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Abstract 
Sustainable management of natural ecosystems requires comprehensive 
information on species distribution and composition. Traditional description of 
species composition for floristic mapping involves exhaustive and time-consuming 
field work. Remote sensing has the potential to improve the collection of 
information on species composition. Compared to other vegetation attributes plant 
species so far remained a difficult attribute to detect with remote sensing. Broad 
band remote sensing sensors, which have been used extensively for mapping of 
plant communities, are however not sufficiently sensitive to allow discrimination of 
individual plant species. The advent of hyperspectral and high spatial resolution 
sensors offers new opportunities in this respect.  
 
This study aims to investigate a number of methods to discriminate plant species 
using hyperspectral remote sensing. Extensive use was made of measurements of 
leaf and canopy reflectance spectra derived from laboratory spectrometry and 
airborne hyperspectral imagery.   
 
Studies on the spectral reflectance of plant species are frequently carried out 
under laboratory conditions. We investigated whether the time lag between leaf 
detachment and measurement in the laboratory influenced the spectral response. 
Six hours appeared to be the time lag within which the laboratory measurements 
remained similar to the in situ response. 
 
We next investigated which regions of the spectrum provided the richest 
information for species discrimination. Four different band selection procedures 
selected sets of ten bands. Although the bands selected by the various procedures 
differed, they were localized broadly in the same spectral regions. The procedure 
thus enabled to localize optimal regions for species discrimination.   
 
The possibility to discriminate species depends on their distance in hyperspectral 
feature space. In a next study we explored the possibility to discriminate six 
species using four spectral matching algorithms on full spectral configuration. The 
results reveal the dissimilarities between spectra of different plant species, which 
was used to find out relative separability between them 
 
The possibility to discriminate species might change during the life cycle of plants. 
In a fourth paper we investigated the change in spectral response over the life 
cycle. It was demonstrated that 13 out of 15 species pairs were easier 
discriminated in their flowering than non flowering stage. The results demonstrate 
that selection of the optimum phenological stage may enhance the spectral 
separability of species. 
 
Another problem arises when various species occur within one pixel. We 
investigated whether sub-pixel unmixing techniques allowed discriminating 
species occurring within a pixel. The sub-pixel unmixing technique allowed to 
estimate the per pixel contribution of individual plant species. Sub pixel unmixing 
thus offers the possibility to provide more detailed taxonomic information. 
 
This thesis concludes by confirming the main hypothesis that discrimination of 
plant species can be enhance while using hyperspectral and high spatial resolution 
imagery.  
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Samenvatting 
Informatie over samenstelling en verspreiding van soorten is noodzakelijk voor 
duurzaam beheer van natuurlijke ecosystemen. Uitgebreid en tijdrovend veldwerk 
is onderdeel van traditionele beschrijving van soortsamenstelling. Aardobservatie 
heeft potentie om inwinnen van informatie over soortsamenstelling te verbeteren. 
Plantensoorten zijn echter, vergeleken met andere vegetatie eigenschappen, 
moeilijk te detecteren met aardobservatie. De tot op heden voor 
vegetatiekartering gebruikte breed band aardobservatie sensoren zijn niet 
voldoende gevoelig om plantensoorten te onderscheiden. De komst van 
hyperspectrale aardobservatie biedt in dit opzicht nieuwe mogelijkheden.  
 
Deze studie had tot doel methodes te bestuderen om plantensoorten te 
onderscheiden met behulp van hyperspectrale aardobservatie. Er is gebruik 
gemaakt van reflectie spectra van blad en bladerkroon verkregen door middel van 
laboratorium spectrometrie en airborne hyperspectrale beelden. 
  
Spectra van planten worden vaak in het laboratorium bestudeerd. Wij 
bestudeerden of het tijdsverschil tussen verzamelen van blad en meting in het 
laboratorium de spectrale respons beïnvloedt. Laboratorium meting week tot zes 
uur na verzamelen niet af van de in situ response.  
 
Vervolgens onderzochten wij welke spectrale regio’s de rijkste informatie leverden 
over soortsamenstelling. Vier verschillende band selectie procedures selecteerden 
sets van tien banden. De geselecteerde banden die verschilden tussen de 
procedures, waren over het algemeen gelokaliseerd in dezelfde spectrale regios. 
De procedure maakte het dus mogelijk om optimale spectrale regio’s aan te 
wijzen voor het onderscheiden van soorten.  
 
De mogelijkheid om soorten te onderscheiden hangt af van de onderlinge afstand 
in de hyperspectrale ruimte. In een vervolgstudie exploreerden we de 
mogelijkheid soorten te onderscheiden met behulp van vier spectrale matching 
algoritmes en het volledige hyperspectrale spectrum. De resultaten toonden 
spectraal onderscheid tussen de verschillende plantensoorten, dat werd gebruikt 
om hun relatieve onderscheidbaarheid te  
 
De onderscheidbaarheid van soorten kan gedurende hun levenscyclus veranderen. 
In een vierde artikel onderzochten we de verandering in spectrale respons 
gedurende de levenscyclus. Dertien uit 15 paren plantensoorten waren bloeiend 
gemakkelijker te onderscheiden dan vegetatief. Deze resultaten tonen aan dat 
selectie van de optimale fenologische fase de onderscheidbaarheid van soorten 
bevordert.  
 
Een ander probleem ontstaat als meerdere soorten in een pixel voorkomen. We 
bestudeerden of subpixel-ontmixing soorten binnen een pixel kan onderscheiden. 
Sub pixel ontmixing maakte het mogelijk de bijdrage van individuele soorten per 
pixel te schatten. Sub pixel ontmixing maakt het dus mogelijk om meer 
gedetailleerde taxonomische informatie te leveren. 
 
De thesis besluit met bevestiging van de hypothese dat onderscheid van 
plantensoorten verbeterd kan worden door gebruik te maken van hyperspectrale 
en hoge resolutie beelden.  
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1.1 Imaging spectroscopy or hyperspectral remote 
sensing 

Spectroscopy is the study of the interaction between radiation and 
matter. It studies light as a function of wavelength that has been 
absorbed, reflected or scattered from a solid, liquid or gas. As photons 
enter matter, some are reflected from the surfaces, some pass through, 
and some are absorbed. Photons reflected from the surface or refracted 
by molecules inside the matter are said to be scattered, and can be 
detected and measured. Above absolute zero, all natural surfaces 
discharge photons (Clark et al., 1990). At a molecular level, scattering or 
absorption of sunlight depends on the atomic bonds or molecular 
structure of the intercepting molecule, and these absorptions or 
scatterings are very specific to the atomic bonds or molecular structure of 
the target. The properties that specify the response of the material at 
every wavelength are called spectral properties (Suits, 1983). In the 
1970s, a group of scientists (Knipling, 1970; Hunt, 1977; Swain and 
Davis, 1978) studied the reflectance spectra of rocks, minerals and 
vegetation, and developed the concept of understanding the spectral 
properties in terms of the underlying quantum mechanical process in 
relation to the chemistry of the reflecting object. 
 
This directed scientists to the suggestion that, by measuring the amount 
of light that reflects from a surface, one can possibly distinguish the 
composition of chemical elements of that surface. When an image is 
constructed from imaging spectrometer data that measure spectra from 
contiguous image pixels, the term changes to “imaging spectroscopy”. In 
the remote sensing community, the term “imaging spectroscopy” has 
many synonyms, such as imaging spectrometry and hyperspectral or 
ultraspectral imaging (Clark, 1999). The prefix “hyper” in the word 
“hyperspectral” refers to spectra consisting of large numbers of 
contiguous and narrow light sensors. The data from a hyperspectral 
sensor often consist of over 100 contiguous bands of 10 nm or less 
bandwidth. These contiguous bands and narrow ranges lead to the 
possibility of detecting surface chemistry and better understanding the 
underlying biophysical processes in vegetation. In the thesis research, 
two different hyperspectral sensors were used. Measurements were made 
at field and laboratory levels using the GER 3700 spectrometer with 647 
spectral bands from 350 to 2500 nm, and at the airborne platform level 
using the HyMap sensor with 126 spectral bands from 400 to 2500 nm. 
 
1.2 Vegetation spectroscopy 
With the introduction of imaging spectroscopy and/or hyperspectral 
sensors, both quantitative and qualitative remote sensing of vegetation 
improved significantly on that produced using the older broadband 
multispectral sensors. As ecological studies require the quantification of 
biochemical and biophysical attributes (Asner, 1998), the high spectral 
resolution of hyperspectral data is vital for yielding quality information 
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about vegetation health, biomass and other physico-chemical properties 
(Curran, 1989; Curran et al., 1992; Peñuelas et al., 1997; Todd et al., 
1998; Green et al., 1998; Kokaly and Clark, 1999; Asner et al., 2000; 
Soukupová, Rock and Albrechtova, 2002; Mutanga et al., 2003; Zarco-
Tejada et al., 2003; Mutanga and Skidmore, 2004; Mutanga et al., 2004; 
Zarco-Tejada et al., 2005). Moreover, hyperspectral data have made it 
possible to measure more accurately both the quantity and particularly 
the quality of the vegetation. 
 
1.2.1 Vegetation quantity and hyperspectral data 
Measuring vegetation quantity (or biomass) at field level is a difficult and 
destructive process (Gower, Kucharik and Norman, 1999). In addition, it 
is expensive and can rarely be extended to cover large areas (Scurlock 
and Prince, 1993). However, with the arrival of remote sensing, 
quantifying biomass became a reality (Tucker, 1979; Elvidge, 1990; 
Daughtry et al., 1992). Various vegetation indices (i.e., NDVI, SR, TVI, 
SAVI) had been developed and successfully used to measure vegetation 
quantity and leaf area index (LAI). In spite of these successes, vegetation 
indices calculated from broadband sensors can be unstable, owing to the 
underlying soil colour, canopy and leaf properties, and atmospheric 
conditions (Huete and Jackson, 1988; Todd, Hoffer and Milchunas, 1998). 
Furthermore, NDVI measured by broadband sensors asymptotically 
saturate after a certain biomass density, and measurement accuracy 
drops considerably (Todd, Hoffer and Milchunas, 1998; Gao et al., 2000; 
Thenkabail, Smith and De Pauw, 2000). However, most of these 
problems have been tackled or at least reduced since the appearance of 
hyperspectral sensors. New narrow-band NDVI (Mutanga and Skidmore, 
2004; Mutanga and Skidmore, 2004) that reduce the problem of 
saturation have been developed, while new indices such as red-edge 
position (REP) are able to measure biomass much more accurately than 
NDVI (Curran, Windham and Gholz, 1995; Cho and Skidmore, 2006). 
 
1.2.2 Vegetation quality and hyperspectral data 
Measuring the biochemical parameters necessary for uncovering 
vegetation quality is more difficult than remote sensing of biomass or LAI 
because specific absorption regions of these biochemicals are masked by 
broadband sensors (Curran, 1989; Johnson, Hlavka and Peterson, 1994). 
In plant tissue, the absorption of energy from radiation has been 
attributed to the energy transition of the molecular vibration in C-H, N-H, 
O-H, C-N and C-C bonds, which are the building blocks of all organic 
compounds (Elvidge, 1990). Hence, any reflection from a plant at a 
specific wavelength is a function of the chemical composition of that plant 
(Foley et al., 1998). However, after the introduction of spectrometry, a 
whole new branch of science started to develop. Scientists began to 
measure in plant materials the contents of various chemicals, including 
nitrogen and phosphorus, that are directly related to such plant qualities 
as pigment concentration, plant health, stress and damage (Curran et al., 
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1992; Peñuelas, Baret and Filella, 1995; Kraft et al., 1996; Gamon and 
Surfus, 1999; Mutanga, Skidmore and Prins, 2004; Ferwerda, Skidmore 
and Mutanga, 2005; Ferwerda, Skidmore and Stein, 2006). 
 
1.3 Species discrimination with hyperspectral data  
 
1.3.1 Why we need to discriminate plant species 
Plant species is the main building block of almost all ecosystems, and 
sustainable management of any ecosystem requires a comprehensive 
understanding of species composition and distribution (Nagendra, 2002). 
To achieve the goal of accurately revealing species composition and 
distribution by using remotely sensed data, species-level discrimination of 
plants is essential. Moreover, monitoring the changes of species richness 
through remote sensing, and particularly examining the composition of 
certain species in a specific area, can be achieved only if species-level 
identification and discrimination is possible, which in turn can make it 
viable to recognize the succession process of the ecosystem. Much 
research into discriminating invasive species from the native vegetation 
has been undertaken in order to develop a sustainable protection 
strategy (Everitt et al., 1995; Lass et al., 2002; Hunt et al., 2003; Hunt 
et al., 2004; Parker-Williams and Hunt, 2004). 
 
1.3.2 Use of hyperspectral remote sensing in species 

discrimination 
Traditionally, species discrimination for floristic mapping involved 
exhaustive and time-consuming fieldwork, including taxonomical 
information and the visual estimation of percentage cover for each 
species (Kent and Coker, 1992). After the introduction of aerial 
photography, the extrapolation of such point-based information became 
possible (Zonneveld, 1974). Even after the arrival of broadband sensors, 
vegetation cover mapping failed to make any headway beyond accurate 
mapping at Anderson level II (Anderson et al., 1976). This failure was 
caused mainly by the lack of spectral and spatial resolution necessary to 
differentiate species in the landscape. 
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Technological advancement and the advent of hyperspectral sensors with 
both high spectral and spatial resolutions have raised new expectations 
about the possibilities for spectrally discriminating species (Figure 1.1) 
(Cochrane, 2000; Schmidt and Skidmore, 2003; Clark Roberts and Clark, 
2005) and thus improving the discrimination and mapping of vegetation 
communities or species. Researchers have been able to discriminate and 
classify species based on their fresh leaf reflectance (Gausman and Allen, 
1973; Goward, Huemmrich and Waring, 1994; Gong, Pu and Yu, 1997; 
Knapp and Carter, 1998; Kumar and Skidmore, 1998; Cochrane, 2000; 
Schmidt and Skidmore, 2001; Vaiphasa et al., 2005), field reflectance at 
canopy (Satterwhite and Ponder Henley, 1987; Petzold and Goward, 
1988; Peñuelas et al., 1993; Schmidt and Skidmore, 2003; Yamano et 
al., 2003), or remotely sensed hyperspectral imagery (Bajjouk et al., 
1996; Silvestri et al., 2003; Thenkabail et al., 2004; Clark et al., 2005). 
Availability of this high spectral resolution has not only improved the 
accuracy of conventional classifiers but also introduced the possibility of 
using sub-pixel-level spectral unmixing techniques that determine the 
relative abundance of endmembers present in a pixel (Adams et al., 
1995). Different types of unmixing algorithms are available and have 
been used for mapping individual plant species or associations with mixed 
success (Roberts et al., 1998; McGwire, Minor and Fenstermaker, 2000; 
Parker Williams and Hunt, 2002; Robichaud et al., 2007). 
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Figure 1.1 Leaf spectrum of two different species, Acer campestre (smooth 
line) and Carpinus orientalis (dashed line). Wavelengths at which these 
two spectra are significantly difference are shaded grey. 
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However, even after all these successful applications of reflectance 
spectra for discriminating between species, some researchers claim that 
the leaf reflectances of different species are highly correlated because of 
their similar chemical composition (Portigal et al., 1997). Furthermore, 
Price (1994) suggests that several species may actually have 
quantitatively similar spectra owing to the variation in spectral signature 
present within a species. He argues that a spectrum is a mixture of 
physical and chemical properties that can change because of various 
environmental factors, and therefore their uniqueness is questionable 
(Price, 1994). Moreover, spectral variations can also occur within a 
species because of age differences, micro-climate, soil characteristics, 
precipitation, topography, phenology, and a host of other environmental 
factors, including stresses (Gausman, 1985; Westman and Price, 1987; 
Carter, 1993; Carter, 1994; Portigal et al., 1997; Roberts et al., 1998; 
Gracia and Ustin, 2001; Smith et al., 2004). 
 
The high spectral resolution of hyperspectral data, which is the key 
feature and is essential for capturing and discriminating subtle differences 
in the targets, also contains redundant information at band level (Bajwa 
et al., 2004). This high data dimensionality makes computation difficult 
for classification and discrimination, and with traditional classifiers high 
dimensionality undermines the precision of the estimates of class 
distribution. To reduce redundancy or dimensionality, various univariate 
and multivariate band reduction techniques have been developed, such 
as multiple stepwise and partial least square regressions, discriminant 
analysis, principal component analysis and artificial neural network. 
However, many have argued against the band reduction techniques, 
indicating the loss of information (Roberts et al., 1998). It is therefore 
important to understand the advantages and disadvantages of both 
states and select accordingly. Moreover, using hyperspectral remote 
sensing for the species-level discrimination or mapping of plants is a 
complex process, and it is therefore important to understand all the 
different aspects before coming to a conclusion. 
 
1.4 Study objectives 
The main objective of this study was to investigate the various features 
of the potential of hyperspectral remote sensing for plant species 
discrimination. To realize this main objective, we subdivided it into sub-
objectives: (1) to identify the potential spectral regions containing 
information regarding species discrimination, (2) to investigate the 
usefulness of spectral matching algorithms for discriminating spectra of 
different plant species, (3) to examine whether phenological events can 
be used to enhance the separability between species, and (4) to examine 
whether sub-pixel unmixing techniques can be used to map the species 
distribution and richness in a landscape. 
 
This thesis work was performed in parallel with the study of Cho (2007), 
who worked on estimating biochemical and biophysical parameters from 
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plant reflectance and used the red-edge double-peak feature to do so. 
The combination of these two studies provides an overview of the 
biomass and species distribution in Majella National Park, Italy. 
 
1.5 General Method 
The major part of this study was based on laboratory measurements of 
leaf and canopy spectra, and different sensor devices, including field and 
laboratory spectrometers and an airborne hyperspectral sensor (i.e., 
HyMap), were adopted. Both univariate and multivariate statistical 
methods are featured in different chapters. The field-level data and plant 
materials were collected in Majella National Park, Italy (Figure 1.2). 
 
1.5.1 Study area 
The study site is located in Majella National Park, Italy (42°14' to 42°50'N 
and 13°50' to 14°14'E), which covers an area of 74,000 ha. The park 
extends into the southern part of Abruzzo, at a distance of 40 km from 
the Adriatic Sea. This region is situated in the massifs of the Apennine 
mountain range. The park is characterized by several mountain peaks, 

the highest being Mount Amaro (2794 m). More specifically, the study 
area (42°49' to 42°14'N and 13°57' to 14°06'E) is situated between 
Mount Majella and Mount Morrone to the east and west, respectively. It 

Figure 1.2 Location of Majella national park in Italy with airborne HyMap 
flight lines. 
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covers an area of approximately 40 km x 6 km, as shown in Figure 1.2 
(as flight lines). The flora of Majella National Park exhibit a wide range of 
species: more than 2100 species (covering 65% of Abruzzi flora and 37% 
of Italian flora) and various endemisms that amount to 142 species 
(covering 12% of endemic Italian flora) (Conti, 1998). The average 
yearly precipitation is approximately 800 mm.  
 
1.6 Thesis outline  
To achieve the main goal of discriminating plant species by using 
hyperspectral remote sensing, various aspects and alternatives have 
been explored. The chapters of this thesis, apart from the introduction 
and synthesis, have been written as stand-alone articles for peer-
reviewed journals and can be read separately from the rest of the thesis. 
As a result, in a number of chapters overlap occurs in the sections 
“Introduction” and “Method”. 
 
Chapter 2 investigates the nature of post-harvest spectral changes in 
green leaves and their implications for widely used vegetation spectral 
indices, in order to determine a “safe” period of time within which 
spectral properties remain significantly unchanged. This was important 
because in most of the subsequent chapters leaves have been collected 
in the field and transported to the laboratory for spectral measurement 
since in situ spectroscopic measurements are often impractical because 
of poor or highly variable lighting conditions and inaccessibility for 
portable spectral equipment. 
 
In Chapter 3, we compare the performance of different discrimination 
procedures and propose specific regions of the spectrum with the highest 
discriminating property. 
 
The aim of Chapter 4 is to discriminate plant species by measuring 
spectral dissimilarities among different species, using four spectral 
similarity measures. In addition, we investigate the relative performance 
of these similarity measures in the context of discriminating plant 
species. 
 
Chapter 5 examines the nature and magnitude of changes in spectral 
properties offered by a phenological event (i.e., flowering), with regard to 
maximizing species discrimination. 
 
Chapter 6 investigates the utility of spectral unmixing techniques with 
airborne hyperspectral imagery (HyMap) for identifying shrub and tree 
species composition at pixel level (i.e., the type and number of species 
per pixel) in a semi-natural Mediterranean landscape, which would 
provide spatial information on the species distribution at landscape level. 
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Finally, Chapter 7 summarises all the findings in the context of the 
possibilities offered by hyperspectral remote sensing for plant species 
discrimination. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A number of investigations (chapter 3, 4 and 5) involved laboratory based 
spectroscopy of plant materials, with the assumption that detached leaves would 
retain spectral characteristics similar to that of in situ measurements. However, 
as the leaves dehydrate after detachment from the plant, it was important to 
know the ”safe” time period within which the measurements remain similar to an 
in situ  condition. 
 
The aim of this chapter was to establish the “safe” time period for different 
species types and for different vegetation indices. Results from this investigation 
were essential for the subsequent chapters which assume that the laboratory 
measurements were representing an in situ state. 
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Abstract 
 
The objective of this study was to investigate the spectra of green leaves 
change after harvesting, and the implications for some widely used 
vegetation indices in order to elucidate the period of time within which 
spectral properties remain significantly unchanged. Leaf specimens of 
eleven species were harvested and spectral measurements were made at 
different time intervals. Readings were repeated at time 0, 1, 2, 3, 4, 6, 
8, 12, 24, 36 and 48 hours from leaf collection and vegetation indices 
were calculated from these measurements. In order to observe at what 
point in time indices start to vary significantly from first reading (t0) in 
leaf reflectance, two sample t-test with Bonferroni correction were 
conducted between the (t0) and subsequent readings. The results reveal 
that the spectral properties of fresh leaves change significantly over time 
after detachment from the plant. A safe period during which spectral 
measurements under laboratory condition can be made (irrespective of 
variations caused by species) was found to be around six hours. 
However, the rate of change differs greatly due to the leaf structure of 
different species. Although leaf dehydration influences reflectance across 
the whole spectrum following detachment, the effects are more 
pronounce for NIR and SWIR compared with the visible part of the 
electro-magnetic spectrum. In the initial phase of the dehydration the 
indices which use NIR and SWIR wavebands started to change due to the 
rapid water loss. The changes were particularly pronounced for water 
indices such as NDWI and MSI, and for all species NDWI and MSI may be 
used to conservatively estimate the safe period for measurements. As the 
reflectance in NIR wavebands increase, indices such as REP and NDVI 
were also affected. Very little change was observed for the pigment 
based indices during the first 8 hours of the measurement, but these 
indices subsequently declined probably due to the deterioration of 
chlorophyll.  
 
Keywords: Spectroscopy; leaf clipping; leaf dehydration; spectral indices 
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2.1 Introduction 
Plant canopies play an important role in the exchange of water, energy 
and greenhouse gases between vegetation and the atmosphere 
(Blackburn, 1998a). These processes are controlled by foliar biochemical 
content e.g. chlorophyll, nitrogen concentrations (Asner, 1998) and the 
leaf hydration state. Hence information of leaf biochemistry could help to 
predict these processes. However, estimates of canopy chemistry by 
traditional field sampling methods are time consuming and difficult to 
undertake for large areas (Curran et al., 1991; Kokaly and Clark, 1999). 
Remote sensing provides a means of estimating canopy biochemistry 
over such large extent. Many studies have sought to understand the 
spectral properties of leaves, one of the primary controls of canopy 
reflectance (Gates et al., 1965; Boochs et al., 1990; Yoder and Pettigrew-
Crosby, 1995; Blackburn, 1998b).  
 
As detailed in Table 2.1, leaves are often collected in the field and 
transported to the laboratory for spectral measurement, because in situ 
spectroscopic measurements are often impractical due to poor or highly 
variable lighting conditions and inaccessibility for portable spectral 
equipments (Foley et al., 2006). However, a limitation with this approach 
is that leaf physiology changes over time. Harvested leaves are subjected 
to considerable stress due to the sudden disruption in energy, nutrient 
and hormone supplies (Page et al., 2001). The stress is manifested by 
changes in leaf biochemical constituents such as water content and 
pigment concentration (Böttcher et al., 2001; Able et al., 2005). As such 
changes in leaf physiology affect its spectral properties (Horler et al., 
1983; Hunt and Rock 1989; Carter, 1993, 1994; Peñuelas et al., 1994; 
Carter and Knapp, 2001), results based on laboratory measurements 
may not truly reflect in situ spectra. A study of the literature (Table 2.1) 
shows varying time lapses between leaf specimen collection and spectral 
measurement. 
 
