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Chapter 1
Introduction

1.1 Robustness

Consider a wooden table with 4 table legs, each with a diameter of 20 cm and a table
top that is 10 cm thick. There are 10 persons sitting at the table, telling jokes and
having a good time with beer and wine. Suppose that the uncontrollable factors such
as bumping and pushing against the table, hardly moves the table. The table can be
called robust, since the desirable table properties such as stability and maximum weight
support appear not sensitive to the considered uncertainties. Consider a similar table,
where the mentioned dimensions are twice as big. The latter table is probably more
robust. Apparently an object can have some level of Robustness, since some objects can
be more robust than others.

Although the described wooden table is robust in the context of a party, a plastic table
is probably more robust in the context of outdoors weather conditions. The Robustness
of an object’s required properties, is context and purpose dependent.

As another example, consider a container of yoghurt. Typically the container is stored
in the refrigerator, but is warming up towards room temperature when it is outside the
refrigerator. The daily cycle of cooling down and warming up can have an effect on the
structure of the yoghurt, such that over time the yoghurt does not look appealing anymore.
A yoghurt product which appears not to be affected by temperature fluctuations can be
called robust. A yoghurt product which maintains the desirable properties for the widest
range of temperature fluctuations has the highest Robustness.

The concept of Robustness is often associated to physical objects. In principle the
Robustness concept can also be associated to non-physical objects. Consider a government
policy as the subject of interest. A government can design a policy for reducing CO2

emissions, such that the emissions in 2008 until 2012 are on average 6% lower than in
1990. In this policy-making it is sensible to take into account all sorts of uncertainties,
for instance related to climate change and economic growth. Under the assumption that
there are alternative policies to reach the goal of 6% emission reduction, it is interesting
to know which policy is least sensitive to the perceived uncertain factors, i.e. which policy
is most robust.

Another example of a non-physical object is a long-term transportation plan. In
general, the motivation to design a transportation plan is to satisfy supply and demand
quantities in time at minimal cost. While designing a transportation plan for the long-
term, it is sensible to take into account uncertainties in traffic congestion, fuel prices
and customer demand. In this context, the Robustness of a transportation plan is two
fold: (i) the Robustness of satisfying the demand, supply and timing constraints ; (ii) the
Robustness of minimal total cost objective.

Consider object qualities such as safety, reliability, stability and security. All these
object qualities can be seen as to what extent an object maintains required properties
under influence of uncertain factors. For the general case, Robustness of an object is a
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INTRODUCTION

measure for the insensitivity of required object properties to uncertain factors. In Chapter
2, the Framework of Robustness Programming is defined. The framework is intended as
a generalisation for the mathematical definition of Robustness optimisation problems,
inspired by similar problem formulations as can be found in Nie and Ellingwood (2000);
Franchin et al. (2002); Parkinson et al. (1993); Du and Chen (2000).

1.2 Probabilistic Robustness

Robustness is related to uncertain uncontrollable factors. There exist alternative mod-
elling paradigms for modelling uncertainty and each gives rise to alternative measures for
Robustness. For instance, Taguchi (1986) and Markowitz (1952) implicitly model Ro-
bustness by only considering the mean and variance statistics. Ben-Tal and Nemirovski
(2002) use a binary approach: an object is either robust or not, i.e. an object either
maintains its properties as required under all possible conditions or not.

A common approach in science for modelling uncertainty, is studied in the science field
called Probability Theory (Ghahramani, 2000; Grimmett and Stirzaker, 2001; Jacod and
Protter, 2004). In Probability Theory, the notions random vector and probability space
are formally introduced, which can be used to model a collection of uncertain events.
The general notation conventions used in this thesis can be found in Appendix A.1 and
a formal embedding in Probability Theory of the concepts such as the sample space V,
the σ-field V and probability measure Prv related to random vector v, can be found in
Appendix A.2.

In this theory v is a random vector defined on probability space (V,V , Prv) with
possible realisations v ∈ V ⊆ RN. The typical use is to assign a probability Prv(S) to the
event that the random vector v will have realisations in some set S ∈ V , S ⊆ RN. Two
equivalent notations are used Prv(S) = Pr {v ∈ S}.

The use of Probability Theory in the context of Robustness is the following. Consider
that uncontrollable factors, which affect object properties, are perceived as a random
vector v. A modelling approach is introduced in Chapter 2, which makes it possible to
verify for each realisation v ∈ V, whether or not the realisation results in desirable object
properties. The realisations v for which the object has properties as required, can be
collected in a set H ⊆ V. Now it is possible to express Robustness in a probabilistic way:
R = Pr {v ∈ H}. In this thesis, probabilistic Robustness is studied and is defined as:

Definition 1.1 Robustness of an object is the probability that an object will have proper-
ties as required.

1.3 Designing and Robustness optimisation

In design processes in industries, the intention is to create consumer products with prop-
erties that fulfil product specifications. If product properties are uncertain, then it is also
uncertain whether these properties fulfil the specifications. This thesis studies methods
that can be used to find product designs with a Robustness as big as possible such that
products with uncertain properties fulfil specifications.

2



1.4. ROBUSTNESS PROGRAMMING

An example of an uncertain object property is the Number of Bacteria at the Best
Before date (NBatBB) in a food product. The average temperature between the moment
of production and moment of consumption has an influence on the growth rate of the
bacteria population. Assume that only the growth rate and initial number of bacteria
right after production determine the NBatBB property. It is technically and practically
not tractable to count each individual bacterium. A practical alternative is to estimate the
initial number of bacteria. Such estimate inevitability leads to some degree of uncertainty
about the true initial number of bacteria. The average temperature of the food product
after purchase and before consumption can also vary, depending on the distance to the
grocery shop and car temperature. From a public health point of view, it is relevant
to maximise the Robustness that the NBatBB will be below the health safety limit, by
making good judgement about the involved uncertainties and choosing the Best Before
(BB) date appropriately.

Two types of factors that influence object properties, can be distinguished: controllable
factors and uncontrollable factors. The BB date is an example of a controllable factor,
since the producer can choose the BB date that is printed on the food product. The initial
number of bacteria and the average temperature are examples of uncontrollable factors. It
is relevant to find the best controllable factor setting, resulting in a maximum or acceptable
number of products with properties that fulfil specifications. Authors such as Du and Chen
(2000), Bjerager (1988) and Nie and Ellingwood (2000), modelled uncontrollable factors
as random vectors and obtained encouraging results with their Robustness optimisation
approaches.

In the competition for producing most reliable, durable and safe products, the indus-
trial sectors such as electronics, aviation, automotive, offshore, construction and food,
show a great interest for producing robust products. In this context, mathematical meth-
ods for Robustness optimisation are useful.

The concept of Robustness optimisation can also be useful for other sectors: In the
financial sector, attention is paid to optimising the Robustness of investment portfolios;
in the public sector it is relevant to have optimal robust policies and in logistics it is
relevant to optimise the Robustness of supply chains and transportation plans.

1.4 Robustness Programming

In this thesis, Robustness Programming is defined as a mathematical approach for defin-
ing Robustness, computing or estimating Robustness and to find optimal values for the
controllable factors that optimise Robustness. Stochastic Programming (SP) has its roots
in Mathematical Programming (MP) and following this line of evolution, the Robustness
Programming (RP) concepts developed in this thesis are based on Stochastic Program-
ming concepts. Robustness Programming mainly differs from Stochastic Programming
in the solution concept. To illustrate this idea, consider the following MP, SP and RP
approach for the maximisation of some profit function f : RI × RN −→ R. The ob-
jective function f(x, v) depends on a controllable factor x ∈ RI and an uncontrollable
factor v ∈ RN. The uncertainty about the uncontrollable factor is modelled as a ran-
dom vector v. An approach is to assume constant values v=E(v) and use MP to find

3



INTRODUCTION

f ∗ = max
x

f(x, v). A Stochastic Programming approach for this problem, is to max-

imise expected profit: f ∗ = max
x

Evf(x, v). The Robustness Programming equivalent

requires a conceptual extension, since the Robustness concept is relative to a target or
goal. For instance, one can maximise the Robustness of not making a loss. In that
case the goal is to have non-negative profit (i.e. a lower bound of zero). The maxi-
mum Robustness of not making a loss is R∗ = max

x
Pr {f(x, v) ≥ 0}. More general, one

can maximise the Robustness of reaching any other profit goal γ ∈ RK, K= 1 with Ro-
bustness maximum R[γ]∗ = max

x
Pr {f(x, v) ≥ γ} and corresponding best decision(s) with

x[γ]∗ = arg max
x

Pr {f(x, v) ≥ γ}. The solution concept of Robustness Programming is

not a single solution, but a set P called the Robustness Programming Set (RPS) with
elements (γ, x[γ]∗, R[γ]∗) ∈ P ⊆ RK+I+1. In the profit maximisation case, each element of
the set P shows the relation between profit goals γ, optimal robust decisions x[γ]∗ and
corresponding optimal profit Robustness R[γ]∗.

In this section, the concepts of Robustness Programming are further illustrated via
the so-called News Vendor Problem and a Mixture Design problem. The following is a
preliminary introduction to Robustness Programming notation, which is elaborated in
detail in Chapter 2: Controllable factors are modelled as a vector x and uncontrollable
factors are modelled as a random vector v. The object properties are modelled as a
function u(x, v). The aim is to have object properties between bounds that depend on
the so-called goal parameter γ, such that L(γ) ≤ u(x, v) ≤ H(γ). The Robustness given
parameter γ is R[γ](x) = Pr

{
v ∈ H[γ](x)

}
, with H[γ](x) = {v|L(γ) ≤ u(x, v) ≤ H(γ)}.

1.4.1 News Vendor Problem illustration

The classic News Vendor Problem as described by Silver et al. (1998) and Tijms (2002),
deals with the decision on the optimal newspaper order quantity, given a customer demand
probability distribution. In the science area known as Supply Chain Management, the
News Vendor Problem is often presented as a metaphor for a whole class of optimal order
quantity problems. The mathematical structure of the News Vendor Problem has general
properties applicable in Supply Chain Management. The following illustrates the idea of
optimal Expected value versus optimal Robustness.

In this example, the news vendor can buy newspapers from the publisher for e1.- each
and sells these for e2.- each, thus making a profit of e1.- for each unit sold. The news
vendor will not re-order when all newspapers are sold and unsold newspapers at the end
of the day are worthless and do not imply deposition costs. Let x be the number of news-
papers the news vendor intends to order from the supplier and assume that the uncertain
customer demand v has a probability distribution, such that all possible demands from
V = {100, 101, .., 199, 200} have the same probability Pr(v) = 1

101
for all v ∈ V. If the

demand v is less than or equal to the newspaper stock x, the news vendor revenues are
e2v − x. If the demand v is bigger than the newspaper stock x, then the news vendor
sells the stock x giving a revenue of e(2 − 1)x. The question is: what is the best order
quantity, i.e. what is the optimal value x∗? The classic approach is to find the value for

4



1.4. ROBUSTNESS PROGRAMMING

x that maximises the expected revenues: Let

u(x, v) =

{
2v − x if v ≤ x

x if v > x
(1.1)

be the revenue given order quantity x and sales v. The expected value of u(x, v) is:

E [u(x, v)] =
200∑

v=100

u(x, v) 1
101

=
x∑

v=100

2v − x

101
+

200∑
v=x+1

x

101
= − 1

101
x2 + 300

101
x− 9900

101
(1.2)

with optimal order quantity

x∗ = arg max
x

E [u(x, v)] = 150

with optimal value E [u(x∗, v)] ≈ 124.75. The best choice for x, following the classic
approach, is to order 150 newspapers, which will give an optimal revenue of at least
e124.- in the long run.

Consider the news vendor ordering 150 newspapers. Let us investigate the Robustness
of such a decision. The stock of 150 newspapers implies an investment of e150.-. To
make at least e124.- profit, means that at least 137 newspapers have to be sold, based
on 2v − 150 ≥ 124. The probability distribution of the random sales v implies that
Pr {v ≥ 137} = 64

101
. Interestingly, there exists a more robust order quantity: if the goal

is to make at least e124.- profit, then the order quantity x = 124 is more robust than
x = 137, since Pr {v ≥ 124} = 77

101
> 64

101
. The Robustness of making a profit greater

Figure 1.1: Profit Robustness in News Vendor Problem; order quantity x, profit target γ

than γ, given the order quantity x can be expressed more generally. If γ > x, then the
profit target is impossible to reach. Consequently, if γ > x, then the Robustness is 0. For

100 ≤ γ ≤ x ≤ 200, 2v − x ≥ γ ⇒ v ≥ x+γ
2

. Substitution gives Pr
{
v ≥ x+γ

2

}
=

201−x+γ
2

101
.

For any profit goal 100 ≤ γ ≤ 200 and order quantity 100 ≤ x ≤ 200, the Robustness of
making a profit of at least γ given the order quantity x is:

R[γ](x) = Pr {γ ≤ u(x, v)} =

{
0 if γ > x

201−x+γ
2

101
if γ ≤ x

(1.3)
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Figure 1.1 is a mesh-plot of R[γ](x). Let x[γ]∗ = arg max
x

R[γ](x) be the most robust order

quantity for a given profit target γ. For fixed γ, the function R[γ](x) is strictly increasing
proportional to x for x ≤ γ. Consequently, the optimal robust order quantity for fixed
γ is x[γ]∗ = γ, which can be represented by points with coordinates

(
γ, x, R[γ](x)

)
on the

line through (200, 200, 1
101

) and (100, 100, 1).
The classic optimal expected value approach gives x∗ = 150 as the optimal order

quantity. The Robustness Programming approach, does not give one single optimal order
quantity as a solution. Instead the Robustness Programming Set

P =


 γ

x∗

R∗

∣∣∣∣∣∣ 100 ≤ γ ≤ 200, x∗ = γ, R∗ =
201− x+γ

2

101


represents the optimal solution. It it is left to the decision maker, to choose a point from
this set.

Robustness Programming is an alternative for the Stochastic Programming approach
of maximising expected value. Both approaches serve a different purpose:

• If the news vendor wants to decide about a constant daily order quantity x for
the coming year, such that the expected average revenues are maximised, then the
Stochastic Programming approach of maximising an expected value, is the appro-
priate way of modelling

• If the news vendor wants to decide about tomorrow’s order quantity x with guar-
antees about tomorrow’s revenues, then the Robustness Programming approach is
a good alternative.

In this illustration, R[γ]∗ has an analytical solution. The cases studied in Chapter 5 are
more complex and no analytical solution for R[γ]∗ is available. The next illustration deals
with the Mixture Design Problem that is elaborated in more detail in Section 5.4. The
computation of the Optimal Robustness R[γ]∗ is based on an iterative optimisation method
using estimates for R[γ](x).

1.4.2 Mixture Design illustration

As an industrial illustration consider the following case that is worked out in greater
detail in Section 5.4. The case deals with the production of two products. There are
eleven Raw Materials (RM) used for the manufacturing of these two products. Over the
past weeks the price of each RM varied and it is fair to assume that the RM prices in
future weeks have considerable uncertainty. The RM prices determine the cost price of
the two products. This illustration is about the Robustness of the total cost price of the
two products.

Besides the cost price aspect, it is relevant that the taste, structure and appearance of
the two products are according product specifications. Part of the design objective is to
find a mixture of the RMs such that the specifications are fulfilled. By comparison, if one
wants to make a cake, then not just any combination of flower, butter, sugar, eggs and milk
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will lead to a cake; only specific proportions of these ingredients will give a satisfactory
result. However, there is some flexibility in choosing these ingredient proportions.

The proportion of each of the 11 RMs in the 2 products is a factor that can be
controlled. These controllable factors are modelled by variable Xi,k representing the pro-
portion of RM i = 1, .., 11 in product k = 1, 2. The set of feasible mixture designs F
contains all mixture designs X that fulfil the specifications.

Currently, the products are produced according to product design C ∈ F, which has
been used for the past 178 weeks. The cost price of the two products changed considerably
over the past 178 weeks. The objective is to find an alternative product design in F, with
a high Robustness to save on the current cost price.

Figure 1.2: Price history of 11 RM until week 178 and future price scenarios from week
179 until 218

The goal is split into two: the saving to be reached and the time span before which
to reach the saving. In notation: the absolute savings goal is γ1 and the time span to
reach the saving is γ2. In this illustration, the study is limited to three saving goals of
respectively e100,000, e150,000 and e200,000. The timing aspect in the goal (i.e. the
second element γ2) has the following relevance: If the goal is to save e100,000 in the
coming four weeks, then on average e25,000 should be saved per week; if the goal is to
save e100,000 in the coming ten weeks, then on average e10,000 should be saved per
week and so on. Figure 1.2 illustrates the price history of 11 RMs for the past 178 weeks
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and 20 samples per RM for the future week prices between week 179 and 218.
Let v be a random 11 × 40 matrix, corresponding to the random future prices per

ton for each RM for the weeks 179 until 218. Samples are generated with a Geometric
Brownian Motion time series model1. The weekly production volume of product k is qk

(in 1000Kg units) for k = 1, 2. The current week is 178. Let τ = 1 correspond to the
first future week, namely 179; τ = 2 corresponds to future week 180; etcetera. The total
saving over future weeks until γ2, for a mixture design X ∈ F with respect to the mixture
design C ∈ F currently used for production, is

u[γ2](x, v) =
11∑
i=1

2∑
k=1

qk (Ci,k −Xi,k)

γ2∑
τ=1

vτ,i (1.4)

with future RM prices v ∈ V. The saving model (1.4) determines the Robustness of
reaching savings goal γ1 within the period up to week goal γ2:

R[γ](x) = Pr
{
v ∈ H[γ](x)

}
, where H[γ](x) =

{
v ∈ V|γ1 ≤ u[γ2](x, v)

}
(1.5)

The corresponding Robustness Programming Set (RPS) is

P =


 γ

X∗

R∗

∣∣∣∣∣∣R∗ = max
X∈F

R[γ](X), R∗ = R[γ] (X∗)

 (1.6)

Finding elements in P in an analytical way is not possible if an analytical solution for

Figure 1.3: Optimal Robustness of e100,000, e150,000 and e200,000 saving respectively,
during the period of future weeks up to γ2

the optimisation problem in (1.6) is not available. This is often the case in practice and

1The choice for this model is motivated in Section 5.4
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therefore the approach is to use Robustness Programming methods presented in this thesis
to estimate R[γ](x) and use an iterative solver to find optimal values for X∗ and R∗, given
the goals γ1 and γ2. Figure 1.2 shows an interpolation of the optimal Robustness given a
finite number of goal values: γ1 ∈ {100000, 150000, 150000} and γ2 = 1, .., 40.

The resulting curves in Figure 1.3 can be explained as follows: All events leading to a
saving of e200,000, also lead to a saving of at least e150,000, therefore the Robustness
curve of the e200,000 goal is below the Robustness curve of the e150,000 goal. The
same holds for the e150,000 saving goal with respect to the e100,000 saving goal. The
three graphs have a unimodal shape. An explanation is the following. It has been argued
that for increasing γ2 the average saving goal per week goes down. On the other hand,
for increasing γ2 the price uncertainty goes up. This is illustrated by Figure 1.2, that
shows increasing variation of the simulated future prices. Apparently, the negative effect
of increased price uncertainty becomes bigger than the positive effect of the lower weekly
saving goals at some point in time.

The idea is that the RPS and Figure 1.3 can be used to support decision making. The
curves in the figure suggest that if for instance the goal is to save e150,000, then it is
most robust to aim at reaching the saving goal 9 weeks from now. On the other hand, the
lower saving goal of e100,000 can be reached with a higher Robustness and within less
weeks, i.e. already in week 6. There is no mathematical basis to argue which of these two
options is best. It is left to the preference of the decision maker to come to a decision.
The idea is that Figure 1.3 in combination with the RPS, gives relevant information to
support such decision making. For instance, if the decision maker chooses the e150.000
saving goal, then the RPS can be queried to find the corresponding best mixture design
X∗ for γ1 = 150000, γ2 = 9.

1.5 Robustness Programming literature

In retrospective, it is hard to define unambiguously when Robustness was considered as a
design objective for the first time. The ancient Egyptians about 3500 B.C. did understand
the concept of chance Ghahramani (2000) and were capable of constructing very robust
pyramids.

A recurring objective in finance, is to find good investment combinations that carry
low risk. A low risk portfolio, can be interpreted as a robust portfolio. In a paper by
Mark Rubinstein, titled Markowitz’s ”Portfolio Selection”: A Fifty−year Retrospective
(Rubinstein, 2002), an overview is presented, of historic important documents in the
financial field. Markowitz (1999) pointed out, that The merchant of Venice, Act 1, Scene
1, by William Shakespeare (Shakespeare, 1914), contains a dialogue which can be seen
as an early awareness that diversification of investments reduces risk: ”...I Thank my
fortune for it, my ventures are not in one bottom trusted. Nor to one place; nor is my
whole estate upon the fortune of this present year...”. Mark Rubinstein also refers to
Bernoulli’s St. Petersburg paradox article (Bernoulli, 1738), in which it is argued that
risk-averse investors will want to diversify: ”...it is advisable to divide goods which are
exposed to some small danger into several portions rather than to risk them all together”.

The 18th century contemporaries Bernoulli, Laplace and Bayes, are often considered as
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the founders of Probability Theory. An often addressed topic, was the problem of making
the best decision under uncertainty, based on a probabilistic argument. One can argue
that the best decision under uncertainty, is the most robust decision and can therefore be
seen as an early example of Robustness Programming.

In 1952, Harry Markowitz published his landmark paper ”Portfolio Selection”
(Markowitz, 1952), which is now perceived as the moment of birth of modern Financial
Economics. Markowitz suggested to optimise the expected value of a portfolio, which
is corrected for a fixed proportion -say a factor k- of variance. For fixed k, portfolios
connected to a high variance are penalised more than low variance portfolios. Increasing
the factor k results in more robust portfolio selections.

In parallel to the scientific progress in the financial field, also industries developed
techniques for designing robust products. Illustrations related to early attempts of robust
product design, are for instance presented in the thesis of Freek Huele (1998) and deal with
design efforts to reduce the negative effect of variations in raw materials, in the context
of Guinness beer production, that dates back to the beginning of the 20th century.

”During the Second World War, British military leaders asked scientists and engineers
to analyse several military problems: the deployment of radar and the management of con-
voy, bombing, antisubmarine and mining operations. The application of mathematics and
the scientific method to military operations was called Operations Research” (Winston,
1993). In 1947, George Dantzig was one of the first mathematicians who translated the
lessons learned, into his famous scientific contributions: the framework of Linear Program-
ming and the Simplex Method (Dantzig, 1951). In 1955, George Dantzig wrote another
famous paper, titled ”Linear Programming under Uncertainty” (Dantzig, 1955), which is
often considered to mark the beginning of the structural development of the mathematical
science area known now as Stochastic Programming. As the name implies, the framework
of Stochastic Programming is based on the assumption that uncertain factors can be mod-
elled as random vectors. The works of Dantzig and Markowitz in the mid-fifties can be
seen as one of the first fundamental methods for making best decisions under uncertainty.
The wide variety of ”Numerical Techniques for Stochastic optimization” elaborated on by
Ermoliev and Wets (1988), show the scientific progress of Stochastic Programming in the
three decades that followed the early works of Dantzig and Markovitz.

In the 1980’s Genichi Taguchi, an industrial director with an engineering degree and
statistical background, introduced one of the first methods for robust design which got
widely accepted by industry (Taguchi, 1986). In the Taguchi approach, quality-loss is
expressed in a monetary value, such that the quality aspect can be included in the overall
cost structure of a product, which can be optimised by selecting the experiment with
the best results. Possibly, one of the reasons why manufacturing industry embraced
the Taguchi method, was that it is relatively simple to apply and interpret. Birge and
Louveaux (1997, page 37) claim that ”with hindsight Taguchi methods can be seen as
examples of Stochastic Programming, although they are often not described this way”.

Since the 1980’s the Stochastic Programming and industrial engineering world con-
tinued to evolve rapidly where the interaction between mathematics, statistics and en-
gineering resulted in a multi-form of new concepts, such as quality engineering, safety
engineering and structural reliability engineering. In the early 1990’s, Otto and Anton-
sson (1993) and Parkinson et al. (1993), extended Taguchi’s Robust Design concepts to
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Robust Design Optimisation (RDO), by adding NonLinear Programming (NLP) to the
framework. In RDO, a distinction is made between two types of Robustness: objective
Robustness and constraint Robustness.

Along with the more sophisticated modelling power of RDO, came the problem of how
to solve the NLP problems. In more recent years, for instance Hendrix (1998) studied the
application of global optimisation techniques for RDO problems.

The possible computational intractability of RDO problems and large Stochastic Pro-
gramming problems in general, motivated Ben Tal and Nemirovski to study the potential
of a new collection of techniques called Semi-Definite Optimisation (SDO), for optimisa-
tion problems under uncertainty. Ben-Tal and Nemirovski (2002) developed the concept of
Robust Optimisation (RO), where uncertainty is modelled via a so-called uncertainty set:
uncertain variates can only have realisations in the uncertainty set. Robust optimisation
deals with finding an optimal design, which is feasible for all elements of the uncertainty
set. The modelling of the uncertainty set can be based on the assumption that uncertain
variates are stochastic, such that the probability mass of the uncertainty set approaches 1.
Conversely, the uncertainty set can also be modelled by deductive reasoning using correct
analytical models. For example, an electronic component such as a resistor is known to
have some resistance within tolerance limits. Suppose that only resistors that pass the
tolerance limit check are put on the market. In this situation, one can argue that the
tolerance limits provide sufficient information to construct the uncertainty set and one
does not need a stochastic model to describe the variation in resistance.

In the context of modern robust supply chain design, it is interesting to observe that
Kleijnen et al. (2003) is studying Taguchi-style approaches which originates from prod-
uct engineering. Initially, the Robust Optimisation concept developed by Ben-Tal and
Nemirovski, was applied in the field of product engineering. More recently, Goldfarb and
Iyengar (2003) showed very powerful applications in Mathematical Finance of the RO
framework in the context of Robust Portfolio Optimisation.

1.6 Research Outline

Robustness Programming (RP) is based on Stochastic Programming and in particular on
the sub-domain called Probabilistic Programming. This way, the foundation of Stochastic
Programming, i.e. Mathematical Programming, Statistics and Probability Theory, is
indirectly also the foundation of RP. The intention of the RP framework is to cover a wide
scope of mathematical concepts which are useful for RP. In principle, many methods from
Statistics and Stochastic Programming are useful for RP and are a source of inspiration for
this research. However, these methods are often problem specific or have bad Robustness
optimisation characteristics. On the one hand, there is a need for generally applicable
RP methods. On the other hand, existing RP methods can be generalised and improved.
In the sequel, the research objectives are given, which imply the research questions and
research approach.
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Research objectives

1. The first objective is to design an RP framework, for expressing RP problems and
defining RP methods in a uniform and systematic notation

2. The second objective is to determine conditions that identify applicable RP methods,
when given specific RP problem properties

3. The third objective is to improve and generalise existing Robustness Programming
methods and design new Robustness Programming methods, that estimate Robust-
ness effectively and efficiently

4. The fourth objective is to assess the quality of the Robustness Programming meth-
ods, from a theoretical and empirical point of view

Research questions

1. What are the generic components in an RP problem, that enable both a systematic
RP problem notation as well as defining RP methods using the same notation?

2. What are the characteristics of an RP problem, that provide sufficient information
to decide about applicable RP solution methods?

3. Which mathematical properties of Robustness Programming methods give informa-
tion about its quality, relevant for Robustness estimation and Robustness optimisa-
tion?

4. How can the performance of Robustness Programming methods be compared?

Research approach

The research is triggered by case studies and is done in a cyclic form, where theory and
practice alternate in the following steps: (1) analyse case studies; (2) select existing or
modified RP methods or design new RP methods applicable to case studies; (3) apply
RP methods in case studies; (4) assess results; (5) analyse theoretical properties of RP
methods and explain results; (6) find ways to improve RP methods or use the results
as inspiration to find new RP methods and go back to step 2. In this respect, one case
from Environmental Economics and two industrial cases from Unilever are studied. The
following research approach is used to answer the corresponding research questions.

1. The RP framework that evolved during the development of RP methods for solving
practical cases is the output of the research. In this thesis, the framework is pre-
sented first. The applicability of the Robustness Programming Framework is shown
by basing all definitions, theorems and conclusions in subsequent chapters on this
framework.

2. Conditions that determine which RP methods are applicable, given RP problem
properties, are called sufficiency conditions for applicability. Determination of these
conditions is based on the following approach. RP methods are designed, both for
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specific RP problems as well as for general RP problems. This way, there exists an
RP method for every RP problem that fits the RP framework. For each RP method,
the required mathematical properties of the RP problem are investigated.

3. The approach to study the quality of RP methods, is to define and investigate the
efficiency and effectiveness of RP methods and to assess the applicability of RP
methods. The Monte Carlo (MC) Robustness estimation method is used as a refer-
ence method, because the MC method is commonly used and generally applicable for
Robustness estimation. The approach is to compare the efficiency and effectiveness
of new RP methods and improved RP methods with the MC method.

4. The approach is to design indicators for the performance of RP methods, in such a
way that similar results are obtained when experiments are repeated. The approach
is to be as independent as possible, with respect to computer speed and software
implementation.

Practical aspects and research approach

The case studies involve software implementations of the RP methods. At the moment
of writing, there does not exist standard software for modelling and solving large-scale
nonlinear Robustness Programming problems2. Experimental software implementations
have been carried out for Robustness estimation and optimisation, using existing NLP
software to solve Robustness optimisation problems.

The cases that are discussed in Chapter 5 were provided in Matlabr coding. This led to
the practical choice to use Matlabr and the standard Matlab Optimisation Toolboxr for
the validation of the experimental Robustness estimation implementations. The studied
RP problems are nonlinear constrained problems and are solved using the standard fmin-
con solver (see Venkataraman, 2002). The fmincon solver uses a Sequential Quadratic
Programming (SQP) method in combination with Line Search methods3. The conse-
quence of this practical context, is that Robustness optimisation is only validated using
an SQP method. Robustness optimisation using any other method (such as sequential lin-
ear programming, random search or an evolutionary algorithm) is left for future research
(see Section 6.5).

Organisation of the thesis

After the introduction of Robustness Programming in Chapter 1, the definitions, notations
and basic models of the Robustness Programming Framework are introduced in Chap-
ter 2. In Chapter 3, methods for estimating Robustness via sampling and bounding are
described. In Chapter 4, computation techniques for improving the efficiency and effec-
tiveness of Robustness Programming methods are discussed and performance indicators

2For stochastic linear programming with chance constraints, a software package called SLP-IOR (Kall
and Mayer, 1996) is available.

3Although SQP methods were originally designed for continuous and (twice) differentiable functions
(Bazaraa et al., 1993), later studies revealed that SQP is relatively stable even for non-differentiable and
noisy functions (see for instance Schittkowski, 1985, 1994, 2005).
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Figure 1.4: Thesis Outline

are given. In Chapter 5, the case studies are discussed. They deal with the application
of methods for Robustness Programming. Finally, conclusions and recommendations for
future research are given in Chapter 6.

The structure of the thesis is sketched in figure 1.4. The Robustness Programming
Framework is depicted in the centre. On the theoretical side (top), there are solution
methods for problems that fit the framework. On the practical side (bottom), there are
problems, which can be modelled according the framework and solved by the RP methods.
In subsequent chapters, a miniature version of Figure 1.4 is given on the top of each even
page, to indicate (in black) which part of the big picture is being discussed.
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Chapter 2
Robustness Programming Framework

Robustness of an object is the probability that uncontrollable factors take realisations such
that the object has properties as required. An optimal Robustness design is a plan for the
creation of an object, with maximum probability of having object properties as required.
In this chapter, the framework is introduced for modelling and optimising Robustness.

2.1 The concepts

The focus of Robustness Programming (RP) is on estimation, computation and optimi-
sation of Robustness of object properties that depend on uncontrollable factors. These
object properties are called uncertain object properties. Object properties that do not
depend on uncertain factors are called deterministic object properties. The following
notation and models are the core of the Robustness Programming Framework.

• J is the number of deterministic object properties

• S is the number of uncertain object properties

• I is the number of controllable factors

• N is the number of uncontrollable factors

• Controllable factors are modelled as a vector x ∈ RI

• Uncontrollable factors are modelled as a random vector v defined on a probability
space (V,V , Prv), with realisations v ∈ V ⊆ RN

• Deterministic object properties depend on controllable factors (x) and are modelled
by a function d : RI −→ RJ, where d(x) is a continuous function of x

• Uncertain object properties depend on controllable factors x and uncontrollable
factors v and are modelled by a function u : RI × RN −→ RS where u(x, v) is a
continuous function of v. Continuity with respect to x is discussed in Section 2.4

• The requirement for deterministic object property j is modelled as a closed interval
[Λj, Υj], with lower bound Λj ∈ R and upper bound Υj ∈ R for j = 1, ..,J in the
extended reals 1

• The requirement for uncertain object property s is modelled as a closed interval
[Ls, Hs], with lower bound Ls ∈ R and upper bound Hs ∈ R for s = 1, ..,S

• Λj ≤ dj(x) ≤ Υj, j = 1, .., J are called deterministic restrictions

• Ls ≤ us(x, v) ≤ Hs, s = 1, .., S are called uncertain restrictions

1The set R = {−∞} ∪ R ∪ {∞} is called the set of extended reals.
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Consider a food product design, where xi represents the proportion of raw material i in
a mix of I raw materials. Suppose there is 1 (=J) deterministic object property. Let x8

represent the quantity of orange juice in the food product and the product should at least
contain 30% orange juice. A translation of this requirement, is the following deterministic
restriction:

Λ1 = 0.3 ≤ d1(x) =
x8

I∑
i=1

xi

≤ ∞ = Υ1 (2.1)

For the general case, all designs that satisfy the deterministic restrictions can be collected
in a set. The set of deterministic feasible designs is defined as

X = {x ∈ RI|Λj ≤ dj(x) ≤ Υj, j = 1, .., J} (2.2)

The concentration of vitamin C in orange juice can vary, depending on the country of
origin, weather conditions during growth and harvest period and storage time. Likewise,
there is uncertainty in the vitamin C concentration of the other raw materials. Let vi

model the uncertain vitamin C concentration in raw material i. The following uncertain
restriction models the requirement that the food product contains at least 0.05% vitamin
C:

L1 = 0.0005 ≤ u1(x, v) ≤ ∞ = H1 (2.3)

with u1(x, v) = vᵀx
IP

i=1
xi

. As v is a random vector, the value of v is unknown a priori.

Consequently, it may be uncertain for chosen composition x, whether or not condition
(2.3) is fulfilled.

2.2 Robustness

The random vector v defined on probability space (V,V , Prv) can be used to make explicit
statements about the probability of satisfying all uncertain restrictions.

Definition 2.1 The Distribution function F : RN −→ [0, 1], induced by probability Prv

on (V,V) is the function

F (v) = Pr {vn ≤ vn for n = 1, .., N}

A central role is played by the subset of V for which the object properties are as required.
This leads to the definition of the so-called Happy set :

Definition 2.2 The Happy set H(x) is defined, as the set of realisations of random
vector v which satisfy all uncertain restrictions:

H(x) = {v ∈ V|Ls ≤ us(x, v) ≤ Hs, s = 1, .., S}
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The set H(x) is called the Happy set, since elements of this set correspond to the favourable
situation that the S uncertain properties us(x, v) of the object under consideration are as
intended, i.e. these properties are as required between the bounds Ls and Hs for s = 1, ..,S.

Corollary 2.1 The Happy set belongs to the class of Borel measurable sets

H(x) ∈ B
(
RN
)

following from the definition by (Randolph, 1968, page 245, definition 2), since the Happy
set is a closed subset of RN for given x.

Definition 2.3 A design x ∈ X is called robust, if and only if the design fulfils all
requirements for all possible realisations in V:

H(x) = V ⇐⇒ ”x is robust”

Consequently, we will say a design has some level of Robustness, if the design fulfils all
requirements for a subset S ⊂ V of all possible realisations of v:

H(x) ⊂ V ⇐⇒ ”x is less than robust”

Conceptually, the level of Robustness R(x) is some measure that depends on the design
x. Definition 2.4 gives the Robustness measure investigated in this thesis.

Definition 2.4 The Robustness is the probability of satisfying all uncertain restrictions:

R(x) = Pr {v ∈ H(x)} (2.4)

A more explicit expression for Robustness is obtained as follows. Let I : RN×RI −→ {0, 1}
be the Happy set indicator function, where

Definition 2.5

I(v, x) =

{
1 if v ∈ H(x)
0 otherwise

(2.5)

This function indicates whether (1) or not (0) a realisation v of random vector v is in
the Happy set. It can be shown that Ev[I(v, x)] = Pr {v ∈ H(x)} = R(x) (based on
the arguments of Jacod and Protter, 2004; Robert and Casella, 1999). The Robustness,
respectively related to discrete distributions and continuous distributions, is defined as
follows.

Corollary 2.2 Let v be a discrete random vector defined on Probability Space (V,V , Prv),
with countable set V, then:

R(x) =
∑
v∈V

I(x, v) Pr {v = v} (2.6)
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Corollary 2.3 Let v be a continuous random vector on Probability Space (V,V , Prv),
defined by a probability density function f : RN → R+, then:

R(x) =

∫
RN

I(x, v)f(v)dv (2.7)

Figure 2.1: Examples of H(x)

Example 2.1 Two uncertain restrictions are given as depicted by Figure 2.1

L1 = 0 ≤ u1(x, v) = −(x1 −
13

16
)v2

1 − (x2 − 1)v1 + v2 + 1 + x3 ≤ ∞ = H1

L2 = 0 ≤ u2(x, v) = (x1 +
1

3
)v3

1 + (x2 − 5)v2
1 + (1

2

3
− x3)v1 + 2− v2 ≤ ∞ = H2

Figure 2.1 depicts the Happy set for two designs, x[1] = [1, 1, 2]ᵀ and x[2] = [1, 1, 1]ᵀ. The
area of the Happy set are enclosed by curves defined by the restrictions, i.e. for x[1] the
curves in (I) correspond to

u1(x
[1], v) = − 3

16
v2

1 + v2 + 3 = 0 (a)

u2(x
[1], v) = 1

1

3
v3

1 − 4v2
1 −

1

3
v1 + 2− v2 = 0 (b)
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and for x[2] the curves (II) are given by

u1(x
[2], v) = − 3

16
v2

1 + v2 + 2 = 0 (a)

u2(x
[2], v) = 1

1

3
v3

1 − 4v2
1 +

2

3
v1 + 2− v2 = 0 (b)

H(x[1]) and H(x[2]) are the grey areas between curves (a) and (b)
The Robustness R(x[1]) = Pr

{
v ∈ H(x[1])

}
and R(x[2]) = Pr

{
v ∈ H(x[2])

}
, depend on

the definition of (V,V , Prv) and can define a non-trivial integral to compute. If v follows
a uniform distribution on [−4, 4]× [−4, 4], then computing the surface between the curves
(a) and (b) via integration gives that 0, 1904 = R(x[1]) > R(x[2]) = 0.1653.

2.3 Robustness and optimisation

The main aim of Robustness Programming (RP) is to find designs x∗ ∈ X corresponding to
the maximum Robustness. A typical Robustness Programming problem is the following:

R∗ = max
x∈X

[Pr {v ∈ H(x)}] (2.8)

Example 2.2 We give an RP problem that by exception has an analytical solution for
(2.8). Let random (univariate) variable v follow an Exponential distribution with param-

eter λ > 0, i.e. the Probability Density Function (PDF) f(v) =

{
λe−λv, v ≥ 0
0, v < 0

and

Distribution Function F (v) =

{
1− e−λv, v ≥ 0
0, v < 0

.

Let X = R+, u1(x, v) = αx− v and u2(x, v) = v − βx with α < β.
Define H(x) = {v ∈ R+ |u1(x, v) ≤ 0, u2(x, v) ≤ 0} = {v ∈ R+ |αx ≤ v ≤ βx}.
The Robustness can be computed analytically by

R(x) = Pr {v ∈ H(x)} = 1− e−βλx −
(
1− e−αλx

)
= e−αλx − e−βλx (2.9)

Notice that R(0) = 0, R(x) > 0 for x > 0 and lim
x→∞

R(x) = 0. It can be shown that

x∗ = ln(αλ)−ln(βλ)
αλ−βλ

is a unique solution for dR(x)
dx

= 0. Consequently, R(x) is an unimodal

function with global maximum R∗ = R(x∗).

Example 2.3 In Example 2.1 we take

X = {x|x1 = 1, x2 = 1, x3 ∈ [1, 4]}
vi ∼ N(0, 1) for i = 1, 2 (2.10)

In contrast to Example 2.2, (2.8) is not solved analytically. Instead, R∗ is determined
using an iterative numerical optimisation algorithm, where R(x) = Pr {v ∈ H(x)} is esti-
mated for given x with methods that are explained in Chapters 3 and Chapter 4. The set
X is depicted in the left graph of Figure 2.2. In the right graph, the Robustness is depicted
as a function of x3. The numerically found optimal Robustness design x∗ = [1, 1, 3.2]

ᵀ

corresponds to the maximum Robustness R∗ = 0.65.
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Figure 2.2: Examples of Robustness optimisation

The News Vendor Problem, as introduced in Section 1.4.1 and the Mixture Design
problem in Section 1.4.2, refer to a relation between profit goals and Robustness. The
general idea of the relation between goals and Robustness is included in the frame-
work via a goal parameter γ ∈ RK. In the News Vendor Problem, the goal parameter
(γ ∈ {100, .., 200}) defines the lower bound for uncertain restriction γ ≤ u(x, v) as in
(1.3). In the Mixture Design problem, the goal parameter is two-dimensional. The first
element (γ1 ∈ {100000, 150000, 200000}) defines the savings target and the second ele-
ment (γ2 ∈ {1, .., 40} ) the number of weeks for realising the saving. The generalisation
of the Robustness and Happy set concept, in relation to the goal parameter idea, is that
the goal parameter defines the model components of the Happy set. The parameterised
Robustness R[γ](x) = Pr

{
v ∈ H[γ](x)

}
is based on a parameterized Happy set, defined as

H[γ](x) = {v ∈ V|L[γ] ≤ u[γ](x, v) ≤ H[γ]}. (2.11)

The relationship between goals, optimal decisions and optimal Robustness is modelled as
the Robustness Programming Set (RPS) and is defined as:

Definition 2.6

P =


 γ

x∗

R∗

 ∈

 RK

RI

[0, 1]

∣∣∣∣∣∣
R∗ = max

x∈X
R[γ](x)

x∗ = arg max
x∈X

R[γ](x)

 (2.12)

The concept of Robustness Programming has been introduced from a Robustness opti-
misation perspective, where R(x) is the objective function. The RP framework can be
generalised by following the Mathematical Programming framework, where optimisation
problems are defined by objective functions and constraint functions. Let R1(x), R2(x)
and R3(x) be three different Robustness functions. An example of an RP problem with
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constraints is

R∗ = max R1(x)

s.t.

x ∈ X
R2(x) ≥ 0.95

R3(x) ≥ 0.95

2.4 RP framework standardisation

The RP modelling framework is introduced in Section 2.1. The following standardisation
is introduced, in order to present methods for estimating (Chapter 3) and computing
(Chapter 4) the Robustness (2.4) in a systematic way.

The uncontrollable factors

Definition 2.7 Standard uncontrollable factors are modelled as a random vector v de-
fined on the probability space (V,V , Prv), where the elements vn, n = 1, ..,N are indepen-
dently distributed and the first and second moments of each element are finite.

Corollary 2.4 COV (vi, vj) = 0 for i, j = 1, ..,N and i 6= j.

Corollary 2.5 The sample space of v can be written as a Cartesian product V =
N∏

n=1

Vn,

with Vn the sample space of random element vn.

