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Abstract 
 

In dairy cattle breeding, health and fertility traits have recently been included in a large 
number of national breeding goals. The effectiveness of breeding decisions and management 
changes to improve health and fertility possibly interact through genotype × environment 
interaction (G×E). G×E is a phenomenon in which different genotypes respond differently to 
changes in an environment. It can consist of the following effects: heterogeneous genetic 
variances across environments, genetic correlation of a trait expressed in different 
environments being less than 1.0 (reranking), and heterogeneous genetic correlations between 
traits across environments. In this thesis, G×E for health and fertiltity, as well as for yield, has 
been investigated using reaction norm models. In the reaction norm models, breeding values 
and genetic parameters were modeled as a function of an environmental descriptor using 
random regression. The dimensions of the model were expanded from linear random 
regressions to higher order random regressions, to include two parameters to define the 
environment, and to multivariate reaction norm models. Many environmental descriptors were 
investigated in this thesis, such as production level, farm size, average somatic cell score and 
calving interval, however, it appears that the herd parameters linked to nutrition and energy 
balance are most important for G×E. Significant G×E was detected in 86% of the situations 
for yield traits, but only in 14% of the situations for health and fertility traits, although 
significant reranking was found for SCS, mastitis and survival. Estimated G×E effects mainly 
consisted of heterogeneous genetic variances with limited reranking. As a result of 
heterogeneous variances in different traits, the relative importance of fertility compared to 
yield doubled across environments. Estimated G×E effects for SCS indicated more reranking 
of animals based on analysis of test day records, than on lactation averages. It was shown that 
selection for increased yield is expected to lead to increased environmental sensitivity for 
yield, while selection for better fertility is expected to lead to decreased environmental 
sensitivity for fertility. The models presented in this thesis can be used to account for the 
effect of herd environment on a trait and the relations between traits, and therefore enable to 
make accurate predictions of breeding values across environments. 
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Chapter 1 

GENERAL INTRODUCTION 
The interest in breeding for health and fertility in dairy cattle has increased in the last 

decade. This is partly influenced by the trend towards more sustainable farming systems, but 
also due to the rapid increase in milk yield per cow. One-sided selection for increased milk 
yield predict higher risk of behavioural, physiological, and immunological problems for those 
animals, due to negative genetic correlations between yield traits and fertility, health, and 
metabolic traits (1988; Pryce et al., 1998; Rauw et al., 1998). This can result in an increase of 
on-farm costs (Jones et al., 1994), increased risks related to food safety (e.g., due to medicine 
use), reduced animal welfare, and societal concerns with regard to animal welfare. Two 
applied options to counter these side-effects of selection for increased milk yield, are: 1) 
improvement of management to account for the poorer genetic merit for health and fertility, 
and 2) inclusion of health and fertility in genetic selection with sufficient weight to ensure 
there is no reduction of the genetic level for health and fertility (Philipsson et al., 1994). Both 
options assume that management (the environment - E) and genetics (genotype - G), together 
add up to the phenotypic performance (P) of an animal: P = G + E. When management 
changes and genetic improvement interact, known as genotype × environment interaction 
(G×E), then phenotypic performance becomes: P = G + E + G×E. These G×E effects might be 
such, that effects of management changes and genetic improvement enlarge each other (G×E 
> 0), or, conversely, reduce each other (G×E < 0), and this is one reason why it is important to 
estimate the effects of G×E for health and fertility traits. 

Making breeding decisions today, implies that one has to think which traits are 
economically important in the future (i.e., what is the breeding goal?). In the presence of G×E 
this becomes even more complex, because it is also important to consider the future herd 
environment and its relations with the breeding goal traits. Similarly, current breeding stock is 
used in many different environments, and data is collected also in many different herds. 
Therefore, in order to account for future and current herd management circumstances in 
animal breeding, the need exists to estimate G×E effects for health and fertility traits across a 
range of environments. However, most of the research into G×E has been geared towards 
yield traits and little is known about the importance of G×E effects for health and fertility 
traits.  

Estimation of G×E effects associated with continuous levels of herd environment, was 
described in animal breeding, by the use of covariance functions, either in a two-step 
procedure (Veerkamp and Goddard, 1998) or in random regression models (Calus et al., 2002; 
Kolmodin et al., 2002). These models are also known as reaction norm models and find their 
origin in evolutionary biology (Woltereck, 1909). The simplest reaction norm model 
estimates breeding values of an animal as a linear function of their environmental values, 
across a range of environments. Reaction norm models can further be extended, to estimate 
G×E, 1) for a single trait as non-linear function of environmental values, or as a function of 
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more than one environmental values, and 2) for multiple traits, where not only the variances 
of the traits, but also the covariances between traits, depend on the environmental value. The 
application of random regression models enables a continuous definition of environments, 
rather than arbitrary chosen groups, as most often is applied when estimating G×E. Therefore 
it is expected that these models allow better estimation of G×E effects. However at the start of 
this study only a few studies were available estimating G×E with a random regression model, 
and therefore developing these models for G×E estimation is also of importance for this 
thesis. 

 
AIM OF THIS THESIS 

The aim of this thesis is to investigate the magnitude of genotype × environment 
interaction (G×E) for yield, health and fertility traits in dairy cattle using random regression 
models to estimate G×E.  

 
OUTLINE OF THIS THESIS 

In chapter 2, a review of the literature with regard to definition, estimation and importance 
of G×E is presented with main emphasis on G×E in dairy cattle. In chapter 3, the application 
of reaction norm models to estimate G×E for milk yield traits in relation to fourteen different 
environmental parameters is described. In chapter 4, the effects of possible confounding 
between environmental parameters and the analyzed trait were investigated. In chapter 5, the 
association of several descriptors of herd environment with phenotypic levels of fertility and 
health and G×E for fertility and health traits were investigated. In chapter 6, the reaction norm 
model was applied to milk fat yield and fat percentage on a test-day level, as a way to relate 
G×E for those traits to a metabolic disorder called milk fat depression. In chapter 7, G×E was 
estimated for somatic cell score based on test-day records, with a reaction norm model in 
three dimensions: bulk milk somatic cell count, stage of lactation, and the interaction of bulk 
milk somatic cell count and stage of lactation. In chapter 8, genetic correlations between milk 
production and health and fertility traits were estimated depending on herd environment, 
using a multi trait reaction norm model. Chapter 9, the general discussion, 1) discusses the 
main estimated G×E effects and their implications for breeding and management decisions in 
general, and on robustness of dairy cows and risks of high milk yield specifically, and 2) 
discusses the random regression methodology to estimate G×E, and compares it with 
structured antedependence models. 
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Chapter 2 

INTRODUCTION 
Phenotypic performance of animals varies widely. Underlying mechanisms that affect 

phenotypic performance, such as physiology and adaptation of the animals, are due to both 
environmental and genetic factors. In animal husbandry, phenotypic performance is increased 
by improving management and selecting animals with desired genetic ability. An important 
question is to what extent environmental and genetic factors act additively or in an interactive 
manner and whether these genotype × environment interactions (G×E) lead to possible risks 
(i.e. decrease of phenotypic performance) or opportunities (i.e. increase of phenotypic 
performance). The aim of this study is to review 1) theory behind G×E, 2) estimation of G×E, 
3) estimated levels of G×E, and 4) implications for the dairy industry. 

 
GENOTYPE AND ENVIRONMENT 
Definition of genotype 

Genotype × environment interaction can be identified if phenotypic performance of at least 
two genotypes in at least two environments is considered (Mathur, 2002), which implies that 
both genotypes and environments need to be defined. Genotype can be defined as a unit, but 
also as a value of the genotype: a genotypic value. Genotypic units can be breeds (Kellaway 
and Colditz, 1975; Dillon et al., 2003a; Dillon et al., 2003b; Steinheim et al., 2004), 
crossbreds (Albers et al., 2002), groups of animals selected for a certain performance or 
genetic merit (Simm et al., 1994; Veerkamp et al., 1995), sires of animals (Tong et al., 1977; 
Meyer, 1987), animals (Berry et al., 2002), but also QTLs (Stratton, 1998), marker genotypes 
or genes. 

 
Definition of environment 

Genotype × environment interaction can only be identified, if at least two different 
environments are considered. Environment can be defined as a unit, but also as a continuous 
value of the environment. In animal husbandry, the most common environmental unit is herd. 
Each herd environment can be considered as a unique environment, affected by all possible 
characteristics and management decisions in that herd environment. However, using this 
definition, no inferences are made about the characteristics of the herd which makes 
understanding and comparison of different environments difficult. Sometimes distinct 
environments do have a specific meaning, without defining details, such as commercial versus 
nucleus herds (Merks et al., 1985). Defining environments as groups of herds with for 
instance a certain production level, not only reduces the number of distinct environments, but 
also makes comparison and ordering of environments easier. More precisely, each herd 
environment can be defined based on for instance average production level. All possible 
specific herd characteristics and combinations of herd characteristics can be used for this 
purpose. The benefit of using a single characteristic is that inferences can be made about the 
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relation between the considered herd characteristic and management, such as bulk milk 
somatic cell count related to clean versus dirty milking management practice (Barkema et al., 
1999b). In literature, environments are defined as differences in climates (Mathur and Horst, 
1994; Cienfuegos-Rivas et al., 1999; Costa et al., 2000; Kolmodin et al., 2004), different 
regions (Carabaño et al., 1990; Dodenhoff and Swalve, 1998; Kolmodin et al., 2004), specific 
differences between herds, such as low versus high concentrate levels (Veerkamp et al., 1994; 
Cromie, 1999; Pryce et al., 1999; Keady et al., 2001), organic versus conventional farms 
(Nauta et al., in press), housing system (Wicks and Leaver, in press; Buenger et al., 2001; 
Fatehi et al., 2003), management system (Boettcher et al., 2003; Fatehi et al., 2003), milking 
system (Mulder et al., 2004), average production level (Hill et al., 1983; De Veer and Van 
Vleck, 1987; Dong and Mao, 1990) or herd size (Kolmodin et al., 2002; Hayes et al., 2003). 
Based on a number of single characteristics, some sort of aggregate herd characterization can 
be defined, for instance by application of a canonical correspondence analysis (Faye et al., 
1997), an applied factor analysis (Enevoldsen et al., 1996), or principal component analysis 
(Windig et al., 2005c). The principal components presented by Windig et al. (2005c), 
reflected for instance within-herd intensity of production, fertility and geographical 
positioning, and scale of dairy farms. 

Defining environments on a geographical basis seems a logical thing to do, as weather 
conditions, soil and possibly social-economic perspectives change from region to region. 
Evidence has been found for heterogeneous genetic variances (i.e. scaling effects) for protein 
yield across different regions in Germany (Dodenhoff and Swalve, 1998) and genetic 
correlations for milk production traits between regions in the United States ranged from 0.93 
to 0.99 (Carabaño et al., 1990). In small countries such as The Netherlands, estimated G×E 
across regions was however small (Van der Werf and Ten Napel, 1991). Due to the 
international character of current animal breeding and the interest in international breeding 
value estimation, the definition of different countries as different environments (Schaeffer, 
1994) becomes increasingly more important, although it is questionable whether country 
boundaries are satisfactory to define environments (Weigel and Rekaya, 2000). A proposed 
solution, which might be more efficient and realistic, involves clustering of herds based on 
herd characteristics (Weigel and Rekaya, 2000; Zwald et al., 2001; Zwald et al., 2003).  
 
Genotype × environment interaction 

Usually, the phenotypic performance (P) of an animal is considered to be the sum of the 
value of its genotypic effect (G) and the value of an environmental effect (E): P = G + E. 
Consequently, the phenotypic variance (VP) of a trait is equal to the sum of the genetic (VG) 
and environmental variance (VE): VP = VG + VE, assuming that no covariance exists between 
G and E (Falconer and Mackay, 1996). In some situations the value of the genetic effect is 
affected by the environmental effect. This is a result of the ability of an animal to respond to 
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changes in the environment, also known as phenotypic plasticity or environmental sensitivity. 
More specifically, the phenomenon that environmental changes have different effects on 
different genotypes is known as G×E or differences in environmental sensitivity of genotypes 
(Falconer and Mackay, 1996). 

Genotype × environment interaction results in three possible effects: 1) heterogeneity of 
genetic variances across environments (also known as scaling effects), 2) reranking of 
animals across environments based on estimated breeding values, and 3) heterogeneity of 
correlations between two or more traits across environments. The G×E is usually considered 
to be unimportant if only scaling effects and no reranking occurs. However, Namkoong  
showed that scaling effects of single traits can cause reranking of animals based on a 
composite index. Typically, estimated genetic correlations across environments are used to 
estimate the degree of reranking. In a situation where the genetic covariance between 
environments is not known, sometimes the correlation or rank correlation between estimated 
breeding values in both environments is used.  

Genetic correlations between traits mainly result from pleiotropy, the characteristic of 
genes that they affect two or more traits (Falconer and Mackay, 1996). If the expression of 
some of the genes that affect traits, changes across environments, the genetic correlation 
between traits measured across environments may also change. This implies that the genetic 
correlation between traits can change due to changes in both the environment and the 
genotype (i.e. selection). From a biological perspective, the same conclusion can be derived, 
considering a situation where traits compete for limited available resources (Beilharz et al., 
1993; Sölkner and James, 1994; Van der Waaij, 2004). Consider for example the trade-off 
between fertility and milk production in early lactation of dairy cows resulting from a 
negative energy balance due to lower energy intake than energy output (Berglund and Danell, 
1987). The limitation of resources can be influenced by the genotype (i.e. the feed intake 
capacity of the cow is limiting) or the environment (i.e. the amount of feed available or 
nutritional value of the diet is limiting). Relaxing the limitation of resources will lead to a 
relaxation of the trade-off between traits (Van der Waaij, 2004) and therefore the genetic 
correlation between traits can change with changes in the genotype or changes in the 
environment. 

 
METHODOLOGY TO ESTIMATE G×E EFFECTS 
Animal experiments versus field data 

In order to be able to estimate G×E, information of both genotypes and environments is 
required. On one hand one wants as detailed information as possible, but on the other hand a 
large number of observations is usually needed to be able to estimate G×E. Satisfying both 
conditions in one setting leads to enormous costs. If the argument of detailed information is 
most important, usually an animal experiment with typically a few dozen up to a few hundred 
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animals is applied. If a larger amount of data is most important, for instance for the purpose of 
variance component estimation, usually data available from field studies or milk recording 
schemes is used. 

 
Comparison of mean performance across environments 

Animal experiments in dairy cattle are expensive, but can be very illustrative. Typically, 
experiments are applied if required information is not available from routine milk recording 
data. Animals are usually split in a number of groups, based on level of milk production or 
genetic merit (Buckley et al., 2000; O'Connell et al., 2000). Some experiments run for a 
number of years and use two genetic lines: one has been selected for high production or 
breeding values and the other is a control line that has been selected for average production 
(Veerkamp et al., 1994; Veerkamp et al., 1995; Pryce et al., 1999). Environments are usually 
defined based on differences in feeding level or system (Veerkamp et al., 1994; Buckley et 
al., 2000; O'Connell et al., 2000; Keady et al., 2001). To refine the analysis, sometimes the 
discrete criteria to define genotypes is replaced by a continuous parameter, such as an 
estimated breeding value or a pedigree index (Veerkamp et al., 1995; Pryce et al., 1999). The 
phenotypic performance of the animals is within environment regressed on this parameter. 
Differences in regression coefficients across environments are then used as an indication for 
G×E. 

 
Estimation of variance components for G×E in large data sets 

The G×E can cause reranking of animals across environments, heterogeneous genetic 
variances across environments, (Lynch and Walsh, 1998) or heterogeneous genetic 
correlations between traits expressed in different environments. Traditionally, animal breeders 
are more concerned about reranking of animals than about differences in scale between 
environments because differences in scale do not affect the ranking of animals across 
environments for the considered trait. However, the magnitude of genetic variance affects 
genetic gain, and, therefore, the change in genetic variance across environments is important 
as well. 

The most straightforward and computationally least demanding approach to estimate 
variance components for G×E is using a random sire×herd effect: P = G + G×E + E. This term 
measures the specific sire variance across herds (Robertson, 1959), and generally accounts for 
between 0 and 5% of the total phenotypic variance for yield traits (Dickerson, 1962; Tong et 
al., 1977; Meyer, 1987; Van der Werf and Ten Napel, 1991). The sire×herd method has the 
disadvantage that a large number of effects has to be estimated, while the number of 
informative animals per effect is limited and the additive genetic relation between sires is not 
considered in the estimation of G×E. Besides, the estimated breeding values do not include 
information of differences in performance of genotypes in different environments. Another 
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possibility to estimate G×E is to apply a multitrait model, i.e. one trait is considered to be a 
different trait in another environment: P = (G + G×E) + E. This method includes the 
interaction variance in each defined environment in the genetic variance and is often used to 
estimate G×E (Brotherstone and Hill, 1986; De Veer and Van Vleck, 1987; Boldman and 
Freeman, 1990; Carabaño et al., 1990), also for the purpose of international breeding value 
estimation (Schaeffer, 1994). A disadvantage of this method is that arbitrary grouping of 
environments is required and that the number of environments has to be kept small to limit the 
number of (co)variance components that has to be estimated. The most recently introduced 
method in animal breeding to estimate G×E implies defining a trait as a function of the 
environment: P = G(E) + E. The resulting model, usually referred to as reaction norm model, 
finds its origin in evolutionary biology (Woltereck, 1909) and describes the phenotypic 
performance of an animal as function of a continuous measurement of the environment. The 
environmental value is usually calculated as the mean phenotypic performance in a specific 
environment. The genetic effect is modeled by a covariance function (Kirkpatrick and 
Heckman, 1989) that models the environmental sensitivity of each genotype. The major 
benefit is that arbitrary grouping of environments is avoided, while the number of estimated 
variance components is limited. Applications in dairy cattle are recently described in a 
number of studies (Veerkamp and Goddard, 1998; Strandberg et al., 2000; Calus et al., 2002; 
Kolmodin et al., 2002). 

 
Dealing with G×E in breeding value estimation 

If breeding values are estimated in the presence of G×E, but without taking G×E into 
account, estimated breeding values will be biased. If scaling effects are not accounted for, 
animals in environments with high variance will have a higher chance to be selected. 
Correcting for G×E has been done in several ways. A sire × herd effect can be included in the 
model to account for G×E. Also, several methods have been proposed to account for 
heterogeneity of variance, either as pre-adjustment in the data (Boldman and Freeman, 1990; 
Wiggans and VanRaden, 1991; Weigel and Lawlor, 1994; Dodenhoff and Swalve, 1998) or as 
correction in the breeding value estimation model (Meuwissen et al., 1996). Including of G×E 
in breeding values has the advantage that account of G×E can be taken in selection decisions, 
whereas correction for heterogeneity assumes selection decisions for the average herd are 
applicable in all herd environments. Including G×E in the breeding value estimation can be 
done with a multitrait model or a reaction norm model. The reaction norm model, however, 
combines the advantages that no arbitrary grouping of environments is required while the 
number of estimated parameters is limited. On the other hand, in the reaction norm model 
some sort of inference about the continuous measure of the environment has to be made. 
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MAGNITUDE OF ESTIMATED G×E 
Yield traits 

For dairy cattle, hardly any significant G×E is reported in animal experiments where 
genotypes were defined based on genetic merit or selection on production, while environment 
was defined based on different diets (Veerkamp et al., 1994; Veerkamp et al., 1995; Buckley 
et al., 2000; Keady et al., 2001). However, regression of performance on pedigree index did 
show an interaction in some studies (Veerkamp et al., 1994; Veerkamp et al., 1995). Kolver et 
al. (2002) did report a significant genotype × diet interaction, when genotype was defined as 
New Zealand or overseas Holstein Friesian and diet was pasture based or total mixed ration. 

Extensive research based on estimation of variance components has shown that genetic 
variance of milk production is environmentally sensitive if environments are defined in terms 
of for instance region (Carabaño et al., 1990; Ibáñez et al., 1999), weather information 
(Ravagnolo and Misztal, 2000), level of nutrition (Cromie, 1999), production level (De Veer 
and Van Vleck, 1987; Boldman and Freeman, 1990; Ibáñez et al., 1999; Berry et al., 2002; 
Calus et al., 2002; Kolmodin et al., 2002), herd size (Ibáñez et al., 1999), or other herd 
characteristics such as peak milk yield (Fikse et al., 2003a), or days open (Kolmodin et al., 
2002). All these sources reported large heterogeneity of variances and some heterogeneity of 
heritabilities, but limited reranking of animals as the genetic correlations or correlations 
between breeding values for production traits in different environments were in most 
situations greater than 0.85. 

When environments are defined as average production level, linear covariance functions 
have been fitted for yield traits (Calus et al., 2002; Kolmodin et al., 2002; Hayes et al., 2003), 
but higher order relationships have significantly been estimated (Veerkamp and Goddard, 
1998). 

 
Fertility, health and functional traits 

Little research has been done on G×E in fertility, health and functional traits in dairy cattle. 
Pryce et al. (1999) found no genotype × feeding system interactions for health and fertility 
traits in dairy cattle. Estimated genetic correlations between SCS expressed in herd 
environments with low versus high average SCC were mainly close to unity (Castillo-Juarez 
et al., 2000; Raffrenato et al., 2003), apart from a reported value of 0.80 estimated for 
Swedish Holstein (Carlén et al., 2005), and as low as 0.83 when environments were defined 
based on management practices that enhance milk production (Raffrenato et al., 2003). 

Covariance functions have been applied for fertility traits in a few studies, which reported 
heterogeneous heritabilities across fertility environments (Distl, 2001; Kolmodin et al., 2002). 
Reranking of animals was however limited, as reported genetic correlations were all close to 
unity. 
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The estimated genetic correlation for productive life of Swedish Red and White dairy cattle 
in contrasting herd environments was 0.74 (Petersson et al., 2005). Estimated genetic 
correlations for productive life between contrasting environments defined otherwise, were all 
closer to unity (Petersson et al., 2005). 

Fatehi et al. (2003) reported genetic correlations less than unity for feet and leg 
characteristics between tie stall and free-stall (rg≥0.87), free-stalls with solid or slatted floors 
(rg≥0.78) or animals with intact or recently trimmed hoofs (rg≥0.88).  

In conclusion, despite the limited research on G×E in fertility, health and functional traits 
in dairy cattle, evidence has been found for the existence of G×E effects that are, in terms of 
genetic correlations across environments, of greater magnitude than yield traits. 

 
Genetic correlations between traits 

Milk yield has always been the major component of the breeding goal for dairy cattle, as 
milk production has a direct impact on the income of dairy farmers. However, selection 
focused mainly on milk yield may have led to an increase in the risk for some health and 
fertility disorders (Emanuelson, 1988; Pryce et al., 1998; Rauw et al., 1998). In 1994 only the 
Scandinavian countries considered fertility, calving performance, and health traits in their 
total merit index together with production traits (Philipsson et al., 1994). Nowadays, almost 
all countries participating in Interbull include those traits in their total merit index to increase 
production, fertility and health simultaneously. Philipsson et al. (1994) showed, based on a 
restricted total merit index, that the correlated responses in mastitis and fertility could be 
reduced to zero at the expense of only 12 to 15% of genetic gain in production. 

In order to include multiple traits in a breeding goal, the genetic correlation between the 
traits need to be estimated. In the presence of G×E, genetic correlations between traits can 
change across environments. Although differences in genetic correlations estimated in 
different environments might partly result from estimation errors, the existence of differences 
across environments could be supported by the fact that genetic correlations between traits are 
sometimes different when estimated accurately in different countries. Castillo-Juarez et al. 
(2000) reported small changes in genetic correlations between mature equivalent milk yield, 
lactation mean SCS and conception rate at first service, across different production 
environments. Raffrenato et al. (2003) reported that correlations between milk yield traits and 
average somatic cell score in contrasting herd environments ranged from slightly favorable to 
antagonistic.  

One way to allow genetic correlations between traits to vary across environments is 
application of a multitrait reaction norm model. Veerkamp and Goddard (1998) fitted a 
multitrait covariance function to allow the genetic correlations between milk, fat, and protein 
yield to change across stage of lactation and production level. Correlations between those 
traits expressed at different herd production levels ranged from 0.79 to 0.97. Kolmodin et al. 
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(2002) applied a multitrait random regression model for protein yield and days open and 
reported small changes in the genetic correlation between those traits expressed at different 
herd production levels. 

Despite the limited research, some evidence has been found for environmental dependent 
genetic correlations in dairy cattle. The consequence is that changes in environment, i.e., 
management decisions, can possibly influence the negative relation between yield and health 
and fertility traits. 

 
IMPORTANCE OF G×E 
Selection, breeding programs & breeding goals 

In a situation where G×E is present, it is important to ensure that the environment in which 
animals are selected, resembles the environment where the products of selection will be 
producing in in the future (Meuwissen, 1990; Visscher and Hill, 1992). For instance, a 
nucleus herd should resemble a commercial dairy herd in the future. Otherwise, the selection 
response in the production environment is a correlated response (CR), which is defined as 
CRY = rXY*(σY/σX)*RX (Falconer, 1952), where CR is the correlated response in environment 
Y, rXY is the genetic correlation between the trait expressed in environment X and Y, σX and 
σY are genetic standard deviations in environments X and Y, and RX is the response of 
selection in environment X. If the genetic correlation (rXY) between the trait expressed in 
environments X and Y is unity, i.e. there might be only scaling but no reranking of animals 
across environments, the CR still can change across environments, due to differences in 
genetic variances across environments. If the genetic correlation (rxy) between the 
environments is less than 1, based on whether this correlation is smaller or larger than the 
break-even genetic correlation, different breeding programs for each environment can be 
considered or not (Mulder and Bijma, 2005). 

Breeding organizations tend to focus on the ‘average environment’ rather than trying to 
address multiple breeding goals defined for different herd environments. No evidence is 
available that the ‘national’ breeding goal should be redefined in several smaller breeding 
goals, but it is known that dairy farmers with different farming styles tend to use different 
criteria when selecting bulls, probably based on their own philosophy and specific herd 
characteristics (Groen et al., 1993). The question is whether different farmers should use 
different bulls to optimize farm income, and if that is the case, whether application of one 
general breeding program leads to a situation where ‘optimal’ bulls are available for all 
farmers. Due to environmental sensitivity the ‘average’ animal might encounter serious 
problems in an extreme environment. 

One way to prevent animals to be at risk in extreme environments is to select for 
environmental insensitivity in certain traits. However, those animals might perform not 
optimal in an environment in the other extreme of the environmental scale. Therefore, no 
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consensus exists whether selection should be for environmental sensitive or insensitive 
animals, also known as ‘specialists’ or ‘generalists’ (Fikse, 2002). 

 
Socially acceptable animal production 

Animal production is becoming more and more an activity in which a lot of different 
stakeholders are involved and demands of the consumers and the public opinion are becoming 
more important (Bennett, 1997). This puts several restrictions on animal husbandry. Food 
products should be safe, animal production should not have negative influences on the 
environment and at the same time a reasonable level of animal welfare has to be guaranteed. 

Food safety, nitrogen management and animal welfare are becoming increasingly 
important issues in Europe. Although animal welfare is defined in several different ways, it is 
clear that animals should at least be able to function normally and be in good health (Sandoe 
et al., 1999). The public opinion that animals “should not suffer” can be translated into a 
minimum baseline with regard to a trait interfering with animal welfare. It is not the average 
achieved level of welfare that is most important, but likely the proportion of all animals that 
are below this baseline (Sandoe, 2004). 

Different stakeholders have different interests and therefore an ongoing debate discusses 
whether the profit in breeding goals should be defined from the perspective of the farmer, the 
industry or the consumer (Goddard, 1998). So far, the farmer and the industry had most 
influence on the direction of breeding goal and selection, but the role of the consumer is 
becoming increasingly important, for instance due to recent trends such as socially acceptable 
animal husbandry (i.e. “Corporate Social Responsibility”) or in some situations through 
governmental policy reflecting the opinion of consumers or even the community at large. 
Breeding goals could shift towards “maximization of what contributes to the quality of life of 
both production animals and humans” (Sandoe et al., 1999). If breeding goals are already 
defined in that way, the perception of “quality of life” is likely to change in time, implying 
that breeding goals will be continuously changing as well. Maximizing quality of life could 
result in a number of restrictions in practical circumstances, but might be benificial to the 
farmers as well, for instance if production increases due to better animal welfare. Although 
these restrictions could lead to changes in the production environment, farmers will still try to 
maximize their profits in the new situation and might need a different kind of animal to do so. 
Therefore, preservation of biodiversity can be regarded as a way to enable “maximization of 
quality of life” in the long term. 

 
Socio-economic perspectives 

The functioning of animals can be influenced both by changing genotype and environment. 
Changing the production environment is probably the best solution from the point of view of 
the public, because changing the animal, especially to enable animals to deal with their 
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production environment, could somehow interfere with the integrity of the animal (Sandoe et 
al., 1999). However, changes in the environment might not be acceptable, when these have to 
“correct” problems that are caused by modifying the animal through selection. The decision to 
change either the production environment or the genotypes will heavily depend on the costs of 
either change. For instance, if changing the production environment involves redesigning the 
interior of barns, the changes might be postponed until a new barn is built. Comparably, 
replacing all genotypes at once by for instance a different breed might be too expensive and 
the change of the genotypes might be done more gradually by changing the breeding goal and 
selection of other animals to breed the next generation. 

Another motivation to use certain genotypes for animal production might just be the 
philosophy of the farmer or the farming system in which the farmer is producing (e.g., organic 
animal production). Different management styles have been identified, ranging from 
minimizing the production costs to maximizing the milk production per cow or from 
considering the cows to be the most important production factor to the machinery being most 
important (Groen et al., 1993; Dockes and Kling-Eveillard, 2004). Such philosophies might 
be an attempt to optimize the results in terms of for instance animal welfare, nutrient 
efficiency or simply the income of the farmer. If farmers do succeed to optimize their ‘results’ 
by choosing the ‘optimal’ genotype for their specific herd environment according to their own 
philosophy, then this would indicate the presence of G×E. Scientifically this kind of G×E 
might be hard to estimate, as comparison of different herds with different strategies might be 
complex, because several other things might be different across herds. Ideally, herds which 
have changed their genotypes throughout time should be used for such analysis, as time is 
needed for genotypes to ‘adapt’ (in this case in the meaning of ‘being bred’) to fit into their 
environments. 

 
Biodiversity 

The main focus of selection in production animals in the last century has been on 
production in industrial agriculture, characterized by its high input-output environment (FAO, 
1998). This resulted in the use of a few highly productive breeds and a reduction of variation 
within those breeds (FAO, 1998). In a few simulation studies (Kolmodin et al., 2003; Van der 
Waaij, 2004) as well as in experiments (Falconer, 1990), it is shown that selection of 
environmentally sensitive animals based on phenotypic performance in a continuously 
improving environment, is expected to lead to increased environmental sensitivity of the 
selected animals, in the presence of G×E. This implies, that sudden changes in the 
environment, especially in the opposite direction of the environmental changes that occur 
during selection (e.g., changing back to a low input strategy or the outbreak of a disease), 
might lead to a rapid reduction of animal production and/or poor animal welfare.  
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Replacement of locally adapted breeds by exotic breeds can actually lead to a decrease in 
overall production, if the local circumstances are not sufficiently taken into account in the 
breeding goal (Sölkner et al., 1998). Also, use of locally adapted breeds might be more risk 
averse by ensuring a more or less stable production, which is quite important in marginal 
regions (Sölkner et al., 1998). This emphasizes the importance of maintaining biodiversity to 
off-set possible risks in different environments in the future. One of the main reasons to 
conserve a certain breed or strain is its specific adaptation to a certain environment, which is 
straightforward if conservation is focused towards a single environment. However, if 
conservation needs to address multiple environments, or rapidly changing environments, 
another approach might be to (partly) conserve breeds or strains that are relatively 
environmental insensitive and thus fit well in a range of environments. 

 
CONCLUSIVE SUMMARY 

Genotype × environment interaction is the phenomenon that genotypes express differently 
in different environments. This has basically the following consequences: 1) for different 
specific production environments, different optimal producing genotypes can be chosen or 
bred, and 2) environmental changes can lead to different phenotypic responses of different 
genotypes. In dairy cattle breeding programs, G×E for yield has been considered to be of 
minor importance, but is accounted for in international breeding value estimation. Little is 
however known on G×E for health and fertility traits. As estimates of G×E for health and 
fertility traits become available, the importance of G×E in breeding programs and goals might 
increase. 
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ABSTRACT 
The objective of this study was to estimate effects of environmental sensitivity of milk 

production traits for several environmental parameters and to investigate the impact of 
combining traits with different environmental sensitivity in an economic index. Variance 
components and breeding values were estimated for milk, fat, and protein yield and fat and 
protein percentage by applying a random regression on values of an environmental parameter 
for each sire. Fourteen environmental parameters were defined and fitted to data consisting of 
151,696 heifers in 6780 herds in the Netherlands with first lactation records for milk 
production, somatic cell count, body condition score and number of inseminations. Milk, fat, 
and protein yield showed environmental sensitivity in combination with 12 environmental 
parameters. Herd-year averages of protein, body condition score, age at calving, calving 
interval and peak date of calving explained most genotype by environment interaction, mainly 
resulting from scaling effects. Almost all genetic correlations across environments were 0.99 
or higher. Although heterogeneity of genetic variances was considerable, heterogeneity of 
heritabilities was limited. Scaling had a large effect on the weights of the economic index, but 
environmental sensitivities of milk, fat, and protein yields were approximately of equal 
magnitude. Consequently, very little reranking occurred based on the economic index. 
 
INTRODUCTION 

The phenomenon that different genotypes respond differently to changes in their 
environments is known as genotype × environment interaction (G×E) or as differences in 
environmental sensitivity (ES) of genotypes (Falconer and Mackay, 1996). This interaction 
can cause reranking of animals across environments or a change of scale, i.e., variance, across 
environments (Lynch and Walsh, 1998). Traditionally, animal breeders are more concerned 
about reranking of animals than about differences in scale between environments because 
differences in scale do not affect the ranking of the animals for the considered trait. However, 
reranking of animals across environments is limited for milk production traits (Veerkamp et 
al., 1995; Cromie, 1999; Calus et al., 2002), although there is evidence that variances and 
heritabilities vary (Veerkamp et al., 1995; Cromie, 1999; Calus et al., 2002). Scaling effects 
can be accounted for in the breeding value estimation model (Meuwissen et al., 1996) and do 
not influence the ranking of sires, based on a single trait. However, if scaling effects are 
different for traits that are combined together in an economic index, the relative importance 
among the traits might change and cause reranking based on this economic index (Namkoong, 
1985). In that case it might be more appropriate to include environmental sensitivity in 
breeding decisions rather than correct for it in the statistical model. 

An environmental parameter (EP) reflects the environment encountered by the animals. An 
EP can reflect production level of a herd (Veerkamp and Goddard, 1998; Calus et al., 2002; 
Kolmodin et al., 2002), or other characteristics of the herd, such as for instance average 
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calving interval or average age at calving (Fikse et al., 2003a). Describing G×E for dairy 
cattle with a covariance function of an EP is recently described for a limited number of EP 
(Veerkamp and Goddard, 1998; Calus et al., 2002; Kolmodin et al., 2002; Fikse et al., 2003a). 
The use of an EP in a covariance function has the advantage that environments are treated as a 
continuum, rather than a set of arbitrarily defined groups of the data.  The EBV of an animal, 
which is divided into an environment independent and an environment dependent part, is also 
called reaction norm (Falconer and Mackay, 1996). The simplest form of a covariance 
function describes the ES of the genotype as a linear function of the EP, but higher order 
functions are possible. Covariance functions can be estimated by a two step procedure or by 
random regression models (Van der Werf et al., 1998). 

