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1.1 Background  

During the last few centuries anthropogenic activities have intensified in order to fulfil the 
demands of an ever increasing global population (United Nations 2007). Although these 
activities have substantially contributed to an increasing human well-being and supported the 
economic development of many regions all around the world, they are responsible for the 
current ecological degradation of our planet (Christensen et al. 1996; Gardner 2005; Steffen et 
al. 2005). Reduction of global biodiversity, overexploitation of fresh water resources and 
erosion, salinization and contamination of agricultural soils are some of the consequences of 
intensifying anthropogenic activities (Millennium Ecosystem Assessment 2005). 
Furthermore, anthropogenic activities are actively modifying atmospheric composition and, as 
a consequence, changing our climate (Foley et al. 2005; Pielke Sr. 2005). In this context, 
having accurate and up-to-date information about our environment is essential for quantifying 
the nature and extent of the activities that are reshaping the Earth surface and to study their 
potential impact on our future welfare.  

Earth observation satellites deliver synoptic, timely and cost effective data that, if properly 
processed, can be transformed into an invaluable source of information about the ecological 
condition of our planet (DeFries and Townshend 1994; Running et al. 1995; Townshend et al. 
1991). A number of applications such as forecasting weather conditions, forecasting crop 
yield, mapping urban areas, monitoring natural resources or addressing emergencies would 
not be possible without Earth observation satellites.  

This thesis focuses on the use of Earth observation satellites for land applications. The 
“land remote sensing” era was initiated in 1972 when the first Landsat satellite, at that time 
known as Earth Resources Technology Satellite, was launched at Vandenberg Air Force Base 
in California (Hall 1992). Since then, Earth observation satellites have revolutionized the way 
that scientists, politicians and the general public view the Earth (Lauer et al. 1997). Land 
remote sensing data is used for deriving information like land cover maps or continuous maps 
on, for instance, vegetation properties.   

Because of the evident advantages offered by land remote sensing, land cover maps are 
nowadays operationally produced by several national and international agencies using 
remotely sensed data (Gutman et al. 2004). These maps are used for a wide range of 
applications like estimation of the area covered by agricultural crops (Gallego 2004) or to 
report greenhouse gas fluxes for the United Nations framework convention on climate change 
(UNFCC) and the Kyoto protocol (Wigjey 1998). Land cover and land use maps are also a 
pre-requisite for environmental monitoring activities like the one proposed for the European 
Union (EU) Habitat Directive, the EU Common Agricultural Policy or, more recently, the 
ones that will be used in the framework of the Global Monitoring for Environment and 
Security, GMES (European Commission 2003; Schreier and Dech 2005). In this respect, 
GMES has defined a priority theme on “Land cover change in Europe” that should contribute 
to the requirements of the United Nations Convention on Biodiversity (United Nations 1992). 
In addition, land cover maps are consistently used as input in several climate and agro-
ecosystem models (Champeaux et al. 2000; Dickinson et al. 1998). Last but not least, land 
cover maps are of great help to constrain the retrieval of biophysical and biochemical 
parameters of vegetated canopies (Myneni et al. 1997b). Continuous parameters like leaf area 
index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR) or leaf 



Chapter 1 

4   

chlorophyll content (Cab) can be mapped at different spatial scales with far better accuracy 
when land cover type is known. Knowledge on these parameters is very important because 
they are a pre-requisite for various applications such as crop yield forecasts (Boegh et al. 
2004) or monitoring ecosystem productivity (Running et al. 2004).  

Despite the large variety of Earth observation sensors and derived products, our current 
understanding of the Earth system and land cover change dynamics is still far from complete 
(Foody 2002). One of the reasons for this is the difficulty of mapping and monitoring 
complex landscapes where processes take place at very different spatial and temporal scales 
(Hall et al. 1988). 

1.2 Remote sensing of heterogeneous landscapes 

Remote sensing images are acquired using the so-called “raster data model” (Atkinson 
2007). This model is comprised of non-overlapping areal units called pixels that are arranged 
in a regular grid (Burrough and McDonnell 1998). This means that remote sensing images are 
acquired using a defined pixel and grid size that are fixed prior to data acquisition (Atkinson 
2007). Traditional remote sensing processing techniques work according to this fixed pixel 
size. The recorded signal for a pixel is processed to create products where a unique land cover 
class label or a unique biophysical parameter value is assigned to each pixel. In principle, this 
approach is useful when the pixel size and the spatial scale of the feature or process, that we 
want to study, closely match. However, even in this case, mixed pixels will occur in the 
image. Mixed pixels are pixels that contain information from more than one land cover type 
or, when fully covered by one land cover type, a pixel that is not homogeneous in all its 
properties (Chikara 1984; Fisher 1997; Napelka and Hyde 1972). This kind of pixels can be 
described by the inherit heterogeneity of vegetation and soils, which is often augmented by 
anthropogenic activities that create heterogeneous and fragmented landscapes with a mixture 
of urban areas, water, natural, semi-natural and agricultural areas. 

The mixed pixel problem is minimized when using very high or high spatial resolution data 
like Quickbird, IKONOS, Landsat Thematic Mapper (TM) or SPOT High Resolution Visible 
and Infra-Red (HRVIR) data which provide pixel sizes ranging from sub-meter to about 30 m. 
In these images, object oriented image processing techniques or the use of contextual 
information can assist in dealing with mixed pixels (Burnett and Blaschke 2003; Hay et al. 
2003). However, the use of very high and high spatial resolution sensors has some associated 
difficulties. First of all, sensor design constraints prohibit recording at a very wide swath at a 
high spatial resolution. Secondly, the amount of data collected by high spatial resolution 
sensors is limited by the current downlink capabilities as well as by the current possibilities 
for archiving, distributing and processing the data. In practical terms, this means that there is a 
trade-off between the spatial, spectral and temporal resolutions provided by Earth observation 
sensors. As a result, sensors working at high spatial resolution typically offer less spectral 
bands and less spatial coverage than sensors working at coarser resolutions.  

With respect to the spectral resolution, very high and high spatial resolution sensors 
typically offer data in less than 6 or 7 spectral bands. Nevertheless, for ecological or 
mineralogical applications, hyper-spectral sensors measuring the reflected radiation in 
hundreds of narrow bands are preferred (Turner et al. 2003). Airbone sensors can supply 
hyper-spectral data at very high spatial resolutions. However, they do not provide continuous 
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and regular acquisitions and their data are more expensive than the ones provided by 
spaceborne sensors (Aplin 2004). 

The reduced spatial coverage offered by very high and high spatial resolution sensors 
results in relatively poor revisit times. For instance, the Landsat TM sensor has a revisit time 
of 16 days as compared to typical coarse resolution sensors (>1 km pixel size) like the 
Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and 
Atmospheric Administration (NOAA) satellites, which deliver daily images over the same 
area. This is a significant limitation to the use of high spatial resolution sensors for monitoring 
vegetated areas. Furthermore, northern countries have a short growing season and regular 
acquisitions are hampered by extensive cloud coverage. For instance, in the United Kingdom 
only 1 every 6 passes of Landsat TM data is usable (Legg 1991; Marshall et al. 1994). Similar 
cloud coverage problems are found in other northern regions (Jorgensen 2000) and, as 
discussed by Asner (2001), clouds are also a major obstacle to monitor tropical regions using 
high spatial resolution data. Moreover, the use of very high spatial resolution can result in an 
oversampling problem for certain landscapes where land cover classification accuracy might 
even decrease because of spectral confusion caused by within-class variability (Aplin 2006). 
Finally, very high and high spatial resolution imagery is usually not freely available. 
Therefore, using this kind of data to monitor large regions can be prohibitively expensive 
(Fraser et al. 2005).  

Because of their high revisit time, coarse spatial resolution sensors are potentially more 
successful in acquiring cloud free images but at the expense of providing images with 
(potentially) many mixed pixels. However, recent developments of imaging devices have 
resulted into a new kind of sensor that works at a medium spatial resolution while providing a 
spectrally enhanced configuration. Two sensors belong to this category, the MODerate-
Resolution Imaging Spectroradiometer (MODIS) and the MEdium Resolution Imaging 
Spectrometer (MERIS): 

 
• MODIS is a payload instrument onboard two NASA platforms: Terra and Aqua, 

which were respectively launched in 1999 and in 2002 (Salomonson et al. 1992). 
MODIS captures information at 3 spatial resolutions (2 bands at 250 m, 5 bands at 
500 m and 29 bands at 1000 m) and it covers the entire Earth every 1-2 days. 

 
• MERIS was launched in 2002 onboard the ESA/ENVISAT-1 platform which is the 

largest ever built Earth observation satellite (Rast and Bézy 1990). MERIS is a 
programmable device that measures the radiation reflected by the Earth surface in 
the solar spectral range (390 to 1040 nm) and delivers data in 15 bands. Two spatial 
resolutions are provided: 300 m in the so-called “Full Resolution” (FR) mode and 
1200 m at “Reduced Resolution” (RR) mode. MERIS also has a global coverage at 
a revisit time of 2-3 days. 
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In this thesis, we concentrate on exploring the use of MERIS images because of the 
following reasons: (i) MERIS has a better spectral resolution in the visible and near-infrared 
region than MODIS: 15 narrow bands vs. 7 bands. More spectral bands might offer a better 
class separability and potentially better classification results. In addition, MERIS delivers data 
in the spectral region known as the “red-edge” (Clevers et al. 2002). This region is 
particularly interesting for studying canopies because it is linked to the amount of chlorophyll 
in the vegetation (Horler et al. 1983). (ii) MERIS is a pushbroom sensor that offers high 
quality data at unprecedented spectral and spatial resolutions. MODIS has some operationally 
limiting characteristics. For instance, because of the whiskbroom design, consecutive scans 
overlap at large viewing angles, which causes discontinuities of the latitude/longitude fields 
(Khlopenkov and Trishchenko 2008). In addition, MODIS has a pronounced triangular point 
spread function (PSF). This means that only 75 % of the information assigned to a MODIS 
pixel is coming from the corresponding nominal observation area (Tan et al. 2006). Besides, 
the geometric processing and gridding artifacts of MODIS products result in an average 
overlap between the observations and their grid cells of less than 30 % (Tan et al. 2006). 
Finally, there is a band-to-band registration error in the MODIS sensor onboard Aqua (Xiong 
et al. 2006). Because of these effects, MODIS is, in principle, less suitable for sub-pixel 
analysis than its European counterpart (Kristof et al. 2007). (iii) MERIS is a European 
satellite so its application at the European scale is promoted and supported both by ESA and 
the EU. 

Despite its enhanced spatial, spectral and temporal resolutions, MERIS is still not able to 
fully capture the variability present in typical European landscapes (Addink et al. 2006). 
Medium spatial resolution images of heterogeneous and highly fragmented landscapes contain 
a significant number of mixed pixels. Dealing with this kind of pixels is important for both 
thematic and quantitative applications. For instance, land cover area estimation by simply 
counting pixels belonging to each class can only be accepted if the classification accuracy is 
very good and if the impact of mixed pixels is negligible (Gallego 2004).  

Moreover, dealing with mixed pixels is also required for an accurate retrieval of 
biophysical and biochemical parameters (Garrigues et al. 2006). For instance, it has been 
shown that when there is a lot of mixing, the retrieval uncertainty of MODIS products can be 
quite high (Tan et al. 2005). Sub-pixel snow cover reduces the accuracy of MODIS LAI and 
fAPAR estimates (Tian et al. 2004). This is also true for sub-pixel water bodies and sub-pixel 
cloud coverage. This is why the validation of products derived from medium and coarse 
spatial resolution data is done over relatively homogeneous sites and using high spatial 
resolution data (SPOT or Landsat) as a reference (Baret et al. 2006; Garrigues et al. 2006). 

An operational solution to the mixed pixel problem is, therefore, required. One approach 
could be to only use coarse and medium spatial resolution sensors to pinpoint major regions 
of change that can later be studied with high spatial resolution sensors. In this case, the size of 
the minimum patch size that can be identified depends on many factors like fragmentation of 
the landscape, magnitude of change or the resolution of the sensor (Fraser et al. 2005). For 
instance, Fraser et al. (2000) found that patches of at least 10 km2 were needed to accurately 
map burned areas using AVHRR data. This patch size is too large for most of the European 
landscapes. Another approach to deal with mixed pixels could be to combine or merge images 
acquired at different spatial resolutions. This is an example of data fusion. 
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1.3 Data fusion 

Given the complexity of the Earth surface and the diversity of processes that take place on 
it, innovative approaches able to make use of the wide variety of Earth observation sensors 
and of the already existing ancillary data are required to further improve our mapping and 
monitoring capabilities (Woodcock and Ozdogan 2004). In this respect, the use of data fusion 
methods and techniques seems to be one of the most logical approaches to continue the 
exploration of our planet. Wald (1998) proposed the following definition for data fusion 
among the remote sensing community: “Data fusion is a formal framework in which are 
expressed means and tools for the alliance of data originating from different sources. It aims 
at obtaining information of greater quality; the exact definition of “greater quality” will 
depend upon the application”.  

The same year, this definition was adopted by the European Association of Remote Sensing 
Laboratories, EARSeL. According to it, combining data from different spectral bands to 
create vegetation indices, or combining images acquired by the same sensor at different points 
in time should be considered as a data fusion exercise (Wald 1999). Moreover, strictu sensu, 
data assimilation can also be considered as data fusion because it deals with the inclusion of 
measured data into a model so that the quality of the output is increased (Wald 1999). 
However, in practice data fusion is associated with the process of combining two or more 
datasets using diverse algorithms (Ehlers 1991; Pohl and Van Genderen 1998).  

In the last decades, a large number of data fusion methods have been described in the 
remote sensing literature (see Yu el al. (2006) for a review). This is a consequence of the 
increasing need to integrate the enormous amount of data that is operationally collected by 
remote sensors. Besides this, Earth observation data is inherently complementary because of 
the current sensor design (cf. section 1.2). This is why fused images generally offer increased 
interpretation capabilities and more reliable results (Hall and Llinas 1997; Pohl and Van 
Genderen 1998) than using a single sensor. Data fusion should, however, be understood as a 
framework to study complex problems and not merely as a collection of tools and means to 
combine remote sensing images (Wald 1999). This framework should support the 
interpretation of multi-sensor and multi-resolution images (Quattrochi and Goodchild 1997; 
Tate and Atkinson 2001) because there is not a (unique) solution to the problem of finding the 
“right” spatial resolution to map and monitor the Earth surface (Aplin 2006; Ju et al. 2005). 
Thus understood, data fusion can assist dealing with mixed pixels. The next section presents 
the main model to deal with mixed pixels and sketches its use to combine data acquired over 
the same area but at different spatial resolutions.  

1.4 The linear mixing model  

Physical models are commonly used by the remote sensing community to extract 
quantitative information about leaves (Jacquemoud and Baret 1990), vegetated canopies 
(Verhoef 1984; Widlowski et al. 2007) and soil properties (Hapke 1981; Liang and 
Townshend 1996). These models are simplified versions of reality that describe the photon-
matter interactions and that allow us to derive quantitative information. Although of a 
different nature, a physical model is also commonly used to deal with mixed pixels. This 
model is known as the linear mixing model (LMM) and it describes how the solar radiation 
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mixes when interacting with the different land cover types present in the pixel footprint 
(Adams and Gillespie 2006). The LMM is formulated as follows: 

 

( ) nbief
nc

c
iicci ,...,2,1DNDN

1
, =+⋅=∑

=

                   (1.1) 

 
where DNi is the measured value of a mixed pixel in the spectral band i, DNc,i is the 

measured value of the pure class c in the spectral band i, fc is the fraction of class c present in 
the mixed pixel, ei is the residual that accounts for the difference between the modelled and 
the measured spectra (again, in band i) and nc and nb are respectively the number of classes in 
the mixed pixel and the number of spectral bands of the sensor. 

Laboratory experiments have shown that the mixing can also be nonlinear (Adams and 
Gillespie 2006). Nonlinear mixing occurs when radiance is modified by one material before 
interacting with another one (multiple scattering occurs). Neural networks, decision trees or 
vegetation indices are often used to tackle nonlinear unmixing (Borel and Gerstl 1994). These 
methods typically require a large dataset of training pixels, for which both the fractional 
coverage and the spectra are known (Plaza et al. 2005). Other methods have been proposed to 
deal with mixed pixels like the use of fuzzy classifiers or use of a posteriori probabilites from 
a maximum likelihood classification (Bastin 1997; Foody 2004). However, several studies 
have shown that in complex and non-random landscapes, the linear mixing model offers a 
reasonable approximation (Adams et al. 1995; DeFries et al. 2000; Du and Chang 2004; Hall 
et al. 1995; Ramsey and Christensen 1998; Roberts et al. 1993; Shimabukuro and Smith 
1991). Furthermore, the implementation of linear unmixing is, in general, less complex and 
more stable than nonlinear methods (Chen and Vierling 2006).  

The main application of the linear mixing model is the retrieval of the proportions of the 
land cover types present in a pixel (Settle and Drake 1993). This application is known as 
spectral unmixing or, more generally, as spectral mixture analysis (SMA). The proportions 
retrieved using SMA are useful for a wide range of applications (Adams and Gillespie 2006). 
For instance, they can be used to get more accurate estimations of the area cover by the main 
components of a landscape than by counting classified pixels (Cross et al. 1991). 
Furthermore, SMA can also be used to mitigate background effects and improve the retrieval 
of continuous parameters like LAI. In this case, the percentage covered by the relevant class is 
first estimated and, subsequently, it is used to retrieve the values of the biophysical variable of 
interest (Peddle et al. 2001; Peddle et al. 1999). SMA has been used to separate forest from 
understory so that “pure” forest NDVI time series could be obtained for running a forest 
productivity model (Maselli and Chiesi 2005, 2006). A similar approach was used by Yang et 
al. (2007) to estimate crop abundance and relate it to crop yield. The results were better than 
when using vegetation indices. Finally, North (2002) has shown that the use of SMA with 
coarse spatial resolution data to estimate fractional cover also outperforms the use of 
vegetation indices. It is also worth noting that several authors have tried to spatially allocate 
the proportions within the pixel. This technique is known as sub-pixel mapping (Atkinson 
2004). Artificial neural networks and other optimization and geo-statistical techniques are 
used to produce a map with the fractions derived from the SMA (Atkinson et al. 2008; Tatem 
et al. 2003). However, sub-pixel mapping is an under-determined inverse problem and, 
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therefore, it is very difficult to design a generally applicable method valid for all kinds of 
images, spatial resolutions and landscapes (Atkinson 2004; Boucher and Kyriakidis 2006). 

The results of the SMA are strongly influenced by the selection of the main constituents of 
the image (the endmembers). In spite of the progress made to develop (semi-)automatic 
endmember extraction methods (Martinez et al. 2006; Plaza et al. 2004), this remains a 
challenging task (especially when most pixels in the image are mixed because then hardly any 
pure signal can be found in the scene). Furthermore, the number of components that can be 
unmixed is limited by the number of spectral bands of the image (Boardman 1990). This 
implies, for instance, that panchromatic images cannot be used for spectral unmixing and that 
hyperspectral images are preferred over multispectral ones. However, if a high and a low 
spatial resolution image are simultaneously available over a certain study area, the LMM can 
also be used to combine the information provided by these images. This application is known 
as unmixing-based data fusion and it aims at downscaling the spectral information of the low 
spatial resolution image to the spatial resolution provided by the high spatial resolution image 
(Zhukov et al. 1999). This kind of unmixing does not require a priori knowledge of the main 
components present in the low spatial resolution image because there is no need to identify 
their pure signals. In fact, these signals are the output. Therefore, the unmixing-based data 
fusion approach can be applied even if the low resolution image only has mixed pixels or a 
small number of spectral bands.  

1.5 Objectives 

The main objective of this thesis is to develop a multi-sensor and multi-resolution data 
fusion approach that allows mapping and monitoring heterogeneous and highly fragmented 
landscapes using medium spatial resolution data. More precisely, we explore the possibilities 
of using the linear mixing model (LMM) to downscale MERIS full resolution (300 m) data to 
a Landsat-like spatial resolution (25 m). To fulfil this aim, the synergic use of high spatial 
resolution datasets and MERIS data is required. The Netherlands is selected as test site 
because of its typical mixed landscapes: small patches of arable land, urban areas, water, 
natural vegetation and forests are easily found next to each other. Besides this, cloud coverage 
is also an important problem in The Netherlands.  

In order to achieve the main objective of this thesis, the following research questions are 
formulated:   

A. What is the radiometric quality of MERIS data and what are the potential impacts of 
miscalibration on MERIS land products? 

B. Can we use the linear mixing model to downscale MERIS FR data to a Landsat-like 
spatial resolution? What is the quality of the resulting fused images?  

C. Can we use MERIS fused images to derive spatially improved MERIS products like 
land cover and vegetation status maps? 

D. Can we use downscaled time series of MERIS data to monitor heterogeneous and 
fragmented landscapes with a high spatial, spectral and temporal resolution?  
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1.6 Outline 

The core of this thesis, chapters 2 to 5, is devoted to answering the research questions 
mentioned in the previous section. Each chapter has been prepared as a peer reviewed 
publication and contains a specific introduction linked to the research question that will be 
tackled in it, a detailed description of the case study and the datasets used, a wide discussion 
of the obtained results and a summary of the main findings (conclusions) followed by some 
recommendations for further research. 

Chapter 2 explores the implications of deriving MERIS land products using MERIS FR 
data at different radiometric levels. More precisely, the effects of the smile and the vicarious 
calibration corrections on regional land cover mapping and vegetation status assessment are 
studied. Three vegetation indices are used to assess vegetation status: the MGVI (linked to 
fAPAR), the MTCI (related to the canopy chlorophyll content) and the NDVI (an indicator of 
vegetation “greenness”). 

Chapter 3 presents a data fusion approach to downscale MERIS FR data using the linear 
mixing model and a high spatial resolution dataset (used to characterize the spatial patterns of 
the area under study). The selected approach requires the optimization of two parameters: the 
number of classes used to classify the high spatial resolution dataset (nc) and the size of the 
MERIS neighbourhood used to solve the unmixing equations (k). A quantitative data fusion 
quality assessment is used to assist with the identification of the best fused image. The 
resulting fused images have a Landsat-like spatial resolution (25 m) and the MERIS spectral 
resolution (15 spectral bands).  

Chapter 4 builds on chapter 3 and assesses the potential of MERIS fused images to produce 
land cover maps and to assess vegetation status. First, all the fused images are classified in 
order to identify the best combination of nc and k. Then, the best fused image is used to 
compute the same three vegetation indices used in chapter 2: the MGVI, the MTCI and the 
NDVI. For comparison purposes, these threee indices are computed from the MERIS FR (300 
m) images and the NDVI is also computed from the TM (25 m) image. 

Chapter 5 focuses on exploiting the high temporal resolution provided by MERIS. An 
improved version of the unmixing-based data fusion approach described in chapter 2 is used 
to downscale a time series of seven MERIS FR images. In this case, the Dutch land use 
database is used to derive the high spatial resolution information. The MTCI and the MGVI 
are used to assess vegetation status at the original (300 m) and downscaled (25 m) resolutions.  

Chapter 6 concludes this thesis with a summary and discussion of the main findings of this 
thesis and offers some suggestions for further work.  

Finally, this thesis closes with the references, summaries in English, Dutch and Spanish and 
the curriculum vitae of the author. 
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regional land cover mapping and land products∗ 

 

                                                 
∗  Based on: Zurita-Milla, R., Clevers, J.G.P.W., Schaepman, M.E. and Kneubuehler, M. 
(2007). Effects of MERIS L1b radiometric calibration on regional land cover mapping and 
land products. International Journal of Remote Sensing, 28, 653-673. 
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Effects of MERIS L1b radiometric calibration on regional land cover mapping and 
land products 

 
 
Abstract 
The information derived from remotely sensed data must be carefully used because there 

are many sources of error that can potentially affect its quality. In this respect, an accurate 
radiometric calibration is essential for any Earth observation sensor because it maximises the 
quality of the final products. 

This paper presents several calibration efforts performed on MERIS data and subsequently 
focuses on the smile effect and on the vicarious calibration corrections. The implications of 
these corrections are evaluated using a MERIS full resolution level 1b image acquired over 
The Netherlands. A thematic approach, based on regional land cover mapping using linear 
spectral unmixing, and a continuous approach, based on land products (fAPAR, MTCI and 
NDVI), are used to quantify these implications. 

