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Abstract 
 
 

Heijting, S., 2007. Spatial analysis of weed patterns. PhD thesis, Wageningen 
University, Wageningen, The Netherlands. With summaries in English and Dutch, 
146 pp. 

 
 
Weeds in agriculture occur in patches. This thesis is a contribution to the characterization of 
this patchiness, to its analysis, and to its prediction, and some of its results may be useful for 
weed management.  

Spatial patterns of six weed species monitored in contiguous quadrats are characterized, 
using Mead’s test. Five of the six analysed weed species showed aggregation at several levels 
of scale. The only wind dispersing species, Taraxacum officinale was random at all scales. 
Next, 2-D correlograms were used to analyse spatio-temporal behaviour of weed patterns for 
15 weed species groups throughout three years. Chenopodium album, C. polyspermum, E. 
crus-galli and S. nigrum were strongly aggregated and also exhibited the largest incidence and 
highest maximum weed density of the species studied. 2-D correlograms showed that patterns 
of C. polyspermum and S. nigrum were stable in location. Patches of one species, E. crus-galli 
appeared to shift from year to year. 
 The four patchy weed species, C. album, C. polyspermum, E. crus-galli and S. nigrum, 
showed consistent relations of moderate strength with soil variables (pH, texture fraction or 
organic matter) over the three years of study using Generalized Linear Models with a Poisson 
log link. Models with spatially uncorrelated and spatially correlated error terms were 
compared, using Taylor’s power law (TPL) as a link function, resulting in modest decreases 
in model significance when the spatial correlation in errors was accounted for, and in a few 
cases, there were big differences in model significance. Spatial correlation remained in the 
residuals of the regression, demonstrating that factors other than the selected soil variables 
also contributed to the spatial correlation in the weeds.  
 Dispersal of weed seeds in fields by harvest and rigid-tine cultivator was studied in 
continuous maize using a range of plant species as model weeds. The rigid-tine cultivator 
significantly contributed to the dispersal in the driving direction, most likely by dragging 
plant material with seeds through the field. Irregularities were found in the tail of the dispersal 
kernels, probably as a result of deposition of plant debris in the headlands by machinery.  
 Taylor’s power law was used to predict the weed free fraction in the field using spatially 
implicit weed count data. The general model gave accurate predictions for most weed species, 
but for some, e.g. E. crus-galli, a species specific model was required to achieve adequate 
accuracy.  
 
 
Keywords: Spatial analysis, weed patterns, Mead’s test, space-time correlograms, 2-D 

correlograms, dispersal, Generalized Linear Models, heterogeneity, soil, Taylor’s 
power law. 
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CHAPTER 1 
 

General introduction 
 
 
BACKGROUND 
 
Agriculture, weeds and herbicides 
Weeds interfere in several ways with agricultural cropping systems. The main problem 
they cause is yield reduction by competing with the crop for light, water and nutrients. 
They can hamper harvest by getting entangled in machinery, or contaminate the 
harvested product by their presence. Some weed species can act as a host plant for 
pests and diseases (Mortimer, 1990).  
 Chemical control with herbicides is a quick, cheap and effective way to eradicate or 
control weeds. In The Netherlands, herbicides are generally applied uniformly over the 
field. Following application, herbicides and their by-products enter the environment 
and they can enter the food chain as residues on the harvested crop. The policy on 
registration of pesticides has become more stringent during the past decades in an 
attempt to minimize the effect of these chemicals on the environment and humans. 
Pesticides with the greatest (eco-)toxicological impact are banned. The newer 
herbicides such as sulfonylurea compounds require less active ingredient leading to 
less environmental burden. Still, the presence of herbicides in the environment, 
drinking water and food is unwanted and reducing the input is desirable.  
 
Reducing herbicide input 
Spatial variation in density of weedy plants on arable fields offers a possibility to 
reduce chemical input as weed plants often occur aggregated or patchy in the field 
(Marshall, 1988). Site-Specific Weed Management (SSWM) takes this spatial 
aggregation into account and herbicides are applied only where weed plants are 
present. The possible reduction depends on the precision of the monitoring and the 
spraying equipment (Rew et al., 1996a, 1997; Wallinga et al., 1998). Calculations on 
actual weed populations in arable fields showed reductions beyond 90% can be 
achieved if the herbicide is only applied where a weed is present (Johnson et al., 
1995a). With advancing technological developments, increasing precision in weed 
control is likely to be achieved. Stability of weed patches will facilitate SSWM as 
weed maps made in one year can be used in subsequent years for targeting weeds 
effectively (Goudy et al., 2001).  
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PROBLEM STATEMENT 
 
Types of weed spatial patterns 
In this study, we will use the word ‘pattern’ to indicate the two-dimensional 
configuration of specimens of a weed species in the field. Three types of spatial 
pattern can broadly be discerned: regular, random and aggregated (Figure 1). A 
random pattern indicates each unit of equal size has an equal chance of being occupied 
by a set number of individuals. If individuals are more evenly distributed than in a 
random pattern, the pattern is addressed as regular (Upton & Fingleton, 1985). If an 
individual tends to occur near others, the pattern is termed aggregated. In an 
aggregated pattern, areas of higher density are alternated with areas with lower 
density. 
 
Mapping weed patterns 
In most weed studies on the spatial ecology of weeds, weed patterns have been 
mapped by sampling weed densities according to a regular grid with interspersed 
unsampled space. Weed densities at unsampled locations are calculated using 
geostatistical interpolation methods (e.g. Colbach et al., 2000; Goudy et al., 2001). 
These techniques are likely to miss weed patches that are smaller than the distance 
between sampling points (Rew & Cousens, 2001; Wyse-Pester et al., 2002). Although 
labour intensive, mapping weeds with contiguous quadrats will yield more reliable 
information on weed spatial and temporal behaviour. This method has been applied 
only in a few studies (Cousens et al., 2004; Dieleman & Mortensen, 1999), and 
statistical tests to analyse such data need to be explored. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Three types of spatial pattern: Regular (a), random (b) and aggregated (c). 

a b c
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Scale 
The level of scale that is used to monitor a pattern can influence the nature of the 
pattern observed. Variation in the data can be reduced by clustering units in spatial 
analysis. As such, a clearer diagnosis of species patterns may be obtained, as shown 
for example in tropical forest trees (Bellehumeur et al., 1997). However, patterns can 
be obscured if the size of the aggregated units exceeds the scale of the pattern (Rew & 
Cousens, 2001). 
 
Effect of soil on weed patterns 
Weed populations in an arable field are subjected to various forces which can affect 
their spatial and temporal behaviour. Spatial heterogeneity of the soil has been found 
to be related to variation in weed densities (Dammer et al., 1998; Dunker & 
Nordmeyer, 2000). Very few studies have looked at the actual contribution of spatial 
correlation of the soil to spatial correlation of weed patterns and thus their temporal 
stability. Techniques need to be investigated to assess the role of heterogeneity of 
underlying soil properties on spatial correlation of weed patterns.  
 
Effect of machinery and weed biology on weed dispersal 
Although machinery is known to contribute to weed spatial dynamics (see Blanco-
Moreno et al., 2004) by dispersing weed seeds, the interaction with weed biology 
needs further examination. It is expected on the basis of a model study that timing of 
seed shedding will affect dispersal distance of weed seeds (Woolcock & Cousens, 
2000). Actual data on this process will improve insight in spatial aspects of the 
ecology of weeds. 
 
Potential for SSWM 
A simple tool to assess the potential savings by applying herbicides site-specifically 
would be very valuable for arable practice. At present such tool is not available. 
 
OBJECTIVES OF THIS THESIS 
The objective of this thesis is to increase insight in the causes and behaviour of weed 
spatial patterns using detailed information on count data. Furthermore statistical tools 
to analyse this data are explored. A way to assess the potential savings for SSWM is 
determined. To reach this goal, the following sub-objectives were defined: 

1. Obtain detailed information on species specific weed spatio-temporal behaviour 
by mapping patterns using contiguous quadrats. 

2. Develop and test statistical tools to analyse weed spatial and temporal 
behaviour. 
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3. Asses the role of spatial heterogeneity of underlying soil properties on weed 
spatial patterns. 

4. Investigate the effect of timing of seed shed on dispersal by harvest combiner 
and rigid-tine cultivator. 

5. Determine the relation between frequency distributions of weed densities and 
spatial aggregation and examine consequences for SSWM species specifically. 

 
METHODOLOGY 
Observational studies were used to gather spatial count data for objective 1, 2 and 3. 
Controlled experiments were performed to obtain data for objective 4. Data of 
objective 1, 2, 3 and 4 were gathered in fields cropped with continuous maize. As 
such, no rotational effect was present on the spatial behaviour of weed species. Maize 
is an important crop in The Netherlands covering approximately 10% of the total 
agricultural area. Maize as a silage fodder is often cropped continuously. Post 
emergence weed control is still mainly performed by full field application of 
herbicides in combination with mechanical weeding. 
 To be able to assess the potential for SSWM in a range of crops and cropping 
situations (objective 5), data gathered in various crops under a wide range of 
circumstances throughout The Netherlands were used. 
  
OUTLINE OF THESIS 
In Chapter 2, species specific patterns observed in contiguous quadrats in the first year 
of the study are analysed with a randomization test to assess the level of aggregation of 
the weed patterns. This test is named after its inventor, R. Mead (1974). It is the first 
application of this test to two-dimensional weed data. 
 The weed data of Chapter 2 were observed during a total of three consecutive years 
on a maize field near Wageningen (clay soil). Due to the collection of data in three 
years, the spatio-temporal behaviour of weed species can be studied. This is dealt with 
in Chapter 3. Two-dimensional (2-D) correlograms are used to characterize the 
patterns and their evolution over time. The direction of greatest auto- and cross-
correlation is derived from explicit 2-D analyses. The effect of the size of quadrats on 
the outcomes of spatial analysis is also investigated. 
 Regression analysis was used to examine the relations between soil properties and 
weed patterns (Chapter 4). Soil samples were taken on the observation plot of the 
weed patterns (Chapters 2, 3). After an initial selection of covariates (soil) to explain 
species specific plant density, the covariance structure of the response data (weed 
counts) was incorporated in the regression analysis to account for the spatial 
correlation of the data. 
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 The effect of timing of seed shedding of weed species on the dispersal by harvest 
combiner and rigid-tine cultivator was determined in a separate experiment on sandy 
soil (Chapter 5). Plots with introduced plant species which served as model weeds 
were sown and grown in the field. During harvest the selected species carried ripe 
seeds. As a contrast, weed seeds of other species were placed on the soil shortly before 
harvest. A few weeks after harvesting and cultivating the soil (rigid-tine), the entire 
field (2 ha) was mapped to investigate the dispersal of the plants by the machinery. 
 The potential for herbicide saving using SSWM is assessed using data collected in 
The Netherlands at various sites and in different years in a range of crops (Chapter 6). 
An equation is derived, and tested, to predict the non-occupied fraction of the land 
based on mean density. The equation is derived by combining models for the 
frequency distribution of weeds and the relationship between spatial variance and the 
mean. The relationship between scale and weed free fraction is explored using the 
spatially explicit data set collected for studies in Chapters 2, 3 and 4. 
 Chapter 7 is the General Discussion and results of the preceding chapters are 
integrated. Important determinants for weed spatial dynamics are discussed and 
implications for SSWM are addressed.  
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CHAPTER 2 
 

Testing the spatial significance of weed patterns in arable land 
using Mead’s test* 

 
Sanne Heijtinga, Wopke van der Werfa, Willem Kruijerb,c & Alfred Steind 

 

a Wageningen University, Department Plant Sciences, Group Crop and Weed Ecology,  
PO Box 430, 6700 AK Wageningen, The Netherlands 

b Wageningen University, Biometris, PO Box 100, 6700 AC Wageningen, The Netherlands 
c Current address: Department of Stochastics, Free University, De Boelelaan 1081-1087, 

1081 HV Amsterdam, The Netherlands 
d ITC International Institute for Geoinformation Science and Earth Observation, PO Box 6, 

7500 AA Enschede, The Netherlands 
 
 

Summary 
There is a need in weed science for statistical tests for patchiness and spatial pattern. The 
objective of this study is to investigate the performance of Mead’s test for detecting patterns in 
synthetic data and in real weed counts made in maize, and making a first assessment of its 
applicability in ecological studies on weeds. In an extension to Mead’s test, made here for the 
first time, we merge original quadrat count data into rectangular cells of m by n quadrats. Care 
was taken to rule out the effect of starting point on the test result. Using the synthetic data, we 
demonstrate ability of the test to detect both patchiness and homogeneity as deviations from 
randomness. The first deviation results in right-sided significance, and the second in left-sided 
significance of the test. Analysis of the real weed patterns demonstrated patchiness at many 
scales for five of the six investigated species, and lack of any deviation from randomness in the 
sixth: Taraxacum officinale. The latter was the only wind dispersing species in the data set. No 
deviation towards homogeneity was found in any of the real weed species at any scale. All 
patchy patterns showed anisotropy, being elongated in the direction of field traffic. As it turns 
out, Mead’s test is well suited to detect departures from randomness in observed weed patterns 
and enhances the suite of diagnostic tools that can be employed by weed ecologists. 
 
Keywords: Mead’s test, weeds, spatial pattern, patchiness, scale, anisotropy. 

                                                           
*  Weed Research 47 (2007), 396-405. 
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INTRODUCTION 
The distribution of weeds on arable land is spatially heterogeneous (Dieleman & 
Mortensen, 1999). As farming practices contributing to seed dispersal are often 
performed in a specific direction within the field, it is unlikely that weeds are 
randomly dispersed. Indeed, besides patchiness, Dieleman & Mortensen (1999) and 
Colbach et al. (2000) reported directionality of weed patterns, observing elongated 
weed patterns in the driving direction. The extent to which patterns differ between 
weed species, may be linked to differences in life cycle and ecology such as the time 
of seed shed (Colbach et al., 2000). Hence, both precision agriculture and weed spatial 
ecology may benefit from the observation and analysis of weed patterns. 
 The term pattern has been interpreted as departure from spatial randomness (Mead, 
1974), or containing a certain amount of predictability (Dale, 1999). We use the term 
‘pattern’ to indicate the spatial configuration of specimens of a weed species in a field. 
Three categories of spatial patterns are often distinguished: aggregated, random and 
regular. The existence of an aggregated, or patchy, weed pattern indicates that some 
areas in the field have a higher weed density than their surroundings. Conversely, the 
lower weed density areas can be called gaps (Perry et al., 1999). Random patterns are 
patterns where all areas of equal size have an equal chance of being occupied by a 
certain number of individuals. A Poisson distribution describes the frequency 
distribution underlying such a pattern. Regular patterns are patterns where individuals 
are more evenly spread than in a random pattern (Upton & Fingleton, 1985). 
 To obtain detailed and reliable information on weed patterns, the use of contiguous 
quadrats has been advocated (Rew & Cousens, 2001; Cousens et al., 2002). This 
classical method has been used for monitoring vegetation, and was only recently 
applied in weed science (Dieleman & Mortensen, 1999; Cousens et al., 2002). The 
space to be sampled is then divided into a grid of contiguous quadrats of equal size and 
the number of plants in each quadrat is counted. For data thus collected, Mead’s test 
(Mead, 1974; Manly, 1991; Diggle, 2003) has been suggested to detect deviation from 
randomness. This test can be applied at several subsequent levels of scale 
independently, as the position of sub-units within a unit at one scale does not influence 
the test result at higher scales. 
 So far, the testing of spatial indices and measures for statistical significance in 
spatial ecology is not strongly developed (Fortin & Dale, 2005). Significance of the 
autocorrelation values using t-values borrowed from the correlation coefficient is not 
convincing, as these are based on independence, where the dependence is precisely the 
topic studied. In that sense, randomization test serve as an interesting opportunity. 
 The objective of the work is to carry out a test of spatial significance for counts of 
weeds in contiguous quadrats. To do so, we focus on detection and characterization of 
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non-randomness. As an application, we consider observational data on weed patterns 
in maize in The Netherlands. Detection of scale in pattern has a general applicability, 
and therefore the study well extends beyond the scope of a single case study. 
 
MATERIALS AND METHODS 
 
Field observations 
Observations were made within an arable field on clay soil near Wageningen, The 
Netherlands. The field was 1.8 ha in size, 64 m wide and 281 m long. In the six years 
preceding the study, the field was planted with winter wheat, corn, potatoes, winter 
wheat, fodder beets and summer barley. In May 2001, maize (Zea mays L.) was sown 
in 0.75 m wide rows. The spatial pattern of weeds was determined before herbicide 
spraying, from 18 until 21 June 2001. 
 Patterns of six weeds species were subjected to further analysis: Chenopodium 
album L. (fat hen), Chenopodium polyspermum L. (many-seeded goosefoot), 
Echinochloa crus-galli (L.) Beauv. (barnyard grass), Polygonum aviculare L. 
(knotweed), Solanum nigrum L. (black nightshade) and Taraxacum officinale Wiggers 
(dandelion). The first five species were abundant in the field, and their patterns looked 
patchy upon visual inspection. T. officinale occurred at low densities, and its pattern 
looked random upon visual inspection. 
 Observations were made on a 50.25 m long and 12 m wide rectangular plot with the 
long side parallel to the direction of field traffic. The plot was situated just south of the 
northern headland of the field, with the northern edge of the plot 17.5 m from the field 
edge and the long side 13 m from the western border of the field. Square quadrats with 
sides of 0.75 m were used to count weeds, resulting in a total of 16 × 67 = 1072 
quadrats being counted. Quadrats were placed between crop rows. The position of 
quadrats in the within-row direction was secured by using a tape measure. In each 
quadrat, the number of individual specimens for each weed species was determined. 
The quadrat counts are the input into the analyses. 
 
Mead’s test 
Mead’s test (Mead, 1974; Ripley, 1981; Manly, 1991) is a statistical test for 
identification of spatial pattern. It tests the null hypothesis H0: ‘the weed pattern is 
random’, against deviation from randomness. The test was originally developed to 
quantify non-randomness for count data on specimens in both transects and for 2-D 
data at subsequent levels of scale (Mead, 1974).  
 The test is constructed as follows. Let X0(i) denote the number of weed counts for 
the ith quadrat (Figure 1). Then )()( 000 iiX εμ += , where the means of the X0(i) are 
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taken to be equal to μ0, and the random variables ε0(i) have zero mean and variance 
equal to σ2. To illustrate, we consider the basic quadrat counts, X0(i), consisting of 
sixteen quadrats (Figure 1). We examined the following combination of pairs:  

 ∑
=

−=
16

1

2
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2
0 16)(

i

XiXTSS  (1) 

where 0X is the mean of counts. The sum of squares between the four sub-units of the 
unit is given by 
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4
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i j
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and the appropriate test statistic is Q = BSS/TSS. The distribution of Q under H0 can be 
readily assessed by randomization (Besag & Diggle, 1977). 
 In our application we used levels of spatial scale that both acknowledge the size of 
units and their length to width ratio. As an addition to Manly (1991), the scale issue is 
dealt with by combining neighbouring quadrat counts into cells measuring m quadrats 
in the row (y) direction and n quadrats in the cross-row (x) direction. By adding, for 
instance, the counts of two cells that are aligned cross-row, new cells are formed that 
are aggregated in the cross-row direction, but not in the within-row direction (m = 1, n 
= 2). Using these new cells, a test for pattern can be done at a scale level that is one 
higher than the original one into the cross-row direction. Similarly, the counts of two 
within-row aligned cells can be added, leading to aggregation in the within-row 
direction and hence to a test for pattern at a scale that is one higher than the original 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Figure 1. Configuration of 16 quadrats within a unit. 
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Table 1. Scale levels used in Mead’s test for observed weed patterns. 
Scale Size sub-unit Number of units 
1 0.75 m × 0.75 m 64 
2 1.50 m × 0.75 m 

0.75 m × 1.50 m 
1.50 m × 1.50 m 

32 
32 
16 

3 2.25 m × 0.75 m 
2.25 m × 1.50 m 
2.25 m × 2.25 m 
1.50 m × 2.25 m 
0.75 m × 2.25 m 

16 
8 
5 

10 
20 

4 … … 
 
 
one in the within-row direction. This procedure is then repeated, as far as the available 
data permit. As our field consists of 16 by 67 quadrats, we could pursue this procedure 
up to four levels into the cross-row direction and up to 16 levels into the within-row 
direction (Table 1). 
 Upton (1984) mentions the sensitivity of the test results to the starting point. In 
initial calculations, we experienced lack of robustness of the test result in relation to 
starting point, even if 50 random starting points were chosen to minimize the effect of 
starting point. In the final implementation of Mead’s test, we conduct at each level of 
scale the test a fixed number of times for each possible starting point, such that the 
total number of randomizations is at least 10,000. For each scale level sx, the number 
of starting points in the x-direction, nx, is determined as nx = min(4sx, n–4sx–1). The 
starting point is expressed as index number for a quadrat, and runs from 1 though nx. 
The rationale behind this formula is that the number of starting points should be 4sx, to 
allow all different possible combinations of 4sx adjacent quadrat counts within one unit 
to be generated during the calculations. The number of starting points is bounded by 
the size of the dataset, and cannot exceed n–4sx–1. An analogous formula applies for 
the starting position in the y-direction: ny = min(4sy, m–4sy–1). 
 To carry out the test, we determined the overall number of starting points as  
Nstp = nx ● ny. Then we calculated how many randomizations were needed for each 
starting point to generate at least 10,000 realizations of the test statistic overall, i.e. 
10,000/Nstp, rounded up to the nearest integer. Then, the test statistic Q was calculated 
for each starting point, and a corresponding P-value was calculated by making random 
permutations of the cell values within units, followed again by calculation of the value 
of the test statistic. The rank of the original value of the test statistic among the 
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10,000/Nstp values of the randomized data was determined. Finally, the obtained P-
values were averaged over all the starting points. 
 
Synthetic data 
To assess the performance of Mead’s test in a simple situation, we analysed six 
artificial patterns presented in Fortin & Dale (2005, pp. 128-129). Each pattern occurs 
on a 20 × 20 grid (Figure 2). 
• Pattern 1 (‘trend’) is a gradient into the cross-row direction, with constant within-

row values; the width of the strips is equal to four quadrats. 
• Pattern 2 (‘random’) consists of 400 random values. 
• Pattern 3 (‘one patch’) consists of a single large patch. 
• Pattern 4 (‘16 patches’) consists of 16 patches of nine cells each, regularly spaced 

in the grid. 
• Pattern 5 (‘same patch’) consists of 9 identical patches, irregularly spaced in the 

grid. 
• Pattern 6 (‘same distance’) consists of 12 unequal patches, spaced at an inter-patch 

distance of 2 quadrats in the grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Six synthetic patches analysed with Mead’s test. Each set contains 400 cells, 
after Fortin & Dale (2005). 
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Table 2. Number of starting points at 5 × 5 levels of scale in the 
synthetic patterns (Figure 2). According to the formula given in 
the text, the number of starting position in either direction is 4 at 
scale 1, 8 at scale 2, 9 at scale 3, 5 at scale 4 and 1 at scale 5. The 
total number of starting points is the product of the number of 
starting positions in x- and y-direction. 

 Scale in x-direction 
Scale in y-direction 1 2 3 4 5 
1 16 32 36 20 4 
2 32 64 72 40 8 
3 36 72 81 45 9 
4 20 40 45 25 5 
5   4   8   9   5 1 

 
 
We analysed the full combination of scale levels, i.e. 5 levels in the x-direction times 5 
levels in the y-direction, resulting in a 5 × 5 matrix of scales. The number of starting 
positions at each level of scale is given in Table 2. The resulting P-values of Mead’s 
test are presented as a matrix plot, where the x-coordinate is the scale level in the x-
direction, the y-coordinate is the scale level in the y-direction, and the grey scale 
indicates significance of the test. Right-sided significance indicates a large value of the 
test statistic, and a large difference between the sub-units within units, hence, 
clustering at sub-unit level. Left-sided significance indicates a small value of the test 
statistic and similarity among sub-units, i.e. homogeneity at sub-unit level. 
 
RESULTS 
 
Mead’s test applied to artificial patterns 
Pattern 1 (‘trend’) yields significance at all scale levels in the x-direction, except the 
first (Figure 3). The test thus correctly identifies clustering at the 4-quadrat level and 
above. (Note that significance at scale level 2 indicates that the clustering occurs at a 
sub-unit size of four quadrats, cf. Figure 1). The random pattern is correctly not 
recognized as a pattern at any scale. In the case of the single patch, clustering is 
detected at scales of 1×1, 2×1, 3×1, 1×2 and 1×3. Not shown in the figure is borderline 
significance at level 2×2, 3×2 and 2×3 (P=0.06) and 3×3 (P=0.08). The test result is 
symmetric, as is the pattern. Contrary to the pattern ‘trend’, no significance at higher 
levels of scale was found. This may be related to the narrowness of the bands of equal 
density. These bands are only two quadrats wide, thus the basic data becomes already  
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Figure 3. Results of Mead’s test (P-values, right-sided significance) for six synthetic patterns 
at five levels of scale in the x- and y-direction. Grey shades indicate P-value at each joint 
scale level: black: P ≤ 0.001; dark grey: P ≤ 0.01; light grey: P ≤ 0.05; white: P > 0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Results of Mead’s test (P-values, left-sided significance) for six synthetic patterns at 
five levels of scale in the x- and y-direction. Grey shades indicate P-value at each joint scale 
level: black: P ≤ 0.001; dark grey: P ≤ 0.01; light grey: P ≤ 0.05; white: P > 0.05. 
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very diverse at the within sub-unit level if higher scales are analysed. In the case of 16 
patches, significance is found at all levels of scale for cells that are one quadrat wide 
or long, except at scale level 2 where the pattern is somewhat less significant (P=0.10). 
The lack of significance upon simultaneously upscaling in the x- and y-direction 
indicates that doing so enters so much variability within the sub-units, that the 
variability between sub-units is no longer significant. Patterns of significance for the 
‘same patch’ and ‘same distance’ patterns resemble those of the ‘16 patches’ pattern. 
Left-sided significance, which occurred in 1-patch, 16-patches, same patch and same 
distance pattern (Figure 4), reflects the homogeneity present at certain levels of scale 
in these four patterns. The synthetic data show that most patterns can be recognized, 
but interpretation of the test result is not directly intuitive or straightforward.  
 
Descriptive statistics and visualization of weed patterns 
The spatial patterns of the most abundant weed species and of T. officinale are 
presented in Figure 5 and descriptive statistics in Table 3. Chenopodium album, E. 
crus-galli and S. nigrum all displayed a gradient, with weed density decreasing with 
distance from the northern headland. Chenopodium polyspermum had a higher density 
in the eastern than in the western half of the plot. E. crus-galli had the highest mean 
density (8.86) and maximum number of weed plants per quadrat (158) of all weeds, 
and its density decreased steeply with increasing distance from the headland. 
Chenopodium album had the highest level of occupancy of all weeds present (nearly 
80%). Counts for P. aviculare and T. officinale yield variance/mean ratios of 1.22 and 
1.02, respectively, indicating little or no clustering of plants within quadrats. 
Nevertheless, upon visual inspection the pattern of P. aviculare bears no resemblance 
to a random pattern, whereas the pattern of T. officinale does (Hurlbert, 1990).  
 
