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environment to work. Last but not least I want to thank my parents for their support and my 

daddy for designing the beautiful cover of my thesis. 





 

ABSTRACT 

Bioprocesses are characterised by natural variability in raw materials, initial conditions, 

human intervention, and varying properties of the micro‐organism. In traditional 

biopharmaceutical production quality of the product is currently tested at the end of the 

production process only. Recently the Food and Drug Administration (FDA) released 

guidelines on process analytical technology (PAT) aiming at reducing variability in the end‐

products by introducing timely measurement and control of quality variables during the 

manufacturing process.  

This thesis intends to be a step forward towards the introduction of real‐time feedback 

control within the frame of PAT by combining several techniques from a multidisciplinary 

field of systems and control theory, biology, and chemometrics. The dual substrate 

cultivation of Bordetella pertussis for the production of bulk whole cell whooping cough 

vaccine was chosen as test case.  

A software sensor was developed to reconstruct biomass and specific growth rate from easy 

to obtain measurements during cultivation. The software sensor accurately monitors 

biomass growth over the whole range from low to high biomass concentrations during 

different types of cultivation (batch, fed‐batch, and continuous cultivations). It has also been 

investigated how near infra red spectra can be used to yield an alternative measurement of 

biomass. In the current state of development the software sensor is the preferred choice 

when it comes to feed‐back control.  

A model‐reference based controller was derived that adapts its settings in response to the 

time‐varying conditions in order to control the specific growth rate during fed‐batch 

cultivation, thus obtaining higher bulk vaccine concentrations compared to the standard 

production process. Two methods to automate controller tuning were proposed and have 

successfully been implemented. 

To obtain an indication which controller set‐points are needed to obtain the best vaccine 

quality, the effect of specific growth rate on the formation of virulence factors has been 

investigated. The data and a proposed preliminary model are in favour of choosing the 

highest feasible growth rate. 

Finally, with some precautions the monitoring and control tools developed on lab‐scale using 

headspace aeration turned out to be transportable to medium size pilot‐scale cultivation 

using sparger aeration. 
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CHAPTER 1 

State of the art and challenges 

 

Developments in the pharmaceutical industry 

The current Food Manufacturing Practiced (GMP) regulations for pharmaceutical 

manufacturing involve the production of products following strict rules, a fixed protocol, and 

fixed procedures (Fig 1A). Quality of the product is only tested at the end. Bioprocesses 

naturally contain variability due to the raw materials, initial conditions, human intervention, 

and varying properties of the micro‐organism. By setting fixed protocols the current GMP 

regulations do not encompass the reduction of such deviations. This leads to products 

containing a considerable amount of variability, and possibly out of specifications. Already 

two decades ago Deming (1986) stated that “quality can not be proven into products” and 

“manage the cause and not the result”. Recently the FDA released guidelines on process 

analytical technology (PAT) (FDA, 2004) ‐ a framework for innovative pharmaceutical 

development, manufacturing, and quality assurance ‐ in which they stress the need for 

reducing variability and aim at improving manufacturing processes by introducing timely 

measurement and control of quality variables (Fig. 1B). It requires a science‐based approach 

to understand, monitor and control the process and its critical variables in real‐time.  

 

 

 

 

 

 

 

Figure 1A. Classical fixed procedures to obtain fixed quality, which is only tested in the end‐product B. PAT 

based procedures involving online measurement and feedback control of key variables for process performance 

and product quality. 
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Developments in biopharmaceutical and vaccine production 

The biopharmaceutical industry tends to move slowly and cautiously unlike many other 

industries with respect to new approaches in advanced technologies, such as feedback 

control algorithms (Alford, 2006). The biopharmaceutical is released on the basis of offline 

tests on the final product, e.g. sterility, homogeneity, and potency and safety tests in 

animals, involving large variability, delayed release, high costs and letting aside the 

possibility for feedback. Feedback means that deviations are corrected in real‐time and can 

only be applied if measurements become available fast. In the newest draft of Pharmeuropa 

(Anonymous, 2007) the final bulk of whole cell pertussis vaccine is released on the basis of 

sterility, antimicrobial preservative, the presence of fimbriae, opacity (the bacterial 

concentration should not exceed a certain level per human dose), identity (based on an 

immunological reaction), specific toxicity (survival of healthy mice), aluminium (maximum 

per single dose), and free formaldehyde (maximum concentration). The requirements for the 

production process are: “The production method must be validated to yield consistently 

vaccines comparable with the vaccine of proven clinical efficacy and safety in man”. Cultures 

must be checked at different stages for purity, identity, cell opacity, and pH. Cell harvest 

must comply with requirements for consistency based on the following criteria: growth rate, 

pH, yield, phase I characteristics (such as the presence of fimbriae), purity, identity, cell 

opacity, and free pertussis toxin, dermonecrotic toxin, or tracheal cytotoxin (the free toxins 

must be absent). So, the release of bulk vaccine is mainly based on offline data, and thus 

subjected to the drawbacks mentioned above (Fig. 1A). One handicap for the 

(bio)pharmaceutical industry’s’ reluctance to pursue advanced technologies is the accuracy 

and reliability by which the critical parameters of the complex cultivation processes can be 

monitored and controlled online. This thesis aims to develop methodologies for online 

monitoring and control that contribute to enhanced consistency and quality for the 

cultivation of Bordetella pertussis being the basis for the bulk vaccine against whooping 

cough (Fig. 1B). 

Most biopharmaceuticals and vaccines are produced in batch cultivation, where cells grow 

until the main nutrients are depleted. This step in the production process mainly determines 

the quality of the final product (Streefland et al., 2007). Formation of virulence factors ‐ the 

basis for a proper immune response against infection with whooping cough ‐ is growth‐

associated (among others Licari et al., 1991; and Rodriguez et al., 1994). Deviations in 

growth rate therefore may lead to deviations in virulence factors and vaccine quality. To 

obtain a high quality‐vaccine and to ensure batch‐to‐batch consistency, it is important to 

control the growth rate at a constant level. As a consequence, it is favourable to extend the 
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traditional batch cultivation with continuous or fed‐batch cultivation. Advanced feed 

strategies can be applied to control the process at a desired state, thereby obtaining higher 

biomass concentrations and regulating the quality of the end‐product. Ultimately, online 

monitoring and control towards quality and consistency should be the basis for product 

release and replace or diminish the tests in laboratory animals. 

 

 
The PaRel project: a multidisciplinary team  

In 2003‐2007 a project was executed with a multidisciplinary approach to enhance the 

manufacturing of biopharmaceuticals. The project was named “PaRel” or parametric release, 

denoting the ultimate goal of the project: release of the product on the basis of real‐time 

measurements of quality parameters during the upstream process. The project involved four 

partners, funded by the Dutch Ministry of Economical Affairs (TSGE3067). The four 

disciplines in the project were: 

o Designing the hardware and software architecture of the PAT infrastructure (SIPAT) 

of bioreactors for process development and production of biopharmaceuticals. 

Specific aspects were the automation of the data collection, data interpretation and 

experimental design based on a near infrared sensor in one expert system (Siemens 

NV, The Hague, The Netherlands).  

o The development of industrial measurement and control systems. Three tools were 

developed to facilitate the real‐time application of PAT: Instrumentation enabling 

monitoring and control of standard variables (temperature, dissolved oxygen and pH) 

named “i‐Control”; a parallel screening bioreactor for design of experiments on 

micro‐scale (µ‐24) ; and novel sensor techniques: redox, oxygen, and viable cell 

sensors (Applikon Biotechnology BV, Schiedam, The Netherlands). 

o Enhanced process understanding through the development of key quality indicators 

for improved accuracy and consistency towards the release of a well characterized 

product. Four aspects were considered: reducing the variance of batch cultivations; 

definition of whole cell vaccine quality on the basis of virulence gene expression 

through micro‐arrays; definition of critical parameters through design of 

experiments; and the application of the near infrared sensor for fingerprinting the 

batch cultivation (Netherlands Vaccine Institute, The Netherlands).  

o Enhanced monitoring and control through the application of advanced feed 

strategies. A five‐fold higher biomass concentration compared to standard batch 

cultivation is obtained by performing specific growth rate controlled fed‐batch 
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cultivations. Four aspects were considered: monitoring using a software sensor and a 

near infrared sensor; auto‐tuning feedback control to facilitate the implementation 

and tuning of controllers; modelling towards predicting vaccine quality; and scale‐up 

from laboratory to pilot‐scale production. (Wageningen University and Netherlands 

Vaccine Institute, The Netherlands).  

In this thesis, the focus is on the last discipline: designing advanced modelling, monitoring, 

and control systems in computer simulations and its application to bacterial cultivations of 

B. pertussis on laboratory and pilot‐scale (Fig. 2). Prior to discussing the research goals and 

scientific challenges elaborated in this thesis, first a brief overview is given about these three 

components. 

Figure 2A. 5‐L bioreactor set‐up for fed‐batch 

cultivation of B. pertussis. The sensors for dissolved 

oxygen and near infrared are indicated with white 

arrows. The bottles containing the feed with the 

substrates and the pumps, which are computer 

controlled, are shown in front the bioreactor. 

 

 

 

 

 

 

 

 Figure 2B. 60‐L bioreactor set‐up for fed‐

batch cultivation of B. pertussis. 
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Model 

Batch and fed‐batch processes are more challenging than stationary processes for modelling 

and control purposes, because batch processes show a dynamic range of operating 

conditions rather than moving towards steady states. Given these challenges, the analysis, 

monitoring, and control of batch processes tend to rely more on the data‐driven generation 

of empirical models (Bakshi et al., 1994). In addition, the values of measured variables reflect 

the contributions from a variety of external factors such as sensor noise, time degradation of 

equipment, pump failure or variance of biological assays, etc. The modelling challenge is to 

develop models for steady‐state experiments and for dynamic batch and fed‐batch 

experiments. The models should be a solid basis for the ensuing model‐based process 

design, monitoring, control, and predicting vaccine quality. Two extreme approaches to 

modelling systems are as follows (Sontag, 2006): 

o White model. All relevant variables, such as substrates, biomass, proteins, and 

metabolites are specified. The forms for all reactions and reaction constraints are 

described. Physical, chemical, or biological phenomena dictate the model structure. 

o Black‐box model. The black box model ignores all mechanistic information and 

characterizes behaviour solely in terms of stimulus‐response data. Statistical models 

that correlate the inputs and outputs, neural networks and other approximate 

models are black‐box. 

The grey‐box model is in between these two extremes. It combines available mechanistic 

information with input‐output data. Many biological models are this type. 

 

Monitoring 

Karim et al., 2003 stated: “One of the challenges when dealing with biological processes is 

how to extract biologically significant information from the relatively few process states 

measured online. These measurements are typically of physical bioreactor conditions (e.g., 

temperature, pH, agitation rate, bioreactor and exhaust gas compositions), whereas crucial 

information about the production of a desired metabolite or product often lies in the 

physiological condition of the cell, requiring time‐consuming offline measurements and 

assays.” This work aims to monitor the “quality” state of the cells by using physical 

measurements. We distinguish three types of non‐invasive bioprocess monitoring: 
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o Standard Sensors. Measurements from standard sensors like temperature, dissolved 

oxygen, and pH can be used to monitor the evolution and consistency of the 

cultivation. 

o Software Sensor. The task of the soft‐ware sensor is to monitor states, which can not 

be measured online due to the lack of available sensors. The software sensor 

combines process measurements from standard sensors with a process model 

(white‐, black‐, or grey‐box) to observe the unknown states and to reduce noise on 

the measurements, which is often present on data from sensors in the bioreactor.  

o Statistical Process Monitoring. Cultivation processes usually generate numerous data, 

which are often not used. As an example, a near infrared sensor may generate over 

2000 measurements every minute. Multivariate techniques (e.g. principal component 

analysis or partial least squares) can reduce data, monitor process performance, or 

predict relevant parameters. 

 

Control and tuning 

Bioprocess control is defined as providing a near optimal environment for microorganisms to 

grow, multiply, and produce a desired product (Alford, 2006). Alternatively, biological 

reactors use the cellular metabolic pathways to produce a desired product and as such 

require conditions that optimize either cellular growth, metabolite or protein production 

(Karim et al., 2003). In bioreactors only standard physical or thermodynamic measurements, 

such as dissolved oxygen, temperature, and pH, are used for feedback control in some cases. 

The more relevant parameters for product quality are usually not measured nor controlled. 

A challenge is to regulate an indicator for quality (specific growth rate) at a desired level by 

using feedback control in this thesis. 

o Standard Control. Based on a survey of over eleven thousand controllers in industries 

(Desborough and Miller, 2001), 97% of regulatory controllers use a proportional‐

integral derivative (PID) feedback control algorithm. A PID controller reacts on 

deviations after they occur and/or persist.  

o Adaptive Control. The performance of standard control methods is limited because of 

the nonlinear and time‐varying characteristics in bioprocesses. Fed‐batch cultivations 

involve ever changing process conditions due to the exponentially increasing 

biomass. A model‐based and adaptive approach, therefore, has been proven most 

effective to control complex process during a range of operating conditions (Åström 

et al., 1993). And so the aim is to develop a model‐based controller that is capable of 
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adapting the control output based on the changing conditions in dynamic fed‐batch 

cultivation, e.g. biomass and volume in a bioreactor. 

o Auto‐tuning. Another fact from industry in Desbourough and Miller (2001) is that the 

performance of only one third of 26.000 controllers was acceptable or excellent and 

two thirds was poor or fair and had opportunities for significant improvements. Auto‐

tuning has the potential to upgrading performance online if performance is not 

acceptable. Moreover, auto‐tuning may enhance the application of advanced control 

techniques in industry, because it is makes the tuning of controllers easier and hence 

more user‐friendly. 

 

Thesis challenges and outline  

In different parts of science and technology the word “control” has different meanings 

(Wold, 2006). In the world of process analytical technology or statistical process control 

“control” often means “check” whether the process is still within the desired specifications 

by means of monitoring or classifying the process. In the engineering sense “control” means 

to ensure that the process stays close to the set‐points. Wold (2006) states that “PAT 

process control” in the engineering sense is still a challenge of the future. However, the 

philosophy of this these is to pursue just that. The research is intended to be a step forward 

to the “PAT process control” and aims to monitor and control the cultivations step of 

B. pertussis for the production of whole cell whooping cough vaccine towards desired quality 

specifications and enhanced batch‐to‐batch consistency. This thesis concerns the following 

research questions: 

o How to improve monitoring of complex bioprocesses?  

o How can the cultivation process be controlled at a desired level while coping with the 

nonlinear and time‐varying characteristics of bioprocesses? 

o How to automate controller tuning? 

o What set‐points are needed to obtain the best‐quality vaccine? 

o Can the developed monitoring & control tools be applied to cultivation on 

production‐scale? 

In order to answer the research questions the thesis comprises modelling, monitoring, and 

control in small‐ and pilot‐ scale bioreactors, which are operated in batch, fed‐batch and 

continuous mode. The analysis of this work is supported not only by simulations but also in 

real laboratory experiments.  
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o Chapter 2 illustrates the design, development, and evaluation of a software sensor 

that observes specific growth rate and biomass using standard and cheap online 

dissolved oxygen measurements. Offline biomass measurements are incorporated to 

improve and safeguard the biomass estimation and to observe the effect of biomass 

growth on the oxygen transfer coefficient. 

o As an alternative for the software sensor of chapter 2 and to safeguard the 

cultivation by introducing an additional sensor, chapter 3 describes the use of a near‐

infrared (nIR) sensor towards online monitoring and controlling the cultivation. 

Multivariate techniques and wavelength selection are used to monitor the evolution 

of the biomass concentration in batch cultivations. The potential and challenges of 

nIR monitoring are evaluated and compared with the software sensor of chapter 2. 

o Chapter 4 uses the observed biomass growth of chapter 2 to control the specific 

growth rate in fed‐batch cultivation. The dual substrate model developed in previous 

work (Neeleman et al., 2001) is combined with specifications on control performance 

to develop a model‐based controller that is adaptive for the time‐varying 

characteristics of bioprocesses. The adaptive feed‐strategy is applied to obtain higher 

biomass concentrations in a controlled way. 

o Chapter 5 concerns the automation of tuning of the specific growth rate controller of 

chapter 4, which is often a difficult task in bioprocesses. The performance of several 

methods for auto‐tuning is evaluated. 

o Chapters 1‐5 concern monitoring & control in small‐scale bioreactors. However, the 

value of the methodology needs to be asserted for larger scales in order to be useful 

for production of biopharmaceuticals. Chapter 6 makes the advanced monitoring and 

control system for fed‐batch cultivation plausible to near‐production‐scale by 

showing the application to pilot‐scale cultivations. In addition, one of the problems in 

scale‐up “the calculation of the oxygen consumption counteracting additional off‐gas 

dynamics due to the mixing and delays in the headspace and other equipment” are 

successfully tackled.  

o The chapters so far concerned the monitoring and control of obtain biomass growth 

in a controlled way. Chapter 7 provides further insights in what set‐point of the 

specific growth rate to choose to obtain the product that meets the desired 

specifications. A preliminary model is proposed to predicting formation of virulence 

factors on gene and protein level as function of the specific growth rate.  

o Chapter 8 reflects the achievements obtained in this thesis and presents some future 

perspectives. 
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Note that the presented constants and parameters may differ in the subsequent 

chapters, because the order of the chapters in this thesis was not identical to the 

chronological order in which the chapters were written. This thesis is a sequel of the 

work of Neeleman (2002). The state of the art in relation to literature is given in the 

thesis chapters. A combination of the methods developed in chapters 2‐7 can be used to 

predict, monitor, and control the cultivation and finally the end‐quality of the vaccine. 

Thus, meeting the science‐based approach of PAT to understand, monitor and control 

the process and its critical variables in real‐time; and being a step forward to obtain 

quality by design and finally to reduce (animal) tests on the end‐products. 
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CHAPTER 2 

Observer design and tuning for biomass growth 
and kLa using online and offline measurements 

 

Published as: Z. I. T. A. Soons, J. Shi, J. D. Stigter, L. A. van der Pol, G. van Straten, A. J. B. van 

Boxtel, Journal of Process Control, in press. 

 

Abstract 

Measurement of the key process variables is essential during biopharmaceutical production. 

These measurements are often not available online. This work combines frequent online 

measurements (oxygen uptake rate) with infrequent offline measurements (biomass) to 

estimate the specific growth rate, biomass, and the oxygen transfer coefficient (kLa) online. 

The system consists of an Extended Kalman filter and parameter adaptation for the time‐

varying kLa. Tuning is based on minimization of the error between the simulation and the 

estimation. Although the process itself is not stable, stability of the observer is evaluated 

heuristically by application of the Routh criterion. Performance and convergence of the 

observer are shown in both simulations and experiments in continuous and fed‐batch 

cultivations of Bordetella pertussis. 

 

Keywords 

Extended Kalman filter, online and offline measurements, bioreactor 
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Nomenclature 

A, B, C    system matrices  

c   relative kLa     

CG, CG
in

  glutamate concentration in the medium and in the feed [mmol.l‐1] 

CL, CL
in

  lactate concentration in the medium, respectively in the feed [mmol.l‐1] 

CX   biomass concentration [OD] 

CO
in

   oxygen concentration in inlet stream (liquid based) [mmol.l‐1] 

CO
h         equilibrium oxygen concentration in headspace (liquid based) [mmol.l‐1] 

CO
L, ,

L
O sensorC   oxygen concentration in the medium, measured by the sensor [mmol.l‐1] 

d   constant 

D   dilution rate [h‐1] 

E   performance criterion 

FS, Fout  substrate feed rate into reactor, feed rate out the reactor [l.h‐1] 

I   identity matrix 

ISS   input‐to‐state stability 

K   Kalman gain 

KG, KL   Monod constant on glutamate, respectively lactate [mmol.l‐1] 

kLa, kLa
Stir  oxygen transfer coefficient, kLa as function of stirrer speed [h‐1] 

mG, mL, mO  maintenance coefficient on glutamate, lactate, and oxygen [mmol.OD‐1.h‐1] 

OUR, OTR  oxygen uptake rate, oxygen transfer rate [mmol.l‐1.h‐1] 

O   observability matrix 

P   variance of the states 

Q, Qtune  system noise, system noise calculated by tuning  

R   output noise 

RStir   stirrer speed [rpm] 

t   cultivation time [h] 

T   frequent sampling interval [h] 

Tm   time interval between two offline samples (not constant) [h] 

u, x, y   inputs, states, outputs 

V   liquid volume [l] 

v, w   measurement noise, system noise  

YG1, YG2  biomass yield on glutamate over pathway 1 and pathway 2 [OD.mmol‐1] 

YL, YO   biomass yield on lactate and oxygen respectively [OD.mmol‐1] 
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Greek letters 

β, γ   tuning parameters  

ε   error of the states  

µ   specific growth rate [h‐1] 

µmax, µenh, µset  maximum, respectively enhanced, set‐point specific growth rate [h‐1] 

σ   standard deviation 

τsensor   response time for dissolved oxygen sensor [h] 

 

Superscripts and subscripts 

^, EKF  observed values 

..ˉ   predicted values 

Error! Objects cannot be created from editing field codes.   average values 

m   measured values 

mod   model values 

0, k   initial values, values on time instant k 

 

Introduction 

Most biopharmaceuticals are produced in a batch or fed‐batch cultivation. The quality of the 

product is formed in this step and is the result of the metabolic state of the micro‐organisms. 

It is therefore essential to measure the physiological state of the process. Metabolic activity 

is difficult to measure directly due to the lack of sensors, but respiration can be monitored 

by the oxygen mass balance. The oxygen uptake rate can in turn be used to estimate the 

specific growth rate and biomass. The specific growth rate and biomass concentration are 

key parameters. 

In this application, production of a vaccine for whooping cough by cultivation of Bordetella 

pertussis, only dissolved oxygen measurements were available. In previous work (Neeleman 

et al., 2004) a two step asymptotic observer has been used to observe the biomass and 

specific growth rate. The oxygen uptake rate (OUR) was used as input for the observer and in 

contrast with other observers (see amongst others Bastin and Dochain, 1990) measurement 

of (part of) the state variables such as biomass and substrates ‐ which are often not available 

online or require use of additional sensors and equipment ‐ is not used. Although, the 

performance in Neeleman et al., (2004) was good there was still a need for faster 

convergence and a higher accuracy. Therefore, a software sensor based on an Extended 

Kalman filter (EKF) was developed to observe specific growth rate and biomass every minute 
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using the oxygen uptake rate as input (Soons et al., 2007). The choice for an EKF is 

motivated, amongst other things, by the fact that the measurement noise of the sensors is 

well known and this knowledge can be included in the algorithm.  

In industrial production environments Extended Kalman filters are uncommon due to the 

tuning load (Lübbert and Jørgensen, 2001; Jenzsch et al., 2006; Wilson et al., 1998). The EKF 

may be difficult to tune and can suffer from stability and convergence problems. Another 

problem is the explicit use of process kinetics, because this kinetics is often highly uncertain 

(Perrier et al., 2000). This paper demonstrates that the EKF yields good performance for 

biomass and specific growth rate estimation – even by using a rather generic observer model 

that does not rely on a kinetic model. An evaluation tool is used to gain (heuristic) insight in 

the stability of the EKF observer. 

In most applications, the oxygen transfer coefficient kLa is measured in advance of the 

cultivation in medium and is assumed to depend on stirrer speed and volume only. However, 

the formation of cells, proteins, and other molecules, which absorb at gas‐liquid interfaces, 

cause interfacial blanketing and reduce the oxygen transfer coefficient (Doran, 1995). 

Because concentrations of cells, substrates, and products change during (fed‐)batch 

cultivation, the value of kLa also changes. Examples of change in kLa due to these factors are 

given in (Lübbert and Jørgensen, 2001; Sabra et al., 2002; Galaction et al., 2004). Changing 

kLa causes errors in the OUR calculation and the estimation of the specific growth rate and 

biomass. It is therefore essential to deal with time‐varying kLa. 

Offline measurements are mostly considered as not suited for control and estimation 

purposes, because they become available with a delay and at infrequent and irregular times. 

These measurements however contain valuable information about the states of the system 

and can make the observer more robust (Dondo and Marqués, 2003). Amongst the literature 

on bioprocess monitoring (e.g. Bastin and Dochain, 1990) the use of offline information for 

online estimation is limited. Myers et al. (1995), Tatiraju et al. (1999), and Mutha et al. 

(1997) use offline and online measurements for state estimation, but do not estimate 

parameters; Lubenova et al. (2003); Gudi et al. (1995, 1997); Dondo and Marqués (2003); 

and Ignatova et al. (2003) estimate parameters in addition. Gudi et al. (1995) and Mutha et 

al. (1997) increase state observability by using the offline measurements multiple times. In 

Dondo and Marqués (2003), Lubenova et al. (2003), Gudi et al. (1995, 1997), and Ignatova et 

al. (2003) the parameters are directly related to the online measurements and they are part 

of the measurement and/or state equations. In this work, however, the parameter kLa is 

neither in the measurement nor in the state equation and is only observable indirectly from 

the offline biomass measurements. Figure 1 shows an example of such types of systems.  
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Two time scales play a role in the estimation scheme in this work (Fig. 2). This work 

combines frequent online measurements (which are measured every minute) with 

infrequent offline measurements (which are sampled and analyzed irregularly and with a 

delay). These estimates can be used to gain better control of a bioreactor. Figure 2 shows an 

overview of the system, in which two types of observers are involved to accommodate the 

two time scales: a frequent observer using the online data (the oxygen uptake rate to 

estimate the specific growth rate and biomass) and an infrequent observer activated by 

sampled offline data (biomass to observer biomass more accurately). The offline biomass 

measurements are also used to adapt the time‐varying kLa in the infrequent adaptive kLa 

observer.  

 

Figure 1. Interaction plot for biomass (CX), specific 

growth rate (µ), oxygen uptake rate (OUR), 

maintenance coefficient on oxygen (mO), and oxygen 

transfer coefficient (kLa). 

 

 

 
 

 

 

Figure 2. System configuration.       
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Bioreactor model for data generation by simulation 

The observer is tested in both simulations and laboratory experiments. The purpose of the 

simulations is to generate data as if it is reality to tune and evaluate observer performance. 

A validated model (Eqs. 1‐12, see Neeleman et al., 2001; Neeleman, 2002; Soons et al., 2006) 

is used in the tuning and simulation sections. To obtain realistic tests disturbances have been 

introduced in the simulation.  

Growth of B. pertussis is limited by two substrates (Thalen et al., 1999). The model (Eqs. 1‐

12) applies for batch, fed‐batch, and continuous‐flow stirred‐tank (CSTR) cultivations, 

depending on the feed going in and out the system. Monod kinetics and oxygen excess are 

assumed. The parameters in this model were taken from independent experiments (see 

Neeleman et al., 2001; Neeleman, 2002 and appendix A).  

max( , ) G G L
G L enh

G G G G L L

C C C
C C

K C K C K C
µ µ µ= ⋅ + ⋅ ⋅

+ + +
    1 

S out

dV
F F

dt
= −          2 

( , ) SX
G L X

FdC
C C C

dt V
µ = − 
 

       3 
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1 2
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 + + + = − − − +
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( )
2

G L
enh

inS G G L LL
L L L X

L

C C
F K C K CdC

C C m C
dt V Y
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 + + = − − +
 
 
 

    5 

Changes of dissolved oxygen in time are equal to the oxygen transfer rate minus the oxygen 

uptake rate minus the dilution: 

L
LO S
O

dC F
OTR OUR C

dt V
= − −          6 

The oxygen uptake rate (OUR) is the sum of oxygen used for growth (µ/YO) and oxygen used 

for maintenance (mO): 
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o x
o

OUR m C
Y
µ 

= + 
 

          7 

The bioreactor is aerated using headspace aeration only. The liquid phase oxygen 

concentration (CO
h) in equilibrium with the gas phase in the headspace following Henry’s law 

Neeleman (2002), the dissolved oxygen concentration in the medium (CO
L), and the oxygen 

transfer coefficient kLa determine the oxygen transfer rate (OTR):   

( )h L
l O OOTR k a C C= ⋅ −           8 

The dynamics of oxygen is much faster than the dynamics of the other relevant processes 

(e.g. growth of biomass, consumption of substrates) (Wang and Stephanopoulos, 1984) and 

the contribution of the dilution term is small (third term Eq. 6) compared to the rate of 

change of dissolved oxygen. As a consequence, Eq. 6 is considered in steady‐state and OUR is 

calculated every minute during the experiment using Eq. 9: 

OUR OTR≈            9 

The oxygen concentration in the headspace is assumed to be equal to the oxygen 

concentration in the inlet stream because of the high aeration rate:  

h in
O OC C≈             10  

Dissolved oxygen is controlled by changing the incoming oxygen fraction. Dissolved oxygen 

measured by the sensor is modelled as a first order system: 

, ,
L L L
O O Osensor sensor

sensor

dC C C

dt τ
−

=          11 

In practice, dissolved oxygen measurements contain estimation noise. In simulations used 

for design and tuning, noise is introduced by adding white noise with an intensity 

proportional to OUR (0.1 initially to 3% at end). This intensity was chosen to mimic the 

observed fact that DO is noisier towards the end: 

,
, ,( ) ( ) ( )L m L

O sensor k O sensor k kC t C t v t= +          12 
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Extended Kalman Filter 

The observer is based on a nonlinear continuous‐time model:  

( , )

( )

dx
f x u

dt
y h x

=

=
           13 

With f a nonlinear function of the states x and inputs u, and y the output. 

Lewis (1986) gives a good explanation of an Extended Kalman filter. The application in 

biotechnological applications is amongst others discussed in Gudi et al. (1997), Neeleman 

(2002), and Keesman (2002). The structure of a discrete time EKF is based on the following 

equations following Lewis (1986): 

1k k k k k k

k k k k

x A x B u w

y C x v
+ = + +
= +

         14 

Where Ak, Ck and Bk at each instant follow from discretization and linearization of Eq. 14 for 

a time step T: 

∂ ∂   
= =   ∂ ∂   

∂ 
= + =  ∂ 

ˆ ˆ, ,

ˆ,

,

   , 

k
x u x u

k k
x u

f hF C
x x

fA I FT B T
u
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with uk the input vector and I the identity matrix. The initial states x0 are stochastic variables 

with average 0x and variance P0: x0 ~ ( 0x , P0); wk ~ (0, Qk) is system noise and consists of 

model errors an unknown inputs; and vk ~ (0, Rk) is measurement noise. The algorithm has 

two steps. The time update and the measurement update.  

 

Time update 

When a sample becomes available at time k, first the time update k+1 is calculated using the 

original nonlinear model  

1

1 1

ˆ( , )

( )
k

k

k k

k

x f x u

y h x
+

+

−

− −
+

=

=
           16  

giving the predicted states −
+1kx  and the output −

+1ky . The prediction of the variance of the 

states −
+1kP  is based on the system Ak and system noise (Qk).  
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1
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+ = +           17 

 

Measurement update 

Next the measurement update calculates new estimates using the predicted model states 
−
+1kx  and outputs −

+1ky , the actual measurements yk+1, and the predicted variance −
+1kP : 
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Where the Kalman gain Kk is the magnitude of the correction and aims to minimize the 

covariance kP̂ . 

 

Frequent observer 

Observer model 

Instead of on the full process model (Eqs. 1‐12) the frequent observer is based on a generic 

model (Eqs. 19 and 20) for biomass growth with µ as an additional state.  