The objective of this paper is to estimate ES for milk production traits for a range of EP in 
order to identify those EP that gave most ES and to investigate the effects of ES on reranking 
in the Dutch economic index (INET) combining milk, fat, and protein yields.  

 
MATERIALS AND METHODS 
Data 

The data contained first-lactation test-day records for milk production traits and SCC, date 
of first calving, date of each insemination and body condition scores for 271,606 heifers 
calving in 1998 and 1999 from 12,347 dairy herds in The Netherlands. A few criteria were 
used to select the data for the estimation of variance components of milk production traits. 
Each heifer needed at least five test-day records during the period of 5 to 305 DIM of which 
at least one was on or after 180 DIM; heifers that calved at an age of less than 640 or more 
than 1310 d were deleted. These criteria decreased the number to 267,120 heifers in 11,602 
herds. Selected animals were deleted if their herd did not meet the criteria of the EP, which 
are explained later. To calculate EP, for each herd-year a minimum number of four records 
was needed for calving interval, as this EP was most restrictive, and five records for other EP. 
Effectively, a total of 151,696 mostly Holstein-Friesian and Meuse-Rhine-Yssel heifers in 
6780 relatively large herds were selected. Each herd-year contained an average of 14 heifers. 

In the pedigree file, a maximum of five generations of sires were included, together with 
the pedigrees of dams of first and second generations of sires and the sires’ maternal 
grandsires. A total of 4769 sires with daughters in the data were identified. Sires had on 
average 32 daughters. The relationship matrix contained 14,382 animals. 

 
Traits 

Five traits were evaluated: average daily milk yield, fat yield, protein yield, fat percentage, 
and protein percentage. Milk, fat, and protein yield were calculated as the average of the test-
day yields between 5 and 305 DIM. Fat and protein percentage were calculated as the average 
yield of fat and protein divided by the average milk yield. 
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Environmental parameters 
Environmental parameters were calculated for each herd-year level, based on calving date. 

Potentially a large number of EP could be defined, but parameters used here were chosen 
because they: 1) reflect management and environment, 2) are obtainable from the available 
data, 3) are continuous rather than categorical, i.e., the parameter is expressed on a scale 
rather than defined in several classes, and 4) are not too strongly correlated with each other. 
Each parameter was averaged over all heifers calving in the relevant herd-year. For 
parameters that reflected traits with more records per lactation, first an average was calculated 
for each selected animal. 

Test-day record parameters.  Average protein and SCC were calculated from test-day 
records in 1998 and 1999. Each SCC test-day record was transformed to a SCS, by SCS = 
log10(SCC). Persistency was calculated in two different ways. First, persistency was 
calculated for each animal from the ratio of milk production on the test-day closest to 60 DIM 
to milk production on the test-day closest to 240 DIM (Zwald et al., 2001), both in a range of 
42 d around those. Second, persistency was taken as the highest test-day milk production of a 
heifer divided by its average test-day milk production. This last parameter is called relative 
peak milk yield. 

Age at calving and herd size parameters. Average age at calving and number of freshened 
heifers were calculated over all heifers that calved during the year, regardless how many days 
they produced. In both years, the change in number of freshened heifers was set to the 
difference between 1998 and 1999. 

Energy balance parameters. Energy balance reflects the ability of management to tune the 
feed intake to the energy requirements and therefore indicates whether tissue reserves are 
mobilized or deposited in the cow. Body condition score reflects cumulated energy balance 
(Chilliard et al., 1991). Body condition score was measured during classification and only 
once during the first lactation. Average body condition score (BCS) was calculated from all 
classified heifers in a herd that calved in the same year. Other traits that reflect energy balance 
are change in fat percentage and fat over protein ratio (De Vries and Veerkamp, 2000). 
Change in fat percentage was calculated as the difference in fat percentage on the test-day 
closest to 77 DIM and the test-day closest to 14 DIM (De Vries and Veerkamp, 2000), both in 
the range from 10 to 100 DIM. Fat over protein ratio was calculated by test-day and then 
averaged across test-days. 

Calving and insemination parameters. Calving interval is the period between first and 
second calving. The number of inseminations required for a successful second calving was 
estimated during first lactation. The herd calving pattern was represented by peak date of 
calving and distribution of calving dates over the year. The peak date of calving shows the 
date around which the heifers are calving and the distribution of the calving dates shows 
whether the heifers are calving near that date or throughout the whole year. Average day of 
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calving can be calculated by numbering each day of the year from 1 to 365 and obtaining the 
average of the renumbered calving dates (Zwald et al., 2001). A disadvantage of this method 
is that a non-equal distribution of calving during a year, e.g., if the peak date of calving does 
not fall on July 1st, leads to an underestimation or an overestimation of the peak date of 
calving. Here, a slightly different procedure is used. The peak date of calving is calculated by 
iteratively repeating the following procedure: 1) calculate the average of calving dates (Zwald 
et al., 2001) and 2) define a maximal time period in the same calendar year with the average 
of step 1 as central point. For instance, with an average calving date of d 140, the new period 
ranges from d 0 to 280. If the period became shorter than 182 d it was expanded over the 
borders of the calendar year. Insemination data from 1997 and 2000 were available to make 
this expansion feasible. The time period in step 1 is in the first iteration the calendar year and 
in later iterations the period defined in step 2 in the previous iteration. Step 1 and 2 are 
repeated until the average day of calving no longer changes. The converged average day of 
calving is considered to be the peak date of calving. For a few herds, two peaks of calving in a 
year made convergence impossible. If convergence had not occurred after 1000 iterations, the 
average day of calving of all 1000 iterations was taken. Values for 1999 were adjusted by 
substracting 365 days to come to the same standard as in 1998. The distribution of calving 
dates during the year was calculated by the use of an interval of 182 d and one of 365 d, both 
centered on the peak date of calving. The distribution of calving dates was calculated as the 
ratio of the number of calving dates in the short interval to the number of calving dates in the 
long interval. 
 
Estimating variance components and environmental sensitivity 

Variance components were estimated by using a sire model. Environmental sensitivity was 
modeled by applying a random regression for each sire, representing its EBV, on values of an 
EP for the herds in which his daughters were producing. A fixed linear and quadratic 
regression for age at calving was included, as was a fixed effect to account for herd-year-
season (HYS) groups. Furthermore, a fixed polynomial was also applied to the EP, to account 
for the average effect in each environment. An HYS effect was not fully covered by the herd-
year effect. In each situation, only one EP was used for both the random regression for sires 
and the fixed regression for herd-year. The residual variance was calculated for 10 equally 
sized groups, based on increasing EP, to include heterogeneous residual variances in the 
model. 

The HYS groups were defined by a method that optimizes the composition of HYS groups 
based on the calving dates and intervals between consecutive calving dates in a herd (Crump 
et al., 1997). Initially, the criteria of a maximum period of 91 d and a minimum of five 
animals per HYS group were applied. If some animals were not assigned to an HYS group 
based on these criteria, they were forced to join one by relaxing the criterion for the maximum 
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period. The same was applied to animals from groups that had fewer than five animals, to 
force them to join another HYS group. 

The applied model was: 

Yijklmnoq =  μ + HYSi + γ 0*AGEj + γ 1*(AGEj)2 +  +  + Ekm
k

k P∑
=

10

0

β lm
l

ln P
s
∑
=0

α ijklmnoq 

where Yijklmnoq is the performance of heifer q; μ is the average performance over all 
animals, HYSi is the effect of herd-year-season group i; γ0 and γ 1 are coefficients of linear and 
quadratic fixed regression on age at calving j in days, respectively; AGEj is age at calving in 
days of heifer q; βk is coefficient k of a fixed regression on element k of the orthogonal 
polynomials of all environments; Pkm is element k of the orthogonal polynomial resembling an 
environmental parameter of environment m; αln is coefficient l of the random regression on 
the orthogonal polynomials of all environments of the daughters for sire n; Plm is element l of 
the orthogonal polynomial resembling an environmental parameter of environment m; s is the 
largest significant coefficient l of the random regression; and Eijklmnoq is the residual effect of 
heifer q in environment m within group of environments o (o = 1, 2, ..., 10). 

The order of the polynomials for the fixed regression on an EP was arbitrarily set to 10 in 
each situation. For the random regression, the order of the polynomial was increased per 
combination of trait and EP until the extra added components of the next order did not 
significantly improve the fit of the model or the variance of the extra component was zero. 
The log likelihood ratio test (Kirkpatrick et al., 1990) was used to compare the fit of two 
models with consecutive orders of polynomials. 

The sire variances for values of an EP are calculated as ΦSΦ’, where Φ is a matrix with 
polynomial coefficients for a value of the EP on each row and S is an n × n matrix, where n is 
the highest order of the polynomial + 1, with variances of each random regression coefficient 
on the diagonal and covariances between the random regression coefficients on the off-
diagonals. The residual variance was calculated for 10 different groups. Residual covariances 
between groups were assumed to be zero. Covariances between sire and residual effects were 
assumed to be zero and not taken into account. 

Several criteria can be defined to rank EP based on the given amount of G×E. In this study 
we used the absolute change in sire variances between the 25 and 75% of the environmental 
scale as an indicator of change in sire variance across environments and therefore of the given 
amount of G×E. To check the results of the random regression model, a multitrait model was 
applied for selected combinations of traits and EP. The program ASREML (Gilmour et al., 
2002a) was used for all analyses. 

 
Economic index 

The Dutch INET is an economic index that includes milk, fat, and protein yield and is 
calculated as INET = -0.08 × EBV(milk yield) + 1 × EBV(fat yield) + 6 × EBV(protein 
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yield). The INET was used to investigate the effects of ES on the combination of milk, fat, 
and protein yields. First, the INET was calculated based on the results of the described model. 
No base adjustments in the index were made, i.e., average breeding values were not adjusted 
based on the average of the whole current population. Secondly, the economic weight was 
readjusted to real economic weights in a few environments. The correlated response of 
selection in a different environment is:  

 
CRY = rXY × (σY/σX) × RX (Falconer and Mackay, 1996), 
 
where CR is the correlated response in environment Y, rXY is the genetic correlation 

between environment X and Y, σX and σY are genetic standard deviations in environments X 
and Y, and RX is the response of selection in environment X. The adjustment factor of the 
weights of the INET is then equal to rXY*(σY/σX). If no reranking occurs or adjustment is for 
scaling effects only, i.e., rXY = 1, this reduces to (σY/σX). 

 
RESULTS 
Environmental parameters 

Mean and range for the environmental parameters is given in Table 3.1 based on 151,696 
heifers in 6780 herds. Herds differed considerably for the EP, for example, average protein 
ranged from 0.46 kg of protein per day to 1.21 kg of protein per day, average age at calving 
from 672 to 1028 d and herd size from 5 to 270 numbers of heifers calving. Correlations 
among all EP ranged from –0.43 to 0.45 but were generally weak. Strongest correlations were 
found for pairs of EP that were calculated from the same traits, such as EP defined on 
production traits and defined on the number of freshened heifers in a herd. As peak date of 
calving is one of the newly defined EP and had a considerable effect, the number of animals 
with peak date of calving in a certain month is shown for both years (Figure 3.1). This 
illustrates that most herds have their heifers calving in the autumn, although this is less clear 
for 1999 than for 1998. 

Significant reaction norms were found in 50 out of 70 combinations of traits and EP. The 
highest estimable and significant order of the polynomial is given for each combination of 
traits and EP in Table 3.2. Milk, fat, and protein yield each had significant reaction norms in 
combination with 12 EP. These three traits generally showed the same order of significant 
polynomials for a given EP. Fat and protein percentage had significant reaction norms in 
combination with 6 and 8 EP. 
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Table 3.1. Mean, standard deviation, coefficient of variation and range of all environmental 
parameters. 
Environmental parameter Mean SD CV (%) Minimum Maximum
Average protein (kg/d) 0.84 0.09 10.7 0.46 1.21 
Fat/protein 1.26 0.05 4.1 1.02 1.51 
SCS  2.55 0.99 38.8 -5.74 5.54 
Persistency  1.10 0.04 3.6 0.99 1.47 
Relative peak milk yield 1.23 0.05 3.7 1.09 1.57 
Age at calving (d) 797 39 4.9 672 1028 
Number of animals  22.73 16.22 71.3 5 270 
Change in number of animals1 3.95 9.35 237 -40 71 
BCS (thin-fat: scale 1-9) 4.75 0.66 13.8 2.18 7.50 
Change in fat percentage (%)2 -0.20 0.26 -125.6 -1.53 1.33 
Calving interval (d) 388 27.1 7.0 316 605 
Number of inseminations 1.33 0.25 19.0 1.00 3.50 
Peak calving date (d) 3 232 78 22.4 -108 434 
Distribution of calving dates 0.41 0.18 44.9 0.00 1.00 
1In both years the difference between 1998 and 1999 is used. 
2The difference in fat percentage on the test day closest to 77 DIM and the test day closest to 
14 DIM.  
3-108 means day 257 of the year before, 434 means day 69 of the next year. 
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Figure 3.1. Distribution of the numbers of animals with a peak date of calving in a certain 
month for both 1998 (□) and 1999 (■). 
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Table 3.2. The number of the highest estimable and significant (P < 0.05) polynomial order1 
of the combination of the environmental parameter in the row and the trait in the column. 
   Traits   
Environmental parameter Milk Fat Protein Fat % Protein %
Average protein 2 2 2 2 2 
Fat/protein 2 2 3 2 0 
SCS 2 2 2 0 1 
Persistency 2 2 2 0 0 
Relative peak milk yield 1 2 1 0 2 
Age at calving 1 1 1 1 2 
Number of animals  2 1 2 1 2 
Change number of animals 2 2 2 0 0 
BCS 2 2 2 1 1 
Change in fat percentage 0 0 0 0 1 
Calving interval 2 1 1 1 0 
Number of inseminations 1 2 1 0 0 
Peak calving date 3 2 1 1 0 
Distribution of calving dates 0 0 0 0 1 
1A zero means that the first order polynomial was not significant. 
 
Environmental sensitivity 

The EP for the environments at 25, 50 and 75% of the data based on the increasing 
environmental scale were used to calculate sire variances and heritabilities for these 
environments for milk, fat, and protein yield. The results for the sire variances calculated for 
305 days are shown in Table 3.3. The heritabilities were comparable across environments for 
all combinations of traits and EP. 

Environmental parameters were ranked on decreasing absolute change in sire variances 
between 25 and 75% on the scale of the EP, indicating decreasing G×E for milk, fat, and 
protein yield (Table 3.4). For the trait protein yield, average protein, BCS, calving interval, 
age at calving and persistency were the most important EP (Figure 3.2). Age at calving and 
calving interval showed the same pattern of sire variance, which decreased by a third across 
the environmental scale. The sire variance showed the most curvilinear relationship with 
average protein. For average protein and BCS, the sire variances doubled across the 
environmental scale. For the EP average BCS, the sire variances for milk, fat, and protein 
yield are shown in Figure 3.3. The environmental scale in Figure 3.3 resembles the interval of 
the mean EP ± two standard deviations. The sire variances are following a similar pattern 
across the environmental scale. 
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Table 3.3. Sire variances in kg2 per 305 d at 25, 50 and 75% on the scale of the 
environmental parameters, for all combinations of environmental parameters and the traits 
milk, fat, and protein yield that showed a significant environmental sensitivity. 
Environmental  Milk  Fat   Protein 
parameter 25% 50% 75% 25% 50% 75% 25% 50% 75%
Average protein 116,598 131,872 142,291 169.9 189.8 203.8 92.4 107.8 119.5
Fat/protein 118,942 118,923 118,039 168.7 170.5 171.8 96.9 95.9 94.3 
SCS 116,095 114,979 117,118 165.9 169.0 175.8 91.9 91.6 95.1 
Persistency 114,532 118,291 122,291 164.4 169.8 175.5 91.7 94.9 99.0 
Relative peak milk yield 118,439 117,388 116,625 172.9 172.6 170.9 94.2 94.3 95.2 
Age at calving 123,295 118,942 114,049 177.0 171.5 165.5 103.1 97.1 90.2 
Number of animals  117,202 116,905 116,942 165.6 166.8 169.0 93.3 93.4 93.8 
Change nr. of animals 119,379 117,063 114,644 166.6 167.8 169.8 96.1 93.8 91.7 
BCS 109,639 120,505 127,984 154.3 174.8 189.2 85.4 97.3 106.1
Calving interval 124,533 115,965 109,100 176.7 170.7 164.2 102.7 96.3 89.4 
Nr. of inseminations 115,072 116,653 119,537 166.7 168.6 172.3 92.0 93.8 97.0 
Peak calving date 112,881 118,264 120,046 154.7 164.6 172.1 89.5 94.0 96.2 

 
 
Table 3.4. Environmental parameters ranked per trait for decreasing absolute change of the 
sire variances between 25 and 75% on the environmental scale. 
  Traits  
Environmental parameter Milk Fat Protein 
Average protein 1 2 1 
Fat/protein 11 11 10 
SCS 10 7 9 
Persistency 5 6 5 
Relative peak milk yield 9 12 11 
Age at calving 4 5 4 
Number of animals  12 9 12 
Change number of animals 7 10 8 
BCS 2 1 2 
Calving interval 3 4 3 
Number of inseminations 8 8 7 
Peak calving date 6 3 6 
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Figure 3.2. Sire variance of protein yield in kg2 for average protein (protein) (●), BCS (■), 
calving interval (▲), age at calving (□), and persistency (○) given the deviation of the mean 
environmental parameter in standard deviations. 
 

The genetic correlation between a trait in the environment at 25% and the same trait at 
75% of the data on the environmental scale were calculated for the model with the highest 
significant order for the given combination of trait and EP. The combination of the trait 
protein and the EP fat over protein ratio gave a genetic correlation of 0.96 (SE = 0.009). All 
other correlations were 0.99 or higher (SE ranging from 0.000 to 0.004). The multitrait model 
(results not shown) gave comparable results to those of the random regression model. 
 
Economic index 

The overall economic value for milk, fat, and protein yield, called INET, was calculated on 
the scale of the EP average BCS for the 10 sires with the highest number of daughters in the 
data (Figure 3.4). These bulls are not representative for all bulls in the population, but they 
represent the breeding bulls that are widely used by dairy farmers. The INET increases with 
increasing average BCS and little reranking happened. The sire with the highest change of 
INET shows an INET of 65 Euros for herds with an average BCS of 3.5 and an INET of 120 
Euros for herds with an average BCS of 6.0.  

Based on the scaling effects of milk, fat, and protein yield across environments, the 
economic weights in the INET formula were adjusted. The results for the EP average BCS are 
shown in Table 3.5. The change of the economic weights with the change of the EP clearly 
illustrates the effect of scaling. 
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Figure 3.3. Sire variances for 305 d milk/1000 (●), fat (■), and protein yield (▲) as a 
function of the average BCS per herd-year. 
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Figure 3.4. The Dutch total economic value for milk, fat, and protein yield (INET) in Euros, 
of the 10 sires with the highest number of daughters in the data, as function of the average 
BCS per herd-year. 
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Table 3.5. Economic values (in Euros) for 305-d milk, fat, and protein yield in the INET 
formula, for different values of the environmental parameter average BCS. 

BCS Milk Fat Protein 
3.5 -0.068 0.82 4.90 
4.0 -0.074 0.90 5.36 
4.5 -0.078 0.97 5.79 
5.0 -0.082 1.03 6.19 
5.5 -0.084 1.07 6.49 
6.0 -0.087 1.10 6.74 

 
DISCUSSION 
Environmental parameters 

Herds were required to have at least four records for calving interval and at least five 
records for all other EP in order to be selected. This criterion led to a substantial loss of data. 
However, it ensured that small herds with very few informative animals were not taken into 
account. The data from such herds might be biased by the small numbers and from the fact 
that their genetic composition is more likely to be nonrandom. The edited data still contained 
herds that differed considerably for EP, indicating that data editing did not discard certain 
types of herds, apart from small ones. 

Twelve EP gave significant reaction norms for milk, fat, and protein yield. Results for six 
of these parameters for milk yield were reported in literature. Significant ES for the EP herd 
size, relative peak milk yield, persistency and age at first calving were found (Fikse et al., 
2003a), but no significant reaction norms for the EP fat over protein ratio and calving interval 
were found in that study. Average protein and BCS showed the highest ES based on our 
definition. Average protein is proven to be a useful EP before (Calus et al., 2002; Kolmodin et 
al., 2002). These results indicate that adjusting for heterogeneous variances in the genetic 
evaluation model might be possible by using EP. 

The situation in which the EP is calculated based on the evaluated trait, needs some 
attention. The fact that EP are calculated as phenotypic averages within a herd implies that the 
breeding values are partly based on the breeding values of sires of the cows producing in a 
herd. Kolmodin et al. (2002) suggested that this may not be a problem, but no extensive 
evidence was given. In the case of random use of sires across environments, this will probably 
not be a problem, as the average breeding value will be zero, but the precise implication of 
including the evaluated trait in the calculation of the EP is not clear yet.   

It is tempting to suggest that significant scaling effects shown for some of the EP, might be 
a result of the association with yield, because generally an increasing level of production also 
leads to increasing variance. In this study both BCS and calving interval showed changing 
sire variances with increasing values of the EP (Table 3.3), and peak date of calving and BCS 
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had correlations of 0.19 and -0.01 with average protein. However, herds with an average BCS 
of four and herds with an average BCS of six, both had an average 305-d protein production 
of 250 kg, indicating that only limited effect can be expected from the low correlation 
between protein yield and BCS. Still, it illustrates the problem of interpreting EP, and the 
need to consider multiple EP simultaneously. 

Body condition score gave considerable scaling effects. Body condition score reflects 
cumulated energy balance (Chilliard et al., 1991). It was reported (Cromie, 1999) that 
defining environments based on the amount of concentrate fed causes scaling effects that are 
comparable to scaling effects if environments are defined on average protein. These results 
support the suggestion of others (Calus et al., 2002; Kolmodin et al., 2002) that feed intake 
and feed supply are important parameters in relation to environmental sensitivity of genetic 
merit for milk yield. 

 
Environmental sensitivity 

Environmental sensitivity was defined by Falconer (1990) as the difference between 
phenotypic values of a genotype or a population in two environments, divided by the 
difference of the means of all individuals in both environments. In our study, ES is defined at 
a population level as the variance in reaction norms of genotypes. 

Genetic correlations of a trait across environments were high, indicating that reranking 
hardly occurred across environments, as was expected from literature (Calus et al., 2002; 
Kolmodin et al., 2002; Fikse et al., 2003a). However, sire variances showed considerable 
scaling effects for a number of the EP. At the same time, heritabilities were comparable across 
environments, indicating that scaling effects for environmental and sire variances were 
comparable. Heterogeneous heritabilities for comparable models were reported, but in these 
studies the heterogeneity of residual variances was not taken into account (Calus et al., 2002; 
Kolmodin et al., 2002). If heterogeneity of sire variances is accommodated in the model, but 
heterogeneity of residual variance is not, the presence of scaling effects is likely to cause 
heterogeneity of heritabilities. 

Herds with high protein, high persistency, young age at calving, high BCS, short calving 
intervals and calving peak in the fall or winter appeared to have the highest genetic variance 
for milk, fat, and protein yield. This means that herds that have one or more of these 
characteristics are more likely to benefit more from the use of bulls with high genetic merit 
and the use of expensive high genetic merit bulls is more easily justified in those herds. At the 
same time, selection of animals on those herds will be more effective when there is an 
insufficient correction for heterogeneous variances in the breeding value estimation. 
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Economic index 
The economic value of a trait was affected if the trait showed large scaling effects. If 

scaling effects are different among traits, the relative importance of these traits in an 
economic index can change (Namkoong, 1985). The economic index might give different 
selection responses depending on herd environment, and therefore reranking across 
environments might occur. This might reduce the total benefit of selection based on this 
economic index. In this study, the economic values of the traits in the index were only 
adjusted for scaling effects. Genetic correlations among environments of the adjusted 
economic values (Table 3.5) ranged from 0.93 to 0.99. Taking these into account would cause 
greater differences across environments. As shown here, reranking based on INET will be 
small, for a number of reasons. First, the scaling effects of milk, fat, and protein yield are 
comparable across environments. Second, the genetic correlations among these three traits are 
high and therefore the economic index is relatively insensitive for changes in economic values 
(Veerkamp et al., 1995). However, if other traits are included in the economic index, with 
scaling effects that are independent from those of production traits, the scaling effects could 
cause considerable reranking based on the economic index (Namkoong, 1985). This clearly 
indicates that scaling effects might be of importance in animal breeding programs.  

 
CONCLUSIONS 

Herds with high protein, high persistency, young age at calving, high BCS, short calving 
intervals, and calving peak in the fall or winter, have higher variances for the yield traits and 
are therefore expected to benefit more from the use of bulls with high genetic merit and 
selection of animals based on those herds will be more effective. Scaling effects for milk, fat, 
and protein yield were considerable, but comparable, indicating that no large differences of 
environmental sensitivities among these traits were found on a population level. Therefore, 
reranking based on economic index was limited. The absence of reranking based on a single 
trait does not necessarily mean that G×E is not important and scaling effects can easily be 
accounted for by adjusting the data. As more reproduction and health traits are included in 
total merit indices, further research is needed to explore the ES of these traits. 
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ABSTRACT 
Covariance functions have been proposed to predict breeding values and genetic 

(co)variances as a function of phenotypic within herd-year averages (environmental 
parameters) to include genotype by environment interaction. The objective of this paper was 
to investigate influence of definition of environmental parameters and non-random use of 
sires on expected breeding values and estimated genetic variances across environments. 
Breeding values were simulated as a linear function of simulated herd effects. The definition 
of environmental parameters hardly influenced results. In situations with random use of sires, 
estimated genetic correlations between the trait expressed in different environments were 
0.93, 0.93 and 0.97 while simulated at 0.89 and estimated genetic variances deviated up to 
30% from simulated values. Non random use of sires, poor genetic connectedness and small 
herd size had a large impact on estimated covariance functions, expected breeding values and 
calculated environmental parameters. Estimated genetic correlations between a trait expressed 
in different environments were biased upwards and breeding values were more biased when 
genetic connectedness became poorer and herd composition more diverse. The best possible 
solution at this stage is to use environmental parameters combining large numbers of animals 
per herd, while loosing some information on genotype by environment interaction in the data. 
 
INTRODUCTION 

The application of genetic covariance functions (CF), to model traits in dairy cattle by 
predicting breeding values as a function of an environmental parameter (EP), was suggested 
several times (Veerkamp and Goddard, 1998; Kolmodin et al., 2002; Calus and Veerkamp, 
2003; Fikse et al., 2003a). The change of an animal’s expected breeding value (EBV) across 
environments represents its environmental sensitivity. The CF includes differences in 
environmental sensitivity of genotypes for a trait, also known as the genotype by environment 
interaction (G × E), in the variance components, regardless whether it originates from scaling 
effects or re-ranking of animals across environments. This is in contrast to the usually applied 
methods for breeding value prediction that either (1) ignore environmental sensitivity or (2) 
ignore re-ranking by correcting only for heterogeneity of variances (Meuwissen et al., 1996). 
In international breeding value estimation, where G × E is included in the model by regarding 
records of animals in different countries as different traits (Schaeffer, 1994), both scaling and 
re-ranking are considered. However, this method has several limitations, for example the 
grouping of animals based on country borders while herd environments in small neighbouring 
countries may be much more similar than herd environments in different parts of a large 
country (Weigel and Rekaya, 2000). Also, a large number of countries implies a large number 
of traits, which increases the chance that the estimated genetic covariance matrix is not 
positive definite (Hill and Thompson, 1978), indicating that problems are likely to appear in 
the estimation of variance components for such multitrait models. Therefore, application of 
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CF is of interest to take G × E into account for example in international breeding value 
estimation, or to investigate importance of G × E. 

In applications in dairy cattle, an EP is usually calculated as the mean phenotypic 
performance of a trait in an environment (Veerkamp and Goddard, 1998; Kolmodin et al., 
2002; Calus and Veerkamp, 2003; Fikse et al., 2003a), which implies that both average 
genetic level within the herd and the animals own true breeding value (TBV) are included in 
the EP (Kolmodin et al., 2002; Calus and Veerkamp, 2003; Fikse et al., 2003a). Confounding 
between EP and TBV might affect EBV for example in herds with a non-average genetic 
composition or relatively small herds, since it might be difficult to disentangle genetic and 
environmental effects. Kolmodin et al. (2002) tried to partly solve this problem by calculating 
EP from more animals in the herd, rather than only from animals whose sires are being 
evaluated. Another problem with application of CF is that low numbers of daughters per sire 
might lead to problems in predicting breeding values. The number of records from daughters 
of a sire is the number of data points through which the curve representing the sires’ EBV is 
fitted and extrapolation of curves of sires with a low number of daughters to extreme 
environments might be required. Another typical animal breeding problem is that herds with 
better management tend to use different sires than herds with a low level of management. This 
might lead to poorer genetic connectedness between herd environments but also to a 
covariance between genotype and herd environment. Hence, it is not known whether CF can 
handle these typical animal breeding problems, such as limited genetic connectedness 
between herds or preferential treatment, that exist in both within country and international 
breeding value estimation. 

The objective of this paper was to investigate influence of definition of EP and levels of 
preferential sire use in herds on expected breeding values and estimated genetic variance 
across the range of EP in one population by stochastic simulation. Data structures were varied 
by changing the number of daughters per sire and average number of animals per herd for 
traits with low and high heritabilities, applying three levels of G × E interaction. 

 
MATERIALS AND METHODS 
Simulation 

Data were simulated to compare estimated variance components, calculated EP and 
expected breeding values from different models. A record was simulated including the 
animals breeding value, a herd effect and a residual. A breeding value (a) was simulated as 
the average of the parents breeding values plus a Mendelian sampling term (ms). Each 
component included an intercept (a0 and ms0) and a linear regression on the environment (a1 
and ms1):   
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The Mendelian Sampling term was simulated dependent on environment, to ensure that it 
explained half of the total genetic variance in each given environment. The breeding value in 
a specific environment with a simulated herd effect herd was calculated as: TBVherd = zherd’a, 

where , and and are respectively the level and slope of the animals 

breeding value. TBV
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herd had a normal distribution N(0, z’herdVar(a)zherd) for each value of 
herd. Application of reaction norm models as a function of herd average of the analysed trait 
showed that genetic variances increase with increasing herd level of the trait (Kolmodin et al., 
2002; Calus and Veerkamp, 2003). In order to simulate mainly increasing genetic variance 
across environments, 99% of simulated herd effects (herd) got positive simulated values by 
sampling from a normal distribution N(1, 1/9). The residual was simulated homogeneously 
across environments by sampling from a normal distribution N(0, σe

2), where  σe
2 = 1 - .  2

0aσ
2

0aσ and were set to 0.04 and 0.02 to reflect a low heritability trait (e.g., a fertility trait) 

and to 0.4 and 0.2 to reflect a high heritability trait (e.g., a milk production trait). The 
correlation between level and slope ( ) was set to –0.5, 0 or 0.5. The simulated genetic 

correlation between the trait expressed in different environments was calculated by dividing 
the genetic covariance between two environments, with simulated herd effects of herd

2
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As a result of the chosen variances, both the low and high heritability traits had simulated 
values for  of 0.74, 0.89 and 0.96 representing different amounts of re-ranking for 

being respectively –0.5, 0 or 0.5. Simulated heritabilities across environments for both 

the low and high heritability traits are shown in Figure 4.1. 
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Figure 4.1. Simulated heritabilities of the low and high heritability trait as function of the 
herd environment for situations with correlations between level and slope of –0.5, 0 and 0.5. 
 

Population structure 
Different values were considered for the input parameters (Table 4.1). All values in bold 

were used as default in situations where different values were considered for the other 
parameters. A simulated population contained 50,000 animals, 500 or 2000 sires and 1000 or 
5000 herds. The number of daughters per sire was 25 or 100. The average number of animals 
per herd was 10 or 50. Only one generation of animals was simulated and no selection was 
considered. 

 
Table 4.1. Considered input parameters for simulation. 
Input parameter Values 
Number of animals per herd 10 & 50(a)  
Number of daughters per sire 25 & 100 
Use of sires across herds random, selective and herd dependent 
Residual variance (σe

2) 1 - σlevel
2

Correlation between level and slope  -0.5, 0 & 0.5 
Variance for level (σlevel

2) 0.04 and 0.4 
Variance for slope (σslope

2)  0.02 and 0.2 
(a)Values in bold are default values. 
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Daughters of sires were either randomly or non-randomly assigned to herds following three 
different scenarios, based on differences in selection of sires and herds and resulting genetic 
connection between the groups of herds (Table 4.2). In the first scenario sires were assigned 
randomly across herds. In the second scenario (selective use of sires), sires were ranked based 
on simulated breeding value of level. Both sires and herds were split in five equally sized 
groups; sires based on ranking of their breeding values for level and herds at random. 
Daughters of sires from the first group were most likely assigned to herds of the first group; 
daughters of sires from the second group were most likely assigned to herds of the second 
group, etc. The chances of a sire from group i to have a daughter in group of herds j, are 
shown in Table 4.3. The third scenario involved non-random grouping of herds based on an 
increasing simulated herd effect combined with selective use of sires, to create a positive 
correlation between the herd effect and sires breeding values for level. This scenario is 
referred to as the herd dependent use of sires.  

 
Table 4.2. Different scenarios for use of sires, given the composition of groups of herds and 
sires and genetic connections between groups of herds. 
Use of sires Groups of herds Groups of sires Genetic connection 

between groups of herds 
Random No groups No groups Strong 
Selective Random TBV(a) of level Poor 
Herd dependent Simulated herd effect TBV of level Poor 
(a)True breeding value. 
 
Table 4.3. Chances that a daughter of a sire from one of the five groups of sires was assigned 
to a herd in one of the five groups of herds for selective use of sires. 

   Group of herds   
Group of sires 1 2 3 4 5 

1 0.8318 0.1381 0.0247 0.0045 0.0009 
2 0.1381 0.7080 0.1265 0.0229 0.0045 
3 0.0247 0.1265 0.6976 0.1265 0.0247 
4 0.0045 0.0229 0.1265 0.7080 0.1381 
5 0.0009 0.0045 0.0247 0.1381 0.8318 

 
Analysis of simulated data 

The general model used to analyse the simulated data, with a linear random regression on a 
calculated EP, was: 
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yjk =  μ + hrj +  + eij
i

ik p∑
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0
α jk

where: yjk is the performance of cow k; μ is the average for the trait across all animals; hrj 
is either a fixed effect of herd j or a fixed polynomial regression common to all evaluated 

animals on phenotypic average within a herd (see below);  is the additive genetic 

effect of animal k in herd j where α

ij
i

ik p∑
=
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0
α

ik is coefficient i of the random regression on a polynomial 
(pol(x,t) option in ASREML) (Gilmour et al., 2002a) of environment of animal k and pij is 
element i of a polynomial resembling the calculated EP of herd j; ejk is the residual effect of 
cow k in herd j. 

Polynomials were used to rescale EP in order to facilitate convergence of the model. 
Estimated genetic variance matrix S had variances of level and slope on the diagonal and 
covariances between those on the off-diagonals. The estimated genetic variance in an 
environment with EP equal to EP1 was calculated as ΦEP1SΦEP1’, where ΦEP1 is a vector with 
polynomial coefficients of EP1 on each row. The estimated genetic covariance between 
environments with EP equal to EP1 and EP2, respectively, is calculated as ΦEP1SΦEP2’. To 
compare results to simulated values, all estimates of genetic variance components were 
calculated back from the polynomial scale to the original scale per replicate and then averaged 
across replicates. ASREML (Gilmour et al., 2002a) was used for all analyses. For all 
situations considered, 50 replicates were simulated, which was sufficient to obtain reliable 
averages in initial test analyses. 

