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Abstract 
 
Prakoso, K. U., 2006. Tropical forest mapping using polarimetric and interferometric 
SAR data. A case study in Indonesia, Doctoral thesis Wageningen University, 
Wageningen, The Netherlands. Tropenbos-Kalimantan Series 10, 125p. 
 
A study was made of the potential of the combined use of C-, L- and P-band 
polarimetric and C- and L-band interferometric airborne SAR data for tropical forest 
mapping. These data were collected with the NASA/JPL AirSAR during the PacRim-
2 2000 campaign in Indonesia. The Sungai Wain forest reserve and its surrounding 
area near Balikpapan city, located in the province of East-Kalimantan, Indonesia, was 
chosen as study site. This site covers an area of 10 x 60 km2, which consists of a wide 
variety and complex mosaic of vegetation and land cover types. Extensive and 
detailed ground data measurements were made. 
 
The approach presented in this thesis includes new elements such as (1) slope 
correction, using InSAR, (2) mapping, using a new reversible transform technique 
and (3) Iterated Conditional Modes (ICM), using prior knowledge such as height and 
texture. The C-band InSAR DEM allowed for a correction of the disturbing effects of 
relief on the backscatter level. The new method based on a reversible transform of the 
covariance matrix was introduced to describe the full polarimetric information of land 
cover type target properties, allowing for the development of simple and robust 
classifiers. The ICM approach was extended using additional information such as 3-D 
textural information derived from the InSAR DEM. This approach was demonstrated 
using a substantial ground truth data set of land cover observations; the result was 
then validated using a large independent data set with a different legend structure. The 
results show that most land cover types can be accurately mapped. The land cover 
classification result reached 88.9% accuracy for a commonly used legend, while for 
the independent data set, using a ‘radar’ legend with more classes, the result improved 
to 93.8%. Validation of the results by inter-comparison provided large consistency. 
The best results of land cover type classification are obtained for the C- and P-band 
and for the C-, L- and P-band fully polarimetric combinations, for which the 
additional use of relief correction and texture had no noticeable effects. Biomass data 
were collected for a large number of forests transects and several non-forest plots. The 
linear relationships between biomass and the radar responses in C-, L- and P-band 
were not strong. It is evident that this result is caused by the complexity of vegetation, 
frequent forest fires and the effect of radar saturation at a certain biomass level.   
 
This study has provided the first experiences with this kind of new technology and 
methodology in Indonesia. It may offer a substantial contribution to the developments 
of similar approaches for tropical forest regions in general, especially in those areas 
where it is difficult to obtain data from optical sensors. 
 
Key words: polarimetry, interferometry, classification, biomass estimation, tropical 
forest.  
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1. Introduction 
 
1.1 Introduction 
 
The present awareness and concern about global environmental changes such as high 
rates of deforestation has prompted governments and international organisations to 
develop effective measures for a better management of our environment. 
Deforestation rates are especially high in the vast tropical rain forest areas. At the 
same time these areas are acknowledged as being very important in the global 
hydrological and biochemical cycles. They contain important genetic reservoirs, and 
are potential permanent sources of production for the benefit of an immense number 
of people. For these reasons, the government of Indonesia has decided to take strong 
measures in support of sustainable forest management. 
 
For management of these areas, the availability of up-to-date information is 
imperative. An almost continuous cloud cover is one of the main obstacles for timely 
acquisition of information, while the pronounced topography of the terrain and the 
vastness of the area, fragmented over many islands, create additional problems. 
Approximately 75% of the Indonesian land surface is covered by forest. Of this, 65 
million ha is designated as production forests where only selective logging is allowed. 
These production forests are used by some concession holders to produce timber. 
Another 49 million ha is designated as protected forests where no deforestation is 
allowed. These protected forests consist of areas selected for nature conservation, and 
forest areas on steep slopes selected to protect watersheds. The remaining 30 million 
ha, so-called conversion forests, are areas in the process of change into other types of 
land use, such as forest plantations or agricultural areas (Sumitro, 1993).  
 
The government, in its varied duties such as supporting planning and policy-making, 
enforcing legislation and supporting land management, requires reliable and up-to-
date information. Hence, data are required to verify proper execution of rules 
developed for sustainable management and to evaluate the (long term) effects of these 
measures. Current remote sensing techniques for acquiring information, such as aerial, 
photography and optical satellite data (i.e. from LANDSAT and SPOT) have been 
used widely for forest survey and monitoring, but image acquisition is severely 
affected by the persistent cloud cover (Gastellu-Etchegorry, 1988). Advanced airborne 
and space-borne radar techniques are, however, very promising in this respect. 
 
To acquire data on forest and land cover characteristics, modern radar remote sensing 
techniques such as interferometric and polarimetric synthetic aperture radar are of 
increasing importance. Considering current information requirements in Indonesia, it 
would even seem impossible to work without these tools. Many different types of 
radar sensors exist and, depending on the observation platform used, each specific 
radar sensor potentially covers a fraction of the necessary information. 
 
The Indonesian Ministry of Forestry (MoF) considers remote sensing, especially radar 
remote sensing, as the best practical approach to collect and/or verify such 
information in such large quantities. It would, for example, be very useful if 
information on the land cover changes, degree of crown cover opening, biomass 
estimation and timber road construction could be acquired periodically. These 
considerations motivated MoF, in co-operation with the Tropenbos Foundation and 
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Wageningen University, to initiate a research project to explore the applicability of 
new mapping and biomass estimation tools.  
 
 
1.1.1 Review on the use of radar in land cover classification and biomass estimation 
 
Recent reviews on the application of radar in forestry show that SAR systems have a 
good capability in discriminating various types of (tropical) forest cover (Van der 
Sanden, 1997; Varekamp, 2001; Quiñones, 2002; Sgrenzaroli, 2004). In general 
classification results are poor if only single-frequency, single-polarisation or single- 
overpass data are used. In order to improve the radar classification capability, either 
multi-temporal or multi-frequency data are required. Multi-temporal data, which may 
be acquired by airborne or satellite systems, are particularly important to separate 
forest types (Ferrazzoli et al., 1999). Multi-frequency or multi-polarisation data are 
made available by several types of airborne SAR systems, such as the NASA/JPL 
AirSAR. These are capable of acquiring interesting classification results, due to 
characteristics of multi-frequency interferometric and polarimetric features, which can 
be associated to vegetation structures. 
 
A systematic study on the use of ERS radar data for implementing a land cover 
change monitoring system at the Guaviare site in Colombia shows that linking land 
cover change models with multi-temporal ERS SAR observations data can be used to 
detect changes on vegetation cover types and, to some extent, mapping land cover 
types. Classification accuracies in the order of 60-70% were obtained for forest, 
secondary vegetation, pastures and natural grasslands (Bijker, 1997). The study of 
Van der Sanden (1997) in the tropical forest of Guyana indicated that the combination 
of high and low frequency radar systems could be used for land cover mapping in a 
tropical environment. Another important finding was that the AirSAR system with its 
high resolution can be used in forest management at the local scale and is 
complementary to satellite radar systems. Hoekman and Quiñones (2000) at the 
Guaviare test site in the Colombian Amazon, studied the capabilities of AirSAR to 
discriminate four land cover classes and biomass estimation using a classification 
technique that involves radiometric and polarimetric information. The results indicate 
the level of accuracy increases when using a multi-frequency combination, and also 
clearly indicate how SAR systems can be designed to accurately monitor processes of 
deforestation, land and forest degradation, and secondary forest re-growth. Another 
study was executed at the Araracuara test site in the Colombian Amazon, using the 
same technique but extended with the Iterated Conditional Modes (ICM) approach 
(Hoekman and Quiñones, 2002) to assess AirSAR’s potential for forest structural 
mapping and forest biophysical characteristics. The accuracy of the final product was 
high, showing many forest structural types and new spatial details. The latter were not 
visible on previously made maps on the basis of aerial photography. 
 
In a study over a 5-years period in East-Kalimantan, Indonesia, Kuntz and Siegert 
(1999) using 13 scenes ERS-1 and -2 SAR, showed differences in vegetation and land 
use classes. Different images processing techniques were investigated for the 
monitoring of land use and deforestation, using time series of ERS-1 and -2 SAR 
images. The results suggested that such time series can be used to monitor and analyse 
forest conversion in tropical rain forest. This study, which was conducted along the 
Mahakam river, described how several land cover types such as undisturbed 
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Dipterocarp forests, heath forests, secondary forests, clear-cuts/shifting cultivation 
and selective logging can be mapped successfully using texture analysis and time 
series of observations. A related study (Siegert and Hofmann, 2000) used ERS-2 SAR 
as a complementary source in addition to NOAA-AVHRR, to evaluate the area 
affected by fire, and detected two classes of fire damage (severe and medium damage) 
based on ERS SAR composites. 
 
The use of interferometric data for land cover classification is relatively new. 
Temporal de-correlation properties were presented by Wegmuller and Werner (1995) 
using ERS-1 repeat-pass data. By examining a variety of sites, they found that urban 
areas, agricultural areas, bushes and forests had different correlation characteristics, 
with urban areas showing the highest correlation and forests the lowest (water shows 
no correlation). Based on this work Wegmuller and Werner (1997) presented a formal 
classification scheme based on interferometric correlation (coherence), the backscatter 
intensity, the backscatter intensity change, and a texture parameter. Classification 
results for a test site near the city of Bern, Switzerland, yielded an overall 
classification accuracy figure in the order of 90%.  
 
For biomass measurement, many studies have been conducted to investigate the 
relation between forest biomass and radar backscatter. Both empirical and theoretical 
methods have been used. Radar backscatter is found to increase uniformly with 
increasing biomass until the relationship saturates (i.e., flattens) at a biomass level 
depending on the radar wavelength. The biomass saturation level is lower at shorter 
wavelengths than at longer wavelengths, and the longer wavelengths have a better 
relationship to biomass and other stand parameters than short wavelengths. Le Toan et 
al., (1992) used multi-polarisation L- and P-band airborne radar data, and found that 
the dynamic range of the radar backscatter corresponded highly with forest growth 
stages and is maximum at P-band HV polarisation. The analysis of P-band data 
indicated a good correlation between the radar backscatter intensity and the main 
forest parameters including trunk biomass, height, age, diameter at breast height 
(dbh), and basal area. Dobson et al. (1992) showed an increasing range of backscatter 
with changing biomass from C- to L- to P-band, as well as higher biomass levels at 
which backscatter relationships to biomass saturate.  Hoekman (1990) found poor 
relationships between X- and C-band backscatter and volume and other stand 
parameters. 
 
The use of P-band SAR has been proposed for its supposedly superior capabilities for 
biomass assessment and deforestation mapping. Most study results to date relate to 
temperate forests and indicate that the P-band, notably the HV-polarisation, is capable 
to estimate biomass levels up to 150-200 ton ha-1 (Le Toan et al., 1992). Cross-
polarisation data have been found to be better than like-polarized for estimating 
biomass (Le Toan et al., 1992; Dobson et al., 1992; Hussin et al., 1992) because 
cross-polarized backscatter is less sensitive to ground conditions (such as local slopes, 
roughness, or soil moisture). 
 
By combining P-band data with L- and/or C-band data even higher biomass levels 
may be reached for certain forest types (Ranson and Sun, 1994; Kasischke et al., 
1995; Quiñones and Hoekman, 2004).  
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For tropical forests, far fewer studies have been conducted. Imhoff (1995) studied 
broadleaf evergreen forests in Hawaii and temperate coniferous forests and indicates 
saturation levels of biomass, for both types of forests, of 100 ton ha-1 in P-band and 40 
ton ha-1 in L-band. Rignot et al., (1995) conducted a study in the Amazon forest of 
Peru and showed P-band’s capability to differentiate biomass classes in excess of 200 
ton ha-1. Hoekman et al., (1996) in Guaviare, Colombia quantitatively compared 
AirSAR C-, L- and P-band backscatter measurements with on site biomass 
measurements. Good correlations were found between the backscatter in L- and P-
band and the above ground fresh biomass up to a level of approximately 200 ton ha-1. 
Hoekman and Quiñones (2000) clearly show that L-HV saturates earlier than P-HV in 
the Colombian Amazon forest, at possibly 30 ton ha-1 for L-band and 150 ton ha-1 for 
P-band. However, the lack of data in the range of 30-150 ton ha-1 made it difficult to 
define the biomass saturation value. This lack of data is rather common in reported 
data sets when the experiments were conducted in natural forests, often not covering a 
good range of biomass, unlike the regularly exploited plantation forest. 
 
Biomass measurements using VHF indicate that the backscatter is sensitive to 
biomass up to very high values, i.e. 700-900 m3 ha-1 (Melon et al., 2001). Simulations 
using the Distorted Born Approximation confirm the observations. The result shows 
that the trunk-ground interaction is the main mechanism, and, also, that the effect of 
topography was found to be important and necessary to be accounted for. Procedures 
to estimate biomass from radar observations over hilly terrain should also consider the 
effect of topography on backscatter level and microwave interaction (Van Zyl, 1993). 
 
One important conclusion of this review is that most of these studies have used 
radiometric, interferometric correlation (coherence) and fully polarimetric information 
separately, and did not combine interferometric and full polarimetric information. 
Most studies took place in the temperate zone and some in the Amazon region. For 
the South East Asian tropical rain forests, like in Indonesia, the number of studies 
executed has been very limited. The complex structure of vegetation and hilly terrain 
complicates mapping and biomass estimation, which may only be solved using a 
combination of multi-frequency and multi-mode data. 
 
 
1.1.2 Forest mapping using radar in Indonesia 
 
Forest mapping in Indonesia using radar started in 1992, when PT. Mapindo Parama 
and the Ministry of Forestry conducted a pilot study on the application of SAR for 
forest inventory and management in tropical rain forest areas, especially over 
mountainous or generally hilly areas. An area of almost 6 million hectares in East and 
Central Kalimantan was covered by the STAR-1 X-band HH polarisation airborne 
SAR with a resolution 6 by 6 m and a 23 km swath width (Hidayat, 1993). SAR data 
collection was carried out in double side-looking mode with a nominal 70% overlap 
between adjacent swaths and two fixed look directions (east and west). The SAR data 
were used to generate topographic contours, derived through a stereo radargrammetry 
technique (Leberl, 1990) and forest cover type information. In addition, helicopter 
airborne photography was taken to provide the density and crown diameter 
information. Airborne laser profile measurements provided tree height information 
and were used to closely register the topographic contours. Several problems with 
visual interpretation of the image occurred because of the characteristic radar shadow 
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problem, radar lay-over and radar foreshortening. The results had a high correlation of 
80-90% for forest type and a poor correlation of 40-50% for timber volume, and were 
integrated into a Geographic Information System (GIS) with a scale of 1:25,000. 
Recommendations were made and used to optimise the operational use of the 
technologies demonstrated (Thompson et al., 1993). 
  
Several areas in Sumatra and Kalimantan were covered by RADARSAT in February 
1996, making Indonesia the first client of RADARSAT, which was launched in 
November 1995. Some 200 scenes of the finest resolution of 10 by 10 m was 
collected and interpreted. Those images were intended for forest monitoring to 
identify logging and skidding roads. However, the results were not adequate for such 
a purpose (Hidayat, 1998).  
 
The INDonesian Radar Experiment (INDREX-96) was an airborne radar campaign 
carried out by the European Space Agency (ESA) within a larger project co-ordinated 
by the Indonesian Ministry of Forestry and Wageningen University, to develop a 
“Remote Sensing Monitoring System for Forest Management and Land Cover Change 
in Indonesia”. The aim was to provide an experimental basis (1) to assess how high-
resolution radar images could replace aerial photography for detailed forest 
monitoring purposes, and (2) to determine optimum SAR system configurations for 
future space-borne instruments. Attention was focussed on two representative test 
sites in Central Sumatra and Eastern Kalimantan. In July 1996, the Dornier Do-SAR 
system (Faller and Meier, 1995) was used to collect high-resolution C-band and X-
band data, including polarimetry and interferometry. A large number of ERS SAR 
images have also been studied within the INDREX framework, to develop and further 
support ERS satellite data interpretation for tropical forest monitoring. INDREX has 
provided an important set of airborne and satellite SAR data suitable for addressing 
many important issues concerning the use of radar data for forest management and 
land cover change in Indonesia and similar tropical countries. 
 
Comparisons made between aerial photography and high-resolution SAR images have 
demonstrated clearly how (non-interferometric) 1.5 m resolution images can provide 
very similar information for detailed forest mapping purposes (Wooding et al., 1998). 
Many of the larger trees, with crown diameters of around 10 m can be seen at this 
resolution but, in comparison with what that can be seen on a 1:20,000 scale aerial 
photography, most of the smaller trees are not distinguishable. Only the very largest 
trees can be seen as separate features at 3 m resolution. Analysis of ERS data has 
shown that both multi-temporal and interferometric processing techniques can be used 
to produce forest maps and forest fire damage maps (Grim et al., 2000). This effort is 
being continued to produce more examples and to compare fully the results obtained 
using the two different techniques. These studies recommend the use of a radar 
satellite monitoring system to collect up-to-date nation-wide information and, once 
this system is in place, the use of high resolution airborne InSAR for tree mapping 
(Hoekman and Varekamp, 2001; Varekamp and Hoekman, 2001) in selected areas of 
interest. Identification of the latter areas is guided by information obtained by the 
satellite products, thus making the airborne system operation much more effective. 
 
At the same time period several airborne radar systems with a resolution of 3 by 3 m 
in interferometric mode have been used to cover areas of protected forest throughout 
Indonesia. Form line maps and forest cover maps have been derived from the 
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interferometric images. Three systems which were employed, all in May 1997: (1) 
The Do-SAR (C-band VV) of Germany which covered areas in Kalimantan and 
Sumatera (Faller, 1998); (2) The Intermap STAR-3i (X-band VV) of Canada/USA 
which covered areas in Java and Irian Jaya and (3) The AeroSensing Aes-1 (X-band 
VV) of Germany which covered areas in Maluku and Irian Jaya. They produced 
orthorectified images and DEMs, orthorectified mosaics and thematic maps, such as 
forest cover and form line maps, at the scale 1: 25,000 (Hidayat, 1997). 
 
 
1.1.3 A new campaign with AirSAR in Indonesia 
 
Successful execution of the ESA INDREX'96 airborne radar campaign was followed 
by NASA’s second ‘Pacific Rim’ campaign (PacRim-2) executed in South East Asia 
and Australia in the July-October 2000 period (PacRim-2, 2000). The nature of the 
sites varied widely, from volcanic sites to rain forests. NASA/JPL funded and carried 
out the campaign to facilitate fundamental research, among others into the role of 
soils, vegetation and water in the global carbon cycle.  
 
For Indonesia this was the first campaign with NASA using the AirSAR/TopSAR 
system, for the AIRSAR Pacific Rim campaign (PacRim-96), which was planned to 
be carried out under the auspices of NASA in the period November-December 1996, 
could not be executed in Indonesia due to the difficulty of obtaining permission to 
process data abroad. This campaign was the first opportunity to evaluate multi- 
frequency polarimetric and interferometric SAR data over tropical forest test sites and 
was intended to familiarize researchers with polarimetric and interferometric radar 
data and to prepare them for the analysis of data. Together with the Indonesian 
Ministry of Forestry (MoF), Wageningen University (WU) participated in the 
campaign, in order to conduct research at three tropical forest test sites in East-
Kalimantan. C-, L- and P-band fully polarimetric data, as well as C- and L-band 
interferometric data, were successfully acquired over a total area of 3,700 km2 in 
September 2000. This study had two main objectives; the first was to familiarize 
Indonesian scientists with these advanced SAR techniques, which may play an 
important role in future monitoring and mapping systems in support of sustainable 
forest management. The second objective was to develop knowledge and applications, 
not only in forestry but also in agriculture, coastal zone management, mapping, etc. 
 
The primary research test site was the Sungai Wain area, a 10 x 60 km2 strip, which 
comprises the Sungai Wain forest reserve having a wide variety of forests including 
Dipterocarp forest and several types of swamp forests. The 1998 forest fires induced 
by El Niño affected a small part of this area. Adjacent areas cover two large stretches 
of mangrove forests along both sides of the Balikpapan Bay, rice fields, fish-ponds, 
beaches, the Bukit Bangkirai forest reserve and the Wanariset research station.  
 
The C-, L- and P-band polarimetric (HH, HV, VH and VV polarisation combinations) 
and interferometric (XTI2) data of the TopSAR/AirSAR data will be used for the 
investigation in this thesis. 
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1.2 Objectives 
 
Currently aerial photography is used on a routine basis in Indonesia for monitoring 
and management of tropical forest areas, and for the production of topographic and 
thematic maps (Hidayat, 1993). Unfortunately, this effort fails to provide the 
necessary information in time, because of the cloud cover. Interferometric Synthetic 
Aperture Radar (InSAR) and Polarimetric Synthetic Aperture Radar (PolSAR) high-
resolution data has been acknowledged to be a viable alternative to generate 
appropriate maps. As a tool for collecting information on tropical rain forests, the data 
has the potential to facilitate the government in establishing appropriate policies and 
determining the use of forests as natural resources. However, there is little experience 
with the use of radar data for this field of application at the moment. Recent advances 
in interferometric and polarimetric radar technology have stimulated research towards 
development of robust methods to generate maps providing reliable and up to date 
information.  
 
The main objective of this study is to evaluate the use of the new generation C- and L-
band interferometric (TopSAR) and C-, L- and P-band fully polarimetric (PolSAR) 
NASA/JPL AirSAR data for tropical forest type mapping and biomass estimation and 
to study the combined use of radar data and additional knowledge in order to improve 
the results further.  
 
Polarimetric techniques developed for PolSAR mapping (Hoekman and Quiñones, 
2000; Hoekman and Quiñones 2002) using data collected in Colombia during the 
AirSAR 1993 deployment will be tested on Indonesian PacRim-2 PolSAR data. It is 
assumed that the same method can be applied with some modifications, and that it can 
be extended utilising the higher spatial resolution and the additional information from 
the TopSAR mode. A variety of polarisation combinations will be investigated for 
forest mapping and biomass estimation application. Classification results can be 
simulated as a function of the number of independent looks. The fully polarimetric 
multi-band approach used for classification uses probability density functions (pdf) 
for multi-look samples of a certain class, for intensity, phase difference as well as 
coherence magnitude (Hoekman and Quiñones, 2000; Hoekman and Quiñones 2002). 
An alternative method for polarimetric classification, the so-called reversible 
transform, recently introduced and tested for an agricultural area, will also be 
considered (Hoekman and Vissers, 2003). Particular attention will be given to 
physical understanding of the radar data and validation of the derived information 
products. Therefore considerable field survey efforts have been made in the 
framework of this thesis research. 
 