Even though MERIS has a very high radiometric quality, results point out that radiometric 
effects are consistently present in the final MERIS products. Our results also show that 
MERIS, after including all potential corrections investigated here, does not exhibit significant 
radiometric deficiencies. However, from a strict point of view, all the radiometric corrections 
should be applied to the data so that the retrieval of quantitative information can be done with 
the highest possible quality. The use of fully radiometrically corrected data will also facilitate 
multitemporal comparisons. Therefore, we conclude that a systematic application of all 
relevant calibration parameters will increase the long term comparability of MERIS 
measurements in such a way that more emphasis can be put on the retrieval of MERIS 
products. 
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2.1 Introduction  

2.1.1 Calibration of the MERIS instrument 

In March 2002, the Medium Resolution Imaging Spectrometer (MERIS (Bézy et al. 1998)), 
was launched on board of the ESA’s ENVISAT platform (Laur et al. 2002; Louet 2001). 
MERIS is a fully programmable pushbroom imaging spectrometer that delivers data at 300 m 
in the full resolution mode (FR) and at 1200 m in the reduced resolution mode (RR). The 
instrument consists of 5 identical cameras arranged in a fan shape configuration that together 
provide a 68.5° field-of-view (equivalent to 1150 km of swath width at nadir). MERIS allows 
global coverage of the Earth in three days, and since its launch it has been operated with a 
fixed configuration of 15 spectral bands covering the visible and near infra-red region of the 
electromagnetic spectrum. These 15 spectral bands are in reality the sum of one or more CCD 
detectors pixel elements with a Full-Width Half-Maximum (FWHM) equal to 1.25 nm and a 
Gaussian response function for each element (Dubuisson et al. 2003).  

MERIS was originally designed for oceanographic applications. However, Verstraete et al. 
(1999) found that MERIS could be very useful over land areas too. Indeed, its fine spectral 
resolution, its medium spatial resolution, and its high revisit time make MERIS an appropriate 
sensor to study most of the land surface processes occurring at regional to global scales.  

The information derived from MERIS, or in general from any Earth observation sensor, 
must be carefully used because there are many sources of errors that can seriously affect the 
quality of the end product. In this respect, an accurate radiometric calibration is essential for 
any sensor because it maximizes the quality of the final products and makes the data more 
suited for quantitative and multitemporal applications. Consequently, a full radiometric 
calibration is a prerequisite for a correct use of the remotely sensed data. 

As described by Goryl and Huot (2003), the MERIS radiometric quality is based on a 
calibration scheme consisting of a pre-flight, an on-board and a vicarious calibration. 

The pre-flight characterisation of the MERIS instrument discovered a gradual spectral shift 
in the order of 1.0 nm within individual cameras. This spectral shift has been reported as the 
smile effect and it results in the CCD lines appearing tilted with respect to their 
isowavelength. The smile effect can hardly be noticed in the MERIS images because it is very 
small. However, this effect can introduce artefacts in algorithms that require high quality 
spectral measurements. MERIS Level 1b products are, however, distributed without the smile 
correction.  

The on-board radiometric calibration is designed to validate the instrument radiometric 
performance while MERIS is in operation. It is executed every two months when Envisat is 
flying over the South Pole and it consists of observing a well characterised Spectralon panel 
illuminated by the sun.  These observations are then used to update the absolute calibration 
coefficients (Rast et al. 1999). A second Spectralon panel is available on-board and 
occasionally deployed to check for the possible degradation of the first panel (Courrèges-
Lacoste et al. 2003; Delwart and Bourg 2003).  

Finally, MERIS in-flight performance is also checked by means of a number of vicarious 
calibration efforts (Govaerts and Clerici 2004; Kneubuehler et al. 2004; Nieke et al. 2003). 
Vicarious calibration is an independent method to monitor the radiometric performance of an 
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instrument. It assesses the radiometric error of that instrument by using reflectance standards, 
field instruments, and atmospheric radiation measurements simultaneous to the satellite 
overpass (Abdou et al. 2002). In other words, vicarious calibration includes all the relevant 
steps required to convert raw sensor data into accurate and useful radiometric quantities 
without making use of the on-board calibration. 

2.1.2 Aim of this study 

In this contribution we focus on the smile and the vicarious calibration corrections because 
these two correction methods are external to the standard MERIS level 1b processing 
approaches. The implications of applying these radiometric corrections will be evaluated 
using a MERIS full resolution level 1b image acquired over The Netherlands.  

Two approaches will be used to illustrate the impact of these corrections: (i) regional land 
cover mapping using linear spectral unmixing and (ii) calculation of a selection of MERIS 
land products. 

2.1.2.1 Regional land cover mapping 

Land cover information is essential for planning and management activities as well as for 
modelling and understanding the Earth system (DeFries and Townshend 1999; Foody 2002; 
Vogelmann et al. 2001). However, our current understanding of land cover and its dynamics 
is in general deficient. Therefore, many current and future Earth observation missions, 
projects, and initiatives such as the Global Monitoring for Environment and Security (GMES) 
are focussing on land use and land cover mapping. In this framework, MERIS offers the 
possibility of providing information at a spatial scale in-between the current low and high 
spatial resolution sensors (Clevers et al. 2005).  

Linear spectral unmixing will be applied to classify the main land cover types over The 
Netherlands, since it is likely that more than one land cover type will be present within the 
area covered by one MERIS pixel. This classification method, which has been previously 
used at regional to global scales (DeFries and Townshend 1999), provides abundance maps 
related to land cover classes and an indication of the quality of the unmixing: root mean 
square error (RMSE) per pixel. In this paper, the RMSE is used to analyse the quality of the 
unmixing of MERIS images at different radiometric levels. 

2.1.2.2 MERIS land products  

To date, a number of land products have successfully been derived from MERIS data. One 
of these land products is the fraction of absorbed photosynthetically active radiation (fAPAR), 
which is an integrated indicator of the status of the plant canopy. The fAPAR is computed 
through the MERIS global vegetation index (MGVI) (Gobron et al. 1999). Another relevant 
product for monitoring vegetation status is the MERIS terrestrial chlorophyll index (MTCI) as 
described in Dash and Curran (2004). Finally, the MERIS NDVI, computed as described by 
Teillet et al. (1997) and Steven et al. (2003), is also used in this study, because NDVI 
temporal series can be used, for instance, to monitor vegetation phenology (Teillet et al. 
1997). 
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2.2  Materials and methods  

2.2.1 MERIS radiometric calibration 

In this study we used a cloud free MERIS FR level 1b image acquired the 14th of July 2003 
and processed on the 16th of December 2003 by the MERIS processor v.4.07. The image, 
covering the whole of The Netherlands, was first reprojected into the Dutch National 
reference coordinate system (RD) and then overlaid with a vector map of coast boundaries to 
assess the co-registration accuracy. Visual interpretation indicated that the number and quality 
of the ground control points provided with the image were sufficient to achieve a good image-
to-map registration (sub-pixel accuracy). This finding is supported by Clevers et al. (2007). 
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Figure 2.1. Conceptual flow-chart of MERIS radiometric corrections performed. 

The reprojected image was first corrected for the smile effect and then corrected using 
vicarious calibration data. This resulted in three calibration levels: raw (LRAW), smile corrected 
(LSMILE) and smile + vicariously corrected (LVC) radiances (Figure 2.1). A more detailed 
description of these corrections can be found in the following subsections. 

2.2.1.1 Smile effect correction 

The smile effect correction consists of two additive terms: the irradiance and the reflectance 
correction (see Goodenough et al. (2003) and Mouroulis et al. (2000) for a more exhaustive 
description of this effect). For MERIS land pixels, the reflectance correction is difficult to 
determine. As a result, the irradiance correction is usually the only one applied to the MERIS 
land pixels (only bands 1, 2 and 3 are subject to both corrections).  
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The irradiance correction compensates for the difference in the solar irradiance caused by 
the shift in the pixel wavelength with respect to the reference wavelength. This is, if λ

RAWL  
represents the measured radiance in a given pixel and for a given wavelength (λ), and λ

refS  

and λ
pixelS  are the solar irradiances for the reference and the pixel wavelengths, respectively, 

then the corrected radiance can be computed as follows: 
 

λ

λ
λλ

pixel

ref
RAWSMILE S

S
LL ⋅=

                                (2.1) 
 

This correction is therefore a linear transformation for each pixel or more precisely for each 
CCD detector. Figure 2.2 depicts the irradiance correction coefficients per wavelength and for 
all 5 MERIS cameras. These irradiance correction coefficients were taken from the metadata 
available in the Basic ERS & Envisat (A)ATSR and MERIS toolbox (BEAM1 version 3.1); 
notice that the shape of the irradiance correction factors function was used to name this effect 
because it somehow resembles a (half) smile.  

In this study, the smile correction was done using the BEAM smile correction processor 
(version 1.1) because it is an exact implementation of the algorithm that is routinely applied to 
all MERIS Level 2 products.  

2.2.1.2 Vicarious calibration 

The vicarious calibration presented here is based on Kneubühler et al. (2003) and follows a 
so-called reflectance-based approach with ground measurements of the atmospheric optical 
depth and surface reflectance over a bright natural target. 

The Railroad Valley Playa (RRVP, Nevada, USA; 38.504° N, 115.692° W) was used as a 
bright natural target. RRVP is a desert playa commonly used for vicarious calibration of 
moderate spatial resolution sensors due to its optical properties, frequent sunny conditions and 
low atmospheric aerosol loading (Thome 2002). 

The experiment consisted of taking in-situ sun photometer data for a number of dates for 
which MERIS acquisitions were available. Next, the MODTRAN-4 radiative transfer code 
(Berk et al. 1998; Kneisys et al. 1995) was used to predict the top-of-atmosphere (TOA) 
radiance. The MODTRAN-4 runs were constrained by field data, such as ground 
measurements of the surface reflectance, sun-target-sensor geometry and atmospheric 
properties (aerosol model, horizontal visibility). After that, calibration errors at the TOA level 
were computed for all the MERIS acquisition dates (Eq. 2.2) by comparing these predicted 
radiances with the MERIS measured radiances for the RRVP site:  

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅= i

RAW

i
TOAVC

i
RAWi

L
LL

RME _100[%]              (2.2) 

                                                 
1 The BEAM toolbox is available at the following URL: http://envisat.esa.int/beam 
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Where: RMEi is the relative mean error for each MERIS spectral band, Li
RAW is the MERIS 

FR level 1b TOA radiance [W sr-1 m-2 μm-1] for band-i and Li
VC_TOA is the simulated TOA 

radiance for the same band based on the ground measurements. 
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Figure 2.2. Irradiance correction factors for each CCD detector (x axis) and MERIS spectral 
band. 
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Figure 2.3. Temporal evolution of the calibration uncertainties for each MERIS band.  
Relative mean errors, in terms of LTOA, are plotted on the y-axis. Figure based on the 
following MERIS FR acquisition dates (values between brackets correspond to the ground 
measuring dates): 12/08/2002 (15/08/2002), 22/08/2002 (22/08/2002), 31/08/2002 
(22/08/2002), 21/10/2002 (21/09/2002), 09/07/2003 (22/07/2003) and 22/07/2003 
(22/07/2003). 
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Figure 2.3 illustrates the vicarious calibration errors obtained for each MERIS band and 
acquisition date of the vicarious calibration experiment. The y-axis of the bands most affected 
by the atmosphere (bands 11 and 15) has been rescaled due to the large errors present in these 
bands. The error bars used in Figure 2.3 represent the uncertainty of the vicarious calibration 
errors. These uncertainties can be mostly attributed to variations of aerosol optical properties 
originating from a short delay between ground measurements and MERIS data acquisition, as 
well as the approach used to invert the sun-photometer data to retrieve horizontal visibility 
using a radiative transfer based approach. The calibration approach for the ground 
spectrometer is discussed in detail in Schaepman and Dangel (2000), whereas the vicarious 
calibration procedure and resulting uncertainties can be found in Kneubühler et al. (2004; 
2002). 

Two assumptions are made here: (i) the uncertainty of the radiometric error can be 
disregarded, therefore, the vicarious correction will be based on the mean error; and (ii) a 
linear interpolation technique can be used to estimate the mean radiometric error of any 
acquisition located in-between of two given vicarious calibration efforts. 

Table 2-1 presents the linearly interpolated vicarious calibration correction factors for the 
14th of July. Equation 2.3 (derived from Eq. 2.2) shows how to compute the MERIS vicarious 
corrected radiances (Li

VC) based on the measured radiances (Li
RAW) and the relative mean 

error (RME). 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

100
1

i
i
RAW

i
VC

RMELL                                    (2.3) 

 

Table 2-1. MERIS FR Level 1b vicarious correction factors (VC) interpolated from the RRVP 
vicarious calibration experiments to the 14th of July 2003 acquisitions over The Netherlands. 

Band 3 4 5 6 7 8 9 10 12 13 14 
VC  1.004 0.985 0.989 0.988 0.959 0.976 0.979 0.997 0.987 0.990 0.997 

2.2.2 Land use database 

In this study, the latest version of the Dutch land use database (LGN4) was used as 
reference (Hazeu 2004). This geographical database describes 39 main land uses in The 
Netherlands based on multi-temporal classification of high resolution satellite data and 
integration of ancillary data. The LGN4 has a grid structure (cell size of 25 meters) and is 
based on data from the years 1999 and 2000. The overall classification accuracy is between 
85 and 90 % (de Wit and Clevers 2004). 

The initial 39 land use classes of the LGN4 were aggregated into 9 main land cover classes: 
grassland, arable land, greenhouses, deciduous forest, coniferous forest, water, built-up areas, 
bare soil (incl. sand dunes), and natural vegetation. These 9 classes were chosen in 
correspondence with the International Geosphere-Biosphere Programme (IGBP) land use 
class definition.  

A spatial aggregation of the LGN4 database was also performed in order to match the 
MERIS FR pixel size (Figure 2.4, left). This aggregation was based on a majority filter with a 
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kernel size of 12 original LGN pixels (25 m × 12 = 300 m). The land cover class having the 
highest abundance in each 12 by 12 kernel was selected to label the new 300 m pixel. 

The spatial aggregation of the LGN was also used to support the selection of the 
endmembers to be used for the spectral unmixing (see section 2.2.3 for more details). The 
proportion of every class within the kernel was recorded during the aggregation process, such 
that a so-called standard purity index (SPI) could be calculated from each kernel window, as 
noted in Eq. 2.4: 
 

( )

1

2

1
maxclass

−

−
=
∑

=

nc

ff
SPI

nc

i
i

                                          (2.4) 

 

where f represents the fraction of each land use in the kernel, fmaxclass is the maximum 
fraction (the class driving the labelling process), and nc is the total number of classes. 
Consequently, the SPI equals one when there is only one class in the kernel window (or pixel 
at 300 m spatial resolution) and the SPI equals zero when all the classes are present in the 
same proportion. 

 

Figure 2.4. Left: The Dutch land use database LGN4 aggregated into 9 land use classes and 
resampled to 300 m pixel size. Right: ‘Pure’ pixel selection in The Netherlands using the 
Standard Purity Index (SPI) combined with the moving window filter. 

A threshold SPI of 0.9 was defined as minimum criterion to define “pure” areas for all the 
classes except for the class greenhouses where the SPI threshold was set to 0.6 in order to 
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obtain at least a few pixels of this sparse and relatively small class. After selecting the most 
homogeneous pixels present in the LGN, a moving window filter of 3 by 3 pixels was applied 
in order to minimize possible adjacency effects. Thus, only “the most pure” pixels surrounded 
by the same land cover class were finally selected. Figure 2.4 (right) displays all the pixels 
that cover the homogeneity criteria as developed above. Table 2-2 lists the number of 
homogeneous pixels per class that will subsequently be used to generate pure land cover 
signals or endmembers. At this point, it is interesting to notice that the class arable land might 
present a wide range of situations. For instance, some of the homogeneous areas might belong 
to developed crops whereas some other areas could be just planted or even bare soils.  For the 
14th of July, we expect to find developed crops in most of the country.  Therefore, arable land 
will be mapped using a unique spectral signature (endmember). 

  
Table 2-2. Number of identified homogeneous pixels per aggregated land cover class in 
LGN4. 
Land cover Number of pixels 
Greenhouses  25 
Grassland  4927 
Arable land 2629 
Deciduous forest 33 
Coniferous forest 201 
Water  58285 
Built up areas 390 
Bare soil 132 
Natural vegetation  169 
 

In this paper, the Jeffries-Matusita (JM) distance will be used to quantify the spectral 
separability of the endmembers. The comparison of the JM distance computed at different 
radiometric levers will be used to assess the impact of such radiometric corrections on the 
spectral separability of the different land cover classes. The JM distance ranges between 0 and 
2, where 2 means perfect class separability (Richards 1986).  

2.2.3 Spectral unmixing 

A fully constrained linear spectral unmixing (Hu et al. 1999; Nielsen 2001) was applied to 
classify the MERIS FR scene because at that scale it is likely that more that one land cover 
type will be present within one pixel. Linear spectral unmixing provides two main outputs: 
the sub-pixel fractional land cover composition and the spectral root mean square error 
(RMSE) per pixel. This RMSE will be used to analyse the effects of classifying MERIS 
images at different radiometric levels (Schaepman et al. 2004).  

All linear unmixing techniques assume that there is no multiple scattering occurring within 
the different land cover types present in each pixel (Settle and Drake 1993). In that case, the 
signal received per pixel is a linear combination of the signals corresponding to “pure” areas 
of each land cover type weighted by their area within the pixel. This can be formalised in a set 
of mixing equations. Let nb and nc represent the number of bands and classes respectively, 
then: 
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μ               (2.5) 

 
Where pi is the pixel value for the band-i, fc is the fraction of the land cover-c present in 

that pixel and μci is the pure signal of the land cover-c in the band-i. The term e represents the 
errors due to (sensor) noise.  

In this case, two conditions were added to make the unmixing fully constrained (Eq. 2.6). 
This guaranteed a physical interpretation of the results since the fractions will sum up to      
100 % and we ensure that all the fractions are positive. Poor performances have been reported 
when using uncontrained linear unmixing (Chang and Heinz 2000). 
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The fully constrained linear spectral unmixing was rewritten in a matrix-vector notation 

(Eq. 2.7) and implemented in MATLAB.  
 
A(nbxnb) · P(nbx1) = B(nbxnb) · M(nbxnc) · F(ncx1) + E (nbx1)            (2.7) 
 
where P is the vector storing the MERIS radiance values per pixel, M is the matrix 

containing the spectra of the endmembers, F is the vector of the fractions or abundances that 
we seek and finally, E is the vector of errors. In this paper, M was determined by averaging 
the homogeneous areas that were identified during the LGN aggregation (Table 2-2; Figure 
2.4). Notice that two extra matrices, namely A and B, have been added to the standard matrix-
vector notation of the linear spectral unmixing to account for the different radiometric 
calibration levels. A and B are therefore nb × nb matrices that contain the smile or the smile + 
vicarious correction factors for a given pixel and for the endmembers, respectively. In general 
these two matrices are not equal since the correction factors have a spatial dependence. For 
instance, the smile correction factors are specific for each CCD detector. 

Because of the set of inequalities present in Eq. 2.6, the Lagrange multipliers method 
cannot be used to solve Eq. 2.5 subject to Eq. 2.6. As a result, the problem is transformed into 
a constrained linear least squares problem. The solution for the vector F should result in the 
smallest possible residual error (where the operator MIN{} represents a minimising function 
for the expression): 

 
MIN{(A · P –  B · M · F)T (A · P –  B · M · F)}                  (2.8) 
 
The vicarious correction represents a particular case because the correction factors are 

unique for each band (i.e. not spatially dependent) and therefore A is equal to B and equal to 
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the diagonal matrix containing the vicarious correction factors presented in Table 2-1. For this 
specific case Eq. 2.8 can be re-written as follows: 

 
MIN{( P –  M · F)T (AT

 · A)(P – M · F)}                  (2.9) 
 
Contrarily to other classifiers (e.g. maximum likelihood), a linear transformation of the data 

will result in a different solution (classification) since the factor AT·A, which summarises the 
vicarious correction factors, will modify the weights of the unmixing equations.  

The land cover mapping approach described in this paper involves the classification 
(unmixing) of the MERIS image at the LRAW, LSMILE and LVC radiometric levels. To do this, a 
unique set of endmembers was generated for each of these radiometric levels and 
subsequently used to unmix the images at the different radiometric levels.  

As noted in literature, endmembers can be obtained from spectral libraries or from the 
images themselves (Ichoku and Karnieli 1996). In this study, we selected all the endmembers 
from the images and we simulated the effect of working with endmembers coming from 
another source (spectral library) by classifying the LRAW and the LSMILE image with 
radiometrically enhanced endmembers. Table 2-3 shows the six unmixing study cases 
selected in this paper.  

 

Table 2-3. Spectral unmixing study cases. 

Case # Image Endmembers 
1 LRAW LRAW 
2 LRAW LSMILE 
3 LRAW LVC 
4 LSMILE LSMILE 
5 LSMILE LVC 
6 LVC LVC 

 
The usage of a unique set of endmembers to unmix large regions has previously been 

reported in literature (Fernandes et al. 2004). However, in our case this approach is limited by 
two major assumptions: (i) the test site is atmospherically constant and, thus it can be 
approximated by one singular atmosphere and (ii) the potential directional effects present in 
the endmembers can be disregarded. We base our approach on these assumptions, recognizing 
that the major contributor to the final uncertainty is inherently the heterogeneity of the land 
cover classes present at the MERIS pixel level.  

Similar to other authors, MERIS bands 1 and 2 were omitted from this study, as they are 
very susceptible to atmospheric influences; bands 11 and 15 were also excluded because these 
bands coincide with the absorption features of oxygen and water vapour; thus not adding 
relevant information to land cover classification approaches (Clevers et al. 2007). 
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2.2.4 MERIS land products and vegetation indices  

The effects of the radiometric corrections on the fAPAR, the MTCI and the NDVI were 
evaluated by comparing these products at the three radiometric levels under study: LRAW, 
LSMILE and LVC. 

The fAPAR products were computed using the BEAM FaparProcessor (version 1.0) 
developed by Aussedat and Gobron (2004). This processor was designed to work with Level 
1b data and reproduces the algorithms used for the MERIS level 2 product. 

The MTCI and NDVI products were computed using equations 2.10 and 2.11 respectively. 
In these equations, Bx represents the xth band of MERIS transformed to TOA reflectances 
(planetary reflectances). 

 

89
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BBMTCI

−
−=                    (2.10) 
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−=                    (2.11) 

 
This transformation was required because the MTCI was designed to operate on reflectance 

data. To convert from TOA radiance to TOA reflectance, the average solar irradiance per 
band, Si (Wm-2μm-1), and the solar angle, sϑ , should be known. Both parameters were obtained 
from the MERIS metadata provided in the data header. After that, the planetary reflectances 
were computed using Eq. 2.12. 
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⋅=                                (2.12) 

2.3 Results and discussion 

2.3.1 Land cover classification 

The matrix M of endmembers (or B×M when working with the smile or vicariously 
corrected images) was computed by averaging the most homogeneous areas identified via the 
SPI thresholds and the moving window (Table 2-2; Figure 2.4, right). As an example, Figure 
2.5 shows the spectral signatures of the 9 endmembers obtained from the raw image.  

The JM distance was computed for the different pairs of endmembers and for the different 
radiometric levels. Table 2-4 shows the JM distances for the LRAW and the LSMILE calibration 
levels. LVC distances are equal to the LSMILE distances since the transformation from one level 
to the other is linear. All distances were ranging between 1.93 and 2 (Table 2-4), therefore, no 
clear conclusion could be drawn from these results. Nonetheless, the high values obtained for 
this distance prove that the selection of the homogeneous areas to identify image endmembers 
was correct.  



  Spectral Quality 

25 

450 500 550 600 650 700 750 800 850 900
0

20

40

60

80

100

120

Wavelength [nm]

L T
O

A
 [m

W
/(

m
2  s

r 
nm

)]

 

 
Grassland
Arable Land
Greenhouses
Decidious Forest
Coniferous Forest
Water
Built−up
Bare Soil
Natural Vegetation

 
Figure 2.5. Endmembers derived from the LRAW  image. 

The unmixing results were turned into a hard classification by using the class having the 
highest abundance to label the pixel. This transformation facilitates the classification accuracy 
analysis. Figure 2.6 illustrates, as an example, the hard classified and the RMSE image at the 
best radiometric level (case 6). The overall classification accuracies for the different cases 
described in Table 2-3 are given in Table 2-5. 

 

 
Figure 2.6. Left: classified image according to case 6 (Table 2-3); Right: corresponding 
RMSE image. 
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Table 2-4. JM distance for the LRAW and the LSMILE endmembers. 

Classes Greenhouses Grassland Arable Land  Dec. Forest  Con.  Forest  Water Built-up Bare soil Natural veg. 
             

Greenhouses  -- 
        

1.99999717        
Grassland 

1.99999706 
 -- 

       
1.99995346 1.93644338       

Arable Land 
1.99996802 1.92882990 

 -- 
      

1.99999996 1.99666961 1.99539317      
Dec. Forest 

1.99999999 1.99696890 1.99513582 
 -- 

     
1.99999832 1.99999876 1.99997188 1.99994947     

Con. Forest 
1.99999928 1.99999890 1.99997193 1.99995120 

 -- 
    

1.99999997 2 2 2 2    
Water 

1.99999998 2 2 2 2 
 --    

1.99995717 1.99995610 1.99800714 1.99999849 1.99621152 1.99992187   
Built up 

1.99997119 1.99995130 1.99785055 1.99999830 1.99624770 1.99990880 
--   

2 2 1.99999984 2 2 1.99978554 1.99999999  
Bare soil 

2 2 1.99999986 2 2 1.99980370 2 
--  

1.99989368 1.91033970 1.98445527 1.98912581 1.95284747 1.99999937 1.99196590 2 
Natural Veg. 

