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1.1 Chicken – an important model organism in biolog ical research 

    The chicken (Gallus gallus) is an important model organism in genetics, developmental 

biology, immunology, and evolutionary research. Moreover, besides being an important 

model organism the chicken is also a very important agricultural species and an important 

source of food (eggs and meat). 

    The chicken started to being used as a model organism in genetics more than one 

hundred years ago and terms such as alleles [1], genetic linkage [2] and epistasis [3] are 

based on work on chicken morphological traits [4]. Over the years chicken genetics has 

mainly focused on practical problems of meat and egg production and on the analysis of 

disease resistance. A recent literature search of the PubMed [5] database, using the key 

words, “chicken” and “genetics”, returned more than 14,000 records (August 2009), clearly 

indicating the intensive use of chicken in the field of genetics. In addition to genetic studies 

related to more practical agriculturally related aspects, the chicken for many decades has 

intensively been used to study embryonic development. This extensive use of the chicken as 

one of the primary models for developmental biology is due to the easy access of the embryo 

because development occurs in ovo rather than in utero, which allows easy manipulation of 

the incubated eggs and the developing embryo. Chicken has also been used intensively in 

immunological research. The chicken immune system provided the first distinction between 

two different types of immune cells, T-cells and B-cells. The B-cell itself was named based on 

the chicken bursa of Fabricius [6].  

 

1.2 The chicken genome and chicken genomics researc hes 

    The chicken is one of the non-mammalian vertebrate model organism and it shares the 

last common ancestor with mammals about 310 million years ago [7]. Because of its 

importance as a model organism for developmental biology and agriculture and because of 

its phylogenic distance from mammals the chicken (Gallus gallus) genome was sequenced in 

2004 [8]. Because of its strategic evolutionary position in the tree of life between mammals 

and fish, chicken is an important anchor species in the phylogenetic study of genome 

evolution. Sequencing the chicken genome also helps to improve our understanding of the 

functioning of mammalian genomes including human, through comparative genomics. The 

chicken mammalian comparison has a high signal-to-noise ratio resulting in a high specificity 

for the identification of regions under selection (conserved during evolution). A comparison 

between human and chicken showed that  75% of the coding regions and 30%-40% of 
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regulatory elements are conserved when examining known functional sequences between 

mammals and chicken [9].  

    The availability of the draft chicken genome sequence [8] provided many possibilities to in 

detail study a variety of genomic changes during evolution using a comparison between 

chicken and mammals. For example, compared to mammals, the use of a Z/W sex 

determination system is a special aspect of the avian genome, where the female is the 

heterogametic sex (ZW) and the male is the homogametic (ZZ) sex. A comparison of the 

genomic sequences of platypus, chicken, and human showed that sex chromosomes 

evolved separately in birds and mammals [10]. As mentioned before, the evolutionary 

position of chicken compared to mammals results in a high specificity for the detection of 

functional elements in vertebrate genomes [11-13]. A clear example is provided by the ultra 

conserved sequences often co-localizing with developmental genes (including genes linked 

to disorders that cause limb loss or deformity) [8]. The draft chicken genome sequence also 

provided several interesting biological observations. For example, the observed number of 

olfactory receptors in the chicken genome challenged the fact that the chicken has been 

thought to have a poor sense of smell. The number of genes in the chicken genome coding 

for olfactory receptors is similar as is found in the human genome which suggest that the 

chicken has a sense of smell more or less similar as human [8].  

    Another interesting feature of the chicken genome is the great variation in size of the 

different chromosomes. This karyotype consisting of both large (macro) as well as small 

(micro) chromosomes is very characteristic for most avian genomes [14].  

Microchromosomes are also found in some primitive amphibians [15, 16] and most reptiles 

[17]. Most avian karyotypes are composed of about 40 pairs of chromosomes. Some notable 

exceptions are the stone curlew and kingfisher, with 20 and 66 pairs of chromosomes, 

respectively [18]. Interestingly, microchromosomes exhibit higher gene density, smaller gene 

size, and higher recombination rates compared to macrochromosomes [8, 19].  

    The important evolutionary position of chicken relative to other mammals makes chicken 

an interesting model in the current genomics research to address several basic, yet important 

genomic questions, such as the evolution of genome size [9].  In recent years, several 

genomic resources were developed for chicken, such as a high-density SNP-based linkage 

map [19], a 50K SNP i-sellect panel (Illumina), genome-wide expression microarrays (ARK-

Genomics G. gallus 20K oligo array, chicken 44k Agilent array [20] ) and CNV (Copy Number 

Variation) arrays (Nimblegen 385k tiling path array and Agilent 244k chicken array).  These 

resources and high-throughput platforms provide the necessary tools to further investigate 

the chicken genome in more detail.  

    Since the first draft of the chicken genome sequence (WASHUC1) released in 2004, a 
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newer assembly is available since 2006 (WASHUC2). However, in both builds several 

microchromomes are still poorly covered and the ten smallest microchromosomes are still 

completely missing. Recently the same red jungle fowl (UCD001) was re-sequenced at 

Washington University using 454 sequencing technology (Roche). This next-generation 

sequencing technology avoids the bacterial cloning steps of required using traditional Sanger 

sequencing and is expected to provide better coverage of the chicken genome, especially 

the microchromosomes. This new assembly is available at 

http://genome.wustl.edu/genomes/view/gallus_gallus/ and has an overall sequence depth of 

19x (6.6 x for WASHUC2 and 12x Roche 454 sequences). This new assembly, together with 

a collection of available genomic tools will further strengthen the usefulness of chicken as a 

popular model in the future genomics research by providing more and better genomic data 

for chicken biology. 

 

1.3 Transcriptomics research in chicken 

    The sequence of the chicken genome has provided new possibilities to study the function 

of the individual genes and gene networks in chicken and to gain insight in their specific roles 

in chicken physiology. An important challenge in the post-sequence era of chicken biology is 

determining the functional role of known genes. Currently, the function of many of the chicken 

genes has been predicted based on the sequence homology to genes of know function in 

other species. However, because of the differences in physiology among different species it 

is essential to improve this and to obtain additional functional data in the chicken itself, for 

example, more detailed information about the expression of these genes in different tissues 

and under different conditions. 

    Before 2003, only a few papers on gene expression profiling using microarrays were 

published in chicken [21]. The first picture of global gene expression in the immune system in 

chicken was provided by lymphoid cDNA microarrays [22]. Subsequently, several tissue-

specific cDNA microarrays were developed and used for transcription profiling in the liver, 

intestine and bursa of Fabricius [23-25].  The first high-density (13K) multi-tissue chicken 

cDNA array to be developed [26], was based on ESTs/cDNA clones representing 24 different 

adult or embryonic tissues. The coverage of cDNA microarray platforms increased very fast 

during the following years and, at the same time, the quality of array manufacturing also 

improved. The availability of a draft chicken genome sequence in 2004, made it possible to 

manufacture whole genome oligo-arrays to study genome-wide gene expression in chicken. 

The Chicken Genome GeneChip, containing probes for 33,457 chicken and viral pathogen 

transcripts, is commercially available from Affymetrics (http://www.affymetrix.com) (GEO [27] 
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accession: GPL3213) and this array was the first genome-wide gene expression chip on the 

market. Microarrays consisting of long oligonucleotides (70-mer) were developed by a 

number of different groups including the Roslin Institute (ARK-Genomics G. gallus 20K; GEO 

accession: GPL5480, GPL8862), the University of Arizona (Gallus gallus 20.7K Oligo Array; 

GEO accession: GPL6049) and the University of Missouri (Gallus gallus 21k; GEO accession: 

GPL5618). Two of these microarrays are available from the University of Arizona 

(http://www.grl.steelecenter.arizona.edu/) and ARK Genomics (http://www.ark-genomics.org/), 

Recently, a Chicken 44K custom Agilent microarray (GEO accession: GPL4993, GPL7399, 

GPL8764) was developed which currently is available from Agilent (http://www.agilent.com/).   

    By the time, the experiments for this thesis were carried out, the Agilent platform was not 

available yet, and the cost of Chicken 20k oligo-arrays was much lower than the Affymetrix 

chips. This made it a preferable platform to use within our project, because of the relatively 

large number of samples to survey. Nowadays, these commercial long-oligo arrays and the 

chicken genome array (GeneChip) are increasingly replacing custom microarrays (for 

example, tissue specific cDNA microarrays) because of the higher standardization and higher 

quality of these platforms. The current publicly available transcriptomic data in chicken using 

genome-wide oligo array is shown in table 1.  

 

Table 1.  An overview of genome-wide expression studies in chicken in NCBI GEO database. 

Platform 
Accession ID Description Platform Name 

No. of 
dataset  

No. of 
arrays 

GPL3213 GeneChip Affymetrix Chicken Genome Array 28 404 

GPL4993 
Agilent 44K 

oligo set Chicken 44K custom Agilent microarray 3 60 
GPL7399 --- Agilent custom 44K chicken array 1 20 

GPL5480 
Roslin/Ark 20K 

oligo set ARK-Genomics G. gallus 20K v1.0 2 64 
GPL5618 --- Missouri Gallus gallus 21k 1 9 
GPL6049 --- Arizona Gallus gallus 20.7K Oligo Array v1.0 2 120 
GPL8199 --- ChickenOligo 20.6K 70-mer microarray v2 2 16 

 

    The number of genome-wide transcription profiling experiments in chicken has increased 

dramatically in recent years because of the availability of the microarray platforms described 

above. The availability of these new platforms of improved quality and higher probe coverage, 

for example the Agilent 44K chicken array, we expect that the number of genome-wide 

transcription profiling studies using these platforms will increase in the near future as well, 

studies that use direct sequence-based technology to study gene expression.  

    The majority of previous microarrays studies described in GEO or other publications [28-

34] were designed to monitor changes of gene expression between different conditions, 
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treatments, or time points in a single tissue. The identified candidate genes were 

subsequently used to try to interpret the underlying biological processes by looking at the 

functions of these genes. There are many candidate genes identified that lack any functional 

annotation in the current chicken genome build, hampering the interpretation of the results 

obtained within these microarray experiments.  

This limitation of the current microarray analysis motivated the generation of transcriptional 

profiling across a number of tissues in project described in this thesis. The global expression 

pattern of the genes under normal conditions among tissues can be used as a reference 

baseline for expression studies aimed to study specific diseases in chicken. It provides 

information about the distribution of the gene transcription profile across a range of tissues 

under normal conditions and this will facilitate the inference of possible biological functions of 

un-annotated genes in chicken. Genome-wide gene expression information in chicken can 

also be used to shed light on other aspects of vertebrate genome and transcriptome 

evolution. For example, it has been reported in human [35, 36], that housekeeping genes 

have relatively shorter introns, untranslated regions and coding sequences, suggesting a 

selection for compactness. With genome-wide gene expression data in chicken across a 

number of tissues, we can identify genes with “housekeeping functions” and test whether the 

compactness of housekeeping gene found in human is also true in chicken. Furthermore, 

evolutionary changes in gene expression account for most phenotypic differences between 

different species. Global gene expression patterns were reported to be conserved between 

human and apes [37] as well as between human and mouse [38]. The results of these 

studies suggested that the gene expression within mammals is under evolutionary constraint. 

Comparing gene expression of birds and mammals would help to further understand the 

gene expression conservation in vertebrates during evolution. 

 

1.4 Gene transcription regulation 

    Regulation of transcription is known to be regulated at a number of different levels, i.e. at 

the individual gene level, at the level of gene clusters, and at a more global regional genomic 

level. The first level of regulation is on individual genes.  This common model for eukaryotic 

gene transcription involves the binding of several transcription factors (TFs) to promoter 

regions, resulting in activation of the individual genes. A good example is the well known 

TATA binding protein that regulates gene expression by binding to TATA box located in gene 

promoter regions [39]. The second level of gene regulation is on gene clusters. Most notably 

are the well-studied examples of a number of tightly co-regulated gene clusters, such as the 

globin, MHC and the Hox gene clusters [40-43]. For instance, the expression of MHC class II 
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genes is tightly regulated at multiple levels of control by a series of cis-regulatory DNA 

elements interacting with transcription proteins or factors [44]. A third level of gene 

expression depends on the genomic locations of the genes [45-48]. This implies that genes 

located within the same region of the genome are co-regulated on a more global regional 

basis, beyond the level of functionally related gene clusters. In the human genome highly 

expressed genes appear to be clustered within specific chromosomal regions [49]. Further 

studies using specific insertions of GFP (green fluorescent protein) reporter gene constructs 

into these specific chromosomal regions showed an increased GFP expression of these 

inserted reporter genes as well [50]. Besides gene transcription, other characteristics such as 

gene density, GC content, nuclear position and recombination have been shown to exhibit 

domain-like features and are correlated with gene transcription activity in the eukaryotic 

genomes [19, 51]. The causative nature of inter-correlations of these features is still under 

investigation, but all these phenomena lead to the hypothesis that gene transcription, on top 

of the individual gene level regulation, is regulated in a domain-wide manner within 

vertebrate genomes, closely correlated with other structural characteristics in the genome. 

The observed location of gene-dense chromosome and chromosomal regionswith highly 

expressed genes towards the center of the nucleus and the location of gene-poor and weakly 

expressed chromosomes towards the nuclear envelope in human [52] and chicken cells [53] 

provided some further evidences of the existing correlation between gene transcription and 

other genomic features.  

    Furthermore, enhancers, silencers, locus control regions (LCR) and epigenetic regulators 

such as matrix attachment regions (MARs) are also known to be involved in gene 

transcription regulations.  Metazoan LCRs, enhancers and silencers activate or repress 

transcription of linked genes at distal locations. Most enhancers are located tens of kilobases 

from the genes they regulate, and some have even been found at distances of up to a 

megabase from their gene target [54-56]. Furthermore, enhancer and silencers have been 

shown to have the potential to activate/repress a number of neighboring genes within a large 

chromosomal region [57]. Another type of regulatory element, the matrix attachment regions  

have been reported to serve not only as static organizers of nuclear and chromosomal 

structure but also as potentially dynamic DNA elements that exert important regulatory 

functions on the expression of individual genes [58]. All these known regulators may act, at 

all three levels of regulation described above, within a complex network acting on the target 

genes in the vertebrate genome to achieve accurate regulation of gene transcription. 

In order to confirm the universal existence of the global region-wide levels of 

transcriptional regulation in vertebrate genomes, additional analyses are needed in additional 

species besides human and mouse. In this respect, the chicken is an important anchor 
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species that can provide improved insights on the identification of the conservation of such 

region-wide levels of gene transcription in the different genomes. As described in section 1.3, 

chicken microchromosomes have specific features including higher gene density, higher 

recombination rate and shorter genes compared to the macrochromosomes. The availability 

of genome-wide gene expression resources in chicken will enable us to further investigate 

the mechanisms of transcriptional regulation of vertebrate genes.  

 

1.5 Aim and outline of this thesis 

    The research described in this thesis was aiming to build a gene expression atlas for 

chicken by surveying genome-wide gene expression across a collection of adult and 

embryonic tissues and different staged whole embryos. The two genome-wide gene 

expression data sets are used as  i) an expression baseline under normal conditions in 

chicken in contrast to specific treatments; ii) a references for comparative analysis of 

transcriptomics between different species iii) a resources to further study the regulation of 

gene transcription in eukaryotes. A transcriptome map for chicken was built using the 

expression data generated in this research and used to further study the mechanisms of 

gene regulation in vertebrate genomes. 

    The outline of this thesis:  Chapter 2 provides an introduction to microarray data 

analysis and different normalization and analysis processes are discussed. Furthermore, 

limitations of the (chicken) microarray platform are discussed. Chapter 3 provides a general 

guideline for extracting biological information from microarray data with particular focus on 

species with less well-annotated genomes, like those for farm animals, using R/Bioconductor 

[59, 60] packages. The enrichment of gene annotations for functional information as well as 

for genomic locations, are studied. Biological pathways for differentially expressed (DE) 

genes under different combination of treatments are identified. Chapter 4 describes a gene 

expression survey in eight chicken adult tissues. Tissue-specific and housekeeping genes 

are identified among the tissues included in the survey. Functional enrichment analyses show 

that tissue-specific genes are enriched with GO terms corresponding to the physiological 

functions of the organs. Furthermore, housekeeping genes are found to be more compact 

comparing to tissue-specific genes and the expression of mouse-chicken-frog orthologous 

genes are found to be conserved. In chapter 5, a gene expression survey in whole chicken 

embryos from different developmental stages and embryonic tissues is described. This 

expression survey provides an atlas of gene expression in important embryonic stages and 

the major embryonic tissues in chicken. Stage- and tissue-specific genes are identified, and 

similar to chapter 4, housekeeping genes are found to be more compact. Differentially 
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expressed genes between embryos from different developmental stages are identified and 

discussed in detail. In chapter 6, the chicken transcriptome map for the different 

chromosomes is presented, where highly expressed genes are found to be clustered 

together. This feature is highly correlated with other genomic features, such as for example 

gene density and GC content. This chapter describes a higher order level of transcriptional 

regulation in chicken, which seems to be conserved during evolution between chicken and 

human. Finally, in chapter 7 the results obtained in this thesis are discussed in a more 

general way. Some limitations of the current technological platform (microarray) are 

discussed and some perspectives are given for chicken transcriptomics using next-

generation sequencing technology.  
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2.1 Introduction 

    Genomics involves the analysis of large datasets obtained from various biological 

experiments. One type of large-scale experiment involves monitoring the expression levels of 

thousands of genes simultaneously under particular conditions, often referred to as 

expression profiling or gene expression analysis. Microarray technology has become one of 

the indispensable tools to monitor genome wide expression levels of genes in a given 

organism. A microarray is typically a glass slide on to which DNA molecules (often called 

probes) are fixed in an orderly manner at specific locations called spots. A microarray may 

contain thousands of spots and each spot may contain a few million copies of identical DNA 

molecules that uniquely correspond to a gene. Microarray technology makes surveying 

genome-wide gene expression in an organism possible and the quantity of data generated 

from each experiment is enormous. This chapter briefly introduces the basic statistical 

processes needed to process the data derived from a microarray experiment, including 

background correction, single-array normalization, and multi-array normalization. Several 

normalization methods will be summarized and discussed in the following parts of this 

chapter. One of the available functional analysis methods to identify significantly enriched 

biological pathways/functions in the gene list of interest will also be introduced after the 

normalization steps.   

    Since this PhD project is part of EADGENE (European Animal Disease Genomic Network 

of Excellence) network (www.eadgene.info), and microarray has been used as one of the 

most popular techniques for transcriptomic studies in EADGENE network, the 

statistical/bioinformatics’ analysis of microarray data has been one of the major concerns for 

the network. In 2007 and 2008, two workshops focusing on microarray data normalization 

and post-analysis of microarray data were organized, respectively, aimed at comparing 

several different software and analysis methods on the same microarray dataset to see the 

different effects of different methodologies on both microarray normalizations [1] and 

functional analysis after the normalization [2]. In this chapter, some of the key findings from 

the two EADGENE workshops which have been published in two series of papers, in 

Genetics Selection Evolution [3, 4] and in BMC Proceedings [5-7], will be summarized. 

Given the fact that the genome information of most farm animal species are far from 

complete, the available genome information for these species in the current genome 

databases evolves relatively fast. The existing microarray platforms (probe designs) for, in 

this case, chickens are lagging behind the current genome information available in the 

updated databases. In this chapter, we will also describe a bioinformatics tool that can be 

used to update probe annotations based on the newest genome information available using 
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sequence information of the probes. By doing so, the most updated and accurate probe 

annotations for the microarray platforms are available and this allows a more reliable 

biological interpretation of the microarray experiments. 

    In this thesis, we carried out two genome-wide gene expression survey in several chicken 

tissues in different stages (adult and embryonic stage), the number of tissues was large in 

each experiment, therefore, we used the common reference design for both experiment in 

this thesis. \the common reference design makes the hybridization scheme and data analysis 

easier when the number of conditions involved is larger. The design of a microarray 

experiment depends on the biological question to be addressed, this aspect has been 

discussed in detail in a number of papers [8-11], and therefore design issues will not be 

discussed in this chapter. 

 

2.2. Common biological questions of microarray expe riments 

    Key questions that in general are addressed within a microarray experiment are: 

� Which genes are differentially expressed between two conditions or among several 

different conditions? 

� Which genes are co-regulated under a set of conditions? 

� Which genes are co-regulated by a common transcription factor? 

� Which samples are more similar to each other according to global gene expression 

patterns 

� To understand genomic architecture by studying transcriptome. 

 

    The microarray is used to obtain a rough estimate of the relative amount of RNA molecules 

between two samples for each gene. Often (e.g. in case of tissues) an average for a large 

number of different cell types is obtained. A number of problems need to be considered while 

using microarrays such as the reproducibility of the results and the number of replicates 

needed. A statistical analysis of the data is consequently performed in order to make use of 

the data and interpret the microarray data into biology. 