The availability of these multi-frequency polarimetric SAR data enables quantitative 
comparison of classification capabilities of all polarisation combinations for three 
frequencies. Furthermore, ground truth maps are available to facilitate the selection of 
a training set and a reference map. The results of this study will facilitate the selection 
of optimum sensor parameters in terms of polarisation, frequency and incidence angle 
for each application under consideration and thus will contribute to an appropriate 
definition of an advanced SAR system for land observation, with particular emphasis 
on forestry application in Indonesia. 
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The selection of radar frequency and polarisation are two of the most important 
parameters in synthetic aperture radar (SAR) mission design. Nevertheless, a multi- 
frequency fully polarimetric SAR system is highly desirable. Limitations posed by 
allowable satellite payload, data rate, financial budget, required resolution, area of 
coverage, etc. still prevent multi-frequency fully polarimetric SAR from becoming a 
reality. For a particular application, it is desirable to select the optimum frequency and 
combination of linear polarisation channels in case a fully polarimetric SAR system is 
not possible, and to assess the expected loss in classification and geophysical 
parameter estimation accuracy.  
 
The methodology introduced in this thesis should have an impact in selecting the 
combinations of polarisations and frequency of a SAR in various applications. For 
example, the future TerraSAR L-band is expected to become fully polarimetric and 
would give a boost to accurate mapping and biomass estimation. The combination 
with advanced C-band systems such as RADARSAT-2 and ENVISAT ASAR would 
even increase this capability. 
  
 
1.3 Structure of the thesis 
 
Both theory and experimental studies are covered. This thesis includes an introduction 
covering some basic principles of interferometry and polarimetry and its use for 
tropical forests and biomass estimation mapping. A brief overview on radar research 
conducted in Indonesian forests is also included. 
 
Chapter 2 describes the methods and techniques used to obtain, process and analyze 
information from available interferometric and fully polarimetric multi-band AirSAR 
data. A statistical description of fully polarimetric data in terms of backscatter (γ), 
polarimetric phase difference (φ), polarimetric correlation (ρ) and the effect of speckle 
is described in order to evaluate land cover types classification and biomass 
estimation. A method based on Iterated Conditional Modes (ICM) (Besag, 1986) is 
introduced, and, in addition, texture information derived from InSAR data, as a priori 
information, is elucidated. The Maximum Likelihood (ML) approach and Kappa 
statistics are used for classification and to compare the results. 
 
The selected study area, field data measurements and radar data from the NASA/JPL 
AirSAR are the subjects of Chapter 3. A general overview of the study area near 
Balikpapan, East-Kalimantan, Indonesia, is followed by the procedure used to collect 
extensive ground reference data and detailed intensive transect measurement 
descriptions of the forest biomass studied. The last two sections explain the radar 
campaign that provides the data analysed in the present study, and lists the 
specifications of sensor systems deployed. 
 
The value of this information for the indication of land cover types and biomass 
estimation is analysed. Validation related to the algorithm and model trial is 
described; limitations and advantages are also reviewed. The confusion matrix and 
statistical approach (Kappa analysis) will be used to evaluate the accuracy of the 
technique for parameter estimation modelling and forest thematic mapping. Effects on 
the accuracy after the application of the ICM method are presented. 
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The experimental results are discussed in Chapter 4. Classification approaches are 
compared, including (1) the recently introduced polarimetric classification method 
based on the reversible transform algorithm (Hoekman and Vissers, 2003), (2) the 
correction for relief, and (3) the utility of a new approach for 3-D texture information 
derived from InSAR data. The relative importance of different frequency and 
polarisation combinations and the effect of speckle are also addressed. A direct 
empirical biomass estimation relationship is presented. In addition, polarimetric 
coherence analyses of several cover types are made.  
 
Chapter 5 presents a validation of the results with an independent data set. A synthesis 
of all results is made and the relative importance of the classification approaches and 
radar parameters is assessed. 
 
Summary and conclusions presents the study background, study area, summary of 
each chapter, and key conclusions and recommendations of the use of interferometric 
and polarimetric radar for tropical forests classification and biomass estimation 
mapping, in the perspective of the research objective. 
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2. Land cover classification and biomass estimation  
 
This chapter describes the methods and techniques used to obtain, process and analyze 
information from fully polarimetric and interferometric multi-band AirSAR data. A 
statistical description of fully polarimetric data in terms of backscatter, polarimetric 
phase difference, polarimetric correlation and the effect of speckle will be given in 
order to evaluate land cover type classification and biomass estimation. A new 
method based on a reversible transform of covariance matrix elements will be 
introduced to describe the full polarimetric target properties. The technique of Iterated 
Conditional Modes (ICM) as well as a new technique to use 3-D textural features 
derived from InSAR data as additional information will be described. Maximum 
Likelihood and Kappa statistics will be used for classification and comparison of 
results. 
 
 
2.1 Introduction 
 
The usefulness of a Digital Elevation Model (DEM) derived from interferometric 
SAR (InSAR), certain combinations of frequency bands and polarisation, polarimetry 
and the effect of speckle will be evaluated for tropical forest mapping applications and 
for biomass estimation. This will be done in several steps. Methods and models used 
for TopSAR/AirSAR data sets will be described first. The main focus is to improve 
classification accuracy of land cover and biomass estimation using fully polarimetric 
SAR (PolSAR) data, with the DEM derived from simultaneously acquired InSAR 
data taken into consideration. The processing sequence of land cover classification 
and biomass estimation is illustrated schematically in Figure 2.1.  
 
Through orthorectification of the C-, L- and P-band fully polarimetric images, an 
accurate geometrical registration to the C-band VV-polarisation interferometric image 
was achieved. This fusion allows correction of the disturbing effects of relief on the 
backscatter level in the applied fully polarimetric classification procedure (paragraph 
2.2). To retrieve the information from corrected radar images, a database was created 
for the areas visited during the fieldwork stage. The set of Regions of Interest (ROI’s) 
should contain homogeneous areas. These data give information about the physical 
condition of the land cover and are used to assess and support the analysis of radar 
data (paragraph 2.3). Basic statistical descriptions of data will be explained (paragraph 
2.3.1). A database of plot averaged Stokes scattering operator matrix elements was 
created, which forms the basis for the analysis. For all locations of field observation 
ROI’s are delineated in the corrected PolSAR image (paragraph 2.3.2). The evaluation 
of polarimetric classification performance will be done for two techniques (paragraph 
2.4). The first is the polarimetric classification technique introduced in Hoekman and 
Quiñones (2000), used for AirSAR land cover type mapping and forest biophysical 
characterization. It is assumed that the same method can be applied with some 
modification (paragraph 2.4.1). In this case the maximum likelihood (ML) 
classification of an observation to be classified as a certain class is the product of the 
joint Gaussian distributions of the backscatter multiplied by the likelihood of the 
phase difference values and the likelihood of the correlation values (paragraph 2.5). 
The second technique is based on a new reversible transform (Hoekman and Vissers, 
2003) of covariance matrix elements into backscatter intensities, which will describe 
the full polarimetric target properties (paragraph 2.4.2). In this case the maximum 



Tropical forest mapping using polarimetric and interferometric SAR data 

 12

likelihood (ML) classification simply is based on multi-variate Gaussian distributions. 
Biomass and vegetation height data were collected for a large number of forest 
transects and several non-forest plots. Empirical relations of C-, L- and P-band 
backscatter and C- and L-band interferometric coherence and height, will be 
presented. A method based on Iterated Conditional Modes (ICM) (Besag, 1986) will 
be used to yield radar-derived maps with a high level of agreement with existing 
maps, as well as with ground observations (paragraph 2.6). A new 3-D texture 
analysis derived from InSAR will be introduced as additional information for feeding 
the ICM process (paragraph 2.7). The confusion matrix, the overall classification 
accuracy and the confusion between pairs of classes can be calculated for each 
classification or simulated classification. The evaluation of the classification 
capacities will be done through analysis of simulated classification result, using the 
contingency tables and Kappa statistics. This is done for simulated classifications 
performed for a single-channel, combinations of two and three channels and full 
polarimetric information. It is important to notice that a contingency table will give a 
measure of the overall classification accuracy and present errors of commission and 
omission while the Kappa statistic will be used to compare the classification results 
(paragraph 2.8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Flow diagram of the land cover classification and biomass estimation processing 
sequence. 
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2.2 Fusion of InSAR and PolSAR data 
 
2.2.1 The effect of relief and canopy surface geometry 
 
It is well known that airborne Synthetic Aperture Radar (SAR) imaging is based on 
the principle of range differences between the objects and the sensor for a certain scan 
line. Because of the imaging mechanism of radar signals, small relief differences can 
be perceived well, notably at small grazing angles. For an opaque isotropic volume 
scatterer, the differential radar cross-section, ( )/ cos i

ογ σ θ=  does not depend on 
grazing angle, but will depend on the slope of the vegetation surface (Figure 2.2a). 
Always, and therefore also for the three cases shown in this figure, the ratio between 
intercepted power and the re-radiated power is the same for every resolution cell. 
Processing algorithms (which are based on the geometric optics approximation) to 
compute γ , however, start from the assumption that the terrain is flat, and hence 
assume the intercepted power is proportional to tan( grθ ). In fact it is proportional to 

tan( grθ α+ ), where α  is the angle of slope in range direction which can be derived 
from InSAR data. The value of γ  in the processed image is therefore related to the 
value of fγ , for an identical object with the upper surface oriented parallel to the 
horizontal plane, as the following: 
 

                
tan( )

tan( )
gr

f
gr

θ α
γ γ

θ
+

=                                             (2.1) 

 
Figure 2.2b shows this relation in graphical form. The ratio / fγ γ  (or / f

ο οσ σ ) is 
shown at the dB scale as function of grazing angle and for several slope angles. It can 
be concluded that, if this mechanism applies, small slopes observed at very small or 
very large grazing angles have strong effects on the backscatter level. Furthermore, it 
can be shown that the effects of canopy surface undulations average out for this model 
in the sense that the (linear) average of γ , for any area within a perimeter located at a 
horizontal plane and not showing radar shadow, is independent of the degree and 
location of slopes (Hoekman, 1990). 
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Figure 2.2. A) For an opaque isotropic volume scatterer, γ  (the differential radar cross-

section, ( )/ cos i
ογ σ θ= ) is independent of grazing angle grθ  (case a and b) and dependent 

on slope α (case c). B) Effect of canopy undulations if an opaque isotropic volume scatter 
mechanism applies. Changes inγ  level as a function of grazing angle grθ and angle of slope 

α  are shown (Hoekman, 1990). 

cγ

α
bθ

aθ

aθ

aγ

a b cγ γ γ= ≠

bγ

bθ

( )a ( )b

( )c



2. Classification and biomass estimation 

 15

This theoretical relationship has been confirmed by experimental observation using 
ERS-1 SAR and SAREX airborne campaign images of the geomorphology of  
Guyana’s Mabura Hill and Iwokrama areas, which is well perceivable, comprising 
mountains, plateaux, ridges and dolerite dikes. The actual appearance of these features 
strongly depends on the radar incidence angle. Since the terrain is completely and 
densely forested, the theoretical relationship between backscatter modulation and 
relief as described above is applicable (Hoekman et al., 1994). The validation of this 
relationship in an area in Iwokrama called 'Turtle Mountains' is shown in Figure 2.3. 

This area was imaged by the ERS-1 (23o), in SAREX track2.2 (66o) and track2.1 

(81o). Two large and uniform facing slopes with an angle α of 7o and 17o were used 
to extract οσ  values. The results are shown in table 2.1. 
 
 

 
 
Figure 2.3.  Triplet Turtle Mountains showing backscatter modulation by relief at (from left 
to right) steep (ERS-1), intermediate and grazing incidence angles (Hoekman et al., 1994). 
 

Table 2.1.  Backscatter level modulation by relief. Theoretical values for dense vegetation 
cover and experimental values for two uniform slopes and three incidence angles at Turtle 
Mountains, Iwokrama, Guyana. 
_________________________________________________________ 
              Slope  Theoretical        Experimental 
Image   incθ  α  /o o

fσ σ [dB]      /o o
fσ σ [dB] 

ERS-1   23o 17o  4.9   5.4 
   23o 7o  3.7   3.5 
Track2.2  66o 17o  2.9   3.1 
   66o 7o  1.3   1.7 
Track2.1  81o 17o  6.1   5.8 
   81o 7o  1.7   2.5 
 
These experimental results confirm that backscatter modulation (in forests) through 
relief is maximal at large and small incidence angles, and is minimal at intermediate 
incidence angles. The close resemblance of theory and experiment indicates that this 
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simple methodology can be used for slope correction, and may be useful to quantify 
slope angles in support of the preparation of Digital Elevation Models. In case a DEM 
is available, the theory can be applied to decompose the backscatter signal in a part 
that can be contributed to relief modulation and a part related to cover type. In this 
way, changes in terrain cover may be recognized more easily.  
 
Alternative theoretical methodologies for the radiometric slope correction with more 
complex approximations can be found in the literature (Ulander, 1996; Castel et al., 
2001). These methods are also based on local incidence angle and terrain slope tilt 
angle, but include the terrain slope aspect angle in addition. 
 
 
2.2.2 Orthorectification of PolSAR slant range data using the TopSAR DEM 
 
PolSAR and TopSAR data have been acquired in separate passes along the same 
flight line at nearly identical height and heading (Table 2.2). PolSAR images were 
delivered as slant range images, while TOPSAR images were delivered as 
orthorectified images. In case the assumption holds that the two flight lines are nearly 
identical in heading and height along the complete track, the orthorectification of the 
PolSAR images can be described in fairly simple geometrical terms when the offset in 
range and azimuth can be determined. Offset determination can be done using the 
geometrical description (with these two unknowns) and a number of GCP's. The GCP 
pairs can be retrieved most easily using (slant range) PolSAR TP composite images 
and (orthorectified) TopSAR C-VV/L-VV/P-TP composite images. 

Table 2.2. Data from PolSAR and TopSAR header files 
 
Near_slant_range PolSAR 9451.33 m, 26.7 deg inc. 
Near_slant_range TopSAR 9301.44 m, 24.9 deg inc. 
Height PolSAR  8439.9 m 
Height TopSAR  8444.6 m 
Heading PolSAR  38.8626 deg 
Heading TopSAR  38.941 deg 
 
Using the geometry introduced in Figure 2.4 the following two sets of relationships 
hold:  
 
(1) srPol2 = (Fh-h) 2 + (grTop + Δy)2      (2.2a)  

srPol = PolPix0 + PolPixNum * PolPixSpac    (2.2b)  
 grTop = TopPix0 + TopPixNum * TopPixSpac   (2.2c)  
 
(2) azPol = azTop + Δx       (2.3a)  

azPol = PolLine0 + PolLineNum * PolLineSpac   (2.3b) 
azTop = TopLine0 + TopLineNum * TopLineSpac   (2.3c) 

where: 
 Fh  height of flight [m] 

h terrain height, which is the height of the TopSAR pixel located 
at distance  

grTop + Δy   [m] 
 srPol  slant range PolSAR [m] 
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 azPol  azimuth PolSAR [m] 
 grTop  ground range TopSAR [m] 
 azTop  azimuth TopSAR [m] 
 Δx  offset in azimuth between PolSAR and TopSAR [m] 

Δy offset in (orthorectified) ground range between PolSAR and 
TopSAR [m] 

 
 PolPix0 slant range pixel zero [m] 
 TopPix0 ground range pixel zero [m] 
 PolLine0 azimuth distance line zero [m] 
 TopLine0 azimuth distance line zero [m] 

PolPixNum pixel number PolSAR 
 TopPixNum pixel number TopSAR 
 PolLineNum line number PolSAR 
 TopLineNum line number TopSAR 
  

PolPixSpac slant range pixel spacing PolSAR [m] 
 TopPixSpac ground range pixel spacing TopSAR[m] 
 PolLineSpac line spacing PolSAR[m] 
 TopLineSpac line spacing TopSAR [m] 
 
(Note: these symbols are only used in this paragraph and are excluded from the list of 
symbols) 
 
 

 
Figure 2.4. Geometry in range direction. Basic relation between slant range image and 
orthorectified image. 
 
 
2.2.3 Fusion 
 
After orthorectification of the PolSAR images, the TopSAR DEM can be used to 
apply the relief correction. Consequently three versions of the PolSAR images 
resulted which are: (1) the original slant range image, (2) the orthorectified image and 
(3) the slope corrected (cf. eq. 2.1) orthorectified image.  
 

grTop+∆y 

sr 
Fh 

h 
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2.3 Radar data 
 
2.3.1 Statistical description of data  
 
The observation of rural or forest areas is of particular interest in this thesis. These 
types of targets are known to have fading characteristics. Because of fading, the 
signal, even for homogeneous areas with an underlying uniform cross section, shows 
a stochastic fluctuation (also called speckle). Speckle is a salient feature of all radar 
images and is caused by random variation of constructive and destructive interference 
from the multiple scattering returns that will occur within each observation point. 
 
The interference of radar echoes clearly obstructs consistent backscatter 
measurements from single-resolution cells. However, the backscatter fluctuations 
have a stochastic nature, i.e. behave according to certain probability distributions. For 
a wide range of distributed land targets, including forests, the backscatter amplitude 
fluctuations can be described with a theoretical probability distribution usually called 
the Rayleigh distribution. In practice, many radar systems do not detect the amplitude 
but the square of the amplitude (or power) of the return signal that can be shown to 
have an exponential distribution (Hoekman, 1991). Both distributions are single- 
parameter distributions. The Rayleigh distribution follows directly from the mean 
amplitude, the exponential distribution from the mean backscattered power. To enable 
object characterisation using radar remote sensing, it is therefore important that the 
radar measurements are accurate estimates of either mean amplitude or mean power.  
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Figure 2.5. Probability density functions (pdf) for speckled power have a Gamma 
distribution: for one look (N=1) the exponential distribution follows, for a large number of 
looks (N>>100) the pdf may be approximated by a Gaussian distribution. 
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The degrees of freedom or number of independent “looks” involved in the averaging 
process also affects the shape of the amplitude or power distribution. Figure 2.5 
illustrates the distribution of backscattered power for 1, 4, 8, 32 and 128 look radar 
data. For N=1, the pdf is exponential and for N →∝ it becomes a Gaussian pdf. It can 
be seen that the distributions become higher and narrower as the number of looks 
increases. This implies that the fluctuations in the measurements of backscattered 
power are reduced as a result of look averaging. Look averaging improves the 
radiometric properties, i.e. the radiometric resolution of radar images. However, look 
averaging may also cause deterioration of the geometrical properties of radar images, 
and reduce spatial resolution in azimuth direction. 
 
 
2.3.2 Approach for extraction samples from training areas 
 
Using visual interpretation of total power C-, L- and P-band, composite images of 
regions of interest (ROI's) were delineated for areas visited during the fieldwork 
stage. The radiometric attributes of ROI’s from the radar image quantify the 
backscatter (γ ). Radar backscatter analysis, however, is usually based not on the 
backscatter values of individual pixels but on the mean backscatter values for series of 
pixels, i.e. for image regions. In practice, the accuracy of radar measurements is often 
improved through linear averaging of measurements from resolution cells that adjoin 
in the azimuth direction. A measurement from a single-resolution cell is often denoted 
as a look. This explains why the image resulting from such averaging process is often 
referred to as a multiple look image. Multiple look images, when compared to single-
look images, show fewer fluctuations in backscatter, or in other words, are less 
“grainy”. Relevant averaging, however, requires that the looks are statistically 
independent. The mean backscatter value for ROI’s is computed by averaging the 
values of all pixels within its boundaries. Region averaged backscatter values are less 
susceptible to the effects of speckle than backscatter value for pixels. The accuracy of 
mean amplitude or power estimations will increase with an increase in the number of 
averaged looks. 
 
It is important to mention that the minimum size of the selected areas was arbitrarily 
set at 100 pixels. Introducing a lower limit with respect to the number of pixels that 
has to be averaged can regulate the effect of speckle. In this study it was assumed that 
the speckle induced standard deviation of the mean backscatter values should be 0.2 
dB or less. Based on Hoekman, (1991) this criterion can only be met through the 
averaging of 500 or more independent backscatter measurements (looks).  
 
This assumption was evaluated using the standard deviation of radar backscatter 
within the ROI's created. The lowest values were found for relatively homogeneous 
areas with cover types such as: swamp, alang-alang and shrubs. The lower boundaries 
of standard deviation found were: 1.7-1.8 dB for C-band, 2.2-2.3 dB for L-band and 3 
dB for P-band. These figures indicate that the number of independent looks N is 6-7 
for C-band, 4-5 for L-band and 2-3 for P-band. This is considerably lower than the 
specifications of NASA/JPL, which indicate a number of 9 independent looks for all 
frequency bands (Table 3.4). To compute the number of independent looks for an 
area, such as an ROI’s of 100 pixels, the spatial correlation in azimuth and range 
direction has to be taken into account. Analysis showed that the effective number of 
independent looks reduces further to roughly 4.7, 2.8 and 1.5 looks, respectively, 
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depending also a little bit on shape and orientation of the ROI’s. Thus, for an area 
larger than 100 pixels, the lower values of accuracy follow as a standard deviation of 
0.20 dB, 0.26 dB and 0.36 dB, respectively. Since most ROI's are much larger than 
100 pixels, the averaged backscatter values are sufficiently accurate (less than ≈ 0.2 
dB), with a possible exception for P-band values in small areas (less than ≈ 0.4 dB).  
 
 
2.3.3 Extraction of polarimetric attributes. 
 
Polarimetric attributes related to the polarisation transformation properties of the 
observed object can be computed from the polarimetric radar data only. Hence, their 
extraction was restricted to regions of interest within the AirSAR images. The 
following data are extracted for each of the three frequency bands: number of pixels, 
incidence angle, and the elements of the scattering matrix S, from which averaged 
elements of the Stokes scattering operator M can be derived (Table 2.3). Afterwards 
the averaged γ  (HH, VV and HV), averaged complex correlation hhvvρ  and 
polarimetric phase difference hhvvφ  can be calculated. 

Table 2.3. Elements of the Stokes scattering operator M for backscatter (i.e. Shv = Svh) and for 
an ensemble averaged observation (expressed in elements of the scattering matrix S). This 
matrix is 4x4 real and symmetric (e.g. M32 = M23).  
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The pixels in the polarimetric AirSAR data sets represent the Stokes scattering 
operator M. Hence, two steps were needed to compute the region averaged 
backscatter values from the AirSAR data sets. To begin with, the M values for all 
pixels within a specific region of interest were averaged linearly, in order to obtain 
region averaged M values. Subsequently, region averaged backscatter values were 
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computed through wave synthesis. The wave synthesis process allows the 
computation of the backscatter for any combination of the received and transmitted 
polarisations. Selected combinations for this study include HH, VH, VV, RR, LR and 
LL polarisation. The HV and RL polarisation combinations were not included, 
because according to the reciprocity relation these combinations are identical to VH 
and LR, respectively. The set of backscatter values for the described polarisation 
combinations was complemented with so-called total backscattered power (TP). Table 
2.4 shows the orientation angle ψ  and ellipticity angle χ  for the polarisation 

combinations, as well as the equations for computing the corresponding oσ  values 
from the region averaged stokes scattering operator elements.  

 

Table 2.4. Definition of polarisation combinations in term of ψ and χ; equations for 
computations of σ° from the region averaged elements of Stokes scattering operator M. The 
backscatter values for the shown polarisation combinations were computed for C-, L- and P-
band. 
 