 
Modelling of EP 

Three models were considered for estimated herd effect (hrj) and calculated EP: 
Model 1. hrj is a fixed effect of the herd as normally used in breeding value estimation 

models (Henderson, 1973) and EP was calculated as the average phenotypic 
performance of the trait within a herd. 

Model 2. hrj is a fifth order fixed polynomial regression common to all evaluated animals 
(Schaeffer and Dekkers, 1994) on EP, which was calculated as the average 
phenotypic performance of the trait within a herd. 

Model 3. hrj was a fixed effect of herd and EP was iteratively estimated with the general 
model. In the first iteration EP was equal to the average phenotypic performance 
of the trait in a herd. In all consecutive iterations EP was equal to the value of the 
fixed herd effect, estimated in the previous iteration. The iteration was stopped if 
all EP were equal to the values of the corresponding estimated fixed herd effects, 
i.e. the difference between each newly estimated fixed herd effect (hrj) and EP 
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from the last iteration was smaller than the convergence criterion (a maximal 
absolute change of 0.001).  

Model 3 was expected to remove possible bias from EP, resulting from non-random use of 
sires or low numbers of animals per herd. Model 3 resembled the simulation model most, 
since the calculated EP was equal to the estimated fixed herd effect. In situations where all 
three models were applied, a single data set was simulated in each replicate and analysed with 
each of the three described models. 

 
Comparison of different methods to model EP 

The effects of description of an EP were investigated by comparing estimated variance 
components, expected breeding values and calculated EP to simulated values for the different 
scenarios across all 50 replicates. Estimated variance components were used to calculate 
estimated genetic correlations of the trait expressed in different environments. Also, the 
correlations between TBV and EBV of sires were calculated for different values of EP to 
indicate problems arising from the selective use of sires when applying CF. 

  
RESULTS 
Variance components, breeding values and EP 

Each replicate gave estimates of the residual variance, variances of level and slope and the 
covariance between level and slope. Averages and standard deviations of estimated variance 
components across the 50 replicates are shown in Table 4.4 for the low and the high 
heritability trait with of 0.0 and random use of sires. The trends were generally the same 

for the low and high heritability trait. Variance components of models 1, 2 and 3 were hardly 
different. Estimated variances of the slope were underestimated for situations with 10 animals 
per herd. 

10 ,aar

Genetic correlations between level and slope for all situations considered in Table 4.4 were 
estimated on average 0.2 higher than simulated (results not shown). In replicates where the 
estimated correlation between level and slope became higher than 1, the (co)variance matrix 
was forced to be positive definite by fixing the correlation at 0.999 (Gilmour et al., 2002a). 
For the low heritability trait, the variance of the slope became very small in a considerable 
number of replicates leading to fixation of the correlation between level and slope at 0.999 
and on average to a high estimate of the correlation between level and slope. For the high 
heritability trait, the overestimation of the correlation between level and slope mainly resulted 
from an overestimation of the covariance between level and slope. 

In each replicate, values were calculated for EP for all herds and breeding values of level 
and slope were predicted for all animals. Average correlations between simulated herd effects 
and calculated EP, and simulated and expected breeding values of level and slope of sires, are 
given in Table 4.5 for the high heritability trait, = 0.0 and random use of sires. Different 

10 ,aar

 42 



Covariance functions modeling reaction norms 

Table 4.4. Estimated variance components for the different models, given different data 
structures, random use of sires, a low or high heritability trait and a simulated correlation 
between level and slope of 0.0. 
Trait 

h2
Number of 
daughters 
per sire 

Number of 
animals 
per herd 

Model σe
2 (a) 

(0.96 / 
0.60) (b)

σlevel
2 (a)

(0.04 / 
0.40) (b)

σslope
2 (a)

(0.02 / 
0.20) (b)

σlevel,slope
 (a) 

(0.0) (b)
Covariance 
structures 

forced pd (c)

Low 25 50 1 0.9600.009 0.0580.026 0.0230.021 -0.0100.020 18 
 25 50 2 0.9420.009 0.0560.025 0.0220.021 -0.0080.021 17 
 25 50 3 0.9600.009 0.0540.027 0.0230.020 -0.0080.021 18 
 100 50 1 0.9610.009 0.0430.018 0.0180.010 -0.0010.012 18 
 100 50 2 0.9430.009 0.0410.017 0.0180.010 -0.0010.012 18 
 100 50 3 0.9610.009 0.0430.018 0.0180.010 -0.0010.012 18 
 100 10 1 0.9630.009 0.0450.012 0.0090.008 0.0020.008 16 
 100 10 2 0.8730.007 0.0350.009 0.0060.005 0.0040.006 26 
 100 10 3 0.9630.009 0.0440.012 0.0090.008 0.0030.008 18 

High 25 50 1 0.6010.019 0.4010.037 0.1260.036 0.0380.033 0 
 25 50 2 0.6000.018 0.3830.036 0.1240.035 0.0370.033 0 
 25 50 3 0.6010.019 0.4000.038 0.1310.036 0.0360.034 0 
 100 50 1 0.6080.028 0.4030.042 0.1340.026 0.0290.025 0 
 100 50 2 0.6060.026 0.3850.041 0.1310.025 0.0290.025 0 
 100 50 3 0.6080.028 0.4020.042 0.1400.026 0.0260.025 0 
 100 10 1 0.6090.025 0.4590.032 0.0460.013 0.0490.013 1 
 100 10 2 0.5930.021 0.3650.026 0.0370.011 0.0490.011 2 
 100 10 3 0.6080.025 0.4530.032 0.0510.015 0.0500.015 1 

(a) Standard deviations are given as a subscript. Standard error is equal to the standard 
deviation divided by 50 . 
(b) Simulated values for the low and high heritability trait, respectively. 
(c) Positive definite. 

 
definitions of EP hardly influenced correlations between simulated herd effects and calculated 
EP. The EP of models 1 and 2 were both calculated as phenotypic herd averages and therefore 
were the same. Generally, values of EP in model 3 converged after two or three iterations. 
The number of animals per herd had a larger effect on the correlations between simulated herd 
effects and calculated EP, than the number of daughters per sire. The number of daughters per 
sire had a larger effect on the correlations between simulated and expected breeding values of 
levels and slopes of sires, than the number of animals per herd. 
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Table 4.5. Correlations between simulated herd effects and calculated environmental 
parameters (herd environment) and between simulated and estimated values of level and 
slope of breeding values of sires, given a high heritability trait, random use of sires, different 
data structures and a simulated correlation between level and slope of 0.0. 

Number of 
daughters 
per sire 

Number of 
animals per 

herd 

Model Herd 
environment (a)

Level (a) Slope (a)

25 50 1 0.9050.005 0.7180.009 0.5460.016

25 50 2 (b) 0.7170.009 0.5460.016

25 50 3 0.9120.005 0.7180.009 0.5470.016

100 50 1 0.9050.006 0.7850.015 0.6730.028

100 50 2 (b) 0.7840.015 0.6730.028

100 50 3 0.9120.006 0.7850.015 0.6750.028

100 10 1 0.6890.008 0.7830.020 0.6240.030

100 10 2 (b) 0.7820.020 0.6230.031

100 10 3 0.6890.008 0.7830.020 0.6280.029
(a) Standard deviations are given as a subscript. 
(b) Environmental parameters used in models 1 and 2 are calculated in the same way, leading 
to the same correlation between simulated herd effects and calculated environmental 
parameters for models 1 and 2. 
 

Genetic variances across environments estimated by model 1 are shown in Figure 4.2 for 
the high heritability trait with equal to 0.0. Regardless of the data structure, the curve of 

the estimated genetic variance was flatter than the curve of the simulated genetic variance. 
The number of animals per herd had a strong influence on the estimates of the genetic 
variance, while the influence of the number of daughters per sire was limited. In the situation 
with 100 daughters per sire and 10 animals per herd, estimated genetic variance deviated up to 
30% from the simulated value. The simulated value of was 0.89 (given = 

0.0), while estimated values were 0.93, 0.93 and 0.97 (results not shown) for situations with 
25 daughters per sire and 50 animals per herd, 100 daughters per sire and 50 animals per herd 
and 100 daughters per sire and 10 animals per herd, respectively. 
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Figure 4.2. Estimated (and simulated) genetic variance of the high heritability trait as 
function of the herd environment, given random use of sires and a correlation between level 
and slope of 0.0, for situations with 25 daughters per sire (*) and 50 animals per herd (**), 
100 daughters per sire and 50 animals per herd and 100 daughters per sire and 10 animals 
per herd. 

 
Selective use of sires 

Averages and standard deviations of estimated variance components of model 1 for 
selective use of sires are shown in Table 4.6. Residual variance was strongly overestimated 
and the variances of level and slope were strongly underestimated in all situations. For 
situations with selective use of sires, model 3 gave results (not shown) that were comparable 
to model 1, indicating that model 3 was not better in distinguishing between environmental 
and genetic effects than model 1. 

Correlations between simulated herd effects and calculated EP and between simulated and 
expected breeding values of sires of level and slope are shown in Table 4.7. Correlations for 
herd environment and sires breeding values of level were lower than for situations with 
random use of sires, while correlations of the slopes of sires breeding values were slightly 
higher. Biased estimates of EP combined with underestimated variances of level and slope 
resulted in an underestimation of the genetic variance across environments in all situations 
with selective use of sires (results not shown). 
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Table 4.6. Estimated variance components of model 1 for the high heritability trait, given 
selective use of sires and different data structures. 
Correlation 
level and 

slope 

Number of 
daughters
per sire 

Number of 
animals 
per herd 

σe
2 (a)

(0.60)(b)
σlevel

2 (a)

(0.40) (b)
σslope

2 (a)

(0.20) (b)
σlevel,slope 

(a)(c)

 

Covariance 
structures 

forced 
positive 
definite 

-0.5 25 50 0.7140.010 0.1470.029 0.0990.025 -0.0340.025 0 
-0.5 100 50 0.6980.015 0.1520.027 0.0880.022 -0.0200.020 0 
-0.5 100 10 0.6960.014 0.1570.020 0.0410.009 0.0040.010 0 

0 25 50 0.8460.016 0.1470.024 0.0780.021 0.0320.018 2 
0 100 50 0.7750.028 0.2110.038 0.0800.018 0.0450.016 2 
0 100 10 0.7850.029 0.2390.038 0.0380.012 0.0470.012 3 

0.5 25 50 1.0370.017 0.1390.027 0.0640.021 0.0610.020 20 
0.5 100 50 0.8750.040 0.2990.064 0.0580.015 0.0870.017 11 
0.5 100 10 0.8850.042 0.3480.055 0.0330.009 0.0690.010 9 

(a) Standard deviations are given as a subscript. 
(b) Simulated values. 
(c) Simulated values of covariance between level and slope were –0.141, 0.0 and 0.141 for 
situations with correlations between level and slope of –0.5, 0.0 and 0.5, respectively. 
 
Table 4.7. Correlations between simulated herd effects and calculated environmental 
parameters (herd environment) and between simulated and estimated values of level and 
slope of breeding values of sires using model 1, given a high heritability trait, selective use of 
sires and different data structures. 

Correlation  
level and slope 

Number of 
daughters 
per sire 

Number of 
animals per 

herd 

Herd 
environment (a)

Level(a) Slope(a)

-0.5 25 50 0.8310.010 0.2770.016 0.4660.023

-0.5 100 50 0.8270.012 0.5000.042 0.5110.030

-0.5 100 10 0.6720.009 0.4950.028 0.4820.030

0 25 50 0.7280.013 0.3920.014 0.6610.015

0 100 50 0.7390.018 0.6620.033 0.7070.031

0 100 10 0.5950.014 0.6460.037 0.6850.028

0.5 25 50 0.6400.020 0.4900.017 0.7090.013

0.5 100 50 0.6340.022 0.8000.019 0.8400.018

0.5 100 10 0.5250.013 0.7880.026 0.8310.018
(a) Standard deviations are given as a subscript. 
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Herd dependent use of sires, the situation with a confounding of sires breeding values of 
level and simulated herd effect, was only applied to the situation with 100 daughters per sire 
and 50 animals per herd with a correlation between level and slope of 0.0. The results (not 
shown) were comparable to the results for the selective use of sires. 

 
Table 4.8. Simulated and estimated average breeding values(a) for groups of sires 1, 3 and 5 
in case of random, weak, strong or herd dependent selective use of sires given the high 
heritability trait, 100 daughters per sire and 50 animals per herd with a correlation between 
level and slope of 0.0. 
   Average breeding values Correlations 
 Group EP EP 
Use of sires of sires 0.57 1 1.43 0.57 1 1.43 
Simulated(b) 1 -0.8860.047 -0.8880.058 -0.8900.073    

 3 -0.0020.042 -0.0030.056 -0.0040.072    

 5 0.8780.051 0.8760.065 0.8740.082    

Random 1 -0.7560.047 -0.8300.049 -0.9050.054 0.8900.020 0.9280.012 0.9200.014

 3 -0.0020.037 -0.0030.043 -0.0030.050 0.8850.020 0.9100.015 0.9110.016

 5 0.7430.048 0.8160.052 0.8900.059 0.8990.020 0.9340.013 0.9270.015

Selective 1 -0.4970.051 -0.5590.051 -0.6210.053 0.9020.016 0.9350.013 0.9270.016

 3 0.0160.033 0.0130.038 0.0100.043 0.8950.020 0.9090.018 0.9100.018

 5 0.4630.059 0.5310.063 0.5990.069 0.8980.019 0.9310.013 0.9240.015

Herd 1 -0.5070.063 -0.5600.064 -0.6140.067 0.8900.023 0.8650.025 0.8240.030

dependent 3 0.0240.046 0.0180.052 0.0110.059 0.9010.017 0.9120.014 0.9110.015

 5 0.4420.060 0.5100.064 0.5780.070 0.8620.026 0.9390.012 0.9510.009
(a) Breeding values were calculated as the sum of level and EP×slope. Standard deviations are 
given as subscripts.  
(b) Simulated values were averaged across the three situations. 

 
Expected breeding values across environments 

For the situation with 100 daughters per sire, 50 animals per herd, a correlation between 
level and slope of 0.0 and all three scenarios of selective use of sires, simulated and expected 
breeding values were calculated for three values of EP. Chosen values were median values of 
EP of groups of herds 1, 3 and 5 in the case of herd dependent use of sires. Averages and 
standard deviations of EBV across replicates are shown in Table 4.8. The group of sires 1 
represented the 100 sires with the lowest simulated breeding values for level, the group of 
sires 3 represented the 100 sires with simulated breeding values for level around average and 
the group of sires 5 represented the 100 sires with the highest simulated breeding values for 
level. Averages of simulated breeding values of groups of sires in Table 4.8 were independent 
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from EP, due to the correlation between level and slope of 0.0. For groups of sires 1 and 5, 
EBVEP=0.57 and EBVEP=1.43 were on average closer to zero than simulated. As the data became 
more complex, average EBV of groups of sires 1 and 5 were closer to zero. 

Correlations were calculated between simulated and expected breeding values for each EP 
level (Table 4.8). Correlations were slightly higher for EP = 1.00 and EP = 1.43. Correlations 
were the same for random and selective use of sires. For herd dependent use of sires, 
correlations tended to be the highest in the group of herds where sires had most daughters. 
 
DISCUSSION 
Modelling of EP 

In this study we started with an idealised situation where the simulation model and the 
model used to analyse the data, were as similar as possible. One of the major differences 
between the simulation and estimation models was that EP in model 1 and 2 were calculated 
as phenotypic averages since they are generally modelled in a reaction norm model 
(Veerkamp and Goddard, 1998; Kolmodin et al., 2002; Calus and Veerkamp, 2003; Fikse et 
al., 2003a). The proposed alternative model (model 3) was expected to correct for genetic 
influences on EP by iteratively estimating the fixed herd effect in the evaluation model and 
use this as EP in the next iteration. Model 3 was tested because we expected that this model 
had closer resemblance with the simulated (and probably the true) model. All models used a 
linear random regression on EP to model genetic effects. Model 1 performed slightly better 
than model 2, which likely results from the fact that model 1 exactly fitted the simulation 
model and used more degrees of freedom to estimate herd effects. The results of model 3 were 
not different from results of model 1 even for the situation with selective use of sires and 
model 3 used about twice as much calculation time as model 1. Failure of the alternative 
model to perform better than model 1 could mean that either simply using herd means as EP 
is not the real underlying problem for estimation when using data under the scenario of 
selective use of sires, or that the proposed alternative model did not properly account for 
possible genetic bias in EP. More theoretical models, that for instance include simulated 
environmental effects as EP, could be used to explore the nature of this problem further. 
However based on the results of this study which was restricted to practical applicable 
models, there is no reason to use model 3 instead of model 1. 

Model convergence was one of the major problems experienced with all three models. 
Although the random regression model is the most common applied covariance function in 
reaction norm models, Jaffrezic and Pletcher (2000) showed in a few examples that a 
character process model was more successful in modelling longitudinal data than random 
regression. The application of a character process model to model reaction norms appears 
straightforward, and might provide a solution to get better convergence of the model. 
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Estimation of G × E 
For the trait with a low heritability it was more difficult to estimate the genetic CF than for 

the trait with a high heritability. The main problem was that for the low heritability trait in 
almost 40% of the replicates the covariance structure was forced to be positive definite. Also, 
the number of animals per herd was important to estimate genetic variance and calculate EP 
correctly, which illustrates that environmental sensitivity is better estimated in a population 
with larger herds and likely to be underestimated for a population with small herds. However, 
in a practical situation small herds may either be too large in number to simply disregard or 
represent certain management styles that are hardly found in larger herds. This problem might 
be partly solved by calculating EP based on for instance 50 animals that calved consecutively 
in one herd, rather than based on herd-year. Changing the data structure from the default 
situation by reducing the number of animals per herd to 10 or by introducing the non-random 
use of sires, led to correlations between simulated herd effects and calculated EP of 0.69 and 
0.74, respectively (Tables 4.5 and 4.7). Although these changes in data structure are arbitrary, 
it indicates that both relatively low numbers of animals per herd and non random use of sires 
leads to biased EP. 

One of the effects observed was that the estimated genetic correlation between the high 
heritability trait expressed in different environments was biased upwards, i.e. estimates were 
0.93, 0.93 and 0.97 in situations with a random use of sires where the simulated value was 
0.89. This resulted from the overestimated covariance between level and slope and the 
underestimation of variance of slope. Underestimation of variance of slope in situations with 
random use of sires also resulted in deviations of up to 30% of estimated genetic variance 
from simulated genetic variance. Variances of slope were more underestimated if the 
population structure was less informative, which indicates that high estimates of the genetic 
correlation between a trait expressed in different environments calculated with CF might 
result from the quality of the data rather than from the absence of re-ranking based on TBV. 
In the extreme situation where the variance of slope is estimated to be zero, the estimated 
genetic correlation between a trait expressed in different environments will be 1, since it can 
easily be derived from equation (1). 

 
Prediction of breeding values across environments 

One of the objectives was to investigate the influence of sires breeding values on EP. In 
situations with selective and herd dependent use of sires, sires were grouped based on their 
TBV for level, which is equal to TBVherd=0. Grouping of sires based on TBV for any other 
simulated herd effect would have caused only small changes in the composition of groups of 
sires, since the simulated genetic correlation between the trait expressed in different 
environments was relatively high. The model clearly had more problems in estimating effects 
correctly in the case of selective use of sires. Selective use of sires not only implies a possible 
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bias in EP but also poorer genetic connections between groups of herds, which can lead to 
more difficulties for the model to disentangle genetic and environmental effects (Foulley et 
al., 1990). From this study, it is not clear whether problems in the estimation of variance 
components in the case of non random use of sires are due to genetic influence on EP, poorer 
genetic connections between groups of herds or failure to disentangle genetic and 
environmental effects. Random herd effects could be applied to avoid herd effects from 
absorbing part of the genetic levels within herds. Initial analyses with model 3 using random 
herd effects showed however that variances of level and slope were severely overestimated 
and herd variances were severely underestimated. 

Groups of sires shown in Table 4.8 were selected based on their TBV of level. This implies 
that selection was based on data that is not included in the genetic evaluation and therefore 
EBV are expected to be biased (Henderson, 1973) and correlations between TBV and EBV 
are expected to be different for different groups of sires. However, groups of sires in Table 
4.8 were the same for the different scenarios. Therefore, differences between scenarios are 
due to differences in genetic compositions of herds and in case of herd dependent use of sires 
also due to the fact that sires had most of their daughters in a limited range of environments. 
Correlations between simulated and expected breeding values indicated that breeding values 
of sires were predicted accurately across environments with the different models. Absolute 
values of EBV, however, were closer to zero if the data became less informative. This is not a 
problem if selection is based on a single trait or if scaling effects are not important. If 
selection is, however, based on an index based on more than one trait with different scaling 
effects, scaling effects can cause re-ranking across environments based on the composite 
index (Namkoong, 1985). In that case, non-random use of sires could result in misleading 
indexes, since scaling effects of traits are likely to be underestimated. 

The EBV of cows were not compared to their TBV. In the simulated data, cows only had 
one record and therefore only one point through which their EBV was fitted. Since the EBV 
of cows are based on far less data than the EBV of sires, the EBV of cows are likely to be 
more biased than the EBV of sires, especially if breeding values are extrapolated to extreme 
environments. 

Problems in estimating variance components and lower correlations between TBV and 
EBV under the presence of selective use of sires seem to contradict suggestions (Kolmodin et 
al., 2002) that CF could be useful in overcoming problems with genetic connectedness in 
international breeding value estimation. However, only one population with one generation of 
sires was simulated and subsets of sires were not equally distributed, while an international 
situation ideally would be simulated by different related base populations reflecting different 
countries. Additional genetic relations between animals would improve genetic connectedness 
across environments and therefore reduce bias in EBV. Since poor genetic connectedness and 
confounding between herd and genetic effects are features of the data, bias in estimated 
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variance components might be reduced by selecting data containing genetically well-
connected herds with a non-extreme genetic composition and different levels of management. 

  
CONCLUSION 

Implications of using phenotypic averages as EP in CF were expected to lead to problems 
of estimation of variance components. Non average genetic composition of herds and poor 
genetic connectedness had a large impact on estimated variance components in CF and gave 
poorer correlations between simulated and predicted sire effects and between simulated herd 
effects and calculated EP. Estimation problems were not overcome by a new model that 
aimed at separating environmental and genetic effects in the EP. The effect of estimation 
problems was that genetic correlations between the trait expressed in different environments 
were biased upwards and that EBV were biased if genetic connectedness became poorer and 
herd composition more diverse. The best possible solution at this stage is to use EP combining 
a large number of animals per herd. 
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ABSTRACT 
The objective of this paper was to investigate the association of descriptors of herd 

environment with phenotypic levels and breeding values of fertility and health traits. Analyses 
were performed for 82,080 first-lactation heifers and 173,787 multiparous cows. Fourteen 
environmental parameters were defined, that described herd environment, such as average 
protein production, average somatic cell score (SCS), average calving interval, and average 
body condition score (BCS). Herds with lower average SCS had, in general, more desirable 
values for almost all analyzed traits (i.e., days to first service was 7 d shorter), as did herds 
with lower average calving interval (i.e., 2.8% lower incidence of predicted mastitis). Herds 
with higher average protein production had slightly poorer fertility but more desirable values 
for all other analyzed traits (i.e., 5.1% less predicted mastitis, 0.4 lower SCS and 0.6 higher 
BCS). Variance components and breeding values of sires were estimated by applying a 
random regression on the environmental parameters. In general, genetic variances varied only 
slightly across environments. However, based on data exclusively from heifers, the genetic 
variance for number of inseminations was 4.1 times higher in herds with a higher number of 
inseminations, 1.9 times higher for survival in herds with higher fat-to-protein ratio, and 1.7 
times higher for predicted mastitis in herds with higher number of inseminations. Based on 
the heifer data, the lowest estimated genetic correlation across environments was 0.76 (SE 
0.21) for first-service conception between herds with differing average BCS. The minimum 
based on the cow data was 0.65 (SE 0.10) for survival between herds with differing average 
ages at calving. The relative importance of some fertility traits compared with yield traits 
doubled across environments. Possible reranking of individual animals within a population 
and the changes in genetic variance across environments suggests that environment-specific 
breeding values should be estimated for use in customized selection indices. 

 
INTRODUCTION 

Possible options to compensate for the increasing fertility and health risks associated with 
selection for increased milk production (Emanuelson, 1988; Pryce et al., 1998; Rauw et al., 
1998) are: 1) improvement of management such that the poorer genetic merit is alleviated, or 
2) inclusion of health and fertility in genetic selection with sufficient weight to ensure there is 
no reduction of the genetic level for health and fertility (Philipsson et al., 1994). The extent to 
which these 2 options interact is often labeled as genotype-by-environment interaction, 
environmental sensitivity of genetic variance (ES) or genetic variance in reaction norms. If 
the effects of genotype-by-environment interactions are important relative to the average 
effects of genotype and environment, ignoring management improvement might hinder 
expression of the genetic improvement for health in poor environments. Alternatively, it could 
mean that observed genetic differences between animals are larger in poor health 
environments, and hence, there might be more benefit of genetic selection in these 
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environments. Therefore, in the presence of ES, management and genetic improvement of 
health and fertility might support or counteract each other. Other consequences for genetic 
selection are that the relative importance of traits might change across environments, and thus 
the weights in total merit indexes (Namkoong, 1985), and that available EBV (theoretically 
most applicable to an average environment) might not be sufficient to select animals for 
specific herd environments. The consequences of ES for improvements in health and fertility 
due to reasons other than genetic selection might be that the expected response depends on the 
genetic background of the animals. 

An interesting implication of ES is that selection on high phenotypic performance 
combined with a continually improving herd environment is expected to increase ES of the 
animals, as indicated in a simulation study (Kolmodin et al., 2003). Thus, in the long-term, 
improving management to alleviate the lower genetic level for health and fertility might result 
in a continuously smaller range of environments where animals maintain their health and 
fertility. This means that the expected increase in ES of the animals increases the importance 
of tuning genotype and environment. In the long-term, including existing ES in multitrait 
genetic selection might be necessary to enable specific selection of animals for a wide range 
of herd environments. 

Studies about ES of health and fertility traits used different methods, such as regression of 
health traits on pedigree indexes for production (Pryce et al., 1999), including a sire-by-herd 
interaction term in the statistical model for SCS (Samore et al., 2001), or estimating a genetic 
correlation for SCC between environments with a low or high within-herd standard deviation 
for milk yield (Castillo-Juarez et al., 2000; Raffrenato et al., 2003) or low or high herd-year 
average SCS (Banos and Shook, 1990). Those studies did not report significant ES. Reaction 
norm models including a genetic covariance function describing (co)variances over the range 
of environments (Kirkpatrick and Heckman, 1989) were applied for fertility traits in only a 
few studies, where heterogeneous heritabilities across fertility environments were reported 
(Distl, 2001; Kolmodin et al., 2002). Covariance functions enable us to include both 
heterogeneous genetic variances and genetic correlations as function of a continuous measure 
of the environment, avoiding arbitrarily grouping of environments, and might therefore 
provide a better method to model ES. 

The objective of this paper was to investigate the association of several descriptors of herd 
environment with 1) phenotypic levels of fertility and health, and 2) ES of breeding values for 
fertility and health obtained using a reaction norm model. 

 
MATERIALS AND METHODS 
Test day and insemination data 

Records for Insemination and yields of milk, fat, and protein yield and SCC were available 
for 147,835 first lactation heifers and 295,507 multiparous cows calving between July 1997 
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and June 1999. All animals were at least 75% Holstein-Friesian. Years were defined from 
July 1 through June 30, to ensure that the months with most calvings fell in the middle of the 
defined year. First-lactation heifers were selected if they calved on an age between 640 and 
1095 d. Editing steps for environmental parameters (see below) reduced the number of heifers 
and cows to 116,727 and 230,887, respectively. For heifers and cows separately, all 
(grand)daughters of (grand)sires with less than 20 (grand)daughters in the edited data were 
deleted, reducing the number of heifers to 87,375 and the number of cows to 192,615. Herd-
year-season subgroups were formed based on the method of Crump et al. (1997) with a 
minimum of 5 animals per subclass, a minimum length of 30 d, and a maximum length of 365 
d. Records of animals that could not be assigned to a group with at least 5 records or that were 
assigned to a group with fewer than 3 informative records for any of the traits were deleted. 
Additionally, (maternal grand)sires with progeny in fewer than 3 herd-year-season classes, 
and herd-year-season classes with progeny of less than 3 (maternal grand)sires were deleted. 
The editing steps based on herd-year-season subclasses and offspring per sire were repeated 
until the final data set met all criteria, reducing the number of records of heifers to 82,080 and 
the number of records of cows to 173,787. For the different traits, between 61,002 (calving 
interval) and 79,068 (SCS and predicted mastitis) records were informative for the heifer data, 
and between 118,818 (calving interval) and 167,031 (SCS and predicted mastitis) records 
were informative for the cow data. 

 
BCS data 

Body condition scores were available for 76,811 heifers, of which 12,823 calved between 
July 7, 1997 and June 30, 1998, and 63,988 calved between July 1, 1998 and June 30, 1999. 
The BCS was scored by classifiers during herd classification. Records of animals scored after 
305 DIM were deleted, reducing the number to 74,554. Herd-year-season subclasses for BCS 
were defined as herd-visits of the classifiers. Animals in herd-year-season subclasses with 
fewer than 5 animals were deleted. These editing steps, combined with the criteria for 
environmental parameters (see below) reduced the number of records for BCS to 68,418 in 
6184 herd-years. Heifers that calved in those herd-years and had a record for at least one of 
the other traits but no BCS records were included in the data with a missing value for BCS. 
This increased the number of records to 85,631. Herd-year-season subgroups for all other 
traits were formed based on the method of Crump et al. (1997) with a minimum of 5 animals 
per subclass, a minimum length of 30 d and a maximum length of 365 d. (Grand)daughters of 
(grand)sires with less than 10 (grand)daughters in the data were deleted. In total, 69,906 
records were included for the analyses where BCS was included as trait or environmental 
parameter. For the different traits, between 50,653 (calving interval) and 66,923 (SCS and 
predicted mastitis) records were informative. 
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Pedigree 
Initially all sires, paternal grand dams and maternal grandsires of animals with records in 

the data were included in the pedigree file. All male predecessors of those animals, available 
from the pedigree data, were included. Identification of dams of bulls was included if a dam 
had 2 or more sons; otherwise, dams were included as base parents. For the heifers, in total 
1754 (2361 for BCS) animals were included in the relationship matrix. For the cows, 3442 
animals were included in the relationship matrix. 

 
Traits 

Fertility traits. Seven fertility traits were considered: days to first service (DFS), days to 
last service (DLS), days first to last service (DFLS), calving interval (CIV), number of 
inseminations per service period (NINS), first service conception (FSC), and non-return at 56 
d after first insemination (NR56). The DFS was calculated as interval from calving to first 
service, DLS as interval from calving to last service, and DFLS as interval from first to last 
service. The CIV was the interval between 2 consecutive calvings. The NINS was the number 
of inseminations per service period. The FSC was 1 if the cow had only one insemination and 
a known next calving date, and 0 otherwise. The NR56 was 1 if within 56 d after the first 
insemination no second insemination was recorded and 0 otherwise. 

Records for any of the traits were missing if no information was available to calculate the 
value for the trait. Records for DFS were missing if DFS was smaller than 20 or greater than 
300. Records for DLS were missing if DLS was smaller than 20 or greater than 500. Records 
for DFLS were missing if DFLS was greater than 400. The NINS was missing if NINS was 0 
or greater than 10. Records for CIV were missing for animals without a known next calving 
date, or if CIV was smaller than 300 or greater than 800. These criteria were applied to 
exclude extremely long lactation records, records with extreme short gestations due to 
abortions, or records with errors.  

Survival. Survival was defined following Pool et al. (2003), being 1 for cows with known 
next calving date. Survival was coded as 0 for cows without a known next calving date and 
with the last test-day record occurring at least 140 d before the last recorded test day for the 
respective herd, as it was unlikely that a cow was still on the farm when no test-day records 
have been recorded in a period of 140 d. Survival of animals was missing in all other 
situations. 

SCS and predicted mastitis. Somatic cell score was defined as the average SCS across test 
days. A binary trait, called predicted mastitis, was used as indicator trait for mastitis following 
De Haas et al (2004), being 1 if SCC on at least one test day during the lactation was greater 
than 400,000 cells/mL and 0 otherwise. 

BCS. Body condition score was measured on a scale from 1 to 9 [thin to fat; based on 
Lowman et al. (1976)]. An average BCS curve across test days was fitted with a smoothing 
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spline (Gilmour et al., 2002b) based on all available records. The deviance from the average 
BCS curve across DIM was used for the analyses.  

 
Environmental parameters 

Fourteen different environmental parameters (EP), describing herd management, were 
calculated as an average from all animals that had information on the characteristic and calved 
in the same herd-year. The EP were herd-year averages of protein production, fat-to-protein 
ratio, SCS, persistency, relative peak milk yield, age at calving, number of animals, change in 
the number of animals between consecutive herd-years, change in fat percentage between 14 
and 77 DIM, calving interval, number of inseminations, peak calving date, distribution of 
calving dates, and BCS. For each individual EP, all available information was included and at 
least 25 animals in a herd-year needed to be informative for the characteristic. For average 
BCS and CIV, this criterion was, respectively, 5 and 10 animals, to prevent loss of great 
numbers of animals. For the same reason, no restriction was put on the EP average CIV in the 
BCS data. The EP were chosen because they represented management and herd environment, 
being, for instance, indicators for herd-year levels of production, energy balance, and fertility. 
More detailed reasoning behind the selection of applied EP, grouping of EP, and full 
description of the calculation of these EP is given by Calus and Veerkamp (2003). 

 
Estimation of mean phenotypic performance across environments 

To estimate the relation between the mean phenotypic performance of the animals for the 
considered traits and the values of the EP, a model was used that corrected for possible 
systematic effects influencing the mean phenotypic performance. The model included fixed 
linear and quadratic regressions for age at calving and breed, and the relationship between the 
mean phenotypic performance and the EP was modeled with a 10th-order polynomial 
regression on EP. The same fixed effects were included in the model to estimate ES (for 
details see below). The relative change in mean phenotypic performance (∆mpp) across 
environments was calculated as ∆mpp = {(mpp90th – mpp10th) / mpp50th} × 100%, where 
mpp10th, mpp50th, and mpp90th are mean phenotypic performances at 10th, 50th, and 90th 
percentiles of the data ordered on increasing values of the analyzed EP. 

 
Estimation of variance components and environmental sensitivity 

Variance components were estimated separately for first-lactation heifers and multiparous 
cows with a sire-maternal grandsire model. Fixed effects were included in the model for 
mean, parity (only for the multiparous cows), and herd-year-season subclass. Fixed 
regressions were included to account for age at calving and for breed of the cow. A 10th-order 
fixed polynomial regression on EP was included, to account for the average effect across EP. 
The ES was modeled by applying a random regression for each (maternal grand)sire, 
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representing its EBV, on values of an EP for the herd-years in which its (grand)daughters 
were producing. The incidence matrix of maternal grandsire effects was laid over the matrix 
of sire effects, i.e., if a bull had both entries in the data as sire and maternal grandsire, the 
breeding value as maternal grandsire was equal to half the breeding value as a sire. A random 
permanent environmental effect was included for the multiparous cows. The residual variance 
was estimated separately for 5 equally sized groups, based on increasing EP, to include 
heterogeneous residual variances in the model. 