1.99992909 1.91363220 1.98291530 1.98781610 1.95033170 1.99999930 1.99158020 2 -- 

Upper and lower JM distance values were computed using the LRAW and the LSMILE images respectively. 
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Table 2-5. Classification accuracy and RMSE statistics for the different study cases. 

Case # Class Acc. Mean RMSE SD RMSE CV RMSE 
1 53.5279 1.9528 3.1101 159.2636 
2 53.5329 1.9523 3.1100 159.2993 
3 53.7096 2.0999 3.1127 148.2309 
4 53.5400 1.9503 3.1100 159.4626 
5 53.7068 2.0993 3.1122 148.2494 
6 53.5355 1.9269 3.0753 159.5983 

SD = Standard deviation; CV = Coefficient of variation 

From these classification results, we can conclude that when the endmembers are selected 
from the image itself (cases 1, 4 and 6), the level of calibration is not very critical because the 
overall classification accuracy is almost the same. These results were expected since the smile 
and the vicarious correction factors were close to one (Figure 2.2; Table 2-1). The overall 
classification accuracy achieved for these cases was around 53.5 %.  
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Figure 2.7. Mean RMSE for the different classification cases (numbers refer to the cases in 
Table 2-3). 

 
With respect to the mean RMSE, we observed a decreasing trend (Figure 2.7; cases 1, 4 and 

6) that shows that working with radiometrically enhanced images improves the fit of the data 
to the endmembers. Recall that although the smile effect is very small, it is spatially 
dependent and, therefore, its correction makes the pixels on different CCDs more comparable. 

For the cases 2, 3 and 5, where a more radiometrically sound endmember is applied to an 
image with a lower radiometric level, we found that the classification accuracy was slightly 
better that for the cases 1, 4 and 6. However, the mean RMSE for the cases 3 and 5 was larger 
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than before (Figure 2.7). This is because the images still contain the “radiometric noise” that 
was removed from the endmembers.  

Considering that the spectral unmixing was performed over the whole of The Netherlands, 
and the degree of heterogeneity present at sub-pixel level, we believe that the classifier 
performed reasonably well. Most of the misclassifications occurred in the eastern and 
southern parts of the country, which correspond to the most fragmented landscapes of The 
Netherlands (according to the SPI values). The application of a majority filter to remove the 
“salt and pepper” effect found in the classified images might result in an improvement of the 
final classification accuracy (Lillesand and Kiefer 2000). 

In general, we can conclude that spectral unmixing of MERIS images is a promising option. 
The results presented here have demonstrated that it is possible to identify endmembers for 
the main land cover types. Nevertheless, further research needs to be devoted to improve and 
refine the methods so that better classification accuracies can be obtained.  

2.3.2 MERIS land products and vegetation indices  

The fAPAR, MTCI and NDVI products were computed from the LRAW, LSMILE and LVC data. 
The mean, standard deviation and coefficient of variation of these products over the study 
area are given in Table 2-6. 

 

Table 2-6. Mean, standard deviation and coefficient of variation for the MERIS products 
computed at different radiometric calibration levels. 

  fAPAR MTCI NDVI 
Mean 0.58481 3.4402 0.67586 
SD 0.19572 0.73591 0.13361 Raw 
CV 33.468 21.392 19.77 
Mean 0.58415 3.4409 0.67583 
SD 0.19581 0.73686 0.13367 Smile 
CV 33.52 21.414 19.778 
Mean 0.58407 3.5373 0.68399 
SD 0.19538 0.74695 0.13167 Smile +VC 
CV 33.452 21.116 19.25 

 
These results show that both the smile effect present in the MERIS instrument and the 

radiometric shifts observed during the vicarious calibration experiment did not have a big 
effect on the fAPAR, MTCI and NDVI products. The RMSE and correlation coefficient using 
the LRAW data as a reference were computed to better quantify the effects of the radiometric 
correction over these products (Table 2-7). The MTCI appears to be the product most 
sensitive to the radiometric corrections.  
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Table 2-7. RMSE and coefficient of correlation with respect to the LRAW data. 

  fAPAR MTCI NDVI 
RMSE 0.0021 0.0111 0.0002 

Smile 
Coef Corr 0.9999 0.9999 1 

RMSE 0.0033 0.1007 0.0086 
Smile+VC   

Coef Corr 0.9999 0.9995 1 

 
A mean-difference plot (Cleveland 1985) was used to show the difference between the 

MERIS products computed at different radiometric calibration levels (Figure 2.8). In this type 
of plot, the difference between the two series is plotted against the mean value of these series. 
In our case, the LRAW data was considered as a reference. Therefore, the y-axis in Figure 2.8 
presents LRAW minus LSMILE data (upper row) and LRAW minus LVC (bottom row).  

The fAPAR subplots of Figure 2.8 indicate that this product is computed on the basis of 
isolines: the correction factors need to pass a certain threshold value to be attributed to a 
change of isoline (this explains the zero difference values and the horizontal striping of these 
subplots). When there is an fAPAR change it is always a multiple of 0.004 because the 
fAPAR values given by the fAPAR processor are scaled as integers in the range from 1 to 
250. Therefore, 1 unit change is translated in 1/250 fAPAR change which is equal to 0.004. 

For the MTCI, the smile correction resulted in an asymmetrical mirrored image around the 
zero line (Figure 2.8, top row, middle plot). This asymmetrical shape might be introduced by 
land use specific behaviour or a non-perfect smile corrections in the 5 MERIS cameras. The 
result of the vicarious calibration effort on the MTCI (Figure 2.8, bottom row, middle plot) 
shows that the MTCI values computed at the LVC level are always greater than when using the 
LRAW data. These differences are driven by the magnitude of the vicarious calibration 
correction factors as well as by the land cover types (mainly urban versus vegetated areas). 

Similar to the fAPAR, the smile correction resulted in hardly any change for the NDVI 
values (notice the 10-4 factor on the y-axis, top row, right plot). However, in this case the 
changes are symmetric with respect to the zero line and this explains why the mean values for 
the LRAW and LSMILE based products were so similar (Table 2-7). After the vicarious correction, 
the NDVI plot follows a parabolic function. This is because (in this case) the correction factor 
for band 7 is smaller than for band 13 (Table 2-1) and, as a result, the LVC-based NDVI values 
are higher (the difference is always negative). Additionally, from the NDVI expression (Eq. 
2.11) we see that the relative changes in NDVI are higher for low NDVI values. In summary, 
the NDVI based on LRAW data underestimates the “real” NDVI values and this 
underestimation is larger for low NDVI values.  

The spatial component of these radiometric corrections was also explored in this study. As 
an example, Figure 2.9 illustrates the ratio between the LSMILE-based and the LRAW-based 
products (the figure was similar for the fAPAR, MTCI and NDVI products). This figure 
shows that for some areas the ratio is under one (red), for some areas it is equal to one (black), 
and for some it is greater than one (blue). We can observe that the smile correction is camera 
dependent because the ratio values on the Western part of the image (covered by the MERIS 
camera 3) are generally smaller than one, whereas in the Eastern part of the country (MERIS 
camera 2) the values tend to be higher after the radiometric correction (ratio above 1).  
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Figure 2.8. Mean-difference plot for all the MERIS products. 
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Figure 2.9. Ratio LSMILE-based/LRAW-based product (the colours red, black and blue indicate 
the areas where the ratio was smaller than one, equal to one or greater than one, respectively). 

2.4 Conclusions  

In this paper we have studied the smile effect and the vicarious calibration corrections for 
the MERIS instrument and their impact on radiometry and product accuracy. The implications 
of applying these radiometric corrections to compensate for these shifts have been evaluated 
using two approaches: regional land cover mapping using linear spectral unmixing and the 
calculation of MERIS land products: fAPAR, MTCI and NDVI. 

The regional land cover mapping case has shown that if the classifier is trained with data 
coming from the same image (image based endmembers), then the level of calibration is not 
that critical because the impact of both the smile and the vicarious corrections is very small 
(the correction factors are close to 1). If the image is to be classified with endmembers that 
are coming from a not well corrected image or if we plan to build our own spectral library, 
then classification differences become significant. In this respect, for multitemporal MERIS 
analysis, all recommended correction factors must be applied in order to preserve highest 
possible classification accuracy. 

With respect to the MERIS land products, a relevant difference was observed between the 
LVC and the LRAW based products. In addition, we have shown that the magnitude of the smile 
correction factors can be locally very important (Figure 2.9). 

In order to generate long term, stable observations, it is of utmost importance to generate 
stable and reproducible HDRF (Hemispherical-Directional Reflectance Factor) 
measurements. Current calibration approaches as the one applied for MERIS have 
uncertainties that are much smaller than the estimated atmospheric or product uncertainties. 
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Unmixing-based Landsat TM and MERIS FR data fusion  
 
Abstract 
An unmixing-based data fusion technique is used to generate images that have the spatial 

resolution of Landsat TM and the spectral resolution provided by the MERIS sensor. The 
method requires the optimization of two parameters: the number of classes used to classify the 
TM image and the size of the MERIS ‘window’ (neighborhood) that is used to solve the 
unmixing equations. The ERGAS index is used to assess the quality of the fused images at the 
TM and at the MERIS spatial resolutions and to assist with the identification of the best 
combination of the two parameters that need to be optimized. Results indicate that it is 
possible to successfully downscale MERIS full resolution data to a Landsat-like spatial 
resolution while preserving the MERIS spectral resolution.   
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3.1 Introduction 

During the last few years, data fusion methods have received more and more attention from 
the remote sensing community because of the increasing need to integrate the vast amount of 
data that is being collected by Earth observation satellites. As a result, a large number of data 
fusion methods have been developed (see, for example, (Ehlers 1991; Hall and Llinas 1997; 
Pohl and Van Genderen 1998; Wald 2002) for a review). In this letter, we focus on the 
implementation and evaluation of the so-called unmixing-based data fusion approach (Zhukov 
et al. 1999). The aim of this data fusion approach is to combine two images acquired over the 
same area but at different spatial resolutions to produce an image with the spatial resolution of 
the high spatial resolution image and the spectral resolution of the low spatial resolution 
image. Often, the selected low spatial resolution image has a better spectral resolution than 
the high spatial resolution image. As a result, the fused image has (potentially) more 
information than each of the original images. A simplified version of this data fusion 
approach has been used by Minghelli-Roman et al. (2001; 2006) to combine MERIS full 
resolution (FR) and Landsat ETM data for coastal water monitoring. In their approach only 
one parameter, namely the number of classes used to classify the high resolution image, needs 
to be optimized because they solve the unmixing equations for the whole image at once. A 
large number of classes (typically >100) is needed to achieve good results with this method 
(Minghelli-Roman et al. 2001; Minghelli-Roman et al. 2006). However, such a large number 
of classes is not always feasible or realistic. For instance, if an existing land cover 
classification is used to get the high spatial resolution information, then the number of classes 
is limited and in most cases well below 100. Furthermore, solving the unmixing equations for 
the whole image at once might severely hamper the quality and usability of the fused images 
because all pixels belonging to one class will get the same spectral signature. In other words, 
if we apply the method as described by Minghelli-Roman et al. (2001; 2006), we implicitly 
reject all the within class variability. Therefore, we believe that using a neighborhood should 
be preferred over simultaneously solving the unmixing for all the pixels present in the scene. 
For that reason, here we implement a detailed version of the unmixing-based fusion algorithm 
where two parameters, the number of classes used to classify the TM image and the size of 
the MERIS FR neighborhood used to solve the unmixing equations, need to be optimized. 
The ERGAS index (Wald 2002) is used to support the optimization of these two parameters 
and to quantitatively assess the quality of the fused images.   

Finally, this letter presents a case study that uses MERIS FR and Landsat TM data over 
land because several studies have proven the potential of MERIS for this kind of applications 
(Clevers et al. 2002; Clevers et al. 2007; Verstraete et al. 1999). If the proposed data fusion 
approach proves to be successful, the resulting fused images could be used to improve land 
cover maps and/or to monitor ecosystems at high spatial and spectral resolutions.  

3.2 Methodology 

The study area covers approximately 40 km × 60 km of the central part of The Netherlands 
(52.19° N, 5.91° E). A Landsat-5 TM image from 10 July 2003 and a MERIS full resolution 
(FR) level 1b image acquired on 14 July 2003 were available over this area. The TM image 
was geo-referenced to the Dutch national coordinate system (RD) using a cubic convolution 
resampling method and a pixel size of 25 m. The digital numbers of the TM image were 
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converted into radiances (W m-2 sr-1 µm-1) using the latest calibration coefficients (Chander 
and Markham 2003) to ensure that both the TM and the MERIS image are in the same 
radiometric units. The MERIS FR level 1b image (300 m pixel size with radiances in W m-2  
sr-1 µm-1) was first corrected for the smile effect (Zurita-Milla et al. 2007a). Then, an image-
to-image co-registration was performed in order to ensure the best possible match between the 
two images. In this process, the TM image was used as a reference and a nearest neighbor 
resampling was used not to modify the original MERIS pixel values. The pixel sizes of the 
TM and MERIS FR sensors were preserved, which implies that 144 TM pixels are inside each 
MERIS FR pixel. Subsequently, the TM and the MERIS FR images were fused using an 
unmixing-based data fusion approach. The method consists of four main steps (Zhukov et al. 
1999): 

First, the high spatial resolution image is used to identify the main components (i.e. spectral 
groups) of the study area. For this purpose, the TM image was classified into nc unsupervised 
classes using the ISODATA classification rule. In this work five nc values were used: 10, 20, 
40, 60 and 80. 

Secondly, a sliding window of k × k MERIS FR pixels is applied to each of the TM 
classified images to generate class proportion matrices. These matrices contain the 
proportions of each of the nc classes that fall within each of the MERIS FR pixels that are 
inside the k × k window. In this study, 14 window sizes (from now on referred to as 
neighborhoods) were tested: from k = 5 to k = 53 in steps of 4. 

Thirdly, the spectral information of all the classes present in the k × k neighborhood is 
unmixed using the proportion matrices and their corresponding MERIS FR radiance values. 
Here it is important to notice that the unmixing is solved for each low resolution band 
independently. Therefore, care must be taken to select a neighborhood size (k2) larger than or 
equal to the number of classes present in the neighborhood because each MERIS FR pixel 
provides only one (mixing) equation. Although the unmixing is solved for all the classes 
present in the neighborhood, only the spectral information of the classes present in the central 
pixel of the neighborhood is kept because that is the pixel that is being effectively unmixed.  

Finally, each of the TM unsupervised classes present in the central pixel of the 
neighborhood is replaced by its corresponding unmixed MERIS signal. By repeating this 
operation for all the MERIS FR pixels, for all MERIS bands and for all the possible 
combinations of nc and k, a series of fused images is generated.  
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Figure 3.1. Scheme of the general methodology. 

Figure 3.1 summarizes the four steps of the unmixing-based data fusion approach and 
presents a matrix-vector notation for the third step (i.e. the unmixing). This notation should be 
interpreted as follows:  

 

N,,2,1,,,,
K=+⋅= iinckinckki ΕSPL                    (3.1) 

 
where: Li,k is a (k2 × 1) vector that contains the values of band-i for all the MERIS FR 

pixels present in the neighborhood k. Pk,nc is a (k2
 × nc) matrix containing the proportions of 

the TM unsupervised classes that fall inside each of the MERIS FR pixels present in the 
neighborhood k. Si,k,nc is the (nc × 1) unknown vector of unmixed spectral information (band-i 
radiances) for each of the classes present in k. After iterating over all MERIS pixels and all 
MERIS bands, Sk,nc is the fused image. Ei is a (k2 × 1) vector of residual errors and N is the 
total number of bands of the low resolution image.  

This formulation of the unmixing-based data fusion indirectly implies that the number of 
classes used to classify the TM image (nc) and the size of the MERIS FR neighborhood (k) 
need to be optimized. nc needs to be optimized because it depends on the spectral variability 
of the scene (heterogeneous scenes will most likely require a larger nc value than 
homogeneous ones). k also needs to be optimized because it has a great impact on the spectral 
quality of the fused image. On the one hand k should be kept as small as possible so that the 
fused image is spectrally dynamic and consistent with the variability recorded by the low 
spatial resolution sensor. On the other hand k should be sufficiently large to provide enough 
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equations to solve the unmixing. In other words, Eq. 3.1 is a system of k2 equations (one 
equation per low resolution pixel in the neighborhood) with up to nc unknowns (depending on 
the number of classes present in such a neighborhood). This means that k2 must be greater 
than or equal to the number of classes inside the MERIS neighborhood. However, if we use 
very large k values, the output image will have low spectral variability because each system of 
equations results in a unique solution. For instance, if the size of the neighborhood matches 
the size of the scene (k = image size), then all the pixels of one class identified with Landsat 
TM will have the same spectral response independently of their position within the scene. 
Using k = image size, therefore, results in a fused image with a low spectral dynamic range 
where each of the classes is represented by an approximation of its mean spectral response. 
The  latter approach was the one used by Minghelli-Roman et al. (2001; 2006). Although it is 
computationally fast (only one system of equations needs to be solved), here we prefer to also 
optimize the size of the neighborhood k such that we can account for the natural variability of 
the components present in the scene.   

Finally, a constrained least-squares method was used to retrieve Si,k,nc from Eq. (3.1). The 
use of a constrained method is justified because the solution should fulfill the following two 
conditions: a) the radiance values must be positive and b) the radiance values cannot be larger 
than the MERIS radiance saturation values (ESA EOHelpdesk (personal communication) 
2006).  

3.2.1 Data fusion quality and optimization of nc and k 

A quantitative assessment of the quality of the fused images was done at the level of the 
TM and of the MERIS spatial resolution. This assessment was used to support the selection of 
the best combination of nc and k. 

Bearing in mind that any fused image should be as identical as possible to the original low 
resolution image once degraded back to its original resolution (coherence property (Wald et 
al. 1997)), we degraded the fused images, Sk,nc, to 300 m using a mean filter. After this, we 
assessed the quality of the degraded fused images by comparing them with the original 
MERIS FR image. The ERGAS index (Wald 2002) was used for this comparison: 

 

( )∑
=

=
N

i
ii MRMSE

Nl
hERGAS

1

22 /1100                     (3.2) 

 
where: h is the resolution of the high spatial resolution image (TM). l is the resolution of 

the low spatial resolution image (MERIS FR). N is the number of spectral bands involved in 
the fusion. RMSEi is the root mean square error computed between the degraded fused image 
and the original MERIS image (for the band-i) and Mi is the mean value of the band-i of the 
reference image (MERIS). 

The ERGAS index equals zero when the degraded fused image (300 m) is equal to the 
original MERIS FR image. Therefore, low ERGAS values indicate high image fusion quality.   

If we assume that spectrally corresponding bands are highly correlated for images that have 
been acquired nearly at the same date, then the ERGAS index can also be used to evaluate the 
quality of the fused images at 25 m. This ERGAS will be named ERGASTM (because the 
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Landsat TM image will be used as a reference) whereas the ERGAS computed at 300 m will 
be referred to as ERGASM (MERIS used as a reference). Other terms, like spatial and spectral 
ERGAS, have been identified in literature to indicate that the ERGAS index is computed at 
different spatial resolutions (González-Audícana et al. 2006; Lillo-Saavedra and Gonzalo 
2006, 2007; Lillo-Saavedra et al. 2005). 

The expression used to compute the ERGASTM is basically the same as Eq. 3.2 except that: 
a) the RMSEi is computed between Landsat TM bands 1 till 4 and their spectrally 
corresponding fused bands (3, 5, 7 and 13, respectively) and b) Mi corresponds to the mean of 
the band-i of the TM image. The ERGASTM index never reaches a zero value because the 
bands that were used for the calculation of this index have slightly different characteristics 
(band centers and bandwidths). Despite this, its values can be used to assess the quality of the 
fused images because - similar to the ERGASM - the lower the ERGASTM, the better the 
quality of the fused image.  

In order to better understand, evaluate and benchmark the values obtained for the 
ERGASTM, the average coefficient of correlation ( r ) was also computed at 25 m. First, the 
coefficient of correlation was computed for the 4 pairs of bands used to compute the 
ERGASTM. Then, these values were averaged to produce a single r  value for each of the 
fused images. 

3.3 Results and discussion 

Figure 3.2 illustrates the ERGAS indices and the r  values for all fused images that were 
generated for the different combinations of nc and k.  

Most fused images yielded low ERGAS values (Figure 3.2a and Figure 3.2b), which means 
that the unmixing-based data fusion succeeded in synthesizing the spectral information of the 
MERIS FR image at a high spatial resolution. However, relatively high ERGASTM values 
(>3) were found for the images unmixed using small k values. This might indicate that the 
solution of the unmixing equations is not stable when few equations are used and that 
regularization methods might be needed in these cases. Poor r values (< 0.45) were found 
when unmixing with small k values (Figure 3.2c), whereas high r values (>0.75) were always 
associated with low ERGASTM values (<2). Because of this opposite behavior, we conclude 
that the information given by the ERGASTM and r  is equivalent. For this reason, we mainly 
discuss the results obtained using the ERGAS indices.  

Two additional observations can be made from Figure 3.2. First, the ERGAS indices are 
inversely correlated: the ERGASM decreases when increasing the number of classes and it 
increases with larger neighborhood sizes, whereas the ERGASTM presents the opposite 
behavior. This means that there is a trade-off between the quality of the fused images at 25 m 
and at 300 m and that we cannot find an optimum combination of nc and k that minimizes 
both ERGAS values. Secondly, both ERGAS indices and the average coefficient of 
correlation show a saturation behavior. This means that increasing nc or k beyond the values 
that were tested in this study will not improve the quality of the fused images.  
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Figure 3.2. Results for the ERGASM (a), ERGASTM (b) and the average coefficient of 
correlation (c). Each symbol represents the number of classes used to classify the TM image. 
Notice that the neighbourhood size of 5 does not provide sufficient equations to solve the 
unmixing when the TM image is classified into 40, 60 and 80 classes. 

 

The selection of the best fused image is not straightforward because there is no combination 
of nc and k that simultaneously minimizes the two ERGAS indices. However, from Figure 
3.2a we recognize that the range of variation of the ERGASM is rather small (the smoothing 
effect caused by increasing the window size is apparently not very important). Therefore, we 
could select as the best fused image the one that first minimizes the ERGASTM and then the 
ERGASM. Nevertheless, a large number of fused images potentially meet this criterion. 
Furthermore, a visual check of these fused images showed that, indeed, they are very similar. 
As an illustration, Figure 3.3 shows an RGB color composite of the fused image obtained 
with nc = 60 and k = 45 (upper row: whole study area; lower row: a 25 × 25 pixel subset). For 
comparison purposes, an RGB color composite of the original TM and MERIS FR images is 
also provided in Figure 3.3.   

In general, the fused image preserves well the spatial patterns found in the TM image while 
remaining spectrally similar to the MERIS FR image. However, some deviating pixels can be 
seen at the boundary between objects (e.g., river shorelines). These pixels correspond to 
mixed pixels and they are difficult to unmix because the TM unsupervised classification is 
rather noisy in those areas and because they cover a very small fraction of the neighborhood 
under study. 
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Figure 3.3. RGB color composite of bands 4, 3 and 2 of the TM image (a), bands 13, 7 and 5 
of the fused image obtained for nc = 60 and k = 45 (b) and bands 13, 7 and 5 of the original 
MERIS FR image (c). Upper row shows the whole study area, whereas the lower row shows a 
subset of 25 by 25 MERIS FR pixels. 

3.4 Conclusions 

In this letter we have studied the applicability of the linear mixing model to fuse a Landsat 
TM and a MERIS full resolution level 1b image. The method, known as unmixing-based data 
fusion, requires the optimization of two parameters: the number of classes used to classify the 
TM image, nc, and the size of the MERIS neighborhood, k, used to solve the unmixing 
equations. Several combinations of nc and k have been tested.  

The ERGAS index computed at 25 m and at 300 m, together with the average coefficient of 
correlation ( r ) computed at 25 m, were used to assess the quality of the fused images and to 
assist in the identification of the best fused image. The results of the fusion quality assessment 
indicate that a) the unmixing-based data fusion approach presented here succeeded in 
preserving the spectral information of MERIS: low values were found for the ERGASM since 
all the spectral information present in the fused image comes from MERIS; in addition,  high 
r values were found between the first 4 TM bands and its spectrally corresponding fused 
bands, and b) there is always a trade-off between the quality of the fused images at 25 m and 
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at 300 m because the ERGAS indices are inversely correlated. Therefore, we suggest using a 
specific application (e.g. land cover mapping) to better identify the best fused image. For 
illustration purposes, we selected as the best fused image the one obtained for nc = 60 and      
k = 45 because it is one of the images that minimizes the ERGASTM while keeping one of the 
lowest possible ERGASM values. Nevertheless, further work is required in order to estimate 
the real possibilities and limitations of this data fusion method. Special attention should be 
paid to the co-registration of the high and low spatial resolution images and to the criteria 
used to select the best fused image.  

