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Abstract

This thesis presents statistical sampling scheme optimization for geo-environ-
mental purposes on the basis of hyperspectral data. It integrates derived prod-
ucts of the hyperspectral remote sensing data into individual sampling schemes.
Five different issues are being dealt with.

First, the optimized sampling scheme is presented to select samples that rep-
resent different ontological categories. The iterated conditional modes algorithm
(ICM) is used as an unsupervised segmentation technique. Within each cate-
gory, simulated annealing is applied for minimizing the mean shortest distance
(MMSD) between sampling points. The number of sampling points in each cate-
gory is proportional to the size and variability of the category. The combination
of the ICM algorithm for image segmentation with simulated annealing for op-
timized sampling, results in an elegant and powerful tool in designing optimal
sampling schemes using remote sensing images. A validation study conducted
shows that the optimized sampling scheme gives best estimates for commonly
used vegetation indices compared to simple random sampling and rectangular
grid sampling.

Next, optimal sampling schemes, which focus on ground verification of min-
erals derived from hyperspectral data, are presented. Spectral angle mapper
(SAM) and spectral feature fitting (SFF) classification techniques are applied
to obtain rule mineral images. The rule images provide weights that are utilized
in objective functions of the sampling schemes which are optimized by means of
simulated annealing. Three weight functions intensively sample areas where a
high probability and abundance of alunite occurs. Weight function I uses binary
weights derived from the SAM classification image, leading to an even distri-
bution of sampling points over the region of interest. Weight function II uses
scaled weights derived from the SAM rule image. Sample points are arranged
more intensely in areas where there is an abundance of alunite. Weight func-
tion IIT combines information from several different rule image classifications.
Sampling points are distributed more intensely in regions of high probable alu-
nite as classified by both SAM and SFF, thus representing the purest of pixels.
This method leads to an efficient distribution of sample points, on the basis of
a user-defined objective.

This is followed by a quantitative method for optimally locating exploration
targets based on a probabilistic mineral prospectivity map, which was created by
means of weights-of-evidence (WofE) modeling. Locations of discovered mineral
occurrences were used as a training set and a map of distances to faults/fractures
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and three channel ratio images of HyMap hyperspectral data were used as
evidences. The WofE posterior probability map was applied to an objective
function that optimized location of exploration targets. Optimized exploration
target zones spatially coincide with undiscovered mineral occurrences, namely,
those not used to train the WofE model input, and show other zones without
mineral occurrences within delineated prospective ground. The results indicate
usefulness of the described optimization method to allocate exploration targets
for undiscovered mineral occurrence, based on probabilistic mineral prospectiv-
ity maps.

A method for estimating the partial abundance of spectrally similar minerals
in complex mixtures follows. Linear mixtures are generated with varying pro-
portions of individual spectrum, from a spectral library, of a set of iron-bearing
oxide/hydroxide/sulfate minerals. The first and second derivatives of each of the
different sets of mixed spectra and the individual spectrum are evaluated. This
method for spectral unmixing requires formulating a linear function of individ-
ual spectra of the minerals. The error between these derivative functions and
the respective derivative function of the mixed spectrum is minimized by means
of simulated annealing. FExperiments are made on several different mixtures
of selected end-members, which could plausibly occur in real situations. The
variance of the differences between the second derivatives of the observed spec-
trum and the second derivatives of the end-member spectra give most precise
estimates for the abundance of each end-member.

Lastly, a method by which an optimal ground sampling scheme can be ob-
tained for a variable of interest is described. The variable of interest is the spatial
distribution of a suite of heavy metals in mine tailings. Derivation of an optimal
sampling scheme makes use of covariates of the spatial variable of interest, which
are readily but less accurately obtainable by using airborne hyperspectral data.
The covariates are abundances of secondary iron-bearing minerals estimated
through spectral unmixing. Via simulated annealing, an optimal retrospective
sampling scheme for a previously sampled area is derived having fewer samples
but having almost equal mean kriging prediction error as the original ground
samples. Via simulated annealing, an optimal prospective sampling scheme for
a new unvisited area is derived based on the variogram model of a previously
sampled area. The results of this study demonstrate potential application of hy-
perspectral remote sensing and simulated annealing to surface characterization
of large mine tailings having similar climatic and terrain characteristics to the
mine tailings in the case study area.
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Samenvatting

Dit proefschrift richt zich op het optimaliseren van ruimtelijke bemonster-
ingsschema’s met een accent op het gebruik van hyperspectraal beelden binnen
geo-milieu toepassingen. Het integreert deze beelden, die met satellieten of
vliegtuigen zijn verkregen, binnen bemonsteringsschema’s. Vijf verschillende
aspecten worden hierbij belicht.

In de eerste plaats wordt het optimale bemonsteringsschema gevonden om
waarnemingen te plaatsen die ontologische klassen representeren. Voor dat doel
wordt het ICM (Iteratieve Conditionele Modus) algoritme gebruikt als een onge-
controleerd classificatie algoritme. Optimalisatie met simulated annealing wordt
toegepast binnen iedere categorie voor het vinden van de gemiddeld kortste af-
stand tussen bemonsteringspunten. Het aantal punten per categorie is recht
evenredig met de grootte van een klasse en met de variatie daarbinnen. De
combinatie van het ICM algoritme voor beeldsegmentatie en simulated anneal-
ing voor optimalisatie resulteert in een elegante en krachtige methode voor het
vinden van het optimale bemonsteringsschema bij gebruikmaking van hyper-
spectraalbeelden. Een validatiestudie toont aan dat we hiermee betere schattin-
gen krijgen voor veelgebruikte vegetatie indices dan met toevalsbemonstering of
roosterbemonstering.

Vervolgens worden optimale bemonsteringsschema’s gepresenteerd die zich
richten op het verifiéren van de aanwezigheid van mineralen, die met hyper-
spectraal beelden worden gedentificeerd. Spectrale hoek karteringsclassificatie
(SAM) en spectrale object schattingsclassificatie (SFF) worden gebruikt om
mineraal referentiebeelden te krijgen. Deze mineraal referentiebeelden leveren de
gewichten die gebruikt worden bij het optimaliseren van bemonsteringsschema’s
met behulp van simulated annealing. Drie gewichtsfuncties worden gebruikt om
gebieden intensief te bemonsteren die een grote kans hebben op het aantreffen
van aluniet. De eerste gewichtsfunctie gebruikt de gewichten die afkomstig zijn
uit de SAM classificatie, hetgeen leidt tot een regelmatige verdeling van de be-
monsteringspunten van het studiegebied. De tweede gewichtsfunctie gebruikt
geschaalde gewichten afkomstig uit de mineraal referentiebeelden die met SAM
zijn gemaakt. Dit levert een bemonsteringsschema dat intensiever wordt naar-
mate aluniet meer voorkomt. De derde gewichtsfunctie combineert de informatie
van mineraal referentiebeelden die met verschillende classificatie methoden zijn
vervaardigd. Dit levert een grotere waarnemingsdichtheid op in gebieden waar
de kans groot is dat aluniet voorkomt, volgens zowel de SAM als de SFF classi-
ficatie. Als zodanig representeert het de meest zuivere pixels. De methode leidt
tot een efficiénte verdeling van de waarnemingspunten op basis van een doel dat




Samenvatting

door de gebruiker gedefinieerd is.

Het volgende aspect is een kwantitatieve methode voor het optimaal definiéren
van een exploratiedoel. Deze methode is gebaseerd op een probabilistische
verwachtingskaart voor mineralen. De kaart is vervaardigd op basis van mod-
elleren via de weights-of-evidence (WofE) methode. Plaatsen waar de aan-
wezigheid van een mineraal bekend is zijn gebruikt als trainingsgegevens, terwijl
het bewijs bestond uit een kaart van breuken en verschuivingen en drie beelden
van verhoudingen tussen hyperspectraal banden. De a posteriori kaart van deze
WofE modellering is gebruikt om een doelfunctie te optimaliseren voor het iden-
tificeren van exploratie doelen. De optimale exploratie zones vallen ruimtelijk
samen met onontdekte mineraalverschijningen en met mineraalverschijningen
die niet gebruikt zijn om het WofE model te trainen; ze laten ook zones zien
zonder mineralen binnen gebieden met een vermoedelijke opbrengst. De resul-
taten tonen het nut van de optimalisatiemethode aan om exploratiedoelen te
stellen voor onontdekte mineralen, gebaseerd op een probabilistisch mineraal
prospectkaarten.

Vervolgens volgt een methode voor het schatten van het fractionele gehalte
van mineralen met een identieke spectrale signatuur in complexe mengingen.
Lineaire mengingen zijn gesimuleerd van verschillende verhoudingen van indi-
viduele spectra uit een spectrale bibliotheek van oxide/hydroxide/sulfaat min-
eralen. De eerste en de tweede afgeleide van ieder van de verschillende verza-
melingen van de gemengde spectra en het individuele spectrum zijn daarbij
geanalyseerd. Deze methode voor spectrale ontmenging vereist een formuler-
ing van een lineaire functie van de individuele spectra van de mineralen. De
afwijking tussen de afgeleiden en de respectievelijke afgeleide van het gemengde
spectrum is geminimaliseerd met behulp van simulated annealing. Simulaties-
tudies zijn gedaan met verschillende mengingen van geselecteerde eindleden die
in de praktijk zouden kunnen voorkomen. De variantie van de verschillen tussen
de 2°¢ afgeleide van het waargenomen spectrum en de 2° afgeleide van de spectra
van de eindleden leverde de meest precieze schatting voor het gehalte van ieder
eindlid.

Als laatste wordt een methode beschreven waarmee het optimale bemon-
steringsschema voor een doelvariabele op de grond kan worden gevonden. In
dit onderdeel van de studie is de doelvariabele een verzameling zware met-
alen in een mijnstort. Het bepalen van het optimale schema maakt gebruik
van co-variabelen van de doelvariabele. Deze kunnen eenvoudig maar minder
precies worden verkregen uit hyperspectraal gegevens die met vliegtuigen zijn
opgenomen. De co-variabelen zijn de gehaltes van secundaire ijzerhoudende
mineralen, verkregen via een ontmengingprocedure. Door middel van simulated
annealing is het optimale retrospectieve bemonsteringsschema bepaald voor een
gebied dat al eerder was bemonsterd. Dit schema bevat minder waarnemingen,
maar levert vrijwel een gelijke variantie van de voorspelfout als het oorspronke-
lijke schema. Door middel van simulated annealing is vervolgens het optimale
bemonsteringsschema voor een nieuw, onbezocht gebied bepaald, onder aanname
van geldigheid van het variogram uit het eerder bemonsterde gebied. De resul-
taten van deze studie tonen het potentiéle gebruik aan van een combinatie van
hyperspectrale remote sensing beelden en simulated annealing voor het karak-
teriseren van de bovengrond van een mijnstortgebied. Dit onder voorwaarde
van vergelijkbare klimatologische en terrein karakteristieken van de verschillende
mijnstortgebieden.
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Chapter ]

Introduction

Faith is taking the first step even when you don’t see the whole staircase.

Martin Luther King, Jr

1.1 Land characterization: problems in deriving optimal
sampling schemes

Land has many components. The various components, such as vegetation, and in the
absence of vegetation the rocks and sands with all their minerals make up land cover.
To adequately characterize the vegetation components or the mineral components
of land, detailed maps describing the spatial distributions of, for example, certain
crops or certain minerals are required. The spatial distributions of crops or miner-
als, however, vary from one place to another according to factors at local settings.
Therefore, thorough sampling of land is required to generate detailed maps accurately
depicting spatial variability of either crops or minerals and associated metals. Such
an undertaking would require money, time, and manpower in order to achieve spatial
information of interest at the desired level of accuracy. Therefore, planning where
and how many samples should be collected, in order to map accurately the spatial
distributions of either crops or minerals and associated metals, is a non-trivial task.

A sampling plan or scheme refers to positions of samples on the ground. There are two
types of sampling schemes, (a) a retrospective scheme, whereby sample locations are
either removed from or added to an existing sampling scheme, and (b) a prospective
scheme, whereby sample locations are pre-determined before actual sampling in the
field. A sampling scheme design is considered optimal if there is (i) a reduction
in the number of samples but resulting in estimates of population parameters of
interest with the same or similar uncertainty, (ii) a reduction in the variability or mean
squared error in estimates of population parameters of interest, (iii) a more correct
distribution of samples representing the distribution of the population of interest, or
a combination of these criteria. Development of optimal sampling requires a priori

1



1.1. Land characterization: problems in deriving optimal sampling schemes

spatial information about a study area.

Around the mid-20th century and a few decades thereafter, those who studied crops
(Johnson, 1969; Driscoll & Coleman, 1974; Everitt et al., 1980) and those who searched
for minerals (Eardley, 1942; Laylender, 1956; Allum, 1966; Longshaw & Gilbertson,
1976; Gilbertson et al., 1976) developed their sampling schemes by using geographical
information from topographic maps and/or stereoscopic aerial photographs and from
visual observations during field reconnaissance surveys. From the 1970s, technological
developments in remote sensing resulted in the collection of spaceborne multispectral
data, which were to a larger extent useful to derive a priori spatial information
required in sampling campaigns to study agricultural crops (Everitt et al., 1979; Mc-
Graw & Tueller, 1983) but were to a lesser extent useful to derive a priori spatial
information required in searching for minerals (Houston, 1973; Siegal & Abrams, 1976;
Lowman, 1976; Iranpanah, 1977; Siegal & Gillespie, 1980). The reasons for the rel-
ative contrast of usefulness spaceborne multispectral data to crop vegetation studies
and to search for minerals are that multispectral sensors collect broad wavelength
data (a) mostly in the visible to near infrared range of the electromagnetic spectrum,
where vegetation has diagnostic spectral features, but (b) partly in the shortwave
infrared range of the electromagnetic spectrum, where most minerals have diagnostic
spectral features. Multispectral data allow mapping of individual crop species quite
accurately (Richardson et al., 1985; Brisco et al., 1989; Bouman & Uenk, 1992), but
allow mapping of groups and not individual minerals such as in hydrothermally al-
tered rocks (Rowan et al., 1977; Kowalik et al., 1983; Abrams, 1984; Carranza & Hale,
2002).

From the 1990s, however, advanced technological developments in remote sensing re-
sulted in acquiring airborne hyperspectral data, which are better sources of a priori
information for those who optimize their respective sampling schemes to study crop
vegetation or search for minerals and associated metals. The advantage of hyperspec-
tral data over multispectral data can be attributed to their high spatial resolution
and much higher spectral resolutions in the visible to the shortwave infrared regions
(Clark, 1999; Polder & van der Heijden, 2001), which allow distinction between plant
species (Thenkabail, 2002; Thenkabail P. S. & De-Pauw, 2002; Okina et al., 2001;
Chang, 2006) or minerals and associated metals (Cudahy et al., 2000; Papp & Cu-
dahy, 2002; Martini et al., 2003; Martini, 2003; Martini et al., 2003). Nevertheless,
the ability to process and analyze multi-dimensional hyperspectral data promptly re-
quires improved or novel techniques in order to extract and then further process vital
information to derive optimal sampling schemes.

The availability of airborne hyperspectral data, therefore, raises two problems in
deriving optimal sampling schemes to study crops and to search for minerals and
associated metals: (1) how to extract accurate a priori information of interest; and
(2) how to further process a priori information of interest to derive an optimal sam-
pling scheme. The first problem is related to the fact that processing and analysis of
hyperspectral data results in only estimates of certain parameters such as (a) vegeta-
tion indices, which could reflect crop health (Knipling, 1970; Ausmus & Hilty, 1972;
Carter, 1994), and (b) mineral indices, which are estimates of relative abundance of
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minerals (Smith et al., 1985; Resmini et al., 1997; Crdsta et al., 1998; Chabrillat et al.,
1999). Accurate estimation of these parameters is undermined by several factors that,
for example, distort spectral signal from materials of interest on the ground to the
hyperspectral sensor in the air (Richards, 1993; Lillesand et al., 1994; Sabins, 1996;
Gupta, 2003). The second problem is related to the statistical correlation or spatial
association between parameters estimated from hyperspectral data and the primary
variables of interest, which in this thesis are crops or minerals and associated metals.
To investigate potential solutions to these two problems in deriving optimal sampling
schemes given hyperspectral data, it is important to first understand hyperspectral
remote sensing and optimization of schemes separately and to then merge the dis-
parate knowledge gained. The following two sections provide brief literature reviews
on hyperspectral remote sensing and optimization of sampling schemes, respectively.

1.2 Hyperspectral remote sensing

In the study of electro-magnetic physics, when energy in the form of light interacts
with a material, part of the energy at certain wavelength is absorbed, transmitted,
emitted, scattered, or reflected due to the property or characteristics of the material
(Sabins, 1996). The three most common ways of measuring the reflectance of a
material are by (a) using a hand-held spectrometer over the material in the field or
laboratory, (b) using a sensor mounted on an aircraft over a land terrain, or (c) using
a sensor mounted on a spacecraft over the earth’s surface.

Available hyperspectral data are mostly obtained by aircrafts. Hyperspectral data
are reflectance measurements at very narrow wavelengths, approximately 10 nm or
less, and are acquired simultaneously over a large spectral range, usually between
0.4 pm and 2.5 pm (Chang, 2006). This spectral range includes the visible, near in-
frared and short wave infrared regions of the electro-magnetic spectrum, resulting in
a large number (often > 100) of contiguous spectral bands or channels. Reflectance
data in each spectral channel can be pictorially represented as an image, which is
composed of discrete picture elements or pixels. The brightness of a pixel represents
the reflective value of materials at specific wavelengths of the electro-magnetic spec-
trum. Every material has unique spectral features (Hapke, 1993), which are distinct
arrays of spectral values at certain regions of the electro-magnetic spectrum. Because
hyperspectral sensors acquire spectral data from narrow and contiguous bands of the
electro-magnetic spectrum, they provide much better capability to identify materials
than broad-band sensors (Sabins, 1999). For example, analysis of changes in narrow
absorption features (Van der Meer, 2004), which are usually not recorded by broad-
band sensors, is a powerful tool in remote identification and estimation of individual
materials instead of groups of materials.

A vast amount of scientific knowledge has been and is currently being developed in
the field of hyperspectral remote sensing of the environment (Sabins, 1996; Gupta,
2003; Chang, 2006). There are several international peer reviewed journals specif-
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ically publishing innovative procedures and advancements on hyperspectral remote
sensing of the environment. Integration of hyperspectral data or information derived
from hyperspectral data into optimization of sampling schemes has been relatively
neglected (Stein et al., 1999).

1.3 Optimization of sampling schemes

Spatial sampling has been addressed by statisticians for many years. In comparing
traditional sampling schemes Burgess et al. (1981) found that a regular grid results
in only slightly less precise estimates than a triangular grid, for the same sampling
density. They concluded that a small loss of precision or small increase in sampling
density to achieve a given precision corresponds with a small increase in price to pay
for the practical convenience of regular grids. Christakos & Olea (1992) present a
case-specific methodology for choosing between different grid designs.

In optimization of model-based sampling schemes, Spruill & Candela (1990) consid-
ered the prediction accuracy of chloride concentration in groundwater by removing or
adding locations to an existing sampling network. In a similar way, Royle & Nychka
(1998) used a geometrical criterion in order to optimize spatial prediction. Brus &
de Gruijter (1997) compared design-based and model-based sampling schemes.

With applications of geostatistical methods, it has been previously shown that for
spatially correlated data a triangular configuration of sampling points is most effi-
cient and for isotropic variations the grid should be equilateral (Burgess et al., 1981).
McBratney et al. (1981) and McBratney & Webster (1981) presented procedures for
optimizing the spacing grid of a regular rectangular or triangular lattice design by
maximizing the prediction variance, given an a priori variogram. If a variogram, how-
ever, shows a relatively high nugget and sampling density is relatively scarce, then a
hexagonal grid can be most efficient (Yfantis et al., 1987). By removing or adding
locations to an existing sampling network, Ben-Jemaa et al. (1995) used ordinary co-
kriging between sediment concentration of mercury and a sediment grain size index
to maximize the prediction accuracy. Lloyd & Atkinson (1999) used ordinary kriging
and ordinary indicator kriging to optimize a sampling scheme. Diggle & Lophaven
(2006) use a Bayesian criterion to optimize geo-spatial prediction by (a) deleting lo-
cations from an existing sampling design and (b) choosing positions for a new set
of sampling locations. Other studies of variogram application to optimize sampling
schemes include Russo (1984), Warrick & Myers (1987), Zimmerman & Homer (1991)
and Miiller & Zimmerman (1999).

With applications of simulated annealing, Sacks & Schiller (1988) presented several
algorithms for optimizing a sampling scheme out of a small grid of possible locations.
McGwire et al. (1993) investigated the impact of sampling strategies on the stability of
linear calibrations by enforcing various sample distance constraints in a Monte Carlo
approach. Van Groenigen & Stein (1998) extended this design by presenting the opti-
mal sampling scheme using spatial simulated annealing that could handle earlier data
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points and complex barriers. Van Groenigen & Stein (1998) also developed further
the Warrick & Myers (1987) criterion to optimize sampling schemes. Van Groenigen
et al. (1999) used spatial simulated annealing to construct sampling schemes with
minimal kriging variance. They found that anisotropy of the variogram had consider-
able influence on the optimized sampling scheme, with the highest sampling density
in the direction of the highest variability. Van Groenigen et al. (1999) used spatial
simulated annealing and the criterion for minimizing the maximum kriging variance
in obtaining the optimal sampling scheme. Van Groenigen et al. (2000b) showed how
conditional probabilities of exceeding environmental threshold values of several con-
taminants could be pooled into one variable, indicating health risk and thereby used
simulated annealing to optimize the sampling scheme. Van Groenigen et al. (2000a)
used yield maps to optimize, via spatial simulated annealing, soil sampling for pre-
cision agriculture in a low-tech environment. Lark (2002) maximized the likelihood
estimation for the Gaussian linear model, which results in designs consisting of fairly
regular array supplemented by groups of closely spaced locations.

In sampling for field spectral measurements to support remote sensing, Curran &
Atkinson (1998) used co-kriging to define the optimal ‘multiple’ sampling design,
which could be used to simultaneously sample ground and remote sensing data. Tapia
et al. (2005) applied a multivariate k-means classifier to delineate vegetation patterns
from remote sensing data together with the Van Groenigen & Stein (1998) criterion
in order to prioritize the survey to areas with high uncertainty. In this present thesis,
sampling schemes are optimized based on remote sensing data or remotely sensed
information and the application of simulated annealing.

1.4 Simulated Annealing in context of sampling scheme op-
timization

Simulated annealing is a general optimization method that has been widely applied
to find the global optimum of an objective function when several local optima exist.
Details on simulated annealing can be found in Kirkpatrick et al. (1983), Bohachevsky
et al. (1986) and Aarts & Korst (1989).

In application of simulated annealing to sampling scheme optimization, a fitness func-
tion ¢(S) has to be minimized, depending on the sampling configuration S. Starting
with a random sampling scheme Sy, let S; and S;;1 represent two solutions with
fitness ¢(S;) and ¢(S;+1), respectively. Sampling scheme S;; is derived from S; by
randomly replacing one of the points of S; by a new point not in S;. A probabilis-
tic acceptance criterion decides whether S;;; is accepted or not. This probability
P.(S; — S;41) of S;11 being accepted can be described as:

1, if p(Siv1) < (8Ss)
Po(Si = Siy1) = exp (M> , if ¢(Sit1) > &(Ss)

(¢4

(1.1)
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where ¢ denotes a positive control parameter (usually called the temperature in sim-
ulated annealing problems). Several cooling schedules are possible to reduce the tem-
perature. At each value of c, several transitions have to be made before the annealing
can proceed, and c can take its next value. A transition takes place if S; 11 is accepted.
Next, a solution S;ys is derived from S;11, and the probability P.(S;+1 — S;y2) is
calculated according to an acceptance criterion (Equation 1.1).

1.5 Purposes of this study

In this thesis, estimates of parameters of interest derived from hyperspectral data or
statistical correlation between parameters estimated from hyperspectral data and the
primary variables of interest are here referred to as a model. It is hypothesized that
model-based optimal sampling schemes can be derived by (a) improving the precision
of a model, (b) improving the accuracy of a model, (¢) improving the estimates of a
model, (d) reducing the variability of a model, (e) reducing the error of model; or by
a combination of any of these aspects. Accordingly, to investigate the hypothesis, the
main purpose of this thesis is to use airborne hyperspectral data to obtain models
for input into simulated annealing in order to derive optimal sampling schemes. The
main purpose of this thesis is supported by the following specific aims.

(i) To formulate optimization criteria that meet the specific demands for ground
sampling to study spatial variability of crops or minerals and associated metals.

(ii) To formulate new hyperspectral remote sensing techniques useful for deriving
optimal sampling schemes.

(iii) To incorporate ancillary spatial information, derived hyperspectral data and
maps, in optimization of sampling schemes.

(iv) To develop and apply optimal sampling schemes to studies of crops or minerals
and associated metals.

(v) To validate results by comparing derived optimal sampling schemes with clas-
sical sampling schemes or with existing sampling schemes.

1.6  Outline of thesis

This thesis is essentially a collection of papers, chapters 2—6, which either have been
or will be published in international peer-reviewed journals. For this reason, gaps and
overlaps may occur between individual chapters. The thesis, however, represents a
coherent line of research. The thesis structure has the advantage that some chapters
have had the necessary feedback from other scientists during the peer-review process
and thus allow to spread the contents of the thesis to a wider audience.
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Chapter 2 presents a method of deriving the optimal prospective sampling scheme
based on a segmented hyperspectral image. The idea is to stratify an image into
homogeneous segments or regions and then to determine the optimum number and
locations of samples in each segment. The method is applied to a study of an agri-
cultural field in Hungary, which contains several different crops. A validation study
conducted shows that the optimized sampling scheme gives best estimates for com-
monly used vegetation indices compared to simple random sampling and rectangular
grid sampling.

Chapter 3 presents a method for deriving optimal prospective sampling schemes to
support ground verification of remotely-sensed distribution of minerals. Optimization
of the sampling schemes are based on the results of spectral feature fitting and spectral
angle mapper to detect particular minerals using airborne hyperspectral data. The
optimization of sampling schemes are illustrated in a case study in the Rodalquilar
mineral district (SE Spain). A validation study conducted shows that there is high
probability of occurrence of the mineral of interest at the samples selected. The de-
rived optimal sampling schemes are also compared to conventional sampling schemes.

The method presented in chapter 4 can be used to derive the optimal prospective
sampling scheme or the optimal retrospective sampling scheme. In this chapter, a
mineral prospectivity map, created by weights-of-evidence, was used to optimally lo-
cate exploration targets. The method was applied to the Rodalquilar mineral district
(SE Spain). Additional maps, such as distance to faults and fractures, were used
in conjunction with airborne hyperspectral data to optimize location of exploration
targets. On the one hand, the derived optimal prospective sampling design shows
that optimized exploration target zones spatially coincide with undiscovered mineral
occurrences. On the other hand, the derived optimal retrospective sampling design
shows other zones without discovered mineral occurrences within delineated prospec-
tive ground.

In chapter 5, a new method for unmixing of hyperspectral data is presented rather
than a method for optimization of sampling scheme. It was deemed important to
present the new unmixing technique in a separate chapter mainly due to the follow-
ing three reasons. Firstly, development of such a new technique was deemed essential
for the development of another method of optimization of sampling scheme presented
in the following chapter. Secondly, the chapter is congruent to one of the specific
aims of this thesis; that is, to formulate new techniques useful for designing opti-
mized sampling schemes. Lastly, the chapter is represented by a separate paper in
a peer-reviewed journal. The method thus presented in chapter 5 estimates relative
abundance of spectrally similar materials in complex mixtures. Using spectra from
a spectral library, mixtures of spectrally similar materials were generated. The new
method of spectral unmixing uses simulated annealing. Minimization of variance of
the differences between the second derivatives of the observed spectrum and the sec-
ond derivatives of the end-member spectra results in the most precise estimates for
the relative abundance of each end-member.

Chapter 6 presents methods to derive the optimal retrospective sampling scheme and
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the optimal prospective sampling scheme for surface characterization of mine tailings
dumps associated with sulphide-rich mines. The study area is the Recsk-Lahéca cop-
per mining area in Hungary. Relative abundance of minerals of interest, estimated
by the method presented in chapter 5, are used as covariates of quantified signature
of heavy metal distribution in order to develop optimal retrospective and prospec-
tive sampling schemes. For the optimal retrospective sampling scheme, simulated
annealing is used to minimize the kriging with external drift prediction error. For the
optimal prospective sampling scheme, simulated annealing is used to minimize the
kriging with external drift variance.

Finally, chapter 7 summarizes the main findings and conclusions of the thesis, and
gives some recommendations for further research.




Chapter 2

The optimal field sampling scheme
on a remote sensing segmented image

The tendency of the casual mind is to pick out or stumble upon a sample which supports or defies
its prejudices, then to make it the representative of a whole class.

Walter J. Lippmann

This chapter is based on P. Debba, A. Stein, F. D van der Meer, E. J. M. Carranza

and A. Lucieer (In Prep) The optimal field sampling scheme on a remote sensing
segmented image.!

1This work was sponsored by ITC International Institute for Geo-Information Science and
Earth Observation, project number 3083022 and NRF National Research Foundation, project num-
ber 10317, gun 2053944.




Abstract

This chapter presents a statistical method for deriving the optimal prospective field
sampling scheme on a remote sensing image to represent different categories in the
field. The iterated conditional modes algorithm (ICM) is used for segmentation fol-
lowed by simulated annealing within each category. No pre-sampling of field data
is required. The number of sampling points in each category is proportional to the
size and variability of the category. Derived field sampling points are more intense
in heterogenous segments. This method is applied to airborne hyperspectral data
from an agricultural field. The combination of the ICM algorithm with simulated an-
nealing for optimized sampling, results in an elegant and powerful tool for designing
the optimal prospective sampling scheme. Such a scheme is useful as it is constructed
prior to fieldwork, for categories obtained from remote sensing images. The optimized
sampling scheme shows superiority to simple random sampling and rectangular grid
sampling in estimating common vegetation indices and is thus more representative of
the whole study area.

Keywords

Optimized sampling, iterated conditional modes, segmentation, simulated annealing,
stratified.
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2.1 Introduction

Sampling entails the selection of a part of a population to draw inference about
the whole population. Random sampling is attractive as it implies unbiasedness,
resulting in independent observations, which are a basic requirement for statistical
inference. In geological and vegetational studies, though, it may conflict with the
desire for representativeness. For example, points could be confined to only one part
of the area of interest and specific local features may be missed. Geostatistical data
often show spatial autocorrelation, hence random sampling may no longer be optimal
and for some purposes equally spaced samples or clustered samples are more useful.
In addition, estimation of the population mean may benefit from partitioning into
homogeneous strata (Thompson, 1992).

Research over the past three decades has advanced in segmenting images composed
of multiple bands. Image segmentation may be viewed as a form of data mining,
creating objects from pixels, as such resulting into a more informative image than
any of its individual spectral bands or individual pixels (Theiler & Gisler, 1997).
Image segmentation applies to tomography, remote sensing and pattern recognition.