Mead’s test applied to observed patterns 
Mead’s test yielded many right-sided significance for most of the weed data (Figure 
6), but with the notable exception of T. officinale. The pattern of T. officinale was not 
significantly different from randomness at any scale. For the other five species, 
clustering was present at many scales (Figure 6). Not a single instance of left-sided 
significance was found in any of the six species (data not shown), thus the observed 
patterns did not display a trace of homogeneity at any scale. The five species that give 
significant clustering displayed the greatest significance at the x-scales of 1 and 4, 
indicating that clustering is strongest at the cross-row level of 2 quadrats, and 8 
quadrats, respectively. Thus, the test indicates significant clustering at the smallest 
cross-row scale and also at the largest cross-row scale that can be analysed with the 
data. The large scale effect can be interpreted as a difference between the western and 
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Figure 5. Spatial patterns of six weed species in a maize field before spraying. Each quadrat is 
75 × 75 cm. The north side of the plot borders on the head land of the field, the left and right 
sides of the plots are more than 10 m away from the field edge. Densities are visualized using 
a linear scale of grey tones representing the cubic root of the single quadrat counts. 
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Table 3. Mean, standard deviation (s.d.), variance and percentage  
of quadrats occupied by the six different weed species in 2001. 
Weed species mean   s.d. variance occupancy (%) 
C. album 3.51   5.05  25.5 80 
C. polyspermum 2.48   3.63  13.2 59 
E. crus-galli 8.86 19.90  395.8 69 
P. aviculare 0.90   1.05  1.10 56 
S. nigrum 0.75   1.83  3.33 33 
T. officinale 0.18   0.43  0.18 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Results of Mead’s test (P-values; right-sided) for six weed species at different scale 
levels in the cross-row (x) and within-row (y) directions. Grey shades indicate P-value at each 
scale level: black: P ≤ 0.001; dark grey: P ≤ 0.01; light grey: P ≤ 0.05; white: P > 0.05. 
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the eastern half of the field. Significant clustering is found at x-scale 3 in four species 
(C. album, C. polyspermum, E. crus-galli and S. nigrum) and at x-scale 2 in three 
species (C. album, E. crus-galli and S. nigrum). In C. album, the effects at x-scales 2 
and 3 were significant when the y-scale parameter had large values, at least 11 and 9 
quadrats for the two scales, respectively. In S. nigrum a similar effect was found. 
However, in E. crus-galli, significance of clustering at x-scale 2 occurred over a wide 
range of y-scales (4 or more), while at x-scale 2, significance was found when y-scale 
varied between 6 and 12. Of the five species that showed clustering, the weakest 
evidence for clustering was found in P. aviculare, both in the level of significance 
(never below 0.001), and in the number of levels at which clustering was significantly 
demonstrated. The results indicate that Mead’s test reflects both directionality and 
aggregation (patchiness) of the pattern, with patch direction aligning with the driving 
direction. 
 
Moran’s I 
As reference for the outcomes of Mead’s test, we calculated Moran’s I (Moran, 1950; 
Fortin & Dale, 2005) both for the within-row and cross-row directions. Moran’s I 
statistic expresses the strength of spatial autocorrelation of a pattern as the correlation 
between counts at a distance d. The value of Moran’s I as a function of distance, is 
shown in a correlogram. To facilitate comparison with Mead’s test, distance is 
expressed in number of quadrats (i.e. multiples of 0.75 m). Significance of Moran’s I 
was determined using Pearson’s product moment correlation coefficient, because of 
the analogy between the two. Plots of Moran’s I versus distance (Figure 7) showed 
that spatial dependence differed between the cross-row and the within-row directions. 
The strongest anisotropy was detected for C. polyspermum where spatial 
autocorrelation was significant in the within-row direction up to a distance of 29 
quadrats, compared to a distance of only 2 quadrats in the cross-row direction. Also for 
the species E. crus-galli and S. nigrum, spatial dependence extended further in the 
within-row direction than in the cross-row direction. Correlation decreased with 
distance in all weed species, except in C. album in the cross-row direction. No spatial 
dependence was present in either the cross-row or within-row direction for T. 
officinale and P. aviculare. The result for P. aviculare is different from the result of 
Mead’s test in as far as that Mead’s test does detect deviations from randomness, 
whereas Moran’s I does not detect spatial correlation. 
 
DISCUSSION 
Our results confirm that Mead’s test can be used for detecting departures from 
randomness in two-dimensional data sets, such as weed counts in contiguous quadrats.  
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Figure 7. Moran’s I for six weed species in the within-row direction (top) and in the 
cross-row direction (bottom). 

 
 
One particular strong point of Mead’s test is that it provides a two-sided test and two 
alternative hypotheses for randomness, viz. clustering and homogeneity. As such, it 
seems ideally suited to help establish to which of the three basic categories random, 
clustered and homogeneous an observed pattern belongs. Our investigation of artificial 
patterns demonstrates how the test can provide significance either way. However, we 
also found that the test result is not always easy to interpret, and more work will be 
needed to ascertain the application of the test in weed research.  
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 Mead’s test was originally designed for square grids, where independence between 
significance tests at subsequent levels of scale was obtained by using the units of one 
scale as the sub-units for the next scale up. Thus, the upscaling results in a ‘lineage’ of 
cells that first consist of one quadrat, then 2×2 quadrats, next 4×4 quadrats, and so 
forth. Our extension of Mead’s test shows that multiple scales can also be studied on 
the basis of flexible basic shapes that are not restricted to squares, and which are 
created by aggregating the observation quadrats. This extension makes the test more 
flexible, and extends the potential applications. Thereby, however, the dependency of 
P-values that make use of the same data is a caveat. That is not to say that the test 
result is not correct. The P-values themselves are not compromised by their inter-
dependency. The caveat is that P-values will be somehow dependent between different 
‘lineages’ of scale levels, based on given basic shapes. Each lineage itself, still 
maintains the basic property of Mead’s test of independence of the test result in 
subsequent levels of upscaling. The dependency of P-values among alternative 
lineages implies that they should be interpreted with caution, as in experiments with 
multiple comparisons in post hoc tests, or in interpreting the significance of values of 
Moran’s I at different lags. In our opinion, this is an acceptable cost for an important 
gain: a greater flexibility of the basic shape enabling greater versatility of the test. 
 Upton (1984) found that Mead’s test is sensitive to the choice of starting point. We 
observed the same, and solved this by conducting the test the same number of times 
for every possible starting point, and averaging the P-value. As a comparison, Moran’s 
I (Moran, 1950) was applied. A major benefit of Mead’s test is that it is a 
randomization test, and hence well-equipped to deal with spatial dependence. Testing 
for significance with Moran’s I is hampered by the absence of appropriate analogies to 
t-values. For descriptive purposes, however, Moran’s I still appears to be useful. 
Alternatively, Syrjala’s method (Syrjala, 1996) or 2-D correlograms (Heijting et al., 
2007) may be applied. 
 Mead’s test was applied to six selected weed species. It revealed that patterns of C. 
album, C. polyspermum, E. crus-galli, S. nigrum and P. aviculare differed 
significantly from a random pattern at various levels of scale and in various directions. 
The apparent randomness of the pattern of T. officinale may be caused by its mode of 
dispersal, being the only wind dispersing species that was analysed. Hence seeds may 
have been introduced from adjacent flowering fields. Alternatively, it may be a relict 
from historic land-use. In any case, this species did not appear to reproduce within the 
field, thereby an important cause for spatial clustering was removed. The striking 
elongated shape of the pattern of C. polyspermum could be caused by spatial 
heterogeneity of soil factors as differences in soil colour were present, but explaining 
the abrupt transition; competition with other weeds may also be the cause. Mead’s test 
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confirmed that some significant patterns were elongated (those for C. polyspermum 
and P. aviculare), stretching out in the prevailing cultivation direction. Mead’s test 
also gives an indication of the patch sizes. Moreover, the test is flexible in the choice 
of shapes of (sub)units. This feature might be further explored to get a better 
understanding of the size of the patches. 
 Left-sided exceedance was studied as well. It occurred a few times in the synthetic 
data but not in the actual weed patterns. Left-sided exceedance indicates that the sub-
units within units are more similar than could be expected on the basis of the 
variability of the cell counts if the cell counts were spatially distributed at random. 
When left-sided exceedance is demonstrated, the cells counts are distributed in such a 
way over the sub-units that the sub-unit means within a unit become similar to each 
other. This means that in one way or another, the cells within a sub-unit have 
‘compensatory’ counts, i.e. high values for one cell are compensated by one or more 
low values for other cells. Such compensatory behaviour could occur when the density 
is periodic over space as in a checker board of high and low values. Some of the 
artificial patterns provide examples of this phenomenon of left-sided exceedance. It is 
not wholly unthinkable in practice either, with tracks of machinery providing a 
spatially periodic signal, with potential consequences for weeds.  
 What emerges from this study is that crop management is a likely cause for the 
formation of anisotropic patterns by dispersing weed seeds further into the driving 
direction of equipment than perpendicular to this. The majority of weed seeds, 
however, is not dispersed further than 1–2 m from the source, whereas after five 
successive operations they may move to distances up to 15 m (Rew & Cussans, 1997; 
Marshall & Brain, 1999). In addition, each equipment pass it likely to make the seed 
distribution in the soil less uniform, resulting in the elongated shape of weed patterns. 
Mead’s test confirmed that patterns of C. polyspermum and P. aviculare have 
elongated patterns, in the direction of cultivation and harvest equipment. Such 
anisotropy has been reported as well by Rew et al. (1996a), Johnson et al. (1996b), 
Dieleman & Mortensen (1999) and Colbach et al. (2000). 
 Presence of weeds may reduce the yield. Therefore, scope is provided for site-
specific weed management, being a form of precision agriculture (Stein & Goudriaan, 
2001). Identification and quantification of anisotropy in weed patterns may have an 
influence on weed spraying for site-specific weed management and hence on the 
quality of the environment (Gerhards et al., 1997a, b). The dispersal of weed seeds in a 
tall crop like maize is affected by the ‘wall-like’ structure of the crop before harvest 
(Colbach et al., 2000). For herbicide spraying, clogging of a nozzle of a spray boom 
could facilitate a striped weed pattern, with a width of approximately one row. 
Aggregation at the level of single rows is probably too fine a scale to be detectable 
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with the implementation of Mead’s test. Cross-row patchiness due to the effects of 
ploughing or cultivation could be detectable using Mead’s test depending upon the 
working width of the machinery. However, relations between patch width and 
agricultural machinery are speculative, as many other factors could also contribute. 
For example, seed removal of C. album by vertebrates in a maize field was also found 
to be patchy (Marino et al., 1997). Further, chemical control of E. crus-galli with 
several high-density foci in 2001, was not successful that year (unpubl. results). 
Herbicides had been applied uniformly throughout the field. A specific application of 
dosage to varying weed densities may result in a better control of E. crus-galli. An 
understanding of weed patch behaviour, to which the Mead’s test can contribute, 
should aid weed management in the future. 
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Are weed patches stable in location? Application of an explicitly 
two-dimensional methodology* 
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Summary 
Field observations were made in three years continuous corn cultivation in The Netherlands to 
study spatial pattern and stability of spatial pattern over time in agricultural weeds. Two- 
dimensional correlograms were made, using data from single years, to characterize spatial 
correlation and pattern, while data from two different years were used to calculate correlation 
over space and time, to characterize the stability of pattern. Weeds that were able to attain high 
recruitment exhibited also the strongest spatial correlations. These weeds were Echinochloa 
crus-galli, Chenopodium album, Chenopodium polyspermum, and Solanum nigrum. Weeds that 
were less successful in attaining high densities in the maize rotation also showed less spatial 
correlation. Wind dispersing Compositae, e.g. Taraxacum officinale, had spatially uncorrelated 
patterns. All weeds that showed spatial correlation also showed stability in space, except E. 
crus-galli. The latter species showed marked population increase, and the locations and extent 
of its patches changed over the years. Statistical interpretation of the data is discussed, as are 
potential consequences for site-specific management and optimal sampling of weeds. 
 
Keywords: Spatial pattern, space-time correlogram, cross-correlogram, Chenopodium album, 

Chenopodium polyspermum, Echinochloa crus-galli, Solanum nigrum, Taraxacum 
officinale. 

                                                           
*  Weed Research 47 (2007), 381-395. 
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INTRODUCTION 
It has been extensively documented that the distribution of weeds on arable land is 
spatially heterogeneous (e.g. Marshall, 1988; Rew et al., 1996a; Gerhards et al., 1997a, 
b; Dieleman & Mortensen, 1999). The patchy nature of weed patterns provides scope 
for site-specific weed management through adjustments of herbicide dosage to the 
presence and density of weeds (see references in Christensen et al., 1999). Reductions 
in herbicide use, greater than 90%, might thereby be possible (Johnson et al., 1995a). 
Site-specific management is facilitated if weed patches are stable in location from one 
year to the next, such that maps of weed patterns made in one year can be used for 
site-specific control in subsequent years (Goudy et al., 2001). Information on patterns 
can also assist in the interpolation of sensor-derived real time data on the presence or 
density of weeds during control. There is a clear need to characterize weed patterns. 
This requires good data over a wide range of conditions, as well as suitable methods. 
 In most studies on spatial patterns of weeds, samples are taken according to a 
regular grid with interspersed unsampled space. Geostatistical interpolation methods 
are then used to calculate the weed density at unsampled locations (e.g. Johnson et al., 
1995a, 1996b; Cardina et al., 1996; Gerhards et al., 1997b; Colbach et al., 2000; 
Goudy et al., 2001). Interpolation methods may fail to detect patches if these are 
smaller than the distance between sample locations (Rew & Cousens, 2001; Wyse-
Pester et al., 2002). Observations on contiguous quadrats therefore give more reliable 
information on weed patterns. This method has been applied little in weed science 
because it is laborious. With respect to patch stability, which requires data in 
subsequent years, there are only two data sets resulting from samples in contiguous 
quadrats, one from a diverse crop rotation in Victoria, Australia (Cousens et al., 2002, 
2004, 2006) and another from continuous corn cultivation in Nebraska, USA 
(Dieleman & Mortensen, 1999). The first study included fourteen species present in 
the samples, whereas the latter study focused on a single weed species (Abutilon 
theophrasti Medik.). Most other published studies are based on spatially interpolated 
data. It can, therefore, be safely concluded that there still is a paucity of detailed data 
on the stability of weed patterns. 
 When analysing and characterizing spatial dynamics of weed patterns, a method-
ology should be chosen that can detect and quantify several possible patch behaviours. 
Patches could expand radially as a result of population increase and dispersal, or they 
could shrink. Moreover, they could intensify or extensify, as a result of local population 
change without clear spatial expansion or shrinkage, or patches could shift in space, 
e.g. as a result of harvest or tillage operations (Humston et al., 2005). In this chapter, 
we choose for the analysis of spatial processes a methodology that is based on 
calculating two-dimensional (2-D) empirical correlograms across space and time. 
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Calculated correlations across space are used to characterize the shape and extent of 
patches for all possible directions (Oden & Sokal, 1986; Legendre & Fortin, 1989; 
Rossi et al., 1992). Correlations are calculated over a matrix of lag distances in-row 
and cross-row direction that agree in spatial grain with the observational grid. All 
possible compass directions are accounted for because all combinations of different 
row and cross-row distances are taken into account. The advantage of such a method 
over one that merely tests whether two patterns are the same or not (Syrjala, 1996) is 
that the 2-D correlograms provide clues as to the ways in which two pattern are similar 
or dissimilar, contrary to a method that only gives a yes/no answer. 
 In diagnosing potential patch movement, we calculate correlation between weed 
densities in one year with weed densities the next year, again using a matrix of lag 
distances in-row and cross-row direction. This approach enables detection of spatial 
correlation structure and patch movement without making prior assumptions about 
isotropy, or anisotropy according to a presupposed shape, e.g. an ellipse (e.g. Wiles & 
Brodahl, 2004) or about the boundaries of the patch (e.g. Krohmann et al., 2006). 
When calculating correlations we use Spearman’s non-parametric coefficient of rank 
correlation (Gibbons, 1997). At a small loss of power (Lehmann, 1998) compared to 
the commonly used product moment correlation coefficient of Pearson, this coefficient 
provides robustness against deviations from linearity in relationships, skewed distri-
butions, non-normal error structure (the rule with weeds) and outliers (Isaaks & 
Shrivastava, 1989).  
 This chapter has the following objectives: (1) to add a new substantial data set to 
the scarce data on the development of weed patches over time, derived from samples 
with continuous quadrats; (2) to explore and demonstrate the application of 2-D 
correlograms and cross-correlograms for the characterization of weed patterns and the 
locational stability of patches; (3) to characterize weed patterns over three years of 
continuous maize and determine whether weed patches are stable in location or not. 
The direction of greatest auto- and cross-correlation is derived from explicit 2-D 
analyses. The effect of the size of quadrats on the outcomes of spatial analysis is also 
investigated. 
 
MATERIALS AND METHODS 
 
Field 
Observations were made in 2001, 2002 and 2003 on a 1.8 ha arable clay field 
(Kortenoord II) near Wageningen, The Netherlands. In the six years preceding the 
study, the field had been planted with winter wheat (1995), maize (1996), potatoes 
(1997), winter wheat (1998), fodder beets (1999) and summer barley (2000). The field 
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was tilled with a rigid-tine cultivator in early October and with a mouldboard plough 
plus skim-coulter in November. Fertilizer (450 kg N ha–1, 240 kg K ha–1, 150 kg P  
ha–1) was applied in the spring of each year before seedbed preparation with a rotary 
harrow. Maize (Zea mays L. cv. ‘Limatop’) was sown at 0.75 m row distance in May 
2001, 2002 and 2003 at a density of 100 000 seeds ha–1. Herbicide was sprayed broad 
field post-emergence ca. 5 weeks after sowing. Only post-emergence herbicides were 
used (details are available on request). Maize was harvested in late September. The 
entire field was cultivated and sown in the north-south direction, with the exception of 
the headlands where field traffic was east-west.  
  
Observations 
The spatial pattern of weeds was determined each year, before the first herbicide 
application, in an observation area of 12 m (16 rows) by 50.25 m row length. The 
counts were made from 18–21 June 2001, from 17–19 June 2002, and from 10–12 
June 2003. The observation area was situated just south of the northern headland and 
was divided into 16 × 67 = 1072 quadrats of 0.75 × 0.75 m. Two of the sides of the 
quadrats coincided with the crop rows. The exact locations of the corners of the 
observation plot were indicated with permanent poles in the edges of the field. All 
weed plants in the plot were identified to species or species group and their number in 
each quadrat enumerated.  
 
Weed species 
Seventeen weed species were present in more than five percent of the quadrats in one 
or more of the three observation years. Records were taken of fifteen groups of species 
because the seedlings of some species were hard to distinguish in the field. These 15 
species groups were: (1) Capsella bursa-pastoris L. (shepherd’s purse), (2) 
Chenopodium album L. (fat hen), (3) Chenopodium polyspermum L. (many-seeded 
goosefoot), (4) Echinochloa crus-galli (L.) Beauv. (barnyard grass), (5) Lamium 
purpureum L. (purple deadnettle), (6) Poa annua L. (annual meadow grass), (7) 
Polygonum aviculare L. (knotweed), (8) P. persicaria L. + P. lapathifolium ssp. 
lapathifolium L. + P. lapathifolium ssp. pallidum (With.) Fries) (lady’s thumb and pale 
smart weed), (9) Ranunculus sceleratus L. (celery-leaved buttercup), (10) Senecio 
vulgaris L. (common groundsel), (11) Solanum nigrum L. (black nightshade), (12) 
Sonchus spp. (S. asper L. Hill and S. oleraceus L.) (prickly and common sow thistle), 
(13) Stellaria media L. (chickweed), (14) Taraxacum officinale Weber (dandelion), 
and (15) Trifolium repens L. (white clover). The set of species, thus, comprised 13 
annual dicots, two annual grasses (P. annua and E. crus-galli) and two perennial dicots 
(T. repens and T. officinale). Most of these species depend on agricultural implements 
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for seed dispersal; however, the seeds of T. officinale, S. vulgaris and Sonchus spp. (all 
Asteraceae) are mainly dispersed by wind. 
 
Initial data analysis 
Descriptive statistics were calculated for 2001, 2002 and 2003 data: mean number per 
quadrat, variance, standard deviation, median and other quartiles, coefficient of 
variation, and incidence (percentage of quadrats occupied). An estimate for the 
parameter k of the negative binomial distribution (NBD) was obtained by the method 
of moments (Binns et al., 2000, p. 77): ( )2 2k μ σ μ= −  where μ is the mean and σ2 the 
variance of the counts per quadrat. The parameter k serves as a guide towards gauging 
the variance of the sampling distribution compared to a Poisson distribution. For large 
k (>> μ), the NBD tends towards a Poisson, whereas for small k, the variance of the 
distribution is notably larger than that of the Poisson distribution, resulting in more 
quadrats with extreme counts (small as well as large). 
 
Spatial autocorrelation within years 
Spatial structure of the weed patterns within each year was characterized by 
calculating Spearman’s rank correlation coefficient (r) between counts in all possible 
combinations of quadrats at a given within-row and cross-row distance within the 
sampled support { { } { }( )1, , 1,i x i yx N y N∈ ∈ , where x denotes distance (measured in 
numbers of quadrats) cross-row and y denotes distance within-row, and Nx = 16 and  
Ny = 67 are the number of sample locations in x- and y-direction. Let a weed count at 
location (xi, yi) be denoted as u(xi, yi). Then the coefficient of rank correlation is 
calculated between all matching data pairs ( ) ( ){ }, , ,i i i x i yu x y u x h y h+ + at a cross-row 
distance hx and a within-row distance hy, where xi and yi are part of the set 

{ } { }( )1, , 1,i x x i y yx N h y N h∈ − ∈ − . The total number of point pairs involved in the 
calculation of the correlation coefficient at a given combination of lag distances hx and 
hy equals ( )( )x x y yN h N h− −  (Figure 1). Thus, at greater lag distances, there are fewer 
point pairs available to calculate the statistic, and the significance of calculated 
coefficients changes accordingly. Spearman’s r was then determined by calculating a 
Pearson product moment correlation coefficient on the ranks (e.g. Gibbons, 1997). 
Ties in the data were handled by the mid-rank method (Gibbons, 1997; p. 305). As the 
calculation uses an overall population mean rank for calculating correlation, the 
resulting correlogram is ergodic (Rossi et al., 1992). The result is represented as a 2-D 
‘checker board’ plot with grey scales in which the data value at a 2-D lag (hx, hy) 
indicates the rank correlation pertaining to a lag in cross-row direction of hx and a 
simultaneous lag in-row direction of hy. The centre of the correlogram indicates a lag 
distance of 0, and per definition, the correlation coefficient at this point equals 1.  
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Figure 1. Number of quadrat pairs (n) that can be used for calculation of the 
correlation coefficient r as a function of the lag distance across rows (horizontal axis) 
and within rows (vertical axis). The centre of the plot indicates lags of hx = hy = 0. 

 
 
Values of hx were taken between –10 and +10 quadrat distances, while the chosen 
range of values for hy was greater (–15 to +15) to account for a greater spatial extent of 
the observation plot in the row direction (y) than in the cross-row direction (x). In 
total, therefore, 21 × 31 = 651 values of r were calculated to characterize the two-
dimensional correlogram. Calculated r-values were classified into six categories for 
presentation: [–0.4, –0.2], [–0.2, +0.2], [+0.2, +0.4], [+0.4, +0.6], [+0.6, +0.8], [+0.8, 
+1.0]. Calculations of spatial correlation within years were made for each of the 15 
selected weed species, in each of the three years.  
 
Temporal behaviour: spatial cross-correlation between years 
Spatial correlation between weed patterns of two years was calculated in a similar way 
as within years, the only difference being that the data of the quadrat pairs now 
originated from two different years instead of the same year: {u(xi, yi, t1), u(xi + hx, yi + 
hy, t2)} where t1 and t2 indicate different years. The Spearman rank correlation 
coefficient was calculated between patterns of 2001–02, 2002–03 and 2001–03. This 
was done for each weed species separately. Results were again visualized in 2-D 
correlograms using six class intervals for r. 

n
312 - 441
442 - 572
573 - 708
709 - 848
849 - 1072
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Effect of scale on spatial autocorrelation within years: clustering of observation 
quadrats 
To examine the effect of the spatial resolution of observations on correlogram 
outcomes, data were aggregated by merging four contiguous observation quadrats into 
one large quadrat (1.5 m × 1.5 m) and summing the four counts. Values of r were 
calculated for all 11 × 15 = 165 combinations of [ ]5,5 +−∈xh  and [ ]7,7 +−∈yh . Results 
were again visualized in correlograms. 
  
Modelling the correlograms 
Empirical correlogram data were fitted to an analytical function (Eq. 1), in which 
spatial coordinates are expressed in polar form (angle θ and distance h), to quantify 
anisotropy and orientation of the main correlogram axis with respect to the direction of 
field traffic: 

 

( )

( )
( ) ( )( )

( ) ( )

2 2 2 2

2 2 2 2

, 0

sin cos sin
, 0

cos sin

h s h

h a b
h s h

h a b

ρ θ

θ ϕ θ ϕ
ρ θ

θ ϕ θ ϕ

= =

− + −
= >

− + −

 (1) 

This model contains four parameters: φ, a, b, and s, where ϕ is the direction of largest 
anisotropy, a characterizes dependence in the direction of largest correlation (ϕ), b 
characterizes dependence in the direction of smallest correlation, and s is a parameter 
indicating the correlation for distance 0 (Journel & Huijbregts, 1978; Webster & 
Oliver, 2000). Parameters of this model were estimated using a weighted non-linear 
regression fit, with the number of point pairs in each distance class (hx, hy) as weights. 
The analysis focused on the within year correlograms of a selection of species with 
high levels of spatial correlation. To determine the goodness of fit it is not meaningful 
to calculate an ordinary R2 when using weighted regression. Instead, following Eq. 8 in 
Willett & Singer (1988), a pseudo R2

WLS coefficient was calculated. This coefficient 
can be interpreted like an ordinary coefficient of determination, i.e. as the proportion 
of variance accounted for by the regression. 
 
Software 
Descriptive statistics were calculated with S-Plus. Calculations of correlations were 
programmed and run in Compaq Visual Fortran v. 6.6. ArcView GIS 3.3 (ESRI, 
Redlands, Ca, USA) was used to visualize observed weed patterns and two-
dimensional correlograms. Parameter fitting was done with SAS procedure NLIN. 
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RESULTS 
All weed species varied in density and incidence over the three years of survey (Table 
1). Density and incidence were intermediate in 2001, low in 2002, and high in 2003. 
The 15 weed species groups differed with regard to their pattern. Four species (E. 
crus-galli, C. polyspermum, C. album and S. nigrum) showed substantial spatial 
aggregation as indicated by the estimated values of r (Table 2). These weed species 
also had a high maximum weed density per quadrat. The remaining 11 weed species 
groups showed weak correlation or no spatial correlation at all (Table 2). Strong 
spatio-temporal dependency between years was shown by three weed species (E. crus-
galli, C. polyspermum, and S. nigrum) whereas two weed species (C. album, L. 
purpureum) showed weak spatial dependency between years. The remaining 10 weed 
species groups showed no spatial dependency between years (r interval [–0.2, +0.2] ) 
(Table 2).  
  