Polarisation parameters 
Received wave Transmitted wave Polarisation 

combination 
ψ χ ψ χ 

Computation of 
σ° from M 

HH 0° 0° 0° 0° M11+2.M12+M22 
VH 90° 0° 0° 0° M11-M22 
VV 90° 0° 0° 0° M11+2.M12+M22 
RR * -45° * -45° M11+2.M12+M22 
LR * 45° * -45° M11+2.M12+M22 
LL * 45° * 45° M11+2.M12+M22 
TP - - - - M11+2.M12+M22 

• * indicates ‘not defined’ 
• - indicates ‘not applicable’ 

 
Calculation of γ  is based on the following relation: 
 

)/ cos( i
ογ σ θ=  [m² / m²]                                              (2.4) 

 
with oσ  the differential radar cross section andγ the radar cross section per unit 
projected area. 
 
The complex correlation ρ between the HH- (i.e. horizontal linear receive and 
horizontal linear transmit) and VV-returns can be computed from elements of the 
Stokes scattering operator as: 
 

( )
*

* *
exp

hh vv

hh hh vv vv

S S
i

S S S S
ρ ρ φ= =               (2.5) 
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For each region of interest the C-, L- and P-band polarisation phase difference φ of 
HH and VV (PPD) and the corresponding standard deviation (PPD) were computed. 
The PPD was computed from spatially averaged C-, L- and P-band Stokes scattering 
operator according to: 
 

1 34

33 44

2tan MPPD
M M

− ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

                (2.6) 

 
It is assumed that the objects display azimuthal symmetry and, consequently, only the 
correlation and phase difference distributions for HH-VV polarisation are important; 
these can be ignored for HH-HV and HV-VV polarisation (Nghiem et al., 1992). 
 
 
2.4. Evaluation of classification capacities 
 
2.4.1 Evaluation based on fully polarimetric AirSAR images 
 
To evaluate the classification capacities of the attributes estimated from the AirSAR 
image, a data base was created for C-, L- and P-band polarimetric data, containing ten 
different elements of the stokes scattering operator (M), the class number and the 
incident angle for each polygon. The polarimetric classification technique introduced 
in the work of Hoekman and Quiñones (2000) is exploited to assess AirSAR’s 
potential for forest cover type mapping and biomass classification. The classification 
results can be simulated as a function of the number of independent looks, a fully 
polarimetric multi-band approach using probability density functions (pdf) for multi- 
look samples of a certain class, for intensity, phase difference as well as coherence 
magnitude. 
  
For a homogeneous area i, characterized by a spatially uniform differential cross 
section, phase difference and correlation, and a Gaussian probability density function 
(pdf) for the complex electric field vector as measured by both antennae, multi-look 
pdf's of the observation can be described by the number of looks N (per pixel) and the 
underlying values for backscatter iγ , phase difference iφ and correlation| |iρ . The 
theoretical pdf for multi-look backscatter intensity is the well-known gamma function: 
 

( ) ( )
1 /1|

N
N N i

i
i

NP e
N

γ γ
γ γ γ γ

γ
−⎛ ⎞

= ⎜ ⎟Γ ⎝ ⎠
              (2.7) 

 
For phase difference and correlation marginal distributions are given by Tough et al., 
(1995): 
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where the last term is 0 for N=1 and ( )cosi iβ ρ φ φ= − , and 
 

( ) ( )( ) ( ) ( )22 22 2
| | 2 1| 2 1 1 1 , ,1;

N N
i i iP N F N Nρ ρ ρ ρ ρ ρ ρ ρ

−
= − − − ,  

                               
          (2.9) 

 
where 2F1(.) is the Gaussian hypergeometric function. 
 
For a classification procedure, statistical descriptions are required for pixels belonging 
to a certain class, rather than belonging to a certain homogenous area, and it is 
assumed that probability density functions (pdf’s) are well described by Gaussian 
distribution for parameter iγ  (in dB), 
 

( ) ( )2
2

1, exp
2 2

i c
i c c

c c
N

γ γ
γ γ σ

σ π σ
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            (2.10) 

 
with cγ  (in dB) as the mean of the mean field values of class c and cσ  as the standard 
deviation of cγ  and by circular Gaussian distributions for the polarimetric phase 
differences 
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           (2.11) 

 
with ( )cos ,c i c iβ ρ φ φ π φ π= − − < ≤ , where =cφ  the “effective” mean phase 
difference for class c and cρ  is the effective mean correlation for class c. Gaussian 
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distributions are “natural” distributions, which follow from applications of Jayne’s 
maximum entropy principle. For a continuous random variable varying over the (0,1) 
interval, application of this principle results in the Beta function. Hence, phase 
correlations may be assumed to be properly described by Beta distributions. 
 

( ) ( )
( ) ( ) ( ) 11, 1 ,0 1ba

i i i i
a b

B a b
a b

ρ ρ ρ ρ−−Γ +
= − < <
Γ Γ

          (2.12) 

 
where a and b are regression parameters. 
 
The Likelihood for an observation vector to be classified as class c is modelled as the 
product of the joint Gaussian distributions of the backscatter values. When phase 
difference and correlation values are included, the likelihood will be determined by 
this first product multiplied by the likelihood of the phase difference values and the 
likelihood of the correlation values. 
 
The field averaged Stokes scattering element data of the database are used to calculate 
field averaged values of backscatter, phase differences and correlation. The accuracy 
of the estimation of field averaged values depends on the total number of independent 
looks (see also 2.3). 
 
 
2.4.2 Evaluation based on reversible transform AirSAR image 
 
To evaluate the classification capacities of the attributes from the AirSAR image in an 
alternative way, a reversible transform of the covariance matrix into backscatter 
intensities was introduced in the work of Hoekman and Vissers, (2003) in order to 
describe the full polarimetric target properties, and which allows for the development 
of simple, versatile and robust classifiers. 
 
Sometimes it is mathematically more convenient to use the covariance matrix instead 
of the Mueller matrix for the description of the fully polarimetric backscatter from a 
target. Because of the reciprocity theorem (Nghiem et al., 1992) it is sufficient to 
define the 3x3 covariance matrix with only 9 independent real numbers: 
 

* * *

* * *

* * *

hh hh hh hv hh vv
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=⎜ ⎟
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             (2.13) 

 
The covariance matrix contains the second-order statistics of the scatter matrix 
elements and is Hermitian, which means that the matrix is equal to its transposed 
complex conjugate. These properties are contained in the three real numbers on the 
diagonal and the six real and imaginary parts of the three complex numbers above the 
diagonal. Another way of presenting the full polarimetric information content is by 
using three intensity values, three polarisation phase difference values, and three 
correlation magnitude values (with ρ as the complex correlation) as 
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        (2.14) 
 
It is also possible to describe the full polarimetric information content with nine 
intensities, for example as 
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where the subscripts pq denote the received and transmitted polarisations of the three 
common polarisation bases: horizontal (h), vertical (v), left circular (l), right circular 
(r), 45º linear (+ or +45) and -45° linear (- or -45). 
 
In the case of azimuthal symmetry (Nghiem et al., 1992) the covariance matrix 
simplifies to 
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and 0hhhv hvvvρ ρ= = . When interpreting remote sensing data it is sometimes useful 
to consider this and only this information, which is contained in 5 independent values 
of C. From the intensity representation introduced here, it is also possible to find 
several sets of 5 independent intensity values containing this and only this 
information. In all cases at least one composite intensity is needed. One (non-
redundant) possibility is 
 

*
0

*
0

* 0

0* 45
0 0
45 45*

Re

Im

hh hh
hh

vv vv
vv

hv hv r hv

hh vv

l r
hh vv

S S

S S

S S B

S S

S S

σ

σ

σ

σ

σ σ
+−

+ −

⎛ ⎞⋅⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎡ ⎤ ⎜ ⎟⋅⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟+⎝ ⎠⎜ ⎟⎡ ⎤⋅⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

, 

with
1 1
2 2
1 1
2 2

1 0 0 0 0
0 1 0 0 0

1 0 0 1 0 0
4 0 2 0

1 0 1

rB
π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

                             (2.17) 

Ignoring other possibilities, there is one redundant system of particular interest which 
combines 7 intensity values, including two composite values, namely 
 

{ 0
hhσ , 0

vvσ , 0
hvσ , 0

45σ+− , 0
lrσ , 0 0

45 45l rσ σ+ −+ , 0 0
45 45r lσ σ+ −+ }.          (2.18) 

 
In this study, four classification models named 3I+, 5I, 7I and 9I will be evaluated: 
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- (3I+) The first model is identical to paragraph 2.4.1 above. It uses a joint log-
normal distribution for the HH-HV- and VV-intensities and independent 
distributions for the phase difference (circular Gaussian distribution) and the 
coherence magnitude (Beta distribution). 

- (5I) The second model is based on Eq.2.17 and uses a joint log-normal 
distribution for the 5 intensities. 

- (7I) The third model is based on Eq.2.18 and uses a joint log-normal 
distribution for the 7 intensities. 

- (9I) The fourth model is based on Eq.2.15 and uses a joint log-normal 
distribution for the 9 intensities. 

 
Note that the first three models assume azimuthal symmetry or, alternatively, discard 
information related to azimuthal asymmetry. The fourth model includes all 
polarimetric information. 
 
 
2.5 Maximum Likelihood classification 
 
For classification, the Maximum Likelihood (ML) approach is selected. For each class 
means, variances and co-variances are calculated on the basis of data derived from the 
ROI's. Signatures are calculated from a training data set, and then estimates of class 
membership can be made. Usually, for a given pixel, the classification follows as the 
most likely class. In more sophisticated approaches, use can be made of additional 
information, such as class likelihoods of neighbouring pixels (e.g. Markov Random 
Fields or ICM; see section 2.6) or textural information (see section 2.7). 
 
The operation of a ML classifier is a two-stage process. The first stage is a training 
stage, where a spectral signature is calculated for each of several a priori classes the 
operator has identified in the image. The second stage, the classification stage, uses 
these signatures to assess each pixel in the image, and determines the class in which 
the pixel belongs. The ML classifier used here uses the assumption that the population 
is Gaussian. Each class is assumed to be normally distributed, and there are several 
classes in the image. The assumption of normality for each class is typically met in 
practical situations. In principle, the ML classifier method calculates a probability 
density function (pdf) for each class, and then uses the maximum value of those 
functions to identify the class to which a pixel belongs. The set of signatures is 
obtained by calculating the mean vector and covariance matrix for each class. The 
mean vector describes the location of the curve that represents the class in spectral 
space, while the covariance matrix describes the orientation of the curve. The 
parameters are used to calculate a probability density surface for each class.  
 
The classification can be done using all data or a selection of the data. For example, in 
case only L-band intensities are used with HH, VV and HV polarisation a 3-
dimensional feature space is used and a 3-dimensional multi-variate Gaussian 
distribution applies. In this case 3 so-called radar information channels are used. In 
general, the number of channels n can vary between 1 and 9 when only one 
polarimetric frequency band is available, and between 1 and 27 in the case of AirSAR 
where three frequency bands are available. In this study the utility of many 
combinations of channels will be evaluated.  
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The data samples in the training set are related to a number of classes. If there are m 
classes and n channels, which for each class iω  with i ranging from 1 to m and an n-
dimensional mean value vector Mi, an n x n- dimensional covariance matrix Ci can be 
computed. Assuming an n-dimensional normal distribution is applicable, each 
observation vector X to be classified can be assigned to one of the classes iω  or, in 
case non of these classes is likely, to a class οω . 
 
The likelihood that X is a number of class iω  ,is  
 

1
/ 2 1/ 2

1( | ) exp( 1/ 2( ) ( ))
(2 ) | |

T
i i i in

i
P X X M C X M

C
ω

π
−= − − −          (2.19) 

 
with |Ci| = the determinant of Ci 
 
For one of these classes the likelihood value is the highest (i.e. the ‘maximum 
likelihood’). For this class also the logarithmic value of the likelihood is the highest: 
 

{ }1ln ( | ) ln(2 ) 1/ 2 ln (| |) ( ) ( )
2i i i i i
nP X C X M TC X Mω π −= − − + − −        (2.20) 

 
The vector X will be assigned to class ω according to the classification rule: 
 

( )ln ( | ) ln( ( | ))i jP X P Xω ω>  for all j ≠ i.                       (2.21) 
 
and 
 

( )ln ( | ) .i iP X Tω >                (2.22) 
 
where Ti is a suitably chosen threshold value. This value can be computed as follows. 
For the n-dimensional vector X the standard distance of X to Mi is 
 

{ }1/ 21( ) ln ( ) ( ) .i i i id X X M TC X M−= − −             (2.23) 
 
In case, for example 95% of the observation vectors of class iω  are not rejected, the 
standardized threshold distance D can be derived from: 
 

{ }2 1 2
;0.95( ) ( )T

D i i D i nD X M C X M X−≡ − − =            (2.24) 
 
and Ti follows as: 
 

}{ 2/ 2 ln(2 ) 1/ 2 ln(| |)i iT n C Dπ= − − +             (2.25) 

 
For example, for 4 classes and a 95% confidence interval, D2 is 9.49. In principle the 
confidence level can be chosen for each class separately. Results can be presented in a 
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(m+1) * (m)-dimensional contingency table or confusion matrix, percentages of 
correct and unclassified samples and Kappa statistics. In case the threshold is set to 
infinity (i.e. the 100% confidence level) all observation vectors will be classified and 
class οω  is empty (Hoekman and Vissers, 1995). 
  
For ML classification of fully polarimetric SAR data, several approaches can be 
utilized. The simplest approach is to classify multi-look pixels. Box averaging or 
segmentation into homogeneous areas can be applied first, to reduce the effect of 
speckle. The resulting number of independent looks is usually too small to ignore the 
effect of speckle on the estimation of the underlying values of iγ , iφ and| |iρ .  
 
 
2.6 Iterated Conditional Modes  
 
In order to improve the classification results, the ML classification using the 
approaches introduced in section 2.4, could be followed by the technique of Iterated 
Conditional Modes (ICM) (Besag, 1986). As explained in Hoekman and Quiñones 
(2002), the Likelihood of a pixel i belonging to class c, lii,c , is based on the (multi- 
frequency) radar signal properties in terms of intensities, phases and coherences. The 
classification of a pixel is the selection of the class for which lii,c is the highest (the 
Maximum Likelihood or ML solution). The Likelihood li used for the ML method has 
to be multiplied with the prior probabilities of each of the neighbouring pixels.  
 
In this approach, the eight surrounding pixels form the neighbourhood. The following 
notation for the neighbourhood of pixel i is adopted: 
 

1 2 3 
4 i 5 
6 7 8 

 
Depending on its relative position, a neighbouring pixel has a position j, 
j∈{n⏐1≤n≤8}. The class has a value x, x∈{n⏐1≤n≤14}. For every pixel i, we compute 
for each class x the li and assign the class value for which li is maximal (out of these 
14 classes; see Table 3.1) to the pixel i.  
 
In the ICM method the Likelihood lii,c is modified to mlii,c by multiplication with a 
conditional probability ( )exp ,ui cβ , where ui,c is the current number of neighbours of 

pixel i having class c, and β  is a parameter determining the relative importance of 
neighbourhood information. The logarithmic version of the modified likelihood mlii,c 
for ICM-cycle n is denoted as 
 

( ) ( ), , , , , 1ln lni c n i c i c nmli li uβ −= +              (2.26) 
 
For appropriately chosen values of β , the number of cycles and the relaxation 
scheme, usually determined by trial-and-error, this approach is found to yield major 
improvements for the classification results. Moreover, taking the dominance of certain 
cover types into account (i.e. the Bayes criterion) the overall accuracy can increase 
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further. This method can be enhanced by including additional information to the 
previous (logarithmic version of the) modified likelihood. For example in Hoekman 
and Quiñones (2002), the scheme proposed had the following form: 
 
 ( ) ( ) ( ) ( ), , , 1 , , 1 2 3 , 4 ,ln ln ln lni c n i c i c n c i c i cmli li u P R Tβ β β β−= + + + −        (2.27)
  
 
with 

( )2
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2
i c

i c
c

t Tm
T Min
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β

⎧ ⎫−⎪ ⎪= ⎨ ⎬
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where cP   is the relative occurrence of class c, 
 ,i cR   is the relief factor for pixel i and class c, 
 ,i cT   is the texture factor for pixel i and class c, 

2 3 4, ,β β β  are factors defining the relative influence of prior information, 

Tβ  is a factor defining a threshold  for the influence of texture 
information, 

it   is the (logarithmic version of ) the coefficient of variation (CV)  
,c cTm Tv  are the mean and variance of the CV for class c. 

 
In this study, the relief factor could be obtained directly from the DEM derived from 
the TopSAR data, instead of using geomorphological maps as was done in Hoekman 
and Quiñones (2002). The textural features give more information as compared to 
Hoekman and Quiñones (2002), because of the higher resolution of the AirSAR. 
Moreover, because of the availability of near simultaneously collected TopSAR data, 
this texture technique can be further developed into 3 dimensions. 
 
 
2.7 Texture derived from InSAR 
 
3-D textural information in the InSAR images, calculated using statistical measures, 
can be used as additional information in the ICM process. The classical 2-D image 
texture may be seen as a spatial pattern arising from a deterministic or random 
repetition of local sub-patterns or primitives (i.e. pixels), with or without a preferred 
direction (Hoekman, 1990). Textural of height variation from the vegetation is very 
common in the tropical rain forest, and may be seen as such a pattern. It can be 
utilized to discriminate regions of interest or to delineate objects in an image. In radar 
images, (natural) forest types can be differentiated if sizes of resolution cells are 
comparable or smaller than sizes of major structural (or architectural) canopy 
components. Since textural phenomena can be linked to spatial properties, 
quantification of texture might become a useful tool in the characterization of forest 
architecture (Oldeman, 1990). 
 
In this study, textural phenomena of height variation derived from InSAR are 
described with statistical texture measures computed as first order statistics (i.e. 
standard deviation or SD) and as second order statistics derived from the elements of 
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the grey level co-occurrence (GLCO) matrix. In this case the elements of the GLCO 
matrix represent height variation (grey level) second-order statistics of pixel pairs 
contained in a certain image region or spatial window. This region contains pixels 
within a moving window (a kernel), and the textural measures are calculated for the 
centre pixel of this window. The second-order measures describe statistical 
dependences between two pixels with a set lag to a certain direction inside the kernel. 
The result depends on this lag or displacement length | |d and the displacement 
direction α (Haralick, 1986; Hoekman, 1990). 
 
Two of the most commonly used second-order textural operators were selected, 
namely GLCO contrast (GLCO-CONT) and GLCO correlation (GLCO-COR), and 
calculated for a number of displacement vectors. Since directional differences were 
not considered to be of interest, all values corresponding to a certain displacement 
length were averaged. Displacement lengths of 1, 5, and 10 pixels with window sizes 
of 7x7, 15x15 and 21x21 pixels were chosen, thus totalling the number of GLCO 
features to be investigated as 18. The two measures are defined as follows: 
 
Contrast (GLCO-CONT): 
 

( )( )2
1 1

,
Ng Ng

i j
P i j i j

= =
−∑∑                (2.28) 

 
Correlation (GLCO-COR): 
 

( )
( )( )

1 1
,

Ng Ng x y

x yi j

i m j m
P i j

s s= =

− −
∑∑              (2.29) 

 
where ( ),P i j are the probability values of the GLCO matrix, Ng stands for the 
number of grey levels in the digitized image and mx, my, sx and sy stand for the mean 
values and standard deviations of the row and column positions of the counts in the 
GLCO matrix, respectively. 
 
 
2.8 Error matrix 
 
The evaluation of the classification capacities was done through the analysis of the 
classification result, specifically the error matrix (contingency tables) and Kappa 
statistics for simulations performed for a single-channel, combination of two and three 
channels and full polarimetric information. It is important to notice that an error 
matrix gives a measure of the overall classification accuracy and presents errors of 
commission and omission, while the use of the Kappa statistic enables comparison 
between classification results. 
 
The results of a cross-classification between the original class map and the classified 
class maps were tabulated using the error matrix. By counting cross-classification 
errors by class, the accuracy of each classification can be assessed. An error matrix is 
a very effective way to represent map accuracy; the individual accuracies of each 
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category are plainly described along with both the errors of inclusion (commission 
errors) and errors of exclusion (omission errors) present in the classification. A 
commission error is simply defined as including an area into a category when it does 
not belong to the category. An omission error is excluding that area from the category 
in which it truly does belong. Every error is an omission from the correct category and 
a commission to a wrong category. 
 
Contingency tables show the number of correctly and incorrectly classified data 
points. An example of an error matrix is given in Table 2.5. The columns represent 
the actual land cover type as verified in the field (ground reference), whereas the rows 
indicate the land cover type as assigned by the classifier. Contingency tables clearly 
present errors of omission and errors of commission, while the error matrix can be 
used to compute other accuracy measures, such as overall accuracy, producer’s 
accuracy, and user's accuracy. Correctly classified data points are located on the major 
diagonal of the table. The ratio of the number of correctly classified data points and 
the total number of data points represents the actual agreement between the rows and 
columns of the table, and may be used as a simple measure of the overall 
classification accuracy. However, in evaluating classification results it is important 
not only to note the proportion of correctly classified data points, but also to assess the 
nature of the errors of omission and commission on a class-by-class basis. When 
comparing classification results for different data sets, ‘chance agreement’ also has to 
be taken into account. Chance agreement in contingency tables results from the fact 
that any classifier will by chance assign data points to the correct class. It hinders 
direct comparison of classification results for different data sets, as it is a function of 
the row and column totals (Congalton, 1999).  
 

Table 2.5. Example of a contingency table, which will be used to evaluate the Gaussian 
maximum-likelihood classification results. 
 
 Ground truth "True" 

Classification 
result D C AG SB Row Total 

 Land Cover 
Categories 

D 65 4 22 24 115  D    = deciduous 
C 6 81 5 8 100  C    = conifer 

AG 0 11 85 19 115  AG = agriculture 
SB 4 7 3 90 104  SB  = shrub 

Column Total 75 103 115 141 424   

 
Total classification Accuracy = 100% *(65+81+85+90)/434 = 321/434 = 74%  
 

A further analysis of the classification accuracy is the Kappa K
∧

 (KHAT) statistic 
with the help of contingency tables, which describes the classification in relation to 

random classification. With the use of the K
∧

 statistic it is possible to evaluate 
classification results in contingency tables while taking into account errors of 
omission and commission, and compensating for the effects of chance agreement. 
This measure of agreement is based on the difference between the actual agreement in 
the error matrix (i.e., the agreement between the remotely sensed classification and 
the reference data as indicated by the major diagonal) and the chance agreement, 
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which is indicated by the row and column totals (i.e., marginal). The statistic is 
calculated by:  
 

^
1 1
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l l
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N x x

+ +
= =

+ +
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− ⋅

=

− ⋅

∑ ∑

∑
              (2.30) 

where l  is the number of rows (columns) in the contingence table, iix  the number of 
data points in row i  and column i , +ix  the total of row i , ix+  the total of column i  

and N  the total number of data points. The maximum value of 
^
K  is 1. 