1

, 1

ˆ

,

ˆ

ˆ

k

S
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X k

k

F
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X kC C e
µ

µ µ
+

+

−

 − −  

=

= ⋅
          19 

,
k

k O X k
O

OUR m C
Y
µ 

= + 
 

         20 

The model contains only two parameters: the yield (YO) and maintenance (mO) coefficient on 

oxygen. The performance of the observer depends on accurate knowledge of these 

parameters. Appendix A gives the calculation of these parameters from separate 

experiments and shows that the parameters are not dependent on time. 

The states x are specific growth rate and biomass (µ, CX), the output y is the oxygen uptake 

rate (OUR). The volume V is assumed to be exactly known and doesn’t need to be observed. 

FS is the feed rate. The prediction of the states follows every instant (one minute) by 

calculation of Eq. 19, the measurement update from calculation of Eq. 18.  

The observability matrix O  



CHAPTER 2 

30 

,

,

X k k
O

O Ok
K

k k Sk k
O X k O k

O O

C µ
m

Y YC
O

C A Fµ µ
m C m µ

Y Y V

 + 
   = =          + ⋅ + ⋅ −      

      

    21 

is full rank, which renders the linearized system observable if the oxygen uptake rate and 

feed rate are not negligible, which is the case under the conditions after inoculation of the 

cells.  

 

Tuning 

In the implementation of the observer, system noise Q can be regarded a degree of freedom 

for the designer. The initial state covariance matrix P0 was chosen zero, because simulations 

with high and low P0 showed that it converges quickly and only weakly influences the 

estimation. The covariance of the measurements R is derived from variation in real process 

measurements for a worst case scenario with a high level of noise. This leaves the elements 

of Q as the tuning parameters. In general, the Q to R ratio is a measure of confidence in the 

model against the measurements. A large ratio indicates that the measurements are better 

than the model, and the measurements are therefore weighted more heavily, and vice versa 

(Gee and Ramirez, 1996). Given the good predictive performance of the model, we expect Q 

to be small relative to R. The tuning of Q is based on simulation. The system noise matrix (Q) 

with Qµ the intensity of the system noise on the specific growth rate and 
XCQ  on the biomass 

0

0
XC

Q
Q

Q
µ 

=  
 

           22 

was chosen in such a way that the deviation (E) between estimated states (or time‐varying 

parameters) (^) and “true” model‐based data (mod Eqs. 1‐12) is minimal.  

[ ]
22

mod ,mod
1 1

, ,
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X X
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k k C k C k
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µ N C N

µ µ
= =

 − − 
= +

− ⋅ −

∑ ∑
   23 

Both terms are divided by their average to make them equally important.  

Figure 3 shows a contour plot for E for a range of Qµ
 and QCx (note the log scale). The 

minimum E is flat, indicating the performance of the EKF is hardly sensitive for reasonable 

errors on the tuning parameters Qµ and QCx. The figure also shows that the system noise on 
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biomass is small compared to the system noise on specific growth rate in the minimum, as 

disturbances on biomass are mainly caused by disturbances on µ.  

 

Figure 3. Contour lines of the objective 

function E (Eq. 23) as function of tuning 

parameters Qµ and QCx during batch 

cultivation. The red dot indicates the 

minimum Qtune.  

 

 

 

 

 

A heuristic approach to assure the stability of the observer 

In the previous section the system noise Q in the EKF is tuned on the basis of a performance 

criterion. Although stability properties based on a linearized system may have limited utility 

in a nonlinear context (Sontag, 2001), it does give insight in the effect of the choice of the 

gain matrix K on the stability of the observer. Since the sampling frequency, and so the 

linearization frequency, are high compared with the process time‐scale we may be able to 

monitor the stability of the observer by a simple linear method. Other methods, such as 

input‐to‐state stability (ISS) (Sontag, 2001), require the unforced system to be stable and this 

is not the case in our fed‐batch system. Indeed, since the observer model is unstable due to 

the exponentially increasing biomass, ISS cannot be easily applied. Sontag (2001) states that: 

“perhaps the most interesting set of open problems concerns the construction of feedback 

laws that provide ISS stability with respect to observation errors.”, and so we limit ourselves 

to a heuristic approach to stability. The error dynamics for the continuous time linearized 

model are (Ljung, 1979; Dochain, 2003): 
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 ˆk k kx xε = −             25 

and Ak and Ck as defined in Eq. 15. The Kalman gains are: 

, ,ˆ ˆ ˆ( ) [ ( ) ( )]
X

T
k k µ k CK x K x K x=          26 

The linearized system is stable if ˆ ˆ ˆ( ) ( ) ( )k k k k k kA x K x C x−  have strictly negative real eigenvalues 

and if ˆkx  is assumed constant over the (short) sampling interval [k,k+1): 

( )ˆ ˆ ˆ ˆRe [ ( ) ( ) ( )] 0 1i k k k k k k kA x K x C x x and i to nλ − < ∀ =      27 

with n the dimension of the states x. The Routh stability criterion (see e.g. Nise, 2000) is 

applied to gain insight in stability of the observer as a means to arrive at analytical 

expressions for the Kalman gain matrix elements that guarantee stability on the time‐

interval [k,k+1). After substituting the analytical expressions for the linearized system (Eqs. 

19‐20) in the Routh stability criterion, we find 
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Y µ V Y F K C V
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+ ⋅

>
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Infrequent observer 

The infrequent observer updates the biomass and kLa estimation using infrequent offline 

and frequent online measurements (Fig. 2). Since inaccurate values of kLa may cause biased 

observations for the frequent observer, kLa is also updated when offline samples are 

available.  

The following three‐step algorithm is designed. First the frequent observer estimates µ and 

CX using frequent online available data. Next, if samples are available, the biomass observer 

estimates biomass and finally the adaptive observer estimates kLa. The main advantage of 

this approach is that convergence of kLa‐ adaptation is determined by one tuning parameter 

which can be enforced a priori as will be shown in the sequel. 
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EKF biomass 

The biomass observer contains the following discrete model, in which the sample and 

analysis delay is assumed to be constant and is incorporated by addition of n fictitious 

delayed states (n = 10) (Gudi et al., 1997):  

1 1

2 1

1
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= + − 
 

=
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where T, as before, is the frequent sampling interval. The states of the biomass observer are 

the (delayed) biomass concentrations ( 1 1 1, ,...X X XnC C C + ); the output is biomass delayed with n 

frequent samples ( 1XnC + ). The prediction of the states follows every infrequent instant from 

calculation of Eq. 29, the measurement update from calculation of Eq. 18 (if an offline 

sample is available, Fig. 2). 

The observability matrix has full rank. Tuning and stability analysis are performed similar to 

the frequent observer by optimizing the covariances of Q. The extra states represent a shift 

in time for which the covariances elements (QCx2 to QCxn+1) are assumed zero. This leaves 

optimization of the first element in Q (QCx1) only. 

 

Adaptive kLa observer 

During cultivation the microorganisms and their products may affect the physical properties 

of the liquid and as a result kLa may change. Deviations between the measured and actual 

biomass are assumed to be caused by errors in kLa. The adaptive observer adapts kLa when 

samples are available. The relative correction c is calculated every infrequent instant and 

assumed constant until the next sample becomes available: 
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Depending on the oxygen demand during the cultivation, agitation speed is adjusted. The 

oxygen transfer coefficient kLa is measured in advance of the cultivation in biomass‐free 

medium and depends on the stirrer speed and on the volume as specified in the function 

f(V,RStir) in Eq. 30. This function is used to adjust kLa a priori for known changes stirrer speed. 

The tuning parameter γ determines the convergence speed of the observer. Tm is the 

infrequent sampling interval, which can be irregular and infrequent.  

 

Results and discussion 

Simulation results and discussion 

Figure 4 shows a long‐term simulation of a fed‐batch cultivation using the frequent observer. 

The simulation consists of a batch and fed‐batch phase. The batch cultivation lasts until the 

limiting substrates are depleted at about t = 20h; next, the fed‐batch phase takes place, in 

which different levels of specific growth rate were achieved by adjusting the feed rate in 

order to evaluate tracking/convergence of the observer. 

Figure 4A gives the OUR obtained in this system. The course of this variable varies strongly 

due the induced variations in the specific growth rate. The OUR signal is used as an input for 

the observer to estimate biomass (CX) and specific growth rate (µ). 
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Figure 4. Simulation using the frequent observer for 

fed‐batch cultivation with Qtune A. Oxygen uptake rate 

data generated by the simulation B. Biomass from 

simulation and estimation. C. Specific growth rate from 

simulation and estimation. D. Kalman gains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass and specific growth rate were initialized with +20% errors (Fig. 4BC). The observed 

specific growth rate and biomass converged to the real simulated values within 15 hours. 

During the fed‐batch (t = 20‐200h) the observed biomass and specific growth rate 

correspond to the data generated by the model. 
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Changes in specific growth rate were induced five times during the fed‐batch phase (Fig. 4C). 

The EKF accurately tracks these changes. The Kalman gains converge to non‐zero values 

(Fig. 4D) preventing the observer to become “lazy” and therefore guaranteeing good 

tracking performance, also during long‐term experiments. 

For the purpose of the test, additional simulations were performed with up to a five‐fold 

increase respectively decrease in maximum specific growth rate (figures not shown). Tuning 

parameters Q and R were taken identical to the previous simulations. Performance was as 

good as the previous case, showing that the EKF can be applied to faster or slower‐growing 

micro‐organisms without retuning. 

The effect of uncertain maintenance and yield coefficients was also tested by simulations. 

The simulations showed that the observed specific growth rate converges to the actual value 

if maintenance and/or yield coefficients on oxygen were uncertain. Biomass estimations, 

however, tend to be biased if these coefficients are not properly known. If yields and 

maintenance coefficients are time‐varying, this effect should be incorporated. In the case of 

cultivation with B. pertussis, however, this effect is not under discussion, because the 

coefficients are accurately known and time‐varying behaviour of these coefficients has not 

been observed (Appendix A). 

The observer model (Eq. 19) is unstable due to the exponentially increasing biomass. 

Applying the Routh criterion (Eq. 28) showed that the EKF stabilized the system for 

t = 18‐200h and that the error system was not stable in the first 18 hours. Nevertheless the 

observer performed well. To enhance stability the values of the systems noise Q can be 

increased (putting more trust on the measurements compared to the model). However, as a 

consequence the system becomes more noise sensitive. To avoid increased noise sensitivity 

over the whole operational time, the Kalman gains can be adapted during the period of 

instability (t = 0‐18h) on the basis of the conditions derived from the Routh criterion. This 

stabilization method shows good performance in simulations. Relative to using a fixed Qtune, 

the performance criterion E (Eq. 23) is only 10% larger using the stabilization based on the 

Routh criterion (Eq. 28), but E is 40% larger using an increased Q chosen such that the EKF 

was stable over the whole fed‐batch  

In practice, there is a little more room for tuning the parameters without jeopardizing 

stability, because the stability analysis is based on a simplified and linearized model for 

biomass growth (Eq. 19), which can be different from the real nonlinear process. 

Simulations with the infrequent observer showed that the biomass observer was not stable 

due to the lack of frequent offline samples (for a case in which samples were available about 
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every two hours as in the experiments in the next section). If frequent samples (e.g. every 20 

minutes) are available, the observer does become stable after an initialization phase of 

several hours. Also November and Van Impe (2002) state that the convergence rate is highly 

correlated with the sample time.  

 

Experimental results and discussion 

Fed‐batch and CSTR cultivations with the dual substrate consuming bacterium 

Bordetella pertussis were performed with glutamate and L‐lactate as the main carbon 

sources. The cells were grown in a seven‐litre bioreactor containing 2.88 litres medium for 

the CSTR cultivations and 3 to 4 litres medium for the fed‐batch cultivations. A six‐bladed 

impeller was used to agitate the medium. Temperature was controlled at 34ºC, agitation 

speed at 300 to 750 rpm depending on the oxygen demand, and dissolved oxygen at 30% air 

saturation by headspace aeration only (by changing the incoming oxygen fraction in an 

oxygen/nitrogen mixture). The total gas flow was kept constant at 1 l/min. Further materials 

and methods (bioreactor conditions, medium, analysis, software, and hardware) were 

applied as reported by Soons et al. (2006).  

In bioreactors, aerated by a high air flow entering the headspace, the difference between 

the inlet and exhaust oxygen fraction is small and can therefore not be measured accurately. 

Hence OUR is calculated using the oxygen balance in the liquid phase: 

( )h L
L O OOUR k a C C≈ ⋅ −           31 

The CSTR experiments were performed to evaluate the frequent EKF only, the fed‐batch 

experiments to evaluate the combination of frequent EKF, infrequent EKF, and kLa 

adaptation. Fed‐batch or CSTR cultivations started with batch cultivation. Next, the fed‐

batch phase started automatically when the limiting substrates were depleted; the CSTR 

phase started when the biomass reached an optical density of 1.0. Before the cultivation kLa 

was observed in organism‐free medium for a range of stirrer speeds and bioreactor volumes. 

All experiments were performed using a fixed value for the system noise Qtune, because good 

performance was obtained in simulation experiments. 

Maintenance and yield coefficients were calculated on the basis of a series of four CSTR 

experiments with low biomass (Appendix A). Blanketing effects are therefore small so that 

kLa can be assumed independent of biomass and product formation, which allows 

calculation of proper maintenance and yield coefficients. 
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Figure 5 shows that the observed biomass coincides well with the offline biomass 

measurements during CSTR. The observed specific growth rate converged exactly to the 

preset dilution rate (D = FS.V
‐1). Uncertainty on µ was small throughout the cultivation.  

Blanketing effects however do occur during fed‐batch cultivation with higher biomass 

concentrations, resulting in overestimation of the biomass if only the frequent observer is 

used (Fig. 6). Figure 6 compares the frequent observer with the infrequent observer for fed‐

batch cultivation. An exponentially increasing feed was added to the bioreactor to keep the 

specific growth rate constant, resulting in an increase in volume and a decrease in kLa; 

sampling causes a small decrease in volume and therefore slight increase in kLa. The abrupt 

changes of kLa were caused by changes of stirrer speed (to meet the increasing oxygen 

demands). Biomass was overestimated using only the frequent observer (Eqs. 19 and 20). 

Biomass was observed more accurately when the infrequent observer (Eqs. 19, 20, 30, and 

31) corrected the kLa and CX estimations for biomass and product formation.  

The performance of the EKF is also compared to an asymptotic observer designed in 

previous work (Neeleman et al., 2004) and proved to be significantly better by showing 

faster convergence and a higher accuracy and stability. 
 

Figure 5. Frequent observer for CSTR cultivation 

A. Biomass. B. Dilution rate, estimated specific growth 

rate and its standard deviation (σ). 
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Figure 6. Combined frequent and infrequent observers 

for fed‐batch cultivation. A. Biomass. B. Oxygen 

transfer coefficient. C. Kalman gains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance of the infrequent observer was good even when sparser biomass 

measurements were available. Fewer measurements will result in larger sampling intervals 

Tm and larger kLa adaptation per offline measurement (Eq. 30). The effect of more sparse 

measurements on observer performance will therefore be small, however, the observer 

becomes more noise sensitive when the measurements contain a high level of noise. 

Obviously, some measurements are required to find the proper kLa pattern. 

Figure 7 shows the values of the relative kLa ( ˆ / Stir
L Lc k a k a= ) for two fed‐batch cultivations at 

different biomass concentrations. The relative kLa decreased by up to 8% for a cultivation 

grown to 8 OD due to biomass and product formation. This effect can be modelled by a 

linear relation (d=0.01, straight line in Fig. 7): 

( ) 1X Xc C d C= + ⋅           32  
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Figure 7. Relative kLa (kLa during fed‐batch compared 

to kLa in pure medium, ˆ / Stir
L Lc k a k a= ) as function of 

the biomass concentration for two fed‐batch 

experiments. 

 

 

 

 

For high cell density cultivation (e.g. E. coli), in which cells can grow up to approximately 150 

OD, kLa will drastically decrease. It illustrates the potential of incorporating this effect in the 

estimation (assuming that the maintenance and yield coefficients are constant or time‐

varying in a known way).  

 

Conclusions  

Application of the presented observer design and tuning rules improves bioprocess 

monitoring in biopharmaceutical production. The observer consists of two parts operating 

on two time‐scales: a frequent observer that estimates specific growth rate and biomass 

online; and an infrequent observer, activated by offline measurements, that estimates the 

biomass and the oxygen transfer coefficient online. The observer model is based on generic 

equations for biomass growth and is therefore widely applicable. Tuning is based on a 

performance criterion that minimizes the error between the generated bioreactor data and 

the estimations on biomass and specific growth rate. Fine‐tuning is based on the Routh 

stability criterion and enhances stability by forcing the Kalman gains to stable values.  

Simulations and experimental data showed that the EKF converged to the real values for 

specific growth rate and biomass and is robust for tuning and initialization errors, kinetics, 

and observation noise.  

Performance of the observers depends on exact knowledge of the maintenance and yield 

coefficients, which are accurately known for the cultivation with B. pertussis.  

Changes in oxygen transfer coefficients caused by increasing biomass and product 

concentrations are accurately observed. The observer thereby gives new information on the 

model for the time‐varying kLa. This ability offers potential for high cell density cultivations. 
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Appendix A 

Since the performance of the observer depends on the exact knowledge of the maintenance 

and yield coefficients on oxygen, separate experiments were performed to calculate these 

parameters. In contrast to batch or fed‐batch cultivation, CSTR cultivations allow 

independent calculation of these parameters. Figure A1 shows the relation of the specific 

oxygen consumption (qO2) to µ as in (Pirt, 1982). These data allow accurate calculation of the 

maintenance and yield coefficients (R2=0.98). Obviously, they were constant and 

independent on the specific growth rate. These values were used in the simulation and 

observer model: mO = 0.68 mmol.OD‐1.h‐1, YO = 0.033 OD.mmol‐1. 

In some bioprocesses, e.g. high cell density cultivations, the maintenance and yield 

coefficients tend to be time‐varying due to a shift in carbon for maintenance metabolism. If 

present, this time‐varying nature can be observed from the oxygen consumption in relation 

with the biomass in the following way: 

The overall yield is defined as the ratio between the biomass production and the oxygen 

consumption rate (Van’t Riet and Tramper, 1991): 

 ' X

X

C
O

O

dC
r dtY
r OUR

= − =           A1 

Integration of Eq. A1 gives Eq. A2 if YO’ is constant: 

 ' X
O

C
Y

OUR dt
=
∫

           A2 

Note that changes of the specific growth rate in time influence the overall yield, but can be 

assumed negligible, since µ is approximately constant in batch and constant in fed‐batch. 

Figure A2 shows that the overall yield YO’ is constant. So, the yield and maintenance 
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coefficients were neither dependent on µ nor on time for the cultivations with B. pertussis in 

this work. 

 

Figure A1. Calculation of the biomass yield and 

maintenance on oxygen using data on specific oxygen 

consumption rate and specific growth rate, R2 = 0.98.  

 

 

 

 

 

Figure A2. Biomass versus integral oxygen uptake rate. 
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CHAPTER 3 

Towards PAT monitoring and control: 
near infrared and software sensor 

 

Submitted to Chemometrics and Intelligent Laboratory Systems: Z. I. T. A. Soons, 

M. Streefland, G. van Straten, A. J. B. van Boxtel. Towards PAT monitoring and control: near 

infrared and software sensor 

 

Abstract 

Spectroscopic instrumentation is often seen as promising for process analytical technology 

(PAT) to enhance control of manufacturing (bio)pharmaceuticals. The interpretation of near 

infrared spectra is challenging due to the large number of wavelengths recorded and the 

overlapping absorbance features of near infrared spectroscopy. This work applies a 

controlled random search procedure to select an optimal window of wavelengths giving a 

good calibration model for biomass concentrations during cultivation of Bordetella pertussis, 

the causative agent of whooping cough. The proposed wavelengths selection procedure 

outperforms the traditional calibration procedures. In the second half of the paper, the near 

infrared based predictions are compared with the estimations obtained from a software 

sensor for biomass and specific growth rate based in standard measurements of oxygen 

consumption. The near infrared predictions depend on the quality of the training dataset, 

which needs to encompass all possible sources of temporary disturbances like pH and 

dissolved oxygen. The accuracy and robustness of the near infrared predictions with the 

current linear partial least squares model are less favourable than those of the software 

sensor. Although near infrared has the potential to provide more information than just 

biomass, the software sensor is the preferred choice for feedback control of biomass and 

specific growth rate. 

 

Keywords  

wavelengths selection, partial least squares; near infrared spectroscopy, Bordetella pertussis, 

software sensor, process analytical technology. 
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Nomenclature 

b calibration coefficients 

CX biomass concentration [OD] 

CO
L
 oxygen concentration in bioreactor [mmol.OD‐1.h‐1] 

CO
*

 oxygen concentration at gas‐liquid interface [mmol.OD‐1.h‐1] 

DO dissolved oxygen fraction 

E spectral residuals 

EKF Extended Kalman filter 

f biomass residuals 

F substrate feed rate [l.h‐1] 

J number of wavelengths 

kLa oxygen transfer coefficient 

mO maintenance coefficient on oxygen [mmol.OD‐1.h‐1] 

nIR near infrared 

N number of nIR measurements 

OD optical Density at 590nm in 1ml broth 

OUR, OTR oxygen uptake rate, oxygen transfer rate [mmol.l‐1.h‐1] 

P loadings matrix 

PLS partial least squares 

q weight matrix 

R number of latent variables 

RSS residual sum of squares  

T scores matrix 

V broth volume [l] 

W weight matrix 

w weights  

X predictor matrix, near infrared measurements 

Y output matrix, biomass concentrations   

YO biomass yield on oxygen [OD.mmol‐1] 

µ specific growth rate [h‐1] 

 

Superscripts and subscripts 

m measured values 

^, OUR observed values using OUR measurements 

..‐ values calculated from time update software sensor 
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nIR predicted using near infrared measurements 

 

Introduction 

Cultivation processes usually generate numerous offline and online data. Amongst the 

offline data are product quality assessments and biomass measurements. Online 

measurements are obtained from e.g. sensors for dissolved oxygen, pH, temperature, redox, 

or near infrared spectroscopy. Standard measurements, such as dissolved oxygen, 

temperature, and pH are not used to evaluate process and product performance, but rather 

serve to assure certain physical or thermodynamic properties. The offline measurements are 

often more relevant for product quality, but they become available with a (large) delay 

(Karim et al., 2003) and hence are not available for real‐time monitoring and control 

purposes. Vaccines, for instance, are produced in batch cultivation and released on the basis 

of offline tests on the final product, e.g. potency tests requiring animal models, involving 

large variability, delayed release or off‐spec losses, and high costs. The challenge is to extract 

biologically relevant information from online measurements and to control these in real‐

time.  

To stimulate understanding, monitoring and control of manufacturing processes, the FDA 

released the PAT guidance (FDA, 2004). Wold et al. (2006) defined four levels of 

chemometrics analysis for PAT ranging from multivariate calibration to combining several 

online‐monitored critical process variables in real‐time to asses quality of the final product. 

Here, the biomass and the specific growth rate are regarded as key variables that need to be 

controlled online, because biomass growth influences production of virulence factors (Licari 

et al., 1991; Rodriguez et al., 1994), which are indicators for vaccine quality. The natural fifth 

level would be PAT‐control: including real‐time feedback based on the online monitored 

variables. Wold et al. (2006) states that “PAT process control” in sense of feedback control is 

still a challenge of the future. Nevertheless, feedback control in the frame of PAT have 

already been reported (Gnoth et al., 2007; Soons et al., 2006). The use of spectroscopic 

instrumentation, although, is often seen as promising for PAT (e.g. Lopes et al., 2004; 

Triadaphillou et al., 2007; Wold et al., 2006), in the frame of feedback control it is less well 

developed. This paper describes a step towards real‐time feedback control for PAT by 

comparing two technologies for online monitoring of biomass growth during the cultivation 

step in vaccine production for Bordetella pertussis. The first is based on online near infrared 

spectroscopy; the second is a software sensor using measurements of oxygen consumption 

based on observer theory from the field of control engineering.  
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Near infrared spectroscopy is often addressed in the context of PAT and is widely used to 

predict the chemical composition of raw materials (Lopes et al., 2004). Abundant literature is 

available about near infrared spectroscopy for bioprocess monitoring. Scarff et al. (2006) 

provide an overview on calibration of near infrared models for cultivation of micro‐

organisms; Roggo et al. (2007) on near infrared spectroscopy and chemometrics in 

pharmaceutical production.  

The near infrared sensor generates a spectrum that consists of a large number of 

transmittance signals for wavelengths between 833 and 2500 nm at a high frequency. The 

evolvement of the spectra in time contains information on the course of the cultivation 

process. Partial least squares (PLS) is commonly used to regress a response variable 

(component concentrations) on a set of predictor spectra (near infrared measurements) 

(Sprang et al., 2007). Not all wavelengths in the spectrum, however, contain information 

relevant to the component of interest. Moreover, absorbance ranges of different 

components may overlap and substances in a complex mixture may contribute to signals 

that are spread across the complete spectral range. To counteract these effects, wavelength 

selection is a common tool to gather wavelengths that do contain relevant information. The 

complexity of the near infrared spectrum, however, precludes to some extend the use of the 

classical wavelength selection approach. Most works select spectral regions on the basis of 

prior knowledge on the absorbance of specific chemical components (amongst others 

Sprang et al., 2007 and Vaidyanathan et al., 1999). As an alternative, automated search 

methods are suggested by amongst others Triadaphillou et al. (2007). A further overview of 

automatic search methods is given in the section “automatic wavelengths selection”. The 

currently available wavelength search methods are not effective in finding global minima. To 

overcome this problem, in this paper, the controlled random search procedure presented by 

Price (1977) is applied to obtain the most informative wavelengths. 

The other technology to which near infrared spectroscopy is compared, is a software sensor 

that uses data from standard oxygen consumption measurements. Software sensors are 

based on observer techniques which follow from the discipline of systems and control theory 

(Lewis, 1986; Ljung, 1979). Major work on software sensors for bioprocess control is 

presented by Bastin and Dochain (1995) and Stephanopoulos and San (1984), more recent 

work by e.g. Gudi (1997) and Keesman (2002). The design and application of a software 

sensor for specific growth rate control during fed‐batch cultivation of Bordetella pertussis is 

given by Soons et al., (2006, 2008).  

Cimander and Mandenius (2004) show the potential of near infrared spectroscopy in real‐

time feedback control, but did not yet compare it to other techniques like observer based 
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software sensors. In this paper the monitoring performance of these sensors is compared 

and from this conclusions are drawn for the potential of feedback control of the specific 

growth rate.   

Summarizing, this work concerns two aspects: first, improving the linear fit of near infrared 

spectra and biomass measurements by enhanced automatic wavelengths selection; and 

second, comparing the merits of near infrared spectroscopy versus an oxygen uptake rate 

based software sensor for controlling specific growth rate. 

 

Materials and Methods 

Measurements 

Online measurements  

A polarographic electrode (Applikon, the Netherlands) was used for measuring dissolved 

oxygen in the medium; a pH electrode (Mettler Toledo, Udorf, Switzerland) for pH; and a 

Pt100 for temperature. A Bruker Optics Matrix F near infrared sensor with 5mm path length 

and 4cm‐1 resolution was mounted in the broth of the bioreactor to obtain transmittance 

near infrared spectra. Each spectrum contained 2074 wavelengths, calculated as the mean 

over 16 scans. The measurements of the online sensors were stored every minute. 

 

Offline measurements 

Offline measurements were gathered approximately every hour. Glutamate and L‐lactate 

concentrations were measured offline with a YSI 2750 select analyzer (Yellow Springs 

Instruments, Yellow Springs, USA). Biomass was obtained by measuring the optical density 

(OD) at 590 nm of 1ml suspension using a Vitalab 10 (Vital Scientific, the Netherlands).  

 

Bioreactor conditions 

Data of the near infrared sensor and data from other sensors (dissolved oxygen, pH, etc.) 

together with offline measurements of biomass concentration are taken from eight batch 

cultivations. The cultivations with the dual substrate consuming bacterium 

Bordetella pertussis were performed in a 7‐liter bioreactor containing four litres of medium 

with glutamate and L‐lactate as the main carbon sources (Thalen et al., 1999). A six‐bladed 
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turbine impeller was used to agitate the medium. All cultivations were performed using 

identical operating conditions. Temperature was controlled at 34ºC and dissolved oxygen 

was kept at 30% air saturation by first increasing agitation speed from 450 to 650 rpm and 

next increasing the oxygen fraction in the headspace. The total gas flow was kept constant at 

1 l/min. We refer to Van Sprang et al. (2007) for more details on the cultivation methods.  

The nutrient and biomass profiles were similar for all experiments. In four batches periods of 

deviations from the intended profiles were introduced to enhance the model robustness in 

counteracting the natural deviations of bioprocesses and to test PLS prediction performance: 

o PAB0003: Dip in dissolved oxygen concentration around t = 2h.  

o PAB0004: Poor pH control at t = 0‐10h. 

o PAB0005: Biased biomass measurements at t = 15h and t = 17h. 

o PAB0007: Dissolved oxygen limitation and lowered pH at t=0‐9h. 

 

Estimation procedure 

Spectral Data Pre‐Treatment 

All spectra were used to predict the biomass evolution in time during the batch cultivation. 

The calibration of the biomass against near infrared spectra was done in three steps. 

o The first step of the spectral data pre‐treatment was to partition the batches into 

two groups, a training set (for calibration) and a validation set (for prediction). Six 

batches were assigned for training (PAB0003, PAB0005, PAB0006‐1, PAB0006‐2, 

PAB0007, and PAB0009‐2), two for validation (PAB0004 and PAB0009‐1). This 

distribution was chosen to make sure that batches with temporary deviations are 

present in both sets. 

o The second pre‐treatment step was to apply Savitsky‐Golay smoothing with a 45‐

point window and a second order polynomial to reduce noise, whilst maintaining 

signal information content. The noise reduction was found particularly important in 

the later stages of the cultivation where vibrational effects caused by agitation and 

gas phase effects cause observation noise on the near infrared signal. 

o The third step was a consequence of the offline measurements of the biomass 

concentration, which were sampled approximately 15 times per batch cultivation. 

Triadaphillou et al., (2007) and Montague and Martin (2007) interpolate the offline 

measurements to obtain values of concentrations at the same sampling times as the 

spectral measurements. To avoid the introduction of interpolation errors, we 
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preferred to use the near infrared spectra at the sample times of the offline 

measurements for calibration, leaving k=90 samples for calibration and 28 for 

validation.  

 

Partial Least Squares (PLS) 

The assumed model is that the biomass Y depends linearly on some of the wavelengths of X, 

which is composed of a spectral block with a width and center (Fig. 1). The choice for partial 

least squares over e.g. multiple least squares is motivated by the possibility to reduce the 

large amount of data and to calculate weights such that the slopes at the uninformative 

wavelengths are close to zero (Eqs. 5‐6). The presence of observation noise, however, 

degrades the performance of the calibration model. This is counteracted wavelengths 

selection to select the window of wavelengths that is informative for biomass 

concentrations. 

The calibration dataset is used to build the PLS model for biomass on the near infrared 

spectra in the calibration step. Both the calibration and the validation dataset are used to 

predict biomass concentrations (based on the PLS model) using all available near infrared 

measurements in the prediction step. 

The matlab toolbox LIBRA contains a library of robust statistical methods (Verboven and 

Hubert, 2005). RSIMPLS is a function that performs partial least squares (PLS) and is used for 

calibration of the biomass model. Linear PLS is a quite common technique and is outlined 

briefly in the sequel. Further details can be found in e.g. Haaland and Thomas (1988) or 

Helland (1988).  