The applied model was: 

Yklmno =  μ + FIXED EFFECTS +  +  +  + peik
i

i P∑
=

10

0
β jk

j
jl P

s
∑
=0
α jk

j
jm P

s
∑
=0

*2/1 α o + Eklmno 

where Yklmno is the performance of cow o; μ is the average performance over all animals; 
FIXED EFFECTS included herd-year-season subclasses, parity (only for the multiparous 
cows: 2,3,4+), and second order polynomial regressions on age at calving and percentage of 
Holstein Friesian, Dutch Friesian and Meuse-Rhine-Yssel genes; βi is coefficient i of a fixed 
regression on element i of the polynomials of all environments; Pik is element i of the 10th-
order polynomial of an environmental parameter of environment k; αjl is coefficient j of the 
random regression on the orthogonal polynomials of all environmental parameters of the 
daughters of sire l; Pjk is element j of the orthogonal polynomial resembling an environmental 
parameter of environment k; αjm is coefficient j of the random regression on the orthogonal 
polynomials of all environments of the maternal granddaughters of sire m; s is the largest 
significant estimable coefficient j of the random regression for sire effects; peo is a permanent 
environmental effect of cow o (only for the multiparous cows for all traits except survival); 
and Eklmno is the residual effect of cow o in environment k within group of environments n (n 
= 1, 2, ..., 5). 

Definition of the genetic model resulted in estimated sire variances as a function of the 
values of the EP. Heritabilities were calculated as 4 times the sire variance divided by the sum 
of the residual variance (and the permanent environmental variance for the multiparous cows) 
and 1.25 times the sire variance. The factor 1.25 is explained by the fact that both effects for 
sires (1 times the sire variance) and maternal grand sires (0.25 times the sire variance) explain 
part of the genetic variance. All analyses were performed with ASREML (Gilmour et al., 
2002b). Residual covariances between groups of environments were assumed to be zero. All 
combinations of EP and traits were tested for appearance of ES, using the likelihood ratio test 
to identify the highest estimable significant order for the sire effect (P < 0.05). The test 
statistic was twice the difference in log likelihood between models with order n and n-1, 
respectively. 
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RESULTS 
Environmental parameters 

The mean, standard deviation, and the range for the EP used in the analysis of the heifer 
data are given in Table 5.1. The values for the EP used for analysis of the higher parity cows 
were similar. Environmental parameters had correlations between –0.40 and 0.27 among each 
other, except for a correlation of 0.84 between average persistency and relative peak milk 
yield. This result indicated that herds with a high persistency (as defined here) also tended to 
have a higher relative peak milk yield. Pairs of EP with highest correlations were calculated 
from the same traits.  

 
Mean phenotypic performance across environments 

The relationship between the value of the EP and the mean phenotypic performance of 
traits is given by the estimated fixed polynomial regression on EP. The results are applicable 
for the “average” heifer in the data, being 0.9% Meuse-Rhine-Yssel, 4.7% Dutch Friesian and 
93.6% Holstein-Friesian, calving at an age of 791 d. The relative change of the trait means 
from the 10th to the 90th percentile of the data (Table 5.2), for DFS, DLS, and DFLS were 
8.3, 10.4, and 13.5% (7, 13, and 5 d) respectively, with increasing average SCS. The NINS 
 
Table 5.1. Mean, standard deviation, range, and values at 10th and 90th percentiles of the 
environmental parameters for the heifer data. 
Environmental parameter Mean SD 10th 90th Minimum Maximum
Protein (kg/305 d) 289 27.0 256 323 167 408 
Fat / protein 1.27 0.04 1.21 1.32 1.12 1.48 
Somatic cell score 2.63 0.48 2.02 3.22 0.94 6.06 
Persistency 1.54 0.12 1.40 1.69 1.15 2.35 
Relative peak milk yield 1.40 0.04 1.35 1.46 1.27 1.73 
Age at calving (d) 1370 134 1229 1580 947 1989 
Number of animals  53.3 22.4 32 80 25 246 
Change number of animals 3.2 9.0 -7 13 -49 57 
Change in fat percentage (%)1 -0.43 0.20 -0.68 -0.17 -1.35 0.19 
Calving interval (d) 392 16.9 373 412 345 527 
Number of inseminations 2.07 0.35 1.68 2.52 1.18 4.28 
Peak calving date (d)2 149 56 81 205 -10 414 
Distribution of calving dates 0.35 0.10 0.24 0.48 0.00 0.93 
Body condition score (scale 1-9) 4.35 0.70 3.46 5.22 1.46 7.44 
1The average difference in fat percentage on the test-days closest to 77 and 14 DIM. 
2Years were defined from July 1st until of June 30th. -10 means day 355 of the year before, 
414 means day 49 of the next year. 
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increased 4.7 % (0.09 inseminations) with increasing average protein production and number 
of animals, and decreased 4.1% (0.09 inseminations) with increasing peak calving date. The 
FSC and NR56 decreased respectively 4.0 and 6.9%, respectively, (absolute decreases of 1.9 
and 4.4%) with increasing average protein production and number of animals, and increased 
respectively 6.8 and 4.4% (absolute increases of 2.9 and 2.5%) with increasing peak calving 
date. Survival and CIV did not have distinct associations with any of the EP. Incidence of 
predicted mastitis decreased 18.5% (-5.1% incidence) with increasing average protein 
production and 20.9% (-6.1% incidence) with increasing change in fat percentage and 
increased 13.6% (+3.2% incidence) with increasing relative peak milk yield and 11.8% 
(+2.8% incidence) with increasing calving interval. The SCS decreased 14.1% (0.4) and BCS 
increased 13.8% (0.6) with increasing average protein production. 

 
Table 5.2. The relative change in mean phenotypic performance (∆mpp in %) from the 10th 
to the 90th percentile of the data, compared to the 50th percentile, as predicted by the 10th 
order regression model. In the last row the means across all environments are given for each 
trait. 
Environmental       Trait1      
Parameter DFS DLS DFLS CIV NINS FSC NR56 SUV PM SCS BCS 
Protein -2.8 -2.7 -1.9 -1.0 4.7 -4.0 -6.9 0.8 -18.5 -14.1 13.8 
Fat / protein 2.6 0.0 -4.3 0.1 -2.1 4.7 2.1 0.5 -3.9 1.0 -2.8 
Somatic cell score 8.3 10.4 13.5 3.1 0.0 -2.4 3.2 -2.6 80.4 54.5 -3.3 
Persistency -9.9 -8.2 -4.4 -2.7 2.4 -4.4 -5.1 -0.1 7.0 6.9 1.6 
Rel. peak milk yield -8.6 -7.6 -4.5 -2.6 1.0 -1.0 -2.6 0.4 13.6 9.2 -1.4 
Age at calving 3.2 3.3 4.9 1.2 1.3 2.1 1.0 2.7 -7.2 -2.9 -4.1 
Nr. of animals  -3.9 -0.8 6.5 -0.3 4.7 -6.1 -3.9 1.1 -4.7 0.4 3.2 
Change nr. animals 1.5 3.6 7.9 1.0 1.6 -4.9 -1.1 2.9 -2.1 -0.7 -0.1 
Change in fat % -4.4 -4.1 -3.0 -1.3 -0.8 -0.9 -0.5 2.4 -20.9 -5.0 -5.2 
Calving interval 22.4 25.0 29.5 7.8 6.9 -7.5 1.8 -0.9 11.8 5.2  
Nr. inseminations -11.9 9.8 78.2 2.0 48.2 -37.2 -28.6 1.0 2.3 -2.3 3.2 
Peak calving date 4.4 1.1 -4.9 0.4 -4.1 6.8 4.4 -0.1 9.2 5.1 -3.8 
Distr. calving dates -3.3 -2.4 -0.5 -0.8 0.7 -2.9 -3.0 -0.6 -3.8 -0.9 1.2 
Body cond. score -6.6 -6.1 -3.2 -1.9 0.6 -3.3 -4.2 0.5 -9.4 -2.2 40.5 
Trait mean 87.3 128.4 40.7 403.5 2.07 0.45 0.59 0.80 0.25 2.23 4.36 
1DFS = days to first service, DLS = days to last service, DFLS = days first to last service, CIV 
= calving interval, NINS = number of inseminations before conception, FSC = first service 
conception, NR56 = non-return at 56 days, SUV = survival, PM = predicted mastitis based on 
test-day SCC, SCS = lactation average SCS. 
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Environmental sensitivity 
Significant ES was estimated in respectively 13.6 and 15.4% of all combinations of traits 

and EP for the heifers and the multiparous cows, respectively. Nearly all estimated ES was 
based on linear random regressions, but significant quadratic random regressions were fitted 
for the heifer data for survival combined with fat-to-protein ratio and change in fat 
percentage, and for the cow data for SCS combined with protein production. Of all 
combinations of EP and traits with significant ES based on the heifer data, estimated genetic 
correlations between the trait expressed in the 10th and 90th percentiles of the data ranged 
from 0.76 to 1.00, but most were close to unity (Table 5.3). The lowest estimates were 0.76 
(SE 0.21) for FSC combined with average BCS, 0.83 (SE 0.10) for survival combined with 
change of number of animals, and 0.84 (SE 0.12) for survival combined with change in fat 
percentage. Of all combinations of EP and traits with significant ES based on the cow data, 
estimated genetic correlations between the trait expressed in the 10th and 90th percentiles of 
the data ranged from 0.65 to 1.00, but most were close to unity (Table 5.4). The lowest 
estimates were 0.65 (SE 0.10) for survival combined with average age at calving, 0.92 (SE 
0.06) for DFLS combined with average SCS and 0.92 (SE 0.05) for CIV combined with 
average protein. 

The estimated genetic variances at the 10th and 90th percentiles of the heifer data, as a 
ratio of the estimated genetic variance at the 50th percentile of the data, are given in Table 5.5 
for all combinations of traits and EP with significant ES based on the heifer data. The genetic 
variance in the 90th percentile compared to the 10th percentile (of the heifer data) was, for 
instance, 4.1 times higher for NINS (EP = number of inseminations), 1.9 times higher for 
survival (EP = fat-to-protein ratio) and 1.7 times higher for predicted mastitis (EP number of 
inseminations). This means that genetic variance of NINS was greater in herds with more 
inseminations, genetic variance of DFLS was greater in herds with more inseminations, 
genetic variance of survival is larger in herds with higher fat-to-protein ratio and genetic 
variance of DLS was greater in herds with increased CIV. The genetic variances for the cow 
data increased up to 2 times between the 10th and 90th percentiles (results not shown). 

In most cases, heritabilities changed little across environments. For the heifer data, 
heritabilities for DFS, DLS, DFLS, CIV, and NINS in the average environment were 0.09, 
0.06, 0.03, 0.05, and 0.03, respectively. Heritabilities for the binary traits FSC, NR56, 
survival, and predicted mastitis were in the average environment respectively 0.01, 0.01, 0.03, 
and 0.07. The SCS and BCS had heritabilities in the average environment of 0.19 and 0.40. 
The largest relative change in heritability was for the trait survival combined with the EP fat-
to-protein ratio, being 0.025 in the 10th and 0.048 in the 90th percentile of the data. 
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Table 5.3. Estimated genetic correlations1 between a trait expressed in the 10th and 90th 
percentiles of the heifer data for all combinations of environmental parameters and traits 
with significant environmental sensitivity. 
Environmental      Trait2      
Parameter DFS DLS DFLS CIV NINS FSC NR56 SUV PM SCS BCS
Fat / protein        0.89  0.95    
Somatic cell score          0.97  
Rel. peak milk yield          1.00  0.99 
Age at calving           0.99 
Nr. of animals            0.97 
Change nr. of animals        0.83    0.96 
Change in fat % 0.97   0.99     0.84    0.98 
Calving interval 0.99  0.97           
Nr. inseminations   0.99  0.96    0.98    
Peak calving date         0.96    
Distr. of calving dates           1.00 
Body condition score 0.94      0.76     1.00 
1Standard errors of the genetic correlations ranged from 0.00 to 0.21. 
2DFS = days to first service, DLS = days to last service, DFLS = days first to last service, CIV 
= calving interval, NINS = number of inseminations before conception, FSC = first service 
conception, NR56 = non-return at 56 days, SUV = survival, PM = predicted mastitis based on 
test-day SCC, SCS = lactation average SCS. 
 
Table 5.4. The genetic correlations1 estimated on the cow data between 10th and 90th 
percentiles of the data for all combinations of environmental parameters and traits with 
significant genotype by environment interaction. 
Environmental      Trait2     
parameter DFS DLS DFLS CIV NINS FSC NR56 SUV PM SCS 
Protein    0.92    0.97 0.97 0.98 
Somatic cell score   0.92      0.95 0.93 
Age at calving     0.93   0.65   
Nr. of animals        0.98   
Calving interval 0.99 0.94  0.93 0.99      
Nr. inseminations  0.95 0.95 0.94 0.94     1.00 
Distr. of calving dates      0.95     
1Standard errors of the genetic correlations ranged from 0.01 to 0.10. 
2See table 5.3. 
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Breeding values for survival for the 10 sires with most daughters in the heifer data, estimated 
as function of herd-year average fat-to-protein ratio, followed different patterns across 
environments (Figure 5.1). The difference in survival of the first lactation of daughters of 2 
particular sires (indicated with squares or triangles) was 2.9% in herd environments with a 
fat-to-protein ratio of 1.19 and -1.0% in herd environments with a fat-to-protein ratio of 1.33. 

Genetic correlation = 0.89
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Figure 5.1. Breeding values for survival of the 10 sires with most daughters in the heifer 
data, estimated as function of herd-year average fat-to-protein ratio (squares and triangles 
mark breeding values of 2 particular sires). Tenth and 90th percentiles of the data are shown 
as dotted lines. 

 
DISCUSSION 

The objective of this paper was to investigate associations among herd environment and 
fertility and health at both the phenotypic and genetic level. Herd average SCS and herd 
average CIV generally had a stronger association with average cow performance than did 
average protein production, indicating that other descriptors of herd management might be 
more important than production level per se. Although significant ES was only detected in a 
limited number of situations, the most extreme (i.e., the lowest) genetic correlation of a trait 
expressed in different environments was 0.7, and genetic variance of some traits increased up 
to 4 times across environments. It is also important to note that the changes in genetic 
variance were in some situations in the opposite direction with respect to changes in genetic 
variance of production traits. 
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Herd characteristics explaining different levels of health and fertility 
For the traits DFS, DLS, DFLS, CIV, NINS, predicted mastitis, and SCS, low values are 

desired, whereas high values are desired for the traits FSC, NR56, survival, and BCS. Lower 
herd averages for SCS and CIV were associated with more desirable average phenotypic 
values of almost all analyzed traits. A likely explanation might be that herds with lower SCS 
and shorter average calving interval have on average better management, resulting in better 
overall fertility and health. This hypothesis is in agreement with results of Rougoor et al. 
(1999), who concluded that farmers that are aware of their bulk milk SCC and average CIV 
have better hygiene, lower feed costs, and higher milk price, resulting in a higher gross 
margin. Moreover, the results of Barkema et al. (1999b) indicated that lower bulk milk SCC 
was associated with farmers that worked more precisely, paid more attention to individual 
cows, and made a greater effort to prevent mastitis. 

Herds with higher average protein production had slightly lower success of insemination, 
but considerable less mastitis, lower SCS, and higher BCS. This result indicates that higher 
levels of production do not necessarily lead to poorer performance in other traits, possibly due 
to superior general management in those herds. The observation that heifers had less mastitis 
and lower SCS on farms with higher overall protein production, seems to contradict reported 
positive within-herd phenotypic correlations between milk yield and mastitis (Ingvartsen et 
al., 2003). An explanation might be that herds with high production levels manage to control 
SCC on average, whereas within herds on an individual animal level, the animals with high 
production still have a higher chance to get mastitis, which is in agreement with the results of 
(Windig et al., 2005c). This result suggests that even though the average level of SCS can be 
influenced by management, an antagonistic relationship on an animal level might still exist 
between yield and SCC, thus indicating the need to investigate the extent to which phenotypic 
and genetic correlations between traits can be changed by herd management. 

In herds with a high average number of inseminations, DFS was shorter and FSC and 
NR56 were lower, compared with herds with a low average number of inseminations. 
Average number of inseminations had correlations with average protein production and 
number of animals of 0.18 and 0.14, respectively (results not shown). Herds with higher 
average protein production and higher number of animals also had, on average, shorter DFS 
and lower FSC and NR56. This trend indicates that the poorer success of first inseminations 
on herds with high average number of inseminations is not only explained by the stage of 
lactation in which insemination started, but also by the average protein production and the 
number of animals in the herd. Better insemination results in herds that start later with 
inseminating their cows, might be a result of the farmers’ awareness of the poor response to 
early insemination, rather than better fertility per se. 
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Interaction of herd characteristics and breeding for health and fertility 
No particular EP was superior in terms of being associated with ES for most of the traits, 

but ES was more often detected in situations where the EP was the average of the analyzed 
trait or a characteristic closely related to the trait. Although these situations might be 
discarded as “only scaling effects” and therefore a purely statistical issue, the change in 
genetic variance across environments indicates the change in importance of selection for a 
certain trait across environments. In situations where the EP were calculated as the average of 
the analyzed traits, the breeding values of the respective sires were included in the EP through 
the performance of their daughters. However, results from a simulation study showed that this 
fact does not lead to an overestimation of ES (Calus et al., 2004). Following the instruction 
from these authors, most EP were calculated from at least 25 animals and herd-year-season 
subclasses with daughters of fewer than 3 sires were deleted. This editing would thus have 
minimized the possible bias further. 

Possible interactions between herd characteristics and breeding values for health and 
fertility traits were particularly notable for survival in both heifer and multiparous animals. In 
the heifer data, considerable changes in genetic variance were estimated for survival when 
herd environment was defined as fat-to-protein ratio, change in fat percentage, and change 
number of animals, and the genetic correlations between survival expressed in different 
environments were between 0.8 and 0.9. Two of these EP are indicative of the nutritional 
environment; lower values for change in fat percentage are associated with longer lasting and 
more severe negative energy balance (De Vries and Veerkamp, 2000), and fat-to-protein ratio 
is influenced by the amount of concentrate and fiber in the diet (Bargo et al., 2003). 
Therefore, it might be hypothesized that reasons for culling heifers are different in herds with 
different diets, because a mismatch of genetic merit of the cows and diets results in increased 
health and fertility problems (Veerkamp et al., 1995) such as milk fever, days to first service, 
and days to first heat (Pryce et al., 1999). The third environmental parameter that gave 
significant ES for survival in heifers was change in the number of animals. This parameter 
might indicate whether the farm is shrinking or expanding, and the ES might possibly be 
caused by different culling reasons for heifers in herds that are either expanding or shrinking. 
In the data of multiparous cows, the genetic correlation between survival in herds with low vs. 
high average age at calving was 0.65, indicating that cows in herds with a low average age at 
calving (and presumably an above average replacement rate) are culled for different reasons 
than in herds with high average age at calving. The implication of the ES for survival is 
demonstrated in Figure 5.1 for those sires that had most daughters in the dataset (i.e., 
relatively heavily used sires in the Netherlands). The sire marked with triangles had a higher 
EBV for survival in herds with high fat-to-protein ratio, whereas the EBV for survival of 
some other sires was hardly associated with the fat-to-protein ratio. These differences in 
patterns of the sires EBV indicate that at sire level ES has an important role, even though 
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parameters at a population level indicate a more limited effect of ES. Nearly all genetic 
correlations were above 0.8, which generally indicates that separate breeding programs for the 
extreme herd environments are not justified for an AI organization. However, considerable 
differences in ranking of top bulls across environments might occur, even at genetic 
correlations between environments that are above 0.9 (e.g., Powell and VanRaden, 2002). To 
make use of the ES and reranking of individual genotypes, or reduce the chance of a 
mismatch between genotype and herd environment, herd-specific breeding values might be 
added to customized economic selection indices (Bowman et al., 1996) for selection of bulls 
on a herd level. Another strategy might be to select sires which are relatively environmental 
insensitive, i.e., to select against ES. Application of customized selection indexes would help 
to fine-tune genotype and environment, whereas selection against ES actually would decrease 
the need to fine-tune genotype and environment.  

In addition to survival, changes in genetic variance across environments were also 
estimated for DFS and predicted mastitis in the heifer data. Genetic variance for DFS was 
larger for herds with a greater change in fat percentage, a larger CIV, and a lower BCS; 
hence, use of sires with desirable EBV for DFS is likely to be more beneficial in those herds. 
Genetic variance for predicted mastitis was higher in herds with lower fat-to-protein ratio, 
higher number of inseminations and earlier peak date of calving; thus, use of sires with 
desirable EBV for mastitis is likely to be more beneficial in those herds. Changes in genetic 
variances of traits that are combined in a total merit index can cause reranking across 
environments based on the total merit index (Namkoong, 1985). The changes in genetic 
variances of the traits estimated on the heifer data were therefore compared with the estimated 
changes in genetic variances of milk, fat, and protein yield from a previous study (Calus and 
Veerkamp, 2003). Genetic variance of DFS increased 78% between 10th and 90th percentiles 
of the data based on increasing average calving interval, whereas genetic variance of milk, fat, 
and protein yield decreased with 14%, 8% and 15%, respectively (Calus and Veerkamp, 
2003). One way to express the relative importance of selection on a trait across environments 
is to multiply the economic value with the environment specific genetic standard deviation of 
the trait. Results for yield traits and DFS combined with EP average calving interval were 
calculated relative to the importance of protein yield per environment (Table 5.6). The 
economic values were –0.08 € per kg of milk, 1 € per kg of fat, 6 € per kg of protein (NRS, 
2001b) and 5.2 € per standard deviation of the fertility index (NRS, 2001a). The economic 
value of the fertility index was used to calculate the economic value per unit of DFS, by 
dividing it by the genetic standard deviation in the average environment. The relative 
importance of DFS compared to protein yield was twice as high in a herd with an average 
calving interval of 430 d, compared to a herd with an average calving interval of 370 d (Table 
5.6). Hence, herd-specific breeding values in a customized index might be required to account 
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for changes in the weighting of traits due to different changes in genetic variances of traits 
across environments. 
 
Table 5.6. The change in relative importance to protein yield of yield traits and days to first 
service (DFS) across herd environments with different average calving intervals. 

  Trait  
Average calving interval (d) Milk Fat Protein DFS 

350 -0.47 0.21 1.00 0.06 
370 -0.47 0.22 1.00 0.07 
390 -0.46 0.22 1.00 0.09 
410 -0.47 0.23 1.00 0.11 
430 -0.48 0.23 1.00 0.12 
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Figure 5.2. Phenotypic trend (▲) of SCS ± 2 times the genetic (■) and phenotypic standard 
deviation (□) across herd average protein production estimated between 10th and 90th 
percentiles of the cow data. 

 
Health and fertility risks in different herd environments 

Changes in management can influence average phenotypic performance, and, as 
demonstrated in this study, at the same time, the genetic and phenotypic variance. An 
interesting question is whether these changes go hand in hand, and if improvements in mean 
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performance are sometimes offset by increase in variance that is so great that there is still an 
increase in the number of animals that perform below a threshold. In Figure 5.2, the mean 
phenotypic SCS ± 2 times the genetic and phenotypic standard deviation is shown as function 
of average protein production. With increasing average protein production, mean SCS 
decreased, whereas the genetic variance of SCS increased slightly (Figure 5.2). Thus, the 
differences in SCS between sire progeny increase when protein production per cow per year 
increases. The phenotypic variance however hardly increased (Figure 5.2), and, combined 
with the improvement in phenotypic mean, the proportion of animals that have values for SCS 
above any value decreased with increasing average protein production. The same was true for 
other situations where an improvement in phenotypic mean was accompanied by an increase 
in variance, suggesting an improvement in phenotypic mean usually has more impact than an 
increase in variance. 
 

CONCLUSIONS 
Herd-year average SCS and herd-year average CIV had a stronger association with 

phenotypic levels of health and fertility traits than did production level per se. Somatic cell 
score and predicted mastitis were lower on average in herds with higher average protein 
production. Genetic correlations of traits expressed in different environments were mainly 
close to unity, but <0.8 in a few situations. Genetic variance was generally constant across 
environments, but doubled across the range of some environment parameters, and the changes 
in genetic variance were in some situations in the opposite direction of the change in the mean 
of production traits. The relative importance of some fertility traits compared with yield traits 
doubled across environments. Both reranking of individual animals within a population and 
the changes in genetic variances across environments suggest that environment-specific 
breeding values should be estimated that could be added to customized selection indices. 
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Chapter 6 

ABSTRACT 
The objective of this study was to apply reaction norm models to milk recording data to 

investigate genetic variation in and environmental sensitivity of susceptibility to milk fat 
depression (MFD). Data comprised 556,276 test-day records of 80,493 heifers in 1043 herds. 
Breeding values and genetic variances for fat percentage and fat yield were estimated by 
applying random regression models to average herd-test-day fat percentage. Genetic and 
permanent environmental correlations between fat yield expressed in different environments 
ranged, respectively, from 0.83 to 1.00 and from 0.29 to 1.00. Genetic and permanent 
environmental correlations between fat percentage expressed in different environments 
ranged, respectively, from 0.87 to 1.00 and from -0.05 to 0.99. Two traits were defined for 
MFD. The first trait reflected variation of milk fat percentage of animals within lactation after 
correction for year-season, herd-test-day, age-at-calving and stage-of-lactation. This trait had 
an estimated heritability of about 5% and a genetic correlation between the fifth and 95th 
percentile of the data of 0.50. The second trait reflected the deviation of an animal’s fat 
percentage on a test-day from its expected fat percentage based on fat percentage on the first 
test-day. This trait had an estimated heritability of about 4% and a genetic correlation between 
the fifth and 95th percentile of the data of 0.43. The correlation between estimated breeding 
values of sires for the 2 MFD traits was –0.3. Our results suggest that genetic variation in 
susceptibility to MFD is present and that selection for reduced susceptibility to MFD is 
possible. 

 
INTRODUCTION 

Feeding of diets with high proportions of concentrate and low fiber to dairy cattle can 
result in decreased pH in the rumen (Nocek, 1997; Kennelly et al., 1999; Bargo et al., 2003) 
leading to depression of milk MF% (MFD) (Stockdale et al., 1987; Sutton, 1989; Bargo et al., 
2003) and, in some cases, to (subclinical) acidosis (Nocek, 1997; Bargo et al., 2003). 
Although the exact mechanism is not yet known, one of the proposed theories is that milk fat 
synthesis is inhibited because of metabolic changes in the rumen (Griinari et al., 1998). A 
decrease in milk fat percentage (MF%) can directly lead to a financial loss if the milk price 
depends on MF%. In addition, it has been shown that a strong decrease in MF% in early 
lactation is related to a larger and longer lasting negative energy balance (De Vries and 
Veerkamp, 2000) and a lower first service conception (Loeffler et al., 1999). Subclinical 
acidosis is associated with several problems such as reduced feed intake, lower efficiency of 
milk production, and laminitis (Nocek, 1997). Clinical acidosis results in very sick cows. 

Occurrence of MFD can be observed by monitoring changes in MF% or fat-to-protein 
ratio, as protein percentage is reported to be either unchanged or enhanced during MFD 
(Bargo et al., 2003). Additional symptoms for subclinical acidosis are reduced feed intake, 
BW loss, diarrhea, and lameness (Nocek, 1997). Gröhn et al. (1989) reported that acidosis 
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mostly occurs in early lactation. Prevention of MFD and acidosis can be achieved by feeding 
a balanced diet or by adding a buffer to the diet (Kennelly et al., 1999). Feeding balanced 
diets might be impossible in pasture-based systems where diets depend on seasonal supply of 
grass and where concentrate is used to compensate for temporarily low availability of grass 
rather than as a permanent component of the diet. In situations where concentrates are used as 
a structural supplement to pasture, occurrence of MFD is still reported (Bargo et al., 2002; 
Bargo et al., 2003) indicating that not only temporarily, but also continuously high 
proportions of concentrate in the diet can cause MFD. 

Although most experiments that challenged animals to express MFD reported a depression 
in MF%, some also reported a depression of fat yield (Gaynor et al., 1994; Griinari et al., 
1998), and others did not find an effect on fat yield (Bargo et al., 2002). This is in agreement 
with the general observation that diets with a high proportion of concentrates or low fiber may 
cause depressed MF%, while milk yield is either unchanged or enhanced (Bargo et al., 2003). 
A question from a breeder’s point of view is whether susceptibility to MFD is correlated to 
breeding values for fat yield and MF%, and also to breeding values for health and fertility. 

Although much is known about causal relations between composition of the diet and MFD, 
little is known about differences in MFD between genotypes (i.e., genetic variance of MFD) 
or differences in responses of genotypes to different diets (i.e., genotype × environment 
interaction of MFD). To estimate genetic variance and genotype × environment interaction, a 
large number of records are needed, whereas MFD is typically examined in feeding 
experiments, where responses are measured within small treatment groups (Stockdale et al., 
1987; Bargo et al., 2002). However, as occurrence of MFD can be observed as a change in 
MF%, it should be possible to define MFD on an individual and an environmental level using 
test-day records for MF%. This practice would enable the use of large data sets available from 
milk recording to investigate occurrence of MFD on an environmental and a genetic level. 

Random regression models (RRM) modeling reaction norms (Veerkamp and Goddard, 
1998; Kolmodin et al., 2002; Calus and Veerkamp, 2003; Hayes et al., 2003) can be used to 
investigate environmental sensitivity of EBV and genetic variances. In an RRM, an animal’s 
breeding value for a particular trait is modeled as a function of a particular environmental 
variable. Thus, we need to choose a trait measured on each individual cow and an 
environmental indicator variable. Because MFD is a depression in MF%, it seems logical to 
choose MF% as the trait and average herd-test-day MF% (AHTDF%) as the environmental 
indicator. Then a cow that was highly susceptible to MFD would be expected to have a very 
low MF% on days when AHTDF% was low and, perhaps, a normal MF% on days when 
AHTDF% was high. However, other factors, such as management, stage of lactation, or 
frequency of milking, affect MF% as well as MFD. For instance, low MF% could reflect an 
increase in milk volume due to good nutrition (Bargo et al., 2003), or high MF% a decrease in 
milk volume due to mastitis (Windig et al., 2005b). Therefore, we have tested a range of 
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response traits to determine which might be the best at identifying bulls whose daughters are 
susceptible to MFD. In addition to the use of MF% and fat yield as response traits of MFD, 
we investigated other indicators based on the pattern of MF% across test-days within 
lactation. 

The objective of this study was to investigate genetic variation in and environmental 
sensitivity of susceptibility to MFD, affecting MF% and fat yield, from milk recording data 
using reaction norm models. 

 
MATERIALS AND METHODS 
Data 

The original data set was extracted from the Australian Dairy Herd Improvement Scheme. 
Initial edits of the data are described by Hayes et al. (2003) and included deleting herd-test-
days with fewer than 20 heifers. Additionally, herd-test-days with average MF% above 5.5% 
were deleted. The final data set for MF% and fat yield contained 16,344 herd-test-days 
comprising 556,276 test-day records of 80,493 Holstein Friesian heifers in 1043 herds. The 
final data set for the MFD trait defined on a lactation level (MFDLAC; see below) contained 
3032 herd-year-season subclasses comprising 68,907 Holstein Friesian heifers in 960 herds, 
after deleting heifers with fewer than 5 test-day records, herd-year-season subclasses with 
fewer than 5 heifers, and sires with fewer than 5 daughters in the data. The final data set for 
the MFD trait defined on a test-day level (MFDTD; see below) contained 14,241 herd-test-
days comprising 484,219 records of 78,256 Holstein-Friesian heifers in 1021 herds, after 
deleting herd-test-days with <5 heifers and deleting sires with <5 daughters in the data. The 
relationship matrix contained 6170 animals, of which 1539 were sires with daughters in the 
data. 

 
Definition of traits and environment 

Traits for MFD. As well as fat yield and MF%, 2 other traits were derived from the pattern 
of MF% across test-days. The lactation curve for MF% of an animal affected by MFD will 
fall below the normal lactation curve. Based on deviation of a lactation curve for MF% from a 
“nonaffected” lactation curve, MFD can be divided into 2 dimensions: magnitude and 
duration. Two traits to reflect MFD were defined: one on a lactation level (MFDLAC) and 
one on a test-day level (MFDTD). The MFDLAC trait was defined as the standard deviation 
of residual test-day MF% of a heifer. Residual MF% were calculated using a model with fixed 
effects correcting for year-season, herd-test-day, and a third-order fixed regression on age at 
calving and an eighth-order fixed regression on DIM. This model yielded residuals for MF% 
for each test-day record. The MFDLAC was calculated for each heifer with at least 6 test-days 
as the standard deviation of residual MF% across test-days. Animals with high susceptibility 
to MFD are more likely to have one or more test-days with reduced MF%, resulting in a 
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higher variation of milk MF% during the lactation and therefore a higher value for MFDLAC 
than animals with low susceptibility to MFD. 

Dalley (2002) defined MFD on a herd level as a decline in MF% of more than 0.4% in 10 
days. Following Dalley (2002), we adopted the minimum value of the decline of 0.4% to 
define MFD on an individual level. The MFDTD trait was defined for all heifers with at least 
2 test-day records and was based on the difference between MF% on the first test-day and all 
subsequent test-days. Individual test-day records for MF% were corrected for age at calving 
and DIM using smoothing splines in ASREML (Gilmour et al., 2002b). From all second and 
later test-day records for MF% of each heifer, the MF% from its first test-day was subtracted. 
Based on the obtained difference on test-day i (Δfat%t=i,t=1) , MFDTD was defined as follows:  

 
If Δfat%t=i,t=1 < -0.4% 

Then: MFDTD = Δfat%t=i,t=1 + 0.4 
Otherwise: MFDTD = 0. 

 
This resulted in a continuously distributed trait with a maximum value of 0. Animals with 

high susceptibility to MFD were expected to have a lower value for MFDTD than animals 
with low susceptibility to MFD. 

Definition of environment. Individual test-day milk, fat and protein yields, corrected for 
age at calving and DIM using cubic splines in ASREML (Gilmour et al., 2002b), were used to 
calculate herd-test-day averages for fat yield, MF% and fat-to-protein ratio. The obtained 
herd-test-day averages were used to calculate differences between pairs of consecutive herd-
test-days that were less than 70 d apart. Correlations among averages of herd-test-days were 
calculated to determine relationships among them. 

 
Estimation of variance components for fat percentage and fat yield 

Variance components for fat yield and MF% were estimated using a RRM. Variance 
components for fat yield were also estimated using a bivariate repeatability model (BVM), to 
compare results of the RRM. Therefore, the data were divided in 10 subsets based on 
increasing AHTDF%, and the BVM was applied to all possible pairs of subsets of the data. 
The RRM contained the same effects as the one applied by Hayes et al. (2003), although 
heterogeneous residual variances were included in our model. The BVM and RRM included 
fixed effects for mean of the trait, herd-test-day, year-season subclasses, and fixed polynomial 
regressions for age at calving and DIM. A fixed polynomial regression was applied to DIM 
with an arbitrary order of 8 to account for the average lactation curve. The BVM included 
correlated random effects for sire and cow in both environments, to account for genetic and 
permanent environment effects respectively. The RRM included random regressions for both 
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sire and cow on AHTDF%. In both the BVM and the RRM, a separate residual variance was 
estimated for each subset of the data. The general model was: 

Yijklm =  μ + HTDi + YSj + +  + siren
n

n xA∑
=

3

1
o

o
o ZD∑

=

8

1
k + cowl + Eijklm 

where Yijklm is the phenotypic performance of heifer l, μ is the average performance over all 
animals, HTDi is a fixed effect for herd-test-day i,YSj is a fixed effect for year season (defined 
from January to June and July to December for each year) j,An is coefficient n of a third order 
fixed regression on age at calving, xn is the nth order polynomial corresponding to age at 
calving, Do is coefficient o of an eighth order fixed regression on DIM, Zo is the oth order 
polynomial corresponding to DIM, sirek is a random sire effect for sire k, cowl is a random 
within sire genetic plus permanent environmental effect for heifer l, Eijklm is the residual effect 
of heifer l in group of environments m (m = 1,2,…,10). 