Several specimen handling techniques have been proposed to maintain 
the physiological status of leaves after harvest in the field. For example, 
leaves have been stored in air tight plastic bags with a moist paper towel 
or a small quantity of water in order to construct a humid environment 
which reduces the vapour pressure gradient between the leaf and air 
(Horler et al., 1983; Skidmore and Knowles 1996; Datt, 1999; Foley et 
al., 2006). In other experiments, leaf petioles were cut and dipped into 
water to protect them from dehydration (Peñuelas et al., 1994; Foley et 
al., 2006). Artificial cooling or keeping the specimen in dark cold room 
has also been used to reduce transpiration (Lacaze and Joffre, 1994; 
Cao, 2000; Sims and Gamon, 2002). Covered metal containers were also 
used for similar purpose (Keegan et al., 1955). 
 
A number of recent studies have developed indices which are sensitive to 
water e.g. normalized different water index (NDWI), moisture stress 
index (MSI) and chlorophyll stress (e.g. red-edge position (REP), 
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photochemical reflectance index (PRI)). Studies on post-harvest changes 
in leaf spectra are rare (e.g., Richardson and Berlyn 2002; Foley et al. 
2006). There are no studies which give details as to when crucial spectral 
properties of leaves such as vegetation indices significantly differ from 
values obtained immediately after harvest. Further, a complete 
understanding of this dehydration process and its implication on various 
spectral measurements remain to be established (Horler et al., 1983; 
Richardson and Berlyn, 2002; Foley et al., 2006). 
 
Table 2.1 Articles where leaf spectral reflectance was measured in laboratory after 
collecting specimen from the plant. 

Time gap between leaf sample 
collection & spectral measurement

References 

15 min Asner (1998), Kumar and Skidmore 
(1998). 

1 hour Cochrane (2000) 
2 hours Schmidt and Skidmore (2001); Cho and 

Skidmore (2006) 
4 hours Vaiphasa et al. (2005), Skidmore and 

Knowles (1996) 
6 hours Horler et al. (1983) 
10 hours Ramsey III and Jensen (1996) 
12 hours Clark et al. (2005)  
24 hours Hunt and Rock (1989)  
same day Zarco-Tejada et al. (2005) 
immediate after harvest but no 
time specification 

Peñuelas et al. (1994); Blackburn, 
(1998a) 

not mentioned 
 

Gao (1996); Blackburn (1998b); Carter 
and Knapp (2001); Gitelson et al. 
(2002); Gong et al. (2002); Sims and 
Gamon (2002) 

 
 
The main objective of this study was to investigate the nature of post-
harvest spectral changes for green leaves and its implications for widely 
used vegetation spectral indices in order to determine a “safe” period of 
time within which spectral properties remain significantly unchanged. 
Leaf specimens of eleven species were harvested and spectral 
measurements were made at different time intervals. Statistical analyses 
were subsequently carried out in order to determine the time when 
various vegetation indices become significantly different from their initial 
values. 
 
2.2 Materials and method 
 
2.2.1 Collection and preservation of leaf specimens 
Mature leaf specimens of eleven species (Table 2.2) were collected in July 
2005 in Enschede, The Netherlands. After detachment from the plant, the 
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leaves of each species were randomly divided into eleven sets and placed 
in marked plastic sample bags. Each of these bags, 121 in total had an 
adequate number of leaves for a successful spectral measurement. The 
sample bags were immediately taken to the laboratory and stored in the 
dark at room temperature (±25˚C), without applying any extra 
preservation and handling techniques. In addition to examine responses 
for individual species, they were also grouped using their leaf structure 
(e.g., thickness and protection mechanism) to examine each group’s 
response to dehydration. 
 
Table 2.2 List of species used in the experiment with different leaf types. 
Species Leaf type Group 
Abies grandis Needle leaf  2 
Acer pseudoplatanus Large leaf with medium thickness 2 
Betula pendula Medium leaf with medium thickness 2 
Fagus sylvatica Medium size with glossy surface 2 
Ilex aquifolium Thick cuticle layered 4 
Pinus nigra Needle leaf 3 
Quercus robur Large leaf with medium thickness 2 
Robinia pseudoacacia Small leaf, soft and fragile 1 
Thuja orientalis Gymnosperm 3 
Rhododendron sp. Large leaf with thick cuticle layer 4 
Grass (c4) Thin leaf  1 
 
2.2.2 Collection of leaf spectra 
The first sets of spectral measurements were conducted within thirty 
minutes from the time of field collection and were labelled as base 
readings (t0). Subsequent measurements (using a new bag each time) 
were made after 1, 2, 3, 4, 6, 8, 12, 24, 36 and 48 hours from the time 
of field collection. The interval between measurements was shorter 
initially with the assumption that changes would be faster during this 
period. Thus for every species we had eleven readings at different time 
intervals. The spectra were measured in a laboratory (i.e., dark room, 
±25˚C) following the method described by Vaiphasa et al. (2005) in 
order to avoid ambient light sources unrelated to the true spectral signal 
of the leaves.  
 
A GER 3700 (Geophysical and Environmental Research Corporation, 
Buffalo, New York) spectroradiometer measured the reflectance spectra. 
The GER 3700 is a three dispersion grating spectroradiometer using Si 
and PbS detectors with a single field of view.  The wavelength range is 
from 325 nm to 2500 nm, with sampling intervals of 1.5 nm between 325 
nm and 1050 nm, 6.2 nm between 1050 nm and 1900 nm and 9.5 nm in 
the 1900 nm to 2500 nm range. The Full Width Half Maxima (FWHM) is 3 
nm, 11 nm and 16 nm in the 325 nm to 1050 nm range, 1050 nm to 
1900 nm range and 1900 nm to 2500 nm range respectively. Although 
the spectrometer records up to 647 bands, due to the high noise at the 
extreme short wavelength area only the spectral range between 400 nm 
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and 2500 nm was analysed, which contains 597 wavebands. The sensor, 
equipped with a 1.5 m long fiber optic cable (25˚ field of view) was 
mounted on a tripod and positioned 15 cm at nadir above the target 
leaves. A light source (Lowel Pro-Light with 14.5V/50W/3200K JCV 
halogen lamp), pointing at the centre of the leaf plate, was placed at 30 
degrees off-nadir approximately 40 cm from the target.  
 
For each species a single leaf layer was formed on top of a flat black 
plate covering the entire viewing area of the sensor. For species 
comprising small leaves and needles (Group 1 & 3) more than one leaf 
layer was required to cover the plate, but the plant material applied was 
the minimum required to achieve the objective of covering the plate. 
Twenty spectral measurements were obtained from each sample plate, 
and averaged to produce a single spectrum in order to reduce specular 
behaviour (Schmidt and Skidmore, 2001). Twenty such repetitions were 
made per bag; in other words fresh leaves were placed on the plate 20 
times and 20 spectra obtained at each time period. The radiance data 
was converted to reflectance using scans of a white “Spectralon” 
reference panel. We used a Savitzky-Golay (Savitzky and Golay, 1964) 
second order polynomial least-squares function of five bands window to 
spectrally smooth our data (Kumar and Skidmore, 1998; Schmidt and 
Skidmore, 2004). 
 
2.2.3 Data analysis 

2.2.3.1 Use of indices 

To quantify the variations in spectral signature over time six well known 
vegetation indices (Huete and Jackson, 1988; Qi et al., 1995) were 
adopted to detect stress. In addition, we also measured the absolute 
peak reflectance in near infra-red (NIR) (750 – 800 nm) as an indicator 
of the volume of intercellular space in leaves. 
 
(i) Narrow band NDVI 
Normalized Different Vegetation Index (NDVI) (Rouse et al., 1973) is the 
most popular vegetation index in remote sensing. With the advent of 
hyperspectral spectrometry various narrow band combinations have been 
assessed described by Mutanga and Skidmore (2004) (Eq 1). 
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(ii) Red-Edge Position (REP)  
The red edge is a unique feature of green vegetation resulting from two 
optical properties of plants - the chlorophyll absorption providing low red 
reflectance, and internal leaf scattering yielding high near infrared 
reflectance (Collins, 1978; Horler et al., 1983). Within this red edge 
region the point of maximum slope (or inflection point) is referred to red 
edge position (Filella and Peñuelas, 1994). Typically it occurs between 
680 – 780 nm. Although it is principally sensitive to chlorophyll, the red-
edge has been shown sensitive also to water, foliage mass and leaf area 
index (LAI) (Thomas and Gaussman, 1987; Curran et al., 1990; Curran 
et al., 1991; Danson and Plummer, 1995; Dawson and Curran, 1998). 
Two simple techniques for locating the REP were applied, (i) linear four-
point interpolation technique (Guyot and Baret, 1988) and (ii) linear 
extrapolation technique (Cho and Skidmore, 2006). 
 
Linear four-point interpolation technique 

 
The linear four-point interpolation method (Guyot and Baret, 1988) 
assumes that the reflectance curve at the red edge can be simplified to a 
straight line centered near the midpoint between the reflectance in the 
near infra-red (NIR) at about 780 nm and the reflectance minimum of the 
chlorophyll absorption feature at about 670 nm. It uses four wavebands 
(670, 700, 740 and 780 nm), and the REP is determined by using a two-
step calculation procedure: 
 

Calculation of the reflectance at the inflection point  
 

( )
2

780670 RR
Rre

+
=       Eq.2 

 
where, R is the reflectance.  
 

Calculation of the red edge wavelength or red edge position is 
according to Eq. 3 
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where, 700 and 40 are constants resulting from interpolation in the 

700–740 nm interval.  
 
Linear extrapolation technique 
 
The technique is based on linear extrapolation of two straight lines (Eqs. 
4 and 5) through two points on the far-red (680 to 700 nm) and two 
points on the NIR (725 to 760 nm) flanks of the first derivative 
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reflectance spectrum (FDR) of the red edge region (Cho and Skidmore, 
2006). The REP is then defined by the wavelength value at the 
intersection of the straight lines (Eqs. 4 and 5).  
 
Far-red line: 11 cmFDR += λ       Eq.4 

 
NIR line: 22 cmFDR += λ       Eq.5 

 
Where, m and c represent the slope and intercept of the straight lines. At 
the intersection, the two lines have equal λ (wavelength) and FDR values. 
Therefore, the REP, which is the λ at the intersection and is given by Eq. 
6. 
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=        Eq.6 

 
Four coordinate points (or wavebands) are required to calculate the REP 
by the linear extrapolation method; for instance, two bands near 680 and 
700 nm to calculate m1 and c1 for the far-red line and two bands near 
725 and 760 nm to calculate m2 and c2 for the NIR line. 
 
(iii) Normalized difference water index 
The normalize difference water index (NDWI) was developed to measure 
the liquid content in vegetation canopies and leaves which interact with 
the incoming radiation (Gao, 1996). NDWIs increase with higher LAI, 
showing its sensitivity to the total water amount in the stack. NDWI was 
calculated (Eq. 7) as described by Gao (1996). 
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=       Eq.7 

 
(iv) Moisture stress index  
The moisture stress index (MSI) (Rock et al., 1986) is linearly correlated 
to both relative water content (RWC) and equivalent water thickness 
(EWT) of leaves (Hunt and Rock 1989). In addition RWC has been found 
to be correlated with leaf water content index (LWCI) (Hunt et al., 1987).  
MSI was calculated as described by Hunt and Rock (1989) (Eq. 8). 
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(v) Simple Ratio Pigment Index 
The simple ratio pigment index (SRPI) is based on carotenoid/chlorophyll 
ratio (Peñuelas et al., 1993; Peñuelas et al., 1995; Peñuelas et al., 
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1995). Both carotenoids and chlorophyll absorb concurrently in the 300 
to 500 nm ranges, but carotenoids do not absorb strongly in the red 
spectral area. Two narrow bands, one centered at 430 and another 
cantered at 680 nm, were used to calculate the index as described by 
Peñuelas et al. (1995) (Eq. 9).  
 

680

430

R
R

SRPI =         Eq.9 

 
(vi) Physiological/photochemical Reflectance Index  
The physiological/photochemical reflectance index (PRI) (Gamon et al., 
1992; Gamon et al., 1997; Sims and Gamon, 2002) is another widely 
used index related to carotenoid/chlorophyll ratio in green leaves. This 
index was originally developed for estimating changes in the xanthophyll 
pigment cycle, thereby deriving photosynthetic light use efficiency 
(Peñuelas et al., 1995; Gamon et al., 1997).  PRI (Eq. 10) also compares 
the reflectance of red and blue region of the spectrum as it measures the 
reflectance on either side of the green hump around 550 nm. 
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(vii) Highest absolute reflectance in NIR plateau 
The highest absolute reflectance in NIR plateau between 740-1200 nm 
results from the high degree of intra- and inter leaf scattering. The 
optimum spectral region for sensing in the near-infrared region is 
situated between 750 – 800 nm (Tucker, 1979), which influence most of 
the indices that use the NIR region. 
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2.2.4 Statistical analysis 

For each species, we performed ten two sample two-tailed t-test to 
examine the differences in mean index value between initial (t0) and the 
ten subsequent spectral measurements (t1, t2, ….t10). We used this 
method to reveal the time at which indices became significantly different 
from the initial reading. The t-test was considered appropriate, as the 
data was confirmed to be normally distributed, and the sample size of 
two treatments was equal and large (n=20) (Moore and McCabe, 2003). 
The critical value was set at ά = 0.005 following a Bonferroni correction 
to account for the increased probability to reject the null hypothesis due 
to the multiple comparisons. Next, we investigated whether the changes 
of the indices over time differed between species using a two way 
ANOVA. To address this question we investigated the statistical 
significance of the interaction between species and time. 
 
2.2.5 Histology 
Electron microscopic scans of the cross section of leaves were made in 
order to visualize internal anatomical change to the leaves between 
different time periods. The scans were made using a cryo-scanning 
electronic microscope. For each species two leaves were examined within 

Figure 2.1 Changing nature of reflectance spectra of Betula pendula leaves, from 
immediately after collection (0.5 h) through 48 hours after collection. 
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two hours of collection and then after approximately 24 hours after 
collection. 
 
Specimens were mounted in clamp holders and frozen in liquid nitrogen 
and subsequently placed in a dedicated cryo-preparation chamber 
(Oxford Instruments CT 1500 HF, Eynsham, UK). In this cryo-preparation 
chamber the specimen were fractured with a cold scalpel and freeze dried 
for 3 minutes at -90°C at 1 x 8-4 Pa to remove water vapour 
contamination. After 3 minutes specimens were sputter coated with a 
layer of 10 nm Pt at the same temperature. The sample was cryo-
transferred into the field emission scanning microscope (JEOL 6300F, 
Japan) on a sample stage at -180°C. The analyses were performed at a 
working distance of 16 mm, with SE detection at 3.5 kV. 
 
All images were recorded digitally (Orion, 6 E.L.I. sprl, Charleroi Belgium) 
at a scan rate of 100 seconds (full frame) at the size of 2528 x 2030, 8 
bit. The images were optimized and resized for publication by Adobe 
Photoshop CS.  
 
2.3 Results 
 
2.3.1 Post-harvest changes in leaf spectra 
Visually, most of the leaves remained unchanged during the first six 
hours. The first sign of wilting was visible in Robinia pseudoacacia and in 
the grass species. Subsequently other species started showing signs of 
desiccation within 12 hours with the exception of Ilex aquifolium and 
Rhododendron sp., which appeared unchanged after up to 48 hours of 
detachment. 
 
Turning to the reflectance spectra, within the first few hours following the 
specimen collection, spectral changes were confined to the NIR and short 
wave infra-red (SWIR).  For most species, NIR and SWIR reflectance 
increased with time. Within the first 24-36 hours, reflectance in the NIR 
region increased by 10-15 percent in Robinia pseudoacacia, Betula 
pendula, Acer pseudoplatanus, Fagus sylvatica, Quercus robur and grass 
species. After that period of time, NIR reflectance increment saturated 
and even decreased a little in some species (Figure 2.1). But for other 
species such as, Ilex aquifolium and Rhododendron sp. NIR reflectance 
kept increasing up to 48 hours. Changes in SWIR were somewhat more 
continuous, although the rate varied among species. A band by band two 
sample t-test between initial and subsequent time lapse measurements 
of Betula pendula (Figure 2.2) revealed the sensitivity of different 
spectral regions to dehydration. 
 
2.3.2 Post-harvest changes in vegetation indices 
The t-test results (Figure 2.4) revealed that, among the indices, NDWI 
and MSI were the first two indices which showed significant changes over 
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time for all species. They were followed by REPs, NDVI and LM-NIR, while 
PRI and SRPI were slowest to response after leaf detachment (Figure 
2.4). REP extracted by the linear interpolation method showed higher 

sensitivity to time or leaf dehydration than the REP extracted using the 
linear extrapolation method. As depicted in Table 2.3, 6 species out the 
11 have shown that significant changes took place earlier for the REP as 
calculated by the linear interpolation method compared to none for the 
REP calculated using the linear extrapolation technique.   
 
The indices may be categorised into three groups according to the 
pattern of change. The first group consisting of the REPs, NDVI and LM-
NIR showed a hump-shape pattern. The value of the spectral indices 
increased with time to a maximum point before started to decline (Figure 
2.5). A third order polynomial curve determined the turning point for 
each index and species. We calculated the first derivative to localize the 
inflection point (Figure 2.5). The first derivative was calculated from the 
polynomial function and equated to zero (i.e., at the turning point the 
derivative function or rate of change equals zero). This process yielded a 
quadratic equation which was then solved for time using the quadratic 

Figure 2.2 Plot showing the sensitivity of different spectral bands against 
dehydration calculated through band by band two sample t-tests between initial (t0) 
and subsequent spectral measurements of B. pendula (critical t α = 0.005 = 2.845). 
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formula. The time taken by each index to attain its turning point differed 
among species (Table 2.4). The second group of indices consisting of 
NDWI, SRPI and PRI decreased with time in a linear fashion. A significant 
linear relationship was also observed between time taken for the REPs to 
reach the turning point and the time when SRPI or PRI became 
significantly different from their readings at t0 (Figure 2.6). The only 
remaining index MSI showed a linear increasing trend.  
 
Table 2.3 Time (in hours) at which the indices became significantly different from 
time t0. 

 
2.3.3. Influence of species on spectral change 
The results of two-way ANOVA were used to investigate the influence of 
species on spectral change and revealed that there was a significant 
species effect on spectral changes when considering all the indices 
together F(1, 80) = 1100, p < 0.000.  The result also revealed that a 
significant interaction did exist between species and time, F(80, 64) = 
10.0, p < .0001.  But when we used groups of species (Table 2.2) 
instead of individuals as predictor variables and indices of similar type as 
dependent variables, the interaction was only significant between species 
groups and time while using two water indices  F(6, 16) = 4.6, p < 
0.0001.  
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A. grandis 12 12 12 8 8 12 12 12 

A. pseudoplatanus 8 12 8 6 8 8 12 8 

B. pendula 8 12 12 8 6 8 12 8 

F. sylvatica 8 8 12 6 8 12 24 8 

I. aquifolium 24 24 24 12 12 24 24 12 

P. nigra 12 12 12 8 8 12 12 8 

Q. robur 8 12 12 6 8 12 24 8 

R. pseudoacacia 6 8 8 6 6 8 8 6 

T. orientalis 8 12 8 8 8 12 12 8 

Rhododendron sp. 24 24 36 12 12 24 36 24 

Grass (c4) 6 8 8 6 6 8 8 6 
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Figure 2.3 Changes of indices with progressive delay in the measurements in B. 
pendula. Arrows indicate time frame (h) within which no significant (p<0.005) 
differences of index values were observed from the initial readings. 
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Figure 2.4 The figure shows the time at which indices in different species became 
statistically significant different from the base reading. Indices measured were: (a) 
REP (Guyot); (b) REP (Cho); (c) NDVI; (d) Local maximum in NRI; (e) NDWI; (f) 
MSI; (g) SRPI and (h) PRI. Dashed line shows the significant p level line. 
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Figure 2.5 Figure shows the use of polynomial fit lines to calculate the 
inflection or turning points of the indices, at which the controlling factors shift 
their dominance, example from B. pendula leaves. 
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Table 2.4. The time taken by these indices to attain its turning points for different 
species. 

Time (h) 
Species 

REP (Guyot) REP(Cho) NDVI LM_NIR 
Abies grandis 16 17 17 20 

Acer pseudoplatanus 9.5 9 10 18 

Betula pendula 11 12 14 25 

Fagus sylvatica 18 20 18 36 

Ilex aquifolium 30 28 36 42 

Pinus nigra 20 18 20 38 

Quercus robur 18 19 19 36 

Robinia pseudoacacia 8 8 10 16 

Thuja orientalis 19 20 24 40 

Rhododendron sp. 34 35 38 48 

Grass (c4) 9 10 10 15 

 
2.3.4 Histology 
Cross-sections of leaves produced by histological analysis depicted the 
changes between fresh and partly dried leaf specimens of different 
species. It is evident from cross-sections that the speed of dehydration 
and associated structural changes were different depending on a species 

Figure 2.6 Figure shows the linear relationship between time at which 
PRI change significantly from t0 reading and REP to reach the turning 
points for different species. 
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ability to withstand desiccation. As an example the sections of three 
species with different leaf structure are displayed in Figure 2.7; Robinia 
pseudoacacia with thin and fragile leaves, Fagus sylvatica with a thin 
protection of waxy layer on the epidermis and Ilex aquifolium with thick 

Figure 2.7 Leaf section produced by the histological analysis. Pictures on the left 
side are from within 2 hours of collection and picture on the right side are from 
approximately 24 hours after collection (a) Fagus sylvatica (b) Robinia 
pseudoacacia (c) Ilex aquifolium. Note the white arrows in the first two rows 
showing shrinkage and collapse of the mesophyll cells. In the third row the arrow 
indicates the thick protective layer of wax on the epidermis.  

a. 

b.

c.
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and thick waxy protection on the epidermis. Both Fagus sylvatica and 
Robinia pseudoacacia showed visible change with appreciable shrinkage 
in cell walls (white arrow) and increased intercellular spaces due to the 
dehydration of cytoplasm compared with their fresh leaf structures. In 
Robinia pseudoacacia, the transformation was more prominent with the 
collapse of the spongy mesophyll layer causing a reduction in the overall 
leaf thickness. Meanwhile, only slight changes in the volume of the 
intercellular spaces could be observed for Ilex aquifolium. Across the 
species, changes were more prominent in the spongy mesophyll layer 
compared with the palisade mesophyll. Similar trends were observed for 
the other species (not shown in Figure 2.7). 
 
2.4 Discussion  
The study demonstrates that the spectral properties of harvested fresh 
leaves change significantly over time. However, the rate of change varies 
depending on plant species. Changes also varied considerably between 
different spectral region and or spectral indices. 
 
Spectral measurements carried out within the first six hours after 
harvesting leaves from plants show no significant difference from the 
initial measurement, irrespective of the variations caused by different 
species (Table 2.3). Within this period of time, harvested leaves 
preserved the same spectral information content as from in situ 
measurements. Within this “safe” time period no vegetation indices 
changed significantly for any of the species. However, the use of 
improved preservation or handling, such as refrigeration or humidification 
may increase the “safe” time period for sampling.  
 
The post-harvest effect on leaf spectra depends on the species (Table 2.3 
and Figure 2.4). Robinia pseudoacacia and grass species proved to be the 
most sensitive to leaf detachment, as they showed significant changes in 
many indices within six hours. Most of the other broad leaf species (Acer 
pseudoplatanus, Betula pendula, Fagus sylvatica and Quercus robur) 
showed varied responses for different indices, though the “safe” periods 
of six hours was limited by the two water indices. The needle leaf (Abies 
grandis, Pinus nigra) and gymnosperm (Thuja orientalis) showed higher 
resistance to change and their “safe” period extended up to eight hours. 
Finally two broad leaf species protected by a thick cuticle (Ilex 
aquifolium, Rhododendron sp) showed the highest resistance to spectral 
change and show no significant changes up to twelve hours of 
detachment. The results confirm with earlier research which 
demonstrated that thicker leaves have higher protection against 
dehydration compared with the thinner leaves (Hunt and Rock 1989; 
Aldakheel and Danson, 1997; Richardson and Berlyn, 2002; Foley et al., 
2006), though specific “safe” periods were not defined by these studies. 
 
Band-by-band analysis (Figure 2.2) of reflectance spectra showed that 
post harvest spectral changes were initially confined to NIR and SWIR. 
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The visible region was more resistant to spectral change and that region 
did not vary significantly during the first 8 hours of the experiment. The 
increase in the NIR reflectance observed in this study may be due to 
shrinkage of the mesophyll cells and increase in the volume of the 
intercellular spaces resulting from post-harvest loss of water as revealed 
by the leaf cross sections (Figure 2.6). Gausman et al. (1970) shows that 
the NIR reflectance is positively correlated with the volume of the 
intercellular air space in the mesophyll layer of leaves and leaf 
dehydration increases NIR reflectance (Horler et al., 1983; Jacquemond 
and Baret, 1990; Carter, 1991). The loss of water may also account for 
the sensitivity of the SWIR which contains the major leaf water 
absorption bands (Curran, 1989; Aldakheel and Danson, 1997). 
Alternatively visible reflectance spectra are primarily controlled by the 
absorption of the pigment molecules and only later in the dehydration 
process pigments get damaged (Böttcher et al., 2001; Able et al., 2005).  
 