 

Figure 1. Example of spectral width and center selection.  
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Calibration  

The dataset consists of an output vector Y (Nx1) containing the N biomass concentrations 

over time and a predictor matrix X (NxJ) containing the spectral measurements. The number 

of columns J is equal to the number of wavelengths. The number of wavelengths J used for 

PLS calibration depends on the width of the wavelengths window, which is selected in the 

controlled random search procedure (Fig. 1):  

2 1J width= ⋅ +             1 

or may contain all wavelengths (2074) if the full spectrum is used. The matrix X is 

decomposed as the product of the scores T (NxR) and the loadings P (JxR) plus the spectral 

residuals E (NxJ); the matrix Y as the scores T (containing R columns or latent variables) and a 

weight matrix q (Rx1) plus the biomass residuals f (Nx1):  

TX TP E= +            2 

Y Tq f= +            3 

1( )TT XW P W −=            4 

where W (JxR) is an orthogonal weight matrix, calculated from a least squares solution. 

 

Prediction  

PLS prediction using an unknown spectrum involves the calculation and use of the final 

calibration coefficients b (Jx1):  

 1( )Tb W P W q−=            5 

to predict the response variables Y (biomass) online: 

 Ŷ Xb=             6 

Automatic Wavelength Selection 

Abrahamsson et al. (2003) compares four methods of automatic wavelength selection: 

genetic algorithms (GA), iterative PLS (IPLS), uninformative variable elimination by PLS (UVE‐

PLS), and interactive variable selection for PLS (EVE‐PLS). Problems observed by these 

authors were: lack of convergence to the same optimal solution (GA); disappointingly small 

improvements (less than 7% for IPLS and UVE‐PLS); lack of freedom to place the windows 

anywhere in the wavelength range (e.g. the windows start with 1, 101, 201, etc.) and slow 
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progress (IVS‐PLS). To overcome the problem of different results for different runs in genetic 

algorithms, Ferreira and Cardoso de Menzes (2007) propose a weighted genetic algorithm, 

but still multiple runs are necessary to select the wavelengths with the highest average 

weight to incorporate in the PLS model; so not yet an optimal solution.  

Triadaphillou et al. (2007) use a spectral window selection (SWS) algorithm to obtain 

multiple models by selecting spectral windows centers and widths based on random 

increments. The models are next combined by stacking. Although the method selects similar 

wavelengths more often than genetic algorithms, optimal solutions are not obtained. 

Price (1977) developed a controlled random search procedure, which is effective in 

searching for global minima using an iterative procedure. This method is applied here to 

automatically select the center and width of a spectral window (Fig. 1) and the number of 

latent variables R (in the scores T) on the basis of good prediction of biomass. The window of 

wavelengths may vary in size, ranging from a single wavelength to 221 wavelengths. 

The CRS algorithm consists of three steps: 

o A set of N trial points is generated at random using n inputs (number of latent 

variables R and wavelengths width and center). The weighted residual sum of 

squares (RSS)  

( )2

, ,

1

m nIRk
X k X k

i k

C C

w
RSS

k
=

−

=
∑

        7 

is evaluated for each trial point M and stored in an array A together with the inputs; 

wk is a weight indicating whether the data point is an outlier or not; k indicates the 
biomass samples, ,

m
X kC  the biomass measurements, and ,

nIR
X kC  the biomass 

concentrations fitted using the near infrared spectra in the PLS model ( Ŷ  in Eq. 6). 

o A new point is generated by choosing n+1 random distinct points R1, R2, … Rn+1 from 

the set of N stored points. The next trial point TP is computed from the centroid G of 

the n points R,,… Rn minus the last point Rn+1: 

12 nTP G R += ⋅ −          8 

o The stored point M with the greatest RSS is determined. The RSSTP is evaluated in 

point TP and compared with the RSSM in point M. If RSSTP < RSSM, M is replaced by TP 

in A. 
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Step two and three are repeated until the stop criterion is satisfied (a maximum number of 

function evaluations or the maximum RSS is smaller than a certain value). For more details 

on the method we refer to Price (1977). 

Constraints on the number of latent variables are applied to prevent over‐fitting. Figure 2 

shows an example on the choice of the number of latent variables R. From this figure, 17 

latent variables give the smallest RSS and thus without constraints 17 latent variables would 

be selected by the algorithm. With a constraint of nine latent variables, eight latent variables 

would be selected, and the figure shows that with this constraint the RSS is only slightly 

larger (0.042 compared to 0.038). 

The number of windows was fixed at one as it was found that two or more windows did not 

improve the PLS model. 

 

Figure 2. Number of latent variables selection plot 

 

 

 

 

 

 

Software sensor for biomass growth 

The software sensor uses a process model and process measurements to estimate noise‐

reduced variables that can not be measured online. The software sensor is based on an 

Extended Kalman Filter (EKF) and estimates the specific growth rate ( µ̂ ) and biomass ( ˆ
XC ) 

using the online oxygen uptake rate (OUR) measurements (Soons et al., 2008). Lewis (1986) 

and Ljung (1979) give a good explanation of an Extended Kalman filter. The application in 

biotechnological applications is amongst others discussed by Stephanopoulos and San 

(1984), Gudi et al (1997), Keesman et al. (2002), and Neeleman and van Boxtel (2001). The 

EKF calculations are recursive as shown schematically in Fig. 3. When a sample becomes 

available at time instant k, first the time update is calculated using a nonlinear model; next 

the measurement update calculates new estimates using the model, the actual 
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measurements, and variance P. Depending on the accuracy of the model and of the 

measurements, the measurement update relies more, or less on the model compared to the 

measurement. The applied EKF is based on a model with only two parameters (mO and YO) 

that are required to be known accurately. It estimates the evolution of the state variable 

biomass (CX) and the extended state specific growth rate (µ):  

0

X
X

O X
O

dC F
C

dt V
d
dt

OUR m C
Y

µ

µ

µ

 = − 
 

=

 
= + 
 

          9 

where F is the feed rate and V the liquid volume in the bioreactor. The oxygen uptake rate is 

the input for the EKF and is calculated every time instant using Eq. 10 (e.g. Wang and 

Stephanopoulos, 1984): 

*( )L
L O OOUR OTR k a C C≈ = −          10 

where CO
* and CO

L are the oxygen concentrations at the gas‐liquid interface and in the 

cultivation broth. 

 

Figure 3. Schematic of the 

Extended Kalman Filter 

calculations. 
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Results  

Experimental data 

Figure 4A shows the typical evolution of a batch cultivation captured by the near infrared 

analyzer. The increasing biomass concentration gives more absorption and hence a 

decreasing transmittance signal as the batch evolves. During the major part of the batch 

cultivation a linear relationship between the transmittance signal and the biomass 

concentrations is a plausible assumption. Above a certain biomass concentration, saturation 

effects occur and the near infrared‐biomass relation becomes nonlinear, which is 

approximately indicated by the dotted line. Eventually at even higher cell densities the 

transmittance signal would become negligible.  

Transmittance at 800‐1400 nm was linear during the main part of the batch cultivation. 

Wavelengths above 1400nm were in the nonlinear range of the spectrum. Higher cell 

densities that would occur in fed‐batch cultivations would give even lower transmittance 

signals, indicating that the chosen path length of the near infrared sensor is not be 

appropriate for such situations. A limitation of current submerged near infrared 

measurement is that the path length cannot be adjusted online to anticipate the changing 

biomass concentrations during batch operation. Nonlinear techniques, such as a 

transformation of the near infrared data (Robertsson, 2001), might be applied to capture the 

complete cultivation from inoculation to high cell densities. Due to the limited number of 

samples in this range, nonlinear PLS is not feasible here.  

The software sensor based on the calculation of the oxygen uptake rate using dissolved 

oxygen measurements (Fig. 4B) gives appropriate signals for the whole range of possible 

operations and can be applied without any modification to fed‐batch cultivations (Soons et 

al., 2008).  
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Figure 4. Measurement signals of both methods: 

A. Typical evolution of the transmittance near infrared 

spectra for one batch run (PAB0004). The shown spectra 

are taken at the time instants where also offline 

measurements are available. B. Typical evolution of the 

oxygen uptake rate for a batch run (PAB0009‐2). 

 

 

 

 

 

 

 

Controlled random search of wavelengths 

The controlled random search procedure was applied several times to the training dataset 

and converged to the same spectral window and number of latent variables during each run. 

Figure 5 indicates that a window of 976‐1053 nm gives the best prediction of the biomass 

concentration. The selection of a wide window consisting of 195 wavelengths makes that the 

model is not too specific for the training dataset and is able to predict biomass 

concentrations on other batches. 

Figure 6 shows the measured (CX
m) versus the predicted biomass concentrations (CXnIR). The 

results show good correspondence for the low and medium values of biomass in the training 

set. Predicted and measured values in the high biomass range deviate due to non‐linearity in 

the transmittance. Out of six batches in the training dataset three contained “natural” 

deviations in pH and/or dissolved oxygen (PAB0003, PAB0005, and PAB0007). Despite of 

these hick‐ups the near infrared model is capable to estimate biomass.  
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Figure 5. Automatic 

wavelength selection by 

applying a controlled random 

search on the training dataset 

for the trial points. A. Center 

spectrum window B. Width 
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squares. 

 

 

 

 

Figure 6. Measured biomass 

concentrations versus concentrations 

predicted using the near infrared 

sensor. The training set is shown in 

open symbols, the validation set in 

filled symbols (PAB0004 and 

PAB0009‐1); the batches in red and 

indicated with an asterix (*) contain 

temporary deviations in pH and 

dissolved oxygen, the batches in 

black do not contain deviations. 

 

 

Experiment PAB0004 of the validation set contained a temporary deviation that was not in 

the training set. pH control in the first ten hours of batch cultivation was poor and as a result 

the prediction error of the biomass concentration was significant in the initial phase of the 

cultivation. So, if deviations are not present in the calibration set, estimations are likely to be 

inaccurate. For future calibration of PLS models, it is important to assure that the training 
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dataset contains the natural variability that might be expected during production runs; for 

instance by performing “design of experiment” batches. 

The performance of the PLS model obtained from the controlled random search procedure 

was compared with a PLS model built on the full spectrum and on wavelengths chosen from 

literature using the same training dataset (Table I). The PLS model for the whole wavelength 

region shows moderate estimation errors. This model is probably not representative for the 

biomass alone, but for the entire cultivation broth as a whole. Vaidyanathan et al. (1999) 

reported that biomass of five different micro‐organisms absorbs prominently between 2270 

and 2350 nm and 1650‐1800 nm. Our model predictions based on the wavelengths between 

2270 and 2350 nm were poor due to the absorbance of water and other components in 

those regions, so that the transmittance signal was negligible (Fig. 4). Selection of the 

wavelengths 1650‐1800 nm weakly deteriorated the prediction accuracy of the PLS model, 

because the transmittance was in the nonlinear range. The selection of single wavelengths 

by Cimander and Mandenius (2004) also deteriorated the estimation for the same reason. 

The manual selection of Sprang et al. (2007) improved the estimation of biomass with 17%. 

Further improvements up to 35% were obtained by automatically selecting wavelengths 

using the controlled random search procedure. 

 

Table I. Comparing different PLS calibration results for the training dataset. 

Selected 

wavelengths [nm] 

Method RSS [OD] Improvement 

[%] 

Number of latent 

variables R 

833‐2400 Full spectrum 0.0223 ‐ 9 

2270‐2350 Manual selection  

(Vaidyanathan et al., 1999) 

0.1358 ‐509 7 

1650‐1800 Manual selection  

(Vaidyanathan et al., 1999) 

0.0248 ‐11 9 

1498, 1590, 1724, 

1732, 1794 

Automatic selection  

(Cimander and Mandenius, 2004) 

0.0422 ‐89 3 

1111‐1397 Manual selection  

(Sprang et al., 2007) 

0.0185 17 8 

976‐1053 Automatic wavelength selection 

(Controlled random search) 

0.0146 35 9 

 



CHAPTER 3 

58 

Comparison near infrared monitoring and OUR based software sensor 

To test the usefulness of near infrared monitoring during batch cultivations the near infrared 

biomass estimates are compared to those of the software sensor for three batch cultivations 

(Figs 7‐11). The biomass estimations (CX
nIR) can in turn be used for online estimation of the 

specific growth rate, which is useful in situations where the specific growth rate is controlled 

(Soons et al., 2006). Previous research showed that the software sensor accurately observed 

both the biomass and the specific growth rate from the oxygen uptake rate (Soons et al., 

2008). In Figs. 7‐9 it can be seen that the sensor is hardly affected by the presence of hick‐

ups, and that it performs well over the entire range from start to end. Also the normally 

distributed noise in OUR shown in Fig. 4 was effectively filtered out by the software sensor.  

In the cultivations that were consistent with the cultivations of the training dataset the near 

infrared based estimator estimated biomass growth fairly well. Significant deviations, 

however, occurred during cultivations containing unseen deviations. Even negative 

estimations occur during the initial phase of the cultivation when pH control failed to track 

the set‐point (Fig. 9). The near infrared estimations deteriorated at the end of the cultivation 

due to nonlinearities in the transmittance signal. Furthermore, the estimations were 

relatively inaccurate and noisy in the initial phase of the cultivation due to the low 

absorbance level (Figs. 10‐11). The software sensor was more accurate in this low range. 

The erratic biomass estimations from the near infrared sensor has important consequences 

for specific growth rate estimation and control. The variations were not normally distributed 

and therefore more difficult to filter out, resulting in a delayed reconstruction of the specific 

growth rate (and biomass). These erratic properties of the spectroscopic biomass growth 

monitoring deteriorate performance in feedback control.  

Figure 9B shows the consequences of the biased and variable biomass estimations using the 

near infrared data. The estimated specific growth rate was initialized at the expected value 

of 0.16 h‐1 for all cultivations. As a result of the negative biomass estimations and the 

required slow filtering, the specific growth rate converged first to negative values and 

subsequently increased only slowly as the cultivation proceeded. It is obvious that these 

estimates would give very poor regulation if they were used for feedback control. 
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Figure 7. Bioprocess monitoring based on the near 

infrared and on the dissolved oxygen sensor for 

PAB0006‐2 of the training set. A. Biomass B. Specific 

growth rate. 

 

 

 

 

 

 

 

 

Figure 8. Bioprocess monitoring based on the near 

infrared and on the dissolved oxygen sensor for 

PAB0009‐1 of the validation set. A. Biomass B. Specific 

growth rate.  
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Figure 10. Detail of Fig. 7. Biomass estimations in the 

initial phase of the batch cultivation for PAB0006‐2 

(training set). 

 

 

 

 

Figure 11. Detail of Fig. 8. Biomass estimations in the 

initial phase of the batch cultivation for PAB0009‐1 

(validation set). 
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Discussion and conclusions 

Whilst the accuracy of the PLS model has improved by application of wavelength selection, 

offsets were found in batches, in which deviations in pH and/or dissolved oxygen occurred 

(Fig. 9). So, if near infrared estimations are intended for feedback control, special care must 

be taken. It is suggested to check whether the behaviour of the current batch is consistent 

with the past experience to detect deviating behaviour, e.g. by performing a principal 

component analysis on the online process data. One might suspect that an obvious 

improvement of the near infrared regression can be achieved by ensuring better control 

over batches, so that there are less hick‐ups. However, in that case information about the 

robustness of the method in situations that do happen to occur in practice is lost. Seen this 

way, a better alternative may be to try to incorporate dissolved oxygen and pH as 

independent factors in the regression, perhaps in combination with nonlinear regression 

methods based on a larger number of batches. In the current application, noise was reduced 

by applying Savistky‐Golay smoothing. The small delay introduced by this method might be 

reduced by improving the accuracy of the spectral data by taking a higher number of scans, 

but as this can only be done at the expense of a larger sampling interval, the benefit is 

probably small.  

Considering the current limitations of near infrared monitoring and the challenges to be 

solved, such as a fixed path length, a linear PLS model, and a limited number of batches, at 

present the software sensor is the preferred choice for monitoring and feedback control of 

biomass and specific growth rate. This finding is in line with the work of Triadaphillou et al. 

(2007) who state: “spectroscopic instrumentation will more likely be used for retrospective 

analysis and development stages of a product than for direct feedback control purposes in 

the near future. The proposed spectral analysis strategy serves to enhance accuracy by 

which key component concentrations can be determined but practical implementation and 

interpretation challenges remain to be addressed.” Additional advantages of the software 

sensor are the use of a standard and cheap sensor for dissolved oxygen and the fact that 

only a few batches are needed to obtain the required maintenance and yield coefficients on 

oxygen. The software sensor is furthermore less sensitive for deviations of other operational 

conditions and nonlinearities. The near infrared data, on the other hand, have potential in 

monitoring other main components in the cultivation broth (e.g. substrates) and in 

monitoring consistency of the overall production process compared to a predefined 

standard. The use of data from two different types of sensors can yield complementary 

information and can thereby safeguard monitoring if one sensor fails. 
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Wold et al. (2006) state that “PAT process control” is still a challenge of the future. This work 

is intended to be a step towards real‐time feedback control for PAT by implementing two 

technologies for online monitoring of biomass growth during the cultivation step in vaccine 

production for B. pertussis with a view on control.  
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Abstract 

Monitoring and control of production processes for biopharmaceuticals have become 

standard requirements to support consistency and quality. In this paper, a constant specific 

growth rate in fed‐batch cultivation of Bordetella pertussis is achieved by a newly designed 

specific growth rate controller. 

The performance of standard control methods is limited because of the time‐varying 

characteristics due to the exponentially increasing biomass and volume. To cope with the 

changing dynamics, a stable model reference adaptive controller is designed which adapts 

the controller settings as volume and biomass increase. An important asset of the design is 

that dissolved oxygen is the only required online measurement.  

An original design without considering the dissolved oxygen dynamics resulted 

experimentally in oscillatory behaviour. Hence, in contrast to common believes, it is 

essential to include dissolved oxygen dynamics. The robustness of this novel design was 

tested in simulation. The validity of the design was confirmed by laboratory experiments for 

small‐scale production of Bordetella pertussis. The controller was able to regulate the 

specific growth rate at the desired set‐point, even during a long fed‐batch cultivation time 

with exponentially increasing demands for substrates and oxygen. 

 

Keywords 

model‐reference adaptive control, biopharmaceuticals, fed‐batch cultivation, specific growth 

rate, dissolved oxygen, Bordetella pertussis  
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Nomenclature 

a, b, c, d  constants for dual substrate model of B. pertussis 

C   nominal value of controller [mmol.l‐1] 

CG   glutamate concentration [mmol.l‐1] 

CG0   initial glutamate concentration [mmol.l‐1] 

CG
in

   glutamate concentration in the feed [mmol.l‐1] 

CL   lactate concentration [mmol.l‐1] 

CL0   initial lactate concentration [mmol.l‐1] 

CL
in

   lactate concentration in the feed [mmol.l‐1] 

CX   biomass concentration [OD] 

CX0   initial biomass concentration [OD] 

XĈ    software sensor biomass concentration [OD] 

DO    dissolved Oxygen concentration in the medium [mmol.l‐1] 

DOset   set‐point for oxygen concentration in the medium [mmol.l‐1] 

DOsensor  oxygen concentration measured by the sensor [mmol.l‐1] 

E    objective function       

Eµ    relative variation of µ       

EDO    relative variation of DO     

fG    Monod kinetics for glutamate 

fL     Monod kinetics for lactate 

FO2    (enriched) airflow through the headspace [l.h‐1] 
in

LGF +  Ftot  total substrate feed rate (glutamate + lactate) [l.h‐1] 

F1    “proportional” correction substrate feed rate [l.h‐1] 

F2    feed rate by prior calculation [l.h‐1] 

F3    “integral” correction substrate feed rate [l.h‐1] 

ISE    integral squared error [h‐1] 

K1, K2   gains for specific growth rate control    

KC    gain for dissolved oxygen control    

KC
h    gain for headspace control      

KG    Monod constant on glutamate [mmol.l‐1] 

KL    Monod constant on lactate [mmol.l‐1] 

kLa    oxygen transfer coefficient [h‐1] 

mG    maintenance coefficient on glutamate [mmol.OD‐1.h‐1] 

mL    Maintenance coefficient on lactate [mmol.OD‐1.h‐1] 

mO    maintenance coefficient on oxygen [mmol.OD‐1.h‐1] 
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OD    optical Density at 590nm [OD590.ml‐1] 

OTR   oxygen transfer rate [mmol.l‐1.h‐1] 

OUR   oxygen uptake rate [mmol.l‐1.h‐1] 

OURnoise  noise on the oxygen uptake rate [mmol.l‐1.h‐1] 

O2
a

    auxiliary oxygen concentration [mmol.l‐1] 

O2
h

    oxygen concentration in the headspace [mmol.l‐1] 

O2
in

    oxygen concentration in the incoming air [mmol.l‐1] 

PRN   pertactin 

rpm   rounds per minute 

t    cultivation time [h] 

V    liquid volume [l] 

V̂     software sensor liquid volume [l]  

Vh    volume of the headspace [l] 

v, w   constants for normalised Monod equations 

YG1    yield on glutamate over pathway 1 [OD.mmol‐1] 

YG2    yield on glutamate over pathway 2 [OD.mmol‐1] 

YL    yield on lactate [OD.mmol‐1] 

YO    yield on oxygen [OD.mmol‐1] 

 

Greek letters 

β    ratio between normalised Monod equations 

β1, β2   convergence speed of reference model    

γ1, γ2   tuning parameters for MRAC      

µ    specific growth rate [h‐1] 

µ̂     software sensor specific growth rate [h‐1] 

0µ̂     initial software sensor specific growth rate [h‐1] 

µenh   enhanced specific growth rate [h‐1] 

µmax   maximum specific growth rate [h‐1] 

µset    set‐point specific growth rate [h‐1] 

τI    reset time for dissolved oxygen control [h] 
h
Iτ     reset time for headspace control [h] 

τsensor   response time for dissolved oxygen sensor [h] 
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Introduction 

Monitoring and control of production processes for biopharmaceuticals have become 

standard requirements to support consistency and quality. Recently, FDA encourages with its 

view on Process Analytical Technology (PAT) the introduction of new technology, amongst 

others methods for monitoring and control, to improve manufacturing and quality assurance 

in pharmaceutical processes (FDA, 2004). 

Currently, most biopharmaceuticals are produced in batch cultivation, where cells grow until 

the main nutrients are depleted. In such a cultivation system, only dissolved oxygen (DO), 

stirrer speed, pH, and temperature are controlled. In a typical batch cultivation, specific 

growth rate cannot be controlled. With the decreasing substrate concentration in time, the 

specific growth rate (µ) correspondingly changes and eventually becomes zero due to 

depletion. 

In order to ensure a high level of batch‐to‐batch consistency, it is preferable to control 

metabolic activity. However, it is not possible to measure metabolic activity directly. To cope 

with this limitation, indirect measurements can be used. Pörtner et al. (2004) apply the 

oxygen mass balance to monitor respiration. Levisauskas et al. (1996) make use of the fact 

that the biosynthesis of many intracellular components is closely related to the particular 

specific growth rate. Control of the specific growth rate as a measure for metabolic activity, 

implies constant substrate concentrations and thus, partly, control of the environment of 

the cells. So, to realise specific growth rate control a feed of substrate is necessary and as a 

consequence the batch‐wise operations must be shifted to a fed‐batch operation mode. 

Antigen level (Westdijk et al., 1997) and lipopolysaccharide content (Rodriguez et al., 1994) 

are important aspects for the quality of B. pertussis suspensions used for vaccine production 

against infection with whooping cough. Westdijk et al. (1997) demonstrated that, during 

batch cultivation the growth phase determines the antigen production and release. No 

conclusion, however, is given about the relation between antigen production and specific 

growth rate or nutrient composition. 

In literature, limited information is available on the effect of specific growth rate on product 

quality. Rodriguez et al. (1994) and Licari et al. (1991) show that the production of pertussis 

toxin (which is one of the important antigens) is strongly growth‐associated and that a high 

specific growth rate is an effective way for producing pertussis toxin. Although this favours 

the traditional batch cultivation, the work of Rodriguez also indicates that with increasing 

growth rate lipopolysaccharide production increases. This is regarded as a drawback because 

lipopolysaccharide is suspect of causing adverse reactions and should therefore be reduced 
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in the vaccine. So, in order to obtain a high quality‐vaccine, it is important to restrict 

lipopolysaccharide content of the vaccine, while still providing efficient pertussis toxin. This 

is possible by controlling the cultivation at constant level for the specific growth rate. 

Pörtner et al. (2004) implemented several feeding strategies for fed‐batch cultures and 

discussed the characteristics:  

o fixed feed trajectory,  

o a priori calculation of the feed trajectories based on a kinetic model,  

o predictive control with feedback in intervals,  

o feedback control via OUR.  

The first two methods are open‐loop methods and do not correct for deviations, arising from 

model mismatches. These options are not suitable to control metabolic activity. The third 

method is a predictive control method with a prediction update interval equal to the interval 

between manually taken samples. So, feedback takes only place at the sampling moments. 

In bioreactors, the time between samples may go up to several hours, thus jeopardizing the 

effectively of the feed‐back. The fourth method, control via OUR, has the capability of 

responding fast to deviations from the set‐point, regardless of the cause and duration of the 

disturbance. Metabolic activity is regulated regardless of external disturbances and varying 

yields and kinetics by adjusting the feed rate every minute. Feedback control using OUR 

measurements is applied in this work because it is able to correct errors, does not require 

intensive process development, and is applicable in all areas, provided that OUR can be 

measured (Pörtner et al. (2004)). 

Neeleman (2002) and Neeleman et al. (2004) used a standard “PI” controller to control the 

specific growth rate during fed‐batch cultivation of Bordetella pertussis. However, the 

performance of such standard control methods is limited due to time‐varying characteristics 

of a fed‐batch process. To incorporate exponentially changing biomass and volume, the 

controller needs to have adaptive properties.  

In the literature on adaptive control two approaches can be distinguished. The adaptation of 

controller settings in the first group is based on controller performance, where the error 

between desired and actual behaviour (which can be caused by uncertainties in the kinetic 

parameters or mismatch in the total model) is the driver for adaptation. Babuška et al (2003) 

apply this method to control dissolved oxygen, Frahm et al (2002) to control substrate 

concentrations, and Akay et al (2002) to control medium temperature in bioreactors. To 

achieve enough adaptation in this approach, errors must be introduced by applying 

systematic excitation signals to the system. The other group of adaptive controllers is 



CHAPTER 4 

68 

represented by e.g. Bastin and Dochain (1990), Van Impe and Bastin (1995), and Smets et al. 

(2002, 2004). In this approach, the adaptive expressions for the controller parameters are 

linked to measured or estimated process states.  

The work of Chang (2003) fits to the second group. Gain scheduling for a PI2D controller is 

based on the measured states. Levisauskas et al. (1996) apply the same methodology by 

using a controller that adapts its parameters to the changing states. A drawback of these 

two controllers is the requirement for explicit measurement of part of the states (e.g. 

substrates, biomass, or ethanol). Alvarez and Simutis (2004) present a control law for 

regulation of the specific growth rate for a single substrate model, where estimation of 

specific growth rate and biomass is performed by a Kalman filter. This work is based on 

simulations, and is not qualified by laboratory experiments. 

Applying excitation signals is not desired in cultivation systems for biopharmaceutical 

production, because it may affect critical variables. In this work, therefore, adaptation 

according to the second category is used to cope with the time‐varying biomass and volume. 

Robustness and accuracy are evaluated by simulations with time‐varying or drifting kinetics, 

changes in set‐point, and external disturbances and by evaluating controller performance in 

laboratory experiments with the dual substrate‐using B. pertussis. 

In this work, bioreactor control is based on two loops: the standard DO control loop (which 

was not allowed to change) and the adaptive specific growth rate control loop (Fig. 1). 

Oxygen and substrate consumption are strongly coupled and in the same order of 

magnitude. If dissolved oxygen dynamics are ignored, tuning of the specific growth rate 

controller may lead to oscillations (Fig. 2). So, in contrast to common believes, incorporation 

of dissolved oxygen dynamics is essential for the design of specific growth rate control in 

order to avoid interactions between dissolved oxygen and specific growth rate control. The 

performance specifications for the design of the specific growth rate control are:  

o It has to cope with changing process dynamics during fed‐batch cultivation.  

o Set‐point tracking and disturbance rejection must be realised during a long 

cultivation time.  

o The only required measurement is dissolved oxygen.  

o Oscillations due to interaction with other controllers must be absent.  

o Batch‐to‐batch consistency and quality has to be improved.  

In the next sections, first the model is given; then the adaptive control law is derived and 

evaluated by simulation. Finally, performance of the controller is confirmed in laboratory 

experiments. 
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Figure 1. System configuration 

 

Figure 2. Oscillations in measured and software sensor 

results of the fed‐batch phase due to interactions 

between substrate and oxygen consumption. A. Oxygen 

uptake rate (OUR) B. Software sensor specific growth 

rate and set‐point, C. Total substrate feed rate  
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Materials and methods 

Strain and culture media 

B. pertussis strain 509 is grown in chemically defined medium containing glutamate and L‐

lactate as the main carbon sources (Thalen et al., 1999). 

 

Bioreactor conditions 

In the PAT framework, process control is one of the four tools with the goal of ensuring final 

product quality (FDA, 2004). To obtain a constant process, the cultivation must meet three 

requirements to ensure a constant environment:  

o Medium must be of constant quality. 

o Gases must be of constant quality. 

o Cultivation must be controlled within tight bounds for among others dissolved 

oxygen, temperature, and specific growth rate. 

The cells were grown in five‐litre bioreactor containing three litres medium. A six‐bladed 

impeller was used to agitate the medium. Temperature was controlled at 34ºC, agitation 

speed at 300 to 750 rpm depending on the oxygen demand, and dissolved oxygen at 20% air 

saturation by headspace aeration only (by changing the incoming oxygen fraction in an 

oxygen/nitrogen mixture). The total gas flow was kept constant at 1 l/min. Figure 1 shows 

the configuration of the experimental set up. 

Cultivation was performed in two phases. First, batch cultivation was performed until the 

limiting substrates are depleted. Second, controlled fed‐batch cultivation was performed to 

ensure batch‐to‐batch consistency and quality by adding a feed with limiting substrates. The 

fed‐batch automatically started when the specific growth rate dropped to the set‐point. The 

set‐point for specific growth rate was chosen at 0.05 h‐1 (Neeleman, 2002). In the fed‐batch 

phase, two 500 ml concentrated stock solutions of glutamate and lactate were used for the 

two separate feeds and placed on analytical balances. The feeds were added to the 

bioreactor with a fixed ration by two pumps (101U/R 32 rpm, Watson Marlow ltd., Cornwall 

UK) connected to the bioreactor control system. 

 



Constant specific growth rate in fed‐batch cultivation of Bordetella pertussis using adaptive control 

71 

Analysis  

A polarographic electrode (Applikon, the Netherlands) was used to measure dissolved 

oxygen in the medium. A pH electrode (Mettler Toledo, Udorf, Switzerland) was used to 

measure pH, and temperature was measured with a Pt100 temperature sensor. Glutamate 

and L‐lactate were measured offline with a YSI 2750 select analyser (Yellow Springs 

Instruments, Yellow Springs, USA). Biomass was measured offline by measuring optical 

density (OD) at 590 nm of 1 ml suspension using a Vitalab 10 (Vital Scientific, the 

Netherlands). Quantification of cell‐associated protein pertactin (PRN) in whole‐cell 

suspensions was done using ELISA developed by Westdijk et al. (1997).  