^
K  and its 

variance may be used to compute confidence intervals for 
^
K  and thus to construct a 

hypothesis test for significant difference between the 
^
K ’s for different contingence 

tables (Bishop et al., 1984). The test statistic for significant difference between 

two
^
K ’s (significant difference between two classification results) is given by 
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              (2.31) 

 
 
In this study all tests for significant difference between classification results were 
carried out at 95 % confidence level, at which two classification results may be 

considered significantly different when 
^

1.96KΔ >  (Benson and DeGloria, 1985). A 

classification as good as the random assignment should produce a 
^
K  of 0. A perfect 

classification would be a 
^
K  of 1 (Lillesand and Kiefer, 1994).  
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3. Description of the study area and radar data 
 
This chapter describes an overview of the study area and data sets that were used in 
this study. The Sungai Wain and its surrounding region, covering an area of 10 x 60 
km2 which comprises a wide variety of land cover types, located in the province of 
East-Kalimantan, (Borneo, Indonesia), was chosen as study area. The C-, L- and P-
band polarimetric and C- and L-band interferometric data of the AirSAR/TopSAR 
NASA/JPL were collected in the framework of the PacRim-2 campaign, and was 
supported with extensive and detailed ground data measurements. 
 
 
3.1 General study site characteristics  
 
The study area was chosen in a region with tropical rain forest, featuring a large 
variability of land cover and topographic conditions, located in the surroundings of 
Balikpapan city, East-Kalimantan Province, Indonesia. Situated around central co-
ordinates 0o83’ latitude south and 116o76’ longitude east (Figure 3.1), the study area 
is characterised by a complex mosaic of vegetation and land cover types. Tropical 
lowland evergreen and semi-evergreen rain forest dominate the natural vegetation 
with Dipterocarpaceae as the dominant family (Soerianegara and Lemmens, 1993). 
Large areas are covered with a variety of primary forests, including a Dipterocarp 
forest with emergent trees exceeding 30 m in height and 30 cm in diameter. More than 
50% of the forest was affected by the El Niño forest fires of 1997/1998 (Priadjati, 
2002). Secondary forest vegetation was formed partly as the result of deforestation 
and/or burning, caused by natural factors as well as by local farmers. The human 
population is concentrated along the main roads. Human influence largely affected 
terrain conditions and changed the primary vegetation partially or totally (Sidiyasa, 
2001). Another important species to mention is Imperata cylindrica (alang-alang), 
which presently covers vast areas throughout the whole study site. In the southern 
section, a part of the Balikpapan Bay and several transmigration areas are included. 
Two large stretches of mangrove forests lie along both sides of the bay. The rest of the 
area consists of plantations, rice fields, wastelands, shrimp ponds and beaches. Slopes 
are between 8% and 30% and the elevation is between 50-150 m above sea level 
(Bremen et al., 1990). 
 
 
3.2 Ground data collection  
 
3.2.1 Description of the land cover classes determined by fieldwork 
 
To conform to the objectives of the study, ground data were collected, focusing on the 
most important variables considering the radar data application. Additional data were 
collected later, when the analysis of the radar data set indicated the need to do so. 
Four types of information were collected: extensive observation, intensive 
observation, road tracking and collection of existing maps/data (Hoekman et al., 
2000).  
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Figure 3.1. Location of the study area at East-Kalimantan (Borneo), Republic of Indonesia. 
(Derived from: 1996 Forest land use by consensus map of the Ministry of Forestry). 
 
The fieldwork data sets contain several selected areas. Global Positioning System 
(GPS) measurements and several photographs were also acquired to support analysis 
for accuracy assessment and validation of classification models. During the fieldwork, 
the identification and the description of vegetation and land cover types were made at 
142 locations. With the help of the topographic map and terrain knowledge, a total of 
386 regions of interest (ROI's) were delineated and 14 land cover classes were 
distinguished. Those classes were grouped according to their natural composition, 
structure and function in three levels of division.  
 
Land cover types defined in this study are divided in three main groups: non-forest, 
forest and water. At the second level, the forest class is subdivided into primary forest 
un-burnt and burnt, secondary forest and mangrove. In the same way, non-forest is 
subdivided into potential and real agricultural areas and industrial production areas. 
The potential and real agricultural areas are subdivided once again on the third level, 
and consist of: rice (padi) field, alang-alang, shrubs, mixed (transition from alang-
alang to shrubs), shrimp ponds, urban area and bare soil.  Industrial production areas 
are subdivided into oil palm plantations and rubber plantations. The study focuses on 
a total of fourteen classes (classes C1 through C14) at three different levels. The 
number of training areas per class is indicated in Table 3.1. To be able to study 
classification potential in a systematic way, and to enable proper validation, another 
independent training data set was collected by another researcher (Rodriguez, 2002; 
Vargas, 2002) in September 2001 (Table 3.1). 
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Table 3.1. Land covers type classification system for region of interest (ROI’s) and 
validation. Bold characters indicate classes determined by fieldwork and used in this study. 
Remark *):  Class C4 was added later, after the evaluation made in section 4.4. Class C4 
originates from a redefinition of classes C2 and C3 by adding a transition class. 
 

Level I Level II Level III 
Training area 

Number  
of ROI’s 

Independent 
training area for 

validation 

Number  
of ROI’s 

Rice (Padi) field (C1) 12 Swamp 10 
Alang-alang (C 2) 23 Alang-alang 12 

Shrubs 18 Shrubs (C3) 32 Shrubs-trunks 10 
Mixed *) (C4) 11 Mixed 17 
Shrimp ponds (C5) 32 Shrimp ponds 11 

Urban area (C6) 11 Man-made 
structures 13 

Potential 
and real 
agricul-
tural areas 

Bare soil (C7) 33 Dead Mangrove 10 

Oil palm plantation (C8) 22 Coconut 
plantation 10 

 
 
 
 
Non 
Forest 

Industrial 
production 
areas Rubber plantation (C9)  29 Rubber plantation 11 
Mangrove (C10) 41 Mangrove 10 

Secondary forest 13 
Secondary 
forest-wet 12 
Secondary 
forest-O 10 
Secondary 
forest-Y-T 10 

Secondary forest (C11) 38 

Secondary 
forest-young 22 

Primary forest  
un-burnt (C12) 52 Primary forest 

un-burnt 11 

Forest 

Primary forest burnt (C13) 19 Primary forest 
burnt 10 

Water (C14) 31  - 
Total 386  220 

 
 
3.2.2 Land cover class description 
 
The following descriptions of land cover type are based on visual information 
obtained from the field data collection and literature study. 
 
Alang-alang (C2), the alang-alang (Imperata cylindrica) grass reproduces prolifically 
using seeds or a vegetative mechanism, and probably this is the reason why this grass 
is one of the few classes that can be found all over the study area. This type of grass is 
a result of the continuous disturbance of forested areas that have degraded to such a 
stage that it is difficult to recover. The area occupied by alang-alang increases 
continuously because of certain activities or events such as forest cutting, shifting 
cultivation, incorrect soil management and abandoned agricultural areas after two or 
three harvests of crops and after forest fires (Temmes, 1992). Often, it is associated 



Tropical forest mapping using polarimetric and interferometric SAR data 

 38

with shrubs. Those activities or events play an important role in the persistence of this 
alang-alang plant covering the land, because it collectively impedes natural 
regeneration or succession. This class has the ability to thrive on infertile soil, and has 
a high growth rate and biomass production. All these factors make this species a 
strong competitor with other plants for water, light and nutrients (Priadjati, 2002; 
Tolkamp et al., 2001).  
 
Shrubs (C3), this class is characterised by very dynamic vegetation with an average 
height between 1 to 3 m and the presence of some pioneer trees. Most of the time, this 
class is associated with alang-alang and/or agricultural areas. This type of vegetation 
appears as a result of the succession or natural recovery of severely degraded areas 
that in many cases were probably reduced to the presence of only grasses. Some 
standing trunks are often present. These are mainly remnants of forest trees that were 
present before major fire events.  
 
Mixed (transition from alang-alang to shrubs) (C4), under this label are those 
heterogeneous areas that present a chaotic mix of plants that make it impossible to 
define a dominant type of vegetation. Usually they resulted from severe intervention 
and continuous interruption of the succession or natural recovery of the area, 
sometimes associated with alang-alang and/or shrubs. Usually the mixed class is 
composed of grasses, shrubs, small trees, and maintained gardens (pepper, banana, 
etc.) and abandoned gardens. 
 
Water, Shrimp ponds and Rice (Padi) field (C5), in the study area, the following were 
found: open surface water present in the Balikpapan Bay; shrimp ponds; rice (padi) 
fields; rivers; and an artificial lake. Ponds are created mainly inside a mangrove forest 
and are the cause of destruction of this important type of vegetation. These ponds are 
used to produce shrimps or fish. The conversion of mangrove forests to ponds is a 
common practice, not only in this area, but also in general all over Indonesia (Zuhair 
et al., 2001). 
 
Urban area (C6), this class represents the settlements along the main roads, 
Balikpapan Bay harbours, industrial oil palm production areas, and transmigration 
areas in the south part of the study area 
 
Bare soil (C7), this class, which is characterised as having no vegetation, includes 
main roads, abandoned land, and logging trails. 
 
Oil palm plantations (C8), also mainly found in the south part of the study area within 
zones designated for oil palm plantation as a mono-crop. The areas designated for 
coconut plantations were in general fewer and smaller in size compared to those areas 
dedicated to rubber and oil palm production. They were usually located adjacent to 
the coast, and maintained as big gardens near a village.  
 
Rubber plantation (C9), these easily identifiable zones are mainly found in the south 
part of the study area, and are designated for rubber plantation as a mono-crop. 
Rubber plantations in different stages of development were found covering large 
areas, with trees ranging from 15 to 25 m in height. The ground in areas occupied by 
rubber was completely covered by a plant belonging to the Leguminaceae family.  
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Mangrove forest (C10), this class is found along the Balikpapan Bay and occurs along 
the river corridors with seawater influence. Mangrove forest occupies the coastline 
and continues between 200-500 m into the main land. In the study area Rhizopora sp. 
is the most dominant, building a homogeneous canopy of 5-15 m in height. This type 
of vegetation constitutes the base of an important ecosystem that has been 
demonstrated to have a high productivity and an essential role in supplying organic 
materials to marine ecosystems (Mougin  et al., 1999).  
 
Secondary forest (C11), the secondary forests are areas initially covered by primary 
forest, but afterwards have been continuously degraded by selective cutting, intensive 
logging or fires during the last decades. The vegetation is characterised by a 
community of trees with average height between 4 up to 20 m and has standing trunks 
as remnants of forest fires, as well as some isolated high trees that survive.  
 
Primary forest (C12), the type of vegetation included in this class is the natural 
vegetation that remains in the region as the original lowland forest. It still has its 
structural and functional pristine characteristics: high density, tall trees with a large 
diameter, large number of species and several layers. Its presence is a consequence of 
a combination of factors like topography, geology, climate, as well as a low or absent 
influence of humans in the area. This vegetation was found in the protected areas 
known as Sungai Wain, Bukit Bangkirai and Wartono Kadri. This kind of forest is 
typically three layered, with an upper layer of 30 to 40 m in height (Sidiyasa, 2001).  
 
Burnt primary forest (C13), during the past fire events, not only secondary vegetation 
was burnt away, but also primary forest. Its main characteristic is the presence of big 
living trees, remains of the original vegetation, with scorched standing trunks and the 
presence of light demanding species such as Macaranga spp. Another characteristic 
of burnt primary forest is that many primary forest plant families are suppressed, the 
most important one being Dipterocarpaceae, which is a very important family of this 
kind of forest in this region of the world (Keßler, 2001). Species of this family 
disappear after fire because they burn readily due to their relatively thin bark, high 
content of flammable oleo-resins, and because of their inability to sprout. 
 
 
3.2.3 Land cover class description of the independent validation set 
 
The following descriptions of land cover type are valid for the independent data set, 
which has been collected by Rodriguez (2002) in September 2001, using a different 
legend. 
 
Alang-alang (equals C2), an identical definition was used 
 
Shrubs and shrubs-trunks (2 classes), these classes are characterized by very dynamic 
vegetation with an average height between 1 to 3 m and the presence of some pioneer 
trees. This type of vegetation appears as a result of the succession or natural recovery 
of severely degraded areas that in many cases were probably reduced to the presence 
of only grasses. The difference between these two classes is based on the presence or 
absence of standing trunks, which mainly are remnants of fire events that made both 
classes easy to distinguish.  
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Coconut plantation and rubber plantation (2 classes), located mainly in the south part 
of the study area. This area has zones dedicated to maintain coconut palms and to 
plant and produce rubber as a mono-crop. The areas dedicated to coconut were in 
general fewer and smaller in comparison with those dedicated to rubber production. 
Usually they were adjacent to the coast and maintained as big gardens near to a 
village. Rubber plantations (Leguminaceae family) were found covering big areas and 
in different stage of development, with trees ranging from 6 to 9 m in height. Note 
that the rubber in the training set features heights in the range of 15 to 25 m. 
 
Primary forest (equals C12), basically the same definition is used. In Rodriguez 
(2002), additional information is given for Sungai Wain. This forest is located only 15 
km north of Balikpapan city, along the Balikpapan – Samarinda road. According to 
Sidiyasa (2001), the Sungai Wain forest has a density of 535 trees ha-1, with a basal 
area of 23.5 m2 ha-1. The composition of a plot, with an area of 3.6 ha, showed the 
presence of 385 tree species belonging to 143 genera and 49 families. The most 
important families are Euphorbiaceae, Lauraceae, Myristicaceae, Myrtaceae, 
Dipterocarpaceae, Fagaceae, Leguminoseae, Burseraceae, Annonaceae and 
Anacardiaceae (Sidiyasa, 2001).  This kind of forest is typically three-layered, with 
an upper layer of 30 to 40 m height.             
 
Burnt primary forest (equals C13), basically the same definition is used.  
 
Secondary forest and secondary forest, wet, (2 classes), labelled as secondary forest, 
are those areas that were initially covered by primary forest but that have been 
continuously degraded by selective cutting, intensive logging or fires during the last 
decades with vegetation characterized by a community of trees with average height 
between 10 and 20 m. Wet secondary forest may form a separate category. It also has 
been subject to intervention, but differs from the former secondary forest category by 
being associated to wet soils, usually present in the north part of the study area in V-
shaped narrow valleys. 
 
Secondary forest, young, and secondary forest, young-trunks (2 classes), secondary 
forest, young, includes those areas that were severely degraded, and, as a consequence 
of the succession, have recovered. High shrubs colonise them and trees with an 
average height of around 4 to 9 m. A variation of this class is ''secondary forest, 
young-trunks”, which shares all the characteristics mentioned above, but has standing 
trunks as remnants of fire events and some isolated high trees that survive.  
 
It is noted that the latter 4 classes, in fact, comprise the class C11 of the training set 
in section 3.2.1. 
 
Secondary forest old, this kind of forest was defined taking into account the height of 
the trees; it was located in areas protected from forest fires during the last years. The 
average height of the trees was of at least 20 m with emergent trees reaching a height 
of 30 to 35 m. It was found that almost all early colonizers such as Macaranga had 
disappeared and the tree species composition was typically that of a secondary forest. 
 
Mangrove forest and dead mangrove forest (2 classes), these two classes were found 
along Balikpapan Bay and the estuaries of the rivers that flow into it. The mangrove 
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forest is occupying the coastline and is growing into the mainland as far as 200 to 500 
m. The main genus is Rhizophora and the height of the trees is about 10 to 15 m.  
 
Mangrove forests provides human communities with food resources and other 
products like firewood, timber, charcoal. This forest is being destroyed to create 
shrimp ponds, and as a part of this transformation process there is a stage in which 
areas with dead mangrove trees are found in the study area, covering considerable 
areas which were classified as dead mangrove. 
 
Swamps, swamps were defined as those zones located in low parts of the study area, 
usually adjacent to rivers with flooded soil. Those areas were found usually covered 
by rice crops or grasses and in some cases there are a few small shrubs. The 
vegetation in general does not exceed 1 m height.  
 
Mixed (equals C4), basically the same definition is used.  
 
Water or pond (equals C5), basically the same definition is used.  
 
 
3.2.4 Intensive measurement of field data   
 
The intensive observations for the purpose of biomass measurement were made for 9 
primary forests un-burnt, 9 primary forests burnt, 4,000 m2 each and 7 secondary 
forests of 8,000 m2. In addition, vegetation characteristics were collected for 15 plots 
of alang-alang with varying degrees of bush invasion. The method applied to estimate 
forest biomass differs from the method used for alang-alang. 
 
Based on literature (Brown et al., 1989) the relationship between the total above 
ground biomass estimation, the diameter at breast height dbh (or D) (m) and tree top 
height H (m) is as follows: 
 

( ){ }2exp 3.3012 0.9439lnY D H
∧
= − +    [kg tree-1]                               (3.1) 

 
With this allometric relationship it was possible to calculate the total above ground 
biomass estimation for the tropical forest types studied, using the collected ground 
data. A conversion was made to calculate the total above ground biomass estimate in 
ton ha-1 from the tree biomass of individual trees present. 
 
The intensive observations to measure dbh and tree top height for the purpose of 
biomass measurement were all made in so-called super-transects of 8,000 m2 area. For 
the primary forest, the area was divided into a burnt and un-burnt part (each 50%), 
since all primary forest transects were located at the sharp transition between 
undisturbed and fire-affected areas. Each super-transect was divided into 8 transects 
(Figure 3.2). The origin (x, y) = (0, 0) was chosen in the middle. Along the negative x-
axis transects a, b, c and d were situated, and along the positive x-axis transects e, f, g 
and h.  For all 9 super-transects in the Sungai Wain forest reservation, the middle was 
situated on the border between un-burnt and burnt primary forest. The heights of the 
terrain and the trees in a super-transect were all relative to the height at location (x, y) 
= (0, 10), which was arbitrarily set to z = 0. Transect drawings were made for four 
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-200 -100 200 m 

transects in once, combining the left (a, b, c, d) and the right (e, f, g, h) transects into 
two separate drawings of the super-transect.  
 

 
 

 
Figure 3.2. Name convention for transects within super-transects in study area, each block 10 
x 100 m. 
 
All trees with a diameter at breast height (dbh) of 10 cm or more (if buttresses were 
present, the diameter was measured about 30 cm above the buttress) were measured in 
each transect, including the dbh, tree height, height to the first living branch and 
crown size. All trees in the subplots were numbered permanently using aluminum 
tags. Wooden poles were placed in grids of 20 meters, for making elevation 
corrections. Terrain height of these grid points was measured relative to one of the 
grid points with an accuracy +/- 0.5 m. 
 
Tree stem position was measured using tape, compass and clinometer, and calculated 
with a basic triangular method. The azimuth angle of a tree was measured from two 
reference points within the chosen strip line from the grid. Tree stem height (on the 
ground) was derived from interpolation of the height from the poles in the grid. 
Electronic distance measurements were made in four directions, to determine the tree 
crown projection. Tree heights were measured relatively to the stem base using a 
clinometer. Object related errors could occur in dense stands, where tree top height or 
the stem base was not clearly visible because of the presence of a dense canopy or 
shrubs, respectively. Another error could occur in circumstances when the tree was 
leaning, either towards or away from the observer, and also because of bad visibility, 
faulty instrument operation, and incorrect techniques in taking readings. 
 

  
                       (a)          (b) 
 
Figure 3.3. Example of transects drawing (a) un-burnt and (b) burnt primary forest. 
 

 
  

 

 a b e f 10 m 
 c d g h  
   

 
  

 Un-burnt Forest Burnt Forest  
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The diameters of the trees were measured at 1.3 m height (dbh) using diameter tape. 
In this case errors could occur when the tape was not placed exactly around the 
measurement plane, perpendicular to the stem. This caused an overestimation of the 
dbh, which is in order of 0.5% for a tilting angle of 5%. Another error could occur 
when cross sections were not circular, resulting in an overestimation of the basal area 
and biomass estimation. Figure 3.3 shows a sample result of the transect drawing. 
More details of ground data collection can be found in (Hoekman et al., 2001). 
 
The biomass of the alang-alang was estimated by cutting and weighing all vegetation 
within some small sample areas within these plots. This sampling procedure was 
executed by taking a random location within a 3 x 1 m2 grid area. First the square 
meter with the highest biomass was chosen (visually); the biomass was then cut and 
weighed (kg m-2) using pruning-shears, scissors, plastic bags and steelyard. Random 
sampling was repeated twice, to measure the square with the medium biomass, and 
finally the square with the lowest biomass (Table 3.2). 
 
Biophysical characteristics in each transect using the above measurement procedures 
are summarised in table 3.3, namely: averaged dominant height [m] (i.e. from 10 x 10 
m2 blocks), biomass [ton ha-1], basal area [m2 ha-1], density of trees [ha-1] and number 
of species.  
 
 
Table 3.2. Alang-alang biomass (Hoekman et al., 2001).  
 

Soil  Weight (kg m-2) HeightCover Type 
Condition 

Terrain
High  Med  Low  (cm) 

Alang-alang dry flat 1.50 1.00 0.50 80 
Alang-alang dry flat 1.50 1.50 1.00 90 
Alang-alang dry flat 2.00 1.75 1.50 150 
Alang-alang/Shrub wet flat 7.00 5.00 3.00 250 
Alang-alang/Shrub wet flat 2.50 1.50 1.00 100 
Alang-alang dry flat 3.00 2.00 1.50 150 
Alang-alang dry flat 3.00 2.00 2.00 90 
Alang-alang/Mixed wet/flood flat 5.50 5.50 5.00 130 
Alang-alang/Shrub wet/flood flat 4.50 2.00 1.75 120 
Alang-alang/Mixed dry flat 3.00 2.00 2.00 90 
Alang-alang dry flat 2.00 2.00 1.30 85 
Alang-alang dry flat 2.50 2.50 2.00 75 
Alang-alang dry flat 2.50 2.50 2.10 75 
Alang-alang dry flat 1.50 1.30 1.20 70 
Alang-alang/Pepper dry flat 3.00 2.75 1.30 95 
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Table 3.3. Biophysical characteristics of different forest vegetation types (Hoekman et al., 
2001).  
 

 

Height 
upper 

canopy (m)

Biomass 
(tons ha-1)

Basal 
area 

(m2 ha-1)

Density 
of trees 
(ha-1) 

Number 
of species 

Primary forest      

SWA01 23.93 114.78 19.65 582.50 112 
SWA03 25.68 141.88 21.70 545.00 96 
SWA05 26.88 141.08 19.80 510.00 92 
SWA07 24.70 199.60 28.78 525.00 107 
SWA09 25.88 112.03 18.10 527.50 88 
SWA11 20.60 100.05 17.20 547.50 106 
SWA13 21.73 130.63 21.38 642.50 109 
SWA15 28.80 121.65 17.35 702.50 109 
SWA17 30.75 141.03 19.90 845.00 109 
      
Primary forest (burnt)      

SWB02 17.50 84.23 11.58 612.50 63 
SWB04 20.75 113.93 17.05 372.50 76 
SWB06 18.53 100.50 16.13 367.50 61 
SWB08 9.68 48.63 8.65 215.00 45 
SWB10 18.33 115.73 17.05 287.50 53 
SWB12 12.73 79.78 12.80 297.50 63 
SWB14 10.10 68.03 9.93 185.00 26 
SWB16 15.28 52.10 7.13 205.00 56 
SWB18 8.70 31.58 4.23 135.00 31 
      

Secondary forest      
WAN01 10.76 25.16 3.71 72.50 38 
WAN02 18.65 72.39 12.33 187.50 71 
WAN03 24.80 153.18 27.09 547.50 103 
WAN04 16.63 75.69 16.39 232.50 83 
WAN05 17.14 150.59 28.23 413.75 118 
WAN06 1.95 132.53 19.83 400.00 85 
WAN07 17.23 119.64 20.25 432.50 114 

 
 
 
3.3 NASA/JPL Airborne SAR data 
 
The radar data used in this study comes from the second generation AIRSAR system 
(AIRSAR, 2000). For investigation of the C-, L- and P-band fully polarimetric (HH, 
HV, VH and VV polarisation combinations) and interferometric C- and L-band data 
the AirSAR/TopSAR acquisition of September 14, 2000 was used, covering a 10-km 
wide and 60-km long stretch. The training and validation set samples consist of 606 
delineated areas of at least 100 pixels in a 29o-61o range of incidence angles. The 
field-averaged Stokes scattering element data of the database was used to calculate 
field-averaged values for backscatter, phase difference and correlation. A database of 
plot averaged Stokes scattering operator matrix elements was created, which forms 
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the basis for the analysis. The most important technical specifications of the 
NASA/JPL AirSAR system and a brief description of nominal sensor parameters and 
image characteristics are given in table 3.4. A more detailed description of the system 
can be found in (AIRSAR, 2000). In the header file of the raw data details of the flight 
and radar data acquisition can be found. All data were processed on the JPL frame 
processor, which includes absolute radiometric calibration. 
 