The standard Robustness Programming model can be used in the following way. Let the
elements of a random vector ṽ be dependent, E(ṽn) 6= 0 and V AR(ṽn) 6= 1, n = 1, ..,N.
Let ũ(x, ṽ) be the corresponding uncertain object properties model. If there exists a
mapping D : V −→ Ṽ with ṽ = D(v), then the RP framework can be used, since
ũ(x, D(v)) = u(x, v). The idea is that all dependency structures between uncontrollable
factors, central displacements (E(ṽn) 6= 0) and scaling (V AR(vn) 6= 1) are modelled in
the definition of the uncertain object properties function u.

A typical example of mapping D is ṽ = Tv + µ, with T a M×N matrix and µ ∈ RM,
which is a linear mapping to define a random vector ṽ with dependent elements, E(ṽ) = µ
and COV (ṽi, ṽj) = Σi,j for i, j = 1, ..,M and TT ′ = Σ.

The Happy set

The Happy set is based on the model u(x, v) of the uncertain object properties. Two
situations can be distinguished:

• R(x) is to be determined for a given value of x, or a finite number of values of x.
Then the continuity of u(x, v) with respect to x is not relevant.
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• R(x) is either the objective function or a constraint function in a Robustness op-
timisation problem. Then the continuity of u(x, v), with respect to x, is relevant
when using standard NLP methods for optimisation.

2.5 Concluding remarks

This chapter introduced in a formal way the ingredients of the Robustness Programming
Framework where several examples are given as illustrations. In Chapter 3, Robustness
estimation methods are discussed for estimating (2.4) in such a way that (2.8) can be
solved using standard NLP algorithms.
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Chapter 3
Robustness Estimation Methods

3.1 Motivation

In Chapter 2, Robustness has been defined as R(x) = Pr {v ∈ H(x)}. From studies in
multivariate statistical analysis (such as Narayan, 1996) one can conclude that in many
cases closed form expressions for Pr {v ∈ H(x)} are either computational intractable, or do
not exist. For that reason, in this chapter we will pay attention to Robustness Estimation
methods.

An often used method to estimate Pr {v ∈ H(x)} is Monte Carlo (MC) sampling. In
Section 3.2, general characteristics of MC sampling are described. In Section 3.3, the char-
acteristics of Robustness optimisation based on MC sampling are described. It is shown
that for each element of the domain, the MC estimate function is either discontinuous or
constant. These characteristics are unfavourable for optimisation. Section 3.3 illustrates
the observations that triggered the research for alternative Robustness estimation meth-
ods with better optimisation characteristics. The following characteristics are considered
relevant for Robustness estimation methods in the context of Robustness optimisation.

• Effectiveness. An estimation method is considered effective if the estimation result
is unbiased.

• Efficiency. The proposed measure for efficiency of an estimate, is the standard error
(se) of the Robustness estimator. The goal is to estimate Robustness at an accuracy
level of at least some threshold value se[th]. The idea is that, in expectation, the
Robustness estimator with the lowest standard error will need the smallest number
of samples to satisfy the accuracy level of at most se[th] and is therefore most efficient.

• Continuity of the Robustness estimate function.

• Derivative information generated by the estimate function.

The first alternative method is called the Smoothed Monte Carlo (SMC) method and is
discussed in Section 3.4. The general idea of the SMC method is to use sample information
in such a way that it results in a continuous Robustness estimate function.

The second alternative method is called the N-1 Monte Carlo (N-1MC) method and is
discussed in Section 3.5. The general idea of the N-1MC method is to sample N-1 of the
N elements of v and use the cumulative distribution function of the not sampled element
to compute the Robustness estimate. It is shown that this method gives an unbiased
Robustness estimate with better optimisation characteristics than the MC method.

The third alternative method is called the Directional Sampling method and is dis-
cussed in Section 3.6. The DS method is applicable in the situation that v follows a
so-called spherical symmetric distribution, like the multivariate Normal distribution and
gives unbiased Robustness estimates with better optimisation characteristics than the MC
method.
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The fourth alternative method is called the Exponential Simplex (ES) method and
is discussed in Section 3.7. The ES method is applicable in the situation that v follows
a multivariate Exponential distribution and gives unbiased Robustness estimates with
better optimisation characteristics than the MC method.

Finally, so-called Set Bounding (SB) methods are discussed in Section 3.8. The general
idea of the SB methods is to inscribe or circumscribe the Happy set with a set for which
the probability mass can be relatively easily computed. This way, the SB methods result
in lower bounds and upper bounds for the Robustness.

First, the Monte Carlo method is introduced. It is the reference method in this thesis
to which the alternative Robustness estimation methods are compared.

3.2 Monte Carlo estimation method

During World War II, John von Neumann and Stanislaw Ulam developed a simulation
method for studying the extent to which neutrons can travel through various materials.
Since their studies were classified, von Neumann gave it the code Monte Carlo method (see
Ghahramani, 2000). The MC method can be described as follows. Consider the Happy set
indicator function I as defined in (2.5) and i.i.d. random vectors v[m] and m = 1, ..,M with
some given probability distribution. The Monte Carlo Robustness estimator is defined as

mc

R(x) =
1

M

M∑
m=1

I(v[m], x) (3.1)

The standard error of the Monte Carlo Robustness estimator is

se
(

mc

R(x)
)

=
[
var

(
mc

R(x)
)] 1

2
=

√
1

M
(R(x)−R(x)2) (3.2)

and is based on the definitions in (Rice, 1995). The following generalisation is used.

Definition 3.1 The Monte Carlo Robustness estimate function
mc

R : X −→
{
0, 1

M
, 2

M
, .., 1

}
,

given a realisation v[1], .., v[M ] of random vectors v[1], ..,v[M ] is defined as

mc

R(x) =
1

M

M∑
m=1

I(v[m], x) (3.3)

Corollary 3.1 The estimated standard error ŝe
(

mc

R(x)
)

of the Robustness estimator is

ŝe
(

mc

R(x)
)

=

√
1

M-1

(
mc

R(x)−
mc

R(x)
2
)

(3.4)

Corollary 3.2 If ∃x[1], x[2] such that
mc

R(x[1]) 6=
mc

R(x[2]) then the MC estimate function
mc

R
is a discontinuous function.

Example 3.1 introduces a Robustness Programming problem and illustrates the stepwise
constant character of the MC estimate function.
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3.2 MONTE CARLO ESTIMATION METHOD

Example 3.1 Consider random vector v =

[
v1

v2

]
and Robustness function

R : R2 −→ [0, 1] with

R(x) = Pr

{
L ≤

[
x1 0.8− x2

0.7− 2x1 x2

]
(Tv + µ) ≤ H

}
(3.5)

where

L =

[
−1
−1

]
, H =

[
1
1

]
, T =

[
1 0
0 1

]
and µ =

[
−1
−1

]
Two situations are studied: In the so-called ”Gaussian” situation the elements of v are
i.i.d. and follow a Gaussian1 distribution; In the so-called ”Exponential” situation the
elements of v are i.i.d. and follow the Exponential distribution. Figure 3.1 shows the MC

Figure 3.1: Illustration of MC estimation in Exponential and Gaussian situation; 20 samples

estimate of (3.5) as a function of x. The mesh surface on the left-hand side is based on

i.i.d samples of v
[m]
n ∼ Exp(1) with n = 1, 2 and m = 1, .., 20. The mesh surface on the

right-hand side is based on i.i.d samples of v
[m]
n ∼ N(0, 1) with n = 1, 2 and m = 1, .., 20.

Consider the mesh surface in Figure 3.1 of the Gaussian situation (i.e. the right-hand
side). Around the point x = (0.5,−0.3), the mesh surface appears to be flat. Figure 3.2
gives a graphical representation of the discontinuity of the MC estimate function, where

x2 = −0.3 and the line pieces between open (◦) and closed (•) edges depict
mc

R(x1,−0.3).

To facilitate the discussion, the discontinuity of
mc

R is elaborated by introducing the concept
of Upper Semi Continuity2 (USC). Among others, Folland (1999) shows that an indicator
function of a closed set is Upper Semi Continuous. In 2.2 the Happy set is defined as a
closed set.

1The Normal distribution is also called the Gaussian distribution (Weisstein, 1998).
2A function f : X −→ R is USC in point a ∈ X if: ∀ε > 0 ∃δ > 0 such that y ∈ X and ‖a− y‖ ≤ δ

imply that f(a)− f(y) > −ε (Bazaraa et al., 1993).
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Figure 3.2: Illustration of MC estimation in Gaussian situation; x2 = −0.3; 20 samples

Corollary 3.3 The Happy set indicator function I(v, x) is an USC function of x for
given v.

Folland (1999) shows that the sum of USC functions is USC. The estimate
mc

R(x) is a sum
of USC (Happy set indicator) functions. This gives Corollary 3.4.

Corollary 3.4 The Monte Carlo Robustness estimate function
mc

R(x) is an USC function.

3.3 Robustness optimisation using MC estimates

The Robustness R(x) can be estimated by
mc

R(x) and likewise an estimate for the optimal
Robustness is

mc

R∗ = max
x∈X

mc

R(x) (3.6)

An approach for the optimisation of
mc

R(x), is the use of iterative algorithms such as
SQP (as discussed in Venkataraman, 2002; Schittkowski, 2005) that generate trial points

and compute their function values
mc

R(x[1]),
mc

R(x[2]),
mc

R(x[3]),...,etc. to approximate the
maximum.

The approach in this thesis is to generate sample values v[1], .., v[M] before optimisation
and compute each trial point during the iterative optimisation using the same sample
values. This method is known as the external sampling method (Mak et al., 1999). Similar
ideas are introduced by Kleywegt et al. (2001) and by Gurkan et al. (1999), which are
respectively called sample average approximation and sample-path optimisation.

An iterative optimisation method that is based on (approximated) gradient and Hes-
sian information can fail to converge to the (local) maximum due to discontinuities in the
objective function or restriction function(s) (Kelley, 1999). This bad convergence occurs
due to the piece-wise constant character of the MC estimate function.

Let C ⊆ X be the subset of the domain for which
mc

R(x) is continuous. The finite range

of the MC estimate function implies that the gradient is ∇
mc

R(x) = 0 for x ∈ C. All x ∈ C
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3.3 ROBUSTNESS OPTIMISATION USING MC ESTIMATES

correspond to local maxima of
mc

R(x). An iterative solver can get trapped in each of these
local maxima and stop before reaching the global maximum.

From Figure 3.1 it can be concluded that, relative to the point x = (0.5,−0.3), lower

values of x1 and higher values of x2 will lead to higher values of
mc

R(x). An optimisa-
tion algorithm does not have global information. An optimisation algorithm performs
locally a finite number of function evaluations to find improving directions for the objec-
tive function. The gradient of the objective function can be used to determine a search
direction leading to higher objective function values. An important concept in this con-
text is known as Finite Differencing (FD) (Kelley, 1999). Finite Differencing is a method
to estimate the gradient of a function using a finite number of function evaluations.
A finite difference gradient estimate of function f : R2 −→ R with FD step-size ∆ is

∇̂f(x) = 1
∆

[
f(x1 + ∆, x2)− f(x1, x2)
f(x1, x2 + ∆)− f(x1, x2)

]
. For larger ∆, the points (x1, x2),(x1 + ∆, x2)

and (x1, x2 + ∆) are farther apart and result in a less accurate gradient estimate. How-

ever, in the situation of a step function like
mc

R, we do not want to be precise. Instead

we want ∆ to be large enough to detect in which direction
mc

R(x) increases. Example 3.2
illustrates that the use of step-sizes in an optimisation algorithm, is a sensitive factor

when optimising
mc

R(x).

Example 3.2 If we take ∆ = 0.1 in the Gaussian situation, then
mc

R(0.5,−0.3) =
mc

R(0.5+

∆,−0.3) =
mc

R(0.5,−0.3+∆) = 0.15 from which follows that ∇̂
mc

R(0.6,−0.6) = [0, 0]ᵀ. Such
gradient value satisfies the first order optimality condition and causes the optimisation
algorithm to stop at this local optimum. Alternatively, consider a less precise FD estimate

based on ∆ = 0.2. Since
mc

R(0.5 + ∆,−0.3) = 0.1 and
mc

R(0.5,−0.3 + ∆) = 0.2 the FD

gradient estimate is ∇̂
mc

R(0.5,−0.3) = [−0.25, 0.25]ᵀ. From Figure 3.1 can be concluded

that this gradient direction corresponds to higher values of
mc

R(x).

Example 3.3 illustrates optimisation of the MC estimate function, in relation to the sample
size and FD step-size.

Example 3.3 An approach to make the MC estimate function better suitable for optimi-
sation, is to increase the sample size. Figure 3.3 illustrates that the mesh surfaces based
on 1000 samples are less rough than the mesh surfaces in Figure 3.1 based on 20 samples.

Although the
mc

R(x) function is discontinuous for any integer M, the mesh surfaces based
on 1000 samples almost look like surfaces of a continuous functions. The influence of
the FD step-size and number of samples on Robustness optimisation, is illustrated in this
example as follows: The RP problem

mc

R∗ = max
−1≤x1,x2≤1

mc

R(x) (3.7)

is solved with the so-called FMINCON3 solver of the Matlab Optimisation Toolboxr, which
is based on an SQP algorithm (Venkataraman, 2002). The corresponding optimal design

3The FMINCON solver is typically used for constrained NLP problems. Since the Robustness optimi-
sation cases discussed in Chapter 5 are constrained NLP problems, the FMINCON solver is an obvious
choice. The FMINUNC solver of the Matlab Optimisation Toolbox is an NLP solver for unconstrained

27



ROBUSTNESS ESTIMATION METHODS

Figure 3.3: Illustration of MC estimation in Exponential and Gaussian situation; 1000 samples

is x∗ = arg max
−1≤x1,x2≤1

mc

R(x). All parameters are kept at the Matlab default values. The starting

point is x[0] = (0.5,−0.3). The Robustness optimisation is based on the following values

of the FD step-size4: ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
. The

mc

R∗ column in Table 3.1

presents the values to which the SQP algorithm converges, for a given ∆. A highly accurate
estimate R̃(x∗) is computed, to get an idea of the actual Robustness R(x∗) and to compare
results. The highly accurate estimate R̃(x∗) is defined in Appendix A.3. As mentioned in
the beginning of this section, the SQP algorithm can converge to local optima. Therefore,

the values in the
mc

R∗ column of Table 3.1 are the best values found by the SQP solver, but
are not necessarily global optima of (3.7).

The best solutions in Table 3.1 are given in bold. The corresponding results are illus-
trated in Figures 3.4, 3.5, 3.6 and 3.7. Each figure illustrates the optimisation trajectory,
the Happy set at the starting point x[0] and the Happy set given the design x∗ to which the
SQP algorithm converges.

From these results we can conclude that increasing the number of samples has a posi-
tive effect on making the MC estimate function more suitable for optimisation. However,
increasing the number of samples comes at a price: The computation time goes up pro-
portional to the number of samples. The results in Table 3.3 show that for most of the
step-sizes, the found optima are unsatisfactory. Furthermore, these results show that
changing the number of samples, also changes the optimal setting for the FD step-size. It

problems, based on a BFGS algorithm (Venkataraman, 2002). All experiments of this chapter (3) have
been verified with the BFGS algorithm, where the constraint −1 ≤ x1, x2 ≤ 1 was not taken into account.
Only the SQP results are presented in this chapter, because all results based on the BFGS algorithm
turned out to be close to the results of the SQP algorithm.

4Step-size values ∆ > 1 caused de SQP algorithm to fail; Such step-size is too big relative to the design
space −1 ≤ x1, x2 ≤ 1. Step-size values ∆ <

(
1
2

)10 appeared too small and caused the SQP algorithm to
stop at the first iteration and return

mc

R(x[0]) as the best solution.
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Table 3.1: SQP Optimisation results of MC estimate function, for a given ∆, sample size
and distribution type

Exponential case Gaussian case
M=20 M=1000 M=20 M=1000

∆
mc

R∗ R̃ (x∗)
mc

R∗ R̃ (x∗)
mc

R∗ R̃ (x∗)
mc

R∗ R̃ (x∗)
Robustness estimate at starting point x[0] = (0.5,−0.3):

0.500 0.642 0.614 0.642 0.150 0.293 0.294 0.293(
1
2

)10 0.500 0.642 0.818 0.831 0.150 0.293 0.294 0.293(
1
2

)9 0.500 0.642 0.853 0.876 0.150 0.293 0.294 0.293(
1
2

)8 0.500 0.642 0.856 0.867 0.150 0.293 0.464 0.451(
1
2

)7 0.500 0.642 0.954 0.959 0.150 0.293 0.580 0.574(
1
2

)6 0.500 0.642 0.954 0.959 0.150 0.293 0.788 0.769(
1
2

)5 0.500 0.642 0.953 0.958 0.150 0.293 0.780 0.759(
1
2

)4 0.500 0.642 0.946 0.952 0.150 0.293 0.766 0.742(
1
2

)3 0.650 0.811 0.953 0.959 0.150 0.293 0.779 0.759(
1
2

)2
0.800 0.926 0.912 0.923 0.400 0.561 0.714 0.696(

1
2

)1 0.750 0.896 0.835 0.849 0.300 0.482 0.439 0.445(
1
2

)0 0.500 0.669 0.681 0.671 0.250 0.329 0.321 0.329
Average computation time and average estimated standard error per function evaluation are:
time (sec.) 0.0033 129.223 0.1464 55.947 0.0033 138.505 0.1455 158.013
ŝe 0.1068 0.0005 0.0143 0.0005 0.0744 0.0005 0.0129 0.0005

Comments on Table 3.1:

1.
mc

R∗ is the Robustness estimate based on M samples, of point x∗ where SQP converged to.

2. R̃(x∗) is an MC estimate of R(x∗), with ŝe
(
R̃ (x∗)

)
< 0.0005 (See Appendix A.3).

appears that satisfactory optimisation of the MC estimate function depends on the FD
step-size value.

The Figures 3.4, 3.5, 3.6 and 3.7 show that the optimisation trajectories change if
the number of samples changes and ultimately converge to different solutions. Increasing
the sample size M, from 20 to 1000, decreases the estimated standard error on average.
The results support the following assumption: Optimisation based on a more accurate
Robustness estimate function (i.e. with a lower standard error) leads to better results
R̃(x∗). In this regard, two aspects can be distinguished

1. From Definition (3.3) it follows that
mc

R(x) based on M=20 samples is a different

function than
mc

R(x) based on M=1000 samples. Therefore,
mc

R∗ and x∗ depend on the
value of M. From the weak law of large numbers (Grimmett and Stirzaker, 2001)

follows that
mc

R(x) −→ R(x) for M−→ ∞, for a given x. Consequently,
mc

R∗ −→ R∗

for M−→∞ .

2. The Figures 3.4 and 3.6 show that the SQP optimisation algorithm fails to converge

to
mc

R∗ if M=20. The Figures 3.5 and 3.7 suggest a better convergence to
mc

R∗ if
M=1000.

The observations in this section trigger the search for alternative Robustness estima-
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Figure 3.4: SQP MC estimate function optimisation results; Exponential situation; M=20; ∆ =
(

1
2

)2;
The unmarked white area between the dashed line in the v-space depicts the Happy set

tion methods, that are continuous, more smooth and more accurate than the MC estimate
function. Focus is on two types of methods: In Sections 3.4, 3.5, 3.6 and 3.7 methods
are discussed that estimate R(x) via sampling techniques and in Section 3.8 methods are
discussed for computing lower and upper bounds of R(x).
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Figure 3.5: SQP MC estimate function optimisation results; Exponential situation; M=1000;∆ =
(

1
2

)7;
The unmarked white area between the dashed line in the v-space depicts the Happy set

Figure 3.6: SQP MC estimate function optimisation results; Gaussian situation; M=20;∆ =
(

1
2

)2; The
unmarked white area between the dashed line in the v-space depicts the Happy set
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Figure 3.7: SQP MC estimate function optimisation results; Gaussian situation; M=1000;∆ =
(

1
2

)6;
The unmarked white area between the dashed line in the v-space depicts the Happy set

3.4 Smoothed Monte Carlo estimation method

The discontinuity of the MC estimate function is inconvenient for optimisation. In this
section, a smoothing method is introduced that neutralises discontinuities.

The idea behind Smoothed Monte Carlo (SMC) estimation is to add a ”smoothing”

function s(x) to the Monte Carlo estimate that produces a continuous function
smc

R (x).
These concepts are discussed in Hendrix and Olieman (2008). The set C ⊆ X is defined as

the subset of the domain for which
mc

R(x) is continuous. Focus is on a smoothing function

such that
smc

R is continuous on the sub-domain S with C ⊂ S ⊂ X that is sufficient to
make the method work in practice. The SMC estimate function is not unbiased and
deviates from the unbiased MC estimate function. However, it will be shown that ∀x ∈ S,∣∣∣mc

R(x)−
smc

R (x)
∣∣∣ ≤ 1

2M
, which can be set arbitrary close to zero, by choosing M (the

number of samples) sufficiently large.
In the following, the set S and the smoothing function s(x) are defined for which

smc

R : S −→ [0, 1] with
smc

R (x) =
mc

R(x) + s(x) is continuous at each x ∈ S. The definition of
the set S is based on three concepts, respectively called cliff-points, n-Happy-Boundary
point and standard MC discontinuity point:

Let
mc

R be discontinuous in point a. There exists a point x 6= a arbitrarily close to

a, such that |
mc

R(x) −
mc

R(a)| is a multiple of 1
M

. Graphically speaking, there is a steep
function change around point a. Such steep function change can be seen as a cliff and
such discontinuity points are called α−cliff points, where α ∈

{
1
M

, 2
M

, .., 1
}

corresponds to
the magnitude of the jump:
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Definition 3.2 Let f : RI −→ R, α ≥ 0. Point a ∈ RI is an α-cliff point of f , if ∀δ > 0
∃y : ‖a− y‖ ≤ δ and |f(a)− f(y)| = α.

Corollary 3.5 Let f be an USC function and a ∈ RI be an α-cliff point of f , then ∀δ > 0
∃y : ‖a− y‖ ≤ δ and f(a)− f(y) = α.

Proof. Let ε = 1
2
α. The USC property of f says ∃δ > 0,∀y : ‖a− y‖ ≤ δ =⇒

f(a) − f(y) > −ε = −1
2
α. This USC property excludes the possibility that for α-cliff

point a, ∀δ > 0 ∃y : ‖a− y‖ ≤ δ and f(a)− f(y) = −α.

Corollary 3.6 Let a ∈ X be an α-cliff point of
mc

R, with α ∈
{

1
M

, 2
M

, .., 1
}
.

mc

R is discon-
tinuous in a.

Let v[1], ..., v[M] be M independent realisations of v. The step-function
mc

R(x) makes a jump,
as x passes a discontinuity point a ∈ X \ C. The magnitude of this jump corresponds to
n
M

= α where n is the number of samples entering or leaving the Happy set simultaneously.
The Happy set is defined as a closed set. Hence, samples on the boundary of the Happy
set are part of the Happy set. The Happy set is defined by functions us(x, v) which are
continuous in x ∈ RI for a given v ∈ V. Consequently, there are at least n samples of
v on the boundary5 ∂H(a) at the discontinuity point a. The number of samples on the
boundary of the Happy set determines the maximum possible magnitude of the jump of
the step function and characterises the type of discontinuity.

Definition 3.3 An n-Happy-Boundary point is a point a ∈ X for which the boundary
∂H(a) of the Happy set contains n out of M samples of

{
v[1], .., v[M]

}
, i.e.∣∣{v[1], .., v[M]

}
∩ ∂H(a)

∣∣ = n

Note that a 1-Happy-Boundary is not necessarily a 1
M

-cliff point. This is the case, if
there is a sample on the boundary ∂H(a) that does not leave the Happy set in a small
environment of a, i.e. ∃δ > 0, m with v[m] ∈ ∂H(a) and ∀x ∈ B(a, δ) v[m] ∈ H(x) where
B(a, δ) =

{
x ∈ RI

∣∣ ‖a− x‖ ≤ δ
}

is a ball around a with radius δ. Moreover, a 1
M

-cliff
point is not necessarily a 1-Happy-Boundary point. For example, if there are two samples
on the boundary ∂H(a) and one of these two samples is in the Happy set in a small
environment of a.

Definition 3.4 A standard MC discontinuity point, is a point a ∈ X that is both a 1
M

-cliff
point as well as a 1-Happy-Boundary point

Let a ∈ X be a standard MC discontinuity point. Let v[m∗] be the sample on the boundary
∂H(a). Consequently, all other samples v[m] with m 6= m∗ are either in the interior of the

Happy set or outside the Happy set. The step-function
mc

R jumps with a magnitude of 1
M

in an arbitrary small interval around point a. This 1
M

function value change, corresponds
to v[m∗] leaving the Happy set, while all the other samples v[m], m 6= m∗ do not touch or
cross the boundary of the Happy set.

5Consider a set H. The notation of Bazaraa et al. (1993) for respectively the boundary, the interior
and the closure are ∂H, intH and clH.
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The word ”standard” in the name ”standard MC discontinuity point” is used, because
during the experiments illustrated in Chapter 5, this type of points were encountered.

Other points where
mc

R is discontinuous do exist, but these are considered to be of less
practical relevance. In Appendix A.4 the Advanced Smoothed Monte Carlo (ASMC)
algorithm is introduced, which generalises the SMC method, such that the estimation
function is continuous at each evaluated trial point in X. However, the ASMC algorithm
is not further elaborated, since the SMC method works sufficiently well for the studied
cases. For the sake of completeness (and possible future use) we pay attention to the
ASMC algorithm in Appendix A.4.

Definition 3.5 The domain S of
smc

R is defined as

S =
{

x ∈ RI
∣∣ 1

M
≤

mc

R(x) ≤ M−1
M

and
∣∣{v[1], .., v[M]

}
∩ ∂H(x)

∣∣ ≤ 1
}

(3.8)

From the definition it follows that for each x ∈ S there is at least one sample in the
Happy set and at least one sample not in the Happy set and at most one sample is on the
boundary of the Happy set. The practical relevance of the set S is discussed at the end
of this section. In the following, the smoothing function is introduced and continuity of
smc

R (x) for x ∈ S is shown.
The smoothing function s(x) is constructed by means of three functions, namely

g : S× V −→ R, d[in] : S −→ R+ and d[out] : S −→ R++. We first introduce.

g(x, v) = min
s
{min {Hs − us(x, v), us(x, v)− Ls}}

which represents the slack of the uncertain restriction that is violated the most (g(x, v) <
0), or is closest to violation (g(x, v) ≥ 0). Function g(x, v) has the following properties:

v ∈ ∂H(x) ⇐⇒ g(x, v) = 0 (3.9)

v ∈ H(x) ⇐⇒ g(x, v) ≥ 0 (3.10)

v /∈ H(x) ⇐⇒ g(x, v) < 0 (3.11)

b ∈ X is a n-Happy-Boundary point ⇐⇒
∣∣{m|g(b, v[m]) = 0

}∣∣ = n (3.12)

mc

R(x) =
1

M
|
{
m|g(x, v[m]) ≥ 0

}
| (3.13)

Note that g(x, v) is continuous in x, for given v since us(x, v) is continuous in x as assumed
in Section 2.1.

Corollary 3.7 Each 1
M

-cliff point a ∈ S of
mc

R is an n-Happy-Boundary point with n ≥ 1.

Proof. Proof by contradiction: Let a ∈ S be an 1
M

-cliff point and also a 0-Happy-
Boundary point. As a is a 0-Happy-Boundary point, (3.13) holds in a strict sense:

M
mc

R(a) = |
{
m|g(a, v[m]) > 0

}
|

For a continuous function g, ∃ε > 0 such that ∀y : ‖a− y‖ ≤ ε holds that

|
{
m|g(y, v[m]) > 0

}
| = M

mc

R(a), which contradicts a being an 1
M

-cliff point.
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Corollary 3.8 An n-Happy-Boundary point is an α-cliff point with α ≤ n
M

Corollary 3.9 Let
mc

R be discontinuous at x ∈ S. Point x is a standard MC discontinuity
point.

Throughout the remainder of this section, a ∈ S is a standard MC discontinuity point.
Properties (3.9),(3.10) and (3.11) suggest that if g(x, v) is close to zero, then the Euclidean
distance between sample v and ∂H(x) is also close to zero6. The following functions are
related to the distance of the samples closest to the boundary, respectively in the Happy
set and outside the Happy set. Let

d[in](x) = min
m

{
g
(
x, v[m]

)∣∣ g (x, v[m]
)
≥ 0
}

(3.14)

correspond to the sample in the Happy set with the least non-negative slack. Let

d[out](x) = min
m

{
−g
(
x, v[m]

)∣∣ g (x, v[m]
)

< 0
}

(3.15)

correspond to the sample not in the Happy set with the least negative slack. Note the
following properties

d[in](a) = 0 (3.16)

d[in](x) ≥ 0 for all x ∈ S (3.17)

d[out](x) > 0 for all x ∈ S (3.18)

d[in] and d[out] are discontinuous in point a (3.19)

The functions d[in] and d[out] lead to the following definition of the smoothing function:

Definition 3.6 The smoothing function s : S −→ [− 1
2M

, 1
2M

) is defined as:

s(x) =
1

2M

(
2d[in](x)

d[in](x) + d[out](x)
− 1

)
(3.20)

The idea behind the smoothing function s is the following. It can be shown that a is

a 1
M

-cliff point of function s with a 1
M

step in the opposite direction of
mc

R such that
it neutralises the discontinuity. The neutralisation of the discontinuity is illustrated in
Figure 3.8. The graph of the MC and SMC estimate function in Figure 3.8 shows the
estimates of the Robustness function (3.5) as in Example 3.1 and is based on 20 samples

of the Gaussian distribution. The curve depicts
smc

R (x1, 0.3) and the line pieces between

open (◦) and closed (•) edges depicts
mc

R(x1, 0.3).
Properties (3.17) and (3.18) imply that d[in](a)+d[out](a) > 0 and from Property (3.16)

it follows that

s(a) = − 1
2 M

(3.21)

Let B(a, r) =
{

x ∈ RI
∣∣ ‖a− x‖ ≤ r

}
be a ball around a with radius r.

6Let δ(x, v) = min
w∈∂H(x)

‖v − w‖2 be the Euclidean distance between v and the Happy set boundary.

For point v on the boundary, the distance to the boundary is δ(x, v) = 0 ⇔ g(x, v) = 0. Functions δ and
g are both continuous in x. This means that if g(x, v) converges to 0 for a sequence of x, then so does
δ(x, v).
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Figure 3.8: Continuous
smc

R (x1, 0.3) and discontinuous (USC)
mc

R(x1, 0.3)

Lemma 3.1 Function s is continuous in point b ∈ S if
mc

R is continuous in point b.

Proof.
mc

R is continuous in point b, such that ∃δ > 0 ∀x ∈ B(b, δ),
mc

R(x) =
mc

R(b). Conse-

quently, ∀x ∈ B(b, δ), M
mc

R(x) = |
{
m|g(x, v[m]) ≥ 0

}
| = |

{
m|v[m] ∈ H(x)

}
| is constant.

For each v[m] /∈ H(b), g(b, v[m]) < 0. Let O(b) =
{
m|g(b, v[m]) < 0

}
be the set of indices of

samples outside the Happy set at point b. Since function g is continuous, ∃δ̃ > 0, δ̃ < δ,
such that ∀m ∈ O(b), ∀x ∈ B(b, δ̃): g(x, v[m]) < 0. This means that ∀x ∈ B(b, δ̃), if
v[m] ∈ H(b) then v[m] ∈ H(x) and if v[m] /∈ H(b) then v[m] /∈ H(x):

∀x ∈ B(b, δ̃) :
{
m|v[m] ∈ H(x)

}
=
{
m|v[m] ∈ H(b)

}
and{

m|v[m] /∈ H(x)
}

= O(b)
(3.22)

So, ∀x ∈ B(b, δ̃)

d[in](x) = min
m

{
g
(
x, v[m]

)∣∣m /∈ O(b)
}

d[out](x) = min
m

{
−g
(
x, v[m]

)∣∣m ∈ O(b)
} (3.23)

Since the minimum or maximum over a constant number of continuous functions is con-
tinuous, it follows that both d[in] and d[out] are continuous in point b. Because ∀x ∈ S
d[in](x) + d[out](x) > 0, function s is continuous in point b.

Now we arrive at the main property that tells us that the smoothing function s(x) helps

to make the
smc

R function continuous for the standard MC discontinuity points in S.
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The following reasoning is convenient. In a standard MC discontinuity point a ∈ S,
there is exactly one sample on the boundary of the Happy set. Let v[m∗] be this sample.
Then g(a, v[m∗]) = 0 and g(a, v[m]) 6= 0 for all m 6= m∗. Since function g(x, v) is continuous
in x, Corollary 3.10 follows immediately.

Corollary 3.10 Let a ∈ S be a standard MC discontinuity point and sample v[m∗] the
sample on the boundary of the Happy set. ∃δ, λ > 0 such that ∀m 6= m∗ ∀y ∈ B(a, δ)
|g(y, v[m∗])| < λ < |g(y, v[m])|.

Theorem 3.1 The function
smc

R (x) =
mc

R(x) + s(x) is continuous in each standard MC
discontinuity point a ∈ S.

Proof. The core of the proof is to show that

∀ε > 0 ∃δ > 0 such that x ∈ B(a, δ) =⇒
∣∣∣smc

R (x)−
smc

R (a)
∣∣∣ < ε (3.24)

Corollary 3.10 shows that δ can be chosen such that the possibility that d[out](x) = d[in](x)
for x ∈ B(a, δ) is excluded. Two situations can occur:

A: x ∈ B(a, δ) and d[in](x) < d[out](x)

B: x ∈ B(a, δ) and d[out](x) < d[in](x)

The two situations are studied separately. First consider situation A: for x ∈ B(a, δ) and
d[in](x) < d[out](x), where v[m∗] is the sample on the Happy set boundary, the following
properties hold

g(x, v[m∗]) ≥ 0 (3.25)

v[m∗] ∈ H(x) (3.26)

d[in](x) = g(x, v[m∗]) (3.27)

d[out](x) > λ (3.28)

− 1
2M

≤ s(x) < 0 (3.29)
mc

R(a)−
mc

R(x) = 0 (3.30)
smc

R (a)−
smc

R (x) = − 1
2M
− s(x) (3.31)

Given ε > 0. According to Corollary 3.10 and the continuity of g, ∃δ > 0 for which ∃λ > 0
such that x ∈ B(a, δ) =⇒ g(x, v[m∗]) < Mλε. It follows that

− 1
2M

≤ s(x) = 1
2M

(
2d[in](x)

d[in](x)+d[out](x)
− 1
)

< 1
2M

(
2g(x,v[m∗])

g(x,v[m∗])+λ
− 1
)

=⇒ 0 ≥
smc

R (a)−
smc

R (x) > − 1
M

(
g(x,v[m∗])

g(x,v[m∗])+λ

)
=⇒

∣∣∣smc

R (x)−
smc

R (a)
∣∣∣ < 1

M

(
g(x,v[m∗])

g(x,v[m∗])+λ

)
< g(x,v[m∗])

Mλ
< ε

(3.32)
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Situation B: for x ∈ B(a, δ) and d[out](x) < d[in](x) the following properties hold

g(x, v[m∗]) < 0 (3.33)

v[m∗] /∈ H(x) (3.34)

d[out](x) = −g(x, v[m∗]) (3.35)

d[in](x) > λ (3.36)

0 ≤ s(x) < 1
2M

(3.37)
mc

R(a)−
mc

R(x) = 1
M

(3.38)
smc

R (a)−
smc

R (x) = 1
2M
− s(x) (3.39)

Given ε > 0. According to Corollary 3.10 and the continuity of g, ∃δ > 0 for which ∃λ > 0
such that x ∈ B(a, δ) =⇒ −g(x, v[m∗]) < Mλε. It follows that

1
2M

> s(x) = 1
2M

(
2d[in](x)

d[in](x)+d[out](x)
− 1
)

> 1
2M

(
2λ

λ−g(x,v[m∗])
− 1
)

=⇒ 0 <
smc

R (a)−
smc

R (x) < 1
M
− 1

M

(
λ

λ−g(x,v[m∗])

)
=⇒

∣∣∣smc

R (x)−
smc

R (a)
∣∣∣ < 1

M
− 1

M

(
λ

λ−g(x,v[m∗])

)
=⇒

∣∣∣smc

R (x)−
smc

R (a)
∣∣∣ < 1

M

(
−g(x,v[m∗])

λ−g(x,v[m∗])

)
< −g(x,v[m∗])

Mλ
< ε

(3.40)

The SMC method is elaborated in Example 3.4, based on Example 3.1 of Section 3.2.

Example 3.4 Consider the Robustness function R(x) as defined in (3.5) of Example 3.1,
where the random vector v is defined for two situations, respectively called the ”Gaussian”
situation and the ”Exponential” situation. The mesh surface of the SMC estimate function
in the Exponential and Gaussian situation, based on 20 samples, are shown in Figure 3.9.
Note that the mesh surfaces in Figure 3.9 look more smooth than the mesh surfaces in

Figure 3.1. The range of smoothing function s implies that |
smc

R (x) −
mc

R(x)| ≤ 1
2M

. For
M=1000, the difference between the mesh surfaces of the SMC estimate and the MC
estimate in 3.3 cannot be visually distinguished.

Optimisation of the SMC estimate function is run, similar to the Optimisation study
of the MC estimate function of Example 3.1: The starting point is x[0] = (0.5,−0.3);

FD step-sizes are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
; All other parameters are kept at the

Matlab default values. The
smc

R∗ column in Table 3.2 presents the values to which the SQP
algorithm converges, for a given ∆. For instance, the best result in the Gaussian situation

with 20 samples was found with ∆ =
(

1
2

)10
. The corresponding optimisation results are

shown in Figure 3.10.

Robustness maximisation based on the SMC function, yields better results than Robust-
ness maximisation based on the MC estimate function, since most values of R̃ (x∗) in
Table 3.2 are higher than the corresponding values R̃ (x∗) in Table 3.1. Note that using
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3.4 SMOOTHED MONTE CARLO ESTIMATION METHOD

Figure 3.9: Illustration of SMC estimation in Exponential and Gaussian situation; 20 samples

the SMC function, R̃ (x∗) is higher than in the starting point R̃
(
x[0]
)

for all settings for the
FD step-size ∆. Since this is not the case in Example 3.1, we conclude that optimisation

Table 3.2: SQP Optimisation results of SMC estimate function, for a given ∆, sample
size and distribution type

Exponential case Gaussian case
M=20 M=1000 M=20 M=1000

∆
smc

R∗ R̃ (x∗)
smc

R∗ R̃ (x∗)
smc

R∗ R̃ (x∗)
smc

R∗ R̃ (x∗)
Robustness estimate at starting point x[0] = (0.5,−0.3):

0.513 0.644 0.614 0.644 0.160 0.294 0.294 0.294(
1
2

)10 0.835 0.940 0.948 0.954 0.653 0.763 0.743 0.731(
1
2

)9 0.834 0.938 0.954 0.960 0.491 0.680 0.792 0.778(
1
2

)8
0.858 0.960 0.954 0.959 0.625 0.769 0.784 0.770(

1
2

)7 0.845 0.950 0.954 0.960 0.486 0.657 0.642 0.628(
1
2

)6 0.813 0.935 0.954 0.960 0.489 0.673 0.791 0.775(
1
2

)5 0.850 0.953 0.953 0.958 0.536 0.704 0.782 0.761(
1
2

)4 0.830 0.938 0.951 0.956 0.317 0.429 0.785 0.764(
1
2

)3 0.834 0.952 0.940 0.947 0.328 0.524 0.774 0.754(
1
2

)2 0.742 0.917 0.915 0.925 0.240 0.330 0.716 0.702(
1
2

)1 0.735 0.903 0.834 0.851 0.398 0.478 0.453 0.455(
1
2

)0 0.513 0.643 0.681 0.671 0.239 0.329 0.296 0.292
Average computation time and average estimated standard error per function evaluation are:
time (sec.) 0.0035 50.258 0.1489 46.866 0.0036 152.513 0.1457 137.292
ŝe 0.1068 0.0005 0.0143 0.0005 0.0744 0.0005 0.0129 0.0005

Comments on Table 3.2:

1.
smc

R∗ is the Robustness estimate based on M samples, of point x∗ where SQP converged to.

2. R̃(x∗) is an MC estimate of R(x∗), with ŝe
(
R̃ (x∗)

)
< 0.0005 (See Appendix A.3).
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Figure 3.10: SMC estimate function optimisation results via SQP; Gaussian situation; M=20; ∆ =(
1
2

)10; The unmarked white area between the dashed lines in the v-space depicts the Happy set

of the SMC function is less sensitive to the FD step-size setting.

3.5 N-1 Monte Carlo estimation method

The MC and SMC estimate functions are based on samples of v, but do not use any other
information about v. In this section the N-1 Monte Carlo (N-1MC) estimate function
is introduced for estimating the Robustness (2.2) or (2.3). The idea behind N-1 Monte
Carlo estimation, is to use samples of v as well as the Probability Density Function
(f(v)) information if v is a continuous random vector, or the probability measure (Prv)
information if v is a discrete random vector.

Let the random vector v consist of N elements and the MC method be based on
M independent samples v[m] ∈ RN, m = 1, ..,M of v. Without loss of generality we
consider the first element v1 of v, separately from the other N-1 elements v2, .., vN. For
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the discussion it is convenient to denote the components of the sample space as given in
Corollary 2.5: V = V1 × V2 × · · · × Vn × · · · × VN where V is the sample space of v and
Vn is the sample space of each element vn. In Theorem 3.2 it is shown that the following
estimate function is unbiased.

Definition 3.7 Let q = (v2, .., vN)
ᵀ ∈ RN−1 be a given realisation of the last N-1 elements

of v. The N-1MC estimate function
N-1mc
r : RN−1 × RI −→ [0, 1] is defined as

N-1mc
r (q, x) = Pr

{
v1 ∈ V1

∣∣(v1, q)
ᵀ ∈ H(x)

}
(3.41)

Corollary 3.11 If v is a continuous random vector, then

N-1mc
r (q, x) =

∫
V1

I(v1, q, x)f1(v1)dv1 (3.42)

with f1(v1) the PDF of the first element of v and I the Happy set indicator function as
defined in (2.5).

Corollary 3.12 If v is a discrete random vector, then

N-1mc
r (q, x) =

∑
v1∈V1

I(v1, q, x) Pr {v1 = v1} (3.43)

with I the Happy set indicator function as defined in (2.5).

Theorem 3.2 Let
N-1mc
r (q, x) be as defined in 3.7 and q = [v2, ..,vN] be the corresponding

random vector.

Eq[
N-1mc
r (q, x)] = Pr {v ∈ H(x)} (3.44)

Proof. First, consider the case that v is a continuous random vector. Since

f1(v1)dv1fn(vn)dvn = f1(v1)fn(vn)dv1dvn for n = 2, .., N

the terms can be rearranged as follows:

Eq[
N-1mc
r (v2, ..,vN, x)]

=

∫
V2

· · ·
∫

VN

N-1mc
r (v2, .., vN, x)f2(v2) · · · fN(vN)dv2 · · · dvN

=

∫
V2

· · ·
∫

VN

∫
V1

I(v1, v2, .., vN, x)f1(v1)dv1f2(v2) · · · fN(vN)dv2 · · · dvN

=

∫
V1

· · ·
∫

VN

I(v1, .., vN, x)f1(v1) · · · fN(vN)dv1 · · · dvN

= Pr {v ∈ H(x)} (3.45)
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Finally, consider the case that v is a discrete random vector.