The unmixing-based data fusion approach may also be used to fuse MERIS FR time series 
with one or more TM images. This multitemporal data fusion exercise will be of great interest 
for land cover mapping and for monitoring vegetation dynamics (e.g. in terms of fAPAR, LAI 
or chlorophyll content) at high spatial, spectral and temporal resolutions. Nevertheless, it is 
important to realize that these fused images will only be an approximation of what the MERIS 
sensor would be measuring if it had a spatial resolution of 25 m. In addition, possible 
landscape changes between the dates of the Landsat TM acquisition and the MERIS images 
might further affect the quality of the fused images (Minghelli-Roman et al. 2006)  since the 
number and location of  land cover classes may change if the time span becomes too wide. 
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Using MERIS fused images for land cover mapping and vegetation status assessment 
in heterogeneous landscapes 

 
Abstract 
In this paper we evaluate the potential of Envisat-MERIS fused images for land cover 

mapping and  vegetation status assessment in heterogeneous landscapes. A series of MERIS 
fused images (15 spectral bands; 25 m pixel size) is created using the linear mixing model and 
a Landsat TM image acquired over The Netherlands. First, the fused images are classified to 
produce a map of the 8 main land cover types of The Netherlands. Subsequently, the maps are 
validated using the Dutch land cover/land use database as a reference. Then, the fused image 
with the highest overall classification accuracy is selected as the best fused image. Finally, the 
best fused image is used to compute three vegetation indices: the NDVI and two indices 
specifically designed to monitor vegetation status using MERIS data: the MERIS terrestrial 
chlorophyll index (MTCI) and the MERIS global vegetation index (MGVI).  

Results indicate that the selected data fusion approach is able to downscale MERIS data to 
a Landsat-like spatial resolution. The spectral information in the fused images is fully 
originating from MERIS and not confounded by TM data. Classification results for the TM 
and for the best fused image are similar and when comparing spectrally similar images (i.e. 
TM with no SWIR bands), the results of the fused image outperform those of TM. With 
respect to the vegetation indices, a good correlation was found between the NDVI computed 
from TM and from the best fused image (in spite of the spectral differences between these two 
sensors). In addition, results show the potential of using MERIS vegetation indices computed 
from fused images to monitor individual fields. This is not possible using the original MERIS 
FR image. Therefore, we conclude that MERIS-TM fused images are very useful to map 
heterogeneous landscapes. 
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4.1 Introduction 

The MEdium Resolution Imaging Spectrometer (MERIS) is one of the core instruments 
aboard the ENVISAT/ESA platform, the world largest environmental satellite (Bézy et al. 
1999). MERIS provides hyperspectral data in 15 narrow bands and at 2 spatial resolutions: 
300 m in the so-called full resolution (FR) mode and 1200 m in the reduced resolution (RR) 
mode. This imaging spectrometer was originally intended for monitoring coastal zones (FR 
mode) and for ocean applications (RR mode). For that reason, it was designed with a fine 
spectral and radiometric resolution and a high revisit time (2-3 days) (Curran and Steele 
2005). Nevertheless, long before its launch a few modifications were introduced in its final 
design (e.g. the position of some bands) so that MERIS could also be used for atmospheric 
and land applications (Curran and Steele 2005; Verstraete et al. 1999).   

The final MERIS spectral configuration, together with its high temporal resolution, has 
indeed proven to be very useful for land applications. For instance, MERIS data have been 
used to produce regional and global land cover maps (Arino et al. 2005; Clevers et al. 2007). 
Furthermore, its unique spectral configuration allows the retrieval of canopy chlorophyll 
content through the red-edge position (Clevers et al. 2001). Other MERIS land products 
include: leaf area index (LAI), fraction of absorbed photosynthetically active radiation 
(fAPAR) and fraction of vegetation cover (fCover) (Bacour et al. 2006). More recently, 
MERIS has been used to study solar-induced vegetation fluorescence (Guanter et al. 2007). In 
addition, two vegetation indices have been specifically designed for this sensor: the MERIS 
Terrestrial Chlorophyll index, MTCI (Dash and Curran 2004), which is linked to canopy 
chlorophyll content, and the MERIS Global Vegetation index, MGVI (Gobron et al. 1999), 
which is directly related to fAPAR. Both vegetation indices have been integrated in the 
processing chain of MERIS data and they are provided as MERIS level 2 datasets. 

Although the above mentioned products/applications show the potential of MERIS for 
monitoring at regional or global scales, the spatial resolution provided by this instrument 
might be too coarse to capture relevant details of fragmented landscapes. In such 
heterogeneous areas, at the MERIS spatial scale, pixels very often contain more than one land 
cover type.  

In general, mixed pixels are difficult to handle and they limit the operational utility of 
medium and coarse spatial resolution imagery. For instance, mixed pixels are responsible for 
the so-called low resolution bias when estimating land cover areas using medium and coarse 
spatial resolution data (Boschetti et al. 2004). High spatial resolution sensors like SPOT XS or 
Landsat TM/ETM+ can be used to study heterogeneous or fragmented landscapes. However, 
their revisit time (26 days in the case of SPOT XS and 16 days for Landsat TM or ETM+) is 
not very appropriate for monitoring purposes. This is especially true for areas that have 
extensive cloud coverage throughout the year (Asner 2001; Jorgensen 2000; Kontoes and 
Stakenborg 1990).  

Data fusion methods (Wald 1999) can be used to overcome both the mixed pixel and the 
cloud coverage problems. Fused images, i.e. images created by combining two or more types 
of data, can offer increased interpretation capabilities and more reliable results because the 
data collected by different Earth observation (EO) sensors are complementary (Pohl and Van 
Genderen 1998). Besides this, if successful data fusion methods are implemented, continuous 
time series of vegetation status can be produced by combining all the EO data currently 
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collected. Therefore, downscaling medium and coarse spatial resolution imagery will improve 
the optical remote sensing (global) monitoring capabilities and help with the quantification of 
land cover changes over heterogeneous areas where a Landsat-like resolution is required 
(Janetos and Justice 2000).  

Several data fusion methods have been described in literature (c.f. Ehlers (1991); Pohl and 
van Genderen (1998)). However, most of them are operator or data type dependent (Zhang 
2002, 2004). For instance, most of the recent data fusion methods based on wavelet 
transformation require that the ratio of the spatial resolution of the images to be fused is a 
power of 2 (Shi et al. 2005), or they require that the images to be fused are in the same 
spectral domain (Otazu et al. 2005). Furthermore, spectral normalization of the original data is 
required by several data fusion methods (Acerbi-Junior et al. 2006). Nevertheless, the main 
difficulty is that most of the current data fusion methods do not properly preserve the spectral 
information of the input images because they are mainly concerned with the visual 
enhancement of the images (Pellemans et al. 1993). The preservation of the spectral 
information is, for instance, a prerequisite to derive reliable land cover maps because the 
classes that were spectrally separable in the original image should still be separable in the 
fused image. Additionally, it ensures a physical interpretation of the fused image and 
facilitates the retrieval of landscape properties using radiative transfer models. 

In this respect, Zurita-Milla et al. (2008a) have recently introduced a detailed 
implementation of the unmixing-based data fusion approach as initially described by Zhukov 
et al. (1999). This implementation succeeded in synthesizing fused images with the spectral 
resolution of MERIS but with the spatial resolution provided by Landsat TM.  

In this paper, we further evaluate the performance of the unmixing-based data fusion 
approach by assessing the potential of MERIS FR fused images to derive spatially improved 
land products: land cover maps and vegetation status assessment using the MTCI and the 
MGVI vegetation indices.  

The remainder of this paper is organized as follows: section 4.2 summarises the unmixing-
based data fusion approach used to produce the MERIS fused images. Section 4.3 presents the 
study area, the images used in this study and the two case studies: land cover mapping and 
assessment of vegetation status. Section 4.4 presents the results of both case studies and, 
finally, section 4.5 summarises the main conclusions and offers some recommendations for 
further research.  

4.2 Unmixing-based data fusion 

If a high and a low spatial resolution image are simultaneously available over a given study 
area, the linear mixing model (Adams and Gillespie 2006) can be used to combine the 
information provided by these images. This application is known as spatial unmixing or 
unmixing-based data fusion (Minghelli-Roman et al. 2001; Minghelli-Roman et al. 2006; 
Zhukov et al. 1999). The aim of this kind of unmixing is to downscale the spectral 
information of the low spatial resolution image to the spatial resolution provided by the high 
spatial resolution image.  

Once the high and low spatial resolution images are co-registered, the selected unmixing-
based data fusion approach can be summarised in four main steps (Zurita-Milla et al. 2008a):  

• The high spatial resolution image is classified into nc unsupervised classes.  
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• The fractional coverage of the high spatial resolution unsupervised classes is 
computed for each low spatial resolution pixel.  

• The spectral response of each of the nc unsupervised classes is unmixed using the 
fractional coverages obtained in the second step and the spectral information 
provided by the low spatial resolution image. This unmixing is done per band and 
using a neighbourhood of k × k low spatial resolution pixels.  

• Finally, a fused image is constructed by assigning the corresponding unmixed 
signals to the unsupervised classes present in the central pixel of each k × k  
neighbourhood. 

The third step of the unmixing-based data fusion approach can be written as follows: 

N,,2,1,,,,
K=+⋅= iinckinckki ΕSFL                          (4.1) 

where: Li,k is a (k2 × 1) vector that contains the low spatial resolution values (for band i) of 
all the low spatial resolution pixels present in the neighbourhood k. Fk,nc is a (k2

 × nc) matrix 
containing their corresponding fractional coverages in terms of the nc unsupervised classes. 
Si,k,nc is the (nc × 1) unknown vector of spectrally downscaled values (band i) for each of the 
classes present in the neighbourhood. Ei is a (k2 × 1) vector of residual errors. Finally, N is the 
number of low spatial resolution bands.  

It is worth noting that Eq. 4.1 is typically solved using a constrained least-squares method 
because the downscaled spectral information (DN, radiance or reflectance values) should 
fulfil the following two conditions: (i) all the spectral values must be positive and (ii) none of 
the spectral values can be larger than the saturation value of the low spatial resolution sensor. 

4.3 Materials and methods 

4.3.1 Study area and input datasets  

The study area covers approximately 40 km by 60 km of the central part of The 
Netherlands (52.19° N, 5.91° E; Figure 4.1). The selected study area includes the largest 
lowland natural area of north-western Europe as well as grasslands, croplands and some 
relatively important urban nuclei. The landscape of the natural area is characterized by a 
mixture of heather, woodlands and sand drifts. One of the largest and oldest national parks of 
The Netherlands, “De Hoge Veluwe”, lies in the southern part of the natural area. Part of the 
rivers Rhine and IJssel are located in the southern and eastern part of the study area. Finally, 
the north-western corner of the selected area corresponds to the province of Flevoland, a 
polder mainly used for agricultural purposes. The shallow lake known in Dutch as 
“Veluwemeer” separates Flevoland from the mainland.  

The study area was selected considering both the heterogeneity of the landscape and the 
availability of cloud free high and medium spatial resolution satellite data acquired nearly 
simultaneously: a Landsat-5 TM image from 10 July 2003 and a MERIS full resolution level 
1b image acquired 14 July 2003 were available over this area. Both images were in top of 
atmosphere (TOA) radiance and they were co-registered with a root mean square error of 0.47 
MERIS pixels. The main characteristics of the TM and the MERIS sensors are given in Table 
4-1. 
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Figure 4.1. Location of the study area within The Netherlands. 

 

Table 4-1. Comparison of the TM and the MERIS FR sensors. 

TM MERIS FR 

Band centre  
(nm) 

bandwidth  
(nm) 

centre  
(nm) 

bandwidth  
(nm) 

1 485 70 412.5 9.9 
2 560 80 442.4 10 
3 660 60 489.7 10 
4 830 140 509.7 10 
5 1650 200 559.6 10 
6 (α) (α) 619.6 10 
7 2215 270 664.6 10 
8   680.9 7.5 
9   708.4 10 
10   753.5 7.5 
11   761.6 3.7 
12   778.5 15 
13   864.8 20 
14   884.8 10 
15   899.8 10 

Spatial resolution 25 m 300 m 
Revisit time 16 days 2-3 days 

(α): the 6th band of the TM sensor was not used in this study because it is located in the 
thermal domain and has a different spatial resolution (60 m). 
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4.3.2 Fused images 

The unmixing-based data fusion approach formulated in Eq. 4.1 inherently requires the 
optimization  of two parameters: the number of classes used to classify the high spatial 
resolution image (nc) and the size of the neighbourhood used to solve the unmixing equations 
(k). Like in our previous study (Zurita-Milla et al. 2008a),  5 nc values (10, 20, 40, 60 and 80) 
and 14 k values (from k = 5 to  k = 53 in steps of 4) were used to generate a series of fused 
images. In that study, the quality of the fused images was quantitatively assessed at the TM 
and at the MERIS FR spatial resolutions by using the so-called ERGAS index (Lillo-Saavedra 
et al. 2005; Ranchin et al. 2003; Wald 2002) and by computing the average correlation 
coefficient between spectrally similar TM and MERIS bands. The results of this quality 
assessment indicated that a trade-off exists between the reconstruction of fused images at 25 
and at 300 m and suggested that a specific application should be used to select the best 
combination of nc and k. In order to try to clarify this issue, here land cover mapping was 
chosen as such an application.  

4.3.3 Land cover classification 

All fused images, as well as the original TM image, were classified using a supervised 
maximum likelihood classification rule. Similar to other studies (Clevers et al. 2007; Zurita-
Milla et al. 2007a), the MERIS bands 1, 2, 11 and 15 were excluded from all the fused images 
before their classification. These bands are either very susceptible to atmospheric influences 
(bands 1 and 2) or they coincide with atmospheric absorption features (bands 11 and 15) and, 
hence, they do not provide relevant information for land cover mapping. 

The latest version of the Dutch land use database, LGN5, was used to support the selection 
of the training samples and to validate the classification results (Figure 4.2). This dataset is 
based on a multi-temporal classification of high resolution satellite data and the integration of 
ancillary data (Hazeu 2005). The LGN5, which is based on operator supported interpretation 
of Landsat imagery from the year 2003 for the study site, has a spatial resolution of 25 m and 
a detailed legend consisting of 39 classes. In order to simplify the classification process and 
reduce spectral confusion, the LGN5 was thematically aggregated into the 8 main land cover 
classes of The Netherlands: grassland, arable land, deciduous forest, coniferous forest, water, 
built-up, natural vegetation and bare soil (including sand dunes).  

Two additional experiments were designed to further assess the potential of the fused 
images for land cover classification. First, the MERIS image was resampled from 300 m to 25 
m using cubic convolution and then it was classified to evaluate the added value of the fusion 
process. In the second experiment, bands 5 and 7 of the TM image were omitted from the TM 
classification because MERIS does not collect information in the SWIR region. This allows 
us to compare classification results of spectrally similar images. Finally, the overall 
classification accuracies, the user’s and producer’s accuracies as well as the kappa coefficient 
were used to compare the classification results. 
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Figure 4.2. Thematically aggregated land cover map (LGN5) over the study area. 

4.3.4 Assessing vegetation status 

As mentioned in section 4.1, two vegetation indices are operationally produced to monitor 
vegetation status using MERIS data: the MTCI, which is related to canopy chlorophyll 
content, and the MGVI, which is directly linked to fAPAR. Traditional vegetation indices like 
the normalized difference vegetation index (NDVI) can also be computed from MERIS data. 
The NDVI was designed to enhance vegetation signal and it is basically an indicator of the 
amount of vegetation and its “greenness”. Due to its simplicity, this index has found a large 
number of applications. For instance, NDVI has been related to fAPAR (Myneni and 
Williams 1994), and was also used to estimate crop and forest productivity (Maselli and 
Chiesi 2006; Moriondo et al. 2007). For this study, the advantage of computing this index is 
that it can also be derived from TM data so that we can compare results at 25 m.  

The MTCI, MGVI and NDVI are easy to compute and, if the selected data fusion method 
preserves the MERIS spectral information, they can be used to study vegetation status at a 
much higher spatial resolution. The best fused image, as identified based on the land cover 
classification accuracy, was selected to compute these vegetation indices. In addition to the 
vegetation indices, the spectral consistency of the best fused image was checked by 
comparing the average spectral signature of the training areas used during the land cover 
classification with the corresponding signatures of the original MERIS FR data. 

The NDVI was computed as follows: 
 

REDNIR

REDNIR
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L-L

NDVI
+

=                     (4.2) 
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Where LNIR and LRED are the TOA radiance values of the bands located in the NIR and the 
red regions of the electromagnetic spectrum. In the case of MERIS, band 13 was used for LNIR 
and band 7 for LRED whereas for the TM sensor bands 4 (NIR) and 3 (red) were used. 

The use of radiance data to compute the NDVI facilitates the inter-comparison exercise. 
Nevertheless, differences in sensor spectral configuration and sensor calibration will still play 
an important role when comparing indices computed using data from different sensors (Teillet 
et al. 1997). For instance, the TM sensor was designed to quantize the spectral information 
using 8 bits whereas MERIS uses a 12-bits digitization. 

The computation of the MTCI and MGVI indices requires that the data is transformed from 
TOA radiance to TOA reflectance (also known as planetary reflectance). Eq. 4.3 shows the 
expression used for such a transformation. The average solar irradiance per band, Si (W        
m-2µm-1), and the solar angle, θs, were obtained from the MERIS metadata. 
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=           (4.3) 

 
The MTCI was computed using Eq. 4.4 where the Rx is the TOA reflectance of the xth 

MERIS band: 
 

 
R8-R9
R9-R10MTCI =            (4.4) 

 
The MGVI uses the TOA reflectance in three MERIS bands: blue (band 2), red (band 8) 

and near-infrared, NIR, (band 13). The information in the blue band is used to derive rectified 
red and NIR reflectances that are corrected for atmospheric effects. After that, the MGVI is 
computed as a polynomial function of the rectified red and NIR reflectances (Gobron et al. 
2004). 

4.4 Results and discussion 

4.4.1 Land cover classification  

A supervised maximum likelihood classification rule was applied to: i) the complete series 
of fused images, ii) the Landsat TM images (all bands and 4 bands cases) and iii) the original 
MERIS image resampled to 25 m using cubic convolution. First, homogeneous areas 
belonging to the 8 main land cover types were identified using the LGN5. These areas             
(< 0.4 % of the total pixels) were used to train the classifier. Subsequently, the land cover 
classifications were validated using the whole LGN5 (Figure 4.2) as a reference.  
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Figure 4.3. Relationship between the neighbourhood size (k) and the overall classification 
accuracy. Each symbol represents a different value of the number of classes used to classify 
the TM image (nc). 

Figure 4.3 illustrates the relationship between the data fusion parameters k and nc and the 
overall classification accuracies. In general, the larger the neighbourhood size, the higher the 
classification accuracies. Nevertheless, for larger neighbourhood sizes, an asymptotic value of 
about 60 % is found. This indicates that increasing the window size beyond the tested values 
will not result in an improved overall accuracy. The poor classification results obtained for 
small k could indicate that the unmixing solutions are not stable – especially if TM has been 
classified in a large number of classes. The use of regularization techniques (Golub et al. 
2000) might be needed in these cases.  

In addition, classification accuracies for nc = 10 seem to be rather insensitive to the 
neighbourhood size and they are consistently lower than the rest of the accuracies. This could 
be because 10 unsupervised classes are not sufficient to properly characterize the 
heterogeneity of the study area. 

The fused image obtained for nc = 60 and k = 45 was selected as the best fused image 
because it maximises the classification accuracy. Nevertheless, we recognize that other 
combinations of nc and k provide very similar results. This is because a number of fused 
images yielded classification accuracies around the asymptotic value of 60 %. Figure 4.4 
shows an RGB colour composite of the best fused image and of a 25 × 25 MERIS FR pixels 
subset together with the original TM and MERIS FR images. The selected subset corresponds 
to the north-western corner of the study area (Flevoland), where the individual agricultural 
fields can easily be identified at 25 m but not at 300 m.  
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Figure 4.4. RGB color composite of bands 4, 3 and 2 of the TM image (a, d), bands 13, 7 and 
5 of the fused image for nc = 60 and k = 45 (b, e) and bands 13, 7 and 5 of the original 
MERIS FR image (c, f). Upper row shows the whole study area, whereas the lower row 
shows a 25 by 25 pixel subset. 

Table 4-2 summarises the overall accuracy and kappa coefficient of the best fused image as 
well as the ones obtained for the TM and the MERIS cubic convolution resampled images. 
Classification accuracies are moderate to good, especially considering the fact that the study 
area is very heterogeneous (even at the spatial resolution provided by the TM sensor).  

Table 4-2. Classification results. 

 O.A. [%] K 
Best fused image (nc = 60; k = 45) 61.59 0.519 
Landsat TM 6 bands 63.32 0.550 
Landsat TM bands 1 to 4 57.98 0.484 
MERIS 25 m cubic convolution  40.57 0.295 

O.A. = overall classification accuracy; K = kappa coefficient 

The overall classification accuracy and the kappa coefficients of the original TM image 
were slightly better than the ones obtained for the best fused image. However, the 

d) e) f) 

a) b) c) 
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classification results of the TM image without the SWIR bands were worse than the ones 
obtained for the best fused image. This indicates that 1) the SWIR bands, which are missing 
in MERIS, play an important role in the final classification accuracy and 2) that the MERIS 
spectral configuration offers an increased class separability with respect to TM (visible and 
NIR).  

The best fused image performed much better than the cubic convolution resampling of the 
original MERIS FR image. This shows that the selected data fusion approach is very useful to 
downscale MERIS data. Figure 4.5 shows the classification results obtained with the best 
fused image and with the Landsat TM (all bands). The map produced using the best fused 
image offers a good representation of the main landscape features.  

 

 
Figure 4.5. Classification results for the fused (a), and the Landsat TM (b) images. 

 

Finally, Table 4-3 provides detailed information on the classification results of the best 
fused image through its full confusion matrix. In comparison, the full confusion matrix for the 
TM image with all 6 reflective bands is provided in Table 4-4. In both cases still a lot of 
confusions between classes are occurring, explaining the moderate overall classification 
accuracies and kappa coefficients in Table 4-2. However, this is the order of magnitude of 
these accuracies to be expected if no multitemporal satellite data and no ancillary information 
is used (Hazeu 2005). In most cases, confusion is quite similar for the fused image and for the 
TM image. Noticeable are the low user’s and producer’s accuracies for arable land. This can 
be explained by the heterogeneity of the class. In July, winter cereals are already mature and 
will look more like bare soil or urban areas. Spring cereals and in particular crops like sugar 
beet and potatoes are still green. As a result, mixing of the arable land class with many of the 
other classes occurred. In this respect, the major difference between the fused image 
classification and the TM classification is that in the fused image much more arable land 
pixels were labelled grassland, whereas in the TM image more pixels were assigned the label 
deciduous forest. Another noticeable class is water. It had a very high user’s accuracy, 

b) a) 
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whereas the producer’s accuracy was relatively low. This indicates that a significant number 
of water pixels was misclassified. An explanation for this can be a remaining uncertainty in 
the coregistration and the presence of many narrow water bodies. In the fused image, many 
water pixels were classified as built-up, whereas in the classified TM image many water 
pixels were classified as natural vegetation and arable land and not that much as built-up. 
Other major differences between the classifications of the best fused image and of TM are in 
particular the number of correctly classified pixels for the classes deciduous forest and bare 
soil (although the latter is a rather small class). For the bare soil class much more pixels have 
been labelled as arable land in the classified fused image than in the classified TM image, at 
least relative to the size of this class. 

4.4.2 Assessing vegetation status 

Figure 4.6 illustrates the average spectral signatures of the areas used as training areas for 
the land cover classification. Figure 4.6a was prepared using the best fused image while 
Figure 4.6b shows the signature of the corresponding areas in the original MERIS FR image. 
These signatures can be compared, since the training areas were taken from large 
homogeneous areas that correspond to “pure” pixels at the original MERIS scale. The general 
shape of these spectral signatures corresponds to typical spectra of the respective classes. The 
first few bands show relatively high values due to atmospheric scattering in the blue. Bands 
11 and 15 show low TOA reflectance values due to the oxygen and water absorption features 
located near those bands. Figure 4.6 confirms that the spectral differences between the best 
fused image and MERIS are very small. Thus, the unmixing-based data fusion approach 
succeeded in synthesizing the spectral characteristics of MERIS at 25 m. This should allow 
the calculation of vegetation indices from the fused images. 
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Table 4-3. Confusion matrix for the maximum likelihood classification of the best fused image (nc = 60; k = 45). 
  Actual class    

Classif. class Water Built-up Grasslands Coniferous Arable land Deciduous Nat. veg. Bare soil Total User's acc. 

