Organic greenhouse production, challenge of sustainable management of the root environment.

<u>Wim Voogt,</u> Pieter de Visser, Geert-Jan van der Burgt, Leo Marcelis

Wageningen UR Greenhouse Horticulture The Netherlands

Contents

Statistics
Organic horticulture, general
Organic matter, the key
Bottle necks of organic <u>greenhouse</u> horticulture
Research and progress last 10 years
Conclusions and research topics

Some data; Netherlands

Total agriculture 2 million ha
Organic farming 50.000 ha
Potatoes 1378 ha
Field vegetables 2267 ha
Glasshouse vegetables 85 ha
Glasshouse flowers < 5 ha

% of category 2.5 % 3.1 % 5.1 % **1.4 %** < **0.2 %**

Organic greenhouse production in NL

What is organic ?

No chemicalsNo chemical fertilisers

More than that

European context Soil – related aspects

EU-regulation 2091/92

Philosophy of organic farming: Soil is the main production factor

- Soil in its natural status
- Key role: micro flora and –fauna
 - Making nutrients available
 - Disease suppression
 - Growth enhancement

Substrate growing excluded

Organic greenhouse nurseries

Intensive

Fruit vegetables:

- Heated greenhouses
- Tomato, Pepper, Cucumber,
- Limited crop rotation
- Intensively grown
- Soil sterilization

Extensive

- Variety of crops:
 - Cold or minimal heated greenhouses
 - Leafy vegetables, Beans, e.g.
 - extensively grown (non-heated)
 - abundant crop rotation
 - No sterilization

Important aspects

- Crop rotation
- Base dressing

- Organic matter supply, primarily compost: feeding microorganisms
- Manure only supplemental (source organic farming !)
- Top dressing, only supplemental
 - Additional fertilizers
 - No synthetic fertilizers (N,P, K)
 - Only mined minerals
 - Bone products prohibited
 - Other slaughterhouse products restricted

Certification of fertilisers obligatory (Dutch: SKAL)

Additional regulations (not specific organic)

(Dutch legislation) restriction in P input from manure - (200 kg P ha-1 yr-1) restriction in total N input animal source • 170 kg N ha-1 restriction in total N and P input • (crop specific: tomato 1620 N, 300 P kg ha¹ yr¹) reuse of drainage water rainwater collection 500 m³/ ha

New "threads"

European regulation

- "Water Framework Directive"
- Nitrate Directive

 Dutch regulations towards "Restriction of emissions from the root zone"
 → 2010: emission targets

Organic farming = Holistic approach

Key role organic matter

 Physical properties: structure, pores, water holding capacity, etc

- Chemical: nutrient buffer
- Food/energy for micro organisms
- Source of plant nutrients (N P,K....etc)

The fate of Nitrogen: Soil processes involved

- Supply
 - fertilisation
 - ¥
- Availability
 - mineralisation: Manures, SOM (soil organic matter), Organic fertilisers
- Removal
 - Crop
 - Immobilisation
 - Denitrification
 - Leaching

Aim: Balancing

- At the right time
- At the right spot (roots)
- Equal quantity

The fate of Nitrogen: Soil processes involved

Nitrogen availability

Soil temperature Source specific factors • C/N ratio • Particle size • Organic compounds Soil specific factors Mineral N content • moisture / air • pH Way of fert. application

Organic matter: sources

Animal source

• Manures, Slurries, Waste: Slaughter-house, Fish industry

Plant source

- composts
- waste products:
- food industry: rice-, poppy-, cocoa-, ricinus
- wine / beer industry

Organic fertilisers

Base dressings
Manure, Compost
Top dressings
Broadcasting (pellets, granules, crystaline
Dried manure pellets, compound granules
Liquid

Vinasse, hydrolised organic waist

Choice of organic inputs

Nutrient content e.g. quantity

- Crop demand
- Soil properties
- Legislative restrictions
- Nutrient delivery
 - decomposition/ mineralisation

Bottle necks

Bottle necks

- Restrictions on mineral inputs and fertilizers allowed
- Surpluses of N and P
- Unequal nutrient ratios
- N delivery and crop demand not synchronous
- Irrigation surplus and N leaching
- Soil borne diseases
- Nematodes

Problem

less flexibility

Potential leaching Unbalanced fertilization Potential leaching and deficiency

Environmental pollution

Yield reduction

Research topics

- Minerals and fertilizers
 - Nutrient availability and crop demand
 - Understanding the N- Dynamics
 - Search for alternative N-sources
 - Search for fertilizers low in residual salts
 - Alternatives for animal manure