Eq[
N-1mc
r (v2, ..,vN, x)]

=
∑

v2∈V2

∑
v3∈V3

· · ·
∑

vN∈VN

N-1mc
r (v2, v3, .., vN, x)Pr {v2 = v2}Pr {v3 = v3} · · ·Pr {vN = vN}

=
∑

v1∈V1

∑
v2∈V2

· · ·
∑

vN∈VN

I(v1, v2.., vN, x)Pr {v1 = v1}Pr {v2 = v2} · · ·Pr {vN = vN}

=
∑
v∈V

I(v, x) Pr {v = v} = Pr {v ∈ H(x)} (3.46)

Consider q[m] ∼ q with m = 1, ..,M. Theorem 3.2 leads to:

Corollary 3.13
The estimator

N-1mc

R (x) =
1

M

M∑
m=1

N-1mc
r
(
q[m], x

)
(3.47)

is an unbiased estimator of R(x)

Corollary 3.14 Following the definitions of Rice (1995), the standard error of the esti-
mator is

se
(

N-1mc

R (x)
)

=

√
1

M

(
E

[(
N-1mc

R (x)
)2
]
−
(
E
[

N-1mc

R (x)
])2
)

(3.48)

Theorem 3.3

se
(

N-1mc

R (x)
)
≤ se

(
mc

R(x)
)

(3.49)

Proof.
It is sufficient to prove the equation for M = 1, since the standard error of both estimators

decreases equally proportional with
√

M. As each realisation
N-1mc

R (x) ≤ 1 and
mc

R(x) ∈
{0, 1}, it holds that 0 ≤

(
N-1mc

R (x)
)2

≤
N-1mc

R (x) ≤ 1 and
(

mc

R(x)
)2

=
mc

R(x). Therefore,

var
(

N-1mc

R (x)
)

= E

[(
N-1mc

R (x)
)2
]
−
(
E
[

N-1mc

R (x)
])2

≤ E
[

N-1mc

R (x)
]

−
(
E
[

N-1mc

R (x)
])2

= E

[(
mc

R(x)
)2
]

−
(
E
[

mc

R(x)
])2

= var
(

mc

R(x)
)

For general M, from independency and unbiasedness of both estimators, follows now

se
(

N-1mc

R (x)
)

=
[
V AR(

N-1mc

R (x))
]1/2

≤
[
V AR(

mc

R(x))
]1/2

= se
(

mc

R(x)
)

(3.50)

The standard error of the MC estimator and the standard error of the N-1MC estimator
can be equal. This happens when the Happy set has the following characteristic.
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3.5 N-1 MONTE CARLO ESTIMATION METHOD

Definition 3.8 Let
N-1mc
r (q, x) be defined by (3.41) and q = [v2, ..,vN] the correspond-

ing random vector. The Happy set H(x) is called to have an All-Or-Nothing shape if

Pr
{

N-1mc
r (q, x) ∈ {0, 1}

}
= 1.

If the Happy set has an All-Or-Nothing shape, then
N-1mc
r (q, x) is almost surely either 0 or

1. Recall that the range of the MC estimate function for M=1 is also {0, 1}. Theorem
3.4 shows that these range properties lead to identical standard errors.

Theorem 3.4 For a measurable set H(x) holds that

se
(

N-1mc

R (x)
)

= se
(

mc

R(x)
)

if and only if H(x) has an All-Or-Nothing shape.

Proof.

Let VN−1 = V2 × V3 × · · · × Vn × · · · × VN. In the proof of Theorem 3.3, the equal-
ity

E

[(
N-1mc

R (x)
)2
]

= E

[(
mc

R(x)
)2
]

is equivalent to

E

[(
N-1mc

R (x)
)2
]

= E
[

N-1mc

R (x)
]

which holds if and only if any realisation of the estimator
N-1mc

R (x), with M= 1, is either 0
or 1, i.e. if and only if the set{

q ∈ VN−1
∣∣∣N-1mc

r (q, x) ∈ {0, 1}
}

is dense in VN−1, i.e. is equal to VN−1 apart from a set of measure zero.

From theorem 3.4 follows directly

Corollary 3.15
Given the Happy set H(x)

se
(

N-1mc

R (x)
)

< se
(

mc

R(x)
)

if and only if H(x) does not have an All-Or-Nothing shape.

Notice that a bounded Happy set H(x) with non-empty interior does not have an All-Or-
Nothing shape, if V = RN, i.e. v has a continuous distribution on RN. Consequently, if
the Happy set has these properties, then the N-1MC estimator is more accurate than the
MC estimator.
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Let us focus on the computation of the N-1MC estimate function. From a practical
point of view, it is convenient if the Happy set leads to

a = inf {v1 ∈ V1|(v1, q1, .., qN−1) ∈ H(x)}
b = sup {v1 ∈ V1|(v1, q1, .., qN−1) ∈ H(x)}

a < t < b =⇒ t ∈ {v1 ∈ V1|(v1, q1, .., qN−1) ∈ H(x)}

for any q ∈ VN−1, because then, for a continuous random variable v1

N-1mc
r (q, x) =

b∫
a

f1(v1)dv1 = F1(b)− F1(a)

or a discrete random variable v1

N-1mc
r (q, x) =

∑
a<v1≤b

f1(v1)dv1 = F1(b)− F1(a)

This is convenient, because a computer program such as the Statistics Toolbox of Matlabr,
can be used to compute the Cumulative Distribution Function (CDF) F1(x) = Pr {v1 ≤ x},
of discrete or continuous distributed random variable v1. If the Happy set has the follow-
ing characteristic, then it is possible to compute (3.42) or (3.43), using the CDF of v1.

Definition 3.9 The measurable set H(x) is called Dim-1-Convex if
{v1 ∈ V1 |(v1, q1, .., qN−1) ∈ H(x)} is convex for all q ∈ VN−1.

Note that Definition 3.9 implies that any convex Happy set is also Dim-1-Convex. The
converse is not true, i.e. a Dim-1-convex set is not necessarily a convex set. Figure 3.11

Figure 3.11: Illustration of a non-convex set S that is Dim-1-Convex for q = v2

illustrates a non-convex set, which is Dim-1-Convex with respect to v1with q = v2. Note
that the set illustrated in Figure 3.11 is not Dim-1-Convex with respect to v2 with q = v1.

The idea of N-1 MC Robustness computation, for Dim-1-Convex sets, goes as fol-
lows. The Robustness estimate can be computed conveniently, for M independent samples
q[1], .., q[m], .., q[M] of random vector q, with

N-1mc

R (x) = 1
M

M∑
m=1

N-1mc
r (q[m], x) = 1

M

M∑
m=1

[
F1

(
b(q[m], x)

)
− F1

(
a(q[m], x)

)]
(3.51)
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3.5 N-1 MONTE CARLO ESTIMATION METHOD

Figure 3.12: Illustration of N-1MC estimate function; in Exponential and Gaussian case; 20 samples

Figure 3.13: Illustration of N-1MC estimate function; Exponential and Gaussian case; 1000 samples

where

a(q, x) = inf {v1 ∈ V1 |(v1, q1, .., qN−1) ∈ H(x)}
b(q, x) = sup {v1 ∈ V1 |(v1, q2, .., qN−1) ∈ H(x)} (3.52)

with standard error estimate

ŝe
(

N-1mc

R (x)
)

=

√
1

M− 1

(
1
M

M∑
m=1

N-1mc
r (q[m], x)2 −

(
N-1mc

R (x)
)2
)

(3.53)

Note that if the Happy set H(x) is a finite union
H⋃

h=1

H[h](x) of H disjunct Dim-1-Convex
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ROBUSTNESS ESTIMATION METHODS

sets H[h](x), then the probability estimator of H(x) is the sum of the N-1MC estimators
of the individual sets.

The N-1MC estimate function (3.51) has an analytic expression for the gradient, if
∂a(q[m],x)

∂xi
and ∂b(q[m],x)

∂xi
are defined:

∂
N-1mc

R (x)

∂xi

= 1
M

M∑
m=1

f1

(
b(q[m], x)

) ∂b(q[m],x)
∂xi

− f1

(
a(q[m], x)

) ∂a(q[m],x)
∂xi

, i = 1, .., I (3.54)

If M is relatively large, or if ∂a(q[m],x)
∂xi

and ∂b(q[m],x)
∂xi

are difficult to compute, then finite
differencing is a more practical alternative.

The optimisation of
N-1mc

R (x) is illustrated for an extension of Example 3.1.

Figure 3.14: SQP optimisation results of N-1MC estimate function; Gaussian case; M=20; ∆ =
(

1
2

)7
Example 3.5 In Example 3.1, any dimension in the v-space can be chosen as an inte-
gration direction in the N-1MC method. In this example, the N-1MC estimate function
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3.5 N-1 MONTE CARLO ESTIMATION METHOD

Table 3.3: SQP Optimisation results of N-1MC estimate function, for a given ∆, sample
size and distribution type

Exponential case Gaussian case
M=20 M=1000 M=20 M=1000

∆
N-1mc

R∗ R̃ (x∗)
N-1mc

R∗ R̃ (x∗)
N-1mc

R∗ R̃ (x∗)
N-1mc

R∗ R̃ (x∗)
Robustness estimate at starting point x[0] = (0.5,−0.3):

0.649 0.642 0.638 0.642 0.290 0.293 0.288 0.293(
1
2

)10 0.952 0.959 0.959 0.960 0.800 0.782 0.781 0.783(
1
2

)9 0.950 0.958 0.958 0.958 0.797 0.778 0.778 0.781(
1
2

)8 0.948 0.957 0.959 0.960 0.790 0.768 0.778 0.780(
1
2

)7 0.950 0.957 0.959 0.959 0.801 0.783 0.781 0.783(
1
2

)6
0.952 0.959 0.957 0.958 0.795 0.777 0.764 0.766(

1
2

)5 0.949 0.956 0.954 0.956 0.801 0.783 0.764 0.767(
1
2

)4 0.938 0.950 0.955 0.956 0.752 0.709 0.763 0.765(
1
2

)3 0.941 0.948 0.954 0.955 0.706 0.673 0.775 0.778(
1
2

)2 0.935 0.942 0.919 0.926 0.628 0.596 0.622 0.625(
1
2

)1 0.829 0.896 0.843 0.849 0.450 0.462 0.497 0.501(
1
2

)0 0.650 0.646 0.638 0.644 0.380 0.329 0.369 0.356
Average computation time and average estimated standard error per function evaluation are:
time (sec.) 0.0074 45.580 0.3453 47.813 0.0068 136.696 0.3097 131.480
ŝe 0.0602 0.0005 0.0076 0.0005 0.0444 0.0005 0.0065 0.0005

Comments on Table 3.3:

1.
N-1mc

R∗ is the Robustness estimate based on M samples, of point x∗ where SQP converged to.

2. R̃(x∗) is an MC estimate of R(x∗), with ŝe
(
R̃ (x∗)

)
< 0.0005 (See Appendix A.3).

evaluations are based on integrating over v2. The resulting mesh surface of the N-1MC
estimate function in the Exponential and Gaussian situation, based on 20 samples, are
shown in Figure 3.12.

The mesh surfaces in Figure 3.12 look more smooth than the mesh surfaces of respec-
tively the MC method in Figure 3.1 and the SMC method in Figure 3.9. The standard
error of the N-1MC in Table 3.3, relative to the standard error of the MC method in Table
3.1, shows that the N-1MC method is almost twice as accurate, given the same number of
samples. This observation supports the idea that a more accurate estimate, results into a
more smooth surface (under the assumption that R(x) is smooth). Likewise, Figure 3.13
shows the N-1MC estimate of (3.5) as a function of x, based on 1000 samples.

Optimisation of the N-1MC estimate function is run and compared to the Optimisation
of the MC estimate function of Example 3.3: The starting point is x[0] = (0.5,−0.3); FD

step-sizes are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
; All other parameters are kept at Matlab

default values. Table 3.3 gives the values of
N−1mc

R∗ to which the SQP algorithm converges.
Table 3.3 shows that N-1MC yields better results than MC. However N-1MC and SMC
appear to be competitive for this example. For instance, the best result in the Gaussian

situation with 20 samples was found with ∆ =
(

1
2

)7
. The corresponding optimisation

results are shown in Figure 3.14. The vertical line pieces in Figure 3.14, illustrate the
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intervals in the v2-space over which the PDF of v2 is integrated, The first element of
the sample values give the horizontal position of these line pieces, i.e. q[m] = v

[m]
1 for

m = 1, ..,M.

3.6 Directional Sampling estimation method

In this section, the focus is on estimating the Robustness (2.4) for the situation that v
is a continuous random vector which is characterised by a so-called spherical symmetric
PDF. Spherical symmetry of a function is defined as follows.

Definition 3.10 A function f : RN −→ R is spherical symmetric if and only if ∃g :
R −→ R, such that ∀v ∈ RN g (vᵀv) = f(v)

A spherical symmetric function f : RN −→ R has the property f(a) = f(b), for two points
a ∈ RN and b ∈ RN on the same sphere, i.e. ‖a‖2 = ‖b‖2. A typical example of such
a distribution is the standard Multivariate Normal distribution (MVN), defined by the

PDF ϕ(v) = 1
(2π)N/2 e

− 1
2
vᵀv.

The MVN distribution plays an important role in Probability Theory, Mathematical
Statistics and Stochastic Programming. Deák (2003, 2000) states that the computation
of the probability that a MVN distributed random vector has a realisation in an N di-
mensional set, is frequently required in diverse areas of computational mathematics. For
example, to determine the probability of breakdowns in problems of structural reliability,
or the probability of multidimensional confidence intervals, or the probability of feasibility
regions in Stochastic Programming. Deák’s method is also called Deák’s Decomposition
(in Gassmann et al., 2002) or Directional Sampling (in Bjerager, 1988).

Numerical integration of (2.7) when f(v) = ϕ(v) is not tractable in general, which
motivated Genz (1993), Szántai (2000), Deák (2003) and Somerville (1998) to develop
alternative methods for estimating (2.7). In the last decades, specific methods have been
studied for the situation that H has an explicit shape: Gassmann et al. (2002) discusses
methods for the special case that H has a rectangle shape. In (Deák, 2003, 2000) methods
are discussed for the case that the shape of H is a polyhedron, a hyper-ellipsoid, or a
circular cone. Note that these shapes can be described by a system of linear and quadratic
inequalities.

The main contribution of this section is the generalisation of Deák’s method. The gen-
eralisation of Deák’s method is called the Directional Sampling (DS) estimation method.
Deák’s method is generalised in three ways. Firstly, Deák’s method can be generalised
for any continuous random vector with a so-called spherical symmetric PDF. Secondly,
the basic principles of Deák’s method hold for any measurable set H(x). Thirdly, the
underlying properties of the Happy set are defined, that imply the possibility to compute
the DS estimate numerically and guarantee that the DS estimator is more accurate than
the MC estimator.
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3.6 DIRECTIONAL SAMPLING ESTIMATION METHOD

The focus of this section, given a spherical symmetric PDF f(v) = g
(
v

ᵀ
v
)
, is on

estimating the Robustness

R(x) =

∫
H(x)

g (vᵀv) dv (3.55)

The main idea in Deák’s method, is to transform expression (3.55) into a radial and a
spherical part via a Polar Coordinates Transform, leading to an efficient unbiased estima-

tor
ds

R(x) for (3.55).
To derive this efficient unbiased estimator, it is convenient first to give an explicit

definition of the Polar Coordinates Transform in Section 3.6.1, followed by the introduc-

tion of a key-concept called the random direction in Section 3.6.2, before defining
ds

R(x)
in Section 3.6.3.

3.6.1 Polar Coordinates Transform

The following Polar Coordinates Transform is based on definitions in Prékopa (2001).

Definition 3.11 The Polar Coordinates Transform for N≥ 2 is defined by the following
mapping:

P : P −→ RN (3.56)

P


r
α1
...

αN−1

 =



r sin(α1)
r cos(α1) sin(α2)
...
r cos(α1) · · · cos(αN−3) sin(αN−2)
r cos(α1) · · · cos(αN−3) cos(αN−2) sin(αN−1)
r cos(α1) · · · cos(αN−3) cos(αN−2) cos(αN−1)


(3.57)

where P = R+ × A with A =
{

α ∈ RN−1
∣∣ |αi| ≤ 1

2
π, i = 1, .., N− 2; |αN−1| ≤ π

}
Corollary 3.16 The Jacobian determinant of the Polar Coordinates Transform is
J : P −→ R for p ∈ P with

J(p) = det
∂P (p)

∂p
= rN−1K(α) (3.58)

where K : A −→ R+ with K(α) =


cosN−2(α1) cosN−3(α2) · · · cos(αN−2) if N > 4
cosN−2(α1) cosN−3(α2) if N = 4
cosN−2(α1) if N = 3
1 if N = 2

The derivation of the Jacobian of the Polar Coordinates Transform is given among others
in Anderson (1984).
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3.6.2 Random Direction

As mentioned in the beginning of Section 3.6, the approach is to redefine (3.55) in a
spherical and a radial part. The concept of a random direction is closely related to the
spherical part discussed later.

Definition 3.12 Let S =
{

s ∈ RN
∣∣ s′s = 1

}
be the unit hyper-sphere. A random direction

s is a random vector, uniformly distributed on the unit hyper-sphere and is defined on
probability space7 (S,S, Prs).

Corollary 3.17 Let A : S −→ A be the bijective function, which maps each point on the

unit sphere to Polar Coordinate angles via A(s) =
(
P−1

2 (s), .., P−1
N (s)

)ᵀ

. Let E ⊆ S. The
probability measure of s is

Prs(E) =

∫
A(E)

cK(α)dα, ∀E ∈ S (3.59)

characterised by a constant c.

Corollary 3.18 The constant c =

(∫
A

K(α)dα

)−1

. This constant can be calculated from:

1 = Prs(S) =
∫

A(S)

cK(α)dα =
∫
A

cK(α)dα

In the following, the value of constant c is derived, such that an explicit formulation of
the DS estimator can be given in Section 3.6.3.

Lemma 3.2 Let Γ : R+ −→ R+ with Γ(x) =
∞∫
0

tx−1e−tdt be the Gamma function as

defined in Rice (1995).

c =
Γ(N

2
)

2(π)
N
2

(3.60)

Proof. The integral over the sample space of a MVN random vector is

(2π)−N/2

∞∫
−∞

· · ·
∞∫

−∞

e−
1
2
v′vdv = 1 (3.61)

7S is the smallest σ-algebra of all subsets of S
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Polar Coordinates Transform applied to expression (3.61) gives

(2π)−
N
2

∫
A

K(α)

∞∫
0

rN−1e−
1
2
r2

dr dα = 1

=⇒(2π)−
N
2

∫
A

K(α)

∞∫
0

wN−1e−w2

2
1
2
N− 1

2 2
1
2 dw dα = 1 (i.e. transformation: r =

√
2w)

=⇒(2π)−
N
2

∫
A

K(α)
1

2
Γ

(
N

2

)
2

N
2 dα = 1

=⇒

∫
A

K(α)dα

−1

=
Γ(N

2
)

2(π)
N
2

(3.62)

Notice that c is the inverse of the surface of the unit hyper-sphere.

3.6.3 The Directional Sampling (DS) estimator

The theory developed in the previous sections will be used to develop the so-called Di-
rectional Sampling (DS) estimation method, which is a promising alternative to the well
known Monte Carlo estimation method, in the case random vector v has a spherical
symmetric distribution.

In Section 3.2 the Happy set Indicator function has been defined in (2.5). Polar
Coordinates Transformation of expression (3.55) gives

Pr {v ∈ H(x)} =

∫
H(x)

g
(
v

ᵀ
v
)
dv =

∫
R

I(v, x)g
(
v

ᵀ
v
)
dv

=

∫
A

K(α)

∞∫
0

I (P (r, α), x) r N−1g(r2)drdα (3.63)

The DS estimation procedure is based on the following theorem

Theorem 3.5 Let s be a random direction8 and c = 2(π)
N
2

Γ(N
2

)

Es

1

c

∞∫
0

I(rs, x)rN−1g(r2)dr

 = Pr {v ∈ H(x)} (3.64)

8A practical approach for obtaining random direction sample s is the following. Let v ∈ RN be
a sample of a MVN random vector. Projecting v on the unit sphere gives random direction sample:
s = v√

v
ᵀ

v
.
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Proof. Polar Coordinates Transformation of the explicit form of the Expected value gives

Es

1

c

∞∫
0

I(rs, x)r N−1g(r2)dr

 =

∫
S

1

c

 ∞∫
0

I(rs, x)r N−1g(r2)dr

 cds

=

∫
A

K(α)

∞∫
0

I
(
r1N−1P (1, α), x

)
r N−1g(r2)drdα

=

∫
A

K(α)

∞∫
0

I (P (r, α), x) r N−1g(r2)drdα

= Pr {v ∈ H(x)} . (3.65)

Definition 3.13 Let s ∈ S be a given realisation on the unit hyper-sphere of random

direction s and c = 2(π)
N
2

Γ(N
2

)
. The DS estimate function

ds
r : S× RI −→ [0, 1] is defined as

ds
r(s, x) =

1

c

∞∫
0

I(rs, x)rN−1g(r2)dr (3.66)

Corollary 3.19 Let s[1], .., s[m] be M independent copies of random direction s. From
Definition 3.13 and Theorem 3.5 follows directly that the DS-estimator

ds

R(x) =
1

M

M∑
m=1

ds
r(s[m], x) (3.67)

is an unbiased estimator of R(x)

Corollary 3.20 Following the definitions of Rice (1995), the standard error9 of the DS
estimator is

se
(

ds

R(x)
)

=

√
1

M

(
E

[(
ds

R(x)
)2
]
−
(
E
[

ds

R(x)
])2
)

(3.68)

9Deák (2000) reduced the standard error of the estimator by using antithetic random direction samples
and in later research by using orthonormalised random direction samples. It can be shown that using
orthonormalisated random directions results in a Directional Sampling estimator with a lower standard
error. These topics are not further discussed here, to keep notation as simple as possible.

52



3.6 DIRECTIONAL SAMPLING ESTIMATION METHOD

Consider the multivariate standard normal PDF f(v) = 1
(2π)N/2 e

− 1
2
v

ᵀ
v = g(v

ᵀ
v), with

g(w) = 1
(2π)N/2 e

− 1
2
w. Let M=1 and s be a sample of the random direction s. Substitution

in (3.67) gives the estimate function introduced by Deák (1986):

ds

R(x) =
(2π)

N
2

2
N
2
−1Γ(N

2
)

∞∫
0

I(rs, x)r N−1 1

(2π)N/2
e−

1
2
r2

dr

=

∞∫
0

I(rs, x)
1

2
N
2
−1Γ(N

2
)
r N−1e−

1
2
r2

dr

=

∞∫
0

I(rs, x)
1

2
N
2 Γ(N

2
)
y N/2−1e−

1
2
y

︸ ︷︷ ︸
PDF of chi-square distribution

dy (3.69)

where the last step follows from substituting r =
√

y and dr = 1
2
y−

1
2 dy.

3.6.4 Comparison of DS and MC estimation method

We will compare the Directional Sampling (DS) estimation method and the Monte Carlo
(MC) estimation method, with respect to their accuracy, expressed in terms of standard
error (se).

Theorem 3.6 Let
ds

R(x) be the DS estimator (3.67) and
mc

R(x) be the MC estimator (3.1)
and se be its standard error according to (3.68).

se
(

ds

R(x)
)
≤ se

(
mc

R(x)
)

(3.70)

Proof.
It is sufficient to prove the equation for M = 1, since the standard error of both estimators

decreases equally proportional with
√

M. As 0 ≤
(

ds

R(x)
)2

≤
ds

R(x) ≤ 1 and(
mc

R(x)
)2

=
mc

R(x), it holds that

var
(

ds

R(x)
)

= E

[(
ds

R(x)
)2
]
−
(
E
[

ds

R(x)
])2

≤ E
[(

ds

R(x)
)]
−
(
E
[

ds

R(x)
])2

= E

[(
mc

R(x)
)2
]
−
(
E
[

mc

R(x)
])2

= var
(

mc

R(x)
)

For general M, from independency and unbiasedness of both estimators, it follows now

se
(

ds

R(x)
)

=
[
V AR(

ds

R(x))
]1/2

≤
[
V AR(

mc

R(x))
]1/2

= se
(

mc

R(x)
)

(3.71)
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In the following, for a given point s ∈ S on the unit hyper-sphere, the set {rs|r ∈ R+}
is called a ray. This set is called a ray, because v ∈ {rs|r ∈ R+} are points on a line
including the origin of RN. The standard error of the MC estimator and the standard
error of the DS estimator can be equal. This is the case if the Happy set has the following
characteristic.

Definition 3.14 Let Q(x) =
{

s ∈ S
∣∣∣dsr(s, x) ∈ {0, 1}

}
. The Happy set H(x) is called to

have a DS-Radial-Shape if Q(x) is dense in S, i.e. any ray corresponding s ∈ Q(x) is
either completely inside or completely outside the Happy set .

If the Happy set has a DS-Radial-Shape, then all realisations of the DS estimator are
almost surely either 0 or 1. Notice that the range of the MC estimate function is {0, 1} if
M = 1. This similarity leads to the following theorem.

Theorem 3.7 For the Happy set H(x) it holds that

se
(

ds

R(x)
)

= se
(

mc

R(x)
)

if and only if H(x) has a DS-Radial-Shape.

Proof.

In the proof of Theorem 3.6, the equality

E

[(
ds

R(x)
)2
]

= E

[(
mc

R(x)
)2
]

is equivalent to

E

[(
ds

R(x)
)2
]

= E
[(

ds

R(x)
)]

which holds if and only if any realisation of the estimator
ds

R(x), with M= 1, is almost
surely either 0 or 1, i.e. if and only if

Pr {s ∈ Q(x)} = 1

Theorem 3.6 and 3.7 lead to

Corollary 3.21
The DS estimator is strictly more accurate than the MC estimator, i.e.

se
(

ds

R(x)
)

< se
(

mc

R(x)
)

,

if and only if H(x) does not have a DS-Radial Shape.
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3.6 DIRECTIONAL SAMPLING ESTIMATION METHOD

Figure 3.15: The set S is a Ray-Convex set which is not convex.

Let us focus on the computation of the DS estimate.

Definition 3.15 (Ray-Convexity) Let a half-line that starts in the origin be called a
ray. Let P be the Polar Coordinates Transform and vector d = P (1, s) with s ∈ S be the
support vector of the ray {dr|r ∈ R+}. The measurable set H(x) is called Ray-Convex if
∀r1, r2 ≥ 0,
s ∈ S, r1s ∈ H(x) and r2s ∈ H(x) =⇒ (αr1 + (1− α)r2)s ∈ H(x) for 0 ≤ α ≤ 1.

Notice that a convex set is also Ray-Convex, but the converse is not true. Figure 3.15
illustrates a Ray-convex set, which is not convex. Figure 3.15 does not show a ray, but
this can be depicted as a half-line that starts in the origin.

Definition 3.16 (Ray intersection distances) For a given s ∈ S, let

a(s) = inf {r ∈ R+|rs ∈ H(x)}
b(s) = sup {r ∈ R+|rs ∈ H(x)}

Remark that b(s) can be ∞.

Let Happy set H(x) be Ray-Convex, s ∈ S be a given realisation on the unit hyper-sphere

of random direction s and c = 2(π)
N
2

Γ(N
2

)
. The DS estimate function of Definition 3.13 can be

determined via:

ds
r(s, x) = c

∞∫
0

I(rs[m], x)r N−1g(r2)dr

= H (b(s))−H (a(s)) (3.72)

where

H(x) = c

x∫
0

rN−1g(r2)dr (3.73)
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Figure 3.16: Illustration of DS estimation for 20 and 1000 samples

where (3.73) is a convenient form for numerical evaluation. For a measurable set H(x)

which is a finite union
K⋃

k=1

H[k](x) of K disjunct Ray-Convex sets H[k](x), the probability

estimator of H(x) is the sum of the DS-estimators of the individual sets.

Example 3.6 Consider the Robustness function R(x) and random vector v as defined in
the ”Gaussian” situation of Example 3.1. The mesh surface of the DS estimate function,
based on 20 samples and 1000 samples are shown in Figure 3.16.

Note that the mesh surfaces in Figure 3.16 look more smooth than the mesh surfaces
of respectively the MC method in Figure 3.1 and the SMC method in Figure 3.9 . The
standard error of the DS estimate in Table 3.4, relative to the standard error of the MC
method in Table 3.1 and SMC method in Table 3.2, shows that the DS method is more
accurate, given the same number of samples.

We compare the optimisation of the DS estimate function to the optimisation of the
MC estimate function of Example 3.3: The starting point is x[0] = (0.5,−0.3); FD step-

sizes are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
; All other parameters are kept at the Matlab

default values. Table 3.4 gives the values of
ds

R∗ to which the SQP algorithm converged.

From Table 3.4 follows that DS yields better results than MC. However DS, N-1MC
and SMC appear to be competitive for this example. The best result given 1000 samples,

was found with ∆ =
(

1
2

)9
. The corresponding optimisation results are shown in Figure

3.17. The line pieces, from the origin in the direction of the samples, in Figure 3.17,
illustrate the intervals between a(s[m]) and b(s[m]), which are input for the DS estimate
function (3.72) .

56



3.7 EXPONENTIAL SIMPLEX ESTIMATION METHOD

Table 3.4: SQP Optimisation results of DS estimate function, for a given ∆, sample size
and Normal distribution

M=20 M=1000

∆
ds

R∗ R̃ (x∗)
ds

R∗ R̃ (x∗)
Robustness estimate at starting point x[0] = (0.5,−0.3):

0.346 0.293 0.297 0.293(
1
2

)10 0.753 0.775 0.777 0.777(
1
2

)9 0.757 0.780 0.782 0.782(
1
2

)8 0.757 0.780 0.776 0.776(
1
2

)7 0.752 0.774 0.780 0.780(
1
2

)6
0.758 0.780 0.767 0.767(

1
2

)5 0.750 0.775 0.771 0.772(
1
2

)4 0.632 0.674 0.764 0.764(
1
2

)3 0.620 0.639 0.778 0.778(
1
2

)2 0.512 0.480 0.573 0.573(
1
2

)1 0.426 0.412 0.443 0.444(
1
2

)0 0.346 0.293 0.301 0.299
Average computation time and average estimated standard error per function evaluation are:
time (sec.) 0.0058 141.864 0.2699 135.228
ŝe 0.0499 0.0005 0.0069 0.0005

Comments on Table 3.4:

1.
ds

R∗ is the Robustness estimate based on M samples, of point x∗ where SQP converged to.

2. R̃(x∗) is an MC estimate of R(x∗), with ŝe
(
R̃ (x∗)

)
< 0.0005 (See Appendix A.3).

3.7 Exponential Simplex estimation method

The Exponential Simplex estimation method has been designed for Robustness Program-
ming, where elements of v are i.i.d. Exponentially distributed (see Olieman and Van Put-
ten, 2006). The Exponential distribution plays a central role in Reliability Theory and
Reliability Engineering (Terje and Uwe, 1999; Rausand and H�oyland, 2004). The Expo-
nential distribution is typically used to model the life-time, or the time until the next
failure of a (sub)system. The reliability of a system can be analysed, by decomposing a
system into subsystems. Typically, the failure of each subsystem is modelled by a sepa-
rate Exponential distribution. Hence, the failure of the complete system is modelled by a
multivariate Exponential distribution. This way, the Reliability of a system is equivalent
to the Robustness of the system and can be quantified as the probability of failure before
a certain moment in time. The failure of the complete system is characterised by a subset
of the sample space of such multivariate Exponential distribution and the Happy set is
the complement of this set. A reliability optimisation problem, involving Exponentially
distributed uncertain factors, is for example discussed by Azaron et al. (2007)

Queuing Theory studies queuing systems or queuing networks and is another area
in which the Exponential distribution plays a central role. The inter-arrival times and
service times are often assumed to follow an Exponential distribution (Law and Kelton,
2000). Such queuing systems are called M/M/s queues, where the symbol M refers to
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Figure 3.17: SQP DS estimate function optimisation results; Gaussian situation; M=20; ∆ =
(

1
2

)6

the Markovian, i.e. memory-less, property of the Exponentially distributed arrival times
and service times and s is the number of servers. An interesting Robustness performance
measure of a queuing system, is the probability that a customer is serviced within an
acceptable time. Inter-linked queuing systems like traffic networks (such as telecommuni-
cation networks, railroads and motor-ways) are too complex for analytical analysis. Such
systems are typically analysed via simulation instead (Law and Kelton, 2000).

In principle, Monte Carlo sampling can be used in both the context of Reliability
Theory and Queuing Theory, to estimate respectively the Robustness of the lifetime of a
system or the Robustness of timely servicing in a queuing system.

However, the arguments given in Section 3.3 suggest that the MC method is not
convenient in the context of optimising Robustness. Therefore, if the objective is to
design a system in such a way that reliability is optimised, or when the objective is to
design a queuing system with optimal Robustness with respect to the timely servicing,
then it is relevant to have an alternative for the MC estimation approach with better
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3.7 EXPONENTIAL SIMPLEX ESTIMATION METHOD

optimisation characteristics.

In this section, the Exponential Simplex (ES) estimation method is introduced as a
better alternative for the MC estimation method, which can be used to estimate the
probability mass of a multivariate Exponential distribution over the Happy set. The Ex-
ponential Simplex estimation method, for estimating the probability mass of a measurable
set, is discussed in detail by Olieman and Van Putten (2006).

In general, there are no analytical solutions for the computation of the probability
mass of a multivariate exponential distribution over an arbitrary set (see for instance
Anderson, 1984; Narayan, 1996). The ES method is a new technique for estimating
such a probability. The inspiration for the concept originates from the works of István
Deák (1986), Alan Genz (1993) and Paul Somerville (1998) who studied integration of
multivariate normal distributions and practical experience with probability estimation
methods in a game theoretic context (illustrated in Olieman and Hendrix, 2006; Dellink
et al., 2007).

The following notation is used. The random vector v with non-negative realisations
v = [v1, v2, ..., vN] ∈ V = RN

+, has independent Exponentially distributed elements vi ∼
Exp(1), such that E(vi) = V AR(vi) = 1. The Probability Density Function (PDF) of v
is the function f : RN −→ R+ with

f(v) =


N∏

i=1

exp (−vi) = exp

(
−

N∑
i=1

vi

)
for v ∈ RN

+

0 elsewhere
(3.74)

The purpose of the estimation technique is to estimate (2.4) . The following feature will
be exploited by the ES estimation method.

Definition 3.17 An iso-probability density contour of function f , is a positive orthant

simplex defined by
N∑

i=1

vi = r with r ≥ 0 and v = [v1, v2, .., vN] ∈ RN
+.

This means that for a given r, f(v) is constant for any v with
N∑

i=1

vi = r.

3.7.1 Simplex Coordinates Transform

The Robustness expression in (2.4) does not have an analytical solution in general. As
an analogue of the polar coordinates transformation (discussed in Section 3.6.1), in which
the unit circle plays a central role, a ”Simplex Coordinates Transformation” is defined,
in which the unit simplex takes the role of the unit circle in the positive orthant. The
transformation induces an equivalent expression for (2.4) , which holds useful properties
for estimation.

Definition 3.18 The Simplex Coordinates Transformation (SCT) is defined by the fol-
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lowing mapping

T : Q −→ RN
+ with (3.75)

T (r, s1, s2, ..., sN−1) =

(
rs1, rs2, ..., rsN−1, r(1−

N−1∑
i=1

si)

)
(3.76)

where Q = R+ × SN−1 and SN−1 =

{
s ∈ RN−1

+

∣∣∣∣N−1∑
i=1

si ≤ 1

}
.

Note that for r = 1, coordinates from the lower dimensional space SN−1 are mapped on unit
simplex coordinates in RN. The variable r ∈ R+ can be interpreted as a multiplying factor,
similar to the radius variable in polar coordinates transformation. Notice that T (1, s) with
s ∈ SN−1 are points on the unit simplex and for the general case T (r, s) = rT (1, s) with
r ∈ R+.

Transformation T has the following properties, which are essential for giving a proper
expression for (2.4) in Simplex Coordinates (see for instance Marsden and Tromba, 1996):

• T is a.e.10 injective: T (q1) 6= T (q2) if q1 6= q2, for q1, q2 ∈ Q

• T is surjective (”onto”):
⋃

q∈Q
T (q) = RN

+

• The absolute value of the Jacobian determinant of T gives the change of integration
measure implied by the transformation, where the Jacobian determinant J : Q −→
R is

J(q) = det
∂T (q)

∂q
= det


s1 r 0 0 · · · 0
s2 0 r 0 · · · 0
...

...
. . .

...
sN−1 0 0 0 · · · r

1− s1 − s2 − ...− sN−1 −r −r −r · · · −r


= (−1)NrN−1 (3.77)

The latter step can be obtained by summing up the first N− 1 rows to the last row
and by expanding the resulting determinant along its last row. Notice that J(q) has
constant sign with absolute value equal to rN−1.

These properties imply that (2.4) can be rewritten as

Pr {v ∈ H(x)} =

∫
SN−1

∞∫
0

I [SC](x, r, s) exp(−r)|J(r, s)|drds

=

∫
SN−1

∞∫
0

I [SC](x, r, s) exp(−r)rN−1drds (3.78)

10Transformation T is almost everywhere (a.e.) injective, i.e. the injective property of T holds apart
from a set of measure zero (the origin, in this case). Observe that the widely used Polar Coordinates
transform has the same property.
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where I [SC] : X × Q −→ {0, 1} is the indicator function of H(x) expressed in Simplex
Coordinates:

I(x, T (r, s)) = I [SC](x, r, s) =

{
1 if T (r, s) ∈ H(x)
0 elsewhere

(3.79)

and factor exp(−r) is obtained via

f (T (r, s)) = exp

(
−

N−1∑
i=1

rsi

)
exp

(
−r(1−

N−1∑
i=1

si)

)
= exp(−r) (3.80)

for r ∈ R+ and s ∈ SN−1.

3.7.2 The Exponential Simplex (ES) Estimator

The theoretical observations and transformation will be used to develop the so-called
Exponential Simplex (ES) estimation method. This is a promising alternative to the well
known Monte Carlo estimation method, in the case of exponentially distributed random
variables. The estimation procedure is based on the following theorem

Theorem 3.8 Let s be a random vector11 uniformly distributed on the unit simplex SN−1.

Es

 1

(N− 1)!

∞∫
0

I [SC](x, r, s) exp(−r)rN−1dr

 = Pr {v ∈ H(x)} (3.81)

Proof. From standard calculus it follows that the volume of the sample space SN−1 of s
is
∫

SN−1

1ds = 1
(N−1)!

. Therefore the PDF of s is defined by a constant function

g(s) =

{
(N− 1)! for s ∈ SN−1

0 elsewhere

The left-hand side of expression (3.81) leads to integral (3.78) via

Es

 1

(N− 1)!

∞∫
0

I [SC](x, r, s) exp(−r)rN−1dr


=

∫
SN−1

g(s)

∞∫
0

1

(N− 1)!
I [SC](x, r, s) exp(−r)rN−1drds

=

∫
SN−1

(N− 1)!

(N− 1)!

∞∫
0

I [SC](x, r, s) exp(−r)rN−1drds (3.82)

which is equivalent to probability Pr {v ∈ H(x)}

11For the application of such a method, it is relevant to mention that methods for generating random
points in a polytope (such as SN−1) are discussed in detail in Devroye (1986).
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Definition 3.19 Let s ∈ SN-1 be a given realisation of s. The ES estimate function
es
r : SN-1 × RI −→ [0, 1] is defined as

es
r(s, x) =

1

(N− 1)!

∞∫
0

I [SC](x, r, s) exp(−r)rN−1dr (3.83)

Corollary 3.22 Let s[1], .., s[m] be M independent copies of the random vector s. From
Definition 3.19 and Theorem 3.8 follows that the estimator

es

R(x) =
1

M

M∑
m=1

es
r
(
s[m], x

)
(3.84)

is an unbiased estimator of R(x)

Corollary 3.23 Following the definitions of Rice (1995), the standard error of the esti-
mator is

se
(

es

R(x)
)

=

√
1

M

(
E

[(
es

R(x)
)2
]
−
(
E
[

es

R(x)
])2
)

(3.85)

Let us focus on the computation of the ES estimate function. For the discussion it is
convenient to define the following.

Definition 3.20 For fixed s ∈ SN−1, let

a(s) = inf {r ∈ R+|T (r, s) ∈ H(x)}
b(s) = sup {r ∈ R+|T (r, s) ∈ H(x)}

Remark that b(s) can take the value ∞. For a given s ∈ SN−1, the ES estimate can be
computed analytically with

es
r(s, x) =

1

(N− 1)!

b(s)∫
a(s)

exp(−r)rN−1dr (3.86)

if

a(s) < t < b(s) =⇒ t ∈ {r ∈ R+|T (r, s) ∈ H(x)} (3.87)

To make a distinction between the ES estimate function
es
r(s, x) of Definition 3.19 and the

special case (3.86) if condition (3.87) applies, we define the following

Definition 3.21 The CDF H : R+ −→ [0, 1] is defined as

H(x) =
1

(N− 1)!

x∫
0

exp(−r)rN−1dr (3.88)

62



3.7 EXPONENTIAL SIMPLEX ESTIMATION METHOD

Figure 3.18: The set S is an ES-Ray-Convex set which is not convex.

It can be shown that an analytical expression exists for H(x).

Corollary 3.24

H(x) = 1− exp(−x)
N−1∑
i=0

xi

i!
(3.89)

If the Happy set has the following property, then (3.87) is true for all s ∈ SN−1:

Definition 3.22 (ES-Ray-Convexity) Let a half-line that starts in the origin be called
a ray. Let T be the Simplex Coordinates Transform and d = T (1, s) with given s ∈ SN−1,
that defines the ray {dr|r ∈ R+}. The Happy set H(x) is called ES-Ray-Convex if ∀s ∈
SN−1, T (r1, s) ∈ H(x) and T (r2, s) ∈ H(x) with r1, r2 ≥ 0 =⇒ T (αr1 + (1− α)r2, s) ∈
H(x) for 0 ≤ α ≤ 1.

This means that a Happy set is called ES-Ray-Convex, if two points a and b on a ray
in RN

+ in the Happy set implies that all points between a and b are in the Happy set.
Notice that a convex set is also ES-Ray-Convex, but the converse is not true. Figure 3.18
illustrates a ES-Ray-Convex set which is not convex. Figure 3.18 does not show a ray,
but this can be depicted as a half-line in the positive orthant that starts in the origin.

For a ES-Ray-Convex Happy set, the ES estimator and ES estimate function can be
based on the analytical expression (3.89).

Corollary 3.25 Let the Happy set H(x) be ES-Ray-Convex, then the ES estimator is

es

R(x) =
1

M

M∑
m=1

{
H
(
b(s[m])

)
−H

(
a(s[m]

)}
(3.90)

Corollary 3.26 Let the Happy set H(x) be ES-Ray-Convex and s[1], .., s[m], .., s[M] be M
independent samples of s, then the ES estimate function is

es

R(x) =
1

M

M∑
m=1

{
H
(
b(s[m])

)
−H

(
a(s[m]

)}
(3.91)
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with corresponding standard error estimate

ŝe
(

es

R(x)
)

=

√√√√ 1

M− 1

(
1

M

M∑
m=1

{H (b(s[m]))−H (a(s[m])}2 −
(

es

R(x)
)2
)

(3.92)

For a measurable set H(x) which is a finite union
K⋃

k=1

H[k](x) of K disjunct ES-Ray-Convex

sets H[k](x), the probability estimator of H(x) is the sum of the ES-estimators of the
individual sets.

3.7.3 Comparison of ES and MC estimation methods

We will compare the performance of the Exponential Simplex (ES) estimation method
and the Monte Carlo (MC) estimation method, with respect to their accuracy, expressed
in terms of standard error (se).

Theorem 3.9 Let
es

R(x) be the ES estimator (3.84) and
mc

R(x) be the MC estimator (3.1)
and se be its standard error according to (3.85).

se
(

es

R(x)
)
≤ se

(
mc

R(x)
)

(3.93)

Proof.
It is sufficient to prove the equation for M = 1, since the standard error of both estimators

decreases equally proportional with
√

M. As 0 ≤
(

es

R(x)
)2

≤
es

R(x) ≤ 1 and(
mc

R(x)
)2

=
mc

R(x), it holds that

var
(

es

R(x)
)

= E

[(
es

R(x)
)2
]
−
(
E
[

es

R(x)
])2

≤ E
[(

es

R(x)
)]
−
(
E
[

es

R(x)
])2

= E

[(
mc

R(x)
)2
]
−
(
E
[

mc

R(x)
])2

= var
(

mc

R(x)
)

For general M, from independency and unbiasedness of both estimators, it follows now

se
(

es

R(x)
)

=
[
V AR(

es

R(x))
]1/2

≤
[
V AR(

mc

R(x))
]1/2

= se
(

mc

R(x)
)

(3.94)

The standard error of the MC estimator and the standard error of the ES estimator
can be equal. This is the case if the Happy set has the following characteristic.