Three groups of indices emerged from the study: the first group consists 
of REPs and NDVI; the second group includes the two water indices 
namely NDWI and MSI and the last group consists of the two 
photochemical indices SRPI and PRI. For the first group of indices, the 
“safe” periods varied widely from 6 hours to 24 hours depending on the 
species. It is interesting to note that although the REPs and NDVI are 
principally used for estimating leaf chlorophyll content and biomass 
(Chang and Collins, 1983; Curran et al., 1995; Clevers et al., 2002), they 
also appeared to be sensitive to changes in leaf water content confirming 
the results obtained by Horler et al. (1983).  However, the results of this 
study suggest that REPs extracted by the linear extrapolation technique 
are less sensitive to leaf dehydration compared to the linear interpolation 
method. This may be attributed to the different bands used. The linear 
interpolation technique uses bands from the NIR side of the red edge and 
hence is more likely to have greater sensitivity to change of NIR 
reflectance.  NDVI exhibit a longer “safe” period than the REP indices 
perhaps due to the saturation of NDVI above a certain leaf chlorophyll 
content (Seller, 1985; Gao et al., 2000). Furthermore, for NDVI and REPs 
a hump-shape pattern with a characteristic turning point (Figure 2.5) 
may be attributed to the change of dominance in the leaf property 
controlling the spectral reflectance, i.e., from leaf water content to 
pigment content. Shifts in the REP towards shorter wavelength have been 
associated with decrease in the leaf chlorophyll content (Horler et al., 
1980; Boochs et al., 1990). 
 
The two water indices were the most sensitive to leaf detachment for all 
species and defined the limiting factor for a “safe” period during which 
spectral reflectance measurements may be made. This result of water 
indices sensitivity are consistent with the change found in the original 
reflectance spectra, which showed a faster change in spectral regions 
that are related to the changes in the mesophyll tissue as a result of 
water loss. 
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Photochemical indices (SRPI and PRI) were least sensitive to change 
when leaves were detached because of the initial lack of movement in the 
visible part of the spectrum. The sensitivity of these indices depends on 
the ratio between leaf chlorophyll and carotenoid content (Peñuelas et 
al., 1995; Sims and Gamon, 2002) and the loss of chlorophyll results in a 
decrease in the SRPI and PRI, as chlorophyll generally declines at a faster 
rate than carotenoid when plants are under stress or water loss (Merzlyak 
et al., 1999; Sims and Gamon, 2002; Minekawa et al., 2005).  This early 
loss of chlorophyll compared to carotenoid may be responsible for the 
delayed decrease in the values of SRPI and PRI (Figure 2.3). This loss of 
chlorophyll may also be the cause for a significant linear relationship 
(Figure 2.6) between time taken for the REPs to attain the turning point 
and the time when SRPI or PRI became significantly different from their 
t0 readings. 
 
2.5 Conclusion 
The results of this study show that the spectral properties of fresh leaves 
change significantly over time from the time of harvest. A “safe” period to 
perform spectral measurement, irrespective of variations caused by 
species, was found to be six hours, though leaf samples must be stored 
in plastic bags and cool dark conditions. However, the rate of change in 
spectral indices differs due to the varying leaf structure of different 
species. Although leaf dehydration influences reflectance across the 
whole spectrum, the effects are more noticeable for NIR and SWIR 
compared with visible spectrum. Among the indices, the two water 
indices were most sensitive and in all species they defined the minimum 
“safe” period.  
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In chapter 2 it was shown that the laboratory measurements of leaves taken 
within six hours maintain the leaf’s spectral characteristics similar to in situ 
measurements. In subsequent chapters (chapter 3, 4 and 5), “safe” time limit 
for laboratory measurements was respected. 
 
In this chapter (chapter 3), laboratory measurements of leaf spectra from 
twenty-six tree species were used to investigate into various band selection 
procedures for species discrimination. The results identified that few spectral 
regions contain high information for species discrimination, and most of the 
bands were selected within those regions. 
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Abstract 
 
With imaging spectroscopy remote sensing of vegetation at a species 
level became possible. Various authors have tried to identify wavebands 
with the highest discriminating potential between vegetation types and 
species. However, these studies failed to recommend general waveband 
combinations which can replicate results across environments. This 
failure has been mostly attributed to the presence of information 
redundancy between bands of close proximity. To overcome this problem, 
this study identified spectral ranges able to discriminate between species. 
We used laboratory level leaf spectra of 26 tree species and four different 
commonly used discriminating techniques (Mann-Whitney U test, 
Principal Component Analysis, Stepwise Discriminant Analysis and a 
Genetic Neural Network based wrapper feature selection approach) to 
locate the dominant discriminating bands. It was found that these 4 
spectral discrimination techniques selected bands from seven narrow 
regions of the spectrum (500-540, 630-650, 680-710, 740-760, 1280-
1380, 1610-1680 and 2075-2175 nm) where discrimination between 
species is maximal. We tested the power of discrimination of the selected 
regions and the replicability of our findings. Discrimination strength was 
measured by comparing means of spectral distances (Bhattacharya 
distances) calculated between bands from the selected regions and bands 
from the whole spectrum. The result showed that the mean distances 
calculated from selected regions are significantly higher (p <0.05) for 
315 species combinations (out of a total of 325). The reliability of the 
finding was confirmed by three independent data sets, which showed 
similar results. It is concluded that redundancy in hyperspectral 
vegetation spectra makes exact band selection very difficult, because in a 
narrow spectral range all the bands within carry similar information which 
facilitate the discrimination between species. This finding can play an 
important role when designing new broad band sensors specific for 
species mapping or “choosing” bands from adjustable airborne 
hyperspectral sensors. 
 
Keywords: Spectroscopy, spectral region; U-test; Principal Component 
Analysis; Stepwise Discriminant Analysis; wrapper feature selection. 
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3.1 Introduction 
With the advent of imaging spectroscopy, the qualitative and quantitative 
remote sensing of vegetation received a significant impulse. The high 
spectral resolution of hyperspectral images started to yield quality 
information about vegetation health, its chemical content and biomass 
(Curran, 1989; Curran et al., 1992; Peñuelas et al., 1997; Todd et al., 
1998; Kokaly and Clark, 1999; Mutanga et al., 2003; Mutanga and 
Skidmore, 2004; Mutanga et al., 2004). The combination of this high 
spectral resolution with fine spatial resolution enabled scientists to start 
discriminating and mapping ecosystems and even species (Bajjouk et al., 
1996; Gong et al., 1997; Cochrane, 2000; Schmidt and Skidmore, 2001; 
Kokaly et al., 2003; Schmidt and Skidmore, 2003; Silvestri et al., 2003; 
Thenkabail et al., 2004; Clark et al., 2005; Ramsey III et al., 2005; 
Vaiphasa et al., 2005). But to achieve the goal of species level 
discrimination, spectra collected from communities or ecosystems are not 
enough. A much finer resolution is necessary to detect, map and 
understand the spectral variations between species.  
 
Various authors have successfully used leaf level reflectance spectra to 
discriminate between species (Cochrane, 2000; Yamano et al., 2003; 
Clark et al., 2005; Vaiphasa et al., 2005), though some claim that the 
leaf reflectance of different species is highly correlated due to their 
similar chemical composition (Portigal et al., 1997). Moreover, variations 
can occur within a species due to age differences, micro-climate, soil 
characteristics, precipitation, topography, phenology and a host of other 
environmental factors, including stresses (Gausman, 1985; Westman and 
Price, 1987; Carter, 1993; Carter, 1994; Portigal et al., 1997; Roberts et 
al., 1998; Gracia and Ustin, 2001; Smith et al., 2004). But as 
concentration of pigments and other bio-chemicals as well as leaf 
characteristics vary between species so does absorption and reflectance 
(Knipling, 1970; Asner, 1998; Martin et al., 1998; Schmidt and 
Skidmore, 2003).  
 
The high spectral resolution of hyperspectral data is essential for 
capturing and discriminating subtle differences of the targets, but it also 
contains redundant information at the band level Bajwa et al. (2004), 
which makes computation difficult. To reduce this redundancy, scientists 
reduce the number of wavebands using a variety of techniques. Out of all 
these redundancy reduction techniques, one of the regular practices is 
band selection. In this method the highest discriminating bands are 
selected by using a number of discriminating statistics (e.g. principal 
component analysis, discriminant analysis) 
 
Various authors (Cochrane, 2000; Schmidt and Skidmore, 2001; Schmidt 
and Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et al., 2005) 
have successfully used these methods to select informative bands in 
hyperspectral data and discriminate vegetation types or species. (Bajwa 
et al., 2004) also tried to identify bands for measuring soil electric 
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conductivity (EC) and cover canopy characteristics. While they became 
successful in discriminating vegetation types or species using their own 
spectral data, they failed to come up with a comparable list of 
wavebands. The cause of this discrepancy might be due to the high 
redundancy of information within nearby bands and/or utilization of 
different algorithms.  
 
The present study evaluates the result of different waveband selection 
procedures by using laboratory quality reflectance spectra of 26 tree 
species. We compare the performance of different discrimination 
procedures and propose specific regions of the spectrum with the highest 
discriminating property. 
 
3.2 Materials and method 
 
3.2.1 Collection of leaf samples 
Branches from sunlit top tree canopies with mature leaf were collected in 
July 2004 and immediately after detachment from the trees they were 
placed in sample bags and stored in a cool box to reduce transpiration. 
The samples were then taken to the laboratory for spectral reflectance 
measurements where all measurements were conducted within two hours 
from the time of field collection to avoid water loss and change of leaf 
properties. Twenty six tree species from 10 families had their spectral 
reflectance measured (Table 3.1). 
 
3.2.2 Collection of Spectra 
In the laboratory, leaves were separated from the branches and stacks of 
leaves (± 4 layers) were randomly spread on top of a flat black plate. 
The spectral response of each leaf plate was recorded 20 times. The plate 
was rotated 45˚ horizontally after every fifth recording in order to 
average the bi-directional reflectance distribution function (BRDF). Two 
leaves stacks were randomly formed from collected branches of every 
tree and from each stack of leaves one sample spectrum were measured. 
The conversion of spectral responses from radiance to reflectance was 
achieved internally by software associated with the spectrometer using a 
“Spectralon” white reference panel. The whole operation was conducted 
under laboratory conditions (i.e. dark room, ±25˚C) in order to avoid 
ambient light sources unrelated to the true spectral signal of the leaves.  
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Table 3.1 Twenty six tree species used for the laboratory reflectance 
measurement. 

No. Trees Family 

No. of 
spectral 
samples 

1 Fraxinus excelsior Oleaceae 63 
2 Fraxinus ornus Oleaceae 37 
3 Tilia cordata Malvaceae 60 
4 Populus alba Salicaceae 20 
5 Populus nigra Salicaceae 20 
6 Salix alba Salicaceae 40 
7 Salix cinerea Salicaceae 41 
8 Salix elaeagnos Salicaceae 60 
9 Salix purpurea Salicaceae 41 
10 Carpinus betulus Betulaceae 19 
11 Carpinus orientalis Betulaceae 20 
12 Ostrys carpinifolia Betulaceae 41 
13 Fagus sylvatica Fagaceae 20 
14 Quercus pubescens Fagaceae 20 
15 Juglanns regia Juglandaceae 21 
16 Robinia pseudacacia Leguminosae 40 
17 Ficus carica Moraceae 20 
18 Prunus avium Rosaceae 44 
19 Malus sylvestris Rosaceae 78 
20 Pyrus pyraster Rosaceae 21 
21 Sorbus aria Rosaceae 64 
22 Acer campestre Sapindaceae 41 
23 Acer monospessulanum Sapindaceae 41 
24 Acer obtusatum subsp. Obtusatum Sapindaceae 39 
25 Acer pseudoplatanus Sapindaceae 20 
26 Ailanthus altissima Simaroubaceae 41 

 
A GER 3700 (Geophysical and Environmental Research Corporation, 
Buffalo, New York) spectroradiometer was used to measure the 
reflectance spectra. The GER 3700 is a three dispersion grating 
spectroradiometer using Si and PbS detectors with a single field of view. 
The wavelength range is 325 nm to 2500 nm, with sampling intervals of 
1.5 nm between 325 nm and 1050 nm, 6.2 nm between 1050 nm and 
1900 nm and 9.5 nm in the 1900 nm to 2500 nm range. The Full width 
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half Maxima (FWHM) is 3 nm, 11 nm and 16 nm in the 325 nm to 1050 
nm range, 1050 nm to 1900 nm range and 1900 nm to 2500 nm range 
respectively. Although the spectrometer records up to 647 bands, but 
due to high noise in the extreme short wavelength area only the spectral 
range between 400 nm and 2500 nm was analysed, which contains 597 
wavebands. The sensor, equipped with a 1.5 m long fibre optic cable 
(25˚ field of view) was mounted on a tripod and positioned 20 cm above 
the target leaves at the nadir position. A light source (Lowel Pro-Light 
with 14.5V/50W/3200K JCV halogen lamp), pointing at the centre of the 
leaf plate, was placed at 30 degree off-nadir. The spectral measurement 
procedure we followed is comparable with various earlier works (Ramsey 
III and Jensen, 1996; Cochrane, 2000; Clark et al., 2005; Vaiphasa et 
al., 2005). 
 
3.2.3 Discrimination procedure 
Four techniques were applied to measure the spectral discrimination 
between the 26 tree species (Table 3.1). From every technique the ten 
best discriminating bands were selected for further analysis. Only normal 
reflectance spectra were used for the analysis, because, as expected, 
continuum removed spectra produced similar results and failed to 
improve discrimination between species (Schmidt and Skidmore, 2003). 

3.2.3.1 U-test 

The reflectance spectra associated with the 26 tree species (Table 3.1) 
were statistically analyzed to determine whether the variance of 
reflectance between tree species was greater than within tree species. 
This can be tested with the Mann–Whitney U-test (Schmidt and 
Skidmore, 2003). The hypothesis tests that between all pairs of tree 
species there is no significant difference between the median reflectance 
of each individual waveband. Stated formally, the null hypothesis for n 
tree species and I spectral bands per reflectance measurement is: 
 
H0 : η n (i) = η n + 1(i)  

 
where, η n is the median reflectance for vegetation type number n 

= 1, 2, 3. . .(n-1), and I = 1, 2, 3. . .I is the spectral band. The number 
of possible pairs from n tree species, i.e. the set of combinations of 2 out 

of n is the binominal coefficient: 
!2)!.2(

!
2 −

=⎟
⎠
⎞

⎜
⎝
⎛

n
nn

. Therefore, the 

hypothesis is tested 325 times for all possible combination of 26 species. 
The null hypothesis was tested at significance level of ά = 0.00015 (to 
correct for the Bonferroni effect, 0.05/325). The alternative hypothesis is 
that the reflectance medians are not equal: 
 
H1 : η n (i) ≠ η n + 1(i)  
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The motivation to use U-test is that it is a non-parametric test which 
does not assume a normal distribution of the sample sets and that is why 
the difference in median was tested instead of mean. It was also 
assumed that the unequal number of samples per species (Table 3.1) 
does not influence this test method, as the number of samples is large 
(20 and above) (Lehmann, 1998) 

3.2.3.2 Principal Component Analysis (PCA) 

The principal components transformation is a multivariate statistical 
technique that selects uncorrelated linear combinations (eigen vector 
weights or loadings) of variables in n-dimensional space in such a way 
that each successively extracted linear combination, or principal 
component (PC), has a smaller variance. PCA wavebands were computed 
using factor loadings (or eigen vectors) of each of the bands and 
multiplying the factor loadings with their respective wavebands 
reflectivity (Thenkabail et al., 2004). 

3.2.3.3 Stepwise Discriminant Analysis 

Stepwise Discriminant Analysis (SDA) is the feature selection method 
that repeats the addition and removal of a feature at each step. This 
process allows us to find the best subset with which satisfactory 
discrimination performance can be obtained.  
 
Discriminant function analysis is used to determine which variables 
discriminate between two or more naturally occurring groups. The 
stepwise procedure is "guided" by the respective F to enter and F to 
remove values. The F value for a variable indicates its statistical 
significance in the discrimination between groups. In this study we used 
two different procedures to compute the F value: 
 

Wilk’s lambda (Λ) 
 
Wilk's lambda is a multivariate test. Its value ranges between 0 and 1, 
with values close to 0 indicating the group means are different and values 
close to 1 indicating the group means are not different. Wilk's Lambda 
(Λ) can then be converted to an F value (Klecka, 1980). 

F [t(k-1);ms-v)] = [(1 - Λ1/s )/Λ1/s][(ms -v)/t(k-1)]    Eq.1 

where:  
t = the number of independent variables  
k = the number of treatments  
m = (2kn - t - k - 2)/2  
s = [(t2(k - 1)2 - 4)/(t2 + (k - 1)2 - 5)]1/2  
v = (t(k - 1) - 2)/2  
 



Spectral regions for maximizing species discrimination 

 44 

Mahalanobis distance 

Mahalanobis distance is a measure of the distance between two points in 
the space defined by two or more correlated variables. Mahalanobis 
distance, D2, is a generalized measure of the distance between two 
groups. When Mahalanobis distance is the criterion for variable selection, 
the Mahalanobis distances between all pairs of groups are first calculated. 
The distance between groups 1 and 2 is defined as  

( ) ( )( )∑∑
= =

− −−−=
p

i
jj

p

j
iiij XXXXwgnD

1
21

1
21

12
12    Eq.2 

where, p is the number of variables in the model, is the mean for the 

ith variable in Group 1, is the mean for the ith variable in Group 2. 
is an element from the inverse of the within-groups covariance matrix. 

The variable that has the largest D2 for the two groups that are closest 
(have the smallest D2 initially) is selected for inclusion. The 
corresponding F statistic is  

2
2,1

21

21

))(2(
)1(

D
nnnp
nnpn

F
+−

−−
=       Eq.3 

This F value can be used for variable selection. At each step the variable 
chosen for inclusion is the one with the largest F value. 

3.2.3.4 Wrapper feature selection approach 

The wrapper approach is a feature selection algorithm that combines the 
strength of a traditional search algorithm (e.g. sequential forward 
selection, branch and bound technique, genetic search, etc.) with the 
capability of a classifier (e.g. nearest neighbour classifier, maximum 
likelihood classifier, etc.) (Siedlecki and Sklansky, 1989; John et al., 
1994; Kohavi and John, 1997; Kavzoglu and Mather, 2002; Yu et al., 
2002; Vaiphasa, 2003). In this study, the search mechanism of the 
wrapper tool was based on a genetic algorithm, and its classifier was a 
nearest neighbour classifier. The algorithm was applied to select the best 
band combination out of the total of 597 bands. The algorithm was 
initialized with the following genetic search parameters: crossover rate = 
50%; mutation rate = 1%. The maximum number of iterations was fixed 
at 1000 and the method for classification was the Spectral Angle Mapper 
(SAM). Following the USGS guideline (Anderson et al., 1976), the 
optimizing criterion chosen at the 80% level was adequate for the 
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difficulties of discriminating trees at species level (i.e. Level III or IV of 
the USGS classification standard). 
 
3.2.4 Finding the important regions 
After selecting bands by using the above discrimination procedures, we 
pooled results in a frequency plot. Based on the distribution and 
frequency of occurrence we grouped the bands to form spectral regions 
with maximum frequency of occurrence and tested the power of 
separability by using randomly selected bands within those regions. 
 
3.2.5 Testing Procedure 
Two different testing procedures were performed to calculate the ability 
of the selected regions to discriminate species and test the replicability of 
our findings. 
 
To test the strength of our selected regions for discrimination between 
species, we performed paired t-tests on Bhattacharya distances 
(Bhattacharya, 1943), which is a spectral separability measurement 
procedure. Two data sets were generated, the first consisted of ten 
randomly selected wavebands from the selected regions of the spectra 
(at least one band from each region) and the second of ten randomly 
selected wavebands from the entire spectrum. Bhattacharya distance 
between the spectra was calculated for each pair of two species using 
those ten selected bands. 
 
We iterated the process 1000 times and a one tailed Student’s t-test was 
performed on each pair of Bhattacharya distances based on the following 
hypothesis: 
 

H0: μ1 = μ2  
HA: μ1 > μ2 

 
Where, μ1 = mean of Bhattacharya distances calculated from 

wavebands collected from selected regions and μ2 = mean of 
Bhattacharya distances calculated from wavebands collected from the 
whole spectrum. The significance was examined at the probability level of 
P<0.05. The process was repeated for all the species combinations (325).  
 
Our findings were compared with the results from three independent data 
sets to determine whether similar bands would emerge. Two leaf level 
laboratory data sets (unpublished) consisting of three herbs and thirteen 
shrubs species and one canopy level data set of field spectra (Schmidt 
and Skidmore, 2003) from salt marsh species were used.  All three sets 
of data were collected using similar spectrometer (GER 3700) with same 
band number and spectral range. We performed same discriminating 
algorithms on these data sets to compare the result. 
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3.3 Results 
 
3.3.1 U-Test 
Twenty six species means 325 possible species pairs. A pair of species 
(Acer campestre and Carpinus orientalis) was selected to illustrate the 
statistical comparison between species. Figure 3.1 shows the median 
spectra for the two species. The shaded areas indicate the reflectance 
wavelengths where the two species have a statistically significant 
difference in median reflectance. 

 
The histogram in Figure 3.2 summarizes the result of all possible species 
combination pairs and indicates the frequency of species pairs with a 
statistically significant difference per wavebands. The significant level for 
the U-test was ά = 0.00015. From Figure 3.2 it can be seen that, for 
example at 601 nm, 275 species pairs (out of a possible 325) have a 
statically significant differences in reflectance. The median reflectance 
spectrum of Acer campestre is plotted on the histogram to visualize the 
position of the main features of a typical leaf reflectance curve. 
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Figure 3.1 Median spectrum for Acer campestre (smooth line) and Carpinus orientalis 
(dashed line). Wavelengths with statistically significant difference between the two 
spectra are shaded grey. 
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No single waveband managed to discriminate between all the species. 
The maximum frequency obtained was 280 in wavebands at 513 and 643 
nm while the minimum frequency was 197 obtained in waveband at 941 
nm. Out of 597 wavebands more than 550 bands showed a discrimination 
frequency of over 200. The highest frequency was observed in the visible 
range of the spectrum, and relatively low frequencies were noted for the 
infra-red plateau (Figure 3.2).  
 
To select bands for further analysis, bands were chosen from the highest 
local maxima (frequency). The ten selected wavebands were 494, 513, 
642, 660, 697, 750, 1141, 1386, 1621 and 2155 nm.  
3.3.2 Principal component analysis 
In all the tree species the first five principal components (PCs) explained 
more than 95% of the variability. PC wavebands were computed using 
factor loadings (or eigen vectors) of each of the bands, and wavebands 
which provide the highest factor loadings are listed for PC1 – PC5 (Table 
3.2). In some cases the target variability (95%) was reaches even with 
first three or four PCs and hence fourth and fifth PCs were not included. 
 

Figure 3.2 Frequency plot of statistically significant differences using the U-test 
with significance level of ά = 0.00015, between the field reflectance median of 26 
tree species at every band. The median reflectance curve of A. campestre is 
displayed to indicate typical vegetation reflectance features.  
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Table 3.2 PCs showing wavebands with highest factor loadingsa 

 Species PC1 PC2 PC3 PC4 PC5 

Acer campestre 741.28 647.48 691.37 700.16 1954.57 

Acer monospessulanum 1378.64 516.3 673.79 1855.35 417.84 
Acer obtusatum subsp. 
Obtusatum 741.28 675.25 684.04 531.93 691.37 

Acer pseudoplatanus 1600.73 1297.08 684.04 422.08 2104.59 

Ailanthus altissima 451.58 2165.76 1297.08 745.69 1666.88 

Carpinus betulus 741.28 1402.39 423.49 681.11 527.66 

Carpinus orientalis 742.75 1288.73 1394.51 2347.02 2094.22 

Prunus avium 1378.64 650.4 767.78 2125.19 650.4 

Fagus sylvatica 1370.65 907.98 1653.98 698.69 2083.79 

Ficus carica 742.75 691.37 2382.78 2114.92   

Fraxinus excelsior 1378.64 503.57 697.23 684.04 2282.44 

Fraxinus ornus 1288.73 2356.04 2125.19 692.83 2185.72 

Juglanns regia 747.16 1614.29 689.9 1634.32 2165.76 

Malus sylvestris 757.46 476.82 688.43 1647.46 2145.58 

Ostrys carpinifolia 744.22 694.3 686.97 2073.31 1887.13 

Pyrus pyraster 1362.62 742.75 681.11 1640.91 2094.22 

Populus alba 744.22 684.04 2020.12     

Populus nigra 739.81 512.05 697.23 1288.73 2030.86 

Quercus pubescens 1370.65 503.57 760.41 704.56 2185.72 

Robinia pseudacacia 1362.62 892.87 2114.92 1660.45 2234.73 

Salix alba 744.22 698.69 1370.65     

Salix cinerea 1338.31 694.3 735.4 2165.76 2273 

Salix elaeagnos 710.43 637.27 1976.63     

Salix purpurea 1370.65 646.02 1954.57 2155.69 1614.29 

Sorbus aria 745.69 1123.31 1627.68 2215.29 1679.62 

Tilia cordata 1370.65 797.31 697.23 2319.66 685.5 
a For each principal component, the band that provides the highest factor loadings is listed. 
 
