VI 1/2 

where 

and 

z ' = ( » , » ) , 

~L -of oj+oij-V 

When of = of = . . . = of, then 

V 

A proof of equation (2) is in Appendix 2. 
- [ - . - a -

5. C o m p u t i n g the d e c i s i o n probabil i t ies 

Equation (1) was evaluated numerically using an adaptive routine for multiple 
integrals by Genz & Malik (1980). Equation (2) was evaluated using the IMSL (1984) 
Fortran-callable subroutine, D B L I N . These results were checked by comparing them 
to Monte Carlo simulation values obtained from 100000 trials per estimate. This 
comparison showed that numerical evaluation of equations (1) and (2) gave results 
which agreed to at least second decimal place accuracy with the Monte Carlo results 
for an extensive range of parameter values. 

6. Parameter es t imat ion for four s t i m u l u s objects 

Consider a problem in which there are four sets of stimulus objects, S,, S2, S3 and S4 

(the objects are physicochemically identical within each set) and for which estimates 
are known for the 12 probabilities obtainable using Torgerson's method of triads. 
Let these estimates be jgas. iQu, 3Q12, ij2»> iQu> X&M, iQu, <j2u. IQM> J J 2 2 4 and 
4 ^ 2 3 - Assuming that the variances for the populations of momentary psychological 
values are equal and unity, it is of interest to find estimates of the means of the 
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distributions of psychological magnitudes. This problem can be handled as a non
linear least squares minimisation problem in which there are 12 functions [all of the 
general form given in equation (1)] and 3 parameters (fa, fa and fa; setting fa = 0.0). 
The objective is to find estimates of these parameters which minimize the residual sum 
of squares 

I I Z ( J 2 > . - ^ 2 fotj<k and i*j;i*k. 
i j k 

There are several approaches to locating-the minimum for problems of this kind. A 
modified Levenberg-Marquardt algorithm, available as an option in the IMSL (1984) 
subroutine Z X S S Q , was used. 

Suppose that fa = 0.0, fa = 1.0, fa = 2.0, fa = 3.0 and that all variances are equal 
and unity. Table 1 gives the 12 decision probabilities for five independent samples of 
size 200 drawn at random from normal distributions with the appropriate parameters 
and also the 12 theoretical probabilities. Table 2 gives the estimates of fa, fa and fa 
(assuming that fa = 0.0) for the five samples and the residual sums of squares. 

Incidentally, any one of the four means could have been assigned a fixed value 
(which also does not have to be zero). The means of the five samples (0.979,1.981 and 
3.017) appeared to be good estimates of the means of the sampled distributions (1.0, 
2.0 and 3.0), although it should be pointed out that a detailed study of the parameter 
estimation problem involved was not undertaken. 

If « i s the number of stimulus objects, there will be «(»—!)(»—2)/2 equations and 
probability estimates, and «—1 unknown means. For n = 6, for instance, there are 60 
equations and five means to be estimated. Since, in a problem of this size, there are 
considerably more observations than unknowns, it should be possible to find reliable 
parameter estimates using only a fraction of the possible decision probabilities. These 
designs and their evaluation will not be pursued here although it is clear that this 

T a b l e 1. Theoretical and sampled values of decision probabilities for Torgerson's 
method of triads when fa = 0.0, fa = 1.0, fa = 2.0, fa = 3.0 and all variances are 1.0. 
Theoretical probabilities are designated as and samples probabilities (« = 200) are 
designated as jgy*-

Decision probabilities 
2-̂ 13 3-?2 1^24 2-^4 4-ft !-§4 4 ft 2-§4 3-?4 4-§3 

0.703 0.500 0.297 0.878 0.653 0.250 0.750 0.347 0.122 0.703 0.500 0.297 

1J223 22.3 3j2l2 1J224 2<2l4 4 j 2 1 2 Li234 3<2l4 4<2l3 2 ^ 3 4 3«224 4 ^ 2 3 

0.725 0.480 0.330 0.860 0.695 0.250 0.745 0.320 0.100 0.715 0.505 0.210 
0.700 0.485 0.300 0.905 0.560 0.215 0.720 0.360 0.100 0.685 0.560 0.285 
0.705 0.545 0.290 0.885 0.690 0.255 0.710 0.365 0.095 0.710 0.495 0.290 
0.715 0.495 0.295 0.885 0.635 0.290 0.800 0.305 0.165 0.720 0.525 0.290 
0.680 0.515 0.350 0.905 0.640 0.325 0.770 0.400 0.110 0.730 0.525 0.340 
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T a b l e 2. Estimated population means using non-linear least squares minimization 
applied to the decision probabilities from Torgerson's method of triads 

Case Residual Mi fa M3 fa 

Sample 1 0.009 0.000 0.953 2.090 3.118 
Sample 2 0.010 0.000 1.167 2.044 3.050 
Sample 3 0.004 0.000 0.923 2.016 3.005 
Sample 4 0.009 0.000 0.995 1.991 3.031 
Sample 5 0.007 0.000 0.855 1.763 2.883 

Means 0.979 1.981 3.017 
Standard error 0.117 0.127 0.086 

work will need to be done if the method of triads is to be used experimentally for a 
large number of objects (« > 5). 

7. Re lat ionships to other tr i - s t imulus procedures 

David & Trivedi (1962) and Ura (1960) provided the unidimensional (equal variance) 
theoretical basis for the duo-trio and triangular methods. Frijters (1979a) compared 
the triangular method model with the 3-alternative forced-choice model [Green & 
Swets (1966)] and based the resolution of the paradox of 'discriminatory non-
discriminators' in taste psychophysics on this theory (1979£), 

Both the duo-trio and triangular method models are concerned with 
discrimination tasks involving three stimulus objects, two drawn at random from two 
sets of physicochemically identical objects and the other from a third set of objects. In 
each trial of the duo-trio method, the subject's task is to decide which of two objects is 
most similar to a third object (drawn from a set which is physicochemically identical to 
one of the first two sets). In the triangular method, the subject's task is to identify the 
most different object. Under the assumption that the variances of the momentary 
psychological values corresponding to the stimulus objects are equal and that fa and 
fa are their means, the probability of a correct response for the duo-trio (PJ) and 
triangular method (P,) are as follows (from David & Trivedi): 

P„ = 1 -<!>{( fa-fa) loj2]-Q>[{fa-fa)la^} 

+20[(fa~fa)lay/2]<!>[(fa-fa)/aj6)] (3) 

and 

P, = 2 ] 4 » [ - ^ 3 + ( ^ - M y ) V ( 2 / 3 ) ] 
o 

+ 0 [ - s V 3 - ( ^ - M , ) V ( 2 / 3 ) ] d ^ ) - W 
The duo-tr io method model is a special case of the model for one of the trials in 
Torgerson's method of triads where fa — fa. This is clear from the methodologies and 
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instructions involved and also from a comparison of results from evaluating equation 
(1) and equation (3). 

In Richardson's method of triads, there are six probabilities corresponding to six 
possible decision outcomes. Considered in pairs, these are the probability that J", and 
Sj are most alike; that S/ and Sk are most alike; and that J} and Sk are most alike. These 
are also the probabilities that Sk, Sj and J", are the most different objects, respectively. 
T w o of these six probabilities are P(a#, and P(a^, d^) which, when summed, and 
assuming that fa = fa, give a value identical to P, in equation (4). The triangular 
method model, therefore, predicts a behavioural response probability which can also 
be predicted from two of the six probabilities of Richardson's method of triads. 

Multivariate models for discrimination methods, including the triangular and d u o -
trio methods, have been derived and evaluated using Monte Carlo and numerical 
methods (Ennis & Mullen, 1985, \9S6a,'b; Mullen & Ennis, 1987). Since these 
methods are special cases of variants of the method of triads, the same rationale can be 
used to derive multivariate stochastic models for both methods of triads. These 
models would prove useful in the development of stochastic multidimensional 
scaling. 

8. R e s a m p l i n g w i t h i n a trial 

Earlier in this paper, it was pointed out that the momentary psychological values were 
assumed to remain at fixed values during a trial for both methods of triads. For 
instance, in deciding whether Sj or Sk is most similar to J", in Torgerson's method, it is 
assumed that the values Xj, xk and x„ though randomly drawn from their respective 
distributions, will be used to select Sy or Sk and that resampling within a trial will not 
occur. One could argue, for example, that since i", is compared to Sj and Sk that the 
subject might obtain two independent psychological magnitudes corresponding to S,. 
In comparing the two methods of triads, Richardson's method would appear to offer 
the greatest potential for within-trial resampling because the subject is required to 
make two quite separate decisions —which two objects are most alike and which two 
objects are most different. In Torgerson's method, even if resampling occurs, the two 
distances obtained, e.g. \xi—xj\ and \xf — xk\ (where xf is an independent 
psychological magnitude corresponding to S,) will be different, even if only 
infinitesimally. Theoretically, then, the subject has a basis for making a decision. 
However, in Richardson's method, it is entirely possible for the subject to conclude 
that J , and Sj are most alike and that the same objects are also most different. If x„ Xj 
and xk are the psychological magnitudes used to decide which two objects are most 
alike and xf, xf and xf are the magnitudes used to decide which two objects are most 
different, there is some probability that 

\xi—Xj\<\xi—xk\ and \xi—xJ\<\xJ—xk\ 

and that 

\xf—xf\>\xf—xf\ and \xf — xj\ > \xf — xf \. 

If the subject is not aware that this outcome is possible, it would lead to what may be 
called a decision conflict for the subject. Represent its probability by PCOB. For 
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convenience, consider only the equal variance case. If fa is the smallest mean, fa is the 
largest, and fa = (fa + fa)/2, P^ will vary depending on the size of (fa —fa). 

Figure 1 is a plot of the relationship between Pmn and (fa—fa), when 
My = (fa + fa)/2. Peo,, was obtained by Monte Carlo simulation using 20000 trials per 
estimate. From Fig. 1 it can be seen that the probability of a decision conflict will be 
greatest in this case when the means of the psychological magnitudes are similar and is 
1/3 when (fa —fa) = 0. When this difference is between 0 and 3, this problem will 
occur from 17 to 33 per cent of the time. 

Although Richardson's method appears to provide some efficiency from an 
experimental point of view (one trial instead of three in Torgerson's method), this 
benefit must be offset by the possibility of creating a situation where the subject may 
be forced to deal with what would appear to be an illogical decision. Presumably, the 
subject would then invoke a strategy to deal with this problem which would lead to 
results that cannot be modelled by equation (2). 

9. C o n c l u s i o n 

In discussing methods of triads, Torgerson (1958) assumed that the distances between 
momentary psychological magnitudes are normally distributed and then applied 
Thurstonian ideas to distances instead of psychological magnitudes (discriminal 
processes). This consequently led to a procedure for estimating the coordinates of 
points corresponding to the stimuli in a multidimensional space. In this paper, we 

u> 

8 1 

8 1 2 3 4 5 6 

Figure 1. The probability of a decision conflict (P c o n) in Richardson's method of triads as a function of 
the difference between the largest and smallest mean (fa —Hi), when the intermediate mean, Uj, is equal 
to (fa+fa)j2. 
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A p p e n d i x 1 

jPjt is the probability that J, will be perceived to be more similar to Sj than Sk. xux2,--.,x„ are the 
momentary psychological values, Mi, fa, • • fa are their means and o,,fff , . . . ,<r\ are their 
variances. Thus, x h IX, and oj are associated with S, for / ' = ! , . . . , » . 

, . fy=P(k, . -x , | < | x , - * J ) 

= P(|*V-X, | < Xi-xJ+PQXi-Xjl < -Xi+Xj 

— P(Xj—Xj < Xj—xk and — x;+Xj < Xj—xk) 

+P(Xj—Xj < —Xi+xt and —xy + xy < —x.+jcj 

= P(xk-xj < 0 and - 2 s r ; < 0)+P(xj-xt < 0 and 2xi-xJ-xt < 0). 

Let xj —xi=r and 2x, — Xj —xk =s, then r and s have a bivariate normal distribution with means /I •, — fa 
and iUi — Hj — fa and variance-covariance matrix V. 

Hence 
oo X 0 0 

Pjk = J J Ar, s) drds+ ƒ ƒ / ( r , / ) d r d s , 
0 0 — 0 0 — 0 0 

where 
r=>{xJ-xi) and s = ( 2 x , - x , - x j , 

t ex P {-0 .5[(2-; i ) 'K- 1 (z- j i ) ]} 

z ' = ( r , j ) , 

f = [(^-M*),(2/i,-M/-M*)], 
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-of 4<r?+flf+<r| 
When of = of = . . . = of, xk—Xj and — 2 x v + x , + x t , being orthogonal, are independently 
distributed, so that 

= P(**-*> < 0 ) P ( - 2 x , + x , + x 4 < 0) + P(Xj-xt < 0)P(2x,-x,—x* < 0). 
The notation N(u, a2) will be used to indicate the normal function with mean and variance parameters (i 
and a2 respectively, and <D(x) to indicate the area under the standard normal curve from — oo to x. 

Let 

p = P(Xj-xk)<0)= ƒ N ( M y - | x . , 2 c i ) = ƒ N(0,1) 

and 

Therefore, 

= ®((^-M , ) / (2tr 2 ) 0 - 5 ] 

* = P ( 2 * y < 0 ) = ƒ Nt&ij-fij-fa.eo2) 
— X 

I N(0,1) 
— 00 

= «[(M*+M / -2M,)/(<J<r 2 ) 0 - 5 ] . 

- M , ) / f f V 2 ] 4 ) [ ( M * . 

A p p e n d i x 2 

P(aijdik) = Pflxy—^l < l * v - x j and |x,--x,| < Ixy—xj and 
l*V—**l > \x,—Xj\ and |x,-—xj > Ix,-—*4|). 

The first and third terms are the same, so that 
p{eijdih) = P(\xj—Xj\ < \xj—xt\ and \XJ—XJ\ < \xj—xk\ and 

\*t-*k\ > \xj-xk\). 
Let (x,- —Xj) = u; (x, —xk)=v; and (x, —x4) = n>. 

It can be seen that u—v+s> = 0. 
P M « > = p M < W a n d 1*1 < W ^ 1 * 1 < I'D-

P(\u\ < \v\ and |«| < M) = P(W < M and |r| < W)+P(W < M and |v| < \p\). 
Therefore 

P{aijdik) = P(|»| < H and |»| < M and W < H) 

+P(|*| < |v| and \w\ < |o| and |*| < W). 

and 
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In this sum, the first probability contains a contradiction and therefore has a probability of zero, while the 
second probability contains a redundancy, so that 

P(*ijdik) = P ( W < \»\ and |*| < \v\) 

= P(|*| < M and |w| < 
since a — v+a> = 0. For both of these inequalities to be simultaneously true, u and a> must be either both 
positive or both negative. Therefore, 

P(*yA) = P(W < 1 * 1 and W < and » > 0,» > 0) 
+ P ( W < 1 * 1 and M < and » < 0,* < 0) 

=-P(0 < a < w) + P(* < * < 0). 

= ƒ ƒ /(«, w)dB'd»-(- ƒ J f(u,n>)<kvdu 
0 *r — X — X 

where ƒ(», s>) is the bivariate normal distribution of » and w or 

a p { - 0 J [ ( « - j i ) ' V - 1 ( « - f i ) l } 
= ' 

where 
2' = (*,»), 

Ai' = [(/a,—^).(M,—/**], 

and 
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A unidimensional model is derived which can provide the probability that 
the same two stimuli will be perceived to be most alike and most different in 
Richardson's method of triads under the assumption that resampling occurs 
within a trial. This probability is shown to depend on the extent to which 
the stimulus distributions overlap and their relative locations on a 
unidimensional continuum. Recommendations on how to estimate this 
probability experimentally are given. 

1. Introduction 

In a previous paper (Ennis, Mullen & Frijters, 1988), Thurstonian models for 
Richardson's and Torgerson's methods of triads were derived and discussed. Both of 
these methods involve decisions related to perceived differences between three 
stimulus objects. In Togerson's method, subjects are instructed to select one of two 
objects which is most similar to the third (preselected) object. In Richardson's 
method, the subject is instructed to identify the most similar pair and the most 
different pair from three objects. 

In modelling these two tasks, it is assumed that a stimulus is represented mentally 
by a momentary psychological magnitude that has been drawn at random from a 
univariate normal distribution. This assumption implies that stimulus magnitudes 
may change from trial to trial as the subject obtains new mental representations for a 
particular stimulus. In Richardson's method, the subject is asked to make two 
decisions within a trial about the three stimuli: namely, which two stimuli are most 
alike and which two are most different. It is not unreasonable to expect that a subject 

tRequests for reprints. 
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may resample the stimulus distributions to make these two decisions and, 
consequently, may be working with different information about the stimuli when 
making these two decisions. In previous work (Ennis et ai, 1988) it was assumed that 
the mental representations of the objects remain at fixed values during a trial for 
both methods. If this assumption is violated when the subject is under the 
instructions for Richardson's method, as may occur if the subject resamples during a 
trial, it is possible that the same two objects may appear to be most similar and most 
different. Since this outcome is not unlikely with Richardson's method, and may 
occur with other discrimination paradigms, it is useful to understand more about its 
probability of occurrence and how to estimate and use it experimentally. 

2. Assumptions 

A triad is composed of three stimulus objects, S„ Sj and Sk, i^j^k^i. Each object is 
assumed to be represented mentally by corresponding univariate psychological 
magnitudes which may vary from moment to moment but which are assumed to be 
drawn randomly from normal distributions with means ut, u} and uk and variances 
a?, a) and a\. The distributions of momentary psychological magnitudes are assumed 
to be independent. If xh Xj and xk are the psychological magnitudes used to decide 
which two objects are most alike and xf, xj and x? are the magnitudes used to 
decide which two objects are most different, there is some probability that 

l - x i - * j | < | * f - * * | a n d \xi-Xj\<\xj-xk\ = P{aij) 

and that 

\xf-x*\>\xf-x^\ and \xf-xf\>\xf — x^\ = P{dij). 

Similarly, one may define P(aik), P(dik), P(aJk) and P(djk). If the subject is not aware 
that the above outcome is possible, it would lead to what may be called a decision 
conflict for the subject. Represent its probability by P c o n . 

3 . Probability of a decision conflict 

A subject will be faced with a decision conflict whenever the stimulus pair selected to 
be most alike is also the pair selected to be most different. The probability that S f 

and Sj are most alike is P(au) and the probability that they are most different is 
P(dij), so the probability that S F and Sj are most alike and most different is 
P(aij)-P{di]). In formulating the model for Richardson's method of triads (Ennis et 
ai, 1988) when the momentary psychological magnitudes are assumed to remain at 
fixed values, this probability was zero. If resampling within a trial occurs, this 
probability may be different from zero. Since the same two stimuli may be most alike 
and most different in three ways, the probability of a decision conflict is 

P«m = P[a,j) • P(du) + P(aik) • P(dik) + P(aJk) • P(djk). (1) 
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The equations for F(a i y) and P(du) will be given. The other four probabilities, 
[P(aik), P{dtk), P(ajk) and P(dJk)'] can be obtained similarly. 

Let (Xj—Xj) = u; (xt—xk) — v; and (xj—xk) = w. 
Since xh Xj and xk are random normal deviates, then u, v and w are also random 

normal deviates. 

P(a,7) = P( |u |<|y | and |"|<|w|) 

= P{\v—W|<|B| and |»—w|<|w|), 

which implies that both v and w have the same sign. 
Therefore, 

P(au) = P(t-> vv/2 and v<2w and 0 > 0, w > 0) 

+ P(t'>2w and v<w/2 and y < 0 , w < 0 ) . 

This equation involves the sum of two twofold integrals involving a bivariate 
normal distribution with a particular vector of means and variance-covariance 
matrix for the variables v and w. 

•o 2w 0 w/2 

P ( a l 7 ) = J j ƒ(», w)dydw+ J ƒ /(y,w)di;dw. 

0 w/2 - ao 2w 

Let (xf—xf) = r, (xf—.\'*)=s; and (rf — xf) = t. 

P(</0-) = P ( | s - f | > | s | and | s - f | > | t | ) , 
which implies that s and t have opposite signs. 

Therefore, 

P(dij) = P(s-t>sand s - f > - f and s > 0 , t < 0 ) 

+ P(r—s> - s a n d f - s > t a n d s < 0 , t>0) 

= P ( t < 0 a n d s > 0 ) + P ( t > 0 a n d s < 0 ) 

O x , oo 0 

= ƒ $f(s,t)dsdt+\ ƒ f(s,t)dsdt. 
- oo 0 O - o o 

The function, ƒ, is a bivariate normal distribution which has the general form, 

e x p { - 0 . 5 [ ( z - / i ) , V - 1 ( z - M ) ] } 
; _ (2*)|vr 

For ƒ(!', vv), z' = (p, w); for f(s, f), z' = (s, t); and for both functions, 



8 4 

Daniel M. Ennis, Kenneth Mullen, Jan E. R. Frijters and J. Tindall 

con 

Ik. ~ 

Figure 1. The relationship between Pcm and {uk — u{) for values of c=0 , 1/8, 1/4, 1/3 and 1/2 
(or 1, 7/8, 3/4, 2/3 and 1/2) where c=(n]-ni)/{rik-ni), uk>uj>rii and o-, = o-J = er jfc= 1.0. 

M' = {.{Hi-fik)Afa-~rik)']l and V = 7J + a2

k 

The variance-covariance matrix, V, can be derived from the expected values for the 
variances and covariances of v and w or s and f. 

4. Evaluation of the model 

Equation (1) was evaluated numerically on a Gould 32/97. Relative error in each 
integration was less than 0.0001. In Fig. 1, P c o n is plotted as a function of (uk-fa) and 
the relative position of u} on the unidimensional continuum, assuming that uk>Uj> 
Hi and that cr,, = a, = ak = 1.0. It can be seen that the probability of obtaining a 
decision conflict is determined mainly by the degree of overlap of the stimulus 
distributions,, and depends to a lesser extent on the distance between the middle 
stimulus and either of the two end stimuli. In the case where two of the stimuli have 
identical means (c = 0 or 1 in Fig. 1), we have the triangular method (Frijters, 1979). 
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5 . Suggestions for experimental work 

Assume that a subject resamples within a trial while under the instructions for 
Richardson's method of triads, and develops a strategy for dealing with cases in 
which it appears that the same two stimuli are both most alike and most different. 
The resulting decision probabilities may be different from those obtained from the 
Thurstonian model for this method previously described by Ennis et at. (1988). The 
experimenter may wish to compare estimates of the means and variances obtained 
from both Torgerson's and Richardson's methods under Thurstonian assumptions. 
Assuming that there are consistent differences between these methods which are due 
to the effect of resampling in Richardson's method, then it would be of interest to 
determine the probability of a conflict and to confirm this value experimentally. 
Assuming that the values of the means and variances for an array of stimuli are 
known (using Torgerson's method, for instance), it should be possible to compute the 
probability of a conflict from the theory given in this paper. The subject could then 
be presented with triads of the stimuli of interest and instructed to make 'most 
similar' and 'most different' pair selections in different trials. These trials could be 
paired to simulate resampling within a trial, but the subject would be instructed to 
expect possibly different stimuli from trial to trial. From a sufficiently large number 
of trials, the probability of occurrence of pairs of trials in which the same stimuli are 
selected as most similar and most different could be computed. This value could be 
compared with the theoretical value obtained as previously described. 

Acknowledgements 

The authors thank C. Li l ly who supported two of the authors ( K M and J E R F ) through the 
Philip Morris Visiting Scientist Program which facilitated interdisciplinary collaboration. 
Thanks are extended also to E. Gee and M. Waugh for management support and computer 
resources. 

References 

Ennis, D. M.. Mullen, K. & Frijters, J . E. R. (1988). Variants of the method of triads: 
Unidimensional Thurstonian models. British Journal of Mathematical and Statistical 
Psychology, 41, 25-36. 

Frijters, J . E. R. (1979). Variations of the triangular method and the relationship of its 
unidimensional probabilistic models to three-alternative forced choice signal detection theory 
models. British Journal of Mathematical and Statistical Psychology, 32, 229-241. 

Received 22 February 1988: revised version received 26 June 1989 



86 

Fechner-Thurstone Models 

Daniel M. Ennis 

PHILIP MORRIS RESEARCH CENTER 

Kenneth Mullen 

DEPARTMENT OF MATHEMATICS AND STATISTICS 

UNIVERSITY OF GUELPH 



87 

Abstract 

A Fechner-Thurstone model is a model that relates the outcome of a psychological task to 

a psychophysical transformation and the parameters of stimulus and psychological probability 

density functions. It is assumed that the psychophysical transformation is a one-to-one 

function, the domain of which is the vector space of stimulus magnitudes and the range of which 

is the vector space of psychological magnitudes. Since this function is one-to-one, it is 

invertible. A very general equation is derived for the probability density function (pdf) of 

the momentary psychological magnitudes based on any psychological pdf and any one-to-one 

function of stimulus magnitudes from any stimulus pdf. The psychophysical transformation may be 

one-to-one only over the domain of the stimulus pdf. This general model is applied specifically 

to the method of paired comparisons. Models for paired comparisons are derived based on 

assumed lognormally distributed stimulus values on a physicochemical continuum, a log or power 

psychophysical transformation and added psychological variance from normally distributed values. 