Definition 3.23 Let
es
r(s, x) be defined in (3.83) and Q(x) =

{
s ∈ SN−1

∣∣esr(s, x) ∈ {0, 1}
}
.

The Happy set H(x) has a ES-Radial-Shape if Q(x) is dense in SN−1, i.e. a ray corre-
sponding to s ∈ Q(x) is either completely inside or completely outside the Happy set
.
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Figure 3.19: Illustration of ES estimation for 20 and 1000 samples

If M = 1 and the Happy set has a ES-Radial-Shape, then all realisations of the ES
estimator are almost surely (a.s.) either 0 or 1. Hence, this range is a.s. identical to the
range of the MC estimate function for M=1.

Theorem 3.10 For the Happy set H(x) holds that

se
(

es

R(x)
)

= se
(

mc

R(x)
)

if and only if H(x) has a ES-Radial-Shape.

Proof.

Let M= 1, then
es

R(x) =
es
r(s, x) is implied by (3.84). In the proof of Theorem 3.9,

the equality

E

[(
es

R(x)
)2
]

= E

[(
mc

R(x)
)2
]

is equivalent to

E

[(
es

R(x)
)2
]

= E
[(

es

R(x)
)]

which holds if and only if a realisation of the estimator
es

R(x) is a.s. either 0 or 1, i.e. if
and only if the set

Q(x) =
{
s ∈ SN−1

∣∣esr(s, x) ∈ {0, 1}
}

is dense in SN−1, i.e. Pr {s ∈ Q(x)} = 1.

Theorem 3.9 and 3.10 lead to
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Figure 3.20: SQP ES estimate function optimisation results; Exponential situation; M=20; ∆ =
(

1
2

)10
Corollary 3.27
The ES estimator is strictly more accurate than the MC estimator, i.e.

se
(

es

R(x)
)

< se
(

mc

R(x)
)

,

if and only if H(x) does not have a ES-Radial-Shape.

For a radially shaped set H(x), the difference between the MC standard error and ES
standard error is minimal (i.e. is zero). Conversely, the maximum difference in standard
error occurs when H(x) is a dense set in the positive orthant, bounded by a plane parallel

to the unit simplex, such as u(x, v) =
N∑

n=1

vn ≤H, H≥ 0. In this situation a(s) = 0 and

b(s) =H for all s ∈ SN−1 and consequently all realisations of the ES-estimator are exactly
Pr {v ∈ H(x)}. In this case the standard error of the ES-estimator is zero whereas the

standard error of MC-estimator is ( 1
M

p(1− p))
1
2 with maximum 1

2
√

M
in case p = 1

2
.
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3.7 EXPONENTIAL SIMPLEX ESTIMATION METHOD

Table 3.5: SQP Optimisation results of ES estimate function, for a given ∆, sample size
and Exponential distribution

M=20 M=1000
∆

es

R∗ R̃ (x∗)
es

R∗ R̃ (x∗)
Robustness estimate at starting point x[0] = (0.5,−0.3):

0.647 0.642 0.644 0.642(
1
2

)10
0.959 0.960 0.961 0.960(

1
2

)9 0.959 0.960 0.961 0.960(
1
2

)8 0.958 0.960 0.960 0.959(
1
2

)7 0.959 0.960 0.960 0.959(
1
2

)6 0.957 0.958 0.959 0.958(
1
2

)5 0.954 0.955 0.957 0.956(
1
2

)4 0.954 0.955 0.958 0.957(
1
2

)3 0.943 0.945 0.956 0.955(
1
2

)2 0.923 0.916 0.923 0.921(
1
2

)1 0.868 0.858 0.847 0.845(
1
2

)0 0.712 0.642 0.645 0.644
Average computation time and average estimated standard error per function evaluation are:
time (sec.) 0.0084 48.380 0.3778 48.144
ŝe 0.0255 0.0005 0.0042 0.0005

Comments on Table 3.5:

1.
es

R∗ is the Robustness estimate based on M samples, of point x∗ where SQP converged to.

2. R̃(x∗) is an MC estimate of R(x∗), with ŝe
(
R̃ (x∗)

)
< 0.0005 (See Appendix A.3).

The optimisation of
es

R(x) is illustrated with an extension of Example 3.1.

Example 3.7 Consider the Robustness function R(x) and random vector v as defined
by the ”Exponential” situation of Example 3.1. The mesh surface of the ES estimate
function, based on 20 samples and 1000 samples are shown in Figure 3.19.

Note that the mesh surfaces in Figure 3.19 look more smooth than the mesh surfaces
of respectively the MC method in Figure 3.1 and the SMC method in Figure 3.9. The
standard error of the ES estimate in Table 3.5, relative to the standard error of the MC
method in Table 3.1 and SMC method in Table 3.2, shows that the ES method is almost
4 times as accurate, given the same number of samples.

Optimisation of the ES estimate function is compared to the optimisation of the MC
estimate function of Example 3.3: The starting point is x[0] = (0.5,−0.3); FD step-sizes

are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
; All other parameters are kept at the Matlab default

values. Table 3.5 gives the values of
es

R∗ to which the SQP algorithm converged.

Table 3.5 shows that ES yields better results than MC. However ES, N-1MC and SMC
appear to be competitive for this example. The best result given 20 samples, was found

with ∆ =
(

1
2

)10
. The corresponding optimisation results are shown in Figure 3.20. The

line pieces, from the origin in the direction of the samples, in Figure 3.20, illustrate the
intervals between a(s[m]) and b(s[m]), which are input for the ES estimate function (3.91).
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Apart from being superior to the MC-estimator in the above mentioned statistical sense,
another advantage for ES-Ray-Convex sets of the ES-estimator, is that it can be ex-
pressed in a very simple analytical form following Corollary 3.25. In case of a finite
union of disjunct ES-Ray-Convex sets, the ES-estimator takes the form of the sum of
the corresponding analytical expressions. We remark that the class of (finite unions of
disjunct) ES-Ray-Convex sets is of much practical interest, as it contains the class of
(finite unions of disjunct) convex sets. The above mentioned advantages of ES-estimation
to MC-estimation is less prominent for practical cases in which expressions a(s) and b(s)
(Definition 3.20) are computationally complex. An intermediate solution in that case
could be to approximate, conditionally on s, the intersection points a(s) and b(s) using
numerical methods.

3.8 Robustness bounding methods

The Robustness R(x) = Pr {v ∈ H(x)} can be intractable to compute directly, as intro-
duced in Section 3.1. The idea of set bounding is to replace H(x) by a bounding set, for
which it is easier to compute the Robustness. Such bounding sets lead to upper bounds
or lower bounds for R(x) in the following way. The upper bounding sets H(x) are sets
that enclose the Happy set H(x) ⊇ H(x) and the lower bounding sets H(x) are sets that
are enclosed by the Happy set H(x) ⊆ H(x). Three types of bounding sets are studied,

Figure 3.21: Illustration of the Diamond-set, Ball-set and Cube-set in R2

that possess analytic properties for efficient probability calculus. These bounding sets are
defined by specific p-norms, with p = 1, 2,∞:

Diamond-set (1-norm): B[1](r) =
{
v ∈ RN |‖v‖1 ≤ r

}
Ball-set (2-norm): B[2](r) =

{
v ∈ RN| ‖v‖2 ≤ r

}
Cube-set (∞-norm): B[∞](r) =

{
v ∈ RN| ‖v‖∞ ≤ r

} (3.95)

where r ∈ R is called the radius and are illustrated in Figure 3.21. It holds that

B[1](r) ⊂ B[2](r) ⊂ B[∞](r) (3.96)
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3.8 ROBUSTNESS BOUNDING METHODS

since ‖v‖1 ≥ ‖v‖2 ≥ ‖v‖∞ for v ∈ RN (Randolph, 1968). Moreover, if a ≥ b ≥ 0
then Prv

(
B[p](a)

)
≥ Prv

(
B[p](b)

)
for any p = 1, 2,∞ and for any type of probability

distribution of v. These bounding sets can be used effectively as follows:

• Effective upper bounds, for a given x, are defined by the smallest bounding sets

H[p]
(x) ⊇ H(x) with p = 1, 2,∞, that enclose the Happy set as tight as possible.

The effective upper bounding sets are

H[p]
(x) = B[p](r[p](x)) (3.97)

where

r[p](x) = max
v∈H(x)

‖v‖p (3.98)

for p = 1, 2,∞.

• Effective lower bounds, for a given x, are defined as follows. The largest bounding set
enclosed by the Happy set H[p](x) ⊆ H(x) with p = 1, 2,∞, are mainly determined
by one of the constraints Ls ≤ us(x, v) ≤Hs. Recall that H(x) is determined by
S of such constraint. The largest bounding set inside the Happy set, can be seen
either as blowing up the bounding set and notice the first constraint that is hit, or
alternatively by determining that constraint s that is in v-space closest to the origin.
Following the last perspective, under the condition that E(v) ∈ H(x) we introduce

H[p](x) = B[p](r[p](x)) (3.99)

where

r[p](x) = min
s=1...S

{
min

v∈H(x)
‖v‖p s.t. us(x, v) ∈ {Ls, Hs}

}
(3.100)

for p = 1, 2,∞

Notice that these radius optimisation problems can have local optima. It is crucial to
find the global optima for radius optimisation problems (3.98) and (3.100) in order to
guarantee the correct bounds (as discussed by Olieman and Hendrix, 2005). These Global
Optimisation (GO) formulations are only useful if they can be solved fast enough, i.e. the
bound should be found faster than an accurate estimate. Example 3.8 shows a Happy set
with nonlinear boundaries and the corresponding global optimisation problems for finding
effective bounds.

Example 3.8 Consider the largest enclosed ball in example 2.1. For x = [1, 1, 1]
ᵀ
, the

two uncertain restrictions are depicted in Figure 3.22 and given by:

u1(x, v) = − 3

16
v2

1 + v2 + 2 ≤ 0

u2(x, v) = 1
1

3
v3

1 − 4v2
1 +

2

3
v1 + 2− v2 ≤ 0
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ROBUSTNESS ESTIMATION METHODS

Figure 3.22: Largest inscribed ball in H(x). The Happy set is the area above u1 and below
u2, where u1 and u2 are respectively the graphs defined by u1(x, v) = 0 and u2(x, v) = 0
for given x = [1, 1, 1]

ᵀ
.

The illustration shows that the inscribed ball first hits the restriction u2 at the point marked
by B, at the coordinate v∗ = (−0.565, 0.1)ᵀ where u2(x, v) = 0. The coordinate v∗ corre-
sponds to the global solution for (3.100) with p = 2 norm. The two other points, respec-
tively marked with M at coordinate (0,−2)ᵀ and C at coordinate (0.9, 0.332)ᵀ, correspond
to local solutions for (3.100).

For each type of bounding set (i.e. p = 1, 2,∞) and given radius r ≥ 0, the Robustness
bound can be computed analytically, for specific probability distributions of v. The
idea is that analytic computation is possible if the geometric shape of a bounding set,
corresponds to the iso-probability density contour of v. The Diamond-set, Ball-set and
Cube-set, hold the following properties for computing the corresponding probability mass
of the bounding set.

1. Diamond-set (1-norm)

(a) Let vn, n = 1, .., N, be independently Exponentially distributed with PDF:

f(vn) =

{
e−vn for vn ≥ 0
0 for vn < 0

(3.101)
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3.8 ROBUSTNESS BOUNDING METHODS

The probability mass of the Diamond-set can be computed via Simplex Coor-
dinates Transform (Definition 3.18 on page 59) and it can be shown that

Pr
{
v ∈ B[1](r)

}
=

∫
B[1](r)

N∏
n=1

f(vn)dv

=

∫
B[1](r)

e
−

NP
n=1

vn

dv

=

∫
SN−1

r∫
0

e−rrN−1drds

=
1

(N− 1)!

r∫
0

e−rrN−1dr = 1− e−r

N−1∑
i=0

ri

i!
(3.102)

where each step and SN−1 =

{
s ∈ RN−1

+

∣∣∣∣N−1∑
i=1

si ≤ 1

}
are explained in Appendix

A.5.

(b) Let vn, n = 1, .., N be independently two-sided Exponentially distributed with
PDF:

f(vn) =

{
1
2
e−vn for vn ≥ 0

1
2
ev

n for vn < 0
(3.103)

The probability mass of a Diamond-set is:

Pr
{
v ∈ B[1](r)

}
=

∫
B[1](r)

N∏
n=1

f(vn)dv

=

∫
B[1](r)

e
−

NP
n=1

|vn|
dv

= 1− e−r

N−1∑
i=0

ri

i!
(3.104)

where the last step is explained in Appendix A.5.

(c) Let vn, n = 1, .., N be randomly distributed with E(vn) = 0, V AR(vn) = 1
and COV (vn, vm) = 0 for all n 6= m, then the Markov inequality holds:

Pr
{
v ∈ B[1](r)

}
≥
(

1− N

r

)
(3.105)

2. Ball-set (2-norm)
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(a) Let the elements of random vector v be i.i.d. standard normally distributed.
The probability mass of the Ball-set is:

Pr
{
v ∈ B[2](r)

}
= Pr

{
χ2(N) ≤ r2

}
(3.106)

where χ2(N) is a χ-square stochastic variate with N degrees of freedom.

(b) Let w ∼ χ2(δ), i.i.d. zn ∼ N(0, 1) and vn ∼ zn√
1
δ
w

for n = 1, ..,N. I.e. vn

follows a t-distribution with δ degrees of freedom. Somerville (1998) shows
that the probability mass of the Ball is:

Pr
{
v ∈ B[2](r)

}
= Pr

{
F (N, δ) ≤ 1

N
r

}
(3.107)

(c) Let vn be randomly distributed with E(vn) = 0, V AR(vn) = 1 and
COV (vn, vm) = 0 for n 6= m, then Markov’s Inequality (see appendix A.7)
applies:

Pr
{
v ∈ B[2](r)

}
≥ 1− N

r2
(3.108)

3. Cube-set (∞-norm)

(a) Let vn be independently distributed random variables with a Cumulative Dis-
tribution Function (CDF) Fn(r) = Pr {vn ≤ r} for n = 1, .., N. The probability
mass of the cube is:

Pr
{
v ∈ B[∞](r)

}
=

N∏
n=1

(Fn(r)− Fn(−r))) (3.109)

(b) Let vn be randomly distributed with E(vn) = 0, V AR(vn) = 1 and
COV (vn, vm) = 0 for all n 6= m, then the Chebyshev Inequality holds:

Pr
{
v ∈ B[∞](r)

}
≥
(

1− 1

r2

)N

(3.110)

The probabilities of the Diamond-set, Ball-set and Cube-set are all increasing functions
of the radius. Therefore, Robustness bound maximisation can be based on finding the
largest radius of the bounding set. However, Definition (3.99) and (3.100) only apply
for E(v) ∈ H(x). The idea of maximising the lower bound indirectly via the radius, is
generalised by redefining the radius for all x ∈ X:

r[p](x) =


min

s=1...S

{
min

v∈H(x)
‖v‖p s.t. us(x, v) ∈ {Ls, Hs}

}
if E(v) ∈ H(x)

−1· min
s=1...S

{
min

v∈H(x)
‖v‖p s.t. us(x, v) ∈ {Ls, Hs}

}
if E(v) /∈ H(x)

(3.111)
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If E(v) /∈ H(x), then the (negative) radius can be interpreted as the shortest p-norm
distance between E(v) and the point closest to E(v) in the Happy set. Hence, maximising
the radius r[p](x) is equivalent to searching for a design x such that E(v) ∈ H(x). From
a practical point of view, finding x such that E(v) ∈ H(x), is relevant because of the
following. From the results in Appendix A.6 follows that, for many types of distributions
and convex Happy sets, holds that Pr(H(x)) ≥ Pr(H(y)) if E(v) ∈ H(x), E(v) /∈ H(y)
and Pr(H(x)) ≥ 1

2
. In Figures 3.25, 3.28 and 3.29, E(v) /∈ H(x[0]) and E(v) ∈ H(x∗) are

illustrated, where the Happy set is a polytope.

Example 3.9 gives an illustration of Robustness Lower bound optimisation.

Example 3.9 Consider Robustness function R(x) defined by (3.5) of Example 3.1, where
E(vn) = 0 and V AR(vn) = 1 for n = 1, 2 in the Gaussian situation. The left-hand side of
Figure 3.23 shows the mesh surface of the (level 2) largest radius of the Ball in the Happy
set. The right-hand side of Figure 3.23 shows the corresponding probability mass in the
Gaussian situation. The left-hand side of Figure 3.24 shows the mesh surface of the (level

Figure 3.23: Illustration of Robustness bounds, based on largest Ball in Happy set

2) largest radius of the Cube in the Happy set. The right-hand side of Figure 3.24 shows
the corresponding probability mass in the Gaussian situation. We study the optimisation of
these bounds, similar to the optimisation of the MC estimate function of Example 3.1: The

starting point is x[0] = (0.5,−0.3); FD step-sizes are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
;

All other parameters are kept at the Matlab default values. Table 3.6 gives the optimal
values of r[p]∗ = max

−1≤x1,x2≤1
r[p](x), p = 2,∞ to which the SQP algorithm converges, where

vector x[p]∗ is the corresponding design. The best result for the largest Ball set in the

Happy set was found using a step size of ∆ =
(

1
2

)10
. The corresponding optimisation

results are shown in Figure 3.28. The best result for the largest Cube in the Happy set

was found with ∆ =
(

1
2

)10
. The corresponding optimisation results are shown in Figure

3.29.
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Figure 3.24: Illustration of Robustness bounds, based on largest Cube in Happy set

Example 3.10 gives an illustration of Robustness upper bound optimisation.

Example 3.10 Consider the Robustness function R(x) of Example 3.9. From (3.98)
follows that such problem can be unbounded and result in r[p](x∗) = ∞. To illustrate such
situation graphically, the mesh surface of the inverse 1

r[p](x)
is considered instead.

Optimisation of the Ball and Cube upper bounds, is studied similar to the optimisation
study of the MC estimate function of Example 3.1: The starting point is x[0] = (0.5,−0.3);

FD step-sizes are ∆ ∈
{(

1
2

)10
,
(

1
2

)9
, ...,

(
1
2

)1
,
(

1
2

)0}
; All other parameters are kept at

Matlab default values. Table 3.7 gives the optimal values of r[p]∗ = max
−1≤x1,x2≤1

r[p](x),

p = 2,∞ to which the SQP algorithm converges. Vector x[p]∗ is the corresponding optimal
design.

The best result for the smallest Ball and Cube around the Happy set was found with

∆ =
(

1
2

)10
. The corresponding optimisation results are shown in Figure 3.28 and 3.29.

It can be concluded that optimisation of Robustness upper bounds is not satisfactory for
the following reasons:

• The upper bounds are not tight enough: The Robustness upper bound at the start-
ing point x[0] has already the maximum value 1.

• Maximisation of the upper bounds is equivalent to finding an x∗ for which the Happy
set is unbounded. However, an unbounded Happy set is not necessarily related to a
high Robustness.

74



3.8 ROBUSTNESS BOUNDING METHODS

Table 3.6: SQP Optimisation results largest ball (r[2]∗) and largest cube (r[∞]∗) inscribed
by Happy set, for given FD step size∆

Ball Cube

∆ r[2]∗ Pr
`
B[2](r[2]∗)

´
R̃

`
x[2]∗´

r[∞]∗ Pr
`
B[∞](r[∞]∗)

´
R̃

`
x[∞]∗´

starting points at x[0] = (0.5,−0.3):
-0.497 NA 0.294 -0.3750 NA 0.294`

1
2

´10
0.873 0.317 0.715 0.737 0.290 0.695`

1
2

´9
0.873 0.317 0.715 0.727 0.284 0.690`

1
2

´8
0.867 0.313 0.688 0.734 0.288 0.698`

1
2

´7
0.664 0.198 0.679 0.729 0.285 0.699`

1
2

´6
0.681 0.207 0.689 0.736 0.290 0.698`

1
2

´5
0.678 0.206 0.687 0.354 0.077 0.437`

1
2

´4
0.551 0.141 0.590 0.379 0.087 0.472`

1
2

´3
0.389 0.073 0.513 0.377 0.086 0.471`

1
2

´2
0.209 0.022 0.416 0.305 0.058 0.404`

1
2

´1
0.317 0.049 0.379 0.373 0.085 0.470`

1
2

´0
0.604 0.167 0.425 0.443 0.117 0.425

Average computation time and average estimated standard error per function evaluation are:
time 0.0015 0.002 151.001 0.0014 0.0018 153.879
ŝe NA 0 0.0005 NA 0 0.0005

Comments on Table 3.6:
1. r[p]∗(x) = max

−1≤x1,x2≤1
r[p](x), with p = 2,∞

2. x[p]∗ = arg max
−1≤x1,x2≤1

r[p](x), with p = 2,∞

3. R̃(x∗) is an MC estimate of R(x∗), with ŝe
“
R̃ (x∗)

”
< 0.0005 (See Appendix A.3).

Table 3.7: SQP Optimisation results smallest ball (r[2]∗) and smallest cube (r[∞]∗) enclos-
ing Happy set, for given ∆

Ball Cube

∆ r[2]∗ Pr
`
B[2](r[2]∗)

´
R̃

`
x[2]∗´

r[∞]∗ Pr
`
B[∞](r[∞]∗)

´
R̃

`
x[∞]∗´

starting points at x[0] = (0.5,−0.3):
9.430 1 0.294 8.778 1 0.294`

1
2

´10 ∞ 1 0.3030 ∞ 1 0.2930`
1
2

´9 ∞ 1 0.3080 ∞ 1 0.2980`
1
2

´8 ∞ 1 0.3450 ∞ 1 0.2930`
1
2

´7 ∞ 1 0.3030 ∞ 1 0.3040

Average computation time and average estimated standard error per function evaluation are:
time 0.0015 0.002 151.001 0.0014 0.0018 153.879
ŝe NA 0 0.0005 NA 0 0.0005

Comments on Table 3.7:
1. r[p]∗(x) = max

−1≤x1,x2≤1
r[p](x), with p = 2,∞

2. x[p]∗ = arg max
−1≤x1,x2≤1

r[p](x), with p = 2,∞

3. R̃(x∗) is an MC estimate of R(x∗), with ŝe
“
R̃ (x∗)

”
< 0.0005 (See Appendix A.3).
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Figure 3.25: SQP Largest Diamond in Happy set optimisation results; ∆ =
(

1
2

)10
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Figure 3.26: SQP Largest Ball in Happy set optimisation results; ∆ =
(

1
2

)10

77



ROBUSTNESS ESTIMATION METHODS

Figure 3.27: SQP Largest Cube in Happy set optimisation results; ∆ =
(

1
2

)10
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Figure 3.28: SQP maximisation of smallest Ball around Happy set ; ∆ =
(

1
2

)10
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Figure 3.29: SQP maximisation of smallest Cube around Happy set ; ∆ =
(

1
2

)10

3.9 Concluding remarks

Robustness estimation methods have been discussed in this chapter. Two types of Ro-
bustness estimation methods are distinguished: sampling methods and bounding meth-
ods. The Robustness estimation methods that are based on sampling are the MC, SMC,
N-1MC, DS and ES estimation method. The Robustness bounding methods are based
on sets inscribed by the Happy set or on sets enclosing the Happy set and respectively
lead to Robustness lower bounds and Robustness upper bounds. The inscribed sets and
enclosing sets have specific geometric shapes, such that their probability masses are rela-
tively easy to compute in comparison to computing the probability mass of the Happy set
directly. Three sets with a specific geometric shape are used and are respectively called
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the Diamond set (based on the 1-norm), the Ball set (based on the 2-norm) and the Cube
set (based on the ∞-norm).

The Robustness estimation methods are applied in case studies as discussed in Chapter
5. The research related to solving relatively large-scale Robustness optimisation problems
of the case studies, resulted in computation methods that improve the efficiency and
effectiveness of the RP methods and are discussed in Chapter 4. Furthermore, the case
studies are used to compare the RP methods and the methodology for comparing the
performance of the RP methods is also discussed in Chapter 4.
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Chapter 4
Robustness Computation and Comparison

4.1 Outline

Robustness estimation methods have been defined and described in Chapter 3. The focus
of Chapter 4 is about how to compute Robustness estimates effectively and efficiently. Ro-
bustness estimation effectiveness is the level of accuracy of the estimate, i.e. the absolute
value of the difference between the (unknown) Robustness and the estimated Robust-
ness. Robustness computation efficiency is the computation time required to estimate the
Robustness at a predefined effectiveness level.

In elaboration of cases, which are discussed in Chapter 5, it became clear that in-
creasing v-space dimension makes the Robustness estimation methods less effective and
efficient. In this chapter, so-called dimension reduction methods are introduced for trans-
forming the Happy set into a lower dimensional space, leading to a better Robustness
computation performance. Section 4.2 gives an intuition and mathematical elaboration
on the effect of the dimension N of the Happy set on the performance of Robustness es-
timation. In Section 4.3 two methods for dimension reduction, respectively called Happy
set decomposition and Happy set compression, are introduced. General expressions for
dimension reduction of polyhedral Happy sets are given in Section 4.4.

Solving the Robustness optimisation problems of case studies, made it clear that stan-
dard optimisation software has difficulties to start optimisation iterations, if the estimates
of R(x) are zero for x in a neighbourhood around the initial starting point. In Section 4.5
the so-called Warm Start method is discussed as a practical approach for this optimisation
start-up problem.

The case studies of Chapter 5 are used to compare the RP methods. The methodology
for comparing the performance of the RP methods is given in Section 4.6.

4.2 Intuition on Dimension Reduction

The dimension (N) of the Happy set influences the performance of the Robustness sam-
pling and bounding methods. This section illustrates that dimension reduction of the
Happy set leads to equal or tighter Robustness bounds, i.e. dimension reduction leads
to more effective bounds. Moreover, dimension reduction of the Happy set makes the
Robustness sampling estimation method more accurate (lower standard error), which re-
duces the required number of samples to reach a predefined level of accuracy. A smaller
number of samples, means less computations and is therefore associated to increasing
efficiency.

Two dimension reduction approaches for improving the performance are considered:
Happy set decomposition and Happy set compression. These two concepts are introduced
intuitively by three examples:

1. Happy set decomposition in a bounding context is illustrated by Example 4.1.
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Figure 4.1: Decomposition and Bounding example for N = 3, N = 2 and N = 1

2. Happy set compression in a bounding context is illustrated by Example 4.2.

3. Dimension reduction -either via decomposition or compression- in the sampling con-
text is illustrated by Example 4.3.

After these three examples, a more precise description of the concepts of decomposition
and compression is given in Section 4.3.

Example 4.1 (Decomposition) Chapter 3 has shown that the probability mass of an
inscribed hyper cube in the Happy set is a lower bound of the Robustness. Consider Figure
4.1. A hyper cube with radius 1.5 around the origin is used for finding a lower bound for
the Robustness of the Happy set defined by two half-spaces

H(x) =

{
v ∈ RN| − 1.5 ≤

N∑
n=1

vnxn ≤ 1.5

}
where x1 = 1, xi = 0 for i = 2, .., I = N

and vn ∼ N(0, 1) for n = 1, .., N. Notice that the probability mass (i.e. the Robustness)
of the Happy set is Φ(1.5) − Φ(−1.5) ≈ 0.87 independently of N. The probability mass
of the cube goes down exponentially with the dimension: (Φ(1.5) − Φ(−1.5))N, i.e. the
effectiveness of the bound goes down exponentially as a function of the dimension N.
In this particular example one can make use of the independency of vn. We will call
this Happy set decomposition by independency. We split the Happy set into two lower
dimensional parts, one Happy set corresponding to v1 and one Happy set corresponding
to all other vn for n = 2, .., N. This simple example has an analytical solution: The
Robustness of the first Happy set can be computed by the univariate standard normal
CDF function and has value Φ(1.5) − Φ(−1.5) ≈ 0.87. Since the second Happy set is
unconstrained, it has Robustness 1. The overall Robustness estimation by decomposition
is approximately 0.87. This method is discussed in more detail in Section 4.3.

Example 4.2 (Compression) Let H(x) =

{
v ∈ R3|

3∑
n=1

vnxn ≥ −4.5

}
be the Happy set

of interest, with x1 = x2 = x3 = 1 and vn ∼ N(0, 1) for n = 1, .., 3. The left-hand side of
Figure 4.2 illustrates the corresponding half space, where the Happy set is an unbounded
subspace of RN, with N=3. Since the random variables are normally distributed, their
sum is also normally distributed. This feature can be exploited to compress the Happy
set into a lower dimensional Happy set, by redefining the stochastic model. The random
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Figure 4.2: Compression and Bounding example for N = 3, N = 2 and N = 1

variables v2 and v3 can be combined to a new random variable v2+v3√
2

∼ N(0, 1). This

way, a new Happy set can be expressed as a subspace of RN, with N=2 as is illustrated
in the middle part of Figure 4.2. The compression of N=3 to N=2, positively affects the
bounding efficiency in two ways:

1. Dimension reduction by itself results in an effectiveness increase: A 1.5 × 1.5 cube
in N = 2 has a larger probability mass than a cube of 1.5 × 1.5 × 1.5 in N = 3 as
illustrated in the previous example.

2. Additionally, the radius of the the largest cube inside the Happy set increases from
1.5 to 1.83, thus making the bound even more effective.

In this example, there exists an exact solution via compression with 1√
3
(v1 + v2 + v3) ∼

N(0, 1) and gives that the Robustness can be expressed as: R(x) = Φ( 4.5√
3
) ≈ 0.995.

Example 4.3 (Dimension reduction efficiency) Chapter 3 has shown that the accu-
racy of the DS Robustness estimator tends to the efficiency of the MC estimator if the
DS estimator has a high probability on the two outcomes in {0, 1}. The following example
shows a case where the DS method tends to {0, 1} outcomes, with increasing dimension.
Figure 4.3 shows the Directional Sampling method estimating the Robustness of Happy set

H(x) =

{
v ∈ RN| − 1.5 ≤

N∑
n=1

vnxn ≤ 1.5

}
(4.1)

where, x1 = 1, xi = 0, for i = 2, .., I = N and vn ∼ N(0, 1) for n = 1, .., N. For this case,
Directional Sampling works as follows. Let s be a uniformly distributed random vector on
the unit sphere. Let r(s) be the distance between the origin and the point where the vector
through s intersects the bounding plane of the Happy set, i.e. the length of the vector in
Figure 4.3. From Deák’s estimate function (3.69) on page 52 follows that the unbiased
Robustness estimate is:

ds
r(s, x) = Pr

{
χ2(N) ≤ r2(s)

}
(4.2)

where χ2(N) is a chi-square distributed random variable with N degrees of freedom. In

Appendix A.8 is shown that if N → ∞ then Pr
{

0 <
ds
r(s, x) < 1

}
→ 0. This means that

the standard error of the DS estimator approaches the standard error of the MC estimator.
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Figure 4.3: Directional Sampling for estimating Robustness

The conjecture based on these examples, is that dimension reduction can improve the
performance of Robustness estimation methods. The concept of dimension reduction is
mathematically elaborated in the next section.

4.3 Happy set Dimension Reduction

The Happy set is defined as H(x) =
{

v ∈ RN
∣∣Ls ≤ us(x, v) ≤ Hs, s = 1, .., S

}
and defines

the Robustness R(x) = Pr {v ∈ H(x)}. We will say that such Happy set has dimension
N and is based on S uncertain restrictions, where us(x, v) is called an uncertain object
property and us(x, v) is called a random object property. The following is a concise in-
troduction to two dimension reduction concepts called decomposition and compression.
Both decomposition and compression are reformulations of the Happy set H(x).

• Decomposition is the method to search for a partition of the index set S =
{1, .., S}, based on independency of random object properties us(x, v) that describe
the Happy set. The partition leads to an equivalent definition for Robustness, based
on a class of lower dimensional Happy sets. Let the mutually disjoint sets Gg for

g = 1, .., G be the partition-sets of the partition of S, with
G⋃

g=1

Gg = S. The following

rule applies for each partition-set g with g = 1, .., G: Each random object property
us(x, v) with s ∈ Gg is independent with respect to each random object property
ut(x, v) with t ∈ S\Gg. Section 4.3.1 shows that us(x, v) and ut(x, v) are indepen-
dent if they do not depend on common elements of v. The partition of {1, .., S}
into inter-independent sets of random object properties corresponds to decompos-
ing Happy set H(x) ⊆ RN into G Happy sets Hg(x) ⊆ RMg with g = 1, .., G, each

having a dimension Mg such that
G∑

g=1

Mg = N. The elements of vector v ∈ H(x)

are partitioned correspondingly, i.e. the lower dimensional Happy set has elements
v[g] ∈ Hg(x) and each element of vector v corresponds uniquely to one element of one
of the vectors v[1], .., v[g], .., or v[G]. The Robustness of the Happy set is equivalent to
the product of the Robustness of the Happy sets defined by the random object prop-
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4.3 HAPPY SET DIMENSION REDUCTION

erties of each partition-set separately, since two random object properties in differ-

ent partition-sets are independent: R(x) = Pr {v ∈ H(x)} =
G∏

g=1

Pr
{
v(g) ∈ Hg(x)

}
.

Consequently, if there exists such a partition, then the dimension of each Hg(x) is
strictly smaller than the original dimension N. The intuition given in Section 4.2
makes it plausible that the efficiency of the RP methods for estimating R(x), will
improve for increasing G. This idea is worked out in more detail in Section 4.3.1.

• Compression reduces the dimension of the Happy set by defining an equivalent
Happy set, based on a stochastic vector y lower in dimension than v. Compression
is an option in the situation that the stochastic model allows the definition of a
function of random variables with a lower dimensional domain, which is equivalent
to the original function of random variables. For example, the sum of k normally
distributed random variables is a univariate normally distributed random variable
and the sum of k i.i.d. chi-square random variables is chi-square distributed with
k degrees of freedom. In both examples, replacing the original k variables, by
the model of the equivalent univariate random variable, compresses the Happy set
dimension from N to N− k + 1.

4.3.1 Happy set Decomposition

The partition of S = {1, .., S} is based on independency of uncertain object properties of
the Happy set for fixed x. Consider two uncertain object property indices s, t ∈ S, s 6= t.
For a given x, us(x, v) and ut(x, v) are independent if

Prv ({v |Ls ≤ us(x, v) ≤ Hs, Lt ≤ ut(x, v) ≤ Ht})
=Prv

({
v
∣∣ Ls ≤ us(x, v) ≤ Hs

})
Prv

({
v
∣∣ Lt ≤ ut(x, v) ≤ Ht

})
(4.3)

for all Hs, Ht ∈ R. Since all elements of random vector v are by definition independent,
a sufficient condition for independency of random object properties s and t, is that the
underlying functions us(x, v) and ut(x, v) do not have any element vn in common.

Example 4.4 Let the uncertain object properties be:

u1(x, v) = 2x1v1 + x2v2 + x3v3v4

u2(x, v) = x2v1 + x1v2 + x4v
2
5 (4.4)

For x = (1, 1, 0, 0)
ᵀ
, u1(x, v) = 2v1 + v2 and u2(x, v) = v1 + v2 are dependent, because

they both depend on v1 and v2. For x = (0, 1, 0, 1)
ᵀ
, u1(x, v) = v2 and u2(x, v) = v1 +v2

5

are independent, because v2 is independent of v1 and v2
5.

It is possible that some, say K, of the elements of v are independent of us(x, v) for
all s ∈ S. In Example (4.4), the uncertain properties are independent of v4 and v5 if
x = (1, 1, 0, 0)

ᵀ
and the Happy set can be presented in lower dimensional form as

H(x) =

{
v ∈ R2

∣∣∣∣ L1 ≤ 2v1 + v2 ≤ H1

L2 ≤ v1 + v2 ≤ H2

}
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In such case, a lower dimensional definition of the uncertain object properties and the
Happy set can be given directly, by removing the irrelevant elements of v.

Corollary 4.1 Let K elements of v be independent of all elements of u(x, v). Then the
uncertain object properties and corresponding Happy set can be redefined to u : RI ×
RN−K −→ RS and H(x) =

{
v ∈ RN−K|L ≤ u(x, v) ≤ H

}
, where each element of v is

dependent with at least one element of u(x, v).

A way to determine if us(x, v) and vn are independent, is to study the partial deriva-

tive. If for certain x, ∂us(x,v)
∂vn

= 0 for all v ∈ V, then us(x, v) and vn are indepen-
dent. For instance, the first uncertain object property of (4.4) is independent of v1 for

x = (0, 1, 1, 1)
ᵀ
, since ∂u1(x,v)

∂v1
= ∂0v1+v2+v3v4

∂v1
= 0. Similarly, one can check if us(x, v) and

ut(x, v) have any element vn in common. For the general case, if

N∑
n=1

(
max
v∈V

∣∣∣∣∂us(x, v)

∂vn

∣∣∣∣max
v∈V

∣∣∣∣∂ut(x, v)

∂vn

∣∣∣∣) = 0 (4.5)

then us(x, v) and ut(x, v) are independent. This approach can be used to define the
partitioning of the set of uncertain object properties as follows:

Definition 4.1 The partition-sets of the set of uncertain object properties are defined as
Gg(x) ⊆ S for g = 1, .., G for which it holds that:

G⋃
g=1

Gg(x) = S

∀g 6= h : Gg(x)
⋂

Gh(x) = ∅

∀s ∈ Gg(x), t ∈ Gh(x), g 6= h :
N∑

n=1

(
max
v∈V

∣∣∣∣∂us(x, v)

∂vn

∣∣∣∣max
v∈V

∣∣∣∣∂ut(x, v)

∂vn

∣∣∣∣) = 0

∀g ∈ {1, .., G} , s ∈ Gg(x), ∃t ∈ Gg(x) :
N∑

n=1

(
max
v∈V

∣∣∣∣∂us(x, v)

∂vn

∣∣∣∣max
v∈V

∣∣∣∣∂ut(x, v)

∂vn

∣∣∣∣) > 0

(4.6)

The last condition in Definition 4.1 makes that the (maximum) number of partitions
G is unique, because this condition guarantees that each Gg(x), g = 1, ..,G cannot be
partitioned further. It can be shown that the partitioning requires a polynomial number
of steps1.

1From a Graph Theory perspective, consider S as the set of nodes and between any two nodes for
which the test (4.5) does not hold there is an arc (i.e. possible dependence). It can be shown that finding
all the arcs can be done in at most 1

2S(S − 1) steps. For each node, finding all connected nodes is a
polynomial time problem (as follows from Matousek and Nesetril, 1998). Consequently, the partitions
can be found in polynomial time.
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Example 4.5 Let v ∈ R4 and the uncertain object properties be:

u1(x, v) = 2x1v1 + x2v3

u2(x, v) = x2v1 + x1v3

u3(x, v) = x3
v4

v2

For x = (1, 1, 1)
ᵀ
, u1(x, v) and u2(x, v) are dependent, but they are both independent of

u3(x, v). Consequently, the partition of S = {1, 2, 3} is G1(x) = {1, 2}, G2(x) = {3} with
G = 2.

The partitioning of S corresponds to a partitioning of {1, .., N}, reflecting the mutual
dependence between elements of v and elements of u(x, v). This partitioning is relevant
in order to give an alternative definition for R(x) = Pr {v ∈ H(x)} based on G lower
dimensional Happy sets, as shown in Corollary 4.4. The G partitions of {1, .., N} in
connection to the G partitions of S are:

Ig(x) =

{
n ∈ {1, .., N}

∣∣∣∣∃s∈Gg(x) : max
v

∣∣∣∣∂us(x, v)

∂vn

∣∣∣∣ > 0

}
for g = 1, ..,G. This means that for each n ∈ Ig(x), there is at least one s ∈ Gg(x) for
which vn and us(x, v) are dependent. The number of elements in these sets is defined as

Mg = |Ig(x)| and from Corollary 4.1 follows that
G∑

g=1

Mg = N. In Example 4.5, the index

sets are I1(x) = {1, 3} and I2(x) = {2, 4} with M1 = 2 and M2 = 2.
The concepts in Definition 4.2 and Corollary 4.2 are given, to define the decomposed

Happy set as in Definition 4.3 and to show the effectiveness of Decomposition in the
remainder of this section. We start with identifying which elements of v are relevant in
each partition:

Definition 4.2 Let fg : Ig(x) −→ {1, .., Mg} be a bijective function for g = 1, ..,G. The

vector v[g] ∈ RMg is defined by v
[g]
fg(n) = vn for all n ∈ Ig(x)

Corollary 4.2 The relation between vector v and vector v[g] is defined by an N-by-Mg

matrix P [g] with g = 1, .., G and P
[g]
fg(n),n = 1, P

[g]
fg(n),i = 0 for all n ∈ Ig(x), i 6= n.

Consequently, v =
G∑

g=1

P [g]v[g] and v[g] = P [g]
ᵀ

v

Hence, each column in matrix P [g] has one element with the value 1 and all other elements
are 0 and each row has at most one element with the value 1 and all other elements 0.

Example 4.6 The two lower dimensional vectors corresponding the uncertain properties
in Example 4.5, are v[1] = (v1, v3)

ᵀ
and v[2] = (v2, v4)

ᵀ
and the two projection matrices

are

P [1] =


1 0
0 0
0 1
0 0

 P [2] =


0 0
1 0
0 0
0 1


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Since us(x, v) with s ∈ Gg(x) is insensitive for vn with n /∈ Ig(x) it follows that

Corollary 4.3

us(x, v) = us(x, P [g]v[g]) for s ∈ Gg(x) (4.7)

Definitions 4.1 and 4.2 form the basis of the definition of the lower dimensional Happy
sets:

Definition 4.3

Hg(x) =
{
z ∈ RMg

∣∣Ls ≤ us(x, P [g]z) ≤ Hs, ∀s ∈ Gg(x)
}

(4.8)

From independency between any two uncertain object properties belonging to different
partition sets follows immediately that the Robustness can be computed with

Corollary 4.4

R(x) = Pr {v ∈ H(x)} =
G∏

g=1

Pr
{
v(g) ∈ Hg(x)

}
(4.9)

Happy set Decomposition effect on Bounding methods

The reason to construct a decomposition, is to reformulate the Happy set into G lower
dimensional Happy sets, with the intention to estimate R(x) more effectively. In particu-
lar, the effectiveness of a bound for R(x) increases if the absolute difference between the

bound and R(x) becomes smaller. In (3.97), H[∞]
(x), H[2]

(x) and H[1]
(x) are defined as

respectively the smallest cube, ball and diamond shapes that enclose the Happy set H(x).

Let H[p]
(x), with p ∈ {1, 2,∞} be the corresponding sets that enclose the Happy set, where

the maximum norm of vectors in H[p]
(x) is r[p](x), which is defined as the radius of H[p]

(x)

in (3.98). By definition Prv (H(x)) ≤ Prv

(
H[p]

(x)
)

and Prv[g] (Hg(x)) ≤ Prv[g]

(
H[p]

g (x)
)

for g = 1, ..,G and consequently Prv (H(x)) ≤
G∏

g=1

Prv[g]

(
H[p]

g (x)
)
. Decomposition only

leads to sharper or equal upper bounds, if
G∏

g=1

Prv[g]

(
H[p]

g (x)
)
≤ Prv

(
H[p]

(x)
)
. Theorem

4.1 and Corollary 4.5 show that this inequality is always valid.