 

Hard and software set‐up  

All sensors were connected to the bioreactor control system ADI1040 (Applikon, Schiedam, 

The Netherlands), which in turn was connected to a UNIX machine with BCSV (Compex, 

Belgium (Wieten et al, 1995)). BCSV‐software performed the basic control‐loops (dissolved 

oxygen, temperature, and agitation speed) and logged these control‐data on the UNIX 

machine. Using FTP, a Windows XP machine downloaded new data every minute. A routine 

written in Matlab (Mathworks, Massachusetts, USA) processed data to estimate specific 

growth rate and biomass, and to calculate feed rate and new set‐points for the substrate 

pumps. BCSV then uploaded the new set‐points for the pumps to the UNIX machine (and to 

the pumps). 

Matlab 6.5 was used for the development and application of the software sensor (Extended 

Kalman Filter) and the adaptive control law. Figure 1 shows an overview of the cultivation 

process. The software sensor is based on an Extended Kalman Filter and estimates every 

minute the specific growth rate and biomass using the oxygen uptake rate as an input. A 

simple model is used with only two parameters: the yield and maintenance coefficient on 

oxygen. The parameterisation of the software sensor is based on simulation. System and 

output noise were chosen in such a way that the deviation between estimation and 

simulation data is minimal. Afterwards the software sensor was evaluated on experimental 

data. The software sensor showed fast convergence and fitted well to the data. Therefore, in 

the design of the controller estimations of the software sensor are considered as ideal 

measurements.  

Because dissolved oxygen is controlled, accumulation of dissolved oxygen is small, and the 

oxygen uptake rate (OUR) can be set equal to the oxygen transfer rate (OTR). OUR, 
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therefore, was assumed to be equal to OTR. OTR was calculated every minute using the 

average of the last four incoming oxygen concentrations (O2
in) and dissolved oxygen values, 

and from kLa, measured in advance of the cultivation at a range of agitation speeds assumed 

to be time invariant. The calculated OTR will be named “OUR measured” from now on.  

 

Simulation of the process 

Model for cultivation of B. pertussis  

Growth of B. pertussis is limited by two substrates. The metabolism of B. pertussis is 

described in detail by Thalen et al. (1999) and can be generalised to the formation of 

biomass from glutamate and lactate by two major pathways: glutamate alone (pathway 1) or 

glutamate and lactate (pathway 2). The organism can grow on glutamate only, but growth 

on lactate alone is not possible. In the current medium, glutamate is an essential, and lactate 

is an enhancing substrate. Growth via these two pathways is assumed to be parallel, and 

thus the individual growth rates can be added. Neeleman et al. (2001 and 2004) described 

the cultivation by the following dual substrate model assuming Monod kinetics and oxygen 

excess. Glutamate is essential for both pathways. 
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Glutamate consumption is subject to the following constraint: 
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where CG and CL are the glutamate respectively lactate concentration, YG1, YG2, and YL2 the 

biomass yields over the different pathways. µmax is the maximum specific growth rate over 

pathway 1, µenh the “enhancing” specific growth rate over pathway 2. KG and KL are Monod 

constants. The biomass growth rate is directly related to biomass (CX), specific growth rate 

(µ), and dilution rate (which is described by the incoming substrate feed rate ( in
LGF + ) divided 

by the volume of the broth (V)). Values used for simulation are given in Table 1. The oxygen 

uptake rate (OUR) is the sum of oxygen used for growth and oxygen used for maintenance.  

µ 
= + 
 

O X
O

OUR m C
Y

          8 

where YO is the yield for biomass on oxygen, and mO is the maintenance coefficient for 

biomass on oxygen. The oxygen transfer rate between gas phase and liquid phase is 

proportional to the concentration gradient in the interfacial area and the mass transfer 

coefficient (kLa): 

2( )h
lOUR OTR k a O DO≈ = ⋅ −          9 

where O2
h is the oxygen concentration in the headspace at the gas‐liquid interface following 

Henry’s law (Neeleman, 2002). The output of the process (OUR) is calculated from dissolved 

oxygen, O2
h, and kLa. In practice, DO measurements contain a high level of noise increasing 

with OUR. In simulations used for design and tuning, noise is introduced in the model by 

adding uniformly distributed random noise as function of OUR: 

= +

= ⋅ ⋅( ) 0.05 (1)

noise

noise

OUR OUR OUR

OUR OUR OUR rand
       10 

 

Table 1. Constants and initial values for simulation of the dual substrate model for B. pertussis 

V0 = 3 l YL = 0.018 OD.mmol‐1 YG1 = 0.055 OD.mmol‐1 

CX0 = 0.03 OD mL = 0 mmol.OD‐1.h‐1 YG2 = 0.061 OD.mmol‐1 

CG0 = 9.61 mmol.l‐1 µmax = 0.12 h‐1 mG = 0 mmol.OD‐1.h‐1 

CG
in = 500 mmol.l‐1 µenh = 0.055 h‐1 YO = 0.041 OD.mmol‐1 

CL0 = 16.24 mmol.l‐1 KG = 0.5 mmol.l‐1 mO = 0.41 mmol.OD‐1.h‐1 

CL
in = 835 mmol.l‐1 KL = 0.5 mmol.l‐1 116.0ˆ −= hoµ  
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Model for dissolved oxygen control 

The model for the cultivation of B. pertussis (Neeleman, 2001 and Neeleman et al., 2004) is 

extended with the dissolved oxygen control loop. The development of dissolved oxygen in 

time is described by the oxygen transfer rate minus the oxygen uptake rate minus the 

dilution due to the substrate feed rate: 

+= − − ⋅
in

G LFdDO
OTR OUR DO

dt V
        11 

Control of dissolved oxygen is based on a master‐slave control system. The inner or slave 

loop uses values of the oxygen concentration in the headspace (O2
h) calculated from the 

oxygen mass balance. The control variable is the oxygen concentration in the gas flow to the 

headspace (O2
in). The outer or master loop uses the dissolved oxygen measurement and 

controls the set‐point of the slave controller via an ‘auxiliary’ variable (O2
a). The situation is 

given in Fig. 3. The oxygen concentration in the headspace (O2
h) calculated from the mass 

balance. O2
h is the incoming minus the outgoing amount of oxygen minus the oxygen 

transfer rate: 

= ⋅ − −22
2 2( )

h
O in h

h

FdO
O O OTR

dt V
         12 

The ‘auxiliary’ variable becomes (master PI control, see Fig. 3): 

τ
= ⋅ − + ⋅ − +∫2 0

( ) ( )
ta C

C set sensor set sensor
I

K
O K DO DO DO DO dt C     13 

 

 

 

 

Figure 3. Master‐slave control for dissolved oxygen. 

 

where DOsensor is the output of the sensor for dissolved oxygen and C is the nominal value. 

The incoming oxygen fraction is calculated from a calculated “auxiliary” variable (O2
a). The 

incoming oxygen concentration (O2
in) becomes (slave PI control, see Fig. 3): 
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τ
= ⋅ − + ⋅ − +∫2 2 2 2 20
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I

K
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Finally, the response time of the sensor (about 20 s) is modelled by a first order system: 

τ τ
= − ⋅ + ⋅

1 1sensor
sensor

sensor sensor

dDO
DO DO

dt
      15 

 

Specific growth rate control  

In order to obtain batch‐to‐batch consistency and constant quality, the cultivation of 

B. pertussis must be controlled. The controller has to maintain the specific growth rate close 

to set‐point in the presence of various uncertainties including external disturbances and 

time‐varying or not exactly known parameters. Model‐reference adaptive control 

(Berber (1998), Ioannou and Sun (1996), and Åström and Wittenmark (1995)) is applied to 

control the specific growth rate. Fig. 4 shows the control diagram. The adjustment 

mechanism updates the controller gains (K1 and K2) every minute using the estimated states 

( µ̂  and ˆ
XC ), the set‐point and the volume. Because the set‐point of specific growth rate is 

constant, controller settings are updated from the estimated states and the set‐point 

specific growth rate. For derivation of the adaptive control law, the software sensor is 

considered as an ideal measurement; for simulation of the closed loop and for tuning of the 

controller, the software sensor is included. 

 

Figure 4. Diagram 

for model‐reference 
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Model‐reference adaptive control 

Performance specifications of the controller are given in the terms of a reference model. 

This model defines how the specific growth rate ideally should respond. A second‐order 

response is preferable to be able to cope with disturbances and offsets. β1 and β2 determine 

the convergence speed of the model‐reference controller.  

µ µµ β β µ+ + =
2

1 2 2 set

d d
dt d t

         16a 

µ µµ β µ
β β
−

= − ⋅
2

1
2

2 2

setd d
d t dt

         16b 

Integration of Eq. 16b gives:  

µ µµ β µ
β β
−

= − ⋅∫ ∫1

2 20 0

t t
setd d

dt dt
dt dt

        17a 

Fed‐batch cultivation is started as soon as the specific growth rate drops to the set‐point 

(t=0). With: 

µ µ= =0t set              17b 

the reference model for the specific growth rate becomes: 

µ µµ β µ µ
β β
−

= + ⋅ −∫ 1

2 20

( )
t

set
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d
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        17c 
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γ2=β2 and 1
1

2

βγ
β

=           17d 

µ µ µ µµ
γ γ
− −

= + ∫
1 20

t
set setd

dt
dt

               17e 

where γ1 and γ2 are tuning parameters of the controller.  

Although closed loop stability of the cultivation process is not an issue because of the 

exponentially increasing biomass and volume, stability of the reference model can be 

guaranteed. The reference model is stable if γ1 and γ2 are strictly positive numbers. Because 

the dynamics of the process plus controller are forced to follow the dynamics of the 
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reference model, in that case convergence of the error is guaranteed as well. The control law 

is derived in appendix A and gives: 

µ µ µ µ+
+

= + ⋅ − + ⋅ −
+ ∫1 2

0

ˆ ˆ ˆ( ) ( )
t

in
G L X set setin in

G L

ac bd
F C V K K dt

aC bC
           18a         

 

 

where K1 and K2 are the controller gains directly related to the tuning parameters γ1 and γ2 in 

Eq. 18b. K1 and K2 are adapted to the changing process circumstances: 

γ
=

+1
1( )in in

G L

V
K

aC bC
 and 

γ
=

+2
2( )in in

G L

V
K

aC bC
                18b 

In this application (vaccine production) only dissolved oxygen and volume measurements 

were available. Therefore, a software sensor based on an Extended Kalman Filter (EKF) 

estimates specific growth rate and biomass every minute. The controller uses the estimated 

values. The constants a, b, c, and d depend on the model parameters as explained in the 

Appendix. 

 Note that the laws of model‐reference adaptive control plus process differential equations 

lead to an adaptive “PI” controller (appendix A). In this PI control, the nominal value (“feed 

rate calculation”) and the gains K1 and K2 are functions of the states.  

 

Controller tuning 

According to Bastin and Dochain (1990) closed loop stability cannot be guaranteed a priori. 

The state variables follow an exponentially growing trajectory, which is characteristic of an 

unstable behaviour. Hence the goal of a fed‐batch cultivation process is not to stabilise it, 

but to optimise it while keeping an inherently unstable type of behaviour under control. 

Therefore tuning is performed by minimisation of the error. 

The tuning parameters γ1 and γ2 determine the convergence speed of the controller. The 

controller is stable by definition of Eq. 17e, if γ1 and γ2 are strictly positive numbers. The 

optimal trade‐off between tracking behaviour, disturbance rejection, and stability should be 

pursued. Initially, tuning was performed without incorporation of dissolved oxygen dynamics 

(Eqs. 12 to 15). At implementation, tuning on the specific growth rate only 

Feed rate calculation    “Proportional” action   “Integral” action 
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results in oscillatory bioreactor control due to interactions between dissolved oxygen and 

specific growth rate control (Fig. 2), because time constants of oxygen and substrate 

consumption are in the same order of magnitude. Neglecting dissolved oxygen dynamics 

leads to improper tuning of the specific growth rate controller and to oscillations. In contrast 

to common believes, simulation of the process, therefore, should incorporate dissolved 

oxygen control (Eqs. 12 to 15). Controller parameters γ1 and γ2 should be tuned by 

minimising a combination of the errors for µ̂  as well as DO in time. The ability to keep the 

specific growth rate at the desired set‐point (Eµ) and the ability to reduce oscillations (EDO) 

are balanced in an objective function (E): 

[ ] [ ]
µ

µ µ

µ
= =

− −
= + = ⋅ + ⋅

− −

∑ ∑2 2

1 1

ˆ( ) ( ) ( ) ( )
1 1

( 1) ( 1)

N N

set set
k k

DO
set set

k k DO k DO k
E E E

N DO N
 20 

Optimisation of this objective function (Eq. 20) gives the optimal tuning parameters. 

Calculation of the objective function for a range of γ1 and γ2 results in the profile shown in 

Fig. 5. It is important to choose γ1 and γ2 not too small, but the tuning parameters can be 

chosen larger than the optimal value without significant loss of controller performance. This 

is in agreement with the practical findings: too small values for the controller tuning 

parameters lead to severe interaction and oscillations, whereas values larger than the 

optimal value have no effect on controller performance.  

 

Figure 5. Objective function (E) as a 

function of γ1 and γ2.  
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Simulation results 

Robustness and accuracy tests were performed to examine controller performance. Several 

difficulties have been introduced in the model: time‐varying or drifting kinetics, changes in 

set‐point, and disturbances. For the purpose of the test, we assumed a drift plus a sinus with 

different frequencies on the model parameters (Fig. 6). External disturbances are introduced 

by observation noise (Eq. 10). In the controller, the parameters were set constant.  

Figure 7A‐E shows a characteristic simulation with good performance of the controller. As a 

result of the objective function the interference of the controllers as observed in Fig. 2 for 

the case without considering DO dynamics disappeared. The control was free of oscillations. 

Furthermore, the controller perfectly tracked the specific growth rate without offsets. The 

controller coped well with changes in set‐point, noise on OUR, and time‐varying biomass, 

volume, kinetics, and substrate yields. Concluding, the adaptive controller passed the 

robustness and accuracy tests with flying colours. 

Figure 7 shows also a comparison of the adaptive controller with a standard PI controller, in 

which the controller gains are constant during the cultivation (Fig. 7F). Performance of both 

controllers is compared by calculating the integral squared error (ISE). Compared to the 

standard PI‐controller the performance in terms of ISE improves 2.5 times by using the 

model‐reference adaptive controller. The improvement is most pronounced during changes 

of set‐point and with respect to offset compensation. 

 

Figure 6. Injected time‐variation of model 

parameters during simulation for robustness 

tests A. Maximum specific growth rate (µmax) 

B. Yield on glutamate over pathway 1 (YG1) 

C. Yield on glutamate over pathway 2 (YG2) 

D. Yield on lactate (YL) E. Glutamate 

concentration in the feed (CG
in) F. Lactate 

concentration in the feed (CL
in) G. Monod 

constant on glutamate (KG) H. Monod 

constant on lactate (KL) 
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Figure 7. Simulation results with 

time‐varying parameters (Fig. 6) 

and changes of set‐point. 

A. Oxygen Uptake Rate (OUR) 

B. Specific growth rate (µ) using 

model‐reference adaptive control, 

ISE=1.2.10‐4 C. Biomass 

concentration (CX) D. Substrate 

feed rate. F1: proportional action 

of the controller, F2: action of the 

feet rate calculator, F3: integral 

action of the controller, and Ftot: 

total feed rate E. Controller Gain. 

K1: “proportional”‐action, K2: 

“integral”‐action F. Specific growth 

rate (µ) using standard PI control, 

ISE=3.0.10‐4 

 

 

 

 

 

 

Experimental results and discussion  

In the PAT framework, process control is one of the four tools with the goal of ensuring final 

product quality (FDA, 2004). The controller design in the previous section is put to a test in a 

laboratory cultivation. Figures 8, 9, and 10 show the results.  

In compliance with the PAT rules, the cultivation was controlled within tight bounds (Figs. 8 

and 9) for dissolved oxygen, temperature, and specific growth rate (and therefore 

substrates). 
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Figure 8. Experimental cultivation conditions. A. Dissolved 

oxygen B. Temperature C. Agitation speed D. Substrate 

concentrations: lactate and glutamate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the designed model‐reference adaptive controller was satisfactory. The 

controller responds fast to deviations (Fig. 9). It properly tracked the set point in the 

presence of various uncertainties including disturbances on dissolved oxygen, improper 

working substrate pumps, and uncertain parameters. The controller properly coped with 

exponentially increasing biomass. The estimated specific growth rate was controlled close to 

the set point. The standard deviation was between 0.004 and 0.012 during the fed‐batch 

phase. 
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Figure 9. Experimental results for model‐ reference 

adaptive control with doubled controller tuning 

parameters. A. Measured oxygen uptake rate (OUR) 

B. Specific growth rate estimated by the software 

sensor and set‐point C. Estimated biomass 

concentration (CX) D. Substrate feed rate. F1: 

proportional action of the controller, F2: action of the 

feet rate calculator, F3: integral action of the controller, 

and Ftot: total feed rate E. Controller Gain. 

K1: “proportional”‐action, K2: “integral”‐action  
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Time delays change process dynamics and tuning results and may introduce oscillations. To 

stay away from oscillations, the tuning parameters were doubled or quadruplicated without 

loss of controller performance in comparison to their optimal values calculated in 

simulation. The experiments showed good controller performance (see Fig. 9 for doubled 

controller tuning parameters). As forecasted by simulations oscillations due to interference 

of the specific growth rate and the dissolved oxygen controller as in Fig. 2 were absent with 

the chosen controller parameters. Furthermore, the controller tracked the specific growth 

rate without offsets. Although the specific growth rate was estimated from a noisy OUR 

signal, it was properly estimated and controlled.  

At the start of the fed‐batch (t = 23 h), it happened that only small amounts of substrates 

were pumped into the bioreactor due to improper working pumps. As can be seen in Fig. 9, 

the controller reacted fast by immediately increasing the feed rate, and bringing the specific 

growth rate back to the set‐point.  

Depending on the oxygen demand, agitation speed was adjusted in steps from 550 to 

750 rpm during the fed‐batch phase (Fig. 8). When oxygen limitation occurred, agitation 

speed was increased with 100 rpm. Two peaks were observed during the cultivation caused 

by increasing agitation speed (Figs. 8 and 9). The first peak coincides with increasing 

agitation speed from 550 to 650 rpm; the second peak coincides with increasing agitation 

speed from 650 to 750 rpm. 

Figure 10 show details of two experimental fed‐batch cultivations for Bordetella pertussis to 

compare the performance of the adaptive controller with a fixed PI controller used in 

previous work (Neeleman et al., 2004). The ISE of the adaptive controller improved up to 10 

times compared to the standard PI‐controller. 

 

Figure 10. Detail of two fed‐batch experiments 

with specific growth rate control. A. Using 

model‐reference adaptive control, ISE=2.0.10‐5 

B. Using PI control with fixed tuning parameters 

(Neeleman et al., 2004), ISE=2.2.10‐4.  
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PRN‐activity was measured at the end of the fed‐batch. High cell surface densities of 

protective proteins are likely to augment the potency of pertussis whole cell vaccine. 

Therefore, it is important to examine density of outer membrane components per cell 

besides protein activity per volume (Westdijk et al., 1997). The PRN‐activity and density for 

fed‐batch cultivation was compared with the activity and density of this component for 

traditional batch cultivation in Table 2 (batch performed by Westdijk et al., 1997). First, 

variation in PRN‐activity and density was smaller after fed‐batch cultivation despite the high 

amounts reached. Second, although PRN‐density was equal or lower after fed‐batch than 

after batch cultivation, PRN‐activity after fed‐batch was fourfold of the PRN‐activity of the 

batch cultivation. Concluding, applying controlled fed‐batch cultivation instead of traditional 

fed‐batch cultivation increased batch‐to‐batch consistency, vaccine potency, and quality.  

The design of the specific growth rate controller results in a controller of PI type. The main 

achievement is the broad applicability, because the settings in the adaptive PI controller are 

the result of the process characteristics. In contrast to standard PI control, retuning is easy 

when the controller is applied in a different situation by inserting the corresponding process 

characteristics. Simulations showed that performance of the specific growth rate controller 

was good for a ten‐fold larger scale bioreactor (figures are not shown). Important 

requirements for good performance of the specific growth rate controller are accurate 

measurement of the oxygen uptake rate and proper dissolved oxygen control. The oxygen 

uptake rate can be calculated using the overall mass balance, in which the composition of 

the gas flows in and out the bioreactor are measured. Attention should be paid where to 

place the dissolved oxygen sensor in a large bioreactor in order to deal with non‐

homogeneity on large scale. Also, the design of the bioreactor must be such that supply of 

oxygen is not a problem. Taking into account these requirements, the specific growth rate 

controller is well applicable on large scale using identical tuning parameters γ1 and γ2. 

 

Table 2. PRN activity and density after batch and fed‐batch cultivation 

 PRN activity [mg.l‐1] PRN density [µg.OD‐1] 

Fed‐batch  58 ± 4 16.5 ± 1.5 

Traditional batch  14.5 ± 5.5 26 ± 10 
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Conclusions 

To control the metabolic activity during biopharmaceutical production, a specific growth rate 

controller is designed and evaluated by simulation and experiments for the production of 

the vaccine against whooping cough (B. pertussis). The qualifications of the controller are 

summarized below.  

o Using the laws of model‐reference control in combination with mass balances, a 

stable adaptive “PI” controller was derived. The controller settings are adapted to the 

changing process dynamics (volume, biomass, and set‐point for specific growth rate).  

o The method does not require online model identification, thus avoiding the need for 

process perturbation and complex implementation. Furthermore, it does not require 

online measurement of (part of) the states. The designed controller only requires 

online measurement of the oxygen uptake rate. 

o Tuning based on a combination of deviations in specific growth rate and dissolved 

oxygen leads to bioreactor control without interactions between specific growth rate 

and dissolved oxygen controller.  

o The model‐reference adaptive controller has an outstanding performance, both in 

simulation as well as in experimental conditions. Although the oxygen consumption 

rate contains a high level of noise, the specific growth rate is controlled accurately  

o Simulations show that the controller is highly robust for a large range of 

disturbances. Experiments showed the controller was good for its ability to cope with 

time‐varying kinetics and states, noise, and external disturbances. 

o  Control of the specific growth rate at low level results in constant and high antigen 

activity of the vaccine. Application of the controller, therefore, contributes to batch‐

to‐batch consistency and quality. It can be broadly applied for the production of 

biopharmaceuticals during fed‐batch cultivation.  

o The designed control system is a step forward to meet the PAT objectives as defined 

by the FDA. 
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Appendix A: derivation of the control law 

The adaptive controller is derived from combination of two principles: from the dual 

substrate model for growth of B. pertussis on glutamate and lactate and from the reference 

model for ideal response of the specific growth rate controller. The purpose is to compare 

the dynamics of the dual substrate model (Eq. A3) to the dynamics according to the 
reference model (Eq. A15) and to derive an adaptive control law for the feed rate in

LGF +  from 

these equations. 

 

Dual substrate model for B. pertussis 

The dual substrate model for growth of B. pertussis (Neeleman, 2001 and Neeleman et al., 

2004): 

)()()(),( max LLGGenhGGLG CfCfCfCC µµµ +=       A1 

with Monod kinetics: 

=
+

( ) G
G G

G G

C
f C

K C
 and =

+
( ) L

L L
L L

C
f C

K C
       A2 

Differentiation of Eq. A1 with respect to time gives the behaviour of µ in response to 

changes in the substrate concentrations CG and CL: 

( )

µ µ µµ

µ µ µ

= ⋅ + ⋅ + ⋅
+ + +

= + ⋅ ⋅ + ⋅
+ +

max
2 2 2
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G G L L
L enh G enh

G G L L

K dC K dC Kd dC
f f

dt C K dt C K dt C K dt

K dC K dC
f f

C K dt C K dt

   A3 

where glutamate and lactate concentrations in time are: 

( ) µ µ+  
= − − − + 

 
max

1 2

in
inG G L G enh G L
G G G X

G G

dC F f f f
C C m C

dt V Y Y
     A4 

( ) µ+  
= − − + 

 2

in
inG L enh G LL
L L L X

L

F f fdC
C C m C

dt V Y
      A5 
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Because the glutamate and lactate concentrations cannot be measured online, Eqs. A4 and 

A5 will be combined with Eq. A3 in steps A6 to A13. Feed concentrations (CG
in and CL

in) are 

much higher than the substrate concentrations in the bioreactor (CG and CG). So the latter 

can therefore be neglected in Eqs. A4 and A5: 

in
G GC C>>  and in

L LC C>>          A6 

Rewriting Eq. A2 gives:  

1
G G

G
G

f K
C

f
=

−
 and 

1
L L

L
L

f K
C

f
=

−
         A7 

Rewriting Eq. A1 gives the normalised equations of Monod: 

max G enh G Lf f fµ µ µ= −  and maxenh G L Gf f fµ µ µ= −      A8 

Substitution of Eqs. A4, A5, A7, and A8 in A3 give: 

2 max
max

1 2

2 max

2

1
( )(1 )

1
(1 )

in
inG L enh G L G

L enh G G G X
G G G

in
inG L G

G enh L L L X
L L

F f f fd
f f C m C

dt K V Y Y

F f
f f C m C

K V Y

µ µ µ µµ µ µ

µ µµ

+

+

  − −
= + − − − +     

  −
+ − − +     

A9 

In these equations the unknowns are the kinetics fG and fL. In principle, an unlimited number 

of combinations is possible (see Eq. A8). Neeleman (2002) and Neeleman et al. (2004) fixed 

the ratio (β) between the normalised equations of Monod (fG and fL) to obtain metabolic 

stability: 

L

G

f
f

β =                       A10 

Figure A1 shows the values of fG and fL at various β and µ. The white parts of the figure show 

the admissible regions of the normalised kinetics with the following constraint: 

max maxmax 0, enh

enh

µ µ µ µβ
µ µ

 − +
< < 

 
                      A11 

For the simulations and experiments in this study a ratio of 1 was used. At µset = 0.05 h‐1, the 

normalised Monod equations are linear approximated by: 

Gf v µ= ⋅  and Lf w µ= ⋅                    A12 

where v and w are constants. Substitution of Eq. A12 in A9 gives the behaviour of the 
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Figure A1. Diagram for Monod kinetics (fG and fL) 

as function of the specific growth rate (µ) at 

various β. A. fG For glutamate B. fL for lactate 

 

   

 

 

 

 

Reference model 

Recall the reference model: 

1 20

t
set setd

dt
dt

µ µ µ µµ
γ γ
− −

= + ∫                    A14 
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Combination of dual substrate and reference model 

Combining the reference model (Eq. A14) and the dual substrate model (Eq. A13a) by 
elimination of µd dt  and subsequent rewriting give the following adaptive control law: 

µ µ µ µ+

+
= + ⋅ − + ⋅ −

+ ∫1 2

0

ˆ ˆ ˆ( ) ( )
t

in
G L X set setin in

G L

ac bd
F C V K K dt

aC bC
    A15a         

 

 

where the controller gains K1 and K2 are directly related to the tuning parameters γ1 and γ2: 

 1
1( )in in

G L

V
K

aC bCγ
=

+
 And 2

2( )in in
G L

V
K

aC bCγ
=

+
                 A15b 

Eq. 15b shows that the controller gains are automatically adapted to the changing process 

conditions. 

Feed rate calculation    “Proportional” action   “Integral” action 
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CHAPTER 5 

Online automatic tuning and control 
for fed‐batch cultivation 

 

Published as: Z. I. T. A. Soons, G. van Straten, L. A. van der Pol, A. J. B. van Boxtel, Online 

automatic tuning and control for fed‐batch cultivation. Bioprocess and Biosystems 

Engineering, online first. 

 

Abstract 

Performance of controllers applied in biotechnological production is often below 

expectation. Online automatic tuning has the capability to improve control performance by 

adjusting control parameters. This work presents automatic tuning approaches for model 

reference specific growth rate control during fed‐batch cultivation. The approaches are 

direct methods that use the error between observed specific growth rate and its set point; 

systematic perturbations of the cultivation are not necessary. Two automatic tuning 

methods proved to be efficient, in which the adaptation rate is based on a combination of 

the error, squared error and integral error. These methods are relatively simple and robust 

against disturbances, parameter uncertainties, and initialization errors. Application of the 

specific growth rate controller yields a stable system. The controller and automatic tuning 

methods are qualified by simulations and laboratory experiments with Bordetella pertussis.   

 

Keywords 

online automatic tuning, fed‐batch cultivation, specific growth rate, Bordetella pertussis, 

stability 
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Nomenclature 

a, b, c, d  constants for dual substrate model for B. pertussis  

a1, a2…a7  constants for disturbances on model parameters  

A, B, C  system matrices for dual substrate model for B. pertussis 

CG, CG
in

  glutamate concentration in the medium and in the feed [mmol.l‐1] 

CL, CL
in

  lactate concentration in the medium, respectively in the feed [mmol.l‐1] 

CN   nominal value of controller [mmol.l‐1] 

CX   biomass concentration [OD] 

c1, c2, c3  constants for the choice of the adaptation mechanisms 

DO, DOsensor dissolved oxygen in the medium and measured by the sensor [mmol.l‐1] 

DOset   set‐point dissolved oxygen [mmol.l‐1] 

e   error between reference model and process, ˆrefµ µ−  [h‐1] 

E   mean absolute error [h‐1] 

F   state feedback matrix 
in

G LF +    total substrate feed rate (glutamate + lactate)  [l.h‐1] 

k   time instant 

kLa   oxygen transfer coefficient [h‐1] 

KC, KI, KP  controller gains 

KG, KL   Monod constant on glutamate and lactate [mmol.l‐1] 

mG, mL, mO  maintenance coefficient on glutamate, lactate and oxygen [mmol.OD‐1.h‐1] 

N   length of moving window 

O   oscillations measure [h‐1] 

O2
h, O2

in   oxygen concentration in headspace, and in incoming air (liquid phase) 

[mmol.l‐1] 

OD   optical Density at 590nm 

OUR, OTR  oxygen uptake rate, oxygen transfer rate [mmol.l‐1.h‐1] 

p, pd   model parameters, model parameters with disturbances 

t   cultivation time [h] 

V   liquid volume [l] 

u, x, y   inputs, states, output 

YG1, YG2  biomass yield on glutamate over pathway 1 and pathway 2 [OD.mmol‐1] 

YL, YO   biomass yield on lactate, respectively on oxygen [OD.mmol‐1] 

 

Greek letters 

β   adaptation rate 
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γ1, γ2   tuning parameters for µ control    

ε   error between set point and process, ˆsetµ µ−  [h‐1] 

µ, µset   specific growth rate, set point specific growth rate [h‐1] 

µenh, µmax  enhanced, maximum specific growth rate [h‐1] 

τI   reset time for dissolved oxygen control [h] 

τsensor   response time for dissolved oxygen sensor [h] 

 

Superscripts and subscripts 

^, EKF   estimated values 

 

Introduction  

Unacceptably sluggish or oscillatory controllers are generally classified as either “fair” or 

“poor” while controllers with minor performance deviations are classified as “acceptable” or 

“excellent”. Desbourough and Miller (2002) state that 32% of 26.000 controllers investigated 

in industry is classified as “poor” or “fair”. Only one third of the controllers were classified as 

acceptable performers and two thirds had significant improvement opportunity. Figure 1 

shows an example of an experimental run for specific growth rate control in vaccine 

production on lab‐scale. The strong oscillations show the poor performance and indicate the 

relevance of automatic tuning in this field of application. ` 

In biopharmaceutical production micro‐organisms are cultivated in batch or fed‐batch 

systems. Most vaccines, such as whooping cough, are produced in batch cultivation. 