Segmented hyperspectral images have various applications. In this study the design
of the optimal prospective sampling scheme is considered. Design of prospective sam-
pling schemes for classification using ground truth samples has been problematic in
geological and vegetational studies. In the past samples have been randomly selected
aided with some form of disciplinary judgement (Lu et al., 2003; Brus et al., 1999).
High spatial and spectral resolution hyperspectral imagery now makes it possible to
select sampling locations in advance of fieldwork. Such images provide a synoptic
overview of a large area and often provide topographic information that are more
accurate and detailed than ground truth maps (Curran & Williamson, 1985).

In context of vegetational studies, biophysical parameters, such as leaf area index
(LAI), biomass, chlorophyll concentration, and photosynthetic activity, are impor-
tant for estimating foliage cover and forecasting vegetation growth and yield (e.g.,
Haboudanea et al. (2004)). By selecting appropriate bands, a segmented image can
reflect spatial information of variability of certain biophysical parameters, and one
could potentially optimize field visits to better estimate these parameters of interest.

Prospective sampling scheme optimization, in support of agricultural studies, based
on remotely-sensed segmented images has not been demonstrated in the literature.
This chapter considers the design of the optimal prospective sampling scheme for field
visits in an agricultural study, using a segmented hyperspectral image. The optimal
prospective sampling scheme will be representative of the whole study area for various
parameters embedded by the segmentation and bands selected for the segmentation.
For image segmentation the iterated conditional modes (ICM) algorithm (Besag, 1986)
is used. ICM was chosen since it is reliable and computationally less demanding.
Subsequentially, simulated annealing, is applied to optimize sampling within each
segmented category. The chapter is illustrated with airborne hyperspectral data,
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Figure 2.1: Study area in Tedej, Hajdu-Bihar area, Hungary.

DAIS-7915 acquired over the Tedej area in Hungary.

2.2 Study site

2.2.1 Study area

Tedej, Hajdu-Bihar area, Hungary (see Figure 2.1), approximately 1500 ha, is an
intensively cultivated agricultural land neighboring a natural protection park area
(Kardevan et al., 2003). Soil categories characteristic to this area are Chernozems,
Phaeozems, Solonchaks and Solonetz (Kardevén et al., 2003) and major crops are
barley, maize, sugar beet, sunflower and alfalfa.

This study area also includes non-vegetation areas (cultivated areas and pathways
between fields), and as such was ideal for constraining the sampling. An appropriate
sampling scheme, representative of the different crop categories, consist of samples
distributed evenly over the respective categories of interest, at the same time avoiding
the boundaries of crop categories because of the higher levels of uncertainty at the
boundaries.
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Figure 2.2: Hyperspectral image of study area in Tedej, Hajdu-Bihar area, Hungary.

2.2.2 Remote sensing

In this study, a subset of the Digital Imaging Spectrometer (DAIS-7915), is used. The
resulting data is a 79 channel hyperspectral image that was acquired over the Tedej
area (see Figure 2.2). DAIS-7915 is a whisk broom sensor, covering a spectral range
from visible (0.4 pum) to thermal infrared (12.3 pm) at variable spatial resolution
from 3-20 m depending on the carrier aircraft altitude (Lehmann et al., 1995). The
79 channels consist of varying bandwidths which are useful for a large variety of
applications.

Flights took place on the 17th and 18th August 2002. Absence of clouds and wind
on the second day were appropriate and hence this image was used for the study.
Atmospheric effects were minimized by applying an empirical line calibration method
(Roberts et al., 1985) to match field spectra measurements. The study area is shown
in Figure 2.1 and the hyperspectral image is shown in Figure 2.2 at 5 m nominal
resolution on the ground.

Assuming that ground truth data are unavailable at the time of designing a sam-
pling scheme, the bands selected were in close proximity to the wavelengths used in
Thenkabail (2002) to identify discriminating crops. The 18 bands selected were: 1
(0.496 pm), 4 (0.551 pm), 10 (0.657 pm), 11 (0.675 pm), 12 (0.693 pm), 13 (0.710 pm),
14 (0.727 pm), 15 (0.744 pm), 23 (0.886 pm), 25 (0.921 pm), 29 (0.988 pum), 32
(1.035 pm), 33 (1.539 pm), 37 (1.668 pm), 39 (1.727 pm), 49 (2.084 pm), 54 (2.158 pm)
and 59 (2.232 pm). These include a series of visible, near-infrared and short-wave-
infrared bands. Bands 41-48 (1.958-2.068 pm) and 62-72 (2.275-2.412 pm) were
noisy and were not considered for selection since they could affect the results of the
segmentation. Furthermore, the wavelengths of these bands are usually not considered
as being very effective for discriminating between crops as opposed to other bands
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(Thenkabail, 2002).

The methodology is illustrated on a 600 x 400 pixel hyperspectral image, displayed as
a black box in Figure 2.1, using the 18 spectral bands. The number of categories in
the image is determined by executing an iterative procedure using the Bayesian Infor-
mation Criteria (BIC). To avoid slow convergence and insufficient computer memory
(Fraley & Raftery, 2003), a random sample of pixels was selected. The number of
categories was determined repeatedly on subsets of the image for more stable results.
The results indicate either seven or eight categories in the image. Since ICM allows
merging of categories by resulting in empty categories if they are similar, the algo-
rithm was applied to eight categories. Other, more complex methods of determining
the number of categories can be found in Stanford & Raftery (2002) and Forbes &
Peyrard (2003) using Pseudolikelihood Information Criteria (PLIC) instead of BIC.
It was not intended here, however, to compare performance of these methods or the
actual ICM algorithm.

2.3 Methods

2.3.1 The ICM Algorithm

Adequate image segmentation takes into account both spectral features and spatial
information. Applications of the Markov Random Fields (MRF) have been useful in
this respect (Besag, 1986). The choice of ICM was rather subjective and various other
segmentation methods are possible.

The ICM algorithm was applied to include K categories and m spectral bands on an
image I of N pixels, where (¢,7) € I index the pixel in the image at row i column j
and f;; is the m-dimensional feature vector for pixel (i, 7).

For each category k =1,2,..., K, let

. C,(ga) denote the set of pixels which belongs to the kth category and C(®) =
Uszl C,(Ca) the segmented image at the ath iteration, « =0,1,2, ...,

° N,Ea) denote the number of elements in C,(ca), i.e. the number of pixels in the
kth category at the ath iteration,

° M](f‘) = Z fij /N, ,ga) be the m-dimensional mean vector of the kth category

(i.j)ecy™
at the ath iteration.

For initialization, assume that the feature vectors f;; are conditionally indepen-

dent and follow a multivariate Gaussian distribution. Only spectral information

was utilized to obtain the mean vectors, ’ugo)“uéo)7 . 7/1%))7 for the K categories.
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Figure 2.3: Calculation of NZ(JQ)(IC) for an arbitrary interior pixel (4,j) belonging to category k.

In this study, the K-means multivariate clustering algorithm (Hartigan & Wong,
1979) was used to determine initial mean vectors. For each pixel (,7) with fea-
ture vector f;;, the category k closest to the mean vector is determined, namely,

. oN\T (0) o . . . (0)
min (fij — ) (fij — ) and (7,7) is assigned to category k, i.e., (i,5) € C,"’.

The initial segmented image, based only on the spectral reflectance, is denoted as
cO =y, c.

At the first and subsequent iterations, o = 1,2, ..., the mean u,(ca) is determined for
each category k, as well as and the within-category variance v/(®)

R (@) (a)
V():Nz z (fij_ﬂk ) (fij_l‘k ) (2.1)

k=1 (i, j)ect™

A second order MRF was applied in which the neighbors of each pixel consists of its
eight adjacencies, with border pixels adjusted appropriately. Let Ni(f)(k) represent
the number of neighbors of pixel (7,j), currently classified as belonging to category

k at iteration . An example to determine the values of Ni(;l)(k) is illustrated in
Figure 2.3. Determine, for each pixel (i, j),

min { (fij - M;@)T (fij - Méa)) - ﬁv(a)Ni(f)(’f)} : (2.2)

where (3 is the spatial penalization parameter. After testing various values of 3 on
several images, it was decided to set 3 to 1.5. Let k* be the category that minimizes
Equation 2.2 for pixel (7,7). Then (i,j) moves to category k* if it presently belongs
to another category. After considering all pixels (7, j) € I, a categorized image Ccl) =
Ule C,(CO‘) is formed. Next, segmentation C(®*+1) is derived from C(®) by updating the
means ,u,(f), within category variance v(®) and neighbors N((Z;(k) This procedure is
applied repeatedly until convergence, that is, no pixels change category, or, in practice
for a predefined number of iterations to arrive at a final segmented image. Suppose
completion of ICM occurs at iteration r. Then the final segmented image is denoted by
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2.3. Methods

c = U,le C,(:). Hence, the sampling scheme is to be optimized over the ensemble
of the K categories, C,(f).

2.3.2 Sampling per category

The section now describes the method for obtaining the optimal prospective sampling
scheme within each category, after segmentation.

Sample size per category

For a pre-specified number of n samples, suppose a proportional allocation is assigned
to each category (Thompson, 1992). An elementary adjustment to the formula pre-
sented in Thompson (1992) was made to allow the minimum number of samples per
category to be n(g (see Equation 2.3) so that all categories are represented. The sam-
ple size per category is then obtained by distributing the remainder of the samples

(n - K- n(o)) proportionally according to the variability (V](CT)) and size (ngr)> of
the category. The sample size for category k equals

Nk(:r) V]E;T)
Tk

Z NIET) /V]gr)
k=1

where y,gr) = 1(T) z (fij - ,Ul(:)>T (fij - /h@) .

N
ko (i,jecy”

nE = n) + (n -K- n(0)> (2.3)

Sampling is optimized over each category since segmentation is governed by categories,
and sampling is carried out to characterize these categories. Choice of an appropriate
optimization technique and a relevant criterion is of importance as the samples are
to be spread over the category, consisting of several disjoint segments.

Simulated annealing per category

Simulated annealing is a general applicable optimization method to find the global
optimum of an objective function in the presence of local optima. In simulated an-
nealing, a fitness function ¢(S), depending on the sampling configuration S, has to
be minimized. Starting with a random sampling scheme Sy, let S; and S;;1 represent
two solutions with fitness ¢(S;) and ¢(S;1), respectively. Sampling scheme S;1; is
derived from S; by randomly replacing one of the points of S; towards a new point
not in S;. A probabilistic acceptance criterion decides whether S;;; is accepted or
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not:

1, if (Sit+1) < &(Si)
Pe(Si — Sit1) = exp (QS(SJ_QS(SH_I)> ) if ¢(Siy1) > #(S:) (24)

C

where ¢ denotes a positive control parameter, usually called the temperature in sim-
ulated annealing problems. The parameter c is lowered according to a cooling sched-
ule as the process evolves, to find the global minimum. A transition takes place
if S;4+1 is accepted. Next, a solution S;s is derived from S;;1, and the probability
P.(S;+1 — S;t2) is calculated with a similar acceptance criterion as Equation 2.4. At
each value of c, several transitions have to be made before the annealing can proceed,
and c can take its next value.

A linear cooling schedule has been chosen, which is slow but prevents solutions at
local minima to increase the chance of arriving at the global minimum. The cooling
schedule starts with an initial value ¢ which has an acceptance ratio () of 0.95 or
higher for alternative solutions. For [ = 0,1,2,..., the decrements of ¢ is given by
ciy1=7-¢, with0 <~y < 1.

Fitness function per category

Various choices of fitness functions ¢(S) can be made. For example, minimization of
the Mean Shortest Distances (MMSD)-criterion aims at even spreading of all sampling
points over the sampling region by minimizing the expectation of the distance between
an arbitrary chosen point and its nearest observation (Van Groenigen & Stein, 1998).
Each category is considered separately as a sampling region. The MMSD-criterion
was chosen since it is able to spread the sampling points over each category, each
category consisting of possibly several segments. In effect most segments in the image
will also be sampled since the objective of this criterion will force sampling points
to move to different segments, belonging to a common category, depending on the
distance between nearby segments.

The final segmented image C(") with N ,gr) observation points is considered on a finely

meshed grid in each of the C,(CT) categories. Since a remote sensing image is raster
based, the image is already on a finely meshed grid consisting of individual pixels.
Hence all chosen points correspond to pixels. Regular spreading can be formulated as
minimizing the expectation of the distance between an arbitrarily chosen point within
the category, and its nearest sampling point.

The initial sampling scheme for the kth category S](CO) is a random selection of ny, [see
Equation 2.3] points from category k. For Sy, the fitness function equals

—_

émmsp (Sk) = o) Z llexeisy — Wi (erip)|| (2.5)

N
ko (i,j)ecy”
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(a) (b)

Figure 2.4: (a) Segmented image and (b) Optimized sampling locations constrained to each cate-
gory.

where cy(;;) € C,(;) is a location vector denoting the (i, j)th pixel belonging to category
k and Ws, (cx(ij)) denotes the location vector of the nearest sampling point in S.

Minimizing Equation 2.5 results in an even spreading of sampling points within cat-
egory k, i.e. points will arrange at an equilateral triangular configuration. The final
sampling scheme S consists of all sampling points in the k categories, S = Uszl Sk.

2.4 Results

The MMSD-criterion is first illustrated on a segmented image with distinct boundaries
and regular segments. Next, it is applied to the DAIS-7915 image acquired over an
agricultural field in Hungary.

2.4.1 Experimental study

The method of deriving the optimal sampling scheme is applied to a segmented image
with three catergories. The objective was to illustrate the sampling technique, as the
ICM algorithm has already been proven in its field of image segmentation.

The image (Figure 2.4(a)) consists of three categories, and assume the standard devi-
ations of 10, 8 and 12 for each of the three categories. One category has two disjoint
segments on the left top and bottom part of the image to demonstrate sampling
being distributed over these segments. This allowed illustrating that sampling was
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Chapter 2. The optimal field sampling scheme on a remote sensing segmented image

constrained by the categories and segments.

A total sample size of 30 was distributed as 7, 8 and 15 for each of the three categories
using Equation 2.3. Simulated annealing was applied to the segmented image using
the MMSD-criterion as the objective function. The initial temperature was set at 10,
the cooling rate (v = 0.95), the number of iterations at each temperature 20000 and
the number of iterations without change 2000. The resulting sampling scheme is
shown in Figure 2.4(b).

2.4.2 Application

ICM was then applied to the subset hyperspectral data. The resulting segmented
image with eight categories is shown in Figure 2.5(b), which are the mean reflectance
values for bands 29, 39 and 1. The sampling scheme was optimized by using the seg-
mented image with eight categories. The image was first analyzed and adjustments
were made to prevent sampling in areas of no interest. First, pixels belonging to path-
ways, between fields and non-vegetation categories (cultivated areas) were removed
after segmentation but prior to sampling. Second, disjoint segments smaller than
10 pixels were removed from further analysis in the sampling stage. This decreased
the chance of sampling in segments that were a result of pure noise in the image as it
seemed impractical to sample in such small areas. However, if these are meaningful
segments, the above procedure can be performed without removal of these pixels.
Four of the eight categories were cultivated crops and hence combined with pixels
belonging to pathways between the fields to form a category that constrained sam-
pling. The resulting image is shown in Figure 2.6(a) where sampling was optimized
over categories 1-4.

As an illustration, a total sample size of 50 points was used. The number of samples
for each category was then determined using Equation 2.3 by stipulating the minimum
number of samples per category as 3. This resulted in 7, 11, 22 and 10 samples for
each of the four categories. Samples for each category were then optimized by using
simulated annealing and the MMSD-criterion as the fitness function. The distribution
of the 50 sampling points is shown in Figure 2.6(b). In this image, the optimized
prospective sample points tend to arrange in a triangular formation, while being
governed by the actual complexity of the segments. Most samples are also arranged
away from the borders of the segments.

2.5 Validation

This section demonstrates that the optimal prospective sampling scheme is suitable to
estimate various vegetation parameters. It is known that the Leaf Area Index (LAI)
is often used as a key variable in estimating foliage cover and forecasting vegetation
growth and yield (Haboudanea et al., 2004). Several researchers have shown that there
is a relationship between ground-measured LAI and vegetation indices (Spanner et al.,
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(a) Original hyperspectral image

(b) ICM Segmented image with eight categories

Figure 2.5: ICM image segmentation on the original DAIS-7915 hyperspectral image.
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M Category 1
M Category 2
B Category 3
B Category 4
B ERegions of

no interest

(a) Segmented image confining sampling regions to the four categories

M Category 1
B Category 2
B Category 3
B Category 4
B Eegions of

no interest

[1SamplePoint

(b) Optimized sampling locations of 50 points

Figure 2.6: Optimized sampling locations of 50 points distributed over the 4 categories.
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1990; Baret & Guyot, 1991; Chen, 1996; Chen & Cihlar, 1996; Fassnacht et al., 1997;
Brown et al., 2000).

The reason for the varying vegetation indices is that different indices are used to
capture different vegetation parameters of interest. Some indices are used to capture
the photochemical processes associated with photosynthesis (Chappelle et al., 1992;
Gamon et al., 1992; Daughtry et al., 2000; Broge & Leblanc, 2000; Haboudanea et al.,
2004), while others for retrieval of LAT estimates (Chen & Cihlar, 1996; Brown et al.,
2000; Qi et al., 2000), or to quantify vegetation fraction (Gitelson et al., 2001). In
all, vegetation indices are well correlated with various vegetation parameters such as
LAI biomass, chlorophyll concentration, and photosynthetic activity.

The Normalized Difference Vegetation Index (NDVT) developed by (Rouse et al., 1974)
is the most widely used vegetation index. In terms of the hyperspectral bands, NDVI

is defined as
Rgse — Rers

Rgge + Rers
where R, is the reflectance of the wavelength at  nm. The NDVI is based on the
contrast between the maximum absorption in the red due to chlorophyll pigments to
the maximum reflection in the infrared caused by leaf cellular structure. Figure 2.7(a)
shows the NDVI image, where brighter pixels are indicative of healthy vegetation.

NDVI = (2.6)

The Renormalized Difference Vegetation Index (RDVI) was developed by Rougean
& Breon (1995) to improve estimates of LAI. RDVI for the hyperspectral image is
defined as

_fisss — Rers
VRsss + Rers

Figure 2.7(b) shows the RDVI image, where brighter pixels are indicative of healthy
vegetation.

RDVI = (2.7)

The Modified Simple Ratio (MSR) developed by Chen (1996) was also designed to
improve estimates of LAI. MSR for the hyperspectral image is defined as

Rgse > | Rgge
MSR = -1 +1. 2.8
<R675 Rers (2:8)

Figure 2.7(c) shows the MSR image, where brighter pixels are indicative of healthy
vegetation.

In attempting to improve the vegetation indices with regard to background soil, Qi
et al. (1994) modified the Soil-Adjusted Vegetation Index (MSAVT), which is defined
as

1
MSAVI = 3 [(2R886 + 1)2 - 8(R886 — R675)] . (29)

Figure 2.7(d) shows the MSAVT image, where brighter pixels are indicative of healthy
vegetation. Also noticeable is the region with high salinity, running diagonally across
the center of the image, has high values for MSAVI since the effect of the background
soil is diminished.
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2.6. Discussion

Table 2.1: Comparison of sampling schemes.

Mean

NDVI RDVI MSR MSAVI

Image 0.59 8.8 1.34 1.24
Optimized sampling scheme 0.58 8.6 1.32 1.22
Random sampling scheme 1 0.49 79 1.18 1.09
2 0.38 6.1 0.94 0.89

3 0.45 70 111 1.06

Grid sampling scheme 1 0.49 7.8 1.14 1.13
2 0.53 8.2 1.25 1.13

3 0.53 8.3 1.26 1.15

Values in the table represent the average vegetation indices for each sampling scheme.

The above four indices are used to show that the optimal prospective sampling scheme
gives most precise estimates for each vegetation index compared to simple random
sampling and grid sampling. For simple random sampling, three sampling schemes
are designed, by randomly selecting 50 samples from the region of interest, to show in-
consistency in the estimates. For the rectangular grid scheme, three sampling schemes
were designed to again show inconsistency in the estimates. Initially, for each grid,
54 samples were selected, with a grid spacing of 300 m. The first sample was ran-
domly selected from a 300 x 300 m grid. Nine samples were arranged in a row and
six in a column, thus totalling to the 54 samples. For each grid sampling scheme, the
samples falling in the non-interest area were removed. This resulted in either three
or four samples removed from each grid sampling scheme. The average vegetation
index for each sampling scheme is then calculated and compared to the respective av-
erage vegetation index for all pixels in the area of interest. The results are shown in
Table 2.1. The optimized sampling scheme gives most accurate estimates for each veg-
etation index compared to the simple random and rectangular grid sampling schemes.
Inconsistencies are apparent for each of the latter two sampling designs.

2.6 Discussion

The sampling methodology presented in this chapter was tested on a synthetic seg-
mented image with three categories, one of which had two disjoint segments. Each
segment had a distinct boundary with a regular shape. The 30 samples were well dis-
tributed over the three categories. The sampling points for the category consisting of
two disjoint segments were distributed evenly among these segments. This was useful
as the MMSD-criterion was appropriately spacing the sampling points. The sampling
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Chapter 2. The optimal field sampling scheme on a remote sensing segmented image

scheme in this simple illustration implies that with irregular segments created in real-
istic applications, the MMSD-criterion will distribute the samples over each category
appropriately. The resulting samples will thus be representative of these categories.

The sampling methodology was further tested on a subset of a DAIS-7915 hyperspec-
tral image by initially applying the ICM algorithm. The samples per category were
obtained in proportion to the size and variability of the category as fewer samples
are required to estimate smaller, more homogenous categories. The assumption that
categories, comprising of possibly several segments, are homogeneous, logically makes
it possible to spread sampling points over each category by using the MMSD-criterion
as the fitness function in simulated annealing. Although simulated annealing is a slow
process, it arrives at the global optimum. Disjoint segments for each category results
in many local minima for the fitness function and hence necessitates such an algo-
rithm. Most of the samples are away from the boundaries of these categories where
uncertainty is high. This highlights the appropriateness of the implemented fitness
function. This is further supported by samples spread over the categories, forming
an equilateral triangular structure. It depended though on the spatial complexity
of the category. Since these sampling points are geo-referenced, the location can be
determined for field visits at these sampling points on the ground.

Field spectral measurements of agricultural crops could be used, for example, to study
health of crops and thus are important for estimating foliage cover and forecasting
vegetation growth and yield. This necessitates regular field visits. Because fields
of agricultural crops may be homogeneous (planted with only one particular type of
crop) or heterogeneous (planted with a group of different types of crops), the lack
of this prior information can make field sampling non-optimal. Classification of agri-
cultural fields is therefore useful in the optimization of prospective sampling schemes
to support provisions that will sustain economic crop productivity. This hypothesis
converges with Thompson (1992) suggestion that estimation of the population mean
may benefit from partitioning a study area into homogeneous strata.

Using appropriate band ratios, commonly used vegetation index maps were used to
compare the optimal prospective sampling scheme to simple random sampling and
rectangular grid sampling schemes. The optimal prospective sampling scheme results
in estimates for each of the four vegetation indices considered that are closest to the
actual averages for all pixels in the image. The rectangular grid sampling schemes
also have reasonably accurate estimates but depends highly on the initial random
sample. Inconsistencies between each rectangular grid sampling scheme can be ob-
served. The estimates are poor using simple random sampling and inconsistencies for
these sampling schemes are high. The optimized sample points therefore represent
the whole study area more accurately than either of the other two sampling schemes
for each of the different parameters of interest.

The ICM algorithm has regularly been applied for various purposes as it is quick and
produces reasonably accurate categories. The drawback is that it may arrive at a
local optimum, hence emphasizing the choice of initial means. For this reason, the K-
means multivariate clustering algorithm was used as opposed to randomly selecting
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points in the image to represent the means for each category. Choice of spectral
bands to use and restriction of categories to sample depends on the application and
actual data. This is inevitable as relying solely on segmentation can result in sampling
categories of no interest. Although bands selected in this study are not necessarily the
optimal discriminating bands, they are commonly used for calculating the red-edge,
vegetational indices or the amount of stress in vegetation. The segmented image thus
inherit these qualities and resulted in an optimal prospective sampling scheme that
best estimates the various vegetation indices.

Sampling of categories is not restrictive to the use of the ICM algorithm and in
this sense any other segmentation method may be used. This methodology uses
remote sensing in designing optimal prospective sampling schemes on the ground for
field visits as opposed to the traditional way of selecting samples randomly or on
the basis of disciplinary judgement. The selected samples will in effect have image
characteristics, such as, gray tone, texture or pattern, depending on the type of
segmentation performed.

2.7 Conclusions

This study resulted into three main conclusions.

e The combination of the ICM algorithm for image segmentation and simulated
annealing for optimized sampling provides an elegant and powerful tool in de-
signing prospective sampling schemes using hyperspectral data.

e The optimized prospective sampling scheme shows superiority to simple ran-
dom sampling and rectangular grid sampling in estimating common vegetation
indices and is thus more representative of the whole study area.

e The synthetic segmented image illustrates the use of the MMSD-criterion by
ensuring allocation of sampling points in disjoint segments belonging to a com-
mon category. In regular segments, samples appeared in an almost equilateral
triangular design, thereby implying the appropriateness of the MMSD-criterion
for complicated practical applications.
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Chapter 3

Optimization of field sampling for
target minerals identified from
hyperspectral data

Dig where gold is ... unless you just need some exercise.

John M. Capozzi

This chapter is based on P. Debba, F. J. A. van Ruitenbeek, F. D. van der Meer, E.
J. M. Carranza and A. Stein (2005). Optimal field sampling for targeting minerals
using hyperspectral data, Remote Sensing of Environment, Vol 99, (pp. 373-386).!

1This work was sponsored by ITC International Institute for Geo-Information Science and

Earth Observation, project number 3083022 and NRF National Research Foundation, project num-
ber 10317, gun 2053944.
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Abstract

This chapter presents a statistical method for deriving optimal spatial sampling
schemes. It focuses on ground verification of minerals identified and estimated from
hyperspectral data. Spectral angle mapper (SAM) and spectral feature fitting (SFF)
classification techniques were applied to obtain rule mineral images. Each pixel in
these rule images represents the similarity between the corresponding pixel in the hy-
perspectral image to a reference spectrum. The rule images provide weights that are
utilized in objective functions of the sampling schemes, which are optimized through
a process of simulated annealing. A HyMAP 126-channel airborne hyperspectral data
acquired in 2003 over the Rodalquilar area in Spain serves as an application to target
those pixels with the highest likelihood of occurrence of a specific mineral, and as a
collection, the location of these sampling points selected represent the distribution
of that particular mineral. In this area, alunite being a predominant mineral in the
alteration zones was chosen as the target mineral. Three weight functions are de-
fined to intensively sample areas where a high probability and abundance of alunite
occurs. Weight function I uses binary weights derived from the SAM classification
image, leading to an even distribution of sampling points over the region of interest.
Weight function IT uses scaled weights derived from the SAM rule image. Sample
points are arranged more intensely in areas of abundance of alunite. Weight function
IIT combines information from several different rule image classifications. Sampling
points are distributed more intensely in regions of high probable alunite as classified
by both SAM and SFF, thus representing the purest of pixels. This method leads to
an efficient distribution of sample points, on the basis of a user-defined objective.

Keywords

Optimized sampling, simulated annealing, spectral angle mapper, spectral feature
fitting, weighted mean shortest distance, rule image, minerals, alunite, hyperspectral
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3.1 Introduction

Remote sensing imagery has contributed significantly to mineral exploration. For
example, mapping of faults and fractures that localize ore deposits and recognize
hydrothermally altered rocks based on their spectral signatures (Sabins, 1999). A
major problem with remote sensing approaches to mineral exploration using broad-
band multispectral sensors is the insufficient spectral resolution to map hydrothermal
alteration minerals, which exhibit subtle differences in spectral signatures (Clark,
1999). The advent of new hyperspectral sensor technology, in terms of both sensor and
technique development, has provided opportunity to revisit previous remote sensing
approaches to mineral exploration as well as development of improved methods.

Small bandwidths distinguish hyperspectral sensors from multispectral sensors, ac-
quiring spectral information of materials usually over several hundreds of narrow
contiguous spectral bands, with high spectral resolution on the order of 20 nm or nar-
rower (Polder & van der Heijden, 2001). As such, they allow identification of specific
materials, whereas broad-band multispectral data only allow discrimination between
classes of materials (Kruse et al., 2003). In effect, hyperspectral imaging systems are
useful in identifying individual iron and clay minerals, which can provide details of
hydrothermal alteration zoning (Sabins, 1999) based on specific absorption features
of these minerals. Thorough discussions on absorption features of hydrothermal al-
teration minerals can be found in Hapke (1993), Salisbury et al. (1991), Van der Meer
(2004), and Clark (1999). Various mapping of minerals using hyperspectral data can
be found in Kruse & Boardman (1997), Sabins (1999), Vaughan et al. (2003), Rowan
et al. (2000), and Crésta et al. (1998).

Surface sampling in the field is often advantageous for starting surveys. Identifica-
tion of hydrothermal alteration minerals like alunite, kaolinite and pyrophyllite, from
hyperspectral images leads to a better understanding of the geology and alteration
patterns in a region. As such, the analysis of airborne hyperspectral imagery can
aid in selecting follow-up targets on the ground before fieldwork is performed. In
this study the focus is on the mineral alunite as it is characteristic of hydrothermal
alteration zones in the Rodalquilar area in Spain (Arribas et al., 1995). Alunite has
a distinct spectral signature and is often, although not always, related to high sul-
phidation epithermal gold (Hedenquist et al., 2000). The purpose was to guide field
sampling collection to those pixels with the highest likelihood for occurrence of alunite,
while representing the overall distribution of alunite. The method offers an objective
approach to selecting sampling points in order to, for example, create a mineral al-
teration map. However, this method can be easily extended to other hydrothermal
alteration minerals that have diagnostic absorption features. Combination of several
mineral images can then be used in classification of the image to create an alteration
map.

Purposive sampling, where observations are made in linear traverses utilizing the
skills and knowledge of the field worker is a common geological sampling method
(Gupta, 2003). Consequences of such sampling include extrapolating observations for
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the study area as a whole, and leads to subjectivity (Gupta, 2003). A different way
of sampling is given by de Gruijter & ter Braak (1990). This requires definition of a
mathematical objective function, related spatially to the desired sampling points. The
objective function can be optimized through simulated annealing (Sacks & Schiller,
1988; McGwire et al., 1993; Van Groenigen & Stein, 1998). Simulated annealing is
a computer intensive search technique to find the optimum value of the objective
function by continually updating this function at successive steps. Optimal sampling
schemes have also been derived to guide sampling to target specific areas or “hot
spots” (Van Groenigen et al., 2000a,b). So far, these sampling schemes have not been
combined with remote sensing. Model-based sampling differs from designed-based
sampling that requires a random component, so that all parts of the area should have
a non-zero inclusion probability (de Gruijter & ter Braak, 1990).