Theorem 4.1

G∏
g=1

Prv[g]

(
H[p]

g (x)
)
≤ Prv

(
H[p]

(x)
)

(4.10)

for each norm type p ∈ {1, 2,∞}
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Corollary 4.5 If ∃g ∈ {1, .., G} with r[p]
g (x) < r[p](x) then

G∏
g=1

Prv[g]

(
H[p])

g (x)
)

< Prv

(
H[p]

(x)
)

(4.11)

for each norm type p ∈ {1, 2,∞}

Proof of Theorem 4.1 and Corollary 4.5 is given in Appendix A.9.
The same idea holds for the lower bounds. Inscribed spheres H[∞](x), H[2](x) and

H[1](x) are defined in (3.99) as respectively the largest cube, ball and diamond shapes
enclosed by the Happy set H(x). The corresponding maximum norm of vectors in H[p](x)
is r[p](x) which is defined as the radius of H[p](x) in (3.100) with p ∈ {1, 2,∞}. Decom-
position is effective for lower bounds because:

Theorem 4.2
G∏

g=1

Prv[g]

(
H[p]

g (x)
)
≥ Prv

(
H[p](x)

)
(4.12)

for each type p ∈ {1, 2,∞}

Corollary 4.6 If ∃g ∈ {1, .., G} with r[p]
g (x) > r[p](x) then

G∏
g=1

Prv[g]

(
H[p]

g (x)
)

> Prv

(
H[p](x)

)
(4.13)

for each norm type p ∈ {1, 2,∞}

Proof of Theorem 4.2 and Corollary 4.6 is given in Appendix A.9.

Happy set Decomposition effect on Sampling methods

In contrast to the exactness of the effect of Decomposition on Robustness Bounding
methods, it is an open question whether or not Decomposition reduces the standard error
of a Robustness sampling estimator. The empirical studies of Chapter 5, support this
hypothesis. In the quest for finding a proof for this hypothesis, the following properties
were discovered.

Let ρ = Prv (H(x)) = Prv[1] (H1(x)) Prv[2] (H2(x)) = ρ1ρ2, where the two Happy sets
H1(x) and H2(x) are a decomposition of the Happy set H(x). The idea is that if such
decomposition in two parts leads to a reduction of the standard error (se(·)) of the Ro-
bustness estimate, then it can be proved by induction that any decomposition will lead
to a standard error improvement.

Lemma 4.1 Let ρ̂, ρ̂1 and ρ̂2 be the estimator of respectively ρ, ρ1 and ρ2, with standard
errors se(ρ̂) =

√
var [ρ̂], se(ρ̂1) =

√
var [ρ̂1] and se(r̂2) =

√
var [r̂2]. If

E
(
ρ̂2

1

)
E
(
ρ̂2

2

)
< E

(
ρ̂2
)

(4.14)

then
se(ρ̂1ρ̂2) < se(ρ̂)
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Proof. The result follows from:

V AR(ρ̂) = E
(
ρ̂2
)

−E (ρ̂)2

V AR(ρ̂1ρ̂2) = E
(
ρ̂2

1ρ̂
2
2

)
− E (ρ̂1ρ̂2)

2 = E
(
ρ̂2

1

)
E
(
ρ̂2

2

)
−E (ρ̂)2

Corollary 4.7 Let
mc
ρ ,

mc
ρ1 and

mc
ρ2 be Monte Carlo estimators of respectively ρ, ρ1 and

ρ2, then
se(

mc
ρ) = se(

mc
ρ1

mc
ρ2)

Proof. For Monte Carlo estimation

V AR(
mc
ρ) = ρ− ρ2 E(

mc
ρ

2
) = ρ

V AR(
mc
ρ1) = ρ1 − ρ2

1 E(
mc
ρ

2

1) = ρ1

V AR(
mc
ρ2) = ρ2 − ρ2

2 E(
mc
ρ

2

2) = ρ2

(4.15)

Consequently

E
(

mc
ρ

2

1

)
E
(

mc
ρ

2

2

)
= ρ1ρ2 = ρ = E

(
mc
ρ

2
)

The conclusion is that Decomposition does not lead to an efficiency improvement of the
MC method. However, the case studies in Chapter 5 show that Decomposition leads to
an efficiency improvement for most of the other Robustness estimation methods based on
sampling.

4.3.2 Happy set Compression

The possibility of Happy set Compression depends on both the uncertain restrictions as
well as the type of density function of the stochastic vector v. The underlying principle of
the compression method is the following. The Happy set can be compressed for constant
x, if there exists an alternative expression for all uncertain object properties s = 1, ..,S

us(x, v) = ws(x, a) (4.16)

where random vector a has A < N elements.

Example 4.7 Examples of such expression for vi ∼ N(0, 1) are

u1([x1, x2]
ᵀ
, [v1, v2]

ᵀ
) = x1v1 + x2v2 =

√
x2

1 + x2
2a1 = w1(x, a1)

u2([x1], [v1, v2, v3]
ᵀ
) = x1v1√

v2
2+v2

3

= x1√
2
a2 = w2(x, a2)

where a1 ∼ N(0, 1) and a2 ∼ t(2) is a random variable following the student t-distribution
with 2 degrees of freedom.

The topic of the next sections is Robustness computation for Happy sets, where us(x, v)
is a linear function of v for constant x. In such case, compression is particularly relevant
if vn ∼ N(0, 1) for n = 1, ..,N.
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4.4 Polyhedral Happy set

The uncertain properties us(x, v), of the cases discussed in 5.2 and 5.4, are linear functions
of v, for a fixed x. In such situation, the Happy set is a polyhedral set. Characteristic
for polyhedral Happy sets is that they are defined by uncertain object properties with
so-called linear uncertainty, i.e. a function linear in v:

us(x, v) = fs(x)
ᵀ
(Tv + µ) + gs(x) for all s = 1, .., S (4.17)

with continuous vector function fs : RI → RN and scalar function gs : RI → R for all
s = 1, ..,S. The N×N matrix T typically represents covariance information TT

ᵀ
= Σ of

the model. In vector notation, the uncertain object properties read

u(x, v) = f(x)
ᵀ
(Tv + µ) + g(x) = f(x)

ᵀ
Tv + f(x)

ᵀ
µ + g(x) (4.18)

with
f : RI −→ RN×S

g : RI −→ RS

and
f(x) = (f1(x), .., fs(x), ..fS(x))

g(x) = (g1(x), .., gs(x), ..gS(x))
ᵀ

where the range of f(x) is an N×S matrix. In particular, linear regression models can be
defined by notation (4.18) as an inner product of possible realisations of uncertain regres-
sion estimators β = (Tv + µ) and some vector valued functions fs(x). The application of
this type of model is discussed in Sections 5.2 and 5.4.

Polyhedral Happy sets have specific properties which can be exploited for Robust-
ness Estimation. In this section, the benefit of dimension reduction in the context of
Robustness bounding methods and Robustness sampling methods is discussed.

4.4.1 Polyhedral Happy set Dimension Reduction

The polyhedral structure of the Happy set can be exploited for the two introduced types
of Dimension Reduction:

Polyhedral Happy set Decomposition

Let A(x) = f(x)
ᵀ
T , then

u(x, v) = A(x)v + f(x)
ᵀ
µ + gs(x) (4.19)

The independency criterion (4.5) introduced in Section 4.3.1 in the situation of a Polyhe-
dral Happy set, can be expressed as:

N∑
n=1

(
max
v∈V

∣∣∣∣∂us(x, v)

∂vn

∣∣∣∣max
v∈V

∣∣∣∣∂ut(x, v)

∂vn

∣∣∣∣) =
N∑

n=1

|As,n(x)At,n(x)| = 0 (4.20)

for any two uncertain object properties us(x, v) and ut(x, v) for s 6= t.
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Polyhedral Happy set Compression

In the situation of N > S (i.e. more random variables than uncertain object properties)
and for fixed x, the function u : RI × RN −→ RS maps a high dimensional space onto a
lower dimensional space. The random vector v with N elements, defines a random vector
with S elements via u(x, v). Let

ys(x) = us(x, v) (4.21)

then, without loss of generality

E(ys(x)) = fs(x)
ᵀ
µ + gs(x)

V AR(ys(x)) = fs(x)
ᵀ
TT

ᵀ
fs(x)

COV (ys(x), yt(x)) = 1
2
(V AR (ys(x) + yt(x))− V AR(ys(x))− V AR(yt(x)))

= 1
2

(
fs(x)

ᵀ
TT

ᵀ
ft(x) + ft(x)

ᵀ
TT

ᵀ
fs(x)

)
= fs(x)

ᵀ
TT

ᵀ
ft(x) (the latter since TT

ᵀ
is symmetric)

(4.22)

with s = 1, .., S and t = 1, .., S. The covariance matrix C(x) ∈ RS×S of random vector
y(x) equals:

C(x) = f(x)
ᵀ
TT

ᵀ
f(x) (4.23)

From this definition follows that C(x) is positive-semidefinite or positive-definite. Let z be
a random vector with realisations z ∈ RS, V AR(zs) = 1, E(zs) = 0 and COV (zs, zt) = 0,
for s = 1, ..,S, t = 1, ..,S and s 6= t. The correlated elements of the random vector y(x)
can be transformed to central and uncorrelated elements, with

y(x) = u(x, v) = L(x)z + f(x)
ᵀ
µ + g(x) (4.24)

where L(x) is the S×S lower triangular matrix decomposition of C(x), such that

C(x) = L(x)L
ᵀ
(x) (4.25)

The Happy set in the z-space can be defined as

[z]H(x) =
{
z ∈ RS|L ≤ L(x)z + f(x)

ᵀ
µ + g(x) ≤ H

}
(4.26)

If C(x) is positive-definite, then L(x) can be obtained via Cholesky decomposition. If
C(x) is positive-semidefinite, then L(x) can be obtained via QR-decomposition2 with
T

ᵀ
f(x) = Q(x)L

ᵀ
(x), with Q

ᵀ
(x)Q(x) = I and lower triangular L(x):

f(x)
ᵀ
TT

ᵀ
f(x) =

(
T

ᵀ
f(x)

)ᵀ

T
ᵀ
f(x) = (Q(x)L

ᵀ
(x))

ᵀ
Q(x)L

ᵀ
(x) = L(x)L

ᵀ
(x)

Compression of a polyhedral Happy set, is particularly useful in the situation of vn ∼
N(0, 1) for all n = 1, ..,N, because then zs ∼ N(0, 1) for all s = 1, ..,S. For the general
case, compression of polyhedral Happy set is useful in the bounding context, because this
leads to more effective bounds as shown in the following section.

2In linear algebra textbooks (e.g. Golub and Van Loan (1989, page 211)), QR-decomposition of a
real S×N (with S≤N) matrix A is defined as a decomposition such that A = QR, where Q is an S×N
orthogonal matrix (meaning that Q′Q = I, with I the identity matrix) and R is an S×S upper triangular
matrix. In the notation of this thesis, R(x) is already used for Robustness. The matrix L is introduced to
prevent ambiguous notation: In this thesis, the notation ”L” is equivalent to the linear algebra textbooks
notation ”R”, referring to the upper triangular matrix in QR-decomposition.
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4.4.2 Robustness Bounding method for polyhedral Happy set

The Robustness bounding methods are introduced in Section 3.8. The Robustness bound-
ing methods use sets that inscribe the Happy set or are enclosed by the Happy. The in-
scribed or enclosing sets have such geometric shapes, that it is relatively easy to compute
their probability mass in comparison to computing the probability mass of the Happy set.
In the following, r is the radius of such inscribed or enclosing sets. For polyhedral Happy
sets, the most effective radius can be found as follows.

Lower bounds

Theorem A.4 in Appendix A.10 gives an easy expression for the minimum distance of the
origin to the plane a

ᵀ
v = b, where a ∈ RN and b ∈ R:

min
v∈RN

{
‖v‖p

∣∣aᵀ
v = b

}
=

|b|
‖a‖ p

p−1

This expression can be used for solving the optimal radius problems in (3.100). For

polyhedral Happy sets, the radius of the largest diamond H[1](x), ball H[2](x) and cube

H[∞](x) inside such Happy set can be solved analytically with:

r[1](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖fs(x)′T‖∞

}
(4.27)

r[2](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖fs(x)′T‖2

}
(4.28)

r[∞](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖fs(x)′T‖1

}
(4.29)

Similarly, the analytical expressions for the largest radii of the enclosed diamond [z]H[1](x),

ball [z]H[2](x) and cube [z]H[∞](x) are

[z]r[1](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖ls(x)‖∞

}
(4.30)

[z]r[2](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖ls(x)‖2

}
(4.31)

[z]r[∞](x) = min
s

min
B=Ls,Hs

{
|µᵀ

fs(x) + gs(x)− B|
‖ls(x)‖1

}
(4.32)

where ls(x) is the s-th row of L(x): L(x)
ᵀ

= [l1(x), .., ls(x), .., lS(x)].
We now discuss Theorem 4.3 which is in particular relevant for practically solving the

largest radius problem for p = 2. Consider the situation that there are less uncertain
restrictions than the number of elements of vector v, i.e. S<N. Theorem 4.3 tells us that
the radius of the largest enclosed ball in the high dimensional Happy set H(x) ⊆ RN is
identical to the radius of the largest enclosed ball in the lower dimensional Happy set
[z]H(x) ⊆ RS. This means that the radius can be computed conveniently in the high
dimensional Happy set, thus getting around the computationally expensive Cholesky or
QR-factorization and use the results to make conclusions about the lower bound in the
lower dimensional Happy set.
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Theorem 4.3 For fixed x,
[z]r[2](x) = r[2](x)

Proof. The covariance matrix of y(x) is

f(x)
ᵀ
TT

ᵀ
f(x) = C(x) = L(x)L(x)

ᵀ

The s-th diagonal element of the covariance matrix of y(x) is

fs(x)′TT ′fs(x) = Cs,s(x) = ls(x)
ᵀ
ls(x)

which implies that∥∥fs(x)
ᵀ
T
∥∥

2
=
√

fs(x)ᵀTT ᵀfs(x) =
√

ls(x)ᵀls(x) = ‖ls(x)‖2

and that (4.28) and (4.31) are identical.

Upper bounds

In the situation of a polyhedral Happy set, the optimisation problems related to finding

the smallest diamond H[1]
(x), ball H[2]

(x) and cube H[∞]
(x) enclosing the Happy set, as

defined in (3.98), read:

r[1](x) = max
v∈H(x)

‖v‖1 = max
v∈H(x)

N∑
n=1

|vn|

r[2](x) = max
v∈H(x)

‖v‖2 = max
v∈H(x)

√
v′v

r[∞](x) = max
v∈H(x)

‖v‖∞ = max
v∈H(x)

max
1≤n≤N

|vn|

(4.33)

The first two (r[1](x) and r[2](x)) are found by maximising a convex function over a convex
set. In (Bazaraa et al., 1993) it is explained that such problems can be NP-hard. The
optimisation problem for finding r[∞](x) can be found as follows:

r[∞](x) = max
v∈H(x)

‖v‖∞
= max

v∈H(x)
max

1≤n≤N
|vn|

= max
{

r
[∞]
1 , .., r[∞]

n , .., r
[∞]
N

}
with

r[∞]
n (x) = max

{
max

v∈H(x)
(vn), max

v∈H(x)
(−vn)

}
The conclusion is that Robustness lower bounds can be computed analytically for poly-
hedral Happy sets. A Robustness upper bound for a polyhedral Happy corresponds to
r[∞](x) and can be found in polynomial time, since such problem consists of solving 2N
Linear Programming problems.
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4.5 Warm Start Robustness optimisation approach

The Matlabr optimisation software (FMINCON) is used to solve the RP problems de-
scribed in the the cases of Chapter 5. Solving (2.8) for the case of Section 5.2 with
the FMINCON solver, in general requires a starting point to start the optimisation
iterations. For that purpose, L starting points x[l] (1, ..,L) are chosen uniformly3 dis-
tributed over X. While working on the cases of Section 5.2, it became clear that for
some random starting points, the Happy set H(x) may be empty in a neighbourhood{

x ∈ RI
∣∣ |x[l]

i − xi| ≤ ∆, i = 1, .., I
}

around the starting point x[l] where ∆ is the Finite

Differencing (FD) step size. Consequently, for such starting points, the finite differencing
approach for estimating the gradient ∇R(x) based on sampling estimation methods will
estimate a gradient with length zero and results in terminating the optimisation algorithm,
since the First Order optimality conditions are satisfied.

To overcome this problem, the following so-called Warm Start (WS) method is sug-
gested, similar to the penalty function approach (3.111) illustrated in Section 3.8. Let
R̂(x) be any of the Robustness estimates for R(x) based on sampling, i.e. an estimate
based on the MC, SMC, N-1MC, DS or ES method. Let r[2](x) be the radius as defined
in (3.111), which is the distance from E(v) to the closed boundary of H(x). This radius
is non-negative if E(v) ∈ H(x) and negative if E(v) /∈ H(x). The Warm Start estimate:
ws

R : RN −→ (−∞, 1] is defined as

ws

R(x) =


R̂(x) if R̂(x) > 0

r[2](x) if R̂(x) = 0 and r[2](x) < 0
0 elsewhere

(4.34)

and can be maximised with the FMINCON solver to find the optimal Robustness estimate

R̂∗ = max
x∈X

[
ws

R(x)
]

(4.35)

The underlying principle of the WS estimate function is that, as long as r[2](x) < 0,

maximising
ws

R(x) is effectively the same as minimising the distance between E(v) and the
point in the Happy set closest to E(v). Consequently, as soon as this distance becomes
non-negative, then E(v) ∈ H(x), which means that H(x) is not empty anymore. This
idea has a parallel to the first phase of the Simplex method in Linear Programming, where
the first phase results in a feasible starting point. Similarly, the first phase of the Warm
Start method results in finding an x for which R̂(x) > 0.

4.6 Comparison of RP methods

Case studies are discussed in Chapter 5, which are solved with Robustness Programming
(RP) methods. The primary purpose of the cases, is to investigate the performance of

3In the studied cases the set X is typically a polytope. Devroye (1986) discusses how random points
can be generated, that are uniformly distributed over X.
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the RP methods and conclude which RP methods perform above average in a practical
relevant context.

The following is an overview of all RP methods, of which the performance is investi-
gated:

• The MC, SMC, N-1MC, DS and ES Robustness sampling estimation methods as
given in Chapter 3, with M the number of samples used

• The Robustness lower4 5 bounding methods as given in Chapter 3 and are called
the Diamond, Ball and Cube method respectively

• The Decomposition and Compression methods as given in Section 4.3; The Warm
Start method as defined in (4.34)

Parameter setting q=(qE,qC,qD,qW,qS) determines the RP method selection. The pos-
sible parameter values for q are given in Table 4.1. For example if q= (DS, Yes, Yes,
No,M=100), then the RP method selection for estimating R(x) is to use the DS method
based on M=100 number of samples in combination with Decomposition and Compression
without the Warm Start method. Let K be the number of values that parameter vector q

Table 4.1: Robustness Programming parameter settings
Parameter Meaning Values
qE Estimation method MC, SMC, N-1MC, DS, ES, Diamond, Ball, Cube
qD Decomposition Yes, No
qC Compression Yes, No
qW Warm Start Yes, No
qS Number of samples M=100, M=400

can have. From Table 4.1 it follows that in theory there are K=8×2×2×2×2 = 128 alter-
native values for q. Table 4.2 illustrates that the values q[1],..,q[κ],..,q[K] can be identified
by an index number κ = 1, ...,K. The parameter q[κ] is called the RP method combina-
tion κ. For example, RP method combination κ = 63 identifies q[63] = (DS, Yes, Yes,
Yes, M=100). In practice not all of these K combinations are used. For instance if v is
normally distributed, then the ES and Diamond method do not apply. Let K be the max-
imum number of feasible combinations of RP methods and let κ = 1, .., K identify each
feasible combination of RP methods. For example if we fix WS=Yes and v is normally
distributed, then K = 6× 2× 2× 2 = 48.

Two computers6, respectively called computer A and computer B, are used to have
sufficient capacity to do numerical experiments in a timely way. An approach to investi-
gate the performance of each RP method κ, in an optimisation context, is to compare the

4In Section 3.8 is illustrated that maximising an upper bound is not practical, since this can result in
finding an unbounded Happy set, which is not necessarily associated to the maximal Robustness.

5These methods refer to estimating a lower bound for R(x) based on the Diamond set (3.102), the Ball
set (3.106) and the Cube set (3.109) where respectively r[1](x), r[2](x) and r[∞](x) follow from (3.111).

6Computer A is a 1,83GHz Intel Core Duo computer with 1GB of memory and computer B is a 2GHz
Intel Core Duo computer with 2GB of memory
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Table 4.2: Illustration of all parameter setting values
Index number (κ) parameter setting (q[κ]) Value
1 q[1] (MC, No, No, No,M=100)
2 q[2] (MC, No, No, No,M=400)
3 q[3] (MC, No, No, Yes,M=100)
4 q[4] (MC, No, No, Yes,M=400)
5 q[5] (MC, No, Yes, No,M=100)
6 q[6] (MC, No, Yes, No,M=400)
7 q[7] (MC, No, Yes, Yes,M=100
8 q[8] (MC, No, Yes, Yes,M=400)
...

...
...

57 q[57] (DS, Yes, No, No,M=100)
58 q[58] (DS, Yes, No, No,M=400)
59 q[59] (DS, Yes, No, Yes,M=100)
60 q[60] (DS, Yes, No, Yes,M=400)
61 q[61] (DS, Yes, Yes, No,M=100)
62 q[62] (DS, Yes, Yes, No,M=400)
63 q[63] (DS, Yes, Yes, Yes,M=100
64 q[64] (DS, Yes, Yes, Yes,M=400)
...

...
...

127 q[127] (Cube, Yes, Yes, Yes,M=100)
128 q[128] (Cube, Yes, Yes, Yes,M=400)

time until the FMINCON solver converges to a (local) optimum. However, the cases that
are discussed in Sections 5.2 and 5.4 appear to result in such long computation times,
that it is not practical to wait for the algorithm to converge to a solution. For example,
it takes approximately 2 weeks to compute 20 optimisation iterations of the optimisation
problem as discussed in Section 5.2, on computer A with the Matlab FMINCON solver,
for all starting points x[l], l = 1, .., 120 and RP methods κ = 1, ..,K . Experiments showed
that for most q[κ], the FMINCON solver requires more than 60 iterations to converge.
Running 60 iterations instead of 20 iterations, implies more than 6 weeks computation
time per case and is considered not practical.

Initially, the choice was made to compare the methods after a fixed amount of time
and after a fixed number of iterations. However, there are two objections to base the
the method comparison on the computation time. Firstly, the computing platform (e.g.
computers and operating system) has to be configured in such a way that the processing
speed is constant, such that all experiments are comparable. This is not the case for the
available configuration of computers A and B. Secondly, the computation time depends
on the quality of the software implementation. In Chapter 5, the mean computation time
is given to illustrate the performance of each RP method, based the results of the case
studies. Although the mean computation time of each RP method does give practical
information about the current software implementation, the mean computation time does
not give an objective statistic about the RP method performance. Therefore the choice
was made to investigate the RP methods by comparing the Robustness of the iterate
reached after a fixed number of iterations. The following two algorithms are defined for
this purpose and are given in detail at the end of this section.
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• Algorithm 4.1 is the pseudo-code for the Robustness estimate function
fRPEst

κ : RN −→ (−∞, 1], where fRPEst
κ (x) is an estimate for R(x), given x ∈ RN

and parameter vector q[κ]. The negative range is due to the WS method.

• Algorithm 4.2 is the pseudo-code for fRPSolve
κ : RN −→ (−∞, 1], which returns

the highest Robustness value found within 20 optimisation iterations of maximising
fRPEst

κ (x) with the FMINCON solver, given parameter vector q[κ] and starting point
x[l]. The output of the function is fRPSolve

κ

(
x[l]
)

= R̃
(
x[l,κ]∗), where x[l,κ]∗ is the

corresponding best design that is found within 20 iterations of the FMINCON solver.

The Robustness estimate R̃(x) has an accuracy upper bound ŝe
(

mc

R(x)
)
≤ 0.0035

given 20000 samples7 and is explained in Appendix A.3

Example 4.8 An illustration is given of possible parameter selections and outcomes. In
this example, the RP problem of Section 5.2 (the mixture design case of Unilever) is solved
for three given starting points x[1], x[2] and x[3]. The following selections of RP methods
are investigated:

q[11] = (SMC, Yes, No, Yes, M=100)
q[15] = (SMC, Yes, Yes, Yes, M=100)
q[59] = (DS, Yes, No, Yes, M=100)
q[63] = (DS, Yes, Yes, Yes, M=100)

The results after 20 iterations for the given RP methods are:

fRPSolve
11

(
x[1]
)

= 0.92 fRPSolve
11

(
x[2]
)

= −2.13 fRPSolve
11

(
x[3]
)

= 0.99
fRPSolve

15

(
x[1]
)

= 0.99 fRPSolve
15

(
x[2]
)

= −2.13 fRPSolve
15

(
x[3]
)

= 0.97
fRPSolve

59

(
x[1]
)

= 0.94 fRPSolve
59

(
x[2]
)

= −2.13 fRPSolve
59

(
x[3]
)

= 0.97
fRPSolve

63

(
x[1]
)

= 0.97 fRPSolve
63

(
x[2]
)

= −2.13 fRPSolve
63

(
x[3]
)

= 0.98

For example, the Robustness values found by the solver, for starting point x[1] and method
q[15], is 0.99 after 20 iterations, showing that q[15] is the best performing method, given
starting point x[1]. For starting point x[2] the Robustness could not be determined and the
Warm Start value is returned instead (which is identical for all methods). The method
q[11] is the best performing method, given starting point x[3].

The computation time to compute fRPSolve
κ

(
x[l]
)

is recorded on each computer, for each

starting point x[l] and method κ. The computation times are given as an illustration
in Sections 5.2, 5.3 and 5.4 and are based on measurements from the relatively faster
computer B8.

The outcome of the experiment depends on the starting point and the RP method that
is used, as illustrated in Example 4.8. The average RP method performance can be inves-
tigated by repeating the experiments for different starting points. Let S = (x[1], ..,x[L])

7Due to memory limits of 1GB, it was not practical to use more than 20000 samples
8A software improvement was necessary to collect these statistics correctly, which implied to repeat

the computations. It was not practical to repeat all computations since that would take several weeks.
Therefore the measured average computation times are based on 10 starting points.
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be a matrix with L random starting points and let matrix S be a sample of L starting
points. In the following, two performance indicators are defined. The main idea for these
performance indicators is that, for a given starting point x[l], the non-negative values
of R̃

(
x[l,1]∗) , .., R̃

(
x[l,κ]∗) , .., R̃

(
x[l,K]∗) are selected and ranked in descending order. The

first element in such ranking and the subsequent elements having the same value, identify
the best performing methods (like κ = 15 in Example 4.8 given starting point x[1]). Fi-
nally, the percentage that RP method κ is the best performing method, can be estimated
by repeating the experiment for all L starting points, and count how often RP method
combination κ is the best performing method of the L experiments.

The outcome of this ranking approach can be, that there is more than one best perform-
ing method in the ranking, given starting point x[l], i.e. these best performing methods
perform equally well. The following performance indicators are defined, which are consis-
tent in the sense that they correct9 for double counting and the sum over the compared
methods add up to 100%:

• The RP method performance indicator
We define π

[κ]
S as the number of times that RP method q[κ] is the best performing

method, during L experiments and is expressed as a percentage of L. The perfor-
mance indicator for RP method κ = 1, ..,K and starting points S, is defined as

π
[κ]
S =

100%

L

L∑
l∈1

I
(
fRPSolve

κ

(
x[l]
)
≥ fRPSolve

γ

(
x[l]
)
≥ 0, γ ∈ {1, .., K}

)
K∑

γ∈1

I
(
fRPSolve

κ (x[l]) = fRPSolve
γ (x[l])

) (4.36)

where I (α) is an indicator function, that returns the value 1 if α is true and 0
if α is false. The starting points x[l] are taken from matrix S and define the L
experiments10. The nominator I

(
fRPSolve

κ

(
x[l]
)
≥ fRPSolve

γ

(
x[l]
)
≥ 0, γ ∈ {1, .., K}

)
counts how often method κ is better or equal than all the other methods γ. The
denominator count the methods that perform as good as the best RP method.
Notice that the nominator is zero If κ is not one of the best methods, in which case

the denominator is irrelevant. It can be shown that
K∑

κ∈1

π
[κ]
S = 100%.

• The aggregated RP method performance indicator
To measure the individual effect of RP methods in M={MC, SMC, N-1MC, DS,
ES, Diamond, Cube, Ball, Decom., Comp., M= 400, WS}, we define Π[type] with
type ∈ M as

9The denominator expression in the performance indicator definition corrects for double counting
10 Starting point element x

[l]
i = Si,l for i = 1, ..,I and l = 1, ..,L
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Π
[m]
S = 100%

L

L∑
l∈1

I
“
fRPSolve

κ (x[l])≥fRPSolve
γ (x[l])≥0,γ∈{1,..,K},q[κ]

E =m
”

KP
γ∈1

I
“
fRPSolve

κ (x[l])=fRPSolve
γ (x[l]),q

[κ]
E =m

”

Π
[Decom.]
S = 100%

L

L∑
l∈1

I
“
fRPSolve

κ (x[l])≥fRPSolve
γ (x[l])≥0,γ∈{1,..,K},q[κ]

D =Yes
”

KP
γ∈1

I
“
fRPSolve

κ (x[l])=fRPSolve
γ (x[l]),q

[κ]
D =Y es

”

Π
[Comp.]
S = 100%

L

L∑
l∈1

I
“
fRPSolve

κ (x[l])≥fRPSolve
γ (x[l])≥0,γ∈{1,..,K},q[κ]

C =Yes
”

KP
γ∈1

I
“
fRPSolve

κ (x[l])=fRPSolve
γ (x[l]),q

[κ]
C =Y es

”

Π
[M=400]
S = 100%

L

L∑
l∈1

I
“
fRPSolve

κ (x[l])≥fRPSolve
γ (x[l])≥0,γ∈{1,..,K},q[κ]

S =M=400
”

KP
γ∈1

I
“
fRPSolve

κ (x[l])=fRPSolve
γ (x[l]),q

[κ]
S =M=400

”

Π
[WS]
S = 100%

L

L∑
l∈1

I
“
fRPSolve

κ (x[l])≥fRPSolve
γ (x[l])≥0,γ∈{1,..,K},q[κ]

W =Yes
”

KP
γ∈1

I
“
fRPSolve

κ (x[l])=fRPSolve
γ (x[l]),q

[κ]
W =Y es

”
(4.37)

for estimation methods m ∈{MC, SMC, N-1MC, DS, ES, Diamond, Ball, Cube},
given starting point elements x[l] from S. This means that for instance Π

[MC]
S is

the percentage that the MC method is the best performing method from in total L
experiments, irrespective of the parameter setting for Compression, Decomposition,
Warm Start or the number of samples.

Example 4.9 We continue with the results of Example 4.8, with given starting points
S = (x[1], x[2], x[3]). It follows that π

[11]
1 = 33%, π

[15]
1 = 33%, π

[59]
1 = 0% and π

[63]
1 = 0%

and for instance Π
[SMC]
1 = 66%, Π

[DS]
1 = 0% and Π

[Decom.]
1 = 33%. The other settings, i.e.

the compression method, the number of samples M and the Warm Start method are not
varied in this example.

4.6.1 Statistical inference about RP method performance indi-
cators

In the previous section the performance indicators π
[κ]
S and Π

[type]
S are defined, respectively

for RP method combination κ = 1, .., K and RP method aggregation type ∈ M={MC,
SMC, N-1MC, DS, ES, Diamond, Cube, Ball, Decom., Comp., M, WS}, given a sample S
of random starting points. It is possible that the results as in Example 4.9, can be different
for different matrices of starting points. In other words, the performance indicators are
random variables11 π

[κ]
S and Π

[type]
S , given random starting points S.

11For the situation that each starting point x[l] always leads to one best method κ, i.e.
fRPSolve

κ

(
x[l]
)

> fRPSolve
γ

(
x[l]
)
, ∀γ 6= κ, then L

100 (π[1]
S , .., π

[κ]
S , .., π

[K]
S ) follows a multinomial distribution
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The goal of RP method performance testing, is to conclude which RP methods perform
above average. Statistical inference is done to make such conclusions in a robust way. Let
µπ[κ] and µΠ[type] be the expected values of π

[κ]
S and Π

[type]
S respectively.

For statistical inference about the expected value µπ[κ] of the RP method performance
indicator we have the following. Let us assume that all K methods perform equally well,
then one would expect µπ[κ] = 100%

K
for κ = 1, .., K. Hence, a method is performing above

average if the performance indicator is significantly above 100%
K

. Therefore we focus on
the hypothesis

H0 :µπ[κ] =
100%

K
(4.38)

Ha :µπ[κ] >
100%

K

Showing that H0 does not hold, implies that the performance of method q[κ] is above
average beyond reasonable doubt12.

Consider the expected value µΠ[type] of the aggregated RP method performance indica-
tor. If v is Normally distributed and the Happy set is polyhedral, then only 6 estimation
methods m with m ∈ {MC, SMC, N-1MC, DS, Ball, Cube} are feasible. If all methods
perform equally well, then one would expect µΠ[m] = 100%

6
. Therefore we focus on the

hypothesis

H0 :µΠ[m] =
100%

6
(4.39)

Ha :µΠ[m] >
100%

6

Showing that H0 does not hold for method m, implies that the performance of this method
is above average beyond reasonable doubt.

The other RP methods in {Comp., Decom., M = 400, WS} are all either switched on or
off. This means that if for instance Compression does not influence the performance, then
one would expect µΠ[Comp.] = 50%. On the other if µΠ[Comp.] > 50% then the Compression
method has a positive influence on Robustness optimisation and a negative influence if
µΠ[Comp.] < 50%. Therefore it is relevant to verify the hypothesis

H0 :µΠ[type] = 50% (4.40)

Ha :µΠ[type] > 50%

as well as verifying

H0 :µΠ[type] = 50% (4.41)

Ha :µΠ[type] < 50%

with success probabilities 1
100 (µπ[1] , .., µπ[κ] , .., µπ[K]). However, this probability distribution does not

apply, when more than one best method for a given starting point exists.
12The concepts of hypothesis testing are for instance discussed by Ott and Longnecker (2001). The

significance level is by convention set to 0.05 and means that if the likelihood of H0 being true is less
than 5%, then H0 is rejected and we say that Ha is true beyond reasonable doubt.
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for performance indicator (4.43).
Statistical inference about the expected values of the performance indictors is based

on computing averages in the following way. Let S[1], ..,S[D] be i.i.d. as S. Consequently,
the random average performance indicators are

π[κ] =
1

D

D∑
d=1

π
[κ]

S[d] (4.42)

Π[type] =
1

D

D∑
d=1

Π
[type]

S[d] (4.43)

with corresponding realisations π[κ] and Π[type] for given starting point samples S[1], .., S[D].
From the Central Limit Theorem follows that π[κ] and π[type] are Normally distributed

for D → ∞. According Ott and Longnecker (2001) it is common to assume a student
t-distributed test statistic, when hypothesis testing a mean value based on an estimated

variance and leads to the following approach. The test statistics are τ [κ,µ] = π[κ]−µ
s[κ]

∼

t(D − 1) and τ [type,µ] = Π[type]−µ
s[type]

∼ t(D − 1), where t(D − 1) is a t-distributed random

variable with D-1 degrees of freedom, where the variances are estimated with:

s2
[κ] = ˆvar(π[κ]) =

1

D

1

D− 1

D∑
d=1

(
π

[κ]

S[d] − π[κ]
)2

(4.44)

s2
[type] = ˆvar(Π[type]) =

1

D

1

D− 1

D∑
d=1

(
Π

[type]

S[d] − Π[type]
)2

(4.45)

given the observations π
[κ]

S[d] and Π
[type]

S[d] for d = 1, ..,D. The p-values corresponding the
hypothesis (4.38), (4.39), (4.40) and (4.41) are respectively:

Pr
{

t(D− 1) > τ [κ, 100%
K ]
}

(4.46)

Pr
{

t(D− 1) > τ [type, 100%
6 ]
}

(4.47)

Pr
{
t(D− 1) > τ [type,50%]

}
(4.48)

Pr
{
t(D− 1) < τ [type,50%]

}
(4.49)

where τ [κ, 100%
K ], τ [type, 100%

6 ] and τ [type,50%] are the observed test statistics.
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4.6 COMPARISON OF RP METHODS

Algorithm 4.1 R̂ = fRPEst
κ (x), where q[κ]=(qE,qC,qD,qW,qS) with Table 4.1 values

1: PARAMETER: The Happy set H(x)
2: PARAMETER: Probability distribution type of each element vn

3: PARAMETER: Matrix V , of M=400 samples of v
4: Redefine the Happy set according Corollary 4.1 (on page 86) if necessary
5: if decomposition method is switched on (i.e qD=Yes) then
6: Decompose H(x) into Hg(x) for g = 1, ..,G. Also gives the index set Ig(x), that tells us which

elements of v are associated to Hg(x)
7: else
8: G:=1
9: end if

10: Determine bounding approach. if qE=Diamond then p := 1 elseif qE=Ball then p := 2 elseif
qE=Cube then p := ∞ end if

11: for g = 1 to G do
12: Compute the radius r

[p]
g (x) of the p-norm based bounding set in Hg(x). If p 6= 2 and the Warm

Start method is on, then also compute r
[2]
g (x), .

13: if Compression method is switched on (i.e. qC=Yes) then
14: Try compress Hg(x), given the probability distribution of vn with n ∈ Ig(x).
15: end if
16: end for
17: if qE ∈ {Diamond, Ball, Cube} then

18: Determine lower bound R̂ =
G∏

g=1
Pr
{
‖v‖p ≤ r

[p]
g (x)

}
19: if R̂ = 0 and Warm Start is on (qW=Yes) then R̂ := min

g
r
[2]
g (x) end

20: EXIT
21: else
22: for all samples (m =1 to qS) and all decomposed groups (g=1 to G) do
23: compute r̂m,g, which is an estimate of Pr

{
v[g] ∈ Hg(x)

}
based on estimation method E and

sample (column) m in V
24: end for
25: end if

26: Determine the Robustness estimate R̂ =
G∏

g=1

1
qS

qS∑
m=1

r̂m,g

27: if R̂ = 0 and Warm Start is on then
28: R̂ = min

g
r
[2]
g (x)

29: end if
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Algorithm 4.2 R̃
(
x[l,κ]∗) = fRPSolve

κ (x[l])
1: PARAMETER: X, the set of deterministic feasible designs;
2: Start solving max

x∈X

[
fRPEst

κ (x)
]

with starting point x[l].

3: while solver is running do
4: Determine the number of iterations (i) finished
5: Determine the best feasible design x∗ corresponding the highest Robustness estimate fRPEst

q (x∗)
found until iteration i.

6: if i ≤ 20 then x[l,κ]∗ := x∗

7: if i = 20 then stop solver
8: end while
9: Compute accurate estimate R̃

(
x[l,κ]∗) based on 20000 samples, given best design x[l,κ]∗ (See Appendix

A.3).

4.7 Concluding remarks

The RP methods discussed in Chapter 3 are Robustness estimation methods and are
either based on sampling (MC, SMC, N-1MC, DS and ES) or on bounding (Diamond,
Ball and Cube). The RP methods discussed in Chapter 4 are Robustness computation
methods for improving the efficiency and effectiveness of Robustness estimation methods.
The Robustness computation methods are respectively called the Compression method,
the Decomposition method and the Warm Start method. Furthermore, a methodology
is given in Chapter 4 for comparing the performance of RP methods in the context of
Robustness optimisation. The RP methods of Chapter 3 and Chapter 4 are applied in
case studies, which are discussed in Chapter 5.
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Chapter 5
Case Studies

5.1 Introduction

In this chapter, the performance of the Robustness Programming methods as given in
Chapters 3 and 4, are measured by numerical experiments based on three case studies.
The first case is described in Section 5.2 and deals with optimal robust mixture design
of a food product. The second case is given in 5.4 and deals with optimal robust raw
material cost planning in a food production context. The last case is outlined in Section
5.5 and deals with coalition robustness in a two-stage cartel game, in the context of CO2

reduction strategies in climate agreements. Each of these sections first introduces the
case and gives a formulation for the corresponding Robustness Programming problem,
followed by an elaboration on the performance statistics of the RP methods.

5.2 Optimal Robust Mixture Design

Together with Unilever R&D, research has been carried out on Mixture Design Problems
for food products. The original mixture design case is based on confidential data. To
sketch the robust Mixture Design Problem and the application of the methods for Ro-
bustness Programming, a hypothetical case is used, which is identical to the original case
in terms of stochastic models, dimensions, polynomial degree and number of constraints.

In Section 5.2.1 the model for defining a robust mixture design for a single product is
introduced. In Section 5.2.2 this model is extended for defining a robust mixture design
for multiple products simultaneously. Finally, the results of comparing the RP methods
for solving the original multiple product mixture design case, are given in Section 5.2.3.

5.2.1 Single Product Robust Mixture Design

The challenge is to find Raw Material (RM) proportions (x1, .., xI)
ᵀ
, such that product

specifications for protein (p), carbohydrate (c), fat (f) and bacteria growth rates at 0◦C,
4◦C, 10◦C and 22◦C (b0, b4, b10, b22), are satisfied. The vector x is called the product design.
In the Unilever case there are 11 RM’s to choose from, i.e. I = 11. The specifications are
defined as intervals:

[pLow,pHigh]

[cLow,cHigh]

[fLow,fHigh]

[b0Low,b0High]

[b4Low,b4High]

[b10Low,b10High]

[b22Low,b22High] (5.1)
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An analytical model for predicting the nutritional properties as a function of raw material
proportions is defined as:  py

cy
fy

 = Ax (5.2)

where py,c y and fy are respectively the weight fractions of protein, carbohydrates and
fat in the product. Food scientists consider this linear model as acceptably accurate and
concluded that there is no reason to study the Robustness of the nutritional model. In
connection to the Robustness Programming Framework, the nutritional model is typically
part of the deterministic object properties. The set of deterministic feasible designs for
this case is defined as:

X =

x ∈ RI

∣∣∣∣∣∣
 pLow

cLow
fLow

 ≤ Ax ≤

 pHigh
cHigh
fHigh

 ;
I∑

i=1

xi = 1; xi ≥ 0 , i = 1, .., I

 (5.3)

Food scientists developed regression models for predicting the bacteria growth rates as a
function of specific components in the raw materials. These bacteria growth rate models
are based on the results of experiments, which inevitably have some degree of uncertainty.
Consequently, one cannot be absolutely sure about the model prediction and in particular
whether or not the specifications are satisfied. In this context it is relevant to find such
raw material proportions, that the probability of satisfying the bacteria growth rate spec-
ifications, is maximised. In the following, a regression model for predicting the bacteria
growth rates is introduced in relation to the specification Robustness.

It has been decided to base the regression model on the proportions of 16 categories
of nutritional components in the raw materials instead of the raw material proportions.
The 16 categories of nutritional components in the raw materials are called Growth-rate
Affecting Components (GACs). Examples of GACs are various categories of amino acids,
fats and carbohydrates. This model assumes that the influence of each raw material on
the bacteria growth rate, can be characterised by the proportions of these GACs. This
way it is possible to study the effect of a new raw material, when only given the GAC
specification from the supplier.

The model for predicting bacteria growth-rates has two stages: In the first stage, the
weight-fraction of each GAC in the mixture of raw materials is determined, given the
product design x. In the second stage, a regression model predicts the bacteria growth-
rates at the four different temperatures, given the GAC weight fractions.

The relation between raw material weight proportions (x) and the weight proportions
of GACs (z), is defined by an L×I matrix G with z = Gx, where L= 16 and I=11. Food
scientists concluded that the value of G is known with sufficient accuracy in practice. No
uncertainty about G is considered in this model. For example if only RM 1 and RM 11
are used, with relative weight proportions x1 = 1

3
and x11 = 2

3
, then zl = 1

3
Gl,1 + 2

3
Gl,11

for l = 1, ..,L and is illustrated in Figure 5.1, where each arc from xi to zl symbolises the
fraction Gl,i of GAC l in raw material i.