Production of pertussis toxin (which is one of the important antigens in the vaccine against 

infection with whooping cough) is strongly growth‐associated (Licari et al., 1991; Rodriguez 

et al., 1994). Deviations in specific growth rate will therefore lead to deviations in antigen 

levels and vaccine quality. To obtain a high quality‐vaccine and to ensure batch‐to‐batch 

consistency, it is important to control the specific growth rate at a constant level. Soons et 

al. (2006) developed a specific growth rate controller by combining a reference model and a 

cultivation model. The result is a control law, which is adaptive for changes in volume and 

biomass. It was shown that the choice of the reference model is a main factor determining 

the performance of the specific growth rate controller.  

Apart from the reference model, biological behaviour is essential for the controller 

performance and as we know biological behaviour is not perfectly known. Despite good 

performance in Soons et al. (2006), the method does not correct for residual errors due to 

model‐process mismatches (Soons et al., 2006a). Changes in the system, inaccurate 
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knowledge about kinetics, varying properties of micro‐organisms and response times of 

sensor systems are reasons for model‐process mismatches. Online automatic tuning has the 

capability to deal with the mismatches and to improve controller performance by adjusting 

the controller parameters (Dagci et al., 2001).  

The aim of this paper is to investigate schemes for automating and to speed up the tuning 

procedures. To this end, the specific growth rate controller for fed‐batch cultivation 

developed in (Soons et al., 2006) is extended with an automatic tuning method that is driven 

by the persistence of the residual errors. A direct method (in which the adjustment rule 

makes directly updates of the controller parameters) is preferred over an indirect method (in 

which process parameters are estimated to update controller parameters) as in this way a 

degree of imperfection of the model for model‐based control can be handled. Moreover, 

probing should be avoided, because it may affect the critical variables in biopharmaceutical 

production. 

Although a priori closed loop stability is hard to guarantee for a fed‐batch system in which 

the biomass increases exponentially, stability of the control loops under application of the 

designed control law is evaluated. 

This paper is organized as follows. First a brief description of the process and control system 

is given. Next, controller evaluation criteria are defined. Then, a short literature review and a 

textbook method for online automatic tuning using the MIT rule are presented. Due to 

unsatisfactory results of this method three algorithms are derived and evaluated by 

simulations in the section “Online automatic tuning methods”. Also, stability of the closed 

loop is considered. Finally, the two best methods are tested in laboratory experiments for 

B. pertussis. 

 
Figure 1. Illustration of a process showing poor 

performance. Fed‐batch cultivation with specific 

growth rate control for an experimental run of 

vaccine production on lab‐scale (Soons et al., 

2006a). 
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Process description  

Process model 

A process model for vaccine production of B. pertussis is used to evaluate the controllers 

with automatic tuning. The production is performed in fed‐batch cultivation, in which the 

specific growth rate is controlled to achieve a higher level of batch‐to‐batch consistency. 

Growth of B. pertussis is limited by two substrates (Thalen et al., 1999) and is modelled by 

the following dual substrate model assuming Monod kinetics and oxygen excess (Neeleman 

et al., 2001; Soons et al., 2006) during fed‐batch cultivation (Eqs. 1 to 13). The changes of 

dissolved oxygen in time are equal to the oxygen transfer rate minus the oxygen uptake rate 

minus the dilution due to the substrate feed rate.  

µ µ µ= +max( , ) ( ) ( ) ( )G L G G enh G G L LC C f C f C f C        1 

=
+

( ) G
G G

G G

C
f C

K C
 and =

+
( ) L

L L
L L

C
f C

K C
       2 

+= in
G L

dV
F
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            3 

µ µ µ+ +   
= − = + −   
   

max ( ) ( ) ( )
in in

G L G LX
X G G enh G G L L X

F FdC
C f C f C f C C

dt V V
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( ) µ µ+  
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1 2

( ) ( ) ( )in
inG G L G G enh G G L L
G G G X

G G

dC F f C f C f C
C C m C

dt V Y Y
   5 

( ) µ+  
= − − + 

 2

( ) ( )in
inG L enh G G L LL
L L L X

L

F f C f CdC
C C m C

dt V Y
     6 

in
G LFdDO

OTR OUR DO
dt V

+= − − ⋅         7 

The oxygen uptake rate (OUR) is the sum of oxygen used for growth (µ/YO) and oxygen used 

for maintenance (mO): 

o x
o

OUR m C
Y
µ 

= + 
 

          8 

The bioreactor is aerated using headspace aeration only. The liquid phase oxygen 

concentration (O2
h) in equilibrium with the gas phase in the headspace following Henry’s law 
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(Neeleman, 2002), the dissolved oxygen (DO), and the oxygen transfer coefficient kLa 

determine the oxygen transfer rate (OTR):   

2( )h
lOTR k a O DO= ⋅ −           9 

The dynamics of oxygen is much faster than the dynamics of the other relevant processes 

(e.g. biomass, substrates) (Wang and Stephanopoulos, 1994) and the contribution of the 

dilution term is small (third term Eq. 7) compared to the rate of change of dissolved oxygen. 

As a consequence, Eq. 7 is considered in steady‐state and OUR is calculated every minute 

during the experiment using Eq. 10: 

OUR OTR≈            10 

O2
h is assumed equal to O2

in because of the high aeration rate:  

2 2
h inO O≈             11 

The DO sensor has a response time around 20 seconds, and is modelled as a first order 

system: 

1 1sensor
sensor

sensor sensor

dDO
DO DO

dt τ τ
= − ⋅ + ⋅       12 

Dissolved oxygen is controlled by changing the incoming oxygen fraction (O2
in) in an 

oxygen/air/nitrogen mixture. The controller is based on an already installed PI controller: 

2 0
( ) ( )

tin C
C set sensor set sensor N

I

K
O K DO DO DO DO dt C

τ
= ⋅ − + ⋅ − +∫     13 

 

Specific growth rate control system 

Figure 2 gives an overview of the proposed control system for fed‐batch cultivation. It is the 

same as the scheme presented by Soons et al. (2006), except that it is extended with an 

automatic tuning method. The control purpose is to regulate the specific growth rate (µ) to a 

desired value by adding a feed with limiting substrates. The grey block defines the specific 

growth rate controller, which will be briefly reviewed below.  

The definition of the specific growth rate controller given in Soons et al. (2006) started from 

a second order reference model: 
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Figure 2. The control 

system for adaptive 

specific growth rate 

control with automatic 

tuning. 

 

 

 

 

1 20
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set setd

dt
dt

µ µ µ µµ
γ γ
− −

= + ∫         14 

where the tuning parameters γ1 and γ2 determine the convergence speed of the controller 

and therefore controller performance. The reference model is stable if γ1 and γ2 are strictly 

positive numbers. Combination with the process model yields an adaptive “PI” controller:  

0

ˆ ˆ ˆ( ) ( )
t

in
G L X P set I setin in

G L

ac bd
F C V K K dt

aC bC
µ µ µ µ+

+
= + ⋅ − + ⋅ −

+ ∫     15a 

where the controller gains KP and KI are adjusted online to the changing volume: 

1( )P in in
G L

V
K

aC bCγ
=

+
 and 

2( )I in in
G L

V
K

aC bCγ
=

+
                         15b 

a, b, c, and d are constants depending on the micro‐organism (in this work 

Bordetella pertussis (Soons et al., 2006)).  

Biomass and specific growth rate measurements are often not available online. Therefore, 

an Extended Kalman Filter (EKF) estimates specific growth rate ( µ̂ ) and biomass ( ˆ
XC ) using 

the measured oxygen uptake rate every minute (Soons et al., 2006, 2007). This software 

sensor showed fast convergence and fitted well to the data (see Appendix A for an 

application on continuous cultivation). Therefore, for controller design the estimations of 
the EKF are taken as replacement of actual measurements ( µµ ˆ=  and XX CC ˆ= ). 

Central point of this work is the extension of the specific growth rate controller (Eq. 15) with 

three methods for automatic tuning, which adapt the controller parameters γ1 and γ2 on the 

µ̂ , ˆ
XC  

d
dt
µ

µset Reference 
model 

µ̂

Automatic 
tuning 

γ1, γ2

µ̂

Feed 
Calculator 

in
G LF +

µset ‐ + 

ε 

Specific growth rate control

in
G LF +

ˆ
XC

EKF 
OUR 
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basis of the error in specific growth rate (see Fig. 2). So the approach does not require 

probing which can disturb the critical variables in biopharmaceutical production. 

 

Controller evaluation  

Evaluation methods 

The model (Eqs. 1‐13) is used to evaluate controller performance in simulations. To obtain 

realistic tests of the robustness of the controller and performance of the automatic tuning 

several disturbances have been introduced in the simulation as in Soons et al. (2006): time‐

varying or drifting kinetics, initialization errors on the controller tuning parameters, and 

noise. We assumed a drift plus a sinus with different frequencies on the model parameters, 

whereas in the controller, the model parameters p were set constant: 

1 2 3 4 5 6 7sin( ) sin( )dp p a t a a t a a a t aπ π π π= + + + + +      16 

Where pd are the disturbed parameters for µmax, µenh, YG1, YG2, YL, CG
in, CL

in
, KG, and KL. The 

parameters and initial values are given in Table 1, the disturbances on the parameters in 

Table 2. 
 

Table 1. Model parameters of the dual substrate model for B. Pertussis 

V0 = 3 l YL = 0.018 OD.mmol‐1 YG1 = 0.055 OD.mmol‐1 

CX0 = 0.05 OD mL = 0 mmol.OD‐1.h‐1 YG2 = 0.061 OD.mmol‐1 

CG0 = 10 mmol.l‐1 µmax = 0.12 h‐1 mG = 0 mmol.OD‐1.h‐1 

CG
in = 500 mmol.l‐1 µenh = 0.055 h‐1 YO = 0.041 OD.mmol‐1 

CL0 = 16.7 mmol.l‐1 KG = 0.5 mmol.l‐1 mO = 0.41 mmol.OD‐1.h‐1 

CL
in = 835 mmol.l‐1 KL = 0.5 mmol.l‐1 1ˆ 0.16o hµ −=  

 

In practice, dissolved oxygen measurements contain observation noise. In the simulations 

noise is introduced by adding white noise with an intensity proportional to OUR (0.1 initially 

to 3% at end). This intensity was chosen to mimic the observed fact that DO is noisier 

towards the end: 

( ) ( ) ( )m
sensor k sensor k kDO t DO t v t= +          17 

In addition to Soons et al. (2006), controller tuning parameters γ1 and γ2 are initialized far 

below the required values, which results in underdamped behaviour. When the specific 
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growth rate controller without automatic tuning method is applied with these settings, 

oscillations were present for almost 30 hours (Fig. 3), underlining the need for additional 

adaptation. Experimental data showed similar profiles (Fig. 1). Additional simulations are 

performed with different values for the tuning parameters. 

 

Table 2. Disturbances on the model parameters for 

B. Pertussis 

Value Disturbance 

parameter From to 

a1 0 ±1.10‐3p 

a2 0 ±0.2p 

a3 0 0.1 

a4 0 1.2 

a5 0 ±0.3p 

a6 0 0 

a7 0 1.2 

 

Figure 3. Illustration of a simulation with specific 

growth rate control for poorly tuned and fixed γ1 

and γ2.  

 

 

 

 

Evaluation criteria  

To evaluate the significance of the automatic tuning system, two criteria are used. The 

criteria reflect the performance of the specific growth rate controller. In addition the 

simulation and experimental results are evaluated by comparing graphs.  

Babuška et al. (2003) used the following measures to detect a potential loss of performance. 

The first measure is the mean absolute error over the past N points of a moving window at 

time point k: 
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1
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−

= ⋅∑           18 

The second is the oscillation measure and is defined by  

1
( ) ( ) ( )

k k

k N k N

O k k k
N

ε ε
− −

 = ⋅ − 
 
∑ ∑          19 

where the error ε is the set point minus the estimated specific growth rate ( µµset ˆ− ). 

 

Literature 

Literature overview  

Åström and Wittenmark (1995) give examples of model‐based adaptive control to adapt 

control parameters to changing process behaviour. The adaptation of the controllers for a 

bioreactor as designed in (Chang, 2003; Levisauskas et al., 1996; Smets et al., 2002, 2004; 

Van Impe et al., 1995) is also derived from a process model. This solution is limited by the 

accuracy of the models. Many adaptive controllers require measurement of the state 

variables such as biomass and substrates (Ignatova et al., 2000; Picó‐Marco et al., 2004, 

2005; Zlateva, 1997; Krastanov et al., 2003), which are often not available. Other approaches 

require identification of the system by introducing systematic disturbances (Babuška et al. 

2003; Akay et al., 2002). Such “probing” should be avoided in cultivation systems for 

biopharmaceutical production as it may affect critical variables. Dagci et al. (2001) used 

sliding mode control to adapt controller parameters. The authors show good control 

performance during continuous cultivation, but in fed‐batch cultivation for vaccine 

production control performance was not satisfactory.  

Classical automatic tuning approaches using PID control also require undesirable 

disturbances of the process (Åström et al., 1988). Adaptation by a model predictive control 

approach proposed in Frahm et al. (2002) needs an open‐loop model with the disadvantage 

that accuracy is not guaranteed. Another drawback of some of the reported solutions is the 

complex implementation in practice.  

Industrial applications of adaptive control are often rule‐based instead of model‐based 

(Åström et al. 1993). However, for control of complex and difficult industrial processes 

model‐based control approaches have been proven the most effective among the different 

types of adaptive controllers (Babuška et al., 2003).  
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Automatic tuning based on the MIT rule  

The task of the automatic tuning method is to pursue the best trade‐off between tracking 

behaviour, disturbance rejection, and stability. The automatic tuning method, therefore, 

should have the following abilities. At one hand, if control parameters γ1 and γ2 are 

initialized too small (Eq. 14), the automatic tuning method must increase the value of γ1 and 

γ2 to avoid underdamped behaviour. On the other hand, the automatic tuning method 

should reduce the values of γ1 and γ2 if the error converges too slowly to zero. The 

automatic tuning method has to be derived so that a stable system is obtained in the sense 

that the error remains bounded.  

In model‐reference adaptive control according to the textbook of Åström and Wittenmark 

(1995), the MIT rule is used to obtain adaptation. The error between the reference model 

and process output ( ˆrefe µ µ= − ) is the driver for the adaptation. Following the MIT rule the 

parameters γ are adjusted such that a squared error is minimized: 

d e
e

dt
γ β

γ
∂

= − ⋅ ⋅
∂

           20 

The vector /e dγ∂  is the sensitivity of the error with respect to the controller parameter 

vector γ (error sensitivity). The coefficient β determines the adaptation rate and must be 

chosen so that the controller parameters change slower than the specific growth rate and 

dissolved oxygen, but fast enough to obtain adaptation.  

 

Online automatic tuning methods  

Adaptation based on the MIT rule is driven by the error e which arises from set‐point 

changes and disturbances. Systematic set‐point changes must be avoided in cultivation 

systems for biopharmaceutical production as it may affect critical variables. As a 

consequence, in this work, adaptation is only driven by errors caused by disturbances. The 

model error e equals the set‐point error ε and the reference model has become redundant.  

The MIT rule requires knowledge of the error sensitivity, which is difficult to derive. 

Therefore, in literature approximations for the error sensitivity have been made (Åström et 

al., 1995). Simulations with the outcome of several approximations gave poor results in the 

cultivation for vaccine production. Therefore alternative adaptation schemes are applied in 

the next section. Several (weighted) combinations of ε, ε2, and ∫ ε  are investigated to 

approximate the sensitivity derivative: 
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1 2 3

0

1
t

c c c
ε ε ε
γ
∂

= ⋅ + ⋅ + ⋅
∂ ∫          21 

 

Method 1: adaptation based on the error 

The most simple mechanism is assuming the sensitivity derivative to be one (Chen et al., 

1995; Rocha et al., 2002) (c1 = ‐1, c2 = c3 = 0). 

d
dt
γ β ε= ⋅            22 

which appears to work well for adaptation of estimated process parameters. A test of Eq. 22 

revealed that it is not a good mechanism for adaptation of controller parameters, because 

negative and positive errors will result in opposite adjustments of γ and do not cancel 

oscillations.  

 

Method 2: adaptation based on the (integral) error  

In the second automatic tuning method the error sensitivity /e dγ∂  in Eq. 20 is replaced by a 

combination of the error and the integral error (c1 = 0, c2 =‐1, c3= ‐1).  
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γ ε β ε β ε

γ ε β ε β ε

 
= ⋅ + 

 
 

= ⋅ + 
 

∫

∫
         23 

where β2 and β3 are a combination of β and c2 and c3 (β2 = βc2 and β3 = βc3). The automatic 

tuning method (Eq. 23) adapts control parameters γ1 and γ2 proportional to ε2 and ∫εε . So, 

γ1 and γ2 are predominately adapted when the quadratic error is large and/or when the 

error persists. The choice of the adaptation rate β2 and β3 is based on simulations. Too large 

values make adaptation faster than the change of the other variables in the system and 

make the adaptation mechanism react on instant errors instead of persistent errors, thereby 

avoiding the “basic” controller (Eq. 15) to counteract on these errors. Too small values of β 

give slow adaptation, which results in the requirement for multiple tuning runs to upgrade 

performance. The choice of the adaptation rates for γ1 and γ2 is a choice for the designer of 

the controller, but simulations showed that distinction between the adaptation rates of γ1 

and γ2 was not necessary. 
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This online automatic tuning method is applied to simulations of fed‐batch cultivations in 

which γ1 and γ2 were initialized too small. By initiating the automatic tuning method at the 

start of the fed‐batch, control performance was significantly upgraded within five hours of 

cultivation (Fig. 4 shows a typical simulation). The mean absolute error and oscillation 

measure decreased fast after the start of the fed‐batch resulting in upgraded controller 

performance (Figs. 4C and 4D). Compared to a simulation without adaptation of the 

controller tuning parameters, oscillations were attenuated five times faster (compare Figs. 3 

and 4).  

 

Figure 4. Simulation results of specific growth rate 

control with automatic tuning based on the error and 

the integral error (method 2, Eq. 23). β2=225, β3=550. 

Fed‐batch start at t=22 h. A. Specific growth rate (µ) 

B. Controller tuning parameters. C. Mean absolute error 

D. Oscillation measure. 
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Method 3: adaptation based on the (squared) error  

The third automatic tuning scheme consists of a combination of the error and the squared 

error, normalized by µset. (
1

1 setc µ −= − , 2
2 setc µ −= − , c3 = 0 ).  

2
1

1 2 2

2
2

1 2 2

set set

set set

d
dt

d
dt

γ ε εβ β
µ µ

γ ε εβ β
µ µ

= ⋅ + ⋅

= ⋅ + ⋅
         24 

where β1 and β2 are a combination of β and c1 and c2 (β1 = βc1 and β2 = βc2). Analogous to 

the previous section no distinction is made in βi‐values for the adaptation rates for γ1 and γ2. 

The automatic tuning method (Eq. 24) adapts control parameters γ1 and γ2 proportional to 

the error ε and proportional to the quadratic error ε2, which is large if the error is large.   

The fed‐batch phase of the simulation in Fig. 5 started at 22 h. At the same time the specific 

growth rate controller was switched on with initial values of γ1 and γ2, which were chosen 

too low as in Fig. 3. The graph shows that these values resulted in underdamped responses 

(Fig. 5A), but the adjustment of γ1 and γ2 (Fig. 5B) was so strong that within 5 hours the 

deviations were minimal and oscillations were cancelled (Fig. 5D). Figure 5C shows that 

controller performance was significantly upgraded with respect to the mean absolute error. 

Note that the mean absolute error and the oscillation measure were delayed 1.5 hours to 

calculate their measures. Disturbances due to time‐varying parameters and noise do not 

influence controller performance.  

Although the MIT rule was the starting point for derivation of the online automatic tuning 

method, concepts applying directly the MIT rule did not give satisfactory results. The 

alternatives presented in the last two sections were capable to upgrading performance.  

 

Comparison method 2 and 3 for different β and γ 

Adaptation using the integral error as well as adaptation using squared error give similar 

results for γ1 and γ2 (Figs 4‐5). Both adaptation mechanisms require five hours to upgrade 

controller performance and to cancel underdamped behaviour. Controller tuning 

parameters γ1 and γ2 converge to similar values, but adaptation using the integral error is 

smoother. 
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Figure 5. Simulation results of specific growth rate 

control with automatic tuning based on the error and 

the squared error (method 3, Eq. 24), β1=0.25, β2=0.5. 

Fed‐batch start at t=22 h. A. Specific growth rate (µ) 

B. Controller tuning parameters. C. Mean absolute error 

D. Oscillation measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows simulations with different initialized values of the controller parameters γ. 

Figure 6AB illustrates once again the adaptation of γ1 and γ2 initialized with too small values. 

Simulations initialized close to the end‐values of the previous run (Fig. 6AB) showed that the 

adaptation mechanisms leave the tuning parameters almost unchanged (Fig. 6CD). Similar 

adaptation results are found for simulations initialized with large initial parameters (Fig. 

6EF). Large tuning parameters slow down the controller actions, but only marginally 
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decrease controller performance. As a result, the driving force (or error) for adaptation is 

small and so is the adaptation of controller parameters. 

 

Figure 6. Tuning parameters γ1 

and γ2 for different 

initializations of γ. Fed‐batch 

start at t=22 h. ACE. method 2 

(integral errors, Eq. 23, β2=225, 

β3=550.). BDF. method 3 

(squared errors Eq. 24, 

β1=0.25, β2=0.5). AB. γ1 and γ2 

initialized too small CD. γ1 and 

γ2 initialized close to the end‐

values of the previous run. EF. 

γ1 and γ2 initialized too large. 

 

 

  

 

 

Figure 7 shows additional simulations with different values of the adaptation rate β. Figure 

7CD illustrates once again the effect of the chosen adaptation rate β on µ and γ as a 

reference. Small values for the adaptation rate β give slow adaptation of controller 

parameters γ (Fig. 7AB). The oscillations are attenuated two to three times slower compared 

with the chosen β and about two times faster relative to fixed γ (β=0, compare with Fig. 3). If 

β is chosen larger, adaptation becomes faster and larger values for γ are obtained (Fig. 7E). 

Large tuning parameters slow down the controller actions and may give small offsets. The 

adaptation rate β in Fig. 7F is chosen too large and gives interference with other dynamics 

(dissolved oxygen and specific growth rate). So, if the adaptation rate β is not chosen too 

fast, both methods show robust adaptation.   
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Figure 7. The effect of 

different β values on 

adaptation of tuning 

parameters γ1 and γ2 (right 

axis) and on µ (left axis). 

Fed‐batch start at t=22 h. 

CD. β initialized with the 

chosen values. C. β2=225, 

β3=550. D. β1=0.25, β2=0.5. 

ACE. method 2 (integral 

errors, Eq. 23). BDF. 

method 3 (squared errors 

Eq. 24) AB. β initialized ten 

times smaller EF. β 

initialized ten times larger. 

 

 

 

Stability 

In previous sections the automatic tuning mechanisms were evaluated by simulations. 

Although performance is good the effect of changing the tuning parameters on stability is 

yet unknown. Bastin and Dochain (1990) state that stability of fed‐batch cultivations is not 

an issue because the exponentially increasing biomass and volume make the system 

inherent unstable and result in positive poles. However, because the positive poles can be 

cancelled in the controller loops it makes sense to examine stability properties of the control 

loops.  

Dagci et al. (2001) “solve” the stability issue by examining the stability of the control loop; 

others (Soons et al 2006, 2006a; Smets et al. 2002] refer to the stability of the reference 

model. In this work, stability is examined by considering the poles of the closed loop. The full 

system is given by Eqs. 3, 4, 7, 8, 9, 12, and the derivative of Eq. 1 including the controller 

Eqs. 13 and 15. The following time‐varying state space model represents the linearized form 

of this system along the trajectory of fed‐batch cultivation (see appendix B for the equations 

and the linearization of the system):  



CHAPTER 5 

108 

-173.786 -173.7845
-1

-0.5

0

0.5

1

im
ag

 λ
1

-100 -50 0
-1

-0.5

0

0.5

1

im
ag

 λ
2

-6 -4 -2 0
-1

-0.5

0

0.5

1

im
ag

 λ
3

-6 -4 -2 0
-3

-2

-1

0

im
ag

 λ
4

-6 -4 -2 0
0

1

2

3

im
ag

 λ
5

0 0.005 0.01
-1

-0.5

0

0.5

1

im
ag

 λ
6

0.02 0.04 0.06 0.08
-1

-0.5

0

0.5

1

im
ag

 λ
7

real λ7

A B

C D

E F

G

real real 

real real 

real real 

( ) ( )

( )

( )

dx
A t x B t u

dt
y C t x

u F t x

= +

=
=

          25 

with x the state variables, y the output variables, u the input variables, A the system matrix, 

B the input matrix, C the output matrix, and F the state feedback matrix.  

 

Figure 8. Example of real and 

imaginary poles of the closed 

loop system for a range of γ1 

and γ2 calculated by offline 

simulation of the process at 

one time point along the 

trajectory. The arrows 

indicate the direction in 

which the poles move with 

increasing controller tuning 

parameters γ1 and γ2. 
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Experimental results 

Controlled fed‐batch cultivations with the dual substrate consuming bacterium B. pertussis 

(causative agent of whooping cough disease) were performed in a 7‐liter laboratory 

bioreactor with a chemically defined medium containing glutamate and L‐lactate as the main 

carbon sources (Thalen et al., 1999). Bioreactor conditions, analysis, and software were 

applied as reported in Soons et al. (2006). The fed‐batch, the µ controller, and the automatic 

tuning started automatically when the limiting substrates were almost depleted and µ 

dropped to the set‐point.  

Control performance of the automatic tuning method and the specific growth rate controller 

were evaluated for the best methods of the simulations: method 2: based on the (integral) 

error (Eq. 23) and method 3: based on the (squared) error (Eq. 24).  

 

Method 2: adaptation based on the (integral) error 

The automatic tuning method based on the (integral) error (Eq. 23) was implemented and 

tested by initializing control parameters γ1 and γ2 with values, which turned out to be too 

small in practice. In simulations it turned out that the adaptation parameter γ is slightly 

increasing as the experiment proceeds towards the end. This makes the γ correction 

mechanism more sensitive to errors than necessary. Therefore, in order to safeguard the 

experiment, it was decided to use in the experiment Eq. 26 instead of Eq. 23, which leads to 

down‐tuning of the adaptation towards the end of the cultivation.  
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∫

∫
        26 

Evaluation after the experiment showed that the difference with the original γ adaptation is 

small, so that, on retrospect, the precaution was unnecessary. 

The laboratory experiment showed that by initiating the automatic tuning method at the 

start of the fed‐batch at about 20 hours control performance was upgraded (Fig. 9). The 

mean absolute error and oscillation measure decrease with time. The adaptation of γ1 and γ2 

continues during the whole fed‐batch cultivation, but the changes in the first period are the 

strongest and at the end the values are close to the steady state. 
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Figure 9. Results for laboratory 

experiments with automatic 

tuning based on (integral) 

errors (method 2, Eq. 26). Fed‐

batch start at t=19.7 h, β2=20, 

β3=20. A. Oxygen uptake rate 

(OUR) B. Specific growth rate 

(µ) C. Biomass D. Substrate 

feed rate E. Controller tuning 

parameters. F. Mean absolute 

error. G. Oscillation measure. 

 

 

 

 

 

 

 

 

 

A standard deviation of 0.005 h‐1 on µ is obtained during the fed‐batch phase and indicates 

that the long‐term performance is good. The controller maintained µ close to µset in the 

presence of various uncertainties including disturbances on dissolved oxygen consumption, 

uncertain parameters, and initialization errors.  

An exponentially increasing feed rate (Fig. 9D) was added into the bioreactor to cope with 

the exponentially increasing biomass (Fig. 9C). At t=33.5h agitation speed was increased with 

100rpm to meet the increasing the oxygen demand during the fed‐batch phase. The 

resulting peak in the dissolved oxygen concentration caused a disturbance in the estimated 

specific growth rate at t=33.5h and in the mean absolute error and oscillation error. The 

controller parameters were hardly adapted and the specific growth rate was properly 

controlled until the end of the cultivation. 
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At t=40h the mean absolute error and the oscillation measure became approximately 

constant. As an option a performance monitor can be added to the system, which can be 

used to evaluate the performance criteria and as a manager to (de)activate the automatic 

tuning method. The first function of the performance monitor is to qualify controller 

performance using the criteria given in Eqs. 18 and 19. Next, based on the qualification, the 

performance monitor decides to retune the process using an automatic tuning method or to 

continue with the current settings. If control performance is upgraded and the performance 

measures are constant, tuning is finished and the specific growth rate controller can 

continue with the obtained settings. In the experiment at t=40h in Fig. 9, the performance 

monitor would decide to continue the cultivation with the current settings for γ1 and γ2 and 

to deactivate the automatic tuning method. Subsequently, the following cultivations can be 

performed with the obtained settings. 

 

Method 3: adaptation based on the (squared) error 

Figure 10 shows a part of a long‐term experiment direct after initialization of the automatic 

tuning controller. The oscillations that occur due to an incorrect choice of γ1 and γ2 vanish 

within three hours. The offset at the end of this period disappears in some hours. The tuning 

method is doing its task well.  

The adaptation of γ1 and γ2 continues and has not come to steady state after three hours. 

The oscillations that were observed in the simulations for this tuning method in the courses 

of γ1 and γ2 are hardly present in the experiment (compare Fig. 10 with Fig. 6) 

Comparing the simulation (Fig. 6) with the experimental results (Fig. 10), it can be observed 

that the tuning parameters γ1 and γ2 giving the best performance during laboratory 

experiments are a factor five to six larger than the tuning parameters giving the best 

performance during simulations. Mismatches between experimental‐simulation are 

common for biological processes. The experiments show that the automatic tuning method 

compensates for these mismatches by adapting the controller settings such that the desired 

behaviour is acquired. 

Calculation of the poles of the closed loop for the laboratory experiments shows that the 

tuning parameters are adapted into the proper direction within the stability area. These 

results confirm the closed loop stability, which was already calculated for the simulated 

process. 
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Figure 10. Detail of results for laboratory experiments 

with adaptation based on the (squared) error (method 

3, Eq. 24, β1=0.25, β2=0.5). Fed‐batch start at t=21.7 h. 

A. Specific growth rate (µ) B. Controller tuning 

parameters. 

 

 

 

 

 

 

 

 

Conclusions  

The challenge was to upgrade performance of poorly acting controllers. Online automatic 

tuning has this capability. Three automatic tuning methods were applied to upgrade control 

performance for specific growth rate control during fed‐batch cultivation. The best two 

methods were qualified by laboratory experiments for B. pertussis. In the first method, the 

adaptation rate is proportional to the product of the error and the integral error. The second 

uses an adaptation rate proportional to the error and the squared error. The methods do not 

require online identification, thus avoiding the need for process perturbation and complex 

implementation. The qualifications of the controller and automatic tuning method are:  

Control performance is evaluated online on the basis of the current mean absolute error and 

oscillation measure. A performance monitor can be used to activate or deactivate the 

automatic tuning device. 

If control performance is poor, application of automatic tuning yields good performance 

within five hours by adapting the controller parameters such that the mean absolute error 

and oscillation measure decrease at least ten‐fold. The automatic tuning methods are robust 

against disturbances among others noise, parameter uncertainties, and initialization errors. 

21.5 22 22.5 23 23.5 24
0

0.05

0.1

0.15

µ 
[h

-1
] µEKF

µset

21.5 22 22.5 23 23.5 24
0

0.1

0.2

0.3

0.4

0.5

Cultivation time [h]

γ

γ1

γ2

A

B



Online automatic tuning and control for fed‐batch cultivation 

113 

We expect that a cultivation controlled at the desired specific growth rate will result in 

smaller variations in end quality (vaccine titer) and thus yield a better product (vaccine). 

The closed loop with automatic tuning is stable at any point along the trajectory of fed‐batch 

cultivation. 