The present study aims to use the spectral angle mapper (SAM) and spectral feature
fitting (SFF) to classify alunite and obtain rule images. Each pixel in a rule image
represents the similarity between the corresponding pixel in the hyperspectral image
to a reference spectrum. These rule images are then used to govern sampling to areas
with a high probability of alunite occurring and to intensively sample in areas with
an abundance of alunite. This effectively delineates favorable areas from unfavorable
ones and provides an objective sampling scheme as an initial guideline. The optimal
sampling scheme to target areas of a particular hydrothermal alteration mineral is the
objective of this study. Such an optimal prospective sampling scheme could poten-
tially be used for mineral exploration, which can be time-consuming, cost-prohibitive
and involve a high degree of risk in terms of accurate target selection (Srivastav et al.,
2000). The study is illustrated with hyperspectral data acquired over the Rodalquilar
area.

3.2 Study area

3.2.1 Altered rocks in Los Tollos area

The Los Tollos area is part of the Rodalquilar mineral district in the Sierra del Cabo
de Gata volcanic field, in south-eastern Spain (Figure 3.1). Volcanic rocks in the dis-
trict range in composition from pyroxene-bearing andesites to rhyolites. These rocks
have been intensely altered primarily due to volcanic geothermal activity (hypogene
alteration) and secondarily due to chemical weathering (supergene alteration). As-
sociated with some parts of the intensely altered rocks are high sulphidation gold
deposits and low sulphidation base metal deposits. Arribas et al. (1995) distinguish
five hydrothermal alteration zones: silicic, advanced argillic, intermediate argillic, ser-
ictic, and propylitic (Table 3.1). In addition to hypogene advanced argillic alteration
is supergene advance argillic alteration, which Arribas et al. (1995) call Stage 2 alu-
nite. The Los Tollos area was selected because it remains relatively undisturbed by
previous mining activities in the district. The volcanic rocks in the Los Tollos area
have been affected by intense silicic, advanced argillic, and stage 2 alunite alterations.
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Figure 3.1: A generalized geological map (modified after Cunningham et al. (1990)) of the Ro-
dalquilar study area showing the flight line (dotted box) and the hyperspectral data (top right
corner and dashed box) used in the present chapter.

Table 3.1: Summary of alteration zones and dominant minerals in the Rodalquilar area (Arribas
et al., 1995).

Alteration Zone Alteration Minerals

Silicic quartz; chalcedony; opal

Advanced Argillic quartz; alunite; kaolinite; pyrophyllite; illite; illite-smectite
Intermediate Argillic quartz; kaolinite; illite; illite-smectite

Sericitic quartz; illite
Propylitic quartz; illite; montmorillonite
Stage 2 Alunite alunite; kaolinite; jarosite
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3.2.2 Data

A sub-scene, consisting of 350 x 225 pixels of airborne imaging spectrometer data
was used. The data were acquired by the Hyperspectral Mapper (HyMAP) in July
2003 during the HyEUROPE 2003 campaign (Figure 3.1). HyMAP is a 126-channel
instrument that collects data in a cross-track direction by mechanical scanning and
in an along-track direction by movement of the airborne platform. The instrument
acts as an imaging spectrometer in the reflected solar region of the electromagnetic
spectrum (0.4-2.5 pm). Spectral coverage is nearly continuous in the SWIR, and
VNIR regions with small gaps in the middle of the 1.4 and 1.9 pm atmospheric water
bands. The spatial configuration of the instrument accounts for an IFOV of 2.5 mrad
along track and 2.0 mrad across track resulting in a pixel size on the order of 3-5 m
for the data presented in this chapter. Due to instrument failure the SWIR 1 detector
did not function during acquisition, thus no data were acquired in the 1.50-1.76 pm
window. The HyMAP data were atmospherically and geometrically corrected using
the Atmospheric and Topographic Correction (ATCOR 4) model (Richter, 1996).

In support of the imaging spectrometer data, field spectra were collected from some
parts of the study area during the over-flight using the Analytical Spectral Device
(ASD) fieldspec-pro spectrometer. This spectrometer covers the 0.35-2.50 ym wave-
length range with a spectral resolution of 3 nm at 0.7 yum and 10 nm at 1.4 and
2.1 pm. The spectral sampling interval is 1.4 nm in the 0.35-1.05 pm wavelength
range and 2 nm in the 1.0-2.5 pm wavelength range.

The SWIR 2 detector of HyMap, with a spectral range 1.95-2.48 pym (bandwidth
16 nm), is potentially useful for mapping alteration assemblages as well as regolith
characterization (Abrams et al., 1977; Goetz & Srivastava, 1985; Cudahy et al., 2000;
Papp & Cudahy, 2002; Kruse, 2002). HyMAP has been used successfully to map min-
erals (Martini et al., 2003; Martini, 2003; Papp & Cudahy, 2002; Cudahy et al., 2000)
and detect faults and fractures (Martini et al., 2003). Dimensionality of the data was
reduced by considering only the channels in the spectral range 1.970-2.468 pm. This
spectral range covers the most prominent spectral absorption features of hydroxyl-
bearing minerals, sulfates and carbonates, which are common to many geologic units
and hydrothermal alteration assemblages (Kruse, 2002). These minerals also exhibit
distinctive absorption features at wavelengths in the partly missing range of 1.4-
1.7 pm, a range also affected by the water absorption features in the atmosphere.

Figure 3.2 shows spectral plots of seven of the most prominent alteration minerals in
the study area (Arribas et al., 1995), at a spectral resolution coinciding with HyMAP
after continuum removal was applied. Continuum removal normalizes the respective
spectra to enable comparison of absorption features from a common baseline. The
continuum is a function of the wavelength that is fitted over the top of the spectrum
between two local spectra maxima. A straight line segment joins the first and last
spectral data values taken as the local maxima (Clark et al., 1991; Clark & Roush,
1984). This figure shows differences in absorption features of the different minerals,
in terms of shape, size, symmetry, depth and wavelength position. These distinct
characteristics enable researchers to identify individual minerals from hyperspectral
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Figure 3.2: Plot of 7 end-members from USGS spectral library (Clark et al., 1993) for the 30
selected channels, enhanced by continuum removal.

data. The spectrum of quartz has no distinctive absorption feature (in this spectral
range), but the remaining spectra have distinctive absorption features at wavelengths
near 2.2 um, each differing slightly in position and geometry.

Alunite was chosen among the seven most prominent alteration minerals in the area
(Hedenquist et al., 2000) because it has distinct absorption characteristics (Hapke,
1993; Salisbury et al., 1991; Van der Meer, 2004; Clark, 1999), which are recognizable
from hyperspectral images (Kruse & Boardman, 1997; Sabins, 1999; Vaughan et al.,
2003; Rowan et al., 2000; Crésta et al., 1998). Although this study concentrates on
one hydrothermal mineral, namely alunite, the method demonstrated can easily be
extended to other minerals of interest. The test image selected was in an area that was
relatively undisturbed through excavation, hence between 2—3 km from the nearest
gold mining area as indicated in Figure 3.1.

3.3 Methods

The method for obtaining the optimal sampling scheme commences with application
of two classification techniques used, namely, spectral angle mapper (SAM) (Kruse
et al., 1993) and spectral feature fitting (SFF) (Clark et al., 1991) to obtain rule
images. The digital number (DN) values in a rule image represent similarity between
each corresponding pixel’s spectrum to a reference mineral spectrum, resulting in one
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rule image for each mineral considered. Binary and scaled weights are then derived
from the rule images. These weights are used in a mathematical objective function
(defined in Equation 3.7, see also Van Groenigen et al. (2000b)), which is optimized
in relation to the spatial distribution of the georeferenced image pixels representing
a collection of alunite samples in the field. The aim of optimizing the objective
function is to spread the location of the alunite sampling points over the region while
targeting pixels that have a high probability of being alunite. In effect, the location
of these samples in the field will be dense if distributed in areas with an abundance
of alunite and where pixels have a high probability of being alunite. Optimization
of the objective function is an exhaustive combinatorial problem. The complexity of
the objective function and the iterative process of randomly selecting a pixel in the
image, as a new sampling point replacing an old one from the collection give rise to
many local optima, which is solved through simulated annealing.

3.3.1 Spectral Angle Mapper (SAM) Classifier

SAM is a pixel based supervised classification technique that measures the similarity
of an image pixel reflectance spectrum to a reference spectrum from either a spectral
library or field spectrum (Kruse et al., 1993). This measure of similarity is the spectral
angle (in radians) between the two spectra, where each is an m-dimensional feature
vector, with m being the number of spectral channels. Small angles indicate a high
similarity between pixel and reference spectra. For an image I, the spectral angle
0(X), for X €1, is given by

X) =cos™* ey
"= (||f<A>||-||e<A>|>’ (3.1)

where A is the wavelength range of the m spectral channels, f(\) is an unclassi-
fied m-dimensional image reflectance spectrum under observation and e()\) is an m-
dimensional reference spectrum. SAM is directionally dependent, but independent
of the length of the spectral vector, thus insensitive to illumination or albedo effects
(Crésta et al., 1998). It is also dependent on the user-specified threshold and wave-
length range. The result of using Equation 3.1 are grayscale images (SAM’s Rule
Images), one for each reference mineral, with DN value representing the angular dis-
tance in radians between each pixel spectrum and the reference mineral spectrum
(see Figure 3.3(a)). Darker pixels in the rule image indicate greater similarity to the
reference mineral spectrum. Further, if this angular distance is smaller than a user
specified threshold, the pixel is assigned to the category of the respective reference
mineral, leading to image classification. This algorithm has been implemented in
ENVI™ image analysis commercial software.

3.3.2  Spectral Feature Fitting (SFF)

SEFF matches the image pixel reflectance spectrum to reference spectrum from either
a spectral library or a field spectrum by examining specific absorption features in the
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(a) SAM classification rule image for alunite. Dark areas indicate smaller angles, hence,
greater similarity to alunite. This figure also shows the location of the field data.

(b) SFF fit image for alunite. Lighter areas indicate better fit values between pixel re-
flectance spectra and the alunite reference spectrum. This figure also shows the location of
the field data.

Figure 3.3: SAM and SFF (fit) Rule Images.
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spectrum after continuum removal has been applied to both the image and reference
spectra (Clark et al., 1991). Denote the continuum for the image reflectance spectrum
as cf(A) and for the reference spectrum as c.(A). The continuum is removed (Clark
& Roush, 1984) using

ee(N) = eN)/c(N)
L) = FO)/er(N) (3:2)

where e.()) is the continuum removed reference spectrum and f.(A) is the continuum
removed image reflectance spectrum. The resulting normalized spectrum reflect levels
equal to 1.0 if continuum and the spectrum match and less than 1.0 in the case of
absorption.

Similarly, the absorption feature depth is defined as

Dlec(N)] = 1—eA) =1—e(N)/cc(N)
DI = 1= £\ =1-F(N/es(N)

for each spectrum. The absorption feature depth has a unique magnitude and loca-
tion, both depending on the mineral and its chemical composition.

(3.3)

Scaling is usually necessary for reference spectra because absorption features in library
data typically have greater depth than image reflectance spectra. A simple scaling
function of the form e2(\) = ag + ajec(\) is useful, where ei(\) is the modified
continuum removed reference spectrum that best matches the image spectrum. For
an image I, the scale 75(X), for X € I, is determined using least squares that gives
the best fit to the image spectrum f.(\)

D[fe(N)] = a+ 75(X)Dlec(N)] - (3-4)

Hence the scale image, produced for each reference mineral, is the image of scaling
factors used to fit the unknown image spectra to the reference spectrum. The result
is a grayscale scale image, whose DN value corresponds to 75(X).

The total root-mean-squares (RMS) errors, 7(X), was defined as

1 2
T5(X) = \/m Z (D[fe(Xo)] = Dles(Ap)]) (3.5)
b
where )\, denotes the wavelength of channel b, b = 1,...,m. The result is a grayscale
RMS error image, with DN value corresponding to 7z(X).
The fit image equals
(%) = 75(X) /78(X) (3.6)

providing a measure of how well an image pixel reflectance spectrum match a reference
spectrum. A large value of 74(X) corresponds to a good match between the image
spectrum and the reference spectrum. The fit values were used as a rule image to
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weigh each pixel to a reference mineral, namely alunite (see Figure 3.3(b)). This
algorithm has been implemented in ENVI™ image analysis commercial software.
Further details on SFF can be found in Clark et al. (1991), Clark et al. (1992), Clark
& Swayze (1995) and Clark et al. (2003).

3.3.3 Sampling

Sampling by simulation annealing requires definition of a mathematical objective
function, called the fitness function.

Simulated Annealing

Simulated annealing is a random search technique that is analogous to the way in
which a metal cools and freezes into a minimum energy crystalline structure, called
the annealing process (Aarts & Korst, 1989). It forms the basis of an optimization
technique for combinatorial problems by finding the optimal value of a fitness function
numerically. In terms of sampling, it starts by randomly selecting a collection of
points in an image. A new point in the image is then randomly selected and replaces
a randomly selected old point from the current collection. This replacement occurs,
based on a probabilistic criterion, if the fitness function decreases, and if the fitness
function increases. Hence, the process allows inferior moves. Initially, the probabilistic
criterion is high, allowing a large probability of inferior moves. A parameter in the
annealing process is then reduced by a factor of 0.95 at each successive step, thereby
decreasing the probability of accepting inferior moves until the process stabilizes. The
final solution is independent of the initial random selection of points as the process
reaches the global optimum.

Consider a two-dimensional image I. Let the collection of all possible sampling
schemes with n observations on I be denoted by S™. A fitness function ¢(S™) :
S™ — R* that has to be minimized to optimize the sampling scheme must be defined.

Fitness function

The Weighted Means Shortest Distance (WMSD)-criterion is a weighted version of
the Minimization of the Mean Shortest Distances (MMSD)-criterion (Van Groenigen
et al., 2000b). The fitness function is extended with a location dependent weight
function that is scaled to [0, 1], namely, w(X) : T — [0, 1] by

Swsn(8") = 1 3 w(X) ||X - Wen (R (3.7)
Xel

where Wgn (X)) is the location vector of the sampling point in S™ nearest to X, N is
the number of pixels in the image and w(?) is a weight for the pixel with location
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vector X. The weights express knowledge or assumptions about the occurrence of
alunite in some parts of the region by controlling the sampling density in these areas.
Larger weights result in a higher likelihood of a pixel being selected in the final
sampling scheme.

This fitness function also spreads the location of the sampling points over the region
classified as alunite. Since these points on the image are georeferenced, they will
appropriately serve as target points to be sampled in the field. There will be a high
probability that the field sample points suggested are alunite and these points will
be spread according to the distribution of alunite as in the classified image. The
fitness function chosen should, in addition, be able to achieve the study purpose of
obtaining a collection of sampling points in the field that appropriately represent the
distribution of the mineral of interest. Three different weight functions were then
considered to meet the objectives.

Weight function I: Binary weights are used to indicate whether a pixel has a high
probability of alunite being present or not. Using SAM rule image derived by
application of Equation 3.1, a threshold #* is selected. The weight w(X), for an
arbitrary pixel X € I, is defined as

warey={ 0 ¥ 422

Weight function I, if used in the fitness function, will be restricted to those
pixels with a spectral angle smaller than the chosen threshold. This results in a
collection of sample points in the field that corresponds to the alunite classified
image. Each pixel being georeferenced, when selected by the algorithm, will be
a point to be sampled on the ground.

Weight function IT: For Weight function II, scaled weights indicate the degree of a
pixel’s probability of being classified as alunite and to sample intensively where
an abundance of alunite occurs. Using SAM rule image derived by application of
Equation 3.1, a threshold 6" is selected. Pixels with #(X) > 6" have zero weight,
otherwise the weight is a function of (X). Small spectral angles between image
and alunite reference spectrum correspond to a large weight. Here, the weight
w(X), for each pixel X, scaled to [0, 1] was used.

0 if (%) > 0t

, x
—\ t _ p=
w(f(X)) = 9&16779;}() ,if a(R) <o

(3.9)

where 6, is the minimum spectral angle occurring. Weight function II if
used in the fitness function will be restricted to those pixels with a spectral
angle smaller than the chosen threshold. The probability is largest to select a
pixel that is most similar to the alunite reference spectrum. The georeferenced
location of each pixel chosen by the algorithm in the final sampling scheme will
be a point to be sampled on the ground.
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Weight function ITI: For Weight function III, scaled weights are used based on
several rule images to guide sampling to areas with a high probability of being
alunite and to sample more intensely where an abundance of alunite occurs.
Using SAM rule image and SFF rule image, derived, respectively, by applica-
tion of Equations 3.1 and 3.6, thresholds ' and 7). are selected for SAM and
SEFF, respectively. Pixels exceeding either of these threshold angles receive zero
weight, otherwise the weight is a function of the spectral angle and the fit value.
Higher weights will emerge from smaller spectral angle between the image pixel
reflectance spectrum and reference alunite spectrum, and a larger fit value be-
tween these two spectra. Here, the weight w(?), for each pixel X, scaled to
[0, 1] was used.

1w (0(X)) + wows (T (X)),
wO(X), 7r(X)) = if (%) < 60" and 70(X) > 7% (3.10)
0, if otherwise

where 0 < K1, ko < 1 and k1 + K2 = 1. The weight for SAM: w1(§>) is defined in
Equation 3.9 and the weight for SFF: wy(X), for each pixel X, scaled to [0, 1]
is defined as
0, if (X)) <7k
—
el () =g Ty

t
TFmax — Tp

(3.11)

where T} is the minimum fit threshold value chosen and 7p max the maximum
value.

Weight function III, if used in the fitness function, will be restricted to those
pixels with a spectral angle smaller than the threshold chosen and with a fit
larger than the chosen threshold. The probability is largest to select a pixel
that is most similar to the alunite reference spectrum, in terms of both the angle
between these spectra and absorption feature fit. The georeferenced location of
each pixel chosen by the algorithm in the final sampling scheme will be a point
to be sampled on the ground.

Weight function III (Equation 3.10), is based on two rule images. This can easily
be extended to more than two rule images, by using different proportions «; for each
rule image ¢ conditional on Y k; = 1. Also, in terms of the method of SFF, several
absorption features could be considered for a particular mineral, producing a fit image
for each feature. These images could be combined in the same way, thereby increasing
the weights of image pixels having a spectrum similar to the mineral. This in effect
increases the probability of the mineral being selected in the sampling scheme.

3.4 Results

For each of the three weight functions, 40 samples were arbitrarily specified to il-
lustrate the distribution of these points for the proposed sampling scheme. Prior
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Threshold

Figure 3.4: Scatter plot of values in rule images obtained through SAM and SFF and the respective
thresholds chosen to represent similarity or fit to alunite.

to sampling, isolated segments (< 10 pixels) were removed. This was performed as
there was a high chance that they were a result of noise in the image and it seemed
impractical to sample in such small areas. However, if these are meaningful targets,
with very high probability of alunite, the above procedure can be performed without
removal of these pixels.

Weight function I: SAM was applied to each pixel in the image for the alunite

reference spectrum, resulting in a rule image (Figure 3.3(a)). By observing the
individual spectral reflectances of several pixels and choosing different thresh-
olds for #' it was decided to use a threshold of 0.11 radians. The values of
SAM rule image for alunite can be seen with respect to the horizontal axis of
Figure 3.4. Pixels less than 0.11 radians have weight one, otherwise zero. The
binary weights are given in Figure 3.5. The prospective sampling points result-
ing from using Weight function I are also displayed in Figure 3.5. Sampling
intensity is incorrectly represented because the prospective sampling points are
spread evenly over the distribution of alunite.

Weight function II: The DN values, 6(X), from SAM rule image in Figure 3.3(a)

were used in Equation 3.9 to obtain scaled weights. A threshold, 8% = 0.11 ra-
dians, was used. Pixels lying left of the 0.11 threshold (Figure 3.4) correspond
to positive weights. The resulting scaled weights are shown in Figure 3.6, corre-
sponding to a greater similarity to alunite reference spectrum. The prospective
sampling points result from using Weight function II are also displayed in Fig-
ure 3.6. The sample points are distributed over the alunite region and most
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Figure 3.5: Weight function I: SAM classified image based on a threshold of 0.11 radians for alunite.

Distribution of 40 sampling points.

O 0.5 1

- .+
Fi
¥ + .
+ 1 _r;l-i.-"
N 5
it L e S 7 3
+ B - :i_l‘_ T
B .1 -b- . + ++ ]
o
ik +
* T iy R
SR T Ty
_".‘ 'r H* i
* e

Figure 3.6: Weight function II: SAM scaled map for alunite using a threshold of 0.11 radians.

Distribution of 40 sampling points. Darker areas indicate greater similarity to alunite.
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Figure 3.7: SFF scaled map for alunite
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Figure 3.8: Weight function III: Scaled weights derived using SAM and SFF rule images for alunite
using their respective thresholds. Distribution of 40 sampling points. Darker areas indicate greater

similarity to alunite.
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Table 3.2: Weights derived from SAM (column) and SFF (row).

SFF SAM
00  (0.0,02] (0.2,04] (04, 06] (06,08 (0.8, 1.0
0.0 70603 615 238 84 40 8
(0.0,0.2] 2546 739 304 126 78 8
(0.2,04] 1183 710 332 111 37 7
(0.4,0.6] 304 333 156 49 10 1
(0.6, 0.8] 33 42 31 6 1 0
(0.8, 1.0] 4 3 4 4 0 0

Values in the table represent the number (frequency) of pixels that match in a certain
range.

points are arranged in the darker areas of the image.

Weight function ITI: SFF was applied to the alunite reference spectrum, resulting
in a scale image and an RMS error image. The ratio of these images, produces a
fit image (Figure 3.3(b)). The bright pixels represent the best fit to the alunite
reference spectrum. The DN values from the fit image, 77(X), was used in
Equation 3.11 to obtain the weights for SFF using a threshold value of 20 for
.. This threshold was chosen after individual spectral analysis of some pixels
and selecting several thresholds. The values of the rule images of SAM and
SFF can be seen in Figure 3.4. Pixels in the upper left quadrant correspond to
positive weights. In Equation 3.10, k1 = kg = % was used. The resulting weights
scaled to [0, 1] are shown in Figure 3.7. Darker areas have higher weights and
hence greater similarity to the alunite reference spectrum. SAM rule image for
alunite was used to obtain weights for SAM by the procedure described by the
previous weight function. Table 3.2 summaries the weights derived by SAM and
the weights derived by SFF. From the first row and first column, 6.5% of the
pixels receive zero weight from one classification but weights larger than zero
from the other classification. This can also be seen in Figure 3.4 corresponding
to the pixels in the upper right and lower left quadrants. These weights were
then combined using Equation 3.10 and are displayed in Figure 3.8. Darker areas
have higher weights and hence greater similarity to alunite reference spectrum
in terms of both SAM and SFF. The prospective sampling points resulting from
using Weight function III are also displayed in Figure 3.8. The sample points
are again distributed over the alunite areas and most of the points are found in
the darker areas of the image.

Sensitivity analysis

A sensitivity analysis of the proposed sampling schemes was performed using different
thresholds, namely, #* = 0.10 & 0.12 radians for SAM and 7} = 18 & 22 for SFF,
and using m = 10 and 15 spectral channels, as a subset of the original 30 channels.
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Changing the threshold, produce slightly different rule images. SAM and SFF also
produce different rule images when different channels are selected. For these differ-
ent possibilities and applying each weight function separately, it was desired that the
prospective sampling points result in accurate representation of the overall distribu-
tion of alunite and the location of these points to be consistent. For m = 15, every
alternative channel was chosen starting from the first of the original 30 channels, and
for m = 10, every third channel was selected starting from the second of the original
30 channels. Each prospective sampling scheme derived from a change of threshold
and input channels was compared to the corresponding initial prospective sampling
scheme as illustrated in Figures 3.5, 3.6 and 3.8 to determine the robustness of each
of the weight functions used. For each prospective sampling scheme derived, the aver-
age and the maximum distance (in m) to the nearest sampling point from the initial
prospective sampling scheme were calculated. Table 3.3 contains the results for these
comparisons. The effect of choosing different thresholds and channels varied most,
in terms of location of these sampling points, when the sampling scheme was derived
from binary weights. This was reduced when scaled weights were used. Combining
SAM and SFF weights, resulted in the most robust collection of prospective sampling
points, in terms of location, over the alunite region.

For each prospective sampling scheme, the method applied involves quadratic ker-
nel smoothing of the 40 samples as point pattern with a kernel width parameter
of 25 (Berman & Diggle, 1989; Rowlingson & Diggle, 1993). The distribution of
the prospective sample points for each scheme is illustrated in Figure 3.9. Nearby
prospective sampling points effectively produce darker patches in the images, thereby
indicating greater abundance of alunite. These images are comparable to the rule
images (Figure 3.3) or the classified image using SAM (Figure 3.5). This means that,
for most prospective sampling schemes, the distribution of the sample points corre-
sponds closely to the distribution of the alunite. For the binary weights, the intensity
of alunite occurring is incorrectly represented. In this respect, scaled weights produce
slight improvements.

From the classified SAM image, 40 sampling points were selected randomly (see Fig-
ure 3.9, the plot in the second row, last column). The distribution of alunite is
incorrectly represented. Furthermore, a different set of random samples will produce
different results. Samples with the highest weights derived from Weight functions IT
(see Figure 3.9, the plot in the fifth row, last column) and III (see Figure 3.9, the
plot in the eighth row, last column) were also selected. The distribution of samples
in these two sets of prospective sampling schemes can be seen in the same figure.
Almost all prospective sample points are restricted to one area in the image. Hence
by using the highest weights, prospective samples in the field will often be limited to
a small area.

Validation

Ground data collected using an ASD fieldspec-pro spectrometer were used to support
the derived prospective sampling schemes by validating the SAM classified image and
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Table 3.3: Sensitivity analysis of sampling schemes.

Weight Channels
function 10 15 30
I 0.10 radians mean 40.8 34.0 41.9
max 124.3 104.3 119.9
0.11 radians mean 52.1 37.9 °
max 141.4 1024 °

0.12 radians mean 53.2 41.1 47.0
max 144.2 120.9 124.2

1I 0.10 radians mean 28.4 25.1 28.4
max 89.4 544 1154

0.11 radians mean 39.8 32.7 °

max 138.7 119.3 °

0.12 radians mean 46.3 36.1 44.2
max 155.6 134.4 144.2

111 0.10 radians mean  27.3 22.8 20.8
& 22 fit max 88.1 62.6 70.9
0.11 radians mean 35.2 23.2 °
& 20 fit max 103.8 80.0 .
0.12 radians mean 33.2 27.7 33.8
& 18 fit max 102.0 83.2 109.8

Values represent the mean and maximum distance (in meters) between sampling
points in each new sampling scheme to the nearest sampling point in the correspond-
ing initial sampling scheme. The proposed sampling scheme for each of the three
weight functions is denoted by a e.
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Figure 3.9: Sensitivity Analysis Plots. Darker patches in the images indicate sampling points are
near to each other. This effectively implies greater abundance of alunite.
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Table 3.4: Validation using ground data.

Weight Ground data

No Minor  Abundant

alunite alunite alunite
Image Weight 0.0 26 7 4
data function I 1.0 0 6 8
Weight 0.0 26 7 4
function I~ (0.0, 0.2] 0 3 2
(0.2, 0.5] 0 3 5
(0.5, 1.0] 0 0 1
Weight 0.0 26 8 7
function IIT (0.0, 0.2] 0 2 1
(0.2, 0.5] 0 2 3
(0.5, 1.0] 0 1 1

Values in the table represent the number (frequency) of ground data that match image
data.

the images of the weights used. Reflectance spectra of 51 ground measurements (see
Figure 3.3) were analyzed individually for their alunite content and classified into
one of three classes, namely, “no alunite”, “minor alunite” and “abundant alunite”.
Table 3.4 summarizes the validation results for each of the three images used in
deriving the prospective sampling scheme. Using the ground data of those pixels
classified as alunite or not, the accuracy of SAM is 100 x (26 + 6 + 8)/51 = 78%.
Table 3.4 also shows that the selected thresholds were conservative since all pixels
above the threshold contain alunite.

Forty samples were also selected randomly from the entire image and then from SAM
classification image and their the average values were compared to the average values
of the prospective samples obtained by using Weight functions I, IT and IIT (Table 3.5).
The randomly selected samples over the entire image were poor, with average values
for each weight function low, average SAM value high and average SFF value low
as compared to the samples randomly selected from the classified image and to the
samples in the optimum prospective sampling schemes. The samples in the optimum
prospective sampling schemes performed best, with highest average values for each
weight function, lowest average SAM value and highest average fit value. Compar-
ing the three optimal sampling schemes, the sampling scheme derived from Weight
function IT is an improvement to that derived from Weight function I since it has a
lower average SAM value. The sampling scheme derived from Weight function III per-
formed best since it has a higher average weight compared to that of Weight function
I1, lowest average SAM and highest average SFF value.
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Table 3.5: Validation of sampling pixels.

Image Average pixel value of 40 samples
used Random: Random: Optimum
from image from SAM sampling
classified image scheme
Weight Weights 0.07 1 1
function I SAM (rad) 0.139 0.101 0.099
Weight Weights 0.01 0.18 0.29
function II ~ SAM (rad) — — 0.095
Weight Weights 0.01 0.16 0.33
function ITIT ~ SAM (rad)  — — 0.093
SFF (fit) 11.0 224 25.5

3.5  Discussion

Deriving optimum prospective sampling schemes that target areas with high proba-
bility and having greater abundance of alunite occurring was demonstrated by using
three different weight functions for the WMSD-criterion as an objective function in
simulated annealing. Predefined weights allow distinction between areas with differ-
ent priorities. Hence, sampling can be focused in areas with a high potential for the
occurrence of a mineral of interest and reduces sampling in areas with low poten-
tial. This could effectively reduce time and costs in the field. Randomly selecting
points in the image, as potential sites to sample on the ground, could result in the
location of these samples clustered and/or having a low probability of being alunite
(Table 3.5). Figure 3.9 shows that the abundance of alunite is incorrectly represented
when 40 random sample points within the classified region of alunite were selected.
These samples are not optimal as indicated by the average values of SAM, SFF and
the weights derived from these images (Table 3.5). Selecting a collection of sampling
locations that have the highest probability of being alunite could result in the location
of most sampling points clustered in the image (Figure 3.9). This implies sampling
in a limited area on the ground, and effectively these samples will not represent the
overall distribution of alunite over the entire study area. In the proposed sampling
schemes there is a balance between selecting samples that have a high probable alunite
and the location of samples not to be clustered in the field. A good sampling scheme
will target areas with high probability of alunite and the distribution of sample points
will correspond closely to the distribution of alunite. This means intensive sampling
in the area with an abundance of alunite.