Water 64542 40 669 11 24 8 0 37 65331 98.79 

Built-up 29007 272294 84149 27301 30147 8256 9937 4940 466031 58.43 

Grasslands 5742 64704 925884 10184 182531 37473 2389 831 1229738 75.29 

Coniferous 3854 22135 34952 633418 3020 54996 22463 541 775379 81.69 

Arable land 9968 82598 142704 15425 130272 20843 9203 5714 416727 31.26 

Deciduous 7909 45711 115779 107860 95145 185731 5344 549 564028 32.93 

Nat. vegetation 3227 36045 51514 79117 8304 7758 176726 1539 364230 48.52 

Bare soil 0 2 229 95 0 0 259 5928 6513 91.02 

total 124249 523529 1355880 873411 449443 315065 226321 20079 3887977  

Producer's acc. 51.95 52.01 68.29 72.52 28.99 58.95 78.09 29.52     

 

Table 4-4. Confusion matrix for the maximum likelihood classification of the TM image (6 bands). 
 Actual class     

Classif. class Water Built-up Grasslands Coniferous Arable land Deciduous Nat. veg. Bare soil Total User's acc. 

Water 78313 78 1037 433 106 45 104 41 80157 97.70 

Built-up 7426 278608 59312 22392 18068 3658 9857 4053 403374 69.07 

Grasslands 3446 41854 859289 6703 104996 19927 4164 1334 1041713 82.49 

Coniferous 3624 18533 30262 655732 2673 33760 15545 419 760548 86.22 

Arable land 10786 79204 129618 15704 155259 12918 1978 1084 406551 38.19 

Deciduous 4509 21975 161126 110338 146015 234045 2823 413 681244 34.36 

Nat. vegetation 16081 80797 110394 61491 20121 10678 190243 2397 492202 38.65 

Bare soil 64 2480 4842 618 2205 34 1607 10338 22188 46.59 

Total 124249 523529 1355880 873411 449443 315065 226321 20079 3887977  

Producer's acc. 63.03 53.22 63.38 75.08 34.54 74.28 84.06 51.49     
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Figure 4.6. Average spectral signature for the 8 main land cover classes in The Netherlands. 
(a) best fused image (nc = 60; k = 45); (b) original MERIS FR data. 

As an example, Figure 4.7 presents the NDVI results computed over the 25 by 25 pixels 
MERIS FR subset that was used in Figure 4.4. The index was computed from the TM image, 
from the best fused image and from the original MERIS FR image. A few negative NDVI 
values were identified in the NDVI images. These values, associated to bare soil, water or 
“edge effects” (i.e. mixed pixels in between fields or at the interface land/water), were set to 
zero to facilitate the interpretation of the results. Figure 4.7 illustrates that it is possible to 
monitor individual fields using MERIS fused images. There is a good agreement between the 
spatial patterns found in the fused and in the original MERIS FR image. However, the 
dynamic range found for the fused and the MERIS NDVI values is smaller than the one of the 
TM image. This can be explained by differences in band centres and bandwidths. Cross-

a) 

b) 
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sensor calibration of vegetation indices is still an open issue for the remote sensing 
community (Fensholt et al. 2006). A detailed study by Teillet et al. (1997) identified that 
NDVI is very sensitive to the spectral configuration of the sensor and pointed out that the 
effects on the NDVI depend on the type of canopy under study. In this respect, the narrow 
spectral bands provided by MERIS should provide a better NDVI that the one computed using 
broad bands. More precisely, Teillet et al. (1997) concluded that a narrow band (less than 50 
nm) located around 865 nm is optimal to compute the NDVI because this region is less 
sensitive to possible errors due to an improper atmospheric water vapour correction. MERIS 
band 13 (864.8 nm) is in the middle of this optimum region whereas TM band 4 (830 nm) is a 
very broad band extending outside that spectral region. 

Despite the differences in sensor spectral configuration (Table 4-1), a good correlation (r = 
0.76) was found between the NDVI computed from the TM and from the MERIS fused 
image. In a recent study, Busetto et al. (2008) found a correlation of about 0.85 using NDVI 
computed from TM and fused MODIS images but these sensors have a much more 
compatible spectral configuration than TM and MERIS.  

NDVI
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Figure 4.7. Example of the NDVI for the TM (a), the fused (b) and the MERIS FR image (c) 
for a 25 × 25 MERIS FR pixels subset of the study area. 

Finally, Figure 4.8 shows the results for the MTCI and the MGVI vegetation indices. 
Notice that these indices were not computed for the large water body present in the scene 
since its MTCI and MGVI values are meaningless. For the land pixels, a small proportion   
(<1 %) of unfeasible index values, or “outliers”, were identified and removed from the MTCI 
and MGVI images computed from the fused image. In this case, the outliers are defined as 
pixels that are exceeding more than 10 % of the maximum or minimum index values as found 
in the original MERIS FR images (i.e. we assume that pixels at 25 m might have index values 
outside of the range found at 300 m, because at the MERIS original scale the signal is 
smoothed due to the mixed pixels). The “outliers” mainly correspond with narrow linear 
features (e.g. roads or edges between agricultural plots). In Figure 4.8a and Figure 4.8c, they 
can be seen as dark blue pixels because they were set to zero. These pixels could easily be 
removed using, for instance, a median filter. The appearance of these unfeasible index values 
might be attributed to errors during the unmixing because of residual errors in the co-
registration and/or because of the ill-posedness of the unmixing problem. In addition, the 
uncertainty of unmixing classes that have a very small fractional coverage inside the MERIS 
neighbourhood is inherently higher than the unmixing of classes that cover a large proportion 
of the neighbourhood (Zhukov et al. 1999).  

 

b) c)  a) 



Using MERIS fused images 

59 

MTCI

 

 

0

0.5

1

1.5

2

2.5

MGVI

 

 

0.2

0.4

0.6

0.8

 
Figure 4.8. Example of the MTCI for the fused image (a) and the MERIS FR image (b) and of 
the MGVI for the fused image (c) and the MERIS FR image (d) for a 25 × 25 MERIS FR 
pixels subset of the study area. 

This example clearly illustrates the potential of monitoring individual fields using the fused 
products, whereas this is not possible using the original MERIS image. In the MERIS FR 
image each pixel seems to be a mixed pixel. In the fused images mixed pixels can still be 
observed at object boundaries, but individual fields are clearly identifiable. 

4.5 Conclusions and recommendations 

In this paper we have assessed the potential of MERIS-TM fused images to derive spatially 
improved MERIS land products. These fused images have the spatial resolution of TM, 
whereas the spectral and radiometric properties are solely coming from MERIS. The selected 
implementation of the unmixing-based data fusion approach requires the optimisation of two 
parameters: the number of classes used to classify the TM image, nc, and the size of the 
MERIS neighbourhood, k, used to solve the unmixing. Here, a series of fused images 
generated with various combinations of nc and k were used to produce land cover maps of the 
8 main classes of The Netherlands. The image generated with nc = 60 and k = 45 was chosen 

b) a) 

c) d) 
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as the best fused image based on the land cover classification results. Classification results for 
the TM image and for the best fused image were very similar (overall accuracies of 63.32 % 
and 61.59 %, respectively). However, the fused images outperformed the classification 
accuracies of a spectrally similar TM image (i.e. an image without the SWIR bands). This 
indicates that the fine spectral resolution of MERIS is better than a coarse spectral resolution 
for land cover mapping and that the SWIR region plays an important role in the final 
classification accuracy. Classification accuracies might be further improved by making use of 
the changing phenology of some of the classes during the year. This would require a 
multitemporal data fusion and classification approach.   

The potential of the MERIS fused images to assess vegetation status was also evaluated in 
this paper. The NDVI, MTCI and the MGVI vegetation indices were computed from the best 
fused image (25 m) and from the original MERIS FR image (300 m). Results indicate that the 
best fused image can be used to successfully downscale these continuous variables. Despite 
differences in the spectral configuration of the TM and MERIS sensors, a good correlation    
(r = 0.76) was found between the NDVI computed from TM and from the MERIS fused 
image. In addition, vegetation indices computed from the fused image were spatially 
consistent with patterns obtained from the original MERIS FR image. Moreover, the use of 
fused images allows studying vegetation status of individual fields. This is not possible using 
original MERIS FR data over heterogeneous landscapes where most of the MERIS pixels are 
mixed pixels. Unsatisfactory vegetation index values are still obtained at object boundaries, 
because the data source for defining the object classes (a TM image), has many mixed pixels 
at these instances. This affected the TM unsupervised classification and resulted in deviating 
class labels from their neighbourhood. These deviating class labels yield deviating index 
values. This problem of mixed pixels at object boundaries may be solved by using an existing 
land cover map instead of a remote sensing image for defining the thematic classes. 

Another major advantage of using a land cover map is that MERIS images of multiple dates 
may be fused with the same land cover map. In the current study, classes were obtained from 
a TM image and its classification will be different if an image from a different season is used. 
If the number of useful TM images is limited by cloud cover, the applicability of the proposed 
technique is also limited. However, the presented methodology also can be used with an 
existing, up-to-date land cover map. This should be implemented as a next step.    

Because of the spatial, spectral and temporal resolutions of MERIS fused images, we 
believe that they are particularly interesting to monitor processes in both heterogeneous and 
frequently clouded areas. Further validation is, however, required in order to completely 
assess the possibilities and limitations of this data fusion method.  
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Downscaling time series of MERIS FR data to monitor vegetation seasonal dynamics 
 
Abstract 
Monitoring vegetation dynamics is fundamental for improving Earth system models and for 

increasing our understanding of the terrestrial carbon cycle and the interactions between 
biosphere and climate. Medium spatial resolution sensors, like MERIS, exhibit a significant 
potential to study these dynamics over large areas because of their spatial, spectral and 
temporal resolution. However, the spatial resolution provided by MERIS (300 m in full 
resolution mode) is not appropriate to monitor heterogeneous landscapes, where typical length 
scales of these dynamics rarely reach 300 m. We, therefore, motivate the use of data fusion 
techniques to downscale medium spatial resolution data (MERIS full resolution, FR) to a 
Landsat-like spatial resolution (25 m). An unmixing-based data fusion approach was applied 
to a time series of MERIS FR images acquired over The Netherlands. The selected data fusion 
approach is based on the linear mixing model and uses a high spatial resolution land use 
database to produce images having the spectral and temporal resolution as provided by 
MERIS, but a Landsat-like spatial resolution. A quantitative assessment of the quality of the 
fused images was done in order to test the validity of the proposed method and to evaluate the 
radiometric characteristics of the MERIS fused images. The resulting series of fused images 
was subsequently used to compute two vegetation indices specifically designed for MERIS: 
the MERIS terrestrial chlorophyll index (MTCI) and the MERIS global vegetation index 
(MGVI). These indices represent continuous fields of canopy chlorophyll (MTCI) and of the 
fraction of photosynthetically active radiation absorbed by the canopy (MGVI). Results 
indicate that the selected data fusion approach can be successfully used to downscale MERIS 
data and, therefore, to monitor vegetation dynamics at Landsat-like spatial, and MERIS-like 
spectral and temporal resolutions. 
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5.1 Introduction  

Monitoring vegetation dynamics is essential to better understand how the Earth system 
responds to anthropogenic activities (Steffen et al. 2005). For instance, knowledge on 
vegetation dynamics is fundamental to fully understand the terrestrial carbon cycle and the 
interactions between biosphere and climate (Champeaux et al. 2000; Dickinson et al. 1998; 
Friend et al. 2007). Earth observation satellites provide regular and synoptic data that can be 
used to monitor these dynamics at different spatial, spectral and temporal resolutions. Time 
series of vegetation indices (i.e. combinations of two or more spectral bands) are the most 
common approach to monitor greenness shifts (Dorigo et al. 2007). Further, key phenological 
metrics like the day of green-up and vegetation senescence can be retrieved using temporal 
series of these vegetation indices (Moody and Johnson 2001; Myneni et al. 1997a). Other 
relevant uses of time series of vegetation indices are: forecasting crop yield (Genovese et al. 
2001), assessing habitat destruction (Pettorelli et al. 2005) and studying epidemics (Rogers et 
al. 2002; Scharlemann et al. 2008). 

The normalized difference vegetation index (NDVI) has been extensively used for these 
applications. At global and regional scales, NDVI is typically computed from the data 
provided by the Advanced Very High Resolution Radiometer (AVHRR) onboard National 
Oceanic and Atmospheric Administration (NOAA) satellites. However, the AVHRR sensor 
was designed for meteorological applications and its radiometric and spectral performances 
are, therefore, not optimal for monitoring canopies. In 1998, the VEGETATION instrument 
was launched aboard the Satellite Pour l'Observation de la Terre (SPOT)-4. This sensor offers 
an improved spectral resolution because it includes a blue channel that can be used for 
atmospheric correction of the red, NIR and SWIR channels, which are very useful for 
studying canopies (Maisongrande et al. 2004). 

The advent of medium spatial resolution sensors (250 to 300 m pixel size) did not only 
improve the spatial resolution available for monitoring landscapes but also opened the 
possibilities to develop new vegetation indices optimized for vegetation studies. In the case of 
MODIS, the enhanced vegetation index (EVI; (Huete et al. 1997)), which was designed to 
minimize canopy background and atmospheric effects, is now operationally computed and 
distributed as the MOD13 product (Huete et al. 1999). For MERIS, two vegetation indices 
have been included in the official processing chain: the MERIS terrestrial chlorophyll index 
(MTCI; (Dash and Curran 2004)) and the MERIS global vegetation index (MGVI; (Gobron et 
al. 1999)). 

Despite the enhanced spatial and spectral resolution of these sensors, an accurate 
characterization of heterogeneous landscapes still requires a higher spatial resolution than the 
250 or 300 m provided by MODIS and MERIS, respectively. Landsat-like sensors (spatial 
resolution of 20 to 30 m) can be used to study this kind of landscapes, but their temporal 
resolution is not sufficient for monitoring purposes, especially in frequently clouded areas 
(Asner 2001; Jorgensen 2000; Kontoes and Stakenborg 1990). 

Data fusion techniques could facilitate the study of heterogeneous and frequently clouded 
areas by offering an efficient integration of the different kinds of images that are currently 
available (Woodcock and Ozdogan 2004). A successful data fusion approach should result in 
fused images that have more information than each of the input images alone (Hall and Llinas 
1997; Pohl and Van Genderen 1998). 
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The aim of this paper is to propose an unmixing-based data fusion approach to 
operationally monitor heterogeneous and frequently clouded areas using (multitemporal) 
MERIS data and a high spatial resolution land use dataset, which has a Landsat-like spatial 
resolution (25 m). Even if the precise length scales of vegetation dynamics in heterogeneous 
landscapes are under discussion, sensors with a Landsat-like spatial resolution have a past 
track record in monitoring vegetation dynamics at sufficient spatial (but, in general, not 
temporal) resolution (Gould 2000; Griffiths et al. 2000; Hudak et al. 2002; Vogelmann et al. 
1998). 

The unmixing-based data fusion approach was selected because previous studies have 
shown that it is able to reconstruct images with a high spectral fidelity (Zhukov et al. 1999; 
Zurita-Milla et al. 2008a). The use of MERIS data is justified because of its spectral 
configuration which allows improved vegetation monitoring capabilities with respect to other 
medium and low spatial resolution sensors (Curran and Steele 2005; Verstraete et al. 1999). 

5.2 Unmixing-based data fusion  

The unmixing-based data fusion approach uses the linear mixing model to combine two 
images acquired at different spatial resolutions. This model assumes that the spectrum of a 
mixed pixel is a linear combination of the pure spectra of the components present in that pixel 
weighted by their fractional coverage (Settle and Drake 1993). Despite this apparent 
simplicity, the linear mixing model is widely used by the remote sensing community because 
it has a sound physical basis and it has proven to be effective in analyzing mixed pixels 
(Adams and Gillespie 2006). Thus, if we have a priori knowledge about the components that 
might be present in a given scene and about their pure spectra, we can use this model to 
retrieve their sub-pixel proportions. This application is known as spectral unmixing (Adams et 
al. 1995; Ustin et al. 1993). The identification of materials or objects (Kemper and Sommer 
2004), the derivation of continuous fields of vegetation properties (DeFries et al. 2000) and 
the quantification of land cover change at sub-pixel scales (Haertel et al. 2004; Kressler and 
Steinnocher 1999) are other applications of the linear mixing model. The success of these 
applications relies on the quality of the a priori knowledge with respect to the scene 
composition. In other words, the results of any linear spectral unmixing method heavily 
depend on a proper identification of the main components present in the scene and their pure 
spectra. This identification is difficult when the image has been acquired over very 
heterogeneous landscapes and/or when we work with coarse resolution data because in these 
cases most of the pixels are mixed (i.e. hardly any pure pixel can be found in the scene). 
Furthermore, the number of components that can be unmixed is limited by the number of 
spectral bands of the image. This implies that panchromatic images cannot be used for 
spectral unmixing and that hyperspectral images are preferred over multispectral ones. 

If a high and a low spatial resolution image are simultaneously available over a certain 
study area, the linear mixing model can also be used to combine the information provided by 
these images. This application is known as unmixing-based data fusion and it aims at 
downscaling the spectral information of the low spatial resolution image to the spatial 
resolution provided by the high spatial resolution image. This kind of unmixing does not 
require a priori knowledge of the main components present in the low spatial resolution image 
because there is no need to identify their pure signals. In fact, these signals are the output. It 
is, however, essential that the high spatial resolution image allows a proper identification of 
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the main components present in the study area (albeit without having information on their 
spectral characteristics). Therefore, the unmixing-based data fusion approach can be applied 
even if the low resolution image only has mixed pixels or a small number of spectral bands.  

The theoretical basis of the unmixing-based data fusion approach was first proposed by 
Zhukov et al. (1999). In this work, they downscaled TM thermal data by using the 
information provided by the other TM bands. The approach was validated using DAIS images 
and they concluded that it was possible to downscale thermal information with an error 
smaller than 2 Kelvin. Since then, a number of implementations of the unmixing-based data 
fusion algorithm have emerged. For instance, Haertel and Shimabukuro (2005) used it to 
extract endmembers from MODIS images using TM data as a reference. Zeng et al. (2008) 
used it in a similar way to characterize the sun-lit background of a forest and Minghelli-
Roman et al. (2001; 2006) used it to merge MERIS and TM data for coastal water monitoring. 

Recently, Zurita-Milla et al. (2008a) have presented a detailed implementation of the 
unmixing-based data fusion approach to combine MERIS and TM data for vegetation 
monitoring over heterogeneous landscapes. In a follow-up study, Zurita-Milla et al. (2008b) 
studied the applicability of such MERIS fused images for land cover mapping and for 
vegetation status assessment. Results of this analysis were promising. Classification 
accuracies of the MERIS fused image were higher than those of the TM image without SWIR 
bands and very similar when all the TM bands were used. Results also showed that vegetation 
indices can be computed from fused images and that the observed patterns are consistent with 
those observed by the TM and by the MERIS sensors. The main limitation of this study was 
that a TM image was used to characterize the landscape and, therefore, only MERIS images 
acquired at about the same date as the TM image could be downscaled. 

Here we propose an improved version of the unmixing-based data fusion approach where a 
high spatial resolution land use map is used to characterize the landscape. This allows us to 
apply the method to a time series of MERIS FR images and to use the resulting fused images 
to monitor vegetation seasonal dynamics with high spatial, spectral and temporal resolutions.  

5.3 Materials and methods 

5.3.1 Study area and datasets 

The study area covers approximately 2400 km2 of the central part of The Netherlands 
(centered at 52.19° N, 5.91° E). The largest lowland natural area of north-western Europe lies 
in the center of the selected study area. This area, known as the “Veluwe”, covers about 1000 
km2 and it is characterized by a mixture of heather, woodlands (both coniferous and 
deciduous), natural vegetation and shifting sands. The rivers IJssel and Rhine can be seen in 
the eastern and southern part of the study area (Figure 5.1). In these areas, soils are 
predominantly composed of river clays and, therefore, the main land cover types are 
grasslands and agricultural lands. In the north-west corner of the study area we see a part of 
the province of Flevoland, where we find the largest agricultural plots of the study area, and 
the lake “Veluwemeer”. The selected study area also includes some relatively important urban 
areas: Arnhem, Ede, and Apeldoorn are cities with more than 100.000 inhabitants. 

For the year 2003, three datasets are available over the study area: (i) a Landsat TM-5 
image acquired on 10 July 2003, (ii) a time series of seven MERIS full resolution level 1b 
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images acquired between February and December 2003 and (iii) a high spatial resolution land 
use database. 

The TM image was already geo-referenced to the Dutch national coordinate system and had 
a pixel size of 25 m. The MERIS FR images were corrected for the smile effect (Zurita-Milla 
et al. 2007a) and transformed into top of atmosphere radiances (LTOA) using the metadata 
provided with the files. Figure 5.1 shows the study area as seen by TM and MERIS.  

 

 
Figure 5.1. Study area as seen by Landsat TM on 10 July, 2003 (a) and by MERIS for the 
following dates of the same year: 18 February (b), 16 April (c), 31 May (d), 14 July (e), 6 
August (f), 15 October (g) and 8 December (h). 

The land use database, known in Dutch as LGN, is a geographical database that describes 
the main land uses in The Netherlands. The latest version, LGN5, includes the main land 
use/land cover types present in the country: urban areas and infrastructure, water bodies, 
semi-natural and natural vegetation types and various kinds of forests and agricultural classes. 
The LGN5 has a grid structure with a cell size of 25 m and its typical application scale is 
about 1:50.000. This database is based on a stratified multitemporal classification of satellite 
imagery of 2003 (central and eastern part of The Netherlands) and 2004 (western part of the 
country). In addition to satellite imagery, several sources of ancillary data are used to produce 
the LGN (de Wit and Clevers 2004; Hazeu 2008). The LGN5 subset that covers the study area 
has 30 out of the 39 original LGN classes. Table 5-1 summarizes the main classes present in 
the study area as well as their percentual coverage. 
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Table 5-1. Main land cover types in the study area after thematic aggregation into 10 classes. 

Land cover % of total area 
Grasslands 34.88 
Maize 5.99 
Cereals 2.21 
Other crops 3.36 
Coniferous forest 21.68 
Deciduous forest 8.10 
Heather 5.81 
Bare soil 0.52 
Built-up areas  14.25 
Water 3.20 

5.3.2 Multi-temporal data fusion 

As mentioned in section 5.2, the aim of the unmixing-based data fusion approach is to 
downscale a low spatial resolution image. For this, the low spatial resolution image (MERIS) 
is first co-registered with a high spatial resolution dataset (in this case the LGN5). Then, the 
fractional coverage of each LGN5 class is computed for each MERIS pixel. After that, each 
MERIS pixel is successively unmixed for each MERIS band using the corresponding LGN5 
fractional coverages. In order to have enough equations a neighborhood of k × k MERIS 
pixels is used during the unmixing, which can be written as follows: 

 

ikikki ΕSFL +⋅= ,,
                                  (5.1) 

where: Li,k is a vector that contains the MERIS values (band i) of all pixels present in the 
neighborhood k. Fk is a matrix containing the corresponding LGN5 fractional coverages 
within the neigborhood. Si,k is the unknown vector of spectrally downscaled MERIS values 
and Ei is a vector of unmixing residual errors.  

Similar to our previous studies (Zurita-Milla et al. 2008a), a constrained least-squares 
method is used to solve Eq. 5.1 because Si,k should fulfill two conditions: i) all the unmixed 
values should be positive and ii) they should be equal or smaller than the (per band) MERIS 
radiance saturation values (ESA/EO helpdesk, personal communication). The last step of the 
unmixing-based data fusion approach is to create a fused image by assigning the 
corresponding MERIS unmixed signals to each of the land cover (LGN5) classes present in 
the central pixel of each k × k MERIS neighborhood. The following sections provide a more 
detailed description on the implementation of the data fusion algorithm as well as a procedure 
to evaluate the fusion quality and to optimize the size of the neighborhood k.  

5.3.3 Image co-registration  

One prerequisite of data fusion is to have the input images perfectly co-registered. This is 
usually achieved by transforming the images to a common coordinate reference system. 
However, this transformation implies re-sampling of the images which, in turn, might have 
adverse effects on the quality of the fused images. The simplest and fastest re-sampling 
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method is nearest neighbor which preserves original pixel values but lacks geometric 
accuracy because the measurements are actually shifted to the nearest grid point and rotated to 
be aligned to the grid axes. Other techniques, such as bi-linear or bi-cubic interpolation are 
more accurate in respect of the geometrical transformation. However, they produce synthetic 
pixel values. Because of these drawbacks, we propose to use a different approach based on 
computing the actual ground instantaneous field of view (GIFOV) of each MERIS pixel. In 
order to use MERIS geo-location values that are as accurate as possible we used the 
AMORGOS 3.0 software (ACRI-ST 2007). This software calculates the geographic 
coordinates (WGS84) of the center of each pixel in the MERIS image based on satellite 
telemetry (ephemeredes, look angles) and a digital terrain model. Based on this information 
we determine the extent (i.e. the corner coordinates) of each MERIS pixel’s GIFOV by two-
dimensional linear interpolation.   