Note that the C- and L-band interferometric TopSAR data seems to have a multi-path 
error (Imel, 2002). If a multi-path signal is present, possibly from signals returning 
from the scattering scene, which bounce off of wing or engine before arriving at the 
receiving antenna, then some fraction of the signal will be present and will give height 
variations with range not corresponding to the scattering topography. This effect was 
quantified by taking the first few kilometres of the scene, making a horizontal slice 
through the digital elevation model (DEM), subtracting the mean elevation, and 
averaging this operation along-track. The multi-path height errors here vary from 
close to zero to as much as +/-3 meters. The data quality is still being studied at 
Wageningen University (see also section 3.4) and re-processing by NASA may be 
necessary to take full advantage of this radar data set. 
 
 
3.4 Evaluation of DEM data quality and consequences for fusion 
 
When applying the technique introduced in section 2.2.2, a problem with the TopSAR 
DEM dataset became apparent.  It is clear that at least one of the two DEMs contains 
large errors. When the L-band DEM is subtracted from the C-band DEM, fringes with 
a height difference of plus and minus 20 m appear (Figure 3.4). It can also be noted 
from Figure 3.4 that patterns in the hills of Sungai Wain show up, which may be an 
effect of differences in penetration depth. It seems impossible to warp the PolSAR 
image accurately onto the TopSAR image. The proposed algorithm may be too rigid 
to make proper warping since it assumes correct height, and only a displacement in 
range and azimuth has to be fitted (the flying heights are within a few m only). In fact 
we are faced with a significant height error which slowly varies in a fringe like 
pattern. This problem could be solved within a more sophisticated approach, such as 
the use of local correlation techniques; however this is out of the scope of this 
research.  
 
Two types of results have been obtained so far. 
 
(1) The first uses a filtered DEM using a circular low-pass filter with a radius of 17 
pixels. It produces sharp orthorectified images. The match with TopSAR is very poor 
(local deviations are up to 10 pixels), which may be a result of the combined effect of 
DEM errors and the low-pass filtering (which reduces hill top heights and increases 
valley heights). The errors seem to be equally severe when using the C-band DEM or 
the L-band DEM. 
 
(2) The best result is obtained when no DEM filtering is applied. The warped PolSAR 
image is not sharp anymore; however the spatial errors seem to be limited to 3-4 
pixels.   
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Therefore it may be concluded that (a) the analysis is still well possible at the level of 
polygons and (b) the warped PolSAR image (i.e. version 2) can still be linked to the 
(filtered L-band) DEM to achieve a slope correction. This correction may not be 
optimal. However, it could increase the classification accuracy considerably. This 
issue will be studied in Chapters 4 and 5. 
 
Table 3.4. Some relevant AirSAR image specifications. 
 

Parameter PolSAR InSAR 
Full polarimetry C-band L-band P-band   
Interferometry    C-band L-band 
Central frequency (GHz) 5.26  1.25  0.44  5.26  1.25  
Wavelength (cm) 5.7  24  68  5.7  24  
Slant range sample spacing (m) 3.3  3.3  3.3  3.3  3.3  
Azimuth range sample spacing (m) 4.6  4.6  4.6  4.6  4.6  
Range pixel spacing (m) 3.3  3.3  3.3  5  5  
Azimuth pixel spacing (m) 4.6  4.6  4.6  5  5  
Height resolution for low-relief 
terrain (m)    1-3 1-3 

Height resolution for high-relief  
terrain (m)    3-5 3-5 

Approx. DEM resolution (m)    10 x 10 10 x 10 
Platform DC-8 aircraft 
Radar altitude (m) 8439.9 
Incidence angle range 24.9o to 61.7o 
Processor version 6.10 
Bandwidth 40 MHz 
Approx. SR pixel size (m) 4 x 3 
Approx. SR resolution (m) 5 x 5 
Independent looks per pixel  9 
NE sigma-nought -45 dB 
Absolute calibration  < 3dB 
Relative calibration between 
channels < 1.5 dB 

Relative polarisation calibration 
within channel < 0.5 dB 
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Figure 3.4. C-band DEM height minus L-band DEM 
height. Fringes with a height difference of plus and minus 
20 m appear, which is supposed to be a result of multi-path 
fading for at least one of the frequency bands. It can also be 
noted that patterns in the hills of Sungai Wain show up, 
which may be an effect of differences in penetration depth. 
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4. Biophysical parameter retrieval and land cover type 

classification                                                        
 
4.1 Introduction 
 
The theory and approaches discussed in Chapter 2 will be applied using high 
resolution radar data acquired by the AirSAR/TopSAR airborne SAR system. The 
field data discussed in Chapter 3 will be used for training and validation. 
 
The main objective of this chapter is to compare different approaches of biophysical 
parameter retrieval and land cover classification. Main differences between 
approaches relate to options to include relief correction, to include 3-D textural 
information, or to exclude a number of frequency bands. 
 
Total Power information is used to obtain clues/indications regarding the significance 
of the relief correction (Chapter 4.2). 
 
Subsequently fully polarimetric classification simulations will be performed to 
establish the relative importance of certain frequency band and polarisation 
combinations, and the effect of the number of independent radar looks (Chapter 4.3).  
 
A first classification of the full multi-frequency will be executed to evaluate the 
appropriateness of the legend introduced in Table 3.1 (Chapter 4.4). 
 
3-D textural information, derived from the high resolution InSAR DEM, will be 
evaluated for its utility to produce additional information (Chapter 4.5). 
 
Finally, the impact of tuning parameters of the Iterated Conditional Modes (ICM) 
methodology, the inclusion of relief correction and 3-D textural information and the 
exclusion of frequency bands will be evaluated (Chapter 4.6). 
 
In addition, empirical relationships between biomass and backscatter characteristics 
will be studied (Chapter 4.7). 
 
To deepen the understanding of the physical interpretation of the results, the relation 
between several forest structure characteristics and multi-frequency complex 
coherence signatures as introduced by Hoekman and Quiñones (2002) will be studied 
(Chapter 4.8). 
 
 
4.2 Relief correction  
 
A multi-band C-, L- and P-band PolSAR image is shown in Figure 4.1a. This 
combination gives excellent possibilities for visual discrimination. The radar platform 
was moving from the bottom to the top of the image and was looking towards the left 
side; the radar incidence angle varies from 24o-71o from the right to the left of the 
image. The interferometric SAR derived DEM is shown in Figure 4.1b as a grey scale 
image. The pixel spacing is 5 m by 5 m, and the image shown has 2385 x 12211 
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pixels. The DEM derived from C-band InSAR (Figure 4.1b) enables compensation for 
the relief effect of the co-registered C-, L- and P-band PolSAR data. Slope angles in 
range direction were computed from the DEM. Equation 2.1 was then applied to 
obtain the relief corrected image in Figure 4.1c. A new multi- band composite was 
created, and the result shows that the illumination effect of sloping ground or canopy 
undulation, which can confuse the target identification for classification, has been 
reduced, and in general the image has become more uniform and homogeneous  
(Figure 4.1c). The corrected PolSAR image is used as a base image to retrieve 
biophysical parameters, and for classification. 
 
The Total Power (TP) is the sum of backscatter in all polarisations. Within the 
research area, the total power of the land cover type can be interpreted visually from 
the BGR (Blue, Green, Red) colour of the pixels; Blue represents the C-band; Green 
represents the L-band; and Red represents the P-band.  
 
In the total power C-, L- and P-band image (Figure 4.1c) the bare soil shows up dark; 
alang-alang, grasslands (as well as the transition of alang-alang into shrubs) and 
shrubs in blue tones. The alang-alang (Imperata cylindrica) covers vast areas 
throughout the whole study site. The main factor for this variation seems to be the 
degree shrub invasion in alang-alang fields. The higher the shrub density, the higher 
the backscatter level. Some degraded grasslands can be recognised by their 
heterogeneous appearance. Mangrove appears as dark purple. The oil palm plantation 
appears as a mixture of yellow and red pixels. A rubber plantation appears as light 
green with a rough texture. Water, padi (rice) fields and shrimp ponds appear in very 
dark tones, in contrast to urban areas, which appear in very bright tones. Primary 
forest appears in yellow bright tones. Burnt primary forests appear as a mixture of 
yellow and red bright tones, with the red colour being slightly darker than the red of 
the oil palm plantation. Secondary forest appears in mostly yellow and red pixels with 
a few blue pixels.   
 
Though the spatial resolution is only around 5 m, the availability of full polarimetry in 
three bands yields an unprecedented view of individual tropical rain forest trees. The 
image indicates that many groups of trees can be recognised. The trees that are most 
clearly observed by the radar are the large trees of the upper canopy, which are all in a 
mature stage. It seems that, since radar is sensitive to structure and the mature trees 
have a fairly well defined structure, species-related information may be obtained. 
Large dead standing trees, many of which remained after the 1998 El Niño fires, are 
clearly recognisable as bright yellow dots, because of high L- and P-band backscatter 
levels and very low C-band backscatter level (Figure 4.2). 
 
The theoretical relationship between backscatter modulation and relief was tested 
quantitatively and qualitatively. For this purpose, several land cover types were 
selected: mangrove, oil palm plantation, primary forest and burnt primary forest. 
Qualitative comparison of radar total power (TP), before and after slope correction, 
for a selection of four land cover types, were made in C-, L- and P-band. The 
backscatter ranges for these four land cover types are shown in Figure 4.2. These 
results show that for the 41 mangrove samples the TP of C-band has a smaller range 
than for L- and P-band. However, the differences before and after slope correction are 
small, because of the flat topography and a homogeneous canopy. For oil palm 
plantations, the C-, L- and P-band backscatter ranges are smaller than for mangroves. 
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However, after slope correction, these ranges become even smaller, because this land 
cover type occurs also on undulating terrain. For the primary forest and burnt primary 
forest cover classes, which appear on undulating terrain, the backscatter range is large 
in all frequency bands, and this range diminishes considerably after slope correction. 
This general behaviour qualitatively confirms the assumption that relief induced 
modulation can be reduced after slope correction. 
 
Quantitative comparisons of radar intensity or total power (TP) extracted from the 
AirSAR image before and after slope correction in C-, L- and P-band areas of 
mangrove, oil palm, primary forest and burnt primary forest were made and are shown 
in Table 4.1. The average incidence angle of the plots range from 28.6o to 61.5o. It can 
be seen that for mangrove, the TP ranges in C-, L- and P-band before and after slope 
correction show very small differences, and that the same applies to the standard 
deviations. As was mentioned before, this is caused by the flat topography and 
homogeneous canopy. For oil palm plantations, the C-band backscatter has a larger 
range than mangrove, because of a more irregular canopy architecture and terrain 
undulation. After slope correction this difference almost disappears. In general, for all 
classes on non-flat terrain, the range of TP backscatter and its standard deviation 
becomes smaller (i.e. more homogenous) after slope correction. 
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        (a)                                               (b)            (c) 
Figure. 4.1 (a) The C-, L- and P-band orthorectified total power composite image of the 
research area. The image size is 2385 x 12211 pixels. (b) The C-band VV interferometric 
SAR generated DEM. The pixel spacing is 5 m x 5 m. (c) The C-, L- and P-band relief 
corrected total power composite image. 
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Figure 4.2 Detail (part of the study area) of (a) C-, L- and P-band orthorectified total power 
composite image of the research area. (b) The C-band VV interferometric SAR generated 
DEM. The pixel spacing is 5 m x 5 m. (c) The C-, L- and P-band relief corrected total power 
composite image.                   
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(a) 
 
Figure 4.3a. Radar intensity (TP) extracted from the orthorectified AirSAR image before and 
after slope correction in C-, L- and P-band areas in (a) Mangrove (41 samples or polygons). 
Cases: (1) C-band before correction, (2) C-band corrected, (3) L-band before correction, (4) 
L-band corrected, (5) P-band before correction and (6) P-band corrected.   
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(b) 
 
Figure 4.3b. Radar intensity (TP) extracted from the orthorectified AirSAR image before and 
after slope correction in C-, L- and P-band areas in (b) Oil palm (22 samples or polygons). 
Cases: (1) C-band before correction, (2) C-band corrected, (3) L-band before correction, (4) 
L-band corrected, (5) P-band before correction and (6) P-band corrected.   
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(c) 
 
Figure 4.3c. Radar intensity (TP) extracted from the orthorectified AirSAR image before and 
after slope correction in C-, L- and P-band areas in (c) Primary Forest (52 samples or 
polygons). Cases: (1) C-band before correction, (2) C-band corrected, (3) L-band before 
correction, (4) L-band corrected, (5) P-band before correction and (6) P-band corrected.   
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(d) 
 
Figure 4.3d. Radar intensity (TP) extracted from the orthorectified AirSAR image before and 
after slope correction in C-, L- and P-band areas in (d) Primary Forest Burnt (19 samples or 
polygons). Cases: (1) C-band before correction, (2) C-band corrected, (3) L-band before 
correction, (4) L-band corrected, (5) P-band before correction and (6) P-band corrected.       
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Table 4.1 Range of radar intensity (TP) and standard deviation (SD) before and after slope 
correction for C-, L- and P-band areas in Mangrove (41 samples of polygons), Oil palm (22 
samples), (c) Primary Forest (52 samples) and (d) Primary Forest Burnt (19 samples). 
 

TP range (dB) SD Inc. Angle 
Classes Band Before After Before After Min Max 

Mangrove C 3.2881 3.1625 0.9337 0.8594 
Mangrove L 6.0292 6.0561 1.3401 1.2855 
Mangrove P 7.0266 6.9716 1.7292 1.6610 

28.56 61.53 

Oil palm C 4.5434 3.1173 1.0968 0.7410 
Oil palm L 4.2845 2.9179 1.0814 0.7499 
Oil palm P 5.6694 4.2696 1.3380 1.0290 

46.67 52.52 

Primary Forest C 5.2478 3.3235 0.9406 0.6441 
Primary Forest L 3.5782 3.0696 0.7493 0.5474 
Primary Forest P 4.8262 4.1111 0.9257 0.8396 

43.72 56 

Primary Forest Burnt C 5.2485 4.5236 1.1192 0.9828 
Primary Forest Burnt L 4.7445 3.7777 0.9758 0.8397 
Primary Forest Burnt P 5.0615 4.0980 1.0362 0.9232 

45.03 57.01 

 
Another point of concern needs to be mentioned. For C-band the analysis has been 
done on modified data. The original data showed an artefact (dark band) on C-VV, 
which appeared as an abnormally dark strip, and which heavily contaminated 
significant features (Vargas, 2002; Hoekman et al., 2001). In order to retain 
geophysical information across this strip, a radiometric balancing algorithm was used 
to adjust the brightness relative to the neighbouring and the C-HH intensity values. It 
should be noted that this step does not affect polarimetric phase difference and 
coherence.  
 
 
4.2.1 Conclusions 
 
The main conclusions derived from the relief correction analysis using total power 
information above are: 
 
• Multi-band total power composite images of C-, L- and P-band PolSAR allow 

visual interpretation of land cover. Because of the high resolution they also allow 
for assessment of forest structures, large emergent trees, and sometimes 
individual trees, especially in areas which have fire damage.  

• The relief correction reduces illumination effects from the terrain slope and 
canopy undulation, and produces images that visually appear more uniform and 
homogenous in character. 

• The quantitative comparison of the total power values of several land cover types, 
before and after relief correction,  confirms that:  

• Mangrove shows no difference because of the flat topography and its 
homogenous canopy. 

• Oil palm shows a slight difference because of the slight undulation.  
• Primary forest burnt and un-burnt, which are located on undulating terrain 

and have an undulating canopy, reveal significant differences, showing the 
significant accomplishment of relief correction.  
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4.3 Land cover type classification simulation  
 
The simulated classification results for the 13 land cover types of Table 3.1 using 
several single and multi-channel configurations are shown in Table 4.2. The level of 
confidence is 95%, which means that roughly 5% of the data are classified as the class 
“unknown” and results far in excess of 95% are unlikely. In this table the accuracy is 
expressed as the percentage of well-classified pixels.  
 
Using the 7I model at the ‘1 dB’ level (i.e. 20-look data), and the slope correction, the 
classification simulation of a single-channel showed a very low overall classification 
accuracy, ranging from 27.3% for C-VV to 36.1% for L-HH. In general the C-band 
channel combinations obtained the lowest accuracy, while the P-band channel 
combinations obtained the highest accuracy; however, they are not significantly 
different. Combinations of channels from two frequency bands showed an increase in 
the overall classification accuracy when compared with the results for only one 
frequency band. The values ranged from 31.9% for the combination of C-HV and C-
VV to 64.9% for the combination C-pol and P-pol. Nevertheless, these values can be 
considered low, which could indicate that the information provided for carrying out 
the classification was insufficient to successfully separate the samples in each of the 
respective classes observed during the field work. Consequently, a simulation was 
performed for the same level of speckle but utilizing more information, in this case a 
three-channel combination, i.e. a simulation using full polarimetry and three bands 
(C-, L- and P-band). The overall classification accuracy after slope correction 
obtained was 71.3%. The fully polarimetric overall classification result for the 
combination of C-, L- and P-band was good (71.3%), C- and P-band (64.9%) 
performed slightly better than the C- and L-band (60.5%). In general, the results of 
64-look data (0.5 dB level) are better than that of 20-look data, and after slope 
correction the classification results are slightly improved. 
 
It is interesting to compare the performance of the different fully polarimetric 
classification models 7I and 3I+ at the 0.5 dB and 1 dB speckle level, as shown in 
Table 4.3. In general, the 7I system is better, especially for the C-, L- and P-band fully 
polarimetric combination. A slightly lower result is obtained using the 3I+ model with 
dual band combinations. Results for single-band polarisation combinations using the 
3I+ model are slightly better than for the 7I model, especially at the 0.5 dB speckle 
level. It may be noted, as explained in Chapter 2, that in the 3I+ model only the co-
variances between the three intensity values are taken into account (and phase 
information is treated independently), while for the model 7I all co-variances 
(between 7 intensities) are taken into account. Apparently, for this simulation, the 
advantage of having a more sophisticated model, i.e. the 7I model, is especially 
evident when many information channels are used. As expected, the results of 64-look 
data (0.5 dB level) are better than that of 20-look data. 
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Table 4.2. Comparison of classification simulation results before and after slope correction for the 7I algorithm for single and multiple channels. Overall 
Maximum Likelihood (ML) classification accuracy (expressed in percentages) at the 95% level of confidence. Single and multi-channel fully polarimetric 
classification results are shown for speckle levels of 1 and 0.5 dB, (i.e. N=20, N=64, respectively), together with the statistic Κ̂  and its large sample variance 

2 ˆˆ Κσ∞ ⎡ ⎤
⎣ ⎦ . Note: 'int' is HH+VV+HV polarisation; 'pol' is full polarimetry. 

N=20 Non-corrected N=20 Corrected N=64 Non-corrected N=64 Corrected 
Channel Result Κ̂  [ ]Κ̂ˆ 2

∞σ Result Κ̂  [ ]Κ̂ˆ 2
∞σ Result Κ̂  [ ]Κ̂ˆ 2

∞σ Result Κ̂  [ ]Κ̂ˆ 2
∞σ

C-,L-,P-pol 70.6 0.6818 0.0006 71.3 0.6894 0.0006 79.2 0.7756 0.0004 85.3 0.8392 0.0003
C-,L-,P-int 63.3 0.6032 0.0006 64.2 0.6132 0.0006 71.6 0.6927 0.0006 72.2 0.6997 0.0005
C-pol,P-pol 64.0 0.6113 0.0006 64.9 0.6201 0.0006 70.7 0.6835 0.0006 72.0 0.6981 0.0005
L-pol,P-pol 62.2 0.5907 0.0007 64.3 0.6136 0.0006 70.9 0.6858 0.0006 72.7 0.7042 0.0005
C-pol,L-pol 60.0 0.5672 0.0007 60.5 0.5715 0.0007 67.9 0.6528 0.0006 67.7 0.6509 0.0006
C-int,L-pol 57.9 0.5448 0.0007 57.5 0.5412 0.0007 65.7 0.6298 0.0006 65.7 0.6294 0.0006
P-pol 52.8 0.4881 0.0007 54.2 0.5032 0.0007 58.9 0.5550 0.0007 60.4 0.5712 0.0007
P-int 49.2 0.4473 0.0007 51.0 0.4665 0.0007 53.5 0.4937 0.0007 56.0 0.5213 0.0007
L-pol 49.0 0.4470 0.0007 50.0 0.4592 0.0007 55.5 0.5185 0.0007 57.9 0.5443 0.0007
L-int 45.3 0.4057 0.0007 45.7 0.4110 0.0007 49.8 0.4551 0.0007 51.1 0.4690 0.0007
C-pol 38.7 0.3365 0.0007 39.6 0.3465 0.0007 43.3 0.3875 0.0007 44.6 0.4000 0.0007
L-HH 36.1 0.3006 0.0006 36.2 0.3037 0.0006 38.7 0.3299 0.0007 39.3 0.3383 0.0006
C-int 35.0 0.2951 0.0006 35.2 0.2991 0.0006 39.3 0.3421 0.0007 40.1 0.3513 0.0007
C-HH 29.4 0.2295 0.0006 32.3 0.2557 0.0006 29.8 0.2388 0.0006 35.0 0.2839 0.0007
C-VV 27.3 0.2112 0.0006 31.9 0.2567 0.0006 28.6 0.2304 0.0006 31.4 0.2522 0.0006
C-HH-HV 32.6 0.2683 0.0006 32.7 0.2714 0.0006 36.9 0.3152 0.0007 37.2 0.3197 0.0007
C-VV-HV 30.3 0.2530 0.0006 31.4 0.2608 0.0006 34.7 0.2989 0.0006 36.2 0.3110 0.0006
C-VV-HH 30.7 0.2476 0.0006 32.5 0.2628 0.0006 33.2 0.2751 0.0006 35.5 0.2953 0.0007
L-VV 33.6 0.2741 0.0006 36.0 0.3023 0.0006 37.0 0.3103 0.0006 37.1 0.3133 0.0006
L-HH-HV 42.1 0.3698 0.0007 41.7 0.3672 0.0007 45.8 0.4106 0.0007 46.2 0.4155 0.0007
L-VV-HV 42.1 0.3699 0.0007 41.8 0.3689 0.0007 45.9 0.4118 0.0007 46.1 0.4153 0.0007
L-VV-HH 40.8 0.3543 0.0007 41.4 0.3629 0.0007 46.1 0.4120 0.0007 47.4 0.4271 0.0007
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The confusion matrix results for simulated classification at the 1 dB level using the 7I 
model for the C-, L- and P-band fully polarimetric combination are shown in Table 
4.4. The overall accuracy is 71.3% (see Table 4.2). The water, padi (rice) field and 
shrimp pond classes have an accuracy of more than 81.6%. These classes could 
collectively be considered as water. Urban area has a 93.6% accuracy; bare soil has an 
87.2% accuracy. Alang-alang has a 55.0% accuracy; this class is mainly confused 
with shrub and mangrove. Shrubs have a 49.4% accuracy; this class is mainly 
confused with alang-alang, secondary forest and mangrove. Oil palm has a 48.4% 
accuracy; this class is mainly confused with secondary forest, primary forest, primary 
forest burnt and rubber. Rubber has a 78.2% accuracy; this class is mainly confused 
with oil palm, secondary forest and primary forest, and is less confused with shrub, 
alang-alang and burnt primary forest. Mangrove has 85.1% accuracy and is slightly 
confused with alang-alang and shrub. Secondary forest, primary forest and burnt 
primary forest have an accuracy of 51.7%, 69.8% and 68.3%, respectively. Secondary 
forest is mainly confused with oil palm, primary forest, and burnt primary forest, and 
is less confused with rubber, alang-alang and shrub. Primary forest is mainly 
confused with oil palm, primary forest burnt and secondary forest. Primary forest 
burnt, is mainly confused with oil palm, primary forest and secondary forest. 