Adaptation of control parameters is straightforward, fast and accurate. This feature, 

furthermore, is neither specific to fed‐batch cultivation nor for specific growth rate control 

and hence can also be applied to other systems. 

The applied automatic tuning methods improve controller performance and reduce the 

tuning effort by automatically adjusting the tuning parameters in one or more tuning runs.  
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CHAPTER 6 

Scaling‐up vaccine production: implementation aspects 
of a biomass growth observer and controller 
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Abstract 

This study considers two aspects of the implementation of a biomass growth observer and 

specific growth rate controller in scale‐up from small‐ to pilot‐scale bioreactors towards a 

feasible bulk production process for whole‐cell vaccine against whooping cough. The first is 

the calculation of the oxygen uptake rate, the starting point for online monitoring and 

control of biomass growth, taking into account the dynamics in the gas‐phase. Mixing effects 

and delays are caused by amongst others the headspace and tubing to the analyzer. These 

gas phase dynamics are modelled using knowledge of the system in order to reconstruct 

oxygen consumption. 

The second aspect is to evaluate performance of the monitoring and control system with the 

required modifications of the oxygen consumption calculation on pilot‐scale. In pilot‐scale 

fed‐batch cultivation good monitoring and control performance is obtained enabling a 

doubled concentration of bulk vaccine compared to the standard batch production. 

  

Keywords  

Scale‐up, monitoring and control, Bordetella pertussis, gas‐phase dynamics, fed‐batch, 

oxygen uptake rate 
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Nomenclature 

a, b, c, d constants for dual substrate model of B. pertussis 

CA acetoacetate concentration [mmol.l‐1] 

CG, CL glutamate and lactate concentration respectively [mmol.l‐1] 

CX biomass concentration [OD590] 

CO
L oxygen concentration in bioreactor [mmol.OD‐1.h‐1] 

CO
* oxygen concentration at gas‐liquid interface [mmol.OD‐1.h‐1] 

CSTR continuous stirred tank reactor 

E mean absolute error [h‐1] 

Fcalc  feed rate by prior calculation [l.h‐1] 

FG gas flow rate [l.h‐1] 

FG+L substrate feed rate (glutamate + lactate) [l.h‐1] 

FI, FP proportional, integral action feed rate [l.h‐1] 

H Henry coefficient [Pa.l.mmol‐1] 

kLa oxygen transfer coefficient [h‐1] 

mO maintenance coefficient on oxygen [mmol.OD‐1.h‐1] 

M&C monitoring and control 

N length of moving window 

O oscillation measure [h‐1] 

O2 oxygen fraction [‐] 

OD optical Density at 590nm 

OTR, OUR oxygen transfer rate, oxygen uptake rate [mmol.l‐1.h‐1] 

p pressure [Pa] 

t cultivation time [h] 

T sampling time [h] 

TD transport delay [h] 

V liquid volume [l] 

Vtot volume total gas‐phase [l] 

Vtubing volume tubing [l] 

u, x, y inputs, states, outputs  

YO biomass yield on oxygen [OD.mmol‐1] 

ε error between set point and process ˆsetµ µ−  [h‐1] 

 

Greek letters 

β adaptation rate 
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γ1, γ2 tuning parameters for µ control   

µ specific growth rate [h‐1] 

 

Superscripts and subscripts 

^, EKF observed values 
a auxiliary 
in inlet 
m measured (in outlet stream) 
mix   outlet stream incl. mixing effect in the total gas phase 
out  outlet stream of the bioreactor  
set  set‐point 
p predicted values 

 

Introduction 

Monitoring and control (M&C) systems in biotechnology are usually designed and tested in 

laboratory‐scale experiments. Its application on production‐scale is limited in literature. This 

work investigates applicability of the monitoring and control system, developed for small‐

scale in previous work (Soons et al., 2006, 2007a, 2008), on larger‐size pilot‐scale 

cultivations. The system for monitoring and controlling fed‐batch cultivations is shown in Fig. 

1 (Soons et al., 2007a). The system consists of:  

o Computation of the oxygen uptake rate (OUR) being an essential “measurement” and 

the starting point for the advanced monitoring and control system. 

o Observer for specific growth rate and biomass concentrations. An observer is 

needed, because there is no sensor available for biomass growth. 

o Controller to track the set‐point for specific growth rate during the dynamic fed‐

batch cultivation by manipulating the feed. 

o Automatic tuning method to tune the specific growth rate controller automatically 

without human interference or introduction of excitation signals. Tuning of 

controllers is necessary to ensure that the process is properly controlled at the 

desired set‐point and does not oscillate or become sluggish due to e.g. interference 

with other processes like dissolved oxygen. 

o Performance monitor to monitor whether the controller is doing its task well and to 

decide whether to switch the auto‐tuning on or off. 
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Figure 1. Schematic monitoring & 

control system. The dotted boxes 

indicate the two parts considered for 

scale‐up from laboratory (5L) to pilot‐

scale cultivations (60L): the OUR 

calculation and the implementation 

of the observer and controller for 

biomass growth. 

  

 

 

 

The specific growth rate controller with auto‐tuning and the observer have already been 

described in Soons et al. (2006, 2007a, 2008) and are summarized in appendix A. The 

implementation of the monitoring & control system for scale‐up of the vaccine production 

process to a 60L‐fed‐batch bioreactor is treated in two parts in this paper (see the dotted 

boxes in Fig. 1). The first is the computation of the oxygen uptake rate, which needs to be 

modified before it can be applied on pilot‐scale due to mixing effects and delays in the gas‐

phase, as will be shown in the sequel. The second part is the implementation of the observer 

and auto‐tuning controller for biomass growth – developed and validated on small‐scale 

cultivations – on the pilot‐scale system. The cultivated biomass is the basis for vaccines 

currently being developed at the Netherlands Vaccine Institute.  

 

Dynamic OUR calculation 

Currently, most biopharmaceuticals are produced in a batch or fed‐batch cultivation. The 

essential quality of the product is formed in this step and is the result of the metabolic state 

of the micro‐organisms. It is therefore essential to measure the metabolic state of the 

process. Metabolic activity is difficult to measure directly due to the lack of sensors, but 

respiration can be monitored by the oxygen mass balance. The oxygen uptake rate can in 

turn be used to reconstruct the specific growth rate and biomass using an observer. The 

oxygen uptake rate for small‐scale systems is usually calculated using Eq. 1, e.g. Wang and 

Stephanopoulos (1984): 
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( )* L
L O OOUR OTR k a C C≈ = ⋅ −          1 

where CO
* and CO

L are the oxygen concentrations at the gas‐liquid interface and in the 

cultivation broth respectively. This method of OUR calculation may, however, be 

inappropriate for pilot‐ and large‐scale systems, because the bioreactor may not be ideally 

mixed and the oxygen transfer coefficient kLa is often not accurately known on the large‐

scale.  

Other approaches require switching of the aeration gas composition, e.g. Casa López et al. 

(2006) and thus introducing systematic disturbances. Such probing should be avoided in 

cultivation systems for biopharmaceutical production as it may affect critical variables. 

Furthermore, the approach may be less suited for dynamic systems in the view of online 

monitoring and control, where frequent oxygen consumption “measurements” are 

necessary. 

An alternative that eliminates the need to know kLa is the computation using off‐gas 

measurements. Often the computation of OUR using off‐gas measurements is based on a 

steady‐state assumption (for example in Estler, 1995; Levisauskas, 2001; Siegell and Gaden, 

1962; Tatiraju et al., 1999; Spriet et al., 1982; Lubenova, 1999; Ghoul et al., 1991; Baart et 

al., 2007): 

( )2 2
in mGF p

OUR OTR O O
V H

≈ = ⋅ − ⋅         2 

where FG is the gas flow rate, O2
in the oxygen fraction in the inlet stream, O2

m the measured 

oxygen fraction in the outlet stream, p is the pressure in the bioreactor, and H the Henry 

coefficient. These off‐gas fractions, however, do not reflect the actual concentrations in the 

bioreactor under dynamic conditions (Bloemen et al., 2003). This is due to the presence of a 

headspace and tubing, which cause additional dynamics in the off‐gas system. Figure 2 

shows an overview of the bioreactor and measurement system as it is used in pilot‐scale 

vaccine production. The cells are grown in the liquid‐phase of the reactor. The gas that 

leaves the cultivation broth cannot be analyzed directly. First it enters the headspace 

(necessary for e.g. foaming), next the centrifuge (for mechanically defoaming), the 

incinerator (for killing (pathogenic) micro‐organisms), the cooler (for drying before the gas 

can be analyzed) and finally the analyzer. All parts are connected by tubing, which is 

represented by the tubing box. 
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Figure 2. Schematic of the bioreactor and measurement system. 

 

Bloemen et al. (2003) include the liquid and gas phase to model the oxygen uptake rate. The 

off‐gas system is modelled as a series of n ideally stirred tank reactors (CSTR) plus a time 

delay. The number of CSTRs and other parameters are fitted using identification 

experiments. Some parameters of the off‐gas system are no longer physically relevant. The 

method is applied to chemostat cultures, in which the time constants are constant. In batch 

or fed‐batch cultivation, however, the time constants are time‐varying due to the 

exponential growth and the exponential increasing demands for oxygen and substrates. 

Exact knowledge of kLa is required in Bloemen’s approach. In contrast to CSTR, where kLa is 

approximately constant, kLa is time‐varying (fed‐)batch cultivations due to variations in 

stirrer speed, gas flow rate, broth volume, cells, viscosity, products, etc, and is often poorly 

known in large‐ or pilot‐scale systems.  

As an alternative, in this work a method for the calculation of OUR from off‐gas 

measurements is applied by only considering the gas phase and its dynamics. It is based on a 

white box model containing parameters that are easy to retrieve from the system. The 

method is therefore applicable without the need for new identification runs. Moreover, the 

method does not require knowledge of kLa. In fact, by combining off‐gas data and 

measurements of dissolved oxygen, kLa can be estimated if needed.  

In the OUR calculation we are interested in the oxygen fraction at the input of the system, 

i.e. the auxiliary oxygen fraction entering the headspace, while the measurements take place 

at the output, i.e. oxygen fraction in the analyzer. The theory and application of the 

reconstruction of the input using measurements of the output as well as the underlying 
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model are given in the section “Online reconstruction of the inputs and biomass growth”. 

The values of the (system) parameters are given in appendix B. The biomass growth observer 

and controller are given in appendix A. The new method for OUR computation is an 

enhancement to the biomass growth observer and controller developed earlier for small‐

scale laboratory equipment where Eq. 2 is sufficient. Therefore it is relevant to test the 

performance of the enhance system on real experiments in larger scale. This aspect is 

described in section “Results and discussion”. 

 

Materials and methods for the experiments 

Experiments for off‐gas model validation  

The experiments for validation of the model for the off‐gas dynamics (Eqs. 5‐7) are 

performed in a 60‐L bioreactor containing 30‐40 L demineralised water without bacteria. The 

inlet gas is let into the headspace to mimic the auxiliary oxygen concentration. The inlet gas 

is excited with known inputs (by changing the gas composition, the gas flow rates, and the 

volume of the headspace and liquid). The response of the off‐gas system (consisting of the 

headspace, centrifuge, incinerator, and cooler) is recorded every ten seconds (oxygen 

fraction in the inlet and outlet gases). Oxygen transfer between the liquid and gas phase is 

assumed negligible. 

 

Pilot‐scale cultivation for vaccine production 

Two types of bacteria were grown in the pilot‐scale experiments: Neisseria meningitidis and 

Bordetella pertussis. The oxygen and carbon dioxide fractions in the inlet and outlet gases 

were measured on a mass spectrometer (prima White Box 600, Thermo Election, UK). The 

differences in inlet and outlet gas flows were negligible, because the gas production (CO2) 

and consumption (O2) rates were approximately equal (respiration quotient is 1): 
in out

G G GF F F≈ ≈ . A pressure test was performed in advance of the cultivation. Biomass was 

measured offline by measuring optical density (OD) at 590 nm of 1 ml suspension using a 

Vitalab 10 (Vital Scientific, the Netherlands). Nuclear magnetic resonance NMR (OXFORD 

NMR AS400, BoveBid, Amsterdam) was applied to measure substrates and metabolites.  

The batch cultivations with N. meningitidis were performed in Baart et al. (2007) and are 

now used for bioreactor monitoring. For detailed materials and methods we refer to Baart et 

al., 2007. In short, the bacteria were grown in aerobic conditions on a chemically defined 
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medium in a 60L stainless steel bioreactor containing 40L of medium. Dissolved oxygen was 

controlled by increasing stirrer speed, the difference between inlet and outlet gases by 

adjusting the gas flow rate via the sparger (1‐20 l.min‐1). 

The fed‐batch cultivations with B. pertussis were done to test the monitoring and control 

system on pilot‐scale. The bacteria were grown in aerobic conditions on a chemically defined 

medium in a 60L stainless steel bioreactor containing 30L of medium at the start. After the 

batch phase, the fed‐batch started up to a total additional volume of 5L distributed over the 

full fed‐batch period to obtain higher biomass concentrations. The feed contained highly 

concentrated substrates (glutamate and L‐lactate). The specific growth rate was controlled 

by an adaptive control law (Soons et al., 2006, 2007a, and appendix A). The tuning 

parameters of the specific growth rate controller γ1 and γ2 were adjusted until the 

performance measures were satisfactory using automatic tuning. Dissolved oxygen was 

controlled by increasing the stirrer speed. The bioreactor was aerated using headspace 

aeration (5 l.min‐1).  

 

Online reconstruction of the inputs and biomass growth 

This section consists of three parts:  

o The online reconstruction of the inputs using the outputs is given for the generic 

system in the section “theory”.  

o In our system, it was not possible to measure the oxygen uptake rate directly, e.g. 

using a sensor. Consequently it is not possible to verify whether the calculated 

auxiliary oxygen uptake rate fits the real values. The model of the off‐gas dynamics 

that is needed for the reconstruction of OUR, on the other hand, can be verified, 

because the oxygen fraction can be measured accurately. Indirectly, the accuracy of 

the off‐gas model gives an indication of the accuracy of the calculation of the 

auxiliary oxygen uptake rate. This model and its validation are given in the section 

“model off‐gas dynamics”.  

o The application of the theory to the off‐gas system of the bioreactor and online 

reconstruction of biomass growth incorporating the tubing delay are addressed in 

the section “implementation”. 
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Theory  

In the OUR calculations we are interested in the oxygen fraction at the input of the system, 

while the measurements take place at the output. Therefore, the aim is to reconstruct the 

input u from output y (Fig. 3). Suppose a system containing a series of continuous stirred 

tank reactors. The series of CSTRs are modelled by linear first order systems given by the 

system matrices A and B. The model and system matrices are given in the next section 

“Model for off‐gas dynamics”. Eq. 3 gives the evolution of the states x along the discrete 

time axis for the generic system: 

( )( ) ( ) ( )
t T

AT A t

t

x t T x t e e Bu d
ϑ

ϑ

ϑ

ϑ ϑ
= +

−

=

+ = + ∫        3 

where y are the outputs, t the time, and T the sampling time. The input u is assumed 
piecewise constant. The average input during t until t+T ( ( )u t ) is reconstructed by rewriting 

Eq. 3:  

( )( ) ( )1
1( ) 1 ( ) ( )AT ATu t A e B x t T x t e

−
−= − + −        4 

 

Figure 3. Schematic of the bioreactor 

system for modelling the online 

reconstruction of the input u using 

output y through a system containing 

n continuous stirred tank reactors 

(black) and through a reduced system 

containing one CSTR (gray). The gas‐

phase in the reduced model concerns 

the total gas volume of all 

compartments Vtot. The inlet gas is let 

into the headspace to mimic the 

auxiliary oxygen concentration. 
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Model for off‐gas dynamics 

The dynamics of the off‐gas system are modelled by a series of n ideally stirred tanks plus a 

time delay (back mixing from the headspace to the cultivation broth is assumed negligible) 

as in Bloemen et al., 2003: 

12
2 2

2 2

( ), 1...

( ) ( )

i
i iG

i

m n
D

FdO
O O i n

dt V
O t O t T

−= ⋅ − =

= −
        5 

Where O2
i is the oxygen fraction in the ith ideally stirred tank (Fig. 2), O2

0 is the auxiliary 

oxygen fraction entering the headspace O2
a, FG the gas flow rate, and Vi the volume of the 

gas in the ith ideally stirred tank, which is retrieved from the geometrical properties of the 

equipment. TD is the transport delay: 

tubing
d

G

V
T

F
=            6 

In contrast to Bloemen et al., 2003 the dynamics are determined on the basis of physical 

volume measurements of the stirred tanks (centrifuge, incinerator, and cooler) and tubing 

instead of identification. 

A drawback of Eq. 5 concerning the online calculation of OUR is that the signals O2
i must be 

differentiated n times for the computation of the actual OUR giving more measurement 

noise. To avoid propagation of the measurement noise a reduced model is proposed in 

which the gas‐phase is considered as one ideally stirred reactor (Fig. 3):  

1

n
i

tot
i

V V
=

=∑            7a 

2
2 2( )

mix
a mixG

tot

FdO
O O

dt V
= ⋅ −          7b 

2 2( ) ( )m mix
DO t O t T= −           7c 

where Vtot is the total volume of the gas phase consisting of the headspace, centrifuge, 

incinerator, and cooler. O2
mix is the oxygen concentration after mixing in the total gas phase. 

The full model (Eqs. 5‐6) and the reduced model (Eqs. 6‐7) are verified by calculating the 

response of the measurement system to varying O2
a, FG, and Vh

 and by comparing the model 

response with experimental data. In the experiments with water, the inlet gas is let into the 
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headspace to mimic the auxiliary oxygen concentration (Fig. 3). Mass transfer between the 

liquid and gas phase is neglected. 

The oxygen concentration into the headspace (O2
a) is varied between 0‐21% oxygen and the 

switching is chosen such that the system is allowed to reach steady state at most instances. 

Figure 4 shows an example of the response of the model and the system for a headspace of 

30L. The mean absolute error was 1.1.10‐3 for the full model and 1.3.10‐3 for the reduced 

model. Both the full model (Eqs. 5‐6) and the reduced model (Eq. 6‐7) accurately fit the 

experimental data. The reduced model is therefore used in the sequel. 

 

Figure 4. Dynamics of the gas‐phase for a 30L 

headspace for experimental data. A. Gas flow rate. B. 

Auxiliary oxygen fraction. C. Measured oxygen fraction 

(‐),oxygen fraction of the full model (four CSTRs plus 

delay) (red‐‐‐), and oxygen fraction of the reduced 

model (one CSTR plus delay) (blue···). 
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Implementation 

Since the measurements of the oxygen fraction in the outlet stream are delayed due to the 

tubing and mixing (Figs. 2‐3), the following notation is used in the sequel: the subscript t‐TD|t 

denotes the value at t‐TD given all information at t. The reconstruction of the input 

2, |D

a
t T tO − (circle in Fig. 5) is part of the online reconstruction of biomass growth consisting in 

four steps (Fig. 5).  

 

 

 

 

 

 

Figure 5. Schematic of the bioreactor system for online reconstruction of oxygen consumption and growth. The 

gas‐phase includes the gas‐phase in the bioreactor and all other devices (centrifuge, incinerator, etc.). 

 

o Calculation of 2, |d

a
t T tO −  and |d

a
t T tOUR − . The oxygen uptake rate that does take into 

account mixing effects is obtained by replacing O2
m in Eq. 1 by 2, |d

a
t T tO − : 

( )| 2, | 2, |D D D

a in aG
t T t t T t t T t

F p
OUR O O

V H− − −≈ ⋅ − ⋅       8 

The auxiliary oxygen fraction at t‐TD given all information at t 2, |d

a
t T tO −  is reconstructed 

from online 2, |d

m
t T tO −  measurements using Eq. 4. To reduce the noise propagation, the 

reduced model is applied (Eqs. 6‐7), in which the gas‐phase is considered as one 
ideally mixed tank reactor. With 2, |D

m
t T tx O −= , 2, |D

a
t T tu O −= , 1

, | , |D DG t T t tot t T tA F V −
− −= − ⋅ , and 

1
, | , |D DG t T t tot t T tB F V −
− −= ⋅  the auxiliary oxygen fraction becomes: 

, |

, |
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, |
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      9 

The differences in the measured oxygen signals (O2
m) during one time instant T in Eq. 

9 are small and therefore noise sensitive. To further reduce the effect of the noise, 
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smoothed signals are calculated using Savitsky‐Golay smoothing Gorry (1990) for a 

nine point window and a first order polynomial. 

o Observer for specific growth rate and biomass. An Extended Kalman Filter (EKF) 

observes specific growth rate ( |ˆ
dt T tµ − ) and biomass ( , |

ˆ
dX t T tC − ) using the auxiliary oxygen 

uptake rate ( |d

a
t T tOUR − ) every minute (Soons et al., 2008).  

o Biomass prediction. The tubing delay is cancelled by prediction the current biomass 

concentration at time t ( , |
p
X t tC ) given all information at time t based on exponential 

growth during the delay time TD (assuming µ constant during TD): 

, |
|

| |

, |
, | , |

ˆ

ˆ

D

S t T tp D
Dt t

D

D

p
t t t T t

F
µ T

V t T tp
X t t X t T t

µ µ

C C e
−

−

 
−  − 

−

=

= ⋅
        10 

o Computation of oxygen transfer coefficient. The oxygen transfer coefficient kLa is 

calculated using the oxygen uptake rate and the measured dissolved oxygen 

concentration:  

|
|

2, | , |

D

D

D D

a
t T t

L t T t
a L

t T t O t T t

OUR
k a

pO CH

−
−

− −

=
⋅ −

       11 

Note that the oxygen transfer rate is assumed to be equal to the oxygen consumption rate, 

because dissolved oxygen is controlled and oxygen dynamics are much faster than other 

relevant processes. To reduce the noise, the signal is again smoothed using Savitsky‐Golay 

smoothing (Gorry, 1990) for a nine point window and a first order polynomial. 

 

Results and discussion 

The oxygen uptake rate is calculated using the steady‐state method (Eq. 2) and using online 

reconstruction (Eqs. 8‐9). Each of these signals were used as input for the Extended Kalman 

Filter (Soons et al., 2008) to observe biomass and specific growth rate and finally to predict 

biomass concentrations (Eq. 10) to investigate the effect of the off‐gas dynamics during real 

batch and fed‐batch experiments. The auto‐tuning controller for specific growth rate, 

developed and validated for small‐scale cultivations in (Soons et al., 2006, 2007a), was 

applied to the pilot‐scale cultivation with B. pertussis without any modification.  

Eight experiments for N. meningitides were evaluated. Figure 6 shows the first five hours of 

the typical batch cultivation with N. meningitidis with sparger aeration. The errors in the 

calculation of the oxygen uptake rate with the dynamic model (Eqs. 8‐9) were up to 30% 
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smaller than the values calculated from the steady‐state method (Eq. 2). As a result the 

observed biomass concentrations were closer to the samples when the dynamic OUR 

calculation was used (Eqs. 8‐10). 

 

Figure 6. Experimental results for N. meningitidis. 

A. Measured (O2
m) and auxiliary oxygen fraction O2

a. B. 

Steady state method (OURm) and auxiliary oxygen 

uptake rate (OURa). C. Tubing delay. D. Offline biomass 

measurements (∆ CX), biomass observed from OURm 

(CX
m ‐), and biomass observed and predicted from OURa 

(CX
p‐‐). E. Oxygen transfer coefficient. 
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The effect of the off‐gas dynamics was significant in the first part of the batch cultivation and 

decreased with time due to the increasing gas flows and thereby decreasing gas mixing times 

and transport delays. 

Figure 6E shows the typical time‐varying course of the oxygen transfer coefficient kLa. In the 

first part of the cultivation, the cells grew exponentially and so did the demand for oxygen. 

To cope with this demand, the stirrer speed and gas flow rate increased and as a 

consequence kLa increased.  

 

Figure 7. Experimental data for 

B. pertussis with adaptive 

control of the specific growth 

rate. A. Measured (O2
m) and 

auxiliary (O2
a) oxygen fraction 

B. Steady state method (OURm) 

and auxiliary (OURa ) oxygen 

uptake rate. C. Oxygen transfer 

coefficient. D. Offline (∆ CX) 

and predicted biomass 

concentration (‐ CX
p) E. Specific 

growth rate F. Substrate feed 

rate. Glutamate and lactate 

(FG+L), prior calculation (Fcalc), 

proportional action (FP), and 

integral action (FI) G. Controller 

tuning parameters 

H. Substrate concentrations: 

glutamate (CG left axis) and 

lactate (CL left axis); and 

acetoacetate (CA right axis). 

I. Mean absolute error J. 

Oscillation measure. 
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Two B. pertussis cultivations were performed using headspace aeration. The oxygen transfer 

coefficient was smaller for headspace aeration compared with sparger aeration of the 

N. meningitidis cultivations (compare Fig. 6E with 7C), resulting in smaller differences in inlet 

and outlet gas concentrations and more noise on the OUR.  

The gas flow rate was kept constant (5 l.min‐1) and consequently the mixing effects and 

tubing delays were approximately constant and small (50 seconds) compared to the initial 

phase of the N. meningitidis cultivation (4.5 minutes). As a consequence, the mixing effects 

and delays in the gas phase are negligible in the experiment with B. pertussis due to the 

higher gas flows applied for headspace aeration.  

Figure 7 shows the results for the fed‐batch cultivation with B. pertussis. First, the cells were 

grown in batch cultivation until the substrates almost depleted. At t=18.5h the enhancing 

substrate, lactate, was depleted resulting in a lower specific growth rate; at 19.5h the main 

substrate, glutamate, was depleted and the specific growth rate dropped.  

At this point, the feed with limiting substrates and the auto‐tuning controller started 

automatically to control the specific growth rate at the set‐point of 0.06h‐1. At the start of 

the fed‐batch, a few minutes were needed to fill the tubes with the feed and to actually start 

the substrates entering the bioreactor. After that, as a result of the controller action an 

exponentially increasing feed was added into the bioreactor to cope with the exponentially 

increasing biomass. The controller maintained the specific growth rate close to the set‐point. 

After some hours of fed‐batch, the mean absolute error and the oscillation measure (see 

appendix A for the definition) decreased and eventually became approximately constant 

indicating that controller performance was satisfactory and that further auto‐tuning would 

have no effect. The performance monitor qualified these measures to be small and decided 

to continue the cultivation with the current settings for γ1 and γ2 and to deactivate the 

automatic tuning. This means that the correct tuning has been “learned” after one run. 

Subsequently, the following cultivations can be performed with the obtained settings. 

The observed biomass concentrations coincide well with the offline measurements; and also 

the specific growth rate was accurately observed throughout the whole fed‐batch 

cultivation. 

Figure 7H (left axis) shows that the substrates glutamate and lactate decreased during the 

batch cultivation and were kept constant at very low concentrations during the fed‐batch 

part of the cultivation. B. pertussis is able to form and excrete acetoacetate in certain 

conditions, e.g. when glutamate and lactate are depleted, thereby reducing the biomass 
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yield (Thalen et al., 1999). The undesired component acetoacetate was only formed in small 

amounts at the start of fed‐batch (Fig. 7H right axis, note the small values on the scale), 

when neither glutamate nor lactate were available in the medium. At t=23h, glutamate and 

lactate were again present; the acetoacetate was consumed and remained zero in the 

following hours of the fed‐batch. 

Figure 7C shows the time‐varying course of the oxygen transfer coefficient kLa for B. 

pertussis. The stirrer speed, and so kLa, is increased throughout the cultivation to cope with 

the increasing oxygen demand. At t=29h the stirrer speed reached its maximum value and 

remained constant until the end of the cultivation and the dissolved oxygen controller was 

not capable anymore to track the set‐point. The oxygen transfer coefficient, however, 

decreased due to blanketing effects (caused by e.g. viscosity, formation of proteins, and 

lysis). 

The applications show that the observer and controller are highly applicable: from small‐

scale to pilot‐scale cultivations; from batch to fed‐batch cultivations, from low biomass 

concentrations to high biomass concentrations, from OUR calculated using the off‐ gas 

composition to OUR calculated using kLa, dissolved oxygen and inlet concentrations; and 

from cultivation with B. pertussis to N. meningitidis. 

 

Conclusions 

In this work two aspects concerning the scale‐up from laboratory to pilot‐scale cultivation 

have been considered and successfully implemented: 

o The first is an improved computation of oxygen uptake rate taking into account gas‐

phase dynamics that is important for large‐scale equipment. If the volume of the gas 

phase is large compared to the gas flows, mixing effects and tubing delays tend to 

filter out the dynamics of the oxygen uptake rate. Incorporating the gas phase 

dynamics in online monitoring reduces the error observations of the oxygen 

consumption and biomass growth up to 30%. Using models which contain system‐

relevant parameters enhances the applicability of the method. 

o The second aspect is the monitoring and control of the biomass growth. The M&C 

system –designed for small‐scale cultivations‐ accurately monitored and controlled 

the specific growth rate and biomass for pilot‐scale cultivations in real‐time. It 

appeared that the M&C system could be applied directly to the larger‐scale 

cultivation without modifications like redesigning or re‐tuning the observer or 
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controller. So, this strongly suggests that the M&C system is robust with respect to 

scale and micro‐organism.  

On large‐scale, vaccines are currently produced in batch cultivation. In traditional batch 

cultivation with B. pertussis, the cells grow until the substrates are depleted up to 

approximately 1.6 OD. The methods developed in this paper show that fed‐batch cultivation 

has potential for production on (near) production‐scale. In the fed‐batch phase of the 

cultivation the biomass more than doubles up to 3.5 OD by adding a feed with limiting 

substrates to control the specific growth rate. Higher biomass concentrations can be 

obtained, like in small‐scale cultivations (Soons et al., 2006), if the headspace aeration were 

replaced by sparger aeration to obtain proper oxygen transfer.  

So, the combination of enhancing an existing process with controlled fed‐batch cultivation 

and the achievement of at least doubled concentration of bulk vaccine on pilot‐scale yields a 

favourable upstream production method for bulk whooping cough vaccine. 
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Appendix A: Monitoring and control 

The monitoring and control system consists of an observer, controller for specific growth 

rate, auto‐tuning of the controller, and a performance monitor. 

o Observer. An Extended Kalman Filter (EKF) observes specific growth rate (µm) and 

biomass (CX
m) using the oxygen uptake rate (OUR) every minute (Soons et al., 2006). 