Besides avoiding the re-projection of the data, the computation of the MERIS GIFOV 
allows us to determine the real number of TM pixels covered by each MERIS pixel. In our 
previous studies, this number was considered constant (simply by rationing the MERIS and 
the TM pixel sizes). With the current approach, we can study the effect of changes in viewing 
angles across the MERIS swath (pixels at the edge of the swath are larger).  

5.3.4 Duplicates removal 

The grid of the MERIS level 1b product is filled by applying a nearest neighbor re-
sampling to the data acquired by the instrument. In this process a slight spatial over-sampling 
is used (ESA 2006). This means that the same instrument sample can be found more than 
once in the resulting level 1b product grid. In this case, the pixels are flagged as “duplicate” 
(Figure 5.2). 

 

 
Figure 5.2. MERIS Level 1b gridding approach and MERIS duplicates. (Source: 
http://www.noc.soton.ac.uk/bilko/envisat/html/pop/mer_prodgrid.html).    

When MERIS FR level 1b data are used as input for AMORGOS, the software runs in the 
so-called FSG (full-swath geo-corrected) mode. In this mode, the MERIS level 1b grid is kept 
(i.e. there is no restoration of the instrument geometry). This implies that duplicate pixels are 
not removed from the output file. However, duplicated pixels receive the same coordinates as 
the original MERIS pixel and therefore they can easily be located.  
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In our implementation of the unmixing-based data fusion approach, duplicated pixels are 
accounted for when computing the GIFOV. They are removed from the MERIS data so that 
only “real” MERIS pixels are fused with the land cover map. 

In exceptional cases, three consecutive pixels may occur with identical geolocation and 
radiances. The reason for these ‘triplets’ are i) very large look angles at the edge of the swath 
and ii) instrument pixels being discarded from the spatial resampling for radiometric 
performance reasons  (ESA/EO helpdesk, personal communication).  

5.3.5 Fractional cover estimation 

In contrast to our previous study, where a TM image was used to identify the main objects 
and patterns of the study area (Zurita-Milla et al. 2008a), here the LGN5 land use database is 
used as a reference. This approach is similar to the one proposed by Busetto et al. (2008) who 
used a high spatial resolution land use/land cover map to downscale MODIS NDVI values. 
The use of the LGN5 is justified because it reflects the objects and patterns found in the study 
area throughout the year and not just those of a specific date or season. 

Point spread function (PSF) effects (Townshend et al. 2000) are also considered in the 
software  implementation developed for this study. The PSF of a sensor determines how much 
of a signal reaching a detector element actually comes from adjacent areas outside the 
nominal GIFOV of the pixel and it weighs the signal over the area contributing to the detector 
readout (Kaiser and Schneider 2008). Therefore, when computing land cover fractions for 
each low spatial resolution pixel, PSF effects should be taken into account and the 
corresponding weights should be used to compute the fractional coverage of each class.   

According to Schowengerdt (1997), the effective point spread function (PSFtot) of an 
imaging system consists of several components: (i) the signal is blurred within the optical 
system (PSFopt), (ii) motion of the sensor (PSFmot) causes blurring in the in-track and/or cross-
track direction (depending on the type of sensor), (iii) the signal is integrated over the non-
zero area of the detector element (PSFdet) and (iv) the electronic components cause smoothing 
by applying a low-pass filter to reduce noise (PSFel). By assuming that every component is a 
shift-invariant linear system, PSFtot can be computed by convolution of its parts (Kaiser and 
Schneider 2008). For this study, the PSF was regarded as “ideal” (i.e. no blurring caused by 
optics, motion or electronics) because MERIS PSF effects are negligible for this kind of data 
fusion approach (Zurita-Milla et al. 2007d). However, it should be noted that this is not the 
case when using MODIS data because its triangular PSF causes 25 % of a signal recorded in a 
pixel to originate from adjacent areas (Kristof and Pataki, 2008; Tan et al., 2006).  

As a combined effect of the heterogeneity of the landscape in the selected study area and 
the high thematic resolution of the LGN5 database, individual class fractions for certain 
MERIS pixels can be relatively small. Zhukov et al. (1999) showed that the accuracy of the 
retrieved signal is inversely related to the fractional coverage of the class and they suggested 
aggregating small fractions to increase the reliability of the solutions. In our work, a threshold 
of 5 % was selected. This is, classes that cover less than 5 % of a MERIS pixel are aggregated 
into the spectrally most similar LGN5 class present in the pixel under consideration. Several 
options are possible to rank the LGN5 classes according to their spectral similarity. Here we 
propose to use a very pragmatic approach: first, the LGN5 and the TM dataset are overlaid. 
Then, a class-wise average of the TM spectral signatures is computed. This operation results 
in 30 spectral signatures characterizing each of the LGN5 classes present in the study area. 
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Subsequently, the correlation coefficients between these spectral signatures are computed. 
Based on these results, a look-up-table of spectral similarity is created. In this case, the table 
has a size of 30 × 30 because there are 30 LGN5 classes in the study area.  

5.3.6 Data fusion quality and optimizing the MERIS neighborhood 

Assessing the quality of fused images is not straightforward because it depends on many 
factors like the difference in spatial or spectral resolution of the input images and the type of 
landscape under consideration (Thomas and Wald 2004). As a result, a number of data fusion 
quality indicators can be found in literature (Alparone et al. 2004; Tsai 2004; Wald et al. 
1997; Wang and Bovik 2002). Wald et al. (1997) proposed a general framework for assessing 
the quality of fused images where it is advised to do this assessment at the original resolution 
of the input images. Similar to other studies (Minghelli-Roman et al. 2006; Zurita-Milla et al. 
2008a), the ERGAS index (Lillo-Saavedra et al. 2005; Ranchin et al. 2003; Wald 2002) was 
used in this work for the data fusion quality assessment. The ERGAS index is computed as 
follows: 
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                   (5.2) 

 
where: h is the pixel size of the high spatial resolution image; l is the pixel size of the low 

spatial resolution image; N is the number of spectral bands involved in the assessment; Mi is 
the mean value of the dataset used as a reference (band i) and RMSEi is the root mean square 
error computed between band i of the reference image and its spectrally corresponding band 
from the fused image. 

The choice of the reference image depends on the scale at which the analysis is performed. 
The Landsat TM image is used for the quality analysis at 25 m and the original MERIS 
images are used for the analysis at 300 m (notice that the MERIS fused images should 
reproduce the corresponding MERIS image when degraded to the original spatial resolution). 

Besides evaluating the quality of the fused images, this assessment was also used to 
optimize the size of the k × k MERIS neighborhood used during the unmixing (Eq. 5.1). To do 
so, four neighborhoods (5, 7, 9, and 11) were tested using the MERIS image of July. This 
MERIS image was selected because of the availability of the TM image acquired 4 days 
earlier which allows computing the ERGAS at 25 m and at 300 m. The neighborhood size 
yielding the best quality (minimum ERGAS values) will be selected as the best one and will 
subsequently be used for the rest of the MERIS images.  

5.3.7 Vegetation seasonal dynamics 

MERIS’ potential for land applications (Curran and Steele 2005; Verstraete et al. 1999) has 
resulted in a number of semi-operational and operational MERIS land products. Currently, 
two vegetation indices are operationally produced to monitor vegetation status using MERIS 
data: the MERIS terrestrial chlorophyll index, MTCI (Dash and Curran 2004) and the MERIS 
global vegetation index, MGVI (Gobron et al. 1999). 
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Like the MERIS red-edge position (Clevers et al. 2002), the MTCI is related to the 
chlorophyll content of canopies. According to Dash and Curran (2004), the MTCI is more 
sensitive to high chlorophyll content and less sensitive to spatial resolution and atmospheric 
effects than the red-edge position. The MTCI is computed as follows: 

 

 R8-R9
R9-R10MTCI =

                                (5.3) 
 
where R8, R9 and R10 are the top of atmosphere (TOA) reflectances of the MERIS bands 

centered at 680.9 nm, 708.4 nm and 753.5 nm.  
The MGVI has a positive linear relationship with the fraction of absorbed 

photosynthetically active radiation by the canopy (fAPAR). This index is computed using the 
TOA reflectance in three MERIS bands: blue (band 2), red (band 8) and near-infrared, NIR, 
(band 13). The information in the blue band is used to derive rectified (i.e. “atmospherically 
corrected”) red and NIR reflectances. The MGVI is computed as a polynomial function of the 
rectified red and NIR reflectances (Gobron et al. 2004):  

 
MGVI  =  f0(R8*,R13*)                      (5.4) 
 
where f0 is the polynomial function and R8* and R13* are the rectified reflectance values of 

bands 8 (680.9 nm) and 13 (864.8 nm) – see Gobron et al. (2004) for the polynomial 
coefficients of the function f0 and for the coefficients of the polynomial function used to 
rectify bands 8 and 13. 

Eq. 5.5 was used to convert the original TOA radiance into TOA reflectance values 
required to compute the above mentioned vegetation indices. The average solar irradiance per 
band, Si (Wm-2 µm-1), and the solar angle, θs, were obtained from the metadata available in 
each MERIS level 1b dataset. 
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5.4 Results and discussion 

5.4.1 Co-registration accuracy  

The LGN5 and the time series of MERIS images were co-registered without re-sampling 
the data. To do this, the ground instantaneous field of view (GIFOV) of each MERIS pixel 
was computed. Figure 5.3 shows an overlay of the MERIS image from July (band 13, NIR) 
over the TM image of July (band 4, NIR). Notice that since the TM image used in this study 
was one of the images used to create the LGN5, the co-registration between this image and 
the LGN5 was perfect. The GIFOV of each MERIS pixel is represented as a polygon in 
Figure 5.3. The small irregularities that can be observed in the shape of these polygons are 
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caused by topography and by the satellite position and look angle. In addition, an increase of 
the GIFOV was observed when moving from nadir to the edge of the swath. Accounting for 
this effect is, therefore, essential to properly determine the fractional composition of each 
MERIS pixel. Figure 5.3 can also be used to visually assess the co-registration accuracy: the 
color gradient of the MERIS pixels corresponds well with the fraction of water within these 
pixels. Furthermore, under the assumption that pure water and pure land pixels have a 
constant MERIS band 13 (NIR) value in the vicinity of the land-water-boundary, a linear 
regression model was used to assess co-registration accuracy numerically. For this purpose, 
we determined fractional water coverage by digitizing the land-water-boundary (red line in 
Figure 5.3) in the co-registered Landsat TM image. Then, the area fractions of water were 
plotted against the corresponding MERIS pixel values in band 13 (Figure 5.4). A correlation 
coefficient of 0.95 was found between these variables. This clearly supports the selected 
method to compute the LGN5 fractional coverages inside each MERIS pixel. Besides this, 
Figure 5.3 and Figure 5.4 clearly show that the use of AMORGOS to compute the MERIS 
geo-location values resulted in a good co-registration accuracy. This supports the findings of 
Arino et al. (2008), who found a root mean square error of about 0.25 MERIS FR pixels  
when using the AMORGOS software.  
 

 
Figure 5.3. Co-registration of the MERIS and TM images of July: MERIS band 13 is depicted 
using a blue-green-red color table and TM is shown as semi-transparent background. The red 
line north of the water body shows the land-water-boundary as obtained from the TM image. 
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Figure 5.4. Fraction of water present in a selection of MERIS pixels (14 July 2003) and 
corresponding MERIS band 13 (864.8 nm) radiance values. 

5.4.2 Effect of neighborhood size on data fusion quality  

Figure 5.5 summarizes the quality assessment of the fused images for the month of July. 
For comparison purposes we present both the results of the fusion with no aggregation and the 
results of the fusion after re-assigning the fractions that cover less than 5 % of the pixel to the 
spectrally most similar class. Notice that because the ERGAS index is an error-based index, 
the lower its value the better the quality of the fused images.  Three observations can be made 
from Figure 5.5: 

There is a trade-off between the reconstruction of the image at 25 m and at 300 m: for 
increasing values of k, the ERGAS values at 25 m become smaller whereas the ERGAS 
values at 300 m steadily increase.  

Aggregation of fractions that covered less than 5 % of the pixel resulted in an improvement 
of the data fusion quality at 25 m and in a small degradation of the data fusion quality at 300 
m. This is because the aggregation of classes stabilizes the unmixing (i.e. in general, it 
reduces the ill-posedness of the problem) and, as a consequence the solution at 25 m is better 
than when using the original fractions. However, aggregating classes reduces the spectral 
variability of the fused image and this explains why the ERGAS at 300 m is slightly worse 
than when using the original fractions. 

The ERGAS values at 25 m reach an asymptotic value at about 2. This means that testing 
neighborhood sizes larger than 11 will not improve the fusion quality. 

Studying the various fused images in detail, the aggregation changed less than 0.6 % of the 
LGN5 pixels when re-labeling the classes that covered less than 5 % of a MERIS pixel. 
Moreover, all 30 classes present in the study area remained in the aggregated result (i.e. no 
classes disappeared during the aggregation). Considering that the fused images will be used at 
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25 m and the fact that the range of ERGAS values at 300 m is very small, the value of k = 9 
was selected as the best neighborhood size. This size was then applied for the fusion of all 
MERIS images with the LGN5 database. 
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Figure 5.5. ERGAS values for the fused images of 14 July at 25 m (left) and 300 m (right). 

The MERIS images were fused with the LGN5 to produce a series of MERIS fused images 
using the best configuration (i.e. aggregation of fractions and neighborhood size of 9 by 9 
MERIS pixels). Figure 5.6, shows the resulting ERGAS values at 300 m. As expected, the 
values are rather constant for all dates. The only exception is the value for the image of 
October. This could be explained by the presence of “triplets” (i.e. 3 pixels having the same 
value) in this image. These triplets are probably due to a problem with a detector element 
since the study area is not situated at the edge of any of the selected MERIS images. Triples 
were not treated separately in the current implementation and, therefore, they worsen the 
quality of the fused images. Despite this, the ERGAS 300 m values found in this study are 
about a factor two smaller than the ones found in our previous study (Zurita-Milla et al. 
2008a).  
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Figure 5.6. Comparison of ERGAS values at 300 m for the time series of fused images. These 
values correspond to the fused images created with original and with aggregated (5 %) LGN5 
fractions. 

5.4.3 Vegetation dynamics 

The series of fused images was used to compute the MERIS terrestrial chlorophyll index 
(MTCI) and the MERIS global vegetation index (MGVI). A 300 by 300 TM pixels subset 
located in the northwest of the study area was selected for illustration so that the spatial 
enhancement of the fused images could clearly be visualized. Figure 5.7 shows the results for 
the MTCI whereas Figure 5.8 shows the results for the MGVI. The large water body situated 
in the middle of the selected subset was masked out before computing the vegetation indices 
because its MTCI and MGVI values are meaningless. Similar to our previous work (Zurita-
Milla et al. 2008b), some outlier pixels (i.e. pixels with unfeasible index values) were 
identified at the edges of field plots and for non-vegetated areas (e.g. roads, bare soil plots, 
built-up, etc). These values were masked out from the images (shown as zero values in dark 
blue).  
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Vegetation dynamics are visible in both images: low vegetation index values are found at 
the beginning and at the end of the series (which correspond to the winter months) and high 
vegetation index values are found in the middle of the series (spring and summer). The fused 
images preserve the information contained in the original MERIS images (i.e. general spatial 
patterns are consistent at the original MERIS scale) whilst showing additional spatial details. 
This shows the potential of fused images for monitoring individual fields. 

Using the LGN5 as a reference, pixels belonging to the main land cover types present in the 
study area were selected to study their temporal evolution. These land cover types are: 
heather, coniferous and deciduous forest (the main natural vegetation types of the “Veluwe” 
area) and grasslands, cereals and maize (the main agricultural types present in the study area). 
With respect to the 10 main land cover types (Table 5-1), only four land cover types are not 
considered. Other crops is a small class where several crops were aggregated in order to 
prepare the summary table of main land cover types and the three other classes are non-
vegetated (bare soil, built-up and water) and, therefore, their MTCI and MGVI values are, in 
principle, meaningless. Figure 5.9 and Figure 5.10 respectively illustrate the MTCI and the 
MGVI profiles computed using the fused and the original MERIS images. Pixels located in 
homogeneous areas were used to prepare these profiles so that results at 25 and at 300 m 
could be compared. Results show that the profiles are similar when computed from the fused 
and from the original MERIS images. In addition, they point out the phenological variation of 
each land cover class. Most of the vegetated classes show a greenness/chlorophyll peak for 
the image of July (Figure 5.9). Coniferous forest and heather have their chlorophyll content 
peak in August. Grasslands have a more fluctuating profile caused by biomass fluctuations 
during the growing season due to mowing and grazing regimes. With respect to the MGVI 
values, the fAPAR is also reaching its highest value in summer. Heather presents lower 
fAPAR values than the rest of the land cover classes because it is a less leafy canopy. 
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Figure 5.9. Comparison of temporal MTCI profiles of fused and MERIS FR data for the 6 
main land cover types present in the study area. 
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Figure 5.10. Comparison of temporal MGVI profiles of fused and MERIS FR data for the 6 
main land cover types present in the study area. 
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5.5  Conclusions  

In this work the linear mixing model is used to downscale time series of MERIS FR images 
(300 m pixel size) to a Landsat-like spatial resolution (25 m). A heterogeneous and 
fragmented landscape located in the central part of The Netherlands was selected to illustrate 
the performance and applicability of the proposed method. Seven MERIS FR images were 
available over this area covering the period comprised between the months of February and 
December 2003. Because of the characteristics of the landscape under study, most of the 
MERIS pixels were mixed pixels (i.e. more than one land cover type per pixel). The Dutch 
land use database of the same year (LGN5) was used to derive the fractional composition of 
each MERIS pixel. To do so, the ground instantaneous field of view (GIFOV) of each MERIS 
pixel was computed using the AMORGOS software to obtain accurate MERIS geo-location 
values. In this way, there was no need to re-project the images and we avoided processing 
errors (e.g. geometric errors due to the use of nearest neighbor resampling). Subsequently, 
each MERIS pixel was successively unmixed for each MERIS band using the corresponding 
LGN5 fractions and a MERIS neighborhood (needed to get sufficient equations to solve the 
unmixing equations). A quantitative data fusion quality assessment of the fused image of July 
was used to identify the optimal size of this neighborhood. The ERGAS index computed at 25 
m and at 300 m was used for this assessment. The results of the ERGAS index at 300 m, 
confirmed that the proposed improvements in the data fusion approach presented in this paper 
enhance the quality of the fused images.  

Two vegetation indices specifically designed for the MERIS sensor were computed from 
the series of fused images and their corresponding MERIS images. These indices are the 
MERIS terrestrial chlorophyll index (MTCI) and the MERIS global vegetation index 
(MGVI). Results showed that vegetation indices computed from the fused images yielded 
consistent spatial patterns as those found when computing the indices with original MERIS 
images. However, the use of fused images provided much more spatial details. MTCI and 
MGVI profiles were extracted from the fused and the MERIS images for the 6 main land 
cover types present in the study area (heather, coniferous and deciduous forest, grasslands, 
cereals and maize). The profiles showed a consistent temporal evolution. These results 
confirmed the potential of fused images to monitor individual vegetation patches or 
agricultural fields.   

In summary, this work has shown that the unmixing-based data fusion approach can be 
used to successfully downscale time series of MERIS data to a relevant spatial resolution that 
allows studying vegetation processes in heterogeneous landscapes. This creates new 
opportunities to monitor vegetation dynamics (phenology) at high spatial, spectral and 
temporal resolutions. Sub-pixel MTCI and MGVI time series can be computed from the fused 
images and accurate temporal profiles can be derived for individual vegetation patches or 
agricultural fields. These profiles can subsequently be used for a number of applications like 
crop yield estimation, net primary production mapping or parameterization of vegetation 
models. These results are particularly relevant to map and monitor frequently clouded, 
heterogeneous and/or highly fragmented landscapes where the use of medium or low spatial 
resolution data is required in order to increase the chance of getting cloud free images. 
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6.1 Conclusions 

The main objective of this thesis is to develop a multi-sensor and multi-resolution data 
fusion approach that allows mapping and monitoring of heterogeneous and highly fragmented 
landscapes using medium spatial resolution satellite data. Each of the chapters of this thesis 
concentrates on answering one of the research questions proposed in section 1.5. Here we 
summarize our answers to the research questions of this thesis.  

 
A. What is the radiometric quality of MERIS data and what are the potential impacts of 

miscalibration on MERIS land products? 
In chapter 2, we studied the smile effect and the vicarious calibration corrections for the 

MERIS instrument and their impact on radiometry and product accuracy. The implications of 
applying different levels of radiometric correction were evaluated using two approaches: 
regional land cover mapping using spectral unmixing and the assessment of vegetation status 
using three MERIS land products: the MERIS terrestrial chlorophyll index (MTCI), the 
MERIS global vegetation index (MGVI) that is linearly related to the fraction of absorbed 
photosynthetically active radiation (fAPAR) and the normalized difference vegetation index 
(NDVI), which is related to vegetation greenness. 

Our analysis showed that both the smile and the vicarious corrections are very small for the 
MERIS instrument (i.e. the correction factors are close to 1). Therefore, if the endmembers 
used for the spectral unmixing are selected from the image, the level of calibration is not very 
critical. However, if  endmembers coming from other sources (e.g. spectral libraries) are to be 
used, then knowledge on their calibration level becomes essential. In this respect, all 
recommended correction factors must be systematically applied to MERIS data in order to 
preserve the highest possible classification accuracy.  

For the MERIS products, relevant differences were observed when using data at different 
calibration levels. More precisely, we noticed that the magnitude of the smile correction 
factors can be locally very important and that inappropriate or incomplete corrections might 
lead to striping effects in the final MERIS products.  

 
B. Can we use the linear mixing model to downscale MERIS FR data to a Landsat-like 

spatial resolution? What is the quality of the resulting fused images?  
Chapter 3 illustrates the use of the linear mixing model to downscale MERIS FR images 

acquired over a (typical) heterogeneous and fragmented European landscape. The selected 
method, known as unmixing-based data fusion, requires the use of a high spatial resolution 
image to characterize the spatial patterns of the area under study. In this case, a Landsat TM 
image acquired four days earlier than the MERIS FR image was used to characterize the 
landscape by means of an unsupervised classification. Then, each MERIS pixel was 
successively unmixed for each band using the fractional coverage derived from the TM image 
and the original MERIS spectral information. The resulting fused images have the spatial 
resolution provided by TM and the MERIS spectral resolution (i.e. images at 25 m and with 
15 spectral bands).  
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Two parameters need to be optimized in this method namely the number of classes, nc, 
used to classify the TM image and the size of the MERIS neighborhood, k, used to solve the 
unmixing equations. A quantitative data fusion analysis based on the ERGAS index was used 
both to check the quality of the resulting images and to assist with the identification of the 
best set of nc and k values. The results of this analysis indicate that: a) the unmixing-based 
data fusion approach succeeded in preserving the spectral information of MERIS (low 
ERGAS values) and b) there is a trade-off between the quality of the fused images at the TM 
and the original MERIS spatial resolutions (the ERGAS indices at the TM and at the MERIS 
spatial resolutions are inversely correlated). Because of this trade-off, the use of a specific 
application (e.g. land cover mapping) is suggested as a means to identify the best fused image.  

Special attention should be paid to the co-registration of the high and low spatial resolution 
images and to the criteria used to select the best fused image because the quality of the image 
greatly depends on the choice of the two parameters that need to be optimized. In addition, it 
is important to study the effects that (possible) landscape changes between the acquisition 
dates of the TM and the MERIS images might have on the quality of the fused images. 
Finally, it is important to realize that fused images are only an approximation of what the 
MERIS sensor would be measuring if it had a Landsat-like spatial resolution.  

 
C. Can we use MERIS fused images to derive spatially improved MERIS land products 

like land cover and vegetation status maps? 
Chapter 4 explores the use of MERIS fused images to produce land cover maps and to 

assess vegetation status. The series of fused images generated in chapter 3 for different 
combinations of nc and k are used as an input here. First, all the fused images were classified 
into the 8 main land cover types of The Netherlands using a maximum likelihood 
classification rule. Based on the classification results, the image generated with nc = 60 and    
k = 45 was chosen as the best fused image. Classification results for the TM and for this fused 
image were very similar (overall accuracies of 63.32 % and 61.59 %, respectively). However, 
the best fused image outperformed the classification accuracies of a spectrally similar TM 
image (i.e. an image without the SWIR bands). This indicates that the fine spectral resolution 
of MERIS is better than a coarse spectral resolution (TM) for land cover mapping and that the 
SWIR region plays an important role in the final classification accuracy.  

With respect to the assessment of vegetation status, the best fused image was used to 
compute the same three vegetation indices used in chapter 2: the MGVI, the MTCI and the 
NDVI. For comparison purposes, these three indices were computed for the MERIS FR (300 
m) image and the NDVI was also computed for the TM image (25 m). Results indicate that 
MERIS fused images can be used to successfully downscale these three vegetation indices. 
Despite differences in the spectral configuration of the TM and MERIS sensors, a good 
correlation (r = 0.76) was found between the NDVI computed from TM and from the MERIS 
fused image. In addition, the vegetation indices computed from the fused image were spatially 
consistent with the patterns observed in the original MERIS FR image, but they provide much 
more spatial details. This allows us to study vegetation status of individual fields. 
Nevertheless, a few unsatisfactory vegetation index values were found at object boundaries. 
This is probably because the unsupervised classification of the TM image is not very 
consistent at those instances because TM pixels are also mixed at that scale. This problem 
may be solved by using an existing land cover map instead of a remote sensing image for 
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defining the thematic classes or simply by filtering the unsupervised TM or the MERIS fused 
image. 