In the BVM, all fixed effects other than HTD and all random effects were estimated for 
both environments. In the RRM, all fixed effects were fitted for all environments together. 
Sire and cow effects were fitted as random regressions on orthogonal polynomials. We chose 
Legendre polynomials following the practice of Kirkpatrick et al. (1990). The orders of the 
random regressions for sire and cow effects were assumed equal and were increased until the 
highest significant order was reached based on the likelihood ratio test. In both the BVM and 
RRM, the residual covariance between environments was assumed to be zero. 

 
Estimation of variance components for MFD traits 

The trait MFDTD was analyzed with the RRM as described for MF% and fat yield, with 
random regressions for sire and cow on AHTDF%. For the trait MFDLAC, a comparable 
RRM was applied. This trait was however defined on a lactation level and therefore the model 
was simplified to: 

Yiklm =  μ + HYSi +  + siren
n

n xA∑
=

3

1
k + Eiklm 

where Yiklm is the phenotypic performance for MFDLAC of heifer l, μ is the average 
performance over all animals, HYSi is a fixed effect for herd-year-season subclass (defined 
from January till June and July till December for each herd-year) i ,An is coefficient n of a 
third order fixed regression on age at calving, xn is the nth order polynomial corresponding to 
age at calving, sirek is a random sire effect for sire k, Eiklm is the residual effect of heifer l in 
group of environments m (m = 1,2,…,5). 

The random effect for sire, (sirek) was a random regression on an average value for 
AHTDF% during the lactation of an animal. This average was calculated for each heifer as 
the average of the values for AHTDF% of the test-days during which the heifer had records. 
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Calculation of parameters from estimated variance components in different 
environments 

Both models estimated variances and covariances for cow, reflecting the within-sire 
genetic plus permanent environmental (co)variance. Estimated permanent environmental 
(co)variances for both models were obtained by subtracting 3 times the estimated sire 
(co)variance from the estimated (co)variance for cow.  

The BVM was applied to all 45 pairs of subsets of the data for fat yield, to estimate genetic 
and permanent environmental correlations between fat yield expressed in all subsets of the 
data. Hence, 9 estimates for each estimated variance component and its standard error were 
obtained and averaged to get final estimates. The RRM estimated sire and cow (co)variances 
as function of the environment, which were used to derive estimated genetic and permanent 
environmental (co)variances of the RRM. 

The heritability in an environment was calculated as 4 times the estimated sire variance, 
divided by the sum of the sire, cow, and residual variance. For the trait MFDLAC, the 
heritability in an environment was calculated as 4 times the estimated sire variance, divided 
by the sum of the sire and residual variance. For the trait MFDTD, the repeatability in an 
environment was calculated as the sum of the sire and cow variance, divided by the sum of 
the sire, cow and residual variance. 

 
RESULTS 
Phenotypic levels of MFD 

Mean, standard deviation, and the ranges of herd-test-day averages and differences 
between averages of consecutive herd-test-days for fat yield, MF% and fat-to-protein ratio are 
shown in Table 6.1. The average herd-test-day MF% ranged from 2.18 to 5.48% and the 
change in average MF% from one to the next herd-test-day ranged from –1.82 to 1.53%. 
Correlations between herd-test-day averages, calculated from 16,344 herd-test-days, were 
0.03 (SE = 0.01) between fat yield and MF%, -0.12 (SE = 0.01) between fat yield and fat-to-
protein ratio, and 0.82 (SE = 0.00) between average MF% and fat-to-protein ratio.  

The value for the heifers for the trait MFDLAC ranged from 0.00 to 1.43, with an average 
of 0.28. The average value for MFDLAC within herd-year-season subclasses ranged from 
0.03 to 0.31. The average value for MFDLAC within herd ranged from 0.04 to 0.21. 

The values for MFDTD ranged from –3.4 to 0%, with an average of -0.1%. Based on the 
trait MFDTD, 44.9% of the heifers had one or more affected test-days resulting in 22.1% of 
all records being affected by MFD. In 93.7% of the herd-test-days one or more affected 
heifers were identified. The percentage of affected heifers based on MFDTD decreased with 
increasing days in milking (Figure 6.1). 
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Table 6.1. Mean, standard deviation, and range of herd-test-day averages and differences 
between averages of pairs of consecutive herd-test-days (Δ) for fat yield, fat percentage, and 
fat-to-protein ratio. 
Trait Mean Standard deviation Minimum Maximum 
Fat (kg) 0.77 0.13 0.37 1.21 
Fat percentage 3.87 0.33 2.18 5.48 
Fat-to-protein ratio 1.21 0.11 0.66 1.76 
ΔFat (kg) -0.01 0.08 -0.42 0.33 
ΔFat percentage 0.02 0.28 -1.82 1.53 
ΔFat-to-protein ratio 0.01 0.09 -0.65 0.58 
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Figure 6.1. The percentage of heifers showing milk fat depression based on test-days 
(MFDTD), across days in milking. 
 
Estimated variance components for fat yield 

Estimated genetic variances based on 556,276 test-day records for the BVM and the RRM 
with environment defined as AHTDF% are shown in Figure 6.2. Estimated genetic variances 
from the BVM are given with a range of their standard errors (Figure 6.2). The quadratic 
RRM was the highest significant order (a cubic order did not converge). In the range of 
environments where most animals were situated (i.e., fifth percentile of the data was 3.23% 
and 95th percentile was 4.43%), the sire variance of the linear and quadratic RRM was almost 
the same. Estimated heritabilities and genetic and permanent environmental correlations 
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Figure 6.2. Genetic variances of fat yield (×104 kg2/d2), with environment defined as herd-
test-day average fat percentage, estimated with a linear random regression model (RRM) 
(▲), a quadratic RRM (□), and for the different subsets of the data estimated with a bivariate 
repeatability model (■). Fifth and 95th percentiles of the data are shown as dotted lines. 

 
between the different subsets of the data estimated with the BVM (results not shown) and 
quadratic RRM (Table 6.2) were comparable. The average AHTDF% of each subset of the 
data was used as an environmental variable to calculate those parameters. Estimated 
heritabilities ranged, for both models, from 0.17 to 0.20 (SE 0.02 to 0.03 for the BVM and 
0.02 for the RRM). Estimated genetic correlations of fat yield between subsets of the data 
ranged for both models from 0.83 to 1.00 (SE 0.00 to 0.05 for the BVM and 0.00 to 0.04 for 
the RRM). Permanent environmental correlations ranged from 0.51 to 1.00 (SE 0.01 to 0.04) 
for the BVM and from 0.29 to 1.00 for the RRM (SE 0.00 to 0.01). Standard errors were 
higher for the BVM than the RRM in all situations. 

The EBV for fat yield estimated with the quadratic random regression on AHTDF% of 10 
sires with most daughters in the data are shown in Figure 6.3. These 10 sires all had more than 
9000 daughters in the data. The EBV are shown for a range of environments with an 
AHTDF% between the fifth and 95th percentiles of the data. The course of EBV for fat yield 
across AHTDF% differed among those 10 sires (Figure 6.3), resulting in some reranking of 
sires across environments. 
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Table 6.2. Estimates from the quadratic random regression model for heritabilities1 of fat 
yield (on the diagonal) in 10 subsets of the data defined on increasing average herd-test-day 
fat percentage (AHTDF%), and genetic correlations2 (above diagonal), and permanent 
environmental correlations3 (under diagonal) between fat yield expressed in the different 
subsets of the data. 

AHTDF% 3.23 3.54 3.67 3.75 3.83 3.91 3.98 4.07 4.19 4.43 
3.23 0.19 0.99 0.97 0.96 0.95 0.94 0.93 0.91 0.89 0.83 
3.54 0.96 0.20 1.00 0.99 0.99 0.98 0.98 0.97 0.95 0.90 
3.67 0.92 0.99 0.19 1.00 1.00 0.99 0.99 0.98 0.96 0.92 
3.75 0.88 0.98 1.00 0.20 1.00 1.00 0.99 0.99 0.97 0.93 
3.83 0.84 0.95 0.98 1.00 0.20 1.00 1.00 0.99 0.98 0.94 
3.91 0.79 0.92 0.96 0.99 1.00 0.19 1.00 1.00 0.99 0.95 
3.98 0.73 0.89 0.94 0.97 0.98 1.00 0.20 1.00 0.99 0.96 
4.07 0.66 0.83 0.90 0.93 0.96 0.98 0.99 0.19 1.00 0.98 
4.19 0.54 0.75 0.82 0.87 0.91 0.94 0.97 0.99 0.18 0.99 
4.43 0.29 0.52 0.62 0.69 0.75 0.80 0.85 0.90 0.96 0.17 
1SE of the heritabilities were 0.02. 
2SE of the genetic correlations ranged from 0.00 to 0.04. 
3SE of the permanent environmental correlations ranged from 0.00 to 0.01. 
 

Estimated variance components for fat percentage 
The linear RRM was the highest significant order for MF%. The sire variance for MF% as 

a function of AHTDF% estimated with a linear RRM is shown in Figure 6.4. Estimated 
heritabilities and genetic and permanent environmental correlations between the different 
subsets of the data are shown in Table 6.3. The estimated heritability for MF% ranged from 
0.40 to 0.53 (SE = 0.03) between the fifth and 95th percentile of the data. The estimated 
genetic and permanent environmental correlations between MF% expressed in the fifth and 
95th percentile of the data were 0.87 (SE = 0.02) and -0.05 (SE = 0.09), respectively. 
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Figure 6.3. Sire breeding values for fat yield estimated with a quadratic random regression 
on average herd-test-day fat percentage, of 10 sires with most daughters in the data. Fifth 
and 95th percentiles of the data are shown as dotted lines. 
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Figure 6.4. Sire variance (%2/d) for fat percentage estimated with a linear random regression 
on average herd-test-day fat percentage. 
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Table 6.3. Estimates from the linear random regression model for heritabilities1 of fat 
percentage (on the diagonal) in 10 subsets of the data defined on increasing average herd-
test-day fat percentage (AHTDF%), and genetic correlations2 (above diagonal) and 
permanent environmental correlations3 (under diagonal) between fat percentage expressed in 
the different subsets of the data. 
AHTDF% 3.23 3.54 3.67 3.75 3.83 3.91 3.98 4.07 4.19 4.43 
3.23 0.40 0.99 0.98 0.97 0.96 0.96 0.95 0.93 0.91 0.87 
3.54 0.93 0.48 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.93 
3.67 0.84 0.98 0.50 1.00 1.00 0.99 0.99 0.98 0.98 0.95 
3.75 0.75 0.94 0.99 0.51 1.00 1.00 1.00 0.99 0.98 0.96 
3.83 0.65 0.88 0.96 0.99 0.52 1.00 1.00 0.99 0.99 0.97 
3.91 0.55 0.82 0.91 0.97 0.99 0.52 1.00 1.00 0.99 0.98 
3.98 0.44 0.74 0.86 0.93 0.97 0.99 0.52 1.00 1.00 0.98 
4.07 0.32 0.65 0.78 0.87 0.93 0.97 0.99 0.51 1.00 0.99 
4.19 0.18 0.53 0.68 0.79 0.86 0.92 0.96 0.99 0.49 1.00 
4.43 -0.05 0.32 0.50 0.63 0.73 0.81 0.87 0.93 0.97 0.47 
1SE of the heritabilities were 0.03. 
2SE of the genetic correlations ranged from 0.00 to 0.02. 
3SE of the permanent environmental correlations ranged from 0.00 to 0.09. 
 
Estimated variance components for MFDLAC and MFDTD 

The linear RRM was the highest significant order for MFDLAC. The sire variance for the 
linear RRM is shown in Figure 6.5 as a function of average AHTDF%. The heritability of 
MFDLAC was 0.056 (SE = 0.015) in both the fifth and 95th percentile of the data and had a 
value of 0.046 (SE = 0.008) in the average environment. The genetic correlation between 
MFDLAC expressed in the fifth and 95th percentile of the data was 0.50 (SE = 0.20). 

The linear RRM was the highest significant order for MFDTD (a quadratic order did not 
converge). The residual variance ranged from 0.056 to 0.008%2 in environments with 
increasing AHTDF%. The sire variance is shown in Figure 6.6 as a function of average 
AHTDF%. The permanent environmental variance across environments was 5 to 11 times as 
high as the sire variance. The heritability of MFDTD was 0.046 (SE = 0.006) in the fifth 
percentile and 0.018 (SE = 0.006) in the 95th percentile of the data and had a maximum value 
of 0.053 (SE = 0.009), within this range of environments. The repeatability of MFDTD had 
values between 0.53 and 0.75 (SE = 0.00) in the range of the data between the fifth and 95th 
percentiles. The genetic and permanent environmental correlations between MFDTD 
expressed in the fifth and 95th percentile of the data were respectively 0.43 (SE = 0.15) and 
0.65 (SE = 0.01). 
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Figure 6.5. Sire variance (×104 %2) for milk fat depression defined on a lactation level 
(MFDLAC) estimated with a linear random regression on lactation average of average herd-
test-day fat percentage. 
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Figure 6.6. Sire variance (×103 %2) for milk fat depression defined on a test-day level 
(MFDTD) estimated with a linear random regression on average herd-test-day fat 
percentage. 
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Table 6.4. Correlations between estimated sires breeding values calculated for environments 
with average herd-test-day fat percentage (AHTDF%) of 3.3% and 4.4%, respectively for 
milk fat depression defined on a lactation level (MFDLAC) or a test-day level (MFDTD), fat 
percentage (Fat%), fat yield (Fat), and differences of estimated breeding values for fat 
percentage (ΔFat%) and fat yield (ΔFat) between the 2 environments (SE ranged from 0.01 to 
0.03). 

AHTDF% Trait MFDTD Fat% Fat ΔFat% ΔFat 
3.3% MFDLAC -0.28 0.09 -0.07 0.30 0.13 
 MFDTD  0.33 0.21 -0.22 -0.42 
 Fat%   0.51 0.07 -0.48 
 Fat    -0.08 -0.72 
4.4% MFDLAC -0.34 -0.08 -0.18 0.22 0.24 
 MFDTD  0.28 0.00 0.17 -0.28 
 Fat%   0.40 0.40 -0.35 
 Fat    0.03 -0.45 
 ΔFat%     0.27 
 

Correlations between estimated breeding values for the different traits 
The EBV for sires with daughters in the data were calculated for the traits MFDLAC, 

MFDTD, MF%, and fat yield for environments with values of 3.3 and 4.4% for AHTDF%.  
Additionally, the changes in EBV for MF% and fat yield between both environments were 

calculated as a measure of the environmental sensitivity of the EBV of the sire for MF% and 
fat yield. These changes were calculated as EBV at AHTDF% = 4.4% minus EBV at 
AHTDF% = 3.3%. Correlations between all obtained EBV and changes between EBV are 
shown in Table 6.4. The chosen values for AHTDF% represented approximately the fifth and 
95th percentiles of the data for the 4 traits. The EBV for MFDLAC and MFDTD were 
moderately correlated. The EBV for MFDLAC had small correlations with EBV for MF% 
and fat yield. The EBV for MFDTD had moderate positive correlations with EBV for MF%. 
The EBV for MFDTD had a positive correlation with EBV for fat yield at AHTDF% of 3.3%, 
but a zero correlation at AHTDF% of 4.4%.  

The EBV for MFDLAC were positively correlated to changes in EBV for MF% and fat 
yield. The EBV for MFDTD were negatively correlated to changes in EBV for MF% and fat 
yield, except for the combination of MFDTD at AHTDF% of 4.4% and change in EBV for 
MF%. 

The EBV for MF% and fat yield were hardly correlated to change in EBV for MF%, 
except for the combination of MF% and change in fat at AHTDF% of 4.4%. The EBV for 
MF% and fat yield were negatively correlated to change in EBV for fat yield. Changes in 
EBV for MF% and fat yield were positively correlated. 
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DISCUSSION 
Definition of environment 

Both MF% and fat-to-protein ratio can be used as indicators for MFD (Bargo et al., 2003). 
Correlations between herd-test-day average MF% and fat-to-protein ratio were higher than 
0.8, indicating that use of either MF% or fat-to-protein ratio as a definition of the environment 
would yield similar results. 

Next to AHTDF%, the change of AHTDF% between consecutive test-days was used as 
definition of environment (results not shown) in the analysis for fat yield and MF%. Defining 
the environment by change in AHTDF% led to less reranking of sires than did defining the 
environment by AHTDF%. Change in AHTDF% was assigned to the latter of each pair of 
consecutive herd-test-days that were maximum 70 d apart. Hence, records of the first herd-
test-day in seasonal calving herds had no value for change in AHTDF%. As it is reported that 
more than a third of the cases of acidosis occurs in the first month after calving (Gröhn and 
Bruss, 1990), use of change in AHTDF% as definition of environment might have resulted in 
losing relatively a lot of records in early lactation that were subject to MFD. 

 
Environmental sensitivity of fat yield 

Preliminary analyses indicated highest genetic variance of fat yield in environments with 
low AHTDF%. The correlation between herd-test-day average fat yield and AHTDF% was 
0.03, indicating that differences in genetic variance for fat yield across different levels of 
AHTDF% could not be explained by the average fat yield for a given herd-test-day. As 
limited information was available in extreme environments, the BVM was applied to compare 
results. The application of a multivariate model including all subsets of the data at once would 
have been theoretically more appealing, but computationally challenging and given the 
number of traits was likely to result in nonpositive definite variance matrices (Hill and 
Thompson, 1978). The BVM included only 2 out of 10 subsets of the data at once and, 
therefore, estimates for genetic and permanent environmental correlations between fat yield 
expressed in different environments were calculated by using only 20% of the data in the 
BVM. This is likely to be the reason that, in general, the standard errors of heritabilities and 
genetic and permanent environmental correlations of fat yield expressed in different 
environments were lower for the RRM than for the BVM. 

The results showed that between the fifth and 95th percentile of the data, the genetic 
variance for fat yield increased with decreasing AHTDF%. This increase in genetic variance 
could be because susceptibility to MFD adds to the variation when AHTDF% is low. 
Although there was limited reranking of sires across environments for their EBV of fat yield, 
the genetic correlations for fat yield expressed in different environments did indicate that fat 
yield is a different trait in about 10% of the environments with lowest AHTDF%. As argued 
by Hayes et al. (2003), the composition of milk is influenced by DIM which could lead to 
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confounding between DIM and AHTDF% in seasonal calving herds. That is, it was possible 
that the reranking of sires for fat was actually due to differences in shape of the lactation 
curve and not to differences in susceptibility to MFD. To exclude this possibility, following 
Hayes et al. (2003), the correlation between AHTDF% and DIM was estimated and a RRM 
with quadratic random regressions for sire and cow on both AHTDF% and DIM was fitted. 
The AHTDF% had a correlation with DIM of –0.15. An RRM with quadratic random 
regressions on DIM and AHTDF% yielded estimated genetic correlations between fat yield 
expressed in the subsets of the data with the lowest and highest AHTDF% ranging from 0.85 
to 0.90, across DIM. The corresponding genetic correlation of the RRM with a quadratic 
random regression on AHTDF% had a value of 0.83 (Table 6.2). This suggests that the 
original estimate of 0.83 is, at most, minimally increased when genetic variation in shape of 
lactation curve is included in the model.  

 
Environmental sensitivity of milk fat percentage 

The estimated genetic correlation between the fifth and the 95th percentile of the data was 
higher for MF% than for fat yield. The estimated permanent environmental correlation 
between the fifth and the 95th percentile of the data was, however, lower for MF% than fat 
yield, i.e., –0.05 vs. 0.29. This indicates that both MF% and fat yield are controlled by 
different permanent environmental factors in environments with low vs. high AHTDF%. In 
other words, cows vary widely for nongenetic reasons in their susceptibility to MFD. The 
difference in permanent environmental correlations for MF% and fat yield is likely a result of 
different nongenetic factors acting on milk yield in environments with low vs. high 
AHTDF%. 

 
Milk fat depression traits 

For MFDTD, 2 test-day records were sufficient to calculate at least one record for an 
animal, whereas a minimum of 5 test-day records per animal was required for MFDLAC. This 
explains the difference in number of heifers included in the analysis for MFDLAC and 
MFDTD. Milk fat percentage was corrected for stage of lactation and age at calving in the 
calculations of MFDLAC and MFDTD. However, other factors influencing MF%, such as 
incomplete milking, could possibly lead to false positive records for MFD. The definitions of 
MFDLAC and MFDTD imply that there is no individual variation in the shape of the lactation 
curve for MF%, and that certain decreases (or changes) in MF% have the same importance 
regardless the stage of lactation or MF% before the change. In the case that an animal has 
MFD on all test-days within a lactation resulting in comparable reduction of its MF% on all 
test-days, both definitions would fail to identify that she has MFD. The current literature 
provides no indication how the definitions for MFD based on milk recording data could be 
refined to overcome these limitations. 
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Both MFD traits tried to capture magnitude and duration of MFD. Arguably, the 
magnitude of MFD could be thought of as the susceptibility to MFD, while the duration could 
be thought of as the ability to recover from MFD. Animal experiments in which MFD is 
studied usually reflect the transition to a diet with higher proportions of concentrate and lower 
proportions of fibre, whereas recovery from MFD typically would be driven by transition to a 
diet with lower proportions of concentrate and higher proportions of fiber. With regard to this 
hypothesis, an important question would be to determine if susceptibility to and ability to 
recover from MFD are strongly correlated. The answer to this question would give more 
insight into whether MFD can simply be defined on a lactation level, without distinction 
between magnitude and duration of MFD, or that MFD should be defined on a test-day level.  

In the average environment, i.e., an environment with an AHTDF% of 3.87%, MFDLAC 
and MFDTD had heritabilities of 0.045 and 0.042, respectively. The reliability of an EBV is 
r2 = ne/(ne + λ), where ne is the effective daughter size and λ = (4 - h2)/h2 for a sire model. To 
obtain a reliability of 60%, 132 effective daughters for MFDLAC and 141 for MFDTD were 
required for the data set used in our analyses. These figures indicate that active selection 
based on a trait reflecting MFD is possible. 

 
Correlation between EBV for the different traits 

High susceptibility to MFD should be indicated by low values of MF% and fat yield at 
AHTDF% of 3.3%, high values for MFDLAC, low values of MFDTD at AHTDF% of 3.3% 
and perhaps AHTDF% of 4.4%, and low values of change in MF% and fat yield. 

Correlations among EBV were nearly all in the expected direction but not high. 
Correlations that were not in the expected direction were correlations of fat yield and change 
in MF% with MFDTD at AHTDF% of 4.4%, which agrees with the idea that MFD plays 
virtually no role in environments with high AHTDF% and therefore will hardly influence fat 
yield and MF% in those environments. One combination with a moderate correlation (of 0.42) 
is change in fat yield and MFDTD at AHTDF% of 3.3%. These are perhaps the best 
candidates for identifying sires whose daughters are susceptible to MFD. However, before 
either could be recommended, more evidence is required to support the hypothesis that they 
identify sires whose daughters are prone to some important outcome such as clinical acidosis 
or laminitis. 

Changes in milk yield and composition between test-days can represent a healthy response 
to increased nutrition rather than a pathological response such a MFD. One of the challenges 
in evaluating sires is to distinguish between these 2 possibilities. For this reason, we prefer the 
use of fat yield to MF% as a dependent variable because an increase in milk volume causing a 
decrease in MF% is not pathological, but a decrease in fat yield due to increased grain feeding 
may be.  
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CONCLUSIONS 
Genetic variation exists between animals in susceptibility to MFD. Data recorded routinely 

by milk recording agencies can be used to evaluate sires for this trait by using a random 
regression analysis. Selection for low susceptibility could be based on sires whose daughters 
show little decline in fat yield between test-days with high and low AHTDF% or sires whose 
daughters show a high value of MFDTD when the herd AHTDF% is low. However, EBV for 
MFD susceptibility calculated by different methods are not highly correlated and evidence for 
a genetic correlation with clinical symptoms of MFD would be necessary before advocating 
the use of any EBV for susceptibility to MFD. 
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Chapter 7 

ABSTRACT 
The objective of this paper was to investigate the importance of genotype × environment 

interaction (G×E) for somatic cell score (SCS) across bulk milk somatic cell count (BMSCC), 
days in milk (DIM) and their interaction. Variance components were estimated with a model 
including random regressions for each sire on herd test-day BMSCC, DIM, and the 
interaction of BMSCC and DIM. The analyzed data set contained 344,029 test-day records of 
24,125 cows, sired by 182 bulls, in 461 herds comprising 13,563 herd test-days. In early 
lactation, considerable G×E effects were detected for SCS, indicated by threefold higher 
genetic variance for SCS at high BMSCC compared with SCS at low BMSCC, and a genetic 
correlation of 0.72 between SCS at low and SCS at high BMSCC. Estimated G×E effects 
were smaller during late lactation. Genetic correlations between SCS at the same level of 
BMSCC, across DIM, were between 0.43 and 0.65. The lowest genetic correlation between 
SCS measures on any two possible combinations of BMSCC and DIM was 0.42. Correlated 
responses in SCS across BMSCC and DIM were in some occasions less than half the direct 
response to selection in the response environment. Responses to selection were reasonably 
high among environments in the second half of the lactation, while responses to selection 
between environments early and late in lactation tended to be low. Selection for reduced SCS 
yielded the highest direct response early in lactation at high BMSCC. 

 
INTRODUCTION 

Individual measures of SCC of dairy cows are used as an indicator trait for mastitis. 
Management and breeding decisions aim to reduce SCC, as a way to decrease the incidence of 
mastitis (Emanuelson, 1988; Weller et al., 1992; Philipsson et al., 1995). Another reason to 
reduce SCC, is to decrease bulk milk somatic cell count (BMSCC), as a BMSCC above a 
certain value results in a discount in milk price for the farmer (Veerkamp et al., 1998; 
Productschap Zuivel, 2004). A wide range of BMSCC is present across herds, which is at 
least partly explained by differences in management between herds (Barkema et al., 1998a; 
Barkema et al., 1999b), and is also related to presence of mastitis pathogens, since an 
important part of the genetic variances in SCC is caused by mastitis. Therefore, the question 
rises whether these management differences reflected in BMSCC affect genetic parameters 
for SCC and responses to selection for reduced SCC. 

Selection responses could be affected if genotype × environment interaction (G×E), also 
known as genetic variance of environmental sensitivity, exists for SCC. The importance of 
reported G×E for SCS is limited. Sire × herd interaction effects on SCS explained between 0 
and 3% of the total phenotypic variance (Banos and Shook, 1990; Schutz et al., 1994; Samore 
et al., 2001). Estimated genetic correlations between SCS expressed in herd environments 
with low versus high average SCC were mainly close to unity (Castillo-Juarez et al., 2000; 
Raffrenato et al., 2003; Calus et al., 2005c), apart from a reported value of 0.80 estimated for 
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Swedish Holstein (Carlén et al., 2005), and a value as low as 0.83 when environments were 
defined based on management practices that enhance milk production (Raffrenato et al., 
2003). All these studies were based on lactation average SCS, and no results are available on 
G×E of SCS based on test-day records. The G×E in SCS of animals on test-day level might be 
stronger due to short term changes in the environment, such as increased incidence of mastitis 
infection. 

In this paper, we investigated the magnitude of genotype, environment, and G×E for SCS, 
related to herd environment based on herd test-day BMSCC, DIM, and the interaction of 
BMSCC and DIM of the individual cow. 

 
MATERIALS AND METHODS 
Data 

In total 6,770,924 test-day records were available from Dutch dairy herds during 1997, 
1998, and 1999, including repeated lactations. All animals were at least 75% Holstein 
Friesian. To reduce the number of records, randomly 25% of all herds were selected, reducing 
the number of records to 1,663,898. Herds needed at least 20 records on each herd test-day. 
Records before 5 DIM and after 365 DIM were deleted, as well as records of animals with 
fewer than 5 test-day records. This last criterion was applied to avoid bias due to inclusion of 
incomplete lactation records in the analysis (Pool and Meuwissen, 2000). Records deleted in 
this step had an average SCC of 207,000 cells/mL, whereas the remaining records had an 
average SCC of 186,000 cells/mL. This indicates that the deleted records, had a higher than 
average proportion of affected records. Further, records of animals calving for the first time at 
an age of less than 640 d were deleted, as well as records of parity 5 and higher. These editing 
steps reduced the number of test-day records to 1,087,635 (28,322 herd test-days). Additional 
editing steps deleted sires with fewer than 25 daughters, sires with daughters in fewer than 3 
herd test-days and herd test-days with daughters of fewer than 3 sires. Finally, herd test-days 
with fewer than 5 remaining records were deleted. The final data set contained 696,826 test-
day records of 49,130 animals in 947 herds on 27,532 herd test-days. For each herd test-day, 
BMSCC was calculated as average of all available SCC records on that herd test-day, 
weighted by individual milk production. Somatic cell score was calculated from SCC (SCS = 
log2(SCC/100,000)+3). 

For estimation of variance components and breeding values using a sire model, the final 
data set was halved by randomly selecting half of the herds, so that daughter performance in 
the other 50% of the final data set could be used to check the predictive ability of the sires 
PTA. This last step selected 344,029 test-day records of 24,125 cows in 461 herds on 13,563 
herd test-days (the other half contained 352,797 test-day records). The pedigree included 479 
animals of which 182 were sires with daughters in the data. 
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Random regression model 
Variance components were estimated with a sire model, assuming that SCS was the same 

trait in different lactations apart from the fixed effect corrections. Random effects were 
included for sire, and two effects for cow. The genetic sire effect was modelled by applying 
random regressions (RR) i) on DIM, to account for differences in lactation curves, and ii) on 
herd test-day BMSCC, to account for differences in environmental sensitivity to changing 
BMSCC, and in a second model also iii) on the interaction between BMSCC and DIM to 
account for specific differences in lactations curves in environments with different BMSCC. 
The within lactation animal effect was modelled by applying RR (for each lactation 
separately) on DIM, to account for individual differences in lactation curves, and on herd test-
day BMSCC, to account for change in variances with changing BMSCC. The random 
between lactation animal effect was modelled by random effects for each animal. The RR 
were applied to Legendre polynomial coefficients (Kirkpatrick et al., 1990) representing 
BMSCC, DIM, and the interaction between them. Heterogeneous residual variances were 
included in the model for 25 groups that were formed by first splitting the data in 5 equally 
sized groups based on increasing BMSCC, and then splitting the data in 5 equally sized 
groups based on increasing DIM. Residual covariances other than permanent environmental 
were assumed to be zero. The residual groups contained between 8166 and 17,219 test-day 
records. To account for within residual group averages, a fixed effect was added for each 
residual group as well. Other fixed effects were included in the model for mean, year-season, 
parity, and herd test-day. Fixed regressions were included to account for age at calving within 
parity, breed of the cow, for DIM within parity, and for the interaction between DIM and 
BMSCC. No fixed regression on BMSCC was included as effects of BMSCC were accounted 
for by the fixed effect for herd test-day. 

 
The model was: 

Yiklnpq =  μ + FIXED EFFECTS + + + 
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where  
Yiklnpq is an SCS record of cow q, μ is the average performance over all animals, FIXED 

EFFECTS included year-season, herd test-day, residual group, and second order polynomial 
regressions on age at calving and percentage of Holstein Friesian, Dutch Friesian, and Meuse-

Rhine-Yssel genes, is a fixed 10th-order regression within parity i (1,2, …,4) (βijl
j

ij P∑
=

10

0
β ij) 
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on a polynomial coefficient reflecting DIM l (Pijl), resembling the average lactation curve in 

the population,  is a fixed 10th-order regression (γijklq
j

jQ∑
=

10

0
γ j) on a polynomial coefficient 

resembling the interaction of BMSCC at herd test-day k and DIM l of cow q (Qijklq), αmn is 
coefficient m of the RR on the orthogonal polynomial coefficients of herd test-day BMSCC of 
the daughters of sire n, φon is coefficient o of the RR on the orthogonal polynomial 
coefficients of DIM of the daughters of sire n, λn is the coefficient of the linear RR on the 
orthogonal polynomial coefficients of the interaction of herd test-day BMSCC and DIM of 
the daughters of sire n, ωimq is coefficient m of the RR on the orthogonal polynomials 
coefficients of herd test-day BMSCC of cow q in parity i (permanent environment within 
lactation), ρioq is coefficient o of the RR on the orthogonal polynomials coefficients of DIM of 
cow q in parity i (permanent environment within lactation), s and t are the largest significant 
estimable coefficients m and o of the RR on BMSCC and DIM, respectively, Rimq, Sioq and Tioq 
are polynomial coefficients reflecting DIM, BMSCC and the interaction between them of cow 
q in parity i, animalq is a random effect correcting for between lactation permanent 
environmental variance of cow q, and Eiklnpq is the residual effect of cow q in herd test-day k 
within residual group p (p = 1, 2, ..., 25). 

In matrix notation, the model was: y = Xb + {AsDIM + BsBMSCC + UsBMSCC*DIM} + {VpDIM 
+ WpBMSCC} + Ypanimal + ZeBMSCC,DIM, where Xb represents all fixed effects, AsDIM, 
BsBMSCC, and UsBMSCC*DIM the additive genetic effects, VpDIM, and WpBMSCC the within 
lactation permanent environmental effects, Ypanimal the between lactation permanent 
environmental effects, and ZeBMSCC,DIM the residual effects. Variances and covariances were 
modeled across BMSCC and DIM, for additive genetic effects, and permanent environmental 
effects. Residual variances were estimated for each residual group, and residual covariances 
between groups were assumed to be zero. Heritabilities were calculated as 4 times the sire 
variance divided by the sum of the residual variance, the within and between lactation 
permanent environmental variance and the sire variance. All analyses were performed with 
ASReml (Gilmour et al., 2002b). 

 
Stepwise increasing of orders of RR 

The RR, modelling sire and cow effects, were stepwise increased. At first, first order RR 
on BMSCC for sire and cow were included in the model. The order of the RR on DIM were 
increased for sire and cow effects together, until the highest order was not significantly 
estimable. The model was both applied with and without a RR for sire effects on the 
interaction between BMSCC and DIM. After reaching the highest order for the RR on DIM, 
finally the order of the RR on BMSCC was attempted to increase further. Likelihood ratio 
tests were used to identify the highest estimable significant orders for the sire and cow effects 
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(P < 0.05). The test statistic was twice the difference in log likelihood between models with 
order n and n-1, respectively. 

 
Bivariate model 

A bivariate model was applied to enable comparison of estimated variances and 
correlations of the random regression model (RRM). In the bivariate model, SCS was 
considered to be a different trait in each of the defined residual groups in the RRM (based on 
increasing BMSCC and DIM). If animals had more than one record in a residual group, one 
was randomly selected and included in the analysis. The bivariate model contained for both 
traits fixed effects including average performance, year-season, herd test-day, a 10th-order 
polynomial regression on DIM within each parity and second order polynomial regressions on 
age at calving and percentage of Holstein Friesian, Dutch Friesian, and Meuse-Rhine-Yssel 
genes. For both traits residual and sire variances of the traits were estimated, as well as the 
residual and sire covariances between the traits. 