 
 
 
 
Table 2. Strength of spatial structure of weed patterns as expressed by correlograms within 
and between years. Strength is divided in five classes and is based on the values of the 
interval of r in the three survey years (2001, 2002 and 2003).  
Correlation 
strength 

Interval r Within years Between years 

Very strong [–0.2, +1.0] E. crus-galli E. crus-galli 
Strong [–0.4, +0.8] C. polyspermum C. polyspermum 
Moderate [–0.2, +0.6] C. album, S. nigrum S. nigrum 
Weak [–0.2, +0.4] L. purpureum, P. aviculare,  

P. persicaria + P. lapathifolium, 
R. sceleratus 

C. album, L. purpureum 

None to 
very weak 

[–0.2, +0.2]* C. bursa-pastoris, P. annua,  
S. media, S. asper + S. oleraceus,
S. vulgaris, T. officinale,  
T. repens 

C. bursa-pastoris, P. annua, 
P. aviculare, P. persicaria + 
P. lapathifolium, R. 
sceleratus, S. media, S. asper
+ S. oleraceus, S. vulgaris, T. 
officinale, T. repens 

* If one or two lag distances yielded an r-value > 0.2, but the far majority of r-value was < 
0.2, the correlogram was classified in the lowest category of spatial correlation (cf. Figure 
4e). 
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Weed maps and descriptive statistics 
Maps of C. album, C. polyspermum, E. crus-galli, S. nigrum and T. officinale in 2001, 
2002 and 2003 are presented in Figure 2. The first four exemplify species whose 
patterns were correlated in space and time. Taraxacum officinale exemplifies a weed 
species with a spatially and spatio-temporally uncorrelated random pattern. The other 
species, not shown in Figure 2 but included in Table 2, show intermediate degrees of 
spatial correlation, that vary from virtually uncorrelated (C. bursa-pastoris, P. annua, 
S. media, S. asper + S. oleracea, S. vulgaris and T. repens) to weakly correlated (L. 
purpureum, P. aviculare, P. persicaria + P. lapathifolium, and R. sceleratus). In all 
three years, E. crus-galli reached the highest mean and maximum densities per quadrat 
of all weeds (Table 1); it also had the highest incidence in two of the three years: 2002 
(70%) and 2003 (98%). Chenopodium album, S. nigrum and E. crus-galli had higher 
densities in the northern half of the observation area, near the headland, than in the 
southern part of the sample area. The patches of C. polyspermum and S. nigrum were 
stable in location, but the high-density areas of E. crus-galli shifted a few meters 
south-east-ward in the course of the study (Figures 2c, 2h and 2m). High densities of 
C. polyspermum were limited to the eastern half of the sample area (Figures 2b, 2g and 
2l). The pattern of T. officinale exhibited no spatial structure (Figures 2e, 2j and 2o).  
 
Spatial autocorrelation within years 
Chenopodium album, C. polyspermum, E. crus-galli and S. nigrum showed spatial 
dependence in the 2-D correlograms, as indicated by dark grey shades at short distance 
lags in Figure 3. In contrast, T. officinale showed no correlation at any distance lag. In 
the first four species, the extent of spatial correlation was greater in the direction of 
crop rows than across (Figure 3). Spatial properties differed for each species. For 
instance, the pattern of E. crus-galli showed the greatest range of correlation in a 
direction that was slanted with respect to the crop rows, a feature that was not 
observed in any other species. The pattern of E. crus-galli also showed the highest 
overall spatial correlation with values of r at short distance exceeding 0.8 in 2001 and 
2003 (Figure 3c; Table 2). The elongated shape of the spatial pattern of C. 
polyspermum (Figure 2b, g and l) was reflected in correlograms that were elongated in 
the row direction (Figure 3b; Table 2). Comparison of the correlograms of S. nigrum in 
the three years suggests that its patches had shrunk in 2002, and expanded in 2003. 
However, this apparent shrinkage might also be due to the generally lower counts of 
this species in the second year of the study, as a result of which correlations at greater 
distances may not have exceeded the detection threshold (see also Discussion). The 
correlogram of T. officinale represents a spatially uncorrelated random pattern (Figure 
3e; Table 2). Note that all 2-D correlograms are radially symmetric in the origin  
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Figure 2. Spatial patterns of C. album (a, f, k), C. polyspermum (b, g, l), E. crus-galli (c, h, 
m), S. nigrum (d, i, n) and T. officinale (e, j, o) in 2001 (a–e), 2002 (f–j) and 2003 (k–o). Each 
quadrat is 0.75 m × 0.75 m. Number of plants per quadrat is indicated by grey tones:  

=0,  =1,  =2–5,  = 6–15,  = 16–50, = > 51. 
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Figure 3. Correlograms within years of C. album (a), C. polyspermum (b), E. crus-galli (c), S. 
nigrum (d) and T. officinale (e). Horizontal axis is hx [–10, +10] and vertical axis is hy [–15, 
+15]. Values of correlation coefficient are indicated by grey tones:  (–0.4) – (–0.2);  

 (–0.2) – 0.2;  0.2 – 0.4;  0.4 – 0.6;  0.6 – 0.8;  0.8 – 1.0. 
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Figure 4. Correlograms between years of C. album (a), C. polyspermum (b), E. crus-galli (c), 
S. nigrum (d) and T. officinale (e). Horizontal axis is hx [–10, +10] and vertical axis is hy [–15, 
+15]. Values of correlation coefficient are indicated by grey tones:  (–0.4) – (–0.2);  

 (–0.2) – 0.2;  0.2 – 0.4;  0.4 – 0.6;  0.6 – 0.8;  0.8 – 1.0. 
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as the same point pairs are formed whether the lags are applied to the first or second 
data value. 
 
Spatial cross-correlation between years 
Three of the 15 weed species groups showed consistent spatio-temporal dependency: 
C. polyspermum, E. crus-galli and S. nigrum (Figures 4b, c and d; Table 2). The 
strongest correlation between years occurred for E. crus-galli but its pattern was not 
stable in location (Figure 4c). The spatial displacement of E. crus-galli is evidenced by 
the ‘off-centre’ peak in the 2-D cross-correlogram between years (Figure 4c). Spatial 
patterns of C. polyspermum, by comparison, were comparatively consistent in space 
and time as evidenced by the similarity of the between year cross correlograms of this 
species to the within year correlograms. Nevertheless, a slight displacement in the x-
direction is indicated for this species from the first year (2001) and the second year 
(2002) to the third year (2003), because the greatest correlation is found for hx > 0 in 
the cross correlograms for 2001–2003 and 2002–2003, but not for 2001–2002 (Figure 
4b). S. nigrum was spatially consistent from 2001 to 2002 and from 2002 to 2003 
(Figure 4d) but had moderate r values not exceeding 0.4. Spatial patterns of T. 
officinale (Figure 4e) were spatio-temporally uncorrelated. Spatio-temporal correlation 
in C. album was weak (Figure 4a), indicating weak location consistency of its patches. 
Note that the correlograms in Figure 4, contrary to those in Figure 3, are not radially 
symmetric. This is because the data values for each data pair are from two different 
years, i.e. r{u(xi, yi, t1), u(xi+hx, yi+hy, t2)} ≠  r{u(xi+hx, yi+hy, t1), u(xi, yi, t2)}. 
 
Aggregation of quadrats to larger scale and spatial autocorrelation 
For most species, correlograms were basically the same when observations on 
aggregated units of 1.5 m by 1.5 m were analysed within years. Exceptions to this 
general finding are C. album (Figure 5a) and P. annua (not shown here), for which 
spatial correlations became more distinct, and C. polyspermum, for which the 
correlogram virtually vanished (Figure 5b). Possible reasons are addressed in the 
discussion. 
 
Quantification of correlograms 
The anisotropic correlogram model (Eq. 1) gave a good description for C. 
polyspermum (2001) and S. nigrum (2001) (Figure 6). Both weeds showed distinct 
anisotropy. Other weed species either showed a noisy correlation without any apparent 
structure, or a behaviour that could not be fitted with the model. The direction of the 
largest anisotropy varied between ϕ = –0.0698 radians (–4°) with respect to the 
direction of field traffic for C. polyspermum to ϕ = –0.212 (–12°) for S. nigrum. In 
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2001-2001 2002-2002 2003-2003

a

b

 
Figure 5. Correlograms within years for aggregated 
quadrats of C. album (a) and C. polyspermum (b). 
Horizontal axis is hx [–5, +5] and vertical axis is hy [–7, 
+7]. Values of correlation coefficient are indicated by 
grey tones:  (–0.4) – (–0.2);  (–0.2) – 0.2;  0.2 
– 0.4;  0.4 – 0.6;  0.6 – 0.8;  0.8 – 1.0. 

 
 
both species, the value of a (0.088 for C. polyspermum and 0.125 for S. nigrum) was 
considerably smaller than that of b (0.821 and 0.312, respectively), indicating 
substantial patch elongation in the direction closest to the direction of field traffic. The 
parameter s, specifying the strength of the correlation, was 0.33 for S. nigrum and 0.59 
for C. polyspermum. Pseudo R2

WLS were 0.65 for S. nigrum and 0.73 for C. album, 
indicating that the fitted anisotropic correlogram models satisfactorily described the 
empirical correlograms of these two species. 
 
DISCUSSION  
The objectives of the research described here were to characterize spatial pattern and 
pattern dynamics of weeds in an area of 12 m by 50.25 m in a continuous maize 
rotation. Data were collected over three years, using contiguous quadrats to obtain 
spatially continuous data and avoid artefacts from spatial interpolation. Two-
dimensional empirical correlograms were developed to interpret the results. The main 
findings are: (1) a minority of weed species showed distinct spatial aggregation and  
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Figure 6. Empirical and modelled anisotropic correlograms within years for  
C. polyspermum (2001) and S. nigrum (2001). Grey tones vary from –0.4 to 0.8  
(C. polyspermum) and from 0.25 to 0.50 (S. nigrum). 

 
 
these were the species that occurred in the highest densities; (2) one species (E. crus-
galli) showed patch displacement; (3) wind dispersing weed species in the 
Compositae, such as Taraxacum officinale, exhibited spatially uncorrelated patterns; 
and (4) 2-D correlograms provided a helpful tool to characterize spatial pattern as well 
as spatial pattern dynamics. These issues are further discussed below. 
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 The results indicate that only those weeds that were abundant exhibited strong 
spatial correlation. The abundant species were C. polyspermum, C. album, S. nigrum 
and E. crus-galli, all of which are summer annuals (Zanin et al., 1997). These species 
are able to reach high densities in maize, due to germination after the completion of 
weed control operations, in combination with good competitive ability. The other 
weed species synchronize less well with the maize crop, being either spring annuals or 
seasonally indifferent as to their germination (Zanin et al., 1997). Such species 
established lower densities, and exhibited weak or no spatial correlation at all. This 
suggests that adaptive phenology and substantial reproduction within the field are 
requirements for the formation of spatially aggregated patterns in annual weeds. A 
question is, however, whether the lack of distinct spatial correlation in those weeds 
that did not reach high densities could – in part – also be due to insufficient statistical 
power to detect it.  
 A simple mathematical analysis can demonstrate that a relationship between spatial 
correlation and density may indeed be expected on the basis of the statistical properties 
of count data. In general, the negative binomial distribution provides an adequate 
model to describe variability of count data (Wiles et al., 1992; Johnson et al., 1995b). 
For this model, given k, the variance of the count per quadrat equals 

 2 1
k
μσ μ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

Where σ2 is variance, μ is the mean count per quadrat and k is the dispersion 
parameter. The coefficient of variation of the count per quadrat (σ/μ) is then 

 1 1 1CV 1
k k

σ μμ
μ μ μ

⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

 

The coefficient of variation thus increases as μ decreases, or – in other words – the 
proportion of the data value that is due to random variation increases compared to the 
proportion of the data value that represents the underlying structure as μ decreases, 
irrespective of the value of k. A similar analysis may be conducted using a power 
relationship between variance and mean as a starting point (Taylor, 1961). As the 
exponent in the equation 2 baσ μ=  is generally below 2 for weeds (Clark et al., 1996; 
Heijting, unpubl. obs.), the coefficient of variation is greatest at small μ:  

 
1 2
2 2CV

b

aσ μ
μ

−

= =  

As a result of an increasing relative error in the data, correlations will become more 
difficult to detect at a lower mean density of weeds. Our findings with S. nigrum are 
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consistent with this principle. We found high and spatially far reaching correlations in 
2001 and 2003 with high densities, versus lower and less far reaching correlations in 
2002 with lower densities of this weed. This principle may hold in any data set in 
which count data with Poisson or negative binomial distributions are analysed. 
 The question is whether greater relative variability in the counts can be regarded as 
the only reason why weeds that occur at lower density showed less spatial structure. 
The results for C. album in comparison to those for C. polyspermum and S. nigrum 
suggest that it may not be the only factor. Chenopodium album occurred at high 
densities, similar to those of C. polyspermum, and greater than those of S. nigrum 
(Table 1). Its coefficient of variation was of the same order of magnitude as those of 
the other two species or smaller. Nevertheless, in the correlograms, C. album shows 
less spatial correlation than the other two species. This difference probably reflects a 
true difference in spatial pattern, which is apparently less correlated in space in C. 
album than in the other two species. Whether the same holds for the species that 
occurred at lower densities is difficult to ascertain. Correlograms thus can be used to 
describe patterns, but they do not provide an unequivocal identification of the 
mechanism causing a pattern. The range over which significant correlation occurs may 
not only depend on the biological characteristics of the pattern itself, but also on the 
statistical properties of the weed count data, in particular the signal-to-noise ratio, 
which is likely to be related to density of the seed bank and recruitment success, as 
affected by weather.  
 Two patchy weed species, C. polyspermum and S. nigrum, showed strong locational 
stability throughout the three years of observation. Field studies by Wilson & Brain 
(1991), Dieleman & Mortensen (1999) and Gerhards et al. (1997b) showed that pre-
harvest dispersal was essential for patch stability of annual weed species, since it will 
result in compact and dense seed shadows. Heavy seeds are likely to favour dense seed 
shadows. Solanum nigrum fits the profile of a species with heavy propagules (berries) 
that are predominantly shed before the harvest of maize. These characteristics and the 
longevity of its seeds will have favoured the locational stability of this weed species. 
In contrast, most of the seeds of E. crus-galli stay on the plant until harvest. Thus, 
these seeds could be readily dispersed during harvest and subsequent tilling as a result 
of dragging of plant debris by machinery (Heijting & Van der Werf, 2005). Such 
dragging of plant material would enlarge the seed shadow and may have contributed to 
the patch displacement observed in E. crus-galli. Whereas dispersal of seeds has been 
carefully studied, resulting in quantitative characterization of dispersal kernels (e.g. 
Marshall & Brain, 1999), the spread of weed seeds due to dispersal of seed-bearing 
parent plant material has so far received comparatively little attention. This topic 
warrants further study. Adult specimens of C. polyspermum were very rare and seed 
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production by this species during the years of the study has therefore been minimal; 
the locational stability of the patch of this species can likely be attributed to 
recruitment from a spatially unmoving seed bank. The location of this patch could be 
related to a historic event such as a failure in crop establishment or weed control in a 
year before the study was started. Spatial correlations can also result from spatially 
correlated variability in soil (Heisel et al., 1999; Walter et al., 2002; Heijting et al., 
2005).  
 Patterns of the wind dispersing species T. officinale, S. vulgaris and Sonchus spp. 
did not show spatial dependence or spatial stability. The observed randomness of T. 
officinale matches results of Goudy et al. (2001). No reproducing adults of T. 
officinale were found in our field throughout the 3-year study, indicating that the 
seedlings had resulted from an old seed bank or from aerial seed dispersal from nearby 
pastures. The latter explanation is plausible as the experimental field was surrounded 
by pastures with moderately abundant T. officinale. The same explanation may apply 
to the other two composite species, but in those cases, failure to detect spatial 
correlation may also be due to the lower densities in these species. 
 The observed patterns were mostly elongated in the direction of field traffic, in 
accordance with most reports in the literature (Johnson et al., 1996b; Gerhards et al., 
1997b; Dieleman & Mortensen, 1999; Colbach et al., 2000), but the pattern of E. crus-
galli showed a marked deviation. Its direction of greatest correlation made a 
substantial angle with the direction of field traffic. A possible explanation for this 
finding is that there may have been multiple patches in the observation plot (see e.g. 
Figure 2h), and thus the direction of greatest correlation for this species may be related 
to correlation between rather than within patches. A four parameter model (Journel & 
Huijbregts, 1978; Webster & Oliver, 2000) was found to be suitable to characterize 
anisotropy, the angle of greatest correlation and scale in the 2-D correlogram for a 
selection of observed weed patterns. The function did not fit all data sets in our study, 
however, and further study is needed to explore suitable correlogram functions and 
their application to weed patterns.  
 Aggregation of units in spatial analysis may be used to reduce variability in the data 
and obtain a clearer diagnosis of species patterns, as shown for example in tropical 
forest trees (Bellehumeur et al., 1997). However, aggregation of units can obscure 
patterns if the size of the aggregated units exceeds the scale of the pattern (Rew & 
Cousens, 2001). Both effects were seen in our analyses: the spatial correlation in the 
pattern of C. polyspermum virtually disappeared after aggregation of units, whereas 
the patterns of C. album and P. annua became more distinct. Chance effects become 
more dominant in counts as the size of sample units is reduced. Therefore, the degree 
of spatial resolution can only be increased at the expense of intrinsic accuracy of the 
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population estimate per quadrat, and vice versa. Thus, the size of sample units should 
reflect an optimal compromise between spatial resolution and intrinsic accuracy of the 
population estimate per quadrat. When a single quadrat size is used in field studies on 
patterns for multiple weed species, using contiguous quadrats, the unit of scale for the 
quadrats should be determined by the species with the smallest spatial scale for the 
pattern. Data can always be aggregated to larger units for species that occur at low 
densities and require a larger quadrat size to obtain sufficiently accurate data.  
 Automatic detection techniques for individual weed plants, developed originally for 
site-specific weed management, provide an emerging alternative technology for 
mapping weed patterns (Gerhards & Christensen, 2003). An advantage of mapping 
individual plants is that all processes on all scales can be studied as no particular 
quadrat size is imposed on the study area (Bellehumeur et al., 1997; Rew & Cousens, 
2001).  
 This study used 2-D correlograms to characterize spatial pattern of weeds and the 
dynamics of spatial patterns. The novelty of this approach is the combination of an 
explicit 2-D spatial representation of spatial correlation structure byway of 2-D maps 
and the usage of a non-parametric statistic for expressing correlation. By presenting 
the correlation structure of the data on the whole of a checkerboard of lag distance in 
x- and y-directions, errors resulting from assuming isotropy or spatial stability are 
avoided. The advantages of an exhaustive 2-D representation of correlation in all 
compass directions were recognized by Rossi et al. (1992), but there are alternative 
methods that achieve the same goal. For instance, Wiles & Brodahl (2004) and 
Humston et al. (2005) use directional correlation functions to investigate anisotropy in 
correlation structure of weeds. The latter paper uses cross-correlation between years to 
address patch displacement, using the direction and offset distance of greatest 
correlation, as calculated from those directional correlation functions, to assess spatial 
patch displacement. Rossi et al. (1992) likewise allude to the possibility of using cross 
correlograms to compare two distributions in space, and a comparable methodology 
(but with variograms instead of correlograms) was used by Stein et al. (1994) to study 
spatial dynamics of a plant disease. The methodology of Humston et al. (2005) is more 
heavily parametric than ours, with attendant advantages and disadvantages. The 
advantage of the more parametric approach of Humston et al. (2005) is that direction 
and lag distance of greatest correlation are derived explicitly and quantitatively from 
the data; the disadvantage is that details in the spatial correlation structure are 
aggregated into more simple quantitative terms, which can potentially result in 
smoothing and loss of information. Yet another method to quantify patch displacement 
is to calculate displacement of the centre of gravity of the patch (Krohmann et al., 
2006). This straightforward and easy to understand method requires that the existence 
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and spatial delineation of the patches is determined first. The method of Syrjala 
(1996), applied to weeds by Barroso et al. (2004), can be used to test whether patterns 
observed in two years are similar or not. As this method provides only a yes/no 
answer, further exploration of the type of similarity or dissimilarity would seem useful 
to characterize the data more fully after this test has produced an outcome. Thus, 
different methods should be seen as complementary options, and whether one is more 
suitable than another depends on the study objectives and the data at hand. 
 In calculating correlograms, we chose a non-parametric coefficient of correlation to 
protect against problems frequently encountered in weed data sets, such as non-linear 
relations between variables, skewed sampling distributions, non-normal errors and 
outliers. Non-parametric statistics provide robustness against these problems (Gibbons, 
1997; Lehmann, 1998). In calculating non-parametric correlations it must be accepted 
that the statistical power of resulting test (if any test is made) is somewhat (but not 
greatly) reduced if the data would be coming from a normal distribution (Lehmann, 
1998). However, we consider this disadvantage rather theoretical, because weed count 
data are seldom normally distributed. It has in general been found that the negative 
binomial distribution is a good model for sampling distributions of weeds (Marshall, 
1988; Wiles et al., 1992; Johnson et al., 1995b) and there is no a priori guarantee that 
transformation, such as the logarithm of x + 1, can normalize such data. Moreover, the 
ordinary coefficient of correlation, the Pearson product moment estimator, is only 
useful and appropriate if a linear relationship between variables may be assumed (e.g. 
Isaaks & Shrivastava, 1989, p. 31). As far as we know, there is no theoretical 
underpinning for the validity of this linear assumption in weeds; thus we consider our 
choice for a non-parametric coefficient of correlation for the spatial analysis of weed 
data to be well-justified. While calculating coefficients of correlation, we have used 
the mid rank method to treat ties in the data (especially zero counts), which is the 
recommended way (Gibbons, 1997; p. 305). A more precise estimation of correlation 
can be obtained by more sophisticated methods of dealing with ties (Gibbons, 1997; p. 
305), but this was not necessary for the current analysis. It should be noted that the 
problem of zero counts does not only affect non-parametric coefficients of correlation, 
but also the ‘ordinary’ Pearson correlation. We note from Conover (1980, p. 252) that 
Spearman’s coefficient of rank correlation can be used in the presence of a moderate 
number of ties, although no sharp definition is given for what is ‘moderate’. Zeros in 
weed data sets are indicators of ‘gaps’ (i.e. spatial clusters of weed absence) as 
opposed to patches. They are not an artefact but intrinsic information-carrying 
numbers that contribute to the value of a population statistic like the coefficient of 
spatial correlation at a given lag distance. The topic of non-parametric statistics for 
characterizing spatial correlations in weeds may be further explored. Thereby, it 
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appears promising to explore the use of different coefficients, e.g. Kendall’s τ or 
Goodman-Kruskal Gamma (Siegel & Castellan, 1988). These test statistics measure 
strength of relationship in a different way than Pearson’s and Spearman’s r, i.e. they 
quantify the probability that the elements of two observed vectors are in the same rank 
order (coefficient value tends to one, if this probability is high) or in the opposite rank 
order (coefficient value tends to –1, if this probability is high). In the absence of a 
relationship these coefficients tend to 0, while intermediate values represent 
intermediate tendencies towards the same or opposite ordering of the elements in the 
two data vectors. The gamma statistic corrects for ties, which could be an advantage in 
weed datasets with many zeros. 
 The finding that the weeds with the highest densities showed the strongest 
correlations, offers scope for site-specific management. Spatial correlatedness 
indicates that weeds are clumped in space, and this provides the option of focusing 
control at clusters of units with the higher densities. This study does not elucidate 
whether the comparatively lower spatial auto- and cross-correlation in species that 
occur at low to intermediate densities is entirely due to a statistical effect. The data are 
congruent with the hypothesis that one and the same demographic process (i.e. local 
population growth and spread) could result both in high densities and in high spatial 
correlation. Simulation studies could demonstrate whether a relationship between 
spatial correlation and population density, as observed in this study, is indeed an 
emerging property of a population process with stochastic short range dispersal and 
recruitment. 
 
CONCLUSIONS 
• Data on weed patterns were collected by sampling with contiguous quadrats during 

three years in continuous maize cultivation. Two-dimensional (2-D) correlograms 
were then used to characterize spatial pattern of weeds while space-time 
correlograms were used to assess stability of spatial pattern between years. 
Correlograms are developed on the basis of the parameter-free correlation 
coefficient of Spearman which is robust against problems frequently encountered 
in weed data sets, such as non-linear relations between variables, non-normal errors 
and outliers. 

• Four weed species occurred at high numbers in the field samples: C. album, C. 
polyspermum, E. crus-galli and S. nigrum, and each of these species showed patchy 
patterns. Patches of C. polyspermum and S. nigrum were stable in location over 
time whereas patches of E. crus-galli shifted in location from year to year. The 
patches of C. album were less clearly defined than those of the other three species 
and this species showed no locational stability over time. 
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• Weeds that occurred at lower densities than the four dominant weeds (e.g. L. 
purpureum, C. bursa-pastoris, Polygonum spp. and R. sceleratus) were less 
correlated in space, as indicated by lower values of the correlation coefficient in the 
2-D correlogram, and there was no well defined locational stability of the pattern. 
The lower correlation can in part be ascribed to a statistical effect with smaller 
numbers per quadrat resulting in a higher expected coefficient of variation and 
lower spatial autocorrelation.  

• The patterns of three wind dispersing composite species, e.g. T. officinale, showed 
no spatial correlation. Ancillary observations suggest that the lack of correlation in 
those species is related to a combination of absence of reproduction within the field 
and the potential for long distance dispersal of their seeds between fields.  

• The size of observation units affected the correlograms. For C. album and P. 
annua, observations on larger units resulted in more distinct correlograms. On the 
other hand for C. polyspermum, correlations at short distance were lost when larger 
units were used. The choice of quadrat size hinges on the trade-off between 
sufficient spatial resolution (many small quadrats) in order to detect steep gradients 
in density, and sufficient numbers per quadrat (fewer and larger quadrats) to reduce 
as much as possible the coefficient of variation of counts and ascertain statistical 
significance. 

• The results show that four weed species that occur in agronomically significant 
high densities have spatially aggregated patterns that can be characterized with 
correlogram functions that could be used to help guide site-specific weed 
management. Correlograms were less clearly defined in those species that occurred 
in lower densities. 2-D correlograms, based on Spearman’s parameter free r, 
provide a convenient statistical methodology to visualize spatial correlation at a 
single point in time, as well as between two points in time, in order to characterize 
– respectively – the state and dynamics of weed patches. 

• Alternative parameter-free statistics of correlation are worth exploring. 
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Does soil spatial heterogeneity explain patchiness in weeds?  
A regression approach accounting for spatial correlation* 

 
Sanne Heijtinga, Wopke van der Werfa & Dan Dalthorpb 

 

a Wageningen University, Department Plant Sciences, Group Crop and Weed Ecology,  
PO Box 430, 6700 AK Wageningen, The Netherlands 

b Department of Statistics, Oregon State University, Corvallis OR 97331, USA 
 
 

Summary 
We examined the extent to which weed dispersion patterns within cultivated maize fields 
depended on soil heterogeneity. Seedling density of four patchy weed species (Chenopodium 
album, Chenopodium polyspermum, Echinochloa crus-galli, and Solanum nigrum) showed a 
consistent association with soil variables, notably texture, OM and pH, throughout the three 
years of study. Statistical significance of the regressions typically decreased markedly after 
accounting for spatial correlation, but all models remained significant (P < 0.05). After fitting, 
some residual correlation remained indicating that spatial variability in the soil parameters did 
not completely account for spatial aggregation in the weeds. Spatial patterning may have also 
been influenced by other, unobserved environmental variables (e.g., light, soil toxins, moisture, 
temperature, herbivory, historical land management practices etc.) as well as by processes 
intrinsic to the population (e.g. dispersal, competition). Implications for the ecology and 
management of weeds are discussed. 
 