 

2.3 Microarray data analysis 

Microarray analyses have become an important tool in animal genomics. While their use is 

becoming widespread, there are still many questions regarding the design of the experiment 

as well as the best way to analysis the data. Bioconductor [12] developed in R [13] has 
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become popular for microarray data analysis, because it is an open source program with 

many different available statistical algorithms dealing with microarray data normalization, 

differential expression identification, clustering, pathway analysis and some other 

bioinformatics tool querying online databases. In this thesis, all the microarray data analyses 

were performed using the bioconductor packages within R.  

 

Figure 1.  An overview of microarray data analysis: from wet lab experiment to down-stream 

analysis. 
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    Microarray data analysis generally includes several different steps, data processing and 

normalization, statistical analysis, and functional analysis (interpretation of the gene list). An 

overview of microarray data analysis is shown in Figure 1.  

2.3.1 Data normalization 

    After quantification of the scanned image files of each slide, the raw data needs to be 

further processed to be suitable for any downstream statistical analysis. Here we introduce 

several standard microarray data processing and normalization methods available in the R 

package Limma [14] for two-color microarrays: a) background correction; b) within array 

normalization; c) between array normalization.  

 

a) Background correction: 

    On a microarray slide, the measured fluorescence intensity of any spot is a combination of 

the background intensity around the spot and the intensity from the hybridization level of the 

mRNA samples to the spotted DNA. Background fluorescence can arise from several 

sources, such as non-specific binding of labeled sample to the array surface and processing 

effects such as deposits left after the wash stage or optical noise from the scanner. Removal 

of ambient, non-specific signal from the total intensity is known as ‘background correction’. 

Background correction is necessary to estimate the true hybridization level of the cDNA.  

Most image analysis software packages (e.g., GenePix) provide estimates for the intensity 

for the "foreground" and "background" of two channels for every spot. The common approach 

to further analyze such data is to first subtract the background from the foreground for each 

channel and to use the ratio of these two results as the estimate of the expression level. This 

approach may cause problems when the foreground intensity is smaller than the background 

intensity for a channel of a spot, because of the log2 transformation, that spot yields no 

usable data. Several different background correction methods are available, for example, 

Ritchie et al. [15] summarized eight common background correction methods (i.e. Standard, 

Kooperberg, Edwards, Normexp, Normexp+offset, Vsn, Morph, and No background 

correction) and compared effects of using different methods for background correction. They 

concluded that the best performance was achieved by normexp + offset whereas the 

standard method of background subtraction is the worst method [15].  

The normexp+offset method has been employed as the background correction method for 

data analysis in this thesis. 

 

b) Within array normalization: 

    Generally, microarray data are relatively noisy, even within a single array the log-ratios will 
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likely depend on the intensity, so the distribution will show the artifacts and not the regulation 

of genes. A MA plot is used to visualize intensity-dependent ratio of raw microarray data 

(Figure 2 (a)). The MA plot uses M as the y-axis and A as the x-axis. The MA plot gives a 

quick overview of the data. MA values are defined as follows for each probe: 

 

 

    A typical M-A plot of a two-color microarray would show a “banana” shape (Figure 2 (a)), 

this indicates that the ratios (M) are dependent on the intensities (A), especially at the lower 

intensities. After “Background correction” described in previous section, all the negative 

control spots (highlighted in  yellow in Figure 2) shrank towards the lower end and 

surrounded around M=0 line (Figure 2(b)).  After within-array normalization, the majority of 

the spots on the array were distributed along the M=0 (log2(1)=0) line in a, more or less, 

symmetrical pattern above and below M=0 line (Figure 2(c)). All the negative controls (yellow) 

are distributed along M=0 at the low intensity levels, and all the positive controls (highlighted 

in red) are distributed along M=0 at different intensity levels, both (yellow and red spots) 

indicate that the normalization processes work well. 

 

 

Figure 2.  MA-plots of a single array: (a) before normalization, (b) after background correction, 

(c) after within array normalization. 

 

    The major assumptions for the normalization are as listed below and if one or more 

assumptions are violated, the normalization might lead to wrong results: (1) The majority of 

the genes are not differentially expressed (M value around 0); (2) The number of genes up- 

and down-regulated is small and approximately equal. This is not true for arrays with 
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selected genes, but is true for most genome-wide expression arrays. (3) The genes are 

expressed at a wide range of total intensity (A value). This may not be true for conditions that 

are extremely different. 

    Normalization of the data within an array is a two-step process including a correction for 

spatial bias, and a correction for intensity-dependent bias. Correction for spatial bias is 

usually carried out separately for each block (print-tip) of each array by either subtracting the 

median for each block or by subtracting the corresponding row and column means [16]. The 

intensity dependent bias is removed by either print-tip loess correction [17], or by a global 

Loess correction [18].  The print-tip Loess is a commonly used within array normalization 

method, which is available within Limma. It removes the spatial and intensity-dependent bias 

within each array. No major differences were found when comparing global Loess and print-

tip Loess [3]. Therefore, in this thesis, print-tip loess has been employed as the method for 

within-array normalization to correct the spatial and intensity-dependent bias within each 

array. 

  

c) Between array normalization: 

    Probes/genes on different replicated arrays are not comparable before multi-array 

normalization or between array normalization, because the existence of random and 

systematical errors between different individual arrays. Data normalized within each 

individual array need to be further normalized between multi-arrays. In Limma, several 

options are available for between array normalization, i.e. "scale", "quantile", "Aquantile", 

"Gquantile", "Rquantile", "Tquantile" or "vsn". The choice of between array normalization 

methods depends on the biological assumptions made for the experiment. For example, 

“quantile” is a good option when comparing two groups of samples from the same tissue 

treated differently and no large proportion of genes is expected to be differentially expressed 

between the two conditions. When using a common reference design scheme, “Rquantile” or 

“Gquantile” are good options depending on how the reference sample is labeled. In this 

thesis, we employed the common reference design for our array experimental design, and 

the reference samples were always labeled with Cy5 (Red), so “Rquantile” was employed as 

between array normalization method for this thesis. Since the reference sample is identical 

for different individual arrays, forcing the identical data distribution of the reference sample 

(red) across all arrays will enable us to compare different arrays within each experiment 

(Figure 3).  

    Jaffrezic et al. [3] concluded that the normalization process is important for dealing with 

replicated experiments. It relies on prior assumptions which, if they are violated, lead to 

incorrect results. The Loess function is often a safe choice for the normalization even if it can 
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become unstable at the left end of the data on a MA plot, i.e. those genes with very low 

expression in both channels. At last the visual inspection is necessary by visualizing data 

using different plots before and after each normalization step. 

Last but not least, normalization allows us to compare data from one array to another, 

normalization is used to remove signals that might obscure biological information. However, 

the process of normalization is likely to remove some of the biological information as well. 

Therefore, choosing the optimal normalization methods based on specific microarray data is 

essential for a successful interpretation of microarray data. 

 

 

Figure 3.  Density plots of multiple arrays before normalization, and after normalization (print-

tip loess + Rquantile).  

 

2.3.2 Identification of differentially expressed ge nes 

    Traditionally, differentially expressed genes are inferred by a fixed threshold cut off method 

(for example a two fold increase or decrease). However this is statistically inefficient, the 

main reason being that there are numerous systematic and biological variations that occur 

during a microarray experiment. Although some of the systematic variations such as dye bias 

can be effectively removed by normalization, random biological variations and physiological 

variations are more difficult to handle. Because of these underlying variations, merely using a 

fixed threshold to infer significance might increase the proportion of false positives or false 

negatives. A better framework of significance inference includes calculation of a statistic 

based on replicate array data from ranking genes according to their possibilities of differential 

expression and selection of a cut-off value from rejecting the null-hypothesis that the gene is 

not differentially expressed. Setting a cut-off for differential expression is difficult because one 

has to balance the false positives and false negatives. Furthermore, performing statistical 

tests for tens of thousands of genes creates a multiple hypothesis-testing problem. So a p-

value of 0.05 is likely to exaggerate false positives. As it is often acceptable to have a few 
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false positives if the majority of true positives are chosen, it might be therefore more practical 

to control the false discovery rate (FDR) which is the expected proportion of false positives 

among the number of rejected hypotheses.  

    During The EADGENE Microarray Data Analysis Workshop [1], several different methods 

were also applied to the array data after normalization [3, 4]. Jaffrezic et al. [3] discussed 

issues about identifying differentially expressed genes and multiple testing problems. They 

showed that, for the identification of the differentially expressed genes, the method 

implemented in the Bioconductor package Limma was prefered. This method allows complex 

designs and provides robust t- and F-statistics for differential gene expression by 

usingempirical Bayes methods (eBayes) for shrinking the residual variances of genes 

towards their approximate median value. This approach is based on an inverse chi-square 

prior on the variances [19]. Regarding the correction for multiple tests, the classical 

Benjamini and Hochberg [20] correction at a 5% False Discovery Rate (FDR) was used as 

common threshold. Furthermore, Sorensen et al. [4] discussed some post-normalization 

methods, such as hierarchical clustering (HC), principal component analysis (PCA) for class 

discovery in the samples and identifying co-expressed genes across different conditions.  

2.3.3 From gene lists to biological interpretation 

    Once genes have been identified that were differentially regulated under certain conditions, 

or when a cluster of genes has been identified showing interesting expression patterns 

across a set of conditions, the next phase is to identify the biological processes responsible 

for these changes. Currently, Gene Ontology [21] and KEGG [22] pathways are two popular 

choices for gene functional annotation to help to uncover the biological processes involved. 

The Post-Analysis Workshop [2] organized by EADGENE and SABRE (Cutting Edge 

Genomics for Sustainable Animal Breeding) in November 2008, focused on the post analysis 

of microarray data and the usage of these two resources [7]. The participating groups were 

provided with identical lists of microarray probes, including test statistics for three different 

contrasts, and the normalized log-ratios for each array, to be used as the starting point for 

interpreting the affected probes. The tools used by the different groups were: Ingenuity 

Pathway Analysis, MAPPFinder, Limma, GOstats, GOEAST, GOTM, Globaltest, TopGO, 

ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the different 

approaches was to utilize the relation between probes/genes and their gene ontology and 

pathways to interpret the affected probes/genes. The main results from these analyses 

showed that the biological interpretation is highly dependent on the statistical method used 

but that some common biological conclusions can be reached even with very different 

analysis tools. In chapter 3, a more detailed analysis of interpreting gene list of interest to 
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biology using R packages, biomaRt [23], AnnotationDbi [24] and GOstats [25], is described.  

2.4 Re-annotation of the chicken 20K microarray pro be set  

    The microarray platform used in the experiments described in chapters 3-6 of this thesis is 

the ARK-Genomics Chicken 20 K array [26] consisting of 20.460 unique probes ranging in 

length from 60 to 75 nucleotides with the majority of the probes being 70 nucleotides long. 

The array was designed based on chicken genome assembly WASHUC1 (December 2004) 

including the following information: 1) INSDC (DDBJ/EMBL/GenBank) ESTs/cDNAs including 

the UMIST ChESTs, 2) Ensembl 30 with gene models based on various sources ranging 

from highly reliable chicken UniProtKB/Swiss-Prot proteins to relatively unreliable ab initio in 

silico gene predictions, 3) miRBase micro RNAs.  Although, the release of the chicken 

genome sequence in 2004 [27] has been a landmark for chicken biology, it still is a draft 

genome sequence leaving much room for further improvement on assembly quality, 

sequence coverage, and gene discovery. The biological functions of many chicken genes are 

not known, and the lack of a well-annotated chicken genome did limit the possibilities to fully 

explore the tools which were being used to uncover biological processes within lists of 

interesting genes obtained from microarray experiments.  

    High throughput gene expression studies using oligonucleotide microarrays depend on the 

specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific 

probes can only be designed when a reference genome of the species at hand is completely 

sequenced, when this genome is completely annotated and when the genetic variation of the 

sampled individuals is completely known. Unfortunately there is not a single species for 

which such a complete data set is available. Therefore, it is important that probe annotation 

is updated frequently for an optimal interpretation of microarray experiments. Neerincx et al. 

[5] presented their work on oligo reannotation using OligoRAP, a pipleline to automatically 

update the annotation of oligo libraries and estimate oligo target specificity. OligoRAP uses a 

reference genome assembly with Ensembl and Entrez Gene annotation supplemented with a 

set of unmapped transcripts derived from RefSeq and UniGene to handle assembly gaps. 

OligoRAP produces alignments of each oligo with the reference assembly as well as with 

unmapped transcripts. These alignments are remapped to the annotation sources, which 

results in a concise, as complete as possible and up-to-date annotation of the oligo library.  

Neerincx et al [5] found dramatic differences in the updated annotation and target specificity 

for the ARK-Genomics 20 K chicken array as compared to the original data, emphasizing the 

need for regular updates of the probes as well as the annotation of this array platform.  In 

addition to the reannotation platform descibed above, Neerincx et al. [28] made a comparison 

among three different oligo re-annotation pipelines (IMAD [28], OligoRAP, and sigReannot 
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[29])  and  showed that the differences in updated annotation are mainly due to different 

thresholds for hybridisation potential filtering of oligo versus target-gene alignments and 

different policies for expanding annotation using indirect links. Furthermore, the effect of 

differences in the updated annotation on the functional analysis (GO/KEGG enrichment 

analysis) was analyzed and the differences in the updated annotation packages had a large 

effect on GO term enrichment analyses. It was proposed that annotation tools should provide 

metadata describing the relationships between oligos and the annotation assigned to them. 

These relationships can then be used to judge the varying degrees of reliability allowing 

users to fine-tune the balance between reliability and coverage. This is important as it can 

have a large effect on functional microarray analyses as exemplified by the lack of 

consensus on almost one third of the terms found with GO term enrichment analysis based 

on updated IMAD, OligoRAP or sigReannot annotation. It was further concluded that a 

consensus threshold for probe updating is needed for different re-annotating pipelines to 

reach more consensus results in functional analyses. 

    In summary , the array normalization procedure at different steps described above 

(highlighted with underscore) was used in the data analysis described in the following 

chapters of this thesis.  The updated probe function annotation used in the following analysis 

was derived from oligoRAP re-annotation pipeline as described by Neerincx et al. [5]. The 

functional analysis of microarray data introduced in this chapter is further described in detail 

in Chapter 3. 
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Abstract 

Background 

Eimeria are obligate intracellular protozoan parasites which can affect chickens and 
continuous exposure to Eimeria can result in protective immunity. The process leading to 
protective immunity was investigated by studying the host reactions after homologous or 
heterologous secondary infections using microarrays. The array data was used in the 
EADGENE and SABRE post-analyses workshop, and this paper describes the results of a 
Gene Ontology (GO) term enrichment analysis of chicken microarray data using the 
Bioconductor packages. By checking the enriched GO terms of differentially expressed (DE) 
genes from the microarray data, this analysis aimed to investigate the host reactions in 
chickens occurring shortly after a secondary challenge with either a homologous or 
heterologous species of Eimeria. The results of GO enrichment analysis using GO terms 
annotated to chicken genes and GO terms annotated to chicken-human orthologous genes 
were also compared. Furthermore, a locally adaptive statistical procedure (LAP) was 
performed to test differentially expressed chromosomal regions, rather than individual genes, 
in the chicken genome after Eimeria challenge. 

Results 

GO enrichment analysis identified significant (raw p-value < 0.05) GO terms for all three 
contrasts included in the analysis. Some of the GO terms linked to, generally, primary or 
secondary immune responses indicating the GO enrichment analysis is a useful approach to 
analyze microarray data. The comparisons of GO enrichment results using chicken gene  
information and chicken-human orthologous gene information showed more refined GO 
terms related to immune responses when using chicken-human orthologous gene 
information, this suggests that using chicken-human orthologous gene information has higher 
power to detect significant GO terms with more refined functionality. Furthermore, three 
chromosomal regions were identified to be significantly up-regulated in the contrast MM8-
PM8 (q- value < 0.01).  

Conclusion 

Overall, this paper describes a practical approach to analyze microarray data in farm 
animals where the genome information is still incomplete. For farm animals, such as chicken, 
with currently limited gene annotation, borrowing gene annotation information from 
orthologous genes in well-annotated species, such as human, will help improve the pathway 
analysis results substantially.  Furthermore, LAP analysis approach is a relatively new and 
very useful way to be applied in microarray analysis. 
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Background 

    Eimeria are obligate intracellular protozoan parasites which can affect chickens and 

continuous exposure to Eimeria can result in protective immunity. The process leading to 

protective immunity was investigated by studying the host reactions after homologous or 

heterologous secondary infections. A total of 125 one-day-old Ross 308 male broilers were 

randomly divided in five groups of 25 broilers each. At 7 days of age, three groups were 

inoculated with phosphate buffered saline (P) and two groups were inoculated with E. 

maxima (M). A secondary challenge followed at day 21 of age. This challenge was with PBS 

(P), E. maxima (M) or with E. acervulina (A), forming five challenge groups PP, PM, PA, MM 

and MA. Five chickens from each group were killed at 8 and 24 hours after the second 

challenge and specific regulations of gene expression profiles in the jejunum were monitored 

using chicken whole genome oligonucleotide microarrays (ARK-Genomics Gallus gallus 20 K 

v1.0). The obtained microarray data was normalised and analysed and lists of affected genes 

were obtained for different contrasts. The result of the contrasts MM8-PM8, MM8-MA8 and 

MM8-MM24 were provided for this workshop as three lists including all microarray probes 

and test statistics for the three different contrasts. The number of affected probes for each 

contrast is shown in Table 1.  

 

Table 1.  The contrasts used in the workshop. The number of significantly (FDR <= 0.05) DE 

genes for the three different contrasts used in the workshop. 

Contrast: MM8.PM8 MM8.MA8 MM8.MM24 
Repressed 803 58 639 

Induced 923 23 152 
 

    The normalised log-ratios for each array were furthermore used in the workshop. The 

contrasts address different biological questions: differences between secondary and primary 

challenge (MM8-PM8), differences between homologous and heterologous challenge (MM8-

MA8) and differences between two time points of a homologous challenge (MM8-MM24). The 

microarray data is available at the ArrayExpress database [1] under accession number E-

MEXP-1972 and the three gene lists can be downloaded from supplementary material of 

Hedegaard et al. [2] 

    This paper is part of the The EADGENE and SABRE post-analyses workshop [3]. In this 

analysis, we focus our analysis on the gene lists from three contrasts: MM8-PM8, MM8-MA8 

and MM8-MM24. Each contrast has both up- and down-regulated significant gene lists, in 

total six gene lists were used for Gene Ontology [4] term enrichment analysis.  
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The analysis in this paper was carried out using a number of different Bioconductor [5] 

packages (release version: BioC 2.3); GOstats [6], AnnotationDbi [7], and biomaRt [8]. 

Package Gostats uses hypergeometic test to identify significantly enriched GO terms in gene 

lists of interest.  

    Package GOstats also provides conditional hypergeometric test which uses the 

relationship among GO terms to decorrelate the results. Package AnnotationDbi Provides an 

interface and database connection code for annotation data packages using SQLite data 

storage, the annotation data packages were needed for GOstats package. Package biomaRt 

provides an R interface to BioMart databases [9]. 

    To investigate the effects of different sources of microarray probe annotation on GO term 

enrichment analysis, two analyses were carried out: one used chicken gene information and 

the other one used chicken-human orthologous gene information. 

    Furthermore, a locally adaptive statistical procedure (LAP) [10] was performed to test 

differentially expressed chromosomal regions, rather than individual genes, in the chicken 

genome after Eimeria challenge. LAP is a non-parametric model-free statistical method for 

the identification of differentially expressed chromosomal regions, which accounts for 

variations in gene distance and density. The method is based on the computation of a 

standard statistic (e.g. SAM t-statistic) as a measure of the difference in gene expression 

patterns between groups of samples. The LAP analysis approach is a relatively new and 

interesting way of analyzing microarray data.  

Methods 

Chicken 20k oligo array annotation 

    An updated chicken 20k oligo-array annotation based on Ensembl [11] release 50 was 

downloaded from EADGENE Oligo Set Annotation Files homepage [12]. Human orthologous 

genes, if identified, were mapped to the corresponding chicken oligo probes present on the 

chicken array. The human Ensembl gene IDs were then used to extract human Entrez gene 

IDs via the Bioconductor package biomaRt by querying to the Ensembl genome database. 

The resulting human Entrez gene IDs were subsequently used to build a customized chicken 

array annotation R package using AnnotationDbi. 

GO enrichment analysis  

    A GO term enrichment analysis was carried out using package GOstats and a conditional 

hypergeometric test algorithm provided within GOstats package was applied to each gene list.  

The conditional hypergeometric test will identify a GO term as significant if there is evidence 

beyond that provided by its significant children. The threshold for significance of the 
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hypergeometric test was raw p-values < 0.05. Only GO terms in the category Biological 

Process (GO_BP) were used in this analysis. Those GO terms were excluded from the result 

list when Count equal to 1 Or Size equal to 1, i.e. only 1 gene in the DE gene list links to this 

specific GO term or only 1 gene on the whole array links to this specific GO term.  