For Weight function I, binary weights were obtained from a classified image derived
using SAM. These weights guided sampling to points in the image that were classified
as alunite. This sampling scheme depends upon the classified image using SAM and,
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in turn, upon the chosen threshold (Table 3.3). This, in effect, is a limiting factor of
the sampling design. In practice, the sampling scheme is designed before fieldwork
and hence no training data is available for selecting appropriate thresholds. The
threshold was selected prior to analyzing the field data and was purposely chosen to
be conservative, so that it is unlikely to classify a pixel as alunite when in fact the
pixel represents some other mineral on the ground. This can be seen in Table 3.4,
where no pixels other than alunite has the possibility of being selected as a point to
be sampled in the field. This was important for this study as it was preferred not to
incorrectly sample minerals other than alunite.

The prospective sampling scheme (Figure 3.5) resulting from Weight function I shows
a more or less even distribution of 40 sampling points for alunite in the area. A
shortfall of using binary weights is that, once the image is classified, each pixel in
the region has an equal chance of being selected and the sampling points will be
arranged in a way that any three points form roughly equilateral triangles depending
on the complexity of the classified region. If the mineral is spatially concentrated in
homogeneous areas, the location of the sample points obtained from Weight function I
will be most appropriate. In most cases, however, the distribution of a mineral on the
ground could be dispersed, hence the result using binary weights were improved by
defining scaled weights to target high probability areas of being classified as alunite.
This effect is observable in Table 3.5 as the average pixel value for SAM is lower for
the sampling scheme derived when using Weight function II as opposed to Weight
function I.

Weight functions IT and III each use the image derived from the respective scaled
weight functions, based on hyperspectral data, to guide the location of sample points
to those pixels with a high likelihood of alunite. Weight function II was derived from
the SAM rule image for alunite. The same threshold of 0.11 radians was used as in
Weight function I. The threshold chosen in this case can be set higher to include some
pixels with a reflectance spectrium similar to that of other minerals, example kaolinite
and pyrophyllite. This is not considered to be a major problem, as the scaled weights
used by the optimal prospective sampling scheme will be low, thereby reducing the
probability of selecting that pixel’s location as a point to be sampled on the ground.
This effect can be seen in the validation results in Table 3.4, where each pixel is
given a different weight depending on how similar the image reflectance spectrum is
to alunite spectrum. Use of a high threshold in Weight function I, however, can result
in selection of pixels representing presence of minerals other than alunite. This is
another disadvantage of using binary weights in the sampling scheme. The results
using scaled weights are promising, as more sample points are in areas with high
probability of alunite (dark areas in the image) and some samples are close to each
other, but not clustered, implying more sample points in the region with an abundance
of alunite. These results are quite valid, as one would sample more intensively in
these areas. The effect of using different thresholds and selecting different channels
has been reduced as compared to using binary weights (Table 3.3). The distribution
of alunite is also more accurately portrayed in the image (Figure 3.9). The major
disadvantage of Weight function II is that these scaled weights are derived solely from
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the SAM results and other useful information contributing to classification of a pixel
are not taken into account. Introducing another classification provides additional
information, and the procedure to combine the information uses scaled weights, with
higher weights corresponding to areas of higher probability of alunite.

Weight function IIT uses two rule images, one derived from SAM and another from
SFF. A comparison of the scaled weights derived from SAM and SFF (Table 3.2),
indicates that the methods for SAM and SFF do not always agree. This can also be
seen in Table 3.4. Only the purest pixels classified as alunite have positive weights.
The advantage of combining SAM and SFF classification methods in the weights func-
tion results in a classified image that is more robust for the thresholds and selected
channels. The weights derived from SAM and from SFF were then combined into a
single weight image, which was used for the design of the optimal sampling scheme.
In terms of robustness of the thresholds and channels selected, the prospective sam-
pling scheme shows improvements to both the binary weights used and the scaled
weights derived solely from the rule image of SAM (Table 3.3). A suitable range
for the thresholds has to be known. This can be obtained by observing individual
spectra and the purest of these can be selected to train the thresholds. Using the
combined weights from SAM and SFF, sample points can be concentrated in the re-
gion with a high probability of alunite, which are more robust against the thresholds
selected. The distribution of sample points corresponds closely to the distribution of
alunite (Figure 3.9). Weight function III also produces the best sampling result, with
highest average weight, lowest average SAM values and highest average SFF values
(Table 3.5).

The prospective sampling schemes derived are of interest to (a) exploration geolo-
gists for specified target locations of hydrothermally altered minerals (e.g. alunite)
with distinct absorption features, (b) researchers trying to understand the geothermal
system and hydrothermal zones in a specific region and (c¢) engineers to better col-
lect field data in relation to flights by improving on ground truthing and calibration
measurements. With the aid of new spaceborne launched hyperspectral sensors, e.g.
Hyperion and ARIES-1, data are available for most regions and hence will be helpful
to geologist’s planning phase of selecting important mineral targets in the field. The
methods presented here could result in reduction of time and effort in the field, but by
no means replace the field geologist. It is merely an aid for target selection of minerals
as an initial survey, followed by denser surface sampling of interesting anomalies.

3.6 Conclusions
This study resulted into three main conclusions.

e Combination of SAM and SFF rule images results in robust weights to focus
sampling in areas of high probability of alunite. The resulting sample scheme
also produces the best sampling result, with highest average weight, lowest

50



Chapter 3. Optimization of field sampling for target minerals

average SAM and highest average SFF values. Prospective sample points are
arranged more intensely in areas with an abundance of alunite.

SAM and SFF both lead to a relevant classification of the study area with
respect to alunite, as observed from the rule images and validation of the rule
images using ground measurements.

A sensitivity analysis showed that prospective sample points derived from the
combination of SAM and SFF classification are more stable against changes in
thresholds and channels selected. Moreover, distribution of the location of these
prospective samples in space corresponds closely to the intensity of alunite.
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Chapter 4

Optimization of exploration targets
on mineral prospectivity maps

Prospecting is not what it once was. Unless you want to walk the same ground and not find
anything either, you have to be prepared to prospect differently than the Old-Timers did.

Clyde H. Spencer

This chapter is based on P. Debba, E. J. M. Carranza, A. Stein and F. D. van der
Meer (In review) Optimum allocation of exploration targets on mineral prospectivity
maps, Mathematical Geology.!

1This work was sponsored by ITC International Institute for Geo-Information Science and
Earth Observation, project number 3083022 and NRF National Research Foundation, project num-
ber 10317, gun 2053944.
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Abstract

This chapter describes a quantitative method for optimally locating exploration tar-
gets based on a probabilistic mineral prospectivity map, which was created by means
of weights-of-evidence (WofE) modeling. Locations of discovered mineral occurrences
were used as a training set and a map of distances to faults/fractures and three chan-
nel ratio images of HyMap hyperspectral data were used as evidences. The WofE
posterior probability map was input to an objective function that optimized location
of exploration targets. The method was applied to the Rodalquilar mineral district
(SE Spain). Optimized exploration target zones spatially coincide with undiscovered
mineral occurrences, namely, those not used to train the WofE model input, and
show other zones without mineral occurrences within delineated prospective ground.
The results indicate usefulness of the described optimization method to allocate ex-
ploration targets for undiscovered mineral occurrences based on probabilistic mineral
prospectivity maps.

Keywords

Simulated annealing, epithermal mineralization, weights-of-evidence, hyperspectral
remote sensing, hydrothermal alteration
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4.1 Introduction

In mineral districts, locations of mineral occurrences are available in the form of
mines and prospects. These locations are used for training in data-driven predic-
tive mapping of prospective ground. There are several ways of doing so. Particular
possibilities include the weights-of-evidence (WofE) method (Agterberg et al., 1990;
Bonham-Carter et al., 1988), linear regression (Chung & Agterberg, 1980), logistic
regression (Agterberg & Bonham-Carter, 1999), canonical favorability analysis (Pan,
1993), neural networks (Porwal et al., 2003; Rigol-Sanchez et al., 2003) and evidential
belief functions (Carranza & Hale, 2003). Mineral prospectivity maps are then usu-
ally used to guide further mineral exploration. A logical question regarding efficacy of
mineral prospectivity maps is: “Where should targets of exploration for undiscovered
mineral occurrences be focussed?” This question is likely to be answered on the basis
of any of the predictive mapping methods.

To provide a plausible answer to this question in a case study, a mineral prospectivity
map was first created by employing the WofE method. The results were then used to
define foci of exploration targets. WofE modeling is based on a Bayesian probability
framework to update the prior probability of mineral occurrence per unit cell or
pixel in a study area, given a set of geological evidences spatially associated with the
mineral occurrences. This leads to the posterior probability of mineral occurrence per
unit cell or pixel in that area. The WofE method is easily implementable in common
Geographic Information System (GIS) software. It is postulated, however, that the
proposed method of locating foci of exploration targets is adaptable to using other
methods for mineral prospectivity mapping.

The proposed methodology aims to derive the optimal allocation scheme to set explo-
ration targets on mineral prospectivity maps, whereby each target represents a focal
zone that coincides spatially with or is proximal to undiscovered mineral occurrences.
Derivation of the optimal allocation scheme is done with simulated annealing. Previ-
ous studies of simulated annealing applications to obtain optimal sampling schemes to
guide sampling to target specific areas, involved stratification (Van Groenigen et al.,
2000a), using thresholds (Van Groenigen et al., 2000a), defining a weight function
(Van Groenigen et al., 2000b) and using ordinary kriging (Shieh et al., 2005). Studies
on the design of optimal sampling schemes in combination with remote sensing used
fuzzy classification (Tapia et al., 2005) and targeting a particular intense hydrothermal
alteration mineral (Debba et al., 2005b). These are typically model based sampling
approaches (de Gruijter & ter Braak, 1990), which depend upon a model derived from
explanatory variables. In this study, the optimal allocation scheme was derived based
on a mineral prospectivity model to indicate targets for further exploration. Ideally,
each target should (a) be in zones of high posterior probability (or other indices) of
mineral occurrence and (b) provide opportunity for discovery of mineral occurrences.
The proposed method was tested and demonstrated within the Rodaquilar mineral
district, where several epithermal gold occurrences are present.

55



4.2. Study area

o

IBERIAN

PENINSULA Carboneras

o Phama de
Almeri.a

TN

Sierra de Gador.

MESSINIAN REEF
TRACTS

NEOGENE AND
QUATERNARY

-] NEOGENE
] VOLCANIC ROCKSY

BETIC BASEMENT

Almeria

Cabo de Gata

Figure 4.1: A generalized geological map of the Rodalquilar area mineral district.

4.2 Study area

4.2.1 Geology and mineralization of the Rodalquilar mineral district

The Rodalquilar mineral district is located in the Sierra del Cabo de Gata volcanic
field, in the south-eastern part of Spain (Figure 4.1), consisting of pyroxene andesites
to rhyolites of the late Tertiary age. Extensive hydrothermal alteration of the volcanic
rocks resulted in formation of high to low temperature minerals as: silica — alunite
— kaolinite — illite — chlorite. Occurrences of epithermal precious- and base-metals
are in veins or in hydrothermal breccias (i.e. fracture controlled) associated with
hydrothermally altered rocks (Arribas et al., 1995). High sulphidation precious-metal
occurrences are associated with advanced argillic (alunitetkaolinite) and intermediate
argillic (kaolinitetillite) zones, whereas low sulphidation precious- and base-metal
occurrences are associated with intermediate argillic to pyropylitic (illited-chlorite)
zones (Arribas et al., 1995). The epithermal mineral occurrences have been localized
along faults and fractures that cut through the volcanic host rocks. Based on these
generalized geological characteristics of discovered epithermal mineral occurrences
in the district, two recognition criteria were applied for mapping zones with high
potential of epithermal mineral occurrence, (1) hydrothermal alteration evidence and
(2) structural evidence.

4.2.2  Data for hydrothermal alteration evidence

A sub-scene, consisting of 2640 x 1300 pixels, of airborne imaging spectrometer data
was used. The data were acquired by the Hyperspectral Mapper (HyMAP) in July
2003 during the HyEUROPE 2003 campaign over the study area and its vicinity.
HyMAP is a 126-channel instrument that collects data in a cross-track direction by
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Figure 4.2: Plot of 7 end-members from USGS spectral library (Clark et al., 1993) in the spectral
range 1.95-2.48 pum. Vertical lines indicate the channel centers used to obtain channel ratio images
(see text for further information).

mechanical scanning and in an along-track direction by movement of the airborne plat-
form. The instrument acts as an imaging spectrometer of the reflected solar radiation
within the 0.4-2.5 pym wavelength region of the electromagnetic spectrum. Spectral
coverage is nearly continuous in the visible-to-near-infrared (VNIR) and shortwave-
infrared (SWIR) regions with small gaps in the middle of the 1.4 and 1.9 pm atmo-
spheric water absorption bands. The spatial configuration of the instrument accounts
for an instantaneous-field-of-view (IFOV) of 2.5 mrad along track and 2.0 mrad across
track resulting in a pixel size in the order of 3-5 m for the data used in this study.
Due to instrument failure, the SWIR 1 detector did not function during acquisition,
thus no data were acquired in the 1.50-1.76 pm window. The HyMAP data were
atmospherically and geometrically corrected using the Atmospheric and Topographic
Correction (ATCOR 4) model (Richter, 1996).

Data acquired by the SWIR 2 detector (bandwidth 16 nm), within the 1.95-2.48 pym
spectral range are potentially useful for mapping hydrothermal alteration assemblages
as well as for regolith characterization (Abrams et al., 1977; Goetz & Srivastava,
1985; Cudahy et al., 2000; Papp & Cudahy, 2002; Kruse, 2002). This spectral region
covers the most prominent spectral absorption features of hydroxyl-bearing minerals,
sulfates and carbonates, which are common to many geologic units and hydrothermal
alteration assemblages (Kruse, 2002).

Figure 4.2 shows plots of spectra of the seven most prominent alteration minerals
in the study area (Arribas et al., 1995), at spectral intervals coinciding with the
HyMAP SWIR 2 data. This figure shows differences in absorption features of the
different minerals, in terms of shape, size, symmetry, depth and position. With the
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exception of the quartz spectrum, all the other spectra have distinctive absorption
features at wavelengths of approximately 2.2 pum, although each absorption feature
differ slightly in position and depth. To delineate predominant minerals in the alter-
ation zones associated with the epithermal occurrences, channel ratio images (Lille-
sand et al., 1994) were created using the channels as indicated in Figure 4.2, namely,
channels 103/107 (2.100/2.171 pm), channels 107/109 (2.171/2.205 pm) and chan-
nels 118/112 (2.357/2.258 pm). Channel ratioing is a form of enhancing material of
interest from spectral images by dividing spectral data in a channel with spectral data
in another channel. Images derived from channel ratioing can convey information, due
to spectral properties of surface minerals, independent on variations in scene illumi-
nation. An arctan transformation was applied to the channel ratios (Lillesand et al.,
1994), which considers the gradient of spectral data between two channels. Figure 4.3
displays the respective images of channel ratios to be used as input evidence layers in
WofE modeling. Pixels in image of channel ratio 1 (2.100/2.171um) are red/orange
(i.e. higher ratios) for alunite, kaolinite and pyrophyllite but green (i.e. lower ratios)
for illite (Figure 4.3(a)). The first three minerals are predominant in the advanced
argillic zones. Pixels in image of channel ratio 2 (2.171/2.205um) are red/orange for
illite and kaolinite but are green for alunite and pyrophyllite (Figure 4.3(b)). The
red/orange pixels in the image for channel ratio 2 thus enhance predominant min-
erals associated with intermediate argillic zones. Pixels in image of channel ratio 3
(2.357/2.258um) are blue/green for minerals predominant in advanced argillic zones
but red/orange for minerals predominant in intermediate argillic to pyropylitic zones
(Figure 4.3(c)).

4.2.3 Data for structural evidence

Mapped faults and fractures were digitized from georeferenced published (IGME,
1981) and unpublished reports. In addition, faults and fractures were interpreted
and digitized on shaded-relief images of digital elevation model (DEM) derived from
Advanced Spaceborne and Thermal Emission Radiometer (ASTER) data acquired on
26 May 2002. A map of distances to mapped and interpreted faults and fractures was
then created (Figure 4.4) and used in WofE modeling,.

4.2.4 Data for training of WofE model and allocation of exploration
targets

Two sets of mineral occurrence data were used in WofE modeling. One set, of 14 ep-
ithermal occurrences, was digitized from a 1:50,000 scale geological map of Spain
(IGME, 1981). The other set, of 47 epithermal occurrences, was digitized from the
mineral prospectivity map of Rigol-Sanchez et al. (2003), which actually shows 49 ep-
ithermal occurrences although two of these fall outside the study area. In this latter
set, 11 epithermal occurrences were discarded because each of them lie within 100 m
of an epithermal occurrence in the first set, which indicates a high likelihood that
those 11 in the second set are the same as 11 of the 14 in the first set. Thus, the
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Figure 4.3: Input layers for WofE modeling. Map coordinates are in meters (UTM projection,
zone 30N).
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Figure 4.4: Distance to fault and fracture. Pixels ranging from blue to red in this image indicates
increasing distance from a fault or fracture. Input layer for WofE modeling. Map coordinates are in
meters (UTM projection, zone 30N).

second set has 36 epithermal occurrences, each of which is believed to be different
from the 14 epithermal occurrences in the first set in terms location, but not in terms
of mineralization type. Each of the two sets of epithermal occurrence data were then
used for training and for cross-validation of a WofE model. A training set is assumed
to represent discovered mineral occurrences, whereas a cross-validation set is assumed
to represent undiscovered mineral occurrences. Prediction rate (discussed later) was
the criterion applied to select the better of the two WofE models created as input for
allocating exploration targets.

4.3 Methods

To obtain the optimal schemes of exploration targets, the initial step was to cre-
ate an image with distances to faults and fractures and three channel ratio images.
These four images were resampled to 25 m pixel size (sub-scene 389 x 193 pixels),
corresponding to the pixel or unit cell representation of point locations of epither-
mal precious- and base-metal occurrences in WofE modeling using a raster-based GIS
software. Next, the images are used as evidences in WofE modeling to produce a
posterior probability map. Further, this posterior probability map was thresholded
and used as a weight in an objective function. Finally, the objective function is op-
timized to derive optimal locations of exploration targets. The objective function
also considers the uncertainty of the posterior probability. The aim of optimizing the
objective function is to spread foci of exploration targets over the district such that
they are represented in the posterior probability map by pixels with high probability
of being proximal to a discovered or undiscovered mineral occurrence. Ideally, such
exploration targets should be spatially coincident or proximal to undiscovered mineral
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occurrences from the cross-validation set, which was not used to train a WofE model.

4.3.1 WofE Method

WofE modeling (Agterberg et al., 1990; Bonham-Carter et al., 1988) is a Bayesian
method that combines information from multiple evidences to predict the occurrence
of a binary pattern. Each mineral occurrence is treated as a binary object, being
either present or absent, within a small unit cell or pixel. In mineral prospectivity
mapping, each evidence has either a positive or negative spatial association with a
set of discovered mineral occurrences. It thereby either increases or decreases the
posterior probability for mineral occurrences at unvisited locations. The posterior
probability is an index of degree for mineral occurrence.

Let D represent discovered mineral occurrence, with one and only one occurrence in
a unit cell and let P(D) be an estimate of prior probability of mineral occurrence.
Further, let B denote a binary pattern for an evidence, thresholded at ¢, which is a
spatial data attribute (e.g. ratio or distance) initially arbitrarily chosen. Definition
of conditional probability results in:

P(B'|D)

P(DIB) = P(D) - e

(4.1)

where P(D|B?) is the posterior probability of mineral occurrence, given the presence
of the binary pattern. Similarly, the posterior probability of mineral occurrence, given
the absence of the binary pattern, Bt can be defined.

In WofE, the posterior probability is converted to posterior odds ratio (O(A) =
P(A)/P(A) for any event A), by dividing both sides of Equation 4.1 by P(D|B?)
and simplifying by replacing P(D|B?) - P(B!) = P(B!|D) - P(D), yielding

P(B!|D)

O(D|B') = O(D) - D)

: (4.2)

where O(D|B?") is the posterior odds of D given B* and O(D) is the prior odds of D.
Taking the natural logarithm on both sides of Equation 4.2, results in

InO(D|BY) =lmO(D) + W™, (4.3)

P(B'|D)
P(B'|D)
using the posterior probability of mineral occurrence given the absence of BY, the
natural logarithm of posterior odds of mineral occurrence is defined as

where WT =1n is the weight of evidence for the presence of B*. Similarly,

InO(D|BY) =lnO(D)+ W™, (4.4)

Bi|D
where W~ =1n Pt:D; is the weight of evidence for absence of BY.

EIc
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Statistical significance of the weights can be determined based on their variances,
which are approximated from Bishop et al. (1975) as

1 1

— and
NBND)  NBnD ™

1 1 (4.5)
N(Btn D) * N(BtND)’

s*(WT)

s2(W™) =

where N(-) denotes the number of counts, for example, N(B? N D) is the number of
mineral occurrences in the presence of binary pattern B?. Once the weights W and
W~ are determined from Equations 4.3 and 4.4 for evidences B! at several different
thresholds, the maximum contrast, C = W+ — W~ usually gives the optimum thresh-
old value. If the number of mineral occurrence is small, the maximum studentized
contrast, C'/s(C) can be used, where s(C') is the standard deviation of the contrast
values. A studentized contrast > 1.96 (Bonham-Carter, 1994) is a useful criteria for
optimum thresholds to create binary predictor maps, B;. The binary predictor maps
are then used to determine the posterior probability of mineral occurrence. For k sets
of evidences, resulting in By, Bs, ..., By binary predictor maps,

P(Bi,...,By|D)-P(D)+ P (By,...,Bx|D) - P(D)

P(D|B17"'>Bk)

Equation 4.6 allows estimation of the posterior probability of mineral occurrence given
presence of binary evidences. Because of their interaction, the terms P (Bj, ..., B |D)
and P (By,...,By|D) are difficult to estimate, unless conditional independence (CI)
k

is assumed. Assuming CI, then P (By,...,By|D) = HP(Bi|D). A similar expres-
sion applies for the second term in the denominator (;f llilquation 4.6. With k£ binary
predictor maps, 2¥ possible combinations exist, depending on whether binary pre-
dictor map pattern B; is present or not. This also means that there are 2 unique
conditions in the posterior probability map, being equivalent to 2¥ polygons or grid
cells in which the same combination of evidence occurs. After assuming CI in Equa-
tion 4.6 and some simplifications, formulation of posterior odds of mineral occurrence,
given k binary predictor maps, is obtained as

k
nO; (D| By,...,By) =ImO(D) + > W/, (4.7)
i=1

where Wf denotes weights (W, or W,”) contributed by spatial evidence from binary

K3 K3
predictor map B; (i = 1,2,...,k) to the jth unique condition (j = 1,2,...,2%). The
posterior probabilities are then obtained from the posterior odds using

_ Oy(D|By.....By)
1 —|—OJ(D|B1,,Bk) '

P; = P;(D|By,...,By) (4.8)
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Chapter 4. Optimization of exploration targets on mineral prospectivity maps

The variance of the posterior odds is
$2(0)=>_ (W), (4.9)

where s%(W;) is either s?(W;") or s2(W,”) (defined by Equation 4.5 for each binary
predictor map B;) depending on whether the binary predictor map B; is present or
not.

The images of channel ratios and the map of distances to faults and fractures were
optimized to binary predictor maps B; by finding the optimum threshold, which max-
imizes positive spatial associations of these evidential data with the target variable D
as an indicator of mineral occurrence. In the thresholded map, the corresponding val-
ues of W+ and W~ were then assigned to the pattern indicating presence or absence,
respectively. The binary predictor maps were then combined using Equation 4.7 and
the posterior probability was then estimated using Equation 4.8.

WofE modeling assumes CI among the evidence maps with respect to a set of mineral
occurrences. Violation of this assumption causes the posterior probabilities to be
either over- or under-estimated. Assumption of CI was tested using the new omnibus
test (NOT) (Agterberg & Cheng, 2002; Thiart et al., 2004). The NOT compares the
number of training mineral occurrences N (D) to the number of predicted training
mineral occurrences N (D)pred, where

2k
N(D)prea = Y P{N(A)}; (4.10)
j=1

and {N(A)}; is the area in unit cells for the jth unique condition. The test statis-
tic (Agterberg & Cheng, 2002; Thiart et al., 2004) under the null hypothesis Hy :
N(D)prea = N(D) is

N(D)pred - N<D)

Nt = = N D)orea]

(4.11)

where the variance of the predicted number of training mineral occurrences s?[N (D) pred]
is estimated by

2lc
S IN(D)preal = Y UN(A)L]? x (7)), (4.12)

Jj=1

and variance of P; is estimated based on variance of the weights (Bonham-Carter
et al., 1989) by

k
S(P) = =+ > _s*(W/) x P}. (4.13)
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Values of NOT are assumed to approximate the standard Gaussian distribution and
the hypothesis will be rejected in favor of Hy : N(D)prea > N(D) for a statistically
larger difference.

An integrated model showing non-violation of CI assumption was then used to create
a posterior probability map. The prediction rate of a posterior probability map was
estimated as the proportion of predicted undiscovered occurrence in a cross-validation
set that corresponds with posterior probability greater than the prior probability in
a WofE model created with a training set of discovered mineral occurrences. By
interchanging the roles of the two sets of mineral occurrences as training and cross-
validation, the WofE model with the higher prediction rate is chosen as input into
the proposed method for allocating exploration targets.

4.3.2 Scheme for allocating exploration targets

The number of exploration targets has to be chosen in advance of allocating these
targets.

Number of exploration targets

Each exploration target is a composite of adjoining unit cells where mineral occur-
rence can be investigated further by an appropriate field sampling technique. Since
an exploration target may or may not contain at least one undiscovered mineral oc-
currence, the number of exploration targets is invariably greater but can be equal to
the number of undiscovered mineral occurrence. Mostly expert-driven methods for
estimation of the latter is discussed in Singer (1993). Here, a data-driven procedure
is proposed to estimate the number of exploration targets.

Each exploration target is represented by a focal point or unit cell. To estimate the
number of exploration targets, the binomial distribution is employed because mineral
occurrence is considered to be a binary variable, being either present or absent. Thus,
estimation of n exploration targets to yield at least r mineral occurrences, with a
probability of success p, at a 95% confidence, requires solving the following equation
for n:

i (?)Pi(l —p)" T =095, (4.14)

i=r

The obtained values of n are used in the allocation scheme of exploration targets,
which is derived by simulation annealing. This requires definition of an objective
function, called the fitness function.

64



Chapter 4. Optimization of exploration targets on mineral prospectivity maps

Stmulated Annealing of exploration targets

For a two-dimensional region A divided into N(A) unit cells, let the spatial configura-
tions of n exploration targets be denoted by S™. Denote the posterior probability of a
mineral occurrence in a unit cell in A derived from WofE modeling, and thresholded
by values less than the prior probability, by P(X) = {P;(X)|X € A}, where X is
the location vector of the unit cell in A, with a corresponding pixel in an image I,
for unique condition j. A fitness function ¢(S™) : S — RT that has to be minimized
to optimize the allocation scheme is an extension to the Weighted Means Shortest
Distance (WMSD)-criterion (Debba et al., 2005b; Van Groenigen et al., 2000b).

dwnispv(S™) = 2 3 p(R)[|K - Qsn(R)]| + (1= N)s2(Ose) ,  (4.15)

where Qg (X) is the location vector of an exploration target in S™ nearest to X,
p(X) is the posterior probability for a unit cell with location vector X, s*(Ogn) is
the variance of the posterior odds (Equation 4.9) under the current allocation scheme
S™ and A € [0, 1] is a constant controlling the effect of the two terms. The posterior
probabilities express the knowledge or assumptions about mineral occurrence in some
parts of the region A by controlling density of mineral occurrence in these areas.
Larger posterior probabilities result in a higher chance of a unit cell being selected in
the final allocation scheme. The variance of the posterior odds controls allocation of
exploration targets to areas with a high positive spatial association between evidential
patterns and discovered mineral occurrences.

4.4 Results

WofE modeling of mineral prospectivity

The study area consists of 65253 unit cells of 25 x 25 m. Each location of mineral oc-
currence in training set 1 (with 14 epithermal occurrences) was buffered to a minimum
of 25 m, which increased the number of pixels to 70, because of their representation in
IGME (1981). Estimate of P(D) based on training set 1 is 0.00107, whereas estimate
of P(D) based on training set 2 (with 36 epithermal occurrences) is 0.00055. Table 4.1
shows the results of WofE modeling to create binary predictor patterns using the sets
of hydrothermal alteration evidence and structural evidence with respect to either set
of epithermal occurrences.

Zones with high values of channel ratio 1 (CR1) and of channel ratio 2 (CR2) have
positive spatial associations with epithermal occurrences in either set of training data.
Positive spatial association between zones with high values of CR1 and epithermal
occurrences is stronger than positive spatial association between zones with high
values of CR2 and epithermal occurrences as indicated by magnitude of W+ and
C'. Zones with high values of channel ratio 3 (CR3) have negative spatial association
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Table 4.1: Results of WofE calculations for binary predictor patterns based on range of spatial
data attributes (in brackets under column 1) having optimum spatial associations with the training
epithermal occurrences.

Binary
predictor NY% | Nog | WH | s(WH) | W= | s(W™) | C st.C
patterns®

Using training set 1 (N (D) = 14 epithermal occurrences) for WofE modeling?

CR1 (> 0.80) 13038 46 1.19 0.15 | -0.85 0.20 | 2.04 | 8.10
CR2 (> 0.79) 32509 44 0.23 0.15 | -0.30 0.20 | 0.53 | 2.16
CR3 (> 0.71) 52290 38 | -0.56 0.18 | 1.01 0.16 | -1.57 | -5.97
DFF (<70 m) 24800 48 0.59 0.14 | -0.68 0.21 | 1.27 | 4.55

Using training set 2 (N (D) = 36 epithermal occurrences) for WofE modeling

CR1 (> 0.81) 9819 19 1.26 0.23 | -0.59 0.24 | 1.84 | 5.52
CR2 (> 0.79) 22791 19 0.41 0.23 | -0.32 0.24 | 073 | 220
CR3 (> 0.70) 55419 21 -0.38 0.22 | 1.02 0.26 | -1.39 | -4.12
DFF (<170 m) | 45396 32 0.25 0.18 | -1.01 0.50 | 1.25 | 2.36

@ Values in brackets indicate attributes of spatial data within pattern representing presence of binary
evidence.

b Values in this column refer to number of pixels within pattern representing presence of binary
evidence, i.e. N(B)

¢ Values in this column refer to number of pixels of training data within pattern representing presence
of binary evidence i.e. N(D N B).

@ Each location of epithermal occurrence was buffered to 25 m, which increased number of training

pixels from 14 to 70.

with epithermal occurrences in either set of training data. These results are consistent
with field observations, as most epithermal occurrences in the area are associated with
intermediate argillic to advanced argillic alteration zones while some are associated
with argillic to propylitic zones.