Fechner-Thurstone models can contribute to the unification of the scaling approaches of Fechner, 

Stevens and Thurstone by providing a basis for relating parameters which describe the stimulus, 

the psychophysical transformation and perceptual variance to a subject's response in a 

particular task. The parameters of a sample problem are estimated using the Levenberg-Marquardt 

algorithm for nonlinear least squares estimation. 
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Introduction 

Attempts to derive valid relationships between the physical world and a mental 

representation of it originate, at least formally, with Fechner (1860). In this paper, we 

consider any model which relates a physicochemical attribute of a stimulus object with its 

mental representation or percept as a Fechnerian model. A logarithmic transformation is an 

example of one of several Fechnerian models that can be studied. Unlike Fechnerian models, in 

Thurstone's (1927) conception of mental scaling, a knowledge of the physical attributes of the 

stimulus object is unnecessary since the scaling is achieved by estimating the parameters of 

assumed (normal) distributions of psychological magnitudes based on modelling which connects the 

subject's choice probabilities with these parameters. In order to use Thurstonian modelling 

validly, it is necessary to assume that the variation leading to different momentary 

psychological magnitudes is perceptual. To allow this assumption, experimenters must ensure 

that physicochemical stimulus variance does not exist, otherwise a more general model is needed. 

For some sense modalities, such as those involving the chemical senses, this assumption is 

almost always impossible to justify, as exact stimulus control cannot be achieved. This fact 

and a lack of formal models to address this problem motivated the present work, although it is 

recognized that the models developed may be applied also to other modalities, such as audition 

and vision. 

The purpose of this paper is to begin to address the problem of connecting stimulus 

probability density parameters through a psychophysical transformation to probabilistic 

perceptual models. Thus, this effort can be seen as an attempt to connect Fechnerian modelling 

with Thurstonian modelling. Different assumptions about the psychophysical transformation, the 
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D 

(1) 

Fechnerian model, connecting the physicochemical measures to the corresponding perceptual 

measures will be discussed. Consequently, the models discussed could be called Fechner-

Thwrstone models. 

Fechner-Thurstone Models: Assumptions and Generalities 

There is some number of sets of stimulus objects, typically represented as S., and 

within each set there are objects with a common attribute that can be measured on a single 

physicochemical continuum. A stimulus magnitude, <p̂ , is the value on this continuum for a 

particular stimulus object, Let/^(<pJ be some probability density function (pdf) of 

Following a psychophysical transformation, the stimulus magnitude is represented mentally by 

psychological magnitude, \(f.. Let g ( < p . ) be any one-to-one function of cp. which can operate on 

the entire domain of ƒ . The function g is the psychophysical transformation. Since g is one-

to-one, it is invertible because for g(q» )̂ = g ^ ) , the only solution is cp^ = <p̂ . All monotonic 

functions are one-to-one. The pdf of y., h(\y.), is 

f^g-' ( V . ) id*-* (VjVdv.i, 

where ° g~' (y.) is a composition function. The psychological magnitude, v/., is a parameter 

a probability density function of momentary psychological magnitudes, xty. . which may occur 

central or peripheral noise is present, for instance. Let f^x.\\fi) be any pdf of x.hjr.. Since 

the pdfs of \|f. and x.\y. are h and ƒ , the pdf of x. is 
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where D is the domain of h. 

The function may be a multivariate pdf of a vector of physicochemical measures 

instead of the single variable, (p.. The function g, a one-to-one function, would map vectors 

from the domain space of to either single values (if g is a real-valued function) or vectors 

(if g is a vector-valued function) in the range space of g. Since g is a one-to-one function, g 

would have an inverse. Similar steps to those taken in deriving (1) could be taken to derive 

the pdf of x. (the vector equivalent of the momentary psychological magnitude). 

Unidimensional and multidimensional probabilistic models, in which the pdf of x. or x. is 

assumed to be normal, have received some attention in recent years for a wide variety of subject 

tasks. Some examples of these models are given in Ashby & Perrin (1988), Bradley (1976), De 

Soete, Carroll, & DeSarbo (1986), Ennis (1988), Ermis & Mullen (1986), Ennis, Palen & Mullen 

(1988), Ennis, Mullen, & Frijters (1988), Frijters (1979), Iverson (1987), MacKay (1989), 

Mullen & Ennis (1987), Mullen, Ennis, de Doncker, & Kapenga (1988), Zinnes & MacKay (1983), and 

Zinnes & MacKay (1987). In these models, no attention is given to stimulus parameters or to 

processes which might have led to the percepts. In this sense, the probabilistic models are 

much more restrictive than the Fechner-Thurstone models, which would require very special 

assumptions to ensure normally (uni- or multidimensional) distributed momentary psychological 

magnitudes. 

Once the pdf of x or x̂  is known, the models relating response probabilities associated 

with various tasks to the parameters off̂ , ƒ , and g can be determined. These tasks include m-

alternative forced choice (such as the method of paired comparisons and the method of constant 

stimuli), triads, identification, categorization and preferential choice. 
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The pdf of x., from (1), is 1 

/ W W * ! 
D 

Consider two independent psychological magnitudes, x^ and x^. The joint pdf of and x^ is 

\ J WV^i ] [ ƒ h w * v * 2 i 

D D 

If y = x^ - Xg the joint pdf of x^ and y is 

ƒ / J C C ^ W Y ^ ] [ ƒ / 2(^-vlv 2W¥ 2^V 2 

D D 

If C is the domain of the pdf of y is 

I [ I / 2 W i 
C D D 

In a paired comparison task, where the probability that J C ^ is of interest, the binary choice 

probability is Pr(y < 0) or 

A General Form for Paired Comparisons 
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dx^dy 

— C D D 

C D D 

Special Cases 

Assume that the stimulus magnitudes are lognormally distributed with means u. 

(corresponding to stimulus set S.), and variance a ^.. One reason for the choice of a lognormal 

probability density function is that two forms of g will be considered, both of which require 

the domain off^ to be positive. Following a psychophysical transformation, the stimulus 

magnitude is represented mentally by a psychological magnitude, y which is itself assumed to be 

the mean of a normal distribution of psychological magnitudes. A randomly sampled psychological 

magnitude, x., is assumed to be drawn from this distribution of psychological magnitudes with 

mean \y. and variance a*. and is represented as x.ly.. 

The Logarithmic Psychophysical Transformation 

In this special case, g(<pj = klog <p.. By assumption, log <p. ~ N(u.,o^.) (~ N means 

distributed normally). Since i|f = &log <p̂ , then \|/. ~ N(£u., Id .). Given a particular value 

of \)/., x. is a normal deviate from a probability density function with mean vf. and variance a1 

ƒ [ ƒ / 2 ( r Nr W v ^ j ] [ ƒ Ä(V2; • ƒ ^ ^ f v l y ] dx ( 2 ) . 
0 
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Since \p\ - N(/fcu., /fc* .), then x. is normally distributed with mean fcu. and variance Oc* cr .̂ + 

o i . ) . IfP_ _ is the binary choice probability in a paired comparison, 
2i !> 2 ,S 1 

P = * 

V i 

( u 2 - u^fc 

^ ^ l l + 0 2 1 2 ) + 0 2 1 + 0 2 / ^ 

(3) 

where <J?(z) is the area under the normal pdf from -~ to z. 

The Power Psychophysical Transformation 

By assumption, log <p. ~ N(u.,cr! .), g(\|/.) = <p. andx.\\f. - N(\ir.,oi.). From (2), 
1 i l l 1 1 11 1 Ja\ 

employing the functions ƒ , f^ and g corresponding to these assumptions, 

0 -
J e x p { - ( x 1 - V l ) V ( 2 a 2 1 ) - ( l o g ^ - ß u ^ /(2ß* o^ ^ 

4 v , 
2 J c o n a 2 l ¥ l ß 

J exp{ - (x f y - v2)2 / ( 2 o 2

2 2 ) - (1 og ^ - ß u ^ /(2ß* o 2 ^)} 

2 * ° 1 2 ° 2 2 V 2 ß 

dx^y. 

ƒ J I dv. 
2 7 C O H ° 2 1 V l P 

f e x Pt" < l o S * 2 " ^ 2 ) 2 / ( 2 ß 2 a 2 1 2 ) ] . o [ - i _ ^ ] d * 

LO V(23c)o 1 2v 2ß 22 

dx 1 (4). 
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Function Evaluations and Parameter Estimation 

Equation (4) was evaluated numerically on both Gould 32/97 and Trace Multiflow computers 

using Fortran subroutines for numerical quadrature [Piessens, deDoncker-Kapenga, Uberhuber & 

Kahaner (1983)]. These programs are contained in the IMSL Library (JMSL, 1987). 

Transformations to achieve (0,1) limits of integration were used for the outer integral 

following a separation of the integral into two parts (-~ to 0 and 0 to «•). The upper bounds on 

the inner integrals (theoretically ~) were set to [exp(u. + 4a j.)]'*. These bounds corresponded 

to 4 standard deviation log units on the physicochemical continuum (assumed to be lognormal) 

which was found to be sufficient to give at least fifth decimal accuracy in the computed 

probabilities. 

The physicochemical values presumed to be transformed to mental representations can be 

measured, in many cases, with a high degree of reliability. Examples are: the partial pressure 

or concentration of a compound, the amplitude of a tone, the lengths of lines and angles in 

geometric figures and light intensity. In other cases, the experimenter may not be able to 

identify and measure a particular attribute, or set of attributes, that are relevant in making a 

particular kind of judgment In some cases, particularly in experiments in the chemical senses, 

the parameters of the stimulus pdf (ƒ ) can be measured, but stimulus variance cannot be 

eliminated. In this kind of application, the use of a Fechner-Thurstone model can greatiy 

reduce the number of parameters to be estimated compared to Thurstonian modelling, and also 

provide information on the nature of the psychophysical transformation. An illustration of this 

type of model fitting will be given next in which 6 and o will be estimated. It is recognized 
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computed as 

n+1 n _ f _ - l _ r . i L 
a = a - [ a D + J J ] J q(a ), 

n n n n n 

where 

that the parameters of/^8 the stimulus pdf, could be estimated also (for cases in which they 

cannot be measured easily) thus yielding the experimenter with a basis for uncovering stimulus 

attributes that, through an appropriate transformation, determine psychological magnitudes. 

This type of modelling is a relatively straightforward extension of the much simpler case that 

we will consider and can be implemented using the same model-fitting techniques. 

A matrix of choice probabilities was computed for 10 stimulus distributions for which 

the geometric means were 0.0 to 0.9 in 0.1 increments and for which there was a common standard 

deviation of 0.2. The power exponent, P, in the function g was set to 0.6 and the psychological 

standard deviation, o^. was 0.2. It was assumed that subjects would select the stimulus with 

the greatest momentary psychological magnitude. These 45 probabilities are, therefore, a 

function of the stimulus parameters, the transformation function and variance at the 

psychological level The Levenberg-Marquardt algorithm (Marquardt, 1963) was used to obtain 

nonlinear least squares estimates of these parameters. Let a be a vector containing the 

parameters to be estimated. 

Define 

v^vVj'*^ 
where is the observed proportion of judgments for which stimulus objects from S. are chosen. 

Let q(a) be a vector with typical element #„(a). The value to be minimized is the residual sum 

t 0 
of squares, q(a) q(a). If a is an initial estimate of a, a series of approximations are 

http://_f_-l_r.iL
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J is the Jacobian matrix evaluated at a", 
n 

is a diagonal matrix with entries equal to the diagonal of J^Jn> and 

is the Marquardt parameter, a positive constant 

J was approximated using finite differences in double precision. The Marquardt parameter (a ), n n 

initially 0.01, was quadrupled if the residual sum of squares increased from one iteration to 

the next and was halved if it decreased. 

Random initial parameter values were used and several starting configurations led to 

parameter estimates that agreed to at least the third decimal place in each case. The results 

of one such analysis were: B = 0.60063 and = .20029. There did not appear to be more than 

one solution which differed from the above case by more than 0.001 in B or when different 

starting configurations were used. 

Model parameters were also estimated for the more realistic case in which the choice 

probabilities would not be error-free. In the case of each probability in the previously 

mentioned matrix, a random deviate was added from a normal distribution with zero mean and 

variance equal to [Q? )(1 - P ) ]/200. These choice probabilities correspond to the 
V l V l 

experimental situation where 200 observations per comparison have been obtained and the model is 

appropriate. A matrix of this kind was analyzed. Estimates of the parameters were: P = 0.506 

and a^= 0.168. These values can be compared with the actual values of 0.6 and 0.2 for p and 

c^-. respectively. The residual sum of squares (0.028) was consistent with the error added to 

the error-free matrix. Thus it appears that if the model applies to a data-set, estimates of 

the parameters can be obtained which will be as reliable as the error inherent in the choice 

probabilities. Exact recovery of the parameter values can be obtained for error-free data. 
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Discussion 

In some sense modalities, such as in the chemical senses, it is difficult, if not 

impossible, to eliminate stimulus variance. Where stimulus variance exists one cannot, without 

a formal model, distinguish between stimulus and psychological contributions to the choice 

probabilities. The purpose of this paper was to attempt to address this problem by deriving 

models that provide a means of relating stimulus and perceptual parameters to experimental 

results such as choice probabilities in a paired comparison task. These models have been termed 

Fechner-Thurstone models because they build on the ideas of Fechner with regard to 

psychophysical transformations from physicochemical values to mental representations and 

Thurstone's ideas concerning perceptual variance and scaling without regard for the physical 

In deriving equation (3), it was pointed out that if stimulus values are lognormally 

distributed and a log psychophysical transformation is assumed, the momentary psychological 

magnitudes will be distributed normally with variances that depend on k and on both the stimulus 

and perceptual variances. If the stimulus variances and means are known, and if a common 

perceptual variance is assumed, it will be necessary to estimate only two parameters: k and a_ .̂ 

The same parameter estimation procedure just described for (4) can be used to estimate the 

parameters of (3). Equation (3) itself can be computed using one of the many library routines 

available for 0(zj. For a particular matrix of choice probabilities, the best fitting 

transformation function of the two described in this paper, the power or log transformation, can 

be determined by comparing the respective residual mean squares. 



9 8 

continuum. Some computational aspects of the models are given using numerical quadrature. For 

a matrix of 45 choice probabilities derived from 10 lognormal stimulus distributions, the power 

exponent, 8, and the perceptual standard deviation, o^., were recovered using the method of 

nonlinear least squares for both error-free and error-laden data. 

An important feature of this class of models is that since they may make use of known 

information about the physicochemical characteristics of the stimuli, they require very few 

parameters to model choice probabilities. For instance, in the sample problem only two 

parameters were needed to model 45 paired comparison probabilities. The number of parameters 

would always be two, irrespective of the number of stimuli compared. A Thurstone Type V model 

would have required 9 parameters (one for each mean except one which could have been set to 

zero) and this number of parameters would increase with the number of stimuli used. In a 

Thurstone Type HI model, with unequal perceptual variance, one would need to estimate 18 

parameters compared with only 11 parameters for this model (all 10 variances would be required 

because the relationship between stimulus variance and perceptual variance could not be assumed 

to be known). Of course, if one had lognormal stimulus variance and the psychophysical 

transformation was other than logarithmic, the Thurstone models would be inappropriate because 

the momentary psychological magnitudes would not be normally distributed. This is not to say, 

of course, that the Thurstone models would not fit data very well if the departure from 

normality was not too great, but the Fechner-Thurstone models discussed in this paper, if the 

assumptions made are applicable, would always do a better job of modelling the data with fewer 

parameters. 



99 

Ashby, F.G., & Perrin, N. (1988). Toward a unified theory of similarity and recognition. 

Psychological Review 95,124-150. 

Bradley, R.A. (1976). Science, statistics and paired comparisons. Biometrics 32,213. 

De Soete, G., Carroll, LD., & DeSarbo, W.S. (1986). The wandering ideal point model: A 

probabilistic multidimensional unfolding model for paired comparisons data. Journal of 

Mathematical Psychology, 30,28-41. 

Ennis, D.M. (1988). Confusable and discriminable stimuli: Comments on Nosofsky and Shepard. 

Journal of Experimental Psychology: General, 117,408-411. 

Ennis, D.M., & Mullen, K. (1986). A multivariate model for discrimination methods. Journal of 

Mathematical Psychology, 30,206-219. 

Ennis, D.M., Palen, J., & Mullen, K. (1988). A multidimensional stochastic theory of similarity. 

Journal of Mathematical Psychology, 32,449-465. 

References 



100 

Ennis, D.M., Mullen, K., & Frijters, J.E.R. (1988). Variants of the method of triads: 

Urddimensional Thurstonian models. British Journal of Mathematical and Statistical Psychology, 

41,25-36. 

Fechner, G.T. (1860). Elements ofPsychophysics. In DJH. Howes & E.C. Boring, (Eds.), H.E. 

Adler, trans. New York: Holt, Rinehart and Winston, 1966. 

Frijters, JJE.R. (1979). Variations of the triangular method and the relationship of its 

unidimensional probabilistic models to three-alternative forced-choice signal detection theory 

models. British Journal of Mathematical and Statistical Psychology, 32,229-242. 

IMSL (1987). IMSL Library (Version 1.0). Houston TX: Author. (Developed by IMSL, Inc., 7500 

Bellaire Blvd., Houston, TX 77036) 

Iverson, G.J. (1987). Thurstonian Psychophysics: Case HI. Journal of Mathematical Psychology, 

31,219-247. 

MacKay, D.B. (1989). Probabilistic multidimensional scaling: An anisotropic model for distance 

judgments. Journal of Mathematical Psychology, 33,187-205. 

Marquardt, D.W. (1963). An algorithm for least squares estimation of nonlinear parameters. 

SIAM Journal of Applied Mathematics, 11, 431-441. 



101 

Mullen, K., Ennis, D.M., de Doncker, E., & Kapenga, LA. (1988). Multivariate models for the 

triangular and duo-trio methods. Biometrics, 44,1169-1175. 

Hessens, R., de Doncker-Kapenga, E., Uberhuber, C.W., & Kahaner, D.K. (1983). Quadpack. New 

York: Springer-Verlag. 

Thurstone, L.L. (1927). A law of comparative judgment Psychological Review, 34,273-286. 

Zinnes, J.L., & MacKay, D.B. (1983). Probabilistic multidimensional scaling: Complete and 

incomplete data. Psychometrika, 48, 27-48. 

Zinnes, JJL., & MacKay, D.B. (1987). Probabilistic multidimensional analysis of preference 

ratio judgments. Communication and Cognition, 20,17-44. 

Mullen, K., & Ennis, D.M. (1987). Mathematical formulation of multivariate Euclidean models 

for discrimination methods. Psychometrika, 52,235-249. 



102 

CHAPTER 4 

MULTIDIMENSIONAL PROBABILISTIC MODELS 

The effect of dimensionality on results from the triangular method. 1985. Chemical 

Senses 10,605-608. 

A multivariate model for discrimination methods. 1986. Journal of Mathematical 

Psychology 30,206-219. 

Theoretical aspects of sensory discrimination. 1986. Chemical Senses 11,513-522. 

A multidimensional stochastic theory of su-ularity. 1988. Journal of Mathematical 

Psychology, 32,449-465. 

Qjnfusable and discriminable stimuli: Comment on Nosofsky (1986) and Shepard (1986). 

1988. Journal of Experimental Psychology: General 117,408-411. 

A comparison of selected probabilistic multidimensional models of identification with 

respect to perceptual dependence. 1991. Journal of Mathematical Psychology, 

submitted. 



103 

Chemical Senses Vol.10 no.4 pp.605-608. 1985 

Short Communication 

The effect of dimensionality on results from the triangular method 

Daniel M.Ennis and Kenneth Mullen 1 

Philip Morris Research Center, Commerce Road, Richmond, VA 23261, 
USA, and department of Mathematics and Statistics, University of Gueiph, 
Guelph, Ontario, Canada N1G2W1 

Abstract. Methods to measure differences between complex stimulus sets (such as foods and beverages) 
are numerous. One of the most commonly used procedures in food and beverage sensory research is the 
triangular method. A comparison of unidimensional and multidimensional normal models for the triangular 
method using Monte Carlo simulation showed that the expected subject response distribution depends not 
only on the size of the unidimensional discriminal distance between stimulus sets, but also on the number of 
dimensions for which the discriminal distance is zero in each case. Since the number of dimensions for which 
these conditions apply are usually unknown in complex systems, the power of the triangular method will 
be unknown. These findings may have important implications for the interpretation of results from many 
methods which involve a comparison of distance estimates in a multidimensional space. 

The triangular method (Amerine et al., 1965; Harrison and Elder, 1950) is a difference 
testing method which is widely used in food and beverage sensory research in academic 
and industrial laboratories. In the triangular method, the subject is instructed to select 
out of three stimuli (two randomly drawn from one stimulus set and one from another 
stimulus set) the one which is perceptually different from the other two. Unlike m-
alternative forced choice methods (such as the method of paired comparisons) in which 
the subject selects a particular stimulus on the basis of a specified sensory continuum, 
in the triangular method the subject selects the attribute(s) on which to base the decision. 

The normal Thurstone-Ura model for the triangular method has already been described 
(Frijters, 1979a) in which the subject's response distribution has been related to perceived 
stimulus chssirnilarity on a unidimensional continuum. The sensory values were assumed 
to be drawn from normal density functions of equal variance. A comparison (Frijters, 
1979b) of the normal Thurstone-Ura model for the triangular method and the 3-alterna-
tive forced choice model (3-AFC), in which the subject selects the "strongest' or 
'weakest' stimulus on a specified unidimensional sensory continuum, lead to a reso
lution of the 'paradox of the discriminatory non-discriminators' (Byers and Abrams. 
1953; Gridgeman, 1970) for unidimensional continua. This 'paradox' arose when sub
jects could not identify the odd stimulus in simple and complex systems using the 
triangular method, but were successful in identifying the 'strongest' or 'weakest' stimulus 
in a 3-AFC procedure. In the triangular method, the subject uses distances between 
momentary sensory values to make a decision. In the 3-AFC method, the subject uses 
absolute magnitudes of the momentary sensory values to make a decision. The effect 
of the variance of the sensory values on the subject's success in identifying the 'cor
rect' stimulus is different for the two methods because higher probabilities of correct 
response are found for the 3-AFC method over a wide range of perceived stimulus 
dissimilarities (discriminal distance, d'). 

In experiments designed to test the null hypothesis concerning discrimination between 

© IRL Press Limited, Oxford, England. 
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Fig. 1. The effect of increasing stimulus complexity on discrimination in the triangular method relative to 
the unidimensional case at constant d' (A) and across a range of d's (B). The experimental conditions, as
sumptions and decision rules for the unidimensional case were given by Frijters (1979a). The effect of 1. 
2. 3 .4 and 9 additional dimensions for which d' =0 in each case was simulated for the case in which unidimen
sional d'=2.0 (A). A Monte Carlo method was employed to provide random deviates from independent 
normal distributions corresponding to these experimental conditions in which 50 000 trials were evaluated 
to provide proportion correct estimates for each point. The decision rules for determining a correct response 
from a unidimensional continuum were applied to the euciidean distances between stimuli in the multidimen
sional space. The results are plotted as a fraction of the proportion correct response expected for the uni
dimensional case (Pc/Po, where Pc is the proportion correct for a particular number of dimensions, and 
Po is the proportion correct in the unidimensional case when d' =2.0). The origin on the y-axis corresponds 
to the expected value for guessing. In the case of four additional dimensions in which d' =0 in each case 
(B). proportion correct response was estimated for unidimensional values of d' from 0 to 5.8 (0.2 increments) 
based on 50 000 simulated trials for each point. 

complex (multidimensional) stimulus sets, it could be argued that the triangular method 
enjoys advantages over the paired comparison or 3-AFC methods. The basis for this 
argument is that the triangular method does not require experimenter knowledge of 
the sensory dimensions on which the stimulus sets differ and yields an overall measure 
of discrimination based on the subject's selection and weighting of particular sensory 
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attributes. The problem with this argument is that in multidimensional systems, the 
subject's ability to discriminate between the stimulus sets will depend not only on the 
discriminal distance (d') between the means of the sets on continua for which d' > 0 , 
but also on the number of dimensions for which, in each case, d' = 0 (Figure 1). Figure 
1A shows that when the stimulus sets are compared in the triangular method in which 
the mean of the sensory values on a particular unidimensional continuum differ by 2.0 
standard deviations (i.e., d '=2.0) , the probability of correctly identifying the odd 
stimulus (expressed as a fraction of the unidimensional case) decreases with the number 
of other dimensions for which d ' = 0 in each case. Figure IB shows that the effect of 
the additional dimensions varies with discriminal distance for the case where there are 
four additional dimensions for which d ' = 0 in each case. 

In deciding which stimulus to choose as the odd one, it was assumed that the subject 
estimates the multidimensional euclidean distance between the pairs of stimuli in each 
trial. When these distances are estimated, the subject compares them and selects the 
stimulus which is most different from the other two as the odd stimulus. An effect of 
increasing dimensionality is an increase in the variance of the interstimulus distances. 
The result of this added variance will be an increasing likelihood of choosing the odd 
stimulus incorrectly. [A corollary of this result is that when the added dimensions actually 
contain useful information to aid in discrimination (i.e., d ' ^ 0 ) , diminishing returns 
for each added dimension will be evident (if d'i=constant)]. 