Differentially expressed chromosomal regions 

    Differentially expressed chromosomal regions were identified using locally adaptive 

procedure (LAP). LAP analysis was performed in R [13] and the threshold used in this 

analysis is q-values < 0.01, where q-value is the false discovery rate calculated from p-values 

between two group comparisons, i.e. p-values derived from each contrast.  

 

Results and discussion 

GO term enrichment analysis 

All the GO enrichment analysis results are available in the Additional file 1 and Additional 

file 2. Here we will focus only on the selected GO terms related to immune response (see 

Additional file 1) to explain the three contrasts, MM8-PM8, MM8-MA8, and MM8-MM24. 

 

 

(1) MM8-PM8 contrast 

    Genes that are up-regulated in the MM8-PM8 contrast show an enrichment of GO terms 

like, “immune response-activating cell surface receptor signalling pathway”, “proteolysis 

involved in cellular protein catabolic process” and “focal adhesion formation”. These terms all 

indicate that the chickens show primary immune responses at 8 hours after PM challenge.  

    Genes that are down-regulated in the MM8-PM8 contrast show an enrichment of GO 

terms like, “regulation of B cell differentiation”, “regulation of T cell activation”, “T cell 

selection” and “regulation of interferon-gamma biosynthetic process”, terms indicative for a 

secondary immune response at 8 hours after homologous MM challenge. 

These results clearly show the induction of different immune responses (primary vs. 

secondary) in chicken that encountered an Eimeria infection for the first time and chicken that 

had gone through an Eimeria infection at an earlier time in their life.   

 

(2) MM8-MA8 contrast 

    No major differences on immune response related GO terms were identified in the MM8-

MA8 contrast.  These results show that heterologous challenge with MA triggers a very 
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similar immune response as MM. Interestingly, the genes up-regulated in the MM8-MA8 

contrast show an enrichment of GO term like “cell death” and “apoptosis”, suggesting that the 

heterologous challenge caused more severe lesions in the chickens as compared to a 

homologous challenge. 

    No evidence is seen that MM8 and MA8 trigger different immune responses in chicken, 

although the enriched GO terms indicate a more severe pathogenesis in case of 

heterologous challenge. 

 

(3) MM8-MM24 contrast 

    As described in the MM8-PM8 contrast result, the homologous challenge already triggered 

a secondary immune response at 8 hours. No significant GO terms related to secondary 

immune response were found in MM8-MM24 contrast. The up-regulated genes in MM8-

MM24 have enriched GO terms like “positive regulation of NF-kappaB transcription factor 

activity”, and the down-regulated genes in MM8-MM24 have enriched GO terms like, “T cell 

receptor signalling pathway” and “interleukin-2 production”. NF-kappaB is a key regulator of 

several important immune-related pathways and this suggests that immune response 

activators were already highly up-regulated at 8 hours compared to 24 hours and that a 

secondary immune responses kept on increasing from 8 hours to 24 hours after homologous 

challenge with MM. 

 

Multiple testing problems 

    We have applied “BH” FDR control method for correction for multiple testing using R 

package multtest [14] and found only a few significant GO terms after correction (data not 

shown). In this analysis we used threshold of raw p-value < 0.05, the major reasons of not 

using the FDR control methods are (a) the structure of the GO graph is in conflict with the 

assumption of independence for the test and (b) multiple testing correction methods do not 

change the overall ranks of the results, using raw p-value at cut-off would still identify the 

relative important GO terms in the results. 

 

Annotation Sources comparison 

    In this section, GO enrichment analysis results using chicken gene annotation and 

chicken-human orthologous gene annotation are compared. All the GO term enrichment 

analysis results of this comparison are available in the Additional file 2 and Additional file 3. 

The overlap of the results of the GO term enrichment analysis using the chicken gene 
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information and using the chicken-human orthologous gene information is shown in Figure 1.  

The overlap of the significant GO terms identified by both annotation sources is limited.  

Enriched GO terms using chicken genes and using chicken-human orthologous genes, as 

described above, gave a reasonably good insight of the underlying biological processes in 

this experiment. The enriched GO terms based on the chicken annotation directly didn’t 

reveal much detail in the ongoing processes after either homologous challenge or 

heterologous challenge (see Additional file 2). The enriched GO term using the chicken-

human orthologous gene information had a higher power to detect significant GO terms (see 

Additional file 3), which can be explained by the higher coverage of annotation (GO terms) 

using this approach. 

    Performing the GO enrichment analysis using chicken-human orthologous genes, on one 

hand, extensively increased the coverage of the gene annotation of this chicken oligo array 

platform. Consequently, this increases the power of the hypergeometric test by having more 

annotated genes in the DE gene lists. On the other hand, care has to be taken by using this 

approach, as human and chicken are evolutionarily far apart. Therefore, some of the chicken-

specific immune response processes may not be identified using this approach. Nevertheless, 

this approach helps researchers working with farm animals, e.g. chicken, to increase the 

biological insight from their microarray data by using human orthologous gene information. 
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Figure 1.  Comparison of GO term enrichment analysis results: overlap of significantly 

enriched GO terms (raw p-value < 0.05) between the uses of chicken gene information 

versus chicken-human orthologous gene information.  

 

Differentially expressed chromosomal regions 

    Instead of testing enrichment of GO terms, chromosomal locations could be used as 

“annotation” to test whether certain chromosomal locations are more actively expressed than 

other regions.  In this analysis, the differentially expressed chromosomal locations were 

identified using locally adaptive procedure (LAP). In total, three significant regions were up-

regulated and one region was down-regulated comparing PM and MM infections (see details 

of those regions in Figure 2 and Additional file 4). No significant regions were identified in 

other contrasts. The identified differentially expressed chromosomal regions indicate that 

some of the co-localized genes are co-regulated during homologous challenge by MM, this 

region-wide gene expression regulation mechanism was reported in several other species 

[15, 16]. 
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Figure 2.  Differentially expressed chromosomal regions for contrast MM8-PM8. This figure 

showed the differentially expressed chromosomal regions for MM8.PM8 contrast (q-value < 

0.01). In total three regions were up-regulated and one region was down-regulated. Red 

showed the up-regulated chromosomal regions, and Green showed the down-regulated 

regions. 

Conclusion 

    The GO term enrichment analysis provided a good insight in the biological processes 

involved in the Eimeria infection experiments.  The GO enrichment analysis using several 

bioconductor packages described in this paper provides a practical, yet powerful, way of 

analyzing microarray data. Furthermore, the results suggest that using chicken-human 

orthologous gene information provides better insight in the biological processes underlying 

this specific microarray experiment than by using the annotation of chicken genes alone. This 

approach will be a helpful general method for researchers working with microarray data in 

species with less well annotated-genomes, like those of farm animals.  

Furthermore, LAP analysis approach is a relatively new and very useful way to be applied in 

microarray analysis to identify differentially expressed chromosomal regions under specific 

experimental conditions. 
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Additional files 

Additional file 1  -  GO enrichment analysis results with selected immune related GO terms 

This table shows GO enrichment results with selected GO_BP terms. (For contrasts 

MM8.PM8 and MM8.MM24 results, only immune-related GO_BP terms which have at least 

two genes linked to each one of them were included). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712752/bin/1753-6561-3-S4-S9-S1.xls  

 

Additional file 2  - GO term enrichment results (raw p-value <0.05) using chicken genes 

This table shows the GO enrichment analysis results using chicken gene information. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712752/bin/1753-6561-3-S4-S9-S2.xls 

 

Additional file 3  - GO term enrichment results (raw p-value < 0.05) using chicken-human 

orthologous genes 

This table shows the GO term enrichment analysis results using chicken-human orthologous 

genes information. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712752/bin/1753-6561-3-S4-S9-S3.xls  

 

Additional file 4  - Differentially expressed chromosomal regions for MM8-PM8 contrast 

This table shows the chromosomal locations of three up-regulated chromosomal regions and 

one down-regulated chromosomal region for MM8-PM8 contrast. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712752/bin/1753-6561-3-S4-S9-S4.xls  
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Abstract 

Background 

    The chicken is an important agricultural and avian-model species. Chicken genes are 

largely annotated based on sequence conservation without further functional evidence. A 

survey of gene expression in a range of different tissues under normal physiological 

conditions will support functionality for these genes.  

Results 

    We carried out a gene expression survey in eight major chicken tissues using whole 

genome microarrays. A global picture of gene expression is presented for the eight tissues 

and tissue specific as well as common gene expression was identified. A Gene Ontology (GO) 

term enrichment analysis shows that tissue-specific genes are enriched with GO terms 

reflecting the physiological functions of the specific tissue and housekeeping genes are 

enriched with GO terms related to essential biological functions. Comparisons of genomic 

features between tissue-specific genes and housekeeping genes show that housekeeping 

genes are more compact. Furthermore, comparisons of gene expression in a panel of five 

common tissues between chicken, mouse and frog showed that the expression patterns 

across tissues are conserved for orthologous genes compared to random gene pairs within 

each pair-wise comparison.  

Conclusions 

Using whole genome microarrays to survey gene expression across eight normal chicken 

tissues, we observed tissue-specific patterns of expression for many genes. Commonly 

expressed genes were more compact, suggesting selection pressure on expression economy. 

A comparative analysis of gene expression among mouse, chicken, and frog showed 

evolutionary conservation of the expression patterns of orthologous genes. 
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Background 

    The chicken is an important model species for evolutionary and developmental biology, 

immunology, genetics, as well as for agricultural science. The completion of a draft sequence 

of the chicken genome [1] represented a landmark in avian genomics and has opened new 

possibilities to understand gene function and its relationship to physiology. Often gene 

functions of chicken genes were annotated based on sequence conservation without further 

functional evidence. A survey of gene expression in a range of different tissues under normal 

physiological conditions, therefore, would provide additional support for the potential function 

of many of the chicken genes.  

    Several studies, using chicken as a model, have compared gene expression differences 

under different infection treatments using microarrays [2-6]. Most of these studies surveyed 

gene expression in a single tissue (mostly immune related) and identified genes differentially 

expressed between two or more conditions (control vs. treatments) in the tissue of interest. 

However, the identified marker genes for diagnosis and molecular targets for vaccines will 

depend on knowledge not only of the genes expressed in the diseased tissues of interest, but 

also on detailed information about the expression of the corresponding genes across different 

normal tissues. In chicken, the global expression pattern of the genes under normal 

physiological conditions across a range of tissues and developmental stages needs to be 

surveyed to provide a global picture of the chicken transcriptome. This information would also 

provide a baseline for future expression studies on diseases and other traits in chickens. 

Meanwhile, the global distribution of gene expression among several tissues would help us to 

identify genes with housekeeping functions and genes with tissue-specific functions. In 

humans housekeeping genes were found to have relatively shorter introns, untranslated 

regions and coding sequences, suggesting a selection for compactness of genes that show a 

wide tissue distribution of expression [7, 8]. We wanted to establish this observation in 

chicken, and study the mechanism underneath this observation in chicken. Furthermore, 

clustering of highly expressed genes within specific chromosomal regions has been reported 

in human [9], mouse [10], chicken (chapter 6 of this thesis), and fruit fly [11]. These regions 

were termed “RIDGEs” (Regions of Increased Gene Expression). RIDGEs were reported to 

be associated with higher expression, higher gene density, shorter gene introns, shorter 

genes, and some other genomic features in chicken (chapter 6 of this thesis). Shorter introns 

were also reported for highly expressed genes in the human genome [12], and the authors 

hypothesized that transcription efficiency is enhanced when intron length is shorter. In the 

current study we present the analysis of the relationship between chromosomal locations and 

widely expressed genes in chicken. 



Chapter 4 

56 
 

    Evolutionary changes in gene expression account for most phenotypic differences 

between different species. Studies on conservation of global gene expression patterns 

between human and apes [13], human and mouse [14] and different other vertebrate species 

[15] have been reported previously. The results of these studies suggested that the gene 

expressions within mammals and even within vertebrates are globally conserved. Therefore, 

it is interesting to compare gene expression in birds with gene expression in mammals and 

amphibians, which are the two distant neighboring species of birds. Using this comparative 

approach, we tested whether the conservation of gene expression is correlated with species 

divergence time. Mouse and frog were chosen to represent mammals and amphibians in this 

comparison. 

In this study, we used the ARK-Genomics G. gallus 20K oligonucleotide microarray (GEO 

[16] platform accession: GPL8861) representing most known and predicted chicken genes to 

investigate global gene expression patterns among 40 tissue samples representing eight 

adult tissues (brain, bursa of Fabricius, kidney, liver, lung, small intestine, spleen, and thymus) 

in chicken (5 biological replicates per tissue type). To summarize, the objectives of this study 

are to address the following questions: 1) Can we add information to non-annotated 

sequences, 2) what is the distribution of gene expression in chicken? 3) Do genes with 

distinct breadth of expression (number of tissues where a gene is expressed) show a 

correlation with certain genomic characteristics in chicken? 4) Are the expression patterns of 

orthologous genes conserved between species? 

 

Results 

Gene expression distribution in different chicken t issues 

    Normalized intensities were used as gene expression levels and genes were defined as 

being expressed only when their expression was higher than 99% quantile value of the 

expression of all negative control spots across all the arrays in this study (Figure 1a) as 

described by Zhang et al. [17]. The probe annotations were updated by mapping the probe 

sequences to the current chicken genome assembly (WASHUC 2, May 2006) using the 

approach as described by Neerincx et al. [18]. In total, 14,900 probes out of the 20460 

probes were mapped uniquely to the chicken assembly, representing 8,908 unique genes 

(8,792 Ensembl genes [19] and 116 Entrez genes [20]).  
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Figure 1.  (a). Accumulative plots of arcsihn transformed intensity of genes and negative 

controls on all the arrays, the red line in Figure 1a indicates all the gene probes on the array 

and the blue line indicates all the negative control spots across all the arrays. (b). Number of 

genes expressed in eight chicken tissues (c) Distribution of number of tissues in which genes 

are expressed (for example, 1 represents the tissue-specific genes, i.e. genes only 

expressed in one individual tissues, 2 represents that genes are expressed in two tissues out 

of the eight, and so on.) 

 

The expression data for these genes is available in Additional data file 1. Overall, 57% of the 

genes are expressed in at least one of the eight tissues (5,086 out of total 8,908 genes 

represented on the array platform (see materials and methods)). The number of genes 

expressed in each of the eight individual tissues was similar (Figure 1b) with on average, 

about 40% of the genes being expressed in each individual tissue type. The distribution of 

gene expression (number of tissues where a gene is expressed) is shown in Figure 1c. In 

total, 723 genes showed a single-tissue-specific pattern of expression, whereas 2,476 genes 

were found to be expressed in all eight tissues (Additional data file 2). In this study, we refer 

to these 723 genes expressed only in one individual tissue as “tissue-specific genes”, and to 

the 2,476 genes expressed in all eight tissues as “housekeeping genes”. The expression 

levels of housekeeping genes across eight tissues were higher compared to tissue-specific 

genes (Figure 2). 
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A Gene Ontology (GO) [21] terms enrichment analysis was performed using GOstats [22] on 

tissue-specific genes in each tissue type and on the housekeeping genes. The significant (p 

value < 0.01) GO terms for Biological Process (BP) of the tissue-specific genes are shown in 

Additional data file 3. The GO terms enriched for each tissue-specific gene list nicely 

correlates with the physiological function of the individual organs. For example, brain specific 

genes have enriched GO terms like “neurogenesis”, “nervous system development”, 

“neurotransmitter secretion”, and “learning” while liver specific genes have enriched GO 

terms like “blood coagulation”, “response to wounding” and “positive regulation of 

angiogenesis”, functions one typically might expect from brain and liver tissues, respectively. 

 

Figure 2.  Density plot of expression levels for tissue-specific genes (blue line) and 

housekeeping genes (red line) across 8 chicken tissues. 

 

    The significant (p value<0.01) GO terms (BP) of housekeeping genes indicate that these 

widely expressed genes are mainly involved in a number of essential biological processes for 

maintaining a cell (Additional data file 4).  GO terms like “translation”, “protein folding”, 

“protein localization”, “rRNA processing” and “regulation of gene expression” indicate that 

most of these housekeeping genes are involved in regulation of transcription and translation. 

Expression distribution of un-annotated probes 

    In the above analysis, we only included the probes on the microarray platform which were 

mapped to Ensembl gene IDs or Entrez gene IDs. There are 5,357 probes, that have a single 

perfect hit in the current chicken genome assembly but that still lack any annotation even 

after applying the re-annotation methodology described by Neerincx et al. [18]. About 47.7% 

(2,556 out of 5,357 probes) of these none-gene probes were expressed in at least one tissue 

out of the 8 tissues (additional data file 5) with 435 probes being expressed in only one tissue 

(Additional data file 6), and 1,189 probes being expressed in all 8 tissues (Additional data file 
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7) . The expression distribution among the eight chicken tissues of these 2,556 expressed 

un-annotated probes is very similar to the 5,086 expressed annotated genes (Additional data 

file 8).  

    Several of the brain specific probes were partly mapped to the last exons of the genes or 

to the regions directly downstream of the last exon of an annotated gene (see several 

examples in Additional data file 9).  In total, 165 probes were identified to be specifically 

expressed in brain tissues (Additional data file 9), about 65% of these probes were mapped 

to cDNA clones/ESTs derived from chicken brain tissues, heads of embryos, and whole 

embryos of chicken. Probes RIGG12111, RIGG13067, and RIGG11000 from these 165 brain-

specific probes show three different typical situations of mapping of these 165 brain-specific 

probes (Additional data file 10), where probes are either having hits which are partly overlap 

with exons of known genes or are having hits in genomic regions where no annotation was 

present previously. For example, probe RIGG10235 (Additional data file 11) was partly 

mapped to the last exon of Ensembl gene ENSGALG00000000918 (CCDC103), the 1-to-1 

human ortholog of CCDC103 known to be expressed in brain tissues. Likewise, probe 

RIGG16362 (Additional data file 12) was mapped to the region downstream of the last exon 

of ENSGALG00000011560, whose 1-to-1 human orthologous gene (PACRG) was reported to 

be a component of the ependymal cilia that may play an important role in motile cilia 

development and/or function in the central nervous system (CNS) [23]. 

Housekeeping genes are compact compared to tissue-s pecific genes 

Besides the distinct functions of housekeeping genes compared to tissue-specific genes, 

we also examined the genomic features, e.g. gene length, coding sequence length, average 

exon length, average intron length, and intergenic region length, of both the 2,476 

housekeeping genes and the 723 tissue-specific genes. Significant differences of gene length 

(p value=1.4 x 10-13, Wilcoxon Rank Sum Test), coding sequence length (p value=3.1 x 10-

13), average intron length (p value=3.7 x 10-13), and intergenic region length (p value=5.8 x 

10-9) were found between housekeeping and tissue-specific genes (Figure 3), whereas no 

differences are observed for the average exon length (p value=0.96) of these two groups of 

genes. These results suggest that in chicken housekeeping genes are relatively more 

compact than tissue-specific genes.  
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Figure 3.  Box plot of gene lengths for tissue-specific genes and housekeeping genes 

identified based on gene expression in eight chicken tissues. 

Chicken housekeeping genes are significantly more l ocated in RIDGEs 

A chicken transcriptome map is described previously [24],and regions with clusters of the 

most highly expressed genes, covering about 10% of the chicken genome, so called 

“RIDGEs”, are identified. We checked the genomic locations of all 2,476 housekeeping genes 

in this study and found that about 31% (741 genes) of the housekeeping genes are located 

within RIDGEs in the chicken genome. To test the significance of the favorable distribution of 

housekeeping genes within RIDGEs, we performed a random permutation analysis by 

sampling 2,476 random genes for 1000 times from all 8,908 genes included in this analysis 

and computed the percentages of random genes being located within RIDGEs. Compared to 

housekeeping genes, randomly selected genes are much less often located in RIDGEs 

(13±0.6%, mean±sd). Therefore, the genomic locations of house-keeping genes show a 

higher overlap with RIDGEs across the chicken genome. 
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Figure 4.  Distribution of gene expression correlation coefficients of orthologous gene pairs 

and random gene pairs in pair-wise comparisons among mouse, chicken, and frog. 

 

Expression of orthologous genes is conserved in ver tebrates 

Conservation of gene expression was compared by checking the 3,892 1:1:1 orthologous 

genes in mouse, chicken and frog. Pair-wise comparisons were performed among the three 

species and significant conservation of gene expression was found when comparing 

orthologous gene pairs to random gene pairs within each pair-wise comparison (Figure 4). 

When, within each comparison, the correlation between the gene expressions of an 

orthologous gene pair was higher than 95% quantile of random gene pairs (as background), 

we labeled the orthologous gene pair as having a conserved expression pattern. In total, 

11.3% (439 genes out of 3,892 genes) chicken-mouse orthologous genes, 10.9% (425 genes) 

chicken-frog orthologous genes, and 5.01% (195 genes) mouse-frog orthologous genes 

show a conserved gene expression profile within each pair-wise comparison. 
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Figure 5.  Heat map of correlation coefficients (Spearman) between five common tissues (m: 

mouse, c: chicken, and f: frog) in three different species. 