108



5.2 OPTIMAL ROBUST MIXTURE DESIGN

x1 = 1
3

weight fraction of RM 1 •

x2 = 0 weight fraction of RM 2 •
x3 = 0 weight fraction of RM 3 •
x4 = 0 weight fraction of RM 4 •
x5 = 0 weight fraction of RM 5 •
x6 = 0 weight fraction of RM 6 •
x7 = 0 weight fraction of RM 7 •
x8 = 0 weight fraction of RM 8 •
x9 = 0 weight fraction of RM 9 •

x10 = 0 weight fraction of RM 10 •

x11 = 2
3

weight fraction of RM 11 •

z1 weight fraction of GAC 1•
z2 weight fraction of GAC 2•
z3 weight fraction of GAC 3•
z4 weight fraction of GAC 4•
z5 weight fraction of GAC 5•
z6 weight fraction of GAC 6•
z7 weight fraction of GAC 7•
z8 weight fraction of GAC 8•
z9 weight fraction of GAC 9•
z10 weight fraction of GAC 10•
z11 weight fraction of GAC 11•
z12 weight fraction of GAC 12•
z13 weight fraction of GAC 13•
z14 weight fraction of GAC 14•
z15 weight fraction of GAC 15•
z16 weight fraction of GAC 16•

Figure 5.1: Illustration of Gx = z

Food-scientists have determined that both the individual contribution of each GAC, as
well as the combination of GAC’s influence bacteria growth-rates. Therefore, the re-
gression model is based on a function f(Gx) which models both the linear effect and
interaction effects of GACs on bacteria growth-rates. The function f will be explained
hereafter. The regression model has the following form:

y1

y2

y3

y4

 = f(Gx)
ᵀ
β +


e1

e2

e3

e4

 (5.4)

where y1, y2, y3 and y4 respectively refer to the bacteria growth-rates at the 4 tempera-
tures 0◦C, 4◦C, 10◦C and 22◦C. The linear effects and interaction effects are modelled as
a matrix function: f : RL → R4×Z, which returns a matrix with the following number of
columns Z = 4

(
1 + L + 1

2
(L2 − L)

)
. I.e. this matrix refers to 1 intercept, L linear effects

and 1
2
(L2 − L) interaction effects for all four temperature specific bacteria growth rate

models. As an illustration consider the case L = 2, then the matrix function is defined
as:

f(Gx)
ᵀ

=

2664
1 z1 z2 z1z2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 z1 z2 z1z2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 z1 z2 z1z2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 z1 z2 z1z2

3775
In the Unilever case, each raw material is considered to consist of L = 16 GAC components
and consequently the size of vector β is Z = 548 elements. The model assumes additive
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noise, where the errors e1, e2, e3, e4 are considered to be normally distributed random
variables:

e ∼ N




0
0
0
0

 ,


σ2

1 σ1,2 σ1,3 σ1,4

σ2,1 σ2
2 σ2,3 σ2,4

σ3,1 σ3,2 σ2
3 σ3,4

σ4,1 σ4,2 σ4,3 σ2
4


 = N(µ(e), Σ(e)) (5.5)

In the original mixture design case, the errors were assumed to be independent and the
estimation of β was done with the OLS1 regression technique. The consequence of inde-
pendent errors is that yi and yj for i 6= j are also independent. More importantly, it can
be shown that such independency structure makes it possible to apply the decomposition
method as introduced in Section 4.3.1. Therefore, to make results comparable, the vector
β is also estimated with OLS regression technique and the errors in this hypothetical case
are assumed to be independent, which in the case of the Normal distribution translates
to σi,j = 0 for i 6= j. Verbeek (2004) introduces a method called Feasible Generalised
Least Squares (FGLS) which can be used to estimate β based on an estimated Σ(e) in the
situation that the elements of the error vector are dependent.

The bacteria growth rate model is estimated in the following way. The experimental
design matrix F for M = 1058 different combinations of raw materials, is defined as:

F =


f(z[1])

ᵀ

...
f(z[m])

ᵀ

...
f(z[M])

ᵀ

 (5.6)

where z[m] = Gx[m] is the m-th combination of GAC’s, given the raw material proportion
x[m] for m = 1, .., M. Matrix F has 4M rows and 4Z columns. The bacteria growth-rate
measurements are collected in the vector

Y =


y[1]

...
y[m]

...
y[M]


where y[m] is a vector of 4 elements, referring to the 4 temperature measurements and
vector Y has 4M elements. Similarly, the 4 error elements in vector e[m] connected to the
m-th RM combination can be stacked in a vector E = (e

[1]
1 , e

[1]
2 , e

[1]
3 , e

[1]
4 , e

[2]
1 , ..., e

[M]
4 )

ᵀ
with

4M elements. Consequently,
E ∼ N

(
[0], Σ[E]

)
with [0] a vector with 4M elements which all have the value 0 and

Σ
[E]
4m+i,4m+i = Σ

[e]
i,i

1Ordinary Least Squares is a method for estimating regression parameters (see e.g. Rice, 1995).
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for i = 1, .., 4, m = 0, .., M−1 and where all non-diagonal elements are zero. The regression
model, given the M experiments defined by F , is:

Y = Fβ + E

Rice (1995) explains that the OLS estimator of β is

β̂ = (F ′F )−1F ′Y

and follows the normal distribution, which can be expressed as

β̂ ∼ N
(
β,
(
F

ᵀ
(Σ[E])−1F

)−1
)

The estimate β̂ = (F ′F )−1F ′Y can be computed, given the measurements Y . The growth
rate estimates are Ŷ = Fβ̂ and can be used to estimate the error variances on the diagonal
of Σ[e] with

Σ̂
[e]
i,i = σ̂2

i =
1

M-1
4
Z

M∑
m=1

(Yi+4(m−1) − Ŷi+4(m−1))
2

for i = 1, .., 4 and gives the variance estimate of the elements of E with

Σ̂
[E]
4m+i,4m+i = Σ̂

[e]
i,i

for i = 1, .., 4, m = 0, .., M− 1 where all non-diagonal elements are zero.
The stochastic model of the estimator can be used to express the confidence that a

model prediction is within the specification. Analogously to the definition in Ott and
Longnecker (2001) about a prediction interval and prediction level for single-response
regression models (y ∈ R), the following prediction level (α) can be defined for the multi-
response (y ∈ R4) bacteria growth rate model where the prediction interval is the Happy
set defined by the product specifications:

α = R(x) = Pr {v ∈ H(x)}
(5.7)

with

H(x) =

v ∈ RZ+4

∣∣∣∣∣∣∣∣


b0Low
b4Low
b10Low
b22Low

 ≤


u1(x, v)
u2(x, v)
u3(x, v)
u4(x, v)

 ≤


b0High
b4High
b10High
b22High


 (5.8)

and 
u1(x, v)
u2(x, v)
u3(x, v)
u4(x, v)

 = f(Gx)
ᵀ
β̂ +

[
f(Gx)
I

]ᵀ

Tv (5.9)
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where the square matrix T is obtained by Cholesky decomposition such that

TT
ᵀ

=

[ (
F

ᵀ
(Σ̂[E])−1F

)−1

[0]
ᵀ

[0] Σ̂[e]

]
(5.10)

and [0] is a 4×Z zero matrix and I is a 4×4 identity matrix. The dimensions, matrices
and vectors described in the model for the single product design case, are summarised in
Table 5.1.

Table 5.1: Overview of symbols in single product design case

name type size description details
I dimension 11 Number of raw materials associated index: i
L dimension 16 Number of GACs associated index: l
M dimension 1058 Number of experiments associated index: m

per temperature
Z dimension 548 Number of reg. coefficients β
N dimension Z+4 Number of RP random vector
T constant matrix (Z+4)×(Z+4) Cholesky decomposition see (5.10)

of covariance matrix
F constant matrix M×Z Design of experiments see (5.6)
G constant matrix L×I GAC weight fractions in RM z = Gx
v random vector N=Z+4 t-distributed random vector
x vector I product design vector
β̂ constant vector Z+4 regression coefficients vector

It can be shown that ui(x, v) and uj(x, v) for i 6= j are independent, because the error
elements in E are independent. It can be shown that the random vector v follows a t(r)
distribution2 with r =M-1

4
Z degrees of freedom, because the variances of the errors are

estimated.

The statistical level of confidence measure α, quantifies the confidence that an individ-
ual product will be according to specifications. This model takes into account 2 sources
of uncertainty

1. The uncertainty of natural variation in growth rates (e).

2. The uncertainty in the mean value predictions of the model (f(x)
ᵀ
β)

Methods for Robustness Programming can be used to find a product design x∗, with
optimal confidence level R∗ by solving (2.8) for the above described case. Product design
vector x∗ is feasible (i.e. x∗ ∈ X) and corresponds the Robustness optimum R∗ = R(x∗),
where each element x∗i , i = 1, ..,I is the weight fraction of raw material i in the product.

2NB: tn(r) ∼ vn√
1
r χ2(r)

where vn ∼ N(0, 1) and independent for n = 1, ..,N and independent of the

chi-square random variable χ2(r) with r degrees of freedom. This means that for all tn(r), n = 1, ..,N
the denominator is identical.
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5.2 OPTIMAL ROBUST MIXTURE DESIGN

5.2.2 Multiple Product Robust Mixture Design

In this section the single product robust mixture design model of Section 5.2.1 is extended
to the robust design of K products simultaneously. In the multiple product situation, the
product specifications are

[pLowk,
pHighk]

[cLowk,
cHighk]

[fLowk,
fHighk]

[b0Lowk,
b0Highk]

[b4Lowk,
b4Highk]

[b10Lowk,
b10Highk]

[b22Lowk,
b22Highk] (5.11)

for k = 1, ..,K. Let x[k] be the product design of the k-th product. The design of K food
products can be represented by a matrix

X =

 ↑ ↑ ↑
x[1] · · · x[k] · · · x[K]

↓ ↓ ↓



The set of deterministic feasible designs for a single product is given in (5.12). Similarly,
this set for K food products is

∏K
k=1 Xk with

Xk =

x ∈ RI

∣∣∣∣∣∣
 pLowk

cLowk
fLowk

 ≤ Ax ≤

 pHighk
cHighk
fHighk

 ;
I∑

i=1

xi = 1; xi ≥ 0 , i = 1, .., I


(5.12)

The bacteria growth rate model is used for each product:


u1+4(k−1)(x, v)
u2+4(k−1)(x, v)
u3+4(k−1)(x, v)
u4+4(k−1)(x, v)

 = f(Gx)
ᵀ
β̂ +

[
f(Gx)
I

]ᵀ

Tv (5.13)
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for k = 1, ..,K and leads to the Happy set definition in the multiple product design case

H(X) =



v ∈ RZ+4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



b0Low1
b4Low1
b10Low1
b22Low1

...
b0Lowk
b4Lowk
b10Lowk
b22Lowk

...
b0LowK
b4LowK
b10LowK
b22LowK



≤



u1(x
[1], v)

u2(x
[1], v)

u3(x
[1], v)

u4(x
[1], v)
...

u1+4(k−1)(x
[k], v)

u2+4(k−1)(x
[k], v)

u3+4(k−1)(x
[k], v)

u4+4(k−1)(x
[k], v)

...
u1+4(K−1)(x

[K], v)
u2+4(K−1)(x

[K], v)
u3+4(K−1)(x

[K], v)
u4+4(K−1)(x

[K], v)



≤



b0High1
b4High1
b10High1
b22High1

...
b0Highk
b4Highk
b10Highk
b22Highk

...
b0HighK
b4HighK
b10HighK
b22HighK





(5.14)

In this model, for k = 1, ..,K, the elements β̂1, .., β̂137 are only relevant for u1+4(k−1)(x
[k], v),

the elements β̂138, .., β̂275 are only relevant for u2+4(k−1)(x
[k], v), the elements β̂276, .., β̂412

are only relevant for u3+4(k−1)(x
[k], v) and the elements β̂413, .., β̂548 are only relevant for

u4+4(k−1)(x
[k], v). The bacteria growth rate model u has the following dependencies struc-

ture, because the elements of the error vector E are independent: Similar to the single
product design case, we have that ui+4(k−1)(x

[k], v) and uj+4(k−1)(x
[k], v) are independent

for i 6= j and k = 1, ..,K. However, ui+4(k−1)(x
[k], v) and ui+4(l−1)(x

[l], v) are dependent3 for
all i = 1, .., 4 and k, l = 1, ..,K. It can be shown that, for any x the Happy set H(x) ⊆ RZ+4

can be decomposed (at least) into i=1,..,4 Happy sets Hi(x) ⊆ R 1
4
Z+1.

5.2.3 Results

Methods for Robustness Programming are used to solve

R∗ = max
X∈

QK
k=1 Xk

[Pr {v ∈ H(X)}] (5.15)

with the Matlab FMINCON solver. The performance indicators π and Π, as introduced
in (4.42) and (4.43) and the corresponding p-values (4.46), (4.47), (4.48) and (4.49) are
determined for the multiple product mixture design case, for all applicable alternative RP
methods. The non-zero π and Π results are respectively shown in Table 5.2 and Table
5.3, where the number of samples of v is M=100. The corresponding computation times
are illustrated in 5.4.

These results show that the Warm Start method is effective, except for the SMC
method. This led to a second experiment where the Warm Start method is used except

3The dependency for any x, follows from the observation that the elements v1, v138, v275 and v412

represent the intercepts of the regression model, which means that ui+4(k−1)(x[k],v) and v(i−1)137+1 are
dependent for all x[k] ∈ RI, k = 1, ..,K and i = 1, .., 4.
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for the SMC method and the number samples is either M=100 or M=400. The non-zero
results corresponding to the performance indicators π and Π, are respectively shown in
Table 5.5 and in Table 5.6, for the case that the WS=Yes. In Section 5.2.4 the results are
discussed and conclusions are formulated.
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Table 5.2: Performance indicator of combined RP methods for problem (5.15)

RP Method q[κ] π[κ] p-value

Ha : µπ[κ] > 100%
48

Estimator Comp. Decom. WS
DS Yes Yes Yes 18% 0.0000
N-1MC Yes Yes Yes 14% 0.0001
Cube Yes Yes Yes 11% 0.0042
N-1MC No Yes Yes 9% 0.0045
Ball Yes Yes Yes 8% 0.0171
SMC Yes Yes No 6% 0.0626
SMC No No No 5% 0.0243
Ball Yes No Yes 5% 0.0634
SMC No Yes No 5% 0.0689
DS No No Yes 4% 0.1190
DS No Yes Yes 4% 0.1651
SMC No No Yes 3% 0.1164
Cube No No Yes 3% 0.2665
SMC Yes Yes Yes 3% 0.1507
SMC No Yes Yes 1% 0.8796

Note a) The results for π > 0 are given in descending order of π.

Note b) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note c) M=100 number of samples of v and D=30 strata of L=4 randomly chosen starting points.

Table 5.3: Performance indicator of individual RP methods for problem (5.15)

RP Method type Π[type] p-value p-value p-value

Ha : µΠ[type] > 100%
6 Ha : µΠ[type] > 50% Ha : µΠ[type] < 50%

MC 0.0% 1.0000
SMC 23.3% 0.0439
N-1MC 23.3% 0.0515
DS 26.7% 0.0086
Ball 12.5% 0.9212
Cube 14.2% 0.7268
Compression (no MC/SMC) 69.2% 0.0000 1.0000
Decomposition (no MC/SMC) 75.8% 0.0000 1.0000
Warmstart 84.6% 0.0000 1.0000
Warmstart (no MC/SMC) 100.0% 0.0000 1

Note a) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note b) M=100 number of samples of v and D=30 strata of L=4 randomly chosen starting points.
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Table 5.4: Average computation time (sec.) for problem (5.15)

Compression Decomposition Warmstart
No Yes No Yes No Yes mean

MC 132d 132d 132d 132
SMC 134 142 127 144 138 137 137
N-1MC 180 155 135 175 165 162
DS 163 148 143 167 155 155
Ball 134 125 122 131 125 127
Cube 124 126 123 129 126 126
mean 147 138 130 149 138 140

Note a) Experiment is based on running all RP methods, given 10 starting points, with M=100 sample size

Note b) Computation is done on a 2GHz Intel Core Duo computer with 2GB memory

Note c) Time measurements are only given if all 20 iterations are completed and void spaces otherwise.

Note d) For these results the WS method did not result in finding a positive Robustness estimate within 20 iterations

Table 5.5: Performance indicator of combined RP methods for problem (5.15)

RP Method q[κ] π[κ] p-value

Ha : µπ[κ] > 100%
40

Estimator Comp. Decom. sample size
DS Yes Yes 400 15% 0.0007
DS Yes Yes 100 9% 0.0093
Cube Yes Yes N.A. 9% 0.0187
N-1MC Yes Yes 400 8% 0.0183
SMC No Yes 100 6% 0.0665
DS No Yes 400 6% 0.1016
SMC No No 100 5% 0.1226
N-1MC No Yes 400 5% 0.1682
SMC Yes Yes 100 5% 0.1226
SMC Yes Yes 400 5% 0.1226
Ball Yes Yes N.A. 5% 0.1682
Cube No No N.A. 4% 0.2689
N-1MC Yes Yes 100 4% 0.2689
DS No No 100 3% 0.3849
SMC No No 400 3% 0.3849
Ball Yes No N.A. 3% 0.3849
N-1MC No Yes 100 2% 0.6378
DS No Yes 100 1% 0.9265
SMC No Yes 400 1% 0.9265
Cube Yes No N.A. 1% 0.9265

Note a) The results for π > 0 are given in descending order of π.

Note b) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note c) WS=Yes (except for SMC) and D=33 strata of L=3 randomly chosen starting points.
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Table 5.6: Performance indicator of individual RP methods for problem (5.15)

RP Method type Π[type] p-value p-value p-value

Ha : µΠ[type] > 100%
6 Ha : µΠ[type] > 50% Ha : µΠ[type] < 50%

MC 0.0% 1.0000
SMC 25.0% 0.0465
N-1MC 19.0% 0.2741
DS 34.0% 0.0015
Ball 8.0% 0.9973
Cube 14.0% 0.7703
Compression (no MC/SMC) 64.0% 0.0063 0.9937
Decomposition (no MC/SMC) 76.0% 0.0000 1.0000
M=400 (no bounding) 51.0% 0.4362 0.5638

Note a) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note b) WS=Yes (except for SMC) and D=33 strata of L=3 randomly chosen starting points.

Table 5.7: Average computation time (sec.) for problem (5.15)

Compression Decomposition Sample size
No Yes No Yes 100 400 mean

MC 128d 128d 130d 127d 128
SMC 151 147 133 162 139 171 150
N-1MC 237 194 139 238 168 249 204
DS 217 186 164 231 157 245 200
Ball 128 126 122 134 127 126 127
Cube 131 128 126 130 127 129 128
mean 173 151 135 179 141 175

Note a) Experiment is based on running all RP methods, given 10 starting points, with WS=Yes (except for SMC)

Note b) Computation is done on a 2GHz Intel Core Duo computer with 2GB memory

Note c) Time measurements are only given if all 20 iterations are completed and void spaces otherwise.

Note d) For these results the WS method did not result in finding a positive Robustness estimate within 20 iterations

5.2.4 Discussion of results

The (confidential) Robust Mixture Design case has practical relevance for Unilever R&D.
The described hypothetical Robust Mixture Design case is considered equally relevant.
More generally, any product design model that returns product characteristics (y), given
explanatory variables (x) based on a linear regression model, results in a polyhedral Happy
set and for such model all the discussed RP methods are in principle applicable.

The comparison of the RP methods, based on the results in Tables 5.2, 5.3, 5.5 and
5.6 leads to the following conclusions:

1. The Warm Start method is efficient in combination with the MC, N-1MC and DS
estimation methods
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2. Compression and Decomposition are efficient

3. The SMC and DS method perform above average, with respect to the other Ro-
bustness estimation methods

Interestingly, increasing the number of samples does not lead to significantly better results
for this case. An explanation is the following. For most of the starting points, the optimum
Robustness estimate that is found after 20 iterations, is close to 1. This is not the situation
in the other case studies, as discussed in subsequent sections, which show that the number
of samples does have a positive effect. It is possible that the sample size increase in the
mixture design case, from 100 to 400, is not sufficiently significant to have a positive effect
on the performance. More research is required on this issue and it is recommended for
future research to study the quality of RP methods when estimating a Robustness close
to 1.

5.3 Robust Mixture Design for the Exponential case

The Exponential distribution is relevant for reliability optimisation as argued in Section
3.7. There exist interesting reliability optimisation studies, such as by Azaron et al.
(2007), for which the RP framework is relevant. However, the case studies investigated in
this thesis, are not based on two-sided Exponentially distributed uncontrollable factors.
The model (5.15) of the Robust Mixture Design case of Section 5.2 is used to illustrate
that the RP methods can in principle solve a relatively large-scale optimisation problem
with Exponentially distributed uncontrollable factors. In this study, the Robust Mixture
Design case is modified in the following way: In Section 5.2 the elements of random
vector v follow a student’s t-distribution whereas here the uncontrollable factors vn, with
n = 1, ..,N, are two-sided Exponentially distributed with PDF

f(vn) =

{
1
2

√
2e−

√
2vn for vn ≥ 0

1
2

√
2e

√
2vn for vn < 0

(5.16)

It can be shown that E(vn) = 0 and V AR(vn) = 1 with n = 1, ..,N. Consequently, the
ES method is feasible for this case. However, the DS and Compression method are not
applicable for this case, as explained in Chapter 3. The performance indicators π (4.42)
and Π (4.43) for this case, are respectively shown in Table 5.8 and Table 5.9, where the
Warm Start method is used.
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Table 5.8: Performance indicator of combined RP methods for problem (5.15) with two-sided Exponentially

distributed v

RP Method q[κ] π[κ] p-value

Ha : µπ[κ] > 100%
20

Estimator Comp. Decom. sample size
N-1MC N.A. Yes 400 32% 0.0000
SMC N.A. No 100 15% 0.0043
ES N.A. Yes 400 12% 0.0094
ES N.A. No 400 9% 0.0957
Cube N.A. No N.A. 7% 0.2062
N-1MC N.A. Yes 100 7% 0.2410
SMC N.A. No 400 6% 0.3314
SMC N.A. Yes 100 6% 0.3565
ES N.A. Yes 100 4% 0.6596
SMC N.A. Yes 400 2% 0.9798

Note a) The results for π > 0 are given in descending order of π.

Note b) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note c) WS=Yes (except for SMC) and D=30 strata of L=4 randomly chosen starting points.

Table 5.9: Performance indicator of individual RP methods for problem (5.22) with two-sided Exponentially

distributed v

RP Method type Π[type] p-value p-value p-value

Ha : µΠ[type] > 100%
6 Ha : µΠ[type] > 50% Ha : µΠ[type] < 50%

MC 0.0% 1.0000
SMC 29.0% 0.0116
N-1MC 39.0% 0.0001
ES 25.0% 0.0465
Diamond 0.0% 0.0000
Cube 7.0% 0.9998
Decomposition (no MC/SMC) 72.0% 0.0000 1.0000
M=400 (no bounding) 68.0% 0.0007 0.9993

Note a) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note b) WS=Yes (except for SMC) and D=33 strata of L=3 randomly chosen starting points.
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Table 5.10: Average computation time (sec.) for problem (5.22)

Compression Decomposition Sample size
No Yesd No Yes 100 400 mean

MC
SMC 147 141 159 138 159 149
N-1MC 235 135 239 178 298 217
DS 202 169 235 159 246 202
Ball
Cube
mean 195 149 211 158 234

Note a) Experiment is based on running all RP methods, given 10 starting points, with WS=Yes (except for SMC)

Note b) Computation is done on a 2GHz Intel Core Duo computer with 2GB memory

Note c) Time measurements are only given if all 20 iterations are completed and void spaces otherwise.

Note d) Compression is not applicable for ES

The results show that:

• The efficiency of the SMC, N-1MC and ES method is above average

• The efficiency of the Decomposition method is above average

• Increasing the number of samples is efficient, with respect to the Robustness opti-
misation result after 20 iterations.

• The computation time is negatively effected by the Decomposition method and by
increasing the number of samples.

5.4 Optimal Robust Raw Material Cost Planning

As a follow up of the optimal robust product design case, research has been done together
with Unilever R&D on making optimal robust decisions that reduce the raw material cost
of products. We call this Raw material Cost Planning (RCP). The original RCP case is
based on confidential data. To sketch the robust RCP problem and the application of the
methods for Robustness Programming, the hypothetical case of Section 5.2 is extended,
as follows.

There are I=11 Raw Materials (RM) used for manufacturing K=2 products. The
cost price of the two products are mainly determined by the price of the raw materials.
Therefore it is important to find product designs for these two products, that lead to low
raw material cost. The price per ton for the raw materials have been recorded for the
past 178 weeks and are illustrated on the left in Figure 5.2. These historic prices show
considerable volatility and it is fair to assume considerable uncertainty about the raw
material prices for future weeks. Besides the cost price aspect, it is important that the
product is also satisfying the specifications. The results of the Section 5.2 are used for
defining feasible designs as follows. The product design for K products is represented by
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Figure 5.2: Illustration of historic raw material prices and future samples

a I×K matrix

X =

 ↑ ↑ ↑
x[1] · · · x[k] · · · x[K]

↓ ↓ ↓


where x[k] ⊆ RI. The set of deterministic feasible designs Xk for product k = 1, ..,K
is defined in (5.12). The Happy set H(X) is defined in (5.14) and defines the quality
Robustness

R[qual](X) = Pr {v ∈ H(X)} (5.17)

In this case the goal is to find a design X ∈
∏K

k=1 Xk with at least 95% robustness,
with respect to the requirements as given in (5.14). The deterministic specifications and
Robustness specifications, can be combined to define the following feasible set.

F =

{
X ∈ RI×K

∣∣∣∣ X ∈
∏K

k=1 Xk

R[qual](X) ≥ 0.95

}
(5.18)

Hence, any X ∈ F satisfies all product design requirements. What remains, is to find out
which X ∈ F leads to guaranteed high savings.
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The vertical line at number 178 in Figure 5.2 marks the current week. For the past
178 weeks until the current week, the K products have been produced according to design

C =

 ↑ ↑ ↑
c[1] · · · c[k] · · · c[K]

↓ ↓ ↓

 ∈ F.

The total raw material cost price of the K products, based on design C, changed consid-
erably over the past 178 weeks. The objective is to find an alternative product design
X ∈ F, with a high Robustness to save on the current raw material cost price.

The goal is split into two parts: the total saving to be reached and the time span
before which to reach the saving. In notation: the total savings goal is γ1 and the time
span to reach the saving is γ2. In this case, the study is limited to only three saving
goals of respectively e100,000, e150,000 and e200,000. The timing aspect in the goal
(i.e. the second element γ2) has the following relevance: If the goal is to save e100,000 in
the coming four weeks, then on average e25.000 should be saved per week; if the goal is
to save e100,000 in the coming ten weeks, then on average e10.000 should be saved per
week and so on.

Figure 5.2 illustrates the price history of 11 RMs for the past 178 weeks and 20 samples
per RM, from week 179 until 218. The samples are generated by a Geometric Brown-
ian Motion (GBM) time series model, which is based on the 178 historic observations.
The choice for the GBM model is based on the following: Joshi (2003) argues that a
GBM model is a standard model in Mathematical Finance for modelling the evolution of
stock prices. Additionally, the GBM model plays a central role in Real Options Theory
(Johnathan, 2002; Copeland and Antikarov, 2001). From a practical point of view it is
important to construct a representative future price sampling model and give statistical
evidence of the validity of such model. However, identifying and estimating the most
appropriate time series model, based on in-depth statistical analysis, is considered to be
outside the scope of this thesis. Therefore, only the generated samples are used and not
any other information such as the underlying covariance matrix and probability distribu-
tion that generates the GBM samples. This way the RP approach is largely independent
of the chosen time series approach.

Let v be a random 11× 40 matrix, representing the random future prices per ton for
each RM for the weeks 179 until 218, for which samples are generated with the GBM
model. Let the weekly production volume of product k be qk (in 1000Kg units) for
k = 1, ..,K. The current week is 178. Let τ = 1 correspond to the first future week,
namely 179; τ = 2 corresponds to future week 180; etcetera. The total saving over future
weeks until moment in time γ2, for a mixture design X ∈ F with respect to the cost of
the mixture design C ∈ F, is

u[γ2](x, v) =
I∑

i=1

K∑
k=1

qk (Ci,k −Xi,k)

γ2∑
τ=1

vτ,i (5.19)

given future RM prices v ∈ V. We are interested in the Robustness of the total savings
(5.19) reaching goal γ1 before moment in time γ2:

R[γ](x) = Pr
{
v ∈ H[γ](x)

}
, where H[γ](x) =

{
v ∈ RI×40|γ1 ≤ u[γ2](x, v)

}
(5.20)
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The corresponding Robustness Programming Set (RPS) is

P =


 γ

X∗

R∗

∣∣∣∣∣∣R∗ = max
X∈F

R[γ](X), R∗ = R[γ] (X∗)

 (5.21)

where we vary γ1 ∈ {100000, 150000, 200000} and γ2 = 1, .., 40.

5.4.1 Results

Methods for Robustness Programming are used to find RPS elements. Figure 5.3 illus-
trates the optimal Robustness for given goals γ. The corresponding optimal designs X∗

have a large dimension, i.e. K×I×40×3, which in this case corresponds to 120 matrices
(one design matrix X for each illustrated point in Figure 5.3) each consisting of 22 ele-
ments. The Matlab FMINCON solver has been used to solve the constrained optimisation
problem

R∗ = max
X∈F

R[γ](X) (5.22)

which defined the RPS elements.

Figure 5.3: Illustration of RPS P (5.21), where ©, ♦ and � mark computed R∗ for
corresponing values of γ. The solid lines are interpolations between future weeks saving
moments γ2, for a given saving goal γ1 ∈ {100000, 150000, 200000}

The RCP case is an extension of the Multiple Product Design (MPD) case of Section
5.2. Consequently, the complexity of the RCP problem (e.g. the number of constraints
and random variables) is larger and results in longer computation times that make the
experiments too intractable. With the following approach the computation time could be
halved: The same methods as in Section 5.2 can be used to verify if X ∈ F and solving
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the MPD problem of Section 5.2 is an approach to find an X ∈ F. Hence, the optimal
designs found for the MPD problem can be used as starting points for the RCP problem.
This approach is characterised by two phases:

• Phase-1: Solve fRPSolve
κ

(
X [l]
)

=
(
R̃
(
X [l,κ]∗)) for problem (5.15).

• Phase-2: Use the optimal design of phase-1 as a starting point, i.e. X [l] := X [l,κ]∗

and Solve fRPSolve
κ

(
X [l]
)

=
(
R̃
(
X [l,κ]∗)) for problem (5.22).

The same RP methods q[κ], κ = 1, ..,K as in Section 5.2 are applicable to estimate the
design robustness (5.17). However, to estimate the cost price saving Robustness R[γ](x),
only the MC and SMC methods are applicable4. The following RP method assignment
rule is used for solving problem (5.22): If the design Robustness R[d](x) is estimated with
method q[κ]=(qE,qC,qD,qW,qS), then the cost price saving Robustness R[γ](x) is estimated
with the MC method if qE=MC and with SMC for all other values of qE.

The performance indicators π (4.42) and Π (4.43) for the RCP case, are respectively
shown in Table 5.11 and Table 5.12, where the Warm Start method is used.

Table 5.11: Performance indicator of combined RP methods for problem (5.22)

RP Method q[κ] π[κ] p-value

Ha : µπ[κ] > 100%
48

Estimator Comp. Decom. sample size
DS No Yes 400 10% 0.0027
DS Yes Yes 100 10% 0.0054
N-1MC Yes Yes 400 9% 0.0294
DS Yes Yes 400 9% 0.0164
DS No No 400 8% 0.0090
Ball Yes Yes N.A. 7% 0.0190
N-1MC No Yes 100 6% 0.0470
N-1MC No Yes 400 6% 0.0388
N-1MC Yes Yes 100 6% 0.0470
Cube Yes Yes N.A. 5% 0.0769
DS No Yes 100 4% 0.1470
SMC Yes Yes 100 4% 0.1646
SMC No No 400 3% 0.2700
Ball Yes No N.A. 3% 0.3310
DS No No 100 3% 0.4692
SMC No Yes 100 3% 0.4692
Cube Yes No N.A. 2% 0.7419
SMC Yes Yes 400 1% 0.9701

Note a) The results for π > 0 are given in descending order of π.

Note b) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note c) WS=Yes (except for SMC) and D=30 strata of L=4 randomly chosen starting points.

Note d) The optimal designs X[l,κ]∗ of the MPD case of Section 5.2 are used as starting points X[l], l = 1, ..,L

4The Compression, N-1MC, DS, ES, Diamond, Ball or Cube method cannot be applied, because the
distribution of the random future raw material prices is not known. The Decomposition method is not
relevant, because u[γ2] has a one dimensional range
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Table 5.12: Performance indicator of individual RP methods for problem (5.22)

RP Method type Π[type] p-value p-value p-value

Ha : µΠ[type] > 100%
6 Ha : µΠ[type] > 50% Ha : µΠ[type] < 50%

MC 0.0% 1.0000
SMC 11.3% 0.9736
N-1MC 27.0% 0.0100
DS 44.3% 0.0000
Ball 10.4% 0.9870
Cube 7.0% 1.0000
Compression (no MC/SMC) 58.3% 0.0228 0.9772
Decomposition (no MC/SMC) 80.0% 0.0000 1.0000
M=400 (no bounding) 57.4% 0.0711 0.9289

Note a) The methods in the rows with the bold p-values are the best performing methods beyond reasonable doubt.

Note b) WS=Yes (except for SMC) and D=30 strata of L=4 randomly chosen starting points.

Note c) The optimal designs X[l,κ]∗ of the MPD case of Section 5.2 are used as starting points X[l], l = 1, ..,L

Table 5.13: Average computation time (sec.) for problem (5.22)

Compression Decomposition Sample size
No Yes No Yes 100 400 mean

MC 163d 163d 152d 164d 160
SMC 164 173 146 176 147 189 166
N-1MC 262 247 172 281 181 310 242
DS 254 238 198 285 187 303 244
Ball 136 131 141 139 134 136
Cube 133 127 137 130 135 132
mean 226 182 156 204 156 206

Note a) Experiment is based on running all RP methods, given 10 starting points, with WS=Yes (except for SMC)

Note b) Computation is done on a 2GHz Intel Core Duo computer with 2GB memory

Note c) Time measurements are only given if all 20 iterations are completed and void spaces otherwise.

Note d) For these results the WS method did not result in finding a positive Robustness estimate within 20 iterations

5.4.2 Discussion of results

Unilever R&D is interested in the idea of decision support information given by the RPS
set in combination with graphical information such as Figure 5.3. Therefore, RP methods
are relevant because these can be used to identify elements in the RPS set and give the
information to make a graph such as in Figure 5.3. The following can be concluded on
the performance of the RP methods.

1. The Compression and Decomposition method are efficient

2. The SMC method is necessary to solve this case, since MC fails and the other
estimation methods cannot be used for estimating the price Robustness R[γ](x)

3. The N-1MC and DS method perform above average, with respect to the other
Robustness estimation methods.

126



5.5 COALITION ROBUSTNESS IN CARTEL FORMATION GAME

4. Decomposition and the sample size both have a negative effect on the computation
time

5. Compression has a positive effect on the computation time

5.5 Coalition Robustness in Cartel Formation Game

Game theory models on coalition formation deal with a group of decision makers deciding
to agree on cooperation, because it increases their benefit compared to a situation of no
cooperation. Stable coalitions have been described in this perspective by among others Yi
(1997). A coalition of players is considered stable, if no player inside the coalition has the
incentive to leave the coalition and no player outside the coalition has the incentive to join
the coalition. More recently, the idea has been applied to get a feeling for incentives to
form international climate agreements on reduction of the emission of greenhouse gasses
(the so-called Kyoto discussions) in some empirical studies. Eyckmans and Finus (2003)
study the world divided into 6 regions and the tendency to cooperate between the regions
using estimated payoff models. Their study is elaborated and extended by Finus et al.
(2003) using new estimates of the payoff function for 12 world regions and algorithms
developed in cooperation with Wageningen University and Hagen University in a research
group called STACO. The final outcome of the analysis is whether a coalition is stable.

The case described in this section is based on an article by Olieman and Hendrix
(2006), where the concept of coalition stability is extended to the concept of Coalition
Robustness, defined as the probability for coalition stability, the so-called Stability Like-
lihood. Coalition Robustness is based on the assumption that a probability space can be
defined, which models the uncertainty about estimated model parameters in the underly-
ing payoff functions. In Olieman and Hendrix (2006) the application of the combination
of MC and DS Robustness estimation methods on the STACO case is studied as will be
elaborated further in this section.

The Coalition Robustness in the STACO case will be discussed in the following or-
der: A formal description of a coalition formation game and the definition of Coalition
Robustness is given in Section 5.5.1. In Section 5.5.2 the STACO model is defined. In
Section 5.5.3 the performance of the Robustness estimation methods is discussed, in the
context of the STACO model.

5.5.1 Cartel Coalition Stability

Coalition Formation Game

The terminology and mathematical formalisation are based on Yi (1997), Finus et al.
(2003) and Eyckmans and Finus (2003). Consider a set of I players I = {1, · · · , I}, where
each player i ∈ I expects a payoff, based on a payoff model πi(q, v), as a consequence of
player strategies q ∈ RI and model parameters v ∈ RN. The payoff function is elaborated
on in (5.31). The payoff functions are given as polynomials where the elements of the
strategy q are the independent variables and the elements of parameter vector v are the
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coefficients of these polynomials. The main idea in the Coalition Robustness case, is to
study the situation that v is a random vector. The coalition formation game is introduced
assuming a constant v, before studying the Coalition Robustness for the situation that v
is a random vector.

Besides the strategy choice q, players are also considered to make a choice about
forming a coalition. Focus is on cartel coalition formation, which means there is only one
coalition at the same time. The idea of multiple coalition formation games is studied in
detail in Sáiz et al. (2006). In principle, the ideas given in this section can be extended
to multiple coalition formation games.

The choice of players to form a cartel coalition C ⊆ I, is modelled by a binary vector
c ∈ {0, 1}I, meaning player i can either join (ci = 1) or not join (ci = 0) the coalition.
Vector c is called the coalition strategy and defines the cartel coalition:

C(c) = {i ∈ I|ci = 1} (5.23)

To analyse and predict rational strategies, the cartel coalition formation is modelled as
a two-stage game. In the first stage, players decide on their coalition strategy (c); in the
second stage players decide what their strategy (q) would be, if coalition strategy c would
be the case.

The concept of Nash Equilibrium is used to define a stable strategy: Strategy c∗ is a
Nash Equilibrium, if no player i has the incentive to deviate from its strategy c∗i , given
that the other players j 6= i do not deviate from their strategies c∗j , see e.g. Rasmusen
(1994). In other words: Strategy c∗ is a Nash Equilibrium if no player has the incentive
for individual strategy deviation.

Stable strategies at the second stage

The payoff functions πi(q, v) with i = 1, ., ,I are assumed to be continuous in both q
and v. At the second stage, coalition members are considered to maximise the aggregate
payoff

∑
i∈C(c)

πi(q, v) of the coalition, while the other players maximise their individual

payoff πi(q, v) for i ∈ I \C(c). The objective of player i at stage 2, in connection to some
coalition strategy c, is to maximise Πi over qi, with:

Πi(q, v, c) =

{ ∑
i∈C(c)

πi(q, v) if i ∈ C(c)

πi(q, v) if i /∈ C(c)

The vector Π is called the aggregate payoff vector. Let Ei ⊂ R, with i = 1, ..,I be a
compact set representing the feasible set of strategy qi of individual player i, such that

over all players q ∈ E =
I∏

i=1

Ei.

To define the set of stable strategies at the second stage, the Nash Equilibrium con-
dition is used. Possibly, the Nash Equilibrium condition might hold for infinitely many
strategies in E (see for example Osborne and Rubinstein, 1994). The set of stable strategies
at the second stage is defined by:

S(c, v) = {q∗ ∈ E|∀i∀{q|qj=q∗j ,qi∈Ei,j 6=i} : Πi(q
∗, v, c) ≥ Πi(q, v, c)} (5.24)
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It can be shown that the set S(c, v) is compact, since E is compact and Πi(q, v, c) with
i = 1, ..,I is continuous in q and v, for a given coalition c.

Coalition stability condition

At the first stage, the strategy space of player i is to either choose to join (ci = 1) or not
to join (ci = 0) the cartel coalition. In analogy to the concepts in the paper of Yi (1997),
a coalition strategy c is defined stable, if this coalition strategy is in Nash Equilibrium.

So-called neighbouring coalition strategies nc(c, i) for i = 1, ...,I are introduced, to
represent the Nash Equilibrium characteristic of individual strategy deviation: The vector
nc(c, i) represents the situation in which only player i chooses the alternative strategy with
respect to the strategy in c, while the other players j 6= i do not change their strategy. For
example, let I = 4. Consider a coalition strategy vector c = [1, 0, 1, 1]

ᵀ
. The neighbouring

coalition strategies are:

nc(c, 1) = [0, 0, 1, 1]
ᵀ

(5.25)

nc(c, 2) = [1, 1, 1, 1]
ᵀ

nc(c, 3) = [1, 0, 0, 1]
ᵀ

nc(c, 4) = [1, 0, 1, 0]
ᵀ

More formally, the neighbouring coalition strategies of c are defined as:

ncj(c, i) =

{
cj if j 6= i
1− cj if j = i

To test whether player i has an incentive to deviate from ci, one should compare the
payoff of player i in coalition strategy c, with the payoff of player i in the neighbouring
coalition strategy nc(c, i).

Recall that at stage 2, the set S(·) may contain more than one element. In that
situation we have no argument to determine which of these strategies will be chosen,
since they are all equilibria. As a consequence, we cannot determine the payoff values in
connection to strategy c. However, since the set is compact, we can conclude about the
upper- and lower bounds, which leads to a sufficient condition for coalition stability.

A coalition strategy c is defined to be stable if: For all players i, the worst stage 2
payoff strategy in connection to coalition strategy c, is better than or equal to the best
stage 2 payoff strategy in connection to nc(c, i). More formally, if the worst case payoff
difference

ui(c, v) = min
q∈S(c,v)

πi(q, v)− max
q∈S(nc(c,i),v)

πi(q, v) (5.26)

is non-negative for all players

∀i∈I : ui(c, v) ≥ 0 (5.27)

then the coalition strategy c is defined stable. The indicator function

I(c, v) =

{
1 if ∀i∈I : ui(c, v) ≥ 0
0 elsewhere

(5.28)
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indicates the stability, given c and v. Notice that u(c, v) is not continuous in c. The
objective in this case study is to estimate the Robustness for a finite number of c values,
rather than optimising the Robustness over c. In this situation, the continuity aspect of
u(c, v) with respect to c, is not relevant and the RP framework can be used for estimating
Robustness.

Coalition Robustness

If there is certainty about the model parameter vector v, then the payoff model π(q, v)
is assumed to be correct. However, this is often not the case in practice, because v is
estimated based on empirical data or based on expert judgement. Focus is on the situation
where there is uncertainty about the value of v and this uncertainty is modelled by a
stochastic vector v, with probability space (V,V , Pr) and a probability density function
f(v). The measurable set of model parameter values, for which coalition strategy c is
stable, is defined as

H(c) = {v ∈ Rn|I(x, v) = 1} (5.29)

This leads to the definition of Coalition Robustness R(c) of coalition strategy c:

R(c) = Pr {v ∈ H(c)} =

∫
H(c)

f(v)dv (5.30)

From the conceptual point of view, the Coalition Robustness of strategy c, is the proba-
bility that strategy c defines a Nash Equilibrium.

In a study of Finus et al. (2003), the authors claim some coalition c to be stable, as-
suming correct estimation of the model parameters v. However, dropping the assumption
of ”knowing” the value of v and replacing it by the assumption that we know the prob-
ability distribution of v, implies the Coalition Robustness to be the probability that the
coalition stability claim is correct. This information is considered relevant in the context
of uncertainty analysis of game theoretical coalition formation models.