Unlike m-alternative forced choice methods (such as the paired comparison and 3-AFC 
methods), there are several methods used for measuring discrimination in multidimen
sional systems which require a comparison of distance estimates by the subject, such 
as the duo-trio and A-not-A methods. Like the triangular method, the power of these 
methods will be significantly affected by the complexity of the stimuli and will give 
results which depend on the nature of this complexity. We think that these results have 
interesting implications in psychometrics and should be of concern to others who draw 
inferences from sensory measurements. From a practical point of view, it seems 
reasonable to study the effect of a particular experimental variable in complex systems 
by measuring some response to the variable under trial conditions in which all other 
variables are kept 'constant'. These results show that for the triangular and similar 
methods, the multidimensional context itself is an important determinant of discrimi
nation between stimulus sets. This means that the results obtained from these methods 
will be specific to the context in which the trial variables were evaluated. In the case 
of highly multivariate systems, discrimination between stimulus sets which differ in 
one dimension may require very large discriminal distances and/or very large sample 
sizes, if the null hypothesis is to be rejected with a reasonable degree of confidence. 
As it turns out, the argued strength of the triangular method may also be its weakness. 
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Theoretical Note 

A Multivariate Model for Discrimination Methods 
D A N I E L M . E N N I S 

Philip Morris Research Center 
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K E N N E T H M U L L E N 

Department of Mathematics and Statistics, University of Guelph 

We describe a multivariate model for a certain class of discrimination methods in this paper 
and discuss a multivariate Euclidean model for a particular method, the triangular method. 
The methods of interest involve the selection or grouping of stimuli drawn from two stimulus 
sets on the basis of attributes invoked by the subject. These methods are commonly used for 
estimation and hypothesis testing concerning possible differences between foods, beverages, 
odorants, tastants and visual stimuli. 

Mathematical formulation of the bivariate model for the triangular method is provided as 
well as extensive Monte Carlo results for up to 10-dimensional cases. The effect of correlation 
structure and variance inequality are discussed. Results from these methods (as probability of 
a correct response) are not monotonically related to the distance between the means of the 
stimulus sets from which the stimuli are drawn but depend in a particular way on dimen
sionality, correlation structure, and the relative orientation of the momentary sensory values 
in a multidimensional space. The importance of these results to the validity of these methods 
as currently employed is discussed and the possibility of developing a new approach to mul
tidimensional scaling on the basis of this new theory is considered. © 1986 Academic Press, inc. 

I N T R O D U C T I O N 

In this paper we discuss a multivariate model for a particular class of dis
crimination methods. These methods all involve the selection or grouping of stimuli 
from two stimulus sets on the basis of attributes invoked by the subject. For the 
most commonly used method, we provide a formula which yields a subject's 
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probability of a correct response as a function of population parameters (variance, 
distance, correlation structure) in the bivariate case and extensive Monte Carlo 
simulation results for up to 10 dimensions. Our interest in this area is two-fold: 

(a) Sensory discrimination methods are widely used to study the dis-
criminability of stimuli which may be perceptually multivariate and, for some of the 
most commonly used methods, a theoretical framework for interpreting the results 
does not exist; and 

(b) Since the methods of interest do not require experimenter foreknowledge 
of the attributes selected to make a decision, an understanding of the theoretical 
relationship between interstimulus distance in a multidimensional space and the 
subject's response may lead to a new approach to multidimensional scaling. 

Examples of the kinds of methods to which the model might apply include the 
triangular method, the duo-trio method, the ABX method, and the multiple pairs 
methods. The triangular and duo-trio methods are very commonly used for 
estimation and hypothesis testing concerning possible differences between foods, 
beverages, odorants, tastants, and visual stimuli (Amerine, Pangborn & Roessler, 
1965; Harrison & Elder, 1950). These methods were adopted without the develop
ment of theory and have remained largely outside the field of psychology until 
recently. In the triangular method, the subject is instructed to select out of three 
stimuli (two drawn from one stimulus set and one from another stimulus set) the 
one which is perceptually different from the other two. In the duo-trio method, one 
of the three stimuli is a designated standard and the subject's task is to identify 
which of the other two stimuli is perceptually most similar to the standard. Unlike 
m-alteraative forced choice methods (Green & Swets, 1966), such as the method of 
paired comparisons, in which the subject selects a particular stimulus on the basis 
of a specified sensory continuum, in the triangular and duo-trio methods, the sub
ject selects the attribute(s) on which to base the decision. The ABX method is 
similar to the duo-trio method but involves two standards. Multiple pairs methods 
require the subject to form two equally sized groups of similar stimuli. 

T H E MULTIVARIATE M O D E L 

Assumptions 

(a) There are two sets of stimuli, S. t and S„ and within each set, the stimuli 
are physicochemically identical. Both stimulus sets are sampled, and at least two 
stimuli are drawn from at least one of the stimulus sets. The stimuli, Sxi and Svj, 
give rise to corresponding momentary sensory values of the respective magnitudes 
x, and y, where xj = (*„, xa,..., xj and yj = (yn, y^,..., yjn) where x', indicates the 
transpose of the vector x , and n is the number of sensory dimensions. The momen
tary sensory values are mutually independently distributed with x, having density 
function/(x) and y y having density function f{y). 
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(b) The probability densities f(x) and f(y) are multivariate normal dis
tributions with means pi- and \iy, where |i* = (uxl, ux2,..., um) and p.'y = 
(uri, uy2,..., Mwi) a Q d variance-covariance matrices V - and V~. 

(c) If ft- and n v are in standard units, the distance between them is 

(d) In a particular trial, a correct overt response will be obtained if the sub
ject forms two groups in which stimuli drawn from the same set are in only one 
group. The subject determines group membership by minimizing within group sen
sation distances. 

(e) There are no response preferences due to spatial or temporal positions of 
the stimuli. 

A Multivariate Euclidean Model for the Triangular Method 

Unidimensional models for the triangular method have already been developed. 
The normal Thurstone-Ura model for the triangular method was described by 
Frijters (1979) in which the subject's response distribution was related to perceived 
stimulus dissimilarity on a unidimensional continuum. The sensory values were 
assumed to be drawn from normal density functions of equal variance. Frijters 
developed the psychometric basis on which the triangular method could be 
introduced as a signal detection theory method for stimuli with univariate momen
tary sensory values. Derivation of the relationship between the probability of a 
correct response (Pc) and the difference between the population means of the den
sity functions representing the stimulus sets (d) had been published earlier by 
David and Trivedi (1962), which was based on Ura's work (1960). 

In the multivariate Euclidean model for this method, y = 2 in assumption (c) and 
assumption (d) will be: 

In a particular trial, a correct overt response will be obtained if 

n n n n 

(i) Z ( * u - * » ) 2 < X (xlk-ykf and £ ( * i _ - * _ * ) 2 < £ ( * » - ^ _ ) 2 

* - i * - i *=i *=i 

for triangles composed of Sxi, Sx2 and Sv; or if 

n n n n 

(») I LVi*- .y_- ) 2 < E (ylK-xk)2and £ ( j U - ^ 2 * ) 2 < I ( j>_*-**) 2 

* = 1 k=l * = 1 * = 1 

for triangles composed of _>„,, Sv2, and Sx. 
The distance between fix and u v will be represented as d'. 
Throughout the rest of this paper we will discuss a mathematical form of this 

model for the bivariate case, the results of extensive Monte Carlo simulation of the 
model for up to 10 dimensions, and explain the relevance of this work to current 
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uses of the method and possible new applications. We have chosen the triangular 
method for illustrative purposes realizing that much of what has been learned with 
this method will apply to other methods as well. 

MATHEMATICAL FORMULATION OF THE BIVARIATE CASE 

Let 

(xlk~x2k) = uk; (xlk-yk) = vk; (x2k-yk) = wk; fc=l, 2. 

A correct decision will be made if (assumption d(i)) 

Z and Y.ul<Twl 
If u r = (0 ,0) then the means of the distributions of ux and u2 are zero. If u v = 
{uu u2) then the means of v{ and v2 are — u, and — u2, respectively. V is the varian-
ce-covariance matrix of the joint distribution of uu u2, »,, v2. The probability of a 
correct response, P c , 

foe poo r (.47E/3 ( p i ") 

= 2 dvv dv2 j f(vl,v2,0,w)dw\dO 
•>-*> J - = o LJ2jr/3 ( J 0 J 

where 

r, = 

[w(r2-rl) + rl](r2-rl)exp{-0.5(z-yi)'V-i(z-ri)} 
(2;r) 2 |V | 1 / 2 

(v2 + v2)1'2 

- 2[u,(cos 0 cos 0 O - sin 0 sin 0O) + 0 2 (s in 0 cos 0„ + cos 0 sin 0 O ) ] 

sin 0 O = -

z , = {w(r 2 — r ^ + r! }{cos 0 cos 0 O —sin 0 sin 0 O } + »i 

z2 — {wir2 — '"i) + ''i}{sin 0 cos 0 o + cos 0 sin 0 O } + v2 

H' = (0,0 , ~u2). 

(A proof is available from the authors on request) 

NUMERICAL INTEGRATION AND M O N T E CARLO SIMULATIONS 

Numerical integration for the bivariate case and Monte Carlo simulations of the 
general multivariate model were conducted on a Gould 32/97 and a DEC 2060 
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computer. Numerical integration was accomplished using the IMSL Fortran-
callable subroutine D M L I N (IMSL, 1984), and these results were found to be iden
tical to those obtained using a much faster adaptive routine by Genz and Malik 
(1980). The bivariate model was evaluated over a broad range of parameters and 
was found to agree closely (differing slightly in the third decimal place) with 
simulations involving 100,000 triangles per estimate. 

The computer simulations, on which the results that follow are based, involved 
the evaluation of the effect of different values of d on Pc for different numbers of 
independent sensory variables (up to 10), the effect of correlation between the 
dimensions and inequality of variance on Pc in the bivariate case, and an estimate 
of the power (1.0 — /J) of the triangular method as dimensionality increases. The 
triangles (three simulated momentary sensory values per triangle) were formed by 
selecting deviates, using the IMSL subroutines G G N M L and GGNSM, from pop
ulations with specified parameters. In the case of each estimate 100,000 triangles 
were sampled; power was estimated by simulating 1000 experiments involving 200 
triangles in each case, using a one-tailed a of 0.05. 

DIFFERENT NUMBERS OF INDEPENDENT SENSORY VARIABLES 

The variance of each of the independent variables sampled was unity. The 
unidimensional and multidimensional distances between the means of the stimulus 
sets are in univariate standard units. Figure 1 shows the relationship between Pc 

1.0 

0.B 

0.6 

Pc 

0.4 

0 . 2 ' 

0.0 

0-0 1.0 2.0 3.0 * .0 5.0 

d' 

FIG . 1. Probability of a correct response (Pc) as a function of distance (if) for 1-, 2-, 5-, and 10-
dimensional stimulus sets. 

D U u n i d I m « n « I o n a I 
B B 2—d t m a n * I o n a I 
* * S - d I mmnm I o n a I 
8 — 0 1 0 - d I m a n * 1 o n a I 
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TABLE I 
Estimated Probability of a Correct Response, P„ 

with the Triangular Method as a Function of Discriminai Distance, d 

Number of dimensions 
Euclidean <f — — :— 

1 2 3 4 5 10 

0.0 0.334 0.335 0.334 0.335 0.335 0.330 
0.1 0.335 0.335 0.332 0.335 0.334 0.334 
0.2 0.339 0.333 0.339 0.336 0.334 0.334 
0.3 0.340 0.339 0.340 0.336 0.338 0.336 
0.4 0.345 0.344 0.341 0.340 0.340 0.337 
0.5 0.358 0.351 0.348 0.349 0.344 0.341 
0.6 0.366 0.361 0.356 0.353 0.352 0.348 
0.7 0.376 0.368 0.361 0.359 0.358 0.349 
0.8 0.387 0.379 0.372 0.369 0.365 0.355 
0.9 0.402 0.390 0.379 0.377 0.372 0.360 
1.0 0.418 0.401 0.394 0.384 0.381 0.370 
1.1 0.432 0.414 0.403 0.399 0.392 0.374 
1.2 0.451 0.428 0.417 0.409 0.402 0.382 
1.3 0.470 0.445 0.432 0.420 0.412 0.392 
1.4 0.487 0.460 0.444 0.433 0.425 0.402 
1.5 0.506 0.479 0.459 0.448 0.435 0.410 
1.6 0.527 0.495 0.477 0.461 0.452 0.423 
1.7 0.547 0.511 0.491 0.475 0.465 0.432 
1.8 0.565 0.530 0.510 0.493 0.479 0.445 
1.9 0.584 0.547 0.525 0.509 0.494 0.458 
10 0.607 0.568 0.542 0.522 0.509 0.471 
11 0.625 0.582 0.560 0.539 0.526 0.481 
12 0.641 0.604 0.575 0.558 0.542 0.493 
2.3 0.663 0.622 0.591 0.574 0.557 0.511 
2.4 0.683 0.641 0.614 0.588 0.572 0.524 
2.5 0.700 0.655 0.628 0.607 0.589 0.538 
16 0.719 0.677 0.647 0.624 0.606 0.551 
2.7 0.733 0.692 0.662 0.644 0.626 0.568 
18 0.748 0.709 0.681 0.659 0.641 0.582 
19 0.765 0.727 0.697 0.675 0.655 0.598 
3.0 0.782 0.741 0.713 0.694 0.673 0.613 
3.1 0.797 0.759 0.730 0.709 0.691 0.627 
3.2 0.810 0.774 0.746 0.726 0.708 0.643 
3.3 0.821 0.788 0.763 0.739 0.722 0.657 
3.4 0.834 0.803 0.778 0.756 0.735 0.674 
3.5 0.846 0.817 0.791 0.770 0.751 0.689 
3.6 0.858 0.829 0.804 0.784 0.766 0.703 
3.7 0.869 0.843 0.819 0.797 0.782 0.717 
3.8 0.879 0.853 0.830 0.812 0.795 0.732 
3.9 0.888 0.864 0.844 0.826 0.808 0.746 
4.0 0.899 0.874 0.855 0.837 0.822 0.762 
4.1 0.907 0.883 0.866 0.849 0.832 0.774 
4.2 0.913 0.895 0.877 0.858 0.845 0.788 
4.3 0.922 0.903 0.885 0.871 0.855 0.802 
4.4 0.928 0.910 0.895 0.881 0.868 0.814 
4.5 0.935 0.918 0.902 0.888 0.879 0.826 
4.6 0.939 0.924 0.910 0.898 0.887 0.837 
4.7 0.945 0.930 0.916 0.906 0.894 0.847 
4.8 0.951 0.937 0.926 0.915 0.904 0.859 
4.9 0.956 0.943 0.932 0.921 0.912 0.868 
5.0 0.959 0.948 0.938 0.929 0.921 0.877 

Note. Each estimate is based on 100,000 simulated triangles. 
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FIG. 3. The power (1.0 — /?) of the triangular method to detect differences between unidimensional 
and multidimensional stimulus sets when a = 0.05 (one-tailed). Each sample contains 200 triangles. 
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FIG. 4. (A-E) Randomly sampled coordinates from stimulus sets which differ by d' 
which the correlation coefficient between variables is 0.8. 
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FIG. 4—Continued. 
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FIG. 4.—Continued. 

and a" as the number of variables increases from l to 10 and Table l presents 
estimates of Pc for a range of d and for l, 2, 3 ,4 , 5, and 10 independent variables. 
For a given d\ the effect of increasing dimensionality is to reduce Pc. This is a real 
effect of dimensionality on results from this method, the consequence of which can
not be captured on some new unidimensional continuum derived for each mul
tivariate case. If stimuli have multivariate sensory attributes but the stimulus sets 
differ, on the average, on only one of those dimensions, Pc will decay as a function 
of dimensionality as shown in Fig. 2 where PJP0 (Po is Pc in t n e unidimensional 
case) is plotted against the number of added dimensions on which there is no dif
ference between the stimulus sets. This means that Pe is not monotonically related 
to d for stimulus sets which differ in dimensionality. These results also anticipate 
Fig. 3 which shows that the power of the triangular method also depends on dimen
sionality. 

CORRELATED VARIABLES ( T W O DIMENSIONS) 

When the variables are independent (correlation coefficient, /? = 0.0), the 
probability of a correct response will depend on the distance between the means of 
the stimulus sets and the number of variables involved in the distance estimate. It 
will not depend on the relative contribution of different dimensions to d'; in other 
words, it will not depend on the relative orientation of the stimulus sets in a mul-

6.0- , 

E 

4.0-
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tidimensional space. When the variables are correlated within a stimulus set, Pc will 
depend on the degree of correlation and on the relative direction of the difference 
between sets. In order to illustrate this effect, consider Figs. 4A — E in which 100 
stimuli coordinates have been randomly drawn in each case from stimulus sets 
which differ by 3.0 standard units (d = 3.0) in two dimensions and for which p = 0.8 
within each set In Fig. 4A, the means of the stimulus sets differ on the x-axis only 
(0°); in 4B, they differ equally on x- and v-axes (45°); in 4C, on the v-axis only 
(90°); in 4D, on x- and j>-axes equally (135°); and in 4E, on the x-axis only (180°). 
Figure 5 is a plot of Pc as a function of orientation when d' = 3.0, the number of 
dimensions is 2, and p = 0.0, 0.4, and 0.8 within each stimulus set As expected, 
when p = 0.0, Pc is constant However, as p increases, the effect of the direction of d' 
increases. These results show that P c may not vary monotonically with the distance 
between stimulus sets but will depend not only on dimensionality, but also on the 
particular relative orientation of the perceived attributes in a multidimensional 
space. In addition to possible difficulties with hypothesis testing concerning the dif
ference between stimulus sets for which these parameters are unknown, these results 
also suggest the possibility of learning something about the multidimensional 
representation of objects for which pairwise Pc values are known. 

1.0-

0 . 9 -

B—BP = 0.8 
e—ep = a . 4 
—— p s 0.0 

0.6-

0.5-
20 40 60 80 100 1 2 0 140 160 180 

Relative Orientation (degrees) 

FIG. 5. Probability of a correct response {Pc) for different relative orientations of stimulus coor
dinates in a 2-dimensional space when correlation coefficients (p) are 0.0, 0.4, and 0.8 and discriminal 
distance (d) between stimulus sets = 3.0. 



118 

DISCRIMINATION METHODS 

B 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Variance Ratio 

FIG. 6. (A and B) The effect of unequal variances (expressed as the ratio of the variances) on the 
probability of a correct response (Pc) in 1- and 2-dimensional cases (A and B, respectively) in which the 
odd stimulus is drawn from the stimulus set with the large variance(s) (LSS), the small variance(s) 
(LLS), and their mean. 
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UNEQUAL VARIANCES ( T W O DIMENSIONS) 

For the sake of simplicity, variances within the 2-dimensional stimulus sets will 
be assumed to be equal (i.e., both will be large or both will be small). The 
triangular method specifies an experimental conditions in which two stimuli will be 
drawn from one stimulus set and one for the other for half of the triangles, and visa 
versa for the other half. When the variances of the stimulus sets are unequal, these 
two experimental sets will lead to different values of Pc when d' = Q, as shown in 
Figs. 6A and B for unidimensional and 2-dimensional cases. When the single 
stimulus is drawn from the population with the larger variance, Pc increases with 
increasing difference between the variances; this effect is more pronounced in the 2-
dimensional case than in the unidimensional case. In contrast, when the single 
stimulus is drawn from the population with a lower variance, Pc decreases. The 
average results show that when both experimental conditions are balanced, Pc 

gradually increases with an increase in the relative size of the larger variance 
leading to an increased likelihood of committing a Type I error as shown in 

Although these results have consequences for hypothesis testing, they also offer 
the interesting possibility of investigating stimulus dimensionality by selectively 
changing the relative variance of the sensory attributes of the stimulus sets by 
allowing the subject more exposure to one stimulus set than the other. By con
ducting experiments of this type, it may be possible to determine dimensionality 
since the number of dimensions determines the way in which variance inequality 
affects the results. 

Table 2. 

TABLE 2 
The Effect of Increasing the Variance Ratio of Sampled Populations 

Using the Triangular Method on Real a Levels 
When a One-Tailed a of 0.05 Is Assumed 

Unidimensional 2-dimensional 

Variance ratio Real a Real a 

1.0 
1.56 
2.25 
3.06 
4.00 

.332 

.338 

.347 

.361 

.374 

.05 

.06 

.11 

.21 

.34 

.333 

.340 

.358 

.379 

.400 

.05 

.08 

.19 

.40 

.63 

Note. Each experiment involves 200 triangles. 
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DISCUSSION 

In this paper we discussed a multivariate model for a general class of dis
crimination methods. For one of these methods, the triangular method, we presen
ted a multivariate Euclidean model, gave the mathematical form of the model in the 
bivariate case and extensive Monte Carlo results for a selection of multivariate 
cases. When the number of sensory dimensions is greater than 1, the probability of 
a correct response, Pa, for the triangular and the other discrimination methods in 
this class is not monotonically related to d', the Euclidean distance between the 
means of the stimulus sets. Although this may present the experimenter with some 
difficulties in using these methods for hypothesis testing and estimation when cer
tain parameters such as relative variance, dimensionality, and correlation structure 
are not known, it may also present the opportunity to develop a new approach to 
multidimensional scaling. This would require the mathematical formulation of the 
general multivariate model for at least one of these methods and the basis for 
obtaining a least constrained configuration to correspond with the experimentally 
determined pairwise Pc values. 
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Abstract. Discrimination methods are commonly used in research on the chemical senses. Chemosensory 
stimulation often leads to multivariate sensations. A multivariate theory for a class of discrimination techni
ques is described here along with a discussion of the practical implications of the theory to experimenters. 
One of the most important findings is that the probability of a correct response for the discrimination tasks 
modelled is not monotonically related to the Euclidean distance between the means of the populations from 
which the stimuli are drawn. There are two important consequences which flow from this finding. First, 
the power of these methods cannot be determined without specifying values for the multivariate parameters. 
Second, the traditional assumption in multidimensional scaling that proximity measures and multivariate 
distances are monotonically related is invalid. The theory presented here is the basis for a new approach 
to multidimensional scaling using these discrimination methods without invoking the assumption of monotonici-
ty. The conceptual basis is established to extend the model to include stimulus variation and an explicit assump
tion, based on Stevens' power function, about the nature of the relationship between the stimulus continuum 
and the sensation continuum. 

Introduction 

One approach towards a fundamental understanding of how chemosensory stimulants 
are perceived is to build and test a theory which reliably models the effect of the percep
tual parameters on performance. Very often the sensations resulting from chemosen
sory stimulation by odorants and tastants are multivariate and, consequently, a viable 
model must specify the relationship between the multivariate parameters and the sub
ject's response. The multivariate parameters of interest here are: (i) the multidimen
sional distance between stimuli; (ii) the relative orientation of the stimuli to each other 
in a space of a certain dimensionality; (hi) the degree of correlation between the variables 
perceived by the subject for a particular stimulus; and (iv) their relative variances. The 
multivariate parameters may be estimated on the basis of various behavioral data (e.g. 
probability of a correct response, probability of confusing one stimulus with another, 
identification errors, and so on) assuming that the other factors influencing performance 
in an experiment are controlled by the experimenter. Knowing these parameters will 
provide insights into how the stimuli may be perceived by the subject. An improved 
understanding of the chemical and physical basis for olfactory and gustatory quality 
will result from relating sensation magnitudes for a stimulus to its physicochemical 
properties. 

Since Shepard (1962, 1963) and Kruskal (1964a,b) made their original contribution, 
much of the theory of multidimensional scaling has been based on the assumption that 
proximity measures and perceptual distances are monotonically related (maintain a rank-
order relationship). Thus, the behavioral response (a measure of proximity) is 

© IRL Press Limited, Oxford, England 
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assumed to depend on only a single parameter, the multidimensional distance, 5. Building 
on this theory, different assumptions have been made about the nature of the distance 
metric (for instance, city-block or Euclidean), the relative weights given to different 
dimensions by subjects in determining 5, and even stronger assumptions about the rela
tionship between & and the proximity measure. 

Recendy it has been shown (Ennis and Mullen, 1986) that the monotonicity assump
tion is invalid under many multivariate conditions when methods are used which involve 
grouping stimuli on the basis of their similarity. Although the monotonicity assump
tion may hold up in certain cases, it should certainly not be invoked as a general rule. 
A theory which relates the multivariate parameters to the measure of proximity would 
free us from the need to assume any particular relationship between 5 and the behavioral 
response. 

Multivariate theory of the type discussed here can be derived and evaluated experimen
tally for a wide variety of different methods. We chose to focus our attention on a par
ticular class of grouping techniques, which include the triangular and duo—trio methods, 
because they are extensively used for hypothesis testing and estimation in taste and 
olfaction. The triangular and duo—trio methods were introduced as sensory discrimina
tion methods about 45 years ago and have been used to measure and test for possible 
differences between food and beverage formulations in addition to their application to 
more fundamental research on olfaction and taste. In the triangular method, the subject 
is instructed to select out of three stimuli (two drawn randomly from one stimulus set 
and one from another stimulus set) the one which is perceptually different from the 
other two. In the duo-trio method, one of the three stimuli is a designated standard 
and the subject's task is to identify which of the other two stimuli is perceptually most 
similar to the standard. These methods remained largely outside the field of psychology 
until Frijters (1979) linked the triangular method with the broader field of signal detec
tion theory through his work on the unidimensional, or Thurstone-Ura, model. The 
statistical and psychological framework for making this contribution has been established 
earlier by David and Trivedi (1962) and was based on Ura's ideas (1960). 

The ideas developed here are quite general and can also be applied to other behavioral 
measures, such as confusion matrices and identification errors. 

The general multivariate model 

The methods of interest all involve the grouping of stimuli drawn from two stimulus 
sets on the basis of attributes invoked by the subject. Within each stimulus set, the 
stimuli are physicochemically identical. It is assumed that the subject minimizes within 
group sensation distances as a basis for grouping the stimuli and that 'distance' is ex-
actiy specified. As Frijters (1979) and others assumed for the unidimensional model, 
it is assumed that all of the variation in making discrimination judgments results from 
error by the subject in estimating sensation magnitudes of physicochemically identical 
stimuli. An extension of the model to include stimulus variation will be considered below. 
Unlike m-altemative forced choice methods (Green and Swets, 1966), such as the method 
of paired comparisons, all of the methods in the class of interest assume that the sub
ject selects the attribute(s) on which to base the decision. In addition to the triangular 
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and duo—trio methods, the model also applies to the ABX method and multiple pairs 
methods. The ABX method is similar to the duo—trio method but involves two stan
dards. The subject's task is to identify the standard (A or B) to which the third stimulus 
(X) is most similar. Multiple pairs methods require the subject to form two equally 
sized groups of similar stimuli. For instance, the subject's task may be to form two 
groups of four stimuli which had been drawn from different stimulus sets. 