 
Keywords: Spatial patterns, weed, soil properties, regression analysis, Taylor’s power law. 
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INTRODUCTION 
Weed population densities vary greatly within arable fields (see Christensen et al., 
1999). Soil properties also often exhibit spatial heterogeneity (Cambardella et al., 
1994; Cambardella & Karlen, 1999; López-Granados et al., 2002). Variation in 
presence and abundance of weeds has been found to be related to heterogeneity of soil 
characteristics in several studies. For example, density of Veronica hederafolia L. was 
related to nitrogen content (Dammer et al., 1998), and a relation between the density 
of Viola arvensis Murray and clay content was established by Walter et al. (2002). 
Weed species distribution has also been linked to soil organic carbon (e.g. Andreasen 
et al., 1991; Gaston et al., 2001; Burton et al., 2005) and soil pH (e.g. Andreasen et 
al., 1991; Dunker & Nordmeyer, 2000; Gaston et al., 2001; Walter et al., 2002; 
Nordmeyer & Häusler, 2004).  
 Information about soil heterogeneity and its relation with weed spatial patterns 
could be used to improve weed management techniques. If consistent spatial relations 
between weed species and soil properties can be established, the presence of weeds 
can be predicted on the basis of information on spatial variation of soil properties. 
Heisel et al. (1999) used spatial information on silt content in a field for co-kriging 
Lamium spp., improving the prediction variance. Probabilities of Setaria spp. and 
Solanum ptycanthum Dun. ex DC. were adequately predicted using local predictor 
variables and presence of these weeds in a previous year (Dille et al., 2002).  
 Various techniques have been used to analyse soil-weed relations. As the 
occurrence of weed species is often related to one or more soil variables, stepwise 
regression techniques can be used to select for explanatory variables (soil) (Andreasen 
et al., 1991; Walter et al., 2002). Such regression models, however, do not account for 
the spatial dependency of the data, which could result in an overestimation of the 
significance of the regression parameters (Walter et al., 2002). Dalthorp (2004) 
addressed the issue of spatial dependency of data in regression analysis specifically in 
a study on the spatial relation between densities of the Japanese beetle grub (Popillia 
japonica Newman) and soil organic matter in turf grass, comparing models with 
spatially correlated errors and models with spatially uncorrelated errors. He accounted 
for spatial dependence by incorporating the covariance structure of the residuals into 
generalized linear regression models (GLM), and showed that model significance can 
be substantially overestimated when spatial dependency is neglected. Such 
overestimation of model significance could easily occur in analyses of the relationship 
between weed densities and soil variables, as weed counts show strong spatial 
correlations (e.g. Heijting et al., 2007). 
 We apply the technique proposed by Dalthorp (2004) to weed counts. In this study, 
we explore the dependence of weed abundance on soil properties in a 12 m × 48 m 
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field plot over 3 years of continuous corn cultivation. The consistency of parameters in 
regression equations was investigated by fitting regression models to weed data 
collected in three years. The essential question is whether weed patterns occur 
independently from soil patterns, or – alternatively – whether these patterns in weeds 
and soil properties are correlated, so that weed dispersion patterns can be predicted 
from soil properties.  
 
MATERIALS AND METHODS 
 
Data collection 
 
Weed data 
Weed counts in contiguous quadrats of 0.75 m × 0.75 m in a 12 m × 48 m plot (16 × 
64 quadrats) on a 1.8 ha maize field near Wageningen were recorded for several 
species prior to herbicide application in 2001, 2002 and 2003. In 2001 and 2002 counts 
were also recorded after spraying. The spatial analysis focuses on the patterns before 
spraying, while pre- and post-spraying data were used to investigate a possible effect 
of soil heterogeneity on herbicide efficacy. Maize was grown at a row distance of  
0.75 m. The four most abundant weed species in the observation plot throughout the 
three years of observation were C. album, C. polyspermum, E. crus-galli and S. nigrum 
(Heijting et al., 2007). C. album, E. crus-galli and S. nigrum are some of the most 
important problem weeds in continuous maize cropping. Other weed species present 
were mostly dicot annuals. A full list of species and further details on weed counts and 
management of the field plots are given in Heijting et al. (2007). 
 
Soil data: Sampling scheme 
The field was divided into a 8 × 16 grid of quadrats measuring 1.5 m by 3 m each. A 
single soil sample was taken at a random position in each quadrat. Fourteen additional 
soil samples were taken at random positions in the plot, to increase the number of 
sample points at close range (30 pairs closer than 0.75 m) and improve estimation of 
the nugget in geostatistical analysis. Based on analysis of the 140 samples, a soil map 
of the plot was made using block kriging. Analyses of the relation between weed 
densities and soil variables were based on observed weed density (three years data) in 
the 140 quadrats in which the soil samples were taken and observed soil parameters in 
those same quadrats.  
  
Soil data: Measurements 
Soil samples were taken on 17 April 2003. They were taken with an Edelman soil drill 
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(Ø 7 cm) to 25 cm depth. The samples were air dried (40 °C), crushed and sieved to 
remove particles larger than 2 mm diameter. From each soil sample, a sub-sample of 
200 g was further analysed. Soil pH and available nitrogen (as N-NO3, N-NH4 and N-
total soluble), phosphorous and potassium content were determined by extraction with 
0.01 M CaCl2 solution. Magnesium content was determined with 0.01 M CaCl2 
solution (ICP-MS). Organic matter (OM) content was determined by loss-on-ignition 
(LOI) which was corrected for water bound to clay (Ball, 1964). Soil texture was 
characterized by particle size distribution as measured by sieve and pipet: clay/lutum 
(< 2 μm), silt (2–16 μm), loam (16–50 μm) and sand (> 50 μm). 
 
Outline of data analysis 
Analysis of weed counts and soil data proceeded in five steps: (1) Descriptive statistics 
were calculated for soil and weed data. (2) Soil data were subjected to geostatistical 
analysis to characterize and visualize heterogeneity of soil properties. (3) Relations 
between pre-spraying weed data (response variable) and underlying soil properties 
(explanatory variables) were then examined using regression analysis. Variables for 
use in regressions were selected stepwise in a Generalized Linear Model (GLM) with 
Poisson errors and a log link function. (4) The selected sets of variables from step 3 
were used in GLMs in which the variance of the weed counts was modelled with 
Taylor’s power law (TPL) and in which spatial correlations in errors were not taken 
into account. (5) Finally, GLMs were developed using the same explanatory variables 
and TPL as variance model, and taking into account spatial correlations in residuals 
from the regression. Parameters and P-values of these models were compared with 
those from the spatially uncorrelated models fitted in step 4.  
 
Initial data analysis 
Descriptive statistics were calculated: mean, SD, variance and maximum (minimum 
was zero for all weeds). In addition, mortality rates after spraying were calculated for 
2001 and 2002. 
 
Geostatistical analysis and visualization of soil data 
Geostatistics was used to visualize soil patterns in the whole plot, based on the 140 
samples. Spherical and Gaussian variogram models were fitted (Isaaks & Shrivastava, 
1989, pp. 374-375). Predictions for unsampled locations were generated by block-
kriging (Isaaks & Shrivastava, 1989, pp. 323-330) using a grid of 100 points per 
quadrat, i.e. 10 in every direction. The quadrat prediction for every quadrat was the 
average of the 100 corresponding point predictions. Calculated values of the soil 
variables were visualized with MatLab7. 
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Selection of soil parameters: GLM with Poisson distribution with log link 
Relations between soil properties and weed counts were examined using the actual 
measured 140 data points for each combination of weed species and year separately. 
This was done for the fifteen weed species groups present (Heijting et al., 2007). The 
analysis was done in Genstat 9th edition (VSN International Ltd, UK) using a 
Generalized Linear Model with Poisson distributed errors and a log link 
(Schabenberger & Pierce, 2002). 
 The three textural fractions and OM are linearly dependent, adding up to 100%. To 
avoid possible effects of collinearity, four different sets of explanatory variables were 
examined separately as a starting point for the analysis of each weed species-year 
combination. Each set consisted of one textural fraction or OM and the soil parameters 
pH, Phosphorous, Potassium, Nitrogen Total soluble and Magnesium. Nitrogen-NH4 
and Nitrogen-NO3 were discarded as they were strongly correlated with Nitrogen 
Total Soluble. 
 All possible model selection methods (stepwise backward, forward etc) were 
applied and dispersion parameter φ (used to calculate the variance) was estimated from 
the residual mean square to compensate for possible over-dispersion of the data. From 
the model outcomes, the best overall model per weed species was selected using R2 as 
a primary criterion. In addition, significances of estimated regression coefficients were 
taken into account for the model selection. Possible relations between mortality of 
weeds (2001 and 2002) and soil variables were also investigated using the above 
described regression method.  
 
Regression analysis: Non-spatial model 
The combinations of selected soil parameters and weed species from the Poisson 
distributed GLMs with log link function, were used as a starting point for development 
of regression models with spatially uncorrelated and correlated error terms. Following 
Dalthorp (2004), the variance of the counts was modelled with Taylor’s power law 
(TPL, Taylor, 1984). TPL has been found to give excellent descriptions of variability 
in weed counts (Berti et al., 1992; Clark et al., 1996; Heijting, unpublished results): 
 
 )log()log()log( 22 mbasmas b +=⇔×=    
 
where m is the mean counts and s2 the variance. The b parameters of TPL were 
estimated from the data: 1.3351 for C. album, 1.3521 for C. polyspermum, 1.8313 for 
E. crus-galli and 1.8469 for S. nigrum. In the GLM, a is considered a scale factor 
which does not affect the estimates of the regression parameters and is, therefore, not 
incorporated into the variance function of the GLM. Therefore: 
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ii μμν =)(   (Dalthorp, 2004) 
 
where v is the variance function and μi is the expected mean density at location i. 
 The link function g, which transforms the linear combination of explanatory 
variables into an estimate for weed density, is: 
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1μμη    (McCullagh & Nelder, 1989; Dalthorp, 2004) 

with the inverse link:  
 
 )1/(11 ))1(()( b

iii bg −− −== ηημ   (Dalthorp, 2004) 
 
In the non-spatial model spatial dependencies in the response variable are not taken 
into account (Dalthorp, 2004). For every weed species we chose to include the same 
set of covariates for all three years, to enable comparison between the years. 
 
Regression analysis: Spatial model 
The same explanatory variables are used in the model with spatially correlated errors 
as in the model with spatially independent errors, to enable comparisons between the 
two models. The models with spatially correlated errors were constructed following 
the approach of Dalthorp (2004). For these models, assessment of regression 
parameters (β) and covariance matrix of the residuals of β (denoted as R) takes place in 
an iterative process, in which β and R are both alternately optimized until convergence 
is met for both. A spherical variogram model α (consisting of parameters a (range),  
c (sill) and γ0 (nugget) is used to estimate the residuals of the predicted weed density. 
Parameter estimates b̂  from the non-spatial model are used as initial values in the 
iteration. For technical details see Dalthorp (2004). Both β  and α are estimated with 
Weighted Least Squares (WLS). Wald’s statistic was used to test hypotheses 0=iβ . 
To enable comparisons, covariates are the same as in the non-spatial model for each 
weed species and in each year.  
 
Software used 
Soil sampling scheme was programmed using Compaq Visual Fortran v. 6.6. Block-
kriging was performed in S-plus Spatial statistics module. Regression analysis using 
Poisson log link was done in Genstat. Soil data was visualized with Arc View GIS 3.3. 
A C++ program by Dalthorp (2004) was used to conduct regression analysis with TPL 
as link function.  
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RESULTS 
 
Soil properties 
Summary and spatial statistics of the soil properties are shown in Table 1. For pH, 
magnesium, OM and clay content the Gaussian model gave the best fit; for all other 
variables the best fit was obtained using a spherical model (using WLS). All soil 
properties except N-NH4 showed moderate (0.25 < nugget/sill < 0.75) to strong 
(nugget/sill < 0.25) spatial dependence. Range parameters varied from 1.2m for 
potassium to 10.9 m for OM content. Spatial patterns of the variables that were used in 
regressions are presented in Figure 1. Finer texture soil was found in the north-western 
part of the plot, and the coarser, sandier soil was found in the south-eastern part of the 
plot, coinciding roughly with the higher concentration of OM. Soil pH was highest in 
the north-west part of the observation area.  
 
Weed species 
Table 2 shows the summary statistics of the four patchy weed species during the three 
years of observation. Weed maps are given in Heijting et al. (2007), which also 
provides details on the summary statistics of other weed species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Soil variables. From left to right: clay (33–41%), silt (28–40%), sand (11–30%), 
organic matter (3–8%), and pH (6–7). White = low values; dark = high values. 
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Table 2. Summary statistics of weed counts (n = 1024). Mean of number of 
plants per 0.75 m × 0.75 m quadrat is given. 
  year mean s.d. maximum  
C. album 2001 3.6 5.1 44  
 2002 0.6 1.5 30  
 2003 1.4 1.7 16  
C. polyspermum 2001 2.6 3.7 26  
 2002 1.0 2.2 41  
 2003 3.7 5.4 65  
E. crus-galli 2001 9.3 20.3 158  
 2002 4.7 6.6 49  
 2003 29.6 38.7 282  
S. nigrum 2001 0.8 1.9 19  
 2002 0.4 1.1 13  
 2003 1.1 2.5 25  

 
 
Stepwise regression: Selection of models using Poisson distribution with log link 
The spatial patterns of four of the species present were related to soil variables (Table 
3). These were the four most abundant weed species mentioned previously. For these 
weed species, models including two soil variables gave overall best results throughout 
the three years of study using R2 as the primary criterion. The selected variables for 
two parameter models were highly consistent among years for a given weed species. 
Inclusion of additional explanatory variables in the regressions resulted in a less 
consistent selection of soil variables throughout the three years and a decrease in or 
loss of significance of regression coefficients. Thus, considering R2 and parameter 
significance, the two-parameter models are optimal. 
 All weed species increased in density with soil pH (Table 3). The density of C. 
album decreased with higher organic matter (OM), C. polyspermum decreased with 
higher silt fraction, while E. crus-galli decreased with higher sand fraction. S. nigrum 
increased with clay fraction. The coefficient of determination, R2, varied from 0.13 to 
0.54, with a median R2-value of 0.36, indicating modest strength of relationship. 
Regression coefficients showed consistent values for each species, throughout the 
three years of study, and all parameters and all models were significant. 
 The lowest value of R2 was found for C. album in 2002 (0.13). This species had the 
lowest R2, averaged over the three years, and it was the least spatially correlated of the 
four patchy weed species (Heijting et al., 2007). 
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 No significant relationships between soil variables and densities of the other weed 
species were found, with R2 not exceeding 0.10 and regression coefficients being not 
significant.  
 
Herbicide efficacy and relations with soil properties 
Herbicides resulted mostly in 100% mortality, leaving no room for regresison analysis, 
However in a few cases, incomplete control was recorded: E. crus-galli in 2002 (84%), 
Poa annua 2001 (81%) and P. aviculare 2001 (81%). Relations between these 
mortalities and soil variables were not significant. For E. crus-galli (2001) mortality 
was incomplete as well. However, the mortality could not be precisely calculated due 
to the presence of many late germinating plants that could not be distinguished from 
plants surviving the herbicide treatment.  
 
Taylor’s power law as a link function: Non-spatial models  
Table 4 shows the results of the generalized linear models in which Taylor’s power 
law is used as a link function. Model convergence was attained using the estimated 
values of the parameter b of TPL. However, for S. nigrum 2003, a lower value of b 
(1.3500 as opposed to 1.8469) was necessary to make the model converge. 
 Values of regression coefficients were comparable to those given by the GLM using 
a Poisson distribution with log link function for C. album, C. polyspermum and S. 
nigrum. For E. crus-galli, values of regression coefficients showed approximately a 
10-fold decrease compared to the Poisson log link. Significances of regression coeffi-
cients of the GLM using TPL were overall lower than for GLM using Poisson log link.  
 
Taylor’s power law as a link function: Spatial models 
The results for the regression models with spatially correlated error terms are 
presented in Table 5. Values of regression coefficients of models with spatially 
correlated errors (Table 5) were overall similar to those of models with spatially 
uncorrelated errors (Table 4). Significances of the models with spatially correlated 
errors were in general similar or slightly lower than those of the models with 
uncorrelated errors and in a few cases much lower. The largest difference in 
significance between spatial and non-spatial models was found for C. polyspermum. 
For this species in particular, discarding spatial correlation of the response variable 
(weed counts) would result in substantial overestimation of model significance.  
 The expected plant density per quadrat of C. polyspermum according to the spatial 
model is plotted in Figure 2 for 2001, 2002 and 2003, separately. The expected values 
for three levels of soil pH (6, 6.5 and 7) are shown. With a decreasing silt fraction, 
plant density increased steeply. 
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Figure 2. Observed and expected plant density of C. polyspermum based 
on a GLM with spatially correlated error terms for 2001, 2002 and 2003. 
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 As examples, the actual weed patterns of C. polyspermum 2002 and E. crus-galli 
2001 are shown in Figure 3 and Figure 4, respectively, along with the patterns 
predicted from the regressions and the resulting residuals. Location and density of 
weeds is predicted relatively well. But the sharp spikes in the actual weed density are 
not accounted for by the regressions. Generally, the response surfaces in the 
regressions are more smoothed and less spiky than the observational surfaces. As a 
result, spatial dependence was left in the residuals for most species~year combinations 
(Figures 3 and 4). Addition of quadratic components to the models did not result in 
sharper peaks of the model (not shown here). 
 The spatial models of C. album (2001) and E. crus-galli (2002) did not converge as 
there was too little spatial correlation left in the residuals to fit a variogram to. In 
Figure 5, variograms are presented of count data, model (spatially uncorrelated errors) 
and residuals of E.crus-galli in 2002. The range of spatial dependence present in the 
weed data coincides largely with that of the selected explanatory soil variables that 
appear to govern large scale variation. After accounting for the large scale factors, 
spatial dependence in the residuals is evident only for a short distance spanning less 
than 1.5 m, suggesting that the small scale variation is governed by dispersal or other 
factors intrinsic to the population.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. C. polyspermum 2001: Actual weed density pattern (left), predicted 
weed density pattern with model with spatially correlated errors (middle) and 
residuals (right). 
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Figure 4. E. crus-galli 2001: Actual weed density pattern (left), predicted weed 
density pattern with model with spatially correlated errors (middle) and its residuals 
(right).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Empirical variograms for E. crus-galli 2002, weed counts, non-spatial 
model and its residuals. 
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DISCUSSION 
In this study small scale variation in density of four patchy weed species, C. album, C. 
polyspermum, E. crus-galli and S. nigrum, was related to heterogeneity of underlying 
soil properties. Densities of these species were related to soil pH, soil texture or OM. 
They were the patchiest weed species throughout the three years of study in a plot  
12 m × 48 m plot in continuous corn, reaching the highest densities of all weed species 
present (Heijting et al., 2007).  
 A statistical method was used to determine whether soil variables could provide a 
sufficient explanation for patchiness in these weeds. In most cases, patterns in soil 
variables did explain some part of the variation in weed density, but a substantial 
proportion of the variability in weed densities remained unexplained. Moreover, in 
most cases, spatial correlation was noticeable in the residuals of the regression, 
indicating that although the soil covariates were significantly correlated with weed 
densities, they could only partially explain for weed patchiness. For C. album (2001) 
and E. crus-galli (2002), the spatial model failed to converge as there was little spatial 
correlation left in the residuals. In these cases, it could be argued that the soil factors 
did account for the patchiness in the weeds. But the finding that in other years, the 
spatial model for these species did converge indicates that the soil factors are only a 
partial explanation for weed patchiness. For one weed species, C. polyspermum, large 
differences in P-values (> 10 fold) between spatial and non-spatial models indicate 
that there is a strong degree of spatial correlation that is not accounted for by the 
selected soil parameters. The results of C. polyspermum and effect of years illustrate 
that it may be important to account for spatial correlation if weed patterns are 
associated to soil factors. If these spatial correlations are not accounted for, inflated P-
values may result. 
 Relationships between densities of weed species and soil factors can be interpreted 
in the light of the ecological requirements and ecological niche of these species. E. 
crus-galli showed decreasing plant densities with increasing sand fraction in the 
observation plot. This species is known to like wetter habitats (Mitich, 1990) which 
could explain its preference for the areas of finer texture in our study. S. nigrum 
prefers clay soils (Oberdorfer, 1970), which is in line with our findings as it was found 
to be positively related to clay fraction. C. album was negatively related to OM, which 
is in agreement with results of Andreasen et al. (1991). C. polyspermum is generally 
associated with river flood lands and moist, heavier soils (Oberdorfer, 1970) but in our 
study plot, with a rather high percentage silt and clay, the species occurred in higher 
densities in the part of the observation area where the soil was relatively coarser. 
Reproducing plants of C. polyspermum were not found in the plot during the years of 
observation and its seeds are relatively persistent. The pattern of C. polyspermum may, 
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therefore, be a relict from historic field levelling processes which will be described 
further on, during which weed seeds may have been introduced with soil.  
 Texture fractions and organic matter affect soil moisture content (Andreasen et al., 
1991; Walter et al., 2002), thus are likely to influence weed germination, 
establishment and growth (Albrecht & Pilgram, 1997; Dieleman et al., 2000b). The 
observation plot was situated near the headlands and stayed wetter than the rest of the 
field after rain, which may have favoured all four weed species. Variations in patch 
expansion/shrinkage between years were present (Heijting et al., 2007) possibly as 
result of annual variation in precipitation and temperature. Annual variations in soil-
weed relations were also reported in other studies (Andreasen et al., 1991, Dieleman et 
al., 2000a; Medlin et al., 2001; Walter et al., 2002). 
 All four weed species were positively related to soil pH. Soil pH varied over a 
rather narrow range (6–7) which makes it difficult to explain the patterns in terms of 
ecological requirements. Interference of soil pH, organic content and texture fraction 
with herbicide efficacy has been shown in other studies (Novak et al., 1997; Dieleman 
et al., 2000a; Williams II et al., 2001). In this study, no relation between soil factors 
and herbicide effectiveness was found. Still, the weed seedbank could reflect past 
failures in herbicide effectiveness that could be linked to soil.  
 Results of correlative studies between weeds and soil factors are expected to be 
scale specific. The spatial relations between soil factors and weed distributions were 
examined here at a detailed level of scale in a sub-field area. A comparable but slightly 
coarser scale was used by Burton et al. (2005). They found significant spatial relations 
between the distribution of Helianthus annuus and the topography and soil organic 
matter content in a 64 ha field. Number of weeds were counted in transects with 
contiguous quadrats of 1 m × 1.52 m. In each of the three separate H. annuus patches, 
transect intersections were established in the high-density centre. Most studies 
examined soil-weed relations at field scale using sampling grids often coarser than our 
entire study plot (Dammer et al., 1998; Dieleman et al., 2000a, b; Dunker & 
Nordmeyer, 2000; Gaston et al., 2001; Walter et al., 2002; Nordmeyer & Häusler, 
2004). At field scale (≈ 10 ha) using a 20 m × 20 m sampling grid, spatial relations 
between various weed species and soil parameters were present in two Danish fields 
(Walter et al., 2002). They pointed out that if a finer sampling scale were used, 
possibly more relations would have been established between soil characteristics and 
weed species. Intensive sampling schemes as used in the current study are very costly, 
but too coarse schedules could result in missing relations. A combination of two levels 
of scale (Burton et al., 2005) is costly but might be valuable for obtaining a better 
understanding of soil-weed relations.  
 Ranges of spatial dependence of soil parameters in our study were much smaller 
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than those reported in other studies (Cambardella et al., 1994; Cambardella & Karlen, 
1999; Gaston et al., 2001; López-Granados et al., 2002; Walter et al., 2002) but 
similar to findings by Trangmar et al. (1987) and Campbell (1978). Historic land use 
(Albrecht & Pilgram, 1997), cropping practices (Andreasen et al., 1991), sampling 
scheme, and geological past can all affect the scale of variability of soil properties and 
thus influence relations with vegetation. To illustrate this, the dynamic history of our 
small field was examined. During World War II much earth was moved on this 
particular field as it was bordered by a deep ditch (3 m) to trap tanks. After the war the 
field was used as a pasture during several decades. Narrow north-south oriented 
ditches (20 cm wide) were present at intervals of approximately 12 m for drainage. 
Plant debris was removed from the ditches periodically and dumped adjacent to the 
ditch, likely resulting in a local build up of organic matter over time. The field was 
equalized using soil from an unknown origin in the early 1980s and was from then on 
used for arable farming. Although the exact location of the channels and other events 
is unknown, they are likely still reflected in the present spatial patterns of soil 
parameters.  
 The fact that throughout the three years of study, consistent relations between soil 
properties and important weed species could be established, and that weed patchiness 
largely coincided with heterogeneity of the field is promising for site-specific 
management of weeds. Areas favourable to weeds can be identified and treated 
accordingly. Weed monitoring can be facilitated once weed sensitive areas have been 
detected. With advancing technological developments, it is likely that machinery will 
be able to adapt to this level of detail. 
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CHAPTER 5 
 

Seed dispersal by forage harvester and rigid-tine cultivator in 
maize* 

 
Sanne Heijtinga, Wopke van der Werfa & Martin J. Kropffa 

 

a Wageningen University, Department Plant Sciences, Group Crop and Weed Ecology,  
PO Box 430, 6700 AK Wageningen, The Netherlands 

 
 

Summary 
Harvest and tillage operations are a major factor in seed dispersal in agricultural crops. We 
studied the effect of harvesting and cultivation on seed dispersal in continuous maize. A suite 
of cultivated plant species were used as model weed species to avoid potential sampling 
problems. Dispersal on the entire field was assessed by counting emerged seedlings in 
contiguous quadrats. Species that had the seeds on the plant at the time of harvest (Sinapis alba 
and Phacelia tanacetifolia) were spread further in the traffic direction by harvest + cultivation 
combined, as judged by the 50, 90 and 95 percentile of the cumulative dispersal distribution, 
than species whose seeds had been placed on the soil surface. Harvesting alone did not have 
this effect. The use of cultivator after harvesting significantly increased the distance travelled 
in the driving direction for three species with ripe seeds at harvest time (Eschscholzia 
californica, Linaria maroccana, Linum usitatissimum). Kernels resulting from cultivator 
operations were long tailed, extending over the whole of the sampled area, and they were quite 
variable. The headlands accumulated plant debris that had been collected and dragged over the 
field by the cultivator. Implications for the ecology, patterns and management of weeds are 
discussed. 
 