Table 4.3. Comparison of classification simulation after slope correction for the 3I+ and 7I 
algorithm for single and multiple channels. Overall Maximum Likelihood (ML) classification 
accuracy (expressed in percentages) at a 95% level of confidence. Single and multi-channel 
fully polarimetric classification results are shown for speckle levels of 1 and 0.5 dB, (i.e. 
N=20, N=64, respectively), together with the statistic Κ̂  and its large sample variance 

2 ˆˆ Κσ∞ ⎡ ⎤
⎣ ⎦ . 

N=20 3I+  N=64 3I+  N=64 7I  
Channel Result Κ̂  [ ]Κ̂ˆ 2

∞σ Result Κ̂  [ ]Κ̂ˆ 2
∞σ Result Κ̂  [ ]Κ̂ˆ 2

∞σ
C-,L-,P-pol 66.9 0.6404 0.0006 74.7 0.7256 0.0005 85.3 0.8392 0.0003
C-,L-,P-int 64.6 0.6156 0.0006 72.1 0.6982 0.0006 72.2 0.6997 0.0005
C-pol,P-pol 62.2 0.5878 0.0007 69.1 0.6644 0.0006 72.0 0.6981 0.0005
L-pol,P-pol 61.7 0.5820 0.0007 69.1 0.6645 0.0006 72.7 0.7042 0.0005
C-pol,L-pol 57.9 0.5403 0.0007 66.2 0.6321 0.0006 67.7 0.6509 0.0006
C-int,L-pol 58.3 0.5444 0.0007 65.9 0.6282 0.0006 65.7 0.6294 0.0006
P-pol 54.2 0.4987 0.0007 60.2 0.5658 0.0007 60.4 0.5712 0.0007
P-int 51.9 0.4724 0.0007 57.0 0.5290 0.0007 56.0 0.5213 0.0007
L-pol 50.9 0.4599 0.0007 57.8 0.5379 0.0007 57.9 0.5443 0.0007
L-int 47.7 0.4244 0.0007 52.7 0.4810 0.0007 51.1 0.4690 0.0007
C-pol 41.2 0.3508 0.0007 46.0 0.4047 0.0007 44.6 0.4000 0.0007
L-HH 38.8 0.3193 0.0007 41.4 0.3493 0.0007 39.3 0.3383 0.0006
C-int 38.7 0.3216 0.0007 43.0 0.3697 0.0007 40.1 0.3513 0.0007
C-HH 34.8 0.2713 0.0007 37.2 0.2985 0.0007 35.0 0.2839 0.0007
C-VV 32.8 0.2481 0.0007 35.2 0.2754 0.0007 31.4 0.2522 0.0006
C-HH-HV 36.7 0.2974 0.0007 40.8 0.3434 0.0007 37.2 0.3197 0.0007
C-VV-HV 36.0 0.2899 0.0007 40.6 0.3423 0.0007 36.2 0.3110 0.0006
C-VV-HH 35.9 0.2870 0.0007 38.5 0.3168 0.0007 35.5 0.2953 0.0007
L-VV 37.3 0.3013 0.0006 41.2 0.3463 0.0007 37.1 0.3133 0.0006
L-HH-HV 44.1 0.3840 0.0007 48.1 0.4296 0.0007 46.2 0.4155 0.0007
L-VV-HV 45.7 0.4006 0.0007 49.7 0.4459 0.0007 46.1 0.4153 0.0007
L-VV-HH 45.9 0.4024 0.0007 48.6 0.4333 0.0007 47.4 0.4271 0.0007
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Table 4.4. Confusion matrix for the C-, L- and P-band fully polarimetric combination using a 
95% confidence interval for classification using the 20 looks simulated data set.  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 % 
Unknown 2.7 0.8 2.1 3 2.5 0.7 1.7 1.1 1.6 2.7 2 3.1 1.2  

1 27.4 0 0 0 0.1 0 0 0 0 0 0 0 0 99.6 Water 
2 0 10.8 0.4 0 1.4 0 0.4 0 0 0 0 0 0 83.1 Padi field 
3 0 0.1 18.7 6.9 0.1 0 0.5 0 0.1 1.7 0.8 0 0 64.7 Alang-alang 
4 0 0 6 15.9 0 0 0.6 0.1 0.3 1.6 0.8 0.2 0.2 61.9 Shrub 
5 0.9 0.1 0.1 0 26.1 0 1 0 0 0 0 0 0 92.6 Shrimp pond 
6 0 0 0 0 0 10.2 0 0 0 0 0 0 0 100 Urban area 
7 0 0.2 1.9 0.1 1.8 0 28.7 0 0 0 0 0 0 87.8 Bare soil 
8 0 0 0 0.5 0 0 0 10.7 2.4 0 5.3 5.2 2.6 40.1 Oil palm 
9 0 0 0.1 0.6 0 0 0 2.2 22.6 0 1.5 1.6 0.1 78.7 Rubber 

10 0 0 3.9 1.9 0 0 0 0 0.2 34.9 0.1 0 0 85.1 Mangrove 
11 0 0 0.7 2.9 0 0 0 3 0.8 0.1 19.7 2.5 0.8 64.6 S. forest 
12 0 0 0 0 0 0 0 2.7 0.8 0 3.4 36.3 1.1 81.9 P. forest 
13 0 0 0.1 0.4 0 0 0 2.3 0.1 0 4.5 3.1 12.9 55.1 P. forest burnt 
% 88.4 90 55 49.4 81.6 93.6 87.2 48.4 78.2 85.1 51.7 69.8 68.3  

 
 
In summary, it may be concluded that the classes which feature low classification 
accuracy are alang-alang, shrub and oil palm. The failure to distinguish between the 
forest types is considerable, with the exception of mangrove. 
 
The level of inability to distinguish between alang-alang and shrub is very high. This 
may be a result of the fact that these classes have similar vegetation types which grow 
very quickly in uncovered areas.  
 
 
4.3.1 Conclusions 
 
From the above simulation of land cover type classification before and after relief 
correction, which had, as a purpose, finding optimal band combinations, with the 
number of looks and models used, and utilizing the confusion matrix to analyse the 
result and accuracy of each land cover class, the conclusions are the following: 
 
• At the 1.0 dB level (i.e. 20-look data), a single-channel shows a very low overall 

classification accuracy. When compared to a single-channel a combination of 2 
channels shows an increase of the overall accuracy. 

• The combination of 3 fully polarimetric bands shows optimal results. In general, 
results at the 0.5 dB level (64-look data) are better than at the 1.0 dB level (20-
look data). 

• The best result is obtained from the simulation result which uses the 7I model at 
the 0.5 dB speckle level. 

• The land cover classes alang-alang, shrub and oil palm yield the lowest accuracy.  
Other land cover classes yield satisfying results. The failure to distinguish 
between the forest types is considerable, with the exception of mangrove. 
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4.4 Land cover type mapping 
 
From the simulated classification table above, it can be concluded that it is possible to 
choose the best band combination to make a land cover map. In this case the C-, L- 
and P-band fully polarimetric combination yields the best result, as could be expected. 
It is necessary to mention here that simulated classification is merely an approach for 
pre-evaluation, such as assessing the performance of the different models and band-
polarisation combinations, the effect of speckle and the choice of classes. In real 
images we are dealing with more complex situations, related to factors such as 
incidence angle dependence, presence of additional not-well-known classes and small 
features (houses, roads) and disturbing effects of texture or relief. The texture issue 
will be dealt with in section 4.5. Incidence angle effects and choice of classes will be 
discussed next. 
 
The distributions used for classification are based on training areas within the 30º-60º 
incidence angle range of the relief corrected image. As a consequence, training areas 
of classes which have an incidence angle exclusively outside this range will not be 
taken into account (e.g. shrimp pond). It needs to be remarked here that also for 
evaluation purposes, only those validation areas inside this incidence angle range are 
taken into consideration. The effect of incidence angle dependence is ignored. To 
mitigate possible significant effects of incidence angle (Hoekman and Quiñones, 
2000) the backscatter parameter γ is used instead of οσ  ( )/ cos( i

ογ σ θ= ).  
 
Following the evaluation of the confusion matrix (Table 4.4), the land cover type 
classes have been adapted slightly. The class urban area, because of its very high 
backscatter, can be classified with very high precision, and can therefore be masked, 
and will be excluded from further analysis. Also the class of shrimp ponds is 
excluded, because it is outside the incidence angle range studied. Since the alang-
alang and shrub classes are not well-defined because of transition stages, these two 
classes are intentionally separated into three classes: alang-alang, mixed (transition 
alang-alang to shrub) and shrub. Consequently, we end up with 12 classes. 
 
Pre-processing steps have been considered. The first is spatial aggregation of 3x3 
pixels or 4x4 pixels. Figure 4.5a shows the land cover map based on 4x4 aggregation 
step, which gave slightly better results than the 3x3 aggregate, because of the higher 
level of speckle reduction.  
 
Tables 4.5a and 4.5b, respectively, show the percentage and number of pixels of the 
classification results. The probabilities of a pixel being correctly classified at the 
100% level of confidence have been calculated following the technique in Chapter 2.  
 
The overall classification map accuracy is 63.3%. Water and padi (rice) fields have an 
accuracy of more than 90.1%. Mangrove is classified with an 85.7% accuracy. Bare 
soil and rubber plantations also obtain good results, 77.5%. Alang-alang has a 42.1% 
accuracy; this class is confused mainly with mixed, bare soil, secondary forest and 
mangrove and is less confused with burnt primary forest, shrub, oil palm and rubber 
plantations. Mixed has an accuracy of 65.6%; this class is mainly confused with 
mangrove, alang-alang and burnt primary forest and is less confused with secondary 
forest, bare soil and rubber plantations. Shrubs have an accuracy of 33.6%; this class 
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is mainly confused with alang-alang, secondary forest, burnt primary forest and 
mangrove. Bare soil has an accuracy of 77.6%; this class is confused mainly with 
alang-alang, padi fields and mixed and is less confused with mangrove, secondary 
forest and burnt primary forest. Oil palm has 50.3% accuracy; this class is mainly 
confused with burnt primary forest, primary forest and rubber. Rubber has 77.6% 
accuracy; this class is mainly confused with oil palm plantations, secondary forests 
and primary forests, and is less confused with mixed, shrub, alang-alang and burnt 
primary forests. Mangrove has 85.7% accuracy and is a little bit confused with mixed, 
alang-alang and shrubs. Secondary forest, primary forest and burnt primary forest 
have 34.8%, 58.7% and 55.5% accuracy, respectively. Secondary forests are mainly 
confused with burnt primary forests, oil palm plantations, primary forests and rubber 
and are less confused with mixed, alang-alang and shrub. Primary forests are mainly 
confused with oil palm, burnt primary forests, secondary forests and rubber. Burnt 
primary forests are mainly confused with oil palm, primary forests and secondary 
forests, and are less confused with rubber and mixed. For more details see Tables 4.5a 
and 4.5b.  
 
It may be concluded that the classes which feature the most confusion are alang-
alang, shrubs and oil palm. This result corresponds entirely with the classification 
simulation presented earlier. Alang-alang and shrubs are highly subject to 
inaccuracies in differentiation. The same applies for plantation forests (oil palm) and 
secondary forests. The diversity, i.e. the wide range of physical structure within the 
secondary forest, primary forest, and alang-alang classes may also affect the 
classification potential. In general, the differences between forest (primary, mangrove, 
etc) and non-forest are well distinguishable, but it is especially difficult to 
differentiate between natural forests (except mangrove) and forest plantations (oil 
palm and rubber).  
 
 
Table 4.5a. Confusion matrix for the C-, L- and P-band fully polarimetric combination of 
classification results in Figure. 4.5a. Results are expressed in percentages. 
 

 WATE PADI ALAN MIXE SHRU BARE PALM RUBB MANG SECO PRIM BURN
WATE 96.5 2.5 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
PADI 2.0 90.1 0.3 0.0 0.3 4.7 0.0 0.0 0.0 0.0 0.0 0.1 
ALAN 0.5 0.5 42.1 7.6 14.8 11.1 0.8 0.6 3.4 2.0 0.3 0.8 
MIXE 0.0 1.5 15.2 65.6 17.6 3.7 0.3 0.8 5.1 2.3 0.2 1.1 
SHRU 0.4 0.0 4.5 1.7 33.6 1.4 0.3 0.6 2.7 1.6 0.8 0.7 
BARE 0.6 5.5 10.3 3.4 0.9 77.6 0.0 0.0 0.0 0.0 0.0 0.0 
PALM 0.0 0.0 3.8 0.0 4.0 0.0 50.3 10.8 0.3 16.9 14.3 18.3 
RUBB 0.0 0.0 3.1 2.5 4.6 0.0 11.3 77.6 0.6 8.8 5.5 3.2 
MANG 0.0 0.0 7.6 11.8 7.1 0.8 0.0 0.6 85.7 0.9 0.1 0.2 
SECO 0.0 0.0 8.6 3.4 8.3 0.2 9.0 4.1 1.1 34.8 7.6 7.9 
PRIM 0.0 0.0 0.0 0.0 0.6 0.0 13.3 3.6 0.0 14.0 58.7 12.3 
BURN 0.0 0.0 4.5 4.2 7.7 0.2 15.0 1.5 1.3 18.8 12.5 55.5 
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Table 4.5b. Idem. Results are expressed in pixels.  

 
 
Since the results show the existence of confusion between plantation forests and 
natural forests, additional information, such as texture of the canopy, may be valuable 
in improving the classification results. This can be done by considering the 
differences of textural features (see Section 2.7) in the classification process. Texture 
from radar images may be described as being smooth, rough, fine, coarse, random, 
grainy, granulated, etc. In the section (Section 4.5) the use of 3-D texture information 
derived from the C-band DEM and texture information derived from C-band total 
power image will be studied. 
 
The creation of a classified image, as well as the evaluation of a classification result, 
is, in general, not a very straightforward task. This may be particularly true for the 
complex structure of tropical land cover types. Some additional points of 
consideration are: the occurrence of many other types of forests and plantations, the 
absence of well-defined boundaries, the existence of transitions between forest types, 
and the presence of mixed vegetation (such as secondary forests). The existence of 
transition stages, for example from alang-alang to shrub, is often found, and 
randomly located in the study area. Yet, only 12 classes have been defined so far on 
the basis of carefully selected training areas. This may be on the low side (see also 
Chapter 5). 
 
 
4.4.1 Conclusions 
 
From the results of land cover type mapping using the C-, L- and P-band fully 
polarimetric combination above, the following may be concluded: 
 
• The selection of training areas was limited to the 30o–60o incidence angle range, 

the effect of incidence angle dependence was ignored, and the backscatter 
parameter gamma was used because it is less incidence angle dependent. 
Classification was conducted at the 100% level of confidence. Pre-processing 
entailed spatial aggregation of 4x4 pixels. 

• The definition of land cover classes was slightly adapted. The urban area class 
was excluded from further analysis, however is very easy to distinguish. Alang-
alang and shrub were difficult to distinguish and were separated into 3 classes, 

 WATE PADI ALAN MIXE SHRU BARE PALM RUBB MANG SECO PRIM BURN
WATE 959 5 0 0 1 2 0 0 0 0 0 0 
PADI 20 181 1 0 1 28 0 0 0 0 0 1 
ALAN 5 1 122 9 48 66 3 3 24 14 9 17 
MIXE 0 3 44 78 57 22 1 4 36 16 6 23 
SHRU 4 0 13 2 109 8 1 3 19 11 22 14 
BARE 6 11 30 4 3 460 0 0 0 0 1 0 
PALM 0 0 11 0 13 0 201 58 2 119 398 389 
RUBB 0 0 9 3 15 0 45 415 4 62 153 69 
MANG 0 0 22 14 23 5 0 3 611 6 2 5 
SECO 0 0 25 4 27 1 36 22 8 246 213 169 
PRIM 0 0 0 0 2 0 53 19 0 99 1637 262 
BURN 0 0 13 5 25 1 60 8 9 133 348 1182 
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namely: alang-alang, mixed (transition alang-alang to shrub) and shrub. 
Consequentially a legend with 12 classes resulted. 

• Overall accuracy reached 63.3%. Water and padi (rice) fields had a relatively 
high accuracy, followed by mangrove, bare soil and rubber plantation. Primary 
forest, burnt and un-burnt, had a medium accuracy level, while alang-alang, 
mixed and shrubs had low accuracy. 

 
 
4.5 Image classification enhancement 
 
4.5.1 3-D Texture 
 
The results above show that the possibilities to discriminate the different forest types 
and forest plantations are very limited. For this reason, the use of texture as additional 
information obtained from the radar backscatter images (C-band total power) and 
height images (C-band InSAR DEM) may be useful. The potential of the extracted 
texture attributes for additional classification information to differentiate between 
plantation forests (rubber and oil palm) and natural forests (secondary forest, primary 
forest and burnt primary forest) types studied was evaluated on the basis of a class 
separability measure. This measure represents the statistical distance between class 
pairs and is an indirect and a priori estimate of the probability of correct 
classification. The index for class pair (i, j) is given by:  
 

Index = i j

i jsd sd
μ μ−
+

 

 
where μi is the average value for class i, μj is the average value for class j; sdi and sdj 
are the standard deviations for class i and j. 
 
This study aims to rank the various attributes and/or attribute combinations according 
to their ability to discriminate successfully the five forest cover classes studied, i.e. 
according to their classification potential. Arbitrarily a separability value in excess of 
1.2 is considered to be useful. Table 4.6 shows that both the Standard Deviation (SD) 
and GLCO-COR TP features can not sufficiently discriminate the 10 class pairs, while 
the GLCO-CONT[d1-w21] DEM feature can only distinguish seven out of 10 class 
pairs and fails to differentiate between secondary and primary forest. However, it can 
make a distinction between plantation forests and natural forests, which may have 
been expected, because of their different canopy architecture. All natural forests 
classes, i.e. secondary, primary forest and burnt primary forest, could not be correctly 
distinguished. In contrast, plantation forests with a smooth upper canopy can be told 
apart.  
 
Though it is apparent that the classification capacity of SD and GLCO-COR textural 
attributes are less pronounced, for GLCO-CONT the classes are texturally more 
distinct. Texture might be used as an additional important source of information for 
identifying tropical land cover types in high frequency and high-resolution radar 
images. The combined use of two or more GLCO attributes might result in improved 
textural descriptions, and therefore might enhance the chances of classifying results 
correctly. The results of data sets with highly ranked attributes and/or attribute 
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combinations will be used later for classification enhancements. These numbers can 
serve as an additional prior in the extended ICM method.  
 
Because of its ability to describe the dimensions of textural sub-patterns, GLCO-
CONT can be said to be more sensitive to canopy architecture than SD. The values in 
Table 4.6 show the changes in the GLCO attributes as a function of displacement 
length, which reflects physical properties of the observed canopy. The results indicate 
that only the GLCO-CONT[d1] and -CONT[d5] textural features are sufficiently 
sensitive and stable to identify the forest types in a relatively big (21x21) image 
window. 
 
To provide better assessment of the potential of texture as additional information for 
classification, a qualitative analysis using scatter plots (Figure 4.4) of the performance 
of textural features based on the GLCO approach was made. The feature combinations 
which are able to discriminate the forest types and plantations are found to be GLCO-
CONT[d1-w21] from the C-band TP image and GLCO-CONT[d1-w21] and GLCO-
CONT[d5-w21] from the C-band DEM. 
 

Table 4.6. Texture separability indices for a selection of land cover type pairs. Each column 
gives the result of the texture index between classes: (1) oil palm (2) rubber (3) secondary 
forest (4) primary forest and (5) burnt primary forest. The higher the values, the better the 
class separation. The numbers in the shaded boxes indicate the best results.  
 