Spatial association between faults and fractures (DFF) and the 14 epithermal occur-
rences in the first training set is positive and optimal at 70 m. Spatial association
between faults and fractures and the 36 epithermal occurrences in the second training
set is also positive but optimal at 170 m. These results suggest that epithermal occur-
rences in training set 1 are mostly vein-type rather than disseminated-type, whereas
in training set 2 there is a higher proportion of disseminated-type epithermal occur-
rences than in the first set. The pattern of type and strength of spatial association (as
indicated by C or Studentized C) between the spatial evidences and the epithermal
occurrences, however, is the same. This indicates that the epithermal occurrences in
either set of training data have similar geological characterics, which means that a
mineral prospectivity map derived through WofE modeling using each training set can
be used to predict a large proportion of epithermal occurrence in the other set. The
similar results for training set 1 and training set 2 also indicate that minimal buffering
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Table 4.2: Results of tests of CI assumption based on NOT.

Predictor map combination | NOT value | p(NOT) | CI test
Integrated models based on training set 1 (N (D) = 14 epithermal
occurrences) for WofE modeling

CR1-CR2-CR3 1.77 0.038 Fail
CR1-CR2-DFF 0.49 0.312 Pass
CR1-CR3-DFF 2.09 0.018 Fail
CR2-CR3-DFF 1.00 0.159 Pass
CR1-CR2-CR3-DFF 2.24 0.012 Fail

Integrated models based on training set 2 (N (D) = 36 epithermal
occurrences) for WofE modeling

CR1-CR2-CR3 1.34 0.090 Pass
CR1-CR2-DFF 0.35 0.363 Pass
CR1-CR3-DFF 0.85 0.198 Pass
CR2-CR3-DFF 0.17 0.432 Pass
CR1-CR2-CR3-DFF 1.37 0.085 Pass

of mineral occurrences in training set 1 was sufficient to adequately quantify spatial
associations with the evidences. This is reasonable, considering that all epithermal
occurrences in the district were formed by similar mineral-forming processes.

Table 4.2 shows results of tests of CI assumption on 3-layer and full 4-layer models
of posterior probabilities of epithermal occurrence based on each set of training data.

Only two 3-layer models based on training set 1 pass the NOT for CI assumption.
The models in which CI assumption is not violated do not involve CR1 and CR3
together, whereas the models in which CI assumption is violated involve CR1 and CR3
together. Violation of CI assumption is mainly due to overlap between positive values
in W patterns of CR1 and positive values in W~ patterns of CR3 (Table 4.1), which
results in over-estimation of posterior probability. Each of the two 3-layer models,
which pass the CI test, can be used mainly to map prospective zones for epithermal
occurrences associated with intermediate argillic to advance argillic zones. The CR1-
CR2-DFF model has a prediction rate of 0.58, namely, 21 predicted occurrences out
of 36 cross-validation occurrences. The CR2-CR3-DFF model has a prediction rate
of 0.47, namely, 17 predicted occurrences out of 36 cross-validation occurrences.

All the 3-layer models and the full 4-layer model based on the training set 2 pass
the NOT of CI assumption. The models involving CR1 and CR3 together, however,
barely pass the NOT. This indicates some degree of conditional dependence between
binary predictor patterns of CR1 and CR3, which is mainly due to overlap between
positive values in W+ patterns of CR1 and positive values in W~ patterns of CR3
(Table 4.1). Because all integrated models based on the training set 2 pass the CI
test, each can be used to map zones with potential for epithermal occurrence. Only
the full 4-layer model was considered further in the analysis because it involves all the
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spatial evidences, which suggests its usefulness not only for mapping zones prospective
for epithermal occurrences associated with intermediate to advanced argillic zones
but also for epithermal occurrences associated with intermediate argillic to propylitic
zones. The posterior probability map, representing the CR1-CR2-CR3-DFF model
based on the training set 2 of 36 epithermal occurrences, has a prediction rate of
0.64 (i.e. nine predicted occurrences out of 14 cross-validation occurrences), which is
better than the prediction rate (see above) of the CR1-CR2-DFF model based on the
training set 1 of 14 epithermal occurrences. The posterior probability maps based on
the CR1-CR2-DFF model is shown in Figure 4.5(a) and CR1-CR2-CR3-DFF model
in Figure 4.5(b).
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(a) Using training set 1 (N (D) = 14 epithermal occurrences) for WofE modeling.
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(b) Using training set 2 (N (D) = 36 epithermal occurrences) for WofE modeling.

Figure 4.5: Maps of posterior probability, representing prospectivity of epithermal occurrence.
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4.4.1 Optimum allocation scheme of exploration targets

The posterior probability map (Figure 4.5(b)) based on training set 2 was used as
input into the allocation scheme. Training set 1 was used as reference for the number
of undiscovered epithermal occurrences and for validation of locating the exploration
targets result.

Estimated number of exploration targets

To apply Equation 4.14, it was assumed that r = 9 based on the nine predicted out of
14 undiscovered epithermal occurrences in training set 1 and p = 0.0025 based on the
average posterior probabilities greater than the prior probability in the input WofE
model. Based on these assumptions, n = 6280. Such number of exploration targets
is intractable. It is interpreted and shown later that 6280 is approximately the total
number of unit cells within plausible exploration target zones. Instead of p = 0.0025,
p = 0.6 was used based on the approximate prediction rate of the input WofE model.
Accordingly, n = 22, which is a plausible number of exploration targets to search for
the nine (assumed) undiscovered epithermal occurrences.

Focal points of exploration targets

Using the posterior probability map shown in Figure 4.5(b) as input, and specification
of n = 22 and A\ = 0.5 in Equation 4.15, derived focal points of exploration targets are
shown in Figure 4.6. Each of the 22 allocated focal points of exploration targets occu-
pies a unit cell with high estimated posterior probability based on training set 2. This
indicates that the algorithm was effective in allocating the focal points of exploration
targets into prospective ground. The allocated focal points of exploration targets do
not fall exactly on but are proximal to a unit cell representing epithermal mineral
occurrence belonging to either set of training data. The focal points of exploration
targets thus suggest sites where to focus further prospecting.

Ezxploration target zones

Proximity to an undiscovered occurrence was quantified by utilizing the number of
allocations of 6280 unit cells required to delineate the nine predicted occurrences out
of the 14 cross-validation occurrences. The total area represented by the 6280 unit
cells is approximately 6280 x 252 = 3925000 m2. If each of the nine undiscovered
occurrences, predicted by the WofE model out of the 14 cross-validation undiscovered
occurrences, is within a delineated sub-area of 3925000/22 = 178409 m? containing
the allocated focal points of exploration targets, then this indicate that a focal point
of exploration target is proximal to at least one undiscovered occurrence. This also
means that, if each of the nine predicted undiscovered occurrences, delineated by
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Figure 4.6: Optimized allocation scheme of exploration targets, each target buffered to 238 m
(black polylines) for epithermal occurrence.

the WofE model out of the 14 cross-validation undiscovered occurrences, is within a
radius of /178409/7 = 238 m (area of circle = 7 x radius?®) around a focal point of
exploration target, then a focal point of exploration target is in close proximity to at
least one undiscovered occurrence.

Each of the 22 allocated focal points of exploration targets was thus buffered to a ra-
dius of 238 m to delineate exploration zones. Seven of the nine (assumed) undiscovered
occurrences, delineated by the WofE model out of the 14 cross-validation undiscov-
ered occurrences, are within the 238 m buffered exploration target zones. The result
of this analysis indicates that allocated focal points of exploration targets are prox-
imal to undiscovered epithermal occurrences. The average of posterior probabilities
of unit cells occupied by each exploration target is 0.010, which is higher than the
average posterior probability (0.0024) of unit cells occupied by discovered epithermal
occurrences (training set 2) and the average posterior probability (0.0029) of unit cells
occupied by (assumed) undiscovered epithermal occurrences (training set 1). These
indicate that the algorithm of the allocation scheme is efficient in targeting unit cells
in prospective ground. The results also suggest that buffered exploration target zones
are favorable sites for further mineral prospecting. This suggestion is validated below.

4.4.2 Prioritization and validation of exploration targets

In practice, exploration targets are prioritized or ranked according to some criteria.
The criteria applied to prioritize each of the 22 buffered focal points of exploration
targets are (a) number of unit cells with posterior probability greater than prior proba-
bility and (b) average posterior probability of unit cells. The first criterion represents
a measure of whether or nor a target zone is wholly made up of prospective cells,
whereas the second criterion is an index of mineral occurrence. To each exploration
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target, descending ranks of 1 through 22 were assigned according to decreasing values
per criterion. The ranks per criterion were then added, which represent a measure of
relative prospectivity with low sums indicating higher prospectivity. Hence, descend-
ing sums were assigned ascending ranks. Table 4.3 summarizes the priority/rank
derived for each exploration target.

To validate the ranked exploration targets, presence of at least one undiscovered oc-
currence in each 238 m buffer zone of each exploration target was determined. In
addition, distance from each exploration target focal point to nearest undiscovered
occurrence was determined. Seven buffered exploration targets (T01, T02, T05, T08,
T10, T13 and T21) contain at least one (assumed) undiscovered occurrence (Ta-
ble 4.3). Five of the top 10 priority exploration targets (T01, T02, T05, T08 and
T10) contain at least one (assumed) undiscovered occurrence. The 238 m buffer
zones of three exploration targets (T06, T12 and T16) are only about 10-30 m away
from an undiscovered occurrence. For the other 12 exploration targets, whose 238 m
buffer zones do not contain an (assumed) undiscovered occurrence and whose buffer
limits are at least 50 m away from an (assumed) undiscovered occurrence, the average
distance to a nearest (assumed) undiscovered occurrence is about 600 m. Figure 4.6
also shows that all the nine (assumed) undiscovered occurrences are within or very
close (~15 m on average) to an exploration target zone. The other five undiscovered
occurrences not predicted by the WofE model (and thus not assumed undiscovered
occurrences in the allocation scheme) are, on average, about 230 m away from the
limits of buffered exploration targets. These results indicate that the focal points
of exploration targets are adequately positioned such that further mineral prospect-
ing within (and up to a few tens of meters beyond) their 238 m buffer limits could
potentially lead to mineral occurrence discovery.

4.5 Discussion

4.5.1 On predictive modeling of mineral prospectivity

Optimum allocation of exploration targets depends on accuracy of an input mineral
prospectivity map, which, in turn, depends, on number and accuracy of evidential
data sets and, in case of data-driven methods, on number and accuracy of training
data used in modeling. In the present work, only four sets of evidential data and
two sets of training data were used. Three sets of evidential data used are remotely-
sensed information in the form of channel ratio images, the accuracy of each which is
reliable based on a number of spectral measurements of ground samples. Several ways
exist to use channel ratio images as hydrothermal evidences. For example, principal
component scores from several channel ratio bands could be used as evidence maps
in WofE modeling. With principal component analysis, however, it is not always
easy to judge the hydrothermal alteration assemblages associated with epithermal
mineralization. Selecting hyperspectral channels that enhance these features proved
to be more intuitive and practical. The accuracy of interpreted faults/fractures, which
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Table 4.3: Results of prioritization and validation of allocated exploration targets. Rows in bold
and italics, respectively, indicate buffered target zones containing and proximal to (< 30 m) an
undiscovered occurrence.

Prioritization of targets Validation of targets
D | Critlt | R1¢ | Critd | Ree | srigs | Dimal ) Within o,
Rank? zone

TO01 237 1 0.00512 1 2 1 Yes 159.7
T02 222 4 0.00395 4 8 2 Yes 33.9

T03 231 2 0.00370 7 9 3 No 314.6
T04 216 5 0.00376 6 11 4 No 638.9
TO5 | 226 3 0.00353 | 9 12 5.5 Yes 150.0
T06 199 9 0.00401 3 12 5.5 No 266.2
To7 212 7 0.00358 8 15 7 No 334.0
TO8 | 191 11 | 0.00378 | 5 16 8.5 Yes 217.8
T09 186 14 0.00430 2 16 8.5 No 430.8
T10 215 6 0.00311 | 13 19 10 Yes 222.6
T11 187 12.5 | 0.00323 11 23.5 11 No 464.6
T12 210 8 0.00255 | 16 24 12 No 261.4
T13 | 185 15 | 0.00345 | 10 25 13 Yes 164.6
T14 187 12.5 | 0.00292 15 27.5 14 No 759.9
T15 172 17 0.00318 12 29 15 No 706.6
T16 196 10 | 0.00189 | 21 31 16 No 246.8
T17 142 19 0.00302 14 33 17 No 905.1

T18 180 16 0.00237 18 34 18 No 1021.2
T19 116 20 0.00245 17 37 19.5 No 421.1

T20 143 18 0.00223 19 37 19.5 No 663.1

T21 | 106 21 | 0.00195 | 20 41 21 Yes 150.0
T22 47 22 0.00069 22 44 22 No 551.8

@ Target ID, with numeric characteristics indicating priority.

b Values for criterion 1 (= number of unit cells with posterior probability > prior probability within
each of the 238 m buffered exploration target).

¢ Descending ranks assigned to decreasing values for criterion 1.

d Values for criterion 2 (= average posterior probability of all unit cells within each of the 238 m
buffered exploration target).

¢ Descending ranks assigned to decreasing values for criterion 2.

f Sum of ranks for criteria 1 & 2.

9 Ascending ranks assigned to increasing sum of R1 & R2.

h Presence of (assumed) undiscovered occurrence within the 238 m buffer zone.

* Distance to nearest (assumed) undiscovered occurrence (m).
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were combined with published mapped faults/fractures, was also considered reliable
based on ground-checking.

The two sets of mineral occurrences data, used for training and cross-validation were
also derived from published literature and were considered accurate mainly in terms
of their locations but not in terms of mineralization (sub-)type homogeneity. The
rather low prediction rate (of 64%) of input probabilistic prospectivity map could be
attributable partly to (a) the small number of evidential data sets used and partly to
(b) the presence of two (precious- and base-metal) sub-types of epithermal occurrences
used in modeling prospectivity. In regard to the latter, relatively homogeneous set(s)
of training data (say, for precious-metal epithermal occurrences) could have been
prepared by classification of all the epithermal occurrences in the district through
application of artificial neural network (Singer & Kouda, 1997, 2003). Required data
sets (e.g., mineralogy, grade and tonnages) for typing of mineral occurrence or deposits
through neural network classification are, however, incomplete to unavailable. Hence,
it was decided to model prospectivity for occurrence of epithermal mineralizations,
in general, and considered the 64% prediction rate of one of the WofE models to be
adequate in view of small number of evidential data sets. Inclusion of other evidences
(e.g. geophysical anomalies) may help to further improve the prediction rate of the
WofE modeling.

4.5.2  On exploration target allocation scheme

Locations of exploration targets based on mineral prospectivity maps are, in pre-
vious works, determined by expert-driven analysis. That is, portions of delineated
prospective ground distal and not containing discovered mineral occurrences are con-
sidered new exploration targets. In this study, locations of new exploration targets
are determined based on estimated posterior probabilities of mineral occurrence and
using an objective function in simulated annealing. The results show that, based on
cross-validation mineral occurrence data, allocated focal points of exploration targets
derived from the proposed method could provide opportunity for mineral occurrence
discovery. Thus, exploration targets based on mineral prospectivity maps can be
allocated objectively, rather than subjectively, through application of the proposed
method.

Although the suggested exploration target allocation scheme is based upon a pos-
terior probability map, it has potential to accommodate other maps of indices of
mineral prospectivity in the range [0, 1], such as fuzzy prospectivity membership val-
ues or degrees of evidential belief. It would, however, require other indices of mineral
prospectivity not in the range [0, 1] to be transformed into this range. In addition,
a threshold index of prospective ground is required (in the present case, this is the
prior probability) so that exploration targets are allocated properly to locations with
index of prospectivity above this threshold. The graphical technique showed by Por-
wal et al. (2003) to define objectively a threshold index of prospective ground can be
useful for methods of mineral prospectivity modeling (e.g., knowledge-driven fuzzy
approaches) that do not involve updating of prior probability of mineral occurrence.
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Finally, it requires a measure of uncertainty of the index of mineral prospectivity.

A critical consideration in application of the objective function in simulated anneal-
ing to determine optimum locations of exploration targets is the plausible number of
exploration targets, which should practically be at least the number of undiscovered
occurrences of mineral deposits. Estimation of undiscovered deposits in a geologically-
permissive terrane (a) is based on grade-and-tonnage model of deposit-type of interest
and (b) is practically performed through consensus by a group of geoscience experts
in mineral deposits (Singer & Kouda, 1997). Partly due lack of the first criterion
(as epithermal mineralizations according to our database are mostly occurrences and
few are deposits or measured reserves) and partly because the second criterion is not
met, number of undiscovered deposits in the district was not estimated. Instead,
the theorem of binomial distribution was applied to estimate a plausible number of
exploration targets based on assumed undiscovered mineral occurrences. Using an
estimated number of exploration targets based on actually discovered mineral oc-
currences, however, does not negate usefulness of the proposed exploration target
allocation scheme. Rather, it illustrates that the proposed exploration target alloca-
tion scheme is a potential link between predictive modeling of mineral prospectivity
and assessment of undiscovered resources. For example, if estimates of number of
undiscovered deposits and their corresponding confidence levels are available, then
these variables could be used, respectively, in lieu of  and 0.95 in Equation 4.14. For
p in Equation 4.14, it is shown here that using prediction rate of mineral prospec-
tivity model results in a plausible number of exploration targets. If, in case, all
discovered mineral occurrences are used for modeling of mineral prospectivity, then
p in Equation 4.14 could be represented by success rate of mineral prospective model
(i.e., proportion of training points delineated in prospective ground). However, in
such a case, estimates of number of undiscovered deposits or occurrences and their
corresponding confidence levels should be obtained to estimate number of exploration
targets.

Understandably, the only convincing way to validate whether or not the proposed
method for allocating exploration targets is useful to guide mineral prospecting to
undiscovered occurrences is to visit and perform sampling in the delineated and pri-
oritized exploration target zones. A way forward from this work, however, is to test
further the proposed method in control areas where works on both mineral prospec-
tivity modeling and assessment of undiscovered mineral resources have been carried
out.

4.6 Conclusions

This study resulted in four main conclusions.

e The optimal allocation scheme indicates exploration targets of undiscovered
epithermal occurrences. Nine of 14 (assumed) undiscovered epithermal occur-

74



Chapter 4. Optimization of exploration targets on mineral prospectivity maps

rences, predicted by WofE modeling, are either within a buffered zone or at
most 30 m from a buffered zone of an exploration target. This indicates that
the algorithm was able to delineate the nine undiscovered epithermal deposits
with reasonable accuracy.

An objective data-driven way to buffer and then to prioritize predicted foci
of exploration targets was demonstrated to produce meaningful results. The
results of this method indicate its usefulness because an undiscovered epithermal
occurrence is delineated by (a) 60% of the top 5 buffered exploration targets
and (b) 50% of the top 10 buffered exploration targets.

Each of the 22 exploration targets are on prospective ground, with high pos-
terior probability of mineral occurrence. This suggests that new exploration
targets located distal to any (actually) discovered epithermal occurrences war-
rant further investigations in the Rodalquilar district.

Hyperspectral images provide evidential information for predicting epithermal
occurrences in this district, although they need support by other evidences, such
as proximity to faults and fractures.
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Chapter 5

Abundance estimation of spectrally
similar minerals by using derivative
spectra in simulated annealing

In solving a problem of this sort, the grand thing is to be able to reason backward. This is a very
useful accomplishment, and a very easy one, but people do not practise it much ... Most people, if
you describe a train of events to them, will tell you what the result would be. They can put those
events together in their minds, and argue from them that something will come to pass. There are a
few people, however, who, if you told them a result, would be able to evolve from their own inner
consciousness what the steps were which led up to that result. This power is what I mean when I
talk of reasoning backward . ..

Sherlock Holmes

This chapter is based on P. Debba, E. J. M. Carranza, F. D. van der Meer and A. Stein
(In review) Abundance estimation of spectrally similar materials in mine wastes
using hyperspectral data and simulated annealing, IEEE Transactions of Geosciences
and Remote Sensing.'

1This work was sponsored by ITC International Institute for Geo-Information Science and
Earth Observation, project number 3083022 and NRF National Research Foundation, project num-
ber 10317, gun 2053944.
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Abstract

This chapter presents a method for estimating the partial abundance of spectrally
similar minerals in complex mixtures. The method requires formulation of a linear
function of individual spectra of individual minerals. The first and second derivatives
of each of the different sets of mixed spectra and the individual spectra are determined.
The error is minimized by means of simulated annealing. Experiments were made on
several different mixtures of selected end-members, which could plausibly occur in
real situations. The variance of the differences between the second derivatives of
the observed spectrum and the second derivatives of the end-member spectra give
most precise estimates for the partial abundance of each end-member. We conclude
that the use of second order derivatives provides a valuable contribution to unmixing
procedures.

Keywords

Unmixing, simulated annealing, hyperspectral remote sensing, abundance, fraction
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Chapter 5. Abundance estimation of spectrally similar materials

5.1 Introduction

Hyperspectral remote sensing technology has proven to be useful in mineral explo-
ration and in monitoring environmental of mining-induced impact. Usefulness of this
technology stems from the fact that abundance of various indicator materials on the
ground, such as hydrothermal and/or secondary acid-generating minerals, can be
characterized by their respective spectral signature. An important step in charac-
terization of surface materials by means of hyperspectral image analysis is spectral
unmixing, aiming to determine abundances of some set of materials that contribute
to the observed spectrum. At the pixel scale of hyperspectral imagery, it is postulated
that the observed spectrum can be modeled as a linear combination of the products
of the individual material reflectance functions and their surface areas (Singer & Mc-
Cord, 1979). With this assumption, most spectral unmixing techniques are variants
of algorithms involving matrix inversion (Boardman, 1989; Shimabukuro & Smith,
1991; Boardman et al., 1995; Garcia-Haro et al., 1996; Metternicht & Fermont, 1998;
Ferrier, 1999; Drake et al., 1999; Van der Meer & De Jong, 2000; Robinson et al.,
2000). Two major problems, however, exists in spectral unmixing: (1) selection of
end-members; (2) non-orthogonality of end-members. Theories behind each of these
are becoming well-established, as well as intrinsic difficulties of the mathematical solu-
tions to the problems of end-member selection (Smith et al., 1985; Green et al., 1988;
Boardman, 1993; Craig, 1994; Jimenez & Landgrebe, 1999) and of non-orthogonality
of end-members (Boardman et al., 1995; Van der Meer & De Jong, 2000).

The two major problems become even more serious when it is desired to deter-
mine and map abundance of iron-bearing oxide/hydroxide/sulfate minerals associ-
ated with sulfide-bearing mine waste impoundment, instead of aiming to map dis-
tribution of certain mine tailings within mining districts (Farrand & Harsanyi, 1997;
Ferrier, 1999; Swayze et al., 2000). The reason is that certain heavy metals are
either absorbed on surfaces or incorporated in molecular structures of iron-bearing
oxide/hydroxide/sulfate minerals. The latter is important to determine which, and
an indication of how much, metals could potentially be released from such types of
mine waste impoundments to nearby ecosystems (Audry et al., 2005; Moncur et al.,
2005; Sidenko & Sherriff, 2005). Metals released could be a result of further weath-
ering. Each secondary iron-bearing oxide/hydroxide/sulfate mineral within a weath-
ering sulfide-bearing mine waste shows distinctive spectral features in the visible to
the shortwave infrared (0.4-2.5um) regions of the electromagnetic spectrum (Crow-
ley et al., 2003). Such distinctive spectral features would enable identification of
individual iron-bearing oxide/hydroxide/sulfate minerals in non-complex mixtures,
by means of relatively simple spectral analytical techniques. The ability to estimate
their abundance in complex mixtures through spectral unmixing techniques, how-
ever, would be complicated by their similar spectral signatures (Crowley et al., 2003).
The complexity would be related to (a) selection of end-members of iron-bearing ox-
ide/hydroxide/sulfate minerals based on only image data (for a “true” remote sensing
case) and (b) estimation of partial abundances of end-members.

This chapter addresses the question: how could estimates of abundances of spec-
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trally similar iron-bearing oxide/hydroxide/sulfate minerals in complex mixtures be
obtained using hyperspectral data. To do so, spectral mixtures were generated
with varying linear proportions of individual spectra of a set of iron-bearing ox-
ide/hydroxide/sulfate minerals. The set of end-members is commonly associated with
sulphide-bearing mine wastes. The first and the second derivatives were then calcu-
lated for each of the different sets of mixed spectra and the individual spectra of the
minerals. It is shown here that most pairs of the derivatives for individual spectra
have lower correlation coefficients than the pairs of original individual spectra. Fi-
nally, a method is presented for spectral unmixing, which requires formulation of a
linear function of the individual spectra.

5.2 Method of spectral unmixing

Spectral unmixing is a deconvolution process for estimating the contribution of indi-
vidual e (e = 1,...,||E||) component spectra to an observed spectrum containing a
set M of unknown || M || spectral end-members, where E C M, ||E|| and ||M|| are the
number of end-member spectra in E and in M, respectively. Each component spec-
trum e, which can be derived from a spectral library, consists of L discrete wavelengths
AN (I=1,...,L). It is denoted by R® = (R°(\1),...,R*(AL)), where R°()\;) is the
reflectance value at wavelength A;. An observed spectrum U = (U(A1),...,U(AL))
is assumed to be a linear combination of the ||M|| end-members. It is difficult, if
not impossible, to model U for all possible components or end-members in a complex
spectral mixture. Instead an exhaustive set of end-members of interest (subset E of
M) is considered. The proportion contribution of each of these end-members can then
be estimated. Accordingly, a spectrum at A\; can be modeled as

[1El|
TUN) =D peR(\) +poRME (V) (5.1)

where 0 < p. <1 and pg Jrzle‘fl“ pe = 1 is the contribution of each end-member of in-

terest in the spectral library and 0 < py < 1 is the contribution of end-members in the
exhaustive set of end-members in M\ E. RM\F();) is an unknown linear combination
of end-members from the exhaustive set of end-members in M\ E. Previous studies
have arrived at either a constrained unmixing solution (0 < p, < 1 and e‘fl‘l pe=1)
(Boardman, 1989; Shimabukuro & Smith, 1991; Garcia-Haro et al., 1996; Metternicht
& Fermont, 1998; Ferrier, 1999; Drake et al., 1999; Robinson et al., 2000) or an un-
constrained unmixing solution (Van der Meer & De Jong, 2000), where the fraction
of abundance p, can be negative and/or the total abundance can exceed 1. Here, a
partial constraint is applied because the abundance of a material is between 0 and 1,
and the total abundance due to end-members in E is at most equal to 1. This is
more realistic, as a mixture can consist of end-members that are either not of interest
or are unknown. The resulting values of p. represent estimates, as proportions, of
partial abundance of the material of each considered component or end-member in
an observed spectrum.
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The difference between the estimated and actual spectra at A\; equals

[1E]]
€ = U()\l) — ZpeRe()\l) . (5.2)

To achieve the optimal set of coefficients, it was endeavored to find values p. that
minimize some function of ¢, e.g. SumSpec = Zlel le;| or VarSpec = var(e;). Be-
cause remote sensing images are subject to albedo effects and the reflectance seldom
match end-member reflectances, it is appealing to use either the differences in the first
derivative or the second derivative instead of the actual differences. The difference in
the second derivative between an estimated and an actual spectrum at J); is

[1E]]

A*U(N) Z AZRe(\)
/ _— S — —_—
€ = AQ}\Z i DPe < A2>\l ) ) (53)

where Az = Azjy 1 — Az = 2341 — 22 + 271 and Az = 2341 — x;. With these
equations A2U()\;), A%\, and A?R¢()\;) can be calculated. Minimization of a loss
function of Equation 5.3, e.g. SumDeriv = ZIL:ZQ le;| or VarDeriv = var(e;), results
in estimates of p., which are the fractions or partial abundance of each end-member e
with reflectance R¢. The minimization is achieved through simulated annealing, using
either SumSpec, SumDeriv, VarSpec or VarDeriv as the fitness function to optimize.

Simulated annealing

Simulated annealing is a general optimization method that has been widely applied
to find the global optimum of an objective function called the fitness function ¢(e).
The fitness function depends on the configuration of the estimates p., corresponding
to e that is to be minimized. As such, simulated annealing (Aarts & Korst, 1989) is a
computer intensive search technique to find the optimum value of a function of the ab-
solute difference between an image (mixed) spectra and a linearly combined reference
spectrum, by continually updating this function at successive steps. The problem of
non-orthogonality in matrix inversion is thus avoided and reduced to solving a finite
state space combinatorial problem. Unmixing of image spectra by means of optimiza-
tion was previously addressed by applying simulated annealing (Penn, 2002) and by
using a genetic optimization algorithm (Linforda & Platzman, 2004). The method of
spectral unmixing presented here is demonstrated by means of a comparative study
using synthetic spectra with different mixing properties.

Starting with a random configuration of p., ¢(¢°) is calculated. Let ¢ and €1
represent two solutions with fitness ¢(e’) and ¢(e'*1!), respectively. Configuration
€t1! is derived from €’ by randomly replacing one point p; of €' by a new point py
in [O, 1+p; — Z pe], so that Y p. < 1. A probabilistic acceptance criterion decides
whether €1 is accepted or not. This probability P.(e! — €*1) of ¢iT! being accepted
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equals

o L | if ¢(e!) < 6(e)
P.(e¢l — 6erl) — exp (W) ’ if ¢(6i+1) N (;5(61) (5.4)

C

where ¢ denotes a parameter. This parameter is reduced by a factor of 0.95 after
several transitions are made, thereby decreasing the probability of accepting inferior
moves. Reduction stops when the process stabilizes. A transition takes place if
€*! is accepted. Next, a solution €2 is derived from €*!, and the probability
P.(e"™' — €?) is calculated with a similar acceptance criterion as Equation 5.4.
The fitness function will be one of SumSpec, VarSpec, SumDeriv or VarDeriv.

5.3 End-member spectra and synthetic mixtures

Synthetic spectral mixtures were created to test the proposed spectral unmixing
methodology. Based on expert knowledge and geoscience literature, five minerals were
selected to compose a set of end-members, namely: ferrihydrite; copiapite; jarosite;
goethite and quartz. The first four minerals represent the spectra of secondary iron-
bearing sulfate hydroxide oxide minerals that could form from pyrite-rich mine wastes
(Swayze et al., 2000). The fifth mineral usually represents gangue (non-economic)
materials in ores and thus forms part of mine wastes. Although each secondary iron-
bearing oxide/hydroxide/sulfate mineral within a weathering sulfide-bearing mine
waste shows distinctive spectral features in the 0.4-2.5 pm regions of the electromag-
netic spectrum (Crowley et al., 2003), this study was limited to the spectral range
0.5-1.1 pm, because this is where most of the iron-bearing oxide/hydroxide/sulfate
minerals of interest have many and strong spectral features. The individual spectrum
of each of the five end-members (Figure 5.1(a)) was selected from the USGS spec-
tral library (Clark et al., 1993) and then linearly mixed with each other according to
some proportions of each end-member (Figure 5.1(b)). Note that quartz is spectrally
featureless (i.e., has no diagnostic spectral features) in the spectral range of interest
(Clark, 1995), which makes it difficult, but not impossible, to identify and estimate
from spectral data in the range of interest. The mixed spectrum was then degraded
to an approximate 15 nm spectral resolution. The resampling was performed (a)
to simulate data with lower spectral resolution hyperspectral sensors (e.g., HyMap,
DAIS, etc.) as compared to the spectral resolution of the original end-members in
the library, (b) to reduce dimensionality of the data, and (c) because it is a practical
technique found effective for prediction of different soil properties (Ben-Dor & Banin,
1994). Tt is acknowledged, however, that spectral channel degradation potentially in-
creases correlation between end-members, which would undermine spectral unmixing
(Van der Meer & De Jong, 2000). For this reason, it is proposed and demonstrated to
“decorrelate” end-members (see further below) using either their first or their second
derivative (Figure 5.2).