 
Correlated responses across environments 

Correlated responses across environments were investigated for a situation reflecting 
selection solely on sire PTA for SCS in one environment and the response in another 
environment. The assumption was that for each combination of BMSCC and DIM, one 
genetic standard deviation of genetic progress was made. Based on the estimated genetic 
variances and correlations, correlated responses were calculated across BMSCC and DIM, as 

1,1)2,2(),1,1(1,1 ByDxByDxByDxByDx irCR σ= , where CRDx1,By1 is the correlated response in SCS at 

DIM x1 and BMSCC y1, i is the selection intensity (set to one genetic standard deviation for 
each situation), r(Dx1,By1),(Dx2,By2) is the additive genetic correlation between SCS at DIM x1 and 
BMSCC y1, and SCS at DIM x2 and BMSCC y2, and σDx1,By1 is the additive genetic standard 
deviation of SCS at DIM x1 and BMSCC y1 (Falconer and Mackay, 1996). 

 
Phenotype versus BMSCC and PTA 

The combined effects of BMSCC and genetic merit of sires on phenotypic SCC were 
estimated by fitting the RRM (with the highest estimable orders for the RR) with a 10th-order 
fixed polynomial regression on BMSCC, instead of a fixed herd test-day effect. Average 
estimated breeding values were zero within environments, and hence the average phenotypic 
performance estimated with the 10th-order regression on BMSCC was combined with PTA of 
zero. Within a herd environment, the change in phenotypic performance was calculated as a 
correlated response to selection in an environment with an average BMSCC of 184,000 
cells/mL, reflecting the effects in herds of different BMSCC of selecting sires on a national 
index for SCS. The considered range of sires PTA was 2 sire standard deviations. The 
considered PTA were estimated at an average stage of lactation of 167 DIM. 
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Table 7.1. Log likelihoods of the fitted models with orders of the random regression (RR) for 
sire and cow effects on bulk milk somatic cell count (BMSCC) and days in milk (DIM), and 
without or with a first order RR on their interaction (BMSCC*DIM). 

Order RR Log likelihood LRT 
BMSCC DIM  BMSCC*DIM 

1 1 -1737143.71 46.66 
1 2 -1732505.80 58.20 
1 3 -1730494.83 53.73 
1 4 -1729550.69 56.37 

1Loglikelihood ratio test (LRT) statistic calculated as twice the difference in log likelihood of 
models with and without the linear regression on the interaction between BMSCC and DIM. 
Differences between the models are significant if LRT statistic > 3.84. 
 
RESULTS 
Model selection 

The RRM that best fitted the data based on the log likelihood ratio test included a fourth 
order RR on DIM, and first order RR on BMSCC and on the interaction between BMSCC and 
DIM (Table 7.1). Models with higher order RR on DIM and BMSCC did not converge. 
Differences in log likelihood were larger for pairs of models with increasing order on DIM, 
than models with and without a RR on the interaction between DIM and BMSCC. 

The pattern of the sire variance did change between models with and without a RR on the 
interaction between BMSCC and DIM (Figure 7.1). The largest differences were found in 
estimates early in lactation on herd test-days with a high BMSCC, where the estimated sire 
variances for the model with the RR on the interaction between BMSCC and DIM were 
nearly twice as high as the estimates of the model without that effect. Estimated sire variances 
of the bivariate model showed generally the same trends across DIM and BMSCC as the 
RRM (results not shown). All reported results are from the RRM including a fourth order RR 
on DIM, and first order RR on BMSCC and on the interaction between BMSCC and DIM, 
unless stated otherwise. 

 
Genetic parameters for SCS across BMSCC and DIM 

Estimated heritabilities for SCS were highest early in lactation at high BMSCC and late in 
lactation at low BMSCC (Table 7.2). Heritabilities for SCS were lowest early in lactation at 
low BMSCC (Table 7.2). Estimated genetic correlations between SCS measures at extreme 
DIM in the same environments ranged from 0.43 to 0.65 (Table 7.3). Trends in estimated 
genetic correlations were comparable between pairs of DIM across BMSCC, but correlations 
dropped in most cases where the difference in BMSCC increased (Table 7.3). Genetic 
correlations between SCS in environments with extreme BMSCC became as low as 0.72 early  
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Figure 7.1. Sire variances of SCS on herd test-days with different bulk milk somatic cell count 
(BMSCC) and at different days in milk (DIM), estimated with a random regression model 
(RRM) with a fourth order random regression on DIM and first order RR on BMSCC (A) or 
with a fourth order RR on DIM and first order RR on BMSCC and the interaction between 
BMSCC and DIM (B). 
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in lactation, but were close to unity late in lactation. The lowest estimated genetic correlation 
was 0.42, between a situation early in lactation at high BMSCC and a situation late in 
lactation at low BMSCC. Most genetic correlations between SCS at different DIM and 
BMSCC were comparable between the RRM and bivariate model in situations where one of 
both environments had a BMSCC of 175,000 cells/mL or less (Table 7.3). However, 
estimated correlations of the bivariate model for situations where both environments had a 
BMSCC of 230,000 or 360,000 cells/mL tended to be closer to unity. 

 
Table 7.2. Estimated heritabilities1 of SCS on herd test-days with different bulk milk somatic 
cell count (×10-3 cells/mL) (BMSCC) and at different days in milk (DIM), estimated with a 
random regression model with a fourth order random regression (RR) on DIM and first order 
RR on BMSCC and the interaction between BMSCC and DIM. 

   DIM   
BMSCC 40 110 175 245 315 

85 0.06 0.08 0.11 0.14 0.16 
130 0.06 0.08 0.11 0.13 0.15 
175 0.06 0.08 0.10 0.13 0.14 
230 0.07 0.08 0.10 0.11 0.13 
360 0.10 0.09 0.10 0.10 0.11 

1Approximate standard errors of the heritabilities ranged from 0.01 to 0.03. 
 
Sires PTA for SCS across DIM and BMSCC 

To gain insight in the differences in patterns of PTA of sires across BMSCC, the PTA for 
SCS of the ten sires with most daughter records in the data were plotted across BMSCC at 40 
and 315 DIM (Figure 7.2). Both at 40 and 315 DIM, the response of the sires PTA to 
increasing BMSCC was that some of the sires PTA decreased while some of the sires PTA 
increased. Comparing sire A (marked with triangles) and sire B (marked with squares), sire B 
had a more desirable PTA across BMSCC (i.e., a lower value) early in lactation, while sire A 
had a more desirable PTA across BMSCC late in lactation. The breeding value of sire A 
decreased with increasing BMSCC early in lactation, while it increased with increasing 
BMSCC late in lactation. 

 
Selection response for SCS across DIM and BMSCC  

Correlated selection responses in all response environments were calculated based on 
selection in all environments (Table 7.4). Values for BMSCC and DIM in each row indicate 
the selection environment, while values for BMSCC and DIM in each column indicate the 
environment of the selection response. The diagonal represents the direct response to 
selection in the selection environment, which was arbitrarily chosen to be one sire standard 
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Table 7.3. Estimated genetic correlations1 between SCS on herd test-days with different bulk 
milk somatic cell count (×10-3 cells/mL) (BMSCC) and at different days in milk (DIM), 
estimated with a random regression model (RRM) with a fourth order random regression on 
DIM and first order random regression on BMSCC and the interaction of BMSCC and DIM 
or a bivariate model. 
         RRM          
  bmscc 85 85   130 130 130  175 175 175  230 230 230   360 360 360 
bmscc dim 175 315   40 175 315  40 175 315  40 175 315   40 175 315 
85 40 0.79 0.56   0.98 0.80 0.58  0.95 0.81 0.60  0.88 0.81 0.62   0.72 0.80 0.65
85 175   0.87   0.76 1.00 0.89  0.71 0.99 0.90  0.65 0.97 0.92   0.51 0.91 0.93
85 315       0.55 0.86 1.00  0.53 0.85 0.99  0.50 0.83 0.98   0.42 0.76 0.92
130 40         0.78 0.57  0.99 0.80 0.59  0.95 0.82 0.60   0.83 0.83 0.63
130 175           0.88  0.75 1.00 0.90  0.69 0.99 0.91   0.56 0.94 0.93
130 315              0.55 0.87 1.00  0.51 0.85 0.99   0.42 0.78 0.95
175 40                0.78 0.56  0.99 0.80 0.58   0.91 0.85 0.60
175 175                  0.89  0.73 1.00 0.90   0.61 0.96 0.92
175 315                     0.52 0.87 1.00   0.43 0.80 0.96
230 40                       0.77 0.53   0.96 0.84 0.54
230 175                         0.88   0.67 0.98 0.91
230 315                             0.43 0.82 0.98
360 40                               0.77 0.43
360 175                                 0.85
         Bivariate         
  bmscc 85 85   130 130 130  175 175 175  230 230 230   360 360 360 
bmscc dim 175 315   40 175 315  40 175 315  40 175 315   40 175 315 
85 40 0.96 0.84  0.84 0.83 0.81 0.79 0.87 0.81  0.65 0.79 0.84  0.52 0.74 0.51
85 175  0.82  0.58 0.91 0.71 0.42 0.69 0.53  0.45 0.62 0.58  0.23 0.53 0.48
85 315    0.68 0.86 0.93 0.52 0.74 0.67  0.46 0.44 0.55  0.01 0.43 0.44
130 40     0.80 0.86 0.96 0.97 1.00  0.92 0.93 1.00  1.00 0.96 0.96
130 175      1.00 0.67 0.97 1.00  0.64 0.85 0.71  0.29 0.64 0.71
130 315       0.68 0.95 0.99  0.67 0.80 0.80  0.45 0.60 0.81
175 40        0.97 0.95  1.00 0.93 1.00  0.99 1.00 0.99
175 175         0.99  1.00 1.00 0.94  1.00 1.00 1.00
175 315           0.91 0.86 0.88  1.00 0.85 0.99
230 40            0.98 0.92  1.00 1.00 1.00
230 175             0.76  1.00 0.97 0.99
230 315               0.75 0.59 0.93
360 40                1.00 1.00
360 175                 1.00

1Approximate standard errors ranged from 0.01 to 0.13 for the RRM and from 0.04 to 0.32 for the 
bivariate model. Estimated genetic correlations printed in italic for the bivariate model were fixed at 
the boundary. 
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Figure 7.2. Predicted transmitting abilities estimated for sires with most daughter records in 
the data, across BMSCC at DIM of 40 and 315 d. Phenotypic standard deviations are given 
for the tenth and 90th percentiles of the data (indicated by dotted lines) together with the 
genetic correlation of SCS between them. 
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Table 7.4. Calculated correlated responses of SCS at different values of bulk milk somatic 
cell count (×10-3 cells/mL) (BMSCC) and at different days in milk (DIM). The environment of 
the correlated response is characterised by column values for BMSCC and DIM, and the 
selection environment is characterised by row values for BMSCC and DIM. Responses to 
selection in the selection environment are given on the diagonal. 
Selection 
environment   Response environment   
 BMSCC 85 85 85 175 175 175 360 360 360
BMSCC DIM 40 175 315 40 175 315 40 175 315

85 40 0.187 0.184 0.140  0.197 0.191 0.144  0.219 0.205 0.151
85 175 0.147 0.233 0.219  0.149 0.234 0.217  0.152 0.234 0.214
85 315 0.104 0.203 0.251  0.111 0.201 0.239  0.126 0.196 0.214

             
175 40 0.177 0.166 0.134  0.209 0.183 0.135  0.274 0.218 0.138
175 175 0.151 0.231 0.214  0.162 0.236 0.213  0.185 0.248 0.213
175 315 0.111 0.211 0.250  0.117 0.209 0.241  0.129 0.207 0.223

             
360 40 0.135 0.118 0.105  0.190 0.145 0.103  0.302 0.200 0.099
360 175 0.149 0.212 0.191  0.176 0.227 0.193  0.233 0.258 0.197
360 315 0.122 0.216 0.233  0.124 0.217 0.232  0.129 0.219 0.232

 
deviation. The lowest correlated responses were less than half as large as the direct response 
to selection in the environment itself. For selection early in lactation (40 DIM), correlated 
responses were lowest late in lactation (315 DIM). For selection later in lactation (175 and 
315 DIM), the lowest correlated responses were estimated in an environment with BMSCC of 
85,000 cells/mL and 40 DIM. Correlated responses across BMSCC tended to be lowest in 
herds with low BMSCC and highest in herds with high BMSCC. The correlated responses did 
show similar trends as the genetic correlations (Table 7.3). However, the differences in 
genetic variance across DIM and BMSCC also had an influence on the correlated responses, 
as selection in an environment with low BMSCC generally yielded a higher correlated 
response in environments with high BMSCC, rather than vice versa. 

 
DISCUSSION 

Breeding values were estimated depending on DIM and BMSCC. As a result, estimated 
breeding values represented a surface across DIM and BMSCC, rather than one single point 
when DIM and BMSCC are ignored, or a line when for instance only a RR on DIM is 
performed. The RR on DIM was chosen to account for individual differences in SCS patterns 
across DIM. The RR on BMSCC was chosen, since BMSCC is related to the hygienic 
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conditions on the farm (Barkema et al., 1999b). Including two dimensions in the model, i.e., a 
fourth order RR on DIM and a linear RR on BMSCC, implied that an animals pattern of the 
EBV for SCS across DIM was linearly scaled across BMSCC. A second model that also 
included a RR on the interaction between BMSCC and DIM, did allow individual SCS 
patterns across DIM to be different across BMSCC. The results indicated that across DIM and 
herd environment considerable G×E exists for SCS. This G×E might come from different 
sources of variation, e.g., type of mastitis and incidence of mastitis, being involved in the 
genetic variation of SCC, and will have implications for the optimal selection strategies in 
breeding programs. Also, at farm level this G×E has implications in that management and 
genetic selection need to be considered together and not as separate components for the 
reduction of SCC. Different sources of variation for SCC, the implication of G×E for breeding 
programs, and the optimal balance between management and genetic selection for the 
reduction of SCC are discussed below. 

 
Genetic variation for G×E on SCS across DIM and BMSCC 

The increase of the estimated heritability of SCS across DIM was in line with results of 
other studies applying test-day models to Holstein cow data (Haile-Mariam et al., 2001; 
Odegard et al., 2003; Koivula et al., 2004). Two of these studies found a similar increase in 
the genetic variance across DIM (Odegard et al., 2003; Koivula et al., 2004), although others 
found a stronger increase (Haile-Mariam et al., 2001). Estimated genetic correlations between 
extreme DIM ranged from 0.43 to 0.63, which was in line with reported values ranging from 
0.3 to 0.7 (Haile-Mariam et al., 2001; Odegard et al., 2003; Koivula et al., 2004). 

The defence of cows against mastitis pathogens is reported to be lower early compared 
with late in lactation (Mallard et al., 1998). The lower defence early in lactation likely results 
in a higher incidence of mastitis, which might be one of the reasons why there was higher 
genetic variance for SCS early in lactation. However, a threefold higher genetic variance was 
found also early in lactation in environments with high BMSCC compared with environments 
with low BMSCC. Low BMSCC is associated with a higher risk of mastitis due to 
environmental pathogens such as Escherichia coli (Erskine et al., 1988; Miltenburg et al., 
1996; Barkema et al., 1998b). Thus, the low estimated sire variance early in lactation at low 
BMSCC might indicate that there was little difference in susceptibility to environmental 
pathogens early in lactation between daughters of different sires. High BMSCC is associated 
with a higher risk of mastitis due to contagious pathogens such as Streptococcus agalactiae 
and Staphylococcus aureus (Erskine et al., 1988; Wilson et al., 1997; Barkema et al., 1998b). 
Therefore, the high estimated sire variance early in lactation at high BMSCC might be caused 
by some animals being infected and some animals not infected, indicating that there are large 
genetic differences in susceptibility to contagious pathogens early in lactation between 
daughters of different sires. Contagious pathogens lead to elevated SCC for several test-days 
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(De Haas et al., 2002). In herds with high BMSCC and contagious pathogens a relatively 
large part of the animals might have had an elevated SCC towards the end of the lactations. 
This might explain that differences between animals (i.e. genetic variance) were lower 
towards the end of the lactation in high BMSCC herds. Hence, in early lactation the 
difference in susceptibility is the major cause of variation, and at the end of lactation the most 
important source of genetic variation are differences in SCS among affected animals. The 
estimated genetic correlation early in lactation between SCS at low and high BMSCC (i.e., 
0.72) support that different sources of variation might be active in herds with low and high 
BMSCC. 

Genetic correlations of SCS across environments, estimated on a lactation base, are 
reported to be between 0.8 and unity (Castillo-Juarez et al., 2000; Raffrenato et al., 2003; 
Calus et al., 2005c; Carlén et al., 2005). Our genetic correlations, estimated on a test-day base, 
indicated more reranking of sires across BMSCC early in lactation and comparable or less 
reranking of sires late in lactation (i.e., correlations ranged from 0.72 to 1.00). This further 
supports the idea that G×E for SCS is more important early in lactation, possibly due to the 
higher incidence of mastitis. It also shows that a more detailed analysis of phenotypic 
information, e.g., on test-day basis rather than lactation averages, reveals more G×E. In this 
specific case, the use of herd test-day specific BMSCC would rather reflect temporal 
environmental changes, such as outbreaks of mastitis, whereas a herd-year average BMSCC 
probably would rather reflect average herd management. 

 
Implications for breeding programs 

Based on the estimated G×E for SCS between environments with different BMSCC and at 
different DIM, it can be argued that the breeding goal to reduce SCS should depend on 
BMSCC and DIM. Another strategy might be to have one breeding goal for all environments 
and emphasize selection for reduced SCS in those circumstances where reducing SCS is most 
important. Identification of those circumstances brings us back to the main aims to reduce 
SCS through selection: 1) reduce incidence of mastitis by using SCS as a predictor trait 
(Emanuelson, 1988; Weller et al., 1992; Philipsson et al., 1995), and 2) decrease the chance to 
get a penalty for high BMSCC (Dekkers et al., 1996; Veerkamp et al., 1998). The incidence 
of mastitis is usually highest early in lactation (Erskine et al., 1988; Barkema et al., 1998b), 
and is also strongly correlated to SCS early rather than late in lactation (De Haas et al., 2003). 
Thus, early in lactation, elevated SCS might be especially important as an indicator for 
incidence of mastitis. Reducing SCS as a way to decrease BMSCC is likely more important at 
high BMSCC, as the chance to get a penalty is higher. Therefore, the major focus in a 
breeding goal could be to decrease SCS early in lactation and at high BMSCC. Following this 
strategy, it should be taken into consideration that the selection using breeding values for the 
average environment (BMSCC at 175 and DIM at 175) gives a response in early lactation at 
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high BMSCC, as low as 60% of the possible selection response (Table 7.4). The results in 
Table 7.4 indicate that for selection for reduced SCS at high BMSCC early in lactation, 
emphasis should be on environments early in lactation and in environments with average and 
above average BMSCC. In these circumstances, heritabilities ranged from 0.06 to 0.10 
(medium to high BMSCC). The reliability of a sires EBV is r2 = ne/(ne + λ), where ne is the 
effective daughter size and λ = (4-h2)/h2. In a situation where selection is on one trait, while 
the response is on another trait, h2 is replaced by the coheritability, which is calculated as 
hXhYrA, where hX is heritability of trait X, hY is heritability of trait Y, and rA is the genetic 
correlation between both traits. This implies that in order to get a breeding value with a 
reliability of 80% for SCS early in lactation at medium or high BMSCC, respectively 251 or 
255 daughters are required in an average environment (BMSCC at 175 and DIM at 175). 
From the same formulas, it follows that with direct selection early in lactation at medium or 
high BMSCC, respectively 251 and 157 daughter records are needed to get sires breeding 
values for those circumstances with a reliability of 80%. This illustrates that evaluating sires 
based on an average environment reduces accuracy in those circumstances where decreasing 
SCS might be most important. 

 
Reducing SCS at farm level 

Both management and genetic selection can be used to reduce SCS at farm level, and the 
existence of G×E indicates that both should be considered simultaneously in order to evaluate 
their relative importance. To enable this, the average phenotypic performance for SCS was 
estimated as a function of BMSCC and sires PTA for SCS (Figure 7.3). The PTAs for sires 
were based on the average environment, but the effects of selection were calculated for each 
environment specifically, thus depended on the genetic correlation and genetic SD in each 
BMSCC environment. Figure 7.3 shows that both at high and low level of BMSCC there are 
considerable benefits of using the best sire for SCS. Sometimes it is argued that at high levels 
of BMSCC farmers should first take management action before considering breeding for 
reduced SCC. Although this might be the quickest solution in the short term, Figure 7.3 shows 
that at high BMSCC the benefits of selecting the sires with best PTA for SCC are 
considerable, and as discussed above even higher than when selecting at average or low 
BMSCC. 

Figure 7.3 also shows that for different values of BMSCC, a decrease in BMSCC does not 
lead to comparable changes in average SCS. This is partly a consequence of the different 
scales of BMSCC and SCS (being log-transformed or not), and of the fact that BMSCC is an 
average of SCC weighted by daily milk production of the animals while the average 
phenotypic SCS is not weighted. However, BMSCC (which is not log-transformed) is 
preferred as it is a widely known measure for the environment, while SCS (which is log-
transformed) is preferred because of its statistical properties. The difference in scale could be 

 107



Chapter 7 

solved by calculating PTA directly on the scale of SCC, ignoring non-normality of SCC. 
Comparison of PTA on the scale of SCC and SCS, both depending on BMSCC and DIM, 
indicated that PTA on the scale of SCC showed larger G×E effects and actually better 
predicted average daughter performance, than did PTA on the scale of SCS (Calus et al., 
2005b). The log-transformation might result in loosing some important information, since the 
differences between records with high SCS records (i.e., records that are likely affected by 
mastitis) are mainly affected. A better solution might be to consider SCS records of animals 
that are either affected or not with mastitis, as different traits. Application of a reaction norm 
model could partly solve this problem, where the difference of affected and non-affected 
records can be explained as a G×E effect, but other solutions, such as application of mixture 
models (Detilleux and Leroy, 2000) have been proposed. 
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Figure 7.3. Average phenotypic performance for SCS, plotted as function of BMSCC and 
average sires PTA for SCS, assuming that sires are selected based on their breeding values in 
an environment with average BMSCC (184,000 cells/mL) and average stage of lactation (167 
DIM). The arrows indicate changes in SCS in situations with selection for reduced SCS 
combined with decreasing (solid arrow) and increasing BMSCC (dotted arrow). 
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CONCLUSIONS 
Greater G×E effects were estimated on a test-day basis, than reported G×E effects based on 

lactation averages, indicating that more detailed analysis of phenotypic information reveals 
more G×E. Early in lactation a strong G×E effect was detected for SCS: between herds with 
low and high BMSCC the genetic variance increased threefold and reranking of sires 
occurred. Early in lactation, heritabilities were highest at high BMSCC, indicating more 
accurate testing of bulls under these circumstances. Responses to selection were reasonably 
high among environments in the second half of the lactation, while responses to selection 
between environments early and late in lactation tended to be low. Selection for reduced SCS 
yielded the highest direct response early in lactation at high BMSCC. 
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Chapter 8 

ABSTRACT 
High milk production in dairy cattle can have negative side effects on health and fertility 

traits. This paper explores the genetic relationship of milk yield with health and fertility 
dependent on herd environment. A total of 71,720 lactations from heifers calving in 1997 to 
1999 in the Netherlands were analyzed. Herd environment was described by 4 principal 
components: intensity, average fertility, farm size and relative performance indicating 
whether herds had good (poor) health and fertility despite a high (low) production. Fertility 
was evaluated by days to first service (DFS) and number of inseminations (NINS) while 
somatic cell score (SCS) was used as a measure of udder health. Data were analyzed with a 
multi-trait reaction norm model. Genetic correlation within traits across environments ranged 
from 0.84 to unity. Genetic correlations of the three traits with milk yield were antagonistic 
but varied over environments. Genetic correlation of milk yield with DFS varied from 0.30 in 
small herds to 0.48 in herds with low average fertility. Correlations with NINS varied from 
0.18 in large herds to 0.64 in high fertility herds, and with SCS from 0.25 in herds with a high 
fertility relative to production to 0.47 in herds with a relatively low fertility. Selection in 
environments of average value resulted in different predicted responses over environments. 
For example, selection for a decrease of NINS of 0.1 in an average production environment 
decreased milk yield by 35 kg in low but by 178 kg in high production herds.  

 
INTRODUCTION 

Breeding for increased production in dairy cattle has negative side effects on health and 
fertility traits (Pryce et al., 1997; Rauw et al., 1998; Sandoe et al., 1999; Roxstrom et al., 
2001). To counter these effects both new breeding goals and management tools have been 
advised (Neave et al., 1969; Barkema et al., 1999a; Esslemont, 2003; Pryce et al., 2004; Royal 
and Flint, 2004). Generally management and genetic effects are considered separately. 
However, genetic parameters, such as genetic correlations between production and health, 
may change over environments. In other words, selection for an increase in production under 
one management system may lead to more health risks than under other management systems. 
Thus management and genetics have to be integrated in order to develop an effective program 
for improvement of health and fertility. 

Although selection for a higher production may on average, lead to more health and 
fertility problems, there can be considerable variation across herd environments. The 
phenotypic effect of herd environment (management and other environmental effects) on 
health and fertility and their relation with milk production at a national scale was recently 
explored (Windig et al., 2005b; Windig et al., 2005c). With increasing average production 
days to first service (DFS) and somatic cell score (SCS) decreased, while the number of 
inseminations (NINS) increased. Within herds, increased production always led to lower 
fertility and higher SCS. The extent, however, depended on the herd environment. In herds 
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with a low average production and/or a low average fertility differences between high and low 
producing animals were relatively small. 

In animal breeding, management and other environmental effects are generally accounted 
for by treating them, as a fixed effect, often in the form of herd-year-season effects. This 
adjusts results to the average environment, but ignores the interaction between management, 
environmental effects and the genetics of animals, or the effects on the genetic association 
between milk yield and health and fertility traits. Recently, reaction norm models which use 
random regressions to estimate genetic parameters for each environment separately have been 
explored (Calus et al., 2002; Calus and Veerkamp, 2003; Hayes et al., 2003). A further 
extension is to model the relationship between several traits across herd environments 
(Kolmodin et al., 2002; Oseni et al., 2004; Pollott and Greeff, 2004). By doing so genetic 
correlations between production and health and fertility traits in different herd environments 
can be estimated. 

Objective of this study was to analyze genetic relationships between milk yield and health 
and fertility traits across herd environments with a multi trait reaction norm model. The 
overall objective was to assess whether the risks of high milk production in relation to SCS 
and fertility depended on the herd environment, and what the effect of selection in a specific 
environment was on traits in the same environment and on traits in other environments. 

 
MATERIALS & METHODS 
Data 

Test day and insemination data. Data were available for 147,835 first lactation heifers 
calving between July 1997 and June 1999. Insemination, production and SCC records were 
the same as in Calus et al. (2005c) and editing steps followed their procedure. All animals 
were at least 75% Holstein Friesian. Animals were selected if they calved on an age between 
640 and 1095 d. Editing steps for environmental parameters (see below) reduced the number 
of heifers to 116,727. All (grand)daughters of (grand)sires with less than 20 (grand)daughters 
in the edited data were deleted, reducing the number of animals to 87,375. Herd-year-season 
subgroups were formed based on the method of Crump et al. (1997) with a minimum of 5 
animals per subclass, a minimum length of 30 d and a maximum length of 365 d. Records of 
animals that could not be assigned to a group with at least five records or that were assigned 
to a group with less than three records for any of the traits were deleted. Additionally, 
(maternal grand)sires with progeny in less than three herd-year-season classes and herd-year-
season classes with progeny of less than three (maternal grand)sires were deleted. These steps 
reduced the number of records to 71,270. 

Herd environment. The herds were described by 65 environmental variables, partly 
derived from production data (e.g. average kg fat per cow) and partly from the annual national 
agricultural survey (e.g. area of the farm). These environmental variables were reduced with 
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Principal components analysis to four Principal Components (PC’s) by choosing the PC’s that 
explained more than 5% of the total variance in all traits (details in Windig et al. (2005c)). 
The first principal component (PC1, explaining 10.34% of the total variance) was interpreted 
as production intensity. Environmental variables that contributed most to PC1 were herd 
averages of 305 d protein, milk and fat yield. Some fertility indices which were negatively 
correlated to production also contributed negatively to this PC. The second PC (PC2, 8.86%) 
was interpreted as fertility because all fertility herd averages had large contributions. PC3 
(7.20%) combined variables related to the size of the farm such as number of employees, total 
hours of work, number of animals and area of land. PC4 (6.58%) was a combination of 
production and fertility, where both production and fertility herd averages had positive 
contributions. Consequently farms that had a high fertility despite high production received 
high scores, while farms that performed low both on production and fertility received low 
scores. Further on PC4 is referred to as relative performance.  

Traits analyzed. For production, 305 d milk yield was used. SCC was converted to somatic 
cell score (SCS) by SCS = log2(SCC/100,000)+3 (Ali and Shook, 1980) and was used as a 
health trait. It was defined as the average somatic cell score across test days. Two fertility 
traits were considered: days to first service (DFS) and number of inseminations per service 
period (NINS). DFS was calculated as interval from calving to first service. Records for DFS 
were missing if DFS was smaller than 20 or greater than 300. NINS was missing if NINS was 
0 or greater than 10. These editing steps were applied to exclude extremely long lactation 
records, records with extreme short gestations due to abortions and records with errors. 

Pedigree. All sires, paternal grand dams and maternal grandsires of animals with records in 
the data were included in the pedigree file. All male predecessors of those animals, available 
from the pedigree data, were also included. Identification of dams of bulls was included if a 
dam had 2 or more sons and otherwise dams were included as base parents. A total of 1754 
animals were included in the relationship matrix.  

 
Reaction norm model 

Univariate analysis. Variance components were estimated with a sire-maternal grandsire 
model. Fixed effects were included in the model for mean and herd-year-season subclass. 
Fixed regressions were included to account for age at calving and for breed of the cow. The 
influence of environmental parameters on additive genetic merit was modeled by applying a 
random regression for each (maternal grand)sire, representing its EBV, on values of a PC for 
the herd-years in which his (grand)daughters were producing. The incidence matrix of 
maternal grandsire effects was laid over the matrix of sire effects, i.e. if a bull had both entries 
in the data as sire and maternal grandsire, the breeding value when being a maternal grandsire 
was equal to half the breeding value when being a sire. To take heterogeneous residual 
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variances into account the residual variance was estimated separately for groups of 9000 
animals with similar herd environments. 

 
The applied model was: 
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p

n
in Φ∑

= 0
,β ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Φ∑

=
kn PC

p

n
jn

0
,β ijklm (1) 

where Yijklm is the performance of animal m, with sire i, grand sire j, and herd environment 
k, μ is the average performance over all animals, FIXED includes herd-year-season subclasses 
and second order polynomial regressions on age at calving and percentage of Holstein 
Friesian, Dutch Friesian and Meuse-Rhine-Yssel genes, βn,i is coefficient n of the random 
regression on the orthogonal polynomials of Principal Component Scores of the daughters of 
sire i, Φn(PCk) (n=0 to p) are the design values of the orthogonal Legendre polynomials of 
order p for the principal component in environment k, βn,j is coefficient n of the random 
regression on the orthogonal polynomials of Principal Component Scores of the maternal 
granddaughters of sire j, εijklm is the residual effect of cow m in environment k within group of 
environments l.  

The Legendre polynomials were restricted to a first order polynomial, because of 
convergence problems for higher order polynomials in the multivariate case, and because 
higher order polynomials did not give a significantly better fit (see Calus et al. (2005c)). This 
definition of the genetic model resulted in estimated sire variances of intercepts and slopes 
and covariances between intercepts and slopes which model possible interactions between 
slopes and intercepts. From these (co)variances sire variances within single environments 
could be calculated (Kirkpatrick and Heckman, 1989; Van Tienderen and Koelewijn, 1994; 
Kolmodin et al., 2002; Oseni et al., 2004). 

Residual variances could not be calculated within single environments (i.e. herds) because 
they contained too few observations (generally in the range of 10 to 20). We calculated 
residual variances instead for groups of 9000 individuals with similar herd environments. 
Groups were composed by ranking animals according to their PC-values. The first group 
consisted of animals 1 to 9000, the second of animal 4501 to 13500, the 3rd of animal 9001 to 
18000 etc., till the last group of animals 63001 to 71270 (i.e. the last group contained 8270 
animals instead of 9000), resulting in 15 overlapping groups. In order to achieve this grouping 
the model was run twice, once with animals 1 to 9000, 9001 to 18000, 18001 to 27000, etc. 
grouped, and once with animals 4501 to 13500, 13501 to 22500, etc. grouped. The additive 
genetic (co)variances estimated in both runs were very similar and averaged to obtain final 
esitimates. Heritabilies and genetic correlations (see below under multitrait model) were 
estimated for the average PC-value of each group (further on pcenv1 to pcenv15). Heritabilities 
were calculated as 4 times the sire variance in pcx divided by the sum of the residual variance 
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of the corresponding herd environment group plus 1.25 times the sire variance. The factor 
1.25 is explained by the fact that both effects for sires (1 times the sire variance) and maternal 
grand sires (0.25 times the sire variance) were included in the model.  

In some cases the model with intercept and slope did not converge. In that case a reduced 
model with intercept only was used, and changes in heritabilities were the result of changes in 
residual variance components only. All analyses were performed with ASREML (Gilmour et 
al., 2002a). 

Multitrait analysis. In order to obtain genetic correlations of production with the other 
traits in different environments the univariate random regression model was extended to a 
multitrait analysis. The estimated covariance matrix (V) combined variances and covariances 
of the random regression, for example, milk and DFS: 
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With β# being the random regression coefficients as defined in equation (1). In order to 

obtain genetic correlations between the two traits in herd environments pc1 to pc15, the 
variance-covariance matrix was computed as M V M’ where 
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where 0 is a 15 by 2 matrix of zeros and Φ0(pcenv#) and Φ1(pcenv#) are the design values of 

the first order orthogonal Legendre polynomial for herd environment #. In case the multitrait 
analysis had difficulty with convergence the variances of the traits and the covariance within 
the traits were fixed to the values of the univariate analyses. In that case only the between trait 
covariances (i.e. only the four covariances in the lower left hand corner of V) could vary.  

 
Selection response 

The implications of the dependency of estimated genetic parameters on the environment 
were analyzed by calculating the correlated response in SCS and the two fertility traits when 
selection for an increase in milk took place in pc8, which is the herd environment at or very 
close to the average of all herd environments. The correlated response is given by:  
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where CRY = the correlated response in trait Y, RX is the direct response in trait x to 
selection, rA is the additive genetic correlation between trait x and y and σA is the genetic 
additive standard deviation (Falconer and Mackay, 1996). The correlated response was 
calculated for SCS and the fertility traits in pcenv1, pcenv8 and pcenv15. So for pcenv8 the response 
was in the same environment, while for pcenv1 and pcenv15 the response was in another 
environment and genetic correlation between traits and across environments were used. 
Correlated responses were also calculated for milk, when selection was directly for SCS, DFS 
or NINS in pc8. The response for the directly selected trait was set to +1000kg milk, -6 days 
for DFS, -0.1 for NINS and -0.5 for SCS. These responses were chosen so that the selection 
intensity i, is about 2 phenotypic standard deviations, corresponding to approximately 5% of 
the animals selected in mass selection. 