The EKF is based on the following model for biomass growth and oxygen 

consumption: 
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o Specific growth rate control. The control purpose is to regulate the specific growth 

rate (µ) to a desired value by adding a feed with limiting substrates using the 

controller of (Soons et al., 2006):  
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where the error ε is the set point minus the observed specific growth rate (µset‐µp) 

and where the controller gains KP and KI are adjusted online to the changing volume: 
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,
( ) ( )P Iin in in in
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aC bC aC bCγ γ
= =
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                      A2b 

γ1 and γ2 are the tuning parameters for the controller and a, b, c, and d are constants 

depending on the micro‐organism (in the work Bordetella pertussis) and the set‐point 

for specific growth rate. 

o Automatic tuning was performed as in (Soons et al., 2007a): 

2
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set set

set set

d
dt

d
dt

γ ε εβ β
µ µ

γ ε εβ β
µ µ

= ⋅ + ⋅

= ⋅ + ⋅
        A3 

Where the tuning parameters γ1 and γ2 are adapted proportional to the error ε and 

proportional to the quadratic error ε2, which is large if the error is large. β is the 

adaptation rate, the tuning parameters for auto‐tuning. 

o Performance monitor. The performance monitor has two tasks in the system. The 

first function of the performance monitor is to qualify controller performance using 

the criteria given in Eqs. A4‐A5 (Soons et al., 2007a). Second, based on the 

qualification, the performance monitor decides to retune the process using 

automatic tuning or to stop the auto‐tuning activity and continue with the current 
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settings. The first measure is the mean absolute error over the past N points of a 

moving window at time point k: 

1
( ) ( )

k

k N

E k k
N

ε
−

= ⋅∑          A4 

The second is the oscillation measure and is defined by  
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Appendix B: parameter values  

Table 1. parameter values 

Parameter Value 

headspace 20‐30 l 

centrifuge 1.34 l 

tubing 2.0 l 

incinerator 2.15 l 

cooler 0.66 l 

Volume 

cultivation 

broth 

30‐40 l 

YO 0.033 OD.mmol‐1 B. pertussis 

mO 0.69 mmol.OD‐1.h‐1 

YO 0.077 OD.mmol‐1 N. meningitidis 

mO 0  mmol.OD‐1.h‐1 

CL
in

 835 mmol.l‐1 

CG
in 500 mmol.l‐1 

τanalyzer 13 s 

µset 0.06 h‐1 

β1 0.25 

β2 0.50 

N 90 
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Modelling the cultivation of Bordetella pertussis: 
the effect of specific growth rate on expression of 

virulence factors on gene and protein level 
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Boxtel 

 

Abstract 

The quality of whole cell whooping cough vaccine is based on the presence of outer‐

membrane proteins that are important for inducing a protective immune response. This 

work investigates the effect of specific growth rate on gene and protein expression of 

Bordetella pertussis. While modelling of the synthesis of complex products and processes is 

uncommon and difficult, an attempt was made to model the formation of virulence factors 

by enhancing an existing model for the cultivation of B. pertussis for the production of 

whole‐cell vaccine against whooping. Four chemostat cultivations were performed to model 

the biomass growth and formation of virulence factors. Although this study is based on a 

limited number of measurements, it indicates the potential of using models for improved 

vaccine manufacturing processes. The data and model suggest that vaccine quality is not 

deteriorating with increasing growth rate over the investigated range, and thus a high 

growth rate can be selected to achieve a high productivity. 

 

Keywords 

Model, specific growth rate, Bordetella pertussis, virulence factors, gene and protein 

expression, chemostat cultivation. 
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Nomenclature 
aFHA, aPT non‐growth associated specific production rate of FHA and PT [µg.OD‐1.h‐1] 

aLPS non‐growth associated specific production rate of LPS [mmol.OD‐1.h‐1] 

bFHA, bPT growth associated production of FHA and PT [µg.OD‐1] 

bLPS growth associated production of LPS [nmol.OD‐1] 

Bvg Bordetella virulence genes 

cFHA filamentous haemagglutinin concentration [mg.l‐1] 

CG, CG
in

 glutamate concentration in the medium, respectively in the feed [mmol.l‐1] 

CL, CL
in

 lactate concentration in the medium, respectively in the feed [mmol.l‐1] 

cLPS lipopolysaccharide concentration [µmol.l‐1] 

cPT pertussis toxin concentration [mg.l‐1] 

CX biomass concentration [OD] 

D dilution rate [l.h‐1] 

E performance criterion        

FHA filamentous haemagglutinin     

FS substrate feed rate [l.h‐1] 

GE gene Expression 

I emission intensity 

KG, KL Monod constant on glutamate, respectively lactate [mmol.l‐1] 

LPS lipopolysaccharide 

MB membrane bound 

mG, mL maintenance coefficient on glutamate and lactate [mmol.OD‐1.h‐1] 

PT pertussis toxin   

qFHA, qPT, specific FHA, PT, and LPS production rate [µg.OD‐1.h‐1] 

qLPS specific FHA, PT, and LPS production rate [nmol.OD‐1.h‐1] 

qG, qL specific glutamate and lactate consumption rate [mmol.OD‐1.h‐1] 

SUP supernatant 

t cultivation time [h] 

V liquid volume [l] 

vag, vrg virulence activated gene, virulence repressed gene 

VR virtual Reference 

WCS whole‐cell suspension 

YG1, YG2 biomass yield on glutamate over pathway 1 and pathway 2 [OD.mmol‐1] 

YL biomass yield on lactate [OD.mmol‐1] 
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Greek letters 

µ specific growth rate [h‐1] 

µmax, µenh   maximum, respectively enhanced specific growth rate [h‐1] 

 

Superscripts and subscripts 

m measured values 

 

 
Introduction 

Prediction and optimization of vaccine production processes have not reached the state of 

development that can be found in other industries. One reason is the accuracy and reliability 

by which the states of the complex cultivation processes can be monitored online. To 

stimulate improved (bio)pharmaceutical manufacturing, the US Food and Drug 

Administration (FDA) launched the PAT initiative (FDA, 2004). It requires a science‐based 

approach to understand the process and its critical variables that have to be monitored and 

controlled online.  

Currently vaccines are released on the basis of offline tests on the final product. In most 

cases animal models are required for potency assays. Such assays are inherently inaccurate 

and do not comply with possibility for feedback during the process. A model to predict the 

end‐quality of the vaccine in real‐time could be the first step towards better understanding, 

monitoring, and control of the cultivation. This work aims to understand the expected 

vaccine quality in response to the specific growth rate during the cultivation step for the 

production of a vaccine against whooping cough disease, keeping in mind that specific 

growth rate is accessible for control (Soons et al., 2006). 

Bordetella pertussis is a pathogenic bacterium that causes the disease whooping cough. 

Whooping cough is highly contagious and can be dangerous for children. Consequently, an 

effective and safe vaccine is needed against this disease. An effective vaccine is based on 

virulence factors, which are essential for the survival and pathogenicity of B. pertussis. The 

virulence factors have different roles depending on the stage of infection, from entry of the 

pathogen into the host and attachment to the target tissues to dissemination of the 

pathogen or its products (Weiss and Hewlett et al., 1986; Kerr and Matthews, 2000). 

The virulence factors of B. pertussis are among others filamentous haemagglutinin (FHA) and 

pertussis toxin (PT). FHA is involved in the attachment of the cells and enables colonisation 

of the respiratory tract. PT is unique for B. pertussis and is the main toxin as it is involved in 
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all stages of infection. Another component, lipopolysaccharide (LPS) is involved in the last 

two stages of the infection in causing local damage at the site of infection and in 

dissemination.  

The virulence factors are important aspects for the quality of B. pertussis suspensions used 

for vaccine production against infection with whooping cough (Westdijk et al., 1997; 

Rodriguez et al., 1994). Westdijk et al. (1997) demonstrated that during batch cultivation the 

growth phase determines the antigen production and release. No conclusion, however, is 

given about the relation between virulence factor production and specific growth rate or 

nutrient composition. Rodriguez et al. (1994) and Licari et al. (1991) show that the 

production of pertussis toxin and LPS is strongly growth‐associated and that a high specific 

growth rate is an effective way for producing PT. High amounts of LPS, however, are 

regarded as a drawback, because LPS is suspect of causing adverse reactions. So, in order to 

obtain a high quality‐vaccine, it is important to restrict LPS content of the vaccine, while still 

providing efficient other virulence factors.  

The two‐component system Bordetella virulence genes BvgA/S regulates the expression of 

virulence factors of B. pertussis (Scarlato et al., 1990). BvgS is a sensor that triggers BvgA to 

activate the virulence activated genes (vags) or deactivate virulence repressed genes (vrgs). 

In order to obtain a high‐quality vaccine, this BvgA/S system needs to be in the bvg+ mode, 

in which the bacteria express virulence factors. DNA micro‐arrays can be used to monitor the 

state of the BvgA/S system and the activation and repression of genes and thus to monitor 

the quality of the final vaccine (Streefland et al., 2007). Certain laboratory conditions ‐ such 

as low temperature or the presence of MgSO4 or nicotinic acid in the growth medium ‐ 

modulate the expression of B. pertussis vags and vrgs (Lacey, 1960, Hot et al., 2003, 

Streefland et al. 2007). Nakamura et al. (2006) showed that the growth phase determines 

the expressions of virulence factors. Out of 81 virulence factors, 51% had significantly lower 

transcript abundance in stationary phase than in log phase and 2% significantly higher 

abundance. These authors suggest that nutrient limitation is one of the several interacting 

factors affecting virulence. Although end‐of‐batch effects have been investigated, the effect 

of specific growth rate on gene expression is yet unexplored.  

Modelling the production of complex products and processes is uncommon (Junker and 

Wang, 2006) and is difficult because of the large number of complex reactions in a cell, the 

nonlinearity, and the time‐dependency (Karim et al., 2003). Furthermore, the data in cell 

biology often contain a high degree of uncertainty. This uncertainty translates into the 

difficulty of measuring model parameters and hence the impossibility of obtaining a precise 

model (Sontag, 2007). Nevertheless, models do contain valuable information and can be 
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used to gain better understanding, monitoring & control and/ or optimization of cultivation 

strategies. 

Jenzsch et al. (2007), Levisauskas et al. (2003), Dhir et al. (2000) and few others (Junker and 

Wang, 2006) optimised the production of single proteins in real‐time. However, if the final 

product is a heterogeneous mixture, which is the case in cultivation of B. pertussis for a 

whole‐cell vaccine for whooping cough, it is more difficult to detect the products and 

monitor these cultivations (Junker and Wang, 2006).  

This work gives an indication of the effect of specific growth rate (µ) on vaccine quality by 

combining data on protein levels for virulence factors and gene expression on mRNA level. It 

also uses metabolic information for substrate consumption and biomass formation. In 

addition a model for growth and antigen formation of B. pertussis is proposed. To this end, a 

series of four substrate‐limited continuous‐flow stirred‐tank reactor (CSTR) cultivations are 

performed at different dilution rates and hence different specific growth rates. The next 

sections describe the materials and methods for the laboratory experiments; postulate the 

model for virulence factor formation; and discuss the results of the experiments and the 

model. The model for biomass growth and the calculation of its parameters are given in 

Appendix A. 

 

Materials & methods 

Bioreactor conditions 

CSTR cultivations with the dual substrate consuming bacterium Bordetella pertussis were 

performed in a 5‐liter bioreactor containing 2.87 litres medium with glutamate and L‐lactate 

as the main carbon sources (Thalen et al. (1999). A six‐bladed turbine stirrer was used to 

agitate the medium. Temperature was controlled at 34ºC, agitation speed at 470 rpm, and 

dissolved oxygen at 30% air saturation by headspace aeration only (by changing the 

incoming oxygen fraction in an oxygen/nitrogen mixture). The total gas flow was kept 

constant at 1 l/min. Four dilution rates were applied: 0.03, 0.05, 0.08, and 0.11 h‐1. The 

bacteria washed out in a cultivation at a dilution rate of 0.14 h‐1, hypothetically due to 

limitation of a component in the medium. The CSTR phase was started when the biomass 

reached an optical density of 1. The cultivation was considered in steady‐state after at least 

five dilutions. 
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Analysis 

Online measurements 

A polarographic electrode (Applikon, the Netherlands) was used to measure dissolved 

oxygen in the medium. A pH electrode (Mettler Toledo, Udorf, Switzerland) was used to 

measure pH, and temperature was measured with a Pt100 temperature sensor.  

 

Offline measurements 

Glutamate and L‐lactate were measured offline with a YSI 2750 select analyser (Yellow 

Springs Instruments, Yellow Springs, USA). Biomass was measured offline by measuring 

optical density (OD) at 590 nm of 1 ml suspension using a Vitalab 10 (Vital Scientific, the 

Netherlands). Nuclear magnetic resonance NMR (OXFORD NMR AS400, BoveBid, 

Amsterdam) was applied to detect accumulation of waste products or metabolites.  

Gene expression was analysed for a set of 3582 B. pertussis genes by means of two‐colour 

micro‐arrays as in Streefland et al. (2007). Preparation and analysis of the micro‐arrays was 

done in four steps:  

o First, RNA was isolated and pre‐treated to fix the expression profile. The samples 

were corrected for the amount of biomass per cultivation.  

o Second, the two samples –to compare on one array‐ were labelled with two different 

fluorescent dyes (Cy3/Cy5), which have emissions at two different wavelengths. Each 

specific growth rate sample was compared with each other sample in six arrays (0.03‐

0.05, 003‐0.08, 0.03‐0.11, 0.05‐0.08, 0.05‐0.11, and 0.08‐0.11 h‐1).  

The differences in emission intensities of each fluorescent dye, or gene expression, were 

used in a ration‐based analysis to identify up‐ and down regulated genes, the third and 

fourth step. 

o Third, the expression data were natural‐log transformed and quantile normalized to 

correct for differences between arrays without affecting the measurement of the 

biological variation. A virtual reference (VR) was calculated by taking the average of 

each gene for all slides and for both dyes together. 

o Fourth, the gene expression for each gene was calculated in a semi‐quantitative way 

by comparing the emission intensity I of each specific growth rate sample with each 
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other intensity of the sample on the same arrays. For instance, the expression GE for 

each gene i at 0.03 h‐1 reads: 

( )0.03 0.08, 0.03 0.08, 0.03 0.05, 0.03 0.05, 0.03 0.11, 0.03 0.11,
0.03 0.03 0.08 0.03 0.05 0.03 0.11

1
4

i i i i i i i iGE I I I I I I VR− − − − − −= ⋅ − + − + − +     1 

where the superscript indicates the micro‐array and the subscript the specific growth 

rate sample on that micro‐array. 

We refer to Streefland et al. (2007) for more details on the preparation of the micro‐arrays. 

Quantification of cell‐associated proteins (FHA and PT) was done using ELISA developed by 

Westdijk et al. (1997). Each sample was first compounded with 0.5% Na‐azide and incubated 

for 10 minutes ate 56°C and next divided in whole‐cell suspensions (WCS), membrane bound 

proteins (MB) and supernatant (SUP) as follows. Half of a 20‐ml sample was directly used for 

the quantification of the virulence factors in the whole cell suspension. The other half was 

centrifuged at 6500 x g for 10 minutes at 4°C. The resulting supernatant was used for 

quantification of the cell‐free virulence factors, the resulting pellet for the membrane‐bound 

virulence factors. Ideally if measurement errors do not occur, the sum of the MB and SUP 

virulence factors is identical to the virulence factors in the whole‐cell suspensions.  

Membrane bound LPS was measured using gas chromatography (Welch, 1991).  

 

Model for production of virulence factors and LPS 

Biomass growth on glutamate and L‐lactate was modelled earlier (Neeleman et al., 2001). 

The model is summarized in Appendix A. The steady state conditions in the CSTR 

experiments allow estimation of parameters that are not easy to obtain in batch. As shown 

in the appendix, the model yields good fits on observed biomass and substrate 

concentrations at various specific growth rates, and can thus serve as a basis for modelling 

of virulence factors. To this end, the model is with an empirical model for formation of the 

virulence factors (VF) FHA, PT, and of LPS. The mass balances for their production the 

bioreactor are given by: 

VF
VF X VF

dC
q C D C

dt
= ⋅ − ⋅          2 

where qVF is the specific virulence factor production rate, which is postulated to be 

proportional to the specific growth rate according: 

VF VF VFq a µ b= ⋅ +           3 
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with aVF a constant for growth associated virulence factor formation, and bVF a constant for 

non‐growth associated specific virulence factor production rate.  

The measured values for the specific production rates of the virulence factors and its model 

predictions are shown in Fig. 1. The slopes correspond to the growth associated formation 

aVF, the intercepts to the non‐growth associated parts bVF. 

Although it would be possible to obtain a better fit using more fit parameters, the data are 

not that indicative to do this with confidence. A straight line almost through the origin is in 

line with the hypothesis that the content of a particular factor per unit cell is invariant with 

specific growth rate. Moreover, as shown in the next section a linear relationship gives a 

good prediction of FHA observed in batch at a much higher specific growth rate. The values 

of the parameters in Eq. 3 obtained from the experiments are given in Table A1 

 

Figure 1. Specific production rates for the 

virulence factors. Left axis: qLPS (o) and qPT (∆). 

Right axis: qFHA (+). 

 

 

 

 

 

Experimental and modelling results 

Virulence factors on gene level 

Most literature shows a switch in expression of virulence factors between the bvg+ state 

when virulence factors are abundantly expressed and bvg‐ state when virulence factor 

expression is absent. Cummings et al. (2006) mentioned that gene regulation studies have 

historically focused on the endpoints of the spectrum. Recently, Cummings et al. (2006) and 

Stenson and Peppler (2007) suggested that bvg regulation is more smooth rather than an 

on/off switch by identifying at least two intermediate phases between the bvg+ and bvg‐ 

extremes. Cummings et al. (2006) also stated that a higher‐resolution examination of the 

bvg regulation spectrum may reveal further distinct phenotypic phases.  
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This work investigates potential differences in virulence factor expression in response to 

specific growth rate. The virulence activated genes are taken from Streefland et al., (2007). 

The average expression of each vag, the virtual reference VRi, was between 6.4 and 10.9 

indicating that the bacteria were in the bvg+ phase for all specific growth rates. Figure 2 

shows that gene expression of the virulence activated genes was approximately constant 

throughout the different specific growth rates.  

 

 

 

 

 

 

 

 

 

Figure 2. Effect of specific growth rate on gene expression for the 56 virulence activated genes compared to 

their virtual reference (VRi: the average expression of each gene). 

 

Growth rate dependent genes 

In the previous section, only genes associated with virulence of B. pertussis were considered. 

In addition all other genes were examined for growth rate dependency. Out of 3600 genes 

the gene expression of 159 B. pertussis genes turned out to be growth rate dependent. The 

largest groups are the ribosomal protein genes and genes related to ABC transporters. 

Ribosomes are involved in the protein biosynthesis by translating mRNA to protein. 

Naturally, the expression of ribosomal genes increases with the specific growth rate (and so 

the formation of biomass and proteins). 95% out of 22 genes was positively correlated with 

the specific growth rate, 5% negatively correlated. 

The ABC transporters are transmembrane proteins that function in the transport of a wide 

variety of compounds across extra‐ and intracellular membranes, including metabolic 
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products, lipids, and drugs. 63% Out of 11 genes for the expression of ABC transporters was 

negatively correlated with the specific growth rate, 27% positively correlated. The reason for 

a negative correlation may be the fact that the substrate concentrations are lower with 

lower specific growth rates, which may increase the effort to transport the substrates from 

the environment into the cells.   

 

Virulence factors and LPS on product level 

High cell surface densities of protective proteins are likely to augment the potency of 

pertussis whole cell vaccine. Therefore, it is important to examine the content of outer 

membrane components like FHA and PT per cell besides protein activity per volume 

(Westdijk et al., 1997). The presented model fits are obtained by simulation of the model 

Eqs. A1‐A7 and 1‐2. This section focuses on the results of the experiments and the model. 

 

FHA  

Jacob‐Dubuisson et al. (2000) and van den Berg et al. (1999) state that FHA is loosely 

associated with the outer membrane and is secreted into the extra cellular environment 

during growth. Westdijk et al. (1995) measured relatively small amounts of FHA in the 

supernatant. Figure 3 shows that FHA is predominately membrane bound (MB) in this work, 

which is in agreement with literature. The production of membrane‐bound as well as 

excreted FHA is growth associated (Figs. 1, 3). The FHA content, which can be observed by 

dividing the FHA concentration by the biomass concentration, appeared to be almost 

invariant. 

 

Figure 3. Experimental results and model fit for 

the effect of specific growth rate on the steady‐

state FHA concentration and one batch 

measurement. WCS is whole‐cell suspension, MB 

membrane bound, and SUP supernatant.  
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The predictions for the concentrations of FHA are the result of biomass growth and FHA 

production proportional to the specific growth rate (Eqs. A1‐A7, 1‐2). Given the complexity 

and uncertainty of the protein data, the model gives a fair fit of the FHA concentrations of 

the whole cell suspensions for the CSTR cultivations.  

The model derived from CSTR experiments offers new prospects to predict or even optimize 

the quality of the production stage for the whole cell vaccine of B. pertussis. As an example, 

it is used to predict FHA during batch cultivations. The specific growth rate was about 

0.17 h‐1 in the main part of the batch. The suspension was harvested before the substrates 

were depleted and the specific growth rate dropped. The predicted FHA concentration was 

108 µg.l‐1; the measured concentration at the end of the exponential phase of the batch was 

123 ± 15 µg.l‐1 (for five experiments, see Fig. 3).  

Figure 3 shows that the FHA concentrations at the end of the exponential phase of the batch 

are close to the concentrations measured in CSTR cultivations. FHA expressed per biomass, 

however, is slightly lower at the end of the batch, because biomass concentrations are 

slightly higher. 

Note that the model is obtained using steady‐state experiments; so quasi‐stationary 

responses can be predicted. The effect of disturbances or abrupt changes in specific growth 

rate on mRNA and protein formation could be in the order of minutes to hours and is not 

incorporated in the model. These effects could be inferred using time series of gene and 

protein expression in batch or perturbed CSTR or fed‐batch experiments in future. 

 

PT  

Figure 4 shows that PT is predominately secreted. Thalen et al. (2006) measured that PT is 

also predominately secreted during batch cultivation. The expression of PT is growth 

associated (Fig. 4), which is in agreement with Licari et al. (1991) and Rodriguez et al. (1994) 

who measured that PT production growth associated up to a maximum applied specific 

growth rate of 0.07 h‐1. The model (Eqs. A1‐A7, 1‐2) predicts similar µ‐profiles for PT (Fig. 4) 

as shown in the previous paragraph for FHA. PT was not measured during batch cultivations. 
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Figure 4. Experimental results and model fit for 

the effect of specific growth rate on the steady‐

state PT concentration. WCS is whole‐cell 

suspension, MB membrane bound, and SUP 

supernatant. 

 

 

 

LPS  

Rodriguez et al. (1994) measured that LPS production was always growth associated up to a 

maximum applied specific growth rate of 0.07 h‐1. Figure 5 indicates that the formation of 

LPS per cell is growth associated, which is in agreement with Rodriguez et al. (1994). The 

differences in the measured LPS concentrations are small (Fig. 5). In our CSTR cultivations, 

the minimum LPS concentration was obtained at 0.11 h‐1 (Fig. 5). The model (Eqs. A1‐A7, 1‐

2) predicts slightly lower LPS concentrations with increasing specific growth rate. 

 

Figure 5. Experimental results and model fit for 

the effect of specific growth rate on the steady‐

state concentration of membrane bound (MB) 

LPS. 

 

 

 

 

Virulence factors and LPS on gene‐product level 

On protein level, the content of a particular virulence factor per unit cell is almost invariant 

with specific growth rate; on gene level the expression of the virulence activated genes was 

approximately constant throughout the different specific growth rates. So based on the 
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correspondence between the gene and protein patterns the gene–protein data pairs may be 

classified as regulated. 

The genes for FHA and PT are positioned on the same operon and therefore the gene 

expression is expected to be coupled, which is confirmed by the data. The genes for LPS 

expression are on a different operon and can therefore exhibit different expression profiles. 

The differences in gene expression for LPS are smaller than for the virulence factors. On 

product‐level, the specific production rates for LPS contain a larger non‐growth associated 

dependency (and a smaller growth associated dependency) than for FHA and PT. 

 

Discussion and conclusions 

Traditionally, most vaccines are produced in batch cultivation, where cells grow until the 

main nutrients are depleted. The product is released on the basis of offline tests at the end 

of the cultivation step (e.g. sterility, potency, homogeneity, and animal tests), involving large 

variability, delayed release, and high costs. In order to improve consistency and quality (see 

also Soons et al 2006), to save time, and to reduce costs, it is attractive to replace the 

traditional batch cultivation by specific growth rate controlled fed‐batch or continuous 

cultivation. Although the model postulated in this work is based on a limited number of 

measurements and it is not that precise, the encouraging results suggest that modelling can 

be used to predict formation of virulence factors as function of specific growth rate. In this 

way product quality could be designed and known beforehand instead of being only tested 

in the end product. 

In literature, the mechanism for expression of virulence factors is classified as an on/off 

switch, in which the expression of virulence factors is activated or deactivated. The results in 

this work indicate that B. pertussis is in the activated phase (bvg+) by abundantly expressing 

the virulence factors. 

A high specific growth rate (µ ≥ 0.08 h‐1) favours high virulence factor formation, fast 

production of biomass and low LPS content per cell. The choice of specific growth rate to 

produce the best quality vaccine depends on multiple objectives like: maximize virulence 

factors per cell and/or the total amount of virulence factors to induce protection, minimize 

LPS content to minimize side effects, maximize biomass in minimum time to safe time and 

costs, etc. The model for formation of virulence factors presented here is a very first step 

towards more insight. It must be further scrutinized by more experimentation, modification 

and adjustment on the basis of additional experimental evidence. However, as has been 
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demonstrated here, once this has been done, the availability of such a model opens 

perspectives to design feed strategies during the cultivation and to optimize the quality of 

the vaccine using an objective function to weight the different quality aspects. In this way, a 

more science‐based method for producing vaccines can be developed, meeting the demands 

of the FDA’s PAT initiative to improving the production process by online monitoring and 

controlling product quality. 
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Appendix A: Model and parameter determination for dual substrate model 
of biomass growth  

Growth of B. pertussis is limited by two substrates. The metabolism is described in detail by 

Thalen et al. (1999) and can be generalised to the formation of biomass from glutamate and 

lactate by two major pathways: glutamate alone (pathway 1) or glutamate and lactate 

(pathway 2). The organism can grow on glutamate only, but growth on lactate alone is not 

possible. In the current medium, glutamate is an essential, and lactate is an enhancing 

substrate. Growth via these two pathways is assumed to be parallel, and thus the individual 

growth rates can be added. Neeleman et al. (2001) proposed the following dual substrate 

model (Eqs. 1‐6), which applies for batch, fed‐batch, and continuous‐flow stirred‐tank (CSTR) 

cultivations. Monod kinetics and oxygen excess are assumed.  
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where CG and CL are the glutamate respectively lactate concentration, qG
ov and qL

ov the 

overall specific consumption rates for glutamate and lactate, YG1, YG2, and YL2 the biomass 

yields over the different pathways. µmax is the maximum specific growth rate over pathway 

1, µenh the “enhancing” specific growth rate over pathway 2. KG and KL are Monod constants. 

The biomass growth rate is directly related to biomass (CX), specific growth rate (µ), and 

dilution rate (the incoming substrate feed rate (FS) divided by the volume of the broth (V)).  

Neeleman et al. (2001) calculated the yield using a series of batch cultivations in a step‐wise 

procedure. First, the yield on glutamate only YG1 is calculated by linear regression using data 

from cultivations with glutamate only; second the overall yield on lactate YL
ov and on 

glutamate YG
ov are calculated on cultivations containing lactate and glutamate; third, YG2 and 

YL are calculated using the overall yields: 

enh
L ov

enh enh L

µ
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Yµ µ
=
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Although several parameters, e.g. µmax, µenh, can be properly calculated from batch 

cultivations, maintenance and Monod constants can only be approximated, because their 

contribution is small during major part of the batch ( 1µ Y m−⋅ >> ).  

CSTR cultivations allow better calculation of these parameters. The overall yields and 

maintenance coefficients can be calculated from the “measured” overall consumption rates, 

which are calculated from the steady state balances Eqs. A3‐A7 (where the subscript m 

indicates the measurements from experiments) for the substrates: 

( ) ( ), , , ,
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where the dilution rate is equal to the specific growth rate in steady‐state: 

SF
D µ

V
= =          A11 

Figure A1 shows that the yield and maintenance coefficients for substrate consumption are 

constant and independent of the specific growth rate. 

The Monod constants are estimated by minimisation of the normalized squared model error 

E for a steady‐state situation: 

2 2mod mod

1 1
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∑ ∑
   A12 

Figure A2 shows that the dual substrate model fits well the measurements. The estimated 

parameters are summarized in Table 1. 

The presented model Eqs. A1‐A9 is based on primary substrates. Accumulating metabolites 

or waste products (e.g. acetoacetate), however, may affect growth and should then be part 

of the model. NMR measurements, performed to detect accumulation of metabolites or 

waste products in the supernatant of the cultivation broth, showed that such components 

were absent at any specific growth rate. 

 

Figure A1. Specific glutamate and lactate 

consumption rates as function of specific growth 

rate for calculation of the overall yields as in Pirt, 

1982 (YG
ov = 0.168 and YL

ov = 0.101). 
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Table A1. Yields and maintenance coefficients for the dual substrate model of B. pertussis 

 This work Literature (Neeleman et al. 2002) 

YG1  ‐  0.055 OD.mmol‐1 

YG2   0.048 OD.mmol‐1 0.061 OD.mmol‐1 

YL 0.032 OD.mmol‐1 0.018 OD.mmol‐1 

mG  0.15 mmol.OD‐1.h‐1 0 mmol.OD‐1.h‐1 

mL  0.26 mmol.OD‐1.h‐1 0 mmol.OD‐1.h‐1 

KG 5.10‐3 mmol.l‐1 0.5 mmol.l‐1 

KL  1.10‐5 mmol.l‐1 0.5 mmol.l‐1 

YO  0.033 OD.mmol‐1 0.041 OD.mmol‐1 

mO  0.69 mmol.OD‐1.h‐1 0.41 mmol.OD‐1.h‐1 

aFHA 72 µg.OD‐1 ‐ 

bFHA 0.46 µg.OD‐1.h‐1 ‐ 

aPT 1.49 µg.OD‐1 ‐ 

bPT 0.025 µg.OD‐1.h‐1 ‐ 

aLPS 3.37 nmol.OD‐1 ‐ 

bLPS 0.17 nmol.OD‐1.h‐1 ‐ 
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CHAPTER 8 

Conclusions & Perspectives 

 

Conclusions 

In biopharmaceutical manufacturing quality of the product is currently tested at the end of 

the production process only. Bioprocesses naturally contain variability due to the raw 

materials, initial conditions, human intervention, and varying properties of the micro‐

organism. By setting fixed protocols the current GMP regulations do not encompass the 

reduction of these deviations. This leads to products containing a considerable amount of 

variability, and possibly out of specifications. Recently the FDA released guidelines on 

process analytical technology (PAT) (FDA, 2004) ‐ a framework for innovative pharmaceutical 

development, manufacturing, and quality assurance ‐ in which they stress the need for 

reducing variability and aim at improving manufacturing processes by introducing timely 

measurement and control of quality variables.  

In different parts of science the word “control” has different meanings (Wold, 2006). In the 

world of process analytical technology or statistical process control “control” often means 

“check” whether the process is still within the desired specifications by means of monitoring 

or classifying the process. In the engineering sense “control” means ensure that the process 

stays close to the predefined set‐points or trajectories. Wold (2006) also states that “PAT 

process control” in the engineering sense is still a challenge of the future.  

Although such control technologies may still be a challenge using spectroscopic 

instrumentation often associated with PAT, control in the engineering sense is already 

available for PAT (Soons et al., 2006; Gnoth et al., 2007). 

This thesis is a step forward to real‐time feedback control for PAT by modelling, monitoring, 

and controlling biomass and product formation of the cultivation step of Bordetella pertussis 

for the production of bulk whole cell whooping cough vaccine towards desired quality 

specifications and enhanced batch‐to‐batch consistency. This answers to the five research 

questions formulated in chapter 1 are summarized below. They were obtained by combining 

different techniques from a multidisciplinary field of systems and control theory, biology, 

and chemometrics. The research questions and solutions are summarized in the following 

sections. 
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How to improve monitoring of complex bioprocesses? 

An advanced technique has been developed and evaluated to enhance bioprocess 

monitoring by reconstructing biomass and specific growth rate. The software sensor is 

sensor based on a standard and cheap dissolved oxygen probe and is evaluated in 

comparison to another advanced technology, spectroscopy based on a dedicated near 

infrared sensor. 

o Software sensor. The software sensor monitors the specific growth rate and biomass 

in real‐time, which can not be measured online due to the lack of suitable sensors. 