The red edge wavebands (around 740-750 nm) dominated the first 
principal component with 50% frequency of occurrence (13 out of 26 
species), followed by the near infrared (NIR) around 1280-1380 nm with 
42% frequency of occurrence (11 out of 26). The visible part of the 
spectral bands dominated in second and third principal components, 
particularly red wavebands around 680 nm appeared in large numbers in 
the third principal component. In the fourth and fifth principal 
components short wave infrared (SWIR) bands dominated (Table 3.2). 
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The frequency plot in Figure 3.3 summarizes the results of the principal 
component analysis for band selection and indicates the frequency of 
occurrence of wavebands with the highest factor loadings in different PCs. 
Though they were distributed widely along the axis of the wavelengths, 
several clusters were clearly visible; forming three clusters in the visible 
(around 510, 640 and 680 nm), two in the red edge slope (690 and 740 
nm) and three more in NIR and SWIR (1300, 1650 and 2100 nm). 
 
3.3.3 Stepwise discriminant analysis 
Two different statistical methods were utilized to select wavebands which 
yielded sets of bands very similar to each other though not completely 
the same (Table 3.3).  The differences are found mostly in their relative 
entry position during the discrimination process and the strength of 
discrimination shown by that particular band. Both methods picked bands 
not only from similar regions of the spectra but also in close proximity. 
For example, in the red-edge region of the spectrum the Wilk’s lambda 
based procedure selected bands of 682 and 753 nm whereas the 
procedure which used Mahalanobis distance selected bands of 683 and 
759 nm.  

Figure 3.3 Frequency of occurrence of wavebands with highest factor 
loading in different PCs. 
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3.3.4 Wrapper feature selection 
The wrapper feature selection algorithm was applied to search for the 
(sub)-optimal spectral band combination. The best combination found by 
the wrapper tool consisted of ten spectral wavebands at 504, 524, 646, 
686, 756, 917, 1313, 1363, 1667 and 2165 nm (Figure 3.4). These ten 
bands managed to classify the entire spectral sample set with an 83% 
level of classification accuracy, by using the spectral angle mapper 
classifier algorithm. 
 

a. U-test
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b. Wilk's Lambda
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c. Mahalanobis distance
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d. Wrapper feature selection
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Figure 3.4 Wavebands selected by using different discriminating procedures; a. U-
test, b & c. SDA (Wilk’s lambda and Mahalanobis distance respectively), d. 
wrapper feature selection. The median reflectance curve of A. campestre is 
displayed to indicate typical vegetation reflectance features. 
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Table 3.3 Ten best wavebands entered in two (Wilk’s lambda and Mahalanobis 
distance) different statistical procedures under stepwise discriminant analysis. 
Corresponding statistics showed the strength of discrimination. 

Step Wilk’s lambda Mahalanobis distance 
 Band 

entered 
Wave 
length 
(nm) 

Statistic Band  
entered 

Wave 
length 
(nm) 

Statistic 

1 31 441 0.164 200 683 0.001 
2 555 2094 0.021 128 578 0.116 
3 99 537 0.008 492 1641 0.562 
4 562 2175 0.006 98 535 1.129 
5 247 753 0.005 553 2073 1.694 
6 177 650 0.003 211 698 3.685 
7 488 1614 0.001 451 1338 4.666 
8 212 700 0.001 177 649 4.898 
9 445 1288 0.000 252 759 5.397 
10 199 682 0.000 432 1177 5.429 

 
3.3.5 Finding the important regions 
The wavebands which were selected with the four spectral discrimination 
methods (U-test, PCA, SDA and Wrapper feature selection) were merged 
together in order to determine their frequency of occurrence. In the 
frequency plot (Figure 3.5), distribution of these bands along the spectral 
axis formed several distinct clusters. In the visible spectral range, three 
clusters were formed from where most of the bands were selected. The 
wavelength ranges of these regions were 500 – 535, 630 – 650 and 680 
– 710 nm. In the red edge region, wavebands formed clusters at both 
ends of the slope, e.g. at the base around 700 – 710 and around the 
shoulder 740 – 770 nm. Other clusters were located in the FNIR and 
SWIR segments of the spectrum and the wavelength ranges of these 
regions were 1280 – 1380, 1610 – 1680 and 2075 – 2175 nm. The 
selected regions with highest concentration of discriminating bands are 
shown in Table 3.4. 
 
3.3.6 Testing Procedure 
For all the species combinations (325), the mean of the Bhattacharya 
distances calculated from wavebands collected from selected regions 
were higher compared with the mean of Bhattacharya distances 
calculated from wavebands collected from the whole spectrum. Out of a 
total of 325 species combinations, 315 or 97% had statistically significant 
differences (higher) in mean Bhattacharya distances at P<0.05 (Table 
3.5). 
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Tests with three independent data sets produced similar results and most 
of the wavebands selected were within the ranges we found with our 
original data set (Figure 3.6) except more bands in NIR for canopy level 
salt-marsh vegetation spectra.  
 

 
3.4 Discussion 
Use of imaging spectroscopy in species discrimination is widespread both 
in the laboratory as well as in field campaigns (Cochrane, 2000; Schmidt 
and Skidmore, 2001; Yamano et al., 2003; Clark et al., 2005; Vaiphasa 
et al., 2005). The high spectral resolution is useful for capturing and 
discriminating subtle physico-chemical differences of the targets, but it 
contains redundant information at band level (Bajwa et al., 2004). This 
redundancy generates an enormous number of independent variables 
creating difficulties to run regular statistical procedures. Various authors 
have tried different kinds of data reduction techniques on hyperspectral 
data, but replicability has been a major problem. 
 
In this paper we used four different data reduction techniques to identify 
important sections of the spectrum for discriminating tree species. The 
best discriminating wavebands using band selection techniques (Mann- 

Figure 3.5 Selected regions (in gray) where discriminating wavebands 
occurred most frequently. 
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Whitney U-test, principal component analysis, stepwise discriminant 
analysis and a genetic neural network based wrapper feature selection 
approach) may be identified from Figure 3.3 and 3.4. The methods we 
used not only find wavebands independently but they are also 
complimentary to each other. The Mann-Whitney U test looks at each 
individual band separately to find the band level differences in each single 
pair of species combination.  Whereas, stepwise discriminant analysis and 
wrapper feature selection processes consider the whole spectrum to 
identify the most discriminating bands. While these three methods take 
into account the variability of reflectance between different species, 
principal component analysis only regards the internal variability of 
reflectance within species. 

Figure 3.6 Wavebands selected using a similar discrimination procedure (u-test, 
SDA and Wrapper feature selection) but on different data sets. a. laboratory data 
of three herb species, b, laboratory data of thirteen shrub species and c. field data 
of salt marsh vegetation. The median reflectance curve of A. campestre is 
displayed to indicate typical vegetation reflectance features.

 U-test

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

SDA (Wilk's lambda)

500 1000 1500 2000 2500

Wavelength (%)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

Wrapper feature selection

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

U-test

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

 SDA (Wilk's lambda)

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

Wrapper feature selection

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

U-test

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

SDA (Wilk's lambda)

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

Wrapper feature selection

500 1000 1500 2000 2500

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (%
)

0

10

20

30

40

50

60

70

80

a.

b.

c.



Chapter 3 

 55 

With the Mann-Whitney U-test we found that all 325 possible species 
pairs have significant differences (at ά= 0.00015) for many wavebands 
(Figure 3.2). This result not only indicates the potential to discriminate 
these species spectrally but also provides information about the bands 
discriminating best. The histogram (Figure 3.2) that serves as a guideline 
to select wavebands shows the highest frequency of significant 
differences in the visible, FNIR and SWIR and lowest ability to 
discriminate in the infrared plateau. Subsequently other methods for 
selecting discriminating bands followed a similar trend. 
 
Table 3.6 Comparison of selected bands between previous studies and this study 
used for species discrimination. 
Vaiphasa et al., 
(2005)  

4 bands 720, 1277, 1415,  and 1644 nm 

Thenkabail et al., 
(2004) 

22 
bands 

495, 555, 655, 675, 705, 735, 885, 915, 
985, 1085, 1135, 1215, 1245, 1285, 1445, 
1675, 1725, 2005, 2035, 2235, 2295 and 
2345 nm 

Bajwa et al., 
(2004) 
Only used Visible-
NIR spectroscopy 

 Entropy : 627–684 
Derivative : 690–705, 740–756 & 810-825 
ANN : 530-550, 690-710, 740-750 
PCA : 690-710 and several green 
bands. 

Schmidt and 
Skidmore, (2003) 

6 bands 404, 628, 771, 1398, 1803,  and 2183 nm 

Thenkabail et al., 
(2002) 

12 490, 520, 550, 575, 660, 675, 700, 720, 
845, 905, 920, 975 

Cochrane, (2000)  Tree shape : 697-733 and 842-950 nm 
Branch shape : 692-713 nm 

This study 7 
regions 

500–535, 630–650, 680–710, 740–770, 
1280–1380, 1610–1680, 2075–2175 

 
The result clearly illustrates the relative importance of using different 
parts of the spectrum for species discrimination. As leaf level reflectance 
spectra are controlled by two factors, firstly the morphology (e.g., 
internal and external leaf structure)(Verdebout et al., 1994) and secondly 
the leaf bio-chemical properties (e.g., water, photosynthetic pigments, 
structural carbohydrates and other secondary macromolecules) (Asner, 
1998), the result could lead us to hypothesize that the spectral responses 
of leaf pigment and other bio-chemical properties contain more spectral 
information for discrimination than the information from leaf morphology. 
This may be because of similarities in tree leaf structure and our 
experimental design in which a stack of leaves (± 4 layers) was randomly 
spread on top of a flat black plate to collect the spectra. 
 
A relative comparison with other studies (Table 3.6) shows that although 
our result does not coincide fully with their findings but a general trend 
does exist. Moreover, these differences largely remain confined to the 
wavebands of the NIR plateau. 
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Table 3.7 Selected regions and their importance for vegetation. 

 
When we pooled all the selected bands from our four previously described 
methods (Figure 3.5), the distribution pattern along the wavelength axis 
forms several clusters. These clusters demonstrate, (1) the obvious 
power of discrimination of those spectral regions irrespective of selection 
algorithm or method and (2) different methods may not identify exactly 
the same bands, but a similar discriminating band does exist within close 
proximity. We selected seven narrow spectral ranges (Table 3.4), which 
included the maximum number of selected bands. These selected spectral 
regions have important vegetation characteristics (Table 3.7) as 
established by various authors.  
We received very strong support for our spectral region concept while 
testing the power of discrimination of the selected regions. In all species 
combinations wavebands chosen from the selected regions produced 
higher spectral separability (Table 3.5 showed that in 97% of the species 
combinations selected regions produced significantly higher separability 
(Bhattacharya distances)). This result demonstrates clearly the value of 
these selected regions when discriminating between spectra. Moreover, 
the result also reveals the information sharing within the selected region.  
We picked bands randomly from the selected regions but still they 
managed to perform similarly. 
 
The results of the replicability test (Figure 3.6) show that independent 
data sets for leaf spectra (Figure 3.6, a and b) generate a similar set of 
bands, which supports our findings. Spectra from canopy level data 

Wavelength 
(nm) 

Band 
position 

Importance for vegetation 

500 – 535 Green Blue absorption and upward slope to the green 
peak, sensitive to chlorophyll & carotenoid 
(Blackburn, 1998). 

630 – 650 Red Absorption pre-maxima, chlorophyll a, b 
(Blackburn, 1998). 

680 – 700 Red edge  Start of the rapid change of slope (red edge), 
total chlorophyll, LAI, moisture stress 
(Blackburn, 1999; Datt, 1999). 

740 – 760 Red edge End of rapid change of slope (red edge), 
chlorophyll & nitrogen (Johnson et al., 1994; 
Yoder and Pettigrew-Crosby, 1995) 

1280 – 1380 FNIR Reflectance peak 2 in FNIR and downward 
slope to moisture absorption, starch (Curran et 
al., 1992) 

1610 – 1680 SWIR Reflectance peak 1 of SWIR,  sensitive to 
lignin, tannin, starch and cellulose (Elvidge, 
1990; Yoder and Pettigrew-Crosby, 1995; 
Kokaly and Clark, 1999) 

2075 – 2175 SWIR Reflectance peak 2 of SWIR, sensitive to 
lignin, sugar, protein (Curran et al., 1992; 
Yoder and Pettigrew-Crosby, 1995) 
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(Figure 3.6, c) finds more bands in the NIR plateau, even though they 
also selected bands from our selected regions. These extra bands in NIR 
region were largely expected in canopy level data because of their 
additional canopy (structural) information and sensitivity of NIR 
reflectance to canopy properties. This result also indicates that the region 
of NIR plateau needs to be added when working with canopy spectra.  
 
3.5 Conclusion  
This study aimed to evaluate the result of four waveband selection 
procedures and came up with common regions in the spectrum with 
better discriminating properties. Our results have shown that: 
 
(i) With the high spectral resolution of imaging spectroscopy, 

discrimination at species level is possible. 
(ii) Redundancy in hyperspectral vegetation data makes exact 

waveband selection difficult, but still bands from narrow ranges 
appeared in all methods. 

(iii) Seven spectral regions, which yield the highest discriminatory 
properties, were identified. 

(iv) The information carried by these spectral regions which facilitate 
the discriminate between species is shared by all the bands within. 

(v) Tests with independent data sets have proved the replicability and 
reliability of these selected regions. 

 
This finding is important in solving the “dimensionality problem” of 
hyperspectral data because it reduces the computational effort when 
using statistical procedures. Moreover, the results may also assist in the 
design of new broad band sensors specific for species mapping or for 
“choosing” bands from adjustable airborne hyperspectral sensors. 
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In the preceding chapter the possibilities of using band selection techniques as 
well as identifying those spectral regions allowing discrimination between plant 
species were investigated. In the following chapter (chapter 4), the usefulness 
of spectral matching techniques for species discrimination is explored. 
Moreover, the band selection processes (chapter 2) draw some criticism for 
not utilizing the full potency of hyperspectral imaging. However, spectral 
matching techniques is utilize the full spectral resolution and hence the full 
strength of hyperspectral measurement. Results of this study highlighted the 
effectiveness of different spectral matching algorithms to differentiate 
between species and compared their performances.   
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Abstract 
 
Plant species discrimination is an important and evolving aspect of 
vegetation imaging spectrometry. In this study, we investigated the use 
of spectral similarity measures (matching algorithms) to discriminate 
plant species spectra. In addition, we investigated the comparative 
performance of these measures to distinguish plant spectra collected both 
under laboratory conditions and from an image. Four different similarity 
measures were used in this study: (i) spectral correlation measure 
(SCM), (ii) spectral angle mapper (SAM), (iii) spectral information 
divergence (SID), and (iv) a combination of SAM and SID. Two statistical 
algorithms, relative spectral discriminatory probability (RSDPB) and 
relative spectral discriminatory power (RSDPW), were also used to 
measure species discriminability for multiple species and to compare the 
relative performance of the similarity measures. Laboratory spectra of six 
plant species, representing herb, shrub and tree (two each), and HyMap 
image spectra of three different plant covers were used to perform the 
discrimination. For the laboratory spectra, four different spectral 
configurations (full: 400 nm to 2500 nm, visible: 400 nm to 700 nm, 
NIR: 700 nm to 1300 nm, and SWIR: 1300 nm to 2500 nm) were chosen 
to examine the relative discriminatory power of the spectral regions. The 
spectral similarity analysis showed that dissimilarities were much larger 
between species groups (i.e., herb, shrub and tree) than within species 
groups. Greater affinity was found between the leaf spectra of trees and 
shrubs than with the leaf spectra of herbs. The different spectral 
configurations did not provide much difference in information regarding 
relative discrimination. However, it was possible to distinguish trees from 
shrubs by using the SWIR region of the spectra. Comparative 
performance analysis showed that the combined SAM and SID similarity 
measure outperformed all other spectral matching algorithms in 
discriminating species, while SAM and SID followed a similar trend. 
Comparative performance analysis revealed that SID performed 
significantly better (z = 3.35) than SAM in classifying a HyMap image. 
 
Keywords: spectroscopy; species discrimination; similarity measures 
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4.1 Introduction 
Discrimination of plant species is an important requirement for 
sustainable ecosystem management. Proper discrimination between 
species is necessary to map and monitor the spatial distribution of certain 
species, but this was not possible using traditional multispectral images 
of only moderate spatial resolution. However, the scenario changed with 
the advent of imaging spectroscopy. Not only did the high spectral 
resolution of hyperspectral images start to yield quality information about 
vegetation health and chemical content (Curran, 1989; Curran et al., 
1992; Peñuelas et al., 1997; Todd et al., 1998; Kokaly and Clark, 1999; 
Mutanga et al., 2003; Mutanga and Skidmore, 2004), but the continuous 
narrow bands of spectral reflectance from the visible (400 nm) through to 
the SWIR (2500 nm) range of the electromagnetic spectrum also started 
to provide discrimination at the individual species level (Cochrane, 2000; 
Schmidt and Skidmore, 2001; Yamano et al., 2003; Clark et al., 2005; 
Vaiphasa et al., 2005). 
 
Plant species discrimination has been highlighted as being one of the 
benefits of using hyperspectral data. But this discriminating ability of 
hyperspectral sensors depends largely on inter-species and intra-species 
spectral variability (Nagendra, 2002). As different plant species respond 
differently to energy in the electromagnetic spectrum (Verbyla, 1995), 
remotely sensed data of high spectral resolution can in theory be used to 
distinguish between these species. However, Price (1994) and Portigal et 
al. (1997) demonstrate that the leaf reflectances of different species are 
highly correlated because of their similar chemical composition, and 
hence are not unique. Moreover, variations can also occur within a 
species owing to age differences, micro-climate, soil characteristics, 
precipitation, topography, phenology, and a host of other environmental 
factors, including stress (Gausman, 1985; Westman and Price, 1987; 
Carter, 1993, 1994; Portigal et al., 1997; Roberts et al., 1998; Gracia 
and Ustin, 2001; Smith et al., 2004). However, as biochemical and leaf 
characteristics have wider variations between species than within species, 
so too have absorption and reflectance (Knipling, 1970; Asner et al., 
1998; Martin et al., 1998; Schmidt and Skidmore, 2003), making 
discrimination possible.  
 
In vegetation spectroscopy or hyperspectral remote sensing, various 
techniques have been developed to determine the differences between 
separate plant spectra. In most cases, vegetation indices are applied to 
spectra to compare their specific differences. Converting spectra into 
indices also reduces the high dimensionality of the hyperspectral data, 
facilitating computation. However, the high spectral resolution of 
hyperspectral data is also essential for capturing and discriminating 
subtle differences between the target species (Bajwa et al., 2004). A 
quantitative comparison of two or more surface reflectance data in 
imaging spectroscopy should be able to preserve more of this subtle but 
important spectral information that is particularly vital for vegetation 
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discrimination. Quantitative comparison is primarily carried out using 
matching or similarity techniques (Kruse et al., 1993). Algorithms of this 
kind try to find spectral similarity or dissimilarity between two spectra, 
and are generally used to compare one known (from the spectral library) 
with one unknown.  
 
Two broad groups of spectral similarity measures have been developed: 
deterministic or empirical measures and stochastic measures. 
Deterministic measures include spectral angle, Euclidian distance, and 
cross-correlation of spectral vectors, and mostly use the geometrical 
characteristics of the spectra. In contrast, stochastic measures such as 
spectral information divergence consider the spectral band-to-band 
variability as a result of uncertainty incurred by randomness. They model 
the spectrum as a probability distribution so that the spectral properties 
can be further described by statistical moments of any order (Chang, 
2000). Although similarity measures are extensively used in geological 
and particularly mineralogical studies, they have seldom been used in 
vegetation spectroscopy. Except for the spectral angle mapper (SAM), 
which has become a mainstream classifier (Ben-Dor and Levin, 2000; 
Bakker and Schmidt, 2002; Schmidt et al., 2004; Clark et al., 2005; 
Mundt et al., 2005), similarity measures have been used in vegetation 
discrimination to only a very limited extent. Moreover, apart from Du et 
al. (2004) and van der Meer (2006), little or no information is available 
on the overall performances of these spectral matching techniques in 
plant species discrimination or on their comparative advantages and 
disadvantages.  
 
The aim of this study was to discriminate species by using four similarity 
measures to measure spectral dissimilarities among the different species. 
In addition, we also investigated the relative performances of these 
similarity measures in terms of plant species discrimination. The 
performances of two similarity measures (SAM and spectral information 
divergence (SID)) as classifiers to discriminate species in a hyperspectral 
image were compared. To achieve the objective spectral reflectance, data 
were derived from laboratory measurements of leaves, as well as 
extracted from HyMap hyperspectral images. 
 
4.2 Materials and method 
 
4.2.1 Collection of leaf samples 
Fully sunlit mature leaves were collected from six species, representing 
tree, shrub and herb (two each) (Table 4.1), from Majella National Park, 
Italy, in July 2005. Immediately after detachment from plants, the leaves 
were placed in plastic sample bags and stored in a cool box to reduce 
transpiration. The samples were then taken to the laboratory for spectral 
reflectance measurements, and all measurements were conducted within 
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two hours of field collection to avoid water loss and change in leaf 
properties.  
 
Table. 4.1 Species used to collect spectra in the laboratory. 
Type Species Family 

Cichorium intybus Asteraceae Herb 
Origanum vulgare Lamiaceae 
Crataegus monogyna Rosaceae Shrub 
Prunus spinosa Rosaceae 
Acer campestre Aceraceae Tree 
Fagus sylvatica Fagaceae 

 
4.2.2 Collection of spectra 
To avoid ambient light sources unrelated to the true spectral signal of the 
leaves, the spectra were measured in a laboratory (i.e., dark room, 
±25°C) following the method described by Cochrane (2000), Clark et al. 
(2005) and Vaiphasa et al. (2005). For each species, a single leaf layer 
was formed on top of a flat black plate covering the entire viewing area 
of the sensor. As most of the species used in this study produce small 
leaves, more than one leaf was required to cover the plate. Twenty 
spectral measurements were obtained for each plate and averaged to 
produce a single spectrum in order to reduce any specular behaviour. The 
plate was rotated 45° horizontally after every fifth recording in order to 
reduce the effect of the bidirectional reflectance distribution function. 
Twenty such spectra were obtained per species. The radiance data were 
converted to reflectance, using scans of a white Spectralon reference 
panel. We used a Savitzky-Golay (Savitzky and Golay, 1964) second-
order polynomial least-squares function of a five-band window to 
spectrally smooth our data (Kumar and Skidmore, 1998; Schmidt and 
Skidmore, 2004). The average reflectance spectra of the six different 
species collected in the laboratory are shown in Figure 4.1. 
 
A GER 3700 (Geophysical and Environmental Research Corporation, 
Buffalo, New York) spectroradiometer measured the reflectance spectra. 
The GER 3700 is a three dispersion grating spectroradiometer using Si 
and PbS detectors with a single field of view. The wavelength range is 
from 325 nm to 2500 nm, with sampling intervals of 1.5 nm between 325 
nm and 1050 nm, 6.2 nm between 1050 nm and 1900 nm, and 9.5 nm 
between 1900 nm and 2500 nm. The full-width half maxima are 3 nm, 11 
nm and 16 nm in the 325 nm to 1050 nm range, 1050 nm to 1900 nm 
range, and 1900 nm to 2500 nm range, respectively. Although the 
spectrometer records up to 647 bands, because of the high noise in the 
extreme short wavelength area only the spectral range between 400 nm 
and 2500 nm, which contains 597 wavebands, was analysed. The sensor, 
equipped with a 1.5 m long fibre optic cable (25° field of view) was 
mounted on a tripod and positioned 15 cm at nadir above the target 
leaves. A light source (Lowel Pro-Light with 14.5V/50W/3200K JCV 
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halogen lamp) pointing at the centre of the leaf plate was placed at 30° 
off-nadir, approximately 40 cm from the target.  
4.2.3 Collection of spectra from Image 
Spectral signatures of known pixels were collected from airborne HyMap 
hyperspectral data obtained on 4 July 2005 from Majella National Park, 
Italy. The HyMap sensor comprised 126 wavebands operating over the 
wavelength range 436 nm to 2485 nm, with average spectral resolutions 
of 15 nm (436 nm to 1313 nm), 13 nm (1409 nm to 1800 nm) and 17 nm 
(1953 nm to 2485 nm). The spatial resolution of the data was 4 m. The 
images were collected at solar noon. The solar zenith and azimuth angles 
for the image strips ranged from 30° to 33.7° and from 111.5° to 121°, 
respectively. The image strips were atmospherically and geometrically 
corrected. The atmospheric correction was carried out using ATCOR4-r 
(rugged terrain). ATCOR4 is based on the MODTRAN-4 radiative transfer 
code. The average reflectance spectra of the three different species 
collected from the HyMap image are shown in Figure 4.2. 

Figure 4.1 Average reflectance spectra of six species collected from laboratory 
measurement. 
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4.2.4 Spectra similarity measures 
To discriminate plant spectra, four different similarity measures were 
used, two representing the deterministic model, namely (i) spectral 
correlation measure (SCM) and (ii) spectral angle mapper (SAM), and two 
representing the stochastic model, namely (iii) spectral information 
divergence (SID) and (iv) a combination of SAM and SID. The 
comparative performance of these similarity measures was also 
investigated. Laboratory spectral similarity measurements were 
performed in four different spectral configurations: all 597 bands, the 
visible range (400 um to 700 nm), the NIR to red range (700 um to 1300 
nm), and the SWIR range (1300 um to 2500 nm).  