Organic matter

- Type, application, availability
- Disease suppression

Soil borne diseases

- Suppression organic matter
- Rootstocks
- Alternatives for steam sterilization
- Biological control of pathogens and nematodes

Mineral balance: Results monitoring five organic nurseries (1999 - 2002)

Case:

Six year monitoring typical organic vegetable nursery Aim: tuning supply and demand of nutrients

Rotation: Tomato – Cucumber – sw. pepper crop rotation

Base dressings:

Compost + organic fertilisers + minerals

- Top dressing:
 - Compost + organic fertilisers

Changing fertilization strategies

Nitrogen balance

Cumulative N supply and crop uptake

Organic matter accumulation

Nitrogen Gap

Immobilisation

Denitrification

P supply in relation to available P in soil (buffer) more supply than needed

Base dressing, top dressing and mineralisation

Mineral balance tomato, total supply

Example tomato, yield 45 kg/m2

Availability per year

Mineral balance tomato, net available

Unequal mineral ratios

N-dynamics during the growing period

Results sweet pepper experiment

Denitrification

Los of Nitrogen through:

$NO_3 \rightarrow bacteria \rightarrow NO_2, NO, N_2$ anaerobic conditions

Denitrification

Measured N denitrification in chrysanthemum crops with 4 organic fertilizers cumulative N kg ha⁻¹

Denitrification

In organic (greenhouse) horticulture:Highs risks

- Rich in organic matter
- Abundant micro organisms
- Sufficient free NO₃
- Frequent irrigation \rightarrow anaerobic sites

Sofar: Fertiliser application complicated

Choice of organic source
Tuning supply and demand
Soil processes
Unbalanced N P K etc. supply
Residual salts

Decision support model for organic matter management

Cropping plan + expected yield
Soil properties and minerals
Water management
Choice organic fertilisers

Base dressing
Side dressings

– 1			Estimated	
Example	Andel	10000 m2	yield	Datum
	Area		Esti	mated dem
	Croppings		kg/m2	Ν
	Lettuce		6	200
	Tomato		45	921
	Total demand			1122
	Fertilisation plan		Ton/ha	
	Base dressi	ings		
	Manure	FYM	10	57
	Compost	groencompost	80	375
		Megrow structuur	20	104
	Tatalhasa			525
Dectand Heb	Total base dressings			
Teelspeeren: Historische bemesting Bodemgegevens Grafmieren Tabelen	Top dressings			
¥ 400	Bijmesten	Feathermeal 13 00	1.0	130
5 100		ECO mix 17 4 12	2.0	140
⁰ 25 dec 24 jan 23 feb 25 met 24 apr 24 mei 23 jun 23 jut 22 aug 21 sep 21 dat 1200 j		Monterra Malt	6.4	319
1100	Mineral ferti	il. Potassium sulphate	3.0	0
2 000				0
10 1700	Total top dr	essings		589
	Total			1124
200 100 22				
025 dec 24 jan 23 teb 25 mt 24 tec 24 mei 23 jan 23 jui 22 aug 21 okt	e orafiek-lin: min. kosten)			
	erbroken lijn: min. N-verlies)			

Example output

inimaal N-verlies

Туре	Naam van de meststof	Datum	ton/ha	N, kg/ha
-	bodem o.s.	-	105.000	1680
gewasresten	komkommer_rest	-	30 300	77
compost	groencompost	15-dec-04	53.383	250
hulp	13 x x Verenmeel	09-feb-05	0.500	65
hulp	13 x x Verenmeel	09-mrt-05	1.558	202
hulp	13 x x Verenmeel	06-apr-05	1.375	179
hulp	13 x x Verenmeel	04-mei-05	1.955	254
hulp	13 x x Verenmeel	01-jun-05	1.446	188
hulp	13 x x Verenmeel	29-jun-05	1.162	151
hulp	13 x x Verenmeel	27-jul-05	0.706	92
hulp	13 x x Verenmeel	24-aug-05	0.766	100
compost	groencompost	hist. over:	80.366	353
compost	groencompost	hist. over:	69.357	304
compost	groencompost	hist. over:	62.291	273

Recommended applications

To conclude.. Organic greenhouse crops

- Tight up by many rules and regulations
- Main remaining bottle necks:
 - Crop rotation too limited
 - N and P imbalanced supply
 - Reduction in leaching imply salinity
 - Soil born diseases
 - Zero emission from root zone
- Challenges and Chances:
 - Convince growers to use DSS organic matter
 - Meeting the standards for sustainable horticulture
 - Fine tuning (N) supply and demand
 - Controlled irrigation (using innovative tools)
 - Search for fertilizers low in residual salts

Lots of work lays ahead