The software sensor is based on an Extended Kalman Filter that combines standard 

measurements of the oxygen uptake rate with a generic model for biomass growth to 

observe the otherwise unknown biomass growth while reducing the effect of 

measurement noise. Tuning is based on simulations with a worst case scenario for 

measurement noise and guided by stability criteria, such that the software sensor 

accurate, robust, and is widely applicable. Biomass and specific growth rate are 

accurately estimated over the whole operating range from low to high biomass 

concentrations during fed‐batch cultivations. Offline biomass measurements are 

incorporated to improve and safeguard the biomass estimation and to observe the 

effect of biomass growth on the oxygen transfer coefficient. This ability offers 

potential for high cell density cultivations, in which kLa will drastically decrease due 

to blanketing effects. 

o Near infrared spectroscopy. Near infrared spectroscopy is a technique often 

associated with PAT to enhance process monitoring. The interpretation of near 

infrared spectra is challenging due to the large number of wavelengths recorded and 

the overlapping absorbance features of near infrared spectroscopy. A controlled 

random search procedure selects an optimal window of wavelengths, which is used 

in the partial least squared routine to regress on the biomass measurements. The 

proposed wavelengths selection procedure outperforms the traditional calibration 

procedures by enhancing the prediction accuracy of biomass in real‐time. The near 

infrared predictions depend on the quality of the training dataset, which needs to 

encompass all possible sources of temporal disturbances like pH and dissolved 

oxygen.  

The option to use both sensors is attractive in practice to safeguard against sensor failure. 

Considering the current limitations of near infrared monitoring and the challenges to be 

solved, such as a fixed path length, a linear PLS model, and a limited number of batches, at 
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present the software sensor is the preferred choice for monitoring and feedback control of 

biomass and specific growth rate. 

 

How can the cultivation process be controlled at a desired level while coping with the 

nonlinear and time‐varying characteristics of bioprocesses? 

The control aim was to track the set‐point for specific growth rate by adding a feed with 

limiting substrates. Using the laws of model‐reference control in combination with a dual 

substrate model for biomass growth, a stable adaptive “PI” controller was derived. The 

controller settings are adapted to the changing process dynamics (volume, biomass, and set‐

point for specific growth rate) in order to cope with the time‐varying characteristics of fed‐

batch processes. Tuning based on a combination of deviations in specific growth rate and 

dissolved oxygen leads to bioreactor control without interactions between specific growth 

rate and dissolved oxygen controller.  

Experiments showed that the controller performance was good for its ability to cope with 

time‐varying kinetics and states, noise, and external disturbances. Enhancing the standard 

batch cultivation with a fed‐batch phase yielded a six times higher biomass yield and a 

constant and high antigen activity of the bulk vaccine. The controller, therefore, contributes 

to enhanced batch‐to‐batch consistency and quality. So being a step forward to “PAT 

process control”, “PAT process control” is less a challenge of the future than commonly 

believed. 

 

How to automate controller tuning? 

The challenge was to upgrade performance of poorly acting controllers automatically and 

thereby reducing the tuning effort. Automating controller tuning may facilitate non‐

professionals to work with advanced controllers. Three automatic tuning methods were 

applied to upgrade control performance for specific growth rate control during fed‐batch 

cultivation. We expect that a cultivation controlled at the desired specific growth rate will 

result in smaller variations in end quality (vaccine titer) and thus yield a better product 

(vaccine). The best two methods were qualified by laboratory experiments for B. pertussis. 

The methods do not require online identification, thus avoiding the need for process 

perturbation and complex implementation. Control performance is evaluated online on the 

basis of the current mean absolute error and oscillation measure. If control performance is 

poor, application of automatic tuning yields good performance within five hours by adapting 
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the controller parameters such that the mean absolute error and oscillation measure 

decrease at least ten‐fold. The closed loop with automatic tuning is stable at any point along 

the trajectory of fed‐batch cultivation.  

 

What set‐points are needed to obtain the best‐quality vaccine? 

The quality of whole cell whooping cough vaccine is based on the presence of outer‐

membrane proteins that are important for inducing a protective immune response. While 

modelling of the synthesis of complex products and processes is uncommon and difficult, an 

attempt was made to model the expression of virulence factors by enhancing an existing 

model for the cultivation of B. pertussis for the production of whole‐cell vaccine against 

whooping cough. The data and model suggest that the formation rate of virulence factors is 

proportional to the specific growth rate; and thus that a high specific growth rate (µ ≥ 0.08 h‐

1) is favourable for required vaccine quality, in the sense of high contents of virulence factors 

per cell and relatively low content of the undesired lipopolysaccharide component.  

The choice of the required specific growth rate to produce the best quality vaccine depends 

on multiple objectives like: maximize virulence factors per cell and/or the total amount of 

virulence factors to induce protection, minimize lipopolysaccharide content to minimize side 

effects, maximize biomass in minimum time to safe time and costs, etc. Modelling the 

formation of virulence factors opens perspectives for online or offline use to design feed 

strategies during the cultivation and to optimize the quality of the vaccine using an objective 

function that weight different quality aspects. In this way, a more science‐based method for 

producing vaccines can be developed, meeting the demands of the FDA’s PAT initiative to 

improve the production process by online monitoring and control of product quality. 

 

Can the developed monitoring & control tools be applied to cultivation on production‐

scale? 

Monitoring and control systems in biotechnology are usually designed and tested in 

laboratory‐scale experiments. Application on production‐scale is limited in literature. In 

scaling‐up from laboratory to pilot‐scale and beyond two problems are encountered for 

which solutions have been worked out. The presence of a headspace in the bioreactor and 

tubing to the analyzer cause mixing effects and delays. Incorporating the gas phase dynamics 

in the monitoring system gives up to 30% more accurate observations of the oxygen 

consumption and biomass growth. Using models which contain system‐relevant parameters 
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that can be easily obtained from the equipment specifications enhances the applicability of 

the method. The other issue is whether the application of the observer and controller for 

biomass growth developed for small‐scale cultivation processes is applicable to pilot‐scale 

cultivation. It appeared that the observer and controller could be applied directly to the 

larger‐scale cultivation without any modifications. So, the observer and controller are 

independent of scale and micro‐organism. The monitoring and control system for (fed‐)batch 

cultivation shows good performance and enables an at least doubled concentration of bulk 

vaccine on pilot‐scale compared to the standard batch production process in a controlled 

manner. So a more favourable upstream production method for vaccines. 

 

Perspectives 

The potency of vaccines is mainly determined in the cultivation step of the micro‐organisms, 

in which the bulk product is formed. Currently vaccines are released on the basis of potency 

and safety tests on the final vaccine lots. In Europe, approximately 1.5 million laboratory 

animals are being used for routine quality control of vaccines (Metz et al., 2002). 

Manufacturers, regulatory authorities, and ethical commissions wish to reduce animal use, 

because of drawbacks like costs, imprecision, and ethical concerns. Metz (2005) proposes to 

minimize animal tests by developing in vitro tests using physiochemical and 

immunochemical techniques as an alternative for the in vivo potency test; Streefland et al. 

(2007) by developing DNA arrays to asses quality indicators at the end of the cultivation. 

Another development to reduce animal tests in the future is parametric release, or real‐time 

release on the basis of online monitored and controlled key variables. Critical variables must 

be defined that correlate well with product quality and that can be accurately monitored 

and controlled online, such that quality of the product at the end of the process is 

guaranteed. Subsequently the bulk product can be released for the next step. This thesis is a 

first step in real‐time monitoring and control towards high quality and consistently produced 

vaccines. Some further opportunities for improvements in biopharmaceutical manufacturing 

are discussed below. 

 

Modelling towards control of vaccine quality 

The model for formation of virulence factors developed in this thesis opens perspectives for 

online or offline use to design feed strategies during the cultivation and to optimize the 

quality of the bulk vaccine. Specific growth rate may be one critical variable for release, but 
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surely there are more critical variables determining vaccine quality. Other variables that can 

be monitored online, which influence the formation of virulence factors are e.g. dissolved 

oxygen, pH, and osmolarity. The effect of these variables on the expression of the virulence 

factors on gene and protein level is valuable for the vaccine quality model. The extended 

model has the potential to be the basis for an enhanced software sensor and feedback 

control towards higher consistency and quality. Moreover, the integration of data on gene 

expression, protein formation, and metabolites will allow insight into the systems properties, 

prediction of perturbation effects, prediction of responses on certain set‐points, and gains 

insight in preferred feedback control strategies. 

 

Enhanced monitoring 

Release on the basis of online monitored variables requires a high accuracy and robustness 

in monitoring in order to prevent release of unsatisfactory products or decline of good 

products. In view of this purpose and in view of feedback control, the accuracy of biomass 

estimation from near infrared spectroscopy must be enhanced. Potential improvements of 

accuracy and robustness may be obtained by incorporating dissolved oxygen and pH as 

independent factors in the regression, perhaps in combination with nonlinear regression 

methods based on a larger number of batches that contain the natural variability of 

biological processes. 

Near infrared spectroscopy is based on molecular overtone and combination vibrations. 

Although an advantage of near infrared is that the near infrared light typically penetrates 

much further into a sample, the absorbance of specific chemical components at a given 

wavelength is weak. Due to the complexity of the near infrared spectra it can be difficult to 

calibrate specific components. Mid infrared spectroscopy is based on fundamental vibrations 

associated with the rotational‐vibrational structure. The absorbance of specific components 

at a given wavelength is stronger for mid infrared spectroscopy and may therefore be 

promising for biomass monitoring. 

The near infrared sensor is often mentioned as the ideal sensor to monitor quality 

performance of the process. None of the currently available sensors, however, can directly 

measure product quality in real‐time. Vaidyanathan et al. (2001) observed that low 

concentrations of protein can only be successfully modelled by using the filtrates and not 

whole broth measurements due to the dominance of the biomass absorbance that overlaps 

the protein absorbance. We doubt whether near infrared is suited for directly monitoring of 

virulence factors (attached to the biomass), essential for quality of vaccines. But comparing 
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the course of the process with known qualities can indirectly predict whether the process is 

within specifications. This could be used together with an enhanced software sensor that 

predicts formation of virulence factors on the basis of measurements from standard sensors.  

 

Pilot‐scale fed‐batch vaccine production 

Approximately 1x107 doses of vaccine are necessary to vaccinate the Dutch child population 

in one year. So far, most vaccines are produced in large‐scale bioreactors (>1000L) by means 

of batch cultivation. According to the draft European guidelines for whole cell pertussis 

vaccine, bacterial concentration should not exceed 1 OD per single human dose 

(Anonymous, 2007). This means that one production run at large‐scale (method 1 in table 1) 

would yield sufficient bulk whooping cough doses to vaccinate all young children in the 

Netherlands in one year. This is a highly inefficient way of producing vaccines: the down‐

time is high compared to the running time. Moreover, this production method may cause 

problems to meet the GMP guidelines, because difficulties may arise to maintain skills and 

experience of the production personnel to properly perform the cultivations if so few runs 

are performed every year; and because the equipment has to be reconstructed and carefully 

cleaned to be able to produce different products throughout the year with potentially a 

higher risk of cross‐contamination. Moreover, large‐scale production may lead to increased 

inhomogeneity due to large mixing times.  

Alternatively, nine controlled pilot‐scale fed‐batch cultivations, as developed in this thesis, 

would be necessary (method 2), or three runs using an improved process, where the oxygen 

transfer coefficient is increased by using sparger instead of headspace aeration (method 3). 

In view of the efficient use of the bioreactor, method 2 and 3 are more profitable than the 

traditional batch cultivation on production‐scale, still allowing possibilities for vaccine 

production for larger markets if more pilot‐scale runs are performed.  

So, the combination of enhancing an existing process with controlled fed‐batch cultivation 

with the achievement of higher yields of bulk vaccine on pilot‐scale in a controlled way gives 

a favourable upstream production method for vaccines. Whooping cough vaccine was shown 

as an example in the foregoing. Many more biopharmaceuticals may profit from the 

cultivation methods proposed in this thesis. 
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Table 1. Cultivations strategies. Data for method 1 and 2 are obtained from real cultivations, data for method 3 

are extrapolated from small‐scale experiments. 

Reactor (cultivation 

broth) volume [l] 

End biomass [OD] Doses of vaccine Number of 

required runs 

Method 

1200 (800) 1.6 1.3x107 1 1. Batch  

60 (35) 3.5 1.2x106 9 2. Fed‐batch  

(headspace aeration) 

60 (40) 10 4.0x106 3 3. Improved fed‐batch 

(sparger aeration) 
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SUMMARY 
In traditional biopharmaceutical production quality of the product is currently tested at the 

end of the production process only. In Europe, approximately 1.5 million laboratory animals 

are being used every year for routine quality control of vaccines. Manufacturers, regulatory 

authorities, and ethical commissions wish to reduce animal use, because the high costs, 

imprecision of the tests, and ethical concerns.  

Bioprocesses are characterised by natural variability in the raw materials, initial conditions, 

human intervention, and varying properties of the micro‐organism. By setting fixed protocols 

the current “Good Manufacturing Practice” (GMP) regulations do not encompass the 

reduction of these deviations. This leads to products that have a variable quality, and are 

even sometimes out of specifications. Recently the Food and Drug Administration (FDA) 

released guidelines on process analytical technology (PAT), a framework for innovative 

pharmaceutical development, manufacturing, and quality assurance, in which they stress the 

need for reducing variability in the end‐products and aim to improve manufacturing 

processes by introducing timely measurements and control of quality variables.  

This thesis intended to be a step forward to real‐time feedback control for PAT by modelling, 

monitoring, and controlling biomass and product formation towards the desired 

specifications, enhanced batch‐to‐batch consistency, and ultimately release on the basis of 

online monitored and controlled key variables. As an example the cultivation of Bordetella 

pertussis is chosen for the production of bulk whole cell whooping cough vaccine.  

This thesis addresses five research questions. The answers are obtained by combining 

different techniques from a multidisciplinary field of systems and control theory, biology, 

and chemometrics.  

 

How to improve monitoring of bioprocesses? 

The specific growth rate and biomass formation are important variables that we would like 

to control during the cultivation of bacteria for vaccine production. This is particularly 

important when the produced bacteria form the basis of a whole cell vaccine like whooping 

cough. Biomass growth, however, can not be measured online, because there are no 

suitable sensors. In this thesis, two advanced techniques have been developed and 

evaluated for the whooping cough application to enhance bioprocess monitoring: 
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o Software sensor. The software sensor estimates biomass growth on the basis of a 

generic model and standard measurements of oxygen consumption. This software 

sensor accurately observes biomass growth over the whole range from low to high 

biomass concentrations during different types of cultivation (batch, fed‐batch, and 

continuous cultivations). Offline biomass measurements can be incorporated to 

improve the accuracy of the biomass estimation, to safeguard the estimation, and to 

observe the effect of biomass growth on the oxygen transfer coefficient. This 

developed software sensor offers potential for high cell density cultivations, in which 

the oxygen transfer coefficient is drastically affected. 

o Near infrared spectroscopy. The near infrared sensor generates spectra at a high 

sampling rate during the cultivation that contain wavelengths between 833 and 2500 

nm. The evolution of these spectra contains information on the evolution of the 

cultivation process of the bacteria that are the basis of the final vaccine. The 

interpretation of these spectra is challenging due to the large number of wavelengths 

and due to the overlapping absorbance bands of specific components. In this thesis 

an advanced method is proposed that allows automatic selection of wavelengths that 

contain relevant information on the biomass concentration. The automatic 

wavelengths selection outperforms the traditional procedures for near infrared 

monitoring, thus enhancing the accuracy. A drawback of near infrared monitoring is 

the sensitivity for temporary disturbances in the process conditions like pH and 

dissolved oxygen. In order to enclose these in the calibration, the training dataset 

should encompass this kind of variability.  

The option to use both sensors is attractive in practice to safeguard against sensor failure. 

Considering the current limitations of near infrared monitoring and the challenges to be 

solved, the software sensor is the preferred choice for monitoring and feedback control of 

biomass growth. 

 

How can the cultivation process be controlled at a desired level?  

Control of bioprocesses is a difficult task due to the time‐varying characteristics of 

cultivation processes, from low to high biomass concentrations and from low to high oxygen 

and substrate consumption. The controller actions need to be adjusted to these changes to 

successfully control the process. Hence the challenge was to control the specific growth rate 

at a constant set‐point by adding substrates in such a way that the feed rate is low at the 
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start and high at the end of the cultivation to cope with the increasing demands for 

substrates. 

By combining a dual substrate model for biomass growth with specifications on the 

controller behaviour (a reference model), a controller is derived that adapts its settings in 

response to time‐varying conditions. Consequently it is possible to extend the standard 

batch cultivation with a controlled fed‐batch phase, what yields an up to six times higher 

biomass concentration and a constant and high antigen activity of the bulk vaccine, as is 

shown in experiments The controller, therefore, contributes to enhanced batch‐to‐batch 

consistency and quality.  

 

How to automate controller tuning? 

The challenge was to upgrade performance of poorly acting controllers automatically 

thereby eliminating the manual tuning effort. Automating controller tuning may facilitate 

non‐professionals to work with advanced controllers. For this purpose, three automatic 

tuning methods are tested in simulations. The best two methods are qualified by laboratory 

experiments for B. pertussis. The methods do not require identification procedures, which 

are often required to automate tuning, thus avoiding the need for process perturbation. The 

settings of the controller are automatically adapted such that controller performance 

improves up to ten times for a process that was not or badly tuned in advance. We expect 

that a cultivation controlled at the desired specific growth rate will result in smaller 

variations in end quality (vaccine titer) and thus yield a better product (vaccine). 

 

What set‐points are needed to obtain the best‐quality vaccine? 

The quality of whole cell whooping cough vaccine is based on the presence of virulence 

factors, outer‐membrane proteins that are important for inducing a protective immune 

response. To obtain an indication how the formation of these virulence factors depend on 

biomass growth a series of experiments has been done in which the set‐point for specific 

growth rate was varied. While modelling of the synthesis of complex products and processes 

is uncommon and difficult, we attempted to model the expression of three virulence factors 

by enhancing an existing model for biomass formation. The data and model suggest that 

vaccine quality is not deteriorating with increasing growth rate over the investigated range, 

and thus a high growth rate can be selected to achieve a high productivity. 
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The final choice of specific growth rate to produce the best quality vaccine depends on 

multiple objectives like: maximize virulence factors per cell and or per volume to induce 

protection, minimize lipopolysaccharide to minimize side effects, maximize biomass in 

minimum time to safe time and costs, etcetera. The model for formation of virulence factors 

presented here is a very first step towards more insight. It must be further scrutinized by 

more experimentation, modification and adjustment on the basis of additional experimental 

evidence. However, as has been demonstrated in this thesis, once this has been done, the 

availability of such a model opens perspectives to design feed strategies during the 

cultivation and to optimize the quality of the vaccine using an objective function to weight 

the different quality aspects. 

 

Can the developed monitoring & control tools be applied on production‐
scale? 

Monitoring and control systems in biotechnology are usually designed and tested in 

laboratory‐scale experiments. Application on production‐scale is limited in literature and 

also the preceding aspects (1‐4) in this thesis have been done at small‐scale. To make the 

applicability to production‐scale plausible, two issues encountered in the implementation of 

the monitoring and control system to larger scale have been worked out. The first issue is 

the adjusted calculation for oxygen consumption on large‐scale, the starting point for online 

monitoring and control. This issue needs special attention, because the headspace and 

tubing cause deviations from the real oxygen consumption. The standard method, which 

does not take the headspace and tubing into account, gives an erroneous result which may 

go up to 30% of the value. The new method, which corrects for the dynamic effects, gives 

correct results. The second issue is the actual application of the observer and controller for 

biomass growth to pilot‐scale cultivation. Enhancing the traditional batch cultivation with a 

controlled fed‐batch phase enables an at least doubled concentration of bulk vaccine on 

pilot‐scale compared to the standard batch production process. So a more favourable 

upstream production method for vaccines. 
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SAMENVATTING 
In traditionele biopharmaceutische productie wordt productkwaliteit tot nu toe alleen getest 

in het eindproduct. Jaarlijks worden voor een aantal testen ongeveer 1,5 miljoen 

proefdieren gebruikt ten einde de veiligheid en werkzaamheid vast te stellen. Veel mensen 

en instanties zien graag een vermindering in het gebruik van dierproeven vanwege de hoge 

kosten, onnauwkeurigheid van de testen en ethische bezwaren.  

Bioprocessen worden gekenmerkt door natuurlijke variatie in de grondstoffen, initiële 

condities, menselijke interventie en variërende eigenschappen van het micro‐organisme. De 

huidige “Good Manufacturing Practice” (GMP) voorschriften proberen deze variatie binnen 

de perken te houden door vaste protocollen te gebruiken, maar anticiperen aldus niet op 

mogelijkheden de effecten van de afwijkingen te verminderen of te elimineren. Dit leidt in 

de praktijk tot producten met een aanzienlijke variatie in kwaliteit en producten die mogelijk 

niet binnen de specificaties vallen. Onlangs heeft de Food and Drug Administration (FDA) 

richtlijnen gepubliceerd, een raamwerk voor innovatieve farmaceutische ontwikkeling, 

productie en kwaliteitswaarborging, dat algemeen wordt aangeduid met PAT (Proces 

Analytische Technologie). Hierin beklemtonen zij de behoefte om variatie in de 

eindproducten te verminderen en pleiten zij voor verbeterde productieprocessen door het 

introduceren van vroegtijdige metingen en controle van kwaliteitsvariabelen.  

Dit proefschrift beoogt een stap voorwaarts te zijn in de richting van online 

procesbeheersing via modelleren, monitoren en controleren van biomassa‐ en 

productvorming, teneinde de gewenste kwaliteitsspecificaties en verbeterde consistentie te 

bereiken en uiteindelijk vrijgave op basis van sleutelvariabelen die tijdens het proces 

waargenomen en geregeld worden. Als voorbeeld is de cultivatie van Bordetella pertussis 

gekozen voor de productie van bulk cellulair kinkhoest vaccin.  

Dit proefschrift gaat in op vijf onderzoekvragen. De antwoorden zijn verkregen door 

verschillende technieken te combineren uit een multidisciplinair gebied van systeem‐ en 

regeltheorie, biologie, en chemometrics.  

 

Hoe kan het monitoren van bioprocessen verbeterd worden? 

De specifieke groeisnelheid en biomassavorming zijn belangrijke variabelen die we graag 

willen regelen tijdens het kweken van bacteriën voor vaccinproductie. Dit is vooral van 

belang wanneer de geproduceerde bacteriën de basis zijn van een cellulair vaccin zoals 
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kinkhoest. Biomassagroei kan echter niet online gemeten worden, omdat er geen geschikte 

sensoren zijn. In dit proefschrift zijn voor de kinkhoest applicatie twee technieken 

ontwikkeld en geëvalueerd om het monitoren van biomassagroei te verbeteren:  

o Software sensor. De software sensor schat de biomassagroei op basis van een 

generiek model en standaard metingen van het zuurstofverbruik. Deze software 

sensor observeert de biomassagroei nauwkeurig over het hele bereik van lage naar 

hoge biomassaconcentratie tijdens verschillende types cultivatie (batch, fed‐batch en 

continu‐kweken). Om de schatting te verbeteren, als waarborg en om het effect van 

biomassagroei op de zuurstofoverdracht tijdens de kweek te weten te komen, 

kunnen offline biomassametingen toegevoegd worden. De ontwikkelde software 

sensor biedt perspectief voor kweken met hoge celdichtheden met variabele 

zuurstofoverdracht.  

o Nabij‐infrarood spectroscopie. Met behulp van een nabij‐infrarood sensor kunnen 

tijdens de kweek met een hoge frequentie spectra gegenereerd worden die bestaan 

uit golflengten tussen 833 en 2500 nm. Het verloop van deze spectra bevat 

informatie over het verloop van het kweekproces van de bacteriën die uiteindelijk 

het vaccin vormen. De interpretatie van de spectra is uitdagend door het grote aantal 

golflengten en doordat er overlap is van de absorptiebanden van specifieke 

componenten. In dit proefschrift is een geavanceerde methode uit de literatuur 

voorgesteld om automatisch golflengten te selecteren die relevante informatie 

bevatten. Automatische selectie verbetert de standaard procedures voor nabij‐

infrarood monitoren door een verhoogde nauwkeurigheid. Een nadeel van nabij‐

infrarood monitoren is de gevoeligheid voor tijdelijke verstoringen in de 

procescondities pH en opgeloste zuurstof. Om deze in de callibratie te kunnen 

meenemen, moeten in de training dataset al dit soort variaties aanwezig zijn. 

Het gebruik van twee verschillende sensoren kan complementaire informatie opleveren en 

daarmee de kweek waarborgen als één sensor faalt. Gezien de huidige beperkingen van 

nabij‐infrarood monitoren en de nog niet aangegane uitdagingen om monitoren verder te 

verbeteren, is op dit moment voor monitoren en regelen van biomassagroei de software 

sensor beter geschikt. 

 

Hoe kan het kweekproces geregeld worden op een gewenst niveau? 

Het regelen van bioprocessen is een lastige taak, omdat de omstandigheden veranderen 

tijdens het kweekproces, van weinig naar veel biomassa en van lage naar een hoge zuurstof‐ 
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en substraatconsumptie, en de regelaaracties hierop dienen te worden aangepast om het 

proces succesvol te regelen. De uitdaging was dan ook de specifieke groeisnelheid van de 

bacteriën te regelen door het toevoegen van substraten zodanig dat de groeisnelheid 

constant is. Deze toevoersnelheid van substraten dient laag te zijn aan het begin en hoog 

aan het eind van de kweek om het hoofd bieden aan de toenemende biomassa en 

substraatbehoefte.  

Door een model voor biomassagroei op twee substraten te combineren met specificaties 

over het regelaargedrag (een referentiemodel) is een regelaar afgeleid die in staat is zijn 

instellingen aan te passen aan de variabele omstandigheden. Daardoor is het mogelijk het 

standaard batch proces te verlengen met een geregelde fed‐batch fase, wat een tot zes keer 

zo hoge opbrengst oplevert en een constante en hoge antigeen activiteit van het bulkvaccin, 

zoals experimenten hebben laten zien. De adaptieve regelaar draagt daarmee bij aan een 

verhoogde consistentie en kwaliteit.  

 

Hoe kan een regelaar ontworpen worden zodat de instelling gedaan kan 
worden door non‐professionals? 

De uitdaging was om de prestatie van slechte regelaars of niet‐ingestelde regelaars 

automatisch in te stellen en daarbij de inspanning van het handmatig instellen van regelaars 

te sparen. Hiertoe zijn drie methoden uitgetest in simulaties. De twee beste methoden zijn 

gevalideerd in labexperimenten met B. pertussis. De methoden vereisen geen 

identificatieprocedures, zoals vaak nodig bij automatisch instellen, en vermijden daarmee de 

noodzaak tot verstoring van het proces. De instellingen van de regelaar worden automatisch 

aangepast zodanig dat de regelprestaties tot wel tien maal verbeteren bij een vooraf slecht 

of niet ingesteld proces. Op basis van de online geëvalueerde regelaarprestaties kan beslist 

worden of er (extra) auto‐tuning nodig is of dat het instellen klaar is en het proces met de 

huidige instellingen uitgevoerd kan worden in een volgende run. We verwachten dat een 

cultivatie die automatisch en goed geregeld is op het gewenste setpoint zal resulteren in 

kleinere variaties in vaccinkwaliteit en een beter product.  

 

Welke setpoints leiden tot de beste vaccinkwaliteit? 

De kwaliteit van cellulair kinkhoest vaccin is gebaseerd op de aanwezigheid van 

virulentiefactoren, eiwitten op het buitenmembraan van de B. pertussis bacterie, die 

belangrijk zijn voor het opwekken van een beschermende immuunrespons. Om een indicatie 
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te verkrijgen hoe de vorming van deze virulentiefactoren afhangt van de biomassagroei zijn 

een aantal experimenten uitgevoerd waarin het setpoint voor de specifieke groeisnelheid is 

gevarieerd. Hoewel het modelleren de vorming van complexe producten en processen 

zeldzaam en moeilijk is, hebben wij een poging gedaan de vorming van een drietal 

virulentiefactoren te modelleren door een bestaand model voor biomassavorming uit te 

breiden. De data en het model suggereren dat een vaccinkwaliteit niet verslechtert met een 

toenemende specifieke groeisnelheid in het onderzochte bereik; en dus dat een hoge 

specifieke groeisnelheid gekozen kan worden om hoge productiviteit te bereiken. 

De uiteindelijke keuze van het (verloop van het) setpoint hangt af van verschillende doelen 

als: maximaliseren van virulentiefactoren per cel of per volume om een goede 

immuunrespons te induceren, minimaliseren lipopolysaccharide tegen bijwerkingen, 

maximaliseren van de biomassa om tijd en geld te besparen, etc. Het model voor vorming 

van virulentiefactoren kan perspectieven openen om de setpoints zo in te stellen en dat de 

kwaliteit van het vaccin geoptimaliseerd wordt door gebruik te maken van een doelfunctie 

die de verschillende kwaliteitsaspecten meet.  

 

Kunnen de ontwikkelde monitor‐ & controletechnieken toegepast worden 
op productieschaal? 

Over het algemeen worden de technieken om bioprocessen te monitoren en te beheersen 

ontworpen en uitgetest op laboratoriumschaal. De toepassing op productieschaal is 

gelimiteerd in de literatuur en ook de voorgaande aspecten (1‐4) in dit proefschrift zijn 

uitgevoerd op kleine schaal. Om toepasbaarheid op productieschaal aannemelijk te maken, 

zijn twee kwesties onderzocht die zich voordoen bij de implementatie op grotere schaal van 

een monitor‐ en controlesysteem. De eerste kwestie is een aangepaste berekening van het 

zuurstofverbruik op grote schaal, het uitgangspunt voor online monitoren en controle. Deze 

kwestie krijgt speciale aandacht, omdat de headspace en andere apparatuur zorgt voor 

verstoringen in de meting van het echte zuurstofverbruik. De nieuwe methode reduceert de 

fout in de berekening van het zuurstofverbruik tot 30%. De tweede kwestie is het 

daadwerkelijk toepassen van het online monitoren en regelen van het productieproces voor 

kinkhoest op pilotschaal. Tijdens de experimenten is een verdubbelde concentratie van bulk 

vaccin op pilotschaal bereikt vergeleken met het traditionele proces op productieschaal, wat 

leidt tot een gunstigere methode voor vaccinproductie. 
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                      (ECTS) 
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Model predictive control   2005   2.8 

Practical training performing Bioreactor cultivations  2004   2.8 

Symposium enhanced whooping cough vaccine  2005   0.3 

Seminar A Turn‐Key Solution for PAT, Copenhagen  2005   0.3 

Bioprocess engineering course (Croatia)  2006   2.0 

Benelux meeting   2005, 2006 3.0 

Computer Applications in Biotechnology, Mexico  2007   1.5 

Chemical Process Control 7, Canada  2006   1.5 

Control theory for systems biology  2007   0.9 

Netherlands Biotechnology congress  2006   0.6 

Poster presentation   2004   0.6 

DISC day Delft 

 

General courses  

Techniques for writing and presenting a scientific paper  2005         1.4 

Organizing and supervising thesis work  2005   0.7 

Personal efficacy   2006   0.6 

“Veilige Microbiologische Technieken”  2006   0.6 

Good Manufacturing Practice  2005   0.3 
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Biomedical Symposium, Wageningen  2006   0.3 

Food quality management   2004   6 
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