4.2.4.1 Spectral correlation measure (SCM) 

SCM (van der Meer and Bakker, 1997) calculates the correlation 
coefficient of the spectral signatures si = (si1, ……,siL)

T and sj = (sj1, 
……,sjL)

T and is defined as:  
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where n is the number of spectral bands.  
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Figure 4.2 Average reflectance spectra of three species extracted from HyMap 
image. 
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SCM takes into account the relative (overall) shape of the spectrum as 
well as the spectral match. This means that the resulting statistic 
matches the individual absorption features and the often found decline to 
longer and shorter wavelengths at the long and short ends of the 
spectrum of the reflectance values (i.e., differences in albedo) (van der 
Meer, 2006).  

4.2.4.2 Spectral angle mapper (SAM) 

SAM is the most popular and widely used spectral similarity measure in 
hyperspectral remote sensing. It calculates spectral similarity by 
measuring the angle between the spectral signature of two samples, si 
and sj (Yuhas, 1992; Kruse et al., 1993). The measure determines the 
similarity between two spectra by calculating the spectral angle between 
them, treating them as vectors in a space with dimensionality equal to 
the number of spectral bands used (Kruse et al., 1993). This technique is 
relatively insensitive to illumination and albedo effects because the angle 
between two vectors is invariant with respect to the length of the vectors 
(Kruse, 1997). SAM between two spectral signatures si = (si1, …….siL)

T 
and sj.= (sj1, …….sjL)

T can be defined as:  
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Another popular deterministic similarity measure in remote sensing is the 
Euclidean distance (ED):  
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2
),(

sin2),( ji
ji

ssSAM
ssED  Eq. 3 

 
However, when the angle produced between two spectra is very narrow 
in SAM( ji ss , ), ED( ji ss , ) and SAM become virtually the same. As this 

applies in the case of two vegetation spectra, we did not consider ED in 
this study. 

4.2.4.3 Spectral information divergence (SID) 

SID (Chang, 2000) derives from divergence theory and calculates the 
probabilistic behaviours between spectral signatures (Chang, 2003; van 
der Meer, 2006). Compared with SAM, which examines the geometrical 
characters between two spectral signatures or pixel vectors, SID 
computes the discrepancy between the probability distributions produced 
by the spectral signatures. Consequently, SID might be more effective 
than SAM in capturing the subtle spectral variability (Chang, 2003) 
natural to plant spectra. SID between two spectral signatures can be 
defined as:  
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( ) ( )ijjiji rrDrrDrrSID +=),(  Eq. 4 

 
where 
 

( ) ( ) ( ) ( )( ) )/log(
111 ll

L

l ljlill

L
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L

l jillji qpprIrIprrDprrD ∑∑∑ ===
=−==  Eq. 5 

 
and  
 

( ) ( ) ( ) ( )( ) )/log(
111 ll

L

l liljll

L

l

L

l ijllij pqqrIrIqrrDqrrD ∑∑∑ ===
=−==  Eq. 6 

 
calculated from the probability vectors p = (p1, p2, ……pL)

T and q = (q1, 
q2, ……qL)T for the spectral signatures of si and sj, where 

∑ =
= L

l ilikk ssp
1

and ∑ =
= L

l jljkk ssq
1

. So the self-information provided by rj 

for band l is defined by Il(rj) = -log ql and similarly Il(ri) = -log pl.  
According to information theory, ( )ji rrD  in Eq. 5 is called the relative 

entropy of rj with respect to ri, which is also known as the Kullback-
Leibler information measure (Kullback, 1959). 

4.2.4.4 SID-SAM mixed measure 

The SID-SAM mixed measure proposed by Du et al. (2003, 2004) to 
increase discriminability makes two similar spectra even more similar and 
two dissimilar spectra more distinct. Although the measurement can be 
implemented in two versions (as described in Eqs 7 and 8), but because 
of their similar and closely related outputs, we only used the tangent of 
the SAM version in our analysis. 
 

( ) ( )( )jiji ssSAMssSIDTANSID ,tan,)( ×=  Eq. 7 

( ) ( )( )jiji ssSAMssSIDSINSID ,sin,)( ×=  Eq. 8 

 
4.2.5 Measurements for discriminability 
Spectral similarity measures calculate similarity or dissimilarity between 
two pixel vectors or two spectral signatures, but these paired 
discrimination procedures alone are not enough to discriminate more 
than two pixel vectors or spectral classes. Moreover, as different 
similarity measures use different units of measurement, it is impossible 
to evaluate their performance without comparable statistics. Therefore, in 
order to discriminate a set of spectral classes of different plant species or 
to determine the relative performance of the measures described above, 
two statistical algorithms, (i) relative spectral discriminatory probability 
(RSDPB) and (ii) relative spectral discriminatory power (RSDPW), were 
used. 
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Table 4.2 Similarity score produced by SCM algorithm between species pairs. Full and NIR 
spectral ranges are shown in the upper right half of the table and visible and SWIR ranges 
in the lower left half of the table. 

 
C  
intybus 

O 
vulgare 

C 
monogyna 

P 
 spinosa 

A 
campestre 

F  
sylvatica 

  Full spectral range 

C intybus  0.99508 0.98216 0.98793 0.97816 0.98339 
Herb 

O vulgare 0.88270  0.98276 0.98701 0.97416 0.98041 

C monogyna 0.77206 0.68711  0.99488 0.99730 0.99819 
Shrub 

P spinosa 0.79210 0.71246 0.99806  0.99275 0.99572 

A campestre 0.79316 0.60944 0.93734 0.94311  0.99606 

vi
si

b
le

 r
an

g
e 

 

Tree 
F sylvatica 0.79904 0.70946 0.99277 0.99497 0.95433  

 NIR range 

C intybus  0.97464 0.94325 0.98314 0.95933 0.96348 Herb 
O vulgare 0.99461  0.96397 0.97665 0.96193 0.97096 

C monogyna 0.99519 0.99469  0.98425 0.99372 0.99489 Shrub 
P spinosa 0.99704 0.99584 0.99839  0.99252 0.99324 

A campestre 0.99685 0.99485 0.99746 0.99652  0.99844 

S
W

IR
 r

an
g
e 

Tree 
F sylvatica 0.99376 0.99620 0.99646 0.99600 0.99742  

 
Table 4.3 Similarity score produced by SAM algorithm between species pairs. Full and NIR 
spectral ranges are shown in the upper right half of the table and visible and SWIR ranges 
in the lower left half of the table. 

 
C 
 intybus 

O 
vulgare 

C 
monogyna 

P  
spinosa 

A 
campestre 

F 
 sylvatica 

 Full spectral range 

C intybus  0.05592 0.12421 0.11769 0.14658 0.13222 Herb 
O vulgare 0.13039  0.12764 0.13763 0.16078 0.14545 

C monogyna 0.24563 0.24781  0.0752 0.04994 0.04206 Shrub 
P spinosa 0.24040 0.23836 0.02235  0.07829 0.06224 

A campestre 0.15492 0.21565 0.14196  0.13756  0.03408 

vi
si

b
le

 r
an

g
e 

 

Tree 
F sylvatica 0.17459 0.19682 0.08194 0.07835 0.08419  

 NIR range 

C intybus  0.04456 0.052139 0.04081 0.06406 0.05691 Herb 
O vulgare 0.05219  0.061338 0.07097 0.08875 0.08013 

C monogyna 0.06274 0.04982  0.03207 0.03494 0.02793 Shrub 
P spinosa 0.09336 0.07271 0.047595  0.02648 0.02154 

A campestre 0.03450 0.04752 0.04799 0.08508  0.01332 

S
W

IR
 r

an
g
e 

Tree 
F sylvatica 0.05134 0.04150 0.04746 0.07895 0.03370  
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4.2.5.1 Relative spectral discriminatory probability (RSDPB) 

RSDPB calculates the relative capability of all spectra to be discriminated 
from others. In general, the higher the probability, the better is the 
capability of a set of spectra to be discriminated from others. Let { }K

kks 1=
 

be K spectral signatures in the set ∆, which can be considered as a 
database, and t be any specific target spectral signature to be identified 
using ∆ (Chang, 2003). The definition of the RSDPB of all sk in ∆ relative 
to t is: 
 

( ) ( )
( )∑ =

Δ = L

j j

k
t

stm

stm
kP

1

,
,

,  For k = 1, ……,K Eq. 9 

 
where ( )∑ =

L

j jstm
1

,  is the normalization constant and ( )kstm ,  is any of the 

previously defined spectral similarity measures. ( )∑ =

L

j jstm
1

,  is defined as 

the sum of all similarity measures in an endmember matrix and ( )kstm ,  

is the sum of all similarity measures for the target spectrum t relative to 
the other spectra sk. 

4.2.5.2 Relative spectral discriminatory power (RSDPW) 

RSDPW lies in calculating how well one spectral vector can be 
distinguished (discriminated) from another spectral vector, relative to a 
reference spectral vector (Chang, 2003; van der Meer, 2006). Given 
m(.,.) is a spectroscopy measurement, d is the reference spectral 
signature, and si and sj are the spectral signatures or pair of pixel 
vectors, the RSDPW of m(.,.) represented by RSDPWm (si,sj;d) is:  
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4.2.6 Use of similarity measure as classifier 
We also tested the performance of two similarity measures (SAM and 
SID) as classifiers and classified a small subset of a HyMap image of 
Majella National Park, Italy, composed of beech and oak forest and 
grassland vegetation. We used threshold values for angle and divergence 
to assign the pixels to a specific class. We calculated the overall accuracy 
of the classification, kappa coefficients ( Κ̂ ) and z statistics between the 
two classifiers. 
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4.3 Results 
 
4.3.1 Similarity of spectra within and between species  
The ability of hyperspectral sensors to determine plant species depends 
largely on inter-specific and intra-specific spectral variability, so it was 
imperative to check the similarity values within and between species. 
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Figure 4.3 Differences of values in intra and inter-species setting using 
three different similarity measures. 
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Spectral similarity within a species was significantly higher than that 
between different species (Figure 4.3). It is also evident from Figure 4.3 
that, compared with the leaf spectra of herbs, the leaves of shrubs and 
trees are more similar. 
 

Table 4.4 Similarity score produced by SID algorithm between species pairs. Full and NIR 
spectral ranges are shown in the upper right half of the table and visible and SWIR ranges 
in the lower left half of the table. 

 
C. 
intybus 

O 
vulgare 

C 
monogyna 

P. 
spinosa 

A. 
campestre 

F. 
sylvatica 

 Full spectral range 

C intybus  0.00259 0.02384 0.02760 0.03721 0.03014 Herb 
O vulgare 0.00794  0.02480 0.03041 0.04149 0.03320 

C monogyna 0.02612 0.02508  0.00457 0.00431 0.00237 Shrub 
P spinosa 0.02536 0.02341 0.00257  0.00735 0.00464  

A campestre 0.01019 0.02049 0.00995 0.00958  0.00198 

vi
si

b
le

 r
an

g
e 

 

Tree 
F sylvatica 0.01322 0.01628 0.00324 0.00306 0.00344  

 NIR range 

C intybus  0.00113 0.00163 0.00147 0.00343 0.00256 Herb 
O vulgare 0.00266  0.00289 0.00401 0.00660 0.00523 

C monogyna 0.00484 0.00323  0.00052 0.00098 0.00055 Shrub 
P spinosa 0.00898 0.00581 0.00148  0.00051 0.00027 

A campestre 0.00095 0.00196 0.00302 0.00658  0.00014  

S
W

IR
 r

an
g
e 

Tree 
F sylvatica 0.00178 0.00172 0.00303 0.00628 0.00068  

 
Table 4.5 Similarity score produced by SID(TAN) algorithm between species pairs. Full 
and NIR spectral ranges are shown in the upper right half of the table and visible and 
SWIR ranges in the lower left half of the table. 

 
C. 
intybus 

O 
vulgare 

C 
monogyna 

.P 
spinosa 

A. 
campestre 

F. 
sylvatica 

 Full spectral range 

C intybus  0.00015 0.00301 0.00330 0.00553 0.00404 Herb 
O vulgare 0.00105  0.00316 0.00421 0.00672 0.00485 

C monogyna 0.00677 0.00652  0.00034 0.00022 0.00010 Shrub 
P spinosa 0.00642 0.00585 0.00001  0.00057 0.00029 

A campestre 0.00170 0.00455 0.00144 0.00134  0.00004 

vi
si

b
le

 r
an

g
e 

 

Tree 
F sylvatica 0.00252 0.00337 0.00028 0.00025 0.0003  

 NIR range 

C intybus  0.00005 0.00009 0.00006 0.00022 0.00015 Herb 
O vulgare 0.00015  0.00018 0.00029 0.00059 0.00042 

C monogyna 0.00031 0.00017  0.00002  0.00004  0.00002 Shrub 
P spinosa 0.00085 0.00045 0.00007  0.00001 0.00001 

A campestre 0.00003 0.00010 0.00015 0.00056  0.00001 

S
W

IR
 r

an
g
e 

Tree 
F sylvatica 0.00009 0.00008 0.00015 0.00051 0.00002  
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4.3.2 Spectral similarity 

4.3.2.1 Laboratory spectra  

Tables 4.2 to 4.5 show the similarity scores produced by the similarity 
measures SCM, SAM, SID and SID(TAN), respectively. These tabular 
scores were used to compute the RSDPB (Figure 4.4) and the RSDPW 
(Figure 4.5). 
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Figure 4.4 RSDPB result for the laboratory plant spectra of six species and three 
spectral similarity measures. Four different spectral configurations are shown in 
four graphs. 
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The RSDPB statistic (Figure 4.4) revealed that for the four spectral 
configurations the spectra from the two herb species showed greater 
discriminatory probability than the spectra from the trees and shrubs. 
Apart from the SWIR section, the different configurations did not provide 
much different information regarding relative discriminatory probability. 
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Figure 4.5 RSDPW result for the laboratory plant spectra using Fagus 
sylvatica as reference. Four different spectral configurations are shown in 
four graphs. 
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On a species-by-species basis, Origanum vulgare showed the highest 
separability. The two shrub species demonstrated the lowest separability 
in all configurations, except in the SWIR section, where they showed 
better separability. In particular, Prunus spinosa showed the highest 
separability of all species in the SWIR section. As regards the two tree 
species, Acer campestre showed higher discriminatory probability than 
Fagus sylvatica. 
 
Fagus sylvatica was used as reference spectra to compute the RSDPW 
statistic (Figure 4.5) for the laboratory plant spectra (see Section 2). 
With reference to a tree leaf spectral vector, both herbs (C. intybus and 
O. vulgare) and shrubs (C. monogyna and P. spinosa) revealed low 
discriminatory power within the group in all spectral configurations. Both 
the trees and shrubs showed higher discrimination from herbs. However, 
except in the SWIR section, it was difficult to separate tree spectra (A. 
campestre) from the shrubs. As with the RSDPB, here too the SWIR 
section showed a pattern of discrimination very different from that of the 
other configurations.  
 
For RSDPB, different measurements did not always show similar trends 
(Figure 4.4). SAM and SID followed a largely similar trend in all 
configurations. The performance of SID(TAN) was also linked to SAM and 
SID, but SID(TAN) showed higher discriminability than either SAM or SID 
for most of the species. SCM failed to produce the best discrimination for 
any species in the full spectral configuration, but in shorter spectral 
configurations it performed comparatively better. For RSDPW, in most of 
the combinations the SID(TAN) dissimilarity scores were more than twice 
as effective in terms of spectral discrimination (Figure 4.5). SID came 
second, except in the visible range, where SCM performed strongly.  

4.3.2.2 Spectra from image 

Spectra collected from the image produced consistent results similar to 
those found for the laboratory spectra. Figure 4.6 reveals that grass 
spectra are very dissimilar and can be easily discriminated from Q. 
pubescens and F. sylvatica spectra. The discrimination probabilities of the 
two tree species were much less prominent. For RSDPW, grass spectra 
were used as a reference to distinguish two tree species spectra. The 
SID(TAN) measure performed higher for both RSBPD and RSBPW. 
 
4.3.3 Similarity measures as classifier 
Because of the simplicity of the landscape, both algorithms performed 
very well as classifiers (Table 4.6). The outcome of the overall 
classification accuracy for the two algorithms (see Table 4.6) revealed 
that SID outperformed SAM as a classifier. Kappa coefficient ( Κ̂ ) values 
also supported SID’s superiority. A z statistic (Table 4.6) between the two 
classifiers proved there was a significant difference in ( Κ̂ ) values for the 
two classified images, as the null hypothesis was rejected using the 
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normal curve deviate statistic (z) for α = 0.05 if zt > 1.96 (i.e. zα=0.05 = 
1.96). 
 
Table 4.6 Comparison between the performances of two classifiers 
 SAM SID 
Overall accuracy (%) 84.7102 91.0995 
Kappa coefficient ( Κ̂ ) 0.7703 0.8672 
z statistic  3.35016 

 
 

Figure 4.6 RSDPB & RSDPW results for the image derived plant spectra of three 
species and three spectral similarity measures. In RSDPW grass species has 
been used as reference endmember to calculated discriminatory power between 
Q. pubescens and F. sylvatica.
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a 

b 

c 

Figure 4.7 a. A true colour composite HyMap image from Majella 
National Park, Italy. b. Classified images of the same area using SAM. 
c. Classified image of the same area using SID. 
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4.4 Discussion 
Spectral similarity measures were successful in discriminating species for 
laboratory-level leaf spectra, as well as image-level species endmember 
spectra (collected from the airborne HyMap hyperspectral image). From 
the results (Tables 4.2 to 4.5), it is evident that all four similarity 
measures managed to find dissimilarities between the spectra of different 
plant species, but from the tabular data it is not possible to infer the 
discrimination performance of individual species. Moreover, similarity 
measurements were performed in a pairwise manner, not in a 
multivariate set-up. To overcome the problem of pairwise measurements 
in a multiple species set-up, we used the RSDPB and RSDPW objective 
statistical algorithms. RSDPB revealed the degree of discrimination of 
individual species in relation to others. The results of RSDPB (Figure 4.4) 
revealed that both the herb species can be discriminated more accurately 
from shrub and tree species in the full, visible and NIR spectral 
configurations. In general, the discrimination probability followed the line 
of species types rather than individual species. This might be due to the 
differences in leaf structure of the species, since the leaf structures of 
herbaceous species differ from those of trees and woody shrubs. This was 
more evident since the two herb species had shown relatively higher 
separability from both the shrub and tree species, while the shrub and 
tree species had only minor differences between them. The results of 
RSDPW (Figure 4.5) revealed similar groupings, as relative discrimination 
between the two herbs (C. intybus and O. vulgare) and two shrubs (C. 
monogyna and P. spinosa) spectra showed very low probability of 
discrimination. In addition, discrimination of herb spectra from shrub and 
tree spectra remained very prominent. The differences between shrub 
and tree spectra appeared only when using the SWIR part of the spectra. 
The results from image spectra (Figure 4.6) also showed a relatively 
higher discrimination accuracy for grass spectra from the two tree 
species. 
 
Use of different parts of the spectra did not reveal any significant 
differences in species discrimination, contradicting our expectations and 
earlier literature (Verbyla, 1995; Atkinson et al., 1997; Gong et al., 
1997; Cochrane, 2000). The only exception was in the SWIR section, 
where both RSDPB and RSDPW showed very different discrimination 
probability from that in the rest of the spectra. Although not conclusive, it 
was apparent that the discriminatory scores (Figures 4.4 and 4.5) of full 
spectral configurations were a generalization or an average of the visible, 
NIR and SWIR sections, accommodating all the variations in 
discriminatory probability or power found in the three sections 
separately. 
 
Comparing the performance of the four similarity measures was not easy, 
especially with regard to the RSDPB results (Figures 4.4 and 4.6). For 
most species, the mixed measure SID(TAN) worked better, but the 
results were not conclusive. SAM and SID followed a similar pattern in all 
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the configurations, but in general SID performed better than SAM in most 
cases. As far as the RSDPW statistics (Figure 4.5) are concerned, 
SID(TAN) significantly outperformed the other measures. The better 
performances of SID and SID(TAN) in discriminating plant spectra are 
consistent with the findings of Du et al. (2004). These authors argue that 
the information theory-based measures allow each spectrum or pixel 
vector to have a certain degree of spectral variation, which may be a 
better alternative to other empirical measures such as SCM or SAM. This 
is particularly true for plant spectra, which always have subtle variations 
because of various environmental factors. Despite the fact that SCM 
managed to discriminate among all the species, it failed to produce good 
results for many of them. As SCM is highly sensitive to the overall 
spectral shape (van der Meer and Bakker, 1997) and plant spectra are 
similar in shape (Portigal et al., 1997), this measure failed to provide the 
best variability between species. In shorter spectral ranges, SCM worked 
comparatively better than in the full spectral configuration. In general, 
however, reduction in band number did not really support any specific 
similarity measure, and their overall performances remained more or less 
unchanged from those in the full spectral configuration. 
 
Using SAM and SID measures as classifiers produce visually similar 
outputs (although this was not unexpected as they were only tested on 
discriminating between three different spectral classes). However, as 
shown in Table 4.6, the overall accuracy and kappa coefficient of SID 
were higher. The z statistic also revealed that the classification performed 
by SID was significantly better than that by SAM. 
 
4.5 Conclusion 
This study applied four spectral similarity measures to discriminate the 
laboratory spectra of six plant species and the image spectra of three 
vegetation types. Two discriminatory statistical algorithms were used to 
evaluate the results produced by the similarity measures and determine 
their performance. The performances of similarity measures when used 
as classifiers were also tested. The following conclusions can be drawn 
from this study: 
1. Spectral similarity measures were successfully used to discriminate 

species. Discriminations were more prominent along the line of 
species types (i.e., herb, shrub and tree) rather than for individual 
species. 

2. Use of different parts of the spectra did not reveal any significant 
differences in species discrimination. The only exception was the 
SWIR section, where both RSDPB and RSDPW showed very different 
discrimination probability from that found in the rest of the spectral 
configurations. 

3. The mixed algorithm SID(TAN) outperformed all the other similarity 
measures in spectral discrimination. SID(TAN) uses both SAM and 
SID to make similar spectra even more similar and dissimilar spectra 
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more distinct. SID came second, although SAM followed a very similar 
trend. 

4. Compared with SAM, SID produces higher accuracy when used as a 
classifier. 
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In Chapter 4, we examine the possibility of using several spectral matching 
techniques and compared their usefulness. In the following chapter (chapter 
5) two of these spectral matching algorithms are used to measure the 
dissimilarities between species. However, the main objective of this chapter is 
the use of a phenological event (flowering) to enhance spectral discrimination 
between species. We hypothesized that flower pigment will enhance 
separability of species.  
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Abstract 
 
Phenology is a long-known physiological process of plants with a well-
defined temporal pattern. Although remote sensing has traditionally been 
used to track the phenological changes of plant communities, their use in 
discriminating plant species is rather limited. In this study, we 
investigated the nature and magnitude of changes produced by a 
phenological event (i.e., flowering), for the purpose of maximizing 
species discrimination. Reflectance measurements were made of six herb 
species, both with and without flowers in the canopy. Spectral differences 
between the with-flower and without-flower stages were determined 
using two spectral similarity algorithms (i.e., spectral angle mapper 
(SAM) and spectral information divergence (SID)). Moreover, we used 
continuum-removed band depth analysis for the pigment absorption 
regions (400 nm to 550 nm and 551 nm to 725 nm) in order to examine 
the influence of floral pigment on the spectra. The results showed that, 
although species are separable at both stages, the magnitude of 
separation was significantly higher with flowers in the canopies. They also 
revealed that the major source of this enhanced discrimination originated 
from the visible part of the spectra. Band depth analyses also confirmed 
that more species pairs demonstrated higher separability in with-flower 
measurements. Our investigation into the change in image classification 
accuracy because of phenological differences revealed a significant 
difference between two dates (z = 5.4883), and the target species in 
flower showed much less confusion in the matrix. Finally, we conclude 
that flowering has a positive effect on discrimination between these 
species. Therefore, the discriminatory probability between two species 
can differ according to the time of the year. 
 
Keywords: phenology; hyperspectral; species discrimination. 
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5.1 Introduction 
Phenology is the study of the times of recurring natural phenomena. The 
word is derived from the Greek Phainomai (φαινομαι), meaning to appear 
or to come into view, and indicates that phenology is concerned 
principally with the dates of the first occurrence of natural events in their 
annual cycle. Examples include the dates of emergence of leaves and 
flowers, the first flight of butterflies, and the first appearance of 
migratory birds (Wikipedia, 2007). Ecological studies have demonstrated 
that vegetation phenology has a relatively well-defined temporal pattern 
(Goward, Tucker and Dye, 1985; Prins and Loth, 1988). For example, in 
deciduous vegetation and in many crops, leaf emergence tends to be 
followed by a period of rapid growth, then a relatively stable period of 
maximum leaf area, and subsequently the emergence of flowers and 
fruits (Zhang et al., 2003). Recent technological developments in remote 
sensing have generated a new field in phenological research that is 
concerned with the study of phenological cycles of whole ecosystems on a 
global scale.  
 