Experiments were made on several different mixtures of selected end-members (with
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Figure 5.1: Five end-member spectra from USGS library, resampled to DAIS VIR region and mixed
spectra.

or without quartz), which could plausibly occur in real situations: (a) the observed
spectrum is a pure end-member spectrum and is included in the set of end-members
considered for unmixing (R® € E); (b) the observed spectrum is a pure end-member
spectrum but is excluded (because, e.g. not identified or not known) in the set of
end-members considered for unmixing (R® € M\FE); (c) the observed spectrum is a
mixture of end-member spectra and all end-members are included in the set of end-
members considered for unmixing (all R® € E) and (d) the observed spectrum is a
mixture of end-member spectra and some end-members are excluded (for similar rea-
sons as in (b)) in the set of end-members considered for unmixing (some R® € M\E).
For (¢) and (d), two simple mixtures of the end-member spectra were considered,
namely, mixed spectrum 1 with 50% goethite and 50% jarosite, and mixed spectrum 2
with 15% goethite, 25% jarosite, 25% copiapite and 35% ferrihydrite (Figure 5.1(b)).
Note that (c) also considers the case where the mixed spectrum results from a smaller
set of end-members in F. This is useful if prior information suggests including end-
members in the set E, when in fact these end-members does not contribute to the
mixed spectrum. The resulting abundance for these end-members, in such a case,
should then be equal to zero.

5.4 Results

Only results of using the second derivatives of observed and end-member spectra are
reported, because these are more accurate in the estimation than the results using
the first derivatives.
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Figure 5.2: First and second derivatives of end-member and mixed spectra.
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Table 5.1: Estimated mineral abundance based on observed spectra of mixtures containing known
proportions of quartz and four iron-bearing minerals. The dash (—) indicate that the end-member
spectrum was excluded from the set E of end-members considered for unmixing.

Known abundance

Estimated abundance

Goe \ Jar \ Cop \ Fer \ Qua

Goe | Jar [ Cop | Fer | Qua [ M\E'

Using observed spectra & SumSpec?

End-member spectrum included in F

0.00 ] 0.00 [ 0.00 ] 0.00 [ .00 ]| 0.01 [ 0.00 | 0.00 | 0.00 | 0.94 [ 0.05

End-member spectrum excluded from F

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.04 \ 0.93 \ 0.00 \ 0.01 \ — \ 0.02
Mixtures

0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.01 | 0.70 | 0.27 | 0.01 — 0.01
0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.05 | 0.33 | 0.14 | 0.16 | 0.27 0.05

Using observed spectra & VarSpec?

End-member spectrum included in F

0.00 ] 0.00 [ 0.00 ] 0.00 [ .00 ]| 0.00 [ 0.00 [ 0.02 [ 0.10 [ 0.70 [ 0.18

End-member spectrum excluded from F

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.00 \ 0.00 \ 0.01 \ 0.27 \ — \ 0.72
Mixtures

0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.11 | 0.31 | 0.18 | 0.15 — 0.25
0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.08 | 0.30 | 0.20 | 0.17 | 0.22 0.03

I represents the set of end-member spectra that are in the exhaustive set containing
all possible end-member spectra but excluding the end-member spectra used for un-

mixing.

2 represents the sum of the absolute difference between the observed spectrum to the
end-member spectra.

3

end-member spectra.

represents the variance of the differences between the observed spectrum to the
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Table 5.2: Estimated mineral abundance based on second derivative of observed spectra of mixtures
containing known proportions of quartz and four iron-bearing minerals. The dash (—) indicate that
the end-member spectrum was excluded from the set E of end-members considered for unmixing.

Known abundance Estimated abundance

Goe [ Jar | Cop [ Fer [ Qua || Goe | Jar | Cop [ Fer [ Qua | M\E?

Using second derivatives of spectra & SumDeriv?

End-member spectrum included in E

0.00 [ 0.00 | 0.00 [ 0.00 | 1.00 || 0.00 [ 0.00 | 0.01 | 0.03 | 0.87 | 0.09
End-member spectrum excluded from F

0.00 [ 0.00 [ 0.00 [ 0.00 | 1.00 ]| 0.03 [ 0.00 | 0.01 [ 0.10 | — | 0.86
Mixtures

0.10 [ 0.30 [ 0.20 [ 0.15 [ 0.25 [[ 0.00 [ 0.00 | 0.00 [ 0.98 [ — 0.02
0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.11 | 0.30 | 0.20 | 0.14 | 0.23 0.02

Using second derivatives of spectra & VarDeriv®

End-member spectrum included in F

0.00 [ 0.00 | 0.00 [ 0.00 | 1.00 || 0.00 [ 0.00 | 0.00 | 0.04 | 0.87 | 0.09
End-member spectrum excluded from F

0.00 [ 0.00 [ 0.00 [ 0.00 [ 1.00 || 0.02 [ 0.00 [ 0.00 [ 0.01 | — ] 0.97
Mixtures

0.10 [ 0.30 [ 0.20 [ 0.15 [ 0.25 [ 0.11 [ 0.30 [ 0.20 [ 0.16 | — 0.23
0.10 | 0.30 | 0.20 | 0.15 | 0.25 || 0.10 | 0.30 | 0.19 | 0.17 | 0.18 0.06

! represents the set of end-member spectra that are in the exhaustive set containing
all possible end-member spectra but excluding the end-member spectra used for un-
mixing.

2 represents the sum of the absolute differences between the second derivative of the
observed spectrum to the second derivative of end-member spectra.

3 the variance of the differences between the second derivative of the observed spec-
trum to the second derivative of end-member spectra.
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Table 5.3: Estimated mineral abundance based on observed spectra of mixtures containing known
proportions of four iron-bearing minerals. The dash (—) indicate that the end-member spectrum
was excluded from the set E of end-members considered for unmixing.

Known abundance Estimated abundance

Goe \ Jar \ Cop \ Fer || Goe \ Jar \ Cop \ Fer \ M\E?
Using observed spectra & SumSpec?
End-member spectrum included in F

1.00 | 0.00 | 0.00 | 0.00 || 0.88 | 0.02 | 0.01 | 0.08 0.01
0.00 | 1.00 | 0.00 | 0.00 || 0.01 | 0.93 | 0.02 | 0.01 0.03
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.03 | 0.96 | 0.00 0.01
0.00 | 0.00 | 0.00 | 1.00 || 0.03 | 0.01 | 0.01 | 0.88 0.07
End-member spectrum excluded from E

1.00 | 0.00 | 0.00 | 0.00 — 1 0.24 | 0.00 | 0.69 0.07
0.00 | 1.00 | 0.00 | 0.00 || 0.00 | — | 0.98 | 0.00 0.02
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.68 | — | 0.00 0.32
0.00 | 0.00 | 0.00 | 1.00 || 0.70 | 0.00 | 0.00 | — 0.30
Mixtures

0.50 | 0.50 | 0.00 | 0.00 || 0.49 | 0.51 | — — 0.00
0.50 | 0.50 | 0.00 | 0.00 || 0.39 | 0.53 | 0.01 | 0.05 0.02
0.15 | 0.25 | 0.25 | 0.35 || 0.63 | 0.31 | — — 0.06

0.15 | 0.25 | 0.25 | 0.35 || 0.15 | 0.26 | 0.24 | 0.35 0.00

Using observed spectra & VarSpec?
End-member spectrum included in F
1.00 | 0.00 | 0.00 | 0.00 || 0.91 | 0.02 | 0.01 | 0.05 0.01
0.00 | 1.00 | 0.00 | 0.00 || 0.02 | 0.92 | 0.01 | 0.00 0.05
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.03 | 0.96 | 0.00 0.01
0.00 | 0.00 | 0.00 | 1.00 || 0.01 | 0.02 | 0.00 | 0.92 0.05
End-member spectrum excluded from F

1.00 | 0.00 | 0.00 | 0.00 — | 0.26 | 0.01 | 0.69 0.04
0.00 | 1.00 | 0.00 | 0.00 || 0.43 | — | 0.56 | 0.00 0.01
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.37 | — | 0.00 0.63
0.00 | 0.00 | 0.00 | 1.00 || 0.93 | 0.00 | 0.00 | — 0.07
Mixtures

0.50 | 0.50 | 0.00 | 0.00 || 0.50 | 0.50 | — — 0.00
0.50 | 0.50 | 0.00 | 0.00 || 0.47 | 0.49 | 0.02 | 0.02 0.00
0.15 | 0.25 | 0.25 | 0.35 || 0.58 | 0.24 | — — 0.18

0.15 ] 0.25 | 0.25 | 0.35 || 0.13 | 0.25 | 0.25 | 0.37 0.00

! represents the set of end-member spectra that are in the exhaustive set containing
all possible end-member spectra but excluding the end-member spectra used for un-
mixing.

2 represents the sum of the absolute difference between the observed spectrum to the
end-member spectra.

3 represents the variance of the differences between the observed spectrum to the
end-member spectra.
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Table 5.4: Estimated mineral abundance based on second derivative of observed spectra of mixtures
containing known proportions of four iron-bearing minerals. The dash (—) indicate that the end-
member spectrum was excluded from the set E of end-members considered for unmixing.

Known abundance Estimated abundance
Goe \ Jar \ Cop \ Fer || Goe \ Jar \ Cop \ Fer \ M\E!
Using second derivatives of spectra & SumDeriv?
End-member spectrum included in F

1.00 | 0.00 | 0.00 | 0.00 || 0.98 | 0.00 | 0.01 | 0.00 0.01
0.00 | 1.00 | 0.00 | 0.00 || 0.00 | 0.94 | 0.05 | 0.01 0.01
0.00 | 0.00 | 1.00 | 0.00 || 0.01 | 0.02 | 0.96 | 0.00 0.01
0.00 | 0.00 | 0.00 | 1.00 || 0.02 | 0.00 | 0.01 | 0.96 0.01
End-member spectrum excluded from E

1.00 | 0.00 | 0.00 | 0.00 — 10.21 | 0.00 | 0.78 0.01
0.00 | 1.00 | 0.00 | 0.00 || 0.36 | — | 0.63 | 0.00 0.01
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.43 | — | 0.01 0.56
0.00 | 0.00 | 0.00 | 1.00 || 0.10 | 0.06 | 0.01 | — 0.83
Mixtures

0.50 | 0.50 | 0.00 | 0.00 || 0.50 | 0.50 | — — 0.00
0.50 | 0.50 | 0.00 | 0.00 || 0.45 | 0.50 | 0.00 | 0.04 0.01
0.15 | 0.25 | 0.25 | 0.35 || 0.00 | 0.00 | — — 1.00
0.15 | 0.25 | 0.25 | 0.35 || 0.15 | 0.26 | 0.24 | 0.34 0.01

Using second derivatives of spectra & VarDeriv®
End-member spectrum included in F

1.00 | 0.00 | 0.00 | 0.00 || 0.97 | 0.00 | 0.01 | 0.01 0.01
0.00 | 1.00 | 0.00 | 0.00 || 0.00 | 0.99 | 0.01 | 0.00 0.00
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.01 | 0.98 | 0.01 0.00
0.00 | 0.00 | 0.00 | 1.00 || 0.00 | 0.00 | 0.01 | 0.99 0.00
End-member spectrum excluded from F

1.00 | 0.00 | 0.00 | 0.00 — | 0.25 | 0.00 | 0.52 0.23
0.00 | 1.00 | 0.00 | 0.00 || 0.43 | — | 0.56 | 0.00 0.01
0.00 | 0.00 | 1.00 | 0.00 || 0.00 | 0.29 | — | 0.00 0.71
0.00 | 0.00 | 0.00 | 1.00 || 0.05 | 0.03 | 0.00 | — 0.92
Mixtures

0.50 | 0.50 | 0.00 | 0.00 || 0.50 | 0.50 | — — 0.00
0.50 | 0.50 | 0.00 | 0.00 || 0.48 | 0.50 | 0.00 | 0.01 0.01
0.15 | 0.25 | 0.25 | 0.35 || 0.10 | 0.35 | — — 0.55
0.15 | 0.25 | 0.25 | 0.35 || 0.15 | 0.25 | 0.25 | 0.35 0.00

! represents the set of end-member spectra that are in the exhaustive set containing
all possible end-member spectra but excluding the end-member spectra used for un-
mixing.

2 represents the sum of the absolute differences between the second derivative of the
observed spectrum to the second derivative of end-member spectra.

3 represents the variance of the differences between the second derivative of the ob-
served spectrum to the second derivative of end-member spectra.
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5.4.1 Abundance estimation from spectra containing quartz

Tables 5.1 and 5.2 show the results of the above experiments using observed spectra
and second derivatives of the spectra, respectively, containing quartz and performed
using SumSpec, VarSpec, SumDeriv and VarDeriv.

If quartz is the observed spectrum and is included in the set of end-members, the
accuracy of estimated abundance for quartz (between 0.70 and 0.94) is generally
lower than the results obtained for other minerals. In this case, abundance estimates
are most accurate by using SumSpec.

If quartz is the observed spectrum but is excluded in the set of end-members, the
accuracy of estimated abundance for quartz (between 0.02 and 0.97; see column M\ E)
is also generally lower than the results obtained for the other minerals. In this case,
abundance estimates are most accurate by using VarDeriv.

For the same mixed spectrum of 10% goethite, 30% jarosite, 20% copiapite, 15%
ferrihydrite and 25% quartz (Figure 5.1(b)), estimated abundances have high accuracy
(< 0.06 inaccuracy, see second row under mixtures in Tables 5.1 and 5.2) when all
end-members are included in the set of end-members considered for unmixing (all
R¢ € E). In this case, abundance estimates by using the second derivative of the
spectra are more accurate than by using the original spectra.

For the same mixed spectrum (Figure 5.1(b)), but excluding quartz from the set
of end-member spectra considered for unmixing, accuracy of abundance estimates
for each end-member decreases (see first row under mixtures in Tables 5.1 and 5.2).
Estimated abundance for quartz, which can be seen in column M\FE, ranges from
0.01 to 0.02 out of the actual abundance of 0.25 for SumSpec and SumDeriv and
from 0.23 to 0.25 for VarSpec and VarDeriv. These results show that estimated
abundances for the other minerals are accurate by using VarSpec and VarDeriv if
quartz is not considered as end-member for unmixing even if it is present. In all,
abundance estimates are most accurate using VarDeriv.

5.4.2 Abundance estimation from spectra containing no quartz

Tables 5.3 and 5.4 show the results of the experiments using observed spectra and
second derivatives of spectra, respectively, containing no quartz and performed using
SumSpec, VarSpec, SumDeriv and VarDeriv.

If the observed spectrum is a pure end-member, and is included in the set of end-
members considered for unmixing, application of the proposed method is able to
estimate abundance of all materials in set E (Tables 5.3 and 5.4) with a high degree
of accuracy, with estimated abundance > 0.88 for the correct end-member and < 0.08
for an incorrect end-member. Abundance estimates by using the second derivative of
the spectra are more accurate than abundance estimates by using the original spectra.
Moreover, abundance estimates by using VarDeriv are more accurate than abundance
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estimates by using SumDeriv.

If the observed spectrum is a pure end-member, but is excluded from the set of end-
members considered for unmixing, application of the proposed method results in esti-
mated abundances of the materials with poor accuracies. Estimated abundances vary
between 0.01 and 0.92 for the correct end-member (see the columns M\FE) and be-
tween 0.00 and 0.98 for an incorrect end-member. Nevertheless, abundance estimates
by using the second derivative of the spectra (Table 5.4) are slightly more accurate
than abundance estimates by using the original spectra (Table 5.3), particularly for
copiapite and ferrihydrite.

If the end-member spectra contributing to the observed mixed spectrum are included
in the set of end-members considered for unmixing (all R¢ € E), the estimated abun-
dances have a very high accuracy for each end-member (< 0.11 inaccuracy, see first,
second and fourth rows under mixtures in Tables 5.3 and 5.4). Using the second
derivative of the spectra produced slightly better abundance estimates (Table 5.4)
than when using the original spectra (Table 5.3). In total, abundance estimates ob-
tained by using VarDeriv are most accurate.

If some end-member spectra contributing to the observed spectrum are excluded from
the set of end-members considered for unmixing (some R¢ € M\FE), estimated abun-
dances have a low accuracy for each end-member (between 0.00 to 0.48 inaccuracy,
see third row under mixtures in Tables 5.3 and 5.4). Also in this case, use of VarDeriv
results in the most accurate abundance estimates.

5.4.3 Abundance estimates by exclusion of contributing end-members

The results show that abundance estimates are generally inaccurate if end-members
contributing to the observed pure spectrum are excluded from the set of end-members
considered for unmixing (some R® € M\FE). If the observed spectrum is a pure
end-member but is excluded from the set of end-members for unmixing, then the
abundance of other end-members is often overestimated, particularly when using the
original spectra (Tables 5.1 to 5.4).

If the observed spectrum is pure quartz but is excluded from the set of end-member
spectra considered for unmixing, then some end-members, particularly jarosite or fer-
rihydrite not contributing to the observed spectrum are over-estimated (Tables 5.1
and 5.2). The results are similar if quartz is excluded from the set of end-member
spectra considered to unmix an observed mixed spectrum containing quartz. Over-
estimation of either jarosite or ferrihydrite is particularly remarkable when the original
spectrum is unmixed rather than the second derivative of the original spectrum. A
plausible reason is that the unmixing procedure yields an end-member in E with spec-
tral signature similar to the observed spectrum even though the actual end-member is
excluded from F. From Table 5.5, it can be seen that that there is positive correlation
between quartz spectrum and jarosite spectrum and high positive correlation between
quartz spectrum and ferrihydrite spectrum. The relatively slight over-estimation of
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ferrihydrite when the second derivative of the original spectrum is unmixed could also
be due to positive albeit low correlation between second derivative of quartz spectrum
and second derivative of ferrihydrite spectrum.

If the observed spectrum is pure mineral but is excluded from the set of end-member
spectra considered for unmixing, then other minerals not contributing to the observed
spectrum are over-estimated (Tables 5.3 and 5.4). For example, if the observed spec-
trum is jarosite but is excluded from the set of end-member spectra considered for
unmixing, then copiapite is over-estimated; and vice versa. Similarly, if the observed
spectrum goethite but is excluded from the set of end-member spectra considered
for unmixing, then ferrihydrite is over-estimated; and, vise versa. Over-estimation
of another mineral is particularly remarkable when the original spectrum is unmixed
rather than the second derivative of the original spectrum. A plausible reason for this
is the high correlation between copiapite spectrum and jarosite spectrum and between
goethite spectrum and ferrihydrite spectrum (Table 5.5). The relatively slight over-
estimation of another mineral when the second derivative of the original spectrum is
unmixed is also plausibly due to positive albeit low correlation between the second
derivative spectra of copiapite and jarosite and between the second derivative spectra
of goethite and ferrihydrite.

5.4.4 Performance of fitness functions

Results of abundance estimates in Tables 5.1 to 5.4 already indicate relative good
performance by VarDeriv among the four fitness functions. To properly compare
performance of the four fitness functions, error in estimated abundance is quantified
as an absolute difference between the actual (known) and estimated abundance of each
end-member (Err). These errors were ranked accordingly, and the average error and
the average rank error in abundance estimates by using each of four fitness functions
were determined and shown in Tables 5.6, 5.7, and 5.8.

If the observed spectrum is a pure end-member but is either included or excluded in
the set of end-members considered for unmixing, VarDeriv performs best in terms of
the average error and average rank error. For example, when observed spectrum is
pure ferrihydrite but is excluded in the set of end-members considered for unmixing,
abundance estimates by using VarDeriv are mostly accurate (see Tables 5.6 and 5.7).
If all or some end-member spectra contributing to the observed spectrum are either in-
cluded or excluded in the set of end-members considered for unmixing, then VarDeriv
outperforms the other fitness functions in terms of average error and average rank
error (Table 5.8). If the observed spectrum consists of mixtures of quartz spectrum
either with or without the other four spectra, then VarDeriv outperforms the other
fitness functions in terms of average error and average rank error (Table 5.8). The
superior performance of VarDeriv in unmixing of the different experimental spectra
can be attributed to the lower correlations among the second derivatives of the end-
member spectra as compared to the correlations of the original spectra (Table 5.5).
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Table 5.5: Correlation coefficient between pairs of original spectra, pairs of first derivative of spectra
and pairs of second derivative of spectra.

Original spectra:
goethite jarosite copiapite ferrihydrite quartz

goethite 1.00

jarosite 0.67 1.00

copiapite 0.43 0.72 1.00

ferrihydrite 0.86 0.29 0.16 1.00

quartz 0.85 0.23 0.15 0.98 1.00

First derivative of spectra:
goethite jarosite copiapite ferrihydrite quartz

goethite 1.00

jarosite 0.71 1.00

copiapite 0.35 0.79 1.00

ferrihydrite 0.44 0.24 -0.15 1.00

quartz 0.60 0.36 -0.20 0.57 1.00

Second derivative of spectra:
goethite jarosite copiapite ferrihydrite quartz

goethite 1.00

jarosite 0.35 1.00

copiapite -0.14 0.43 1.00

ferrihydrite 0.22 0.18 -0.02 1.00

quartz 0.17 -0.04 -0.23 0.15 1.00
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Table 5.6: Errors in mineral abundance estimates derived from observed spectra of mixtures con-
taining known proportions of four iron-bearing minerals.

Estimated abundance
Known abundance Spectra

Using Using
SumSpec! VarSpec?
Goe | Jar [ Cop [ Fer [ [Err]® | Rank® || [Err[ | Rank
End-member spectrum included in F
1.00 | 0.00 | 0.00 | 0.00 0.23 4.0 0.16 3.0
0.00 | 1.00 | 0.00 | 0.00 0.11 2.5 0.11 2.5
0.00 | 0.00 | 1.00 | 0.00 0.07 3.0 0.07 3.0
0.00 | 0.00 | 0.00 | 1.00 0.17 4.0 0.11 3.0
Averages 0.145 | 3.375 || 0.113 | 2.875
End-member spectrum excluded in F
1.00 | 0.00 | 0.00 | 0.00 0.93 2.0 0.96 3.0
0.00 | 1.00 | 0.00 | 0.00 0.98 1.0 0.99 3.0
0.00 | 0.00 | 1.00 | 0.00 0.68 4.0 0.37 2.0
0.00 | 0.00 | 0.00 | 1.00 0.70 3.0 0.93 4.0
Averages 0.823 | 2.500 || 0.813 | 3.000
Mixtures
0.50 | 0.50 | 0.00 | 0.00 0.02 4.0 0.00 2.0
0.50 | 0.50 | 0.00 | 0.00 0.20 4.0 0.08 2.0
0.15 | 0.25 | 0.25 | 0.35 0.54 4.0 0.48 3.0
0.15 | 0.25 | 0.25 | 0.35 0.02 2.0 0.04 4.0
Averages 0.195 | 3.500 0.150 | 2.750

! represents the sum of the absolute differences between the observed spectrum to the
end-member spectra.

2 represents the variance of the differences between the observed spectrum to the
end-member spectra.

3 represents the absolute differences between the actual and estimated abundance of
each end-member.

4 represents the ranked values for the error in the estimated abundance to the known
abundance of each end-member.
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Table 5.7: Errors in mineral abundance estimates derived from second derivative of observed spectra
of mixtures containing known proportions of four iron-bearing minerals.

Estimated abundance

Known abundance Second derivatives of spectra
Using Using
SumDeriv! VarDeriv?

Goe | Jar [ Cop [ Fer [[ [Err]® | Rank® || [Err[ | Rank
End-member spectrum included in E
1.00 | 0.00 | 0.00 | 0.00 0.03 1.0 0.05 2.0
0.00 | 1.00 | 0.00 | 0.00 0.12 4.0 0.02 1.0
0.00 | 0.00 | 1.00 | 0.00 0.07 3.0 0.04 1.0
0.00 | 0.00 | 0.00 | 1.00 0.07 2.0 0.02 1.0
Averages 0.100 | 2.500 || 0.080 | 1.250
End-member spectrum excluded in F
1.00 | 0.00 | 0.00 | 0.00 0.99 4.0 0.77 1.0
0.00 | 1.00 | 0.00 | 0.00 0.99 3.0 0.99 3.0
0.00 | 0.00 | 1.00 | 0.00 0.46 3.0 0.29 1.0
0.00 | 0.00 | 0.00 | 1.00 0.17 2.0 0.08 1.0
Averages 0.653 | 3.000 0.533 | 1.500
Mixtures
0.50 | 0.50 | 0.00 | 0.00 0.00 2.0 0.00 2.0
0.50 | 0.50 | 0.00 | 0.00 0.09 3.0 0.03 1.0
0.15 | 0.25 | 0.25 | 0.35 0.40 2.0 0.15 1.0
0.15 | 0.25 | 0.25 | 0.35 0.03 3.0 0.00 1.0
Averages 0.130 | 2.500 0.045 | 1.250

! represents the sum of the absolute differences between the second derivative of the
observed spectrum to the second derivative of end-member spectra.

2 represents the variance of the differences between the second derivative of the ob-
served spectrum to the second derivative of end-member spectra.

3 represents the absolute differences between the actual and estimated abundance of
each end-member.

4 represents the ranked values for the error in the estimated abundance to the known
abundance of each end-member.
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Table 5.8: Errors in mineral abundance estimates derived from observed spectra and from second
derivative of observed spectra of mixtures containing known proportions of quartz and four iron-
bearing minerals.

Known abundance Estimated abundance
Goe [ Jar [ Cop [ Fer | Qua [[ [Err[' [ Rank® || [Err[ [ Rank
Spectra
Using Using
SumSpec3 VarSpec?

End-member spectrum included in F

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.07 \ 1.0 H 0.42 \ 4.0
End-member spectrum excluded in E

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.98 \ 4.0 H 0.28 \ 3.0
Mixtures

0.10 | 0.30 | 0.20 | 0.15 | 0.30 0.70 3.0 0.04 2.0
0.10 | 0.30 | 0.20 | 0.15 | 0.30 0.17 4.0 0.07 2.0

Averages 0.480 | 3.000 || 0.203 | 2.750
Second derivatives of spectra
Using Using
SumDeriv® VarDeriv®

End-member spectrum included in F

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.17 \ 2.5 H 0.17 \ 2.5
End-member spectrum excluded in F

0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 H 0.14 \ 2.0 H 0.03 \ 1.0
Mixtures

0.10 | 0.30 | 0.20 | 0.15 | 0.30 1.33 4.0 0.02 1.0
0.10 | 0.30 | 0.20 | 0.15 | 0.30 0.04 1.0 0.10 3.0
Averages 0.420 | 2.375 || 0.080 | 1.875

! represents the absolute differences between the actual and estimated abundance of
each end-member.

2 represents the ranked values for the error in the estimated abundance to the known
abundance of each end-member.

3 represents the sum of the absolute differences between the observed spectrum to the
end-member spectra.

4 represents the variance of the differences between the observed spectrum to the
end-member spectra.

5 represents the sum of the absolute differences between the second derivative of the
observed spectrum to the second derivative of end-member spectra.

6 represents the variance of the differences between the second derivative of the ob-
served spectrum to the second derivative of end-member spectra.
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5.5 Discussion

Technology for mapping, within mining districts, of sources of acid-generating min-
erals (e.g., pyrite) or their weathering products using imaging spectroscopy and hy-
perspectral data is a potentially useful tool for environmental remediation studies.
However, techniques for mapping, within only mine waste impoundments, of abun-
dance and distribution of secondary iron-bearing sulfates/hydroxides/oxides (as an
indirect way to find acid-generating minerals) using hyperspectral data are still de-
sirable. Development of such techniques is not straightforward because of the high
spectral similarity among the target materials (i.e., only, if not mostly, weathering
products of, say, pyrite), which undermines current algorithms for spectral unmixing
of hyperspectral data.

Previous techniques of spectral unmixing by means of inversion of a matrix of the
spectral data can become problematic because of (a) highly corrected data in hy-
perspectral bands and (b) high correlation between the target materials within mine
wastes areas. The idea of using singular-valued decomposition of the end-member
matrix in lieu of matrix inversion was suggested by Boardman (1989). In contrast,
Van der Meer & De Jong (2000) proposed to enhance orthogonality of end-member
matrix by application of the MNF (minimum noise fraction) transformation, which
was developed by Green et al. (1988) for noise removal in multispectral data. Spectral
unmixing of MNF-transformed hyperspectral data, however, requires that the noise
covariance matrix of the data be known or estimated thereby separating the noise
from the data. Although this proves to reduce the correlation among end-member
spectra, this study considered explicitly de-correlating noise-free end-member spectra.
It was decided to follow Boardman (1989) suggestion to use derivatives of spectral
data in order to reduce correlations among end-members. Accordingly, estimated
abundances of each of the spectrally similar materials of interest based on either the
first or the second derivatives of the observed spectra are more accurate than those
based on only the observed spectra. It was found further and thus only reported here
that using the second derivatives of the observed spectra results in most accurate
estimates of abundance of spectrally similar minerals of interest.

A successful application, via simulated annealing, of second derivatives of observed
spectra to estimate abundance of spectrally similar iron-bearing minerals in mine tail-
ings has not been reported yet, until now. In the same field of study, Penn (2002) also
used simulated annealing in spectral unmixing to estimate mineral abundance within
and around a porphyry copper deposit, although he did not use second derivates of
observed spectra but simply normalized the hyperspectral data and the end-member
spectra to alleviate albedo effects in the data. In the present work, normalization of
either the observed spectra or the end-member spectra is not required. In a different
field of study, Loethen et al. (2004) also found that using a second-derivative variance
minimization procedure outperforms other methods to estimate a dilute component
(solute) from a liquid mixture whose spectrum is dominated by a major component
(solvent). To estimate the dilute component, however, Loethen et al. (2004) minimize
the variance by assuming the solute and solvent spectra are non-correlated. For spec-
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trally similar end-members, as in mine tailings, assumption of non-correlation must
be demonstrated.

Results of the study showed that using the fitness function VarDeriv results in the
most accurate estimates of abundance of spectrally similar minerals in a complex
mixture such as mine tailings. The VarDeriv functions to minimize the variance of
the difference between the second derivatives of the observed spectra and the reference
end-member spectra. The results therefore demonstrate that the simulated annealing
procedure is efficient in minimizing the variance of the difference between the second
derivatives of the target spectra and the reference end-member spectra. The findings
reported are, nonetheless, consistent with previous findings that error in abundance
estimates, is a function of the difference between the target spectra and the reference
end-member spectra, and is proportional to the amount of variability in the individual
end-member spectra relative to the mixture (Van der Meer & De Jong, 2000).