The assumptions underlying the model are as follows [Ennis and Mullen (1986)]: 
(a) There are two sets of stimuli, S x and S y , and within each set the stimuli are 

physicochemically identical. Both stimulus sets are sampled, and at least two stimuli 
are drawn from at least one of the stimulus sets. The stimuli, 5^ and Syj, give rise 
to corresponding momentary sensory values of the respective magnitudes x; and yj where 
x'j = (xn,xa, • • • yXi„) and y'j = (yji,>'j2, • • • ,y>jn) where x' indicates the transpose 
of the vector, x and n is the number of sensory dimensions. Although the stimuli are 
physicochemically identical within each stimulus set (Sx or Sy), the multivariate momen
tary sensory values corresponding to stimuli from the same set, or the same stimulus 
at another point in time, will not be identical because of variation in the subject's sen
sation magnitude estimates. The momentary sensory values are mutually independent
ly distributed with X j having density function f(x) and yj having density function f(y). 

(b) The probability densities f(x) and f(y) are multivariate normal distributions with 
means px and £>,, where JJ/X = (HX\,ILX2, • • .,Hm) a n d j£y = (uyi, lh2> • • -^yn). and 
variance - covariance matrices Vx and V v . By specifying different variance—covariance 
matrices, stimulus sets with particular correlation structures can be considered. For 
instance, in the case of stimulus sets with two sensory dimensions, the correlation co
efficient, oi, relating the dimensions for the first stimulus set might be 0.8, and the 
correlation coefficient, Q 2 , relating the dimensions for the second stimulus set might 
be 0.6. Similarly, cases where the variances on different dimensions are unequal can 
be considered. 
(c) If fa and jiy are in standard units, the distance between them is 

n 
5 = [ k 5 , l ftck - Mykl 7] 1' 7 7 > 1.0 

The same values of 5 can be obtained for different dimensional contributions to ^ 
or fxy. In other words, 5 can be computed for different orientations of the stimulus 
sets to each other in a multidimensional space. When y = 2 , the above distance cor
responds to the familiar Euclidean distance. However, other proximity measures may 
be appropriate. 

(d) The particular procedure adopted by the subject to determine group membership 
is called the decision rule. In a particular trial, a correct overt response (an overt response 
occurs when a particular decision rule has been invoked) will be obtained if the subject 
forms two groups in which stimuli drawn from the same set are in only one group. 
The subject determines group membership by minimizing within group sensation 
distances. 

(e) There are no response preferences due to spacial or temporal positions of the 
stimuli. 
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Multivariate Euclidean models 

The triangular method 

In the multivariate Euclidean model for this method, y = 2 in assumption (c), and 
assumption (d) will be: 

in a particular trial, a correct overt response will be obtained if 
n n n n , , , 

(i) L(xlk - x2k)2 < E(-*ik - Vfc) 2 and E(jc,k - x2k)2 < £(*2k - y\)2 for mangles 
composed of Sx\, SX2 and Sy; or if 

(ii) £ ( y l k - y 2 k) 2 < E ( y l k - xtf and £ ( y l k " v2k) 2 < 2(y 2 k - *k) 2 for triangles 
composed of Syi, Sy2 and Sx. 

This means that if the perceived Euclidean distance between stimuli drawn from the 
same stimulus set is smaller than both of the other two distances, the subject will make 
a correct choice by grouping the two physicochemically identical stimuli and declaring 
the other stimulus to be different from the other two. 
Let 

(*tk - *2k) = «k; (*ik - y\) = y\; (X2k ~ = ^ k = 1 > - • 
where n is the number of sensory dimensions. 

A correct decision will be made if [from assumption d(i)] 
n ~ n , n n , 
Z,u\ < £v£ and lZu\ < T.w\ 

If IM'X = (0,0,. . . ,0) then the means of the distribution of ux, u2>. . .,u„ are each zero. 
If jSy = 0»!, / i 2 , . . .,n„) then the means of the distributions of vlt v 2,. . .,v„ are ~nx, 
- / i 2 , . . ., —Hn respectively, as are the means of wlf w2,. . .,wn. V is the 
variance—covariance matrix of the joint distribution of ux,u2 «n> vi . v2>- • -vn- ^ 
has been shown (Mullen and Ennis, 1986) that the probability of a correct response, 

2 
P c , corresponds to twice the hypervolume inside the n-dimensional hypersphere E M

k 

= R2 centered at (0,0, . . ,0), (where R2 - Ev k ) and outside another n-dimensional 
hypersphere of the same radius, centered at (vuv2,. . .,vn) weighted by the multivariate 
normal distribution, or 

OO OO 
Pc = 2 { J . . . J 1J . . . f f(uuu2,. . .,un,vuv2,. . .,vn)du„,. . ., 

— oo —oo C 

du J ,d« 1 ,dv B , . . .,dv 2,dv! 

where C is the region for which < Ev£ and E(uk-v\)2 > Lvy and 
« * W . . . W t . v , , . .,v„) - e x p [ - 0 . 5 ( z - ^ ) ' V - i ( , - g ) ] 

(2x ) " |V | l / 2 
z' = («i,« 2.- • ..Wn.Vi.Vj,. . . , v„) and 
M' = (0,0,. . . , 0 , - / t i , - / t 2 , . . .,~n„). 

The duo—trio method 
As in the triangular method, 7 = 2, but assumption (d) is: 
in a particular trial, a correct overt response will be obtained if 

n n 
(i) S ( x i k - X 2 k ) 2 < 2(JCik— yfc)2 if S x l is the standard, or if 

n n 
(ii) E(xik - *2k) < £C*2k - v k) 2 if $x2 is the standard. 
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Corresponding assumptions are made when Sy\ or Sy2 are designated standards. The 
decision rule means that if the perceived distance between the designated standard and 
the stimulus drawn from the same set is smaller than the distance between the standard 
and the third stimulus, the subject will make the correct grouping. 

In terms of u,v, and w, a correct decision will be made if 
n n n n 
E K 2 < Ev 2 or Eu 2 < Ew2. 

depending on whether Sxi or Sx2 is the designated standard. As shown in Mullen and 
Ennis (1986), Pc corresponds to the volume inside the n-dimensional hypersphere 
n n 
E M | = R* centered at (0,0,. . .,0)(where R2 - Ev|) weighted by the multivariate nor
mal distribution, or 

00 CD 

Pc = J J . . . J IJ . . . f f(«i,« 2. . .M„,VI,V2,. . .,v„)dun,. . . , d K i , d K , , d v „ , . . ., 
— 00 — 0 0 C 

• • -.dv2,dvi „ „ 
where C is the region for which [ E K 2 < Ev 2] 
and 

f(uuu2,. . .,u„,Vy,v2,. . .,v„), z', and are as defined for the triangular method. 

Evaluation of the models 
A two-stage process has been adopted in evaluating the models for discrimination 
methods. In the first stage, the effect of the parameters of the models (5, variance, 
correlation structure, dimensionality) on Pc are estimated using Monte Carlo Simula
tion. These simulations have been conducted on two computers — a Gould 32/97 and 
a DEC 2060 — using LMSL (1984) Fortran-callable subroutines (GGNML and GGNSM) 
which, when compared, give identical results. To minimize error, these simulations 
have been conducted with 100 000 simulated trials per estimate. The second stage in
volves derivation and evaluation of mathematical forms of the models. The integrals 
given earlier were evaluated using different approaches. Numerical integration in Carte
sian coordinates has been used to evaluate the integrals in the bivariate case using LMSL 
DBLIN and an adaptive routine by Genz and Malik (1980). These results compare very 
well with simulation (Mullen and Ennis, 1986) and with a more generalizable form 
in polar coordinates (Ennis and Mullen, 1986). A complete derivation and evaluation, 
in spherical coordinates, of the multivariate Euclidean models for the triangular and 
duo—trio methods is in progress. 
Examples 
The following are some specifications for possible multivariate parameters and their 
corresponding probabilities of correct response for the triangular and duo—trio methods. 
These are all bivariate cases in which the variances for the multivariate normal distribu
tion f(x) are of and CT§, and for f(y) are a% and of. The means of f(x) and f(y) are (0,0) 
and (|ti, ii2) respectively, and the correlation coefficients relating the dimensions are 
Qi and 62 respectively. 

(a) a\ = 1, of = 1, of = 1, oi = 1, 6 l = 0.0, Q 2 = 0.0, ,*i = 2, ^ = 0, 6 = 2.0 
Pc (triangular method) = 0.57, Pc (duo-trio method) = 0.71 

(b) of = 1, a| = 1, of = 4, <r| = 4, 6 l = 0.0, 6 2 = 0.0, AI = 0, ii2 = 0, 6 = 0.0 
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Pc (triangular method) = 0.59, Pc (duo-trio method) = 0.72 
(c) of. = 4, 4 = 4, of = 1, o\ = 1, oj = 0.0, 6 2 = 0-0, /*i = 0, m = 0, 5 = 0.0 

Pc (triangular method) = 0.20, Pc (duo-trio method) = 0.35 
(d) of = 1, 4 = 1, of = 1, a\ = 1, e i = 0.8, Q 2 = 0.6, m = 3 , M = 2, 5 = 3.6 

Pc (triangular method) = 0.75, Pc (duo-trio method) = 0.86 
The first example is the simplest case where variances are constant, the dimensions 

perceived for each stimulus are not correlated and only one dimension contributes to 
the distance. Under these conditions, the same value of 5 produced by different dimen
sional contributions [for instance, (V2,V2) or (0,2)] will result in the same probability 
of a correct response. Examples (b) and (c) are interesting because in each case the 
correlation coefficients and the means are zero but the variances on each of the two 
dimensions for the two stimuli are different. It can be clearly seen that the two presen
tations possible (S x i , and Sy) or ( S v l , Sy2 and 5*) will give very different results 
for both methods. Example (d) where variances are constant and the means and cor
relation coefficients are non zero is probably fairly typical of an actual experimental 
case. When correlation coefficients are non zero, the relative dimensional contribu
tions to 5 will affect the probability of a correct response. The consequences of this 
are considered in the next section. 

P c is not a monotooic function of 5 

Table I gives a selection of multivariate parameter values and corresponding values 
of PQ for the triangular and duo-trio methods. It can be seen that the probability of 
a correct response, P c , varies widely at a constant sensory Euclidean distance, 8, of 
3.0 between the population means for the stimuli. Note particularly how Pc is affected 
by different dimensional contributions to 5 when the correlation coefficient between 
dimensions is 0.8. Compare these results where 5 is 3.0 with example (d) above where 
5 was 3.6 and Pc in the triangular method was 0.75 — an intermediate value for the 
Table I entries. Previous research (Ennis and Mullen, 1985, 1986), based on extensive 
Monte Carlo simulation for the triangular method, showed that P c depends in a 
particular way on several parameters other than 6. Similar, but unpublished, results 
for the duo—trio method were obtained. For both methods, as the number of indepen
dent sensory dimensions increases, P c decreases at constant 5. When the sensory dimen
sions are correlated, P c depends on the correlation structure and also on the relative 
contributions of different dimensions to 5. 

In view of these theoretical findings, it may seem surprising that the assumption of 
monotonicity is central to traditional multidimensional scaling. In some cases it may 
be a reasonable assumption and lead to useful multivariate representations of proxim
ity measures. However, this research points to a need for a deeper understanding of 
the nature of the relationship between the results from discrimination tasks and the 
stimulus and psychological factors that determine them. This knowledge would extend 
our ability to understand the way in which stimuli with multivariate sensory attributes 
are perceived. Instead of invoking an assumption that is applied to the results from 
a wide variety of methods, this research suggests that each method involves a model 
that provides a unique relationship between the multivariate parameters and the 
behavioral response and that special multivariate specifications are needed to support 
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Table I. The effect of multivariate parameters on Pc for the triangular and duo—trio methods when 6 = 
3.0, and variance = 1.0 on all dimensions 
Dimensionality Correlation structure Dimension contributions Pc 

to 8 
Triangular method 

1 NA NA 0.78 
2 orthogonal any 0.74 
3 orthogonal any 0.71 
4 orthogonal any 0.69 
5 orthogonal any 0.67 

10 orthogonal any 0.61 
2 6 i= °-8, 62= 0.8 Mi= 3.00, jt2= 0.00 0.78 
2 e i= 0.8, Q2= 0.8 H = 2.60, n= 1.50 0.67 
2 e i = 0.8, ez= 0.8 H= 2.12, ^ = 2.12 0.65 
2 8 i= 0.8, 62= 0.8 1.50, ^2= 2.60 0.67 
2 6 i= 0.8, 62= 0.8 Mi= 0.00, jij= 3.00 0.78 
2 6!= 0.8, 62= 0.8 Mi = -1.50, jt 8= 2.60 0.86 
2 e i= 0.8, 62= 0.8 M = -2 .12, M2= 2.12 0.87 
2 6t= 0.8, 62= 0.8 Mt = -2.60, w = 1.50 0.87 
2 8!= 0.8, 62= 0.8 Mi = -3 .00 , M2= 0.00 0.78 

Duo-trio method 
1 NA NA 0.88 
2 orthogonal any 0.85 
3 orthogonal any 0.83 
4 orthogonal any 0.81 
5 orthogonal any 0.79 

10 orthogonal any 0.75 
2 6 i= 0.8, 62= 0.8 Ml = 3.00, fi,= 0.00 0.87 
2 6,= 0.8, 62= 0.8 /»1= 2.60, /tj= 1.50 0.80 
2 6 i= 0.8, e2= 0.8 /»! = 2.12, m= 2.12 0.78 
2 6 i= 0.8, 62= 0.8 H° 1.50, ,i2= 2.60 0.80 
2 6 i= 0.8, 62= 0.8 Ms= 0.00, P2= 3.00 0.87 
2 e s = 0.8, 62= 0.8 Mi = -1 .50, ft= 2.60 0.91 
2 6 i= 0.8, e 2 = 0.8 Mi= -2 .12 , 2.12 0.92 
2 6 i= 0.8, 62= 0.8 J»l = -2.60, ii2= 1.50 0.91 
2 6i= 0.8, 62= 0.8 -3 .00, n2= 0.00 0.87 

e s and Q 2 are correlation coefficients relating the two sensory dimensions characterizing the two stimulus 
sets, respectively. 

a monotonic relationship between the subject's response and the multivariate distance. 
Estimates of the multivariate parameters can be obtained for a given method by finding 
a multivariate representation of the stimuli which minimizes stress (disagreement bet
ween real and theoretical results) for a set of pairwise Pc values using the theory set 
out here. This configuration would therefore be obtained without assuming that distances 
and proximities are monotonicalfy related. This would result in a more fundamental 
theory of multidimensional scaling. 

Aside from their potential use in providing multidimensional representations of stimuli, 
discrimination techniques can be and, in fact, are used extensively as hypothesis testing 
methods (is one stimulus significantly different sensorially from another?). The 
dependence of Pc on dimensionality, the variance—covariance matrices of the stimulus 
sets, and on the orientation of the stimulus sets to each other in a multidimensional 
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space (relative weights on different dimensions) means that, for a particular comparison 
in the absence of knowledge about these parameters, the power (1.0-Type II error) 
of these methods will be unknown and the size of Pc may bear no obvious relationship 
to the size of 5. These findings suggest that discrimination methods such as the triangular 
and duo-trio methods should not be relied upon for hypothesis testing, unless a great 
deal is known about the multidimensional nature of the stimuli of interest. The theory 
also provides a way of comparing existing and alternative methodologies so that an 
optimum method can be chosen for a particular set of multivariate parameters since 
some discrimination techniques will be more sensitive to changes in the multivariate 
parameters than others. 

Extensions of the model 

The model that has been discussed so far is applicable to situations where there is no 
physicochemical variation and the unit of measurement has been the standard deviation 
on the sensation continuum. It was assumed that the source of this error was in the 
individual subject's perception of the stimulus, which may vary from moment to moment. 
In situations where stimulus variation is negligible, this assumption is perfectly valid. 
However, it is not always possible to control the stimulus so exacdy. If one were not 
concerned about separating stimulus error from subject error, the general discrimina
tion model could be rewritten to include an assumption about stimulus variation and 
the unit for 5, measured on the sensation continuum, would contain both components. 
All of the previous theory would then continue to apply, assuming that the distribution 

*1 Stimulus Magnitude 

* 2 * k ("2 • « 2 ) * * «4 

\ 
Sensation Magnitude 

Discrimination Task Decision Rule Response 

PyPj '• Means o-f stimulus distributions 

- Sensation values corresponding to stimuli randomly 
drawn -from the stimulus sets 

«^ : Random deviate from the -first stimulus distribution 
: Random deviate -from the second stimulus distribution 

*3**4 Random deviates "from sensation distributions 
(subject errors) 

0 . Power exponent 

V •. Constant 

Fig. 1. The conceptual framework for a psychophysical-decision model for discrimination methods. 
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assumptions were still valid, and 8 would simply take on this new meaning. 
It would be valuable to be able to separate stimulus from subject error for several 

reasons. First, error on some stimulus continuum (concentration of a compound, In-
stron measurements, spectral absorbance, etc.) can be estimated for a particular stimulus. 
Second, the nature of the distribution on the stimulus continuum may be different from 
that due to subject error (one may be normal, the other may be log normal, for instance). 
Third, if the relative size of stimulus to subject variance is known, more replications 
can be made at the point where variance is highest. It becomes apparent that to include 
stimulus variation would require a model that relates the stimulus continuum to the 
sensation continuum. Although many models of this type are conceivable, there is con
siderable support for the power function (Stevens, 1975) which states that yj/ = k<j>& 

where ^ is the sensation magnitude, ^ is the stimulus magnitude, £ is the power expo
nent (which depends on the nature of the stimulus) and k is a constant. 

Figure 1 shows these ideas schematically in the unidimensional case; the multivariate 
case is conceptually similar. Computer simulations of this model, which will be the 
subject of a future publication, have shown the interesting possibility that one may be 
able to estimate j3 for different kinds of stimuli using one of the discrimination methods 
given earlier. These results could then be compared with magnitude estimates or cross-
modality matching experiments which assume mat either magnitude estimates or matched 
intensities of a stimulus correspond exactly to the sensation magnitudes of the stimulus 
of interest. This assumption could then be tested without using direct methods for 
estimating sensation magnitudes and provide a new way of estimating psychophysical 
functions. 

Conclusion 

The results from experiments involving discrimination tasks depend on many variables, 
not all of which are under the control of the experimenter. The models presented here 
should help to establish the nature of the relationship between the proximity measure 
obtained from these experiments and a selection of important multivariate parameters. 
Many of these parameters have not previously been formally included in models for 
discrimination, with the exception of the multivariate distance, 8. Computer routines 
have now been written for various methods (including the triangular and duo-trio 
methods) by the authors to calculate Pc as a function of the multivariate parameters 
for cases of low dimensionality. These programs also allow the experimenter to com
pare different methods under particular multivariate scenarios. We are currendy working 
on a fast routine for grouping techniques applicable to the /i-dimensional case which 
will be used as the basis for applying a new theoretical approach to multidimensional 
scaling. 
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A multidimensional theory of similarity in which the mental representations of stimulus 
objects are assumed to be drawn from multivariate normal distributions is described. A 
distance-based similarity function is defined and the expected value of similarity is derived. 
This theory is the basis for a possible explanation of paradoxical results with highly similar 
stimuli regarding the form of the similarity function and the distance metric. A stochastic 
approach to multidimensional scaling based on same-different judgments is demonstrated 
using artificial and real data sets. The theory of similarity presented is used as a basis for a 
Thurstonian extension of Shepard's model of identification performance. © 1988 Academic 

Press. Inc. 

INTRODUCTION 

The goal of this paper is to describe a multidimensioal theory of similarity and 
to show how estimates of the model parameters assumed to be involved in making 
similarity judgments can be obtained. From the viewpoint of a mathematical 
model, mental representations of physical objects (or their analogous in lower 
organisms) can be treated as n-dimensional vectors with particular distributional 
properties and multidimensional parameters. Thurstone (1927) provided a 
framework for thinking about scaling relative psychological magnitudes by 

We thank M. Waugh and E. Gee for providing computer and noncomputer resources, respectively. 
We thank W. Kuhn and C. Lilly who helped to facilitate our collaboration notably through the 
Philip Morris Visiting Scientist program. We thank R. Shepard, R. Nosofsky, G. Ashby, P. Arabic, 
J. Kapenga, and J. Frijters for discussions and comments that helped to improve our understanding 
of important issues related to this paper. Requests for reprints should be sent to Daniel M. Ennis, 
Philip Morris Research Center, Commerce Road, Richmond, VA 23261. 

0022-2496/88 S3.00 
Copyright © 1988 by Academic Press, inc. 

AH rights of reproduction in any form reserved. 



132 

ENNIS, PALEN, AND MULLEN 

specifying the statistical parameters of an internal unidimensional continuum. 
Hefner (1958) extended Thurstone's ideas to the multivariate case in which the 
psychological magnitudes are represented as «-dimensional random vectors, where 
the values on each dimension have been drawn at random from independent 
normal distributions of equal variance. This means that the variances across dimen
sions are equal, but that the variances for different stimuli may not be. Techniques 
to obtain maximum likelihood estimates of the location and variability parameters 
of Hefner's model have been developed by Zinnes and MacKay (1983, 1987). 
Choice probabilities are not monotonically related to the distances between the 
means of the distributions under the assumptions of the Hefner model, when 
variances between stimulus points are unequal. MacKay (1987) has extended the 
model to cases in which the psychological variance on each dimension may be 
unequal for each stimulus. 

Ashby and Perrin (1988) proposed a multidimensional version of signal detection 
theory in an attempt to find a common theoretical basis for similarity and recogni
tion (identification). In this approach, the probability of confusing one stimulus 
object with another depends on the degree of overlap of the representational dis
tributions. For a given momentary value there are particular probabilities that the 
variate was drawn at random from either of the two distributions of interest and 
the subject's identification decision will depend on the ratio of these two 
probabilities. This model does not involve a distance-based similarity function. 

De Soete, Carroll, and DeSarbo (1986) described an unfolding model, the 
wandering ideal point (WIP) model, for paired comparisons data. Their model dif
fers from Hefner's in that the values corresponding to the stimuli are fixed, only the 
ideal points have multivariate normal distributions, and the variance-covariance 
matrix of the ideal point distribution need not be an identity matrix. In the WIP 
model it is assumed that a subject will prefer one stimulus object over another 
whenever the momentary Euclidean distance between the preferred stimulus and 
the (wandering) ideal point is smaller than the equivalent distance for the non-
preferred stimulus. This model appears to have much in common with a 
Thurstonian variant of Torgerson's method of triads (Ennis, Mullen, & Frijters, 
1988). In Torgerson's method of triads, the subject's task is to decide which of two 
stimuli is most like a third preselected stimulus. This third stimulus could be 
replaced by the ideal point from the WIP model. The stimuli evoke psychological 
magnitudes which are assumed to be modelled as if they were drawn from inde
pendent normal distributions. In the Thurstonian variant of Torgerson's method of 
triads, iPJk represents the probability that stimulus S, will be perceived to be more 
similar to Sj than Sk. If S, is replaced by the subject's ideal point, then is the 
probability that Sj will be preferred to Sk. This preference model is more general 
than the WIP model because the momentary psychological magnitudes evoked 
by the stimuli are not fixed. However, Ennis, Mullen, and Frijters (1988) only 
presented the unidimensional model for Torgerson's method of triads. 

An attempt to find a multidimensional extension of Torgerson's method of triads 
might usefully begin with a multidimensional model for the duo-trio method (Ennis 
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& Mullen, 1986b; Mullen and Ennis, 1987; Mullen, Ennis, de Doncker, & Kapenga, 
1988), which is itself a special case of the Thurstonian variant of Torgerson's 
method of triads. The duo-trio method involves three stimuli, two of which are 
physicochemically identical. The subject's task is to decide which of two (possibly) 
different stimuli is most like a third preselected stimulus. It is assumed that the 
momentary psychological magnitudes corresponding to the three stimuli have been 
drawn from multivariate normal distributions (two independently drawn from one 
distribution, the third from a possibly different distribution). Another tri-stimulus 
grouping technique, the triangular method (in which the subject's task is to select 
the most different stimulus), has also been modelled under distributional assump
tions similar to the duo-trio method (Ennis & Mullen, 1986b, Mullen & Ennis, 
1987; Kapenga, de Doncker, Mullen, & Ennis, 1987). 

In this paper, we extend the mathematical models developed for grouping 
techniques to same-different judgments and identification performance. This is 
accomplished by defining an explicit distance-based similarity function from which 
the expected value of similarity for confusable stimuli can be computed. We then 
show how the multivariate psychological parameters corresponding to a selection of 
hypothetical and real objects can be obtained. 

A MULTIDIMENSIONAL THEORY OF SIMILARITY 

Assumptions 

Consider the case of a single pair of stimulus objects, Sx and Sy, which give rise 
to momentary psychological values of the respective magnitudes x and y where 
x' = (xu x2,x„), y' = ( y , , y 2 , y n ) ; x' indicates an ^-dimensional row vector 
and n is the number of psychological dimensions. The momentary psychological 
values are mutually independently distributed with x having density function h(x) 
and y having density function A(y). The probability densities h{x) and h(y) are mul
tivariate normal distributions with means nx and u v and variance-covariance 
matrices and V„. On the basis of the momentary psychological values, x and y, 
the subject decides whether the stimuli are the same or different Let z = x — y. 