As the changes in phenological stages can be observed at all different 
scales, ranging from field level to satellite sensing level, for obvious 
reasons they have attracted a lot of attention since the early days of 
remote sensing (Vinogradov, 1977; Boyer et al., 1988; Brisco, Brown and 
Manore, 1989; Moulin et al., 1997). Phenological studies conducted by 
means of remote sensing are divided primarily into two distinct divisions. 
Initial as well as most subsequent research concentrated on tracking 
phenological variability between different plant communities at varying 
scales, from ecosystem to country level (Goward, Tucker and Dye, 1985; 
Reed et al., 1994) and even at global scale (Justice et al., 1985; Zhang 
et al., 2003). The second and less studied side of plant phenology is the 
characterization of phenological patterns of individual species and the 
subsequent discrimination of these species by using the patterns (Turner 
et al., 2003; Underwood, Ustin and DiPietro, 2003). To make it easier to 
distinguish between species, most of the above studies have used either 
multitemporal images of two different phenological stages or images 
taken on dates when two species are at different phenological stages 
(Verbyla, 1995). The majority of the studies on plant phenology are 
based on the changing nature of the spectral characteristics of leaves 
during autumn senescence (Boyer et al., 1988; Miller et al., 1991; Rock, 
Lauten and Moss, 1993; Gitelson, Merzlyak and Lichtenthaler, 1996). 
However, with the arrival of imaging spectroscopy and hyperspectral 
sensors, the need has declined for multitemporal images for species 
discrimination purposes. The availability of images with high spectral and 
spatial resolutions has made it possible to discriminate species with 
single-date imaging (Everitt et al., 1992; Parker Williams and Hunt, 
2002). 
 
Various studies have demonstrated that discrimination at the individual 
species level can be achieved with a hyperspectral sensor without any 
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support from phenological events (Cochrane, 2000; Schmidt and 
Skidmore, 2001; Yamano, Chen and Tamura, 2003; Clark, Roberts and 
Clark, 2005; Vaiphasa et al., 2005). Price (1994), however, argues the 
case for the uniqueness of vegetation spectra, and hence the validity of 
using them for species discrimination. Everitt et al. (1992) document the 
fact that during flowering both common goldenweed (Isocoma 
coronopifolia) and Drummond goldenweed (I. drummondii) can be 
distinguished from associated plants and soil by using conventional colour 
aerial photography. Several other studies (Everitt et al., 1995; Lass et 
al., 2002; Hunt et al., 2003; Hunt et al., 2004; Parker Williams and Hunt, 
2004) have also used phenological support to distinguish target species 
from others. However, most of these studies concentrate on 
discriminating leafy spurge (Euphorbia esula), an invasive species with 
distinct yellow-green coloured bracts. Ge et al. (2006) have also tried to 
characterize various canopy components of yellow starthistle (Centaurea 
solstitialis) while flowering, in order to simulate various flowering stages 
and investigate their influence on spectral regions. Although it is clear 
from the above that species discrimination is possible without the support 
of certain phenological episodes, quantitative analysis of the phenological 
impact on species discrimination is inadequate. Moreover, comparative 
analysis of discrimination between two species at different phenological 
stages is still lacking.  
 
The main objective of this study was to investigate the nature and 
magnitude of changes produced by a phenological event, for the purpose 
of maximizing species discrimination. To achieve this objective, we used 
flowering as our target phenological event. Reflectance measurements 
were made of six herb species, with and without flowers in the canopy. 
The spectral differences between two separate phenological stages were 
determined using spectral similarity algorithms. We also hypothesize 
that, as flowers add pigment signatures to the plant spectra, 
discrimination would be concentrated largely in the visible part of the 
spectrum − even though we realise that flowers and pollinators have 
often co-evolved, leading to enhancement in parts of the spectrum not 
visible to the human eye. We have thus taken this visible part of the 
spectrum in quite broad terms. 
 
5.2 Materials and method 
 
5.2.1 Collection of samples 
Fully bloomed whole-plant specimens of six herb species (Table 5.1) were 
collected during summer 2005 in Majella National Park, Italy. After 
detachment from the substratum, the plants were placed in plastic 
sample bags and stored in a cool box to reduce transpiration. The 
samples were then immediately taken to the laboratory for spectral 
reflectance measurements, and all the measurements were conducted 
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within two hours of field collection to avoid dehydration-related changes 
in leaf spectra. 
 
Table 5.1 Species used to measure spectra in this experiment. 
Species Flower colour Family 
Centaurea sp. Pink Asteraceae 
Cichorium intybus Blue Asteraceae 
Daucus carota  White Apiaceae 
Galega officinalis Pink Fabaceae 
Crepis biennis Yellow Asteraceae 
Scabiosa columbaria Blue-pink Dipsacaceae 
 
5.2.2 Collection of spectra 
In the laboratory, specimens from the same species were bundled 
together in such a way that they formed a pure homogenous canopy 
similar to their natural state. We produced four such canopies (or 
bouquets) of specimens for each species. These bouquets were held 
vertically upright by a clamp and placed on the top of a flat black mat to 
minimize background reflectance. Fifty spectral measurements were 
obtained for each bouquet, but after every ten measurements they were 
averaged to produce a single spectrum in order to reduce specular 
behaviour (Schmidt and Skidmore, 2001). So from four bundles of 
specimens we constructed 20 spectra. The process was repeated after 
carefully pruning all the flowers from the plants to mimic the non-
flowering stage. At the end, 40 spectra were obtained for each species, 
half with flowers and half without flowers in the canopy.  
 
A GER 3700 (Geophysical and Environmental Research Corporation, 
Buffalo, New York) spectroradiometer measured the reflectance spectra. 
The GER 3700 is a three dispersion grating spectroradiometer using Si 
and PbS detectors with a single field of view. The wavelength range is 
from 325 nm to 2500 nm, with sampling intervals of 1.5 nm between 325 
nm and 1050 nm, 6.2 nm between 1050 nm and 1900 nm, and 9.5 nm 
between 1900 nm and 2500 nm. The full width half maxima are 3 nm, 11 
nm and 16 nm in the 325 nm to 1050 nm range, 1050 nm to 1900 nm 
range, and 1900 nm to 2500 nm range, respectively. Although the 
spectrometer records up to 647 bands, because of the high noise in the 
extreme short wavelength area, only the spectral range between 400 nm 
and 2500 nm was analysed, which contains 597 wavebands. The sensor, 
equipped with a 1.5 m long fibre optic cable (25° field of view) was 
mounted on a tripod and positioned 20 cm at nadir above the target 
canopy. A light source (Lowel Pro-Light with 14.5V/50W/3200K JCV 
halogen lamp) pointing at the centre of the target canopy was placed at 
30° off-nadir, approximately 40 cm from the target. The radiance data 
were converted to reflectance, using scans of a white Spectralon 
reference panel. The whole operation was conducted under laboratory 
conditions (i.e., dark room, ±25°C) in order to avoid ambient light 
sources unrelated to the true spectral signal of the canopy. We used a 
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Savitzky-Golay (Savitzky and Golay, 1964) second-order polynomial 
least-squares function of a five-band window to spectrally smooth our 
data (Schmidt and Skidmore, 2004). 
 
5.2.3 Data Analysis 

5.2.3.1 Discrimination through similarity measures 

The reflectance was analysed using two similarity measurement 
algorithms, namely (i) spectral angle mapper (SAM) and (ii) spectral 
information divergence (SID), to discriminate the species. These 
similarity measures were computed in four different spectral 
configurations: full spectral range (400 nm to 2500 nm), visible range 
(400 um to 700 nm), NIR range (700 um to 1300 nm) and SWIR range 
(1300 um to 2500 nm).  
 
(i) Spectral angle mapper (SAM) 
SAM is the most popular and widely used spectral similarity algorithm in 
hyperspectral remote sensing. It calculates spectral similarity by 
measuring the angle between the spectral signature of two samples, si 
and sj (Yuhas, 1992; Kruse et al., 1993). The algorithm determines the 
similarity between two spectra by calculating the spectral angle between 
them, treating them as vectors in a space with dimensionality equal to 
the number of spectral bands used (Kruse et al., 1993). This technique is 
relatively insensitive to illumination and albedo effects because the angle 
between two vectors is invariant with respect to the length of the vectors 
(Kruse, 1997). SAM between two spectral signatures si = (si1, …….siL)

T 
and sj.= (sj1, …….sjL)

T can be defined as: 
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(ii) Spectral information divergence (SID) 
SID (Chang, 2000) derives from divergence theory and calculates the 
probabilistic behaviours between spectral signatures (Chang, 2003; van 
der Meer, 2006). Compared with SAM, which examines geometrical 
characters such as the angle between two spectral signatures or pixel 
vectors, SID computes the discrepancy between the probability 
distributions produced by the spectral signatures. Consequently, SID may 
be more effective than SAM in capturing spectral variability (Chang, 
2003). SID between two spectral signatures can be defined as: 
 

( ) ( )ijjiji rrDrrDrrSID +=),(  Eq. 2 

 
where 
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calculated from the probability vectors p = (p1, p2, ……pL)

T and q = (q1, 
q2, ……qL)T for the spectral signatures of si and sj, where ∑ =

= L

l ilikk ssp
1

and 

∑ =
= L

l jljkk ssq
1

. So the self-information provided by rj for band l is defined 

by Il(rj) = -log ql and similarly Il(ri) = -log pl.  According to information 
theory, ( )ji rrD  in Eq. 2 is called the relative entropy of rj with respect to 

ri, which is also known as the Kullback-Leibler information measure 
(Kullback, 1959). 
 
The differences in similarity values generated from phenological changes 
and spectral configurations were compared statistically. Two sample t 
tests were used to ascertain whether discriminability between a species 
pair changes because of a phenological event. t tests were also used to 
detect the magnitude of changes caused by the flowering event in 
different parts of the spectra. A one-way ANOVA test was performed to 
test the significant difference (p ≤ 0.05) of species separability when 
using different spectral configurations. In the case of significant 
differences in similarity values (i.e., spectral angle and SID value), the 
Bonferroni post hoc test was applied to identify which groups are 
significantly different. 

5.2.3.2 Continuum removed band depth analysis 

We hypothesized that during flowering the differences between the 
species would be more prominent in the visible part of the spectra 
because of enhanced absorption by floral pigments. Hence, to test this 
hypothesis in a more detailed manner, we used continuum-removed band 
depth analysis for the two known main pigment absorption features 
(between 400 um and 550 nm and between 551 and 750 nm) in the 
visible region. Continuum removal normalizes the reflectance spectra by 
applying a convex hull fitted over the top of the local maxima and allows 
comparison of individual absorption features (Kokaly, and Clark, 1999). 
After the application of continuum removal, band depth was calculated 
for each wavelength within the absorption features as described by 
Mutanga, Skidmore and Prins (2004) and Noomen et al. (2006), but only 
the maximum band depths for each absorption feature were used for this 
investigation (Figure 5.1). The band depth values were then used to 
compute t values between all species pairs, both with-flower and without-
flower measurements. These series of with-flower and without-flower t 
values were then plotted against each other in a scatter plot to visualize 
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the relative discrimination. To reduce the error produced by multiple 
comparison, we used the t test with the Bonferroni adjusted significance 
level (ά = 0.003, with initial ά = 0.05/15 pairs of species).  
 

 
5.2.4 Effect of phenological differences on classification 

accuracy 
Two HyMap hyperspectral images from the same area of Majella National 
Park, Italy, were used to investigate the effect of phenological differences 
on classification accuracy (detailed description of the image acquisition 
and pre-processing are provided in the next chapter). The two images 
were obtained on 15 July 2004 and 4 July 2005, respectively. Our main 
target species was Spanish broom (Spartium junceum L.), a shrub with 
bright yellow flowers, and we hypothesized that in blooming condition it 
could be well separated from another associated shrub species (i.e., 
Prunus spinosa) in the area., Although the two image acquisition dates 
were only two weeks apart but as the main blooming season for this 
species is late June (reflected in the image of 4 July), and the plants are 
virtually flowerless by mid-July (reflected in the image of 15 July). The 
ground covers between these two dates had not changed and therefore 
we used the same training and test field data set for classification and 
accuracy measurements. The SAM classifier was used to classify the 
images. We calculated the overall accuracy of the classification, kappa 
coefficients ( Κ̂ ) and z statistics between the two dates. Producer and 
user accuracies were also calculated for all cover classes.  
 

Figure 5.1 Continuum removed band depth profile for different plant species. 
(a) with-flowers; (b) without-flowers. 
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5.3 Results 
 
5.3.1 Visual differences in spectra 
We measured the spectra of the flowers separately from those of the 
plants (Figure 5.2a) and they obviously differed greatly, especially in the 
visible and NIR regions of the spectra. Although reduced to a great 
extent, the effect of these flowers was still noticeable in the plant spectra 
measured with the flowers (Figure 5.2b and enlarged in the inset), and 
these differences between species were visible in the visible part of the 
spectra. In without-flower measurements, however, visual differences 
were non-existent.  

Fig. 5.2 Average reflectance spectra of 
six herb species used in this study, a. 
reflectance of flower; b. reflectance of 
plant with-flower; and c. reflectance of 
plant without-flower. 
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Figure 5.3 Discrimination scores produced by two spectral similarity measures (SAM 
and SID) while discriminating species pairs in two phenological conditions. 
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5.3.2 Comparison of discriminations 
The results showed that all six species were spectrally separable by both 
algorithms and in both phenological conditions (Figure 5.3). However, 
there were large differences in the discriminatory values (i.e., spectral 
angle and spectral divergence) between with-flower and without-flower 
measurements. With-flower discrimination scores were almost twice as 
high as without-flower values, especially in the visible and full spectral 
ranges (Figure 5.3). A one-way ANOVA was used to test whether the 
discrimination scores produced by the different spectral configurations 
when discriminating species pairs were significantly different. These tests 
(Table 5.2) showed significant differences between the scores of these 
spectral configurations. A Bonferroni post hoc test on the ANOVA output 
showed that in with-flower measurements discriminations between 
species in all configurations were significantly different in both the SAM 
and the SID algorithms (i.e., full ≠ visible ≠ NIR ≠ SWIR). On the other 
hand, in without-flower measurements there was no significant difference  
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Figure 5.4 Comparisons of similarity measure values between with-flower and without-
flower measurements in all four spectral configurations. t-test results showing the 
significance of their differences. Left column is for SAM and right column is for SID 
measurements.  

t = 3.94;  p = 0.001
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between the full spectral configuration and the NIR (i.e., full = NIR ≠ 
visible ≠ SWIR) in the SAM algorithm and no significant difference 
between the full, visible and NIR (i.e., full = visible = NIR≠ SWIR) in the 
SID algorithm. 
 
Table 5.2 ANOVA results showing the significance of difference between various 
spectral configuration groups while discriminating species.   
Types of 
measurement Source of Variation df F P-value 
SAM with-flower Between groups 3 101.4537 0.00000 

SAM without-flower Between groups 3 12.54164 0.00000 
SID with-flower Between groups 3 26.6565 0.00000 
SID without-flower Between groups 3 7.847339 0.00018 

 
The comparison of the similarity measure values or discrimination scores 
produced by the two different phenological scenarios was tested by 
conducting t tests for all four spectral configurations (Figure 5.4). In both 
algorithms, with-flower measurements obtained a significantly higher 
discrimination score in the full and visible spectral ranges. The differences 
were especially distinct in the visible part of the spectra. Whereas with 
the SID method a significant difference was found when using the NIR 
part as well, with the SAM method the two phenological conditions 
produced no significant difference in score when using the NIR and SWIR 
parts of the spectra. 
 
5.3.3 Continuum removed band depth analysis 
Band depth analysis in the blue (400 um to 550 nm) absorption area 
revealed that 11 species pairs demonstrated higher discrimination in 
with-flower measurements, compared with four in without-flower 
measurements (Figure 5.5). In the red absorption area, 13 pairs showed 
higher discrimination in with-flower measurements. However, band depth 
analysis in the blue area also revealed that two species pairs showed no 
significant discrimination between them (t > 3.234) in with-flower 
measurements, while three pairs showed no discrimination between them 
in the without-flower condition. The relevant numbers for the red area 
were three pairs and five pairs, respectively (Figure 5.5). 
 
5.3.4 Classification accuracy 
Compared with classification accuracy for the 2004 image (59%), overall 
classification accuracy for the 2005 image (71%) showed a significant 
increase. A z statistic (Table 5.3) between the two image dates proved 
that there was a significant difference in kappa coefficient ( Κ̂ ) values for 
the two classified images, as the null hypothesis was rejected using the 
normal curve deviate statistic (z) for α = 0.05 if zt > 1.96 (i.e., zα=0.05 = 
1.96).  
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Table 5.3 Comparison of accuracy between 2004 and 2005 images.  

 2004 2005 
Overall accuracy (%) 59.2217 71.5938 
Kappa coefficient ( Κ̂ ) 0.5343 0.6691 
z statistic  5.4883 
 
Producer and user accuracies for the classified images (Table 5.4) 
revealed a substantial increase for our main target species, Spartium 
junceum, and other shrub covers. Other cover classes, however, 
remained largely unchanged.   
 
Table 5.4 Producer and user accuracies of two classified images. 

2004 2005 
Class 

Prod. Acc. User Acc. Prod. Acc. User Acc. 
Spartium 67.23 41.03 96.84 92.00 
Oak 87.07 75.37 87.38 79.65 
Mowed grassland 39.20 71.08 46.46 72.84 
Road 65.85 95.29 49.32 78.26 
Rocky area 86.76 71.52 89.62 79.17 
Grass land 52.61 81.62 65.16 66.45 
Shrub 51.70 68.42 70.59 78.29 
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Figure 5.5 Scatter plot showing the comparative discriminability by band depth 
analysis. Shaded areas showing the critical level of t value (critical tα=0.003 = 
3.234 at df = 14). 
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2004 2005 

Figure 5.6 HyMap images of 2004 and 2005 from 
Majella National park, Italy at the top and their 
classified form at the bottom. Classification was done 
using spectral angle mapper classifier. 
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5.4 Discussion 
Flowering is an important phenological event for all angiosperms. In this 
study, we used this phenological event to examine the possibility of 
enhancing species discrimination through spectral measurements. The 
results (Figure 5.4) showed that the impact of flowers on separability was 
significant in both the full spectral configuration and the visible range, 
thus confirming the findings of Everitt et al. (1992), who used the 
630 um to 690 nm range to distinguish two flowering weed species from 
associate vegetation. However, the impact of flowering on species 
separability in the NIR and SWIR regions was not significant.   
 
Figure 5.2a shows that, owing to the differences in flower colour, there 
was a high dissimilarity in reflectance in the visible spectral regions. This 
flower influence was visible even in the reflectance of plants with flowers 
(Figure 5.2b). Figure 5.3 supports this finding in a more structured way. 
Highest discrimination under blooming conditions was always found in the 
visual range. The increase in the magnitude of the dissimilarity scores of 
SAM and SID highlights the fact that the high discrimination in the visible 
range enhances the separability in the full spectral configuration. 
However, under non-blooming conditions, the NIR starts to play a more 
significant role in species separation. The ANOVA results (Table 5.2) 
failed to show any conclusive difference between the two phenological 
conditions, as both groups showed significant differences in different 
configurations. A post hoc Bonferroni test revealed that in the flowering 
stage the capabilities of all spectral configurations to discriminate species 
differed significantly. In the non-flowering measurements, however, the 
differences between configurations became less prominent, with the 
visible range losing its high discriminatory power. In other words, 
flowering exerted a big discriminatory influence on the studied species 
but this additional discriminatory power was concentrated almost entirely 
within the visible range of the spectrum. The two spectral similarity 
algorithms that we used in this study did not differ significantly in terms 
of the results produced.  
 
Results of continuum-removed band depth analyses (Figure 5.5) revealed 
that most of the species pairs were more separable when flowering. The 
differences between the results derived from the blue and red absorption 
pits were not significant. 
 
Classification accuracy showed a significant increase when flowers were 
in the canopy (2005), as compared with the non-flowering state (2004). 
Both overall accuracy and the kappa coefficient increased significantly 
(Table 5.3). Table 5.4, computed from the confusion matrix, gives more 
detailed insight into the changes. The increased accuracy of our target 
species, Spartium junceum, was very high. Both producer and user 
accuracies rose from 67% and 41%, respectively, to more than 90%. 
This also increased the accuracy of its associate shrub, Prunus spinosa. 
There are visual differences in the two classified images (see Figure 5.6), 
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with a big reduction in the area covered by Spartium junceum. This 
highlights the fact that the flowers of Spartium junceum change their 
spectral reflectance, reducing confusion with associated species. The 
results show that at different times of the year different species can have 
different discriminatory probabilities. Consequently, it is very important 
to know the phenological cycles of the species to be discriminated in 
order to schedule image acquisition to the best advantage. 
 
5.5 Conclusion 
Using hyperspectral remote sensing, the study evaluated the effect of 
phenological input in enhancing plant species discrimination. The 
conclusion is that phenological changes such as the emergence of flowers 
can be used to enhance species-level discrimination. However, the 
changes in the reflectance spectra attributable to flowering were largely 
confined to visible range. Band depth analyses also showed that the 
pigment absorption of all species in flower changed significantly, thus 
enhancing their separation. Study of the image classifications showed 
that it is important to know the exact time or phenological stage at which 
two different target species are most separable. This is essential for 
scheduling image acquisition to achieve better discrimination between 
target species.  
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In the three previous chapters we concentrated solely on the species 
discrimination primarily based on laboratory measurements. Whereas, in the 
next chapter (Chapter 6), sub-pixel unmixing technique were applied to 
discriminate species within the pixel.  
 
The sub-pixel unmixing technique followed in this chapter used common shrub 
and tree species of the area as endmembers and provides the spatial 
distribution of studied species as well as the composition of these species per 
pixel.  
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Abstract 
Re-colonization of natural vegetation in abandoned farmlands and 
pasture is the most important vegetation process taking place in the 
European Mediterranean region. Many studies have sort to capture the 
changing vegetation composition in these systems through field-based 
studies in order to enhance the sustainable management of biological 
diversity. But these studies are labour intensive and expensive, and 
cannot be extended over large areas. However, Hyperspectral imagery 
with high spatial and spectral qualities offers new possibilities to provide 
important information about vegetation composition that are indicative of 
successional stages. This study investigates the utility of spectral 
unmixing technique using airborne hyperspectral imagery for identifying 
shrub and tree species composition at pixel level. Airborne hyperspectral 
(HyMap) imagery and ground data were collected in the summer of 2005 
from the Majella national park, Italy. Fourteen common shrub and tree 
species were utilized as endmembers to explore their composition and 
distribution in the study area. Ground locations were recorded with pure 
canopy cover of these species and their top-of-canopy reflectance were 
obtained from the HyMap images and used as endmember (image 
endmembers) in the unmixing process. Matched filtering, a partial 
spectral unmixing algorithm was used to determine the spectral 
abundance (degree of match) per pixel of these endmembers by creating 
a fraction image for each of them. These fraction images were 
aggregated together into a single map which illustrated the number and 
composition of shrubs and trees per pixel. Overall performance of this 
technique to predict number of species per pixel was good (r2=0.83). The 
root mean square error (RMSE) between the observed and predicted 
number of species was slightly less than one species per pixel (i.e. RMSE 
= 0.73). However, species by species comparison between actual and 
predicted composition revealed an accuracy of 69%. We conclude that, 
unmixing technique with hyperspectral imagery can be useful for 
mapping species distribution at the sub-pixel level and may successfully 
replace the high labour intensive field investigation over large areas. 
 
Keywords: Unmixing; Matched filtering; species richness; land 
abandonment; secondary succession. 
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6.1 Introduction 
Throughout the history of human settlement in the European 
Mediterranean region, short-term land abandonment has occurred 
repeatedly which helps to characterize the landscape (Naveh and 
Lieberman, 1994; Fernández, Mora and Novo, 2004), but due to the 
changes in the socio-economic setting, a dramatic rural exodus and 
subsequent abandonment of agricultural and pastoral land have taken 
place in the second half of the last century (Naveh 1991; Lepart and 
Debussche, 1992; Bonet 2004). As a consequence, natural forest 
formation has taken place on former croplands and pastures, causing 
large scale transformation of the regional landscape (Tatoni, and Roche, 
1994; Prévosto, and Curt, 2004). This re-colonization by natural 
vegetation in abandoned farmland is the most important vegetation 
process taking place in southern European Mediterranean region 
attracting huge scientific attention (Lepš, Osbornová-Kosinová and 
Rejmánek, 1982; Debussche and Lepart, 1992; Tatoni et al., 1994; 
Debussche et al., 1996; Ne’eman and Izhaki, 1996; Prins and Gordon, 
2007).  
 