Homologous tissues are more similar in vertebrates in terms of expression 

Besides testing conservation of gene expression of orthologous genes between species, 

we also tested whether homologous tissues (for example, brain tissues in mouse, chicken, 

and frog) are more similar to each other compared to non-homologous tissues. After 

transforming gene expression intensities to relative expression ratios (RA) across the same 

panel of tissues, a comparison between global gene expression profiles among tissues in 

different species was possible. The rank correlation coefficient among different tissues 

showed that homologous tissues in three different species are more similar compared to non-

homologous tissues (Figure 5); especially brain tissues are highly correlated within the three 

species indicating evolutionary constraints are posed on brain gene expression profiles. In 

contrast, kidney showed a relatively low conservation.  
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Discussion 

Gene expression distribution in various chicken tis sues 

    The main objective of this study was to survey gene expression profiles across a set of 

eight normal chicken tissues. We present a microarray expression dataset surveying about 

8,792 chicken Ensembl genes across 8 different chicken tissue types in 5-fold (brain, bursa 

of Fabricius, kidney, liver, lung, small intestine, spleen, and thymus). For most genes the 

distribution of expression is observed across several different tissues (Figure 1c). For 723 

genes, a single-tissue-specific pattern is seen, while 2,476 genes were found to be 

expressed in all eight tissues. The genes with expression across the eight tissues indicate 

their universal biological function in cells and therefore can be considered as genes with 

“housekeeping functions”, although a proper definition of such genes would require a 

comprehensive sampling of tissues for the whole organism. The GO term enrichment 

analysis of housekeeping genes show the enriched biological processes GO terms like 

“translation”, “protein folding”, “protein localization”, “rRNA processing” and “regulation of 

gene expression”  (Additional data file 4). This confirmed that our definition of “housekeeping 

gene” was vald.  

Potential shortcomings of the current gene models i n the chicken genome 

    The wide distribution of expression for the un-annotated 2,556 probes among the eight 

tissues implies that many genes/transcripts in the chicken genome are not well annotated in 

this genome assembly. These 2,556 probes can be used as expressed evidence for potential 

gene/transcript prediction in the genomic regions where they were uniquely mapped in the 

chicken genome. The 65% identified brain-specific probes were designed based on cDNA 

clones/ESTs derived from chicken brain tissues, heads of embryos, and whole embryos of 

chicken, suggesting that there are still many transcribed regions in the chicken genome that 

have not yet been annotated in the current gene models. Two examples of probe RIGG10235 

and RIGG16362 suggest that the current prediction of 3’ UTR of chicken genes is more 

difficult, i.e. the 3’ UTR of chicken genes are not very accurately predicted in the current 

assembly, and all the other expressed probes not mapped to known genes imply that the 

chicken genome contains a large number of still un-annotated transcribed regions.  

Housekeeping genes are compact compared to tissue-s pecific genes 

    The on average smaller size observed for the housekeeping genes is due to both a shorter 

coding sequence as well as a shorter intron length. Furthermore, the smaller size of the 
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intergenic region also contributes to a higher gene density of the areas containing the 

housekeeping genes, suggesting a selection for compactness, which has also been reported 

in human [7, 8], this might reduces the costs of transcription of housekeeping genes. It has 

been shown that translation is more costly than transcription [25], and the shorter length of 

the coding sequences in housekeeping genes is likely the result of selection for economy of 

translation. On the other hand, the tissue-specific genes are longer, because of their higher 

number of functional domains and relative more complex protein architecture as was 

previously reported in human [8]. Likewise, regulation of expression of these genes in a 

number of specific tissues might have resulted in a large number of cis-regulatory elements 

and would need larger regulatory “spaces” resulting in larger introns and intergenic regions. 

Housekeeping genes are in favor of being located in  RIDGEs in the chicken genome 

    The hypothesis for the existence of RIDGEs is that evolution favors highly expressed 

genes to be co-localized, as transcription of one gene would help the chromatin of 

neighboring genes to “open up” during transcription. The favorable distribution of 

housekeeping genes within RIDGEs again indicates that these genes need to be expressed 

at relative higher levels (Figure 2) and at a larger number of physiological conditions 

(“housekeeping functions”)  

Expressions profiles of orthologous genes are conse rved in vertebrates 

    In contrast to direct sequence comparisons of orthologous genes, the comparison of the 

gene expression profiles of orthologous genes has a number of caveats. First of all, the 

expression levels of genes are dynamic and change with developmental and physiological 

state. Secondly, the tissue samples collected in this study, as well as those in the other two 

published gene expression surveys used in this study are only a part of all organs, 

representing the average of millions of cells of several different types.  

Nevertheless, the expression of orthologous genes is generally well conserved as 

compared to random gene pairs (Figure 4). If gene expression were to evolve in accordance 

with neutral theory [26], the expression of orthologous genes would be the same as random 

gene pairs, while our results suggest that gene expression is under some selection constraint 

during evolution. The overall correlation distributions of orthologous gene expressions are 

similar when comparing each pairs among the three species mouse, frog and chicken.  
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Conclusions 

    We have used whole genome microarrays to survey gene expression across eight normal 

chicken tissues. Most genes show tissue-specific patterns of expression and do not show any 

clear preference for being clustered in specific regions of the genome. Housekeeping genes 

on the other hand are more likely to co-localize with other abundantly or highly expressed 

genes. There seems to be selection pressure on economy in genes with a wide tissue 

distribution (housekeeping genes), i.e. these genes are more compact. A comparative 

analysis of gene expression among mouse, chicken, and frog showed that the expression 

patterns of orthologous genes are conserved between mammals, birds, and amphibians 

during evolution.  

 

Materials and Methods 

Tissue sample preparation  

    In total, 5 healthy ten week old chickens were used for this study. The animal experiment 

was approved by The Institutional Animal Care and Use Committee of Wageningen University. 

All tissue samples (brain, bursa of Fabricius, kidney, liver, lung, small intestine, spleen, and 

thymus) were collected and immediately put into the RNA Stabilization Reagent RNAlater 

(Qiagen, Valencia, CA, USA), followed by incubation at +4°C overnight, then storage at -80°C 

until use.  

RNA isolation, labeling and hybridizations 

    Total RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according 

to the manufacturer’s instructions, followed by a subsequent sample "clean-up" using 

RNeasy Mini Kit (Qiagen). RNA quantity was measured using a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, USA). The quality and integrity of 

the RNA was analyzed using the Agilent Bioanalyzer 2100 (Palo Alto, CA, USA), RNA was 

amplified using MessageAmp™ II aRNA Kit (Ambion, Foster City, CA, USA) and  cRNA was 

further used for chemical coupling with ULS-Cy3/Cy5 (ULS™ aRNA labeling kit; Kreatech, 

Amsterdam, Netherlands). After coupling and purification the cRNA concentration and 

fluorescent incorporation was quantified using the Nanodrop Spectrophotometer. One µg of 

each labeled cRNA sample was used to hybridize on the Ark-Genomics G.gallus 20k array. 

The hybridizations were done overnight on a GeneTAC hybridization station (Genomic 

Solutions, Holliston, MA, USA). Hybridized arrays were scanned using Agilent DNA 
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microarray scanner (Agilent, Santa Clara CA, USA). A common reference design was used in 

this study. The common reference was made by pooling total RNA samples from all individual 

samples, and each individual sample was hybridized against the common reference on the 

same array slide. In all 40 arrays (5 biological replicates per tissue type), cRNA of individual 

tissue samples was always labeled using Cy3 (green), and the cRNA of the common 

reference samples were always labeled using Cy5 (red). 

Array probe re-annotation 

    The ARK-Genomics G. gallus 20K array platform, used in this study, contains 20,460 

unique oligonucleotide probes (GEO accession GPL8861, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GPL8861). The probe 

sequences were mapped to the current chicken genome assembly (Ensembl Genome 

database release 50, WASHU2 assembly, May 2006) using the method described previously 

by Neerincx et al. [18]. In total, 14,900 probes were mapped to a unique position in the 

current assembly, corresponding to 8,792 unique ensembl genes in the Ensembl Genome 

Database and 5,357 probes were mapped to unique positions in the genome without a link to 

an ensembl gene.  

Microarray data processing, normalization, and stat istical analysis 

    Scanned TIFF images were analyzed using GenePix 6.0 (Axon, Sunnyvale, CA, USA), 

and results were saved as GenePix Result (*.gpr) files.  We used R/Bioconductor package 

Limma to analyze the array data. The *.gpr files were imported into R (version 2.8.0), median 

values of both foreground and background intensities were extracted and used in the 

analysis. We gave any spot with FLAG-value less than -50 (these spots were flagged as “bad 

spot” by GenePix program or manually) a weight of 0.01, and all the other spots we gave 

weights of 1. The raw data was normalized in R using variance stabilizing normalization (VSN) 

methods implemented in package vsn [27]. The normalized intensities of the green channel 

(representing all individual tissue samples) were used as gene expression data in the 

analysis and the data points for those spots (both genes and negative controls) with low 

weight (0.01) were removed in further analysis. The gene expression data was first averaged 

within each tissue type among the five biological replicates, and then the gene expression 

data for probes targeting the same Ensembl genes/entrez gene were averaged.  

Gene Ontology term enrichment analysis 

    All the genes having a chicken Ensembl gene ID were mapped to their 1-to-1 human 
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orthologous genes using Bioconductor package biomaRt [28] through the Ensembl Genome 

Database. The GO term enrichment analysis was subsequently performed using human 

gene annotation using R package GOstats [22]. A conditional hypergeometric test algorithm 

provided within GOstats package was applied to GO enrichment analysis.  The conditional 

hypergeometric test identifies a GO term as significant if there is evidence beyond that 

provided by its significant children. Only the enriched GOBP terms with raw p-values < 0.01 

were used for biological interpretation in this study.  

Comparing 1-1-1 orthologous gene expression conserv ation 

     Orthologous genes for mouse (Mus musculus), chicken (Gallus gallus), and frog 

(Xenopus tropicalis) were downloaded from Ensembl. The normalized gene expression data 

for mouse and frog were downloaded from the functional landscape of mouse gene 

expression website [29] and the Conservation of Core Gene Expression in Vertebrate 

Tissues: Supplementary Data website [30], respectively. The expression data of chicken in 

this study was normalized using the same method as used in these two previous studies [15, 

17]. The gene expression data from different species using different species-specific 

microarray platforms are not directly comparable., To enable cross-species gene expression 

comparisons, we used relative mRNA abundance among tissues (RA) introduced by Liao and 

Zhang [14]. Gene expression levels were calculated as ratios between the expression 

intensity of gene X in one particular tissue divided by sum of expression intensities of gene X 

in all tissues included in the analysis. 

Abbreviations 

GO: Gene Ontology 

GOBP: Gene Ontology Biological Process 

RIDGE: Regions of Increased Gene Expression 

RA: Relative mRNA abundance 

CNS: Central Nervous System 
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Abstract 

Background 

    The chicken embryo has been a popular model in embryology and developmental biology. 

Despite this fact there is very limited information available about large scale gene expression 

surveys in different chicken embryonic stages and embryonic tissues to study the molecular 

mechanism of embryonic development and/or organ differentiation in embryos.  

Results 

    A gene expression survey was conducted using a whole genome chicken 20K 

oligonucleotide microarray to study the overall gene expression pattern in whole chicken 

embryos at four different developmental stages (HH stage 3, 10, 15, 22) and in eight different 

embryonic tissues (brain, bursa of Fabricius, heart, kidney, liver, lung, small intestine, spleen 

from HH stage 36 embryos) . Developmental stage-specific and tissue-specific genes were 

identified. A GO enrichment analysis shows that tissue-specific genes correspond to the 

physiological functions of the tissues. Furthermore, genomic features of genes widely 

expressed under these 12 conditions confirmed earlier findings (Chapter 4) that widely 

expressed genes are more compact than tissue-specific genes. A detailed analysis of 

differentially expressed gene in each pair-wise comparison among different developmental 

stages also showed gradual changes on gene expression during embryogenesis. 

Comparisons were performed between tissue-specific genes identified in adult tissues in 

Chapter 4 and tissue-specific genes identified in embryonic tissues identified in this study. 

Similarities and differences about organ functions at different developmental stages (adult vs. 

embryonic stages) are discussed in this study. 

Conclusions 

In this study, stage- and tissue-specific genes among a variety of embryonic stages and 

embryonic tissues have been identified. Biological processes at the molecular level were 

discovered during embryonic developments. Comparisons of functions between organs, on 

the transcriptomic level, reveal similarities and differences of adult organs and embryonic 

organs in chicken. 
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Background 

    The chick embryo has been a popular model in embryology and developmental biology. 

The extensive use of the chicken as one of the primary models for developmental biology is 

due to the easy access of the embryo because development occurs in ovo rather than in 

utero, which allows easy manipulation of the incubated eggs and the developing embryo. 

However, there is very limited information available for genome-wide gene expression 

profiles in different chicken embryonic stages and embryonic tissues. The completion of a 

draft sequence of the chicken genome [1] made it possible to develop genome-wide gene 

expression microarray platforms [2, 3] to survey the expression profiles across different 

developmental stages/tissues.  

    The chicken embryonic development process was divided into stages by Hamburger and 

Hamilton in 1951 [4]. The morphological characteristics are gradually changing during the 

embryonic development at different HH stages. During embryonic development, various 

cellular and molecular changes take place under transcriptional regulation. To identify gene 

expression profiles and search for new candidate genes involved in this developmental 

process, chicken embryonic gene expression was analyzed with a chicken whole genome 

20k oligo-array [3].  

    To study the molecular mechanisms of chicken embryonic development, we selected 

chicken whole embryos at HH stage 3+, HH stage 10, HH stage 15, and, HH stage 22 to 

survey the genome-wide gene expression across these stages. HH stages 3+, HH stage 10, 

and HH stage 22 represent the three landmark developmental points of embryonic 

development: gastrulation, limb-bud, and tail-bud respectively.  Furthermore, the majority of 

the organ systems have been established between the sixth day and hatching, much of 

development is concerned largely with increase in size of existing organs [5]. To investigate 

transcriptomic differences in different embryonic organs, we also surveyed gene expression 

across eight major embryonic tissues from HH stage 36, after 10 days incubation.  

In this study, we report a larger scale microarray-based survey of gene expression across 

4 different chicken embryo stages and 8 different embryonic tissues. 
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Results 

Gene expression distribution in embryo stages and e mbryonic tissues 

    Normalized intensities were used as gene expression levels and genes were defined as 

being expressed only when their expression was higher than the 99% quantile value of the 

expression of all negative control spots across all the arrays in this study (Figure 1a), the 

same approach as described in Chapter 4. The probe annotations were updated according to 

Neerincx et al. [6] as described in Chapter 4,. In total, 14,900 probes out of 20,460 were 

mapped uniquely to the chicken assembly, representing 8,908 unique genes (8,792 Ensembl 

genes [7] and 116 Entrez genes [8]) The expression data of these 8,908 genes is available in 

Additional data file 1. In total, 73% of the genes are expressed in at least one of the 12 

tissues (5,086 out of total 8,908 genes represented on the array platform (see materials and 

methods)). The distribution of gene expression (number of tissues where a gene is 

expressed) is shown in Figure 1b. In total, 685 genes showed a single-tissue-specific pattern, 

whereas 3,228 genes were found to be expressed in all 12 tissues (data available in 

Additional data file 2). In this study, we refer to these 685 genes expressed only in one 

individual tissue as “stage/tissue-specific genes”, and to the 3,228 genes expressed in all 12 

stages/tissues as “housekeeping genes”. The Gene Ontology (GO) [9] terms enrichment 

analysis was performed using GOstats [10] on tissue-specific genes in each tissue types and 

on the housekeeping genes. The significant (p value < 0.01) GO terms for Biological Process 

(BP) of the tissue-specific genes is shown in Additional data file 3. The GO terms enriched for 

each tissue-specific gene list nicely correlates with the physiological function of the individual 

organs. For example, HH stage 3 embryos has term “glucocorticoid receptor signaling”, 

embryonic brain was enriched with terms like “synaptic transmission” and “visual learning”, 

embryonic bursa was enriched with “activation-induced cell death of T cells” and 

“inflammatory cell apoptosis”, and spleen was enriched with “immune response”. The 

significant (p value<0.01) GO terms (BP) of housekeeping genes indicate that these widely 

expressed genes are mainly involved in a number of essential biological processes for 

maintaining a cell (Additional data file 4).  GO terms like “cell cycle process”, “RNA 

processing”, “translation”, and “protein folding” indicate that most of these housekeeping 

across the 12 stages/tissues are involved in cell division and proliferation, this implies that 

during embryonic development, cell division is the most prominent biological process in 

embryo/embryonic tissues.  
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Figure 1.  Accumulative plots of normalized intensities of genes and negative controls across 

all the arrays (c) Distribution of number of embryonic stages/tissues in which genes are 

expressed. 

Characteristics of widely expressed genes 

    Similar to the analysis that was introduced in Chapter 4, we also examined the 

genomic features, e.g. gene length, coding sequence length, average exon length, average 

intron length, and length of the intergenic region, for all 3,228 housekeeping genes and 685 

stage/tissue-specific genes. Significant differences of gene length (p value=1.0 x 10-10, 

Wilcoxon Rank Sum Test), coding sequence length (p value=2.2 x 10-16, Wilcoxon Rank 

Sum Test), average intron length (p value=3.4 x 10-7, Wilcoxon Rank Sum Test), and length 

of the intergenic region (p value=0.0004, Wilcoxon Rank Sum Test) were found between 

housekeeping and tissue-specific genes (Figure 2), whereas no differences are observed for 

the average exon length (p value=0.96, Wilcoxon Rank Sum Test) of these two groups of 

genes. These results suggest that in chicken housekeeping genes are relatively more 

compact than tissue-specific genes. 
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Figure 2.  Box plot of several genomic features for tissue-specific genes and housekeeping 

genes identified based on gene expression in the 12 embryonic stages/tissues. 

Identification of biological processes during embry onic development 

Embryo development is a continuous process.  We decided to test which genes are 

differentially expressed between two consecutive embryonic stages. We therefore compared 

gene expression among HH stage 3, HH stage 10, HH stage 15, and HH stage 22. Every 

stage was compared to the consecutive earlier and later stage respectively. Only differentially 

expressed genes with a FDR < 0.01, and fold change bigger than 2 times are included for 

biological interpretation. (Differentially expressed gene lists are available in Additional data 

file 5). 

 

1) HH stage 3 to HH stage 10 

A comparison between the HH stage 3 embryo and the HH stage 10 embryo shows that only 

91 genes were down-regulated, and 143 genes were up-regulated from HH stage 3 through 

HH stage 10. A GO term enrichment analysis of up-regulated genes in HH stage 3 show 

terms like “cell migration involved in gastrulation” and “blastocyst development” indicating the 

biological status of HH stage 3 (gastrulation). For down-regulated genes in this comparison, 

enriched GO terms like “skeletal system development”, “somite specification”, “heart 

morphogenesis”, “positive regulation of neurogenesis”, and “kidney development” (GO terms 

are listed in Table 1) are found. 

 

2) HH stage 10 to HH stage 15 

In total, 15 genes were significantly up-regulated in HH stage 10 compared to HH stage 

15, whereas 21 genes were down-regulated in this comparison. Enriched GO terms are listed 

in Table 2. Enriched GO terms of up-regulated genes are “segment specification”, “androgen 

metabolic process”, down-regulated genes have enriched GO terms “collagen fibril 
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organization”, “skin morphogenesis”, and “transforming growth factor beta receptor signaling 

pathway”. 

 

3) HH stage 15 to HH stage 22 

    In this comparison between HH stage 15 and HH stage 22 embryos, 15 genes were up-

regulated and 26 genes were down-regulated. Enriched GO terms are listed in Table 3. 

Only terms “thyroid hormone generation” and “water transport” were enriched in HH 15 vs. 