Let d represent the momentary distance between x and y perceived by the 
subject, where 

d= 1 1 * * 1 

i/r 

The distance between population means is 

<5 = 
l/B 
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Let the similarity of two particular momentary psychological values be g{d). The 
form of g specifies the similarity function, or the function relating similarity to 
distance. If the subject invokes a step function, g(d) will be 0 or 1 depending on the 
value of d relative to some threshold value. If the subject invokes a continuous 
function, then g{ d) will be a value that may be different from 0 or 1. If g is con
tinuous, g(d) should decrease as d increases. Continuous and step functions will be 
considered for g. 

The Continuous Function 

There are many different functional forms which could be proposed for the 
function, g. Shepard (1987) argued in favor of an exponential decay similarity func
tion. A flexible function which includes the exponential decay function is 

g(d) = exp(-d*\ a 3*0. 

In order to satisfy the earlier stated requirement that g{d) should decrease as d 
increases, a must be ^ 0 or g(d) would become larger as d became larger. The 
particular value for a may be different for different subjects and experimental 
conditions, although it is conceivable that i may be a constant. 

V is the variance-covariance matrix of the. difference between psychological 
values, z. u is a vector of differences between the means of the momentary 
psychological values, u x and u v . 

The probability of declaring two randomly sampled psychological values from 
h(x) and h(y) to be the "same" is the expected value of g (in the absence of response 
bias), or 

a XT \ r r r e x p { - 0 . 5 ( z - u ) ' V ~ ' ( z - H ) ] 

xexp( — d") dz{ dz2 •• • dz„, (1) 

where/ (u , V, a, y) represents the expected value of the similarity of the two objects. 
Equation (1) can be evaluated numerically for any a and y (which defines the 

metric of d), but can be simplified significantly for the case when a = 2 and y = 2. 
For this case, 

/ ( u , V ) = (|V| | J | ) - 1 / 2 e x p [ u ' ( 2 J - ' - I ) r i ] . (2) 

where 

J = V - ' + 2I 

and I is the identity matrix. 
A proof of Eq. (2) is given in the Appendix. 
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The Step Function 

Conceptually, the step function can be handled in a way similar to that of the 
continuous function, except that g(d) is either 0 or 1 depending on the value of d 
relative to a threshold value, T. 

Ifg(</) = 0.5{sgn(T — d) +1}, where sgn is the signum function, then g(d) will be 
0 when d>x (stimuli are different) and 1 when d^x (stimuli are the same). 

The formula for calculating/(u, V, T) is 

f(« V r i - f P P e x p { - 0 . 5 ( z - n r V - ' ( z - B ) } 
/ ( H ^ T ) - ^ J ^ - j ^ ( 2 » ) ^ | V | W 

x0.5{sgn(t — d)+ 1} dzj dz2---dz„. (3) 

t may be a fixed value or may be drawn from a particular probability density 
function and vary from trial to trial. In the examples given later, however, we 
consider t to be fixed. 

Identification and Categorization Models 

Identification and categorization performance models, such as those discussed by 
Nosofsky (1986), based on Shepard's (1957) work, could be extended to deal with 
stimuli whose psychological magnitudes may vary from trial to trial by formulating 
the models in terms of expected values. For instance, in the case of identification 
performance, 

where P{Rj\S,) is the probability that stimulus 5, leads to response R/, bj and bk 

are response bias parameters, 0 < 6 y s g 1; m is the number of stimuli; and g(dv) is the 
similarity function evaluated at dtJ. According to this formulation of identification 
decisions, the subject obtains a distance-based similarity value on each trial for the 
stimulus in question (S,) and each of the memory representations of the m stimuli. 
The terms in the denominator may not be independent if, for instance, the subject 
uses the same momentary psychological magnitude corresponding to 5, in deter
mining each of the dik {k - 1 , m ) . On the other hand, before obtaining similarity 
values [g{dlk)J for St and each of the m memory representations, the subject may 
obtain different psychological magnitudes corresponding to S, (i.e., resampling the 
stimulus distribution before referring to each memory representation). The model 
given by Nosofsky (1986) for categorization can be similarly formulated. These 
stochastic extensions of identification and categorization models will require more 
study and elaboration and will not be pursued further here. 
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EVALUATION OF CONTINUOUS AND STEP SIMILARITY FUNCTIONS 

Computing 
Equations (1), (2), and (3) were evaluated on a Gould 32/97 computer. Equa

tions (1) and (3) were handled numerically using an adaptive routine by Genz and 
Malik (1980) in the bivariate case. These results agreed to third decimal place 
accuracy with Monte Carlo simulations of 100,000 trials per estimate. 

When n, the number of dimensions, is equal to 2, 

Lp l o- 1 o- 2 + p 2 o- 3 o- 4 a\ + a\ J ' 

where a\ and a\ are the variances of the distributions from which xx and x2 were 
drawn, respectively; a\ and a\ are the variances of the distributions from which yx 

and y2 were drawn, respectively; p , is the correlation coefficient between the dimen
sions of h(x) and p2 is the correlation coefficient between the dimensions of h(y). 

Similarity Functions and Distance Metrics 

Shepard (1987) proposed the basis for a law of generalization involving the 
following two ideas: first, that the probability that a response learned to stimulus 
Si will be made to stimulus Sj is approximately an exponential decay function of the 
distance between the stimuli in a space of a certain dimensionality; second, that the 
metric used to define this distance will be Euclidean when the psychological dimen
sions are integral and city-block when they are separable. Shepard noted that the 
theory applied only to experiments in which generalization is tested immediately 
after a single learning trial with a novel stimulus. Shepard pointed out that with 
highly similar stimuli or with delayed test stimuli, the relationship between 
similarity and distance was of a Gaussian form and that the distance metric 
appeared to be Euclidean for cases in which the theory would predict city-block. 
The work of Nosofsky (1986) exemplifies this kind of result. Using highly similar 
stimui, Nosofsky (1986) discussed identification and classification performance and 
used a "Gaussian" function in modelling the relationship between the Euclidean 
distance separating the stimulus points and similarity. With regard to Nosofsky's 
results, Shepard conjectured that internal noise may make "the otherwise sharply 
peaked gradient of generalization ... more nearly Gaussian." 

There were two distances defined earlier under the assumptions for the similarity 
model. The distance between momentary trial psychological magnitudes was 
represented by d, while the distance between the means of the distributions of psy
chological magnitudes was 8. Nosofsky and Shepard define the distance between 
the points representing the stimuli without psychological error and, consequently, 
treat distance in a deterministic manner. This concept of distance corresponds 
better to 8 than it does to d, since it is not expected to vary from trial to trial. 

When modelling the relationship between 6 and / ( u , V), it is instructive to 
consider, for a particular similarity function and metric (a and y), the effect of the 
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i 1 1 r-

0 02 0.1 0.6 0 .8 
1 \2 1.4 1.6 1.8 
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FIG. 1. Expected value of similarity as a function of the Euclidean distance between the means of the 
distributions of psychological magnitudes for values of a of 1, 2, and 3 in the similarity function 
g(d) = exp(-d*). 

aMLArery 
[f (if, 5J)1 

CITY-BLOCK DISTANCE (<S) 

FIG. 2. Expected value of similarity as a function of the city-block distance between the means of the 
distributions of psychological magnitudes for values of at of 1, 2, and 3 in the similarity function g(d) = 
exp(—d"). (a) Means differ on one axis only; (b) means differ equally on both axes. 
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FIG. 3. Expected value of similarity between pairs of 16 stimuli plotted against the city-block and 
Euclidean distances (5) between the means of the distributions of psychological magnitudes. An 
exponential decay function has been used to describe the relationship between city-block distance (d) 
and within-trial similarity. 

multidimensional stochastic portion of the model on this relationship. Figures 1, 2a, 
and 2b show that for Euclidean and city-block metrics, the relationship between «5 
a n d / ( u , V) will have a modified Gaussian form for a range of similarity functions 
(a = I, 2, or 3). For all of the points in these figures, it was assumed that <T, = a2 = 
o-3 = 0-4 = 0.2 (equal variance on all dimensions for all stimuli) and that p t = p 2 = 0.0 
(separable dimension stimuli). [Note that, for these parameters, the relative orien
tation of the stimulus means to each other will not affect /(u, V) when the similarity 
function involves a Euclidean distance metric; but when the city-block metric is 
assumed, it will.] These figures suggest, qualitatively consistent with Nosofsky's 
findings, that a modified Gaussian function relating / ( u , V) and 6 should be 
expected, even if the similarity function is an exponential decay function and the 
metric defining d (within-trial distance) is city-block. 

Assume that subjects employ an exponential decay similarity function (a = 1) 
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FIG. 4. Expected value of similarity as a function of the Euclidean distance between the means of the 
distributions of psychological magnitudes for different values of r when a step judgment function is 
assumed. 

within each trial and that the city-block distance metric is also employed (y = 1). 
Consider 16 stimuli whose momentary psychological magnitudes can be represented 
mentally by independent multivariate normal distributions with means (0 ,0) , 
(0.8,1.2), (0.3,0.7), (0.9,1.1), (1.2,0.6), (0.8,0.8), (0.1,0.5), (0.3,0.0), (0.7,0.1), 
(1.1,1.0), (0.9,0.6), (0.6,0.6), (0.4,0.4), (0.2,1.2), (0.9,0.1), (0.7,0.7); variances 
(0.2,0.2) for all stimuli; and correlation coefficients of zero between dimensions for 
all stimuli. Imagine that the experimenter knows the location parameters (means) 
for each stimulus so that the distance between means (Euclidean and city-block 
metrics) can be computed. From Eq. (1) one can obtain the expected similarity 
value for each pair of stimuli assuming that a = 1 and y = 1 within each trial. It is 
interesting to inquire about the relationship between 3 (the distance between 
population means) a n d / ( u , V) (the expected value of similarity). Figures 3a and 3b 
show this relationship for this set of 16 coordinates in two dimensions. Given the 
modified Gaussian form of these figures, it seems reasonable to attempt to fit a 
linear function relating l n [ / ( u , V ) ] and <52 to the data for both metric forms of 6. 
Such a linear regression analysis suggests that the Euclidean metric leads to a fit of 
the data (r 2 = .98) which is at least as good as the city-block metric (r 2 = .95). This 
conclusion might also be reached by simple inspection of the figures. Qualitatively, 
at least, one can conclude that the distance metric appropriate to the function relat
ing distance to the expected value of the similarity of pairs of stimuli, evoking 
separable dimension representations, may be different from the metric employed by 
subjects within individual trials. It is possible, consequently, to reconcile Nosofsky's 
findings with those of Shepard's regarding the form of the metric provided that 
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Shepard's theory concerning the similarity function and the metric is applied within 
trials for confusable stimuli. Specific comments on Nosofsky (1986) and Shepard 
(1986, 1987) have been made (Ennis, 1988a, 1988b). 

The Step Function 

Figure 4 shows the relationship between S and / ( u , V) for step functions where 
T is 2.0, 2.5, and 3.0 and where equal variances of 1.0 and correlation coefficients 
of 0.0 are assumed. In order to produce self-similarity values (<5 = 0.0) in the 0.8-0.9 
range, T should be between about 2.0 and 3.0 for this case. Although the step func
tion model will make differential predictions for varying values of the stochastic 
parameters, it is quite limited compared to the continuous form of g. The only way 
to manipulate the rate of decrease of ƒ (u, V) as a function of d for a given V matrix, 
for instance, is to change T. This will also have the effect of changing the predicted 
probability of declaring identical objects "same." 

STOCHASTIC MULTIDIMENSIONAL SCALING 

Assuming that a and y are given, we have shown how the expected value of 
similarity is a function of the difference between the means of the distributions of 
psychological magnitudes (u) and the variance-covariance matrix of the difference 
between psychological values (V). It should, therefore, be possible to estimate the 
means and variance-covariance matrices of the psychological magnitudes corres
ponding to a selection of objects. For the case a = 2 and y = 2, the means and 
standard errors for 36 stimuli in two dimensions were sampled at random from dis
tributions that yielded values o f / ( u , V) in the range 0.5-1.0. One of the stimuli was 
assigned the mean (0,0) . All correlation coefficients were assigned the value 0.0. 
The matrix of 666 similarity values (all stimulus pairs including self-comparisons) 
was obtained by solving Eq. (2) for the selected means and standard errors. A 
modified Levenberg-Marquardt (steepest descent) algorithm was used to obtain 
multidimensional parameter values for which the difference between the similarities 
corresponding to the parameters obtained and the input similarities was minimum 
in a least-squares sense. Let a be a vector containing the parameters to be 
estimated. These are the estimates of the means and standard errors of the 
distributions of interest. From a, it is simple to compute u,y and V,y (the means of 
differences and variance-covariance matrix of differences for stimuli 5, and Sj) and. 
consequently, ƒ((*,,-, V / y) can then be computed from Eq. (2). The function to be 
minimized is 

?(•)-! I [ ^ - . / W W , 
i J 

where P0 is the observed probability of declaring S, and S y to be "same." A key to 
solving this problem and avoiding local minima is the generation of good initial 
starting values. 
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The analysis was initiated with randomly generated values of the means and 
assuming that all standard errors were 02 and that correlation coefficients were 0.0. 
The value of 0.2 for the standard errors was chosen because this value yields a self-
similarity value of about 0.85, which roughly corresponded to the average diagonal 
value of the same-different matrix. The parameter values at this minimum were 
then used as the starting configuration for a second stage in which all standard 
errors were assumed to be equal across dimensions for a particular stimulus, but 
may vary across stimuli. The configuration at the minimum from stage 2 was used 
as the starting configuration for the final stage in which the standard errors may 
vary across both stimuli and dimensions. 

The results of this analysis are given in Table 1. This table shows the means and 
standard errors of the original configuration of 36 points and their corresponding 
estimates. These estimates differ only slightly in the third decimal place from the 
actual values, supporting the validity of the strategy used to reach the minimum. 
The residual sum of squares at this minimum was < 0.001. An attempt to estimate 
all of the parameters in one stage failed to recover the original configuration. It is 
interesting to note that the results reported in Table 1 were obtained without rota
tion of the estimated configuration and are a mirror image of the original con
figuration. This orientational uniqueness is a consequence of variance inequality. 
The ability to directly interpret the results of a multidimensional scaling analysis 
without the arbitrariness introduced by rotation should prove useful in identifying 
the dimensions employed by subjects when comparing stimulus objects. 

Differences between pairs of identical stimuli obtained from same-different 
judgments can be viewed as a consequence of differences in variances on one or 
more of the dimensions involved in the decision process. Ashby and Perrin (1988) 
have discussed this kind of interpretation of self-similarity. There may also be 
differences in self-similarity due to different numbers of psychological dimensions 
involved in the judgment. Krumhansl (1978) proposed a spatial density model to 
explain differences in self-similarity and asymmetrical similarities. Alternatively, it 
may be possible to formulate the effects of spatial density in terms of variance 
differences. Psychological magnitudes obtained from means located in a densely 
populated region of the space may have been sampled from distributions with 
higher variance than those located in a less densely populated area. Consequently, 
self-similarity measured in terms o f / (u , V) would be lower in dense regions than in 
sparse regions. This hypothesis was supported by a reanalysis of the Rothkopf 
(1957) Morse code same-different matrix, as can be seen in Fig. 5. 

Using the parameter estimation procedure described earlier for the artificial data 
set, means and variances for the Rothkopf data were obtained assuming that a = 2 
and y = 2. Solutions in which it was assumed that the variances across dimensions 
for a particular stimulus were equal and unequal were obtained. The unequal 
variance model gave a slightly lower residual sum of squares than the equal variance 
model, but the configurations of means for the stimuli were almost identical. For 
convenience in comparing the relative variances of the stimuli, the equal variance 
model was used. Figure 5 shows that the size of the standard error for a stimulus 
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TABLE 1 
Actual Means and Standard Errors for 36 Stimuli and 

Their Estimates Obtained Using Nonlinear Least-Squares Minimization 

Means Standard errors 

Dimension 1 Dimension 2 Dimension 1 Dimension 2 

(1) (2) (1) (2) (1) (2) (1) (2) 

0.000 0.000 0.000 0.000 0.152 0.154 0253 0251 
-0.046 -0.046 -0.235 0.234 0.182 0.184 0.240 0.238 

0.059 0.059 0.149 -0.149 0.190 0.192 0.150 0.148 
0.361 0.361 0.105 -0.105 0.679 0.680 0.236 0.235 

-0.102 -0.103 -0.039 0.039 0.213 0.215 0.382 0.381 
0.000 0.000 -0.224 0.224 0.216 0.218 0.240 0.238 

-0.041 -0.041 -0.113 0.113 0.238 0.240 0.211 0.209 
-0.093 -0.094 -0.100 0.100 0.237 0.238 0.425 0.424 
-0.314 -0.314 0.117 -0.117 0.227 0.229 0.162 0.160 
-0.405 -0.406 0.296 -0.295 0.286 0.288 0.173 0.170 

0.144 0.144 0.101 -0.100 0.160 0.162 0.392 0.390 
-0.023 -0.023 0.142 -0.142 0.231 0.233 0.152 0.149 
-0.194 -0.194 0.111 -0.111 0.150 0.153 0.170 0.168 
-0.106 -0.106 -0.119 0.119 0.158 0.160 0.179 0.177 
-0.281 -0.282 -0.250 0.250 0.150 0.153 0.177 0.174 

0.146 0.147 -0.096 0.096 0298 0.300 0.151 0.149 
0.140 0.141 0.278 -0.277 0.155 0.157 0.154 0.151 
0.521 0.521 -0.138 0.138 0.150 0.153 0.217 0215 
0.095 0.096 -0.035 0.035 0.465 0.467 0.235 0.233 
0.108 0.108 -0.047 0.047 0.168 0.170 0.164 0.162 

-0.179 -0.179 -0.405 0.405 0.588 0.590 0.186 0.183 
-0.047 -0.047 0.022 -0.022 0.330 0.332 0.272 0.271 
-0.142 -0.143 0.032 -0.032 0.224 0.226 0.254 0.252 
-0.099 -0.100 0.072 -0.072 0.155 0.158 0.181 0.179 
-0.077 -0.77 -0.034 0.034 0.150 0.152 0.620 0.619 

0.124 0.124 0.206 -0.206 0.267 0.268 0.151 0.149 
0.270 0.271 -0.154 0.154 0.155 0.158 0.210 0.208 

-0.268 -0.269 0.218 -0.218 0.210 0.212 0.266 0.262 
0.205 0.206 0.012 -0.012 0.161 0.164 0.695 0.693 
0.282 0.282 -0.261 0.261 0.172 0.175 0.160 0.158 
0.369 0.369 0.023 -0.023 0.171 0.174 0.152 0.150 

-0.025 -0.025 0.013 -0.013 0.559 0.561 0.156 0.154 
-0.329 -0.329 0.068 -0.068 0.238 0.240 0.293 0.291 
-0.127 -0.128 0.151 -0.150 0.179 0.182 0.181 0.179 
-0.101 -0.101 -0.090 0.090 0.167 0.169 0.157 0.155 
-0.368 -0.368 0.207 -0207 0.162 0.165 0.160 0.158 

Note. Actual values are designated (1) and estimates (2). 
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AVERAGE DBTANCE FROM All OTHER STIMULI 

FIG. 5. The standard error on either dimension for 36 Morse code signals plotted in relation to the 
average Euclidean distance between each stimulus mean and the 35 other stimulus means. 

distribution is related to the degree to which that stimulus is isolated from the other 
stimuli in the set under study (measured by the average Euclidean distance between 
a stimulus and all the other stimuli). Shepard (1963) had applied nonmetric multi
dimensional scaling to the same Rothkopf matrix and obtained a configuration of 
perceived Morse code signals. The configuration of means obtained using stochastic 
multidimensional scaling was quite similar to Shepard's configuration and would 
certainly have led to the same interpretation of the dimensions (number of signal 
components and the dots/dashes ratio). This result is not that surprising for this 
matrix because many of the same-different judgment probabilities were less than 0.5 
suggesting, in the absence of response bias, that many pairs of signals were not 
highly confusable. Notwithstanding these comments, this data set proved useful in 
showing that some stimuli may be more precisely perceived than others and that 
this precision may depend on the location of a stimulus relative to the others in the 
data set. Variance differences between stimuli may explain differences in self-
similarity. It would be interesting to analyse a matrix of same-different judgments 
obtained from more highly confusable objects than the Morse code signals. 

When ix = 2 and y = 2 it is possible to estimate the parameters of a sample 
problem rapidly without the need to use the much slower numerical methods to 
evaluate Eq. (1). To include a and y as parameters to be estimated is possible, but 
would require extensive numerical evaluation of Eq. (1), leading to a several 
hundred-fold increase in computation time, depending on the desired accuracy of 
the numerical analysis. A closed form for the special case a = 2, y = 2 is given in 
Eq. (2) and it would be very useful to have a similar algebraic form when ot= 1, 
•/==!. This is important because the city-block metric and the exponential decay 
function may be universally inherent in similarity judgments and identification deci
sions with separable dimension stimuli. 

In considering the similarity function, g, we have restricted ourselves to a par
ticular form, exp(—d*). If g were defined as any monotonically decreasing function 
of d, then it can be seen that nonmetric multidimensional scaling would be a special 
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case of the more general approach described here, but in which variances are 
assumed to be zero. 

CONCLUSION 

A multidimensional model of similarity has be described which involves a 
distance-based similarity function and an assumed distribution of momentary 
psychological magnitudes from which the distance is derived. Evaluation of the 
same-different judgment model shows that it is possible to produce a modified 
Gaussian function relating similarity to the distance between the means of the dis
tributions of psychological magnitudes even if the within-trial similarity function is 
an exponential decay function. Nosofsky's findings regarding the form of the metric 
(Euclidean) for a particular set of confusable stimuli is consistent with Shepard's 
theory that the appropriate metric is city-block for separable stimuli, provided 
Shepard's theory is applied at the individual trial level. 

Using a nonlinear least-squares procedure, it is shown how the parameters of a 
sample problem may be estimated from a matrix of hypothetical same-different 
judgments. Because of uniqueness introduced by unequal variances, where such 
variances exist, the multidimensional scaling analysis yields a solution configuration 
that does not require rotation to interpret the psychological dimensions used by the 
subject. Assuming that the judgment function is any monotonically decreasing func
tion of the distance between the momentary within-trial psychological magnitudes, 
the stochastic multidimensional scaling procedure described in this paper is a 
general case which includes deterministic approaches, such as nonmetric multi
dimensional scaling, as special cases. 

APPENDIX 

The momentary psychological values are x and y where x' = {xlt x2,x„), y' = 
( > > i , y2,»., y»); x' indicates an ^-dimensional row vector and n is the number of 
sensory dimensions. The momentary psychological values are mutually independ
ently distributed with x having density function h(x) and y having density function 
h(y). The probability densities h(x) and h(y) are multivariate normal distributions 
with means u T and u v , where u'x = (uxi, u x 2 , u x n ) and p.; = (uyl, u y 2 , a m ) , and 
variance-covariance matrices V t and V v . 

On the basis of the momentary psychological values, x and y, the subject decides 
whether the stimuli are the same or different. 

Let z = x — y and d represent the momentary distance between x and y perceived 
by the subject, where 

d= 
i/y 
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e x p { - 0 . 5 Q - u ) ' V - ' ( z - u ) } 
(2n)n/2 \\\l/2 

xG{z)dzl dz2---dz„. 

Consider the case when y = 2, a = 2, 

y = 2, a = 2 -> G(z) = exp[ - (z'z) ] . 

Since ( z - u ) ' V - l ( z - f i ) = z ' V - I z - z ' V - 1 t t - u ' V - 1 z + | i ' V - 1 u , then 

/ ( u , V ) = ( 2 J t ) - " / 2 | V | - 1 / 2 

x f f ••• I"* e x p [ - 0 . 5 ( z ' J z - z ' b - b ' z + tt'V 
^ — 00 ^ — 0 0 — oc 

where J = V ~ 1 + 21 and b = V ~ 'a. V ~ ! , I, and ss' are symmetric; thus J is 
symmetric. 

Define the following: 

are the n distinct eigenvalues of J (since J is symmetric), 
V ; / are the eigenvectors, 
C = ( V , V ; J , and, 

for any x, Dx = (cv); c,7 = Af; c,y = 0, / # ƒ 

V ; „ form an orthonormal basis; therefore 

C 'JC = D a n d C ' = C T , 

z J z = z ' C C 1 J C C 1 z 

= z CDC z 

= ( z ' C D 1 / 2 ) ( D 1 / 2 C T z ) . 

V is the variance-covariance matrix of the difference between psychological values, 
z. u is a vector of differences between the means of the momentary psychological 
values, ]ix and u„. 

The expected value of similarity, in the absence of response bias, i s / ( u , V , at, y ) . 
In an individual trial, similarity is defined as g(d), where 

g(d) = exp(-d*) 

( - n. ~\aiy\ 

- _ , ? , W ' J ) 
= G(z), 

A * v ^ y ) - \ _ J _ m - \ _ x (in)"12 I V I 1 / 2 

x e x p ( - < / a ) d z l dz2---dz„ 
(•00 f>O0 f> 

J _ co J — CO * -



146 

ENNIS, PALEN, AND MULLEN 

REFERENCES 

ASHBY, F . G., & PERRIN, N. (1988). Toward a unified theory of similarity and recognition. Psychological 
Review, 95, 124-150. 