This repeated cycle of land abandonment and re-colonization due to 
secondary plant succession creates the characteristic heterogeneity of the 
Mediterranean landscape (Barbero, Bonin and Quezel, 1990), which 
supports high species diversity (Ales et al., 1992). In most of the 
Mediterranean regions which receive higher precipitation, this process of 
succession from abandoned agricultural land to natural vegetation leads 
to the establishment of either oak or beech forest depending on the 
environmental backdrop with intermediate scrubby shrub formation 
(Saïd, 2001; Prévosto and Curt, 2004). However, interspecific 
interactions and environmental conditions (e.g., rainfall and soil water 
availability) determine the pathways or trajectory of this secondary 
succession (Bonet, 2004). Moreover, van der Putten et al., (2000) show 
that species diversity or richness in the initial or intermediate stages can 
play an important role in the succession process. However, Armesto and 
Pickett, (1985) argue that the species richness changes along the 
succession process itself. In other word, succession can also be viewed as 
a gradient in time where species turnover is partially a function of 
changing resources availability (Pickett, 1976; Tilman, 985). Meanwhile, 
Grime, (1979) and Carson and Barrett, (1988) projected that the 
increasing resources availability could also alter the trajectory of the 
succession. Therefore, there is quite some scientific debate on whether 
chronosequences can really be taken as equivalent to spatial sequences. 
Yet in this paper we will not delve into that. 
 
Sustainable management of any ecosystem require a comprehensive 
understanding of species composition and distribution. Moreover, in areas 
with active succession processes, it is also important to identify the local 
trajectory of the succession and present state of vegetation within that 
trajectory. Monitoring the changes of species richness and particularly 
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examining the composition of certain species can make it possible to 
recognize the trajectory of succession of a specific area. A quantitative 
spatial and temporal approach is essential (van der Maarel, 1993) to 
monitor and understand this dynamic process and its possible 
consequences on local flora and fauna, such as, loss of open habitat 
grassland species (Verdú, Crespo, and Galante, 2000; Reidsma et al., 
2006).  
 
Remote sensing is instrumental in the characterisation of landscape 
heterogeneity (Turner, 1989; Quattrochi and Pelletier, 1991; Seixas, 
2000; Kerr and Ostrovsky, 2003). Conventionally, landscape 
heterogeneity is characterised through image classification of broad 
vegetation types. Traditional methods of classification techniques such as 
maximum likelihood classifier determines vegetation classes at the pixel 
level (i.e., each pixel is assigned to a vegetation class). However, this 
kind of per pixel classification is problematic in a landscape where the 
individual vegetation communities are smaller than the pixel resolution of 
the sensor. In changing landscapes such as those in the Mediterranean, 
species composition vary at relatively short distances (Salvador, 2000). 
In such cases each pixel could consist of several vegetation communities 
(e.g., grass, shrubs and trees) or species (e.g., different species of trees 
and/or shrubs), which makes monitoring of species richness and or 
composition very challenging. The advent of sensors with both high 
spectral and spatial resolution has raised new expectations about the 
possibilities of spectrally discriminating species (Cochrane, 2000; Schmidt 
and Skidmore, 2003; Clark, Roberts and Clark, 2005) and thus improving 
the characterization of vegetation communities or species composition in 
highly heterogeneous landscapes. 
 
Airborne hyperspectral imagery with continuous narrow bands of spectral 
reflectance from the visible (400 nm) through the short-wave infrared 
(2500 nm) range of the electromagnetic spectrum with high spatial 
resolution can provide much better accuracy in mapping vegetation 
communities or even individual species. But yet, conventional classifiers 
can only provide pixel level classification. To deal with this problem 
spectral unmixing was introduced. The technique is based on the 
assumption that the spectral reflectance of a given pixel is a linear 
combination of individual reflectance spectra (endmembers) of the 
reflective component materials on the ground (Adams, Smith and 
Johnson, 1985; Smith et al., 1990; Roberts, Smith and Adams, 1993). So 
each pixel retains the characteristic features of the individual component 
spectra. Spectral unmixing utilizes the high dimensionality of the 
hyperspectral imagery to produce a fraction image for each endmember, 
which shows the relative abundance of the endmember in a subpixel 
estimation (Adams et al., 1995). Different types of unmixing algorithms 
are available and used for mapping individual plant species or 
associations with mixed success (Roberts et al., 1998; McGwire, Minor 
and Fenstermaker, 2000; Parker Williams and Hunt, 2002; Robichaud et 
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al., 2007). But compared to other vegetation attributes, plant species 
composition is still the most difficult attribute to detect with remote 
sensing techniques (Lewis, 1998).  
 
The objective of this study was to investigate the utility of the spectral 
unmixing technique using airborne hyperspectral imagery for identifying 
shrub and tree species composition at the pixel level in a semi-natural 
Mediterranean landscape, which in turn would provide spatial information 
on the ongoing succession process. In order to achieve the objective, we 
applied the matched filtering (MF) unmixing technique on a HyMap 
hyperspectral image from Majella National Park, Italy.  
 
6.2 Materials and method 
 
6.2.1 The study area 
The study site is located in Majella National Park, Italy (42º14' - 42º50'N 
and 13º50' - 14º14'E), which covers an area of 74000 ha. The park 
extends into the southern part of Abruzzo, at a distance of 40 km from 
the Adriatic Sea. This region is situated in the massifs of the Apennines 
mountain range. The park is characterised by several mountain peaks, 
the highest being Mount Amaro (2794 m). More specifically, the study 
area (42º03'56 - 42º09'23N and 13º59'03 - 14º02'22E) is situated 
between Mounts Majella and Mount Morrone to the east and west, 
respectively. It covers an area of approximately 10 km x 4.5 km as 
shown in Figure 6.1.  Average yearly precipitation is approximately 800 
mm. 
 
6.2.2 Field data collection 
Field work was carried out from 16 to 29 June 2005. Field information 
was collected using two different methods, namely, (a) collection of 
endmember locations and (b) sampling for species composition.  
 
We conducted several transect surveys in the east-west direction, from 
about 1800m elevation (pure beech, Fagus sylvatica stands) to about 
400m elevation (pure oak, Quercus pubescens stands). Along these 
transects, GPS readings were collected for endmembers, where 
homogeneous canopy cover of more than 5 m by 5 m was found to keep 
the pixel reflectance as impervious as possible and minimize the influence 
of other species. Twenty different endmembers were collected for the 
study (Table 6.1). Out of which, fourteen were common shrub and tree 
species of the area and the rest were supporting endmembers to 
facilitate unmixing procedure and enhance the accuracy by minimizing 
fraction errors. We have limited our study to common shrubs and trees 
species of the study area, because of the difficulties associated with 
obtaining pure image endmember spectra from 4 m pixels. 
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Sampling for species composition was performed using a “random 
sampling technique” A GPS was used to locate the sample plots in the 
field. A 30 m x 30 m plot size was adopted in this study. Shrubs and 
tress were deemed visible and enlisted only if they coved greater than 
5% of the sample plots. All field sample plots were aligned with the 
direction of the flight line. Nomenclature of the plant species follows Flora 
D’Abruzzo (Conti, 1998). 
 
6.2.3 Image acquisition and pre-processing 

6.2.3.1 Geometric and atmospheric correction 

Airborne HyMap data of the study site were obtained on 4 July 2005. The 
flight was carried out by German Aerospace Research Centre and Space 

Figure 6.1 True colour composite of HyMap hyperspectral image for the 
study area, (a) with original 4 m pixel and (b) with re-sampled 30 m pixel. 

a. b.
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Agency (DLR). The HyMap sensor comprised 126 wavebands, operating 
over the wavelength range 436–2485 nm, with average spectral 
resolutions of 15 nm (436–1313 nm), 13 nm (1409–1800 nm) and 17 nm 
(1953–2485 nm). The spatial resolution of the data was 4 m. The images 
were collected at solar noon. The specific study site was covered by two 
image strips, each covering an area of about 40 km x 2.5 km. The solar 
zenith and azimuth angles for the image strips ranged between 30–33.78 
and 111.5–121.8 respectively. The image strips were geometrically and 
atmospherically corrected by DLR. The on-board navigation system used 
for geometric correction was a C-MIGITS II system, which has a dx-dy 
accuracy of 2.5m and dz accuracy of 3m. The atmospheric correction was 
carried out using ATCOR4-r (rugged terrain). ATCOR4 is based on 
MODTRAN-4 radiative transfer code. However, there were differences 
between the reflectance of similar pixels in the overlapping sections 
between image strips. Spectral calibration between strips was carried out 
using the empirical line method in Environment for Visualising Images 
(ENVI 4.2) software (Research System, Inc.) in order to minimize the 
differences. Ten image spectra collected from a reference strip (strip 2) 
and corresponding targets from its overlapping neighbour (strips 1) were 
used to compute a linear regression function for each channel. Using the 
regression functions, strip 1 was then adjusted to have a spectral 
response similar to that of strip 2. The spectra were collected from 
homogenous targets such as roads, agricultural fields, limestone quarry, 
and dense beech forest pixels. 
 
6.2.4 Collection of endmember spectra from image 
GPS readings of the endmembers were over-laid on the true colour 
composite HyMap image. A point region of interest (ROI) tool in ENVI 4.3 
software (ITT Inc.) was used to collect image endmember spectra from 
the image (Gillespie et al., 1990; Adams, Smith, and Gillespie, 1993; 
Adams et al., 1995). The true colour composite image of the area was 
used to ensure that pixels outside the each species canopy were not 
collected, as (Ferrier, 1999) described that spectral unmixing is highly 
dependent on the quality of input endmembers. The number of pixels 
used for each endmember is shown in Table 6.1.  
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Table 6.1 Different endmembers used in this study.   

 
6.2.5 Per pixel assessment of shrubs and tree species  

6.2.5.1 Resampling 

Before performing the unmixing analysis of the original HyMap image 
with 4m pixels was resampled to 30m pixels to match with our field 
observations plot size with no spatial reference of species occurrence with 
the plot. This was necessary to ensure that the number of shrubs and 
trees found in the field plots were comparable with the predicted output 
from the unmixing process, though the endmember spectra were 
collected from 4m pixels. 

6.2.5.2 Spectral unmixing process 

Spectral unmixing is a way of determining the relative abundances of 
materials depicted in multi- or hyper-spectral imagery based on the 
materials spectral characteristics (Ferrier, 1999). The reflectance of each 
single pixel of an image is assumed to be a combination of the surface 
reflectance of each material (or endmember) present within the pixel 
(Adams, Smith, and Johnson, 1985; Adams, Smith, and Gillespie, 1993; 
Roberts, Smith, and Adams, 1993). Out of several available unmixing 
techniques, we used Match filtering method. Matched filtering finds the 
abundances of user-defined endmembers using a partial unmixing. The 
strength of the matched filtering process is that all of the endmembers in 

Tree/Shrub 
endmembers 

Number of 
endmember 
pixels 

Supporting 
endmembers 

Number of 
endmember 
pixels 

Fagus sylvatica 94 Mowed grassland 135 

Quercus pubescens 52 Tarmac road 116 

Juglanns regia 10 Rocks 112 

Robinia pseudoacacia 21 Tree shades 92 

Acer campestre 30 Sparse  grassland 93 

Fraxinus excelsior 17 Thick grassland 110 

Pinus nigra 35   

Tilia cordata 11   

Salix alba 19   

Rosa canina 17   

Spartium junceum 24   

Juniperus communis  11   

Crataegus monogyna 10   

Corylus avellana 17   
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the image need not to be known. This technique maximizes the response 
of the known endmember and suppresses the response of the composite 
unknown background, thus "matching" the known signature. It provides a 
rapid means of detecting specific materials based on matches to library 
or image endmember spectra. We ran the matched filtering algorithms 
using our selected image endmembers spectra. The un-mixing process 
uses the mean spectrum per species.  
 
The partial unmixing technique applied in this study is based on a linear 
operator that minimizes the total energy in a hyperspectral image 
sequence while the response of the operator to the signature of 
endmembers is constrained to a desired constant level (Resmini et al., 
1997; Jacobsen, Heidebrecht, and Nielsen, 1998). 
 
Consider a finite set of observation spectral vectors (r1 … ri …. rq ) each 
of which are drawn from an area of interest in a hyperspectral image 
sequence. In this notation, the spatial position (x, y) of each of the pixel 
vectors is described by the subscript. Each of the q observations is an l 
by 1 vector ri=(ri1…..rik….. ril ) T that has properties described by the 
linear mixture model (Eq. 1) 
 
r(x,y) = M α(x,y) + n(x,y)      Eq. 1 
 
where r(x,y) is an l by 1 vector of observations at location (x,y) (l is the 
number of spectral bands), M is an l by p matrix with columns containing 
the endmember spectra for the p endmembers (M is constant for all 
(x,y)), α(x,y) is a p by 1 vector of abundance for the endmembers at 
location (x,y), and n(x,y) is an l by 1 vector of noise. In the model the 
noise is random with dispersion (or covariance) matrix σ2 I (I is the l by l 
unit matrix). 
 
The results of the matched filtering appear as a series of gray-scale 
images (fraction images), one for each selected endmember (Boardman, 
Kruse, and Green, 1995). These floating point images provide a means of 
estimating relative degree of match to the reference endmember 
spectrum and approximate sub-pixel abundance. Moreover, these images 
also illustrate the spatial distribution of the corresponding endmember 
(Adams et al., 1995). In case of vegetation endmembers, the fraction or 
relative degree of match is proportional to the real abundance of canopy 
cover (Parker Williams, and Hunt, 2002). As match filtering minimize the 
response of composite unknown background, so the data histogram of 
background materials proximate around 0.0, whereas the target 
(endmember) data distribution occurs in the upper tail of the histogram, 
where 1.0 is a perfect match. 
 
Although partial unmixing process does not necessarily require all 
possible endmembers within the image frame, too few endmembers can 
subset the unmodeled endmembers into the resulting fraction images, 



Mapping species richness from hyperspectral imagery 

 112 

2 4 6 8 10 12 14 16 18 20

Endmembers

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
de

gr
ee

 o
f m

at
ch

Figure 6.2 Spectral profile showing relative abundance of different 
endmembers per pixel. The line indicates the threshold (0.2) above which 
an endmember was considered present in the pixel. 

creating the fraction error (Sabol, Adams, and Smith, 1992). To minimize 
these fraction errors, we added six supporting endmembers with the list 
of fourteen pure shrub and tree endmembers (Table 6.1) while running 
the unmixing procedure. Selection of these supporting endmembers was 
driven primarily because of their high cover percentage in the image. 

6.2.5.2 Preparation of species composition map 

The species composition map was produced by aggregating fraction 
images resulting from the unmixing process. During this aggregation 
process, we left out fraction images produced from the supporting 
endmembers, as their existence to minimize fraction error was already 
achieved and they were no longer necessary for further analysis. 
Harsanyi and Chang (1994) had demonstrated that an endmember 
appeared to be present in a pixel if it scores more than 0.1 in the relative 
degree of match. But we increased that threshold value to 0.2 to 
decrease the possibility of “false positive” response from some rare 
endmembers as reported by Boardman (1998). So in a specific pixel 
endmembers which scored above 0.2 were deemed to be present and 
those scored below 0.2 were considered absent. In other words, we 
counted the number of endmembers scored above 0.2 to get the species 
number in a pixel. As an example showed in Figure 6.2, seven 
endmembers scored above the threshold values of 0.2 and were 
considered to be present in that pixel. So the aggregated image 
illustrated the number and composition of shrubs and trees per pixel. 
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6.2.6 Validation  
Ground observations from 30 sample plots were used to evaluate the 
results. Correlations between these field plot data and corresponding 
pixel values for species number and compositions were assessed by 
calculating root mean square error (RMSE) between the observed and 
predicted number of species. We also used χ2 “goodness of fit” to 
evaluate the null hypothesis Ho (that the prediction were consistent with 
observed) against the alternative HA (that they were not are not 
consistent) and null hypothesis was rejected if χ2 ≥ 2

αχ . The desired level 

of significance (ά) was fixed at 0.05. χ2 was calculated by using Eq. 2. 
 

( )∑
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e
ef
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2
2χ        Eq. 2 

 
where,  
 

=if  observed species number for sample plot i 

=ie  expected species number for sample plot i 

=k  number of sample plots 
 
Moreover, we also compared species composition between field data and 
predicted output for each sample plot to investigate the under and over 
prediction for each individual species.  
 
6.3 Results  
 
6.3.1 Endmembers 
Three non-vegetated endmembers (viz., Rock, road and mowed-
grassland) were clearly distinct from the others (Figure 6.3). However, 
both road and mowed-grassland spectra had visible influence from 
characteristic vegetation spectra.  Roads were too narrow to have a 
complete pure spectrum for 4m pixel while mowed-land had a vegetation 
signal. Tree shed spectrum produced the lowest reflectance as these dark 
pixel had very low illumination level. Rest of the spectra from tree and 
shrub species were difficult to differentiate visually in figure 6.3. 
 
6.3.2 Spatial distribution of individual species and mapping 

species richness per pixel  
The individual gray scale fraction images for each endmember species 
provided a good understanding of their spatial distribution pattern for 
that species. In Figure 6.4 two fraction images for F. sylvatica and Q. 
pubescens are presented as examples. The gray scale corresponds to the 
degree of match between sub-pixel abundance and reference 
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endmember. Black areas have zero or low values, so no match to the 
reference endmember, while brighter areas have higher MF score and 
higher match to the input endmember. Using a threshold value of 0.2, a 
present-absent binary image can be developed for all endmember species 
as shown in Figure 6.5.  
 
The aggregated species richness map as shown in Figure 6.6 illustrates 
the number of shrub and tree species found per pixel. White areas are 
either out of the study image or grasslands having no or very low 
shrub/tree covers. Meanwhile, the red and orange pixels are with high 
shrub and tree species numbers. A large part of blue areas are comprised 
of Beech and Oak woodlands, which form monotypic stand in the study 
area. 
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Figure 6.3 Average spectral reflectance of twenty endmembers 
used in this study 
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Figure 6.5 Present-absent binary images produced by slicing the 
fraction images shown in Figure 6.2 (a) beech (F. sylvatica) and (b) 
oak (Q. pubescens) 

a b

a b

Figure 6.4 Examples of fraction images, (a) beech (F. sylvatica) 
and (b) oak (Q. pubescens) 
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6.3.2 Comparison of unmixing results with field measurements 
Overall performance of this technique to predict the number of species 
per pixel was satisfactory, because a scatterplot of species number 
(Figure 6.7) between prediction and ground data revealed high 
correlation (r2=0.83, p= 0.000). Root mean square error between 
observed and predicted number of species was slightly less than one 
species (RMSE = 0.73) per pixel. χ2 “goodness of fit” also showed that 
the prediction was consistent with observed data, as the null hypothesis 
was failed to be rejected (χ2 = 0.554; df = 29, while critical χ2 α = 0.005 = 
42.56) 
 
A plot by plot investigation (Table 6.2) showed that in 17 out of 30 plots 
the numbers of species were predicted correctly. All the five sample plots 
which did not possess any shrub or tree species were predicted correctly 
as having zero species. In ten plots species number were under-
predicted, while in three plots there were over-prediction. Except in one 
plot (sample plot 10) prediction errors were always confined to one 
species.  
 
 

 

Figure 6.6 Composite species richness 
map, showing the number of species 
present per pixel.  
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Table 6.2 Plot by plot comparison of species number and composition between 
field data and prediction 
Field 
samples 

Sp. No. 
Field  Species found in field  

Sp. No. 
Predicted Species found from unmixing 

1 3 
A. campestre, Q. pubescens, 
R. canina 3 

A. campestre, Q. pubescens, 
R. canina 

2 2 
S. alba, Q. pubescens, R. 
canina 2 S. alba, R. canina 

3 0   0   

4 1 R. canina 1 R. canina 

5 0   0   

6 5 

Q. pubescens, F. excelsior, 
A. campestre, T. cordata, R. 
canina 4 

Q. pubescens, A. campestre, 
F. excelsior, R. canina 

7 5 

Q. pubescens, S. alba, F. 
excelsior, A. campestre, R. 
canina 5 

A. campestre, Q. pubescens, 
S. alba, F. sylvatica, R. 
canina 

8 6 

A. campestre, J. regia, Q. 
pubescens, R. pseudoacacia, 
R. canina, C. monogyna 7 

A. campestre, Q. pubescens, 
J. regia, R. pseudoacacia, S. 
alba, R. canina, C. monogyna 

9 5 

Q. pubescens, F. sylvatica, 
F. excelsior, R. canina 

5 

Q. pubescens, F. sylvatica, R. 
pseudoacacia, F. excelsior, R. 
canina 

10 1 R. canina 3 
R. canina, R. pseudoacacia, 
P. nigra 

11 0   0   

12 3 
A. campestre, R. canina, C. 
monogyna 3 

A. campestre, R. canina, C. 
monogyna 

13 2 A. campestre, C. avellana 1 A. campestre 

14 0   0   

15 1 R. canina 1 R. canina 

16 0   0   

17 3 
Q. pubescens, F. excelsior, 
P. nigra 3 

Q. pubescens, P. nigra, R. 
pseudoacacia 

18 1 Q. pubescens 1 Q. pubescens 

19 3 
Q. pubescens, A. campestre, 
F. excelsior 2 Q. pubescens, A. campestre 

20 3 
Q. pubescens, F. excelsior, 
C. avellana 2 Q. pubescens, C. avellana 

21 
4 Q. pubescens, S. alba, F. 

excelsior, R. canina 
4 Q. pubescens, S. alba, F. 

excelsior, R. canina 

22 2 
Q. pubescens, A. campestre, 
R. canina 1 Q. pubescens 

23 2 Q. pubescens, R. canina 1 Q. pubescens 

24 3 
Q. pubescens, A. campestre, 
R. canina 2 Q. pubescens, A. campestre 

25 2 Q. pubescens, C. avellana 1 Q. pubescens 

26 1 F. sylvatica 1 F. sylvatica 

27 2 F. sylvatica 1 F. sylvatica 

28 2 F. sylvatica, J. communis  1 F. sylvatica 

29 1 F. sylvatica 1 F. sylvatica 

30 2 F. sylvatica, J. communis  3 
F. sylvatica, Q. pubescens, J. 
communis  
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Species by species comparison between field data and prediction (Table 
6.3) revealed that 80% (52 out of 65) of the species were correctly 
spotted in the plots, i.e., observed in the field as well as predicted from 
the image. 20% (13 out of 65) of the species were under-predicted, i.e., 
observed in the field but not predicted from the image and 11% (7 out of 
65) of the species were over-predicted, i.e., not observed in the field but 
predicted from the image. Hence, the total error was 20 species 
(combining both over and under prediction) out of 65 or 31% of the total. 
Predictability of different species varies, but it was inconclusive. Only two 
species (R. canina and F. excelsior) showed relatively high under-
prediction, in contrast R. pseudoacacia show over-prediction.  
 

 
6.4 Discussion and conclusion 
Use of unmixing technique in not new in imaging spectroscopy (Adams, 
Smith and Johnson, 1985; Boardman, Kruse and Green, 1995), but its 
use in plant species mapping is still weakly developed, especially with 
complex vegetation pattern such as that found in the Mediterranean. The 
results of this study highlights the usefulness of techniques based on 
unmixing image processing of sub-pixels in the context of the spatial 
distribution of a particular plant species as well as the mapping of multi-
species associations. Use of multi-species endmembers proved very 
encouraging as both intermediate fraction images (Figure 6.4) and final 
result (Figure 6.6) should have immense importance to the scientists as 

0 1 2 3 4 5 6 7

Species no. field

0

1

2

3

4

5

6

7

8

Sp
ec

ie
s n

o.
 im

ag
e

 r2 = 0.8311;  r = 0.9117, p = 0.0000

Figure 6.7 Scatter plot of species number from MF unmixing procedure 
versus field data. Best fit linear regression line is also shown. 



Chapter 6 

 119 

well as managers. Spatial distribution map of each single endmember 
species (Figure 6.5), which is a derivative of fraction images can be used 
in the studies of population ecology of that species. Moreover, the final 
outcome of this process can be translated into a species richness map or 
a phyto-association map depending on the requirement.  
 
Table 6.3 Species by species comparison between field observation and prediction. 

Species 
Field 
observation 

Prediction 
from 
unmixing 

Correct in 
both field & 
prediction 

Under 
prediction 

Over 
prediction 

F. sylvatica 6 7 6 0 1 

Q. pubescens 15 15 14 1 1 

R. canina 14 11 11 3 0 

A. campestre 9 8 8 1 0 

F. excelsior 7 3 3 4 0 

P. nigra 1 2 1 0 1 

S. alba 3 4 3 0 1 

J. regia 1 1 1 0 0 

T. cordata 1 0 0 1 0 

C. avellana 3 1 1 2 0 

J. communis 2 1 1 1 0 

R. pseudoacacia 1 4 1 0 3 

C. monogyna 2 2 2 0 0 

Total 65 59 52 13 7 
 
Although Mundt et al., (2005) pointed out the importance of using 
multiple species endmembers in ecological studies, there have not been 
many endeavours on this regards, except for Aspinall, (2002) who 
discriminated three Populus sp. Most of the other studies have 
concentrated on discriminating single species, e.g. Mundt et al., (2005) 
mapped Cardaria draba and Parker Williams, and Hunt (2002) Euphorbia 
esula from other vegetation. Due to obvious limitations of spectral and 
spatial resolution, almost all multispectral unmixing endeavours have 
been limited to determining subpixel mixing of different community types 
(Caetano et al., 1997), habitat types (Novo and Shimabukuro, 1997) or 
landforms (Lewis, 2001; Ballantine et al., 2005). This study reveals the 
potential utility of using multiple endmembers unmixing to discriminate 
species at the sub-pixel level. As the technique is relatively less field 
intensive, using it to monitor changes of a complex and dynamic 
vegetation such as the Mediterranean ecosystem is promising. The 
process succeeds here because of the good quality of endmembers 
spectral data and the use of hyperspectral image. We limited our 
endmembers only to few common species which have larger canopy 
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Figure 6.8 Figure shows the classification of the same study image done through 
spectral angle mapper (SAM), (a) using same endmembers used in sub-pixel 
classification and (b) using more generalized cover class endmembers. 

a. b. 

cover. In addition, hyperspectral image provide spectral resolution which 
enable us to distinguish subtle variations between different plant spectra.  
 