HH 22 up-regulated genes.  HH 15 vs. HH 22 down-regulated genes were enriched with 

terms like “mitotic metaphase”, “kinetochore assembly”, and “establishment of chromosome 

localization”. 
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Table 1.  GO enrichment results of HH stage 3 vs. HH stage 10 (Pvalue < 0.01) 

Embryo HH 3 vs. HH 10 up-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0042074 0.000323 2 3 cell migration involved in gastrulation 
GO:0019915 0.002911 2 8 lipid storage 
GO:0033036 0.003066 2 8 macromolecule localization 
GO:0001824 0.003718 2 9 blastocyst development 

Embryo HH 3 vs. HH 10 down-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0007275 4.92E-07 33 826 multicellular organismal development 
GO:0001501 1.61E-05 8 64 skeletal system development 
GO:0030199 1.93E-05 4 10 collagen fibril organization 

GO:0048704 0.000117 4 15 
embryonic skeletal system 
morphogenesis 

GO:0051146 0.000198 4 17 striated muscle cell differentiation 
GO:0007389 0.000228 7 70 pattern specification process 
GO:0050878 0.000277 6 51 regulation of body fluid levels 

GO:0021514 0.000322 2 2 
ventral spinal cord interneuron 
differentiation 

GO:0021522 0.000322 2 2 spinal cord motor neuron differentiation 
GO:0048665 0.000322 2 2 neuron fate specification 
GO:0006950 0.000466 8 101 response to stress 
GO:0001822 0.000803 4 24 kidney development 
GO:0055010 0.000847 3 11 ventricular cardiac muscle morphogenesis 
GO:0001757 0.000956 2 3 somite specification 
GO:0003007 0.0011 4 26 heart morphogenesis 
GO:0055001 0.001114 3 12 muscle cell development 
GO:0060415 0.001114 3 12 muscle tissue morphogenesis 
GO:0009952 0.001948 4 31 anterior/posterior pattern formation 
GO:0030168 0.002216 3 15 platelet activation 
GO:0001657 0.002993 2 5 ureteric bud development 
GO:0001658 0.003112 2 5 ureteric bud branching 
GO:0032781 0.003112 2 5 positive regulation of ATPase activity 
GO:0051592 0.003821 3 18 response to calcium ion 
GO:0007517 0.003875 6 84 muscle development 
GO:0043062 0.004174 4 37 extracellular structure organization 

GO:0008277 0.004478 3 19 
regulation of G-protein coupled receptor 
protein signaling pathway 

GO:0006559 0.004613 2 6 L-phenylalanine catabolic process 
GO:0030049 0.004613 2 6 muscle filament sliding 
GO:0070252 0.004613 2 6 actin-mediated cell contraction 
GO:0051960 0.006605 4 42 regulation of nervous system development 

GO:0000122 0.007805 5 69 
negative regulation of transcription from 
RNA polymerase II promoter 

GO:0050769 0.008266 2 8 positive regulation of neurogenesis 
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Table 2.  GO enrichment results of HH stage 10 vs. HH stage 15 (Pvalue < 0.01) 

Embryo HH 10 vs. HH 15 up-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0008209 0.00368 1 2 androgen metabolic process 
GO:0030573 0.00368 1 2 bile acid catabolic process 
GO:0006590 0.007348 1 4 thyroid hormone generation 
GO:0006699 0.007348 1 4 bile acid biosynthetic process 
GO:0006707 0.007348 1 4 cholesterol catabolic process 
GO:0007379 0.009178 1 5 segment specification 

GO:0008207 0.009178 1 5 
C21-steroid hormone metabolic 
process 

     

Embryo HH 10 vs. HH 15 down-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0030199 1.27E-06 3 10 collagen fibril organization 
GO:0043062 7.95E-05 3 37 extracellular structure organization 
GO:0030644 0.002394 1 1 cellular chloride ion homeostasis 
GO:0043206 0.002394 1 1 fibril organization 

GO:0055083 0.002394 1 1 
monovalent inorganic anion 
homeostasis 

GO:0043589 0.004783 1 2 skin morphogenesis 
GO:0032501 0.005823 3 303 multicellular organismal process 

GO:0007179 0.006315 2 51 
transforming growth factor beta 
receptor signaling pathway 

GO:0006600 0.007166 1 3 creatine metabolic process 
GO:0009650 0.007166 1 3 UV protection 
GO:0030002 0.007166 1 3 cellular anion homeostasis 

GO:0050777 0.007166 1 3 
negative regulation of immune 
response 

GO:0006833 0.009545 1 4 water transport 
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Table 3.  GO enrichment results of HH stage 15 vs. HH stage 22 (Pvalue < 0.01) 

Embryo HH 15 vs. HH 22 up-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0006590 0.007348 1 4 thyroid hormone generation 
GO:0006833 0.007348 1 4 water transport 

     

Embryo HH 15 vs. HH 22 down-regulated genes 
GOBPID Pvalue Count Size Term 
GO:0000089 0.002578 1 1 mitotic metaphase 

GO:0007080 0.002578 1 1 
mitotic metaphase plate 
congression 

GO:0015670 0.002578 1 1 carbon dioxide transport 
GO:0032314 0.002578 1 1 regulation of Rac GTPase activity 

GO:0035021 0.002578 1 1 
negative regulation of Rac protein 
signal transduction 

GO:0007079 0.00515 1 2 
mitotic chromosome movement 
towards spindle pole 

GO:0008209 0.00515 1 2 androgen metabolic process 

GO:0018076 0.00515 1 2 
N-terminal peptidyl-lysine 
acetylation 

GO:0018205 0.00515 1 2 peptidyl-lysine modification 
GO:0030573 0.00515 1 2 bile acid catabolic process 

GO:0051058 0.00515 1 2 

negative regulation of small 
GTPase mediated signal 
transduction 

GO:0051382 0.00515 1 2 kinetochore assembly 

GO:0051303 0.007716 1 3 
establishment of chromosome 
localization 
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Comparisons of genes identified in adult stage and embryonic stages in chicken 

In total, 2,476 housekeeping genes were identified being expressed in all 8 adult tissues 

and defined as “housekeeping genes” in Chapter 4, about 81% (2,011 out of 2,476 genes) of 

those housekeeping genes in adult tissues were also identified being expressed in all 4 

whole embryo stages and 8 embryonic tissues. Not surprisingly, the enriched GO terms like 

“RNA processing”, “translation”, and “protein folding” were present in both housekeeping 

gene lists. In contrast, 672 genes were identified being expressed specifically in only one 

individual adult tissue in Chapter 4, about 13% (88 out of 672 genes) were also being 

expressed specifically in the same corresponding tissue types in embryonic tissues. Enriched 

GO terms of tissue-specific genes were similar in some tissues and are different in other 

tissues at different time (adult stage vs. embryonic stage). For example, the enriched GO 

terms (p-values < 0.01) for adult brain-specific genes and embryonic brain-specific genes 

were quite similar (shown in Table 4). Enriched terms related to central nervous systems like 

“synaptic transmission”, “learning”, and “neuron development” were present in both adult and 

embryonic brains. However, the enriched GO terms for intestine-specific genes were quite 

different comparing  adult and embryonic stages (Table 5). In adult intestines, many 

metabolic processes were observed, including “digestion”, “proteolysis” and other terms, 

whereas in embryonic intestine, only very few metabolic processes were observed like “bile 

acid metabolic process”.    
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Table 4.  Enriched GO terms in brain-specific genes (adult vs. embryonic stages) 

Embryonic brain specific genes 
GOBPID Pvalue Count Size Term 
GO:0007268 6.90E-09 12 87 synaptic transmission 
GO:0051179 1.70E-04 32 1098 localization 
GO:0010243 2.00E-04 3 8 response to organic nitrogen 
GO:0006812 2.30E-03 11 258 cation transport 
GO:0001975 2.40E-03 2 5 response to amphetamine 

transmembrane receptor protein 
tyrosine 

GO:0007185 2.40E-03 2 5 phosphatase signaling pathway 
GO:0032990 2.80E-03 5 62 cell part morphogenesis 
GO:0006835 3.50E-03 2 6 dicarboxylic acid transport 
GO:0008542 3.50E-03 2 6 visual learning 

GO:0000904 4.70E-03 5 70 
cell morphogenesis involved in 
differentiation 

GO:0007214 4.90E-03 2 7 
gamma-aminobutyric acid 
signaling pathway 

GO:0015813 8.30E-03 2 9 L-glutamate transport 
GO:0030030 8.50E-03 6 113 cell projection organization 
GO:0048666 9.70E-03 5 84 neuron development 

     

Adult brain specific genes 
GOBPID Pvalue Count Size Term 
GO:0048856 6.00E-07 17 166 anatomical structure development 
GO:0051179 2.00E-06 42 803 localization 
GO:0022008 5.30E-06 14 136 neurogenesis 
GO:0007399 1.60E-04 10 111 nervous system development 
GO:0003008 2.80E-04 22 395 system process 

GO:0022010 6.20E-04 2 2 
myelination in the central nervous 
system 

GO:0048667 8.20E-04 7 62 
cell morphogenesis involved in 
neuron differentiation 

GO:0030182 1.30E-03 9 109 neuron differentiation 
GO:0048709 2.20E-03 3 11 oligodendrocyte differentiation 
GO:0016043 2.50E-03 8 86 cellular component organization 
GO:0048858 4.30E-03 6 62 cell projection morphogenesis 

GO:0051649 4.50E-03 7 82 
establishment of localization in 
cell 

GO:0007275 4.60E-03 36 942 
multicellular organismal 
development 

GO:0031175 5.30E-03 6 65 neurite development 
GO:0007269 6.80E-03 3 16 neurotransmitter secretion 

GO:0019228 8.10E-03 3 17 
regulation of action potential in 
neuron 

GO:0007612 9.50E-03 3 18 learning 
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Table 5.  Enriched GO terms in intestine-specific genes (adult vs. embryonic stages). 

Embryonic intestine specific genes 
GOBPID Pvalue Count Size Term 

GO:0008206 0.0038 2 9 
bile acid metabolic 
process 

GO:0007040 0.0057 2 11 lysosome organization 
GO:0031175 0.0079 2 13 neurite development 

     

Adult intestine specific genes 
GOBPID Pvalue Count Size Term 
GO:0007586 3.40E-06 5 29 digestion 
GO:0006508 1.30E-03 7 191 proteolysis 

GO:0006071 5.30E-03 2 13 
glycerol metabolic 
process 

GO:0003051 8.60E-03 1 1 
angiotensin-mediated 
drinking behavior 

GO:0006005 8.60E-03 1 1 
L-fucose biosynthetic 
process 

GO:0009226 8.60E-03 1 1 
nucleotide-sugar 
biosynthetic process 

GO:0019372 8.60E-03 1 1 lipoxygenase pathway 

GO:0019673 8.60E-03 1 1 
GDP-mannose metabolic 
process 

GO:0042351 8.60E-03 1 1 
'de novo' GDP-L-fucose 
biosynthetic process 

GO:0046368 8.60E-03 1 1 
GDP-L-fucose metabolic 
process 

GO:0046813 8.60E-03 1 1 

virion attachment, binding 
of host cell surface 
receptor 

 

Discussion 

Gene expression distribution in embryo stages and e mbryonic tissues 

    We have defined genes being expressed in each individual stage/tissue by comparing to 

negative control spots on the array (Figure 1a) and observed that to a certain extent most 

genes show some tissue-specific expression pattern (Figure 1b). For each individual 

embryonic stage/tissue, specifically expressed genes were identified and these genes were 

used as candidate genes to study the biological processes during each of these specific 

stages and tissues. Our GO enrichment analyses show that many stage/tissue-specific 

genes were enriched with GO terms corresponding to the biological functions of tissues from 

which they originated. This information can be used to infer further stage/tissue-specific 
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genes among the genes that are represented on the array by probes currently lacking any 

annotation. Furthermore, given the expression distribution of genes across the 12 conditions 

surveyed, a list of widely expressed genes (housekeeping genes) was identified. The 

enriched GO terms of housekeeping genes imply that cell proliferation is the universal 

process in all tissues during developmental stages. For example, the embryonic bursa tissue 

had enriched GO terms like “immunoglobulin production” indicating that bursa, as a major 

immune organ in adult chicken, is already functioning in early embryonic stages (HH stage 

36). 

Compactness of housekeeping genes during embryonic development 

    The genes which are expressed under all 12 conditions were defined as housekeeping 

genes. Similar as was observed for the housekeeping genes described in chapter 4 the gene 

length for the housekeeping genes identified in this study also were shorter then those of the 

stage/tissue specific genes. Also similar are the observed shorter coding sequence length, 

average intron length, and length of the intergenic region. This finding suggests a selection 

for compactness of widely expressed genes with universal biological functions to reduce the 

costs of transcription. Similar findings were reported in humans [11] and in chicken (Chapter 

4). As discussed in Chapter 4, one possible scenario to explain the larger none-coding 

regions of tissue-specific genes would be that larger “regulatory spaces” would allow more 

complex regulation on transcription of those genes through a larger number of regulatory 

sequences. 

Biological processes during embryonic development 

    As indicated by the enriched GO terms of housekeeping genes identified in all 

stages/tissues, the most clear essential biological processes during the different 

developmental stages are related to cell division. The GO enrichment analyses for the 

differentially expressed stage–specific genes identified from the pair-wise comparisons 

among different embryonic stages show a gradual change of development from the HH stage 

3 embryos to the HH stage 22 embryos. For instance, heart morphogenesis”, “positive 

regulation of neurogenesis”, and “kidney development” were enriched in HH 3 vs. HH 10 

down-regulated genes, these terms suggest that, based on transcriptional profiles and 

compared to the HH 3 stage, the development of several major organs like heart, kidney, and 

CNS already started to develop during these early embryonic stages. It is known that the first 

formation of the “head process” becomes apparent at HH stage 5 [5], and the embryonic 

head develops even further at HH stage 10 compared to HH stage 5. The tubular heart has 

completely fused at the level of the presumptive ventricle and begins to beat around HH 
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stage 10-11 in chicken embryos [12]. The enriched GO terms identified in differentially 

expressed genes between HH stage 10 comparing to HH stage 3 embryos provide crude 

pictures of embryonic development, sometimes on surprisingly detailed levels about 

individual organ development. The presumptive skins in HH stage 10 embryos have been 

reported previously, and the development of embryonic skin continues during embryonic 

development to later stages [13]. The enriched terms “collagen fibril organization” and “skin 

morphogenesis” were found in HH10 vs. HH15 down-regulated genes and this suggests that 

the changes of embryonic skin development from HH stage 10 though HH stage 15 embryos 

are relatively large. The GO terms related to cell division enriched in HH 15 vs. HH 22 down-

regulated genes imply that the size of embryo keeps on elongating and expanding from stage 

HH15 to HH22, which is in agreement with earlier findings in chicken embryonic development 

[5]. 

    The analyses described above show that transcriptomic approaches can detect, 

sometimes subtle, changes of biological processes from one stage to another. This approach 

is very powerful and can result in a better understanding of embryonic development in 

chicken. 

Comparisons of genes identified in adult stage and embryonic stages in chicken 

    The largest proportion of the housekeeping genes identified in adult tissues was also 

identified as housekeeping genes in embryonic stages/tissues. This implies the 

housekeeping genes identified in Chapter 4 and Chapter 5 were indeed involved in essential 

biological processes to maintain normal functions of living cells in different tissues at different 

times during development. Furthermore, only a very small proportion of the tissue-specific 

genes identified in adult tissues was also identified to be tissue-specific and to be expressed 

in embryonic tissues.  This implies that the overall biological processes in adult tissues in 

general are very different compared to the corresponding embryonic tissues. The major 

exception to this observation is the brain. For brain-specific genes, the enriched GO terms 

were very much related to neurological functions in both embryonic and adult brains, 

indicating that the embryonic brain at HH stage 36 already has many of the basic functions of 

the adult brain. In contrast, for intestine-specific genes, the enriched GO terms were not very 

similar. Many more digestive and metabolic processes related terms were over-presented in 

adult intestines as compared to embryonic intestines. This most likely reflects the fact that 

most nutritional supplies for chicken embryos were derived from the egg yolk and that the 

embryonic intestine is not yet completely functioning as a digestive organs., Studying tissues 

at different developmental stages using a transcriptomic approach can provide a global 

picture of the biological processes in different organs and provide further knowledge within 
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regards the biological functions of the different organs at different developmental stages. 

Conclusions 

    We have used microarrays to survey gene expression across 4 stages of whole embryos 

and 8 different embryonic tissues and identified stage/tissue-specific genes and 

housekeeping genes and studied their functions by testing enriched GO terms. Compactness 

of housekeeping genes was shown indicating a selection on economy for transcription in 

widely expressed genes. Furthermore, expression levels between different stages of whole 

embryos were compared and the enriched GO terms reflected the changes in biological 

processes from one stage of embryonic development to the next. Our dataset provides a 

unique resource for further studies on molecular mechanism during chicken embryo 

development and embryonic organ functions in the future.   

 

Materials and Methods 

Embryo/tissue sample preparation 

All the embryo/embryonic tissue samples were collected and immediately put into 

RNAlater RNA Stabilization Reagent (Qiagen, Valencia, CA, USA), followed by incubation at 

+4°C overnight, then stored at -80°C until use. Sev eral individual embryos or embryonic 

tissues were pooled together to get enough quantity of RNA for individual hybridization. 

Detailed information about the samples is shown in Table 6. 

 

Table 6. An overview of embryonic stages/tissue samples included in this study. 

HH stage tissue description 
HH 3+ whole embryo HH stage 3+, 12 hours after incubation 
HH 10 whole embryo HH stage 10, 30-48 hours after incubation 
HH 15 whole embryo HH stage 15+, 55 hours after incubation 
HH 22 whole embryo HH stage 22,  >72 hours after incubation 

Brain after 10 days incubation 
Bursa  after 10 days incubation 
Heart after 10 days incubation 
Kidney after 10 days incubation 
Liver after 10 days incubation 
Lung after 10 days incubation 
Intestine after 10 days incubation 

HH 36 

Spleen after 10 days incubation 
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RNA isolation, labeling and hybridization 

    Total RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according 

to the manufacturer’s instructions, followed by a subsequent sample "clean-up" using 

RNeasy Mini Kit (Qiagen, Valencia, CA, USA). RNA quantity was measured using a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, USA). The 

quality and integrity of the RNA was analyzed using the Agilent Bioanalyzer 2100 (Palo Alto, 

CA, USA), RNA was amplified using MessageAmp™ II aRNA Kit (Ambion, Foster City, CA, 

USA) and  cRNA was further used for chemical coupling with ULS-Cy3/Cy5 (ULS™ aRNA 

labeling kit; Kreatech, Amsterdam, Netherlands). After coupling and purification the cRNA 

concentration and fluorescent incorporation was quantified using the Nanodrop 

Spectrophotometer. One µg of each labeled cRNA was used to hybridize on the Ark-

Genomics G.gallus 20k array. The hybridizations were done overnight on a GeneTAC 

hybridization station (Genomic Solutions, Holliston, MA, USA). Hybridized arrays were 

scanned using Agilent DNA microarray scanner (Agilent, Santa Clara CA, USA). A common 

reference design was used in this study. The common reference was made by pooling total 

RNA samples from all individual samples, and each individual sample was hybridized against 

the common reference on the same array slide. In all 40 arrays (5 biological replicates per 

tissue type), cRNA of individual tissue samples was always labeled using Cy3 (green), and 

the cRNA of the common reference samples were always labeled using Cy5 (red). 

Array probe re-annotation 

    The ARK-Genomics G. gallus 20K array platform, used in this study, contains 20,460 

unique oligonucleotide probes (NCBI GEO [14] accession GPL5480). The probe sequences 

were mapped to the current chicken genome assembly (Ensembl Genome database release 

50, WASHU2 assembly, May 2006) using the method described previously by Neerincx et al. 

[6]. In total, 14,900 probes were mapped to a unique position in the current assembly, 

corresponding to 8,792 unique ensembl genes in the Ensembl Genome Database and 5,357 

probes were mapped to unique positions in the genome without a link to an ensembl gene.  

Microarray data processing, normalization, and stat istical analysis 

    Scanned TIFF images were analyzed using GenePix 6.0 (Axon, Sunnyvale, CA, USA), 

and results were saved as GenePix Result (*.gpr) files.  We used R/Bioconductor package 

Limma [15] to analyze the array data. The *.gpr files were imported into R [16] (version 2.8.0), 

median values of both foreground and background intensities were extracted and used in the 

following analysis. We gave any spot with FLAG-value less than -50 (these spots were 
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flagged as “bad spot” by GenePix program or manually) a weight of 0.01, and all the other 

spots we gave weights of 1. We used background correction option “normexp+offset” 

(offset=50) [17], background corrected data were normalized using “printtiploess” 

normalization (within array normalization) followed by “Rquantile” normalization implemented 

in the Limma package.    

    For the purpose of defining a gene being expressed, the normalized intensities of the 

green channel (representing all individual tissue samples) were used as gene expression 

data in the analysis and the data points for those spots (both genes and negative controls) 

with low weight (0.01) were removed in further analysis. The gene expression data was first 

averaged within each tissue type among the five biological replicates, and then the gene 

expression data for probes targeting the same Ensembl genes/entrez gene were averaged.  

    For the purpose of identifying differentially expressed gene, normalized log ratio (log2(R/G)) 

data were used, all data for control spots on the array were removed before fitting in the 

linear model, probe data was used for differential expression analysis and differential 

expression of individual genes was assessed using linear modeling and empirical Bayes 

methods [18] as implemented in the R package Limma. Multiple testing was corrected using 

the False Discovery Rate (FDR) control method described by  Benjamini and Hochberg [19]. 

Only probes with a FDR < 0.01 and a fold change bigger than 2 are included for biological 

interpretation in this study. 