 
D. Can we use downscaled time series of MERIS data to monitor heterogeneous and 

fragmented landscapes with a high spatial, spectral and temporal resolution?  
Chapter 5 focuses on exploiting the high temporal resolution provided by the MERIS 

sensor. The unmixing-based data fusion approach is used to downscale a time series of 
MERIS FR images (300 m pixel size). Seven MERIS FR images were available over the 
study area (the central part of The Netherlands) covering the period between February and 
December 2003. The Dutch land use database of the same year, known as the LGN5, was 
used to derive the fractional composition of each MERIS pixel. This was done by computing 
the ground instantaneous field of view (GIFOV) of each MERIS pixel. No re-projection was 
needed and, therefore, geometric or radiometric errors due to the use of nearest neighbor or 
cubic convolution resampling were avoided.  

Because the LGN5 is used as a reference, we only need to optimize the k parameter (i.e. the 
size of the MERIS neighborhood used to get enough equations to solve the unmixing). 
Similar to chapter 3, the ERGAS index was used to assist with the identification of the best k 
value. Because of the availability of the TM image acquired in July, the MERIS image of the 
same month was selected for the ERGAS analysis. In this case, a value of k = 9 was selected 
as the best one. This value is significantly lower than the one found in chapter 3 but one has to 
realize that the number of classes used to characterize the landscape was also smaller (30 
LGN5 classes vs. 60 unsupervised TM classes).  

Here, only the two vegetation indices specifically designed for the MERIS sensor were 
considered: the MTCI and the MGVI. These vegetation indices were computed for the series 
of fused images and their corresponding MERIS images. Results showed that: a) vegetation 
indices computed from the fused images yield consistent spatial patterns with those found 
when computing them from the original MERIS images and b) the use of fused images 
provides much more spatial details.  

Finally, MTCI and MGVI profiles were extracted from the fused and the MERIS images. 
The profiles showed a consistent temporal evolution for each of the land cover types under 
investigation. These results confirm the potential of fused images to monitor individual fields 
or vegetation patches. This creates new opportunities to monitor vegetation dynamics 
(phenology) at high spatial, spectral and temporal resolution. Sub-pixel MTCI and MGVI 
time series can be used for a number of applications like crop yield estimation, net primary 
production mapping or parameterization of vegetation models. These results are particularly 
relevant to map and monitor frequently clouded, heterogeneous and/or highly fragmented 
landscapes where the use of medium or low spatial resolution data is required in order to 
increase the chance of getting cloud free images. 
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General conclusions: 
Based on the studies in the four previous chapters it can be concluded that: 
 

• MERIS delivers data with a high radiometric quality (the smile and the vicarious 
calibration corrections are very small). However, some undesired effects were 
observed when using MERIS data without the smile correction. Therefore we 
recommend to systematically monitor the radiometric quality of this sensor and to 
apply all the necessary corrections to generate stable MERIS time series that can 
subsequently be used to obtain products with the highest possible quality. 

 
• The linear mixing model can be successfully used to downscale MERIS data to a 

Landsat-like spatial resolution. This process, known as unmixing-based data fusion, 
requires the use of a high spatial resolution dataset (e.g. a Landsat classified image) 
to characterize the landscape. The resulting fused images have the spatial resolution 
of this high spatial resolution dataset and the spectral resolution provided by 
MERIS.  

 
• The quality of fused images needs to be assessed in order to complete the data 

fusion process. This task is not straightforward because there is no universal way to  
assess the quality of fused images. In this work, the ERGAS index in combination 
with an application-based assessment were used to assess the quality of the fused 
images. Results indicate that MERIS fused images can be used to derive spatially 
improved land cover maps and continuous fields of vegetation properties. 

 
• The high temporal resolution of MERIS can be used to generate time series of fused 

images that can be used to monitor vegetation dynamics at high spatial, spectral and 
temporal resolution. More precisely, downscaling MERIS images to a Landsat-like 
resolution allows the study of individual fields and relatively small vegetation 
patches. This creates new opportunities to monitor heterogeneous and fragmented 
landscapes that suffer from frequent cloud coverage. 

6.2 Outlook 

In this section we put our findings into perspective and we outline possible improvements 
to the proposed data fusion approach as well as further lines of research that could be derived 
from this thesis. 

Medium spatial resolution sensors were designed to fill the gap between the data provided 
by high spatial resolution (Landsat-like) and coarse spatial resolution (NOAA-like) sensors. 
Because of their unprecedented spatial, spectral and temporal resolutions, a large number of 
(semi-)operational products are currently derived from MERIS and MODIS data (Curran and 
Steele 2005; Masuoka et al. 1998). These  products are substantially supporting Earth system 
science research at regional to global scales (Running et al. 2004; Schmullius and Hese 2003; 
Zhan et al. 2002). However, the spatial resolution provided by these sensors (250 to 500 m) is 
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not sufficient to capture all the variability present in heterogeneous and fragmented 
landscapes (Addink et al. 2006; Garrigues et al. 2008; Tarnavsky et al. 2008).  

High spatial resolution sensors have a past track record in mapping and monitoring 
heterogeneous and fragmented landscapes but, in general, they do not provide an appropriate 
temporal resolution. A constellation of high spatial resolution sensors has been suggested as a 
solution to the trade-off between the spatial, spectral and temporal resolution of Earth 
observation sensors (Wulder et al. 2008). However, the use of high spatial resolution data 
does not completely eliminate the mixed pixel problem: it shifts it towards smaller spatial 
scales, for instance, mixtures of photosynthetic and non-photosynthetic materials 
(Malenovsky et al. 2008; Verrelst et al. 2007) or mixtures of sunlit and shadowed materials 
(Fitzgerald et al. 2005; Malenovsky et al. 2007). In this respect, spectral mixture analysis 
(SMA) will always be relevant to understand what is inside a pixel (Fisher 1997).  Sub-pixel 
methods are, therefore, useful when working with low, medium and high spatial resolution 
imagery. In the case of MERIS, spectral unmixing has been used to map land cover fractional 
composition (Zurita-Milla et al. 2007b; Zurita-Milla et al. 2005) and forest fire severtity 
(Gonzalez-Alonso et al. 2007). Nevertheless, the selection of appropriate training areas (or 
endmembers), the validation and the operationalization of the unmixing of medium spatial 
resolution data acquired over complex landscapes still remains a challenge. 

In this thesis, we have demonstrated that it is possible to downscale MERIS FR data to a 
Landsat-like spatial resolution (provided that a high spatial resolution dataset is available over 
the area covered by MERIS). The Netherlands, having a population density of 480 
inhabitants/km2 (about four times higher than the European average; (CBS 2008)) was 
selected as the main study site because it presents a typical example of landscapes heavily 
shaped by anthropogenic activities. Because of this anthropogenic pressure, there is a 
continuous need to map and monitor Dutch landscapes (VROM 1999). Moreover, mapping 
and monitoring The Netherlands using optical sensors is also a challenge because of the 
persistent cloud coverage throughout the year. In this respect, the use of MERIS fused images 
increases the chance of getting cloud free images and it allows to map and monitor individual 
fields and (small) vegetation patches with a higher temporal resolution than the one provided 
by Landsat-like sensors. Other applications that benefit from this kind of data fusion approach 
are: land cover change detection (Gutman et al. 2004), proper retrieval of biophysical and 
biochemical parameters (Simic et al. 2004), designing reliable soil-vegetation-atmosphere 
models (Bormann 2008) or, even to evaluate the history of a given landscape (Motzkin et al. 
1999) and the socio-cultural and environmental services that it can provide (Altieri 1999; 
Solon 1995). 

Despite the potential of the selected data fusion method and of the resulting MERIS fused 
images, a few issues still require further work before the method can become operational. The 
next sections discuss these issues that have been grouped according to the spatial, spectral and 
temporal dimensions. 

6.2.1 Spatial dimension 

A few issues related to the spatial dimension of MERIS data will be discussed in this 
section. These issues are: co-registration, fusion extent, use of contextual information and 
appropriate spatial scale. 
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Co-registration 
A good co-registration is a critical prerequisite of all the remote sensing data fusion 

methods that use data acquired by different sensors or at different scales. Manual image-to-
image co-registration is possible when the difference in spatial scale is not large and when the 
images have a similar acquisition date (otherwise it might be difficult to locate adequate 
ground control points). An automatic co-registration, like the one proposed in chapter 5, 
facilitates the operationalization of the fusion. For the unmixing-based data fusion approach, a 
co-registration accuracy of 0.1-0.2 low spatial resolution pixels is recommended (Zhukov et 
al. 1999). In this respect, current MERIS geo-location accuracy is about 0.25 MERIS FR 
pixels (Arino et al. 2008). This has been achieved thanks to the continuous improvement on 
the determination of ENVISAT’s position that has led to the development of the AMORGOS 
geo-location software (Saunier et al. 2006).  

 
Fusion extent 
As discussed in chapter 1, high spatial resolution images have a smaller swath than medium 

and coarse spatial resolution sensors. Therefore, one limitation of combining data acquired at 
different spatial resolutions is that the fusion can only be performed over the common area. 
The use of readily available land use/land cover datasets can overcome this limitation (e.g. 
chapter 5). However, these datasets often contain features not directly derived from spectral 
images (like roads, etc). Furthermore, these datasets are “static” (i.e. they map field 
boundaries at a certain time of the year) and they neglect within-class variability. Thus, 
additional research effort should be put on investigating these issues. 

 
Contextual information 
The unmixing-based data fusion approach operates at the measurement (i.e. pixel) level. 

Contextual information is only used to extract enough equations to solve the unmixing. 
However, within-class heterogeneity can be considerably large due to environmental factors. 
Therefore, a smarter use of the contextual information should be investigated. For instance, 
the shape of the neighbourhood used to solve the unmixing could be relaxed to account for 
within-class heterogeneity (Busetto et al. 2008). 

 
Appropriate spatial scale 
The proposed data fusion method should be tested at other scales and with other datasets 

because a single combination of sensors and scales cannot sufficiently capture the complexity 
of heterogeneous landscapes. Complementary strategies that focus on determining the best 
pixel size for a given application should also be supported (Hengl 2006; Woodcock and 
Strahler 1987). 
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6.2.2 Spectral dimension 

The use of regularization methods and the spectral quality of the MERIS and of the fused 
images are briefly discussed in this section.  

 
Solving the mixing equations 
Both the linear and the non-linear unmixing are typical examples of ill-posed problems 

because the solution does not continuously depend on the data. In other words, a small 
perturbation in the input data can result in a largely different output (Combal et al. 2002).  

In the case of the linear mixing the ill-posedness can be evaluated by the so-called 
condition number of the matrix of endmembers (spectral unmixing) or the matrix of 
proportions (unmixing-based data fusion). When the rows or columns of this matrix are 
linearly independent the condition number equals 1. If the matrix contains a pair of rows or 
columns that is linearly dependent the condition number is infinite. High condition numbers 
are associated with ill-posed problems and require the use of regularization techniques 
(Hansen 2001). For the non-linear unmixing, the ill-posedness is more difficult to evaluate. 
Further work is, therefore, needed to assess the pros and cons of linear versus non-linear 
approaches. The use of radiative transfer models can assist in understanding how the signals 
are mixed at different spatial resolutions and for different levels of landscape complexity. 

 
Spectral quality 
In order to obtain high quality spectral images, the data collected by Earth observation 

sensors need to be corrected for instrument and atmospheric effects. In this thesis we have 
explored the effects of MERIS calibration and studied the smile and vicarious calibration 
corrections. For operational reasons, little attention was paid here to the atmospheric 
correction (the atmospheric effects were considered homogenous over the study area or 
minimized by the use of vegetation indices like the MGVI). However, we realize that 
performing a full atmospheric correction is very important for a number of applications (e.g. 
retrieval of biophysical properties by inverting a radiative transfer model). The atmospheric 
correction algorithm proposed by Guanter et al. (2008) was tested for MERIS images 
acquired over The Netherlands. Some adjustments were needed because this algorithm works 
for land surfaces whereas water bodies and coastal areas are very important in The 
Netherlands. Preliminary results were promising (Zurita-Milla et al. 2007c), but further work 
is needed to assess this and other MERIS atmospheric correction methods. In this respect, 
calibration and validation activities should be further encouraged. Operational atmospheric 
correction methods, monitoring sensor spectral shifts, comparing data acquired by different 
sensors and implementing data assimilation schemes are essential to produce stable long-term 
series of remote sensing images as well as products (Goryl et al. 2007; Lyapustin et al. 2007). 

 
Spectral data fusion quality 
In this thesis we have consistently evaluated the quality of fused images using the ERGAS 

index. Although this index represents a state-of-the-art method of assessment, the use of other 
data fusion quality indicators should be explored for comparison purposes. A preliminary 
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study was done with the images presented in chapter 5. The so-called Skill index (Taylor 
2001) was used with the fused images of 14 July 2003. This index ranges between 0 and 1 
and the higher its value, the better the quality of the fused images. 
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where:  Ri is the correlation coefficient between the ith band of the fused image and its 

spectrally correspondent TM band, i
fusedμ and i

refμ are the mean values of those bands, and 
i
fusedσ and i

refσ are the corresponding standard deviations. 

The first four TM bands and their spectrally correspondent MERIS bands (i.e. the bands 
used for the ERGAS at 25 m) were used to compute the Skill. Subsequently, the per-band 
Skill values were averaged to obtain a representative data fusion quality value for each fused 
image (Figure 6.1). These results are consistent with those obtained by the ERGAS index (see 
Figure 5.5).  
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Figure 6.1. Average Skill values for the fused image of 14 July 2003 at 25 m (left) and 300 m 
(right). 
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6.2.3 Temporal dimension 

Three issues, namely cloud masking, factors to consider in multi-temporal studies and the 
optimum temporal resolution will be discussed in this section. 

 
Cloud masking 
Figure 6.2 shows the temporal series of MERIS FR images used in this thesis. As we can 

see, clouds hamper the operational use of images acquired by optical sensors. Therefore, an 
automatic and efficient cloud screening algorithm is required to facilitate the elaboration of 
remote sensing based products. 

 

 
Figure 6.2. Time series of MERIS FR images for the year 2003. 

The use of an unmixing-based data screening algorithm (Gómez-Chova et al. 2007a) has 
been tested over this time series of MERIS FR images (Gómez-Chova et al. 2007b; Zurita-
Milla et al. 2007c). Figure 6.3 shows the cloud screening results for the first image of the 
series and the cloud free days that are available for each MERIS FR pixel. These results are 
still preliminary and extra effort should be put on the detection and appropriate masking of 
thin clouds and cloud shadows. 

 

 
Figure 6.3. MERIS image of 18 February 2003 (a), corresponding cloud mask (b) and per-
pixel number of cloud-free dates (c). 

 
Multi-temporal studies 
Multi-temporal studies typically require that the images are perfectly co-registered, 

corrected for atmospheric effects, for solar and viewing angles (BRDF effects) and for 

b) c) a) 

18/02  16/04  31/05  14/07  06/08  15/10  08/12  
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possible shifts in the spectral calibration of the instrument (Lillesand and Kiefer 2000). In 
heterogeneous landscapes, it is also very important to realize that images acquired from 
different orbits do not have  congruent pixels (i.e. the pixels do not have the same ground 
instantaneous field of view, GIFOV). This is illustrated in Figure 6.4 where we show an RGB 
composite of the MGVI computed from three MERIS dates (16 April, 14 July and 15 
October). In this figure, the 25 m LGN5 grid is filled using the GIFOV of each MERIS pixel 
for each of the dates under consideration. The small irregularities in the shape of the MERIS 
pixels are explained by the resolution of the reference grid, possible topographic effects and 
the MERIS viewing angle (recall that the size of the GIFOV varies along the MERIS swath).  

 

 
Figure 6.4. Detail of the ground instantaneous field of view for three MERIS MGVI images 
(16 April, 14 July and 15 October) displayed as an RGB color composite. 

 
These effects should be considered when performing land cover change studies and when 

linking ground and satellite measurements (e.g. product validation). 
Optimum temporal resolution 
Finally, it is important to study the optimum temporal resolution for monitoring vegetation 

status because the information provided by images acquired at consecutive days is highly 
correlated. This optimum resolution should consider the phenological heterogeneity of the 
vegetation present in a certain area and account for the probability of getting cloud-free 
images over that area (Alexandridis et al. 2008). 

In this thesis it was demonstrated that data fusion methods can be used to successfully 
bridge the spectral, spatial and temporal scaling gaps. This opens two future lines of work. On 
the one hand certain scaling gaps can be filled by combining existing Earth observation 
instruments so that the continuity of historical and present data records is improved. On the 
other hand, data fusion can substantially contribute to future products and instrument design 
by facilitating a multi-scale and multi-sensor framework where different instruments can be 
optimally integrated. 
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Summary 
Our environment is continuously undergoing change. This change takes place at several 

spatial and temporal scales and it is largely driven by anthropogenic activities. In order to 
protect our environment and to ensure a sustainable use of natural resources, a wide variety of 
national and international initiatives have been established. In this context, Earth observation 
sensors can provide a substantial amount of information about the biotic and abiotic 
conditions of our planet. For instance, high spatial resolution sensors, like Landsat TM, 
deliver data that can be used to produce maps of canopy properties and of land cover types. 
However, the use of this kind of sensors is not feasible for obtaining full coverage of large 
areas. Furthermore, high spatial resolution sensors generally do not provide sufficient 
temporal resolution for monitoring vegetation development during the year. This is especially 
true for areas having severe cloud coverage throughout the year. In this respect, coarse spatial 
resolution sensors, which deliver nearly daily data, have a higher chance of encountering 
cloud free areas. This facilitates large scale monitoring studies but at the expense of a lower 
spatial resolution providing images with potentially many mixed pixels.  

Recent developments in imaging devices resulted into a new kind of sensor that works at a 
medium spatial resolution while providing high temporal and spectral resolutions. The 
MEdium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency’s 
ENVISAT platform belongs to this category. MERIS measures the solar radiation reflected 
from the Earth’s surface in 15 narrow spectral bands and it has a revisit time of 2-3 days. This 
unprecedented spectral and temporal resolution has resulted in several land, water and 
atmospheric products. In addition, two vegetation indices have been specifically designed to 
monitor vegetated canopies using this sensor: the MERIS Terrestrial Chlorophyll index 
(MTCI) and the MERIS Global Vegetation Index (MGVI). However, the spatial resolution 
provided by this sensor – 300 m in full resolution (FR mode) – is not sufficient to accurately 
map and monitor heterogeneous and fragmented landscapes. This is why the synergic use of 
high spatial resolution and MERIS data is investigated in this thesis. More precisely, the 
objective of this thesis is to develop a multi-sensor and multi-resolution data fusion approach 
that allows mapping and monitoring of heterogeneous and highly fragmented landscapes 
using MERIS data. The Netherlands is selected as study area because of its mixed landscapes 
where patches of arable land, natural vegetation, forests, and water bodies can be found next 
to each other. Besides this, The Netherlands also suffers from frequent cloud coverage, which 
severely hampers operational mapping and monitoring with both high spatial and high 
temporal resolution. 

Chapter 1 outlines the challenges of mapping and monitoring heterogeneous and 
fragmented landscapes using data from the current optical Earth observing missions,  sketches 
the core concepts of data fusion and linear spectral (un)mixing and, after that, lists the 
research objectives of this PhD thesis. 

Chapter 2 presents the calibration scheme of the MERIS sensor and subsequently focuses 
on the smile effect and on the vicarious calibration corrections. The effects of these 
corrections on regional land cover mapping and vegetation status assessment are studied. Our 
analysis showed that MERIS delivers data with a very high radiometric quality. Nevertheless, 
some effects were observed when using MERIS data without the smile correction. Therefore, 
we recommend to systematically apply all the necessary corrections to generate stable long-
term series of MERIS data.  



Summary 

112   

Chapter 3 introduces a data fusion technique that can be used to generate images with the 
spatial resolution provided by Landsat TM and the spectral resolution provided by MERIS. 
The method is based on the linear mixing model and requires the use of a high spatial 
resolution dataset (in this case, a Landsat TM image) to downscale the information collected 
by MERIS. Two parameters need to be optimized in this implementation of the unmixing-
based data fusion approach: the number of classes used to classify the TM image and the size 
of the MERIS neighbourhood used to solve the unmixing equations. A quantitative data 
fusion quality analysis was used to assist with the identification of the best combination of 
these two parameters. The results of this analysis demonstrated that it is possible to downscale 
MERIS FR images to a Landsat-like spatial resolution (25 m).  

Chapter 4 elaborates in more detail on the potential of MERIS fused images for land cover 
mapping and vegetation status assessment in heterogeneous and fragmented landscapes. First, 
the fused images are used to produce land cover maps, which are validated using a high 
spatial resolution dataset. Then, the fused image with the highest overall classification 
accuracy is selected as the best fused image. Subsequently, this image is used to compute 
three vegetation indices: the normalized difference vegetation index (NDVI), which is an 
indicator of vegetation amount and its ‘greenness’, and the two vegetation indices specifically 
designed to monitor vegetation status using MERIS data (i.e. the MTCI and the MGVI). 
Classification results for the best fused image and for the TM image used to downscale 
MERIS are very similar and when comparing spectrally similar images (i.e. no SWIR bands 
in the TM image), the results of the best fused image outperform those of TM. With respect to 
the vegetation indices, a good correlation was found between the NDVI computed from TM 
and from the best fused image (in spite of their different spectral configuration). For the 
MTCI and the MGVI, the spatial patterns found when using MERIS fused images were 
consistent with those found in MERIS. The main advantage of using fused images is the 
possibility of monitoring individual agricultural fields and small vegetation patches. This is 
not possible when using the original MERIS FR images. 

Chapter 5 investigates the use of the unmixing-based data fusion approach to downscale 
time series of MERIS FR data. In this case, a high spatial resolution land use database is used 
to characterize the landscape composition. Because of this, only the size of the MERIS 
neighbourhood used for the unmixing needs to be optimized. In this chapter, the AMORGOS 
3.0 software was used to ensure working with the best possible MERIS geo-location values. 
This allowed an automatic image co-registration and the calculation of the actual ground 
instantaneous field of view (GIFOV) of each MERIS pixel which, in turn, allows us to 
determine the real number of TM pixels covered by each MERIS pixel without having to re-
project the datasets. Similar to chapter 2, a quantitative data fusion assessment was performed 
in order to test the validity of the proposed method and to identify the best neighbourhood 
size. After that, the series of fused images was used to compute the MTCI and the MGVI. 
Finally, MTCI and MGVI temporal profiles were extracted for the main land cover types 
present in the study area. Results indicate that the selected data fusion approach can be 
successfully used to downscale time series of MERIS FR data and, therefore, to monitor 
vegetation dynamics at high spatial, spectral and temporal resolutions. 

Chapter 6 contains the final conclusions and gives recommendations for further research. 
The overall conclusion is that the selected unmixing-based data fusion approach is able to 
downscale MERIS FR data to a Landsat-like resolution with little compromises on the 
spectral quality. This allows mapping and monitoring heterogeneous and fragmented 
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landscapes that suffer from frequent cloud coverage. The results presented in this thesis 
should, therefore, encourage further research on multi-sensor and multi-resolution data fusion 
approaches as a means to bridge spatial, spectral and temporal scaling gaps in current and 
future Earth observation missions.  
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Samenvatting 
Onze leefomgeving is continu onderhevig aan veranderingen. Deze veranderingen vinden 

plaats op verschillende ruimtelijke en temporele schalen en worden voornamelijk gedreven 
door antropogene activiteiten. Om ons milieu te beschermen en om een duurzaam gebruik van 
natuurlijke hulpbronnen te garanderen, is een grote verscheidenheid aan nationale en 
internationale initiatieven gestart. In deze context kunnen sensoren voor aardobservatie een 
substantiële hoeveelheid informatie over de biotische en a-biotische condities van onze 
planeet verschaffen. Sensoren met een hoge ruimtelijke resolutie zoals Landsat TM leveren 
bijvoorbeeld data die gebruikt kunnen worden om kaarten te produceren van 
planteigenschappen en van landgebruik. Met dit type sensoren kunnen echter geen data voor 
de volledige dekking van grote gebieden verkregen worden. Bovendien is met zulke hoge 
ruimtelijke resolutie sensoren in het algemeen een onvoldoende hoge temporele resolutie 
beschikbaar voor het monitoren van de ontwikkeling van vegetatie. Dit is met name het geval 
in gebieden met een hoge bewolkingsgraad gedurende het hele jaar. In dit opzicht is er een 
grotere kans om onbewolkt te kunnen meten met sensoren die een lage ruimtelijke resolutie 
hebben, maar wel vrijwel dagelijks data leveren. Dit bevordert het op grote schaal monitoren 
maar gaat ten koste van de hoge ruimtelijke resolutie waardoor deze metingen veel gemengde 
pixels kunnen bevatten. 