DE SOETE, G., CARROLL, J. D., & DESARBO. W. S. (1986). The wandering ideal point model: A 
probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical 
Psychology, 30, 28-41. 

ENNIS, D. M. (1988a). Confusable and discriminable stimuli: Comments on Nosofsky and Shepard. 
Journal of Experimental Psychology, in press. 

ENNIS, D . M. (1988b). Technical coment: Toward a universal law of generalization. Science, in press. 
[Comment on SHEPARD, R. N. (1987). Toward a universal law of generalization for psychological 
science. Science, 237, 1317-1323.] 

ENNIS, D. M , & MULLEN, K.. (1986a). A multivariate model for discrimination methods. Journal of 
Mathematical Psychology, 30, 206-219. 

ENNIS, D. M., & MULLEN, K.. (1986b). Theoretical aspects of sensory discrimination. Chemical Senses, 
11, 513-522. 

ENNIS, D . M., MULLEN, K., & FRITTERS, J. E. R. (1988). Variants of the method of triads: Unidimen-
sional Thurstonian models. British Journal of Mathematical and Statistical Psychology, 41 , 25-36. 

Let 

r = D 1 / 2 C T z - D l / 2 C T b 

/' = z ' C D 1 / 2 - b ' C D 1 / 2 . 

For each r, there exists a t} such that dtj^l.dz,'. thus 

dtr--dt„ = (XlX2---X„)i,2dzl---dzn 

= \D\l'2dzr--dzn 

= \J\l/2dzl---dz„. 

/ ( H , V ) = ( 2 r t ) - " / 2 | V i - 1 / 2 . | J | - 1 / 2 

x P f . . . r e x p C - O ^ t ' t + u ' V - ' n - b ' J b ) ] ^ - - - ^ 
<* — CO * — GO J — 0 0 

= (2TT)-" / 2 |Vf ~ 1 / 2 | J | - 1 / 2 e x p [ - 0 . 5 ( ( i ' V - 1 u - b ' J b ) ] 

x J e x p ( - t \ / 2 ) d t l ) r exp( -t\J2) dt2) • • • 
" — OO ™ — 0 0 

x f ° e x p ( - ^ ' 2 ) ^ n ) 
J — 0 0 

= (|V| | J ! ) - 1 / 2 e x p [ ^ ( 2 J - ' - I ) n ] , 
where 

J = V - 1 + 2I. 



147 

MULTIDIMENSIONAL STOCHASTIC THEORY OF SIMILARITY 

Printed by Catherine Press, Ltd, Tempelhof 41, B-8000 Brugge, Belgium 

GENZ, A. C, & MALIK, A. A. (1980). Remarks on algorithm 006: An adaptive algorithm for numerical 
integration over an iV-dimensionai rectangular region. Journal of Computing and Applied Mathe
matics, 6, 295-302. 

HEFNER, R. A. (1958). Extensions of the law of comparative judgment to discriminable and multidimen
sional stimuli Unpublished doctoral dissertation, University of Michigan. 

KAPENGA, J. A., DE DONCKER, E., MULLEN, K., & ENNIS, D. M. (1987). The integration of the multi
variate normal density function for the triangular method. In P. Keast and G. Fairweather (Eds.), 
Numerical integration (pp. 321-328). 

KRUMHANSL, C. L. (1978). Concerning the applicability of geometric models to similarity data: The 
interrelationship between similarity and spatial density. Psychological Review, 85, 445-463. 

MACKAY, D. B. (1987). Personal communication. 
MULLEN, K.. & ENNIS, D. M. (1987). Mathematical formulation of multivariate Euclidean models for 

discrimination methods. Psychometrika, 52, 235-249. 
MULLEN, K., ENNIS, D . M., DE DONCKER, E., & KAPENGA, J. A. (1988). Multivariate models for the 

triangular and duo-trio methods. Biometrics, in press. 
NOSOFSKY, R. M. (1986). Attention, similarity and the identification-categorization relationship. Journal 

of Experimental Psychology: General, 115, 39-57. 
ROTHKOPF, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning 

tasks. Journal of Experimental Psychology, 53, 93-101. 
SHEPARD, R. N. (1957). Stimulus and response generalization: A stochastic model relating generalization 

to distance in psychological space. Psychometrika, 22, 325-345. 
SHEPARD, R. N. (1963). Analysis of proximities as a technique for the study of information processing 

in man. Human Factors, 5, 33-48. 
SHEPARD, R. N. (1986). Discrimination and generalization in identification and classification: Comment 

on Nosofsky. Journal of Experimental Psychology: General, 115, 58-61. 
SHEPARD, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 

1317-1323. 
THURSTONE-, L. L. (1927). A law of comparative judgment Psychological Review, 34, 273-286. 
ZINNES, J. L., & MACKAY. D . B. (1983). Probabilistic multidimensional scaling: Complete and incom

plete data. Psychometrika, 48. 27-48. 
ZINNES. J. L., & MACKAY, D. B. (1987). Probabilistic multidimensional analysis of preference ratio 

judgments. Communication and Cognition, 20, 17-44. 

RECEIVED: November 16, 1987 



Jcmat f Ejajerimnmlft^lWGttBaal 1 4 8 Copyright 1988 by Amencaii PsydKjlo^ Assiximmjmt 

COMMENTS 

Confusable and Discriminable Stimuli: Comment on 
Nosofsky (1986) and Shepard (1986) 

Daniel M. Ennis 
Philip Morris Research Center, Richmond, Virginia 

Nosofsky (1986) modeled identification and categorization performance with highly similar 
stimuli by using a model involving a "Gaussian" relationship between similarity and Euclidean 
'tistfln'ar. Nosofsky found that this model fitted his data better than a model involving similarity 
as an exponential decay function of city-block distance. Nosofsky's stimuli evoked independent 
perceptual dimensions. Shepard (1986) conjectured that perceptual "noise" may have contributed 
to the results of Nosofsky's experiments because, in the absence of such noise, previous research 
suggested that similarity is best modeled as an exponential decay function of city-block distance 
for stimuli that evoke independent perceptual dimensions. By using a multivariate model of 
similarity, in which perceptual variation is included, this article provides a possible reconciliation 
of the kind of result found by Nosofsky (1986) and Shepard's (1986) theory concerning the 
relationship between similarity and perceptual distance. 

In a comment on an article by Nosofsky (1986), Shepard 
(1986) discussed a theory of identification learning in which 
the conditional probability that one stimulus, Sh would elicit 
the response (R,) corresponding to another stimulus, 5> is a 
monotonicaliy decreasing function of the distance between 
the points representing the stimuli in a multidimensional 
space. Because, as Shepard (1987) noted, generalization and 
similarity arise from the same basic processes, similarity may 
also be a monotonicaliy decreasing function of distance. On 
the basis of work with dissimilar or discriminable stimuli, 
Shepard (1986, 1987) suggested that this function may be an 
exponential decay function and that the metric for separable 
stimuli (where the perceptual dimensions are unrelated) may 
be city block. The term discriminable will be used to describe 
stimuli that cannot be contused because of variation in the 
mental representations of the stimulus objects. The term 
con/usable will be used to describe stimuli for which perceived 
similarity may vary from moment to moment because of this 
variation. Pairs of discrirninable and confusable stimuli exist 
on a continuum of similarity, and hence the distinction 
between discriminable and confusable stimuli is necessarily 
arbitrary. Nosofsky discussed identification and classification 
performance by using highly similar or confusable stimuli 
and reported a "Gaussian'' function that modeled the rela
tionship between the Euclidean distance separating the stim
ulus pouits and similarity. Shepard (1986) conjectured that 
"asymptotic performance following protracted discrimination 
training with highly similar stimuli may be limited by irre
ducible noise in the perceptual/memory system" (p. 60). In 
the case of confusable stimuli, he suggested that internal noise 

I thank R. Shepard, R. Nosofsky, O. Asaby, K. Mullen, J. Frijters, 
and P. Arabs for comments and discussions, which proved to be 
very helpful in developing the ideas leading to this article. 

Correspondence concerning this article should be addressed to 
Daniel M. Ennis, Philip Morris Research Center, P. O. Box 26S83, 
Richmond, Virginia 23261. 

may make "the otherwise sharply peaked gradient of gener
alization . . . more nearly Gaussian'' (p. 60). 

Mathematical modeling of tristimulus grouping techniques 
(Ennis & Mullen, 1986a, 1986b; Mullen & Ennis, 1987) with 
confusable stimuli had led to the development of tools appli
cable to modeling the similarity of pairs of confusable objects. 
This work was conducted independently of theoretical devel
opments on identification and categorization performance. 
The comment by Shepard (1986) and further elaboration of 
his theoretical position (Shepard, 1987) were important in the 
development of a stochastic similarity model that I will discuss 
in this article. This model will be shown to be useful in 
providing a possible reconciliation of Nosofsky's (1986) find
ings and Shepard's (1986, 1987) basic hypotheses concerning 
similarity. This article is intended as a brief comment on a 
specific issue raised by Nosofsky (1986) and Shepard (1986, 
1987). A more complete treatment of the multidimensional 
similarity model used here can be found in an article by 
Ennis, Palen, and Mullen (in press). Theoretical work on 
other multidimensional probabilistic models are of interest 
(Ashby & Perrin, 1988; De Soete, Carroll, & DeSarbo, 1986; 
Hefner, 1958; Zinnes & MacKay, 1983). 

Similarity 
Stimuli Sx and Sy give rise to momentary psychological 

values of the respective magnitudes x and y, and n is the 
number of psychological dimensions. The momentary psy
chological values are assumed to be mutually independently 
distributed and drawn from multivariate normal distributions 
with means it, and %, and variance-co variance matrixes V t 

and V,, 
Let z = x — y and let d represent the momentary distance 

between x and y perceived by the subject, where 

r a 1. 
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Assume mat the similarity of the momentary psychological 
values is a function of d, for example, g(d). The function g 
corresponds to Nosofeky's (1986) n and Shepard's (1986, 
1987)/ Nosofeky (1986) and Shepard (1986,1987) both used 
functions of the form 

g(d) = expi-d") a a 0. 

Nosofsky (1986) and Shepard (1986, 1987) treated d in a 
deterministic manner because it is the distance between the 
points representing the stimuli In terms of the present dis
cussion, this would correspond to the distance between the 
means of the multivariate normal distributions of momentary 
psychological values, 6, rather than the momentary values 
themselves. For confusable stimuli, this is an important dis
tinction, and it win be seen in the next section how the 
distribution of momentary psychological values affects the 
relationship between averaged similarity over trials and the 
distance between the population means. The distance between 
population means is 

5 = 
A-1 

>»« - lh* I' fla 1. 

The subject uses d to make trial-by-trial similarity judg
ments but never has direct access to S. 

A Multivariate Model for the 
Similarity of Confusable Stimuli 

V is the variance-covariance matrix of the difference be
tween psychological values, z. u is a vector of differences 
between the means of the momentary psychological values, 
0*and%. 

A prime sign (') will be used to represent R-dimensional 
row vectors. let fin, V) be the expected value of g for given 
values of a and 7. 

ff«.W=. f f f exp [-0.S (z - »)' V- (z - u)| 
V) J J • J ( 2 , v . « | v I ' « (2»)"« I V I 

x exp {-d^dztdzi... dzn. (1) 

Unlike the monotonic relationship between similarity and 
distance proposed by Shepard (1986, 1987), and occurring 
within a trial in this model, there will not be a monotonic 
relationship between fin, V) and S, except in special cases 
(eg., when V is an identity matrix). This point has already 
been discussed for various multidimensional stochastic 
models (e.g^ Ashby & Perrin, 1988; Ennis & Mullen, 1986b). 

The Relationship Between fin, V) and S 
Equation 1 was evaluated numerically on a Gould 32/97 

computer by using an adaptive routine by Genz and Malik 
(1980). When n, the number of dimensions, = 2, 

ff? + a\ 010^2 + Pio'iaA 
Piffiffj + pj(Xi<rt a\ + ai J' 

where a\ and a\ are the variances of the distributions from 
which x, and x2, respectively, were drawn; <r§ and ai are the 
variances of the distributions from which y, and y., respec
tively, were drawn; and o< is the correlation coefficient be
tween the dimensions of/fa), and m is the correlation coeffi
cient between the dimensions of fly). 

Figure 1 shows the relationship between 5 and ƒ(», V) for 
different values of a when 7 = 2 (Euclidean metric), <r, => <r2 

=» (73 = ff4 = 02, and 01 «• ax «• 0.0. Because the variances are 
equal and the covariances are zero, different orientations of 
the means to each other will lead to the same values of /(A, 
V). However, this is not true of the city-block metric Figure 
2a shows the same relationship when 7 =• 1 (city-block metric) 
and the difference in means is on one axis only; Figure 2b 
shows results for the same city-block distances when the two 
dimensions contribute equally to the distance. Because I have 
assumed a multivariate normal distribution for the psycho
logical values in which variances are equal and covariances 
are zero, the nature of the relationship between i and fin, V) 
will be monotonic for the cases discussed and tend to be 
Gaussian in form, even though the relationship between 
similarity and distance within a trial may be an exponential 
decay function. Although this result confirms Shepard's 
(1986, 1987) conjecture as one possible explanation for No
sofsky's (1986) findings concerning the function g, other 
forms of g also provide a modified Gaussian relationship 
between <5 and fin, V). 

If the similarity function within a trial was an exponential 
decay function and the subject used a city-block metric to 
obtain distances, which of the two metrics, city block or 
Euclidean, would best fit the relationship between similarity 
averaged over trials fin, V) and J? I selected 16 hypothetical 
stimulus means in two dimensions (in a grid similar to No
sofsky's, 1986, stimuli) from a set of means for which fin, V) 
was in the range of 0.5 to 1.0 when it was assumed that the 
standard errors on each dimension for each stimulus distri
bution were 0.2 and the correlation coefficients between di
mensions for each stimulus were 0.0. Figures 3a and 3b show 
the relationship between 6 and fin, V) for the set of 1 6 stimuli. 

-1 1-
0 02 0.4 0.6 o.a 1 \2 1.4 i.e I .E 

HJCUDEANOSTANCS (S) 
Figure I. Expected value of siinilarity as a function of the Euclidean 
distance between the means of the distributions of psychological 
magnitudes for values of a of 1, 2, and 3 in the similarity function 
£d) = expf-d"). 
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Inspection of these figures and a least squares analysis (a linear 
regression analysis of logX/ffi, V)] and a2) suggest that the 
Euclidean metric leads to a fit of the data (r2 = .98) that is at 
least as good as the city-block metric (r2 = .93). It is possible, 
consequently, to qualitatively reconcile Nosofsky's findings 
with those of Shepard's (1986, 1987) regarding the form of 
the metric. 

Conclusion 
In this article, I gave an equation that combines a model of 

the process that produces the momentary within-trial psycho
logical magnitudes with a model of similarity perceived by 
subjects on a trial-by-trial baas. This equation was evaluated 
for cases in which the distance metric is either Euclidean or 
city block and in which the exponent varies in the function 
relating within-trial distance to similarity. This evaluation 
shows that it is possible to produce a modified Gaussian 
function relating the expected value of similarity to the dis
tance between the means of the distributions of psychological 
magnitudes even if the within-trial similarity function is an 
exponential decay function. Shepard's (1986, 1987) conjec
ture concerning perceptual noise in Nosofsky's (1986) exper
iments is supported by the evaluation, but other similarity-
distance functions may also lead to similar results. Nosofsky's 

0 2 0.4 0.8 0 3 t 1 2 t.4 

arY-accK DISTANCE m 

(a) 

Figure 2. Expected value of similarity as a function of the city-block 
distance between the means of the distributions of psychological 
rnagnitudes for values of a of 1,2, and 3 in the similarity function of 
g(d) " exp(-rf"). (a) Means differ on one axis only, (b) means differ 
equally on both axes. 

0 0 2 0.4 0.8 0 3 1 \Z t .4 1.8 1.8 2 

OTY-BLOCK DISTANCE (»> 

9MLAOTY 

[f U.XH 

024 

0 0 2 0.4 0.8 0.8 1 1 2 1.4 1.8 1.8 2 

EUCLIDEAN DISTANCE ( 1 ) 

Figure 3. Expected value of similarity between pairs of IS stimuli 
plotted against the city-block and Euclidean distances (<5) between the 
means of the distributions of psychological magnitudes. An exponen
tial decay function has been used to describe the relationship between 
city-block distance and within-trial similarity. 

findings regarding the form of the metric (Euclidean) are 
consistent with Shepard's (1986, 1987) theory that the appro
priate metric may be city block for stimuli with separable 
dimensions, provided that Shepard's (1986, 1987) theory is 
applied at the individual trial level. When working with 
confutable stimuli, it will be important to develop approaches 
for estimating the parameters of the distributions of psycho
logical magnitudes as well as the parameters of the similarity 
function. A possible approach to this problem is discussed in 
Ennis et aL (in press). 

Because all pairs of stimuli exist on a continuum of simi
larity, certain deterministic models of similarity and identifi
cation performance should be viewed as special cases of 
corresponding stochastic models. When stimulus pairs are 
sufficiently discriminable and self-similarity estimates are 
identical the effect of the variance-covariance matrix will 
Himinkh to a point at which similarity can be modeled as a 
function of u or i. 
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ABSTRACT 

Probabilistic models of identification are compared with regard to their sensitivity to 

perceptual dependence or the degree to which the underlying psychological dimensions are 

correlated. Three types of models are compared: Signal detection models, a probabilistic 

multidimensional scaling model, and probabilistic models based on the Shepard-Luce choice 

rule. The signal detection models were found to be most sensitive to perceptual dependence, 

especially when there is considerable distributional overlap. The choice rule based on the 

city-block metric and an exponential decay similarity function was found to be particularly 

insensitive to perceptual dependence. These theoretical results may play an important 

role in studying different decision rules employed at different stages of identification 

training. 

Correspondence should be addressed to Daniel M. Ennis, Philip Morris Research Center, P.O. 

Box 26583, Richmond, VA 23261. 
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INTRODUCTION 

Probabilistic mmtidimensional models have recently been used to account for a wide 

variety of psychophysical and perceptual phenomena (Ashby & Gott, 1988; Ashby & Perrin, 1988; 

Ashby & Townsend, 1986; De Soete, Carroll, & DeSarbo, 1986; Ennis, 1988; Ennis & Mullen, 

1986a,b; Ennis, Palen, & Mullen, 1988; Graham, Kramer, & Yager, 1987; Hirsch, Hylton, & 

Graham, 1982; Mullen & Ennis, 1987; Mullen, Ennis, deDoncker, & Kapenga, 1988; Olzak & 

Wickens, 1983; Zinnes & MacKay, 1983,1987). In developing these models, it is assumed that 

the perceptual effect of a stimulus or its memory trace can be represented as a point in a 

multidimensional space. Depending on the model, the location of some or all of the stimulus 

percepts, ideal points (in preference models) or memory traces (in identification models) are 

assumed to vary from trial to trial according to some multivariate probability distribution. 

It has been common to assume that this distribution is multivariate normal. 

Despite their often identical assumptions about the perceptual representation, these 

models differ in how the subject is assumed to use the perceptual information to select a 

response. Although the models have been applied to a wide variety of experimental paradigms, 

three types of decision functions stand out These can be classified as: Signal detection 

rules; Distance-based ordinal rules; and Shepard-Luce choice rules. Three types of 

parameters characterize the multivariate normal distribution: location parameters (i.e., the 

means), spread parameters (i.e., the variances), and association parameters (i.e., the 

correlations or covariances). Manipulating the values in any one of these classes will 
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OVERVIEW OF THE MODELS 

To compare the various classes of models, consider an identification experiment with n 

stimuli. On each trial, a single stimulus is presented and the subject is asked to identify 

it uniquely. 

Multidimensional signal detection (MSD) models assume that the subject divides the 

perceptual space into regions and assigns a response to each region (Ashby, 1988; Ashby & 

Gott, 1988; Ashby & Perrin, 1988; Ashby & Townsend, 1986; Graham, Kramer, & Yager, 1987; 

Hirsch, Hylton, & Graham, 1982; Olzak & Wickens, 1983). On each trial, the subject 

determines in which region the stimulus representation happens to fall and then gives the 

associated response. Several versions of this model can be formulated depending on how the 

subject divides the perceptual space into response regions. In this article, we consider 

three possibilities. 

presumably have some effect on the predictions of the various models. Of the three types of 

parameters, however, the least is known about the effects of manipulating the perceptual 

correlations. In this article we compare the identification probabilities of these three 

classes of models as a function of the degree of perceptual correlation. For the parameters 

considered, all of these models make different predictions. However, of the three types, the 

signal detection models are more sensitive to perceptual correlation than the other two. 
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In the minimum distance model, the subject is assumed to respond according to the 

nearest perceptual mean. In the two stimulus case, this rule defines the decision bound as 

that set of points that are equidistant from the two means. Note that this bound is always 

linear and it bisects and is orthogonal to the chord connecting the perceptual means. 

Minimum distance bounds depend on inters timulus mean distances and so MSD models of this type 

are related to the simple Euclidean multidimensional scaling model (e.g., Kruskal, 1961a,b; 

Shepard, 1962a,b; Torgerson, 1958). They are also related to prototype models of 

categorization (e.g., Posner & Keele, 1968,1970; Reed, 1972; Rosch, 1973; Rosch, Simpson, & 

Miller, 1976) and to parallel distributed memory models that assume matched filtering or 

cross-correlation (Ashby & Gott, 1988; Hinton & Anderson, 1982). General linear models 

constrain the decision bounds to be linear, but they place no constraints on then- slope or 

intercept. Finally, the optimal model places the decision bound so that overall 

identification accuracy is maximized. With only rare exceptions, this model predicts that 

the decision bounds are nonlinear. 

Models involving distance-based ordinal rules, which we will call probabilistic 

multidimensional scaling (PMDS) models, assume that the subject selects a response on the 

basis of the distances between appropriate perceptual effects, rather than by forming 

decision bounds (De Soete, Carroll, & DeSarbo, 1986; Ennis & Mullen, 1986; Mullen & Ennis, 

1987; Mullen, Ennis, deDoncker & Kapenga, 1988; Zinnes & MacKay, 1983,1987). During 

identification, some of these perceptual effects might be samples from a memory 

representation and, when judging preference, some might be samples from a representation of 
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the ideal stimulus. After stimulus presentation in an identification task, this class of 

models assumes that the subject recalls an instance of each stimulus alternative, determines 

the similarity of each of these memory traces to the stimulus, and then gives the response 

associated with the nearest or most similar trace. Typically, the perceptual effects of 

stimulus presentation and the memory of each stimulus alternative are each represented by a 

multivariate normal distribution. Thus, for example, the events that occur on a trial when 

a stimulus is presented are modeled by: 1) taking a sample from the perceptual distribution 

corresponding to the stimulus, 2) taking a sample from each memory distribution, 3) computing 

the distances between the perceptual sample and each memory sample, and finally 4) giving the 

response associated with the minimum of these distances. In most models, the same 

distribution is assumed to describe the perceptual and memory representations of each 

stimulus alternative. 

In stochastic choice (SC) models, the decision function does not lead to an explicit 

choice among alternatives, but instead provides a probability that a particular choice will 

be made (Ennis, Palen, & Mullen, 1988). The models that have been investigated to date have 

all been based on the Shepard-Luce biased choice model (Luce, 1963; Shepard, 1957), but it 

should be possible to develop models based on other choice formulations. The Ennis et al. 

model assumes a multivariate normal distribution for the perceptual representation of each 

stimulus. The i\ „ similarity terms from the biased choice model are defined as TJ = exp(-

d. ƒ*), for some constant a and where d.. is the distance between a random sample from the S. 
V V i 

perceptual distribution and one from the S.. The identification probabilities equal the 
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expected value of the choice rule ratio. Two common ways in which the models within this 

class differ are in the metric which defines interstimulus distances and in the way in which 

similarity is defined (i.e., in the value of a; see, e.g., Ennis, 1988; Nosofsky, 1985,1986, 

1988; Shepard, 1987,1988). 

Note that SC models differ fundamentally from MSD and PMDS models in the sense that SC 

models postulate a probabilistic decision process whereas MSD and PMDS models postulate 

deterministic responding. In MSD models, a given perceptual effect always leads to the same 

response, at least in the absence of criteria! noise. In PMDS models, a given set 

consisting of a perceptual effect and n memory effects always leads to the same response. In 

SC models, however, no deterministic response rule is specified. All we can determine is the 

probability that a given response will be made. 

Multidimensional signal detection (MSD) models assume that subjects set up response 

regions with decision bounds which they use to make subsequent decisions about presented 

stimuli. Presumably, the location of these decision bounds evolve gradually from trial-by-

trial feedback. This implies that subjects have been trained with examples of the stimuli. 

In PMDS models, however, the assumptions underlying the decision processes reflect only the 

behavior of subjects in isolated trials. No training to form decision bounds is assumed. If 

a subject is asked to identify a stimulus, these models assume that a comparison made 

between a presented stimulus and a memory representation corresponds to a comparison only 

between a single sample drawn from the various distributions in question. The subject is not 

assumed to have any knowledge of or control over the process that evokes the particular 
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A FORMAL DESCRIPTION OF THE MODELS 

Assumptions Common to all Models 

We will focus on a two stimulus identification task with stimulus objects, S . and S _ and 
A B 

responses, R and R . All models we consider assume that the perceptual effects of each 
A o 

stimulus can be represented as multivariate normal deviates with means and and 

variance-covariance matrices V and V . Random values from these distributions vary from 
A D 

trial to trial in a manner determined by the parameters of the multivariate normal density 

functions, ƒ and ƒ . For example, when the perceptual representations are composed of n-A o 

tuples (or the vectors have n elements each), 

e x p { - 0 . 5 ( x - (i. ) r v : 1 ( x - l i . ) } 
ƒ.(*) = ' ' ' . / =AJ2. 