Keywords: Harvest combiner, rigid-tine cultivator, weed dispersal, headlands. 
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INTRODUCTION 
A better understanding of weed spatial behaviour can help to support integrated weed 
management strategies such as site-specific weed management (Humston et al., 2005). 
The results of experiments on dispersal of Helianthus annuus L. (common sunflower) 
by harvest in a soybean-maize rotation showed that a reduced weed dispersal can be 
achieved if densities of weed patches are kept under control (Humston et al., 2005). 
Apart from initial weed density, the interaction between harvest machinery and weed 
biology is important for dispersal of weeds (McCanny & Cavers, 1988; Woolcock & 
Cousens, 2000; Blanco-Moreno et al., 2004; Humston et al., 2005; Barroso et al., 
2006). Seeds of species whose seeds are strongly attached to the mother plant, such as 
Lolium rigidum are thought to disperse further by machinery (Blanco-Moreno et al., 
2004) than seeds that shatter easily such as those of Avena fatua and A. sterilis 
(Barroso et al., 2006) because plant material is more easily spread than seeds. A model 
study by Woolcock & Cousens (2000) predicted that in cereal cropping, weed plants 
that shed their seeds prior to harvest will be dispersed less far than plants that shed 
seeds during harvest. Although the results obtained in different cropping systems are 
generally in line with the idea that seeds that are on the plant are spread further than 
seeds that are on the soil, there are no comparative studies in a single system that 
provide empirical support. 
 Most studies on dispersal by harvest have been performed in cereals. An important 
crop in north-western Europe, however, is maize. For example, in The Netherlands 
10% of the agricultural land is sown with maize. Maize is mainly harvested for silage 
production and it is often grown continuously without rotating crops. At present, 
continuous maize cropping is mainly depending on herbicides for weed control. Full 
dependence on mechanical weed control as commonly practiced in organic maize 
cropping results in huge increases of the weed seed bank (Barberi et al., 1998). One 
means to reduce herbicide input is by site-specific weed management, i.e. taking into 
account weed spatial distribution when spraying. 
 For silage maize the entire crop is harvested, with a cutting height of approximately 
10 cm. No crop material is emitted back to the field. This contrasts with cereal 
harvesting, where the combiner emits Material Other than Grain (MOG) (Shirtliffe & 
Entz, 2005). This MOG includes both crop material and weed seeds. Chaff collection 
can significantly reduce the spread of weed seeds (Blanco-Moreno et al., 2004; 
Shirtliffe & Entz, 2005). A forage harvester as used for silage maize may contribute to 
spread of weed seeds by dragging weed plants over the field if weed plants have ripe 
seeds at time of harvest. This would mainly cause longitudinal spread in the direction 
of the field traffic. Lateral spread, perpendicular to the field traffic, could occur if 
emitted maize silage is spilt between the harvest combiner and lorry, e.g. due to human 



Seed dispersal by forage harvester and rigid-tine cultivator in maize 

69 
 

failure or wind. No research has been done on this harvest system specifically. 
 Soil tillage provides another means for seed dispersal is tillage. In several studies 
(e.g. Rew & Cussans, 1997; Grundy et al., 1999; Marshall & Brain, 1999), tillage 
moved the majority of seeds a few meters or less and only a few were transported over 
larger distances. Spread of seeds of A. fatua and A. sterilis was mainly caused by soil 
tillage practices (Barroso et al., 2006). Steinmann & Klingebiel (2004) showed that 
cultivation contributes to seed dispersal of Bromus sterilis in an arable field. A 
common practice in The Netherlands in silage maize on sand is to cultivate the soil 
with a rigid-tine cultivator a few weeks after harvest. This loosens the soil and ensures 
water is drained well in the winter. It furthermore facilitates cultivation with the 
plough in spring. We expected that the cultivator could also be an important vector of 
weed material as the tines can potentially drag plant and seed material across the field. 
 The aim of our study was to determine the contribution of both forage harvester and 
rigid-tine cultivator to the dispersal of weed seeds in a field cropped with continuous 
maize. The effect of timing of seed shedding in relation to harvest was examined. To 
avoid bias by seeds already present in the seed bank of the field, we used non-weedy 
species which were not present in the field before the experiment started, to study 
dispersal.  
 
MATERIALS and METHODS 
 
Field experiments 
Two field trials were conducted on a sandy soil field ‘Meenthoeve 14’ on the 
Meenthoeve farm near Achterberg, The Netherlands. The field (2 ha) was 200 m long 
and 100 m wide. During the two years of the study, silage maize was grown. The crops 
were grown with conventional methods (Table 1). In the field, seeds of experimental 
plant species (‘model weeds’) were released, either by laying out seeds before harvest 
of the crop, or by seeding plots with the species in the spring, after clearing 3 m × 3 m 
patches of crop from all maize plants. All field traffic in the course of the experiment 
was counter clockwise. Thus, dispersal was essentially in one direction from the 
established sources. During chemical weed control the plots with introduced plants 
were shielded with plastic foil. Weeds in these plots were removed by hand and hoe. 
The crop was harvested with a Claas forage harvester with a Champion cutting bar, 
harvesting 6 rows in one pass. Cutting height was 10 cm. 
 
Experimental design 2002 
This first experiment measured the dispersal of the seeds of two plant species that were 
sown in each of four source plots, and three species of seeds that were each laid out in 
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a single source plot. The combined effect of harvesting and cultivation was studied. 
 The source plots were laid out in mid May. Each plot of sown experimental plants 
measured 6 m × 6 m and was sub-divided in four sub-plots of 3 m × 3 m (Figure 1). 
On 30 May, Sinapis alba (cv. Carnival) and Phacelia tanacetifolia (cv. Amerigo) were 
sown, each in two of the sub-plots, using a row distance of 15 cm. S. alba was sown at 
a seed density of 1.5 g m–2, and P. tanacetifolia at 0.8 g m–2 (Table 2), following 
seeding densities used in practice. 
 
 
Table 1. Details on field management in 2002 and 2003 on Meenthoeve 14. 
Operation Machinery/details 2002 2003 
Ploughing Kverneland LD115 

3 plough shears, 6.5 km/h 
Furrow width: 40 cm 
Ploughing depth: 24 cm 
Skim coulter depth: 3 cm 

15 Apr 18 Mar 

Fertilizer  22 Apr:  
500 kg/ha 27% KAS  

24 Apr:  
600 kg/ha 27% KAS 
9 May:  
150 kg/ha 23/23 N/P 

Seed bed preparation Rotary harrow Kverneland 
12300, working width: 3m 
Working depth: 4-5 cm 

  

Sowing maize cv. Lima top 
Row spacing 75 cm 
0.13m within row spacing 

25 Apr 9 May 

Tine harrow Hatzenbichler, 6m wide 8 May Mid May 
Sowing of model plants By hand 30 May 

Row spacing 0.15 m 
4 Jun +additional on 3 Jul 
Row spacing 0.4 m 

Spraying  31 May 
300 g/ha sulcotrione 
  40 g/ha nicosulfuron 
300 g/ha pyridaat 
100 g/ha bromoxynil 

12 Jun 
300g/ha sulcotrione 
  96 g/ha dicamba 
  30 g/ha nicosulfuron 
320 g/ha dimethenamid-P 

Placing of seeds on soil  24 Sep 11 Sep 
Harvest Claas Jaguar 

7 km/h 
Maize cutting height: 0.1m 
6 rows in one go 

25 Sep 
Claas Mega Jaguar + 
Champion 4500 
 

12 Sep 
Claas Jaguar 890 Speedstar +
Champion 345 

Mapping  - 2 & 3 Oct 
Rigid-tine cultivator Rumpstadt, 2 rows, 5 tines 

each at 40 cm apart. 
15-16 cm depth 
12.8 km/h 

10 Oct 
 

16 Oct 

Mapping  15, 19 & 20 Nov 20, 24 & 25 Nov 
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Figure 1. Experimental design in 2002 (left) and 2003 (right) on Meenthoeve 14. The entire 
field measures 100 m × 200 m. Driving direction is indicated with arrows. Headlands are 
grey. Foci are indicated with grey tones and numbers correspond with kernel numbers. Plants 
with ripe seeds in 2002: S. alba (grey), P. tanacetifolia (black). Letters indicate in 2002: 
initial location of seeds of B. officinale (A), S. marianum (B), V. sativa (C) and D. stramonium 
(D). Plants with ripe seeds in 2003: C. officinale (black), E. californica (crosshatch), L. 
usitasitsimum (grey) and L. maroccana (stripes). Initial location of seeds in 2003: A. 
hybridum (A), L. coronaria (B), H. vulgare (C) and L. angustifolius (D).  
 
 At harvest, both P. tanacetifolia and S. alba plants had ripe seeds on the plant. P. 
tanacetifolia also had flowers. Just before harvest, seeds of Borago officinale, Datura 
stramonium, Silybum marianum and Vicia sativa were placed on the soil surface, each 
in one 3 m × 3 m plot, downstream from the plots with the seeded source plants 
(Figure 1). Details on seeds of the species used in this experiment are provided in 
Table 2. The crop was harvested on 25 September 2002 (Table 1). First, the headlands 
were harvested. The driving direction on the headlands was pursuant to the counter 
clockwise movement schedule of the whole field (Figure 1). On 10 October 2002, the 
field was cultivated with a Rumpstadt rigid-tine cultivator (Table 1). On 3 November    
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                                 Table 2. Information on plant species used. 
Plant species 1000-seed weight (g) Seeds (g) per 9 m2 
A. hybridum 4.07  720 
D. stramonium 7.15  236 
B. officinalis 19.79  1000 
C. officinalis 7.00  50 
E. californica 1.53  25 
H. vulgare 46.58  1000 
L. maroccana 0.07  18.75 
L. usitatissimum 5.64  25 
L. angustifolius 132.42  2670 
P. tanacetifolia 2.37  7.2 
S. marianum 30.45  1000 
S. alba 5.50  13.5 
V. sativa 73.56  1400 

 
2002, the entire field was scouted and blue plastic rods were placed near seedlings and 
plants of the introduced species to make an initial mapping. On 15, 19 and 20 
November, the dispersal pattern was mapped by counting the number of seedlings and 
plants on the entire 2 ha field using 1.5 m × 1.5 m quadrats. Four metal 1.5 m × 1.5m 
quadrats were placed on the soil adjacent to each other and counts were made per 
quadrat. The metal frame was shifted until the whole field had been mapped. Fixed 
poles were present on all four sides of the field to enable correct placement and 
alignment of the quadrats. To secure positions in the field, lines were attached and 
fixed between these poles, and tape measure was fixed along these lines. 
 
Experimental design 2003 
This experiment measured the dispersal of the seeds of four plant species that were 
sown in each of four source plots, and four species of seeds that were each laid out in a 
single source plot. The effects were studied of harvesting alone and harvesting plus 
cultivation. 
 The field was managed identically as in 2002 (Table 1), but the design of the 
experiment was slightly adjusted. Taking into account the large dispersal distances 
observed in 2002, source plots were not placed downstream of other source plots as in 
2002, but in parallel (Figure 2). To avoid confusion with possible seedlings of 
experimental plant species used in 2002, four other species were used as model weeds: 
Calendula officinalis, Eschscholzia californica, Linaria maroccana and Linum 
usitatissimum. Each of these had ripe seeds on the plant during harvest.  
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 Just before harvest, seeds of Abutilon hybridum, Lignis coronaria, Lupinus 
angustifolius and Hordeum vulgare were placed on the soil surface in plots of 3 m × 3 
m downstream of the plots with the seeded source plants. These four species represent 
weeds that shed their seeds prior to harvest. On 2 and 3 October, the spatial pattern of 
seedlings of introduced species was mapped using the same method as described for 
the 2002 experiment. Dispersal patterns of all introduced plant species were monitored 
a month after cultivation of the field. Wind speed during harvest was low: 1–2 
Beaufort.  
 
Data analysis and visualization 
Dispersal patterns of the plant species were visualized using ArcView GIS 3.3 (ESRI, 
Redlands, CA, USA). The analysis will focus on the dispersal of seeds in the driving 
direction of the machines. Due to the unexpectedly far dispersal of plants in the 2002 
experiment (Figure 1), kernels 1 and 3 were truncated in the driving direction at the 
start of the source plot of kernels 2 and 4. Kernels 2 and 4 were continued up till the 
field edge and thus included part of the headlands. The width of kernel 2 and 4 full 
field (measured cross-row) determined also the width that was considered in the 
headlands. Boundaries of the other kernels of the 2002 and 2003 experiments were 
clearly apparent from the experiment. For each species in each source plot, the 
cumulative frequency distribution was constructed. The counts were summed cross-
row to obtain the cross-row integrated longitudinal kernel. The 0-point was taken in 
the middle of each of the 3 m × 3 m source sub-plots, or as the combined middle of 
two sub-plots of the same species (S. alba and P. tanacetifolia in the 2002 
experiment). Seedlings that must have came from another source than the nearest one, 
i.e. the odd ones located tens of meters upstream of a source, were discarded in the 
calculations. From each kernel, the mean distance travelled, the maximum distance 
and the 50, 90 and 95 percentiles were determined. 
 The Mann-Whitney U test was used to test the following three null hypotheses: 

(i) There is no difference in dispersal distance by harvester + cultivator between 
seeds that were on the soil or on the plant at the time of harvest (2002 
experiment). 

(ii) There is no difference in dispersal distance by harvester alone between seeds 
that were on the soil or on the plant at the time of harvest (2003 experiment). 

(iii) The dispersal distributions caused by the harvester or by the harvester + 
cultivator are the same (2003 experiment). 

The cumulative dispersal distributions of harvester alone and of harvester plus 
cultivator (2003 experiment) were compared for each kernel and plant species 
separately, using the Kolmogorov-Smirnov test. 
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Figure 2. Continued. Results of the experiment in 2002. Location of S. alba (D) and P. 
tanacetifolia (E) seedlings after dispersal by harvest and cultivation. Number of plants per 
quadrat is indicated by grey tones: =0,   =1–10,  = 11–100,  = 101–1500. 
 
 
RESULTS 
 
2002 Experiment 
The seeds that had been placed on the soil in the 2002 experiment (B. officinale, S. 
marianum, V. sativa) dispersed less far than seeds that were attached to the plant at 
time of harvest (S. alba, P. tanacetifolia) (Table 3; Figures 2 and 3AB). The difference 
was significant for all dispersal parameters measured except the maximum distance 
travelled (Table 5). Thus at the scale of this study, all distance parameters were 
different between seeds on the soil and seeds on the plant, except the maximum 
distance measured. The true maximum distance could not be measured because it was 
constrained by the length of the plot. The 90 and 95 percentile showed a longer tail of 
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Figure 3A. Combined effect of harvest and cultivation on seed dispersal for ‘soil-borne’ plant 
species of the 2002 field experiment Cumulative frequency distributions are presented for 
each kernel of the plant species separately. On the x-axis distance in meters is shown. The y-
axis presents the fraction of seedlings that were dispersed till the indicated distance. 
 
 
the dispersal kernel for seeds that were on the plant at time of harvest (Table 3; Table 
5). The 90 percentile of the dispersal distance of seeds that had been placed on the soil 
varied from 1.38 m to 1.85 m while the 90 percentile of the dispersal distance of seeds 
that were still on the plant at the time of harvest varied from 9 m to 45 m. In Figure 2, 
the 11 dispersal kernels, measured in this experiment, are shown, illustrating the major 
differences between the species that were subjected to harvesting as soil-borne seeds 
and those that were plant-borne.  
 There was substantial variation among the measured kernels (Figure 3B) within 
each of the two species used in 2002 with plant-borne seeds. Part of this variability is 
caused by the experimental set up, which did not allow for measurement of the full 
potential length of the kernels 1 and 3, and whose length may, therefore, have been 
underestimated. Another part is due to the occurrence of the headland in the tail of the 
kernels 2 and 4. The patterns (Figure 2) show that plants of S. alba and P. tanacetifolia 
were dispersed throughout the entire headland and even beyond. The pattern of S. alba 
reveals the presence of the headlands the most clearly (Figure 2): the tail of the kernel 
tapers steadily but has a discontinuity at about 40 m from the source. This is where the 
headland begins, and where there is a sudden increase in the number of seedlings 
observed per meter downstream from the source.  
 The dispersal kernel of D. stramonium could not be determined as seedlings of this 
species were killed by frost before mapping  
 
2003 experiment: Harvest 
The mean distance travelled by seeds that were on the soil at time of harvest was less 
than 0.5 m (Table 4). For species with seeds that were ripe at time of harvest, mean 
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Figure 3B. Combined effect of harvest and cultivation on seed dispersal for plant species of 
the 2002 field experiment that carries ripe seeds at harvest time. Cumulative frequency 
distributions are presented for each kernel of the plant species separately. On the x-axis 
distance in meters is shown. The y-axis presents the fraction of seedlings that were dispersed 
till the indicated distance. 
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Table 4. Results of the 2003 dispersal experiment. Effect of harvest and the combined effect 
of cultivator and harvester on dispersal of plant propagules in the driving direction are shown. 
All distances are measured from the initial centre of the plot. 

 Location   Length Number Mean  Max. Percentile (m) 

Machine 
of ripe 
seeds Weed species Kernel 

of plot 
(m) 

of 
plants 

distance 
(m) SD 

distance 
(m) 50 90 95 

Harvester soil A. hybridum 1 137.5 94 0.49 1.88 11.25 –0.51 0.65 2.90 
 soil H. vulgare 1 137.5 248 0.38 2.91 27.75 –0.98 0.73 1.77 
 soil L. angustifolius 1 137.5 1705 0.07 0.85 11.25 –0.66 0.49 0.63 
 plant C. officinalis 1 142 63 2.04 2.15 14.25 1.20 2.10 2.21 
   2 142 274 3.66 3.35 29.25 2.15 5.52 7.93 
   3 142 131 5.54 14.04 94.25 1.60 6.30 34.43 
   4 142 92 2.01 2.94 23.25 1.08 4.22 4.98 
 plant E. californica 1 142 260 0.08 1.02 5.25 –0.52 0.51 0.64 
   2 142 458 0.61 3.00 14.25 –1.04 4.36 5.04 
   3 142 83 1.51 6.15 39.75 –0.34 1.61 2.23 
   4 142 222 0.98 2.74 30.75 –0.20 2.02 4.92 
 plant L. maroccana 1 145 1045 –0.49 1.01 5.25 –1.28 0.28 0.54 
   2 145 4875 –0.79 1.39 42.75 –1.60 0.28 0.55 
   3 145 1018 0.34 1.48 5.25 –0.33 1.58 2.13 
   4 145 462 0.13 1.58 3.75 –0.86 1.72 2.13 
 plant L. usitatissimum 1 145 337 1.43 7.54 101.75 –0.26 2.21 5.27 
   2 145 465 3.05 13.20 136.25 –0.10 4.91 9.67 
   3 145 95 5.62 17.83 88.25 0.03 1.93 43.06 
      4* - - -   - - - - 
Harvester+ soil H. vulgare 1 137.5 19 7.49 27.85 124.25 –0.83 17.40 122.83 
cultivator soil L. angustifolius 1 137.5 253 0.78 3.93 59.75 –0.26 1.33 2.09 
 plant C. officinalis 1 142 721 –0.12 1.25 6.75 –1.04 0.56 1.02 
   2 142 798 2.48 15.46 134.75 –0.15 1.79 2.21 
   3 142 108 1.82 2.61 15.75 1.02 2.20 4.20 
   4 142 22 2.80 0.72 3.75 1.93 3.34 3.54 
 plant E. californica 1 142 4034 5.55 20.60 130.25 0.24 4.51 11.49 
   2 142 4057 16.27 30.20 136.25 1.64 64.10 77.11 
   3 142 3235 5.37 21.08 139.25 0.48 3.57 13.13 
   4 142 4974 3.39 14.70 134.75 0.33 4.82 9.30 
 plant L. maroccana 1 145 489 2.37 18.66 136.25 –1.77 0.24 1.91 
   2 145 66 28.70 44.43 143.75 2.55 131.30 132.76 
   3 145 419 4.47 21.05 136.25 –0.15 1.65 2.22 
   4 145 21 56.46 54.57 136.25 31.50 131.42 131.74 
 plant L. usitatissimum 1 145 64 41.71 62.54 134.75 –1.01 134.24 134.50 
   2 145 339 4.48 21.86 137.75 –0.75 2.94 6.83 
   3 145 95 4.82 23.04 133.25 –0.06 1.76 2.18 
   4 145 83 15.77 40.52 134.75 –0.05 112.78 132.39 

* Only three plants were retrieved of this kernel. 

 
 
distance travelled was variable, with the lowest value for L. maroccana  
(–0.79 m) and the highest value for L. usitatissimum (5.62 m) (Table 4). Cumulative 
frequency distributions of all species are presented in Figures 4 and 5. No significant 
differences in dispersal by the forage harvester alone were found between species with 
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Figure 4. Effect of harvest and cultivation on seed dispersal in the 2003 field experiment for 
plant species with seeds on the soil before harvest. Cumulative frequency distributions of 
plant species are presented for harvest (solid line) and rigid-tine cultivator (dashed line) for 
each kernel of the plant species separately. On the x-axis distance in meters is shown. The y-
axis presents the fraction of seedlings that were dispersed till the indicated distance. 
 
 
ripe seeds at time of harvest and seeds on the soil were found (Table 5). L. coronaria 
did not germinate and could thus not be mapped.  
 
2003 experiment: Harvest and cultivation 
The effect of harvest machinery and cultivation on dispersal of E. californica is shown 
in Figure 6 and for L. maroccana in Figure 7. Both figures illustrate that the rigid-tine 
cultivator enlarged dispersal distances. Dispersal kernel 2 of E. californica shows 
fluctuating densities in the tail (Figure 6). This is reflected in its cumulative frequency 
distribution (Figure 5). 
 For species with ripe seeds at time of harvest, the distance parameters mean and 
maximum were larger for harvest + cultivator than for harvester alone (P<0.01) (Table 
5). Overall the cultivator increased dispersal of seeds compared to the harvester 
(Figures 3 and 4; Tables 4 and 5), but for three of the four kernels of C. officinalis the 
cultivator dispersed seeds in the negative direction. The effect was small and most  
 
 
Table 5. Comparison of dispersal distances for different treatments of 2002 and 2003 
experiment. Comparisons were tested 1-sided with the Mann-Whitney U test. 
    Percentile 
Year H0 Mean Maximum 50 90 95 
2002 On soil< on plant ** ns * ** ** 
2003 On plant harvest < on plant cultivator ** ** ns ns ns 
2003 On soil harvest < on plant harvest ns ns ns ns ns 
*P < 0.05; **P < 0.01; ns: not significant. 
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Figure 6. Results of the experiment in 2003. Location of E. californica seedlings after 
dispersal by harvest (left) and after harvest and cultivation (right). Number of plants per 
quadrat is indicated by grey tones: =0,   =1–10,  = 11–100,  = 101–700. 
 

 
likely partially caused by the choice of the origin in the centre of the 3 m large plot 
leading to an initial source between –1.5 m and +1.5 m. The Kolmogorov-Smirnov test 
for differences between the cumulative frequency distributions was significant at 
P<0.01 for all kernels except for H. vulgare (n.s.), kernel 3 of L. usitatissimum (n.s.) 
and C. officinalis (kernel 4 P<0.05) (details see Appendix 1).  
 For most seeds, the maximum distance travelled was beyond 130 m, covering the 
entire length of the field. The 90 and 95 percentile values of some kernels of L. 
maroccana and L. usitatissimum indicated that 5% to 10% of the seedlings were 
dispersed beyond 130 m.  
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Figure 7. Results of the experiment in 2003. Location of L. maroccana seedlings after 
dispersal by harvest (left) and after harvest and cultivation (right). Number of plants per 
quadrat is indicated by grey tones:  

 =0,   =1–10,  = 11–100,  = 101–1100. 
 
 

 
 Figure 8 shows a comparison of the mean dispersal distances after harvesting and 
after harvesting plus cultivation in the 2003 experiment. This figure shows that the 
cultivation adds greatly to the average dispersal distance, but especially that it adds to 
the variability of the dispersal distance. 
 For seeds that were present on the soil surface the outcome was variable. The small 
sample number of seeds on soil (n=2) did not allow for statistical comparison with 
seed plants. The experiment with A. hybridum failed.  
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Figure 8. Comparison of mean dispersal distance due to harvester alone (x-axis) and harvester 
+ cultivator (y-axis) in 2003 experiment, illustrating contribution to mean dispersal distance 
of the cultivation, but especially the contribution of cultivation to variability in the dispersal 
distance among different measured kernels. Open symbols: seeds on plant; closed symbols: 
seeds on soil. 
 
 
DISCUSSION 
The results of this study show that both harvesting and cultivating in maize can spread 
plant seeds over large distances of more than 100 m. The average dispersal distance in 
the working direction was often only a few meters, and sometimes the average 
displacement of the seeds was negative, i.e. upstream the driving direction, but with 
seeds on the plant and following cultivation, average dispersal distances of several tens 
of meters were observed in some kernels. Even though the sampled space in this study 
was fairly large when compared to other studies on plant dispersal in agricultural 
systems, the theoretical maximum dispersal distance was not attained, and several 
empirical dispersal kernels had not reached their end point at the end of the observed 
spatial support. Thus, it is concluded that harvesting and cultivating can make a 
substantial contribution to the long distance dispersal of weeds in maize. The observed 
dispersal kernels were quite variable, especially those following cultivation, indicating 
that chance effects play a big role in dispersal.  
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 This chance element is consistent with direct observations that were made in the 
crop during the operations. Sometimes, during passage of the cultivator through the 
field, heaps of plant material were dragged from the source plots and subsequently 
deposited in the headlands when and where the tines of the cultivator were unearthed, 
to enable the driver to turn the tractor (Figure 9). The ‘bumps’ in the tails of the 
cultivator-induced dispersal kernels (Figures 3 and 5) are probably due to this 
phenomenon. The haphazard nature of this discrete event of dragging and dropping is 
a plausible explanation for the large variability of the dispersal kernels after 
cultivating. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. (a) Rigid-tine cultivator in 2002 experiment at turning point in headlands where 
tines are unearthed. Plant material including seeds is attached to the tines. (b) Plant debris 
including seeds has fallen in headlands after disposal by tines of cultivator in 2002 
experiment. 