 

 Class Pairs  
Standard Deviation 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

C-TP-W07 0.751 0.046 0.371 0.033 0.798 1.084 0.741 0.327 0.081 0.412
C-TP-W15 0.651 0.138 0.606 0.085 0.763 1.107 0.593 0.480 0.227 0.698
C-TP-W21 0.585 0.154 0.704 0.182 0.699 1.103 0.471 0.551 0.342 0.912
C-DEM-W07 0.226 0.596 0.646 0.456 0.765 0.865 0.672 0.069 0.219 0.180
C-DEM-W15 0.037 1.084 0.715 0.495 1.012 0.650 0.438 0.417 0.626 0.222
C-DEM-W21 0.208 1.423 0.755 0.521 1.166 0.513 0.282 0.699 0.962 0.257

           
C-band TP 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

CONT[d1-W7] 0.748 0.019 0.305 0.062 0.767 1.004 0.716 0.288 0.082 0.373
CONT[d1-W15] 1.018 0.037 0.528 0.250 1.049 1.470 0.864 0.593 0.227 0.802
CONT[d1-W21] 1.226 0.108 0.694 0.403 1.201 1.795 0.865 0.836 0.320 1.076
CONT[d5-W7] 0.506 0.033 0.260 0.150 0.591 0.765 0.437 0.249 0.204 0.443
CONT[d5-W15] 0.652 0.062 0.498 0.278 0.730 1.052 0.476 0.459 0.361 0.806
CONT[d5-W21] 0.671 0.094 0.696 0.415 0.725 1.144 0.397 0.592 0.499 1.096

           
C-band TP 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

COR[d1-W7] 0.374 0.827 0.020 0.171 0.468 0.381 0.212 0.829 0.677 0.183
COR[d1-W15] 0.584 1.001 0.022 0.273 0.658 0.593 0.366 1.004 0.893 0.289
COR[d1-W21] 0.528 0.904 0.053 0.350 0.608 0.560 0.248 0.917 0.771 0.395
COR[d5-W7] 0.379 0.973 0.002 0.127 0.618 0.384 0.259 0.979 0.865 0.131
COR[d5-W15] 0.543 1.072 0.016 0.268 0.746 0.545 0.316 1.071 0.954 0.275
COR[d5-W21] 0.469 1.035 0.073 0.339 0.743 0.518 0.184 1.057 0.882 0.402
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DEM 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 
CONT[d1-W7] 0.647 0.509 0.747 0.487 0.572 1.096 0.742 0.314 0.330 0.087
CONT[d1-W15] 1.073 1.060 1.523 1.017 1.182 2.104 1.440 0.624 0.638 0.132
CONT[d1-W21] 1.356 1.386 2.200 1.488 1.531 2.937 2.013 0.808 0.809 0.140
CONT[d5-W7] 0.257 0.543 0.454 0.271 0.704 0.658 0.489 0.155 0.311 0.179
CONT[d5-W15] 0.407 0.978 0.845 0.576 1.182 1.132 0.896 0.311 0.538 0.276
CONT[d5-W21] 0.505 1.425 1.265 0.934 1.606 1.532 1.253 0.446 0.731 0.349

           
DEM 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

COR[d1-W7] 0.242 0.027 0.211 0.056 0.246 0.347 0.268 0.151 0.024 0.137
COR[d1-W15] 0.326 0.248 0.067 0.077 0.548 0.395 0.408 0.195 0.192 0.009
COR[d1-W21] 0.242 0.345 0.087 0.045 0.546 0.174 0.219 0.456 0.433 0.047
COR[d5-W7] 0.396 0.084 0.312 0.187 0.435 0.529 0.483 0.228 0.101 0.137
COR[d5-W15] 0.469 0.209 0.096 0.094 0.604 0.538 0.541 0.120 0.125 0.003
COR[d5-W21] 0.367 0.278 0.084 0.053 0.577 0.312 0.355 0.377 0.372 0.040

 
From the scatter plots of TP and DEM textural characteristics (Figure 4.4), it is clear 
that these are insufficient to make clear differentiations for all forest classes studied. 
The strong difference of canopy architecture between natural forest and forest 
plantations does not show up very clearly. Figure 4.4a shows that only rubber and 
secondary forest can be distinguished, while other classes cannot easily be 
discriminated. Oil palm seems to be confused with primary and burnt primary forest. 
Figure 4.4b shows the same result. The natural forest type areas, characterised by 
complex topography and rough canopy, can not be correctly differentiated from the 
forest plantation areas, which are characterised by flat to gentle topography and 
regular canopy architecture. Transitions between these areas are sometimes very 
gradual. Forests with rough to very rough canopy structures (i.e. secondary forest, 
primary forest and burnt primary forest) appeared to be the most difficult to be 
differentiated with the GLCO-COR approach. In this case, the GLCO-CONT 
parameters seemed to offer the best possibilities. The results indicate that the 
combination of total power and InSAR 3-D textural properties might be suitable for 
use as additional information to improve the discrimination of the natural forest types 
and forest plantations.  
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Figure 4.4.  (a) Scatter plot of GLCO-COR[d5-w15]-TP vs. GLCO-CONT[d1-w21]-TP and 
(b) GLCO-CONT[d1-w21]-DEM vs. GLCO-CONT[d1-w21]-TP textural features for the 
main forest types and forest plantations. 
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4.5.2 Conclusions 
 
The results obtained from image texture analysis using C-band total power and C-
band InSAR height images can be summarised as follows: 
• The 3 textural features Standard Deviation, GLCO-COR and GLCO-CONT were 

evaluated on the basis of a class separability index for 5 forest cover classes (oil 
palm, rubber, secondary forest, burnt and un-burnt primary forest). 

• The GLCO-CONT textural feature, both in total power and height images, is 
clearly superior to the other two in distinguishing types of canopy architecture. 

• Qualitative analysis using scatter plots showed that textural features based on 
GLCO-CONT[d1-w21] can clearly contribute to the differentiation of the forest 
classes under study. 

 
 
4.6. Classification enhancement using neighbouring pixel information 
 
To obtain reasonable classification results the use of additional information, such as 3-
D textural features, seems to be promising. However, because of its limited ability to 
distinguish canopy architecture other additional features, such as height information 
derived from InSAR, should be considered. For example, it can be noted that 
mangrove occurs at low altitudes only. To utilise such as potential sources of 
information, the Iterated Conditional Modes (ICM) method (Besag, 1986) is suitable. 
It will be explored whether a new approach of ICM (Hoekman and Quiñones, 2002) 
combined with several types of prior information can enhance the classification 
result. 
 
The use of ICM facilitates image reclassifying by considering the neighbourhood cells 
to enable an increase in the overall classification accuracy. Table 4.7 shows the ICM 
result with several band combinations, number of iterations, and additional 
information to be used (i.e. texture and DEM). The first column (Slope-corr) shows 
the use of slope correction. Y means that the slope correction is used, and N means it 
is not used. In the second column (Set), Kem_ag4 means that the training data set (the 
386 areas of Table 3.1) is used for classification (training and validation) while 
Zul_ag4 means that the independent data set (the 220 areas of Table 3.1) is used for 
classification (training and validation). Note that Chapter 5 discusses the situation 
where the training data set and the independent data set are used for mutual 
classification performance evaluation.  The column ‘Bands’ shows the combinations 
of bands being used, the column ‘ Number iteration’ shows the number of ICM 
iterations, the column ‘ß1’ shows the relative importance of neighbouring pixels, the 
column ‘ß8’ shows the relative importance of the textural features, the column 
‘DEM_THR’ shows the terrain altitude threshold value in meters. The columns DEM 
and Texture show switches: if the value is 1, the information is used, and the value is 
0 if it is not used. The column ‘End result’ shows the final overall classification 
results after the iteration process is finished. 
 
From Table 4.7 it is shown that the  ß1 values being used are 0.4, 1, 3, 6, 8 and 10, the  
ß8 values being used are 1, 2, 3, 4 and 5, while the number of iteration used are 4, 5, 
8, 10, 20 and 50. Because the number of combinations of all these values is enormous, 
and computing time for each classification is considerable because of the large image 
size, it is only possible to evaluate a number of combinations. 
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The classification results show that for the C-, L- and P-band combination with 
ß1=10, iterations=20 and with the use of a priori knowledge (i.e. texture and DEM), 
the classification has an 88.0% accuracy (case a). For the C-, L- and P-band 
combination with ß1=10, iterations=50, and without the use of a priori knowledge, 
the classification is even better with an 88.9% accuracy (case b). The latter result is 
shown in Figure 4.5b. For the C-, and L-band combination with ß1=10, iterations=20, 
and with the use of a priori knowledge, the classification has an 81.4% accuracy (case 
c), and the result is shown in Figure 4.6a. For the C-, and P-band combination with 
ß1=10, iterations=20 with the use of a priori knowledge, the classification has an 
82.2% accuracy (case d); the result is shown in Figure 4.6b. For the L- and P-band 
combination with ß1=10, iterations=20 with the use of a priori knowledge, the 
classification has an 83.1% accuracy (case e), and the result is shown in Figure 4.6c. 
However, it is clear that for ß1=10 and iterations less than 20, the classification result 
is less optimal.  

Table 4.7.  Overall classification results for training/validation areas of the extended ICM 
approach for several bands, iteration values and a priori knowledge combinations. All 
combinations are fully polarimetric and the 7I model is chosen. *) For case j see Chapter 5. 
 

Slope- 
corr Set Run Bands Number 

iterations ß1 ß8 DEM Texture DEM_ 
THR 

End 
result Case

Y Kem_ag4 ICM_run01 CLP 4 0.4 0 0 0 0 70.6  
Y Kem_ag4 ICM_run02 CLP 8 1 0 0 0 0 77.6  
Y Kem_ag4 ICM_run03 CLP 50 10 0 0 0 0 88.9 b 
Y Kem_ag4 ICM_run04 CLP 10 8 2 0 1 0 85.6  
Y Kem_ag4 ICM_run05 CLP 5 1 1 1 1 50 77.0  
Y Kem_ag4 Run_f01 CLP 20 10 1 0 0 50 87.6  
Y Kem_ag4 Run_f02 CLP 20 10 1 1 0 50 87.8 h 
Y Kem_ag4 Run_f03 CLP 20 10 1 1 1 50 88.0 a 
Y Kem_ag4 Run_01 CL 20 10 1 0 0 50 81.6  
Y Kem_ag4 Run_02 CL 20 10 1 1 0 50 81.8 i 
Y Kem_ag4 Run_03 CL 20 10 1 1 1 50 81.4 c 
Y Kem_ag4 Run_04 CL 20 10 4 1 1 50 79.9  
Y Kem_ag4 Run_05 CLP 10 3 2 0 0 50 83.7  
Y Kem_ag4 Run_06 CLP 10 6 1 0 0 50 85.4  
Y Kem_ag4 Run_07 CLP 10 6 2 1 0 50 85.6  
Y Kem_ag4 Run_08 CLP 10 6 1 1 1 50 85.6  
Y Kem_ag4 Run_09 CLP 10 6 2 1 1 50 85.4  
Y Kem_ag4 Run_10 CLP 10 6 3 1 1 50 84.7  
Y Kem_ag4 Run_11 CLP 10 6 4 1 1 50 84.0  
Y Kem_ag4 Run_12 CLP 10 6 5 1 1 50 82.9  
Y Kem_ag4 Run_13 CP 20 10 0 1 0 50 82.2 d 
Y Kem_ag4 Run_13a LP 20 10 0 1 0 50 83.1 e 
Y Zul_ag4 Run_14 CLP 20 10 0 1 0 50 93.8 j*) 
N Kem_ag4 Run_15 CL 20 10 0 1 0 50 82.3  
N Kem_ag4 Run_16 CLP 20 10 0 1 0 50 87.8  
N Kem_ag4 Run_17 CP 20 10 0 1 0 50 82.5 f 
N Kem_ag4 Run_18 LP 20 10 0 1 0 50 82.0 g 

 



Tropical forest mapping using polarimetric and interferometric SAR data 

 70

When comparing cases d and f for the CP combination, or comparing cases e and g 
for the LP combination, it is clear that the effect of the additional use of slope 
correction is not significant. Similarly, when comparing cases h and a for the CLP 
combination, or comparing cases i and c for the CL combination, it is clear that the 
effect of the additional use of texture is not significant. Apparently, when using the 
full polarimetric information of 2 or 3 bands, the information content is already that 
high that additional information hardly adds anything. 
 
 It may be concluded that the approach chosen is relatively satisfying. Nevertheless, it 
is not clear how the values of the influence factors ß1, ß8 (section 2.6), their 
relaxation schemes, and other factors (i.e. texture and DEM) can be optimised. 
However, it can be shown that this approach yields major improvements in 
classification.  
 
It can be concluded that this simple and computationally fast ICM technique yields 
significantly better results (Figure 4.5b) compared to the previous ML results (Figure 
4.5a), although explicit application of DEM and texture may not provide major 
improvements.  
 
Table 4.8a presents the confusion matrix in percentages of land cover type 
classification for the third case of Table 4.7, which is the best result achieved for the 
‘Kem_ag4’ data set. Figure 4.5b is the resulting image after completion of 50 cycles 
of the extended ICM method. The classes are coded with the colour legend described 
in Figure 4.5c. In general, satisfying results are obtained. The overall accuracy was 
88.9%. The classification was highly accurate for water, padi fields, mangrove, 
mixed, bare soil, rubber, oil palm, rubber plantations, primary forests and burnt 
primary forests. For these classes, the classification accuracy varied from 86.5% for 
oil palm to 98.8% for water. The classification was less successful for alang-alang 
(46.7%), shrubs (34.0%) and secondary forest (73.2%). Alang-alang and shrubs were 
often confused with each other. Secondary forests were often classified as burnt 
primary forest, primary forest and oil palm. 
 

Table 4.8a. Confusion matrix for classification results (in percentages) for the 12 classes 
after applying 50 cycles of the extended ICM approach. Note this is the third case of Table 
4.7. 
 

 WATE PADI ALAN MIXE SHRU BARE PALM RUBB MANG SECO PRIM BURN
WATE 98.8 1.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PADI 0.3 95.6 0.0 0.7 0.5 2.2 0.0 0.0 0.0 0.0 0.0 0.0 
ALAN 0.2 1.1 46.7 5.0 11.0 8.4 0.1 0.2 0.2 0.1 0.0 0.1 
MIXE 0.0 1.7 26.6 87.5 31.9 1.4 0.0 0.1 0.9 0.2 0.0 0.1 
SHRU 0.4 0.0 1.9 0.3 34.0 0.2 0.0 0.0 0.4 0.1 0.1 0.2 
BARE 0.4 0.6 7.2 0.3 0.1 87.6 0.0 0.0 0.1 0.0 0.0 0.0 
PALM 0.0 0.0 0.6 0.6 3.7 0.1 86.5 1.5 0.0 6.5 3.5 1.3 
RUBB 0.0 0.0 0.5 0.2 3.5 0.0 1.2 96.2 0.1 0.9 0.4 0.2 
MANG 0.0 0.0 4.3 0.6 3.3 0.1 0.0 0.2 98.3 0.0 0.0 0.0 
SECO 0.0 0.0 8.9 4.5 3.6 0.0 3.8 1.0 0.1 73.2 0.7 0.5 
PRIM 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.7 0.0 7.8 91.8 2.8 
BURN 0.0 0.0 3.3 0.3 8.1 0.0 2.0 0.1 0.1 11.1 3.4 94.8 
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Table 4.8b.  Idem. Results are expressed in pixels. 

 
 
It can be observed from Figure 4.5b that a few areas in the area just above the bay and 
below the primary forest region (the Sungai Wain protected forest) are labelled as oil 
palm, but in fact are primary forest, according to a field survey. This area of primary 
forest differs from other primary forest areas in the sense that it is very swampy. The 
oil palm area actually only occurs in the southern area, just below the bay. Primary 
forest areas were correctly labelled.  
 
Using dual band combinations of fully polarimetric SAR data, the classification 
results after ICM are shown in Figure 4.6. The classes are coded with colours 
described in Figure 4.5c. Visual interpretation of the C- and L-band combination 
(Figure 4.6.a) shows that burnt primary forest is difficult to separate from the 
secondary forest, while the primary forest is clearly separable. In the southern side, 
just below the bay, the burnt primary forest appears in the map while it is actually a 
part of the nearby oil palm plantation, and the rubber plantation appears in the map to 
be larger than it is. The classes alang-alang and mixed can be clearly separated, 
although they are often mixed up with each other.  For the C- and P-band combination 
(Figure 4.6b) primary forests and secondary forests can also be clearly differentiated. 
In the northern part, rubber plantations and oil palm appear in the map, although they 
are actually secondary forest. The classes alang-alang, mixed and secondary forest 
can be well differentiated from other classes, although they are mutually hard to 
differentiate. In the southern part, burnt primary forest appears in the map, although 
the area is actually a part of the oil palm plantations. For the L- and P-band 
combination (Figure 4.6c) the classification result for the primary forest is slightly 
inferior compared to the two other combinations mentioned previously. Secondary 
forests can be clearly differentiated. In the Sungai Wain protected forest area and 
along its eastern and north-eastern side, oil palm appears on the map, although the 
area is actually burnt primary forest in the Sungai Wain area and secondary forest in 
the north-eastern part. In the southern part below the bay the oil palm and rubber 
plantations can be well differentiated. The classes alang-alang, shrub and mixed are 
difficult to separate. In general using dual-band combinations the classification result 
of the C- and P-band combination provides the most realistic outcome. 
 
 

 WATE PADI ALAN MIXE SHRU BARE PALM RUBB MANG SECO PRIM BURN
WATE 50064 108 0 0 51 5 0 0 0 0 0 0 
PADI 152 9802 6 43 74 656 0 0 0 0 0 20 
ALAN 91 112 6903 302 1811 2529 15 42 63 52 61 80 
MIXE 17 171 3932 5313 5277 410 6 30 310 59 33 91 
SHRU 194 0 286 15 5615 50 5 6 130 47 161 161 
BARE 176 58 1058 19 9 26505 0 0 32 0 14 0 
PALM 0 0 94 39 618 39 17640 413 5 2343 5027 1433 
RUBB 0 0 66 13 578 0 248 26243 18 324 564 260 
MANG 0 0 635 37 546 39 0 45 35741 16 10 12 
SECO 0 0 1322 270 595 3 780 283 42 26367 1002 576 
PRIM 0 0 0 0 5 0 1291 187 0 2794 130528 3023 
BURN 0 0 488 18 1345 7 415 36 22 4004 4839 103025
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4.6.1 Conclusions 
 
From the result of classification enhancement using neighbouring pixel information 
(ICM), DEM, and 3-D textural information as additional information, the following 
can be concluded: 
 
• ICM, by taking into consideration the class of neighbouring pixels and additional 

knowledge from the DEM (height and texture), increases the overall classification 
accuracy considerably. In section 4.4 the best simulated result was 85.3% for 64-
look data and 71.3% for 20-look data; here, after applying ICM the accuracy 
increases to 88.9% for a 4x4 pixel aggregate. From section 2.3.2 it can be 
concluded this corresponds to roughly 75-, 45- and 24–look data for C-, L- and P-
band, respectively. 

• Classification results showed that the use of the C-, L- and P-band combination 
with ß1=10 and 50 iterations, without a priori knowledge (i.e. texture and DEM), 
yielded the best results. The use of a priori knowledge (i.e. texture and DEM) did 
not always yielded significant increases in the overall classification results. 

• Apparently, when using the full polarimetric information of 2 or 3 bands, the 
information content is already that high that additional information hardly adds 
anything. 

• For water, padi fields, mangrove, mixed, bare soil, rubber, oil palm, rubber 
plantations, primary forests, and burnt primary forests, the classification accuracy 
varies between 86.5% for oil palm and 98.8% for water. For alang-alang, shrubs, 
and secondary forests, the classification was less successful. 

• When using dual-band combinations: C- and L-band showed that burnt primary 
forest was difficult to separate from secondary forest. Using the C- and P-band 
combination, primary forest and secondary forest can be well differentiated while 
for the L- and P-band combination the classification result for the primary forests 
is slightly inferior compared to the two other combinations mentioned previously. 
In general using dual-band combinations the classification result of the C- and P-
band combination provides the most realistic outcome. 
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                      (a)       (b)    (c) 
Figure 4.5. The study area showing (from left to right): (a) ML-classification and (b) ICM 
(50)-classification and (c) legend for colour-codes used in the map. 
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                      (a)                                            (b)                                             (c)                      
Figure 4.6. Classification result from dual-band combinations after ICM (a) for C- and L-
band (b) for C- and P-band and (c) for L- and P-band. Legend of colour-codes used in the 
map can be seen in Figure 4.5c. 
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4.7 Biomass estimation 
 
An allometric equation (Eq. 3.1) valid for the East-Kalimantan province was applied 
to estimate the (total above-ground) biomass of the plots of primary forest, burnt 
primary forest and secondary forest, using trunk diameter and tree top height (Brown 
et al., 1989). Since many dead trees with standing trunks were present, and these 
could have an important effect on the radar backscatter, this estimation was done 
twice: with and without dead standing trees. It is noted here that dead fallen trees were 
never included. The potential of biomass class mapping was studied by evaluating the 
backscatter for all nine transects of primary forest and burnt primary forest, and for 
seven transects of secondary forest. A clear empirical relationship between 
backscatter and biomass would allow the development of a straightforward direct 
approach in biomass mapping. In addition, vegetation characteristics were collected 
for 15 plots of alang-alang with varying degrees of bush invasion. In these fields, the 
above-ground fresh biomass was found to vary over the range of 112-199 ton ha-1 (1 
ton = 1,000 kg; 1 ha = 10,000 m2) for primary forest, 31-115 ton/ha for burnt primary 
forest and 25-153 ton ha-1 for secondary forest (see Chapter 3 for more details). The 
correlation coefficients r2 are calculated from linear regression between gamma ( iγ ) 
values (in dB) and the logarithm of biomass. 
 
The main results are summarised in Tables 4.9 and 4.10. Since slope effects are 
significant, these results are shown for backscatter values before and after slope 
correction. As mentioned above, results are also shown for biomass with and without 
the inclusion of dead standing trees. Therefore four cases are considered. The 
backscatter range for each radar band-polarisation combination reflects the sensitivity 
of radar bands and polarisation to biomass. This backscatter range is commonly 
referred to as dynamic range. The dynamic range, and hence the sensitivity to 
biomass, is shown to increase with an increase in wavelength. This phenomenon is 
well known, and may be explained by the relationship between wavelength and the 
scattering behaviour. The available data show that L-HV, P-VV and P-HH have the 
largest dynamic range (Table 4.10, after slope correction). 
 
It is shown that the coefficient of correlation (r2) is smaller for biomass excluding 
dead standing trees compared to biomass including dead tress. The correlation 
coefficients obtained before and after slope correction are slightly different; after 
slope correction a small increase in the correlation coefficient is observed. The 
maximum value of r2 is 0.68,  which is for P-HV with a range/SEE ratio of 5.53. For 
C-VV the r2 is 0.34 with a range/SEE ratio of 5.09 and for L-VV r2 is 0.62 with a 
range/SEE ratio 0.34. All other r2 values are between 0.29 and 0.60 with range/SEE 
ratios between 4.63 and 6.17. It seems that the r2 values of the cross-polarised 
backscatter in the long wavelengths (L-HV and P-HV) are higher than those for the 
short wavelengths C-HV).  
 
In case dead standing trees are excluded, the correlation coefficients are much lower 
in general than in case dead standing trees are included. The maximum value of r2 is 
only 0.60 and results for P-HV. All other values are lower than 0.57. The lowest 
correlation coefficients are measured at C-band with a maximum value of 0.34 from 
C-VV. In general, the correlation coefficients are higher for L- and P-band. HH and 
HV polarisation do not always yield better results than VV polarisation. The 
maximum values of r2 with dead standing trees included are 0.62 and 0.68, which are 
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found for L-VV and P-HV respectively. In addition, the range/SEE ratio values for the 
cases which exclude dead standing trees are lower than for the cases which include 
dead standing trees. Apparently, the impact of the presence of dead standing trees 
provides an undesirable effect in the estimation of actual biomass vegetation in burnt 
and intact primary forest, because the dead trunk remnants in such forest types will 
increase the amount of backscatter measured, causing the increase of biomass 
estimation calculated by the empirical relation. This approach, i.e. using backscatter-
log10 biomass relationships, leads to moderate results for this site.  
 