( 2 * ) n / 2 | v . | 1 / 2 

In all numerical examples, we will assume that n = 

becomes a bivariate normal. In scalar form 

2. In this case, the multivariate normal 

values from these distributions. In contrast, the MSD models, by assuming a knowledge of 

response regions, make stronger assumptions about what the subject has learned about the 

stimuli during training. 
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1 
exp { 

2 ( 1 - p ) t 

V ^ 12 
-2p 

V ^2 "V ^2 

where and o^ (u^ and o^) are the mean and variance of the first (second) element of the 

random vector, x, respectively; p is the correlation coefficient between the first and second 

elements; and x = (x^ x£. Following Ashby and Townsend (1986), we will use p as a measure 

of perceptual dependence. 

A stimulus object, Ŝ ., is presented to a subject and this object evokes a perceptual 

effect which is also distributed as a multivariate normal deviate with mean û . and variance-

covariance matrix V̂ .. This probability density function is/; . In an identification task 

the presented stimulus, S., is either S or S . In other tasks, however, S. may be different 
I A o I 

from S, orS„. 
A B 

Tasks which involve comparisons among psychological magnitudes from three distributions 

occur frequently in experimental paradigms in psychology and marketing. Examples include 

Torgerson's method of triads (Torgerson, 1958), the ABX design, the duo-trio tristimulus 

discrimination paradigm, and preferential choice experiments. In Torgerson's method of 

triads, subjects are instructed to select from two alternative stimuli, the one which is most 

similar to a third, designated stimulus. In the ABX design, subjects are given two 

designated stimuli, S and S n , and are instructed to identify which of S or S is most 
A a A D 

similar to a third stimulus, S v . In the duo-trio method, subjects are instructed to select, 

~ ~~ 2~U2~ 
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The Multidimensional Signal Detection Model 

Let x be a random value from ƒ and denote the region in the perceptual space assigned 

to response R̂ . by D .̂. Then in all MSD models, the probability of responding R̂ . on trials 

when stimulus S is presented is equal to the proportion of the perceptual distribution 

associated with stimulus Ŝ . that lies in the D̂ . response region. Formally, 

e x p { - 0 . 5 ( x - t . ) r v ; 1 ( x - ! i ) } 

i2«)nl2\v.\1'2 

j i 

(1), 

Row vectors will be represented with a t superscript [for example, (x-u../ above], 

column vectors will not have a superscript Different versions of the MSD model assume 

different shapes for the region D .̂. In this paper we consider three cases: 1) the ideal 

observer, 2) the general linear classifier, and 3) the minimum distance classifier. 

from two alternatives, the stimulus that is most similar to a designated stimulus. In this 

method, the designated stimulus is identical to one of the alternatives. The duo-trio 

method is a special case of Torgerson's method of triads. If one of the alternatives is not 

a physical stimulus, but an ideal point (actually, ideal distribution), then the task of 

choosing a preferred stimulus from two alternatives on the basis of similarity to the ideal 

point, is equivalent to Torgerson's method of triads. 
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The ideal observer is assumed to maximize overall identification accuracy. Assume that 

each stimulus is presented with equal probability on each trial. The ideal observer responds 

R whenever/ (x) > ƒ (x) and R whenever/ (x) > ƒ (x). Therefore, D is the region of the 
A A B B B A A 

perceptual space for which ƒ (x) > ƒ (x). If there are more than two stimuli, the ideal 
A O 

observer gives the response associated with the greatest likelihood. Note that in the two-

stimulus case, another interpretation is that response R is given whenever 
A 

h(x) = -lni/ (x)/fD(x)] < 0 and response R_ is given when h(x) > 0. Integration over the 
A a a 

region for which k(x) < 0 may be accomplished by defining a function which takes on the value 

0 when h(x) > 0 and 1 otherwise. (The probability that h(x) = 0 is zero.) Such a function 

is 0.5 {1 - sgn[/t(x)]}, where sgn(a) (the signum function evaluated at a) = -1 for a s 0 and 

+1 for a > 0. Equation 1 can now be written as an integral over R nas 

The contour for which h(x) = 0 is called the decision bound because it separates the 

perceptual space into two regions. On one side of this bound, h(x) < 0 and response R^ is 

given and on the other side h(x) > 0 and response R„ is given. 

For the ideal observer, the decision bound is quadratic in x, but for the general linear 

classifier the decision bound is constrained to be linear. Thus, there exists a vector of 

constants a and a scalar b such that 

0.5{1-sgn(Ä(x)}rfx. (2). 

( 2 r c ) n / 2 | v . | 1 / 2 
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h(x) = &x + b. 

Because x has a multivariate normal distribution, h(x) has a univariate normal distribution. 

Therefore, when each stimulus is presented with equal probability, the overall probability of 

an error is given by 

where <Hz) is the standard normal (i.e., Z) cumulative distribution function [i.e., 3>(z) = 

P(Z<z)]. 

In this paper we consider the most accurate general linear classifier, that is, the 

model with the most accurate of all possible linear bounds (see, e.g., Ashby & Gott, 1988). 

In other words, we wish to identify that model with vector a and scaler b which minimizes e. 

Unfortunately, no analytic solution is known. However, it can be shown that for the most 

accurate linear classifier, there exists a constant K in the interval 0 s K s 1 such that the 

following constraint is satisfied (Anderson, 1962; Fukunaga, 1972; Peterson & Mattson, 1966) 

On trials when stimulus S. is presented, h(x) has mean &]x. + b and variance a V .a. 

e = P[/i(x) > 0|S V2 + P[h(x) < OIS ]/2 
A tS 

(3) 

Once a is known, b can be calculated as 
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-[K(a V^a) a ^ + ( l - K)(a V B a)a u^ 

K ( a f V A a ) + ( l - K ) ( a r V s a ) 

Therefore, for a given value of K, both a and b can be determined and then Equation 3 

can be used to find the probability of an error, e. The most accurate linear bound can be 

identified by using a numerical rninimization routine to find that value of K which minimizes 

E . 

For the minimum distance classifier the decision bound is the set of all points 

equidistant from the two distribution means. This bound is always linear and bisects and is 

perpendicular to the line connecting the two means. The minimum distance classifier is a 

t t 

special case of the general linear classifier in which a = \ig - u-̂  and b = 1/2(JX^JX^ -

For both models, the probability of responding R̂ . on Ŝ . trials can be computed from Equation 

2 once the appropriate definition of h(x) is given. 

Probabilistic Multidimensional Scaling Models 

In addition to the perceptual distribution of a presented stimulus, these models assume 

that on every trial the subject recalls a memory trace of each stimulus alternative. In this 

article however, we consider only models that assume that the distribution of perceptual 

effects equals the distribution of memory traces for each stimulus. Thus in the two stimulus 

identification task, three random samples are generated on each trial: one from the 



1 6 5 

distribution associated with the presented stimulus, x, and one from each of the 

distributions corresponding to the memory traces, x. and xy 

Presentation of stimulus S. will lead to response if 

and to response, R̂ . if 

Ix -x.l < Ix -X . I , 
I J 

Ix -x.l < Ix -X . I . 

Let(x - x̂ .) = u and (x - xj) => v. The identification probability is identical to the 

probability of a correct response in the duo-trio method (Ennis & Mullen, 1986; Mullen & 

Ennis, 1987), 

P(R. |S.)= f/(u,v)d(u)d(v) (4) 
1 1 J 

C 

where C is the region for which lul < Ivl 

and 

e x p { - 0 . 5 ( z - | i ) ? V" 1 < « - j*) } 

( 2 * ) * | V | 1 / 2 
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z = (u,v) 

„ f 2V. V . i . V = i i 
L V. V.+ V . J 

' l J 

Note that if n is 2, there are 4 elements in z. 

The decision rule in the PMDS model was stated earlier in terms of distance comparisons 

between a probe and the two memory distributions. This decision rule could also have been 

stated in terms of a comparison between the similarity of the probe and the two memory random 

values. Provided that similarity is defined as a monotonic function (or a one-to-one 

function) of distance, then identical similarities implies that the distances are also 

identical. If the similarity function is monotonically decreasing, then an inequality 

relating two similarities always implies the reverse inequality relating the corresponding 

distances. Hence, a probabilistic identification model based on similarity in which the 

probe is identified with the most similar memory value is identical to the PMDS model just 

described. 

In addition to identification, the PMDS model can be applied to many paradigms in 

psychology and marketing. For instance, if the means and variance-covariance matrices for 

three stimulus distributions may all be different, this model is the multidimensional 
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Thurstonian variant of Torgerson's method of triads (Torgerson, 1958). If one of the 

distributions is interpreted as an ideal point distribution, the model is also a general 

preference model If two of the distributions are considered to be memory representations 

and the third a stimulus distribution, the model is an identification model. Special cases 

arise when two of the distributions are identical as occurs in the model for the ABX and duo-

trio tristimulus discrimination paradigms. 

The 2n-fold integral (Equation 4) has been converted to fixed limits of integration in 

spherical coordinates (Mullen, Ennis, deDoncker, & Kapenga, 1988). Equation 4 has also been 

simplified to a single integral irrespective of the dimensionality of the vector space of 

psychological magnitudes (Mullen & Ennis, 1990). In this form, the probability of responding 

R.is 

*> si nd(t) 

0 

where, 

" r "*,/4l r 

m, are the degrees of freedom of the tih non-central chi-square, 
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(D^ is the non-centrality parameter of the jfeth chi-square and 

r is the number of distinct eigenvalues. 

The steps needed to obtain the non-centrality parameters, ov̂ , are given in Mullen and Ennis 

(1990). 

The single integral form is generally about 3,000 times faster to compute to the same 

accuracy as adaptive numerical integration of Equation 4 when n equals 2. These developments 

have overcome earlier difficulties in computing Equation 4 accurately in reasonable computer 

time. 

Stochastic Choice Models 

In an earlier paper on a stochastic theory of similarity (Ennis, Palen, & Mullen, 1988) 

it was pointed out that the Shepard-Luce choice rule could be formulated in stochastic terms 

by computing the expected value of the choice rule ratio. Specifically, it was proposed that 

P(R |S { . )=E 
m 

(5), 

where 

p\ is the j response bias parameter, 

m is the number of memory representation alternatives, 

d.=[ £ Lt. -x. I Y ] 1 / Y y a 1, 
r=l 
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1/Y 

where 

u is a row vector with typical element lu.l , 1 is a column vector of l's, and 

Note that d.. is the distance between two random values from the same distribution and, 

therefore, may be nonzero. 

An integral expression for Equation 5 was not given in Ennis, Palen, & Mullen (1988). 

This equation will now be given. Consider the case when m = 2, Le., when there are only two 

alternatives to choose from In making an identification decision within a trial using the 

Shepard-Luce choice rule, it is assumed that the subject's probability of choosing R̂ . when 

the stimulus is S. is a function of the two distances d.. and d... The same notation from 
i ij u 

the PMDS models can be used, where u = x - x , v = x - x , z = (u,v), V is the variance-
A o 

covariance matrix of the joint distribution of u and v, defined earlier, and u- is the vector 

of mean differences previously defined also. To obtain the expected value of the choice 

rule, it is necessary only to integrate over the vector space composed of all 2n-tuples 

represented by z, weighting each element of the space by its probability of occurrence (given 

by the multivariate normal density function), or 

u 

e x p { - 0 . 5 ( z - j j ) f V ' ^ z - f a ) } 
dz. (6) 

< 2 « ) " | V | 
1 / 2 
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If a = 1 and y = 1, g is an exponential decay function and the metric of d is city-

block. If a = 2 and y = 2, g is a Gaussian function and the metric of d is Euclidean. Both 

of these cases will be considered and will be called the city-block/exponential decay and 

Euclidean/Gaussian cases. 

THE MODELS COMPARED WITH RESPECT TO PERCEPTUAL DEPENDENCE 

As stated earlier, we are mainly interested in assessing the degree to which the various 

models are sensitive to variations in perceptual dependence. Components of a stimulus are 

perceived independently if their perceptual effects are statistically independent (Ashby & 

Townsend, 1986). With bivariate normal perceptual distributions, perceptual independence 

occurs if and only if the correlation coefficient equals zero. Therefore in this section we 

examine the predicted identification accuracy of the various models as a function of p, the 

correlation coefficient 

There are a number of methods for testing whether a pair of stimulus components are 

perceived independently. Ashby and Townsend (1986) developed several tests that can be 

applied to data from certain identification tasks. Perhaps the simplest and most powerful 

test, however, involves an experimental paradigm called the concurrent rating task (Ashby, 

1988; Hirsch, Hylton, & Graham, 1982; Olzak, 1986). 

Consider a stimulus ensemble constructed by factorially combining two levels of two 

components,X and Y. Then the four stimuli areX Y ,X Y ,X Y andX Y . In the previous 
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applications of the concurrent rating task, the two components have been sine-wave gratings 

of different frequency and the various levels have been different contrasts. A stimulus 

consists of two superimposed gratings of a certain frequency (the same frequencies are used 

in all trials) but variable contrast from trial to trial. On each trial, the subject is 

shown one of the four stimuli The subject's task is to give two possible rating responses, 

one for each component The rating corresponding to the ith component within a trial (in 

this example, i = 1 or 2) is a number between 1 and k and reflects the subject's confidence 

that the ith component was present at the highest possible level (i.e., at the highest 

possible contrast). The data in such an experiment is conveniently catalogued in a k x k 

matrix for each stimulus. The entry in row i and column j is the frequency with which the 

subject responded i on component X and j on component Y. 

A natural way to model the subject's performance in this task is to assume that a 

perceptual dimension exists for each stimulus component and that the subject constructs k-l 

criteria on each dimension. Response R̂ . is given on component X if the percept has a value 

on the dimension associated with component X that falls between the i'th-1 and the ith 

criterion. Under these assumptions, Ashby (1988) showed that the perceptual independence of 

components X and Y guarantees that the ratings on the two components are uncorrelated. 

Further, if uncorrelated ratings are found for all possible criterion placements, then 

perceptual independence is implied. In the case of a perceptual dependence, Ashby (1988) 

suggested a simple generalization of the tetrachoric correlation coefficient that provides 
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accurate estimates of the perceptual dependence, as measured by the correlation coefficient, 

p x r 

This test of perceptual independence has not yet been widely used outside the spatial 

vision area. It should be possible, however, to use the method to assess the degree of 

perceptual dependence between any pair of stimulus components. This in turn would allow one 

to conduct a series of experiments which vary the average degree of perceptual dependence. 

We derived the predicted accuracy on trials, PfJl^lS^), for each of the six models 

described above in a total of 36 different conditions. In each of these, ^ =(0,0) and 

4 4p 
L 4 p A 4 or 1 > The correlation coefficient, p^, was assigned the values 0, 

0.4, -0.4,0.8 or -0.8. The S_ mean was set to = (0.707,0.707) or to (1.414,1.414) and 
B B 

V. was either 
J B 4 J [PB 

same combination, leading to two types of conditions, one of high overlap and one of moderate 

\ 4 pi?l or PB] . Smaller means and larger variances occurred in the 
4 p D 4 J Lp_ 1 J 

overlap. The S correlation, p , was either 0,0.4, -0.4,0.8 or -0.8 and was allowed to 
a B 

differ from p but p and p were constrained to be either both positive or both negative. 
A A o 

This constraint reduces the total number of conditions from 72 (6 x 6 x 2), if all possible 

combinations were considered, to 36. Nine different cases are implied by the values of p 
A 

and pB, i.e. 0,0; 0,0.4; 0,0.8; 0.4,0; 0.4,0.4; 0.4,0.8; 0.8,0; 0.8,0.4; 0.8,0.8. Another 

nine cases are implied by -p , -p . 
A JO 

MSD and PMDS models yield identification probabilities that are invariant to numerical 

multiples of the vectors representing the psychological magnitudes. For example, when the 

covariance matrices associated with stimuli S and S both equal the identity matrix 
A B 
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multiplied by the same scalar, then models in both classes predict that performance depends 

only on the standardized distance between means. Specific values of the means and variances 

are not important However, the SC models give identification probabilities that depend on 

the absolute values of the elements of these vectors. This is because the judgment function 

-da 

used in the SC models (e ) depends on the actual magnitudes of x , x^ and x^ rather than 

their relative values. In the MSD and PMDS models, subjects make decisions based on the 

relative sizes of either likelihoods or distances which will retain the same rank order when 

all the vectors from the three distributions are multiplied by the same constant (or, 

equivalently, when the means and variances of these distibutions are multiplied by 

corresponding constants). Because of this difference, comparisons among the models were made 

on the basis of the relative differences implied by the variance-covariance structures 

investigated within a particular model using p = p = 0 as the reference. A comparison of 

the absolute identification probabilities will be given also. 

Tables 1 and 2 show how the six models in three types (MSD, PMDS, and SC) compare with 

regard to sensitivity to perceptual dependence. Note that when there is considerable 

distributional overlap, (see Table 1), the MSD models are the only ones to show sensitivity. 

Almost all of the identification probabilities were in the 0.5 - 0.7 range, so there was no 

obvious constraint (e.g., ceiling effects) preventing sensitivity to correlation structure 

(as would occur if these values were close to 1). When the distributional overlap is 

moderate, (see Table 2), the differences among the models diminishes somewhat as the PMDS and 

SC(Euclidean/Gaussian) models begin to respond to perceptual dependence. The SC (City-block/ 
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exponential decay) model showed very little sensitivity to perceptual dependence for either 

of the parameter sets studied. The decrease in sensitivity displayed by the optimal model in 

the case of moderate distributional overlap is due to a ceiling effect In fact, when the 

correlation was -.8 and the S correlation was -.8, the optimal model predicted an accuracy 
a 

of .987, suggesting that even at moderate levels of confusability it is extremely sensitive 

to perceptual dependence. The lower sensitivity displayed by the PMDS and the SC models can 

not be attributed to a ceiling effect since these models predict lower overall accuracy than 

the MSD models. 

When the distributional overlap was reduced even further, the PMDS and SC models did not 

show an increased sensitivity to perceptual dependence. In addition, the identification 

probabilities predicted by the optimal MSD model were almost all greater than .9. Thus a 

comparison of these models at low levels of confusability is not very meaningful. 

With the exception of the best linear classifier, note that negative correlations gave 

higher identification probabilities than positive correlations. When the ƒ mean is in the 
A 

first quadrant, negative correlations generally lead to less overlap of the distributions 

than when the correlations are positive. An exception occurs for the ideal observer in the 

case of high distributional overlap when p = 0 and p = 0.4. When p = -.4 the optimal bound 
A B B 

is concave down and when p = +.4 the optimal bound is concave up. Note that the line y = x 
B 

connects the two means. Because the distributional overlap is so large, the optimal bound 

crosses the y = x line at about the same place when the Ŝ  correlation is both positive and 

negative. Therefore the overlap of/ into the R response region is less when the S 
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correlation is positive (because the bound is concave up in this case) and so a higher 

accuracy is predicted on S trials when the S correlation is positive. On the other hand, 
A D 

in these same conditions, accuracy is higher on S D trials when the S correlation is 
B a 

negative. In fact, it is large enough so that overall accuracy (the average of S and S 
A o 

trials) is greater when the S correlation is negative. B 

Similar effects occur with the best linear classifier, only in this case the effects are 

more extreme. It can be seen from Table 1 that in several cases accuracy is higher on S^ 

trials when both correlations are positive. In each of these cases however, overall accuracy 

is higher when both correlations are negative. 

Note that the predictions of the minimum distance model depend only on the S 
A 

correlation. In this model the decision bound depends only on the perceptual means. AnS 
A 

perceptual dependence does affect predicted accuracy on S trials however, because it affects 
A 

the proportion of samples from ƒ that will fall on the side of the bound associated with 
A 

response R . 
A 

From Tables 1 and 2, it can be seen that there is an extremely high degree of similarity 

between the sensitivity of the PMDS model and the Gaussian-Euclidean SC model to perceptual 

dependence. In fact, the predictions of these two models are more similar than the 

predictions of the two SC models. These tables show the general trend that when both 

correlations are negative, identification accuracy is higher then when both are positive. It 
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is also clear from these tables that the relative sensitivity of the SC (city-

block/exponential decay) model to perceptual dependence is very weak compared to MSD models 

and that PMDS and SC (Euclidean/Gaussian) models are intermediate in sensitivity. 

In Figures 1 and 2, the MSD (ideal observer) model has been compared to the other five 

models by plotting the predictions for the cases given in Table 1 and 2. These plots clearly 

show the greater sensitivity of the MSD models to perceptual dependence and the relative 

insensitivity of the other models, especially the cily-block/exponential decay SC model. The 

degree of overlap of the distributions also affects responsiveness to perceptual dependence, 

as these figures show. 

PERCEPTUAL DEPENDENCE AND THE SHAPE OF THE SIMILARITY FUNCTION 

The identification models discussed differ in several important ways that might give 

rise to their differences in sensitivity to perceptual dependence. In the MSD models, the 

subject is assumed to be trained sufficiently to establish decision boundaries. In the case 

of the ideal observer, the positioning of these boundaries would be determined very precisely 

by the variance-covariance matrix, and thus would be likely to depend strongly on the 

perceptual dependencies (correlation coefficients) that influence the shape of the perceptual 

distributions. In the PMDS and SC models, subjects make decisions based only on random 

values from the distributions of interest and are not assumed to have any knowledge 

concerning the location of possible decision boundaries. In the PMDS models, the subject 
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chooses the alternative that, on a particular trial, yields the smallest distance between 

stimulus and memory momentary values. The absolute size of this distance is immaterial to 

the decision. In the SC models, however, the degree of similarity of the momentary values is 

important In these models, the probability of choosing an alternative on a given trial 

depends in a monotonically decreasing manner on the distance between the momentary stimulus 

and memory values. In principle, this function could range from linearity to a step 

function. The particular form of the similarity function chosen in the SC models is g(d) = 

exp(-d ) that, when a is very large, can approach a step function. If the similarity 

function were linear, then its expected value would not depend on the variance-covariance 

matrix, but would be a linear function of the mean. However, as a increases in the above 

expression for g(d), sensitivity to perceptual dependence should increase. Taking the basic 

form, g{d) = expC-d™), a was varied from 1 to 25 in unit increments. These functions include 

exponential decay, Gaussian, and a series that, at o = 25, approaches a step function. 

Figure 3a shows the form of g when a is 1,2,6 and 25. Figure 3b gives the difference 

between the values of E[g(d)] in two perceptual dependence cases for the two levels of 

distributional overlap. When a is 1, the exponential decay case, the effect of perceptual 

dependence is very small. As a increases, especially if the level of distributional overlap 

is not great, the difference between the perceptual dependence cases increases and ultimately 

saturates. The maximum difference is seen when a step judgment function is operative. 

The MSD and PMDS models involve step function decision rules of either likelihoods or 

distances. Unlike the SC models, they provide a definitive account of a subject's decision 
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given certain Mormation. Although the results in Figures 3a and 3b might provide a basis 

for comparing identification models of the SC type with regard to perceptual dependence, we 

realize that they do not provide a satisfactory quantitative explanation for the much higher 

sensitivity of the MSD models to perceptual dependence. 

DISCUSSION 

The probabilistic multidimensional models considered in this paper differ with regard to 

assumptions about how momentary psychological magnitudes are used by subjects within a trial. 

In the case of the signal detection models, it was assumed that subjects formed response 

regions following extensive training with the stimuli. These response regions are assumed to 

be used by subjects within a trial to make identification decisions concerning a presented 

stimulus by giving the response that corresponds to the greatest likelihood as determined by 

the multivariate normal probability density function. If it is assumed that subjects do not 

form response regions, but respond to momentary memory and stimulus values within a trial, 

several other models can be proposed. In the probabilistic multidimensional scaling models, 

it is assumed that subjects choose an identification response within a trial that is 

consistent with the rninimum Euclidean distance between the psychological magnitude for the 

stimulus and the memory representations. The stochastic choice rule models assume that the 

subject uses the Shepard-Luce choice rule within a trial and these models can be formulated 
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with different metrics and similarity functions (only the Euclidean/Gaussian and city-

block/exponential decay were considered in this paper). 

In general, but particularly when memory and stimulus probability density functions are 

very similar, the multidimensional signal detection models appear to be more sensitive to 

perceptual dependence than the other models considered. Some responsiveness to perceptual 

dependence was predicted as the means of the probability density functions became more 

different in the case of the PMDS model and the Euclidean/Gaussian case of the SC models. 

However, the city-block/exponential decay SC model showed virtually no sensitivity to 

perceptual dependence for any of the parameter values studied. 