Results of the study show that abundance estimates inclusive of end-members other
than those that contribute to the observed spectra are more accurate than abun-
dances estimates exclusive of end-members that do not contribute to the observed
spectra. The results therefore imply that a set of end-members should include not
only major components but also minor to trace components. It was not investigated
here, however, whether or not accurate estimates would be obtained if an end-member
set contains all 15 secondary iron-bearing sulfates/hydroxides/oxides listed in Crow-
ley et al. (2003), because it is known that distinction between end-member spectra
becomes difficult as number of reference spectra increases. Penn (2002) used in simu-
lated annealing, however, 10 end-members (inclusive of spectral similar mineral such
as jarosite, goethite, and hematite, as well as other spectrally different materials).
This suggests that accurate estimation of abundances of up to 10 spectrally similar
minerals in mine wastes is achievable via simulated annealing. This suggestion, how-
ever, needs further verification. Selection of which spectrally similar minerals to be
included in an end-member set should, nonetheless, be based on expert judgment or
based on spectral analysis of calibration spectroscopic data usually collected immedi-
ately following an airborne hyperspectral campaign.

Results of the study also show that abundance estimates based on an end-member
set inclusive of quartz are more accurate than abundance estimates based on an
end-member set exclusive of quartz. The results indicates that quartz should be
included in an end-member set for unmixing if mine wastes or geological materials of
interest indeed contain quartz. The results also imply that quartz, which is spectrally
featureless but nevertheless invariably present in mine wastes, (a) can be estimated
with reasonable accuracy and (b) should be included in the end-member set. The
results also suggest that, for estimation of spectrally similar minerals in complex
mixtures such as mine tailings, end-member selection through image data analysis
may not be necessary at all in a practical case exercise of the method described.
However, this suggestion also needs further verification.

The study presented here shows potential application to hyperspectral remote sens-
ing for surface characterization of mine tailings, especially those associated with ore
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deposits in which pyrite and quartz are the major gangue minerals. A shortcoming of
this study, however, is that actual hyperspectral data were not used to demonstrate
the methods described. Even so, the potential usefulness of the methods described
is supported by using synthetic spectral mixtures end-members commonly found in
weathered pyrite-rich mine wastes (Swayze et al., 2000). Tt is acknowledged, neverthe-
less, that further demonstration of the methods described by using actual hyperspec-
tral and ground measurements are important for validation purposes (e.g., Bajcsy &
Groves (2004)).

5.6 Conclusions

This study resulted in three main conclusions.

e Abundances of spectrally similar minerals in mine wastes can be estimated with
relatively high accuracy by unmixing of second derivatives of target spectra, in
which contributing components are decorrelated.

e Simulated annealing proved efficient in minimizing variance of the difference
spectrum to estimate abundance of spectrally similar minerals.

e Minimization of variance of the difference spectrum shows that using end-
member spectra inclusive components, not contributing to target spectra does
diminish according to abundance estimates. In contrast, using an end-member
spectra exclusive of component contributing to target spectra reduces accuracy
of abundance estimation.
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Chapter 6’

Optimum sampling scheme for
surface geochemical characterization
of mine tailings

Errors using inadequate data are much less than those using no data at all.

Charles Babbage

This chapter is based on P. Debba, E. J. M. Carranza, A. Stein and F. D. van der

Meer (In Prep.) Optimum sampling scheme for surface geochemical characterization
of mine tailings.!

1This work was sponsored by ITC International Institute for Geo-Information Science and
Earth Observation, project number 3083022 and NRF National Research Foundation, project num-
ber 10317, gun 2053944.
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Abstract

This chapter describes a method by which an optimal ground sampling scheme can
be obtained for a variable of interest, namely, spatial distribution of a suite of heavy
metals in mine tailings. Derivation of an optimal sampling scheme makes use of
covariates of the spatial variable of interest, which are readily but less accurately
obtainable by using airborne hyperspectral data. The covariates are abundances of
secondary iron-bearing minerals estimated through spectral unmixing. Via simulated
annealing, an optimal retrospective sampling scheme for a previously sampled area is
derived having fewer samples but having almost equal mean kriging prediction error
as the original ground samples. Via simulated annealing, an optimal prospective
sampling scheme for a new unvisited area is derived based on the variogram model of
a previously sampled area. The results of this study demonstrate potential application
of hyperspectral remote sensing and simulated annealing to surface characterization
of large mine tailings having similar climatic and terrain characteristics to the mine
tailings in the case study area.

Keywords

Optimized sampling, simulated annealing, hyperspectral data, spectral unmixing,
mineral abundance, heavy metal concentration, kriging with external drift
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6.1 Introduction

Mine wastes invariably contain very high albeit mostly non-economic concentrations
of metals. Metals could potentially be leached from mine wastes and then be released
to, thus contaminating, the nearby ecosystems. In mine wastes of sulphide-rich ores,
leaching of metals is caused by acid drainage, which is generated by oxidation and
hydrolysis of sulphide-rich, for e.g., pyrite, pyrrhotite, gangue minerals. Geochemical
characterization of mine waste impoundments is thus important for rehabilitation, or
for remediation, to protect the surrounding environment. Such geochemical charac-
terization would entail surface (to subsurface) sampling, which could be labor or cost
intensive, especially if not properly planned.

Metals in mine waste impoundments are usually hosted by acid-generating sulphide-
rich minerals, for e.g., pyrite, pyrrhotite, or adsorb onto surfaces of weathering prod-
ucts of such sulphide-rich minerals. Unfortunately, such minerals are difficult to de-
tect or identify by using current remote sensing techniques using multispectral or even
hyperspectral data. It has been shown, however, that certain sulphide-rich minerals,
particularly pyrite, weathers to a series of iron-bearing sulfates, hydroxides and oxides
(Swayze et al., 2000). Such secondary iron-bearing sulfates/hydroxides/oxides have
diagnostic spectral features (Crowley et al., 2003), which enable their detection or
identification with analytical techniques using hyperspectral data. In a previous work
(see chapter 5), the potential of using hyperspectral data to estimate abundances of
spectrally similar iron-bearing sulfates/hydroxides/oxides was demonstrated (Debba
et al., 2005a). It has also been shown that heavy metal contamination in soils can be
quantified using reflectance spectroscopy (Kemper & Sommer, 2002). Thus, remote
sensing technology potentially provides an indirect tool for surface characterization of
mine waste impoundments with oxidizing sulphide-rich materials; namely, for map-
ping spatial distributions of secondary iron-bearing sulfates/hydroxides/oxides and
heavy metals.

Certain groups of metals could be spatially associated with secondary iron-bearing ox-
ides/hydroxides depending on geochemical conditions in a given environment (Levin-
son, 1974; Rose et al., 1979). Given a model of spatial distribution of secondary
iron-bearing oxides/hydroxides, the problem is how to design a sampling scheme that
would adequately capture spatial distribution of certain groups of metals. The case
study presented in this chapter attempts to model spatial relationships between a
multi-element signature and abundance estimates of secondary iron-bearing minerals
in mine tailings dumps. The multi-element signature, on one hand, was modeled
through factor analysis of element contents of mine tailings samples, which were
measured in a laboratory. Abundances of secondary iron-bearing minerals, on the
other hand, were estimated by the method demonstrated by Debba et al. (2005a).
Spatial relationships between a multi-element signature and abundance estimates of
secondary iron-bearing minerals were modeled through conventional kriging with ex-
ternal drift. Derived spatial relationship models are then used for sampling scheme
optimization, by means of simulated annealing, for surface characterization of the
mine tailings dumps.
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Previous studies of simulated annealing applications to obtain optimal sampling schemes
to guide sampling to target specific areas, involved stratification (Van Groenigen et al.,
2000a), using thresholds (Van Groenigen et al., 2000a), defining a weight function
(Van Groenigen et al., 2000b), using ordinary kriging variance (Shieh et al., 2005)
and Sacks & Schiller (1988) presented several annealing based algorithms for optimiz-
ing a sampling scheme out of a small grid of possible locations. Studies on the design
of optimal sampling schemes in combination with remote sensing used fuzzy classifi-
cation (Tapia et al., 2005) and targeted a particular intense hydrothermal alteration
mineral (Debba et al., 2005b).

In a recent paper, Diggle & Lophaven (2006) discuss a retrospective sampling design,
which sequentially removes, from a sampling design, samples that contribute least to a
Bayesian prediction of a response. They do, however, state that this is not the optimal
design. In this chapter, an adaptation of the retrospective sampling methodology by
Diggle & Lophaven (2006) is demonstrated, not through the same Bayesian approach
but by incorporation of covariates in a conventional kriging with external drift model.
In addition, a prospective sampling scheme is derived for nearby unsampled areas
based on variogram model of the adjacent sampled area. The present case study area
is in the Recsk-Lahdca copper mining area in Hungary.

6.2 The Study Area

The Recsk-Lahoca mining area is situated in the Méatra Mountains, about 110 km
northeast of Budapest, Hungary (Figure 6.1). Base- and precious-metal mining of
volcanogenic sulphide ore deposits in the Recsk-Lahéca area started about 200 years
ago, with major mining activities taking place between the 1950s and 1998. The Recsk
deposits consist of a large, buried porphyry copper-polymetallic vein and replacement-
copper/gold skarn system. The Lahdca epithermal deposits contain enargite, luzonite,
tetrahedrite, and pyrite in a gangue of quartz, kaolinite, and alunite. The Lahdca hill
was mined for copper between 1852 and 1979. Development of Recsk Deeps mines
resulted in underground shafts extending 1200 m deep. The mine was meant to pro-
duce 3 to 5 million tons of copper ore per year but it never went into production since
its construction in 1970. Mining of ore deposits in the Recsk-Lahéca area resulted
in the exposure of sulphide bearing-rocks to surface water and atmospheric oxygen,
which accelerate oxidation, leaching and release of metals and acidity. Mine tailings
and waste rock dumps resulting from the two-century mining of copper and gold are
present in the area, such as those to the south and southwest of the Recsk mine
(Figure 6.2).

This study pertains to the tailings dumps northwest of Lah6ca mine, which consist
actually of two dumps referred to as “East Tails” and “West Tails”. These tailings
dumps were selected because, unlike the other tailings and waste rock dumps in the
area, they are not covered with non-mine-waste soil materials derived from other
places in the area. The “East Tails” and “West Tails” are situated immediately south
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of an unpaved road (Figure 6.3). They are separated from each other by a small active
southwesterly-flowing stream, whose northwesterly-flowing tributaries were dry at the
time of sampling.

6.3 Data

6.3.1 Hyperspectral

HySens 2002 Flight Campaign was initiated in August 2002 to undertake a survey of
areas suspected of pollution due to mining in the Matra Mountains. In this study,
a subset of the Digital Airborne Imaging Spectrometer (DAIS-7915) is used. The
resulting data is a 79 channel hyperspectral image, acquired over the Recsk. DAIS-
7915 is a whisk broom sensor, covering a spectral range from visible (0.4 pm) to
thermal infrared (12.3 pm) at variable spatial resolution from 3-20 m depending on
the carrier aircraft altitude (Lehmann et al., 1995).

Flights took place on the 17th and 18th August 2002. Absence of clouds and wind on
the second day were appropriate and hence this image was used for the study. Atmo-
spheric effects were minimized by applying an empirical line calibration method (Roberts
et al., 1985) to match field spectra measurements. The study area and hyperspectral
image are shown in Figures 6.2 and 6.3 at 5 m nominal resolution on the ground.
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Figure 6.2: The Recsk-Lah6ca area shown in pseudo-natural color composite image using DAIS
data (red = chl0, green = ch5, blue = chl) fused with a digital elevation model. Map coordinates
are in meters (UTM projection, zone 34N).
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Figure 6.3: The “East Tails” and the “West Tails” shown in a color composite image of the DAIS
data. Image of ratios of chl7 to ch28 (representing ferrihydrite reflectance and absorption peaks,
respectively) was used as red band. Image of ratios of ch13 to ch25 (representing jarosite reflectance
and absorption peaks, respectively) was used as green band. Image of ratios ch32 to chl (representing
non-iron-bearing minerals) was used as blue band. Red dots are locations of mine tailings samples.
Short dashed lines in the image represent drainage lines occupied by either active or non-active
streams during the field sampling campaign.
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Not all 79 channels were useful as many channels were too noisy and could not be
corrected efficiently. Fortunately, the first 32 channels, spectral range 406-1035 nm,
where iron-bearing oxides/hydroxides/sulphates have diagnostic features were found
useful for this study.

6.3.2 Mine Tailings Data

Samples from the tailings (Figure 6.3) were collected a few minutes shortly after
collection of the DAIS hyperspectral data on 18th August 2002. Fifty-three samples
were collected in the East Tails and 44 in the West tails. Samples of tailings were
collected at 10mx10m grid points in portions of the tailings dumps with almost no
vegetation cover within 3 m radius. Portions of the tailings dumps, close to the active
stream have steep slopes and were not sampled. Samples were collected from the top
surface of the tailings and were air dried at the field camp. In the laboratory, they
were further dried in an oven at 40°C. The minus-80 mesh (< 180 pm) fraction of the
tailings material, weighing 500 mg for each sample, was used for chemical analysis.
Metal extraction used 63% hot HNOj followed by shaking on a vortex shaker and
shaking in a water bath at 90°C for 2 hours. Concentrations of As, Cd, Cu, Fe,
Mn, Ni, Pb, Sb and Zn in the decomposed samples were determined using the ICP-
AES analyzer. Analytical precision of the measured element concentrations either
approaches or is better than 10% according to Thompson & Howarth (1978) control
chart.

Table 6.1 shows the elementary statistics of the tailings geochemical data. As indi-
cated by their skewness coefficients, all element distributions are positively skewed
except for Fe in the East Tails. Some maximum values are large, exceeding three
standard deviations from the mean. Such large values would have a dominant effect
on the results of the statistical analysis. Natural logarithmic transformation of the
data, shows that asymmetry of the element distributions is effectively reduced.

Of the nine elements studied, concentrations for Fe, Ni, Mn, and Cd are higher in
the East Tails than in the West Tails (Figure 6.4), although Cd is enriched in the
northern part of the West Tails. Concentrations for As, Cu, Pb, Sb, and Zn are
higher in West Tails than in the East Tails. Note also in Table 6.1 that, for As,
Sb, Cu, Pb and Zn, (a) concentrations are lower in the East Tails than in the West
Tails and (b) standard deviations are lower in the East Tails than in the West Tails.
On the one hand, these observations suggest that scavenging of Cd, Mn, and Ni by
secondary Fe-bearing oxides/hydroxides is more prevalent in the East Tails than in
the West Tails. On the other hand, the data suggest that As, Cu, Pb, Sb, and Zn
in the East Tails have become more mobile and released from the tailings to the
environment, whereas in the West Tails these metals are still relatively immobile and
relatively intact in the tailings. The East Tails and the West Tails, therefore, have
quite different geochemical characteristics.

Correlations between the different elements (Table 6.2) show that either the East Tails
or the West Tails are characterized by antipathetic associations of As-Sb-Cu-Pb-Zn
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Table 6.1: Elementary statistics of original geochemical data and skewness of log.-transformed
data. All concentrations are in ppm except where stated.

East Tails samples (n = 53):
Element Min Max  Mean Std. Dev. Skewness Skewness (log,)

As 486 15680  266.3 273.9 2.74 0.67
Cd (ppb) 190.0  540.0  323.2 78.2 0.27 —0.28
Cu 85.5 1483.7  354.8 303.3 2.22 0.91
Fe (%) 1.5 3.7 2.8 0.4 -0.49 ~1.11
Mn 17.7 7664 1284 140.2 3.17 0.41
Ni (ppb)  100.0  4340.0 1129.2 903.5 2.16 —0.36
Pb 140 2518 50.9 52.1 2.27 0.92
Sb (ppb) 5.0 160.0  36.9 31.2 1.59 —0.17
7n 426 7628 1244 111.8 3.96 1.14

West Tails samples (n = 44):
Element Min Max  Mean Std. Dev. Skewness Skewness (log,)

As 196.3 2789.3  625.9 452.0 3.05 0.73
Cd (ppb) 140.0 7200  275.7 121.8 2.42 1.19
Cu 303.0 2064.7  889.9 476.2 1.12 0.09
Fe (%) 1.4 3.2 2.3 0.4 0.40 —0.06
Mn 151 2076  52.6 34.8 2.40 0.33
Ni (ppb)  60.0 1370.0  371.1 285.6 2.07 —0.06
Pb 404 806.9  192.0 169.8 2.24 0.47
Sb (ppb) 50 4200 844 76.9 2.75 ~0.31
Zn 68.7 T76.7 2752 179.6 1.18 0.06
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Table 6.2: Correlation coefficients for the tailings geochemical data. ¢ denotes values are significant at a = 0.05.

East Tails samples (n = 53):

As Cd Cu Fe Mn Ni Pb Sb 7n
As 1.000
Cd 0.106 1.000
Cu 0.452%  —0.358¢ 1.000
Fe 0.118 0.904* —0.457¢ 1.000
Mn —-0.412° 0.373* —0.096 0.228 1.000
Ni  —0.485 0.591* —0.228 0.464 0.835% 1.000
Pb 0.475% —0.513¢ 0.576* —0.509* —0.458% —0.596* 1.000
Sb 0.429* —0.128 0.440* —0.191 —0.186  —0.333%* 0.490* 1.000
7n 0.152 —0.373* 0.596* —0.513¢ —0.027 —0.130  0.727* 0.359* 1.000

West Tails samples (n = 44):

As Cd Cu Fe Mn Ni Pb Sb Zn
As 1.000
Cd 0.446“ 1.000
Cu 0.812¢ 0.339 1.000
Fe 0.253 0.423* —0.013 1.000
Mn -0.101 0.412* —0.096 0.403* 1.000
Ni  —0.300“ 0.279  —0.289 0.418% 0.902¢ 1.000
Pb 0.626 0.315 0.481* —0.002 —0.075 —0.193 1.000
Sb 0.623% 0.445% 0.655% 0.287 0.155 0.030  0.506* 1.000
Zn 0.550® 0.432% 0.610* —0.250 —0.113  —0.229  0.645* 0.464* 1.000
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Figure 6.4: Element concentrations in samples from the East Tails and the West Tails.
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(abbreviated as Aj) and of Cd-Fe-Ni-Mn (abbreviated as Aj). The A; association
reflects the polymetallic epithermal deposits in the Lahdéca mine. The As associa-
tion reflects surficial process related to (a) weathering of the pyrite (FeS2) in the
mine tailings and (b) scavenging of Cd, Ni, and Mn by weathering products such
as Fe-bearing oxides/hydroxides. The presence of the A; association in either the
East Tails or the West Tails indicates that the tailings were probably derived mostly
from a single source, i.e., the Lahdéca mine. Based on magnitude of the correlation
coefficients, the A; association is strongest in the West Tails, whereas the Ay asso-
ciation is strongest in the East Tails. This suggests that (a) the two Tails represent
different geochemical domains, (b) weathering in the East Tails is in a more advanced
state than in the West Tails and (c) the East Tails are older than the West Tails.
Elements in the As association are enriched in the East Tails (Table 6.1) probably
due to metal scavenging or adsorption by secondary Fe-oxide, Fe-hydroxide, and Fe-
sulphate-hydrate minerals associated with weathering of the sulphide-bearing mine
wastes. The apparent differences between the geochemical characteristics of the East
Tails and the West Tails provide motivation to design optimal sampling scheme for
new mine waste sites.

6.4 Methods

Since the East Tails and the West Tails have different geochemical characteristics,
it was decided to split the data into two sets. The small stream between the East
Tails and the West Tails provides a natural boundary to do so. Data from either sub-
area are used to model a relationship between heavy metal associations and relative
abundances of secondary iron-bearing minerals. The latter data are derived from
spectral unmixing of hyperspectral data. A model relationship between heavy metal
associations and mineral abundances in one sub-area is then used as basis for optimal
sampling design in the same sub-area and in the other sub-area. Division of the area
and the data thus provides calibration analysis and prediction/validation analysis for
optimal sampling design.

6.4.1 Estimation of mineral abundance

Spectral unmixing of hyperspectral data was performed to estimate relative abun-
dance or proportion, per 5 m pixel, of secondary iron-bearing minerals, with which
metals in the mine tailings could be associated. Spectral unmixing is a deconvolu-
tion process for estimating proportional contributions of each end-member to spec-
tra. Debba et al. (2005a) suggested that better abundance estimates are obtained
if materials, not necessarily of interest but are probably present, and contribute to
a pixel spectrum is also included in an end-member set for spectral unmixing. Ac-
cordingly, copiapite, jarosite, goethite, ferrihydrite, hematite, kaolinite, anhydrite,
gypsum, quartz, and tumbleweed (grass) was considered to consist the end-member
set (Figure 6.5). The first five minerals were considered because they are iron-bearing
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Figure 6.5: Reflectances of minerals which are common in contaminated areas.

secondary minerals that could be derived from weathering of pyrite (FeSs) and each of
them could, although not always, form spectral detectable mineral zones (e.g. pyrite
— copiapite — jarosite goethite — ferrihydrite — hematite) around pyrite-rich zones
in tailings dumps associated with sulphide-rich zones (Swayze et al., 2000). Kaolinite
was considered, because it is a common clay mineral found in mine tailings (Staenz
et al., 1999) and it is also known to scavenge metals in the weathering environment
(Shahwan et al., 2005). The other three minerals were considered, because they
are also often found in mine tailings dumps. Grass was considered because of their
presence, albeit minimal, in small patches on the mine tailings dumps. Abundance
estimates were determined according to the method of Debba et al. (2005a), which in-
volves minimization of variance of the differences between the second derivative of an
estimated spectrum and the second derivative of an actual spectrum. The elementary
statistics of abundance estimates of selected end-members are given in Table 6.3.
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Table 6.3: Elementary statistics of relative abundance estimates for end-members.

East Tails Samples (n = 53) West Tails Samples (n = 44)
Endmember Min Max Mean Std. Dev. Min Max Mean Std. Dev.
goethite 0.01 0.75 0.38 0.20 0.00 0.73 0.34 0.24
jarosite 0.00 0.15 0.03 0.03 0.00 0.39 0.10 0.10
hematite 0.00 0.70 0.05 0.13 0.00 0.16 0.02 0.03
ferrihydrite  0.00 0.11  0.03 0.03 0.00 0.13 0.03 0.03
kaolinite 0.00 0.18 0.04 0.04 0.00 0.25 0.05 0.06
quartz 0.00 0.08 0.02 0.02 0.00 0.10 0.02 0.02
copiapite 0.00 0.74 0.02 0.10 0.00 0.65 0.05 0.16
gypsum 0.01 0.71 0.35 0.19 0.01 0.73 0.33 0.22
anhydrite 0.00 0.11 0.03 0.03 0.00 0.06 0.02 0.02
tumbelweed 0.00 0.11 0.02 0.02 0.00 0.11 0.02 0.02
East Tails Hyperspectral West Tails Hyperspectral
(n = 575) (n = 383)
Endmember Min Max Mean Std. Dev. Min Max Mean Std. Dev.
goethite 0.00 0.75 0.13 0.13 0.00 0.77 0.11 0.14
jarosite 0.00 0.69 0.08 0.11 0.00 0.78 0.13 0.17
hematite 0.00 0.84 0.51 0.19 0.00 0.82 0.50 0.21
ferrihydrite  0.00 0.16 0.02 0.03 0.00 0.18 0.03 0.03
kaolinite 0.00 0.16 0.03 0.03 0.00 0.14 0.03 0.03
quartz 0.00 0.16 0.02 0.02 0.00 0.13 0.02 0.02
copiapite 0.00 0.74 0.01 0.02 0.00 0.65 0.02 0.04
gypsum 0.00 0.81 0.13 0.14 0.00 0.76 0.11 0.15
anhydrite 0.00 0.12 0.02 0.02 0.00 0.14 0.02 0.02
tumbelweed 0.00 0.11  0.02 0.02 0.00 0.14 0.02 0.02
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Table 6.4: Factor component analysis with varimax rotation of the heavy metal concentrations.
East Tails (n = 53)

Factor As Cd Cu Fe Mn Ni Pb Sb Zn  var®

FA1 0.59 -0.13 0.82 -0.26 -0.02 -0.18 0.72 0.65 0.76 2.65

FA2 043 091 -023 091 0.15 032 -0.36 0.04 -043 2.34

FA3 -0.57  0.31 -0.3 0.13 092 090 -0.41 -0.17 0.14 2.33
West Tails (n = 44)

Factor As Cd Cu Fe Mn Ni Pb Sb Zn  var

FA1 090 056 08 010 -0.08 -027 076 0.71 0.79 3.6

FA2 0.01 058 -0.09 071 090 088 -0.07 035 -0.15 2.58

@ Variance explained by each factor.

The spatial distributions of abundance estimates of the minerals of interest in the
optimal sampling design are shown in Figure 6.6. Copiapite is least abundant and
hematite is highly abundant in the mine tailings dumps. There are no distinct trends
in spatial distributions of ferrihydrite, hematite, and kaolinite. There is, however,
a subtle elliptical zone characterized by high jarosite abundance and low goethite
abundance extending from the East Tails to the West Tails or vice versa. Outside
this elliptical zone, the abundance of jarosite is mostly low but abundance of goethite
is mostly intermediate to high. The presence of this elliptical zone suggests that
materials in the West Tails and the East Tails are partly, if not wholly, derived from
the same source.

6.4.2 Modeling of heavy metal associations

Concentrations of several metals in soils can be estimated using reflectance spec-
troscopy (Kemper & Sommer, 2002). In addition, geochemical sampling addresses a
suite of metals, which reflect intrinsic processes in a system, like a mine tailings dump.
It was thus decided to model a heavy metals association reflecting scavenging of metals
by secondary iron-bearing minerals in the mine tailings dumps. A factor component
analysis with varimax rotation was performed on the logarithmic-transformed heavy
metal concentrations to obtain the heavy metal association of interest. The results of
the factor component analysis with varimax rotation are shown in Table 6.4.

The first factor (FA1) of heavy metal contents in either the East Tails or the West
Tails show high positive loadings mostly on As, Cu, Pb, Sb, and Zn. This heavy metal
association reflects the type of mineral deposits that were mined the Recsk-Lahdca
area. The As-Cu-Pb-Sb-Zn association therefore reflects the source materials of the
mine tailings and/or the relatively unweathered parts of the mine tailings dumps. The
second factor (FA2) of heavy metal contents in either the East Tails or the West Tails
shows high positive loadings on Fe. The FA2 also show that in either the East Tails
or the West Tails there is a common heavy metal association of Fe-Cd-Ni-Mn. This
heavy metal association reflects metal scavenging by not only secondary iron-bearing
minerals but also secondary manganese bearing minerals. The third factor (FA3) in
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Figure 6.6: Spatial distributions of abundance estimates for minerals of interest to be used in
optimal sampling design. Mineral abundance estimates are based on 5 m resolution hyperspectral
data. White open circles are locations of mine tailings samples.

114




Chapter 6. Optimum sampling scheme for mine tailings

FA2ET and FA2WT
0.0 4 4

0 40m
| | | | | |
431000 431050 431100 431150 431200 431250

5309900 5309950 5310000 5310050

Figure 6.7: Spatial distributions of FA2ET and FA2WT scores. High scores indicate areas of
Fe-Cd-Ni-Mn enrichment, whereas low scores indicate areas of As-Cu-Pb-Sb-Zn enrichment.

the East Tails shows high positive loadings on Mn and Ni. This Mn-Ni association
mainly reflects scavenging of Ni by secondary manganese oxides/hydroxides.

The FA2 in both the East Tails and the West Tails are considered to represent the
heavy metal association of interest. The second factor in the East Tails is labeled as
FA2E and the second factor in the West Tails is labeled FA2W. Scores of FA2E AND
FA2W were calculated using logarithmic transformed element concentrations and the
corresponding factor component loadings from Table 6.4.

The scores of FA2E and FA2W are then linearly transformed to [0, 1], for numerical
compatibility with the mineral abundance estimates, and labeled FA2ET and FA2WT,
respectively. On the one hand, high scores of FA2ET and FA2W'T would indicate parts
of the tailings dumps likely to be enriched in Fe, Cd, Ni, and Mn but depleted in As,
Cu, Pb, Sb, and Zn. On the other hand, low scores of FA2ET and FA2WT would
indicate parts of the tailings dumps likely to be enriched in As, Cu, Pb, Sb, and Zn
but depleted in Fe, Cd, Ni, and Mn (Figure 6.7).
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6.4.3 Kriging with external drift

Kriging with external drift is applicable to estimate primary variables of interest,
which are practically measurable at only few sample sites, based on linearly related
ancillary variables, which are measurable at much higher sampling density than the
primary variables. Wackernagel (1998) suggests that such ancillary variables can be
incorporated into a kriging system as external drift functions. Kriging with external
drift is ideal if a primary variable could be measured more precisely and practically
at a few locations, whereas possibly less accurate measurements of linearly related
ancillary variables are available everywhere in the spatial domain. The present case
study applies kriging with external drift to model a relationship between heavy metal
association of interest and metal-savenging minerals in the mine tailings dumps. The
distribution of heavy metal associations, represented as factor scores, were used as is
the primary variable of interest and is based on field sampling. The relative abun-
dances of metal-scavenging iron-bearing minerals, which were obtained from hyper-
spectral data, are the ancillary variables. Assumption of linear relationship between
the primary variable and the ancillary variables is deduced from results of the factor
component analysis.

For the modeling, consider x € A C R? to be a generic data location (z,,) in
2-dimensional Euclidean space and suppose the domain Z(x) at spatial location x is
a random quantity. The multivariate random field

{Z(x):x € A}, (6.1)

is generated by letting x vary over index set A C R?. A realization of (6.1) is denoted
{z(x) : x € A}, (Cressie, 1991).

The variogram is defined as the average squared difference between values separated
by a given lag h, where h is a vector in both distance and direction, that is,

2v(h) = E[Z(x) — Z(x + h)]? . (6.2)
Hence the semi-variogram «(h) is defined as:

ﬂm:%mm@—z@+mﬁ. (6.3)

The experimental semi-variogram v*(h), where h is a fixed lag vector in both dis-
tance and direction, may be obtained from k = 1,2,..., P(h) pairs of observations
{z(xx), 2(xx + h)} at locations {x,,x, + h}, as:

1 P(h)
7 (h) = P > [e(xe) = 2(x + W) (6.4)

k=1

Suppose that precise measurements are available for a primary variable Z(x) with
np observations, which is assumed to be a second order random function with known
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covariance function C(h), hence the variogram y(h) = C(h)/C(0) is assumed to be
known. The k ancillary variables represented as regionalized variables y;(x), i =
1,...,k with na4 observations, are less accurate measurements covering the whole
domain A at small scale and are considered as deterministic. The values {y;(x)}
needs to be known at all locations x, of the samples as well as at the nodes of the
estimation grid.