Gene Ontology term enrichment analysis 

All the genes having a chicken Ensembl gene ID were mapped to their 1-to-1 human 

orthologous genes using Bioconductor package biomaRt [20] through the Ensembl Genome 

Database. The GO term enrichment analysis was subsequently performed using human 

gene annotation using R package GOstats. A conditional hypergeometric test algorithm 

provided within GOstats package was applied to GO enrichment analysis.  The conditional 

hypergeometric test identifies a GO term as significant if there is evidence beyond that 

provided by its significant children. Only the enriched GOBP terms with raw p-values < 0.01 

were used for biological interpretation in this study.  
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FDR: False Discovery Rate;  
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Abstract 

Background 

    Over the past years, the relationship between gene transcription and chromosomal 

location has been studied in a number of different vertebrate genomes. Regional differences 

in gene expression have been found in several different species. The chicken genome, as 

the closest sequenced genome relative to mammals, is an important resource for 

investigating regional effects on transcription in birds and studying the regional dynamics of 

chromosome evolution by comparative analysis. 

Results 

    We used gene expression data to survey eight chicken tissues and create transcriptome 

maps for all chicken chromosomes. The results reveal the presence of two distinct types of 

chromosomal regions characterized by clusters of highly or lowly expressed genes. 

Furthermore, these regions correlate highly with a number of genome characteristics. 

Regions with clusters of highly expressed genes have higher gene densities, shorter genes, 

shorter average intron and higher GC content compared to regions with clusters of lowly 

expressed genes. A comparative analysis between the chicken and human transcriptome 

maps constructed using similar panels of tissues suggests that the regions with clusters of 

highly expressed genes are relatively conserved between the two genomes.  

Conclusions 

    Our results revealed the presence of a higher order organization of the chicken genome 

that affects gene expression, confirming similar observations in other species. These results 

will aid in the further understanding of the regional dynamics of chromosome evolution.  

 

    The microarray data used in this analysis have been submitted to NCBI GEO database 

under accession number GSE17108. The reviewer access link is:   

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GSE17108  
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Background 

    Gene expression in eukaryotes is regulated on two different levels, i.e. individual gene 

level and regional level in the genome. The best studied, and generally considered the major 

level of regulation, is the regulation at the level of individual genes. Although a number of well 

studied exceptions have identified a number of tightly co-regulated gene clusters, such as the 

globin, MHC and the Hox gene gene clusters [1-4], the common model for eukaryotic gene 

transcription involves the binding of several transcription factors (TFs) to promoter regions 

and enhancers, resulting in activation of the individual genes. It has become increasingly 

evident that in addition to gene regulation by TF binding to regulatory sequences, eukaryotic 

gene expression is also regulated at a higher level, and several studies have demonstrated 

the dependency of gene expression on the location of the gene within the genome [5-7].  

    Over the past years, the relationship between gene transcription and chromosomal 

location has been studied in a number of different vertebrate genomes. Analysis of the 

human transcriptome map based on SAGE (serial analysis of gene expression) data from 12 

human tissues [8] revealed the clustering of highly expressed genes within specific 

chromosomal regions; these regions were termed “RIDGEs”, or “Regions of Increased Gene 

Expression”. Genomic regions containing genes expressed at much lower levels were termed 

anti-RIDGEs, and these regions exhibit characteristics opposite those of RIDGEs [8, 9]. A 

similar region-wide regulation of gene expression was later reported in the Drosophila 

genome [10, 11]. RIDGEs were also found in the mouse genome [12] and are reported to be 

relatively conserved between the mouse and human genome [13]. A later study [14] showed 

gene expression to be regulated at a region-wide level in the human genome. Insertion of 

green fluorescent protein (GFP) reporter constructs at 90 different chromosomal positions in 

the human genome showed that gene transcription was regulated through a novel region-

wide regulatory mechanism as well as via specific transcription factors, thereby 

demonstrating dual mechanisms in the regulation of gene transcription.  

    Regional differences in gene expression have been found in two distinct clades (mammals 

and flies) of the metazoan phylogeny, suggesting a common mechanism of regulation of 

transcription in all animals. Other characteristics of eukaryotic genomes such as gene density 

and recombination have also been implied to exhibit domain-like features [15]. In addition, 

levels of gene expression have been found to correlate with time of chromatin replication 

during the cell cycle, i.e. the early replication of actively expressed regions of the genome 

[15]. Striking in this respect is the observed location of gene-dense and highly expressed 

chromosomes towards the center of the nucleus and the location of gene-poor and weakly 

expressed chromosomes towards the nuclear envelope in both human [16] and chicken cells 
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[17]. Furthermore, in chicken, this spatial organization seems to correlate with chromosome 

size [17]. 

    The chicken genome sequence, published in 2004, was the first non-mammalian amniote 

genome to become available [18]; its karyotype (2n = 78) consists of 38 autosomes and one 

pair of sex chromosomes, with the female being the heterogametic sex (ZW female, ZZ male). 

Thus far, there are 31 known chromosomes assembled in the chicken genome, including six 

macro-chromosomes (GGA1-5, Z), five intermediate-chromosomes (GGA6-10) and twenty 

micro-chromosomes (GGA11-28, 32, W) [18]. The existence of micro-chromosomes is one of 

the interesting features of the chicken genome [19], micro-chromosomes are also found in 

some primitive amphibians [20, 21] and most reptiles [22].  Besides the huge differences on 

sizes, microchromosomes also exhibit higher gene density, smaller gene size, and higher 

recombination rates compared with those in macrochromosomes [18, 23]. As the best-

studied bird genome currently available, and the closest sequenced genome relative to 

mammals, the chicken genome is an important resource for comparative genomics, including 

comparative studies on gene transcription.  

    To investigate regional effects on transcription in birds, we analyzed chicken gene 

expression data across a number of different tissues to address three major questions: (i) if 

there are regional differences in the regulation of transcription in the chicken genome, (ii) if 

these regions are conserved during evolution, and (iii) the characteristics of these genomic 

regions in the chicken. 

Results  

Gene expression data 

    Eight different chicken tissues were used for the analysis of whole genome gene 

expression profiles using chicken 20k oligonucleotide microarrays (GEO [24] accession 

GPL8861, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GPL8861). All array 

probes were designed from known transcripts and ESTs based on the chicken genome 

assembly WASHUC1 (Dec. 2004), and a stringent selection of probes was performed before 

the analysis. A total of 7477 probes failed to map to unique chicken Ensembl genes, and 

these were excluded to avoid the introduction of additional noise into the analysis. In total, 

11,361 chicken Ensembl gene IDs located on 27 chromosomes were included in the 

expression study. These 27 chromosomes cover over 90% of the chicken genome, and 

include all macro-chromosomes and many of the micro-chromosomes. The number of 

Ensembl genes on each of these chromosomes is shown in Figure 1. On average, about 
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70% of all the known ensemble genes on each of these 27 chromosomes were included in 

this analysis. 

    In this study, we define the chicken transcriptome map as the median expression levels of 

the 11,361 chicken Ensembl genes across eight tissues on 27 chromosomes. The start 

position of the first Ensembl gene and the end position of the last Ensembl gene on each 

chromosome were considered the start and end of each chicken chromosome. The 

combined size of the chromosomal sequences analyzed in this study is 1,022,830,111 bp, 

which covers 97% of the total length of build 2 (WASHUC2, May 2006) of the chicken (Gallus 

gallus) genome.  

 

 

Figure 1.  Distribution of genes on individual chicken chromosomes. The number of Ensembl 

genes on each chicken chromosome used in the analysis is shown on the y-axis on the left; 

the y-axis on the right shows the size of the individual chromosomes. 

Regional differences of transcription in the chicke n genome 

To create the chicken transcriptome map, the Ensembl genes were ordered based on the 

middle positions of the genes on each chromosome, and a robust scatter plot smoothing 

(running median) technique was applied to the median expression values of the genes on 

each chromosome (see Materials and Methods for details). The resulting transcriptome map 

revealed clusters of highly expressed genes on all chicken chromosomes (Figure 2). Marked 

differences were observed in the overall expression levels of the different chicken 

chromosomes, with GGA 2, GGA14 and GGAZ showing relatively lower overall gene 
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expression compared to the other chromosomes. Furthermore, the gene expression levels of 

the micro-chromosomes were observed to be higher than those of intermediate- and macro-

chromosomes; the median expression level of each chromosome was observed to decrease 

with increased chromosome size (Figure 3). Interestingly, the sex chromosome GGAZ shows 

an extremely low median expression level. 

 

 

 

Figure 2.  Regional clusters of highly expressed genes in the chicken genome. Gene 

expression is plotted for chicken chromosomes 1-15, 17-24, 26-28, and Z. The expression 

values are plotted as a moving window with a size of 39 genes to calculate the running 

median along the chromosomes. The log2 transformed intensities of green channel are 

shown; the start of the chromosomes corresponds with the top of the plot, and the window 

width indicates the expression levels, ranging between 6.6-8.3 (log2 scale). 
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Figure 3.  Relationship between median expression levels and chromosome length 

(correlation = -0.67, Pearson correlation).  

 

    To further investigate the unequal distribution of gene transcription activity along chicken 

chromosomes, we selected regions with clusters of the most highly expressed genes and 

regions with clusters of most lowly expressed genes, such that each region type covered 

approximately ten percent of the chicken genome. To be consistent with previous studies in 

humans [8, 9], here we use the terms “RIDGE” and “anti-RIDGE” to refer to regions showing 

the highest and lowest expression levels, respectively, in the chicken genome. Similar to 

Caron et al. [8], we define RIDGEs in the chicken genome as genomic regions with at least 

10 consecutive running medians larger than 1.19 times the median expression of the chicken 

transcriptome, i.e. all 11,361 Ensembl genes. With a running median of a window size of 39 

genes, we identified 64 RIDGEs in the chicken genome that cover approximately 10% of the 

genome. Using the same window size, we identified 27 anti-RIDGEs, which cover 

approximately 10% of the chicken genome; these anti-RIDGEs are defined as genomic 

regions with at least 10 consecutive running medians smaller than 0.78 times the median 

expression of the chicken transcriptome. The total number of Ensembl genes located in 

RIDGEs and anti-RIDGEs is 3260 and 1051, respectively. The mean of the median 

expression values of genes located in RIDGEs across the tissue panel is approximately 1.8 

times higher than that of genes in anti-RIDGEs (Additional data file 1). More detailed 

information of RIDGEs and anti-RIDGEs can be found in Additional data file 1. 

    The distribution of the expression of the genes located in RIDGEs and anti-RIDGEs is 

shown in Figure 4. The majority of genes in anti-RIDGEs is below 7 (the log2 transformed 



Chapter 6 

104 
 

intensities of the green channel). This is in strong contrast with the distribution observed for 

RIDGEs, which show a much broader distribution; furthermore, the majority of genes in 

RIDGEs show an expression above 7 (the log2 transformed intensities of the green channel).  

 

 

Figure 4.  Histograms of gene expression values across 8 tissues for genes in RIDGEs and 

anti-RIDGES.  Gene expression on the x-axis is the log2 transformed intensity of the green 

channel. 

 

Transcriptome maps in different tissues are highly correlated 

    To next evaluate transcriptome maps of different types of tissues, we created 

transcriptome maps for each individual tissue type by applying a running median on 

expression values within each tissue using a window size of 39 genes. Chromosome 1 is 

shown in Figure 5 as an example, and the transcriptome maps for the different tissues were 

observed to be very similar. We performed a correlation test between the transcriptome map 

created using the median expression values across the eight tissues and the transcriptome 

maps created using the expression values from each tissue type. All transcriptome maps are 

highly correlated, with an average correlation of 0.88.  All pair-wise correlations were highly 

significant, with p-values less than 2.2 x 10-16. (All pair-wise correlations between the tissue-

specific transcriptome maps are shown in Additional data file 2). 
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Figure 5.  Transcriptome maps of chromosome 1 for different tissue types, the expression 

values are plotted as a moving window with a size of 39 genes to calculate the running 

median along the chicken chromosome 1. the start of the chromosomes corresponds with the 

top of the plot, and the window width indicates the expression levels, ranging between 6.6-

8.3 (log2 scale). 

Random permutation tests of RIDGE identification 

    To test the significance of the number of RIDGEs identified in our analysis, we performed 

random permutation tests using the same window size and threshold for RIDGE identification. 

In total, 10,000 random transcriptome maps were generated by permutating the gene orders 

throughout the genome. The permutation tests, shown in Additional data file 3, clearly show 

that the number of RIDGEs identified in our analysis is higher than would have been 

expected merely by chance. 

RIDGEs are relatively conserved between chicken and  human 

    The observation that highly expressed genes tend to be clustered within RIDGEs in the 

chicken as well as the human genome suggests a conserved functional organization of the 

genome of these vertebrates. We therefore decided to assess whether genes in RIDGEs 

remain associated during evolution. Thus, we consider two different forms of functional 

constraint. The first possibility is that specific genes within a particular RIDGE need to be co-

regulated; in this case, one would expect relatively few syntenic breaks to occur within the 

RIDGEs. The other possibility is that genes do not need to co-localize with specific genes, 

but rather remain spatially associated with other highly expressed genes in general. In this 
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case, one would expect syntenic breaks to occur specifically between two different RIDGEs. 

Random rearrangements of RIDGEs and anti-RIDGEs, on the other hand, would reduce the 

clustering of genes, and therefore abolish the effect of regional regulation of transcription. 

First we tested if the observed RIDGEs were less prone to be broken down during evolution 

from chicken to human. Previous studies comparing the human, mouse, rat, and chicken 

genomes identified a total of 586 conserved synteny blocks [25]. Because the identification of 

these synteny blocks was based on chicken genome assembly WASHUC1 (Dec. 2004), we 

mapped the ends of these syntenic blocks to the current chicken genome assembly 

(WASHUC2, May 2006) (Additional data file 4), and considered each end as an evolutionary 

break point. In total, we mapped 1130 break points on the WASHUC2 chicken genome 

assembly; we found 253 break points within RIDGEs, and 50 break points within anti-

RIDGEs. Chi-square tests showed a significantly higher average number of break points in 

RIDGEs compared to regions outside RIDGEs (p value < 2.2x10-16) and a significantly lower 

number of break points in anti-RIDGEs compared to regions outside anti-RIDGEs (p 

value=4.18x10-10) (Additional data file 5).  

    To compare the transcriptome maps between chicken and human, we downloaded human 

gene expression data for the same types of tissues (see Materials and Methods) from the 

Human Transcriptome Map website [26]. Using the median of the expression values across 

the seven human tissues for each human gene, we performed an identical analysis on the 

human data as the chicken expression data to identify RIDGEs and anti-RIDGEs in the 

human genome. Similar to the chicken, in the human genome, RIDGEs and anti-RIDGEs 

each cover about ten percent of the genome. Defining the syntenic break points in the human 

genome using data described by Bourque et al. [25], we found a total of 143 and 86 break 

points in RIDGEs and anti-RIDGEs, respectively. Again, similar to results seen in the chicken, 

chi-square tests show a higher average number of break points in RIDGEs compared to 

regions outside of RIDGEs (p value=0.01) and a lower number of break points in anti-

RIDGEs compared to outside anti-RIDGEs (p value=0.002) (Additional data file 5). 

    We identified 46 RIDGE-to-RIDGE break points and 11 anti-RIDGE-to-anti-RIDGE break 

points between the chicken and human genomes. Chi-square tests showed a significantly 

higher number of RIDGE-to-RIDGE break points between the chicken and human genomes 

(p value<2.2x10-16) compared to that expected by chance, and no significant difference in 

the number of anti-RIDGE-to-anti-RIDGE break points (p value=0.8). 

Genomic characteristics of RIDGEs and anti-RIDGEs i n chicken 

    Next we evaluated whether RIDGEs and anti-RIDGEs were associated with other genome 

characteristics. Positive correlations were found between chicken transcriptome map and 
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gene density (p value<2.2x10-16), GC content (p value<2.2x10-16) and average intron 

length (p value<2.2x10-16).  As an example, the whole chromosome views of the 

transcriptome map, gene density, GC content, gene length, average intron length and 

recombination rate are shown for chromosome 1 (Figure 6); these various parameters were 

similar in RIDGEs and anti-RIDGEs. To further investigate the specific genomic 

characteristics of RIDGEs and anti-RIDGEs, we compared the average intron length 

(averaged intron length of all transcripts per gene), gene length (genomic length), gene 

density (number of genes per 100 kb), and GC content between genes located in RIDGEs 

and anti-RIDGEs (Figure 7). Compared to the entire chicken genome, RIDGEs, on average, 

harbor genes with shorter average intron length (p value<2.2x10-16), shorter gene length (p 

value<2.2x10-16), and a higher GC content (p value<2.2x10-16). Anti-RIDGEs, on the other 

hand, show opposite trends, with genes with longer average intron length (p value<2.2x10-

16), longer gene length (p value<2.2x10-16), and lower GC content (p value<2.2x10-16). 

Furthermore, RIDGEs also have a significantly higher gene density (p value=1.29x10-9) than 

anti-RIDGEs.  

Gene Ontology term enrichment analysis for genes in  RIDGEs and anti-RIDGEs 

Our results indicate that RIDGEs are relatively conserved between human and chicken. 

Assuming RIDGEs are the result of evolutionary events favoring the clustering of genes with 

higher expression levels, one can hypothesize that genes within RIDGEs may share similar 

functions or biological pathways. To investigate this possibility, we performed Gene Ontology 

(GO) [27] term enrichment analysis on genes located in RIDGEs and anti-RIDGEs using R 

package Gostats [28]. However, no significant GO_BP terms (the minimum FDR of all three 

tests is 0.4) were found for genes in RIDGEs and anti-RIDGEs after correcting for multiple 

testing (Additional data file 6). 
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Figure 6.  Whole-chromosome view of (a) transcriptome map  (plotting running medians of 

gene expression values along chromosome 1 with window size of 39 genes); (b) 

transcriptome map on separate strands  (plotting running medians of gene expression 

values on separate strands with window size of 19 genes on each individual strand (left side: 

+ strand; right side: - strand) along chromosome 1); (c) gene density  (gene density was 

defined as number of genes per 100 kb genomic region, running medians of gene densities 

with window size 39 gene were plotted along chromosome 1) ; (d) GC content , (e) gene 

length , (f) average intron length  (GC content, gene length, and average intron length were 

calculated for each gene, the running medians of values for those three features with a 

window size of 39 genes were plotted along chromosome 1), (g) “minimal intron” density  

(the minimal intron here were defined as introns sizing from 50 to 150 bp, and minimal intron 

density was defined as the number of minimal introns per 500 kb genomic region, then the 

running medians of minimal intron intensities with window size of 39 genes were plotted 

along chromosome 1); and (h) recombination rate  (recombination rate data of chicken 

chromosome 1 was obtained from previous study by Groenen et al.[25], and plotted in the 

same way as described by Groenen et al.)  plotted on chicken chromosome one. The start of 

the chromosome corresponds with the top of the plot.  
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Figure 7.  Boxplot of average intron length, gene length, gene density (number of genes per 

100 kb) and GC content for genes in RIDGEs, anti-RIDGEs, and the complete chicken 

genome. The middle line of each box represents the median values. The edges of each box 

represent the first and third quartile values. 

 

Discussion 

Gene expression data 

    The annotated genes on the array platform used in this study cover most of the current 

chicken genome assembly. The number of genes analyzed on each chromosome is also in 

good proportion with chromosome length (Figure 1), which suggests against a bias in the 

analysis due to uneven distribution of the genes in the chicken genome. We chose to exclude 

chromosome 16 and 25 from our analysis, as only 24 and 59 Ensembl genes are 

represented on the array; this number is too low to identify any meaningful high or low 

expressing regions with the window size of 39 genes used in this analysis.  
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No major effect of different tissues on chicken tra nscriptome map 

    We observed high correlations (average correlation=0.88) among the different 

transcriptome maps based on the expression data from the eight different individual tissues 

as well as between these transcriptome maps and the transcriptome map of the combined 

expression data of all eight tissues. This indicates that use of the median expression value or 

the expression values from individual tissues only has a minor effect on the transcriptome 

maps and on the identification of RIDGEs and anti-RIDGEs. This shows that regional 

differences in transcription are a general trend in the chicken genome, even among different 

tissue types.  

Regional differences of transcription in the genome  

    This is the first study in birds to construct a transcriptome map and to confirm the 

existence of regional differences on transcription regulation in the chicken genome. RIDGEs 

have been discovered in several animal species from phylogenetically distinct groups, 

suggesting that the existence of RIDGEs may be universal in the animal kingdom [8, 10-14]. 