 
RESULTS 
Phenotypic changes 

Phenotypically traits varied over the four environmental axes (Principal Components), 
average production intensity, fertility, farm scale and relative performance (Table 8.1). The 
range covered by the PC’s is given in Table 8.1 for milk production and the health and 
fertility traits. These traits varied least over PC3, which is better characterized by number of 
animals ranging from 28 (environment pc1) to 130 (pc15), with 57 animals in the average 
environment (pc8). A detailed analysis of the phenotypic changes was given in Windig et al. 
(2005c). Milk production decreased not only with decreasing production intensity and relative 
performance but also, although less, with increasing fertility and scale (Table 8.1). Likewise, 
NINS decreased not only with increasing average fertility but also with decreasing production 
intensity and relative performance and slightly with increasing scale, while DFS increased 
with decreasing production intensity and slightly with increasing relative performance and 
decreasing scale. Changes in SCS were smallest for production intensity and largest for 
relative performance, decreasing with increasing intensity, fertility and relative performance 
and decreasing with scale.  

These changes were accompanied by heterogeneous phenotypic variances (Table 8.1). 
Largest changes in variance were seen for DFS and NINS, which were more variable at lower 
production intensities, relative performance and fertility. Changes in variance were less 
dramatic for milk and in opposite direction from the fertility traits, while changes in variance 
for SCS were relatively small. Generally higher variances occurred in environments with 
higher means, but opposite trends in means and variances were observed for SCS and for milk 
when relative performance was used as the environmental variable.  
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Table 8.1. Variation in mean, phenotypic variance and heritability across herd environments. 
Animals were ranked according to environmental values (principal components) and grouped 
into 15 environmental groups (pcenv1 to pcenv15). μ = mean phenotypic value, σ2 = total 
(phenotypic) variance. Average = value in herd environments with average environmental 
value (pcenv8), range = value in pcenv1 – value in pcenv15.

 Production intensity 
(PC1) 

Fertility 
(PC2) 

Scale 
(PC3) 

Relative 
performance 

(PC4) 
 Av. Range Av. Range Av. range Av. Range 
305d milk         
μ 7417 6777-8159 7554 7670-7406 7670 7877-7396 7496 7135-7999
σ2 9766 0.78-1.19 9901 1.15-1.06 10007 1.05-0.97 10018 1.10-0.91 
h² 0.49 0.98-1.08 0.51 0.77-1.05 0.50 1.06-0.93 0.49 0.98-1.03 
SCS         
μ 2.23 2.72-1.89 2.17 2.52-2.08 2.16 2.53-2.12 2.29 2.79-2.02 
σ2 1.261 1.01-1.11 1.286 0.99-1.05 1.319 1.00-1.02 1.278 1.02-1.01 
h² 0.22 1.09-0.83 0.20 1.06-0.99 0.20 0.96-1.02 0.21 1.00-1.03 
DFS         
μ 88 109-74 88 94-85 89 90-87 87 86-92 
σ2 1040 1.79-0.61 965 1.26-0.94 985 0.96-1.04 985 1.07-0.92 
h² 0.09 0.87-1.01 0.09 0.92-1.06 0.08 1.09-1.001 0.09 0.91-1.031

NINS         
μ 2.03 1.87-2.27 2.05 2.34-1.82 2.04 2.26-2.00 2.07 2.45-1.90 
σ2 1.935 0.81-1.38 2.144 1.32-0.68 2.053 1.24-0.87 2.092 1.27-0.83 
h² 0.03 0.59-1.28 0.03 1.15-0.97 0.03 0.97-1.03 0.03 0.81-1.19 
1Variable additive genetic variance model did not converge. Changes in heritabilities are 
entirely due to variable residual variances over herd environments 
 
Univariate analysis 

Trends in additive genetic variances over environments (not shown) were generally similar 
to phenotypic variances. For DFS the REML analysis did not converge for scale and relative 
performance, except when a fixed additive genetic variance over environments was assumed. 
Heritabilities were relatively constant because ratios of phenotypic and additive genetic 
variances were similar over environments. Highest heritabilities were found for milk (about 
50%) and for SCS (20%), while heritabilities for the fertility traits were relatively low (9% for 
DFS and 3% for NINS). Trends for additive genetic variances of milk were opposite to trends 
in its phenotypic variance when herds ranked by average fertility (PC2). Opposite trends for 
additive and phenotypic variances were also observed for SCS when herds were ranked by
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production (PC1). Consequently the heritabilities for these two trait – PC combinations 
showed the largest changes (Figure 8.1), 14.5% and 5.6% respectively. Changes in 
heritabilities of fertility traits were smaller, but changes could be relatively large because the 
heritabilities themselves were smaller. Largest changes were seen for DFS – fertility, 
increasing from 8.4 to 9.7% and for NINS – production intensity where the heritability more 
than doubled from 1.9% to 4.2% with increasing intensity. 

Genetic correlations within traits across environments (Table 8.2) were smaller, indicating 
more changes in ranking of breeding values for the two fertility traits than for milk production 
and SCS. For the combinations DFS – fertility, NINS – fertility and NINS – scale the genetic 
correlation between the extreme environments (pc1 and pc15) was less than 0.9, while it was 
close to 0.9 for DFS – intensity. Other genetic correlations were mostly around 0.97, except 
for SCS – fertility, SCS – scale and milk – relative performance which were above 0.99. 
Analyses for DFS - scale and DFS - relative performance did not converge, probably due to 
lack of variation in additive variance across environments. 

 
Table 8.2. Genetic correlations (approximate standard error is given as subscript), within 
traits, between lowest and highest analyzed environments (pcenv1 and pcenv15). 
 305d Milk SCS DFS NINS 
Production intensity (PC1) 0.976 0.019 0.985 0.027 0.911 0.085 0.970 0.157

Fertility (PC2) 0.960 0.025 0.9971 0.883 0.097 0.899 0.157

Scale (PC3) 0.960 0.025 0.998 0.015 1.0001 0.841 0.153

Relative performance (PC4) 0.998 0.009 0.951 0.035 1.0001 0.9742

1 Model with heterogeneous additive (co)variances did not converge 
2 Bounding of variance components prevented calculation of standard errors 

 
Multivariate analysis 

Genetic correlations between milk and SCS in the average environments varied around a 
mean of 0.35 while the genetic correlations between milk and DFS and milk and NINS tended 
to be somewhat higher (Table 8.3). These genetic correlations between the traits and milk in 
the same environment varied considerably over environments (Figure 8.2): milk with SCS 
from 0.25 to 0.47, with DFS from 0.30 to 0.48 and with NINS from 0.18 to 0.64. In some 
instances the genetic correlation with milk production in another environment was higher than 
the correlation with milk in its own environment (Table 8.3). For example, the genetic 
correlation between NINS and milk in low production herds was 0.21, while the genetic 
correlation between NINS in low production herds and milk in high production herds was 
0.67.  
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Table 8.3. Genetic correlations within and across environments between 305 day milk 
production (on each row) and fertility traits and SCS. Animals were ranked according to 
environmental values (principal components) and grouped into 15 environmental groups 
(pcenv1 to pcenv15). For each Principal Component – trait combination nine correlations are 
given. On diagonal correlations with milk in the same environment. Top rows correlation of 
traits with milk in low environment (pc1), middle rows correlation with average environment 
(pc8) and bottom rows in high environment (pc15).  
  SCS  DFS   NINS  
Prod. intensity - PC1 Low Av. High Low Av. High Low Av. High 
Low 0.29 0.30 0.31 0.39 0.45 0.48 0.21 0.14 0.09 
Average 0.34 0.35 0.35 0.34 0.38 0.41 0.47 0.40 0.34 
High 0.38 0.39 0.39 0.21 0.26 0.29 0.67 0.56 0.49 
Fertility - PC2 Low Av. High Low Av. High Low Av. High 
Low 0.39 0.37 0.36 0.48 0.48 0.48 0.32 0.28 0.18 
Average 0.35 0.34 0.33 0.33 0.37 0.39 0.53 0.47 0.43 
High 0.33 0.29 0.28 0.23 0.28 0.31 0.68 0.66 0.64 
Scale - PC3 Low Av. High Low Av. High Low Av. High 
Low 0.35 0.37 0.40 0.301 0.301 0.301 0.60 0.64 0.68 
Average 0.33 0.35 0.38 0.351 0.351 0.351 0.39 0.43 0.47 
High 0.31 0.33 0.36 0.421 0.421 0.421 0.12 0.14 0.18 
Rel. perf. - PC4 Low Av. High Low Av. High Low Av. High 
Low 0.47 0.46 0.45 0.421 0.421 0.421 0.34 0.35 0.36 
Average 0.37 0.36 0.36 0.361 0.361 0.361 0.28 0.30 0.32 
High 0.27 0.26 0.25 0.301 0.301 0.301 0.21 0.24 0.26 
Approximate standard errors for SCS on average 0.066 (ranging from 0.048 to 0.082), for DFS 0.089 
(0.071-0.107) and for NINS 0.113 (0.095-0.130). 
1Variable additive genetic (co)variance model did not converge. Variation in genetic correlations is 
entirely due to variable additive genetic variance over environments of milk only. 

 
Genetic correlations decreased with increasing relative performance, but for the other PC’s 

there were no consistent trends (Figure 8.2). The trends of the correlations of milk with DFS 
and milk with SCS were similar, except over production levels. The trends of the correlations 
of milk with DFS tended to be opposite to the trends of the correlations of milk with NINS, 
except over relative performance. The genetic correlations of milk with NINS were the most 
variable. They were weakest (<0.2) in large herds, and strongest (>0.6) in small herds and 
high fertility herds. Genetic correlations of SCS with milk tended to change less than 
correlations with DFS and NINS with milk, and were almost constant over herds ranked 
according to scale (PC3). 
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Table 8.4. Correlated responses to selection in the average environment for an increase in 
milk of 1000kg or a decrease in DFS, NINS and SCS. Animals were ranked according to 
environmental values (principal components) and grouped into 15 environmental groups 
(pcenv1 to pcenv15). The average environment is pcenv8. Correlated responses are given for pcenv8 
itself and for pcenv1 (=low) and pcenv15 (=high). PC1 production intensity, PC2 fertility, PC3 
scale, PC4 relative performance. 

Selection in Correlated Response  
average. 

environment for 
response 

of 
environment PC1 PC2 PC3 PC4 

  low 7.2 4.8 4.4 4.7 
Milk +1000 kg DFS average 6.2 4.9 4.5 4.7 

  high 5.1 5.1 4.5 4.6 
       
  low 0.11 0.25 0.16 0.10 

Milk +1000 kg NINS average 0.14 0.17 0.15 0.11 
  high 0.16 0.13 0.16 0.12 
       
  low 0.27 0.26 0.24 0.28 

Milk +1000 kg SCS average 0.26 0.25 0.26 0.27 
  high 0.25 0.24 0.28 0.26 
    
  low -193 -201 -183 -100 

DFS: -6 days Milk average -190 -168 -117 -81 
  high -147 -134 -36 -61 
    
  low -35 -72 -183 -100 

NINS: -0.1 Milk average -111 -134 -117 -81 
  high -178 -198 -36 -61 
    
  low -176 -233 -269 -327 

SCS: -0.5 Milk average -233 -229 -243 -247 
  high -298 -209 -214 -167 

 
Selection response 

The estimated correlated response to selection for an increase in milk production in 
average environments were rather constant over environments (Table 8.4). However, the 
response in milk production differed substantially over environments with selection for DFS, 
NINS and SCS in the average environment. For example, selection for a decrease in NINS of 
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0.1 in herds with average fertility caused a decrease in milk in the same environment of nearly 
111kg. However, in herds with low fertility this decrease was only 35kg, while in herds with 
high fertility the decrease was 178kg. In general, selection to reduce SCS or improve fertility 
decreased milk production and vice versa. Selection for reduced SCS led to a decrease in milk 
especially in high production herds and herds with a low relative performance. Selection for 
shorter DFS caused a large decrease in low production and low fertility herds, while the 
largest decreases in milk caused by selection for less NINS occurred in high production, high 
fertility and small herds. On the other hand, selection for an increase in milk had an especially 
high correlated response for NINS in low fertility herds. 

 
DISCUSSION 

The relationship between milk yield and the fertility traits and SCS varied considerably 
over herd environments. Generally in dairy cattle breeding little importance is given to 
genotype by environment interaction. Genetic correlations in production across environments 
tend to be close to unity and reranking of sires is consequently rare or absent. Heterogeneity 
of variances is the most common effect of genotype by environment interactions observed, 
but methods have been developed to take these into account when estimating breeding values 
(e.g. Meuwissen et al., 1996). In this paper strong correlations across environments are also 
observed, though for the fertility traits somewhat lower values, down to 0.84, were observed. 
However, this may not be taken as an indication that G×E was not important. Genetic 
correlations between traits varied more (Figure 8.2) so that in combination with 
heterogeneous variances (Table 8.1) the responses to selection in an average environment 
differed widely across environments (Table 8.4). The implication is that it is difficult to weigh 
the relative importance of different traits, when breeding values are based on another 
environment. 

Variable genetic variances and heritabilities have been reported before. The trend observed 
when no variable residual variances were allowed was that heritabilities of production traits 
increased with production levels (e.g. Hill et al., 1983; Veerkamp and Goddard, 1998; Hayes 
et al., 2003). This trend was also observed with heterogeneous residual variances (Kolmodin 
et al., 2002; Raffrenato et al., 2003). Kolmodin et al. (2002) also reported that heritabilities 
increased for days open with increasing herd averages for days open. Likewise, in the current 
study the heritability for milk increased with increasing production levels and heritability of 
NINS was higher in the environment with more inseminations, i.e. the low fertility 
environment, and in the high production environment. Heritability of DFS, however, was 
higher in the high fertility environment where DFS itself was lower. Over all trait – 
environment combinations there was no consistent trend such as, for example, that 
heritabilities for all traits were consistently higher in the environments where the mean was 
higher. 
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Relative performance was the fourth principal component in which average fertility and 
SCS were evaluated relative to average production. Thus herds where the fertility was high 
and SCS was low despite a high production received a high score. Whereas, herds where the 
fertility was low and SCS high and production at the same time was low received a low score. 
There was a consistent trend in genetic correlations over herds differing in relative 
performance. In herd environments where the relative performance was low, genetic 
correlations with milk were stronger, i.e. less favourable. Phenotypically, the herds with low 
scores for relative performance had the highest SCS levels and lowest fertility. The strong 
genetic correlations in these herds indicated stronger trade-offs between production and 
fertility and/or health. Possibly, management and genetics were not well matched in these 
herds. Raffrenato et al. (2003) also reported less favourable correlations in low production 
environments. 

Apart from the genetic correlations along the relative performance axis there were no 
consistent trends in correlations – environment combinations. The trend in genetic 
correlations of milk with DFS was opposite to the trend with NINS for herd environment 
measured as production, fertility and scale. Kolmodin et al. (2002) reported stronger genetic 
correlations of days open with milk both in lower production and higher fertility herds. 
Furthermore, in our study was found that the trends in response to selection in the average 
environment generally agreed with the trends in genetic correlations with milk in the same 
environment.  

Depending on the environment where selection takes place strong correlated responses 
may occur over the entire environmental range or be more restricted. For example, if selection 
took place in low fertility herds for an increase in milk, a relatively strong response in DFS 
would have occurred not only in low fertility herds but also in average and high fertility herds 
(Table 8.3). On the other hand while selection for a decrease in NINS in high fertility herds 
would have resulted in a relatively strong response in milk in high fertility herds itself, the 
response in low fertility herds would have been relatively weak. With selection for an 
increase in milk the genetic correlations indicated that NINS would have increased (i.e. 
fertility would have decreased) especially if selection had taken place in small herds, herds 
with a high fertility and herds with a high production (Table 8.3). This increase would not 
have only occurred in herds in the same environment, but also in large herds, herds with a low 
production and herds with a low fertility. As a consequence it may be interesting to change 
the environment in which selection takes place depending on the breeding goals. Variable 
genetic correlations may also influence the relative importance of traits in indices used for 
selection. Calus et al. (2005c) showed that the relative importance of fertility to yield traits 
could double across environments and that possible re-ranking based on a total merit index 
occurred. 
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From a biological viewpoint one may interpret strong genetic correlations as trade-offs 
between for example fertility and milk production. Trends in correlations were, however, for 
PC1, PC2 and PC3 opposite for NINS and DFS. These traits are clearly two different aspects 
of fertility from the genetic viewpoint. One possible reason is that DFS depends on the 
decision of the farmer when to inseminate while NINS depends on the cow. However, the 
farmer will base his decision more on the phenotypic value for milk production than on the 
genotypic value. DFS and NINS also differ from a physiological viewpoint. DFS depends on 
heat detection which is determined by oestrus expression levels while insemination success 
depends, amongst other things, on quality of embryos (pers. comm.. T. van der Lende). 
Oestrus levels are lower in high producing cows (Lopez et al., 2004) while embryo quality is 
shown to be better in non-lactating cows than in lactating cows (Sartori et al., 2002). Thus, 
although both DFS and NINS were negatively related to production a simple trade-off 
between fertility and milk production is an oversimplification. 

Variation in herd environment was measured in the current study using principal 
components. The first 4 principal components explained about 33% of the total variance in all 
traits. Thus, a substantial part of the variation in the environmental variables was not 
explained by the PC’s. For example, some soil types were not associated with high or low 
production, fertility or farm size. By limiting the analysis to the first four PC’s, only that part 
of the variation in the environment that was covered by several correlated environmental 
variables was analyzed in this study. As a consequence an underlying environmental 
parameter, such as production intensity influencing several environmental variables, could be 
uncovered. However, one should keep in mind that other uncorrelated environmental 
variables can still be of interest. These variables can be analyzed as a single trait describing 
herd environment. 

Generally, herd environments have been measured using a single trait (Calus and 
Veerkamp, 2003; Hayes et al., 2003), often in the form of the herd average of the trait itself 
that was being analyzed (Kolmodin et al., 2002). Both PCA and single environmental 
variables have their merits. PC’s have the disadvantage that they may be difficult to interpret. 
In the current study the first four PC’s were relatively straightforward, but higher order PC’s 
were not. Single trait herd averages used as the environmental variable is the logical method if 
there is a specific question about the effect of an environmental parameter. For example, 
Berry et al. (2003) found that genetic variance for body condition score increased with 
improving silage quality.  A disadvantage of single trait environmental variables is that the 
response might be to a correlated environmental variable instead of the variable itself, for 
example, the herd average of DFS was strongly correlated to the herd average of production. 
If there was a trend in genetic correlations over DFS herd levels this might or might not have 
been due to production effects. With a PCA all correlated variables are combined into new 
variables. In the current study DFS and milk yield along with other production or production 
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related variable were combined into the first PC, and DFS and other fertility or fertility related 
variables into the second PC. Thus with a PCA effects of overall combined effects, such as 
overall fertility or relative performance are evaluated.  

The use of a dependent variable, such as milk production of individual animals, in the 
explanatory variable such as average herd milk production, is sometimes seen as a 
disadvantage of reaction norm models. This concern is partially alleviated by the use of PC 
where the explanatory variable consists of more than the dependant variable alone. Moreover, 
Calus et al. (2004) showed that the definition of environmental parameters including or 
excluding information from animals themselves in own herd averages hardly influenced 
estimation of genetic parameters. 

Reaction norms provide the opportunity to estimate genetic parameters for an infinite 
number of environments. In practice, however, estimation of parameters should be restricted 
to the range of environments for which sufficient data are available. One reason is that if a 
function is extended into environments without data it is assumed that the trend (e.g. 
increasing variances) is the same over the whole range. A change in a trend cannot be 
detected if data are missing. Unless the estimated reaction norms run parallel polynomial 
models inevitably result in larger variances in extreme environments (Stearns et al., 1991). If 
this is not the case many data points in the extreme environments are required to counter this 
effect. This study restricted the estimation of the genetic parameters to the range of the 
environment of the 4500th animal to the 67,500th animal, with animals ranked according to the 
environmental values, so that enough data around these points were available for reliable 
estimation. The disadvantage is that one restricts the results to the less extreme environments. 
For example, average 305 d production along the PC1 (production intensity) varied in this 
paper from 6500 to 8500 kg. In more extreme environments genetic correlations might be 
more extreme, but a reliable estimate of these correlations cannot be provided. 

For the estimation of heritabilities a second reason for restricting the environmental range 
for which estimations were made was that residual variances also varied over environments. 
Because data for a single animal are generally restricted to one environment only, one cannot 
estimate residual variances of reaction norm components. In this study variation in residual 
variances were estimated by grouping animals based on the environments in which they were 
measured. This can only be done with sufficiently large groups. Small group sizes result in 
unstable residual variances. When group sizes were halved residual variances varied from one 
extreme to the other over short stretches of the environmental range. Working with 
overlapping groups further smoothed the sudden jumping of residual variances across 
environments.  
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CONCLUSION 
Genetic correlations between milk and fertility traits and SCS differed considerably over 

environments. Consequently the response in one trait to selection for another trait also 
differed over environments. Furthermore, if selection took place in one environment, but the 
response occurred in another environment, responses were different. It is thus important to 
take into consideration the environment in which breeding values and genetic correlations are 
determined when the effect of milk production on health and fertility traits and selection on 
these traits is evaluated. 
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Chapter 9 

GENERAL DISCUSSION 
The research presented in this thesis is part of a larger research project that, in order to 

address societal concerns, aims at investigating health and fertility risks of high producing 
dairy cows. One of the questions addressed is whether, next to effects of management and 
genetics separately, the interaction between management and genetic level for milk yield can 
lead to increased health risks. The larger research project consists of an animal experiment, 
genetic-epidemiological research, and evaluations of opinions and direction of different 
stakeholders during discussion meetings.  

The main objective of this thesis is to investigate the magnitude of genotype × 
environment interaction (G×E) for yield, health and fertility traits in dairy cattle using random 
regression models (RRM). After discussing the main results, the aim of the general discussion 
is to reflect on the methodology and the implications for animal breeding. Furthermore, the 
results will be linked to broader issues of robustness of dairy cows, risks of high milk yield, 
and the farmers’ attitude towards G×E for health and fertility. 

  
GENOTYPE × ENVIRONMENT INTERACTION FOR YIELD, HEALTH, AND 
FERTILITY TRAITS 

In this thesis the investigation of G×E was approached by estimation of variance 
components to identify one or more of the following effects of G×E: heterogeneous variances 
across environments, genetic correlation of a trait expressed in different environments being 
less than 1.0 (reranking), and heterogeneous genetic correlations between traits across 
environments. Those effects were estimated for yield (chapter 3), and health and fertility traits 
(chapters 5, 6, 7, and 8), based on a large number of herd characteristics, chosen to reflect 
herd environment and management style of the farmer. Of all these estimates, significant G×E 
was detected in 86% of the situations for yield traits, but only in 14% of the situations for 
health and fertility traits. This suggests that G×E is relatively unimportant for health and 
fertility traits. However, in chapter 4 it was found that the power to detect genetic variance for 
the slope of a linear reaction norm is lower for low heritability traits than for high heritability 
traits. In the cases where G×E was found for health and fertility, large differences in genetic 
variances were observed across environments: genetic variances for fertility traits increased in 
some situations more than twofold, and a threefold increase for genetic variances of SCS was 
found (chapter 7). For yield, the variances at most doubled across environments (chapter 3). 
Genetic correlations of a trait across environments were as low as 0.65 for survival (chapter 
5), while for SCS, on a test-day level, the lowest genetic correlation was as low as 0.72 
(chapter 7). Also, in the literature (chapter 2) within country genetic correlations for health 
and fertility were reported as low as 0.74. Genetic correlations between yield traits across 
environments were all close to unity (chapter 3). Further, in chapter 8 it was demonstrated 
that the magnitude of genetic correlations between yield and health and fertility differed 

 130 



General discussion 

across environments (albeit in all herd environments the correlations were antagonistic). 
These specific effects might be important, but the general conclusion might be that estimated 
G×E effects mainly consisted of heterogeneous genetic variances with limited reranking. 

Of the many environmental parameters (EP) describing herd environment, EP based on the 
phenotypic herd average of the trait analyzed, appeared to be associated with G×E effects, 
especially in terms of heterogeneous variances. Furthermore, herd-year average fat-to-protein 
ratio, change in fat percentage between 14 and 77 DIM, and body condition score were 
associated with heterogeneous variances and reranking for several health and fertility traits 
(chapter 5). For yield traits, the same EP were associated with no G×E (change in fat 
percentage between 14 and 77 DIM), limited heterogeneous variances without reranking (fat-
to-protein ratio), or relatively large heterogeneous variances without reranking (body 
condition score) (chapter 3). 

Lower values for change in fat percentage during the first part of the lactation are 
associated with longer lasting and more severe negative energy balance (De Vries and 
Veerkamp, 2000). Lower fat-to-protein ratio is associated with higher proportions of 
concentrate and less fiber in the diet (Bargo et al., 2003) and higher energy balance of the cow 
(Grieve et al., 1986). Condition score is indicative of the energy balance of the cow as well 
(Veerkamp, 1998). Many environmental parameters were investigated in this thesis, such as 
production level, farm size, average somatic cell score and calving interval, however, it 
appears that the herd parameters linked to nutrition and energy balance are most important for 
G×E, although no direct measures of these factors were available in this study. 

 
METHODOLOGY – REACTION NORM MODELS 
Dimensions of the model 

Reaction norm models have been used to estimate G×E throughout this thesis. Covariance 
functions (Kirkpatrick and Heckman, 1989), estimated by random regression, were used to 
model genetic effects as function of a continuous environmental parameter. Another approach 
that has been used widely to estimate G×E is a multi trait model (also known as character 
state model). In this model, herd environments are grouped and the same trait in another 
group of environments is considered to be a different correlated trait. Reaction norm models 
were chosen above multi trait models because arbitrary grouping of environments is avoided, 
and the number of estimated variance components can be more parsimonious.  

The models fitted were expanded from the most simple reaction norm model with a linear 
random regression on one continuous environmental parameter, to higher order random 
regressions (chapters 3, 5, 6, and 7), to models including two parameters to define the 
environment (chapter 7), and to multivariate reaction norm models (chapter 8). Higher order 
random regressions up to the third order had a significantly better fit for yield traits (chapter 
3) than lower order regressions, but only in a few cases second order random regressions were 
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required for health and fertility traits (chapter 5). The differences in order of fit of the random 
regressions for yield and health and fertility may to some extent be caused by the differences 
in heritabilities of the traits. 

In chapter 7, one environmental parameter reflected herd environment (bulk milk somatic 
cell count), while the other represented the ‘cow environment’ (days in milk). The interaction 
of bulk milk somatic cell count and days in milk was included as a third environmental 
parameter, to account for different levels of G×E at different stages of lactation. Similarly, 
Veerkamp and Goddard (1998) showed that genetic parameters for yield traits are influenced 
not only by month of lactation and herd production separately, but also by an interaction 
between those two factors. In both situations, including a random regression on stage of 
lactation and on the interaction between stage of lactation and the environment, allowed more 
detailed analysis of phenotypic information, e.g., for different stages of lactation rather than 
for lactation averages. Comparing the genetic correlation for SCS across environments based 
on lactation records (i.e. 0.97 based on heifer and 0.93 based on cow data; chapter 5) to the 
genetic correlation across environments based on test-day records (i.e. 0.72 early vs. 0.92 late 
in lactation; chapter 7), indicates that more G×E can be revealed when estimated from more 
detailed phenotypic information. 

 
Alternative models to estimate G×E 

As well as reaction norm models and multi trait models, other models could have been 
used to estimate G×E, such as character process models, structured antedependence (SAD) 
models (Nunez-Anton and Zimmerman, 2000), and splines. At the start of this thesis, little 
experience existed with those alternative models, but in the mean time more experience has 
been gained with those models. Although grouping of environments is not necessarily 
avoided in those models, the number of estimated parameters may be smaller than for the 
RRM and the multi trait model. The difference in variance structure may give higher 
flexibility to for instance SAD models compared to RRM (Nunez-Anton and Zimmerman, 
2000; Jaffrezic et al., 2004). Therefore, the use of RRM and SAD models to estimate G×E 
was compared. 

In a simulation study, a first order structured antedependence model (SAD) and a first 
order RRM were compared in their ability to estimate G×E (Calus et al., 2005a). In the 
simulated data sets, G×E was modeled either following a RRM or structured variances. In the 
case of structured variances, five discrete groups of environments were formed based on 
increasing simulated herd effects. For each group of herds, a different genetic variance was 
simulated. 

When G×E was simulated using structured variances, estimated sire variances of the SAD 
model were closer to the simulated variances than those of the RRM (Figure 9.1). Genetic 
correlations were overestimated by both models, but the overestimation was larger for the 
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RRM than for the SAD (Table 9.1). Correlations between simulated and estimated breeding 
values were slightly higher for the SAD model than for the RRM (Table 9.2). 

When G×E was simulated following a RRM, estimated sire variances across environments 
were close to the simulated variances for both models. Genetic correlations were closer to the 
simulated values with the RRM and overestimated with the SAD model (Table 9.1). 
Correlations between simulated and estimated breeding values were hardly different between 
the SAD model and RRM (Table 9.2). 

Based on the estimated genetic correlations, both the RRM (consistent with results from 
chapter 4), and the SAD underestimated G×E. Based on the correlations between simulated 
and estimated breeding values, SAD models seem to predict breeding values slightly more 
accurate than RRM. However, the differences were so small that both models seem equally 
able to estimate G×E. 
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Figure 9.1. Sire variances across environments estimated with a RRM and SAD model, based 
on simulations with structured sire variances across environments. The triangles mark the 
estimates in each of the five discrete environments for the SAD model. 
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Table 9.1. Simulated and estimated (with RRM or SAD) genetic correlations between groups 
of environments, based on simulations with structured variances or variances based on a 
random regression (SD ranged from 0.001 to 0.042). 

Environment Structured variance Random regression 
1 2 Simulated RRM SAD Simulated RRM SAD 
2 1 0.90 0.96 0.89 0.93 0.93 0.92 
3 1 0.81 0.91 0.84 0.85 0.84 0.88 
3 2 0.90 0.99 0.94 0.98 0.98 0.96 
4 1 0.73 0.83 0.79 0.77 0.77 0.86 
4 2 0.81 0.95 0.89 0.95 0.95 0.94 
4 3 0.90 0.99 0.95 0.99 0.99 0.98 
5 1 0.66 0.70 0.72 0.66 0.66 0.85 
5 2 0.73 0.86 0.81 0.89 0.89 0.92 
5 3 0.81 0.93 0.86 0.96 0.96 0.96 
5 4 0.90 0.98 0.91 0.99 0.99 0.98 

 
Table 9.2. Correlations between simulated and estimated breeding values (with RRM and 
SAD models) in each of the five groups of environments (SD ranged from 0.001 to 0.032). 
 Structured variance Random regression 

Environment RRM SAD RRM SAD 
1 0.96 0.97 0.98 0.98 
2 0.95 0.97 0.99 0.99 
3 0.95 0.97 1.00 0.99 
4 0.96 0.98 1.00 0.99 
5 0.96 0.98 0.99 0.99 

  
IMPLICATIONS OF ESTIMATED G×E 
Breeding value estimation 

In this thesis, G×E effects mainly consisted of heterogeneous genetic variances across 
environments. Little evidence was found for heterogeneous heritabilities across environments, 
apart from the heritability of SCS across DIM and BMSCC. Heterogeneous heritabilities 
across environments can cause differences in accuracy of testing animals in different 
environments (Hill et al., 1983), as shown for estimated breeding values for SCS depending 
on DIM and BMSCC (chapter 7). A consequence of heterogeneous genetic variances is that 
animals from environments with larger variance are favored when this form of G×E is ignored 
during selection (Hill et al., 1983). To overcome this selection bias, breeding values are 
usually estimated using a correction for heterogeneity of phenotypic variances (e.g., 
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Meuwissen et al., 1996). These corrections ‘scale’ estimated breeding values to an average 
environment.  

Another consequence of heterogeneous variance is that selection (e.g. using estimated 
breeding values for an average environment) leads to different absolute responses in different 
environments. For example, it was shown that selection for fertility will yield higher selection 
responses in herds with on average poorer fertility (chapter 5), and that selection for reduced 
SCS will yield higher selection responses in herds with on average higher SCS (chapter 7). 
The models described in this thesis, incorporate heterogeneous variances across environments 
in estimated genetic variances and breeding values, as well as genetic correlations smaller 
than 1.0. As a result, a specific ranking and scale of estimated breeding values can be 
produced for every herd environment. However, for traits that have genetic correlations across 
environments close to unity, use of a correction for heterogeneity of variances in breeding 
value estimation is likely to be sufficient, as ranking on breeding values for a single trait is not 
affected by heterogeneous variances. For traits that have genetic correlations across 
environments that are considerably lower than unity, use of reaction norm models would be 
necessary to accurately predict herd-specific breeding values. Based on the results in this 
thesis, it can be concluded that in breeding value estimation on a single trait basis, correction 
for heterogeneity of variances is sufficient for nearly all traits, and that one list of breeding 
values identifies the best sires for all environments. 

 
Breeding goal 

The discussion whether to present one list of breeding values (after adjustment for 
heterogeneity of variances) or to present environment specific breeding values is not only 
affected by single trait breeding values estimation. Heterogeneous variances of different traits, 
even with no reranking across environments for the individual traits, can cause reranking 
across environments based on a total merit index (Namkoong, 1985). This could be 
considered as a fourth form of GE: the correlations between total merit indexes across 
environments are smaller than 1.0. It was shown that the relative importance of fertility, based 
on genetic standard deviations, compared to protein yield was twice as large in a ‘poor’ 
fertility environment compared to a ‘good’ fertility environment (chapter 5). Furthermore, it 
has been reported that the economic value of fertility (say a decrease of DFS of one day) is 
larger for animals with poor fertility than for animals with good fertility (Esslemont et al., 
2001). The higher genetic variance combined with the larger economic value for DFS in a 
poor fertility environment, would lead to an even greater G×E effect. This seems to contradict 
the common believe that in herds with poor fertility focus should be on management 
improvement and not on selection. 

The breeding goal is defined as the sum of the expected response (i.e. breeding values) in 
the relevant traits, multiplied with their respective economic values. Therefore, when 

 135



Chapter 9 

estimating G×E effects on a breeding goal level, not only the change in genetic parameters 
across environments should be taken into consideration, but also differences in economic 
values across environments. A framework with both genetic parameters and economic values 
depending on herd environment enables derivation of total merit indexes for all possible 
environments, using information from all possible environments while accounting for G×E 
(Kirkpatrick and Bataillon, 1999). Different strategies can be followed for such a framework. 
The most sophisticated option would include herd-specific breeding values and herd-specific 
economic values. More practical options involve one or a limited number of bull rankings, in 
which differences in breeding values and economic values across environments are accounted 
for. When the effect of G×E on breeding values only exists of heterogeneous genetic 
variances, and heritabilities are homogeneous across environments, a correction for 
heterogeneity of variances can be used to account for G×E. When economic values are 
different across environments, an average economic value across environments can be 
calculated, while accounting for the frequency of herds with different economic values. In this 
way, the breeding goal is implicitly defined for an ‘average’ environment. Based on results in 
this thesis, for most traits accounting for heterogeneity of variances seems sufficient. In order 
to predict the outcome of selection for specific herd environments, the ‘average’ breeding 
values can be translated to herd-specific breeding values using herd-specific genetic 
variances. Heterogeneity of variances can be accounted for in economic values (as shown in 
chapter 5), that conveniently can be used in mating programs to select bulls on a herd level 
(Bowman et al., 1996). 