The concept of Coalition Robustness and the Robustness estimation algorithms de-
scribed in Chapter 3, have been used to estimate Coalition Robustness in the so-called
STACO case. A detailed description of the STACO model can be found in Finus et al.
(2003). The following section gives an illustration of the STACO model.

5.5.2 STACO model

The STACO project investigates the formation and stability of international climate agree-
ments. The basic structure of the STACO models consists of interacting regions that (i)
choose to join an international climate agreement or not; and (ii) choose their optimal cli-
mate policy given the coalition formed. The regions are characterised by their abatement
costs and damage functions and linked via global climate change and the possibility to
establish an international agreement. The purpose of the STACO model, is to find stable
coalitions of players, in the context of cost-efficient reduction of CO2 emissions. In the
STACO model, the set of world players are simplified into a set of I = 12 regions (see
A.11). The STACO model uses a payoff model π(·) to model the payoff as function of
CO2 emission reductions q.
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Payoff regression model

The payoff model used in Finus et al. (2003), considers the benefits ( i.e. prevented
damages) to be related to the total CO2 emission reduction (

∑
i∈I

qi), whereas the cost is

considered to only depend on the individual CO2 emission reduction (qi):

π(q, v) =



π1(q, v) = β1,1

12∑
j=1

qj −1
2
β1,2q

2
1 − 1

3
β1,3q

3
1

· · ·

πi(q, v) = βi,1

12∑
j=1

qj −1
2
βi,2q

2
i − 1

3
βi,3q

3
i

· · ·

π12(q, v) = β12,1

12∑
j=1

qj︸ ︷︷ ︸
benefit

−1

2
β12,2q

2
12 −

1

3
β12,3q

3
12︸ ︷︷ ︸

cost

, (5.31)

The first argument in π(·) is the vector representing the 12 regions CO2 reduction strate-
gies: q = [q1, · · · , qi, · · · , q12]

ᵀ
. The second argument are the model parameters, which are

stacked in a vector to shorten notation: v = (β1,1, β1,2, β1,3, · · · , β12,1, β12,2, β12,3)
ᵀ
. The

model parameter vector v has N = 36 elements.

RP framework and the coalition stability check

Results of this case study can be found in Olieman and Hendrix (2006) and Dellink et al.
(2007). The RP methods under investigation are DS and MC methods. This section
summarises the main results of this case study.

Appendix A.12 shows that (5.24), based on the STACO payoff model (5.31), for any
cartel coalition strategy c ∈ {0, 1}I and continuous random model parameter vector v,
almost surely (a.s.) defines a unique efficient CO2 reduction strategy q∗. Consequently,
the Nash equilibrium CO2 reduction strategies in the STACO case are a.s. uniquely
defined by the coalition strategies via {q∗} = S(c, v) and {q∗∗} = S(nc(c, i), v) and the
payoff difference function (5.26) can be simplified to:

ui(c, v) = πi(q
∗, v)− πi(q

∗∗, v) (5.32)

Moreover, Appendix A.12 shows that (5.32) is continuous in each point v, given strategy
c, where for all i = 1, .., 12

β2
i,2 + 4βi,3γi(c, v) 6= 0 (5.33)

β2
i,2 + 4βi,3γi(nc(c, i), v) 6= 0 (5.34)

βi,2 6= 0 (5.35)

βi,3 6= 0 (5.36)
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with

γi(c, v) =

ci

∑
j∈C(c)\{i}

βj,1

+ βi,1

v = (β1,1, β1,2, β1,3, · · · , β12,1, β12,2, β12,3)
ᵀ

From a theoretical point of view, the discontinuity of the payoff difference function, does
not fit into the RP framework. However, since the discontinuity conditions are known,
the problem can be isolated and dealt with separately. A practical approach is to redefine
the Happy set as

H(c) =

v ∈ Rn

∣∣∣∣∣∣∣∣∣∣
ui(c, v) ≥ 0
|β2

i,2 + 4βi,3γi(c, v)| ≥ δ
|β2

i,2 + 4βi,3γi(nc(c, i), v)| ≥ δ
|βi,2| ≥ δ
|βi,3| ≥ δ

for i = 1, .., 12


with

γi(c, v) =

ci

∑
j∈C(c)\{i}

βj,1

+ βi,1

and set the value of δ small enough5 such that

Pr

v ∈ Rn

∣∣∣∣∣∣∣∣
|β2

i,2 + 4βi,3γi(c, v)| ≤ δ
|β2

i,2 + 4βi,3γi(nc(c, i), v)| ≤ δ
|βi,2| ≤ δ
|βi,3| ≤ δ

for i = 1, .., 12

 ≈ 0

This Happy set definition fits the RP framework with respect to v.

Stochastic model of model parameter values

The probability space defined in (Olieman and Hendrix, 2006) is used for the numerical
illustration of Coalition Robustness estimation, of which the results are given in the next
section. All uncertain model parameters are considered independent normally distributed
with mean values such as defined in Table A.2 and a standard deviation that is 5% of
these mean values.

5.5.3 Results

In the paper of Finus e.a. Finus et al. (2003), a stable coalition between the European
Community (EEC) and Japan was found in three different scenarios, which are respec-
tively called the ”120%”, ”200%” and ”300%” scenario. These three scenarios refer to
three different assumptions related to the mean value in the benefit term of the payoff

5A setting for δ is the numerical precision of the computer.
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model. (see table A.2). The Coalition Robustness estimates in this illustration do not
reflect the actual uncertainty analysis of the studies in (Finus et al., 2003) and (Dellink
et al., 2007). The target standard error of the EEC-Japan Coalition Robustness estimate

was set to 0.02. The estimator function
mc

R as defined in (3.1) is used to compute the MC

estimate, given M samples v[M] of v. The estimator
ds

R(c) = 1
M

M∑
m=1

ds
r(s[m], c) as defined in

(3.67), is used to compute the DS estimate, given M samples s[M] of s, which are uniformly
distributed random points on the unit sphere.

The Happy set H(c) in the STACO case is not polyhedral. The boundary of the Happy
set is defined by non-linear equations (which can be concluded from the elaboration in
Appendix A.12). Consequently, the ray intersection distances as given in Definition 3.20,
cannot be determined as efficiently as in the case of polyhedral Happy sets. Instead, these
ray intersection distances are determined numerically with the Matlab Secant method

(called FZERO and explained by Van Loan (2000)). Furthermore, computing
ds
r(s[m], c)

is based on evaluating the Chi square CDF with the Matlab CHI2CDF function, which
is computational intensive.

The results were computed with Matlabr version 5. This version includes the function
called FLOPS, that returns the number of floating point operations executed, to compute
the results. Table 5.14 gives the performance results of the MC method versus the DS
method.

Table 5.14: Coalition Robustness estimation performance results

R̂(c) =
mc

R(c) R̂(c) =
ds

R(c)
scenario 120% 200% 300% 120% 200% 300%
R̂(c) 0.49 0.82 0.91 0.51 0.83 0.92
samples 617 356 191 615 308 147
FLOPS 5,452,424 3,099,509 1,647,179 26,570,249 28,162,074 12,509,752
FLOPS/sample 8,836 8,706 8,623 43,203 91,435 85,100

5.5.4 Discussion of Results

Both Robustness estimation approaches give comparable results regarding the estimated
Coalition Robustness, i.e. the differences between the estimated Coalition Robustness is
smaller than the target standard error (0.02). However, the observed number of samples
and FLOPS that are necessary to compute these results, lead to the following conclusions.

• The DS method uses less samples than the MC method, in particular in the situation
of estimating higher Robustness values (e.g. the 300% scenario). These observations
are supported by Theorem 3.6 and lead to the conclusion that the DS method is
more efficient than the MC method in the STACO case and given coalition c, in
terms of the required number of samples.
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• In the 120% scenario the difference between the MC and DS method with respect
to the required samples, is the smallest. An explanation is given by Olieman and

Hendrix (2006). It is shown that for 312 samples the estimate function
ds
r(s[m], c) ≥

0.9 and for 303 samples
ds
r(s[m], c) ≤ 0.1 of in total 615 samples. This means that the

Robustness estimate per sample is either close to 1 or close to 0. This characteristic
corresponds to the idea of a Happy set that is DS-Radial-Shaped as in Theorem 3.7
and explains why the DS and MC method use a similar number of samples.

• The DS method requires more FLOPS to come to the same result as the MC method,
for each scenario. Furthermore, the observed average FLOPS per sample are differ-
ent for the scenarios for the DS method. From a computational point of view, this
leads to the conclusion that the MC method is more efficient than the DS method
and has more predictable behaviour. It is likely that the inefficiency of the DS
method is due to the computational burden of the FZERO approximation of the
ray intersection distances and the CHI2CDF function evaluation to compute the
Robustness estimate, given sample s[m].

5.6 Concluding remarks

In this chapter the case studies of this research have been discussed. The first case is
described in Section 5.2 and deals with optimal robust mixture design of a food product.
The second case is given in 5.4 and deals with optimal robust raw material cost planning
in a food production context. The last case is outlined in Section 5.5 and deals with
coalition robustness in a two-stage cartel game, in the context of CO2 reduction strategies
in climate agreements. The cases were used to assess the performance of the RP methods
of Chapters 3 and 4. In the next chapter, the conclusions and recommendations of this
research are formulated.

134



Chapter 6
Conclusions and Recommendations

6.1 Introduction

The main objective of this study is to define a systematic framework for Robustness
Programming and to develop methods for solving Robustness Programming problems.
The RP framework should enable the identification of applicable RP methods, when
given an RP problem with specific properties. Existing Robustness estimation methods
are improved and generalised and new estimation methods are designed. The effectiveness
and efficiency of the RP methods are investigated and methods to improve these are
defined. Finally, the RP framework and RP methods are used to solve practical cases.
Conclusions about the RP framework, the mathematical properties of RP methods and
numerical results are respectively given in 6.2, 6.3 and 6.4. Finally, recommendations for
future research are given in 6.5.

6.2 Robustness Programming framework

Robustness of an object is defined as the probability that an object will have properties
as required. Robustness programming is the search for designs that have a Robustness as
big as possible. Robustness Programming is based on Stochastic Programming, Probabil-
ity theory and Mathematical Programming. The methods for Robustness Programming
presented in this thesis, extend the set of methods for solving practical decision prob-
lems under uncertainty. A Stochastic Programming problem, that is defined by chance
constraint functions and a probabilistic objective function, can be translated to an RP
problem by defining the corresponding uncertain object properties function u(x, v). Three
cases were studied to show the practical relevance of Robustness Programming. A mix-
ture design case and a material cost planning case are studied for Unilever R&D and
a game theoretical coalition formation case is studied as part of the research program
called STACO the Wageningen University. The following can be concluded about the RP
Framework, with respect to the first and second research question, as given in Section 1.6:

1. The RP framework, as defined in Chapter 2, gives a systematic notation to describe
RP methods and RP problems. The controllable factors x, the uncontrollable ran-
dom factors v, the Happy set H(x) and the Robustness definition (2.4) are the
generic components for defining an RP problem. The continuity of u(x, v) with
respect to x, is not relevant when computing the Robustness for a given x, but is
relevant for optimisation of Robustness using standard NLP methods.

2. The Robustness Programming Framework makes it possible to identify appropriate
RP methods, based on the mathematical properties of the RP problem as sum-
marised in Table 6.1
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6.3 Mathematical Properties of RP methods

The third research question deals with identifying mathematical properties of RP meth-
ods, that give information about the quality of RP methods, relevant for Robustness
estimation and Robustness optimisation. In this respect, the effectiveness, efficiency and
applicability of RP methods are relevant for comparing the quality of RP methods. The
following RP methods were developed and investigated:

• Robustness estimation methods based on sampling: MC, SMC, N-1MC, DS and ES
method

• Robustness estimation methods based on bounding: Diamond, Ball and Cube method

• Computation methods: Compression, Decomposition and Warm Start method

In this list, the MC method is considered to be one of the most common statistical methods
to estimate a probability. The MC methods is used as a reference method for comparing
the alternative RP methods. The DS method is a generalisation of the methods developed
by István Deák (2000, 2003). All other methods were developed during this research.

Effectiveness

In general, Robustness R(x) cannot be computed directly and is estimated instead. The
objective is to estimate R(x) effectively. An RP method is defined effective if the RP
estimation method is unbiased, since that would imply R(x) can be estimated arbitrarily
accurately, given sufficient samples.

The MC, N-1MC, DS and ES method are effective estimation methods because they
are all based on unbiased Robustness estimators. The SMC method deviates at most 1

2M

from the MC estimate, where M is the number of samples. This means that the SMC
estimate can be made arbitrarily close to the unbiased MC estimate, by choosing M large
enough.

The effectiveness of the Diamond, Ball and Cube bounding methods depends on the
underlying RP problem. To identify the most effective bound involves solving Mathemat-
ical Programming (MP) problem (3.98) or (3.100). Only if the global solution is found
for the corresponding MP problems, the bound is correct1 and optimally effective.

The Compression and Decomposition method do not change the unbiasedness of es-
timation methods. However, Example 4.2 illustrates how compression leads to more
effective bounds and Corollary 4.5 and Corollary 4.6 identify the conditions, such that
decomposition leads to strictly more effective bounds.

Efficiency

The efficiency of Robustness estimation methods, that are based on sampling, is measured
as the standard error of the estimator given M=1 sample. It has been found out that the

1If the MP solution is a local solution instead of the global solution, then in the case of lower bounding
it is possible that the bounding set B[p] is not a subset of the Happy set and in the case of upper bounding
it is possible that the bounding set is not a superset of the Happy set. This is illustrated in Figure 3.22
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N-1MC, DS and ES methods are strictly more efficient than the MC method, if and only if
the Happy set does not have an All-Or-Nothing shape (Definition 3.8), DS-Radial-Shape
(Definition 3.14) or ES-radial-shape (Definition 3.23), respectively. Performance indica-
tors are defined, in (4.36) and (4.37), to measure the Robustness optimisation efficiency
of the RP methods. Statistical inference on these performance indicators enables the
identification of RP methods that perform significantly above average. The conclusions
about the empirical results are discussed in Section 6.4.

Applicability

The mathematical properties of the RP methods are relevant to identify the appropriate
Robustness estimation and computation methods, when given an RP problem. Table
6.1 gives an overview of RP problem characteristics, regarding the information about
uncontrollable factors v and the structure of the Happy set H(x).

Table 6.1: Applicability of RP methods given RP problem

Methods sufficient conditions and requirements on v sufficient conditions on H(x)
MC Samples of v. Any Happy set based on the RP

framework
SMC Samples of v. Any Happy set based on the RP

framework
N-1MC CDF of one element of v and samples for the

other elements.
A Dim-1-Convex Happy set

ES All elements of v are independent (two-sided)
Exponentially distributed

ES-Ray-Convex Happy set (Ray-
Convex Happy Happy set)

DS The random vector v has a spherical
symmetric distribution

Ray-Convex Happy set

Diamond R(x) estimation: All elements of v are
independent (two-sided) Exponentially dis-
tributed, or the first two moments of each el-
ement of v are given
R(x) optimisation: no conditions

Polyhedral Happy set

Ball R(x) estimation: Spherical symmetric distri-
bution with either Normally distributed el-
ements or t-distributed elements. Alterna-
tively, the first two moments of each element
of v are sufficient
R(x) optimisation: no conditions

Polyhedral Happy set

Cube R(x) estimation: All elements of v are inde-
pendent and either a CDF for each element
of v is given or the first two moments of each
element of v are given
R(x) optimisation: no conditions

Polyhedral Happy set

Compression ∃s∈S : us(x,v) = ws(x,a) where the PDF and
CDF of random vector a is known and vector a
has A < N independent elements. (Example:
Normal i.i.d. vn, n = 1, ..,N )

∃s∈S : us(x, v) = ws(x, a) where
vector a has A < N elements.
(Example: Polyhedral Happy
set)

Decomposition elements of v are independent Any Happy set for which the par-
titions Gg(x) ⊆ S for g = 1, ..,G
exists, according Definition 4.1

WS E(v) is given Polyhedral Happy set
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6.4 Case study results

The fourth research question is how to compare the performance of RP methods. Ro-
bustness Programming operates on two levels, i.e. Robustness estimation and Robustness
optimisation which is the optimisation of a Robustness estimate function. The perfor-
mance comparison is based on the following:

• The performance of Robustness estimation methods is assessed by comparing the
number of samples that is required to reach a predefined standard error level. The
best performing Robustness estimation method is the method that requires the least
number of samples

• The performance of Robustness optimisation methods is assessed with performance
indicators π and Π and are respectively defined in (4.42) and (4.43). These perfor-
mance indicators are based on identifying the RP methods that result in the highest
Robustness value found after 20 optimisation iterations. These performance indica-
tors are based on random optimisation starting points. Statistical inference is done
to make robust conclusions about the performance indicators π and Π

It is concluded that the computation time (in sec.) and number of floating-point oper-
ations (in FLOPS) are not suitable for an objective performance comparison, because
the computation time and arithmetic efficiency depends on software quality, computer
memory and processor speed. From a practical point of view, however, the computation
time or FLOPS are relevant and are given with the remark that they illustrate the perfor-
mance of the current software implementation and computer configuration, rather than
the performance of the RP methods.

Two case studies were carried out for Unilever R&D, one dealing with Robust mixture
designs and one dealing with Robust material cost planning. Additionally, a case study is
derived from the Robust mixture design case, to assess the performance of the ES method.
One case study was done in an Environmental Economics research program called STACO
at Wageningen University and deals with the Robustness of coalitions of world regions for
jointly reducing CO2 emissions. From these case studies the following can be concluded:

RP and the STACO case

The STACO case illustrates that the DS method is more efficient per sample than the MC
method, for most of the assessed scenarios. However, in the so-called 120% scenario, the
Happy set is close to being DS-radially shaped and consequently the efficiency difference
between the DS and MC method disappears. The Happy set is not polyhedral and ray
intersection distances are determined numerically, which requires a substantial number of
FLOPS. From a computational point of view, the measurements support the conclusion
that the MC implementation is more efficient than the DS implementation.
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RP and the Unilever case

The Happy sets in the Unilever cases are polyhedral. The empirical results for the Unilever
cases support the following conclusions

• The Warm Start method is efficient in combination with the MC, N-1MC, DS and
ES method

• Decomposition and Compression are efficient for all cases. However, Decomposition
and Compression require additional computations and increase the computation
time

• The efficiency of the SMC, N-1MC, DS and ES methods, is above average for at
least one of the investigated Unilever cases

• For all Unilever cases, the MC, Ball, Diamond and Cube method are not efficient

6.5 An Agenda for Future Research

In the following, some areas are given with respect to opportunities for future research.

Robustness Programming Framework

• The RP framework is based on u(x, v) being continuous in v. Additionally, u(x, v)
should also be continuous in x, when optimising Robustness with standard NLP
methods. Generalising the framework by dropping these continuity conditions has
the following relevance.

For the situation that the controllable factors x can only have discrete values, it is
relevant to investigate how Robustness Programming problems can be solved with
Combinatorial Optimisation methods.

The continuity of u(x, v) with respect to v is only relevant for the DS, ES and
N-1MC method (if v has a continuous distribution) and is less relevant if v follows
a discrete probability distribution.

Robustness Programming Estimation methods

• The ideas in this study are mainly based on studying the situation that v has a con-
tinuous distribution and there is less attention for discrete probability distributions.
In principle the N-1 MC method can handle discrete probability distributions. In
that situation the N-1MC estimate function is a discontinuous step function of x,
with problems similar to the problems of the MC method. At this stage the SMC
method is most likely the best RP method in the situation that v has a discrete
probability distribution. Also the SMC method can have optimisation difficulties,
because there is the possibility that at least two samples of v are identical and
consequently there exist non standard MC discontinuity points, making the SMC
estimate function discontinuous. It is interesting to search for RP alternatives for
this situation.

139



CONCLUSIONS AND RECOMMENDATIONS

• The smoothing approach in the development of the SMC method gave good results.
Possibly this idea is more generally applicable in the context of optimising step
functions and other global optimisation problems.

• It is interesting to investigate the possibility to further generalise the DS method,
that is based on spherical symmetric distributions, to distributions where the iso-
density contours are described by p-norms: let f and g be a PDF such that f(v) =
g(|v|p). It is interesting to investigate whether an unbiased R(x) estimate can be
determined as follows:

1. generate samples v[m], 1, ..,M

2. project the samples to s[m] = v[m]

‖v[m]‖
p

3. rays are defined by half lines through the origin and samples s[m], 1, ..,M

4. use the length of the rays in the Happy set, in combination with PDF g to
define an unbiased Robustness estimate

• For the DS and ES method, it is essential to have a method to determine the ray
intersection distances between E(v) and the boundary of H(x), given a uniform sam-
ple on the unit sphere or simplex respectively. If the Happy set is non-polyhedral, it
can be a considerable numerical effort to compute such a distance. This negatively
affects the computation speed. Additionally, the DS method for example, involves
computing a Chi-square CDF value which (depending on the quality of software)
can have a significant negative effect on the computation speed. From a sample-size
perspective, the MC method is in general less efficient than the DS or ES method.
However, from a computation-speed perspective, it is likely that the MC implemen-
tation can compute more samples per second than the DS or ES implementation.
Consequently, the MC estimate standard error can be smaller than the DS or ES
estimate standard error after a fixed number of seconds. For the same reason the
SMC method can be more efficient than the DS or ES method. Therefore it is inter-
esting to develop efficient algorithms for determining the ray intersection distances
and efficient algorithms for computing the final DS and ES estimate value.

• A special situation for RP is estimating and optimising a Robustness that is close
to 1. In such case the MC method is possibly not efficient, because a large number
of samples are required to get an accurate estimate. On the other hand, the DS and
ES method are possibly the most efficient methods for estimating such probabilities,
because an unbiased Robustness estimate can be computed for any ray intersection
distance (no matter how many multiples of σ are between E(v) and the Happy set
boundary). It is also interesting to investigate whether the Ball, Diamond and Cube
bounding methods have more success, in the context of RP optimisation problems
with Robustness values close to 1, than they have shown in the context of the
Unilever cases.

• The ideas of Importance Sampling (Law and Kelton, 2000) and Szántai’s inclusion-
exclusion approach (Gassmann et al., 2002) are interesting approaches and should be
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exploited further in the context of Robustness Programming. Possibly, combining
the bounding methods with Importance Sampling can yield interesting results (also
for estimating probabilities close to 1)

Robustness Computation methods

• The effectiveness of Decomposition is shown for bounding methods and the condi-
tions that lead to strictly sharper bounds are defined. For the estimation methods,
the efficiency improvement is only shown empirically for the Unilever cases. It is
interesting to find a theoretical proof, showing the efficiency improvement due to
Decomposition for estimation methods.

• The Warm Start method is efficient for all estimation methods, except for the SMC
method. Furthermore, the applicability of the Warm Start methods is limited to
the same class of problems as the bounding methods, since the Warm Start method
is based on bounding methods. An interesting alternative is to base the Warm
Start method on the SMC method as follows: Let R̂(x) be any of the Robustness
estimates for R(x) based on sampling, i.e. an estimate based on the MC, SMC,
N-1MC, DS or ES method and redefine the WS estimate function as

ws

R(x) =

{
R̂(x) if R̂(x) > 0
smc

R (x) if R̂(x) = 0

Case Studies

• Two Unilever cases and the STACO case are investigated during this research. In
order to verify the applicability of RP methods on a wider range of cases and to
make future research comparable, it is advisable to set up a repository and compile
a larger set of reference cases.

• All Robustness optimisations in the case studies are done with the FMINCON solver
of Matlab. It is interesting to study Robustness optimisation using other software
and optimisation methods and use the comparison methodology of Section 4.6 to
determine the best performing optimisation approach.

• An interesting RP case is based on the determination of Economic Capital (EC)
in Credit Risk Modelling (Bluhm et al., 2003). It is based on computing ECα =
V aRL(α) − E(L), where random variable L is the random loss of a credit port-
folio (called loss distribution), E(L) is the expected loss of a credit portfolio and
V aRL(α) is the Value at Risk with probability 1−α. A bank can have a customers
portfolio of N categories, where xn for n = 1, ..,N is the number of customers in each
category. It is possible that a fraction of the portfolio is not able to repay the bank
in time and in that situation a loss occurs. A priori, such loss is typically modelled
as L(x). For high ranking banks, the α-percentile is close to 1. Consequently, MC
type of approaches to estimate V aRL(x)(α), require a large number of samples in
order to be sufficiently accurate. It is interesting to investigate DS type of methods
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to estimate loss distribution percentiles more efficiently. Furthermore, the good op-
timisation characteristics of the DS method can make it possible to develop methods
for portfolio optimisation.
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Appendix

A.1 Nomenclature

x design vector consisting of elements xi, with i = 1, ..,I
X design matrix reflecting K alternative designs, consisting of ele-

ments Xi,k, with k = 1, ..,K and i = 1, ..,I
v stochastic vector consisting of independent elements vn, with

n = 1, .., N and E(vn) = 0, V AR(vn) = 1 and COV [vn, vp] = 0,
for n 6= p, unless specified otherwise

v realisation of the stochastic vector v
V sample space of v. Hence v ∈ V
X set of feasible designs, with X ⊆ RI

χ2(N) Chi-square distributed variate with N degrees of freedom.

(relation: χ2(N) ∼
N∑

i=1

(χi)
2, with χi ∼ N(0, 1)

F (δ1, δ2) F-distributed variate with δ1 and δ2 degrees of freedom.

(relation: F (δ1, δ2) ∼ χ2(δ1)/δ1
χ2(δ2)/δ2

)

H(x) the Happy set as function of x where H(x) ⊆ RN.
∂H(x) boundary of the Happy set.
i.i.d. independent identically distributed
w.r.t with respect to
a.s. almost surely
a.e. almost everywhere

A.2 Probability Space

Based on Probability Theory definitions as presented in Ghahramani (2000); Grimmett
and Stirzaker (2001); Jacod and Protter (2004).

1. The abstract probability space is defined as (Ω,F , Pr), with sample space Ω; the
smallest σ-field F of all subsets of Ω; a probability measure Pr : F → [0, 1]. All
subsets A ∈ F of Ω are called events and a particular ω ∈ Ω is called an realisation
of the random experiment ω. The probability of event A ∈ F is denoted with Pr(A).

2. By definition Pr (∅) = 0, Pr (Ω) = 1 and 0 ≤ Pr

(⋃
i

Ai

)
=
∑
i

Pr (Ai) ≤ 1 for any

disjoint sets A1, A2, ...Ai in F and Pr (B1) ≤ Pr (B2) ≤ Pr (B3) ≤ ... ≤ Pr (Bi) for
an increasing sequence of sets B1 ⊆ B2 ⊆ B3 ⊆ ... ⊆ Bi in F .

3. The N-dimensional random vector v(ω) is a Borel measurable mapping2 v : Ω −→
RN. The probability measure induced by the random vector v(ω) is defined as

2Mapping v is Borel measurable if {ω ∈ Ω|v(ω) ∈ S} ∈ B(Ω) for all S ∈ B(RN) where B(·) defines the
class of all Borel sets.
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Pr ({ω ∈ Ω|v(ω) ∈ S}), with S ∈ B(RN)3. The random vector v(ω) has possible
outcomes v(ω) ∈ v(Ω) = V ⊆ RN, with ω ∈ Ω.

4. The notation v is a shorthand notation for v(ω). The random vector v is defined on
probability space (V,V , Prv) with V = B(V) and Prv(S) = Pr ({ω ∈ Ω|v(ω) ∈ S}).
The notation Pr {v ∈ S} = Prv(S) is also used.

A.3 Accurate Robustness estimate

Accurate estimate R̃(x) =
mc

R(x) is defined in two versions. In version 1, an upper bound
on the standard error determines the number of samples to use. In version 2, the number
of samples is fixed resulting in a standard error.

1. In the first version, ŝe
(
R̃ (x)

)
< σ , where σ is the accuracy level. At most

M= 1, 000, 001 samples are needed to reach an high accuracy like σ = 0.0005. For
the estimated standard error holds that

ŝe
(

mc

R(x)
)

=

√
1

M-1

(
mc

R(x)−
mc

R(x)
2
)
≤

√
1

M-1

(
max
0≤p≤1

(p− p2)

)
=

√
0.25

M-1
.

M= 1, 000, 001 gives that
√

0.25
M-1

= 0.0005. On the other hand, the situation can

occur that R̃(x) = 0 or R̃(x) = 1 based on M samples. In such case ŝe
(

mc

R(x)
)

= 0.

Such standard error estimate may lead to misinterpretation, especially if M is small.
For example let R(x) = 0.8 and M=4, then it is possible that all 4 samples are in the

happy set. Consequently, R̃(x) = 1 and ŝe
(

mc

R(x)
)

= 0, based on these 4 samples.

A practical solution is the following. One can claim that, a priori verifying the

next sample (M+1), we know that 0 ≤ ŝe
(

mc

R(x)
)
≤
√

1
M

(
1

M+1
− 1

(M+1)2

)
= 1

M+1
.

Interestingly, the interval becomes smaller as M increases.

In general we define R̃(x) =
mc

R(x) with M= min
{

M ∈ N
∣∣∣ŝe(mc

R(x)
)
≤ σ, 1

M+1
≤ σ

}
.

Hence, the computation time of R̃(x) depends on the value of R̃(x), because the
estimate determines how many samples are needed to reach the accuracy.

2. In the second version, the number of samples M is fixed. Consequently,

ŝe
(

mc

R(x)
)

=

√
1

M-1

(
mc

R(x)−
mc

R(x)
2
)
≤
√

0.25

M-1

3B(RN) is the class of all Borel subsets of RN and is defined as the σ-field generated by all open and
closed subsets of RN.
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A.4 Advanced SMC estimation method

The SMC method as discussed in 3.4 can be modified, maintaining its continuity properties
for the situation that all samples are either inside or outside the Happy set. In Section
3.4 the smoothing term s(x) has been defined. The extension is based on an alternative
smoothing term t(x):

smc

R (x) =
mc

R(x) + t(x) (A.1)

where t : X −→ [− 1
2M

, 1
2M

) is a modification of the smoothing function s defined as

t(x) =


− 1

2M(d[in](x)+1)
if

mc

R(x) = 1
1

2M(d[out](x)+1)
if

mc

R(x) = 0

s(x) otherwise

(A.2)

A.5 Robustness of Diamond set given two-sided Ex-

ponential distribution

Theorem A.1 Let vn be independently two-sided exponentially distributed with PDF:

f(vn) =

{
1
2
e−vn for vn ≥ 0

1
2
evn for vn < 0

(A.3)

The expected value is E(vn) = 0 and variance is V AR(vn) = 2 for n = 1, ..,N. Then

Pr
{
v ∈ B[1](r)

}
= 1− e−r

N−1∑
i=0

ri

i!

with

B[1](r) =

{
v ∈ RN

∣∣∣∣∣
N∑

n=1

|vn| ≤ r

}

Proof. Both the Diamond set B[1](r) and the multivariate two-sided exponential dis-
tribution are point symmetric in the origin, such that

Pr
{

v ∈ B[1](r)
⋂

RN
+

}
=

1

2N
Pr
{
v ∈ B[1](r)

}
where the part of the diamond in the positive orthant is

B[1](r)
⋂

RN
+ =

{
v ∈ RN

+

∣∣∣∣∣
N∑

n=1

vn ≤ r

}
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The approach is first to find an analytic expression for the probability mass of the Diamond
in the positive orthant and then correct with the factor 2N to find the probability mass
of the Diamond. In Section 3.7 the Simplex Coordinates transform

T : Q −→ RN
+ with (A.4)

T (ρ, s1, s2, ..., sN−1) =

(
ρs1, ρs2, ..., ρsN−1, ρ(1−

N−1∑
i=1

si)

)
(A.5)

has been introduced, where the determinant of the Jacobian is (−1)NrN−1 and Q =(
R+, SN−1

)
and SN−1 =

{
s ∈ RN−1

+

∣∣∣∣N−1∑
i=1

si ≤ 1

}
. Application of the Simplex Coordinates

transform to

Pr
{

v ∈ B[1](r)
⋂

RN
+

}
=

∫
B[1](r)

T
RN

+

N∏
n=1

1

2
e−vndv =

1

2N

∫
B[1](r)

T
RN

+

e
−

NP
n=1

vn

dv

gives

2N Pr
{

v ∈ B[1](r)
⋂

RN
+

}
=

∫
SN−1

∞∫
0

I [SC](ρ, s)e−ρρN−1dρds (A.6)

where factor e−ρ is obtained via

2Nf (T (ρ, s)) = exp

(
−

N−1∑
i=1

ρsi

)
exp

(
−ρ(1−

N−1∑
i=1

si)

)
= exp(−ρ) (A.7)

for ρ ∈ R+ and s ∈ SN−1 and where I [SC] : Q −→ {0, 1} is the indicator function of
B[1](r)

⋂
RN

+, which expressed in Simplex Coordinates (SC) reads

I(ρ, s) =

{
1 if T (ρ, s) ∈ B[1](r)

⋂
RN

+

0 elsewhere .
(A.8)

By definition T (ρ, s) ∈ B[1](r)
⋂

RN
+ if and only if ρ ≤ r and s ∈ SN−1. Consequently

2N Pr
{

v ∈ B[1](r)
⋂

RN
+

}
=

∫
SN−1

r∫
0

e−ρρN−1dρds (A.9)

=

∫
SN−1

ds

r∫
0

e−ρρN−1dρ. (A.10)

From standard calculus follows that the volume in the positive orthant, bounded by a
unit simplex in dimension N−1 is ∫

SN−1

ds =
1

(N− 1)!
(A.11)
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such that the probability mass of the diamond can be expressed analytically:

Pr
{
v ∈ B[1](r)

}
=

1

(N− 1)!

r∫
0

e−ρρN−1dρ = 1− e−r

N−1∑
i=0

ri

i!
(A.12)

A.6 Weakness of origin condition

Lemma A.1 Let set S ⊂ RN be convex and v an N-dimensional random vector, with
centrally i.i.d elements and a probability density function with the property that f(v) =
f(−v) (point symmetric in the origin).

If E(v) /∈ S then Pr {v ∈ S} <
1

2
(A.13)

Proof. From E(vi) = 0 follows E(c′v) = 0, for all c ∈ RN. The symmetry property
f(v) = f(−v) implies that for a c ∈ RN:

Pr {c′v ≥ 0} = Pr {−c′v ≥ 0} = Pr {c′v ≤ 0}
=⇒Pr {c′v ≥ 0} = 1− Pr {c′v ≥ 0}

=⇒Pr {c′v ≥ 0} =
1

2

In the remainder of this proof, we use the idea of a separating hyper-plane. Let v∗ be a
point closest to the origin E(v):

v∗ = arg inf
v∈S

v′v (A.14)

with d =
√

v∗′v∗. From the convexity of S follows that a tangent plane v∗′v = r2 does not
intersect S, if r2 < d2. In particular this holds for the tangent plane through the point
E(v), i.e. v∗′v = 0. Consequently the set S is a strict subset of the half space H:

S ⊂ H =
{
v
∣∣v∗′v ≥ 0

}
which implies implies that:

Pr {v ∈ S} < Pr {v ∈ H} = Pr
{
v∗′v ≥ 0

}
=

1

2

A.7 Markov Inequality applied to ball probability

Theorem A.2 Let vn be independent random variables with E(vn) = 0, V AR(vn) = 1
and n = 1, ..,N. Then

Pr
{
v ∈ B[2](ρ)

}
= Pr

{
N∑

n=1

v2
n ≤ ρ2

}
≥ 1− N

ρ2
(A.15)
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Proof. From the first two moments of the elements of the random vector follows that

E(v2
n) = (E(vn))2 + V AR(vn) = 1 with n = 1, ..,N and consequently E(

N∑
n=1

v2
n) = N.

Since v2
n is non-negative by definition, we can apply Markov’s Inequality (which follows

from the results in Ghahramani, 2000):

Pr

{
N∑

n=1

v2
n ≤ ρ2

}
≥ 1−

E

(
N∑

n=1

v2
n

)
ρ2

= 1− N

ρ2
(A.16)

A.8 Effect of dimension N on DS efficiency

Chapter 3 has shown that the accuracy of the DS Robustness estimator tends to the
efficiency of the MC estimator if the DS estimator has a high probability on the two
outcomes in {0, 1}. The following example shows a case where the DS method tends to
{0, 1} outcomes, with increasing dimension. Let

H(x) =

{
v ∈ R N| − 1.5 ≤

N∑
n=1

vnxn ≤ 1.5

}
(A.17)

where, x1 = 1, xi = 0, for i = 2, .., I = N and vn ∼ N(0, 1) for n = 1, .., N. Let s be a
uniformly distributed random vector on the unit sphere. Let r(s) be the distance between
the origin and the point where the vector through s intersects the bounding plane of the
Happy set. From Deák’s estimate function (3.69) on page 52 follows that the unbiased
Robustness estimate is:

ds
r(s, x) = Pr

{
χ2( N) ≤ r2(s)

}
(A.18)

where χ2( N) is a chi-square distributed random variable with N degrees of freedom.
A nice feature of the Directional Sampling method, is that estimates typically have val-
ues smaller than 1 and bigger than 0, resulting in a smaller standard error for the DS
method compared to the MC method. For this example this nice feature is vanishing with
increasing dimension N:

• A uniformly distributed random vector s on the unit sphere can be obtained via
i.i.d. yn ∼ N(0, 1) for n = 1, .., N and normalised to s = y

‖y‖ .

• The squared distance to the boundary of Happy set (A.17) for a realisation s ∈ R N

of s, is defined by the first coordinate of the point on the unit sphere:

r2(s) =

{ (
1.5
s1

)2

for s1 6= 0

∞ for s1 = 0
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• For N > 1, the random squared distance r2(s) is distributed as

r2(s) = r2(
y1

‖y‖
) =

1.52
N∑

n=1
(yn)2

(y1)2
= 1.52

(
1 +

χ2( N− 1)
χ2(1)

)
= 1.52

(
1 +

N− 1
t2

N−1

)
(A.19)

where tk is the student t-distribution with k degrees of freedom.

• Let Ψ N(w) = Pr {χ2( N) ≤ w} be the CDF of χ2( N). The DS estimator can be

expressed as
ds
r(s, x) = Ψ N(r2(s)) = Ψ N

(
1.52

(
1 + N−1

t2N−1

))
• From The Central Limit Theorem (Rice, 1995) and E (χ2( N)) = N follows that

for constants α and β:

lim
N→∞

Ψ N−1(β + α( N− 1)) =


1
2

for α = 1
1 for α > 1
0 for α < 1

(A.20)

From Equations (A.20) and (A.19) follows that:

• The realisation s corresponding to realisation t N−1 ∈
{
t N−1 ∈ R|t2N−1 < 1.52

}
of

random variable t N−1 results in lim N→∞
ds
r(s, x) = 1

• The realisation s corresponding to realisation t N−1 ∈
{
t N−1 ∈ R|t2N−1 > 1.52

}
of

random variable t N−1 results in lim N→∞
ds
r(s, x) = 0

Consequently, if N →∞ then Pr
{

0 <
ds
r(s, x) < 1

}
→ 0. This means that the standard

error of the DS estimator approaches the standard error of the MC estimator.

A.9 Decomposition and effective bounding

The 1-norm, 2-norm and ∞-norm, are special and limit cases of the Hölder p-norm:

‖v‖p =

(
N∑

n=1

|vn|p
)1

p

Lemma A.2 Let a ∈ RA and b ∈ RB. Then

‖(a1, . . . , aA, b1, . . . , bB)‖p =

(
A∑

i=1

|ai|p +
B∑

i=1

|bi|p
)1

p

=

((
p

√
A∑

i=1

|ai|p
)p

+

(
p

√
B∑

i=1

|bi|p
)p)1

p

=

∥∥∥∥(‖a‖p , ‖b‖p

)ᵀ
∥∥∥∥

p

(A.21)

155



APPENDIX

Remark A.3 (Minkowski Inequality (Randolph, 1968))

Let a, b ∈ RN. Then

‖a + b‖p ≤ ‖a‖p + ‖b‖p (A.22)

Consider the definitions of H[p]
with p ∈ {1, 2,∞} as in (3.97) which are respectively the

smallest diamond, ball and cube with radius r[p] that enclose the Happy set H. Con-

sider the idea described in Section 4.3.1 of decomposing H[p]
into lower dimensional sets

H[p]

g ⊆ RMg , g = 1, ..,G. Theorem 4.1 and Corollary 4.5 explain why and when decompo-
sition is effective.

Theorem 4.1

Let ‖·‖ be the notation for a p-norm ‖·‖p. Let
G⋃

g=1

Gg(x) = S be the decomposition of the

uncertain object properties as given in Definition 4.1. Let (v[1]
ᵀ

, .., v[g]
ᵀ

, ..v[G]
ᵀ

)
ᵀ

∈ RN be

the corresponding decomposition of v, where N=
G∑

g=1

Mg, v ∈ RN and v[g] ∈ RMg . Let P [g]

be a N×Mg projection matrix, such that v =
G∑

g=1

P [g]v[g], v[g] = P [g]
ᵀ

v and
∥∥P [g]v[g]

∥∥ =∥∥v[g]
∥∥. Let H ⊂ RN be a set that can be decomposed as H =

G⋂
g=1

{
v ∈ RN

∣∣∣P [g]
ᵀ

v ∈ Hg

}
,

with Hg ⊆ RMg . Let r = max
v∈H

‖v‖ define the radius of the smallest set H ={
v ∈ RN |‖v‖ ≤ r

}
enclosing the Happy set, i.e.H ⊇ H. Similarly, let rg = max

v[g]∈Hg

∥∥v[g]
∥∥ =

max
v∈H

∥∥∥P [g]
ᵀ

v
∥∥∥ define Hg =

{
v[g] ∈ RMg

∣∣∥∥v[g]
∥∥ ≤ r[g]

}
⊇ Hg for g = 1, ..,G. Let v have

independent distributed elements and PDF f(v) with f(v) > 0 for all v ∈ RN. Then

G∏
g=1

Prv[g]

(
Hg

)
≤ Prv

(
H
)

(A.23)

Proof.

G∏
g=1

Prv[g]

(
Hg

)
= Prv

(
G⋂

g=1

{
v ∈ RN

∣∣∣P [g]
ᵀ

v ∈ Hg

})
= Prv

({
v ∈ RN

∣∣∣∀g=1,..,G : P [g]
ᵀ

v ∈ Hg

})
(A.24)

Theorem 4.1 holds if {
v ∈ RN

∣∣∣∀g=1,..,G : P [g]
ᵀ

v ∈ Hg

}
⊆ H (A.25)

By definition{
v ∈ RN

∣∣∣∀g=1,..,G : P [g]
ᵀ

v ∈ Hg

}
=
{

v ∈ RN
∣∣∣∀g=1,..,G :

∥∥∥P [g]
ᵀ

v
∥∥∥ ≤ rg

}
(A.26)
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Thus, it remains to be shown that{
v ∈ RN

∣∣∣∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤ rg

}
⊆
{
v ∈ RN |‖v‖ ≤ r

}
(A.27)

From Lemma A.2 follows that

‖v‖ =
∥∥(∥∥v[1]

∥∥ , · · · ,
∥∥v[g]

∥∥ , · · · ,
∥∥v[G]

∥∥)∥∥ (A.28)

=
∥∥∥(∥∥∥P [1]

ᵀ

v
∥∥∥ , · · · ,

∥∥∥P [g]
ᵀ

v
∥∥∥ , · · · ,

∥∥∥P [G]ᵀv
∥∥∥)∥∥∥

from which follows that

r = max
v∈H

‖v‖

=

∥∥∥∥(max
v∈H

∥∥∥P [1]
ᵀ

v
∥∥∥ , · · · , max

v∈H

∥∥∥P [g]
ᵀ

v
∥∥∥ , · · · , max

v∈H

∥∥∥P [G]ᵀT
v
∥∥∥)∥∥∥∥ (A.29)

= ‖(r1, .., rg, .., rG)‖

The result (A.27) follows from the observation that for all v for which ∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤

rg, holds ‖v‖ ≤ r, i.e. satisfying the condition in the left-hand side of A.27 implies satis-
fying the condition in the right-hand side of A.27.