    Gierman et al. [14] showed that RIDGEs are may contain up to 80 genes and can exert an 

eightfold difference on the expression levels of integrated genes. They found that gene 

expression levels are not highly correlated to adjacent genes, but instead more correlated to 

the entire block of up to 80 genes, demonstrating regional effects on gene transcription. The 

exact mechanism underlying how gene expression occurs in RIDGEs is still unknown. One 

hypothesis is that evolution favors highly expressed genes to be physically close to each 

other, as transcription of one gene would help the chromatin of neighboring genes to “open 

up” during transcription. This hypothesis is in agreement with our observation of no apparent 

evolutionary constraint on the co-localization of specific genes, whereas we observed 

specific localization of specific genes within RIDGEs (see below). Goetze et al. [29] showed 

that RIDGEs in general are less condensed, more irregularly shaped, and are located more 

closely to the nuclear center than anti-RIDGEs. Furthermore, the chromatin structures of 

RIDGEs and anti-RIDGEs are largely independent of tissue-specific variations in gene 

expression and differentiation state. Their discovery again confirms the hypothesis that the 

different regional effect of gene transcription in RIDGEs and anti-RIDGEs is, at least in part, 

explained by the chromatin structure of the two types of genomic regions.  

Genomic Characteristics in RIDGEs and anti-RIDGEs i n chicken 

    Many studies have shown that chicken genome characteristics such as recombination 

frequency, gene density and GC density correlate with chromosome size [18, 23]. Our results 
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show a similar trend with regard to the level of gene expression and density of RIDGEs. In 

the chicken, the median expression values decrease with increased chromosome length 

(Figure 3), which can only be partly explained by the higher gene density of the micro-

chromosomes. Our permutation analysis clearly shows that the organization of genes in 

clusters of highly expressed genes is not random and suggests a functional mechanism. This 

is further strengthened by our observation that the same distribution of RIDGEs is seen when 

both strands of the same chromosome are analyzed separately (Figure 6). This is additional 

confirmation of region-like regulation of transcription during gene expression, since the 

opening of chromatin structures during gene expression will affect both strands by facilitating 

the access of transcription factors to target genes, thus enhancing gene expression in that 

region. Furthermore, we also found a correlation between the transcriptome maps and gene 

density, GC content, gene length, average intron length, “minimal intron” density, and 

recombination rate in the chicken genome (Figure 6). A correlation between recombination 

rate and GC content in the chicken genome has been recently reported [23], and these 

authors therefore link recombination rate with the transcriptome map, as reported in the 

current study. This can be explained by the more open chromatin structure of the 

transcriptionally active RIDGEs, which would also facilitate recombination within these 

regions. Furthermore, “minimal introns” have been reported to be GC-rich and to enhance 

the rate at which mRNA is exported from the cell nucleus [30] (Yu et al. 2002). These findings 

link the “minimal introns” distribution via GC content with the transcriptome map in the current 

study. This can be explained, at least in part, by the need for efficient export of highly 

expressed mRNA from the nucleus. Many genomic characteristics in eukaryotic genomes, 

such as RIDGEs, early replication and recombination, appear to be linked. RIDGEs are 

associated with higher expression, higher gene density, higher GC content, shorter gene 

introns, shorter genes, higher “minimal intron” density, and higher recombination rate (Figure 

6). This is congruent in human studies, in which similar correlations were found [9]. Shorter 

introns and shorter genes in RIDGEs may indicate the need for increased transcription 

efficiency. Castillo-Davis et al. [31] showed that introns in highly expressed genes are 

substantially shorter than those in genes that are expressed at low levels in the human 

genome, and the authors hypothesized that transcription efficiency is enhanced when intron 

length is shorter. The clustering of highly expressed genes in RIDGEs therefore would result 

in clustering of genes with, on average, shorter introns. Although GC content, gene density, 

gene length, average intron length, “minimal intron” distribution and recombination rate are all 

correlated with gene transcriptional activity in the chicken genome, the exact causative 

mechanisms of these relationships are still unknown. 
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RIDGEs are relatively conserved between chicken and  human 

    In comparing evolutionary break points between RIDGEs and anti-RIDGEs, we found a 

higher number of break points within RIDGEs than anti-RIDGEs in both the chicken and the 

human genome.  Similar as for recombination, it is possible that the more open chromatin 

structure within RIDGEs facilitates an increase in the likelihood of rearrangement events, and 

thus in an increase in the observed syntenic breaks. 

Although RIDGEs clearly show an increase in the number of evolutionary break points, we 

also showed a significantly higher number of RIDGE-to-RIDGE break points between the 

chicken and human genomes. Hence, although RIDGEs are more prone to be interrupted by 

evolutionary break points, there still seems to be an evolutionary constraint that favors 

recombination between RIDGEs, i.e. the resulting parts of a “broken RIDGEs” from one 

species were more likely to stay together with a part of another broken RIDGE during 

genome evolution, thereby keeping specific genes together within RIDGEs. In other words 

genes within a RIDGE in one species are likely to end up in a RIDGE in another species 

even when syntenic rearrangements occur.  There are in total 11,407 1-to-1 human-chicken 

homolog genes downloaded via biomaRt [32]. Of these genes, 1,351 are located In RIDGEs 

and 857 genes are located in anti-RIDGEs in the human genome. 27% of these 1-to-1 

human-chicken homolog genes (361 out of 1351 genes) located in human RIDGEs are also 

located in chicken RIDGEs (p-value smaller than 2.2 x 10-16, Chi-square tests). This again 

supports our hypothesis that genes within a RIDGE in one species are likely to end up in a 

RIDGE in another species. 

    This result suggests that the clustering of specific genes is not so much important, but 

rather the clustering of any genes that are highly expressed. The relative low number of 

syntenic breaks within anti-RIDGEs, on the other hand, might be linked to another feature of 

vertebrate chromosomes, namely the occurrence of regions with a relatively low number of 

genes, so called “gene deserts” [33]. In particular, the so-called “stable gene deserts” co-

localize with developmentally active genes and genes coding for transcription factors, both 

gene types that generally show relatively low levels of expression. These “stable gene 

deserts” showed extremely low numbers of syntenic breaks [33]. 

    Our results clearly show the existence of a higher level organization of the vertebrate 

genome affecting not only the expression of genes but also other features such as 

recombination and genome rearrangements during evolution. 
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Conclusion 

    This is the first study describing a transcriptome map in birds. This study has revealed 

regional regulation of gene expression in chicken that is consistent with previous studies in 

flies and mammals [8, 10, and 12]. Since features correlating with high regional transcription 

are more pronounced in the microchromosomes leading to overall higher expression 

compared to genes on the macrochromosomes. Our analysis on evolutionary break points 

shows that the regional regulation of gene transcription is relatively conserved between 

chicken and human.  Given the evolutionary position of chicken on the phylogenetic tree, our 

results provide a unique perspective for future comparative studies on transcriptome maps 

between vertebrate species. 

 

Methods 

Gene expression data 

    The gene expression data used in this analysis was obtained from a gene expression 

survey in chicken brain, bursa of Fabricius, kidney, liver, lung, small intestine, spleen and 

thymus, using the chicken 20k oligonucleotide microarray (see below). Five biological 

replicates were used for each tissue type, resulting in a total of 40 arrays. Each individual 

sample was compared to the pooled reference, and data was normalized using the R [34] 

package limma [35]. The mean expression value for each Ensembl gene was calculated for 

each tissue type, and the average expression value of each Ensembl gene was determined 

by calculating the median expression values across all eight tissues.  

    The microarray data have been deposited in the Gene Expression Omnibus (GEO) public 

repository [24]. The accession number for the series is GSE17108, and the sample series 

can be retrieved with accession numbers from GSM427873 to GSM427912. The sample 

series contains the raw data (median signal) of each Cy5 (red) and Cy3 (green) channels as 

well as the normalized data for each microarray. 

Chicken 20k array platform and oligonucleotide probe re-annotation 

The chicken 20k array was obtained from ARK-Genomics [36]. The array design has been 

published in Gene Expression Omnibus with the platform name GPL8861 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GPL8861). 

    The probe sequences of the chicken 20k oligonucleotide microarray used in this study 

were designed based on chicken genome assembly WASHUC1 (Dec. 2004), and all 

sequences were mapped to the chicken genome assembly WASHUC2. An updated array re-
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annotation file based on Ensembl 50 is available at EADGENE Oligo Set Annotation Files 

homepage [37]. Of the total 20,460 oligonucleotide probes on the chicken 20k array, 13,431 

mapped to unique locations in the chicken genome. All the probes for genes that mapped to 

chromosome “unknown” were excluded in the analysis, and all probes for genes on 

chromosome 16, 25, and W were excluded due to the very low number of probes that 

mapped to those chromosomes. For probes that mapped to the same known Ensembl gene 

ID [38], the expression data were averaged and assigned to the Ensembl gene. In total, in 

this study, 12,983 oligo probes were used that mapped to 11,361 unique chicken Ensembl 

gene IDs located on 27 chromosomes. 

Identification of RIDGEs in the chicken genome 

    Individual gene expression data was ordered according to the middle position of the gene. 

A Robust Scatter Plot Smoothing (function runmed in R package stats) technique was 

applied to each chromosome separately, with a window size of 39 genes, i.e. the expression 

value of each gene was replaced by the median expression value of the neighboring 39 

genes. Similar to the definition for RIDGEs in humans [8], here we defined a RIDGE by 

window size for calculating median expression, minimum length of the run, and the threshold 

for the lower limit of the median. The selection of window size of 39 genes was based on the 

following two points: 1) Permutation analysis performed by both Caron et al. [8] and our 

analysis indicated a window size of 39 genes gives a reasonable number of RIDGEs; 2) To 

be able to compare the results of RIDGE identification between human and chicken, we 

decided to use the same threshold as described by Caron et al. The bigger the window size 

is, the smaller number of RIDGEs will be identified as indicated in the permutation results in 

Additional file 3. 

    The threshold for RIDGEs was set to 1.19 times the genomic median value (the data are 

log2 transformed, and the values used here is the running median values of a window size of 

39 genes) along the length of a run of at least 10 median values. The threshold used for anti-

RIDGEs was a median expression of 0.78 times the genomic median. The thresholds used 

for the classification of the RIDGEs and anti-RIDGEs were chosen such that RIDGEs and 

anti-RIDGEs each cover 10% of the genome. 

Correlation analysis between tissue-specific transc riptome maps 

    Spearman rank correlation test was performed to test for pairwise correlations among the 

transcriptome maps on all the chromosomes (applied to the running median with window size 

of 39 genes). The running median expression values are not normally distributed, and the 

non-parametric Spearman correlation test was used on the ranks of the paired transcriptome 
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maps. 

Random permutation tests for RIDGE identification i n chicken 

    Random permutation tests were done in R by permuting the genomic locations of Ensembl 

genes and repeating the RIDGE analysis 10,000 times to create 10,000 random 

transcriptome maps. The number of RIDGEs identified in these 10,000 random transcriptome 

maps was compared to the actual number of identified RIDGEs in this analysis using the 

same threshold. 

Syntenic break points 

    Human-chicken synteny block data from Bourque et al. [25] was used in this study, and 

genomic locations of synteny blocks from assembly WASHUC1 (Dec 2004) were mapped to 

assembly WASHUC2 (May 2006) using BLAT (see Additional file 4). Each end of every 

syntenic block was considered a break point, and the number of break points in RIDGEs and 

anti-RIDGEs was subsequently summarized. 

Human gene expression data 

    Human Transcriptome Map data was downloaded from the HTM website [26]. We selected 

Affymetrix U133A human whole genome array data from seven tissues (thymus, spleen, lung, 

small intestine, brain, liver, and kidney) from a healthy individual; data (normalized data) was 

log2 transformed and the median expression value across the seven different tissues was 

used to build the transcriptome map. RIDGEs and anti-RIDGEs were identified using the 

same approach as for the chicken data. 

Genome characteristics of RIDGEs and anti-RIDGEs in  chicken 

    Genomic location, transcript length, exon number and GC content for the individual 

Ensembl chicken genes were downloaded from the Ensembl genome database using 

biomaRt [32]. The averaged intron length was calculated by averaging the intron length of all 

transcripts per gene. The statistical test for differences in average intron length, gene length, 

gene density, and GC content between RIDGEs and anti-RIDGEs was performed using 

Wilcoxon rank-sum test (function Wilcox.test function in R package stats). 

GO term enrichment analysis 

GO term enrichment analysis was performed using R package Gostats [28]. The 

conditional algorithm was used for the hypergeometric test. The gene annotation package for 
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the GOstats analysis was built using R package AnnotationDbi [39]. Mapping of chicken 

Ensembl gene IDs and other genomic information (e.g. entrezgene) was performed using the 

R package biomaRt [32]. 
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Additional data files 

Additional file 1  

Title: Genomic location of RIDGEs and anti-RIDGEs. 

Description: Genomic location of RIDGEs and anti-RIDGEs identified in the chicken genome 

in this study. 

http://www.biomedcentral.com/imedia/3710740852964028/supp1.xls 

Additional file 2  

Title: Correlations of transcriptome maps in different tissues. 

Description: All pairwise correlations between the tissue-specific transcriptome maps. 

http://www.biomedcentral.com/imedia/5646842942964028/supp2.xls 

Additional file 3  

Title: Random permutation test. 

Description: Random permutation test results for RIDGE identification with different window 

sizes. 

http://www.biomedcentral.com/imedia/5561063582964028/supp3.xls  

Additional file 4 

Title: Positions of the synteny block in the chicken genome. 

Description: Genomic positions of the ends of the synteny block on genome build WASHUC2. 

http://www.biomedcentral.com/imedia/1442559527296402/supp4.xls  

Additional file 5  

Title: Evolutionary breaks within RIDGEs and anti-RIDGEs. 

Description: Chi-square test of evolutionary break points within RIDGEs and anti-RIDGEs. 

http://www.biomedcentral.com/imedia/1592715411296402/supp5.xls 

Additional file 6  

Title: GO enrichment analysis for genes in RIDGEs and anti-RIDGEs. 

Description: Enriched GOBP terms for all genes located within RIDGEs and anti-RIDGEs. BY: 

adjusted p-values for the Benjamini & Yekutieli step-up FDR controlling procedure. 

http://www.biomedcentral.com/imedia/2980093296402834/supp6.xls 
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    The completeness of the chicken genome sequence in 2004 [1] represented a landmark in 

chicken biology and has opened new possibilities to increase our understanding of the 

biological functions of the genes within the chicken genome. As introduced in Chapter 1, the 

chicken sequence also provides a valuable reference for investigating the evolution of more 

general mechanisms of gene transcription in vertebrate genomes. An important challenge in 

the post-sequence era of chicken biology is determining the functional role of known genes 

and identifying previous un-characterized genes. In this thesis I have described two genome-

wide gene expression surveys (Chapter 4 and 5) across adult chicken tissues and embryonic 

stages/tissues and used these to characterize the general expression profiles of genes in the 

chicken genome. These resources proved to be a valuable resource to understand basic 

mechanisms of gene regulation in vertebrates (chapter 6) and also in the future will further 

help to improve the accuracy of gene annotation in the chicken and for further studies to 

investigate gene transcription regulation and evolution in vertebrates (Chapter 4).  

 

7.1 The gene models in the chicken genome  

    Microarrays can only monitor expression of genes which are included on the array while 

the problems of probe annotation on the array, in particular for farm animal species, has been 

introduced in Chapter 2.  

    The chicken 20K oligoarray used in this project was originally designed based on the first 

chicken assembly (WASHUC1, Mar 2004) and mainly based on the gene models of Ensembl 

release version 30 [2]. This platform includes 20,460 probes targeting 14,748 unique 

Ensembl genes and other expressed sequences (e.g., EST, cDNA clones). The second 

chicken assembly (WASHUC2, May 2006) was released with higher sequence quality and 

coverage, requiring an update of the annotation of the probes on the array and to estimate 

the probe specificity using the updated information. In total, 14,900 probes (out of 20,460 

probes) targeting 8,792 Ensembl genes were uniquely mapped to the second chicken 

assembly using oligoRAP [3]. The 5,956 Ensembl genes that were missed was mainly due to 

the following reasons: 1) the update of the assembly from WASHUC1 to WASHUC2 resulted 

in some changes of sequences; 2) gene models in Ensembl from release 30 were updated in 

the current version and a relatively large number of gene models from previous assembly 

was updated or removed; 3) the stringent settings of oligoRAP to find hits and our decision to 

exclude probes that have more than one perfect hit in the genome. The latter to increase the 

accuracy of the functional annotation of the probes on the array in order to be able to 

unequivocally interpret the expression patterns obtained.  Furthermore, many probes (from 
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14,900 mapped probes) with unique perfect hits in the WASHUC2 assembly and e.g. 

showing a tissue-specific expression profile do not map to known Ensembl gene models. The 

individual examples of brain-specific probes (Chapter 4) imply that the current prediction of 

the 3’ UTR of chicken genes is not perfect in the WASHUC2 genome assembly. In addition 

other expressed probes not mapped to known genes imply that the chicken genome contains 

a large number of still un-annotated transcribed regions.  

    In the current chicken genome assembly (WASHUC2, May 2006), still many sequences 

have not been assigned correctly to a known chromosome (chr_random sequences), and the 

10 smallest microchromosomes are still missing. Although a significant proportion of the 

chicken genome could not be assigned correctly to the current assembly or is even 

completely missing, new sequencing technologies are expected to further improve future 

genome assemblies of the chicken genome. The re-sequenced chicken genome at 

Washington University using 454 sequencing technology (Roche) and the new assembly will 

provide a better reference for microarray probe mapping, and therefore, provide more 

accurate probe function annotation on the chicken 20K oligoarray platform used in this study. 

This shows that re-annotation of the probes on the array using tools like OligoRAP is needed 

for every new genome build. Furthermore, this also shows the need for increased efforts of 

(manual) annotation of chicken genes. Such efforts will further increase the usefulness of the 

resources described in this these in the future. Our expression data of the 5,560 un-mapped 

probes (on the chicken 20K oligoarray) in the two expression surveys across different tissues 

and developmental stages (Chapter 4 and 5) provides further evidences for the  expression 

profiles of many of the un-characterized transcribed regions (both new genes as well as 

unknown alternative splicing variants or known genes) in the chicken genome. This 

information will further help to improve the much needed further functional annotation of the 

chicken genome.  

    In addition to a better genome assembly, annotation pipelines like OligoRAP will need to 

be updated too to adapt the annotation strategies to our changing insights in gene 

expression. By doing so, we will ensure the availability of the most accurate probe annotation 

available to study gene expression using microarrays. 

 

7.2 Compactness of housekeeping genes 

    As described in chapter 4, housekeeping genes, compared to tissue-specific genes, are 

relatively compact, i.e. shorter gene, shorter coding sequence length, shorter average intron 

size, and shorter intergenic region. This suggests selective constraint of compactness on 

housekeeping gene (widely expressed genes). The GO enrichment analyses show that these 
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“housekeeping genes” are involved in essential biological processes. This finding was further 

validated in Chapter 5 using gene expression data surveying completely different stages 

during chicken development. As discussed in Chapter 5, about 81% of “housekeeping genes” 

in adult tissues were also identified being “housekeeping genes” in embryonic stages/tissues. 

The large overlap of the two groups of housekeeping genes identified at two distinct 

developmental stages (adult and embryonic stages) confirms the housekeeping functions of 

most of these identified “housekeeping genes” in both analyses. The compactness of 

housekeeping genes in both analyses (Chapter 4 and 5) suggests a selection for 

compactness on housekeeping genes by reducing the cost of transcription.  

    In contrast, tissue-specific genes are less compact and have larger f non-coding (NC) 

sequences (introns and intergenic regions). Active regulatory elements (REs) from 

anonymous NC sequences have been identified comparing human and draft zebrafish 

genomes, and were reported to be strongly involved in modulating tissue-specific expression 

of a green fluorescent protein reporter vectors using zebrafish transient transgenesis [5]. A 

similar finding was also reported in Arabidopsis where a small intergenic region was found to 

drive exclusive tissue-specific expression of the adjacent genes [6]. Therefore, the larger NC 

regions of tissue-specific genes found in this thesis may suggest that the regulation of 

expression of these genes in a number of specific tissues might have resulted in more 

complex regulation of transcription. A larger number of cis-regulatory elements might be 

involved in tissue-specific gene transcription and this would need larger regulatory “spaces” 

resulting in larger introns and intergenic regions in these genes. 

 

7.3 Gene expression conservation in vertebrates 

    The expression of orthologous genes is generally well conserved as compared to random 

gene pairs (Chapter 4). The results described in this thesis suggest that gene expression is 

under some selection constraint during evolution. However, the gene expression 

conservation study as described in Chapter 4 still has a number of limitations. First of all, 

different tissue samples used in different gene expression surveys are mixtures of cells of 

different types within certain tissues. For example, the majority of the tissues from the 

different organs also include general cell types such as those involved in the formation of 

blood vessels and connective tissues.  The gene expression levels measured in the surveys 

therefore included in this thesis are only a crude estimate of the average expression level in 

the different tissues analysed. Secondly, for the gene expression conservation study, 

although the sampled tissues in the different species were all from adult individuals, the ages 

may not be directly comparable across these species. The term “adult” only implies a crude 
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estimate of the time point during the development of the individuals in the different species. 