 

(a) 

(b) 
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 The timing of seed shed affected dispersal by machinery significantly. Seeds that 
were located on the plant at harvest time travelled further than seeds that were on the 
soil prior to harvest. This is the first study in which the effect of these two contrasting 
seed shed times on dispersal by machinery was tested simultaneously in a field 
experiment. Our study further showed that rigid-tine cultivator greatly contributes to 
the dispersal process if seeds are at the plant at time of harvest and that some kernels 
had long tails, covering the entire observation plot.  
 Nearly all the seeds that represent species that shed their seeds before harvest, and 
were placed on the soil in this study, stayed relatively close to their initial source plot. 
The short travel distance of the seeds of weed species that shed seeds prior to harvest 
will aid in patch persistence (Woolcock & Cousens, 2000; Humston et al., 2005) as 
primary dispersal of most seed shedding weed species results in seed shadows close 
their source. For example, the grass weeds Bromus sterilis and Alopecurus 
myosuroides shed their seeds within 1 m from the mother plant (Rew et al., 1996b; 
Colbach & Sache, 2001). Dispersal by machines will elongate weed patterns in the 
driving direction (see Humston et al., 2005), which was particularly reflected in the 
patterns shaped by the cultivator in the current study.  
 Although directionality was present in most dispersal patterns, the majority of the 
seeds in this study travelled less than a few meters from their initial position. Other 
studies on dispersal of weeds by agricultural equipment also reported that most seeds 
dispersed within a few meters from the source. For various types of cultivators, after a 
single pass, the bulk of seeds moved less than one meter from the initial source (Rew 
& Cussans, 1997) or only a few meters (Mayer et al., 1998; Marshall & Brain, 1999). 
Patch and or seed displacement by harvest combiner appeared to occur within 
approximately a few to 5 meter from the initial foci (Howard et al., 1991; Blanco-
Moreno et al., 2004; Steinmann & Klingebiel, 2004; Humston et al., 2005; Barroso et 
al., 2006), depending on the machinery and weed species. For example, soil tillage 
caused larger dispersal of the seeds of A. fatua and A. sterilis than the combine 
harvester as the plant had shed over 90% of its seeds before harvest. The pattern that 
emerges is that the bulk of the weed seeds do not travel very far, but what may be 
more important is how far the tail of the distribution extends, because this has 
important ramifications for the rate of spatial population expansion (Kot et al., 1996). 
There are few data available concerning the spread of weeds at field scale, and the data 
provided here, which do demonstrate unequivocally the long travel distance of plant-
borne seeds upon cultivating, are, therefore, valuable and important. This finding is 
especially striking as the harvesting method of maize (whole crop) would suggest that 
the chances of seed dispersal in this crop should be slim, compared to other crops, 
such as cereals, in which plant debris of weeds is – in principle – returned to the field 
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at harvest. The findings suggest that weeds that have plant-borne seeds that could get 
entangled in machinery during field operations have good prospects for rapid 
population expansion at field scale. 
 Our current study further illustrates that the interaction between design of the 
machine and weed biology should have major consequences for dispersing potential. 
Compared to harvesting alone, the rigid-tine cultivator caused the largest seed 
displacement for most species whose seeds were at the plant during harvest. There are 
several possible reasons for this. First of all, the maize silage forage harvester does not 
emit crop and weed material to the field on a structural basis as some cereal combiners 
do when emitting chaff and weed seeds with straw (see Blanco-Moreno et al., 2004; 
Barroso et al., 2006). Secondly, the cutting bar of the forage harvester cuts off maize 
plants at about 10–15 cm height. We noticed that introduced plants bent and gave way 
to the cutting bar of the harvester and were, therefore, cut off at a considerable greater 
height than 10 cm. As such, the harvester facilitates dispersal by rigid-tine cultivator. 
Until now, dispersal experiments to determine the spread of weeds by tillage 
equipment are performed with seeds placed on or buried in the top soil layer. Dragging 
plant material by cultivator seems to enhance dispersing potential compared to seeds 
travelling with soil on the machine. And indeed this was reflected in the contrast 
between the dispersal patterns of the two different starting positions in the 2002 
experiment; on the soil or on the plant. The forage harvester was expected to also have 
plant dragging potential but this was not observed. In addition, we expected some 
spilling of seeds with silage maize by accident if wind blows the harvested material 
from the lorry accompanying the forage harvester. During the two years of this 
experiment, wind speed was close to zero in the critical periods and no such spilling 
was observed in the field. 
 For some species in this study, the combined effect of the two machines on 
dispersal of ripe seeds located at the plant at harvest, resulted in a small percentage of 
seeds travelling the entire length of the observation plot, exceeding 130 meters. 
Studies on the maximum dispersal distance (or tail length) are limited (Mayer et al., 
1998; Steinmann & Klingebiel, 2004; Guglielmini & Satorre, 2004). Experimental set 
up appears to determine the tail length with the maximum measured distance often 
coinciding with the length of the tail. Wild oats (Avena fatua) seeds were dispersed 
over 245 m by the cereal combine covering the full length of the observation plot 
(Shirtliffe & Entz, 2005).  
 For establishment of new patches, the length of the tail of the dispersal kernel is 
quite important, and tails which decrease less than exponentially with distance favour 
formation of new patches (Wallinga et al., 2002). In our study, some kernels had 
‘bumps’ in the tail (Figures 3 and 5). These bumps may be more important for the 
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formation of new patches than the taper of the tail. Rew & Cussans (1997) used the 
term ‘guerrilla spread’ to indicate the unpredictable dispersing behaviour of seeds 
travelling further than the bulk. In the study presented here, some predictability 
seemed present in the deposition of seeds by machines as for example shown by S. 
alba. This species carried ripe seeds during harvest time. A higher density of seedlings 
appeared in the headlands where the tines of the cultivator unearth and plant material 
is released (Figure 9). For the formation of new patches, higher density patches have 
more chance of successful establishing than lower densities (Humston et al., 2005). 
Patch size is also vital for establishment (Latore et al., 1998). Below a critical patch 
size, survival of a patch is unlikely if it depends too strongly on immigration, i.e. an 
Allee effect at patch level (Kot et al., 1996). If there is an Allee effect, population 
expansion is not so much driven by the ‘pull from the tail’ as by the ‘push from the 
centre’. It is possible that the formation of new patches is strongly favoured if seed 
material is deposited in aggregations, overcoming this Allee effect, and allowing the 
tail of the distribution to pull the expansion. 
 The plant species used in the experiment as plants shedding seeds during harvest 
were cultivated plants and not weed species. This was done to ensure that the observed 
seedlings resulted from the introduced source, and did not occur already in the field. 
Differences in biology of cultivated plants and weeds species may be present, but 
given that a suite of species were used, we do not think that this choice has affected the 
applicability of the results. Some weedy plants drop their seeds easily (e.g. A. fatua 
and A. sterilis; Barroso et al., 2006), while others, e.g. Lolium rigidum, do not shed 
their seeds easily (Blanco-Moreno et al., 2004). The two exposure methods of seeds 
used in this study (on soil versus on plant) account for this variability in weeds. The 
large advantage of using cultivated plants is the ease of making observations, which 
allowed a greater number of kernels to be observed and a great spatial support than 
would otherwise have been possible. Some innovative findings in this study are a 
direct consequence of the choice of method.  
 In the current study, seeds of varying seed weight were used. Unfortunately, some 
lighter seeds such as Lignis coronaria failed to germinate. Both seed weight and the 
interaction with machines may influence dispersal distances and much depends on the 
system at study. Smaller seeds dispersed further than larger seeds by soil tillage 
machines (Rew & Cussans, 1997). Mayer et al. (1998) reported that lower seed weight 
affected carrying distance of some species positively but type of machine also 
influenced this. Relatively heavy weighted seeds of Datura ferox dispersed over nearly 
100 m by combiner in soybean (Ballaré et al., 1987). Ideally, the hypothesis that seeds 
on the plant are dispersed further away from the source than seeds that are on the soil 
surface, should be tested in experiments that use the same seeds on the plant and on 
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the soil. With the setup used in this study, other attributes of the seeds, like seed 
weight and surface roughness, could also effect their dispersal. These are influences 
that our results do not rule out; however, the direct observation on the dragging and 
dropping of plant debris gives compelling support to the hypothesis that seeds that are 
attached to the plant have a better chance of travelling far when the field is tilled or 
when the crop is harvested. Observations on the kernels of the seeds of Diplotaxis 
erucoides sylvetta) and Papaver rhoeas (Heijting, unpubl. results), which both have 
low seeds weights, show that these seeds, when laid on the soil, do not travel very far 
under the influences of cultivation. This confirms the notion that the comparatively far 
dispersal of plant-borne seeds in this study is due to the fact that they were plant-
borne, and not due to the fact that they were comparatively light when compared to the 
seeds that were placed on the soil surface. 
 Our study confirms the importance of timing of seed shedding for seed dispersal as 
was put forward and examined in other studies (McCanny & Cavers, 1988; Woolcock 
& Cousens, 2000; Blanco-Moreno et al., 2004; Barroso et al., 2006). It is shown that 
plant material with seeds can be dragged over large distances into the headlands. For 
species that bear viable seeds at the time of crop harvest, this could potentially lead to 
accumulation of plant material in the headlands. To prevent such sub-field weed 
transport, a clean crop at harvest appears advisable. This finding also sheds another 
light on the higher weed densities which are often encountered in headlands, which is 
often attributed to less efficient management, or introduction of species via the field 
entrance. This study shows that it may also be an effect of poorer management 
elsewhere in the field.  
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Appendix 1 

 
Results of Kolmogorov-Smirnov test for the difference between the cumulative 
distribution functions of the dispersal distance attained by either harvest or 
harvest and cultivation of the 2003 experiment. Maximum difference between 
the two cumulative distribution functions and its significance is presented. 

 Kernel 
Maximum 
difference 

Level of 
significance  

H. vulgare 1 0.10 n.s.  
L. angustifolius 1 0.15 P < 0.001  
C. officinale 1 0.64 P < 0.001  
 2 0.67 P < 0.001  
 3 0.28 P < 0.001  
 4 0.41 P < 0.005  
E. californica 1 0.38 P < 0.001  
 2 0.45 P < 0.001  
 3 0.29 P < 0.001  
 4 0.20 P < 0.001  
L. maroccana 1 0.22 P < 0.001  
 2 0.51 P < 0.001  
 3 0.12 P < 0.001  
 4 1.00 P < 0.001  
L. usitatissimum 1 0.31 P < 0.001  
 2 0.21 P < 0.001  
 3 0.14 n.s.  
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Summary 
Crop weeds are patchily distributed. In weed management it is important to be able to estimate 
the weed-free fraction of the total field area, because this fraction determines the potential 
saving on herbicides that may be achieved by site-specific application (and not spraying those 
patches with no weeds). In this chapter, we model the weed-free fraction by combining Taylor’s 
power law (TPL) for the variance-mean relationship with a prediction of the zero class 
frequency according to the negative binomial distribution. The resulting predictions of 
occupancy were compared to observations on weed density and occupancy in 32 data sets on 
occurrence of agricultural weeds in The Netherlands. The results using weed species specific 
parameters for TPL provided strong validation for the approach, with R2

prediction varying between 
0.735 and 0.998 for 13 of the 14 species groups. Estimates of the slope parameter b of TPL 
varied substantially between weeds (from 0.78 for volunteer potatoes to 1.95 for Echinochloa 
crus-galli), but only slightly between data sets. Predictions based on a common slope parameter 
still had high coefficients of prediction for most weed species. Based upon a spatially explicit 
data set collected using counts in contiguous quadrats, the effect of scale of the sample unit was 
analysed. At levels of scale relevant to decision making in weed management, the effect of 
scale on occupancy was minor. We conclude that the relationship between density and 
occupancy for arable weeds is strong, and that there is scope for prediction of the weed-free 
area and prediction-based weed management.  
 
Keywords: Taylor’s power law, negative binomial distribution, site-specific weed management. 
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INTRODUCTION 
Weeds tend to occur spatially aggregated on arable land (Marshall, 1988; Wilson & 
Brain, 1991; Cardina et al., 1995; Johnson et al., 1995a, b), thus, offering scope for 
site-specific weed management (Christensen et al., 1999). Costs and environmental 
impact can be reduced by adjusting herbicide application and dosage to weed 
occurrence and density. Aggregation of weeds can be assessed by examining the 
frequency distribution of numbers per spatial unit, e.g. a square meter. The negative 
binomial distribution (NBD) can often be used to describe the frequency distribution 
of weed counts (Marshall, 1988; Berti et al., 1992; Mortensen et al., 1992; Wiles et al., 
1992; Johnson et al., 1996a). Its parameter k is an indicator of aggregation, with large 
values indicating randomness and small values indicating aggregation. The NBD can 
also be used to calculate the frequency of empty quadrat counts. For site-specific 
management the unoccupied fraction gives the minimum potential herbicide savings. 
Potential saving can be even greater if sprays are only applied when weed density 
exceeds a threshold. Parameter k depends on the mean weed count (abundance). In 
practice, the mean will generally be observation specific, so k will vary too. The weed-
free fraction (which is 1 – occupancy) can be calculated without fitting the NBD if the 
relation between variance and sample mean has been established. For the mean-
variance relationship Taylor’s power law (Taylor, 1961) was chosen. Linking the 
model on mean and occupancy (NBD) with a model describing the relation between 
the mean and its variance was tested by He & Gaston (2003) on various species such 
as ticks, beetles and pine trees. Usefulness of the proposed model was further 
illustrated for distribution of arthropod species on the Azores (Gaston et al., 2006).  
 Taylor’s power law (TPL) (Taylor, 1961, 1984) characterizes the relationship 
between variance and mean for many organisms: 2 baσ μ= . Parameters a and b are 
thought of as being characteristic to the species and the scale of sampling (Taylor, 
1961; Binns et al., 2000). Parameter b is considered an indicator for aggregation of the 
species at hand, with values > 1 representing aggregation. Parameter a is considered a 
scale factor. TPL has found wide application in animal ecology such as entomological 
research for IPM (Binns & Nyrop, 1992; Binns et al., 2000). The use of TPL in plant 
ecology and in particular weed ecology has – so far – been limited (Clark et al., 1996). 
TPL has proved useful in seed bank studies (Dessaint et al., 1996; Ambrosio et al., 
1997) and weed plants (Berti et al., 1992) to optimize sampling schemes. Clark et al. 
(1996) examined the effect of scale on parameters a and b, and found that although 
sample size and spatial scale affected values of parameter a and b, the effects were 
unpredictable. 
 We will investigate if the proportion of weed-free area can be predicted from weed 
density and spatial variance. Furthermore, we will examine the specificity of the 
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relations found and inquire how knowledge on weed-free fraction can be used in weed 
management. In a second part of the study the effect of scale of observation on level of 
occupancy will be studied for a detailed spatially explicit data set. Besides scale of the 
observation quadrats, the effect of the orientation of quadrats on the observed level of 
occupancy will be looked at.  
 
MATERIALS AND METHODS 
 
Data 
Data were collected by Applied Plant Research, The Netherlands, as part of its 
herbicide efficacy trials (Table 1). A total of 32 data sets were collected between 1995 
and 2002, at seven sites (Figure 1), with varying field histories, treatments, soil type, 
crop, quadrat size and time of observation. All weed counts used in this study were 
gathered in spring just prior to herbicide spraying. Number of plants per weed species 
was counted in quadrats, which were evenly distributed over the sampled area.  
 Additionally, weed count data prior to herbicide spraying were collected in 
contiguous quadrats over three years (2001, 2002, 2003) in a single field (Kortenoord 
II) on clay soil cropped with maize in Wageningen (location see Figure 1). These data 
were used to investigate the effect of size and shape of sample units on the weed-free 
fraction. The total area sampled with contiguous quadrats was 12 m wide and 50.25 m 
long. Each quadrat measured 0.75 m × 0.75 m. For full description see Heijting et al. 
(2007). 
 
Analysis: Descriptive statistics and Taylor’s power law 
Descriptive statistics, including sample mean, variance, minimum, maximum, 
observed fraction of empty quadrats (P(0)) were calculated per weed species for all the 
data sets. TPL was fitted to the pairs of 10log(sample mean) and 10log(variance) of all 
data using linear regression (GENSTAT 8.1, Lawes Agricultural Trust, UK) and 
Weighted Least Squares (WLS) with number of quadrat count as weight. The results 
of this will be regarded as the general model or the null model (M0). In a next step, 
species specificity of the intercept (log a) or slope (b) was examined by adding species 
as a factor to M0, leading to Ma or Mb. Each species is regarded as a factor level (=14). 
Only weed species which occurred in at least 4 data sets were included in the analysis. 
The specificity of both parameter a and b was investigated simultaneously in a final 
step, leading to Ma+b. To determine a possible influence of data sets on the resulting 
model parameters, data sets were added as a factor to the general model. Each data set 
is a unique combination of year, crop, time of observation, field history, soil type, 
number of quadrat counts and size of quadrats used. The total number of data sets did 
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Figure 1. Geographic origins of 
data sets in The Netherlands:  
1. Valthermond, 2. Heino,  
3. Lelystad, 4. Colijnsplaat,  
5. Vredepeel, 6. Meterik,  
7. Cranendonck, 8. Wageningen. 

 
 

 
not allow for further analysis on the latter characteristics separately. To ensure the 
model adequately described Taylor’s power law, data sets with 4 or more different 
weed species were included. R2

adjusted was calculated for all models.  
 
Calculation of weed-free fraction 
TPL (Taylor, 1961, 1984) characterizes the relationship between variance and sample 
mean for organisms following  

 2 baσ μ=  (1) 

The negative binomial distribution has parameter μ and k. The parameter k can be 
estimated from observed mean and variance as: 

  

2

2k μ
σ μ

=
−  (2) 

The zero class frequency of the negative binomial distribution is: 
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 ( )0
k

kP
k μ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (3) 

Equations 1, 2 and 3 can be combined (He & Gaston, 2003; Gaston et al., 2006) to 
obtain the following equation for calculating the zero class frequency, based on 
observed mean μ, and parameters a and b of TPL: 

 
( )μσ

μ

μ

−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

2

1

1)0( ba
P  (4) 

Expected fraction of weed-free quadrats was calculated for each weed species-data set 
combination. R2

predicted (Turchin, 2003) was calculated between calculated and 
observed weed-free fraction of quadrats to determine the suitability of our approach to 
calculate the weed-free fraction.  
 
Effect of scale and shape of observation quadrat 
Kortenoord II data comprised three subsequent years. To determine the effect of scale 
and orientation on observed weed-free area fraction, quadrats were aggregated to gain 
higher level of scale according to the following scheme:  
 

Scale In-Row Across-Row 
1 1×1 1×1 
2 2×1 1×2 
3 3×1 1×3 
4 4×1 1×4 

 
The sign test (P<0.05) was performed to investigate on differences between the two 
directions (in-row and across-row). The effect of scale and orientation was 
investigated with Delphi (Delphi, Borland Inc., Scotts Valley, CA, USA). 
 
RESULTS 
 
Prediction of the weed-free fraction of the field 
Throughout the data sets, Chenopodium album, Polygonum persicaria, Poa annua, 
Stellaria media and Solanum nigrum were the most frequent (Appendix 1) weed 
species. Fraction of empty quadrats (P(0)) varied largely depending on the 
observation. If counts of all weed species of a data set were summed, this fraction was 
smaller than 0.1 and often close to zero.  
 The general regression model M0 adequately described (R2

adjusted = 0.96) the relation 
between weed sample mean and its variance, with 10log a = 0.5160 and b = 1.3904 
(Table 2). If species were added as a factor, both slope (b) and intercept (10log a) 
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significantly differed (P<0.05) from the general model. The variance accounted for by 
the regression changed slightly but significantly when species specificity of both 
parameters was included in the model (R2

adjusted = 0.97). Addition of data set as a factor 
to M0 gave a similar effect as weed species (Table 3). Only 107 data points could be 
used as not all data sets comprised enough weed species for the regression analysis. 
 TPL could be fitted to 13 weed species and volunteer potato plants (Solanum 
tuberosum) (Figure 2; Table 4). R2

adjusted for the fitted species specific relationship 
were high, often above 0.91 with Senecio vulgaris attaining the maximum of 1.0. 
Solanum tuberosum was the exception with R2

adjusted = 0.79. The latter weed gave the 
lowest b (0.78). For all other weed species the value of parameter b was between 1.18 
(Matricaria spp.) and 1.95 (Echinochloa crus-galli). Values of parameter a varied 
between 1.54 (S. tuberosum) and 7.15 (Polygonum convolvulus).  
 
 
 
Table 2. Details of the general model and species specific models for regression between 
10log(mean) and 10log(variance) according to Taylor’s power law, 10log(variance) = b × 
10log(mean) + 10log(a). Parameter b, 10log(a), their s.e., significances, parameter a and 
R2

adjusted of the model is presented. The number of data points (N) was 146. 
Model b s.e. 10log(a) s.e. a Radj

2 
       
M0: not species specific 1.39 0.02 0.52 0.02 3.28 0.963
Ma: parameter a species specific 1.41 0.03 see Table 4   0.966
Mb: parameter b species specific see Table 4  0.48 0.03 3.03 0.964
Ma+b:  parameter a+b species specific see Table 4     0.97 
       

 
 
Table 3. Details of the general model and data set specific models for regression between 
10log(mean) and 10log(variance) according to Taylor’s power law, 10log(variance) = b × 
10log(mean) + 10log(a). Parameter b, 10log(a), their s.e., significances, parameter a and 
R2

adjusted of the model are presented. The number of data points (N) was 107. 
Model b s.e. 10log(a) s.e. a Radj

2 
       
M0:  not data set specific 1.35 0.03 0.49 0.03 3.09 0.96 
Ma: parameter a data set specific 1.30 0.03 -*   0.966 
Mb: parameter b data set specific -*  0.44 0.03 2.76 0.97 
Ma+b: parameter a+b data set specific -*     0.97 
       

* not shown here. 
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Figure 2. Species-specific results of fitting Taylor’s power law. 
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Figure 2. Continued. Species-specific results of fitting Taylor’s power law. 

 

 

 

 

 

Table 4. Results per weed species group for regression between 10log(mean) and 
10log(variance) according to Taylor’s power law. The parameters b, a, 10log(a) for the model 
10log(variance) = b × 10log(mean) + 10log(a), their s.e., significances and R2

adjusted of the 
model and number of data sets included (N) are given. 
Weed species b s.e. P 10log(a) s.e. P a R2 N 
C. bursa-pastoris 1.36 0.13 <0.001 0.53 0.09 <0.001 3.42 0.94 8
C. album 1.40 0.03 <0.001 0.60 0.04 <0.001 3.95 0.98 30
C. rubrum 1.34 0.14 0.011 0.29 0.08 0.065 1.95 0.97 4
E. crus-galli 1.95 0.09 <0.001 0.37 0.07 0.015 2.36 0.99 5
Matricaria spp. 1.18 0.15 0.005 0.37 0.12 0.017 2.34 0.94 5
P. annua 1.59 0.12 <0.001 0.32 0.10 0.002 2.07 0.94 18
P. aviculare 1.67 0.15 0.006 0.78 0.12 0.016 5.98 0.98 4
P. convolvulus 1.50 0.11 0.004 0.85 0.11 0.051 7.15 0.98 4
P. persicaria 1.36 0.07 <0.001 0.57 0.07 <0.001 3.73 0.95 22
S. vulgaris 1.24 0.03 <0.001 0.43 0.05 <0.001 2.72 1.00 8
S. nigrum 1.39 0.07 <0.001 0.49 0.08 <0.001 3.08 0.98 10
S. tuberosum 0.78 0.20 0.028 0.19 0.12 0.23 1.54 0.79 5
Sonchus spp. 1.29 0.15 0.013 0.32 0.07 0.049 2.10 0.96 4
S. media 1.67 0.13 <0.001 0.19 0.12 0.113 1.57 0.91 19
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 Species specific values of parameter a and b (Appendix 2) were compared 
(P<0.05). Significant differences between weed species were present but weed species 
could not be grouped accordingly. This is probably caused by the limited number of 
these data sets. For some weed species only four data sets were available for 
regression of TPL (Table 4). 
 Proportion of weed-free quadrats was well predicted (Figure 3; Table 5) for all dicot 
weed species with values of R2

predicted between 0.87 (P. convolvulus) and nearly 1.0 (S. 
vulgaris). For grass weeds, R2

predicted had lower values; 0.74 for E. crus-galli and 0.37 
for P. annua. The closer to 1 R2

predicted lies, the better the model performed in 
calculating the weed-free fraction. Values near 0 indicate the model did not contribute 
to a better calculation. And values of R2

predicted < 0 indicate that the calculation with our 
approach was poorer than using the mean. Using parameter values of the general 
model for prediction of the calculated weed-free fraction resulted in similar outcomes 
compared to the species specific model (Ma+b) for around half the weed species. For 
the remaining weed species, the general model gave a poorer performance in 
calculating the weed-free fraction. For E. crus-galli a negative value of R2

predicted was 
found, showing that for this weed species the general model was inadequate. 
 
 

Table 5. Values of R2
predicted for the prediction of the weed-free fraction 

according to the species specific models and the general model of Taylor’s 
power law for 14 weed species groups. 
 R2

predicted 
Weed species Species specific model General model 
Capsella bursa-pastoris 0.891 0.895 
Chenopodium album 0.976 0.976 
Chenopodium rubrum 0.962 0.744 
Echinochloa crus-galli 0.735 –0.335 
Matricaria spp. 0.976 0.907 
Poa annua 0.376 0.451 
Polygonum aviculare 0.961 0.831 
Polygonum convolvulus 0.868 0.393 
Polygonum persicaria 0.954 0.957 
Senecio vulgaris 0.998 0.997 
Solanum nigrum 0.912 0.910 
Solanum tuberosum 0.936 0.726 
Sonchus spp. 0.981 0.845 
Stellaria media 0.894 0.859 
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Figure 3. Observed and expected fraction of empty quadrats for 14 weed species groups, 
according to the species specific model. Each point in the graph represents a data set. 
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Figure 3. Continued. Observed and expected fraction of empty quadrats for 14 weed species 
groups, according to the species specific model. Each point in the graph represents a data set 
 
 
Effect of scale and sample unit on observed fraction of empty quadrats 
In Figure 4, the effect of orientation and scaling on observed occupancy fraction is 
presented for some important weed species. Although the difference between in-row 
and across-row aggregation was very small, it was significant for scale level 2, with 



Predicting the weed-free proportion of the field area with Taylor’s power law 

103 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Effect of scale and direction of aggregation on observed occupancy. The two 
directions are cross-row ( ) and in-row ( ). 
 
 
P(0) for in-row being smaller than across-row aggregation if all 6 examined weed 
species were regarded simultaneously. For the larger levels of scale, no significant 
differences occurred.  
 Aggregation of quadrats in larger observation units resulted in a quick decrease of 
weed-free fraction (Figure 5). 
 