Since Z(x) and the set of {y;(x)} are two ways of expressing the same phenomenon,
assume that Z(x) is an average equal to a linear function of the set of {y;(x)} up to
a constant by and coefficients b;, i =1,...,k,

k k
E[Z(x)] =bo+ Y _bi-yi(x) =Y _bi-yilx), (6.5)
=1 =0

where yo(x) = 1. The method of merging both sources of information uses {y;(x)}
as an external drift function for the estimation of Z(x). The drift of Z(x) is defined
externally through the ancillary variables {y;(x)} rather than some smooth version
of Z(x) itself, (Chiles & Delfiner, 1999).

Assuming Z(x) is a second order stationary random function, then

Z*(x0) = Y XaZ(Xa) (6.6)

where ), denotes the weight of the ath observation and is constraint to unit sum.

In estimating the external drift coefficients, the following conditions,

na
ZAayi(Xa) :yi(XO) s 1= ]-a"',k y (67)

a=1
are added to the kriging system independently of the inference of the covariance
function, hence the term “external”. The kriging variance can then be written as

na

k
oimp (X0) = C(0) (1 =) X% — x@) — ) " biyi(xo) - (6.8)
a=1 1=0

The only factor influencing the kriging variance are the variogram ~(h), the number
of observations n 4, the sampling locations x, and the location xg. This means that
the kriging variance does not depend on the observations themselves, but rather only
on their relative spacing. The advantage is that in can be used to optimize sampling
schemes in advance of data collection.

In this chapter, the location and the covariates as external drift were used to estimate
the heavy metal concentration,
E[Z(X)] = by+by -xy+by-xy+b3- GOE(X)
+b4 - JAR(x) + b5 - FER(x) + bg - HEM(x)
+b7 - KAO(x) + bg - COP(x), (6.9)




6.4. Methods

namely, a first order polynomial on the coordinates and the abundance estimates of
the metal-scavenging minerals. In Equation 6.9, GOE is abundance estimates for
goethite, JAR is for jarosite, FER is for ferrihydrite, HEM is for hematite, KAO is
for kaolinite, and COP is for copiapite.

6.4.4 Sampling scheme optimization

Sampling schemes derived are based on Equations 6.6 and 6.8 by minimization of
a fitness function for a certain criterion. Minimization of a fitness function can be
performed exclusive or inclusive of simulated annealing.

Sampling scheme exclusive of simulated annealing

This procedure is performed directly through kriging with external drift by application
of a criterion called the Mean Kriging Prediction Error (MKPE), the fitness function
of which is defined as,

PMKpE (S Z {Z(x) - 2" (x|s)]}* (6.10)

P xeA

where n, is the number of observations in the sampling scheme, Z(x) is the primary
variable at location x and Z*(x|S) is the predicted value at x (Equation 6.6) for
sampling scheme S with n, samples. The MKPE-criterion is useful only when data
for the primary variable of interest available at all points to be sampled. Hence, the
MEKPE-criterion is proposed for removal of samples from an existing design to achieve
an optimal retrospective sampling scheme. It should be noted that for an existing
sampling scheme, the initial MKPE is zero. Removal of an existing sample is expected
to result in an increase in MKPE value. For sequential removal of existing samples, the
variogram and Z(x) (Equation 6.6) are estimated in a sequence consisting of several
steps whereby an existing sample is sought to be removed and finally discarded if its
removal contributes to a highest increase in MKPE value. After one sequence with
one less observation than an existing sampling scheme, the resulting MKPE value
should be closest to zero. Sequential removal is existing samples is carried to attain
a desired number of samples in a retrospective design.

Sampling scheme optimization inclusive of simulated annealing

For a two-dimensional area A, let the collection of all possible sampling schemes
with n observations on A be denoted by S™. A fitness function ¢(S") : S* — RT
is minimized through simulated annealing. In terms of sampling, the initial step in
simulated annealing is to randomly select a set of points in A. A new point in A is
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then randomly selected and replaces a randomly selected old point from the current
collection. This replacement occurs, based on a probabilistic criterion, if the fitness
function decreases and if the fitness function increases. Hence, the process allows
inferior moves. Initially, the probabilistic criterion is high, allowing a large probability
of inferior moves. A parameter in the annealing process is then reduced by a factor of
0.95 at each successive step, thereby decreasing the probability of accepting inferior
moves until the process stabilizes. The final solution is independent of the initial
random selection of points as the process reaches the global optimum.

In a previously sampled area, estimates of Z(x) (Equation 6.6) by kriging with ex-
ternal drift can be used in simulated annealing to optimize a retrospective sampling
scheme using the MKPE-criterion. Cooling schedules are applied to derive the op-
timal retrospective sampling scheme with fewer samples than an existing sampling
scheme. The predictions are at the existing sample sites and the optimal sampling
scheme will consist of samples that least contribute to an increase in the MKPE value.
At each step, an existing sample is randomly selected and consider for replacement
by a random sample not in the scheme based on the probabilistic criterion. When
there is no improvement after a specified number of steps the resulting samples form
the retrospective scheme.

A variogram model for a previously sampled area can be used to estimate o2(x)
(Equation 6.8) in an unvisited area, if the latter is considered to have similar, if not
the same, spatial characteristics as the former. In this case, estimates of 02(x) in the
unvisited area can be used to derive the optimal prospective sampling scheme. The
optimization procedure by simulated annealing is then performed by application of a
criterion called the Mean Kriging Variance with External Drift (MKVED), the fitness
function of which is defined as

1

nA
7ZU%<ED(XAJ|S) ) (6.11)
na

j=1

dMKVED(S) =

where na is the number of raster nodes for which data for each of the covariates are
available. The MKVED-criterion is ideal for deriving optimal prospective sampling
schemes, since it does not depend on the actual data for the primary variable. It
depends, however, on a covariance function, the spatial configuration of sampling
locations and data locations of the covariates (Equation 6.8). Hence, the MKVED-
criterion is proposed to derive the optimal prospective sampling scheme in an unvisited
area based on a relevant model from a previously sampled area.

6.5 Results

6.5.1 Mineral abundance estimates

Spectral unmixing was performed for all image pixels of the hyperspectral data to
estimate relative abundance of secondary metal-scavenging minerals. Table 6.3 con-
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tains the summary of the spectral unmixing for end-members that are thought to
be present in the mine tailings dumps. Six of the 10 end-members are weathering
by-products that influence heavy metal distributions. Abundance estimates for copi-
apite, jarosite, goethite, ferrihydrite, hematite, and kaolinite were used as covariates
in modeling by spatial kriging with external drift.

6.5.2 Optimal retroprective sampling schemes

Decision on final number of samples removed from the existing design is dependent on
level of prediction error considered and, perhaps, on economic considerations. In this
study, it was decided to create retrospective sampling schemes with 10 less samples
from an existing sampling scheme. The decision here to remove 10 existing samples in
the East Tails and the West Tails is made not on the basis of economic consideration
but simply for the purpose of comparing results from non-application of simulated
annealing with results from application of simulated annealing.

Via sequential removal of existing samples

The MKPE-criterion was applied to derive the optimal retrospective sampling scheme
for the East Tails and West Tails. In either of these test areas, data of the primary
variable and the ancillary variables for existing samples were used for sequential es-
timation of the variogram and Z*(x) (Equation 6.6). Ten sequential removals were
made to derive an optimal retrospective sampling scheme with 43 samples for the
East Tails and an optimal retrospective sampling scheme with 34 samples for the
West Tails. For the East Tails (Figure 6.8(a)), remaining 43 samples gave a mean
prediction error (Equation 6.10) of 6.34 x 10~7. For the West Tails (Figure 6.9(a)),
remaining 34 samples gave a mean prediction error of 1.36 x 1076,

Via simulated annealing

Exactly the same data sets used in sequential removal of sampling were then used in
simulated annealing to minimize Equation 6.10 through a cooling schedule to obtain
a sampling scheme with 10 samples less than an existing sampling scheme. For the
East Tails (Figure 6.8(b)), remaining 43 samples gave a mean prediction error (Equa-
tion 6.10) of 2.75 x 10716, For the West Tails (Figure 6.9(b)), remaining 34 samples
gave a mean prediction error of 1.17 x 1074, Clearly, optimized retrospective sam-
pling schemes derived via simulated annealing have considerably lower prediction
errors than optimized retrospective samples schemes derived by sequential removal of
samples.
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Figure 6.8: A retrospective sampling design in the East Tails to compare the method of sequen-
tially removing 10 samples from the current design to the optimal sampling scheme using simulated
annealing.
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(b) Simulated annealing
Figure 6.9: A retrospective sampling design in the West Tails to compare the method of sequen-

tially removing 10 samples from the current design to the optimal sampling scheme using simulated
annealing.
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Figure 6.10: The exponential variogram for the East Tails data and the East and West Tails data
combined.

6.5.3 Optimal prospective sampling schemes

By way of simulated annealing, a prospective sampling scheme for the West Tails is
derived based on a model for the East Tails. As an illustration, it was decided to
derive a prospective sampling scheme having 30 samples in the West Tails using the
53 samples from the East Tails. The exponential variogram was estimated with the
data from the East Tails and is shown in Figure 6.10(a). To verify that this variogram
is also appropriate for the West Tails, the East and West Tails data were combined
and the variogram is shown in Figure 6.10(b). The similarity of the two variograms
indicate that the variogram for the East Tails could be appropriate for modeling the
West Tails.

Variogram model for the FEast Tails was applied to the West Tails data to derive a
prospective sampling scheme via simulated annealing to minimize Equation 6.11. The
resulting prospective sampling scheme, with 30 samples for the West Tails, is shown
in Figure 6.11. The optimal sampling scheme constructed using the kriging external
drift variance approach are spread over the West Tails region while retaining some
close pairs of samples. These close pair samples are to improve the estimation of the
variogram model. The mean kriging with external drift variance for the West Tails,
using the combined East and West Tails sampling data, as illustrated in Figure 6.3, is
6.8 x 10~ for the West Tails. This mean kriging variance was approximately the same
when either of the two variograms was used. The optimal sampling scheme resulted in
a mean kriging with external drift variance for the West Tails of 3.3 x 10~ using the
variogram derived from the East Tails data. This indicates that the optimal sampling
scheme contains samples that reduces the mean kriging with external drift variance
for the previously designed grid sampling scheme in the West Tails.
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Figure 6.11: Prospective optimal sampling scheme in the West Tails using the samples in the East
Tails.
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6.6 Discussion

Surface characterization of mine tailings could provide essential information for pro-
tection of surrounding ecosystems. Planning where and how many mine tailings
samples should be collected is therefore a crucial task. This is so because spatial
distributions of undesirable heavy metals in mine tailings must be determined ac-
curately. This study has demonstrated usefulness of airborne hyperspectral data to
support optimization of sampling schemes for surface characterization of mine tailings.

Analysis of hyperspectral data can yield information about spatial distributions of
secondary iron-bearing and clay minerals associated with weathering of pyrite-rich
mine wastes. Heavy metals usually reside in such secondary minerals. Nevertheless,
field samples are necessary to model spatial relationships between heavy metals and
secondary minerals in mine tailings. For large mine tailings, say in Rio Tinto (Spain),
this means necessity to undertake an orientation, preferably grid, sampling program
prior to the main sampling program. In an orientation grid sampling program, not
only samples of mines tailings should be collected but also measurements by field
spectrometers. The latter type of data could also be useful in calibration of airborne
hyperspectral data. The data collected in an orientation grid sampling program must
allow determination of (a) spatial distributions of heavy metals, (b) spatial distribu-
tions of secondary metal-scavenging minerals, (¢) spatial relationships between heavy
metals and secondary metal-scavenging minerals, and (d) a variogram model of heavy
metal associations due to metal-scavenging minerals. These four types of spatial in-
formation are essential to optimize a prospective sampling scheme to be carried out
during a main sampling program, especially for large mine tailings. These four types
of spatial information are also essential to optimize a retrospective sampling scheme
in a previously sampled mine tailings area.

This study has shown that spatial relationships between heavy metals and metal-
scavenging minerals can be modeled adequately by kriging with external drift. The
kriging variance, being dependent only on the variogram, the spatial configuration
of the sampling locations and the data locations, could then be used to derive opti-
mal sampling schemes. Certainly, there are other ways by which spatial relationships
between co-related variables can be modeled. As examples, spatial regression anal-
ysis (Anselin, 1988; Anselin & Bera, 1998) and Bayesian Kriging with external drift
(Goovaerts, 1997; Deutsch & Journel, 1998) could be used to model the spatial rela-
tionships between co-related variables. It was not intended here, however, to compare
performance of these methods. In the case of multivariate primary variables a possi-
ble solution might be to use the co-kriging variance, however, this requires modeling
of variograms and cross-variograms and can only be applied in cases of few variables
(Van Groenigen et al., 2000b). For these reasons, a combined primary variable and
several covariates were used.

This study has also shown the efficiency of simulated annealing to optimize a ret-
rospective or a prospective sampling scheme. Although this study is not concerned
with economic considerations in sampling scheme optimization, the optimum sam-
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pling schemes derived in this study are not equally spaced grids. Experience shows
that grid sampling is labor intensive and time-consuming but not necessarily statisti-
cally optimal (Burgess et al., 1981; Yfantis et al., 1987; Van Groenigen & Stein, 1998).
This suggests that a statistically optimal non-grid sampling scheme derived through
the methods described in this study is also economical. This suggestion, however,
requires further investigation.

The procedures described in this study are applicable to mine tailings areas in re-
gions with similar climatic and terrain characteristics as the case study area. This
is so because surficial geochemistry of heavy metals or surficial chemical stability of
minerals are influenced by climatic and terrain factors. Applications of the proce-
dures described here to mine tailings areas in other regions with different climatic
and terrain characteristics would require changes in strategies. For example, in arid
regions, where chemical weathering is not prevalent, analysis of spatial relationships
between heavy metals and secondary iron-bearing minerals becomes trivial. In such a
case, however, orientation sampling is still important to calibrate hyperspectral data
for prediction of heavy metals (e.g., Kemper & Sommer, 2002) for each pixel. Because
sampling addresses a suite of metals, a surface model of heavy metal association is
still the desirable input to simulated annealing for optimization of sampling schemes.

6.7 Conclusions

This chapter results in three main conclusions.

e This study demonstrates that designing sampling schemes using simulated an-
nealing results in much better selection of samples from an existing scheme in
terms of prediction accuracy.

e The use of secondary information in designing optimal sampling schemes was
also illustrated. Often these secondary information can be achieved at a rel-
atively low cost and available over a greater region. These are the primary
reasons for incorporating this information into the sampling design.

e Optimized sampling schemes using the mean kriging with external drift variance
will result in sampling schemes that explicitly take into account the nature of
spatial dependency of the data and together with hyperspectral data can be
used to design sampling schemes in nearby unexplored areas.
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Chapter ’7

Research findings, conclusions and
further research recommendations

If I have seen further than others, it is by standing upon the shoulders of giants.

Isaac Newton

7.1 Overview

In the study of spatial distribution of crops or minerals and associated metals, schemes
for ground sampling must be optimized so that field data collection is cost-effective
but the derived spatial information about primary variables of interest is accurate.
On the one hand, for a previously sampled area, samples may be added or removed
from an existing ground sampling scheme in order to develop an optimal retrospective
sampling scheme. On the other hand, for an unvisited area, an optimal prospective
sampling scheme must be developed to provide opportunity to capture accurate in-
formation about the primary spatial variables of interest. Although cost-effectiveness
of a sampling scheme is not directly addressed in this research, optimal retrospec-
tive sampling schemes were developed mostly with fewer samples than in an existing
sampling design and optimal prospective sampling schemes developed have few but
realistic number of samples, which achieve statistically accurate spatial information.

Optimization of sampling schemes requires relevant a priori information about the
population of interest. In this thesis, a priori information was derived from airborne
hyperspectral data. Notwithstanding the variety of case studies presented in chap-
ters 2-6, appropriate and optimal sampling schemes were developed by simulated
annealing. The methods explained and demonstrated in chapters 2-6 for applications
of hyperspectral data and simulated annealing make this research unique as compared
to other researches in the same field.
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7.2 Research purposes and findings

Major research findings relevant to specific research purposes stated in section 1.5 are
described below.

(i) To formulate optimization criteria that meet the specific demands for ground

sampling to study spatial variability of crops or minerals and associated metals.

In areas with homogeneous and heterogeneous agricultural fields (or segments),
the MMSD (Minimization of the Means Shortest Distance) criterion was adapted
and found useful in optimization of sampling schemes (chapter 2). Using a seg-
mented hyperspectral image, adaptation of the MMSD-criterion resulted in a
balanced distribution of sampling points over the whole segmented image such
that more samples are positioned in heterogeneous segments, whereas fewer
samples are positioned in homogeneous segments.

For ground verification of remotely sensed information for the presence of certain
minerals of interest, the WMSD (Weighted Means Shortest Distance) criterion
was adapted and found useful in optimization of sampling schemes (chapter 3).
The WMSD-criterion was tested to target areas for ground truthing of a map
for a mineral (in this case, alunite) derived from the processing and analysis of
hyperspectral data. Rule images, derived from hyperspectral data, were used
as weights for the application of the WMSD-criterion. The optimal sampling
scheme was achieved by targeting ground locations that (a) have high prob-
ability of alunite occurrence and (b) maintain overall distribution of alunite.
Application of the WMSD-criterion is not specific to mapping of alunite but
also to mapping of any mineral having distinct absorption features.

Application of the WMSD-criterion was also found useful in positioning further
mineral exploration targets (chapter 4). The WMSD-criterion was applied to set
optimal exploration targets based on the variance of the odds ratio depicted in
the prospectivity map. The prospectivity map was created by using evidential
maps derived mostly from hyperspectral in weight-of-evidence modeling.

In chapter 5, new criteria for unmixing of hyperspectral data to estimate rela-
tive abundance of materials of interest are proposed, namely, SumSpec, VarSpec,
SumDeriv, and VarDeriv. Using mixed spectra as inputs, each criterion is opti-
mized to achieve accurate estimates for the relative abundance of materials of
interest. It was found that minimization of VarDeriv, which is the differences
between the second derivatives of an observed spectrum and the second deriva-
tives of the end-member spectra, results in most accurate relative abundance
estimates.

Finally, in chapter 6, two new optimization criteria are proposed. The first
criterion, called the MKPE (Mean Kriging Prediction Error), is satisfactory
for deriving a retrospective sampling scheme whereby the number of existing
samples is reduced. The optimal retrospective sampling scheme derived does
not result in much loss of prediction accuracy even when the number of samples
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(i)

(iii)

is reduced. The second criterion, called the MKVED (Mean Kriging Variance
with External Drift), is satisfactory for deriving a prospective sampling scheme
in an area based on a model from an existing sampling scheme in another area.
Application of the MKVED-criterion indicates that, given a spatial model of
interest in a previously sampled area, an optimal prospective sampling scheme
can be developed for a new unvisited area having similar, if not the same, spatial
characteristics as the previously sampled area.

To formulate new hyperspectral remote sensing techniques useful for deriving
optimal sampling schemes.

A segmented hyperspectral image is considered useful to derive a prospective
sampling scheme to study spatial variability of crops because (a) samples in
each segment represent the same category of crops, and hence are similar and
(b) variability of each segment influence the optimum number and locations of
samples for homogeneous segments and for heterogeneous segments. Segmen-
tation using hyperspectral images is hampered by high dimensionality of the
data. In chapter 2, therefore, the iterated conditional modes (ICM) algorithm
was slightly modified for hyperspectral image segmentation.

Robust estimates of materials of interest from given hyperspectral data is vital
to develop a prospective sampling scheme. Rule images, which represent infor-
mation about type and estimate of materials of interest, can be derived from
hyperspectral data by using any established technique. It is demonstrated in
chapter 3, however, that a combination of two established techniques, namely,
spectral feature fitting (SFF) and spectral angle mapper (SAM), results in rule
images that are more robust than the rule images derived by individual tech-
niques. Using weights from the combined rule images produced the best prospec-
tive sampling scheme, as compared to prospective sampling schemes derived by
using weights from SFF rule images and from SAM rule images.

A new technique of unmixing hyperspectral data to estimate relative abundance
of spectrally similar materials in complex solid mixtures, such as mine wastes,
is presented in chapter 5. This new technique involves the second derivatives
of observed spectrum and the second derivatives of end-member spectra in or-
der to achieve accurate relative abundance estimates of materials of interest.
Application of this new technique to hyperspectral data results in abundance
estimates of secondary iron-bearing minerals in mine tailings that were useful in
developing optimal retrospective and prospective sampling schemes for surface
characterization of heavy metals in mine tailings.

To incorporate ancillary spatial information, derived hyperspectral data and
maps, in optimization of sampling schemes.

Hyperspectral data were used to create a segmented image (chapter 2) and rule
images (chapter 3), which were used to develop the respective optimal sampling
schemes. The segmented image allows calculation of the variability of each
defined segment and hence the calculation of the sample size for a segment.
The rule images allow calculation of the weight function so that sample points
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are arranged more intensely in areas with high probability of the mineral of
interest.

In chapter 4, maps of spatial distributions of hydrothermal alteration minerals,
which are depicted by channel ratio images derived from hyperspectral data, and
a map of distance to faults/fractures were used to derive optimal exploration
targets. Hyperspectral data provide valuable spatial information for predicting
epithermal occurrences in this district, although they need to be supported by
other evidences, such as proximity to faults and fractures.

Finally, in chapter 6, mineral abundance estimates derived from hyperspectral
data (see chapter 5) were used as covariates to obtain an empirical relationship
between the minerals and the heavy metal concentration in order to design
optimal retrospective and prospective sampling schemes.

To develop and apply optimal sampling schemes to studies of crops or minerals
and associated metals.

Field spectral measurements of agricultural crops could be used, for example,
to study health of crops and thus to predict crop yields. Because fields of
agricultural crops may be homogeneous (planted with only one particular type
of crop) or heterogeneous (planted with a group of different types of crops), the
lack of this prior information can make field sampling non-optimal. In chapter 2,
the ability to develop optimal prospective sampling schemes based on a given
segmented hyperspectral image of an area and with application of simulated
annealing is demonstrated to be potentially useful in agricultural studies.

Mineral mapping by hyperspectral remote sensing is becoming an indispensable
tool in mineral exploration as well as in geo-environmental studies. Ground-
truthing of spatial information derived from hyperspectral data, however, is al-
ways necessary. In chapter 3, the ability to develop optimal prospective sampling
schemes to support ground verification for the spatial distribution of minerals
derived from hyperspectral data is demonstrated by application of simulated
annealing.

Surface characterization of mine tailings dumps is important to determine which
parts of the environment could be at risk in terms of heavy metal contamina-
tion. In chapter 5, given hyperspectral data, the ability to identify and esti-
mate metal-scavenging minerals in mine tailings is demonstrated to be poten-
tially useful in surface characterization of mine tailings dumps. Furthermore,
in chapter 6, given a model of spatial relationship between heavy metal asso-
ciations and metal-scavenging minerals, application of hyperspectral data and
simulated annealing to develop optimal retrospective sampling schemes and op-
timal prospective sampling schemes are demonstrated to be potentially useful
for surface characterization of previously sampled mine waste dumps and un-
visited mine waste dumps, respectively.

To validate results by comparing derived optimal sampling schemes with classical
sampling schemes or with existing sampling schemes.
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In chapter 2, the optimized sampling scheme was compared to simple random
sampling and rectangular grid base sampling. The optimal prospective sampling
scheme, derived from a segmented image performed better in estimating the
different vegetation indices than either of the other two sampling schemes. The
optimal prospective sampling points are more intense in heterogeneous areas,
thereby is able to better estimate parameters of interest.

In chapter 3, field measurements of ground spectra were used to validate rule
images of a mineral of interest. It is shown that combined application of spectral
angle mapper and spectral feature fitting result in accurate classification of high
probability of alunite occurrence in certain parts of a study area. A sensitivity
analysis was then performed to compare performance of the optimal prospective
sampling scheme developed with performance of a stratified random sampling
scheme. The optimal prospective sampling scheme, developed from rule images
that were created through combined application of spectral angle mapper and
spectral feature fitting, performed better. The optimal prospective sampling
points are more stable against changes in thresholds and channels selected. In
addition, the locations of prospective sampling points correspond closely to the
spatial distribution of alunite intensity.

The probabilistic mineral prospectivity mapping presented in chapter 4 was vali-
dated by a sub-set of mineral deposit occurrences not used in weights-of-evidence
modeling. The probabilistic mineral prospectivity map showed a prediction rate
of 64%, which is considered adequate because of the limited number of eviden-
tial maps used. Buffer zones around focal points of exploration targets, which
were optimally located by simulated annealing using the probabilistic model,
contain nine of 14 (assumed) undiscovered mineral deposit occurrences. Anal-
ysis of prioritized exploration targets further show that at least one validation
deposit occurrence is present in (a) 60% of the top 5 priority exploration targets
and (b) 50% of the top 10 priority exploration targets. These validation results
suggest that optimal positioning of focal points of exploration targets, based on
a probabilistic mineral prospectivity model and application of simulated anneal-
ing, could potentially guide further mineral prospecting towards mineral deposit
discovery.

In chapter 5, the known quantities of each mineral used to create a mixed
spectrum were used to validate results of new spectral unmixing technique via
simulated annealing. The validation results indicate, on one hand, the accu-
racy of relative abundance estimates is not diminished even if the new spectral
unmixing technique uses a set of end-members inclusive of end-members not
contributing to a mixed spectrum. On the other hand, the validation results
indicate the accuracy of relative abundance estimates is diminished if the new
spectral unmixing technique uses a set of end-members exclusive of end-members
contributing to a mixed spectrum.

The optimal retrospective sampling scheme, presented in chapter 6, used a pre-
viously designed grid sampling scheme to measure its prediction accuracy. It
was shown that deleting appropriate sampling points from an existing sampling
scheme did not significantly decrease the prediction accuracy. The optimal ret-

131



7.3. Research conclusions

7.3

rospective sampling scheme, by means of simulated annealing, was also demon-
strated to be superior to the method of sequentially removing sampling points
from the existing grid sampling scheme. The method using simulated annealing
resulted in a lower mean prediction error. The optimal prospective sampling
scheme, presented in chapter 6, for the West Tails similarly used the previously
designed grid sampling scheme. In this case, the mean kriging variance with
external drift for the optimal prospective sampling scheme was approximately
half the mean kriging with external drift for the present grid sampling scheme
in the West Tails.

Research conclusions

This research resulted in the following overall conclusions:

With regard to specific research purpose (i), the various optimization criteria
formulated are satisfactory in optimization of sampling schemes to study spatial
variability of crops or minerals and associated metals.

Experiences outside this research have shown that regular grid sampling is cost-
and labor-intensive. In chapters 2-6, it is evident that the optimized sampling
scheme is neither close to a regular grid design nor randomly selecting samples
over the area. In chapter 2, this issue is observed as the sampling is governed by
the segments and with irregular segments a grid design will not be optimal. In
chapter 3 it was also demonstrated that the optimal sampling scheme was more
accurate than a stratified random design. It is further demonstrated in chap-
ter 6 that, based on optimal retrospective sampling designs, not all the existing
samples are required in order to achieve the same prediction accuracy. This has
great economic benefits as sampling costs and field research are extremely high.

With regard to specific research purpose (ii), it is imperative to either adopt
or adapt established techniques and to develop novel techniques for analysis of
hyperspectral data in order to achieve accurate spatial information vital to the
optimization of sampling schemes.

Since the advent of hyperspectral remote sensing about two decades ago, several
techniques have already been established to process and analyse hyperspectral
data for specific studies. Therefore, in chapter 2 the ICM algorithm was adopted
for hyperspectral image segmentation, whereas the band ratio technique was
adopted in chapter 4 to create images depicting estimates of groups of minerals.
In chapter 3, however, it shown that combining results of spectral feature fitting
and of spectral angle mapping provides better weight functions for optimization
of sampling schemes. In chapter 5, development of a novel technique for un-
mixing hyperspectral data was prompted by the difficulty in estimating relative
abundances of spectrally similar minerals in complex mixtures such as mine
wastes, which is not satisfactorily addressed by existing unmixing techniques.
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Chapter 7. Research findings, conclusions and further research recommendations

e With regard to specific research purpose (iii), hyperspectral data are useful in
deriving robust spatial ancillary information of interest vital to the optimization
of sampling schemes.

Other spatial variables that affect spatial variability of primary spatial variable
of interest must be considered and integrated in sampling scheme optimization.
Estimates of such spatial variables can be obtained from hyperspectral data.
This was demonstrated in chapter 4, whereby multiple evidences derived from
hyperspectral data were integrated in weights-of-evidence modeling. The de-
rived posterior probability was combined with the variance of the odds ratio to
satisfy the sampling objective. In chapter 6, various spatial factors were inte-
grated into a single value to be optimized. Factor component analysis was used
to integrate the geochemical factors, which was then modeled with covariates
derived from hyperspectral data. The external drift kriging predictions and
variance were then optimized.

e With respect to specific research purpose (iv), the methods for optimization of
sampling schemes developed in this research, by application of hyperspectral
data and simulated annealing, are potentially useful to precision agriculture,
mineral exploration, and remediation/rehabilitation of mine wastes.

Designing sampling schemes by using hyperspectral data has the advantage of
availing spatial information at virtually all points on the ground in remote and
unexplored areas. Ground sampling of control area is, however, still necessary
in order to calibrate statistical spatial correlation between information derived
from ground data and information derived from hyperspectral data. The ob-
jective of sampling is crucial to its application. For an optimized sampling
scheme, the sampling objective has to be transformed to a numerical value to
be optimized. Often several variables affecting the sampling design have to be
incorporated into an objective function to form a single value to be optimized.
This dependents on the application. Sometimes this is impossible and it is
necessary to compromise.

e With respect to specific research purpose (v), propositions of potential useful-
ness of methods for optimization of sampling schemes developed in this research
are supported by validation of results provided in each case study.

It is necessary, however, to further test these methods for optimization of sam-
pling schemes in the fields of study in this research or in other fields of study in
order to fully reveal their usefulness.

7.4 Recommendation for further research

Several issues, in terms of designing optimal sampling schemes, still need addressing.
The following are directly related to this thesis.
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7.4. Recommendation for further research

An important optimal sampling design for improving classification accuracy of
remote sensing images still remains unsolved. In this case, samples should fall
in areas of high uncertainty.

This thesis assumed that every point on the ground is accessible, however, there
is a need to develop algorithms to incorporate quantitative expert knowledge,
sampling costs and to handle complex sampling barriers.

Chapter 5 contains the results for unmixing a mixed spectrum that was gen-
erated without any error. In remote sensing the mixed pixel contains various
sources of error. For random error, the spectrum can be smoothed before the
unmixing procedure is applied. However, for systematic error which might not
even be additive and could be multiplicative, the proposed technique will fail.

Scaling is another issue that has been ignored in this thesis, yet it is an important
factor since a pixel is represented by an area on the ground whereas a sample
is a point on the ground.

Chapter 6 considers multivariate primary variables that was combined to form
a single primary variable. A possible alternative might be to use the co-kriging
variance. This requires modeling of variograms and cross-variograms which
could complicate the model.

Further testing of these methods for optimization of sampling schemes in these
fields of study or in other fields of study, are necessary in order to fully appreciate
their usefulness.

Of the making of books, there is no end.

Ecclesiastes
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