Corollary 4.5 If there exists a g ∈ {1, .., G} with rg < r then

G∏
g=1

Prv[g]

(
Hg

)
< Prv

(
H
)

(A.30)

Proof.

Consider

Prv

(
H
)
−

G∏
g=1

Prv[g]

(
Hg

)
= Prv

({
v ∈ RN

∣∣ ‖v‖ ≤ r
}
\

G⋂
g=1

{
v ∈ RN

∣∣∣∥∥∥P [g]
ᵀ

v
∥∥∥ ≤ rg

})
= Prv

({
v ∈ RN

∣∣ ‖v‖ ≤ r
}
\
{

v ∈ RN
∣∣∣∀g=1,..,G :

∥∥∥P [g]
ᵀ

v
∥∥∥ ≤ rg

})
= Prv

({
v ∈ RN

∣∣∣‖v‖ ≤ r, ∃g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ > rg

})
= Prv (A) , with A =

{
v ∈ RN

∣∣∣‖v‖ ≤ r, ∃g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ > rg

}
(A.31)

Let g∗ be a partition set for which rg∗ < r and

B =
{

v ∈ RN
∣∣∣‖v‖ ≤ r,

∥∥∥P [g∗]
ᵀ

v
∥∥∥ > rg∗

}
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The principle is to prove that Prv (B) > 0, which implies that Prv (A) > 0, since B ⊆ A.

Due to ‖v‖ =

∥∥∥∥ G∑
g=1

P [g]v[g]

∥∥∥∥, set B can be written as

B =

v ∈ RN

∣∣∣∣∣∣
∥∥∥∥∥∥

G∑
g=1

P [g]v[g]

∥∥∥∥∥∥ ≤ r,
∥∥∥P [g∗]

ᵀ

v
∥∥∥ > rg∗


(A.32)

From the Minkowski inequality (A.3) follows that

∥∥∥∥∥ G∑
g=1

P [g]v[g]

∥∥∥∥∥ ≤ G∑
g=1

∥∥P [g]v[g]
∥∥.

From
∥∥P [g]v[g]

∥∥ =
∥∥∥P [g]

ᵀ

v
∥∥∥ follows

B ⊇

v ∈ RN

∣∣∣∣∣∣∣
G∑

h=1

∥∥∥P [h]
ᵀ

v
∥∥∥ ≤ r∥∥∥P [g∗]

ᵀ

v
∥∥∥ > rg∗


=

v ∈ RN

∣∣∣∣∣∣∣
G∑

h=1

∥∥∥P [h]
ᵀ

v
∥∥∥ ≤ r

rg∗ <
∥∥∥P [g∗]

ᵀ

v
∥∥∥ ≤ r


⊇

v ∈ RN

∣∣∣∣∣∣∣
G∑

h=1

∥∥∥P [h]
ᵀ

v
∥∥∥ ≤ r

rg∗ <
∥∥∥P [g∗]

ᵀ

v
∥∥∥ ≤ 1

2(r + rg∗)


⊇

v ∈ RN

∣∣∣∣∣∣∣
G∑

h=1

∥∥∥P [h]
ᵀ

v
∥∥∥− ∥∥∥P [g∗]

ᵀ

v
∥∥∥ ≤ r − 1

2(r + rg∗)

rg∗ <
∥∥∥P [g∗]

ᵀ

v
∥∥∥ ≤ 1

2(r + rg∗)


=

v ∈ RN

∣∣∣∣∣∣∣
∑

h 6=g∗

∥∥∥P [h]
ᵀ

v
∥∥∥ ≤ 1

2(r − rg∗)

rg∗ <
∥∥∥P [g∗]

ᵀ

v
∥∥∥ ≤ 1

2(r + rg∗)


⊇

v ∈ RN

∣∣∣∣∣∣ ∀h 6=g∗

∥∥∥P [h]
ᵀ

v
∥∥∥ ≤ 1

2

(
r−rg∗
G−1

)
rg∗ <

∥∥∥P [g∗]
ᵀ

v
∥∥∥ ≤ 1

2(r + rg∗)


=

{
G∑

h=1

P [h]v[h] = v ∈ RN

∣∣∣∣∣ ∀h 6=g∗
∥∥v[h]

∥∥ ≤ 1
2

(
r−rg∗
G−1

)
rg∗ <

∥∥v[g∗]
∥∥ ≤ 1

2(r + rg∗)

}
= C (A.33)

From rg∗ < r =⇒ 1
2

(
r−rg∗

G−1

)
> 0 for G ≥ 2 (i.e. a decomposition exists), follows that

there exists a point v∗ ∈ C \ cl(C). Therefore C is a full subspace of RN and

Prv (A) ≥ Prv (B) ≥ Prv (C) > 0

Consider the definitions of H[p] with p ∈ {1, 2,∞} as in (3.99) which are respectively
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A.9 DECOMPOSITION AND EFFECTIVE BOUNDING

the largest cube, ball and diamond shape with radius r[p] enclosed by the Happy set H.
Consider the idea described in Section 4.3.1 of decomposing H[p] into lower dimensional
sets H[p]

g ⊆ RMg , g = 1, ..,G. Theorem 4.2 and Corollary 4.6 explain why and when de-
composition is effective.

Theorem 4.2

Let ‖·‖ be the abstract notation for a p-norm ‖·‖p. Let
G⋃

g=1

Gg(x) = S be the decomposition

of the uncertain object properties as given in Definition 4.1. Let (v[1]
ᵀ

, .., v[g]
ᵀ

, ..v[G]
ᵀ

)
ᵀ

∈

RN be the corresponding decomposition of v, where N=
G∑

g=1

Mg, v ∈ RN and v[g] ∈ RMg .

Let P [g] be a N-by-Mg projection matrix, such that v =
G∑

g=1

P [g]v[g], v[g] = P [g]
ᵀ

v and∥∥P [g]v[g]
∥∥ =

∥∥v[g]
∥∥. Let H =

G⋂
g=1

{
v ∈ RN

∣∣∣P [g]
ᵀ

v ∈ Hg

}
, with Hg ⊆ RMg be the Happy

set decomposition. As in (3.98), let r = min
v∈H

min
1≤s≤S

{‖v‖ |us(x, v) ∈ {Ls, Hs}} define

the radius of the largest set H =
{
v ∈ RN |‖v‖ ≤ r

}
enclosed by the Happy set, i.e.

H ⊆ H . Similarly, let rg = min
v[g]∈Hg

min
s∈Gg

{∥∥v[g]
∥∥ ∣∣us(x, P [g]v[g]) ∈ {Ls, Hs}

}
define Hg ={

v[g] ∈ RMg
∣∣∥∥v[g]

∥∥ ≤ r[g]
}
⊆ Hg. Let v have independent distributed elements and PDF

f(v) =
G∏

g=1

fg(v
[g]) with f(v) > 0 for all v ∈ RN. Then

G∏
g=1

Prv[g]

(
Hg

)
≥ Prv (H) (A.34)

Proof. The left-hand side of (A.34) can be expressed as

G∏
g=1

Prv[g]

(
Hg

)
= Prv

(
G⋂

g=1

{
v ∈ RN

∣∣∣P [g]
ᵀ

v ∈ Hg

})
(A.35)

It remains to be shown that

G⋂
g=1

{
v ∈ RN

∣∣∣P [g]
ᵀ

v ∈ Hg

}
⊇ H (A.36)

which is equivalent to showing that

G⋂
g=1

{
v ∈ RN

∣∣∣∥∥∥P [g]
ᵀ

v
∥∥∥ ≤ rg

}
⊇
{
v ∈ RN |‖v‖ ≤ r

}
(A.37)

In (4.7) is explained that us(x, v) = us(x,
G∑

g=1

P [g]v[g]) = us(x, P [g]v[g]) for s ∈ Gg(x), i.e.

for a given x the function us does not depend on the elements v[k], k 6= g. The radius of
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the largest shape inside Hg is

rg = min
v[g]∈Hg

min
s∈Gg

{∥∥v[g]
∥∥ ∣∣us(x, P [g]v[g]) ∈ {Ls, Hs}

}
= min

v∈H
min
s∈Gg

{‖v‖ |us(x, v) ∈ {Ls, Hs}}
(A.38)

because the elements of v corresponding the elements of v[k], k 6= g are free variables and
will get the value 0 when minimising the norm. Consequently

r = min
v∈H

min
s∈S

{‖v‖ |us(x, v) ∈ {Ls, Hs}}
= min

g∈{1,..,G}
rg

such that r ≤ rg for all g = 1, .., G. Finally, for all v ∈ RN with ‖v‖ ≤ r holds∥∥∥P [g]
ᵀ

v
∥∥∥ ≤ rg for any g = 1, ..,G

which proves (A.37)

Corollary 4.6
If there exists a g ∈ {1, .., G} with rg > r then

G∏
g=1

Prv[g]

(
Hg

)
> Prv (H) (A.39)

Proof. Consider

Prv (H)−
G∏

g=1

Prv[g]

(
Hg

)
=Prv

{
v ∈ RN

∣∣∣∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤ rg

}
\
{
v ∈ RN |‖v‖ ≤ r

}
=Prv(A) with A =

{
v ∈ RN

∣∣∣∣∣ ∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤ rg

‖v‖ > r

}
(A.40)

The principle is to construct two more sets, B and C such that C ⊆ B ⊆ A, and prove
that Prv(C) > 0, which then implies Prv(A) > 0. From Lemma A.2 follows that

‖v‖ =
∥∥(∥∥v[1]

∥∥ , · · · ,
∥∥v[g]

∥∥ , · · · ,
∥∥v[G]

∥∥)∥∥
=
∥∥∥(∥∥∥P [1]

ᵀ

v
∥∥∥ , · · · ,

∥∥∥P [g]
ᵀ

v
∥∥∥ , · · · ,

∥∥∥P [G]ᵀv
∥∥∥)∥∥∥ (A.41)

such that

A ⊇

v ∈ RN

∣∣∣∣∣∣ ∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤ rg

∃g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ > r

 = B

(A.42)
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Let g∗ be the partition set for which rg∗ > r, then

B ⊇

v ∈ RN

∣∣∣∣∣∣ ∀g=1,..,G :
∥∥∥P [g]

ᵀ

v
∥∥∥ ≤ rg∥∥∥P [g∗]

ᵀ

v
∥∥∥ > r

 = C (A.43)

Due to
∥∥v[g]

∥∥ =
∥∥∥P [g]

ᵀ

v
∥∥∥, holds

C =

{
G∑

h=1

P [h]v[h] = v ∈ RN

∣∣∣∣ ∀h 6=g∗ : 0 ≤
∥∥v[h]

∥∥ ≤ rg

r <
∥∥v[g∗]

∥∥ ≤ rg∗

}
(A.44)

From 0 < r < rg∗ , follows Prv (A) ≥ Prv (B) ≥ Prv (C) > 0

A.10 Minimum norm on hyper-plane

Let the Hölder norm ‖v‖p =

(
N∑

n=1

|vn|p
) 1

p

where p ∈ (1,∞). The minimum over values

of v on a hyper-plane defined by a ∈ RN, b ∈ R is defined by

min
v∈RN

{
‖v‖p

∣∣aᵀ
v = b

}
where ‖a‖1 > 0 and b 6= 0. Based on the symmetry properties of the p-norm, it follows
(without proof) that the minimum norm problem can be expressed as:

min
v∈RN

{
‖v‖p

∣∣aᵀ
v = b

}
= min

v∈RN

{
‖v‖p

∣∣∣∣∣
N∑

n=1

|an| vn = |b|

}
For convention, let |a|ᵀv = |b| define the so-called positive hyper-plane, meaning that all
elements of vector |a| and scalar |b| are positive, i.e. |a| = (|a1|, .., |an|, .., |aN|)

ᵀ

. The
inspiration for the concepts underlying Theorem A.4 comes from Hendrix et al. (1996)
and Hendrix (1998, page 145)

Theorem A.4

min
v∈RN

{
‖v‖p

∣∣∣∣∣
N∑

n=1

|an| vn = |b|

}
=

|b|
‖a‖ p

p−1

Proof.

Let f(v) = ‖v‖p, then min
v∈RN

{
‖v‖p

∣∣∣∣ N∑
n=1

|an| vn = |b|
}

is equivalent to min
v∈RN

f(v) subject to

|a|
ᵀ

v = |b|. The corresponding Karush-Kuhn-Tucker conditions for the minimum point v
is: ∃u ≥ 0 such that ∇f(v) = u |a|. This is equivalent to ∃α ≥ 0 such that

 vp−1
1
...

vp−1
N

 = αp−1

 |a1|
...
|aN|

 =⇒

 v1
...

vN

 = α


|a1|

1
p−1

|a2|
1

p−1

...

|aN|
1

p−1


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which gives that for the minimum point v

vn = α|an|
1

p−1 for n = 1, .., N (A.45)

Substitution in |a|
ᵀ

v = |b| gives

α
N∑

n=1

|an|
p

p−1 = |b| =⇒ α =
|b|

N∑
n=1

|an|
p

p−1

Substitution in (A.45) gives that the minimum point is

vn =
|b|

N∑
n=1

|an|
p

p−1

|an|
1

p−1 for n = 1, .., N (A.46)

The corresponding minimum is

‖v‖p =
|b|

N∑
n=1

|an|
p

p−1

(
N∑

n=1

|an|
p

p−1

) 1
p

= |b|

(
N∑

n=1

|an|
p

p−1

) 1−p
p

=
|b|

‖a‖
p

p−1

(A.47)

Corollary A.1 For p ↓ 1 follows that p
p−1

→∞. Therefore

min
v∈RN

+

{
‖v‖1

∣∣∣∣∣
N∑

n=1

|an| vn = |b|

}
=

|b|
‖a‖∞

Corollary A.2 For p →∞ follows that p
p−1

↓ 1. Therefore

min
v∈RN

+

{
‖v‖∞

∣∣∣∣∣
N∑

n=1

|an| vn = |b|

}
=

|b|
‖a‖1

A.11 STACO Case: World Regions

The 12 regions in the world, considered in the STACO case are: USA, Japan (JPN), Eu-
ropean Economic Community (EEC), other OECD countries (OOC), Eastern European
countries (EET), former Soviet Union (FSU), energy exporting countries (EEX), China
(CHN), India (IND), Dynamic Asian economies (DAE), Brazil (BRA) and the rest of the
world (ROW) Finus et al. (2003).
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Table A.2: STACO model parameter mean values for three scenarios (Finus et al., 2003)

i βi,1 βi,2 βi,3

120%-scenario 200%-scenario 300%-scenario

1 10.156 16.926 25.389 0.1715 0.0216
2 7.7413 12.902 19.353 7.8270 0.6681
3 10.591 17.652 26.477 0.6478 0.1034
4 1.5483 2.5804 3.8706 0.0000 0.3577
5 0.5834 0.9723 1.4585 0.2095 0.3405
6 3.0292 5.0487 7.5730 0.0181 0.0991
7 1.3463 2.2439 3.3658 1.3050 0.1379
8 2.7824 4.6373 6.9560 0.1030 0.0030
9 2.2439 3.7397 5.6096 0.3392 0.0647
10 1.1174 1.8624 2.7936 1.6270 0.2026
11 0.6866 1.1443 1.7165 36.620 24.190
12 3.0517 5.0861 7.6291 0.3470 0.0905

A.12 Efficient strategies set in the STACO case

In this section is shown that any cartel coalition strategy c ∈ {0, 1}n as defined in the
STACO case (Finus et al., 2003), corresponds almost surely to a unique efficient CO2

reduction strategy q ∈ E. Also the computation of the efficient CO2 reduction strategies
is discussed.

From (5.31) follows that the payoff of a region, only depends linearly on the strategies
of the other regions. As a consequence, the efficiency of the choice qi of region i does
not depend on the other (j 6= i) strategies qj. To show this, consider two payoff strategy
vectors q ∈ E and p ∈ E, with a different value qi 6= pi for player i, while the other player
(j 6= i) strategies are equal qj = pj. Region i can compare these two strategies by taking
the difference of, what we called the payoff aggregation vector Π(q, v, c) in Section 5.5.1,
where the model parameters are represented as v = [β1,1, β1,2, β1,3, · · · , β12,1, β12,2, β12,3]

ᵀ
.

The model parameter vector v has N = 36 elements. In the situation that region i is not
a member of the coalition we have:

Πi(q, v, c)− Πi(p, v, c) =

βi,1(qi − pi)−
1

2
βi,2(q

2
i − p2

i )−
1

3
βi,3(q

3
i − p3

i ) (A.48)

In the situation that region i is a member of the coalition we have:

Πi(q, v, c)− Πi(p, v, c) =∑
j∈C(c)

βj,1(qi − pi)−
1

2
βi,2(q

2
i − p2

i )−
1

3
βi,3(q

3
i − p3

i ) (A.49)
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Both (A.48) and (A.49) are independent of qj for j 6= i. Region i can judge which of its
individual choices, qi or pi will yield a higher (aggregate) payoff, without having to know
the other region strategies. In particular, now we know that region i is capable to select
the optimal strategy q∗i from a finite set of strategies, without knowing qj for j 6= i.

Since the payoff efficiency of region i only depends on qi, we can conclude that the most
efficient choice for region i must be either located at one of the boundaries4, i.e. min(Ei)
or max(Ei), or anywhere in the interior of Ei where the first derivative with respect to qi

is zero:

∂Πi(q, v, c)

∂qi

=

ci

∑
j∈C(c)\{i}

βj,1

+ βi,1 − βi,2qi − βi,3q
2
i = 0 (A.50)

which can be found with the ABC-formula. Since the dimension of the set

v ∈ RN

∣∣∣∣∣∣
ci

∑
j∈C(c)\{i}

βj,1

+ βi,1 = 0, βi,2 = 0, βi,3 = 0

 (A.51)

is lower than N = 36, its probability mass is 0 and consequently, for a continuous random
vector v, (A.50) almost surely (a.s.) has at most two solutions. Together with the vertex
solutions, region i can distinguish a.s. at most 4 candidate efficient strategies of which
the strategy corresponding to the highest payoff can be selected. We conclude that a
cartel coalition strategy c ∈ {0, 1}n and a continuous random vector v, a.s. determines a
unique5 efficient CO2 reduction strategy in the STACO case.

In the following, the relation is elaborated between the payoff difference function (5.32)
and candidate efficient strategies and under which condition the payoff difference function
is continuous in v. The four candidate efficient strategies for region i and strategy c are

q
[1]
i (c, v) = min(Ei)

q
[2]
i (c, v) = max(Ei)

q
[3]
i (c, v) = min

(
q
[2]
i (c, v), max(q

[1]
i (c, v), t

[1]
i (c, v))

)
q
[4]
i (c, v) = min

(
q
[2]
i (c, v), max(q

[1]
i (c, v), t

[2]
i (c, v))

)
(A.52)

4Lower bound: In Finus et al. (2003) it is argued that negative strategies are irrational. Upper bound:
A player can at most reduce as much CO2 as the player is emitting.

5Theoretically the event that there are two or more candidate efficient strategy solutions, corresponding
to exactly the same maximal payoff value can occur. From (A.56) follows that this situation is irrelevant.
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with

t
[1]
i (c, v) =


βi,2−

√
β2

i,2+4βi,3γi(c,v)

2βi,3
if β2

i,2 + 4βi,3γi(c, v) ≥ 0 and βi,3 6= 0
γi(c,v)

βi,2
if βi,3 = 0 and βi,2 6= 0

−∞ elsewhere

t
[2]
i (c, v) =


βi,2+

√
β2

i,2+4βi,3γi(c,v)

2βi,3
if β2

i,2 + 4βi,3γi(c, v) ≥ 0 and βi,3 6= 0
γi(c,v)

βi,2
if βi,3 = 0 and βi,2 6= 0

∞ elsewhere

γi(c, v) =

ci

∑
j∈C(c)\{i}

βj,1

+ βi,1 (A.53)

It can be shown that the functions q
[1]
i (c, v), q

[2]
i (c, v), q

[3]
i (c, v) and q

[3]
i (c, v) are continuous

in each point v where β2
i,2 + 4βi,3γi(c, v) 6= 0, βi,2 6= 0 and βi,3 6= 0 with i = 1, ..,12.

Consequently the function

max
{

πk(q
∗, v)

∣∣∣q∗i ∈ {q
[1]
i (c, v), q

[2]
i (c, v), q

[3]
i (c, v), q

[4]
i (c, v)

}
for i = 1, .., 12

}
(A.54)

with k = 1, .., 12, is continuous in each point v where β2
i,2 + 4βi,3γi(c, v) 6= 0, βi,2 6= 0 and

βi,3 6= 0 with i = 1, ..,12. Finally, the payoff difference function (5.32) can be expressed as

uk(c, v) =

max
{

πk(q
∗, v)

∣∣∣q∗i ∈ {q
[j]
i (c, v)

}
for i = 1, .., 12, j = 1, 2, 3, 4

}
(A.55)

−

max
{

πk(q
∗∗, v)

∣∣∣q∗∗i ∈
{

q
[j]
i (nc(c, i), v)

}
for i = 1, .., 12, j = 1, 2, 3, 4

}
(A.56)

with k = 1, .., 12, and leads to the conclusion that the payoff difference function is contin-
uous in each point v where β2

i,2 + 4βi,3γi(c, v) 6= 0, β2
i,2 + 4βi,3γi(nc(c, i), v) 6= 0, βi,2 6= 0

and βi,3 6= 0 with i = 1, ..,12.
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Robustness Programming

Robustness of an object is defined as the probability that an object will have properties
as required. Robustness Programming (RP) is a mathematical approach for Robustness
estimation and Robustness optimisation. Robustness Programming is an extension of
Stochastic Programming and is intended to support decision making with respect to
uncertainty. For example, consider the investment in a portfolio of stock market shares.
The number of shares to invest in, is typically a controllable factor, but the future price
of shares and the resulting portfolio return are uncontrollable factors. It is interesting to
find the combination of shares that maximises the probability of receiving some predefined
return target. An example in the context of designing a food product, is to find the best
mixture of ingredients, such that a product is appealing but also safe. The mixture of
ingredients can be assumed a controllable factor, whereas bacteria growth rate affecting
temperature fluctuations, between production and consumption, are uncontrollable. It
is interesting to find a mixture design of ingredients, with maximal probability that the
number of bacteria at the moment of consumption is below safety limits.

Robustness Programming Framework

The first research question deals with finding a generic notation for RP problems and RP
solution methods and resulted in the Robustness Programming Framework as presented
in Chapter 2. The RP framework is based on the assumption that object properties can
be modelled as a continuous function u(x, v), where vector x ∈ RI represents the values
of I controllable factors and v ∈ RN represents N uncontrollable factors. The object
properties design objective is L≤ u(x, v) ≤H, i.e. if the object properties are between
the bounds L and H, then the object properties are as required. All uncontrollable factor
values, for which the object properties are as required, are in the so-called Happy set:
H(x) =

{
v ∈ RN|L ≤ u(x, v) ≤ H

}
and Robustness is defined as R(x) = Pr {v ∈ H(x)},

given the probability distribution of the random uncontrollable factors v.

The second research question is ’What are the characteristics of an RP problem,
that provide sufficient information to decide about applicable RP solution methods?’.
The probability distribution of v and geometric properties of H(x) play a central role in
answering this question. Table 6.1 gives an overview of the sufficient conditions found for
applicability of RP methods, when given the RP problem properties.

Robustness Programming methods

In the general case, R(x) cannot be determined analytically and is estimated instead.
The Monte Carlo (MC) method is seen as a standard approach to estimate R(x). How-
ever, the MC estimate function of R(x) is a discontinuous step function, generally with
infinitely many local optima and has therefore bad optimisation characteristics. This ob-
servation triggered the research for alternative RP methods. The following RP methods
are investigated in Chapters 3 and 4:

• The Monte Carlo (MC) sampling method. The MC estimator of R(x) is unbiased.
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• The Smoothed Monte Carlo (SMC) sampling method. The SMC method is a
smoothed version of the MC method, such that the SMC estimate function is con-
tinuous a.e. in X. The SMC method deviates at most 1

2M
from the MC estimate,

where M is the number of samples. This means that the SMC estimate can be made
arbitrarily close to the unbiased MC estimate, by choosing M large enough.

• The N-1MC sampling method. The N-1MC estimator of R(x) is unbiased. The
method is based on sampling N-1 elements of v with the Monte Carlo method and
using the CDF of the one remaining element of v to determine the N-1MC estimate.

• The Directional Sampling (DS) method. The DS estimator of R(x) is unbiased.
The DS method is applicable if v has a so-called spherical symmetric distribution,
like the Normal distribution. The DS estimate determines the length of rays in the
Happy set, through uniformly distributed points on the unit sphere, to compute the
unbiased Robustness estimate.

• The Exponential Simplex (ES) sampling method. The ES estimator of R(x) is un-
biased. The ES method is applicable if v is (two-sided) Exponentially distributed.
The ES estimate uses the length of rays in the Happy set, through uniformly dis-
tributed points on the unit simplex.

• The Diamond, Ball and Cube methods are bounding methods, based on the geomet-

ric shape of B[p](r) =
{

v ∈ RN
∣∣∣‖v‖p ≤ r

}
defined by the p-norm with p = 1, 2,∞

respectively. The most effective Robustness lower bound Pr
{
v ∈ B[p](r∗)

}
is de-

termined by r∗ = max
{
r|B[p](r) ⊆ H(x)

}
and the most effective upper bound is

determined by r∗ = min
{
r|B[p](r) ⊇ H(x)

}
. The idea is that the geometric shape

of the bounding sets, makes it easier to compute the Robustness bound than the
actual Robustness R(x).

• The Compression method and Decomposition method are computational methods to
make the Robustness estimation methods more efficient. Both methods are based
on the principle that the efficiency difference between the MC method and the
alternative estimation methods, becomes smaller for increasing Happy set dimension
N. Hence, compressing the Happy set or decomposing the Happy set into lower
dimensional Happy sets can improve the efficiency of the estimation methods.

• The Warm Start (WS) method is a method to let an iterative optimisation algo-
rithm, detect a Robustness improvement direction, even if the estimate of R(x) is
zero in a small neighbourhood around x.

The MC method is used as a reference RP method for comparing the alternative RP
methods. The DS method is a generalisation of the methods developed by István Deák
(2000, 2003). All other methods were developed during this PhD research.

The third research question deals with identifying mathematical properties of RP
methods, that give information about the quality of RP methods, relevant for Robustness
estimation and Robustness optimisation. Effectiveness, efficiency and applicability of RP
methods are relevant for comparing the quality of RP methods.

167



SUMMARY

• Effectiveness: In general, Robustness R(x) cannot be computed directly and is
estimated instead. The objective is to estimate R(x) effectively. An RP method is
defined effective if the RP method is unbiased, since that would mean R(x) can be
estimated arbitrarily accurate, given sufficient samples.

The MC, N-1MC, DS and ES method are effective estimation methods because
they are all based on unbiased Robustness estimators. The SMC method deviates
at most 1

2M
from the MC estimate, where M is the number of samples. This means

that the SMC estimate can be made arbitrarily close to the unbiased MC estimate,
by choosing M large enough.

The effectiveness of the Diamond, Ball and Cube bounding methods depends on
the RP problem. To identify the most effective bound involves solving a Mathe-
matical Programming (MP) problem. Only if the global solution is found for the
corresponding MP problems, the bound is correct and optimally effective.

The Compression and Decomposition method do not change the unbiasedness of
estimation methods. Compression leads to more effective bounds and it is found
out under which conditions decomposition leads to strictly more effective bounds.

• Efficiency: The efficiency of Robustness estimation methods, that are based on
sampling, is expressed as the standard error of the estimator given an M=1 sample.
The N-1MC, DS and ES methods are strictly more efficient than the MC method,
only if the Happy set does not have an All-Or-Nothing shape, DS-Radial-Shape
or ES-radial-shape, respectively. Performance indicators are defined to measure
the Robustness optimisation efficiency of the RP methods. Statistical inference
on these performance indicators enables to identify the RP methods that perform
significantly above average.

• Applicability: The mathematical properties of the RP methods are relevant to iden-
tify the appropriate Robustness estimation and computation methods, when given
an RP problem. Table 6.1 gives an overview of RP problem characteristics, regard-
ing the information about uncontrollable factors v and the structure of the Happy
set H(x), for which the mentioned RP methods are applicable.

Case studies

The fourth research question is how to compare the performance of RP methods. The
performance of Robustness estimation methods is assessed by comparing the number of
samples that are required to reach a predefined standard error level. The best performing
Robustness estimation method, is the method that requires the least number of samples
to reach the predefined standard error level. The performance of Robustness optimisation
methods is assessed with defined performance indicators. These performance indicators
are based on identifying the RP methods that result in the highest Robustness value
found after a limited number of optimisation iterations. For practical reasons we choose
20 optimisation iterations as the limit.

It is concluded that the computation time (in sec.) and number of floating-point
operations (in FLOPS) are not suitable for an objective performance comparison, because
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the computation time and arithmetic efficiency depends on software quality, computer
memory and processor speed.

Two case studies have been carried out for Unilever R&D: One dealing with Robust
mixture designs and one dealing with Robust material cost planning. Additionally, a case
study is derived from the Robust mixture design case, to assess the performance of the ES
method. The Happy sets in the Unilever cases all possess a polyhedral structure. From
the Unilever case studies the following can be concluded:

• The Warm Start method is efficient in combination with the MC, N-1MC, DS and
ES method.

• Decomposition and Compression are efficient for all cases. However, Decomposition
and Compression require extra computations and let the computation time increase.

• The efficiency of the SMC, N-1MC, DS and ES methods, is above average for at
least one of the investigated Unilever cases.

• For all Unilever cases, the MC, Ball, Diamond and Cube method are not efficient.

One case study was done in an Environmental Economics research program called STACO
at Wageningen University and deals with the Robustness of coalitions of world regions
for jointly reducing CO2 emissions. From the STACO case study the following can be
concluded: The STACO case illustrates that the DS method is more efficient per sample
than the MC method, for the majority of the assessed scenarios. From a computational
point of view, the measurements support the conclusion that the MC implementation is
more efficient than the DS implementation.
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Robuustheid Programmering

De Robuustheid van een object is gedefinieerd als de kans dat eigenschappen van een
object aan gestelde eisen zullen voldoen. Robuustheid Programmering (RP) is een wis-
kundige aanpak voor het schatten en optimaliseren van Robuustheid. RP is een uitbreiding
van Stochastische Programmering en is bedoeld voor het ondersteunen van besluitvorming
onder onzekerheid. In RP worden controleerbare factoren typisch als beslissingsvariabelen
gemodelleerd en worden oncontroleerbare factoren als kansvariabelen gemodelleerd.

Neem bijvoorbeeld de investering in een portfolio van aandelen. Het aantal aandelen
waarin gëınvesteerd wordt is typisch een controleerbare factor, terwijl de toekomstige
aandelenprijzen en de resulterende portfolio-opbrengst juist oncontroleerbare factoren
zijn. Het is interessant de samenstelling van aandelen te vinden waarvoor de kans maximaal
is op het behalen van een vooraf vastgestelde opbrengstdoelstelling.

Een voorbeeld in de context van het ontwerpen van voedingsmiddelen is het vinden
van de beste samenstelling van ingrediënten, zodat het resultaat zowel aantrekkelijk als
maximaal veilig is. De samenstelling van ingrediënten kan als een controleerbare factor
worden beschouwd. De temperatuurverandering in de tijd tussen productie en consumptie
bëınvloedt bacteriële groeisnelheden en is een voorbeeld van een oncontroleerbare factor.
Het is interessant om een samenstelling van ingrediënten te vinden, waarbij de kans zo
groot mogelijk is dat het aantal bacteria op het moment van consumptie voldoet aan
gestelde veiligheidseisen.

Raamwerk van Robuustheid Programmering

De eerste onderzoeksvraag betreft het vinden van een generieke notatie voor RP-problemen
en RP-oplossingsmethoden en heeft geresulteerd in het raamwerk van Robuustheid Pro-
grammering zoals verwoord in Hoofdstuk 2.

Het raamwerk van RP is gebaseerd op de aanname dat objecteigenschappen gemodel-
leerd kunnen worden als een continue functie u(x, v), waarbij de vector x ∈ RI de waarde
vertegenwoordigt van I controleerbare factoren en v ∈ RN de waarde vertegenwoordigt van
N oncontroleerbare factoren. De ontwerpdoelstelling van de objecteigenschappen is L≤
u(x, v) ≤H, i.e. als de objecteigenschappen tussen de grenzen L en H liggen, dan voldoen
de objecteigenschappen aan de gestelde eisen. De zogenaamde Happy set is de verzameling
van alle mogelijke waarden voor de oncontroleerbare factoren, waarvoor geldt dat de
objecteigenschappen aan de gestelde eisen voldoen: H(x) =

{
v ∈ RN|L ≤ u(x, v) ≤ H

}
.

Robuustheid is gedefinieerd als de kans R(x) = Pr {v ∈ H(x)}, gegeven een ontwerp x en
de kansverdeling van de stochastische oncontroleerbare factor v.

De tweede onderzoeksvraag is ’Wat zijn de karakteristieken van een RP-probleem die
voldoende informatie verschaffen om te bepalen welke RP-oplossingsmethoden toepasbaar
zijn?’ De kansverdeling van v en geometrische eigenschappen van H(x) zijn de RP
probleem eigenschappen die centraal staan in de beantwoording van deze vraag. In Tabel
6.1 staat een overzicht van condities die voldoende zijn voor de toepasbaarheid van de
betreffende RP-methoden, gegeven de RP-probleemeigenschappen.
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RP-methoden

In het algemene geval kan R(x) niet analytisch worden bepaald. In plaats daarvan
wordt R(x) geschat. De Monte Carlo-methode (MC) wordt gezien als de standaard
methode voor het schatten van R(x). Echter de MC-schattingsfunctie van R(x) is een
discontinue stapfunctie, met in het algemeen oneindig veel lokale optima en heeft daarom
slechte optimaliseringseigenschappen. Deze observatie stimuleerde het onderzoek naar
alternatieve RP-methoden. De volgende RP-methoden zijn onderzocht in de Hoofdstukken
3 en 4:

• De Monte Carlo-samplingmethode (MC). De MC-schatter van R(x) is een zuivere
schatter.

• De Smoothed Monte Carlo-samplingmethode (SMC). De SMC-methode is een ge-
effende versie van de MC-methode, zodanig dat de SMC-schattingsfunctie vrijwel
overal continu is in X. De SMC-methode wijkt hoogstens 1

2M
af van de MC-schatting,

met M het aantal trekkingen.

• De N−1MC-samplingmethode. De N−1MC-schatter van R(x) is een zuivere schatter.
De methode bestaat in hoofdlijnen uit twee stappen. In de eerste stap wordt één
trekking gedaan van N−1 elementen van v. In de tweede stap wordt de Robuustheid
geschat op basis van de CDF van het overgebleven element van v.

• De Directional Samplingmethode (DS). De DS schatter van R(x) is een zuivere
schatter. De DS-methode is toepasbaar als v een zogenaamde bolsymmetrische
kansverdeling heeft, zoals het geval is bij de standaard Normale kansverdeling. De
DS-schatting is gebaseerd op de lengte van lijnstukken in de Happy set. Deze
lijnstukken starten in de oorsprong en gaan door uniform gegenereerde punten op
de eenheidcirkel.

• De Exponentiële Simplex-samplingmethode (ES). De ES-schatter van R(x) is een
zuivere schatter. De ES-methode is toepasbaar als v een (tweezijdige) Exponentiële
kansverdeling heeft. De ES-schatting is gebaseerd op de lengte van lijnstukken
in de Happy set. Deze lijnstukken starten in de oorsprong en gaan door uniform
gegenereerde punten op het eenheidsimplex.

• De Diamond-, Ball- en Cube-schattingsmethode kunnen worden gebruikt voor het
bepalen van onder- en bovengrenzen voor de Robuustheid R(x) en zijn gebaseerd

op de geometrische vorm van bol B[p](r) =
{

v ∈ RN
∣∣∣‖v‖p ≤ r

}
voor respectievelijk

p = 1, 2 en∞. De Robuustheidgrens is Pr
{
v ∈ B[p](r∗)

}
, waarbij de meest effectieve

Robuustheidondergrens is gedefinieerd door r∗ = max
{
r|B[p](r) ⊆ H(x)

}
en de

meest effectieve Robuustheidbovengrens is gedefinieerd door
r∗ = min

{
r|B[p](r) ⊇ H(x)

}
. De gedachte achter deze methoden is dat de kansmassa

van B[p](r) relatief eenvoudig kan worden bepaald in vergelijking met de kansmassa
van de Happy set, omdat B[p](r) daarvoor een geschikte geometrische vorm heeft.
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• De Compressie-methode en Decompositie-methode zijn beide zogenaamde dimensie-
reductiemethoden die de Robuustheidschattingsmethoden meer efficiënt maken.
Dimensie-reductiemethoden zijn gebaseerd op het principe dat het efficiëntieverschil
tussen de MC-methode en de overige schattingsmethoden afneemt als de dimensie
N van de Happy set toeneemt. Dit betekent dat compressie van de Happy set of
decompositie van de Happy set naar lager dimensionale Happy sets, de efficiëntie
van de schattingsmethoden kan doen verbeteren ten opzichte van de MC-methode.

• De Warm Start-methode (WS). In het geval de schatting van Robuustheid R(x)
nul is in een kleine omgeving rond het punt x, dan kan met de WS-methode een
punt gegenereerd worden met een positieve schatting van de robuustheid. Het idee
van WS is vergelijkbaar met de eerste fase van de twee-fasen-methode bij Lineaire
Programmering.

De MC-methode is gebruikt als een referentie RP-methode voor het vergelijken van de
alternatieve RP-methoden. De DS-methode is een generalisatie van methoden die zijn
ontwikkeld door István Deák (2000, 2003). Alle overige methoden zijn gedurende dit
onderzoek ontwikkeld.

De derde onderzoeksvraag betreft het identificeren van wiskundige eigenschappen van
RP-methoden, die informatie geven over de kwaliteit van de RP-methoden die relevant
zijn voor Robuustheid schatting en Robuustheid optimalisering.

• Effectiviteit: In het algemene geval kan Robuustheid R(x) niet rechtstreeks berekend
worden, maar wordt er een schatting gemaakt. De doelstelling is om R(x) op een
effectieve manier te schatten. Een RP-methode wordt ’effectief’ genoemd als de RP-
methode een zuivere schatting oplevert. Immers, in die situatie kan een willekeurig
nauwkeurige Robuustheid schatting verkregen worden door voldoende trekkingen te
gebruiken.

De MC-, N−1MC-, DS- en ES-methode zijn effectieve schattingsmethoden, omdat
ze op een zuivere schatter zijn gebaseerd. De SMC-method wijkt hooguit 1

2M
af van

de MC schatting, waarbij M het aantal trekkingen is. Dit betekent dat het verschil
tussen de SMC-schatting en de MC-schatting willekeurig klein gemaakt kan worden
door het aantal trekkingen M groot genoeg te kiezen.

De effectiviteit van de Diamond, Ball and Cube begrenzingsmethode hangt af van
het RP-probleem. Een Mathematisch Programmeringsprobleem (MP) dient te word-
en opgelost om de meest effectieve Robuustheidgrens te vinden. Het is noodzakelijk
de globale oplossing van het MP-probleem te vinden, omdat alleen deze correspon-
deert met een correcte Robuustheidgrens.

De Compressie-methode en Decompositie-methode hebben geen invloed op de zuiver-
heid van schatters in RP-methoden die op sampling zijn gebaseerd. Compressie geeft
in de regel wel een meer effectieve Robuustheidgrens. In dit onderzoek is de conditie
bepaald waarbij Compressie leidt tot een strikte verbetering van de effectiviteit van
de Diamond-, Ball- en Cube- schattingsmethode.

• Efficiëntie: De efficiëntie van Robuustheidschattingsmethoden die op sampling zijn
gebaseerd, is uitgedrukt als de standard error van de schatter voor M=1 trekkingen.
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De N−1MC-, DS- en ES- methode zijn efficiënter dan de MC-methode als de Happy
set respectievelijk geen All-Or-Nothing shape, DS-Radial-Shape of ES-radial-shape
heeft. Prestatie-indicatoren zijn gedefinieerd om de efficiëntie te meten van RP-
methoden in de context van Robuustheidoptimalisatie. Statistische gevolgtrekking
op basis van deze prestatie indicatoren maakt het mogelijk om vast te stellen welke
RP-methoden significant bovengemiddeld presteren.

• Toepasbaarheid: Een aantal wiskundige eigenschappen van de RP-methoden zijn
relevant voor het bepalen van geschikte Robuustheidschattingsmethoden en
-berekeningsmethoden, gegeven een bepaald RP-probleem. Tabel 6.1 geeft een
overzicht van RP-probleemeigenschappen, betreffende oncontroleerbare factoren v
en de structuur van de Happy set H(x), waarvoor de genoemde RP-methoden
geschikt zijn.

Casestudy’s

De vierde onderzoeksvraag betreft de vraag hoe de prestaties van de RP-methoden kunnen
worden vergeleken. De prestaties van Robuustheidschattingsmethoden zijn onderzocht
door te vergelijken hoeveel trekkingen nodig zijn om een schatting met een zekere nauw-
keurigheid te bereiken. De best presterende Robuustheid schattingsmethode is de methode
die het kleinste aantal trekkingen nodig heeft. De prestatie van RP-methoden in de
context van Robuustheidoptimalisatie is gemeten aan de hand van prestatie-indicatoren
die in dit onderzoek zijn gedefinieerd. Deze prestatie-indicatoren zijn gebaseerd op het
bepalen van de RP-methode waarmee het optimaliseringsalgoritme de hoogste waarde
van Robuustheid vindt na een beperkt aantal iteraties. Om praktische redenen is voor 20
optimalisatie iteraties gekozen.

Tijdens dit onderzoek is besloten dat de berekeningstijd (in sec.) en het aantal floating-
point operations (in FLOPS) niet geschikt zijn voor een objectieve prestatievergelijking,
omdat de rekentijd en berekeningsefficiëntie afhangen van het computergeheugen, de
processorsnelheid en de kwaliteit van de programmatuur.

Twee casestudy’s zijn gedaan voor Unilever R&D. De eerste case betreft het ontwerpen
van samenstellingen van ingrediënten die leidt tot een product met maximale Robuustheid
ten aanzien van de productspecificaties. De tweede case betreft Robuuste planning van
grondstofkosten. Op basis van de eerste case is een numerieke studie geformuleerd om de
prestaties van de ES-methode te onderzoeken. Alle Happy sets in de Unilever casestudy’s
hebben een polyhedrale structuur. De volgende conclusies zijn op de Unilever casestudy’s
gebaseerd:

• De Warm Start methode is efficiënt in combinatie met de MC-, N−1MC-, DS- en
ES-methode.

• Decompositie and Compressie zijn efficiënt in alle bestudeerde gevallen. Echter,
Decompositie en Compressie vereisen extra berekeningen en laten de rekentijd toe-
nemen.

• De efficiëntie van de SMC-, N−1MC-, DS- en ES-methode is bovengemiddeld voor
tenminste één van de onderzochte Unilever casestudy’s.
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• Voor alle Unilever case study’s zijn de MC-, Ball-, Diamond- en Cube-methode niet
efficiënt.

Eén casestudy is uitgevoerd binnen een milieu-economisch onderzoeksprogramma van
Wageningen Universiteit, genaamd STACO. Deze casestudy gaat over de Robuustheid
van coalities van wereldregio’s die gezamenlijk CO2-emissies reduceren. De volgende
conclusies kunnen worden getrokken op basis van de STACO-casestudy: De STACO-
case laat zien dat voor de meerderheid van de onderzochte scenario’s de DS-methode
efficiënter is per trekking dan de MC-methode. Vanuit een rekentechnisch standpunt kan
worden gesteld dat de metingen aantonen dat de MC-implementatie efficiënter is dan de
DS-implementatie.
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