DISCUSSION 
Overall, the weed-free fraction was predicted well using the observed mean density of 
a weed species combined with the general model of Taylor’s power law. Some 
potentially large savings are possible as for most weed species a significant weed-free 
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fraction was present in the field. However, if the entire weed population is considered, 
the observed weed-free fraction is often close to zero. Therefore, in practice greatest 
reductions will be obtained if more than one herbicide is needed to kill most species of 
the weed population and a second herbicide is applied site-specifically to target the 
remaining weed species (Gerhards & Christensen, 2003).  
 The results on clustering quadrats into larger units showed that possible savings are 
quickly declining with increasing level of scale. This is in line with findings of Rew et 
al. (1997) and Wallinga et al. (1998). At one level of scale, aggregation of quadrats in 
a particular direction in the field did affect the observed weed-free area significantly, 
although the differences were very small. The presence of anisotropy in most of the 
observed weed patterns (Heijting et al., 2007) could explain this detected significance.  
 Taylor’s power law well described the relation between the sample mean and 
variance of the weed counts in this study, as it previously did for many other 
organisms (Taylor et al., 1978) and weed plants (Berti et al., 1992; Clark et al., 1996). 
The parameter values for the slope and intercept of our general model (s2=0.52+1.39m) 
were similar to those reported by Dessaint et al. (1996) for their general model for 
weed seeds in the seed bank (s2=0.45+1.41m). Only for a few weed species the general 
model did not give an adequate prediction of the weed-free fraction and species 
specific parameters of Taylor’s power law were required to obtain satisfactory output. 
Species specificity was significantly present in our study for both parameter a and b, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Fraction weed-free area (P(0)) as a function of scale for six weeds species on 
Kortenoord II 2001. 
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though no clear groups of weeds emerged from the significances found. This was 
probably caused by the limited number of variance/mean pairs in the regression 
analysis of some species. Species specific values for the two parameters of TPL were 
not found in other studies on weed plants (Berti et al., 1992; Clark et al., 1996) or 
weed seeds. Berti et al. (1992) reported that although in the overall regression no 
species specificity could be traced, some weed species emerged as locally significant 
weed species. It will be interesting to know if species specificity will filter out if weed 
counts have been gained under a very wide range of circumstances. The importance of 
extensive data for species specificity was been pointed out (Taylor et al., 1988) as it 
will be difficult, if not impossible to keep conditions equal if various locations are 
examined. 
 The values we found for parameter b [0.78–1.95] coincided largely with the range 
indicated by Taylor et al. (1978) for plant species [0.82–1.48]. As Clark et al. (1996) 
pointed out, the range is expected to grow with an increasing number of plant species 
examined. E. crus-galli had the steepest slope of TPL (1.95). Volunteer potato (S. 
tuberosum) was the only species in our study with a slope < 1 (0.78) which most likely 
reflects the regular pattern in which the potatoes were planted in previous years. All 
other weed species in this study had slopes above 1.18, indicating some form of spatial 
aggregation. Wiles et al. (1992) mentioned that possible savings will depend on the 
spatial configuration of the weeds. Less advanced technological equipment is needed 
in the field if weeds are strongly positively correlated and have spatially aggregated 
patterns. 
 Besides species, data set as a factor had a slight but significant effect on the 
parameter outcome of Taylor’s power law. Each data set comprised a combination of 
geographic location, field history, soil type, quadrat size and number, time of 
observation and crop, and any (combination of) these factors could have contributed to 
differences in TPL parameters. All these are known to affect the results found when 
fitting TPL. Berti et al. (1992) found that crop type, winter versus summer, signifi-
cantly affected the outcomes of the parameter values. Mulugeta & Boerboom (1999) 
showed that differences in spatial aggregation existed between cohorts of the same 
weed population and these differences were reflected in parameter values of TPL.  
 The least good prediction of weed-free fraction, as indicated by R2

predicted, was 
obtained for the two grass weed species that occurred in the data sets. A possible 
reason could be that with counting grass-weed plants it is more difficult to distinguish 
between individuals than for dicot weeds, which results in more inaccurate counts. 
 Besides its application to calculate weed-free area, knowledge on parameters of 
TPL for weeds can help for modelling on crop yield loss by weed densities (Clark et 
al., 1996), and weed sampling programmes (Berti et al., 1992; Dessaint et al., 1996). 
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Furthermore, relations between environmental covariates and spatial patterns of 
organisms can be examined using TPL as was shown for insect larvae and organic 
matter by Dalthorp (2004). This approach was recently successfully applied to weed 
spatial patterns and soil characteristics (Heijting et al., 2005). 
 
CONCLUSIONS 
The weed-free fraction can be modelled by linking a model for the spatial variance 
with a model for the frequency distribution of weed counts, i.c. Taylor’s power law 
(TPL), and the Negative Binomial Distribution. Predominant weed species throughout 
the spatial implicit data sets were C. album, P. annua, P. persicaria, S. media and S. 
nigrum. The weed-free fraction of the total weed population was approximately 
between zero and 0.1.  
 Using the general model of Taylor’s power law to predict weed-free fraction gave 
similar results as the species specific models for the majority of the fourteen weed 
species examined here. The results show that the proposed model provides a valid tool 
for predicting occupancy in weeds. 
 Orientation of quadrats affected the total weed-free area at the lowest level of 
aggregation. This was caused by a stronger correlation in-row direction than cross-
row. Clustering quadrats to higher scale levels resulted in a quick decrease in weed-
free area. 
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Appendix 1 

 
Summary statistics for 32 data sets. Mean, variance, minimum, maximum are expressed in 
number per quadrat. P(0)observed indicates fraction of empty quadrats of total number of 
quadrats. Rare weed species are omitted. 
 
Data set Weed species mean variance min. max. P(0)observed 
AGV2347 C. bursa-pastoris 0.19 0.33 0 3 0.88 
  Matricaria spp. 0.15 0.17 0 2 0.88 
  P. annua 0.46 0.55 0 3 0.67 
  S. vulgaris 7.25 36.23 0 32 0.06 
  S. nigrum 0.56 2.51 0 10 0.77 
  S. tuberosum 0.27 0.33 0 2 0.79 
  S. media 2.75 7.30 0 10 0.17 
  Total weeds 11.63 42.96 0 34 0.04 
AGV3302 C. album 0.18 0.20 0 2 0.85 
  C. rubrum 0.65 0.85 0 3 0.58 
  Matricaria spp. 0.08 0.07 0 1 0.93 
  P. annua 0.60 1.78 0 6 0.75 
  S. vulgaris 0.05 0.05 0 1 0.95 
  S. nigrum 0.10 0.14 0 2 0.93 
  S. tuberosum 0.70 1.19 0 4 0.58 
  S. media 1.10 1.84 0 5 0.50 
  Total weeds 3.45 5.28 0 11 0.08 
AGV3352 C. bursa-pastoris 0.76 1.64 0 6 0.61 
  C. album 0.04 0.03 0 1 0.96 
  C. rubrum 0.87 2.19 0 9 0.59 
  P. annua 4.21 9.32 0 14 0.12 
  Sonchus spp. 0.21 0.37 0 4 0.85 
  S. tuberosum 0.37 1.10 0 5 0.86 
  S. media 1.79 3.82 0 9 0.36 
  Total weeds 8.24 26.98 0 22 0.04 
AGV4050 C. album 0.01 0.01 0 1 0.99 
  C. rubrum 0.11 0.10 0 1 0.89 
  C. bursa-pastoris 1.96 6.81 0 12 0.38 
  P. annua 2.09 7.45 0 16 0.30 
  P. aviculare 0.07 0.08 0 2 0.94 
  P. persicaria 0.02 0.02 0 1 0.98 
  S. vulgaris 0.01 0.01 0 1 0.99 
  Sonchus spp. 0.41 0.57 0 4 0.71 
  S. nigrum 0.03 0.03 0 1 0.97 
  S. tuberosum 0.09 0.23 0 4 0.95 
  S. media 1.95 2.74 0 8 0.18 
  Total weeds 6.75 14.05 0 19 0.01 
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Data set Weed species mean variance min. max. P(0)observed 
AGV4051 C. album 0.05 0.04 0 1 0.95 
  C. rubrum 1.41 2.54 0 6 0.36 
  C. bursa-pastoris 1.37 3.41 0 9 0.38 
  P. annua 4.06 20.57 0 23 0.15 
  P. aviculare 2.36 32.53 0 34 0.51 
  P. persicaria 0.08 0.23 0 4 0.96 
  Matricaria spp. 1.09 2.61 0 10 0.45 
  S. vulgaris 0.32 0.67 0 5 0.81 
  Sonchus spp. 1.85 4.89 0 16 0.27 
  S. nigrum 0.73 0.98 0 4 0.52 
  S. tuberosum 0.92 1.20 0 5 0.44 
  S. media 20.18 54.97 5 43 0.00 
  Total weeds 34.43 140.43 19 71 0.00 
met1 C. album 0.45 3.27 0 10 0.89 
  P. annua 1.09 2.05 0 6 0.46 
  S. media 0.75 1.35 0 5 0.61 
  Total weeds 2.29 4.86 0 11 0.16 
met2 C. album 0.45 1.05 0 5 0.73 
  P. persicaria 0.55 0.98 0 5 0.66 
  P. annua 9.20 46.63 0 29 0.04 
  S. vulgaris 0.05 0.05 0 1 0.95 
  S. media 0.64 0.49 0 3 0.46 
  Total weeds 10.89 47.92 1 29 0.00 
KP480P1A C. album 10.19 168.16 0 54 0.17 
  P. persicaria 9.75 54.31 1 40 0.00 
  Total weeds 19.94 209.77 2 65 0.00 
KP480P1B C. album 12.42 199.62 0 66 0.06 
  P. persicaria 15.03 62.66 1 43 0.00 
  Total weeds 27.44 227.51 5 77 0.00 
KP480P2A C. album 15.06 161.00 1 52 0.00 
  P. persicaria 16.37 52.36 8 42 0.00 
  Total weeds 31.43 184.25 12 67 0.00 
KP480P2B C. album 9.54 35.44 5 27 0.00 
  P. persicaria 10.15 20.64 3 20 0.00 
  Total weeds 19.69 78.23 13 47 0.00 
KP481P1A C. album 33.53 806.42 2 157 0.00 
  P. persicaria 14.48 242.42 0 89 0.01 
  Total weeds 48.01 1264.27 5 198 0.00 
KP481P2A C. album 24.31 277.60 1 85 0.00 
  P. persicaria 15.79 111.29 0 49 0.01 
  Total weeds 40.10 411.31 11 103 0.00 
KP481P1B C. album 46.62 2513.83 3 414 0.00 
  P. persicaria 21.06 471.82 0 128 0.01 
  Total weeds 67.69 3342.69 5 458 0.00 
KP481P2B C. album 16.09 166.54 1 60 0.00 
  P. persicaria 9.44 13.61 3 18 0.00 
  Total weeds 25.53 156.19 11 69 0.00 
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Data set Weed species mean variance min. max. P(0)observed 
KP500P1A C. album 32.00 416.23 6 85 0.00 
  P. persicaria 13.08 225.11 1 53 0.00 
  S. media 7.75 98.25 0 43 0.19 
  Total weeds 52.83 743.80 13 118 0.00 
KP500P1B C. album 31.40 516.13 9 95 0.00 
  P. persicaria 13.80 329.87 1 93 0.00 
  S. media 11.66 193.41 0 59 0.17 
  Total weeds 56.86 884.36 11 117 0.00 
KP500P2A C. album 35.31 438.16 9 96 0.00 
  P. persicaria 12.61 119.62 0 33 0.06 
  S.vulgaris 0.42 0.99 0 5 0.78 
  S. media 33.36 5059.21 0 430 0.03 
  Total weeds 81.69 5497.76 24 469 0.00 
KP500P2B C. album 27.31 297.63 4 84 0.00 
  P. persicaria 11.06 116.11 0 51 0.03 
  S. vulgaris 0.09 0.14 0 2 0.94 
  S. media 29.29 2124.39 1 211 0.00 
  Total weeds 67.74 2736.02 17 237 0.00 
KPG216 C. album 3.06 13.90 0 16 0.33 
  C. bursa-pastoris 4.05 77.06 0 54 0.34 
  P. annua 2.91 8.56 0 15 0.19 
  P. aviculare 0.09 0.12 0 2 0.92 
  P. persicaria 3.45 16.51 0 25 0.22 
  S. media 0.31 0.50 0 3 0.80 
  Total weeds 13.88 132.68 2 58 0.00 
PAV3058 C. bursa-pastoris 0.37 0.83 0 5 0.79 
  Matricaria spp. 0.09 0.20 0 3 0.96 
  S. nigrum 4.82 17.79 0 21 0.16 
  Sonchus spp. 0.22 0.23 0 2 0.81 
  S. media 0.63 1.04 0 4 0.66 
  Total weeds 6.13 20.33 0 21 0.06 
PAGV4151AF C. album 2.81 11.63 0 11 0.44 
  E. crus-galli 35.75 2713.67 0 170 0.19 
  P. annua 8.06 226.20 0 60 0.38 
  P. convolvulus 0.44 2.26 0 6 0.88 
  P. persicaria 2.50 13.73 0 11 0.50 
  S. nigrum 77.06 7020.46 0 210 0.31 
  Total weeds 126.63 17308.78 0 361 0.06 
PAGV4151BC C. album 0.94 2.46 0 6 0.56 
  E. crus-galli 20.50 1246.80 0 128 0.25 
  P. annua 3.13 10.25 0 10 0.38 
  P. persicaria 1.44 6.26 0 9.00 0.56 
  S. nigrum 18.31 405.56 2 85 0.00 
  Total weeds 44.31 1902.50 6 137 0.00 
PAGV4151DE C. album 2.81 13.36 0 12 0.44 
  E. crus-galli 78.19 10194.03 0 320 0.06 
  P. annua 10.63 123.85 0 40 0.25 
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Data set Weed species mean variance min. max. P(0)observed 
PAGV4151DE P. convolvulus 0.63 2.38 0 6 0.75 
 P. persicaria 2.00 9.60 0 10 0.50 
  S. nigrum 112.00 2089.47 37 185 0.00 
  Total weeds 206.25 9891.13 85 399 0.00 
PAGV4152AF C. album 24.75 111.00 6 39 0.00 
  P. annua 14.63 132.38 3 38 0.00 
  S. media 10.88 153.45 1 47 0.00 
  Total weeds 50.25 372.73 25 78 0.00 
PAGV4152BC C. album 4.56 17.33 0 12 0.06 
  P. annua 1.56 14.00 0 15 0.63 
  Total weeds 6.13 44.78 0 23 0.06 
PAGV4152DE C. album 19.88 212.38 4 56 0.00 
  P.annua 13.06 239.80 0 40 0.38 
  S. media 1.31 4.76 0 6 0.63 
  Total weeds 34.25 816.20 4 86 0.00 
REG3109 C. bursa-pastoris 0.85 3.91 0 11 0.71 
  C. album 10.15 54.72 1 26 0.00 
  E. crus-galli 1.58 7.01 0 15 0.44 
  P. annua 38.08 849.01 11 154 0.00 
  P. persicaria 0.92 1.65 0 5 0.54 
  S. nigrum 34.77 408.90 5 89 0.00 
  S. media 15.50 71.83 3 37 0.00 
  Total weeds 101.85 957.66 40 200 0.00 
VP1008 C. bursa-pastoris 0.04 0.06 0 2 0.97 
  C. album 0.43 0.94 0 6 0.74 
  E. crus-galli 3.52 24.17 0 26 0.28 
  P. annua 13.43 148.00 0 65 0.10 
  P. aviculare 0.58 1.61 0 8 0.73 
  P. convolvulus 0.13 0.35 0 4 0.95 
  P. persicaria 9.69 148.42 0 63 0.14 
  S. vulgaris 0.02 0.02 0 1 0.98 
  S. nigrum 0.58 1.54 0 8 0.69 
  S. media 41.11 947.93 4 195 0.00 
  Total weeds 69.51 1481.45 18 269 0.00 
VP1023A C. album 4.11 26.84 0 24 0.24 
  P. annua 15.95 293.97 0 69 0.15 
  S. media 14.54 217.44 0 75 0.08 
  Total weeds 34.60 752.47 2 143 0.00 
VP1023B C. album 1.23 4.00 0 9 0.59 
  P. annua 25.59 227.33 3 68 0.00 
  S. media 5.38 12.97 0 17 0.04 
  Total weeds 32.19 257.77 8 81 0.00 
ZW2369 C. album 0.35 0.44 0 3 0.73 
  P. persicaria 2.73 3.33 0 8 0.15 
  P. convolvulus 0.03 0.03 0 1 0.98 
  Matricaria spp. 0.18 0.35 0 3 0.90 
  Total weeds 3.28 3.03 0 8 0.05 
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Appendix 2 

 
Species specific values of parameters b and 10log(a) for the model 10log(variance) = b × 
10log(mean) + 10log(a), their s.e. and significances (P < 0.05). 

Weed species 
sign for b 

(0.05) b s.e. 
sign for a 

(0.05) 10log(a) s.e. 
E. crus-galli ab 1.95 0.09 abcdefghi 0.37 0.07 
S. media ab 1.67 0.13         e ghi 0.19 0.12 
P. aviculare abc  e 1.67 0.15 abcd 0.78 0.12 
P. annua abc  e 1.59 0.12   b    efghi 0.32 0.10 
P. convolvulus abcdef 1.50 0.11 abcdefghi 0.85 0.11 
C. album   bcde 1.40 0.03 abcd       i 0.60 0.04 
S. nigrum   bcde 1.39 0.07   bcdefgh 0.49 0.08 
C. bursa-pastoris   bcde 1.36 0.13 abcd fgh 0.53 0.09 
P. persicaria   bcde 1.36 0.07 abcd f h 0.57 0.07 
C. rubrum abcdef 1.34 0.14   b    efghi 0.29 0.08 
Sonchus spp. abcdef 1.29 0.15   b  defghi 0.32 0.07 
S. vulgaris     cdef 1.24 0.03 abcdefghi 0.43 0.05 
Matricaria spp.   bcdef 1.18 0.15 abcdefghi 0.37 0.12 
S. tuberosum       def 0.78 0.20         efghi 0.19 0.12 
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CHAPTER 7 
 

General discussion 
 
 
INTRODUCTION 
The main objective of the research, described in this thesis, was to obtain insight in 
spatial and temporal behaviour of weed patterns in arable fields. In Chapter 2, spatial 
aggregation and scale in weed patterns were investigated using Mead’s test. In Chapter 
3, 2-D correlograms were used to characterize spatial and spatio-temporal correlations 
in weed patterns. Relations between heterogeneity of soil properties and weed patterns 
were examined in Chapter 4. Chapter 5 addressed the effect of timing of seed shed on 
the dispersal of seeds by machinery used for harvest and tillage. Chapter 6 developed a 
method for predicting weed occupancy in a field, based on average weed density. 
 Here, the results presented in this thesis are reviewed and discussed. Strong points 
and possible short comings of the methodological approaches are discussed and 
avenues for further research are indicated. The issues are addressed in the following 
sections: Methodology, characteristics of patterns and Causes of patterns. In addition 
the consequences of our findings for site-specific weed control are discussed in a 
section Implications for practice. At the end of this chapter Main conclusions are 
drawn. 
 
METHODOLOGY 
 
Observation methods 
Two approaches were used for collecting information on weed spatial distribution: 
spatially explicit maps obtained by monitoring weeds in contiguous quadrats (Chapters 
2–5) and spatially implicit weed count data gathered by random quadrat counts 
(Chapter 6). Both types of data were gathered by direct observation.  
 The spatially explicit method allows a more elaborate analysis of characteristics 
than the spatially implicit method (Figure 1), but is also more labor intensive. We used 
contiguous quadrats to monitor weed patterns throughout subsequent years (Chapters 2 
and 3) and this method was also applied to map dispersal of plants by machinery at the 
field scale (Chapter 5). Thus, it was ensured that all plants present in the defined area 
were counted. To avoid the presence of a time effect in the spatial pattern, all data was 
gathered within a few days.  
 The case study on weed spatio-temporal behaviour of weeds covered three years of 
observations on part of the Kortenoord II field near Wageningen. Similar case studies 
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Figure 1. Overview of aspects of observations and analysis of weed spatial 
patterns. Characteristics indicated with * are unique to spatially explicit data. 

 
 
in which an area is mapped by counting in contiguous quadrats are scarce in weed 
science and this study therefore added substantial data on weed spatio-temporal 
patterns to the already existing datasets. The two other datasets are a multiple year 
observation on weed patterns of fourteen weed species in a crop rotation field in 
Australia by Cousens et al. (2002, 2004, 2006) and the spatial pattern of a single weed 
species (Abutilon theophrasti) in various year in continuous corn (Dieleman & 
Mortensen, 1999).  
 Ideally, individual locations of weed plants are determined to map weeds as this 
excludes possible effects of size of observation quadrats on weed patterns found 
(Bellehumeur et al., 1997; Rew & Cousens, 2001). At present only two such data sets 
are known, both on the weed Galium aparine (Wallinga, 1995; Hamouz et al., 2007). 
Current developments on automated weed detection (Gerhards & Oebel, 2006) for 
precision weed management offer scope for an efficient gathering of data for the 
analysis of weed patterns.  
 
Analysis 
Depending on the research question and the quality of the data, different techniques 
were applied to determine the characteristics of weed patterns (Table 1). The weed 
patterns mapped on Kortenoord II were characterized using a number of techniques 

Observations on Spatial Patterns

Spatially explicit
Maps throughout years

Characterize:
• Mean density & variance
• Aggregation
• Occupancy
• Frequency distribution
• Spatial autocorrelation*
• Direction*
• Patch stability*
• Scale*

Spatially implicit
Random quadrat counts

Characterize:
• Mean density & variance
• Aggregation
• Occupancy
• Frequency distribution
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Table 1. Relations between characteristics of spatial patterns and methodology.  
Characteristics Correlograms Frequency 

distribution 
Mead’s 

test 
Moran’s I Taylor’s 

power law 
Mean density and 
 Variance 

-/+ + - - + 

Aggregation + + + + + 
Occupancy - + - - + 
Spatial autocorrelation + - - + - 
Direction + - + + - 
Patch stability + - - - - 
Scale + - + - - 

 
 
 
(Chapters 2 and 3). In a first step (Chapter 2), Mead’s test was used to categorize the 
patterns as random, aggregated or regular. Artificial patterns were studied to illustrate 
the result of Mead’s test in certain standard situations. Mead’s test proved to be a 
flexible tool for studying and characterizing weed patterns at various scales and 
various directions. In the same chapter Moran’s I was used for comparison, describing 
autocorrelation of weed patterns in the two main directions. In Chapter 3, the 2-D 
correlograms were applied to study behaviour of 15 weed species groups both within 
and between years.  
 As some of the weed species patterns of Chapter 2 were also studied in Chapter 3, 
comparisons between the three techniques used (Mead’s test, 2-D correlograms and 
Moran’s I) can be made. Compared to Mead’s test, 2-D correlograms greatly 
facilitated interpretation of weed pattern characteristics. The 2-D correlograms allowed 
inspecting spatial autocorrelation of patterns in all possible directions simultaneously. 
Mead’s test, as implemented, is less flexible with respect to studying directions. 
However, it might be possible to further develop Mead’s test to take account of 
patterns in which the axis of greatest correlation according to a null or alternative 
hypothesis is slanted with respect to the direction of field traffic. Studying the presence 
of directionality in patterns with Moran’s I was limited to the two main directions, 
although in theory a further division of directions is possible until it resembles a 2-D 
correlogram. While Moran’s I and Mead’s test were calculated using actual weed 
count data, 2-D correlograms were applied by ranking the count data.  
 The three techniques were complementary as they represent different ways of 
looking at patterns but overall similar features of species patterns emerged. Species 
that showed strong aggregation in one test also did when analysed with another test. 
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Species which exhibited a random pattern, such as T. officinale, were categorized as 
such by all three techniques. But the nature of some lower density species emerged 
differently. The pattern of P. aviculare, for instance, showed significant aggregation 
and anisotropy when tested with Mead’s test over several levels of scales, and weak 
spatial correlation when studied with the 2-D correlogram, but no spatial correlation 
when examined with Moran’s I. It was discussed (Chapter 3) that low plant densities 
may affect detection of spatial correlation as a result of an increasing relative error in 
the data. 
 The effect of scale on weed patterns was examined both with Mead’s test and with 
2-D correlograms. Different levels of scale were obtained by merging smaller units 
into larger units, all within the observed area of 12 m × 50.25 m. Both in Chapters 2 
and 3, scale of observation affected the outcome of the analysis. For example, the 
correlogram of the spatial pattern of C. polyspermum showed no spatial auto-
correlation when units four time the unit of observation were used. On the other hand, 
for P. annua, a spatial correlated pattern emerged when resolution was decreased.  
 The effect of resolution on the occupancy of weeds on Kortenoord II in 2001 was 
analysed in Chapter 6. Occupancy quickly increased with the size of units. 
 
CHARACTERISTICS OF PATTERNS 
Patterns were monitored on Kortenoord II at a relatively small scale showing great 
differences between characteristics of weed patterns. Weed mapping in some other 
studies on weed patterns were done by sampling quadrats at interspersed distances that 
were greater than our entire study plot (Medlin et al., 2001; Wyse-Pester et al., 2002). 
Given the fact that within our plot, patchiness was present, the use of such a coarse 
schedule would have missed patterns in the field Kortenoord II, confirming a 
cautionary statement of Rew & Cousens (2001).  
 The presence of high peak densities appeared to be restricted to patterns of four 
weed species that showed the strongest spatial correlation. Most weed species 
exhibited only weak or no correlation at all.  
 It is important to keep in mind that these results only apply to Kortenoord II data. In 
another context, other weed species are likely to dominate. This was shown by the 
results of Chapter 6. The analysis of the spatially implicit weed counts in that Chapter 
showed that 14 out of 13 weed species examined showed aggregation at the quadrat 
level as parameter b of TPL was well above 1. A value of parameter b > 1 indicates 
patchiness at the level of the observation quadrat (Clark et al., 1996). Some of those 
weed species groups were classified as non-patchy in Chapter 3 (C. bursa-pastoris, P. 
annua, S. vulgaris, Sonchus spp. and S. media). A general model based on all weed 
species data predicted the percentage of empty quadrats well for most of these weed 
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species. This is surprising if one considers the differences in spatial autocorrelation 
between the weed species as observed on Kortenoord II. For a few weed species such 
as the grass weeds E. crus-galli and P. annua the general model for weed occupancy 
failed and the species specific relation between mean density and variance was needed 
to obtain a good prediction (Chapter 6).  
 Some weed species patterns showed anisotropy (Chapters 2, 3). Elongation of weed 
patterns in the driving direction of field traffic has often been found (e.g. Rew et al., 
1996a; Johnson et al., 1996b; Dieleman & Mortensen, 1999; Colbach et al., 2000) and 
seems common. Experiments on dispersal of weed seeds (Marshall & Brain, 1999; 
Chapter 5) indicate that this elongation is probably related to the much greater within-
row than cross-row dispersal of weed propagules. 
 Only a few weed species displayed stable patch location. One weed species, E. 
crus-galli, seemed to shift from year to year.  
 
CAUSES OF PATTERNS 
Chapters 2, 3, 4 and 6 use observational data in unmanipulated field trials, resulting in 
a characterization of phenomena occurring in real fields, and generation of hypotheses. 
Chapter 5 uses a manipulative, experimental approach, using various non-weedy plants 
as ‘model weeds’ to investigate causes of patterns. Model plants shedding their seeds 
during harvest managed to disperse further in the driving direction than species 
shedding their seeds before harvest. This is the first field experiment in which the 
effect of the two contrasting release methods of ripe seeds (i.e. on soil vs. on plant) on 
dispersal by machinery was directly compared. Other field studies examining dispersal 
by machinery around harvest were restricted to a single species which had shed none 
of its seeds, such as Lolium rigidum (Blanco-Moreno et al., 2004), or nearly all of its 
seeds, such as for example Avena spp. (Barroso et al., 2006). The only study in which 
different weed species were compared was a model study by Woolcock & Cousens 
(2000). The model predicted a 16 fold increase in rate of spread of an annual weed if 
its seeds were taken up by the cereal harvest combiner.  
 Harvest equipment varies greatly between cropping systems. At the extremes are 
harvest machines that emit straw back to the field and machines which do not emit any 
plant material. Such differences will affect weed dispersal. The results of the studies 
described in this thesis showed that the tillage equipment used after harvest can also be 
of great importance as the use of cultivator after harvesting significantly increased 
distance travelled in the driving direction for species with ripe seeds at the time of 
harvest (Chapter 5).  
 Possible factors affecting the spatial distribution of seeds, seedlings and weed plants 
are presented in Figure 2. The complexity of the possible defining factors and their 
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interactions obstruct disentangling their contributions (Wiles & Brodahl, 2004). The 
added value of descriptive, empirical studies lies in the generation of hypotheses about 
possible processes governing the spatial dynamics of weed species (Cousens et al., 
2006). In an experimental set up or model this can then subsequently be tested. Model 
approaches such as performed by Woolcock & Cousens (2000) and Wallinga et al. 
(2002) elucidated the possible effect of some of the key processes on weed spatial and 
temporal behaviour. Thus, descriptive studies, experimental tests of hypotheses, and 
modelling studies, showing emerging properties of systems, all shed their own light on 
the complex world of weeds and may help to elucidate what causes patterns and help 
explain why patterns of weeds in farmers’ field look how they look. 
 Wallinga et al. (2002) showed that localized seed shed of an annual weed controlled 
by herbicide application resulted in patch formation in a homogeneous environment. 
Density patterns of patchy weed species on Kortenoord II had relations with 
underlying soil properties. Several of the annual weed species on Kortenoord II did not 
show spatial aggregation and had no relation with underlying soil properties. 
Modelling studies that study the spread of weeds in spatially homogeneous and 
heterogeneous environments can help elucidate the role of soil heterogeneity in the 
causation of patterns in weeds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Causes of weed spatial distribution related to their influence 
on the various stages of the life cycle of weeds. 
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 The visualized dispersal patterns and their cumulative frequency distributions 
(Chapter 5) displayed some irregularities in the tail. This may be important for 
establishment of new patches far from the source patch. This can be done in a model 
study or a field experiment. Questions such as: “Will clumps in the tail of the dispersal 
function result in new weed patches?” can be answered.  
 The role of events can be studied by querying farmers about the possible causes of 
weed patches on their land. For example, a patch forming event such as clogging of a 
spray nozzle may have taken place on a field and is still reflected in the weed pattern 
years after. Little has been done so far with knowledge of farmer’s on patch forming 
events and historic land use. As was discussed in Chapter 3, knowledge on historic 
land use can facilitate the understanding of weed spatial dynamics. 
 The extent to which pattern forming processes and weed ecology affect weed spatial 
patterns could also be studied by combining information on the various components 
from different fields. Wiles & Brodahl (2004) used Classification and Regression tree 
analysis (CART) to compare and examine weed spatial distributions in eight irrigated 
corn fields. In this way, correlations between characteristics of the spatial distribution 
of seed banks, demographic aspects of species, features of the field and historic 
management were looked at simultaneously. 
 