Per-pixel classification can only bring out the species with highest cover 
percentage within that pixel, but for ecological studies this is not always 
enough. Particular species, especially shrubs which in most cases do not 
produce the largest cover class in a pixel, may give vital clues about the 
vegetation status. As shown in Figure 6.8 (a), the image we used can be 
classified with moderate accuracy (overall accuracy 58% ( Κ̂ ) 0.49) using 
the same endmembers we used in unmixing process. But comparing with 
the Figure 6.8 (b), which used more generalized land cover classes 
(overall accuracy 91%; ( Κ̂ ) 0.907), it was too well evident that 
increasing the number of endmembers increased the number of 
“unclassified” pixels. Murwira and Skidmore (2006) showed that 
landscape level spatial heterogeneity can be monitored by using intensity 
and dominant scale of NDVI data. However, understanding the 
heterogeneity or species richness within the pixel remains the main 
shortcoming of pixel based approaches compared to sub-pixel unmixing 
techniques. 
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In our study, problems with high “false positive” response for rare 
endmembers was not as overwhelming as reported by some other studies 
(Blackburn, 1998; Parker Williams, and Hunt, 2004). The results from 
species by species comparison of our study (Table 6.3) during accuracy 
assessment actually revealed more under prediction than over prediction. 
The only real over predicted rare species was R. pseudoacacia.  Out of 
three important under predicted species, both R. canina and F. excelsior 
have a very open type of canopy, which may undermine their spectral 
strength in the pixel and hence cause their under prediction. However, 
the sample number for many species was not large enough to conclude 
the statistical significance of this finding. The selection of high threshold 
value (0.2) of degree of match for designating species presence was also 
taken to minimize the “false positive” response. But the negative side of 
this high threshold was omitting many legitimate presences of species. 
So actually many white pixels (no species) in Figure 6.5 may still have 
shrubs or small trees which failed to create enough spectral response to 
be recognised during the unmixing. 
 
Traditionally, maps for vegetation dynamics are based on species 
association or phyto-sociological boundaries with added expert judgment, 

as shown in Figure 6.9. To prepare a phyto-sociological map and 
consequently convert it into a vegetation dynamic map is a costly and 
time-consuming effort. In a fast changing landscape keeping pace with 

a b

Figure 6.9 (a) Phyto-sociological map of the study area (b) Map for vegetation 
dynamism and (c) species richness map from unmixing process with overlaid 
polygon boundaries of vegetation dynamism map. Map (a) and (b) are produce by 
the Majella national park authority and published on February 1999. 

c 
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the transformation is also essential. To get a quick and reliable species 
composition map, the method we used can be very useful. The pixel-
based system can also reduce the subjective nature of polygon 
boundaries. Overlaying the polygon boundaries of dynamisms map on our 
species richness map (Figure 6.9 (c)) and the histogram of mean species 
number per pixel per dynamism class (Figure 6.10) highlighted the 
relationship between species assemblage and dynamisms status. It is 
evident from the histogram (Figure 6.10) that the polygons designated as 
lower dynamic status also contain less number of species. This is 
especially true for hill pasture and garrigue areas showed in Figure 6.9 
(a), which still remained primarily as grassland and used for sheep 
grazing in the summer. Much of these grasslands are also mowed for 
winter fodder reserve for the cattle. The very low dynamic areas are 
mainly consists of pure beech (F. sylvatica) forest stands and hence the 
mean species number remained close to one (Figure 6.10). However, the 
differences of species number between moderate, high and very high 
dynamic areas were little. From an ecological point of view, it was also 
interesting to observe that relatively higher number of species 
assemblage was found along the polygon boundaries as evident in Figure 
6.9 (c). Moreover, the higher heterogeneity in the landscape level (i.e., 
rapid change of vegetation associations) appeared to influence the 
species number positively.  
 

Figure 6.10 Mean shrub and tree species number per pixel in 
different dynamism classes as showed in Figure 6.9 (b). 
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One of the major limitations of unmixing techniques is to find endmember 
spectra which can truly represent that species. Spectral variations within 
a single endmember, especially in case of plant species are common due 
to various environmental factors. Even we had to limit our study area into 
a small subset of the national park as spectral signature from distance 
locations with different topography and micro-environment was giving 
unreliable endmember signature. Use of single mean spectrum per 
species was another notable weakness of this process as it fails to take 
care of the variability within each species. 
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7.1 Plant species discrimination 
Sustainable ecosystem management requires the comprehensive 
understanding of species composition and distribution (Nagendra, 2002). 
Traditionally, species discrimination for floristic mapping has involved 
exhaustive and time-consuming fieldwork, including taxonomical 
information and the visual estimation of the percentage cover for each 
species (Kent and Coker, 1992). To understand species composition and 
distribution more accurately and also more efficiently, it is essential to 
use remotely sensed data for the species-level discrimination of plants. 
 
The advent of hyperspectral sensors has raised new possibilities for 
spectrally discriminating species (Cochrane, 2000; Schmidt and 
Skidmore, 2003; Clark Roberts and Clark, 2005) and thus for improving 
the discrimination and mapping of vegetation communities or species. 
Researchers are able to discriminate and classify species based on their 
fresh leaf or field reflectance (Gong, Pu and Yu, 1997; Knapp and Carter, 
1998; Kumar and Skidmore, 1998; Cochrane, 2000; Schmidt and 
Skidmore, 2001; Schmidt and Skidmore, 2003; Yamano et al., 2003). 
However, several concerns still exist regarding the usefulness of plant 
reflectance spectra for separating species. Price (1994) and Portigal et al. 
(1997) are sceptical about the possibility of utilizing plant spectra for 
species-level discrimination. Moreover, both intraspecies variations in 
spectra owing to various environmental factors (Gausman, 1985; 
Westman and Price, 1987; Carter, 1993; Carter, 1994; Portigal et al., 
1997; Roberts et al., 1998; Gracia and Ustin, 2001; Smith et al., 2004) 
and high data dimensionality are other causes of concern in this regard. 
 
Using hyperspectral remote sensing for the species-level discrimination or 
mapping of plants is a complex process, and it is therefore important to 
understand all the different aspects before coming to a conclusion. 
 
The main objective of this study was to investigate the potential of 
hyperspectral remote sensing for plant species discrimination. To realize 
this main objective, we subdivided it into sub-objectives: (1) to identify 
the potential spectral regions containing information regarding species 
discrimination, (2) to investigate the usefulness of spectral matching 
algorithms for discriminating spectra of different plant species, (3) to 
examine whether phenological events can be used to enhance the 
separability between species, and (4) to examine whether sub-pixel 
unmixing techniques can be used to map the species distribution and 
richness in a landscape. 
 
7.2 Reliability of laboratory measurement 
Frequently, leaves are collected in the field and transported to the 
laboratory for spectral measurement because in situ spectroscopic 
measurements are often impractical owing to poor or highly variable 
lighting conditions, and inaccessibility for portable spectral equipment 
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(Foley et al., 2006). But how “safe” is it to collect spectral measurements 
in a laboratory yet still treat them as in situ measurements? Although the 
foliar spectral signature is controlled by foliar biochemical contents (e.g. 
chlorophyll and nitrogen concentrations (Asner, 1998)), all these 
biochemical contents are subject to change according to the leaf 
hydration state. The sudden disruption in energy, nutrient and hormone 
supplies subjects harvested leaves to considerable stress (Page et al., 
2001). Stress is manifested by changes in leaf biochemical constituents 
such as water content and pigment concentration (Böttcher et al., 2001; 
Able et al., 2005). As the changes in leaf physiology affect its spectral 
properties (Horler et al., 1983; Hunt and Rock 1989; Carter, 1993, 1994; 
Peñuelas et al., 1994; Carter and Knapp, 2001), results based on 
laboratory measurements may not truly reflect in situ spectra. 
 
The results of this study show that from the moment of harvest the 
spectral properties of fresh leaves change significantly over time. The 
safe period to perform spectral measurement, irrespective of species 
variations, was found to be six hours − although leaf samples must be 
stored in plastic bags and under cool dark conditions. However, the rate 
of change in spectral indices differs because of the varying leaf structure 
of different species. Although leaf dehydration influences reflectance 
across the whole spectrum, the effects are more noticeable in the NIR 
and SWIR than in the visible spectrum. Of the indices, the two water 
indices were the most sensitive, and for all species they defined the 
minimum “safe” period. 
 
7.3 Dimensionality: Are all bands necessary? 
The high dimensionality of hyperspectral data is a known phenomenon 
that can cause imprecise class estimation in the spectral feature space 
and can lower classification accuracy (Bellman, 1961). Moreover, this 
phenomenon requires more training samples in order to construct better 
estimates of class models, thereby increasing the field survey 
requirement. However, Roberts et al., 1993; Kokaly et al., 2003; and 
Clark et al., 2005 argue that the high spectral resolution of hyperspectral 
data is essential for capturing and discriminating the subtle differences in 
targets that help species-level discrimination, and that any band 
reduction procedure decreases the information content captured by the 
measurement. 
 
Various data reduction techniques, including the search for the most 
informative bands and the linear transformation of reflectance spectra 
into lower-dimensional spectral space, have traditionally been applied to 
this problem. A number of feature extraction techniques have already 
been tested to reduce the number of dimensions in hyperspectral data. 
Linear and stepwise discriminant analysis (Duda and Hart, 1973), 
principal component analysis (Anderson, 1984), canonical analysis 
(Richards, 1986), decision boundary feature extraction (Lee and 
Landgrebe, 1993) and genetic algorithms (Vaiphasa, 2003) are among 
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the typical data extraction methods to reduce data dimensionality. In 
spite of the problems of information loss and data distribution, several 
studies have found that these techniques help to improve classification 
accuracies (Harsanyi and Chang, 1994; Du and Chang, 2001; Gong et 
al., 2002; Metternicht and Zinck, 2003). However, the recent 
development of various spectral matching algorithms has reduced 
dependency on dimension reduction techniques, as most of these 
techniques can handle high dimensional data quite easily. In fact, these 
algorithms treat the spectral signatures as vectors, and compare their 
geometrical shapes or probability distributions in order to separate them 
from each other. For example, spectral angle mapper (SAM) (Skidmore et 
al., 1987; Yuhas, 1992; Kruse et al., 1993) measures the similarity 
between two spectra by calculating the spectral angle between them, 
treating them as vectors in a space with dimensionality equal to the 
number of spectral bands used. On the other hand, spectral information 
divergence (SID) (Chang, 2000) calculates the probabilistic behaviours 
between spectral signatures. But these techniques too have their 
weaknesses when separating vegetation spectra. For example, SAM is 
relatively insensitive to illumination and albedo effects because the angle 
between two vectors is invariant with respect to the length of the vectors 
(Kruse, 1997), while Schmidt and Skidmore, 2003 point out that albedo 
contributes largely to the differences between vegetation types. 
 
In this thesis, we have used both methods. In chapter 3, band selection 
techniques are applied to discriminate leaf spectra, while in chapter 4 
spectral matching techniques are applied. Both types of technique 
perform well and manage to differentiate species from leaf spectra. 
However, comparing an “all bands” approach with a “selected band” 
approach is difficult, as they produce completely different units of 
measurement. 
 
7.4 Which part of the spectrum is most important? 
During the band selection process (chapter 3), it was evident that 
important spectral regions do exist in different parts of the spectral 
signature. Hence, close inspection reveals that, out of the seven 
information-rich regions described in chapter 3, three lie within the 
visible part of the spectra. The relatively high importance of the visible 
part is also supported by Everitt et al. (1992) and Hunt et al. (2004). 
Furthermore, this illustrates the relative importance of different parts of 
the spectrum for species discrimination. This result could lead us to 
hypothesize that the spectral responses of leaf pigment and other 
biochemical properties contain more spectral information regarding 
species discrimination than can be gained from leaf morphology. It is also 
evident that these selected spectral regions have important vegetation 
parameters (Table 3.7), as established by various authors (Curran et al., 
1992; Johnson et al., 1994; Yoder and Pettigrew-Crosby, 1995; Blackburn, 
1998; Blackburn, 1999; Datt, 1999). Chapters 4 and 5 highlight the 
importance of the visible portion of the electromagnetic spectrum, especially 
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when using phenological support to differentiate species. Even in the 
“without flower” condition as portrayed in Figure 5.3, the visible portion 
showed higher differences between species. We also observed that the 
visible portion, compared with the NIR or the SWIR, remains unaffected 
by dehydration much longer when spectral measurements are performed 
in the laboratory. However, this could be misleading as Schmidt and 
Skidmore (2001, 2003) show that the NIR portion also contains a high 
level of information regarding species separation. One of the major 
causes of this discrepancy may be the lack of canopy information in our 
experiment design, where layers of leaf were used to collect the spectra.  
 
7.5 What is essential to optimize a sensor for species 

discrimination? 
Designing a sensor is always complicated, as a balance between the data 
acquisition rate and the storage and handling facility is crucial (Goetz et 
al., 1985). An optimum sensor specialized for species discrimination 
should have bands of narrow bandwidth but not necessarily contiguous 
from the visible to the SWIR spectral range. High spatial resolution is 
essential, but exact pixel size is difficult to define. As discussed in chapter 
3, information regarding species discrimination was found to be 
concentrated in seven spectral regions, as separability calculated 
between species (Bhattacharya distances) using bands within these 

Figure 7.1 Selected regions (in gray) where discriminating wavebands 
occurred most frequently. 
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regions showed significantly higher distances compared with those shown 
using bands from outside these ranges. The result also revealed that 
bands within these regions share similar information between them. As a 
result, a sensor designed to be used for species discrimination should 
have bands within the selected regions (Figure 7.1). Selecting an optimal 
spatial resolution is more complicated. Ideal pixel size depends on the 
size of the canopy of the target species, which can vary widely from 
species to species as well as within species (Nagendra, 2002). 
 
Most of the current airborne hyperspectral sensors (HyMap, HYDICE or 
AVIRIS) have a spectral resolution of 10 nm or more, with 100 to 250 
spectral bands (Cocks et al., 1998). Because of the airborne platform, 
these sensors can vary their spatial resolution by changing the flight 
height − although most of them cannot reach below 2 m. The only 
available satellite-platform-based hyperspectral sensor is EO-1 Hyperion, 
with 220 spectral bands and 30 m ground resolution. So, even though 
most of these sensors have sufficient spectral resolution to capture 
spectral differences between species, their spatial resolution is not high 
enough to capture pure spectra, except large tree or shrub canopies. 
 
When species discrimination is performed using unmixing techniques in a 
multispecies pixel condition (chapter 6), the spectral resolution is more 
important than the spatial resolution, as long as the pure endmember 
spectral measurements are available. Since these endmember spectral 
measurements can also be obtained by using a spectrometer in the field, 
the use of very high spatial resolution imagery is not obligatory. 
 
7.6 When to measure? 
Two species can have different discriminatory probability at different 
times of the year. This phenomenon is due largely to the change of 
phenological stages of plant species. Phenology has a well-defined 
temporal pattern, which can be used to characterize an individual species 
and discriminate it from others (Turner et al., 2003; Underwood, Ustin, 
and DiPietro, 2003). Although most authors mention using multitemporal 
images from two different phenological stages (Verbyla, 1995) and 
changes in the spectral characteristics of leaves during autumn 
senescence (Boyer et al., 1988; Miller et al., 1991; Rock, Lauten, and 
Moss, 1993; Gitelson, Merzlyak, and Lichtenthaler, 1996) to discriminate 
species, in this study (chapter 5) we concentrate on using the flowering 
period as a phenological stage and investigate the influence of flowering 
on species separability.  
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Figure 7.2 Comparisons of similarity measure values between with-flower and without-
flower measurements in all four spectral configurations. t-test results showing the 
significance of their differences. Left column is for SAM and right column is for SID 
measurements.  
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In this thesis, we observe that flowers have a distinct influence on 
vegetation spectra and hence on their separability. The presence of 
flowers induces extra pigment absorption in the visible spectral regions, 
and during the flowering stage the visible portion demonstrates a very 
significant enhancement in separability, whereas the NIR and SWIR show 
little change. However, because of the big change in the visible portion, 
the full spectral configuration also shows significant enhancement (Figure 
7.2). Furthermore, continuum-removed band depth measurements of two 
pigment absorption pits also reveal that most of the species pairs are 
more separable when flowering. 
 
This study also uses phenological differences to investigate the change in 
classification accuracy between two shrub species. The result shows a 
significant increase in classification accuracy with flowers in the canopy 
(2005), as against the non-flowering state (2004) (Figure 7.3). Both 
overall accuracy and Kappa coefficient increased significantly (Table 5.3). 
However, a more detailed insight into the changes (Table 5.4) reveals 
that the increased accuracy of our target species Spartium junceum was 
very high. Both producer and user accuracies exceeded 90% in 2005, 
rising from 67% and 41% respectively in the previous year. This also 
pushed up the accuracies for its associate shrub (Prunus spinosa). 
 
The results show that different species can have different discriminatory 
probability at different times of the year. Consequently, it is very 
important to know the phenological cycles of the species to be 
discriminated in order to schedule image acquisition. In fact, one should 
conclude that the species are “separable at the time of measurement”. 
 
7.7 Discriminating species at a landscape scale 
At a landscape level, species discrimination using airborne hyperspectral 
data encounters a completely different set of difficulties to those relating 
to laboratory measurement − although it is more ecologically relevant. 
Species grow together and share the spatial space and reflectance 
spectra of a pixel. In this thesis, a sub-pixel spectral unmixing technique 
(matched filtering) is applied to a HyMap hyperspectral image of Majella  
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National Park, Italy, to spectrally separate species based on their 
abundance in the pixel.  
 
Although the use of unmixing techniques in imaging spectroscopy is not 
new, it has been little explored in plant species discrimination and 
mapping. The results of this study (chapter 6) highlight the usefulness of 
sub-pixel-based unmixing image processing techniques in the context of 
the spatial distribution of a particular plant species as well as the 
mapping of multispecies associations. Use of multispecies endmembers 
proved very encouraging, as both the intermediate single species 
distribution map (Figure 7.4) and the final species composition or 
richness map (Figure 7.5) can enhance understanding of the spatial 
distribution of each single endmember species, as well as the overall 
vegetation composition. This technique also proved to be more useful 
than per-pixel classification. The per-pixel classifier can bring out only the 
species with the highest cover percentage, but this is not always enough 
for ecological studies. Species, especially shrubs and herbs that in most 
cases do not produce the largest cover class in a pixel may yet give vital 
clues about the vegetation status.  

Figure 7.3 Classified HyMap images of 2004 and 2005 
from Majella National park, Italy. Classification was 
done using spectral angle mapper classifier. 

2004 2005 
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One of the main limitations of unmixing techniques is finding species 
endmember spectra that can truly represent that species, as this 
technique utilizes an average spectrum for each endmember. Owing to 
various environmental factors, spectral variations within a single 
endmember are common, particularly in the case of plant species, and 
because of this variation in spectral reflectance there is the risk of 
omitting valid endmember species from the result. Moreover, we had to 
limit our study to common shrub and tree species because of the 
difficulties associated with obtaining pure endmember spectra from the 
4 m pixel we used. However, it may be possible to avoid this difficulty by 
using field-level spectrometer measurements of the endmembers.  
 
7.8 Conclusion: Species discrimination - is it possible? 
Among scientists today, there are two different schools of thought 
regarding the possibility of species discrimination by using hyperspectral 
data: the believers and the sceptics. 
 

Figure 7.4 Present-absent binary images produced by slicing the fraction 
images shown in Figure 6.2 (a) beech (F. sylvatica) and (b) oak (Q. 
pubescens) 

a b. 
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Let’s first look at the arguments put forward by the sceptics. Price (1994) 
questions the uniqueness of the vegetation spectra and hence the use of 
them to discriminate species. He suggests that several species may 
actually have quantitatively similar spectra, and that a spectrum is a 
mixture of physical and chemical properties that can change owing to 
various environmental factors. In an earlier article, Price (1992) argues 
that spectral reflectance is controlled by a small number of independent 
variables such as chlorophyll a, chlorophyll b and the carotenoids in 
visible regions (Tucker and Garrett, 1977) and the number and 
configuration of the air spaces that form the internal leaf structure in NIR 
(Danson 1995). Portigal et al. (1997) also argue that the reflectances of 
vegetation of different species are highly correlated because of their 
common chemical composition, and discrimination observed between 
species could be a result of the variation in biochemical compounds owing 
to environmental factors. Furthermore, interspecies spectral variability 
has to be lower than intraspecies spectral variability to successfully 
discriminate plant spectra. 

Figure 7.5 Composite species richness 
map, showing the number of species 
present per pixel.  
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However, the group of scientists who believe that spectral reflectance can 
be used to discriminate species has tried to counter these arguments. 
Cochrane (2000) argues that, despite some problems, the potential for 
separating different species based on foliar reflectance does exist. This 
group has further argued that although, because of the non-unique 
nature of the spectral response, species level may never be perfect or 
very robust, the spectral response still provides enough information to 
separate one species from another and can be a useful tool. Moreover, 
hyperspectral data have proved capable of quantifying all the 
independent variables mentioned by Price (1992), such as chlorophyll 
content of plants (Blackburn, 1999), biochemical variables such as 
nitrogen and lignin (Curran, 1994), crop moisture variations (Peñuelas et 
al., 1993; Peñuelas et al., 1995), and leaf pigment concentrations 
(Blackburn and Steele, 1999). In natural environment conditions, 
environmental variables generally follow a slow continuous gradient 
(Schmidtlein and Sassin, 2004). Under such conditions, the variability of 
biochemical compounds and canopy/leaf structure, two major drivers of 
vegetation reflectance spectra, should be controlled by the genetic 
variability of different species. 
 
So let’s return to the main question of this study: Is it possible to 
differentiate plant species by using hyperspectral remote sensing? The 
answer is: Yes, it is possible. Various aspects of species discrimination 
were explored to determine the answer, and some of the major 
conclusions of this dissertation are summarized below. 
 
• Species can be discriminated spectrally with or without reducing the 

data dimension. 
 
• Seven spectral regions shown to contain the highest species 

discriminatory properties were detected. Moreover, the bands within 
these regions share similar information between them. 

 
• Phenological changes such as the emergence of flowers can be used 

to enhance species-level discrimination. 
 
• The sub-pixel unmixing classification technique successfully revealed 

its usefulness in the context of mapping the spatial distribution of 
both individual plant species and multispecies associations. 
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requirements set by the C.T. de Wit Graduate 
School for Production Ecology and Resource 
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Review of Literature (5 credits) 
- Plant biodiversity assessment using hyperspectral imagery (2003) 
 
Writing of Project Proposal (7 credits) 
- Plant biodiversity assessment using hyperspectral imagery (2003) 
 
Laboratory Training and Working Visits (0.7 credits) 
- Chemical assay of foliar nutrients, Wageningen University (2004-2005) 
- Cryo-scanning electron microscopy, Wageningen University (2006) 
 
Post-Graduate Courses (5 credits) 
- PhD course on spatial and temporal aspects of resource ecology; PE&RC 

(2005) 
- Advance geo-statistical methods; ITC (2005) 
- Consumer resource interactions: adaptive foraging adaptive defences and 

ecosystem engineering; FE, PE&RC and SENSE (2006) 
 
Deficiency, Refresh, Brush-up and General Courses (1 credit) 
- Spatial statistics analysis; ITC (2003) 
 
Competence Strengthening / Skills Courses (3.5 credits) 
- Scientific writing; ITC (2004) 
- Scientific presentation; ITC (2004) 
- IDL basic programming; ITC (2006) 
 
Discussion Groups / Local Seminars and Other Scientific Meetings 
(8.2 credits)  
- Campman day (2003) 
- Forth-nighty PhD discussion,; ITC (2003-2007) 
- PhD day (2004 & 2005) 
- International workshop on physical based approaches in remote sensing: 

scaling from leaves to ecosystems (2006) 
 
PE&RC Annual Meetings, Seminars and the PE&RC Weekend (3 
credits) 
- Five natural resources days organized by Department of Natural 

Resources; ITC (2004 & 2005) 
- PE&RC day (2005 & 2006) 
- Two PhD master class with president of ESRI and UNHABITAT general 

secretary (2005 & 2006) 
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International Symposia, Workshops and Conferences (5 credits) 
- SPIE symposium on optics and photonics: remote sensing and modelling 

of ecosystem for sustainability (2006) 
- ISPRS technical commission VII symposium: remote sensing from pixels 

to processes; thematic processing, modelling and analysis of remotely 
sensed data (2006) 

- Spatial data quality 2007: 5th international symposium on spatial data 
quality:” modelling qualities in space and time” (2007) 
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