Recente ontwikkelingen in beeldopnameapparatuur hebben er toe geleid dat er een nieuw 
soort sensoren ontwikkeld is die een middelmatige ruimtelijke resolutie hebben terwijl ze een 
hoge temporele en spectrale resolutie leveren. MERIS (MEdium Resolution Imaging 
Spectrometer) aan boord van de ENVISAT satelliet van de Europese ruimtevaartorganisatie 
(ESA) valt in deze categorie. MERIS meet de straling gereflecteerd door het aardoppervlak in 
15 smalle spectrale banden en passeert hetzelfde gebied elke twee tot drie dagen. Deze unieke 
spectrale en temporele resoluties hebben geleid tot de ontwikkeling van verschillende 
producten gerelateerd aan land, water en atmosferische eigenschappen. Daarnaast zijn er twee 
vegetatie-indices speciaal ontwikkeld voor deze sensor: de MTCI (MERIS Terrestrial 
Chlorophyll Index) en de MGVI (MERIS Global Vegetation Index). De ruimtelijke resolutie 
van de MERIS data (300 m in hoge-resolutiemodus; hierna MERIS FR) is echter niet 
voldoende hoog om heterogene en gefragmenteerde landschappen nauwkeurig te kunnen 
karteren en monitoren. Om deze reden is het synergetisch gebruik van informatie met een 
hoge ruimtelijke resolutie in combinatie met MERIS data bestudeerd in dit proefschrift. De 
doelstelling van dit proefschrift is om een methodologie te ontwikkelen waarin multi-sensor- 
en multi-resolutie-data gefuseerd worden waarmee heterogene en sterk gefragmenteerde 
landschappen gekarteerd en gemonitord kunnen worden. Nederland is gekozen als 
studiegebied vanwege haar gevarieerde landschappen waarin landbouwgronden, 
natuurgebieden, bossen en oppervlaktewater elkaar veelvuldig afwisselen. Daarnaast heeft 
Nederland ook frequent een hoge bewolkingsgraad, wat operationele kartering en monitoring 
met zowel hoge ruimtelijke resolutie als hoge temporele resolutie bemoeilijkt. 

Hoofdstuk een beschrijft de uitdagingen voor het karteren en monitoren van heterogene en 
gefragmenteerde landschappen bij gebruik van data van de huidige optische 
aardobservatiesensoren. Verder worden de concepten van datafusie en lineaire spectrale 
(de)compositie beschreven en de onderzoeksvragen van dit promotieonderzoek gepresenteerd. 

In hoofdstuk twee wordt het calibratieschema van de MERIS sensor gepresenteerd en 
vervolgens richt dit hoofdstuk zich op het zogenoemde ‘smile effect’ en op indirecte 
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(‘vicarious’) calibratiecorrecties. De effecten van deze correcties op de kartering van 
regionaal landgebruik en op de bepaling van de vegetatiestatus zijn bestudeerd. Onze analyses 
laten zien dat de MERIS data geleverd worden met een hoge radiometrische kwaliteit, maar 
daarentegen zijn er wel enkele effecten zichtbaar wanneer de correctie voor het ‘smile effect’ 
niet worden toegepast. Daarom bevelen wij aan om systematisch alle nodige correcties toe te 
passen om zo stabiele tijdseries van MERIS data te genereren. 

In hoofdstuk drie wordt een datafusietechniek geïntroduceerd die kan worden gebruikt om 
beelden te produceren met de ruimtelijke resolutie van Landsat TM en de spectrale resolutie 
van MERIS. De methode is gebaseerd op het lineaire mixmodel en vereist de beschikbaarheid 
van een dataset met een hoge ruimtelijke resolutie (in dit geval een Landsat TM opname) om 
de MERIS-data te schalen naar een hogere resolutie. In deze implementatie van de op 
decompositie gebaseerde datafusie dienen twee parameters geoptimaliseerd te worden: het 
aantal klassen dat gebruikt is om de Landsat TM data te classificeren en de grootte van het 
MERIS venster dat gebruikt is om de decompositievergelijkingen op te lossen. De kwaliteit 
van de datafusie wordt gekwantificeerd als onderdeel van de identificatie van de beste 
combinatie van deze twee parameters. De resultaten van deze analyse demonstreren dat het 
mogelijk is om MERIS FR data naar een Landsat-achtige ruimtelijke resolutie (25 m) te 
brengen. 

In hoofdstuk vier wordt in meer detail ingegaan op de toepassingsmogelijkheden van 
gefuseerde MERIS beelden voor landgebruikskartering en de bepaling van de vegetatiestatus 
in heterogene en gefragmenteerde landschappen. Allereerst worden de gefuseerde data 
geclassificeerd om een landgebruikskaart te produceren welke gevalideerd wordt met een 
bestaande landgebruikskaart (LGN) met een hoge ruimtelijke resolutie. Vervolgens wordt de 
gefuseerde dataset waarvan de classificatie het meest overeenkomt met LGN geselecteerd om 
drie vegetatie-indices te berekenen: de NDVI (normalised difference vegetation index; een 
indicator van de hoeveelheid groene vegetatie) en de twee indices speciaal ontwikkeld voor 
MERIS (MTCI en MGVI). Classificatieresultaten met de geselecteerde dataset zijn 
vergelijkbaar met de resultaten voor de TM data die gebruikt zijn om de hoge resolutie 
informatie te verkrijgen. Wanneer in spectraal opzicht vergelijkbare data (d.w.z. TM zonder 
SWIR) vergeleken worden, zijn de resultaten beter voor de gefuseerde dataset dan voor TM. 
Met betrekking tot de vegetatie-indices wordt een goede correlatie gevonden tussen de NDVI 
berekend van TM en die van de beste gefuseerde dataset ondanks de verschillen in spectrale 
configuraties van de sensoren. Voor de MTCI en de MGVI zijn de ruimtelijke patronen van 
het gefuseerde beeld consistent met die van MERIS op 300 m. Het belangrijkste voordeel van 
het gebruik van gefuseerde data is de mogelijkheid om individuele agrarische velden en kleine 
stukken natuurlijke begroeiing te monitoren. Dit is niet mogelijk wanneer originele MERIS 
FR data gebruikt worden. 

In hoofdstuk vijf wordt het gebruik van de datafusiemethode gebaseerd op decompositie 
onderzocht om een tijdserie van MERIS FR data te schalen naar een hogere ruimtelijke 
resolutie. In deze studie wordt een landgebruiksdatabase met hoge ruimtelijk resolutie 
gebruikt om de landschapscompositie te karakteriseren. Hierdoor hoeft enkel nog de grootte 
van het MERIS venster tijdens de decompositie geoptimaliseerd te worden. In dit hoofdstuk 
wordt gebruikt gemaakt van de AMORGOS 3.0 software om de beste MERIS 
geolocatiewaarden te verkijgen. Hierdoor wordt automatische beeldcoregistratie mogelijk 
gemaakt en kan voor elke MERIS pixel het instantane gezichtsveld bepaald worden, waarmee 
vervolgens het aantal TM pixels die corresponderen met deze MERIS pixel kan worden 
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bepaald zonder de datasets te hoeven herprojecteren. Vergelijkbaar met hoofdstuk twee wordt 
een kwantitatieve beoordeling van de datafusie gedaan om de geldigheid van de voorgestelde 
methode te testen en om de optimale venstergrootte te bepalen. Hierna wordt met de tijdserie 
van gefuseerde datasets de MTCI en de MGVI berekend en vervolgens worden hieruit de 
temporele profielen voor de voornaamste landgebruiksklassen in het studiegebied bepaald. De 
resultaten wijzen er op dat de methode succesvol kan worden toegepast om tijdseries van 
MERIS FR data te schalen naar een hogere ruimtelijke resolutie en daarmee om 
vegetatiedynamiek te monitoren op hoge ruimtelijke, spectrale en temporele resoluties. 

Hoofdstuk zes bevat de eindconclusies en presenteert aanbevelingen voor verder 
onderzoek. De algemene conclusie is dat de geselecteerde op decompositie gebaseerde 
datafusiemethode MERIS FR data naar een hogere ruimtelijke resolutie (vergelijkbaar met die 
van Landsat) kan schalen met behoud van de spectrale kwaliteit. Hierdoor kunnen nu 
heterogene en gefragmenteerde landschappen, die tevens frequent een hoge bewolkingsgraad 
hebben, gekarteerd en gemonitord worden. De resultaten die gepresenteerd zijn in dit 
proefschrift zouden daarom vervolgstudies moeten stimuleren zich te richten op multi-sensor- 
en multi-resolutie-datafusiemethodes als een middel om spectrale, ruimtelijke en temporele 
hiaten in huidige en toekomstige aardobservatiemissies te overbruggen. 
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Resumen 
Nuestro planeta esta continuamente experimentando cambios. Estos cambios, en gran parte 

motivados por actividades antropogénicas, tienen lugar a varias escalas espaciales y 
temporales. Con el fin de proteger nuestro medio ambiente y de garantizar un uso sostenible 
de los recursos naturales, en los últimos años se han puesto en marcha una amplia variedad de 
iniciativas nacionales e internacionales para el seguimiento de estos cambios.  

En este contexto, los sensores de observación de la Tierra ofrecen una gran cantidad de 
datos que, adecuadamente procesados, se convierten en información sobre las condiciones 
bióticas y abióticas de nuestro planeta. Por ejemplo, los datos recogidos por sensores de alta 
resolución espacial, como Landsat TM, pueden ser utilizados para producir mapas de usos del 
suelo y/o de diversas propiedades de la cubierta vegetal. El uso de este tipo de sensores no es 
operacional cuando se pretende estudiar grandes áreas; además, estos sensores no 
proporcionan la suficiente resolución temporal para realizar un apropiado seguimiento del 
desarrollo de cubiertas vegetales a lo largo del año. Esto es especialmente cierto en áreas 
persistentemente cubiertas por nubes, en las que sería más recomendable el uso de sensores de 
baja resolución espacial. Estos sensores tienen una resolución temporal casi diaria y, por 
consiguiente, ofrecen una mayor probabilidad de obtener imágenes libres de nubes. Por tanto, 
el uso de sensores de baja resolución espacial facilita los estudios de seguimiento de cubiertas 
vegetales a gran escala, pero a costa de trabajar con imágenes que, normalmente, contienen 
muchos píxeles mixtos.  

Recientes avances en dispositivos para la captura de imágenes han dado como resultado el 
desarrollo de un nuevo tipo de sensor que trabaja a media resolución espacial y que ofrece 
altas resoluciones espectrales y temporales. El espectrómetro de media resolución (MERIS), a 
bordo de la plataforma ENVISAT de la Agencia Espacial Europea, pertenece a esta nueva 
categoría de sensores.  

MERIS mide la radiación solar reflejada desde la superficie de la Tierra en 15 bandas 
estrechas (i.e. con una alta resolución espectral) y con una resolución temporal de 2 ó 3 días. 
Estas características permiten que MERIS pueda utilizarse en aplicaciones terrestres, 
acuáticas y atmosféricas. Además, dos índices de vegetación han sido específicamente 
diseñados para el seguimiento de cubiertas vegetales utilizando este sensor: el índice terrestre 
de clorofila (MTCI) y el índice global de vegetación (MGVI). Sin embargo, la resolución 
espacial proporcionada por MERIS - 300 m en el modo a resolución completa o “FR mode” - 
no es suficiente para estudiar y cartografiar paisajes heterogéneos y fragmentados.  

Esto justifica que esta tesis se centre en la utilización sinérgica de imágenes de alta 
resolución espacial y baja resolución temporal (Landsat TM) y de imágenes MERIS. Más 
concretamente, el objetivo de esta tesis es el desarrollo de una metodología para la fusión de 
datos multi-sensor y multi-resolución que permita cartografiar y estudiar paisajes 
heterogéneos y fragmentados aprovechando las altas resoluciones espectrales y temporales de 
MERIS. Los Países Bajos han sido seleccionados como área de estudio debido a su 
heterogeneidad ya que en un mismo paisaje pueden encontrarse áreas de cultivo, áreas de 
vegetación natural, bosques y diversos  tipos de masas de agua. Además, las nubes suponen 
un gran obstáculo para el estudio de los paisajes holandeses utilizando sólo sensores de alta 
resolución espacial. 
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El capitulo 1 discute las dificultades del estudio y cartografiado de paisajes heterogéneos y 
fragmentados con los sensores actuales de observación de la Tierra, ofrece una primera 
definición de los conceptos de fusión de datos y del modelo lineal de mezcla espectral y, por 
último, contiene los objetivos de esta tesis doctoral. 

El capítulo 2 presenta la calibración radiométrica del sensor MERIS y, posteriormente, se 
centra en la corrección del llamado efecto “smile” (sonrisa) y en la corrección radiométrica 
derivada de un experimento de calibración vicaria. Los efectos de estas correcciones sobre 
productos derivados de MERIS (cartografía de uso del suelo e índices de vegetación) son 
estudiados en este capítulo. Los resultados muestran que MERIS ofrece datos con una alta 
calidad radiométrica aunque se identificaron algunos artefactos cuando se usaron datos 
MERIS sin la corrección del efecto “smile”. Por consiguiente, recomendamos aplicar 
sistemáticamente todas las correcciones radiométricas necesarias para generar series estables 
de datos MERIS. 

El capítulo 3 introduce una técnica de fusión de datos que puede ser usada para generar 
imágenes con la resolución espacial de Landsat TM y la resolución espectral de MERIS. El 
método se basa en el modelo lineal de mezcla espectral y requiere el uso de una fuente de 
datos de alta resolución espacial (en este caso, una imagen Landsat TM) para aumentar la 
resolución espacial de la imagen MERIS. Esta técnica de fusión de datos requiere la 
optimización de dos parámetros: el número de clases usado para clasificar la imagen Landsat 
TM y el tamaño de ventana de MERIS usado para resolver las ecuaciones que separan la 
información espectral recogida en cada píxel MERIS (“desmezclado espectral”). Una 
evaluación cuantitativa de la calidad de las imágenes fusionadas se utilizó para ayudar a 
identificar la mejor combinación de estos dos parámetros. Los resultados de este estudio 
muestran que es posible bajar la resolución espacial de imágenes MERIS (300 m) hasta una 
resolución espacial de tipo Landsat (25 m).  

El capítulo 4 ofrece un estudio detallado de las posibilidades de las imágenes fusionadas 
MERIS (15 bandas espectrales y píxel de 25 m) para cartografiar usos del suelo y evaluar el 
estado de la vegetación en paisajes heterogéneos y fragmentados. En primer lugar, se usaron 
una serie de imágenes fusionadas MERIS/Landsat TM para producir mapas de usos del suelo 
que fueron validados usando una base de datos de alta resolución espacial (25 m). La imagen 
con una mayor precisión de la clasificación se seleccionó como mejor imagen y se usó para 
calcular tres índices de vegetación: el índice de vegetación de la diferencia normalizada 
(NDVI), que es un indicador de la cantidad de vegetación y de su "verdor", y los dos índices 
de vegetación específicamente diseñados para el seguimiento de la vegetación usando datos 
MERIS (el MTCI y el MGVI). Los resultados de este estudio muestran que la clasificación de 
usos del suelo de la mejor imagen fusionada y la obtenida a partir de datos TM son muy 
similares. Mas aún, cuando se comparan imágenes espectralmente similares (es decir, se 
elimina la banda SWIR de la imagen TM), la precisión de la clasificación de la imagen 
fusionada supera a la de la imagen TM. Con respecto a los índices de vegetación, el NDVI 
calculado a partir de datos fusionados está altamente correlacionado con el calculado a partir 
de datos TM (a pesar de las diferencias espectrales entre estos sensores). Además, los 
patrones espaciales encontrados en las imágenes de MTCI y MGVI calculadas con la mejor 
imagen fusionada son compatibles con los encontrados al calcular estos índices usando las 
imágenes MERIS. Esto demuestra el gran potencial de las imágenes fusionadas para estudiar 
pequeñas parcelas y/o áreas de vegetación lo que en general no es posible cuando se utiliza 
MERIS a su resolución espacial original. 
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El capítulo 5 profundiza en el estudio de la técnica de fusión de datos basada en el 
“desmezclado espectral” de imágenes de media resolución. Esta técnica se aplicó a una serie 
temporal de datos MERIS FR y, en este caso, se usó una base de datos de usos del suelo para 
caracterizar la composición del paisaje con una alta resolución espacial. En consecuencia, 
sólo el tamaño de la ventana de pixeles MERIS usados para resolver las ecuaciones que 
separan la información espectral necesita ser optimizado. Además, en este capitulo se usó el 
programa AMORGOS 3.0 para obtener las coordenadas geográficas de cada píxel MERIS de 
la manera más precisa posible. Esto permitió co-registrar las imágenes de forma automática y 
calcular el área proyectada de cada píxel MERIS (lo que a su vez permite calcular el número 
de píxeles de alta resolución que hay “dentro” de cada píxel MERIS) sin necesidad de re-
proyectar las imágenes. Al igual que en el capítulo 2, se utilizó un método cuantitativo para 
evaluar la validez de la fusión y para determinar el tamaño óptimo de la ventana de pixeles 
MERIS. A continuación, se calcularon los índices de vegetación MTCI y MGVI a partir de la 
las imágenes fusionadas y de las imágenes MERIS originales y se extrajeron perfiles 
temporales de estos índices para los principales tipos de usos del suelo presentes en el área de 
estudio. Los resultados indican que la fusión de datos propuesta en esta tesis puede ser usada 
con éxito para mejorar la resolución espacial de series temporales de datos MERIS FR. En 
otras palabras, el método propuesto permite el seguimiento de cubiertas vegetales y de sus 
dinámicas a altas resoluciones espaciales, espectrales y temporales.  

Por último, el capítulo 6 contiene las conclusiones principales de esta tesis y una serie de 
recomendaciones para futuras investigaciones derivadas de este trabajo. La conclusión 
principal es que la fusión basada en el “desmezclado espectral” es capaz de producir imágenes 
con una resolución similar a la ofrecida por Landsat con muy pocos compromisos en la 
calidad espectral de las imágenes resultantes. Esto permite cartografiar y estudiar paisajes 
heterogéneos y fragmentados a altas resoluciones (incluso si éstos están frecuentemente 
cubiertos por nubes). Así pues, los resultados presentados en esta tesis deberían fomentar 
nuevos estudios sobre la fusión de datos provenientes de múltiples sensores y/o capturados a 
diferentes resoluciones como un medio para subsanar los déficits espaciales, espectrales y 
temporales de las misiones actuales y futuras de observación de la Tierra. 
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Colour figures 
 
- Chapter 2 
 

 
Figure 2.4. Left: The Dutch land use database LGN4 aggregated into 9 land use classes and 
resampled to 300 m pixel size. Right: ‘Pure’ pixel selection in The Netherlands using the 
Standard Purity Index (SPI) combined with the moving window filter. 
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Figure 2.6. Left: classified image according to case 6 (Table 2-3); Right: corresponding 
RMSE image. 

 

 
Figure 2.9. Ratio LSMILE-based/LRAW-based product (the colours red, black and blue 
indicate the areas where the ratio was smaller than one, equal to one or greater than one, 
respectively). 
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- Chapter 3 
 

       
 
Figure 3.3. RGB color composite of bands 4, 3 and 2 of the TM image (a), bands 13, 7 and 5 
of the fused image obtained for nc = 60 and k = 45 (b) and bands 13, 7 and 5 of the original 
MERIS FR image (c). Upper row shows the whole study area, whereas the lower row shows a 
subset of 25 by 25 MERIS FR pixels. 

b) a) c) 
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- Chapter 4 
 

 

Figure 4.2. Thematically aggregated land cover map (LGN5) over the study area. 

 

 
Figure 4.5. Classification results for the fused (a), and the Landsat TM (b) images. 
 

b) a) 
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Figure 4.4. RGB color composite of bands 4, 3 and 2 of the TM image (a, d), bands 13, 7 and 
5 of the fused image for nc = 60 and k = 45 (b, e) and bands 13, 7 and 5 of the original 
MERIS FR image (c, f). Upper row shows the whole study area, whereas the lower row 
shows a 25 by 25 pixel subset. 
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Figure 4.7. Example of the NDVI for the TM (a), the fused (b) and the MERIS FR image (c) 
for a 25 × 25 MERIS FR pixels subset of the study area. 
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Figure 4.8. Example of the MTCI for the fused image (a) and the MERIS FR image (b) and of 
the MGVI for the fused image (c) and the MERIS FR image (d) for a 25 × 25 MERIS FR 
pixels subset of the study area. 
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- Chapter 5 
 

 
Figure 5.1. Study area as seen by Landsat TM on 10 July, 2003 (a) and by MERIS for the 
following dates of the same year: 18 February (b), 16 April (c), 31 May (d), 14 July (e), 6 
August (f), 15 October (g) and 8 December (h). 
 

 
Figure 5.3. Co-registration of the MERIS and TM images of July: MERIS band 13 is depicted 
using a blue-green-red color table and TM is shown as semi-transparent background. The red 
line north of the water body shows the land-water-boundary as obtained from the TM image. 
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FUSED MERIS
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FUSED MERIS
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- Chapter 6 
 

Figure 6.2. Time series of MERIS FR images for the year 2003. 
 

 
Figure 6.3. MERIS image of 18 February 2003 (a), corresponding cloud mask (b) and per-
pixel number of cloud-free dates (c). 

 

 
Figure 6.4. Detail of the ground instantaneous field of view for three MERIS MGVI images 
(16 April, 14 July and 15 October) displayed as an RGB color composite. 
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- Teaching and supervising thesis students; OWU (2006) 
- IDL programming; Fanning Consulting (2008) 
- Career perspectives; Wageningen Graduate Schools (2008) 

 

Discussion Groups / Local Seminars and Other Meetings (16.8 ECTS) 
- Statistics, maths and modelling; PE&RC (2004-2008) 
- Remote sensing thematic group; CGI-WUR (2004-2008) 
- Spatial methods; PE&RC (2006-2008) 
- Ecosystems and landscape thematic group; CGI-WUR (2006-2008) 

 



 

   

PE&RC Annual Meetings, Seminars and the PE&RC Weekend (1.5 ECTS) 
- PE&RC day “The Scientific Agenda. Who pulls the strings?” (2006) 
- PE&RC weekend (2006) 
- PE&RC day “Scaling from molecules to ecosystems” (2008) 

 

International Symposia, Workshops and Conferences (23 ECTS) 
- ENVISAT/ERS Symposium; Salzburg, Austria (2004) 
- SPIE-Europe Remote Sensing; Bruges, Belgium (2005) 
- MERIS-(A)ATSR Workshop; Frascati, Italy (2005) 
- 9th International Symposium on Physical Measurements and Signatures in Remote 

Sensing (ISPMSRS); Beijing, China (2005) 
- 2nd International Symposium on Recent Advances in Quantitative Remote Sensing; 

Valencia, Spain (2006) 
- ISPRS Mid-term Symposium “Remote Sensing: From Pixels to Processes”; Enschede, 

The Netherlands (2006) 
- 10th International Symposium on Physical Measurements and Signatures in Remote 

Sensing (ISPMSRS); Davos, Switzerland (2007) 
- ENVISAT Symposium; Montreux, Switzerland (2007) 

 

Courses in which the PhD Candidate Has Worked as a Teacher 
- Remote Sensing (2005-2008); GRS-WUR 

 

Supervision of MSc Students 
- Supervisor of the following MSc theses at Wageningen University: 

o Crop area estimates from temporal unmixing: a case study using MERIS with 
artificial neural networks by Ernesto Bastidas Obando. 

o Possibilities and limitations of artificial neural networks for sub-pixel land 
cover mapping by Alemu Demeke Nigussie. 

o Modelling landuse changes in southeastern Spain using a Markovian approach 
by María Piquer Rodríguez. 

o Unmixing-based image fusion for land cover mapping over The Netherlands 
by María Luz Guillén Climent. 

o Comparison of MODIS and MERIS data for land cover mapping in The 
Netherlands by Hailu Shiferaw Desta. 

o Multitemporal land cover classification in The Netherlands with MERIS by 
Teshome Eshete Beediu. 



 

 

- Advisor of the following MSc theses at Wageningen University: 
o Development of an imaging spectroscopy based method for mapping and 

monitoring plant functional types in river floodplains by Lucía Sánchez Prieto. 
o Estimating the agricultural area in Senegal from medium resolution images, 

using an up-scaling method based on artificial neural networks by Josefien 
Delrue. 

o Retrieving chlorophyll content from CASI data for the identification of iron 
chlorosis in olive orchards by Anne van Gijsel. 

o Estimation of leaf area index using optical field instruments and imaging 
spectroscopy by Alemu Gonsamo Gosa.  

o Imaging spectroscopy for ecological monitoring at the test site the 
Millingerwaard: species mapping using spectral libraries and soil-vegetation-
atmosphere-transfer models by Elisa Liras Laita. 
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