An ideal application of these results would be in an experiment that manipulated the 

degree of perceptual dependence as an independent variable. If this were possible, a number 

of conditions could be evaluated in which the degree of perceptual dependence varied over a 

wide range. One could then examine identification accuracy in much the same way as in Tables 

1 and 2. Sensitivity to perceptual dependence would be strong evidence in favor of the MSD 

hypothesis that subjects construct decision bounds. On the other hand, a finding that 

identification accuracy is only slightly affected by the degree of perceptual dependence 

would support the PMDS models and the Euclidean-Gaussian SC model. Finally, complete 

insensitivity to perceptual dependence would provide strong support for the city block-

exponential SC model. In addition, these experiments might help to formally specify the 

effect of training on identification confusions and to provide a basis for determining the 
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most likely metric and decision rule adopted by subjects at a particular stage in their 

training. 
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Table 1: A comparison of identification probabilities for cases involving two highly overlapping distributions with particular correlation 
coefficients. Six models are compared: MSD (I.O.), ideal observer; MSD (B.L.), best linear classifier; MSD (M.D.), minimum 
distance; PMDS; SC (E/G), Euclidean/Gaussian; SC (C/E), city-block/exponential decay. The first row of numbers for each model 
are identification probabilities (xlO 3); the second row are values relative to the (0,0) correlation case. 

t 

CASES (High Overlap) 
Correlation Coefficients 

Model 0,0 M 0.-.4 M 0,:8 .4,0 -.4,0 .4,4 -.4,..4 .4,& :4,-J8 .8,0 -A,0 £,.4 -J8,-.4 .«,.« -J8,: 

MSD 599 684 504 583 587 536 749 584 627 536 550 818 856 754 835 574 712 
(I.O.) 100 114 84 97 98 89 125 97 105 89 92 137 143 126 140 96 119 

MSD 603 602 559 668 536 587 687 583 627 611 550 526 829 555 822 574 712 
(BX.) 100 100 93 111 89 97 114 97 104 101 91 87 137 92 136 95 118 

MSD 599 599 599 599 599 583 628 583 628 583 628 574 712 574 712 574 712 
(M.D.) 100 100 100 100 100 97 105 97 105 97 105 96 119 96 119 96 119 

PMDS 518 512 517 498 509 524 527 515 522 496 510 551 556 537 547 512 532 
100 99 100 96 98 101 102 99 101 96 98 106 107 104 106 99 103 

SC 516 512 513 499 512 522 523 515 520 498 509 551 555 536 547 511 530 
(E/G) 100 99 99 97 99 101 101 100 101 97 99 107 108 104 106 99 103 

SC 514 510 515 501 510 519 519 513 520 501 510 530 528 521 529 511 520 
(C/E) 100 99 100 98 99 101 101 100 101 98 99 103 103 102 103 100 101 



Table 2: A comparison of identification probabilities for cases involving two moderately overlapping distributions with particular correlation 
coefficients. Six models are compared: MSD (I.O.), ideal observer, MSD (B.L.), best linear classifier, MSD (M.D.), minimum 
distance; PMDS; SC (E/G), Euclidean/Gaussian; SC (C/E), city-block/exponential decay. The first row of numbers for each model 
are identification probabilities (xlO 3); the second row are values relative to the (0,0) correlation case. 

CASES (Moderate Overlap) 
Correlation Coefficients 

Model 0,0 M 0,-A M 0,-.S .4,0 -.4,0 .4,4 -.4,-4 .4J8 :4,-.8 .8,0 -.8,0 •M -J8,:4 J8,8 -•*»-• 

MSD 842 847 850 859 890 804 896 801 902 818 936 815 961 796 967 772 987 
(I.O.) 100 101 101 102 106 96 106 95 107 97 111 97 114 95 115 92 117 

MSD 846 846 830 905 899 806 925 805 902 842 938 710 967 739 984 774 997 
(BJL.) 100 100 98 107 106 95 109 95 107 100 111 84 114 87 116 91 118 

MSD 841 841 841 841 841 803 902 803 902 803 902 774 987 774 987 774 987 
(M.D.) 100 100 100 100 100 95 107 95 107 95 107 92 117 92 117 92 117 

PMDS 712 693 731 671 751 705 730 864 748 660 767 708 759 687 775 660 795 
100 97 103 94 105 99 103 96 105 93 108 99 107 96 109 93 112 

SC 702 683 722 664 740 693 717 676 731 657 753 693 740 675 755 652 774 
(E/G) 100 97 103 95 105 99 102 96 104 94 107 99 105 96 105 93 n o 

SC 658 649 666 641 673 655 661 647 671 636 676 649 666 642 673 632 678 
(C/E) 100 99 101 97 102 99 100 98 102 97 103 99 101 98 102 96 103 
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Figure 1. The probability of correct identification for six probabilistic identification 

models in the case of high distributional overlap [means of (0,0) and (0.707, 

0.707)]. The multidimensional signal detection model, MSD (ideal observer) has 

been plotted against: A, the MSDBL (best linear classifier); B, the MSDMD (minimum 

distance rule); C, the PMDS model; D, the SCEG (Euclidean/Gaussian) model; and E, 

the SCCE (city-block/exponential decay) model. 
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Figure 2. The probability of correct identification for six probabilistic identification 

models in the case of moderate distributional overlap [means of (0,0) and [1.414, 

1.414)]. (See Figure 1 for captions.) 
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Figure 3. The effect of the form of g, the judgment function, on the sensitivity of its 

expected value, similarity, to perceptual dependence, (a) Four judgments of the 

form, g(a~) = expi-a**), where a = 1,2,6 and 25. (b) The difference between the 

similarities of two pairs of distributions: In the first pair, correlations 

between dimensions are both -0.8; in the second pair, correlation coefficients 

between dimensions are both +0.8. In both cases, 8 = 1.0. The curve with the 

higher asymptote corresponds to distributions with a standard deviation of 0.2, 

the lower curve corresponds to distributions with a standard deviation of 1.0. 
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CHAPTERS 

GENERAL DISCUSSION AND CONCLUSIONS 
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Dynamic changes in the chemistry and biology describing the interaction between an 

organism and its environment, suggest that the "psychological quantities" governing behavior 

should not be static. It is not surprising that static, or deterministic, models of 

perception should ultimately prove to be limited in explaining experimental results. These 

limitations should be expected to become most evident when the objects being studied are 

easily confused. 

In food and beverage sensory evaluation, the duo-trio and triangular methods have 

been used extensively to determine differences between pairs of objects. Unidimensional 

modelling of these methods revealed that they are special cases of more general models of 

methods applied in the early development of multidimensional scaling. The duo-trio is a 

special case of Torgerson's method of triads and the triangular method is a special case of 

Richardson's method of triads. The models discussed by Torgerson (1958) for Torgerson's and 

Richardson's methods of triads, however, did not involve classical Thurstonian assumptions 

about the psychological magnitudes (normally distributed) but assumed, instead, that 

distances between values were normally distributed. Thurstonian models in unidimensional and 

multidimensional cases have now been derived and evaluated for these methods. In many of the 

models discussed in the thesis, the objects must be perceptually confusable or the measured 

response would be, trivially, 1.0. Triad methodology offers the opportunity to determine the 

parameters of distributions which may not overlap, but for which the within-trial distances 

between pairs in a triad are confusable. If resampling occurs within a trial, it was pointed 

out that the same two stimuli may appear to be most alike and most different in Richardson's 

method of triads. Since this may lead to unpredictable behavior by the subject, the 

experimenter should be aware of this possibility if using Richardson's method or its special 

case, the triangular method. 

An interesting connection exists between triad models and those involving 

preferential choice and two-alternative identification. By replacing one of the stimuli in a 

triad by an ideal point, the triad model becomes a preference model in which the subject 

makes a decision on the basis of the relative distances between the stimuli and the ideal 

point If two of the stimuli in a triad are replaced by memory exemplars, then the model 
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becomes a two-alternative identification model and is a prototype for m-alternative 

identification. These three applications for the same model provided the motivation to find 

a mathematically and computationally simple form for the n-dimensional Thurstonian variant of 

Torgerson's method of triads. This form was obtained using existing theory on quadratic 

forms in normal variables. In future work, it would be satisfying if the same parameters fit 

data obtained from two or more of these methods (for example, triads and preferential 

choice). 

The similarity of two objects has been modelled as a monotonically decreasing 

function of the perceptual distance between the objects (Shepard, 1987). Some 

multidimensional scaling models are based on this assumption. Shepard (1987) has argued in 

favor of an exponential decay similarity function as a general principle and, for stimuli for 

which the perceptual components can be attended to separately, he has suggested that the 

distance metric is city block (the L, norm). Some exceptions to these two ideas were shown 

to arise with confusable stimuli when a deterministic model is used. Specifically it has 

been found that for these types of stimuli, support for the Euclidean metric and a Gaussian 

similarity function was obtained. This paradox, called the Shepard-Nosofsky paradox in the 

thesis, can be resolved by using an appropriate probabilistic model to represent stimuli as 

distributions of multivariate normally distributed momentary values. The result of applying 

this model was to show that the exponential decay similarity function and the city block 

metric may model behavior at the individual trial level, although a deterministic analysis of 

expected values may not reveal this. 

A closed form for the expected" value of the Gaussian similarity function of Euclidean 

distance was derived. This equation provides predicted "same-different" proportions in the 

absence of response bias. This model was applied to artificial and real data sets on same-

different judgments to estimate parameters (means and variances) using nonlinear least 

squares. It was found that perceptual variances for morse code signals are smaller for 

stimuli isolated from other stimuli and larger when stimuli are in close proximity to others. 

This difference in variance provides a way of modelling observed differences between stimuli 

in self-similarity. Isolated stimuli would have higher values for self-similarity than less 

isolated ones. 
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Not all probabilistic models respond equally to perceptual dependence. In general, 

models involving linear or close to linear judgment functions will be insensitive or 

relatively insensitive to correlated perceptual dimensions. Judgment functions closer to 

step functions will be far more sensitive to perceptual dependence. For this reason, the 

Gaussian similarity function was more sensitive than the exponential decay function in a 

probabilistic model. Comparisons were made among models which involve distance comparisons 

within a trial (either ordinal decision rules or monotonically decreasing similarity 

functions) and signal detection models (where the decision is based on the position of a 

vector relative to a decision boundary). The signal detection models were more sensitive to 

perceptual dependence than the distance-based models. Since these two classes of models 

differ with regard to assumptions which could be affected by training, perceptual dependence 

may be used as an experimental tool in studying the effect of training on decision rules 

employed by subjects. Distance-based rules may be used until response regions are learned. 

This hypothesis would imply that sensitivity to perceptual dependence should increase with 

training. 

Most of the papers in the thesis have been concerned with Thurstonian models. This 

means that subjects' behavior is modelled in terms of the parameters of normally distributed 

(uni- or multidimensional) momentary psychological magnitudes and an appropriate judgment 

function. In some respects, this structure imposes fairly severe restrictions and provides 

no direct information on the nature of the function which transduces physicochemical stimulus 

information into perceptual information. One also has to assume that there is no stimulus 

variability, if one assumes that the noise present is perceptual. These limitations can be 

removed by building models that start by assuming the existence of a stimulus probability 

density function. To this level, a psychophysical transformation is applied and, 

subsequendy, perceptual or psychological variance is added. It is thus possible to separate 

these three components which generate momentary psychological magnitudes. These models are 

called Fechner-Thurstone models. One does not require a normal probability density function 

for these magnitudes and, in fact, very special conditions would be required to create such a 

density function. It might be imagined that this type of approach to modelling psychological 

tasks would lead to a larger number of parameters than traditional Thurstonian modelling. On 
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the contrary, it was shown that this type of model is highly parameter efficient because it 

makes use of known physicochemical information which can be measured directly, eliminating 

the need to estimate psychological scale values. Thus, for instance, a 9 parameter 

Thurstonian model of data from 10 stimuli was shown to be modelled by only 2 parameters with 

a Fechner-Thurstone model. These models also provide a means of determining the form and 

parameters values of psychophysical functions without having to employ magnitude estimation 

or other direct scaling techniques. These ideas were used to develop a new model for paired 

comparisons on the basis of this theory. 

From a modelling standpoint, one can imagine that stimulation of the senses leads to 

psychological magnitudes that are used to make particular decisions which determine behavior. 

These magnitudes should not be viewed as static, but fluctuate from moment to moment These 

ideas, of course, do not imply that psychological magnitudes or their fluctuations actually 

exist; they simply capture a particular way of thinking that might be useful in modelling 

behavior. It is clear that probabilistic models ought to be chosen over deterministic models 

when stimuli are confusable, because there is a need to formally include the effects of 

momentary fluctuations in the organism's perception of stimuli. An ever-present difficulty, 

which has been resolved in some cases in the thesis, is the computational intensity of many 

of these models. In fact, advances in computational speed and accuracy will be needed before 

the full potential of these models can be realized. These advances should be closely linked 

to computationally efficient mathematical forms of the models. The ability to explain 

complex behavior over many different types of tasks in a simple, comprehensive, consistent 

manner should provide the motivation for these needed developments. 
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CHAPTER 6 

SUMMARY 



CHAPTER ONE 
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The origin of the work reported in the thesis is traced to a single paper by Frijters 

(British Journal of Mathematical and Statistical Psychology, 32,229-241) in which 

unidimensional models for the triangular method are discussed. This paper stimulated the 

author's interest in developing a multidimensional model for the same method. These ideas 

were then extended to the duo-trio method. This modelling work initiated an interest in 

developing probabilistic models, first of similarity, then of identification, triads in 

general, and preferential choice. The organization of the thesis around these ideas is 

presented. 

CHAPTER TWO 

A central idea of the thesis is the formal inclusion of momentary fluctuations in 

psychological magnitudes in models of perception. This chapter contains two papers which are 

overviews of the topic of probabilistic models by the author and others. Models for 

similarity, identification, triad discrimination, and preferential choice are given. 

In the first paper, the expected value of a judgment function of the psychological 

magnitudes sets the stage for all of the models discussed in the paper. Similarity models 

and several kinds of identification models are presented with a short discussion of the 

Shepard-Nosofsky paradox. Following a discussion of nonlinear least squares estimation, 

Fechner-Thurstone models are introduced. 

In the second paper in this Chapter, the connection between triad (h'scrimination, 

preferential choice, and two-alternative identification is given. A computationally simple 

form for the 2n-fold integral expression which yields predicted responses for all three of 

these models is discussed. The relationship between this model and previous unidimensional 

and multidimensional models is explained. 
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Unidimensional triad theory for Richardson's and Torgerson's methods of triads is 

derived and evaluated. Parameter estimation is illustrated with a sample problem The duo-

trio method is shown to be a special case of Torgerson's method of triads and the triangular 

method is a special case of Richardson's method of triads. A special problem in Richardson's 

method arises when resampling within a trial occurs. In Richardson's method, the subject is 

instructed to select the pair in a triad which is "most similar", and then to select the pair 

which is "most different". It is possible, under resampling, for the same two objects to be 

both "most similar" and "most different". This problem is discussed and the probability of, 

what is called, a decision conflict is estimated using Monte Carlo simulation. 

The probability of a decision conflict is derived in the second paper under the 

resampling assumption. Some suggestions for experimental work are given and the dependence 

of this probability on the distance between the extreme stimulus means in a triad is shown. 

The third paper in this Chapter describes Fechner-Thurstone models. These models, 

not strictly umdimensional, are concerned with relating stimulus parameters through a 

psychophysical transformation to psychological values used to make a decision in a particular 

task. The stimulus magnitudes are assumed to follow a probabiUty density function (pdf) and 

psychological noise is added from a different pdf. No particular form for these pdfs is 

required and the psychophysical transformation is also very general, provided it is a one-to-

one function. An application to paired comparisons is given and parameter estimates of a 

sample problem are obtained for special cases of the pdfs and the psychophysical 

transformation. 

CHAPTER FOUR 

A Monte Carlo study of the triangular method under multivariate assumptions revealed 

that the probability of a correct response decreases with dimensionality for a fixed distance 

between stimulus means. A multivariate model for the triangular method is given in the 

second paper of this Chapter and the model is evaluated numerically in two dimensions. The 
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effects of variance and correlation structure on the probability of a correct response are 

discussed. These evaluations clearly show that the probability of a correct response and 

the distance between stimulus means are not monotonically related (as required by traditional 

multidimensional scaling). Variance effects on the triangular method results are 

investigated, particularly the consequence of variance inequality on Type I errors. 

The third paper in this Chapter discusses models of both the triangular and duo-trio 

methods with special emphasis on the nonmonotonic relationship between the probability of a 

correct response and the distance between the means of the stimulus distributions. A general 

scheme for modelling the results of discrimination tasks is given when stimulus and 

psychological variability is assumed to exist These ideas were formally discussed as 

Fechner-Thurstone models in the third paper in Chapter 3. 

The next paper in this Chapter is concerned with probabilistic models of similarity 

and provides a sketch of how these ideas may be used to model identification. The main 

contribution of this paper is to show how probabilistic models are needed to resolve a metric 

and judgment function paradox created when a deterministic model is used to represent data 

from confusable stimuli. A closed form for the probabilistic similarity model is given when 

the distance metric is Euclidean and the judgment function is Gaussian. Parameter estimation 

for artificial and real data sets (morse code signals) is discussed. The paper following the 

similarity paper makes specific comment on a resolution of the paradox arising from Shepard's 

and Nosofsky's deterministic modelling. 

The sixth paper in this Chapter provides a comparison of six probabilistic models of 

identification with respect to their sensitivities to perceptual dependence, or the degree to 

which the perceptual dimensions are correlated. From this comparison, it is shown that 

signal detection models involving some form of decision boundary (linear or quadratic) are 

more sensitive to perceptual dependence than within trial distance-based models. These 

latter models may involve an ordinal decision rule (the decision is based only on an ordinal 

distance comparison) or a distance-based similarity function. The least sensitive model 

involved the exponential decay similarity function of city block distance. This result is 

interesting because this last model is based on assumptions concerning the distance metric 
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and similarity function that Shepard has argued are universal principles for all sentient 

organisms. 

CHAPTER FIVE 

This Chapter contains the general discussion and conclusions of the thesis. The 

scope, strengths and limitations of the models described in the thesis are discussed. 
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CHAPTER 7 

SAMENVATTING (SUMMARY IN DUTCH) 



HOOFDSTUK EEN 
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De oorsprong van de studie waarover in dit proefschrift wordt gerapporteerd kan 

worden herleid tot een bepaald artikel van de hand van Frijters (British Journal of 

Mathematical and Statistical Psychology, 32,229-241) waarin unidimensionele modellen voor de 

driehoeksmethode worden besproken. Dit artikel wekte de belangstelling van de auteur voor 

het ontwikkelen van een mmtidimensioneel model voor dezelfde methode. Vervolgens werden 

dezelfde ideeën toegepast op de duo-trio methode. Deze modelstudies initieerde een 

belangstelling voor het ontwikkelen van waarschijnlijkheids modellen; eerst voor gelijkheid, 

dan voor identificatie, triaden in het algemeen, en preferentiële keuze. De indeling van dit 

proefschrift rond deze gedachten wordt besproken. 

HOOFDSTUK TWEE 

Een centraal idee in dit proefschrift is het formeel opnemen in perceptiemodellen van 

momentane fluctuaties van psychologische grootheden. Dit hoofdstuk bevat twee artikelen welke 

overzichten zijn van waarschijnhjkheidsmodellen van de auteur en anderen. Er worden 

gelijkheids, identificatie, triadische discriminatie en preferentiële keuze modellen gegeven. 

In het eerste artikel wordt uiteengezet dat de verwachte waarde van een 

beoordelingsfunctie ten grondslag ligt aan alle modellen die in het artikel besproken worden. 

Gelijkheidsmodellen en verscheidene soorten van identificatiemodellen worden gepresenteerd 

met een korte bespreking van de Shepard-Nosofsky paradox. Fechner-Thurstone modellen worden 

geïntroduceerd na een discussie over nonlineaire kleinste kwadraten schatting. 

In het tweede artikel van dit Hoofdstuk wordt het verband tussen triadische 

discriminatie, preferentiële keuze en 2-alternatieve identificatie besproken. Een 

rekenkundig eenvoudige vorm voor de 2n-voudige integrale uitdrukking welke de voorspelde 

responsies voor alle drie methoden voorspeld wordt besproken. De relatie tussen dit model en 

de voorafgaande unidimensionele en multidimensionele modellen wordt verklaard. 
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Een unidimensionele triaden theorie voor Richardson's en Torgerson's methoden van 

triaden wordt ontwikkeld en geëvalueerd. De schatting van de parameters wordt geïllustreerd 

aan de hand van een steekproef probleem Er wordt aangetoond dat de duo-trio methode een 

speciaal geval is van Torgerson's methode van triaden en dat de driehoeksmethode een speciaal 

geval is van Richardson's methode van triaden. Een speciaal probleem onstaat in Richardson's 

methode wanneer "resampling" binnen een aanbieding toegestaan is. In Richardson's methode 

wordt de proefpersoon geïnstrueerd om het paar in een triade te selecteren dat "meest gelijk" 

is, en vervolgens het paar de selecteren dat "meest verschillend" is. Het is mogelijk onder 

de voorwaarde van "resampling" dat dezelfde twee objecten als zowel het "meest gelijk" als 

het "meest verschillend" worden beoordeeld. Dit probleem wordt besproken en de 

waarschijnlijkheid van wat genoemd is een beslissingsconflict wordt geschat door gebruik te 

maken van een Monte Carlo simulatie. 

De waarschijnlijkheid van een beslissingsconflict wordt afgeleid in het tweede 

artikel onder de aanname van "resampling". Enkele suggesties voor experimenteel onderzoek 

worden gegeven en de afhankelijkheid van deze waarschijnlijkheid van de afstand tussen de 

extreme stimulus gemiddelden in een triade wordt aangetoond. 

Het derde artikel in dit Hoofdstuk beschrijft Fechner-Thurstone modellen. Deze 

modellen, die strikt gesproken niet unidimensioneel zijn, relateren stimulus parameters door 

middel van een psychofysische transformatie aan de psychologische waarden die vervolgens 

gebruikt worden om een beslissing te nemen in een bepaalde taak. De stimulus grootheden 

worden geacht verdeeld te zijn volgens een waarscWjnujldieidscüchtheidsfunctie (pdf) en 

psychologische ruis wordt aan hen toegevoegd van een andere pdf. Er is geen bijzondere vorm 

van deze pdf s vereist en de psychologische transformatie is zeer algemeen, onder voorwaarde 

dat het een een-op-een functie is. Een toepassing hiervan wordt gegeven voor de methode van 

paarsgewijze vergelijking en parameter schattingen van een steekproef probleem worden 

verkregen voor speciale gevallen van pdf s en psychologische transformatie. 



HOOFDSTUK VIER 

210 

Een Monte Carlo studie van de driehoeksmethode onder multivariate aannamen liet zien 

dat de kans op een juiste uitspraak afneemt met de dimensionaliteit voor een vaste afstand 

tussen stimulus gemiddelden. Een multivariaat model voor de driehoeksmethode wordt gegeven 

in het tweede artikel van dit Hoofdstuk en het model wordt numeriek geëvalueerd in twee 

dimensies. De effecten van de variantie en de correlatie structuur op de kans op een juiste 

uitspraak wordt besproken. Deze evaluaties laten duidelijk zien dat de kans op een juiste 

uitspraak en de afstand tussen de stimulus gemiddelden niet monotoon zijn gerelateerd (zoals 

vereist in traditioneel multidimensionele schaalmodellen). De effecten van variantie op 

resultaten van de driehoeksmethode worden onderzocht, in het bijzonder de gevolgen van 

ongeHjkheid van varianties op Type I fouten. 

Het derde artikel van dit Hoofdstuk bespreekt modellen zowel voor de driehoeksmethode 

en de duo-trio methode met speciale nadruk op de non-monotone relatie tussen de kans op een 

juiste uitspraak en de afstand tussen gemiddelden van stimulus verdelingen. Een algemeen 

schema voor het modeleren van resultaten van discrirninatie taken wordt gegeven onder de 

aannamen dat er zowel sprake is van stimulus als van psychologische variabiliteit Deze 

ideeën werden formeel besproken als Fechner-Thurstone modellen in Hoofdstuk 3. 

Het volgende artikel in dit Hoofdstuk gaat over waarschijntijkheids modellen van 

gelijkheid en geeft een overzicht over hoe deze ideeën gebruikt kunnen worden om 

identificatie to modelleren. De belangrijkste bijdrage van dit artikel is dat het aantoont 

hoe noodzakelijk waarschijnlijkheidsmodellen zijn om een metrische en beoordelingsfunctie 

paradox op te lossen, die ontstaat wanneer een deterministisch model wordt gebruikt om data 

van verwarbare stimuli te representeren. Een gesloten vorm voor het waarschijnlijkheids 

gelijkheidsmodel wordt gegeven in het geval dat de afstandsmetriek Euclidisch is en de 

beoordelingsfunctie Gaussiaans. Parameter schatting voor zowel kunstmatige als echte data 

set (morse code signalen) wordt besproken. In het artikel volgend op het gelijkheids artikel 

gaat met name in op de oplossing van de paradox die voortkomt uit Shepard's en Nosofsky's 

deterministisch modelleren. 
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Dit hoofdstuk bevat de algemene discussie en conclusies van dit proefschrift De 

reikwijdte, sterke kanten en beperkingen van de modellen die in dit proefschrift beschreven 

zijn, worden besproken. 

Het zesde artikel in dit Hoofdstuk geeft een vergelijking van zes 

waarschijnlijkheidsmodellen met betrekking tot de gevoeligheid voor perceptuele 

afhankelijkheid, of the mate waarin de perceptuele dimensies zijn gecorreleerd. Door deze 

vergelijking wordt aangetoond dat signaal-detectie modellen die een of andere 

beslissingsgrens (lineair of kwadratisch) incorporeren veel gevoeliger zijn voor perceptuele 

afhankelijkheid dan binnen aanbieding afstandsmodellen. Deze laatste modellen kunnen een 

ordinale beslissingsregel hebben (d.L de beslissing is alleen gebaseerd op ordinale afstands 

vergelijking) of een geüjkhridsfunctie gebaseerd op afstand. Het minst gevoelige model gaat 

uit van een exponentiële-verval gelijkheidsfunctie functie van "city-block" afstand. Dit 

resultaat is belangrijk omdat het laatste model gebaseerd is op aannamen met betrekking tot 

de afstandsmetriek en gelijkheidsfunctie waarover Shepard heeft beweerd dat deze universeel 

is voor alle waarnemende organismen. 
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