 
Breeding programs 

When the correlation between breeding goals is close to unity, collaboration of breeding 
programs across environments is beneficial, because the sampled population increases, 
resulting in higher selection intensity and higher genetic gain. Presence of reranking might 
reduce benefits of collaboration of breeding programs across environments, and in extreme 
cases, collaboration might actually not lead to higher genetic gain (Mulder and Bijma, 2005). 
For which of the traits collaboration between breeding programs across environments would 
be recommended, can be anticipated from the estimated genetic parameters in this thesis and 
in the literature. For yield and fertility traits, estimated genetic correlations across 
environments were close to unity, and for yield between countries the same was reported to be 
the case (Mark, 2004). These high genetic correlations imply, that selection for yield and 
fertility across environments within countries, and for yield between countries, is beneficial 
and that collaboration of breeding programs will lead to higher genetic gain (Mulder and 
Bijma, 2005). For SCS, mastitis, and survival, in some cases estimated genetic correlations 
across environments were between 0.6 and 0.9, and reported genetic correlations between 
countries had comparable values (Mark, 2004). These lower genetic correlations imply that 
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collaboration between breeding programs in different environments will not lead to higher 
genetic gain for SCS, mastitis, and survival (Mulder and Bijma, 2005). 

 
ROBUSTNESS OF DAIRY COWS 

Environmental sensitivity of dairy cows is often associated with recent issues such as the 
more negative energy balance of high genetic merit cows and the diversification of husbandry 
systems. These issues stimulate the call for ‘more robust’ dairy cows. One way of describing 
robustness is lack of environmental sensitivity: robust animals are not easily affected by 
changes in the environment. Environmental sensitivity is mathematically represented by the 
slope of an animals reaction norm (Falconer, 1990). This provides a direct link to G×E on the 
population level: differences in environmental sensitivity (i.e. robustness) between genotypes 
will show as G×E. Intuitively, environmentally sensitive animals (i.e. with poor robustness) 
are believed to require a stable environment that supports high performance, in order to 
perform optimally. Some studies indicate that in a continuously improving environment, 
selection for increased performance leads to increased environmental sensitivity for the trait 
selected on (i.e., reduced robustness) (Falconer, 1990; Kolmodin et al., 2003; Van der Waaij 
et al., 2004). Based on results in this thesis, here it will be discussed whether environmentally 
sensitive or insensitive animals are expected to be selected, and thus what the effect is of 
selection on environmental sensitivity. Situations will be considered where the environment is 
defined as the average of the analyzed (or a closely related) trait following Falconer (1990), as 
in these cases the average reaction norm of the (base) population is an increasing line. At the 
same time the estimated breeding values across environments give insight in how 
management changes and selection in the same direction together influence environmental 
sensitivity for a trait. The expected performance of an animal across environments is 
represented by the population average reaction norm plus its own breeding value, which may 
increase or decrease across environments. Thus, the environmental sensitivity of an animal is 
equal to the slope of the average reaction norm plus the slope of its own breeding value across 
environments. 

Generally it is observed that when the environment was defined as average of the analyzed 
trait, the estimated genetic variance increased with increasing mean. In this thesis and in the 
literature this was true for yield (e.g., chapter 3, Hill et al., 1983; Boldman and Freeman, 
1990; Kolmodin et al., 2002), and fertility and health traits (e.g., Kolmodin et al., 2002; 
chapter 5). For yield, the animals with the highest breeding values generally also had the 
steepest reaction norm (based on results from chapter 3). This is to be expected when the 
analyzed trait is used to define the environment, as it is unlikely that performance decreases in 
a situation with increasing environmental circumstances and no reranking. Therefore, for 
yield the same animals will be selected in different environments, and, as indicated by 
Falconer (1990), it is expected that selection for yield will favor the most environmentally 
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sensitive animals, irrespective of the environment of selection. For days to first service and 
days to last service, across herd-year average calving interval, the animals with the highest 
breeding values generally also had the steepest reaction norm (chapter 5). However, for days 
to first and days to last service, the ‘best’ animals are those with the lowest breeding values, 
and are consequently the least environmentally sensitive animals. As a consequence, selection 
for improved fertility is expected to result in selection of relatively environmentally 
insensitive and therefore robust animals. 

However care should be taken when interpreting the results in terms of the effect of 
selection on environmental sensitivity and linking it directly to robustness. It was observed 
that with an increase in mean, the variance increased as well. The question is to what extent 
the increased genetic variance is explained by scaling effects. Here, the term scaling effect is 
used in the sense that with a change of the mean for a trait, the variance of that trait is 
expected to change as well. Scaling effects can be removed by transforming the data, although 
it is not as simple as turning around the measurement scale (e.g. subtracting all environmental 
values from the maximum value for the environmental parameter). However, the expressed 
genetic variance for yield will still be larger in herds with higher average yield, and the 
expressed genetic variance for fertility will still be larger in herds with poorer average 
fertility. A more appropriate measure for the variance relative to the mean is the coefficient of 
variation (CV). For instance, for milk yield the CV was found to be rather constant across 
different levels of the mean (Hill et al., 1983), while the variance for yield did increase with 
an increasing mean. Based on data used in chapter 3, the CV was calculated for protein yield 
as the phenotypic SD divided by the phenotypic mean, for the 20% herds with the lowest and 
highest average protein production. For herds with low average protein production, the CV 
was higher (i.e. 14.3%) than for herds with high average protein production (i.e. 12.3%). 
When the CV is roughly constant across different means, the phenotypic variance across 
different means can be standardized by log-transforming the records analyzed (Lynch and 
Walsh, 1998). Re-analyzing the data for protein yield, after log-transformation, showed that 
with increasing mean for protein, the genetic variance for protein hardly changed across 
environments. For herds with low average days to first service (DFS), the CV for DFS was 
lower (i.e. 31.4%) than for herds with high average DFS (i.e. 39.7%). Re-analyzing the data 
for DFS, after log-transformation, showed that with increasing mean for calving interval the 
genetic variance for DFS still increased. In conclusion, the results after the log-transformation 
suggest that there are hardly any genetic differences in environmental sensitivity for protein 
that are not associated with scaling effects. However, genetic differences in environmental 
sensitivity for DFS that are not associated with scaling effects seem higher in herds with high 
average calving interval. 

Thus, when making no distinction in environmental sensitivity caused by scaling or other 
effects, selection for yield is expected to increase environmental sensitivity (ES) for yield, and 
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selection for fertility is expected to decrease ES for fertility. Whether this is desired or not 
depends on several factors. With respect to yield, the selected animals are the least robust 
animals, i.e. their actual yield is most easily affected by changes in the environment. This 
might be perceived as an undesirable characteristic, when the environment becomes ‘less 
supportive’ (i.e., the management change is translated into a decrease in performance), but 
actually as a desirable characteristic, when the environment becomes ‘more supportive’ (i.e., 
the management change is translated into an increase in performance). The increase in ES for 
yield traits, as a consequence of selection for increased performance, does not seem to be a 
problem for the actual yields, because the selected animals are expected to have the highest 
yield in nearly each environment. Furthermore, adjusting performance to a less supportive 
environment for instance as a way to match energy intake and output, might actually be seen 
as a ‘robust’ response on a different level (i.e., the overall welfare of the animal). In other 
words: environmental sensitivity in one trait (yield) may lead to robustness in another trait 
(welfare). However, as a result of the increase in ES for yield traits 1) a (temporal) change in 
herd environment might lead to a larger reduction in yield, which might be perceived as a 
problem and lead to (unnecessary) management changes or individual treatment, and 2) 
increased ES for yield might be associated with increased ES for other traits, such as number 
of inseminations per service period (chapter 8). Therefore, ignoring fertility, whilst selecting 
for yield, gives cows that are more environmentally sensitive for both yield and fertility, with 
on average poorer fertility. 

 
ANIMAL HEALTH RISKS ASSOCIATED WITH HIGH MILK YIELD 

The research presented in this thesis was part of a larger research project that, in order to 
address societal concerns, aimed at investigating health risks of high producing dairy cows. 
Earlier research has shown that genetic selection for yield alone had little risk for acute health 
problems in the average environment, as long as selection was performed on an index 
combining yield with health and fertility traits. However, the remaining question was whether 
the interaction between management and genetic level for milk yield could lead to increased 
health risks. The larger research project contained an animal experiment (Beerda et al., 2005; 
Ouweltjes et al., 2005), genetic-epidemiological research (this thesis, Windig et al., 2005a; 
Windig et al., 2005b; Windig et al., 2005c), and evaluations of opinions and direction of 
different stakeholders during discussion meetings. In this final part of this thesis, results of 
these other parts of the research project are discussed together with the findings in this thesis.  

Phenotypically, increased yield caused by high genetic merit was associated with impaired 
fertility and udder health (Ouweltjes et al., 2005). In this thesis, lower average fat-to-protein 
ratio (possibly reflecting higher energy status of the cows) was related to higher incidences of 
predicted mastitis and poorer insemination success (chapter 5). In the animal experiment, 
higher energy density of the ration was associated with increased yield, better energy balance 
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and higher metabolism, but no effects on fertility or udder health were found (Ouweltjes et al., 
2005). Higher frequency of milking was associated with increased yield, poorer energy 
balance, lower somatic cell count and slightly later onset of oestrus. In the genetic-
epidemiological research it was shown that management was able to alter the relation between 
yield and udder health at herd level, but not at an individual animal level: herds with higher 
yield had on average better udder health whereas within herds animals with higher yield had 
on average poorer udder health (chapter 5, Windig et al., 2005c). This was however not the 
case for fertility: herds with high yields had on average poorer fertility (chapter 5, Windig et 
al., 2005c). 

In this thesis, it was discussed that some estimated G×E effects were associated with 
environmental descriptors reflecting energy status of the cow. This indicates that energy 
status of the cow, next to direct effects on health and fertility, can also affect health and 
fertility through G×E. Further, genetic correlations between yield and fertility and udder 
health were affected by herd environment, but were antagonistic across all environments 
(chapter 8). The genetic correlation between milk and SCS was slightly higher for herds with 
higher production (as indicated by principal component 1; chapter 8). Phenotypically, risks 
with respect to SCS were higher for animals with higher milk yield, and especially for those 
that were producing in herds with high average production. With increasing herd production, 
the genetic correlation between milk and number of inseminations increased with increasing 
herd production, while the genetic correlation between milk and days to first service 
decreased. Phenotypically, animals with high milk yield had increasingly poorer fertility in 
herds with higher production (i.e. more inseminations were needed).  

In conclusion, risks of high milk yield for health and fertility depend on the factors that 
cause the high milk yield. Higher energy density of the ration was associated with better 
energy balance, but at the same time higher metabolism, possibly leading to higher metabolic 
stress in the cows. Higher frequency of milking was associated with better SCS, but poorer 
energy balance and slightly poorer fertility. Therefore, avoiding risks of high milk yield 
evolving from management does not seem straightforward, and likely depends on the attitude 
of the farmer and the constraints in the herd environment. Risks evolving from high genetic 
merit for yield can be counteracted by applying multitrait selection for yield, health and 
fertility simultaneously. 

 
FARMERS’ ATTITUDE TOWARDS G×E FOR HEALTH AND FERTILITY 

An important part of the research project was to evaluate which risks of high milk yield are 
identified by dairy farmers, how they deal with them, and how they possibly would make use 
of the results of the research project. One of the main aims was to evaluate whether dairy 
farmers think that risks of high production arise from management, breeding, or possible 
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Figure 9.2. Indication of preferences of farmers with regard to their breeding goal (“high” 
or “less high”) and herd management (“low input” or “high-tech”), as observed during four 
discussion meetings with dairy farmers in different regions of the Netherlands (170 people, 
mainly farmers, were present at these discussions, being ~ 0.5%  of all Dutch dairy farmers). 

 
interactions between management and breeding. This evaluation was done during four 
discussion meetings with dairy farmers in different parts of The Netherlands, next to 
discussions with representatives of different groups of stakeholders (i.e. animal rights 
organizations (Dierenbescherming), Dutch Ministry of Agriculture, Nature Management and 
Fisheries, Faculty of Veterinary Medicine, Royal Dutch Society for Animal Medicine 
(KNMvD), Farmers unions (LTO, NMV), Dutch Dairy Board (PZ), the cattle improvement 
organization NRS, and the breeding organization HG). With regard to breeding decisions, the 
farmers were asked whether they aimed at high yield or at robustness and longevity. With 
regard to management they were asked whether they aimed at low costs and low labor 
requirements, or at “fine tuning” and top quality feed. The results indicated that most farmers 
chose a combination of low input management and robust animals, or a combination of high-
tech management and high breeding values (Figure 9.2.). Some farmers did choose to 
combine high breeding values with low input management, or robust animals with high tech 
management (Figure 9.2.). These results are interesting, because farmers are often described 
as having one goal (i.e. to increase yield), while these results clearly suggest otherwise. The 
choices of the farmers reflected which strategy they expected to be optimal for their own 
farm. Most of the farmers indicated that management and breeding should go hand in hand, 
whereas a reasonable proportion of the farmers indicated that negative side effects for 
selection on milk yield can be counteracted by improving management. The first statement is 
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Figure 9.3. Averages for 305 d milk production, SCS, and number of inseminations per 
service period across production intensity environments, and the (correlated) responses to 
selection for +1000 kg milk / 305 d in the average environment (given as dotted lines; based 
on results presented in chapter 8). 
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supported by Figure 7.3 that showed that SCS can be most effectively decreased by 
management and breeding decisions simultaneously. To challenge the view that negative side 
effects for selection on milk yield can be counteracted by improving management, average 
305 d milk yield, SCS, and number of inseminations, were plotted against herd environment, 
defined as production intensity (Figure 9.3). Higher production intensity can be interpreted as 
an ‘increase in management to stimulate higher individual milk yield’. For each of the traits, 
the correlated response to selection for increased milk yield in the average environment by 
1000 kg / 305 d was plotted as a dotted line. These figures indicate five things: 1) higher 
average production is on average related to better SCS and poorer fertility, 2) selection for 
higher milk yield alone leads to higher SCS and poorer fertility, 3) selection for higher milk 
yield alone leads to increased ES for yield and number of inseminations, but slightly 
decreased ES for SCS, 4) simultaneous selection for yield and improvement of management 
(with respect to yield) leads to poorer fertility and possibly to higher SCS, and 5) selection for 
yield combined with “less supportive” management (i.e., the cows are not “pushed to fully 
express their genetic potential”), in order to improve fertility, will lead to higher SCS. These 
findings indicate that selection for yield combined with management changes to improve 
yield, lead to poorer fertility and possibly higher SCS, while selection for yield combined 
with management changes to reduce yield, lead to better fertility and higher SCS. Therefore, 
it is concluded that improvement of management (with respect to yield) alone will not be able 
to counteract influence of one-sided selection for yield on health and fertility. 
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Summary 

Genotype × environment interaction (G×E), also known as environmental sensitivity of 
genetic merit, is the phenomenon that different genotypes respond differently to changes in 
the environment. G×E can consist of the following effects: heterogeneous variances across 
environments, genetic correlation of a trait expressed in different environments being smaller 
than 1.0 (reranking), and heterogeneous genetic correlations between traits across 
environments. Traditionally, re-ranking of animals is often considered to be of more concern 
for animal breeders than the change in variance across environments, and for yield traits 
relatively little reranking across environments was observed. However, the recent 
development of including health and fertility traits in a large number of national breeding 
goals renews the interest in G×E. Firstly because little is known about reranking of animals 
for health and fertility traits across environments, and secondly because the change in 
variances across environments becomes important. For example, the relative importance of 
traits in multitrait selection is affected by changes in variances across environments, and the 
change in variances can lead to more phenotypes that perform under a minimum threshold, 
which is especially important for health and fertility traits (for more details, see chapter 2). 
More general reasons why there is an interest in G×E are the debates on risks of high milk 
yields and robustness of animals. Societal concerns exist whether milk yield can be too high 
and impair health of cows. As breeding is responsible for about half of the increase in yield in 
the last decades, another question is whether this strong selection for yield has led to selection 
of less robust animals, and whether the selected animals are the optimal choice for the range 
of different herd environments that exists today. 

A recent development in the estimation of G×E is the use of covariance functions, that 
estimate genetic variances as a function of environmental descriptors (Veerkamp and 
Goddard, 1998; Calus et al., 2002; Kolmodin et al., 2002; Fikse et al., 2003b). These 
covariance functions can be directly estimated from the data using random regression models 
(Van der Werf et al., 1998), and for the purpose of estimating G×E are called reaction norm 
models (for more details, see chapter 2).  

The main objective of this thesis is to investigate the magnitude of genotype × 
environment interaction (G×E) for yield, health and fertility traits in dairy cattle using random 
regression models. 

  
At first a reaction norm model was applied to 14 environmental parameters, calculated as 

herd-year phenotypic averages, to estimate G×E for milk, fat, and protein yield in Dutch dairy 
cattle (chapter 3). The yield traits showed G×E in combination with nearly all environmental 
parameters. Hardly any reranking of sires was found, but genetic variances changed 
considerably and even doubled across environments in some situations. The largest variances 
for the yield traits were found in herds with on average high protein, high persistency, young 
age at calving, high body condition score, short calving intervals, and calving peak in the 
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autumn or winter. Reranking of sires based on an economic index combining yield traits (i.e. 
Inet) was limited due to comparable changes in genetic variance of the yield traits across 
environments. 

Estimated G×E for protein yield was largest when associated to herd-year average of 
protein yield. In this situation the environmental parameter was calculated from the 
phenotypic records that were used in the analysis. This result added to the concern about 
possible confounding between the environmental parameter and the analyzed records. Thus, 
the aim of chapter 4 was to investigate effects of calculating environmental parameters from 
the records that are actually analysed. A simulation study was performed where traits were 
defined as linear functions of the simulated herd effect and both random and non-random 
mating of animals was considered. A proposed alternative model iteratively replaced within-
herd average phenotypic performance as environmental parameter, by estimated fixed herd 
effects. The alternative model, however, was not able to better disentangle genetic and 
environmental effects. Non random use of sires, poor genetic connectedness and small herd 
size had a large impact on estimated covariance functions, calculated environmental 
parameters, and expected breeding values. The bias was such that based on unbalanced data 
reaction norm models underestimated G×E. This bias can be reduced using large numbers of 
animals per herd to calculate environmental parameters. If herd-years are small, they could be 
joined per herd across years. However, if these groups are stretched out over too long a time, 
information on G×E (i.e., the parameters explaining the environment), might become less 
specific and some information to estimate G×E might be lost. 

In chapter 5, the association of herd environment with phenotypic levels and breeding 
values of fertility and health traits was investigated. Herds with lower average somatic cell 
score had in general more desirable values for almost all analyzed traits (i.e. days to first 
service was 7 days shorter), as did herds with lower average calving interval (i.e. 2.8% lower 
incidence of predicted mastitis). Herds with higher average protein production had slightly 
poorer fertility, but more desirable values for all other analyzed traits (i.e. 5.1% less predicted 
mastitis, 0.4 lower somatic cell score and 0.6 higher body condition score). Genetic variances 
varied generally only slightly across environments, but in some cases increased more than 
twofold across environments. The lowest estimated genetic correlations based on the heifer 
data were 0.76 (SE 0.21) for first service conception between herds with differing average 
body condition score, and based on the cow data 0.65 (SE 0.10) for survival between herds 
with differing average age at calving. The relative importance of days to first service 
compared to protein yield, measured in genetic standard deviations, was one and a half times 
as large in herds with an average calving interval of 410 compared to herds with an average 
calving interval of 370 days. Therefore, response to selection for fertility is expected to be 
highest in herds with poor fertility. 
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To estimate G×E based on more detailed phenotypic information, analysis were performed 
for fat yield and fat percentage (chapter 6) and somatic cell score (chapter 7) based on test-
day records rather than on lactation averages. In chapter 6, G×E was estimated for fat yield 
and fat percentage, using a random regression on average herd test-day fat percentage, for 
Australian dairy cattle. The hypothesis was that G×E for fat yield and fat percentage is an 
indicator for susceptibility to the metabolic disorder milk fat depression. Milk fat depression 
was defined as 1) variation of milk fat percentage of animals within lactation, and 2) the 
deviation of an animal’s fat percentage on a test-day from its expected fat percentage based on 
fat percentage on the first test-day. These traits had estimated heritabilities of 4 and 5% and 
genetic correlations between environments with low and high average fat percentage of 0.43 
and 0.50. Genetic correlations between fat yield expressed in different environments ranged 
from 0.83 to 1.00. Genetic correlations between fat percentage expressed in different 
environments ranged from 0.87 to 1.00. Results suggested that genetic variation in 
susceptibility to milk fat depression is present and that selection for reduced susceptibility to 
milk fat depression is possible. Low susceptibility for milk fat depression was associated with 
a small decline in fat yield between test-days with high and low average fat percentage. 
Hence, low susceptibility for milk fat depression was associated with environmental 
insensitivity for fat yield. 

In chapter 7, G×E was estimated for somatic cell score (SCS) based on test-day records of 
Dutch dairy cattle. The reaction norm model was further extended by not only considering a 
random regression on an environmental parameter (bulk milk somatic cell count) but also on 
days in milk and on the interaction between bulk milk somatic cell count and days in milk. 
This allowed individual differences in estimated lactation curves, but also differences in 
estimated G×E at different stages of lactation. Estimated sire variances for SCS were highest 
early in lactation at high levels of bulk milk somatic cell count and lowest early in lactation at 
low levels of bulk milk somatic cell count. Genetic correlations between SCS at the same 
stages of lactation, across levels of bulk milk somatic cell count, were between 0.72 and 
unity. The lowest correlated responses across bulk milk somatic cell count and days in milk 
were less than half the direct response to selection in the response environment. Responses to 
selection were reasonably high among environments in the second half of the lactation, while 
responses to selection between environments early and late in lactation tended to be low. 
Selection for reduced SCS yielded the highest direct response early in lactation at high 
BMSCC. The results indicated that using more detailed phenotypic information, i.e., on a test-
day level, reveals greater G×E effects. 

In chapter 8, G×E was estimated for two traits together, by investigating the dependency of 
the genetic relationship between milk yield and health and fertility on herd environment. Herd 
environment was described by 4 principal components comprising a number of herd 
characteristics: 1) intensity defined as average production per cow, 2) average fertility, 3) 
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farm size, and 4) relative performance indicating whether herds had good (poor) health and 
fertility despite a high (low) production. Data was analysed with a multi-trait reaction norm 
model. Genetic correlations of milk yield with fertility (days to first service and number of 
inseminations per service period), and somatic cell score, were across all herd environments 
antagonistic but the magnitude varied across environments. Genetic correlation of milk yield 
with DFS varied from 0.30 in small herds to 0.48 in herds with low average fertility. 
Correlations of yield with NINS varied from 0.18 in large herds to 0.64 in high fertility herds, 
and with SCS from 0.25 in herds with a high fertility relative to production to 0.47 in herds 
with a relatively low fertility. Selection in environments of average value resulted in different 
predicted responses across environments. For instance, selection for a decrease of NINS of 
0.1 in an average production environment decreased milk yield by 35 kg in low but by 178 kg 
in high production herds. 

 
Results of previous chapters are discussed together in chapter 9, with main emphasis on 

use of reaction norm methodology, influence of selection on robustness of dairy cows, 
implications of estimated G×E effects, and animal health risks associated with high milk 
yields. Reaction norm models were found to be able to deal with heterogeneous genetic 
variances, as well as genetic correlations across environments smaller than 1.0, and therefore 
enable to accurately predict breeding values and performance across environments. Random 
regression models and structured antedependence models were found to be both able to 
estimate G×E, although they both underestimated the genetic correlation between a trait 
expressed in different environments. It was discussed that a reasonable proportion of 
estimated G×E effects were related to herd effects that are somewhat related to nutrition or 
energy status of the cow. The herd effects body condition score, fat-to-protein ratio, and 
change in fat percentage during lactation are all associated with differences in energy status of 
cows. Further, it was discussed that selection for increased yield likely leads to increased 
environmental sensitivity for yield, whereas selection for increased fertility likely leads to 
decreased environmental sensitivity for fertility. This indicates that selection for fertility 
likely results in increased robustness with respect to fertility. Based on the estimated genetic 
parameters, within the range of considered herd environments one breeding program for yield 
and fertility traits seems sufficient, whereas for SCC and survival different breeding programs 
might be more effective. Finally, the results of this thesis were discussed in the light of other 
results from the research project “Animal health risks associated with high milk yield”. 
During discussion meetings, most dairy farmers indicated that management and breeding 
should go hand in hand, while a reasonable proportion of the farmers indicated that negative 
side effects for selection can be counteracted by improving management. Based on the results 
in this thesis it was demonstrated, however, that on average this is not the case. 
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Samenvatting 

Het doel van dit proefschrift is het schatten van genotype-milieu interactie voor productie, 
vruchtbaarheids- en gezondheidskenmerken bij melkvee. Genotype-milieu interactie is het 
verschijnsel dat veranderingen in het management (voeding, huisvesting, klimaat, etc.) op een 
melkveebedrijf een verschillende uitwerking hebben op de prestaties van verschillende dieren. 
Onderlinge verschillen in prestaties kunnen groter of kleiner worden, en in sommige gevallen 
kan het zo zijn dat het ene dier beter presteert op het ene bedrijf, terwijl een ander dier beter 
presteert op een ander bedrijf. Dit kan leiden tot twee effecten waarmee in de 
melkveehouderijpraktijk rekening moet worden gehouden: 1) een verandering in management 
heeft niet hetzelfde effect op de prestaties van verschillende dieren, en 2) voor verschillende 
typen bedrijven zijn wellicht verschillende dieren gewenst. Het schatten van genotype-milieu 
interactie kan helpen bij het beantwoorden van belangrijke vragen rond robuustheid en 
gezondheidsrisico’s van hoge melkproducties. 

Onderzoek naar genotype-milieu interactie is tot nu toe voornamelijk gericht op 
productiekenmerken. Door het toenemende belang van gezondheids- en 
vruchtbaarheidskenmerken is de aandacht voor genotype-milieu interactie toegenomen. Om 
de prestaties van dochters van een stier op verschillende bedrijven goed te kunnen 
voorspellen, is het bijvoorbeeld belangrijk om te weten of mastitisgevoeligheid van dochters 
van een stier hetzelfde is in verschillende landen, of op bedrijven met een hoog en laag 
celgetal. Daarnaast is het belangrijk om te weten of selectie onder alle omstandigheden even 
betrouwbaar is. In dit proefschrift zijn de fokwaarden van stieren berekend met een 
zogenaamd reactienorm model waarmee de fokwaarden als functie van de omgeving zijn 
gemodelleerd. Het verloop van de fokwaarde van een stier over verschillende omgevingen 
heen, geeft aan of de dochters van een stier al dan niet gevoelig zijn voor veranderingen in de 
omgeving. In dit proefschrift zijn de reactienorm modellen getest met behulp van computer 
simulatie en vergeleken met een ander type model, het SAD model. Bij de analyse van 
praktijkdata zijn de reactienorm modellen uitgebreid van een kenmerk gecombineerd met een 
dimensie voor de omgeving, naar meerdere dimensies voor omgevingen en meerdere 
kenmerken. In dit laatste geval wordt er rekening mee gehouden dat de genetische correlatie 
tussen melkproductie en bijvoorbeeld vruchtbaarheid beïnvloedt wordt door de omgeving.  

Verschillen in bedrijfsomgevingen zijn bepaald aan de hand van informatie die 
beschikbaar was via melkcontrole-, inseminatie- en exterieurgegevens van het NRS. 
Bedrijfsomgevingen zijn in dit proefschrift gedefinieerd als het gemiddelde van dieren op 
hetzelfde bedrijf voor een bepaald kenmerk, bijvoorbeeld bedrijfsjaargemiddelde 
eiwitproductie, tussenkalftijd, celgetal of het aantal melkgevende dieren. In eerste instantie is 
gekeken naar de relaties tussen deze bedrijfskenmerken en onderlinge verschillen in productie 
van vaarzen. Over het algemeen was de rangschikking van stieren, op basis van de prestaties 
van hun dochters, hetzelfde voor verschillende bedrijven. De onderlinge verschillen in 
fokwaarde voor productie tussen stieren waren echter wel groter op bedrijven met een 
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gemiddeld hoge productie, een hoge persistentie, een jonge leeftijd bij afkalven, een hoge 
conditiescore, een korte tussenkalftijd, en wanneer de meeste dieren in de winter afkalfden. 

Vervolgens is gekeken naar de relaties tussen dezelfde bedrijfskenmerken en onderlinge 
verschillen in fokwaarden voor vruchtbaarheid, celgetal, celgetalpieken (voorspeller voor 
mastitis), survival (levensduur) en conditiescore. Bedrijven met gemiddeld een lage 
tussenkalftijd en een laag celgetal, scoorden het beste voor de genoemde gezondheids- en 
vruchtbaarheidskenmerken. Op bedrijven met een bovengemiddelde productie, scoorden de 
dieren bovengemiddeld voor de gezondheidskenmerken, maar tegelijkertijd was de 
vruchtbaarheid lager dan gemiddeld. De onderlinge verschillen in fokwaarden van stieren 
voor vruchtbaarheid namen fors toe, naarmate de gemiddelde vruchtbaarheid op een bedrijf 
slechter werd. Het bleek dat het effect van selectie voor vruchtbaarheid, t.o.v. eiwitproductie, 
twee keer zo groot was op bedrijven met een gemiddeld lage vruchtbaarheid, als op bedrijven 
met een gemiddeld goede vruchtbaarheid. De stieren die het beste scoorden voor 
vruchtbaarheid in een omgeving, scoorden doorgaans ook het beste in andere omgevingen. 
Voor celgetal, celgetalpieken en survival, was de rangschikking van stieren in een aantal 
situaties afhankelijk van de bedrijfsomgeving. 

Celgetal is een kenmerk dat sterk afhangt van de omgeving (aanwezigheid van 
mastitisverwekkers, hygiëne tijdens het melken, etc.), niet alleen per lactatie, maar ook tijdens 
de lactatie. Daarom is voor celgetal ook bepaald hoe groot de genotype-milieu interactie is op 
testdagniveau. Celgetal hing hierbij af van het berekende tankcelgetal op de bedrijven. De 
resultaten lieten zien dat de rangschikking van stieren op basis van celgetal aan het begin van 
de lactatie werd beïnvloedt door tankcelgetal, terwijl dit aan het einde van de lactatie 
nauwelijks het geval was. De verschillen in fokwaarden van de stieren bleken groter op 
testdagniveau, dan op lactatieniveau. Dit geeft aan dat ook veranderingen in de omgeving op 
korte termijn (bijvoorbeeld de aanwezige mastitisverwekkers) kunnen leiden tot verschillen in 
expressie van de genetische aanleg voor celgetal. 

Analoog aan de analyses voor celgetal is gekeken naar het verloop van vet percentage en 
kg vet als functie van bedrijfsgemiddelde vetpercentage, voor Australisch melkvee. Dit 
verloop is gebruikt als voorspeller voor de metabolische stoornis ‘melkvet-onderdrukking’, 
die mogelijk kan leiden tot (subklinische) pensverzuring en klauwbevangenheid. Hierbij is er 
vanuit gegaan dat het gemiddelde vetpercentage op een bedrijf samenhing met de 
samenstelling van het rantsoen: een laag vetpercentage werd geassocieerd met een hoog 
aandeel krachtvoer en weinig structuur in het rantsoen. Kenmerken gedefinieerd op basis van 
het verloop van vetpercentage, hadden een erfelijkheidsgraad van 4 tot 5% en gaven daarmee 
aan dat selectie tegen melkvetonderdrukking mogelijk is. 

Uiteindelijk is ook de invloed van veranderingen in de omgeving op de relatie tussen 
verschillende kenmerken onderzocht. In alle omgevingen waren hoge fokwaarden voor melk 
gemiddeld geassocieerd met lagere vruchtbaarheid (hogere fokwaarde voor aantal 
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inseminaties) en hoger celgetal. De sterkte van de relatie tussen de fokwaarde voor melk en 
vruchtbaarheid en celgetal hing echter wel af van de bedrijfsomgeving. De relatie tussen 
fokwaarden voor melk en vruchtbaarheid was bijvoorbeeld zwak op grote bedrijven, maar 
sterk op bedrijven met gemiddeld een goede vruchtbaarheid. 

De resultaten in dit proefschrift kunnen gebruikt worden om actuele vragen te 
beantwoorden over robuustheid van melkkoeien en de gezondheidsrisico’s van hoge 
melkproducties. Het beeld bestaat dat fokken op een hogere productie ten koste is gegaan van 
robuustheid van de dieren. De resultaten in dit proefschrift laten zien dat de productie van 
dieren met een hoge aanleg voor melkproductie relatief gezien het sterkste verandert ten 
gevolge van veranderingen in de bedrijfsomgeving. Echter, de dieren met de hoogste aanleg 
voor melkproductie hebben, ondanks deze grotere veranderingen, wel de hoogste productie 
onder verschillende omstandigheden. De resultaten lieten ook zien, dat de vruchtbaarheid van 
dieren met een hoge aanleg voor vruchtbaarheid relatief gezien het minst verandert ten 
gevolge van veranderingen in de omgeving. Dat duidt erop dat fokken op vruchtbaarheid de 
robuustheid van dieren m.b.t. vruchtbaarheid verhoogd. 

Om maatschappelijke zorgen over gezondheidsrisico’s van hoogproducerende dieren te 
beantwoorden is in de algemene discussie de relatie gelegd tussen de geschatte genotype-
milieu interactie in dit proefschrift en de overige resultaten van een breder project, dat bestond 
uit een dierexperiment, genetisch-epidemiologisch onderzoek en discussies met verschillende 
stakeholders. Tijdens discussiebijeenkomsten met veehouders bleek dat de meeste 
melkveehouders vinden dat management en fokkerij hand in hand moet gaan, terwijl 
sommigen denken dat negatieve effecten op vruchtbaarheid en gezondheid tengevolge van 
eenzijdig fokken op productie, kunnen worden opgevangen met managementveranderingen. 
Uit het onderzoek bleek dat managementveranderingen de verminderde vruchtbaarheid en 
verslechterde uiergezondheid als gevolg van selectie op productie niet kunnen opvangen en 
dat fokken op deze kenmerken daarom noodzakelijk is. 
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ABBREVIATION KEY 
 
AHTDF%   Average herd-test-day milk fat percentage 
BCS   Body condition score 
BMSCC  Bulk milk somatic cell count 
BVM    Bivariate repeatability model 
CF   Covariance functions 
CIV    Calving interval 
CV    Coefficient of variation 
DFS    Days to first service 
DFLS    Days first to last service 
DIM   Days in milking 
DLS    Days to last service 
EBV   Estimated breeding value 
EP    Environmental parameter 
ES    Environmental sensitivity (of genetic variance) 
FSC    First-service conception 
G×E    Genotype × environment interaction 
HYS    Herd-year-season 
MF%   Milk fat percentage 
MFD    Milk fat depression 
MFDLAC   Milk fat depression trait defined on a lactation level 
MFDTD   Milk fat depression trait defined on a test-day level 
NINS    Number of inseminations per service period 
NR56    Non-return at 56 d after first insemination 
PCA    Principal components analysis 
PC#    Principal component with number 
pcenv#    Average principal component value of environmental group number # 
PTA   Predicted transmitting ability 
RR    Random regression 
RRM    Random regression model 
SAD   Structured antedependence models 
SCC   Somatic cell count 
SCS   Somatic cell score 
TBV   True breeding value 
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