IMPLICATIONS FOR PRACTICE 
Farmers become increasingly interested in using spatial information about their farm. 
More and more farmers use GPS when managing their fields. Examples of areas which 
receive much attention are the fine tuning of fertilizer application to the actual needs of 
the crop and local soil situation (see for example Godwin et al., 2003).  
 On Kortenoord II, only a few weed species occurred at high densities which 
coincided with their patchy pattern. Most weed species in the observation area did not 
show strong spatial correlation. Each field appears to have its own patchy weed 
species and the cropping system will act as a filter. Spring sown crops will have a 
different weed community than crops sown in late spring or autumn. Continuous 
maize was grown on Kortenoord II during the course of the study and indeed weed 
species associated with continuous maize cropping such as C. album, E. crus-galli and 
S. nigrum were abundantly present on Kortenoord II. It is advisable for practice to 
ensure effective control of weed species that synchronize their life cycle with the crop 
to avoid dispersal of plant and seed material throughout the field (Chapter 5).  
 Judging from the results on stability of weed patterns (Chapter 3) and their relations 
with underlying soil properties (Chapter 4), prediction of weed patches appears 
promising but will possibly be restricted to a few patchy weed species in each field.  
 Reductions obtained in herbicide usage by targeting weed species site-specifically 
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will increase with increasing spatial resolution. At the level of observation  
(0.75 m × 0.75 m) a substantial reduction will be achieved, but savings at coarser 
resolutions will be too small to consider site-specific application of herbicides 
(Chapter 6).  
 The relation between TPL and the frequency distribution of weeds in quadrats, as 
examined in Chapter 6, lead to a simple model that allows evaluation of the weed free 
fraction of the field and the scope for site-specific control. 
 An element which has not been studied in this thesis but will be important for 
calculating the potential savings that can be achieved with site-specific management 
are associations between the patterns of different weed species. Site-specific 
management will be facilitated if weed species needing the same herbicide component 
co-occur in the same place. Control thresholds are another factor that influences the 
potential reductions. 
 With advancing technology, weeds may be recognized and controlled real-time. The 
major hurdle for implementing such techniques are the relatively high costs associated 
with it and the likely low resolution (down to plant level) that will likely be needed to 
reach substantial savings (S. Christensen; pers. communication). High costs, and – at 
least initially – a slow working speed of machinery that meets the required spatial 
resolution, will hamper uptake of technology by farmers. Therefore, weed ecologists 
may – at least initially – benefit more from technological advances in automated weed 
recognition than farmers.  
 
MAIN CONCLUSIONS 
Extensive data on weed count data were presented and analysed revealing various 
features of weed spatio-temporal behaviour. The main conclusions from this study, 
thus, are: 
 
• Weed species with spatially aggregated patterns showed the highest densities.  
• Two of the four weed species which attained high weed densities were persistent in 

location in time.  
• Using 2-D correlograms facilitated interpretation of weed spatial dynamics. 
• Variation in weed density was related to heterogeneity of soil properties and 

relations found were of moderate strength, but a substantial part of the spatial 
correlation in weeds was not explained by soil factors, and is probably due to 
autonomous processes in the weed population that operate in homogeneous 
environments as well as heterogeneous environments.  

• The first study on the effect of weed biology on dispersal by harvest and rigid-tine 
cultivator showed that seeds can disperse very far as the dispersal kernels have 
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long tails. Dragging of plant material caused occurrence of clumps in some tails 
which may lead to establishment of new patches.  

• Calculations showed that if too coarse a resolution is used, site-specific application 
of herbicides does not pay off.  

• A model for predicting weed occupancy at quadrat level, based on average weed 
density, gave good predictions for most weed species.  

 
Much remains to be done before weed ecologists can claim that weed patterns are fully 
understood. If weeds spread so well, as shown in Chapter 5, why are weeds patchy? 
Are these patches just a transient state, preceding occupancy of the whole field at high 
densities, or are they a stable state, representing equilibrium between recruitment and 
losses? Such equilibrium seems only possible if positive feedback mechanisms foster 
patch viability, while dispersal outside patches does not lead to establishment due to 
lack of sufficient survival or reproduction, i.e. a spatial Allee-effect. The presence of 
an Allee effect has recently been the objective of studies on spread of invasive plant 
species (for example, Cappuccino, 2004). Such effects have not been studied in a 
spatial context on a field or farm scale level for plant or weedy species. Evidence for 
positive density dependence has been reported for soil applied herbicides (for 
overview see Dieleman et al., 1999) but such curvilinear relations could not be 
established for foliar applied herbicides (Dieleman et al., 1999). Patterns observed in 
this thesis did not suggest density dependence of herbicide effects. Some evidence was 
obtained for patch instability; the patches of Echinochloa crus-galli, the most 
successful weed in the experimental field Kortenoord II, was not stable in location. 
Also evidence was obtained for the presence of historical phenomena; the elongated 
patch of Chenopodium polyspermum may well have been a relict of leveling of the 
field in historic times, using soil (with plant propagules and associated soil factors) 
from elsewhere. It thus seems likely that any observed pattern in weeds could be due 
to a complex of causal factors, one more and another less important, but that can not 
be easily disentangled. This may, therefore, not be the last thesis on spatial ecology of 
weeds. Issues that are deserving of future work are (i) involving the farmers in a 
historically informed analysis of weed spatial patterns; (ii) a further search for positive 
density dependence as a factor shaping patchiness. 
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Summary 
 
 
Weeds in agriculture occur in patches. This thesis is a contribution to the characteriza-
tion of this patchiness, to its analysis, and to prediction, and some of its results may be 
useful for weed management. Chapter 1, the introduction, presents the objectives of 
the work. The Chapters 2 through 4 try to answer ecological questions about weed 
patterns, and they use innovative statistics and a new and extensive spatially explicit 
data set on weed patterns in a maize plot over three years, to answer those questions. 
Chapter 2 develops a statistical test for pattern and applies it to artificial and real weed 
data. Chapter 3 develops the use of two-dimensional (2-D) correlograms to explore the 
spatial stability of patches through time. Chapter 4 looks at the relationship between 
patchiness in weeds and spatial heterogeneity in soil. In Chapter 5, measurements of 
the dispersal of weeds by machinery are presented. Chapter 6 analyses data on weed 
occurrence, collected in different fields over a range of years, to try and establish a 
predictive model for weed spatial occupancy in a field, based upon the mean density. 
A general discussion (Chapter 7) caps the work. 
 In Chapter 2, spatial patterns of six weed species are characterized, using Mead’s 
test. The implementation of the test has a null hypothesis, the pattern is spatially 
random, and two alternatives: a regular pattern or an aggregated pattern. The test is 
conducted at various scales and with different shapes of basic units, in relation to the 
row direction of the field. To illustrate the functioning of Mead’s test and facilitate 
interpretation, six artificial patterns were tested. Next, observed patterns of six weed 
species were subjected to Mead’s test. These patterns had been collected in a 12 m by 
50.25 m field plot in three years continuous maize cultivation. Weed counts were 
made using a 16 × 67 grid of contiguous quadrats, each measuring 0.75 m by 0.75 m. 
Five of the six analysed weed species showed aggregation at several levels of scale. 
The only wind dispersing species, Taraxacum officinale was random at all scales.  
 In Chapter 3, weed patterns were studied using 2-D space-time correlograms. Three 
years of count data on weed spatial patterns collected in contiguous quadrats for 15 
weed species and weed species groups were analysed. The within years correlograms 
demonstrated large differences between weed species groups. Four summer annuals, 
C. album, C. polyspermum, E. crus-galli and S. nigrum were strongly aggregated. 
They also exhibited the largest incidence and highest maximum weed density of the 
species studied. Most other weed species showed weak spatial correlation or no 
correlation at all. Possible explanations for the apparent relationship between weed 
density and spatial pattern, including a density dependent signal to noise ratio, are 
discussed. Then, 2-D correlograms were applied to diagnose stability of patterns over 
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time. Chenopodium polyspermum and S. nigrum were stable in location. Patches of 
one species, E. crus-galli appeared to shift from year to year. It is found that 2-D 
correlograms facilitate the visualization and interpretation of weed spatio-temporal 
behaviour.  
 Spatial patterns of the weeds that were analysed in Chapter 3 were further studied in 
Chapter 4, by analysing the relationship between weed pattern and spatial variability in 
the soil. Soil variables were selected using Generalized Linear Models with a Poisson 
log link to account for the non-normality of the weed count data. The four patchy weed 
species, C. album, C. polyspermum, E. crus-galli and S. nigrum, showed consistent 
relations with soil variables over the three years of study. Their density increased with 
pH and was related to soil texture or OM. Models with spatially uncorrelated and 
spatially correlated error terms were compared. Taylor’s power law (TPL) was used as 
a link function. There were modest decreases in model significance (increases in P-
value) when the spatial correlation in errors was accounted for by the regression 
model, and in a few cases, there were big differences in model significance, indicating 
that a model that would not account for spatial correlation in the response variable 
(which is common in weeds) would give inflated estimates of model significance. 
Spatial correlation remained in the residuals of the regression, showing that factors 
other than the selected soil variables contributed to the spatial correlation in the weeds.  
 Dispersal of weed seeds in fields by machinery was studied in continuous maize in 
Chapter 5. A range of plant species was used as model weeds. Plants with ripe seeds at 
harvest time dispersed their seeds further than species whose seeds were on the soil at 
harvest time. The cultivator significantly contributed to the dispersal in the driving 
direction, most likely by dragging plant material with seeds through the field. In some 
instances, seeds were found to have traveled the entire plot length. Irregularities were 
found in the tail of the dispersal kernels, probably as a result of different machine 
operation in the headlands and concomitant deposition of plant debris.  
 In Chapter 6, spatially implicit weed count data collected throughout The Nether-
lands were analysed using TPL which describes the relation between log(variance) and 
log(mean). TPL fitted the data well. Species specific models were fitted as well as an 
overarching “general” model. The general model accurately predicted the weed free 
fraction of the field for most weed species, but for some species, e.g. E. crus-galli, a 
species specific model was required to achieve adequate accuracy. Further data 
analysis illustrates that, if weeds are sprayed per species, herbicides can be saved by 
site-specific application. If all species are considered simultaneously, however, vir-
tually no area on the field is weed free, and only minimal savings are possible. Calcu-
lations illustrate that if site-specific weed control is applied at a fine spatial resolution, 
much herbicide can be saved, but with increasing scale, savings drop drastically. 
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Samenvatting 
 
 
Op akkerbouwpercelen komen onkruiden veelal onregelmatig, in plekken, voor. Dit 
proefschrift levert een bijdrage aan het karakteriseren van deze plekkerigheid, de 
analyse en voorspelling ervan en enkele resultaten kunnen bruikbaar zijn voor 
onkruidbeheersing. In Hoofdstuk 1, de algemene introductie, worden de doelstellingen 
van het werk gepresenteerd. In Hoofdstukken 2 tot en met 4 wordt getracht enkele 
ecologische vragen over onkruidpatronen te beantwoorden. Hiertoe wordt in deze 
hoofdstukken vernieuwende statistiek toegepast en uitgebreide ruimtelijk expliciete 
data sets van onkruidpatronen in maïs gedurende 3 jaar gebruikt. Hoofdstuk 2 
ontwikkelt een statistische toets voor ruimtelijk patroon en deze wordt toegepast op 
kunstmatige en echte onkruiddata. Hoofdstuk 3 ontwikkelt het gebruik van twee-
dimensionale correlogrammen om de stabiliteit van onkruidplekken door de tijd heen 
te bestuderen. Hoofdstuk 4 bekijkt de relatie tussen plekkerigheid van onkruiden en 
ruimtelijke heterogeniteit van de bodem. Hoofdstuk 5 presenteert metingen aan 
dispersie van onkruiden door machines. Hoofdstuk 6 analyseert gegevens over het 
voorkomen van onkruiden. De gegevens zijn verzameld in verschillende percelen en 
jaren en in dit hoofdstuk wordt getracht een voorspellend model voor het ruimtelijke 
voorkomen van onkruiden te maken dat gebaseerd is op de gemiddelde dichtheid. De 
algemene discussie (Hoofdstuk 7) sluit dit proefschrift af. 
 In Hoofdstuk 2 worden ruimtelijke patronen van zes onkruidsoorten gekarakteri-
seerd met behulp van de toets van Mead. De implementatie van de toets heeft als nul 
hypothese dat het patroon willekeurig is en heeft twee alternatieven: een regelmatig en 
een plekkerig patroon. De toets wordt uitgevoerd op verschillende schaalniveaus en 
met verschillende vormen van basiseenheid, in relatie tot de rijrichting in het veld. Om 
de werkwijze van de toets van Mead te illustreren en de interpretatie ervan te 
vergemakkelijken, worden zes kunstmatige patronen getest. Vervolgens worden zes 
echte patronen onderworpen aan de toets van Mead. Deze patronen waren verzameld 
in een stuk van 12 m bij 50.25 m gedurende 3 jaren in een veld met continue maïsteelt. 
De onkruidtellingen waren in een 16 × 67 grid van continue telvelden van ieder 0.75 m 
bij 0.75 m waargenomen. Vijf van de zes geanalyseerde onkruiden vertoonden 
aggregatie op verschillende schaalniveaus. De enige windverspreidende soort, 
Taraxacum officinale had een willekeurig patroon op alle geteste schaalniveaus. 
 Hoofdstuk 3 verkent onkruidpatronen met behulp van twee-dimensionale ruimte-
tijd correlogrammen. Drie jaren van tellingen in continue telveldjes aan ruimtelijke 
onkruidpatronen van vijftien soorten werden geanalyseerd. Correlogrammen binnen 
jaren lieten grote verschillen zien tussen de onderzochte onkruidgroepen. De patronen 
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van de vier zomerannuellen C. album, C. polyspermum, E. crus-galli en S. nigrum 
waren sterk geaggregeerd. Deze soorten hadden tevens de hoogste bezettingsgraad en 
hoogste maximum onkruiddichtheden van alle soorten die waren bestudeerd. De 
patronen van de meeste andere soorten waren ruimtelijk zwak tot niet gecorreleerd. 
Het optreden van een dichtheidafhankelijke ruis als verklaring voor de relatie tussen 
onkruiddichtheid en ruimtelijk patroon wordt besproken. Vervolgens werden de twee-
dimensionale correlogrammen toegepast om stabiliteit van patronen in de tijd te 
bepalen. De soorten C. polyspermum en S. nigrum waren stabiel in plaats. De plekken 
van één soort, E. crus-galli leek van jaar tot jaar te verschuiven. Het gebruik van twee-
dimensionale correlogrammen vergemakkelijkt de visualisatie en interpretatie van het 
gedrag van onkruiden in ruimte en tijd.  
 De ruimtelijke patronen die in Hoofdstuk 3 waren geanalyseerd, werden verder 
bekeken in Hoofdstuk 4, door de relatie tussen onkruidpatronen en ruimtelijke variatie 
van bodemfactoren te bepalen. De bodemfactoren werden geanalyseerd door middel 
van een Generalized Linear Model met een Poisson functie als link om het niet 
normaal verdeeld zijn van de onkruiddata te verdisconteren. De vier plekkerige 
onkruiden, C. album, C. polyspermum, E. crus-galli en S. nigrum lieten consistente 
relaties zien met de bodem variabelen gedurende de drie jaren van de studie. De 
dichtheid van deze soorten nam toe met toenemende pH en was gerelateerd aan een 
textuur fractie of organisch stof. Modellen met ruimtelijke ongecorreleerde residuen 
werden vergeleken met modellen met ruimtelijke gecorreleerde residuen. Taylor’s 
power law werd als verbindingsfunctie gebruikt. Er was een bescheiden afname in de 
significantie van de modellen (toename van de P waarde) als er rekening werd 
gehouden met de ruimtelijke correlatie van de residuen. Voor een paar gevallen waren 
de verschillen groot, wat aangeeft dat als geen rekening wordt gehouden met de 
ruimtelijke samenhang van de respons variabele, dit resulteert in een overschatting van 
de significantie van het model. Er bleef ruimtelijke autocorrelatie over in de residuen 
wat laat zien dat andere factoren dan de geselecteerde bodemvariabelen een bijdrage 
leveren aan de ruimtelijke samenhang van onkruidpatronen. 
 Dispersie van zaden door machines werd in Hoofdstuk 5 bestudeerd. Verschillende 
planten werden als modelonkruid gebruikt. Planten waarvan de zaden rijp waren 
tijdens de oogst werden over een grotere afstand verspreid dan soorten waarvan de 
zaden op de grond lagen tijdens de oogst. De cultivator leverde een significante 
bijdrage aan dispersie van zaden, waarschijnlijk door middel van versleping van plant 
materiaal met zaden door het veld. Zaden hadden in sommige gevallen de gehele 
lengte van de observatie plot afgelegd. Er waren onregelmatigheden in de staart van de 
dispersie verdeling, waarschijnlijk door andere handelingen van de machines in de 
kopakker en het laten vallen van plant materiaal.  
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 In Hoofdstuk 6, worden ruimtelijk impliciete onkruidtellingen (verzameld door 
geheel Nederland), geanalyseerd met behulp van Taylor’s power law (TPL) die de 
relatie tussen logaritme van het gemiddelde en variantie geeft. Zowel soortspecifieke 
als een algemeen model van TPL geeft een goede beschrijving van deze relatie voor 
onkruidtellingen. Het algemene model geeft een nauwkeurige voorspelling van de 
onkruidvrije fractie van een veld voor de meeste soorten, maar voor enkele soorten 
zoals E. crus-galli was een soortspecifiek model nodig om een goede voorspelling te 
krijgen. Een data-analyse illustreert verder dat als er per soort wordt gespoten, 
plaatsspecifieke toepassing van herbiciden een reductie in het gebruik geeft. Maar 
indien alle soorten gelijktijdig worden bespoten, blijft er bijna geen onkruidvrij stuk 
over in het veld. Berekeningen laten zien dat besparingen van herbiciden door 
pleksgewijze toepassing drastisch afnemen met een afnemende resolutie. 
 



 

 
 



 

139 
 

List of publications of the author 
 
 
Refereed scientific papers 
Heijting, S., Van der Werf, W., Stein, A. & Kropff, M.J. (2007) Are weed patches 

stable in location? Application of an explicitly two-dimensional methodology. 
Weed Research 47, 381-395. 

Heijting, S., Kruijer, W., Stein, A. & Van der Werf, W. (2007) Testing the spatial 
significance of weed patterns in arable land using Mead’s test. Weed Research 47, 
396-405. 

Kruijer, W., Stein, A., Schaafsma, W. & Heijting, S. (2007) Analyzing spatial count 
data, with an application to weed counts. Environmental and Ecological Statistics 
14 (in press). 

 
Submitted scientific papers 
Heijting, S., Van der Werf, W. & Dalthorp, D. (2007) Does soil spatial heterogeneity 

explain patchiness in weeds?  A regression approach accounting for spatial 
correlation. 

Heijting, S., Van der Werf, W., Kempenaar, C., Withagen, J. & Van der Weide, R. 
(2007) Predicting the weed-free proportion of the field area with Taylor’s power 
law. 

Heijting, S., Van der Werf, W. & Kropff, M.J. (2007) Seed dispersal by forage 
harvester and rigid-tine cultivator in maize. 

 
Conference papers 
Heijting, S., Kropff, M.J., Stein, A. & Van der Werf, W. (2002) Spatial dynamics and 

site-specific management of weeds. In Proceedings 12th Symposium of the 
European Weed Research Society 2002, The Netherlands, pp. 400-401. 

Heijting, S., Kruijer, W., Van der Werf, W. & Stein, A. (2005) Species specific spatial 
relations between weed species and soil characteristics. In Proceedings 13th 
Symposium of the European Weed Research Society 2005, Bari, Italy, CD-ROM. 

Heijting, S. & Van der Werf, W. (2005) Dispersal of weeds by tillage and harvest in 
maize. In Proceedings 13th Symposium of the European Weed Research Society 
2005, Bari, Italy, CD-ROM. 

Heijting, S., Van der Werf,W., Kempenaar, C., Van Evert, F., Withagen, J. & Van der 
Weide, R.Y. (2007) Spatial variability of weeds in the Netherlands & possibilities 
for site-specific weed control. 14th International EWRS Symposium 2007, 129. 

 



 

140 
 

Other publications 
Van der Weide, R. & Heijting, S. (2006) Eigen onkruid op kopakker. Machines 

verslepen onkruid over het veld. Loonbedrijf 10, 72-73. 
Heijting, S., Van der Werf, W., Stein, A. & Kropff, M.J. (2005) Ruimtelijke dynamiek 

van onkruiden in continue maïsteelt. Gewasbescherming 36 (6), 272- 273. 
Heijting, S., Van der Werf, W., Kempenaar, C., Withagen, J., Van der Weide, R.Y. & 

Van Evert, F. (2007) De bezettingsgraad van onkruiden op de akker en 
mogelijkheden voor pleksgewijze toepassing van herbiciden. Gewasbescherming, 
jaargang 38(3), 124. 

 



 

141 
 

 
 
 
 
 
 
 
 
 

 



 

142 
 

 
 
 
 
 
 
 
 
 

 
 
 



 

143 
 

PE&RC PhD Education Certificate 
 
With the educational activities listed below the PhD candidate 
has complied with the educational requirements set by the 
C.T. de Wit Graduate School for Production Ecology and 
Resource Conservation (PE&RC) which comprises of a 
minimum total of 32 ECTS (= 22 weeks of activities)  
   
Review of Literature (4 credits) 
- Spatial dynamics and site-specific management of weeds (2001/2002)  
Writing of Project Proposal (4 credits) 
- Spatial dynamics and site-specific management of weeds (2001/2002)  
Laboratory Training and Working Visits (3.3 credits) 
- Spatial aspects of weed ecology; University of Nebraska, USA (2001) 
- Spatial aspects of weed ecology; Kansas State University, USA (2001) 
- Automatic weed recognition/weed patterns; Universität Bonn, Deutschland (2001)  
Post-Graduate Courses (9.8 credits) 
- Spatio-temporal models in ecology; PE&RC (2001) 
- Basic & advanced statistics; PE&RC (2001/2002) 
- Spatial modelling in ecology; PE&RC (2002) 
- Multivariate analysis; PE&RC (2004)  
Deficiency, Refresh, Brush-up and General Courses (4.8 credits) 
- Simulation of crop growth; Goudriaan, PPS (2001) 
- Planmatig werken; NOW/FOM (2001)  
Competence Strengthening / Skills Courses (5.2 credits) 
- Scientific writing; PE&RC/CENTA (2002) 
- Career perspectives; PE&RC/WGS (2005) 
- Professional communication strategies; WGS (2005)  
Discussion Groups / Local Seminars and Other Scientific Meetings (6.5 credits) 
- Plant and crop ecology; PE&RC (2001-2005) 
- Masterclass Julian Besag; PE&RC (2002) 
- Masterclass agro-ecology Matt Liebman; PE&RC (2005) 
- Masterclass integrated crop management; PE&RC, Ann Legere and Jon Marshall (2002) 
- KNPV Najaarsvergadering (2005) 
- KNPV Voorjaarsvergadering (2007)  
PE&RC Annual Meetings, Seminars and the PE&RC Weekend (0.3 credits) 
- PE&RC annual meeting (2002)  
International Symposia, Workshops and Conferences (8.6 credits) 
- 12th Symposium of European weed research society; the Netherlands (2002) 
- Meeting of EWRS working group on site-specific weed management; Madrid, Spain (2003) 
- EWRS/AAB Symposium on seed banks; Reading, UK (2003) 
- 13th Symposium of European weed research society; Italy (2005)  
Courses in Which the PhD Candidate Has Worked as a Teacher 
- Populatie ecologie (2002,2003, 2004); 33 days 
- Advanced crop and weed ecology (2002, 2003, 2004); 4 days 
- Inleiding in de beta wetenschappen; 1 day  
Supervision of MSc Student(s) 
- Analysing spatial count data; 20 days; 1 student 



 

 
 



 

145 
 

Curriculum vitae 
 
 
Suzanne Heijting was born on 4 May 1971 in Reeuwijk. She attended the secondary 
school in Emmen at the Gemeentelijke Scholengemeenschap Emmen where she 
graduated in 1989. Next she worked and lived in England for a year where she 
followed English language courses. In 1990, she started her study at (then called) 
Wageningen Agricultural University in Plant Pathology, specialization in Ecology and 
Epidemiology. Her theses subjects were in Entomology, Theoretical Production 
Ecology and Agricultural Law. Practical trainings were conducted in England 
(herbicide resistance) and Germany (entomology). In 1996, she graduated at 
Wageningen Agricultural University. From 1997–2000, she worked at Luxan BV, Elst, 
and next she worked for Koppert BV, Berkel en Rodenrijs. In 2001, she started at 
Wageningen University her PhD research under supervision of Dr. Ir. W. van der Werf 
and Prof. Dr. M.J. Kropff (Crop and Weed Ecology Group) and Prof. Dr. A. Stein 
(Biometris). The project concerned spatial analysis of weed patterns, and the research 
results are described in this thesis.  
She is married to Jan Roelsma and they have three children. 
 



 

146 
 

Funding 
 
 
The research described in this thesis was supported by the Technology Foundation 
STW, applied science division of NWO and the technology programme of the 
Ministry of Economic Affairs.  
 Chapter 6 was financially supported by Plant Research International (PRI), and the 
data used were cordially provided by Applied Plant Research, Lelystad. 
 The support is gratefully acknowledged. 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