Thirdly, an obvious limitation in combining data from several different species (as well as 

different microarray platforms) is that as more species are included, fewer representative 

genes are found to be common amongst all. 

    Although there are limitations as described above, I have shown in Chapter 4 that the gene 

expression pattern of orthologous gene pairs, compared to random gene pairs, are more 

conserved. This is in agreement with the results obtained in a comparison of different 

mammals [7, 8]. In our study we extended these findings to a wide range of vertebrates 

including mammals, birds, and amphibians. Although the number of 1:1:1 orthologous genes 

among the three species was limited, the conserved gene expression patterns of these 1:1:1 

orthologous genes suggest that gene expression is under selection constraint in vertebrates 

during evolution. The finding on orthologous gene expression conservation in Chapter 4 has 

extended the range of species for gene expression conservation studies from mammals to 

birds and amphibians. By comparing distant species, our results provide evidence for gene 

expression conservation within vertebrates rather than only in mammals. 

    Furthermore, we show similarities of homologous tissues in terms of expression, brain 

tissues are highly correlated within the three species (mouse, chicken, and frog) indicating 

that the stronger evolutionary constrains posed on brain. In contrast, intestine and kidney 

show relatively low conservations. Kidneys have diverged functions in different vertebrate 

species [9] and intestines subject to greater environmental influence, genes expressed in 

these two tissues may be more likely to take on new roles of diverge in expression as means 

of adaptation.  

 

7.4 Regional regulation of gene transcription 

    Chapter 6 describes the first study constructing a transcriptome map in birds and confirms 

the existence of regional differences on transcription regulation in the chicken genome. The 

results reveal the presence of two distinct types of chromosomal regions characterized by 

clusters of highly or lowly expressed genes. Regions with clusters of highly expressed genes 

have higher gene densities, shorter genes, shorter average intron and higher GC content 

compared to regions with clusters of lowly expressed genes. Furthermore, the housekeeping 

genes are in favor of being located in RIDGEs in the chicken genome as discussed in 

Chapter 4, this indicates that these genes need to be expressed at relative higher levels and 

at a larger number of physiological conditions.  

    In vertebrates, transcription of protein-coding genes is performed by RNA polymerase II. 

Genes transcribed by RNA polymerase II typically contain two distinct families of cis-acting 
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transcriptional regulatory DNA elements: (a) a promoter, which is composed of a core 

promoter and nearby (proximal) regulatory elements, and (b) distal regulatory elements, 

which can be enhancers, silencers, insulators, or locus control regions (LCR) [10]. The 

findings in Chapter 6 suggest the existence of multi-level gene regulation: transcription 

factors (bind to promoter regions) determine whether a gene will be expressed and also 

establish a basic level of transcription; in addition, there is a substantial effect of the region 

where the gene is positioned. Furthermore, it was shown that large intergenic regions lacking 

transcribed genes and classified as gene deserts, may play a role in the regulation of 

neighboring genes [11].  Again, these findings clearly show the complexity of the regulation of 

gene transcription in vertebrate genomes.  

    The regional regulation of transcription has been reported to be relatively conserved 

between the mouse and human genome [12].  , Our comparative analysis between the 

chicken and human transcriptome maps (Chapter 6 of this thesis) suggests that the regions 

with clusters of highly expressed genes are relatively conserved between the two genomes 

as well. Given the evolutionary position of chicken on the phylogenetic tree, our results 

clearly show that the regional regulation is a common mechanism regulating gene 

expression in vertebrate species. The exact mechanism underlying this regional regulation of 

transcription in genomes is still largely unknown, but the conservation of such mechanism 

among human, mouse, and chicken [11, Chapter 6 of this thesis] clearly shows that it is 

under strict evolutionary constraints to maintain normal biological functions in vertebrate 

genomes.  

    The regional regulation of transcription could be regulated either through an activating or 

suppressive mechanism (RIDGEs and anti-RIDGEs) or both. Gene activation or suppression 

often is accompanied by changes in the histone code and/or DNA methylation [13]. It is not 

known whether the histone codes also play a role in the regional regulation of gene 

expression reported in this thesis, but histone modification can spread over large genomic 

distances and have been reported to be associated with activating gene expression [14, 15]. 

The ability to perform genome-wide analysis of histone modifications will enable us to identify 

regional effects of histone modifications on gene expressions, this will help us to understand 

to what extent histone modifications are involved in regional regulation of gene expression in 

the genome described in this thesis. 

 

7.5 Gene expression study in chicken in the future 

    The evolving knowledge of eukaryotic transcriptomes has shown that the eukaryotic 

transcriptome is much more complex than previously anticipated, involving overlapping 
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transcripts, transcribed intergenic regions and abundant non-coding RNAs [16]. Expression 

microarrays are currently the most widely used methodology for transcriptome analysis, 

although some limitations persist. These include hybridization and cross-hybridization 

artifacts, dye-based detection issues and design constraints that preclude or seriously limit 

the detection of RNA splice patterns and previously unmapped genes [17]. A new method, 

called RNA-Seq [17], which uses high-throughput direct sequencing of the transcripts within 

a specific sample, can provide a more comprehensive understanding of this complexity of the 

transcriptome. RNA-Seq involves direct sequencing of cDNAs using high-throughput 

sequencing technologies, thereby allowing the level of transcription from a particular genomic 

region to be quantified from the density of corresponding reads. Unlike array-based 

approaches, RNA-Seq gives a potentially comprehensive view of the transcriptome, and 

avoids the bias of only focusing on previously identified transcripts. Another advantage is its 

ability to provide information on transcripts that are expressed at very low levels, limited only 

by the total number of reads that are generated [17]. A recent study surveying the human 

transcriptome using RNA-Seq showed that, based on known transcripts, RNAseq can detect 

25% more genes than microarrays and exon skipping was found to be the most prevalent 

form of alternative splicing [18].  

    Furthermore, another recent study [19] reported that the deep sequencing used in RNA-

Seq experiments provides a major advantage in robustness, comparability and richness of 

expression profiling data and is expected to boost collaborative, comparative and integrative 

genomics studies among different experiments. The real challenge for microarrays in the 

coming years will be to remain up to date. Our understanding of the transcriptome is 

constantly evolving, and this makes it difficult for microarrays to stay current.  

    In this thesis, both expression surveys across tissues were performed using a chicken 20K 

oligoarray. Using this array more than half of the chicken genes in terms of Ensembl genes 

(8792 out of 15,908 known protein-coding genes) have been surveyed to study the regulation 

of gene transcription in the chicken. The limited number of genes included in the analyses 

described in this thesis was mainly due to the restrictions of this array platform as well as the 

still limited available annotation of the chicken genome. In the near future, the study of 

genome-wide gene expression will probably shift to sequencing-based technology because 

of the described advantages of the new technology. This will not only result in a more 

unbiased view of the transcriptome, but more importantly, it will boost further annotation of 

the chicken genome. In parallel, new developments in next generation sequencing will further 

improve the current genome assembly of the chicken, ultimately providing a more 

comprehensive view of this birds genome including the genes located on the currently still 

missing micro-chromosomes. .  
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7.6 Conclusions and future perspectives 

    The ultimate goal of genome research in chicken is the discovery of genes and regulatory 

regions and to understand the biological functions of these genes and their related regulatory 

networks. This knowledge can lead to a better understanding of candidate genes that 

perform key roles under specific experimental conditions. The research presented in this 

thesis resulted in the development of genome-wide gene expression resources for the 

chicken research community and these resources should provide a global picture of gene 

expression for other researchers in chicken biology, developmental biology or related fields. A 

number of methods to analyze microarray data and to extract biological information have 

been described. Selection on economy for compactness of housekeeping genes was 

identified and discussed in chicken, and furthermore, a novel level of gene transcription 

regulation was discovered in birds and this mechanism was shown to be conserved between 

human and chicken. 

    Regarding the future in genome research in chicken, given the rapid developments of new 

genomic tools such as surveys of genome-wide CNV (copy number variations) and SNP 

(Single-nucleotide polymorphism) detection, together with genome-wide gene expression 

data, a global picture of the relative impact of CNV and SNP on gene expression can be 

studied. Integrating genomic data from different sources, rather than using gene expression 

data alone, will lead us to a better understanding of the mechanisms of gene expression 

regulation in the chicken.  

 

Abbreviations 

RE: regulatory element 

NC: non-coding regions 

CNV: copy number variations 

SNP: Single-nucleotide polymorphism 
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    The chicken (Gallus gallus) is an important model organism in genetics, developmental 

biology, immunology, evolutionary research, and agricultural science. The completeness of 

the draft chicken genome sequence provided new possibilities to study genomic changes 

during evolution by comparing the chicken genome to that of other species. The development 

of long oligonucleotide microarrays based on the genome sequence made it possible to 

survey genome-wide gene expression in chicken. This thesis describes two gene expression 

surveys across a range of healthy chicken tissues in both adult and embryonic stages. 

Specifically, we focus on the mechanisms of regulation of gene transcription and their 

evolution in the vertebrate genome. 

    Chapter 1  provides a brief history of the chicken as a model organism in biological and 

genomics research. In particular a brief overview is presented about expression profiling 

experiments, followed by an introduction to gene transcription regulation in general. Finally, 

the aim and outline of this thesis is presented.  

    An important aim of this thesis is to generate surveys of genome-wide gene expression 

data in chicken using microarrays. In chapter 2 , we introduce microarray data normalization 

including background correction, within-array normalization and between-array normalization. 

Based on these results an analysis approach is recommended for the analysis of two-color 

microarray data as performed in the experiments described in this thesis. We also briefly 

explain the relevant methodology for the identification of differentially expressed genes and 

how to translate resulting gene lists into biological knowledge. Finally, specific issues related 

to updating microarray probe annotation in farm animals, is discussed. For the analysis of the 

microarray data in this thesis re-annotation of the probes on the chicken 20K oligoarray was 

done using the oligoRAP, analysis pipeline. 

    The vast amount of data generated from a single transcriptomics study makes it 

impossible to extract meaningful biological knowledge by manually going through individual 

genes from a list with hundreds and thousands of differentially expressed genes. In chapter 

3, we present a practical approach using a collection of R/Bioconductor packages to extract 

biological knowledge from a microarray experiment in farm animals. Furthermore, a locally 

adaptive statistical procedure (LAP) analysis approach is used to identify differentially 

expressed chromosomal regions in a microarray experiment. 

    Chapter 4  presents a genome-wide gene expression survey across eight different tissues 

(brain, bursa of Fabricius, kidney, liver, lung, small intestine, spleen, and thymus from 10-

week old chickens) in adult birds using a chicken 20K microarray. To a certain extent, most 

genes show some tissue-specific pattern of expression. Housekeeping and tissue-specific 

genes are identified based on gene expression patterns across the eight different tissues. 

The results show that housekeeping genes are more compact, i.e. are smaller, with shorter, 
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coding sequence length, intron length, and smaller length of the intergenic regions. This 

observed compactness of housekeeping genes may be a result of selection on economy of 

transcription during evolution. Furthermore, a comparative analysis of gene expression 

among mouse, chicken, and frog showed that the expression patterns of orthologous genes 

are conserved during evolution between mammals, birds, and amphibians.  

    The chicken embryo has been a very popular model for developmental biology. To study 

the overall gene expression pattern in whole chicken embryos at different developmental 

stages and/or embryonic tissues, a genome-wide gene expression survey across different 

developmental and embryonic stages was performed (chapter 5 ). The study included four 

different developmental stages (HH stage 3, 10, 15, 22) and eight different embryonic tissues 

(brain, bursa of Fabricius, heart, kidney, liver, lung, small intestine, and spleen from HH stage 

36). We were able to identify several embryonic stage- and tissue-specific genes in our 

analysis. Genomic features of genes widely expressed under these 12 conditions suggest 

that widely expressed genes are more compact than tissue-specific genes, confirming the 

findings described in chapter 4. The analysis of the differentially expressed genes during the 

different developmental stages of whole embryo indicates a gradual change in gene 

expression during embryo development. A comparison of the gene expression profiles 

between the same organs, of adults and embryos reveals both striking similarities as well as 

differences. 

    The overall goal of this thesis was to improve our understanding of the mechanisms of 

transcriptional regulation in the chicken. In chapter 6 , a transcriptome map for all chicken 

chromosomes is presented based on the expression data described in chapter 4. The results 

reveal the presence of two distinct types of chromosomal regions characterized by clusters of 

highly or lowly expressed genes respectively. Furthermore, these regions show a high 

correlation with a number of genome characteristics, like gene density, gene length, intron 

length, and GC content. A comparative analysis between the chicken and human 

transcriptome maps suggests that the regions with clusters of highly expressed genes are 

relatively conserved between the two genomes. Our results revealed the presence of a 

higher order organization of the chicken genome that affects gene expression, confirming 

similar observations in other species.  

    Finally, in chapter 7  I summarize the main findings and discuss some of the limitations of 

the analyses described in this thesis. I also discuss the different merits and shortcomings of 

studying gene expression using either microarrays or next-generation sequencing technology 

and propose directions for future research. The rapid developments in new-generation 

sequencing technology will facilitate better coverage and depth of the chicken genome. This 

will provide a better genome assembly and an improved genome annotation. The sequence-
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based approaches for studying gene expression will reduce noise levels compared to 

hybridization-based approaches. Overall, next-generation sequencing is already providing 

greatly enhance tools to further improve our understanding of the chicken transcriptome and 

its regulation. 
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    De kip (Gallus gallus) is een belangrijk model organisme in genetica, ontwikkelings 

biologie, immunologie, evolutionair onderzoek en landbouwkundige wetenschappen. Het 

gereed komen van de eerste versie van de sequentie van het kippen genoom heeft nieuwe 

mogelijkheden gegenereerd om genomische veranderingen tijdens evolutie in kaart te 

brengen, door het kippen genoom te vergelijken met dat van andere soorten. De ontwikkeling 

van oligonucleotide microarrays gebaseerd op de genoom sequentie heeft het mogelijk 

gemaakt om genoom wijde gen expressie studies uit te voeren bij kip. Dit proefschrift 

beschrijft twee gen expressie studies gebruik makend van een aantal gezonde kippen 

weefsels in zowel volwassen en embryonale stadia. Specifiek richten wij ons op het regulatie 

mechanisme van gen transcriptie en hun evolutie in het vertebrate genoom. 

    Hoofdstuk 1  geeft een kort overzicht van de kip als model organisme in biologisch en 

genomisch onderzoek. Met name wordt een kort overzicht gepresenteerd over expressie 

profiling experimenten, gevolgd door een introductie van gen transcriptie regulatie in het 

algemeen. Tenslotte wordt het doel en de opbouw van dit proefschrift gepresenteerd. 

    Een belangrijk doel van dit proefschrift is om onderzoek te doen naar genoome wijde gen 

expressie in kip gebruikmakend van microarrays. In hoofstuk 2  introduceren wij de 

normalizering van microarray gegevens, inclusief achtergrond correctie en normalisatie van 

zowel binnen als over arrays. Gebaseerd op deze resultaten wordt een analyse aanpak 

voorgesteld om de in dit proefschrift gegenereerde twee kleurige mircoarray data te 

analyseren. Verder leggen wij in het kort de relevante methodologie uit voor de identificatie 

van differentieel to expressie komende genen en hoe we deze lijsten met genen kunnen 

vertalen naar biologische kennis. Tenslotte is er specifieke aandacht voor het opwaarderen 

van de annotatie van microarray probes bij landbouwhuisdieren. Voor de analyse van de 

microarray data welke beschreven in dit proefschrift is de re-annotatie uitgevoerd van de 20K 

oligoarray probes met behulp van de analyse pijplijn oligoRAP. 

    Het merendeel van de data, welke gegenereerd is in een transcriptomics studie, maakt het 

onmogelijk om de hieruit betekenisvolle biologische kennis te extraheren door handmatig een 

lijst van duizenden differentieel tot expressie komende genen te bekijken. In hoofdstuk 3  

presenteren wij een praktische aanpak om biologische kennis uit een microarray experiment 

bij landbouwhuisdieren te halen, gebruikmakend van een verzameling softwareprogramma’s 

binnen R/ Bioconductor. Verder is er een “ locally adaptive statistical procedure” (LAP) 

analyse aanpak gebruikt om chromosomale gebieden met differentiële expressie in een 

microarray experiment op te sporen. 

    In hoofdstuk 4  presenteren wij een genoom wijde expressie studie met 8 verschillende 

volwassen kippen weefsels (hersenen, bursa van Fabricius, nier, lever, long, dunne darm, 

milt en thymus elk van 10 weken oude kippen) gebruik makend van de 20K kippen 
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microarray. Tot op zekere hoogte laten de meeste genen een zekere mate van weefsel 

specifieke expressie patronen zien.  De huishoud- en weefsel specifieke genen zijn 

geïdentificeerd op basis van de genexpressie patronen van de 8 verschillende weefsels. De 

resultaten geven aan dat de huishoudgenen compacter zijn, dat wil zeggen dat ze kleiner zijn, 

met kortere coderende sequentie, kortere intronlengte en een kleinere lengte van de 

gebieden tussen genen. De compactheid van de huishoudgenen kan een resultaat zijn van 

selectie op economische transcriptie tijdens evolutie. Verder laat een vergelijkende analyse 

van genexpressie tussen muis, kip en kikker zien dat de expressiepatronen van orthologe 

genen bewaard blijven tijdens evolutie tussen zoogdieren, vogels en amfibieën. 

     Het kippen embryo is een erg populair model systeem voor ontwikkelingsbiologie. Voor 

het bestuderen van het algemene genexpressie patroon in de embryo van de kip, van 

verschillende ontwikkelstadia en/of embryonale weefsels, wordt in hoofdstuk 5  een genoom 

wijde genexpressie studie beschreven van verschillende ontwikkelings en embryonale stadia. 

Deze studie omvat vier verschillende ontwikkelingsstadia (HH stadium 3, 10, 15 en 22) en 

acht verschillende embryonale weefsels (hersenen, bursa van fabricius, hart, nier, lever, long, 

dunne darm en milt van HH stadium 36). Wij waren in staat om in onze analyse verschillende 

genen te identificeren voor de specifieke embryonale stadia en weefsels. Genomische 

kenmerken van de genen welke wijds tot expressie komen, in de twaalf onderzochte 

condities, compacter zijn dan de weefsel specifieke genen. Dit bevestigd de bevindingen 

welke beschreven zijn in hoofdstuk 4. De analyse van de genen welke differentieel tot 

expressie komen tijdens de verschillende ontwikkelingsstadia van de gehele embryo’s laat 

een graduele verandering zien in genexpressie tijdens embryonale ontwikkeling. Een 

vergelijking van genexpresie profielen tussen hetzelfde weefsel van volwassen en embryo 

laat zowel opvallende overeenkomsten als verschillen zien 

    Het doel van dit proefschrift was om onze kennis te verbeteren van het mechanisme van 

transcriptie regulatie van de kip. In hoofdstuk 6  wordt een transcriptoom kaart van alle 

kippenchromosomen gepresenteerd, gebruik makend van de expressiegegevens 

beschreven in hoofdstuk 4. De resultaten laten de aanwezigheid zien van twee verschillende 

chromosomale regio’s die gekarakteriseerd worden door clusters van hoog en laag tot 

expressie komende genen. Bovendien laten deze gebieden een hoge correlatie zien met een 

aantal genoom specifieke kenmerken zoals gendichtheid, genlengte, intron lengte en GC 

gehalte. Een vergelijkende studie tussen de transcriptoom kaart van kip en mens met 

vergelijkbare weefsel types, suggereert dat de gebieden met clusters met genen welke hoog 

tot expressie komen relatief geconserveerd zijn tussen de twee genomen.  Onze resultaten 

laten zien dat er een hogere orde organisatie van het genoom van de kip is die van invloed is 

op genexpressie, wat in overeenstemming is met vergelijkbare waarnemingen bij andere 
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soorten.  

    Tenslotte worden in hoofdstuk 7  de belangrijkste bevindingen nog eens samengevat en 

bespreek ik enkele beperkingen van de in dit proefschrift uitgevoerde analyses. Verder 

bediscuteer ik de voor- en nadelen van genexpressie studies waarbij gebruik gemaakt wordt 

van microarray of nieuwe generatie sequentie technologie. Daarnaast wordt een voorstel 

gedaan voor toekomstig onderzoek.  

    De snelle ontwikkeling van de nieuwe generatie sequentie technologie zal resulteren in 

een zowel een betere dekking als sequentiediepte van het kippengenoom. Dit levert op zijn 

beurt weer een betere genoom assembly op en een verbeterde genoom annotatie. Een op 

sequentie gebaseerde aanpak bij een genexpressie studie zal de achtergrond verminderen 

in vergelijking met de op hybridisatie gebaseerde benadering. Samenvattend, de nieuwe 

generatie sequentie technologie levert reeds sterk verbeterde gereedschappen om onze 

kennis van het kip transcriptoom en de regulatie daarvan verder te vergroten. 
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