Scatter plots in Figure 4.7 show the backscattering coefficient as a function of the 
estimated log10 biomass for C-HH, L-VV, P-HH and P-HV, respectively. For C-HH 
(Figure 4.7a) the correlation and the range/SEE ratio are very low. No clear 
relationship can be observed. For L-VV (Figure 4.7b) the correlation and the 
range/SEE ratio are moderate (see Table 4.10). The secondary forest biomass value 
seems to have a wide range (from medium to high). The heterogeneous vegetation of 
this class features an irregular upper canopy due to the clumped occurrence of 
dominant canopy trees and the presence of emergent pioneer trees. For P-HH (Figure 
4.7c) the ratio of range/SEE is higher: 6.17 and the correlation is 0.55. In this case 
there is a slight relation with biomass; however there is also a clear dispersion 
between samples from different forest types, caused by factors such as the presence of 
many dead trunks in the burnt primary forest. The theoretical concept of threshold or 
saturation level is the maximum biomass level for which the radar backscatter is still 
sensitive. For the P-HH result it points to a biomass level around 100 ton ha-1. In the 
case of P-HV (Figure 4.7d), there is a slight relation with biomass, however there is 
also no clear dispersion between secondary forest and burnt primary forest. The ratio 
is 5.53 and the correlation is 0.68. Although less dispersion of the data is observed, 
the saturation is reached very early, around 2.0 (or 100 ton ha-1).  
 

Table 4.9. Relationship between backscatter [dB] and log10 biomass without dead standing 
trees in ton ha-1 for several frequency and polarisation combinations. The correlation 
coefficient r2, standard error of estimate (SEE), the total range of the experimental data and 
the ratio of range and SEE are shown before and after slope correction. 
 

Before After 
Channel r r2 SEE 

[dB] 
range 
[dB]

Range/ 
SEE [dB] r r2 SEE 

[dB] 
range 
[dB] 

range/ 
SEE [dB]

C-HH 0.50 0.25 2.22 9.41 4.24 0.53 0.28 1.99 8.68 4.37 
C-VV 0.55 0.30 2.35 11.02 4.69 0.58 0.33 2.14 10.26 4.80 
C-HV 0.53 0.28 2.11 9.25 4.39 0.55 0.31 1.90 8.51 4.49 
L-HH 0.72 0.52 2.60 12.35 4.74 0.75 0.56 2.41 11.53 4.78 
L-VV 0.73 0.53 2.53 11.26 4.45 0.75 0.57 2.35 10.55 4.50 
L-HV 0.71 0.50 3.08 15.21 4.93 0.72 0.52 2.93 14.50 4.94 
P-HH 0.68 0.46 3.54 17.58 4.97 0.70 0.49 3.32 16.76 5.05 
P-VV 0.71 0.51 3.07 13.98 4.55 0.73 0.54 2.88 13.52 4.69 
P-HV 0.76 0.58 3.83 16.19 4.22 0.77 0.60 3.65 15.88 4.35 
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Table 4.10. Relationship between backscatter [dB] and log10 biomass including dead 
standing trees in ton ha-1 for several frequency and polarisation combinations. The correlation 
coefficient r2, standard error of estimate (SEE), the total range of the experimental data and 
the ratio of range and SEE are shown before and after slope correction. 
 

Before After 
Channel r r2 SEE 

[dB] 
range 
[dB] 

range/ 
SEE [dB] r r2 SEE 

[dB] 
range 
[dB] 

range/ 
SEE [dB]

C-HH 0.51 0.26 2.19 9.41 4.29 0.54 0.29 1.88 8.68 4.63 
C-VV 0.56 0.31 2.32 11.02 4.74 0.58 0.34 2.01 10.26 5.09 
C-HV 0.54 0.29 2.08 9.25 4.46 0.56 0.31 1.80 8.51 4.73 
L-HH 0.74 0.54 2.53 12.35 4.88 0.76 0.57 2.06 11.53 5.60 
L-VV 0.77 0.59 2.38 11.26 4.73 0.78 0.62 1.98 10.55 5.34 
L-HV 0.75 0.56 2.91 15.21 5.22 0.76 0.57 2.55 14.50 5.68 
P-HH 0.72 0.52 3.35 17.58 5.24 0.74 0.55 2.72 16.76 6.17 
P-VV 0.76 0.57 2.87 13.98 4.88 0.78 0.60 2.40 13.52 5.64 
P-HV 0.81 0.66 3.48 16.19 4.65 0.82 0.68 2.87 15.88 5.53 

 
 
In general backscatter in L- and P-band increases with increasing biomass until it 
saturates at a certain threshold level. L- and P-band have the capability to discriminate 
the secondary forest, primary forest and burnt primary forest, as long as the biomass 
levels of the secondary forests are lower than those of primary forest and burnt 
primary forest. Biomass estimation is complicated further by the fact that the 
backscatter in L- and P-band is not only a function of biomass, but also of forest 
composition and condition. The results, obtained for this site, may indicate the general 
trend observed in this type of forest conditions (primary forest and burnt primary 
forest). The response of the radar to burnt areas will be complex and more 
unpredictable, depending on the burning intensity, nature of the forest and underlying 
ground surface. Ground fires, for example, may cause no difference in radar response, 
but dead standing trees might have an impact upon radar response. Boundaries of burn 
scars are not regular in tropical areas and burning gradations frequently occur.  
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(a) 
 

Figure 4.7a. Scatter plots for the relation between the estimated of fresh weight above-ground 
biomass for alang-alang and other forest cover types including dead standing trees and the 
corresponding intensity value expressed in gamma [dB] after slope correction, for C-HH. 
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(b) 
 

Figure 4.7b. Scatter plots for the relation between the estimated fresh weight above-ground 
biomass for alang-alang and other forest cover types including dead standing trees and the 
corresponding intensity value expressed in gamma [dB] after slope correction, for L-VV. 
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(c) 
 
Figure 4.7c. Scatter plots for the relation between the estimated fresh weight above-ground 
biomass for alang-alang and other forest cover types including dead standing trees and the 
corresponding intensity value expressed in gamma [dB] after slope correction, for P-HH.  
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(d) 
 
Figure 4.7d. Scatter plots for the relation between the estimated fresh weight above-ground 
biomass for alang-alang and other forest cover types including dead standing trees and the 
corresponding intensity value expressed in gamma [dB] after slope correction, for P-HV.  
 
Taking into account the unsatisfying result of having (direct) empirical relationships 
between backscatter and biomass which strongly depend on forest conditions (primary 
forest and burnt primary forest) and due to the early saturation of the backscatter 
intensity level, which will also largely effect the accuracy of the biomass map, the 
possibility of using indirect relationships using structural forest maps, like proposed in 
(Quiñones, 2002) should be considered as an alternative solution. 
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4.7.1 Conclusions 
 
Conclusions from the analysis of biomass estimation using empirical relationships 
between backscatter and biomass for alang-alang fields, secondary forests, primary 
forests and burnt primary forests, including as well as excluding dead standing trees, 
are the following: 
 

 The coefficient of correlation is smaller for biomass excluding dead standing 
trees compared to biomass including dead standing trees. 

 The coefficient of correlation before and after slope (relief) correction is 
slightly different. After slope correction, the coefficient shows a small 
increase. 

 P-HV shows a maximum correlation result which is 0.68. 
 In general, the backscatter in L- and P-band increases with the increase of 

biomass until a certain saturation limit is reached, which is around 100 ton ha-1 
 In case burnt forests would be excluded, the relationships are much more 

pronounced, and the saturation limit may reach 200 ton ha-1. 
 
 
 
4.8 Physical interpretation of signal characteristics 
 
To understand the physical aspects of the effect of some forest structural 
characteristics (such as canopy structure, trunk or terrain condition) on the radar 
return, the multi-frequency complex coherence signature of field plots with different 
structural characteristics was studied, using a physical model introduced in (Hoekman 
and Quiñones, 2002). Several specific cases, such as individual trees, mangrove, 
primary forest and burnt primary forest are considered in order to elucidate the direct 
effect of physical structure on the radar return signal.  
 
Changes in intensity are expected to occur as described in the literature, i.e. higher 
backscatter values where more scatterers of a certain size (in relation to wavelength) 
occur. To understand the physical interaction between the forest and radar waves, the 
scattering mechanisms can be simplified into a model composed of three contributions 
(Ulaby et al., 1986). These are: (1) the direct backscattering from the vegetation layer, 
(2) the direct backscattering from the ground attenuated by the vegetation cover and 
(3) the backscattering originating from ground-trunk interaction attenuated by the 
vegetation cover. These are sometimes referred to as the diffuse (volume) term, the 
single-bounce (odd) term and the double-bounce (even) term, respectively. For diffuse 
scattering the polarimetric coherence is low and the polarisation phase difference 
(PPD) can be anything in the range between 0o to 360o. For single-bounce scattering 
the coherence is high and the PPD is around 0o. For double-bounce scattering the 
coherence is high and the PPD is around 180o (Van Zyl, 1989). The dominance of a 
certain scattering mechanism might, in some cases, be related to certain vegetation 
structures. In Hoekman and Quiñones, 2002, a model is introduced in which values of 
complex coherence are described as the combined effect of such scattering 
mechanisms. Pure scattering mechanisms as described in (Van Zyl, 1989) can be 
located in the complex coherence plane as points or, when including the effect of 
speckle, as small areas (Hoekman and  Quiñones, 2002). For the complex structure of 
the tropical forest, pure scattering mechanisms are not expected to occur. But it is 
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expected that some patterns in the signatures can be related to specific forest structural 
characteristics.  
 
Figure 4.8 shows the frequency dependence of the complex coherence of some 
characteristic features, which may relate strongly to the forest structure as illustrated 
in the photograph of actual field observation. The signatures of four different specific 
cases of forest structures are presented in Figure 4.8a-d and the complex coherence 
value of the individual tree, mangrove, primary forest and burnt primary forest are 
shown. The curves connect the C-band coherence (in these examples almost always 
the right-most point) with the L-band (in the middle) and P-band value (at the other, 
i.e. the left-end, of the curve). Except for the curves of two mangrove plots (in Figure 
4.8b) all curves lie in the first and fourth quadrant. 
 
The first case (Figure 4.8a) shows individual dead standing trees with standing trunks, 
but without or with very few remaining branches. The second case is a mangrove 
forest which features a high density and a very closed canopy over partly flooded 
terrain. The third is a primary forest with a high density and with a closed canopy over 
undulating terrain. The fourth case is burnt primary forest with medium density and 
an open canopy and many dead standing tree trunks remaining after fire events, over 
undulated terrain. 
 
The multi-frequency complex coherence curves of dead standing trees (Figure 4.8a) 
do not show a distinct pattern. Since all curves lie completely in the first and fourth 
quadrant, it is clear that the double-bounce mechanism, or the trunk-ground 
interaction, is not dominant. A more detailed analysis for tree number 6 is even more 
revealing (see detail of radar image and photograph). The tree is observed as a bright 
yellow dot on the left side of a small road. The actual position of the tree is at the right 
side of the road, i.e. more to the far range of the radar image. Considering the radar 
observation geometry it can be shown that the scattering centre is roughly in the 
middle of the trunk, because of its positional shift or parallax towards the radar. These 
two facts: parallax shift and absence of double-bounce characteristics strongly support 
the hypothesis that a direct trunk scattering mechanism is observed. Moreover, since 
the tree is located in an area with steep slopes, and is devoid of any substantial flat 
area between radar and tree, a double-bounce return is highly unlikely. The yellow 
colour is indicative for strong scattering in L- and P-band (conventional AirSAR 
colour coding is used). Thus, it may be concluded that dead standing trunks 
contribute significantly to the overall forest backscatter in L- and P-band. 
 
For all other forest types (Figure 4.8b, c and d) there is a decrease in the correlation 
from C-band through L-band towards P-band. This indicates a gradual shift from 
surface scattering (i.e. a top of canopy observation) to volume scattering or increasing 
penetration with wavelength. Since a strong double-bounce contribution would lead to 
a high correlation in combination with a phase around 180 degrees (i.e. in the second 
or third quadrant), it may be concluded that large trunk ground interaction 
contributions are absent. Physically this may be associated with a combination of 
thick vegetation with high attenuation and/or a forest floor which is sloping. The only 
exceptions are two curves of mangrove plots which feature such behaviour for the P-
band in a lesser extent. This may be caused by a relatively large fraction of not-dense 
canopy over a flooded terrain. 
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(a) 
 
Figure 4.8a. Multi-frequency complex coherence curves for individual dead standing trees, 
with an example image fragment and a photograph from the field for tree # 6. The curves 
connect C-band complex coherence (in these examples mostly the right-most point), with 
the L-band and the P-band value (the latter mostly at the left-end of the curve). 
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(b) 
 

Figure 4.8b. Multi-frequency complex coherence curves for mangrove, with characteristic 
photograph. The curves connect C-band complex coherence (in these examples generally 
the right-most point), with the L-band and the P-band value (the latter generally at the left-end 
of the curve). 
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(c) 
 

Figure 4.8c. Multi-frequency complex coherence curves for primary forest, with photograph. 
The curves connect C-band complex coherence (in these examples always the right-most 
point), with the L-band and the P-band value (the latter always at the left-end of the curve). 
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(d) 
 
Figure 4.8d. Multi-frequency complex coherence curves for (d) primary forest burnt, with 
photograph. The curves connect C-band complex coherence (in these examples always the 
right-most point), with the L-band and the P-band value (the latter always at the left-end of 
the curve). 
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4.8.1 Conclusions 
 
Conclusions of the physical interpretation of signal characteristics of several examples 
of land cover types as mentioned are the following: 
 

 The approach using interpretation of multi-frequency complex coherence can 
provide insight in physical backscatter mechanisms taking place for every 
forest structural type. 

 Isolated dead standing trees give a significant contribution in L- and P-band 
through direct (single-bounce) scattering from the trunk, and not through the 
double-bounce trunk-ground interaction mechanism. 

 Double bounce scattering is rare. Some indications were found it occurs in 
flooded parts of relatively open canopy mangrove areas in P-band. 

 In general, for all forests canopies, single bounce dominates in C-band (high 
coherence) and diffuse scattering dominates in L- and P-band. 
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5. Comparison and validation of land cover type 
classification with independent data sets 

 
5.1 Introduction 
 
This chapter presents an evaluation and validation of the results of land cover type 
classification obtained in Chapter 4, using an independent data set acquired by another 
researcher (Rodriguez, 2002), --- see also section 3.2. The validation will be both 
quantitative (ML and ICM approaches) and qualitative (visual comparison).  
 
In Chapter 4 the accuracy assessment was based on all available ground truth areas in 
the 30°-60° incidence angle range. However, the training of the classifier was based 
on the same ground truth areas. In principle the available ground truth areas could 
have been split into separate groups of training and validation data, which may have 
lead to a slightly poorer result. However, since the aim of this study was to assess 
relative comparison between utilities of factors such as different approaches or certain 
frequency band combinations, the accurate assessment of the actual accuracy is not of 
primary importance. Fortunately, the presence of a completely independent data set 
allows the assessment of a good validation. Of course, both sets can mutually act as 
training and validation sets. 
 
It is very difficult to make a good quantitative assessment, because the legend of the 
independent data set is different. The legend used in Chapter 4 of this study uses class 
definitions commonly used in Indonesia. The legend of the independent data set is the 
‘radar’ legend based on physical structures the radar is expected to be able to 
observe and, therefore, may have a more general application. It should be noted, 
however, that there are no real one-to-one or one-to-several correspondences between 
the independent data set or ‘radar’ legend set and the other ‘original’ data set or 
‘common’ legend set (see Figure 5.1c). It should be noted that one year elapsed 
between the acquisitions of both sets of data. For this study the data were collected 
during the campaign in September 2000. The independent data set was collected 12 
months later, i.e. during the same season, and was guided by the availability of the 
radar data. Of course, the field plots were selected with care and fields that 
experienced recent change (i.e. during the previous year) were excluded. 
 
 
5.2 Land cover types of independent data set 
 
The independent data set consists of 18 classes and was shown in Table 3.1. To make 
it more comparable with the changes to the original data set made in Chapter 4, the 
class “water” was added and the class “man-made structure” removed, and the class 
“shrimp ponds” was added to the class “water”. The class “swamp” in the 
independent data set is actually abandoned padi field, and is re-labelled as padi field. 
Therefore, 17 classes were used. In case this data set is used for training as well as for 
classification using the 7I model and ICM technique, then an overall map accuracy of 
93.8% results (Table 4.7; Case j). Table 5.1a and 5.1b show the confusion matrix in 
percentages and in number of pixels, repectively. Figure 5.1b shows the resulting 
image after completion of 20 ICM cycles. The classes are coded with the colour 
legend described in Figure 5.1c.  
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                      (a)    (b)    (c) 
 
Figure 5.1. (a) The classification result for the original data set and the common legend, (b) 
the classification result for the independent data set and the radar legend and (c) the legends.  
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In general, satisfying results were obtained. The classification was highly accurate 
(more than 95%) for water, swamp, shrubs-trunks, logged (or dead) mangrove, rubber 
plantation, mangrove, secondary forest (wet), secondary forest Y-T (young with 
trunks), primary forest and burnt primary forest. For the classes alang-alang, shrubs, 
mixed, coconut plantations, secondary forest (old) and secondary forest (young), the 
classification accuracy varied from 79.3% for mixed to 94.7% for secondary forest 
(young). The classification was less successful for the secondary forest only (34.4%). 
The class mixed was often confused with shrubs, alang-alang and shrubs-trunks. 
Secondary forest was often classified as primary forest and burnt primary forest. In 
this independent database, the classes which yielded the greatest confusion were 
secondary forest (34.4%) and, to a much lesser extent, mixed (79.3%). 
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Table 5.1a. Confusion matrix for the C-, L- and P-band fully polarimetric combination, using the independent set for training as well as for validation. The 
map is shown in Fig. 5.1b. Results are expressed in percentages.  
 
 

 WATE SWAM ALAN SHRU SHRT MIXE LOGG COCO RUBB MANG SECF SECO SECW SECY SECT PRIM BURN 
WATE 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SWAM 0.0 98.7 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ALAN 0.0 0.0 86.5 4.7 0.3 5.5 0.0 0.0 0.1 0.0 1.0 0.0 0.0 0.1 1.5 0.0 0.0 
SHRU 0.0 0.4 0.4 81.0 0.1 8.1 0.0 0.0 0.2 0.1 0.3 0.0 0.3 0.1 0.0 0.0 0.0 
SHRT 0.0 0.0 1.1 5.5 98.8 5.0 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.2 0.1 0.0 0.0 
MIXE 0.1 0.8 1.5 3.4 0.3 79.3 0.0 12.2 0.0 0.0 1.3 0.0 2.1 0.4 0.3 0.0 0.2 
LOGG 0.1 0.0 0.0 0.0 0.0 0.0 95.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.4 0.0 
COCO 0.0 0.0 0.0 0.0 0.0 0.0 0.3 86.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
RUBB 0.0 0.0 6.4 0.2 0.4 0.2 0.0 0.0 96.4 0.0 0.9 0.2 0.0 2.3 1.0 0.2 0.4 
MANG 0.0 0.1 0.6 0.8 0.2 0.2 0.8 0.1 1.4 99.3 0.0 0.0 0.1 0.3 0.4 0.0 0.0 
SECF 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.3 0.0 0.0 34.4 0.0 0.0 0.1 0.0 0.0 0.0 
SECO 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 1.6 83.5 0.0 0.0 0.1 0.9 0.3 
SECW 0.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.6 0.1 0.0 0.0 0.0 
SECY 0.0 0.0 2.3 3.7 0.0 1.3 0.0 0.0 1.5 0.2 0.6 0.4 0.0 94.7 0.4 0.2 0.4 
SECT 0.0 0.0 1.1 0.1 0.1 0.3 0.2 0.0 0.2 0.0 0.3 0.0 0.0 0.8 95.7 0.1 0.4 
PRIM 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 44.1 4.9 0.0 0.0 0.0 95.7 0.8 
BURN 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.4 0.1 0.1 14.4 11.0 0.0 1.0 0.5 2.5 97.6 
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Table 5.1b. Idem Results are expressed in pixels. 
 

 WATE SWAM ALAN SHRU SHRT MIXE LOGG COCO RUBB MANG SECF SECO SECW SECY SECT PRIM BURN 
WATE 50266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SWAM 0 1824 2 20 0 1 0 0 0 0 0 0 0 0 0 0 0 
ALAN 14 0 2944 265 5 318 0 0 7 2 31 0 0 4 25 0 1 
SHRU 0 7 14 4524 1 471 0 0 8 7 8 0 8 7 0 0 0 
SHRT 0 0 36 306 1763 294 2 0 2 10 5 0 0 11 2 0 0 
MIXE 26 15 51 192 5 4629 0 179 0 0 39 0 63 21 5 2 7 
LOGG 71 0 0 0 0 0 2501 0 0 1 25 0 0 0 0 19 1 
COCO 0 0 0 0 0 0 9 1264 0 1 3 0 0 0 0 0 0 
RUBB 0 0 218 10 7 14 1 0 4656 3 28 2 0 128 17 12 17 
MANG 0 2 19 47 3 14 22 2 66 7006 0 0 2 15 6 0 0 
SECF 0 0 1 0 0 7 10 4 0 2 1032 0 0 3 0 0 0 
SECO 0 0 0 0 0 0 47 0 2 0 47 1105 0 0 1 50 15 
SECW 380 0 0 12 0 0 0 0 0 0 0 0 2930 3 0 0 0 
SECY 0 0 79 205 0 74 0 0 72 15 19 5 0 5190 7 12 18 
SECT 0 0 38 4 1 16 4 0 11 3 10 0 0 42 1608 6 17 
PRIM 0 0 0 0 0 0 6 0 2 2 1325 65 0 0 0 5205 34 
BURN 0 0 0 1 0 0 23 21 4 4 431 146 0 57 9 133 4447 
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5.3 Land cover type validation with independent data set 
 
The results obtained in Chapter 4 will now be evaluated and compared with the 
independent data set. Figures 5.1a and 5.1b show the maps of the classification for the 
original and the independent data sets, respectively. Table 5.2a shows the confusion 
matrix for the classification result using the original data set for training and the field 
data within the sample plots (polygons) of the independent data set. Table 5.2b shows 
the confusion matrix for the reverse case. 
 
 
5.3.1 Forward approach 
 
To quantify the performance of the classification results, the confusion matrix was 
used. The independent database polygons were used as absolute truth, and afterwards 
the misclassifications were counted in those regions. It is noted that the relationship is 
not one-to-one; classes with no clear corresponding classes in the other data set will 
be included in the class considered as the most similar one (see table 3.1 and sections 
3.2.2 and 3.2.3 for description of each class). The results are shown as a confusion 
matrix (Table 5.2a) which shows the number of pixels that were misclassified. The 
confusion matrix may be able to explain the occurrence of misclassification.  
 
Water has very high classification accuracy, i.e. no confusion occurs between water 
and other cover types. Rice (padi) fields exist only in the original data set, and were 
validated mainly as water and less frequently as alang-alang, mixed and logged 
mangrove in the areas of the independent data set. This could be a logical 
consequence of the fact that padi fields consist of water and small vegetation, just like 
alang-alang, mixed and logged mangrove. 
 
Alang-alang in the original data set is mainly validated by the class shrubs, and less 
frequently as coconut plantation and wet secondary forest. The class mixed in the 
classification map is mainly validated as class mixed, alang-alang and shrubs and less 
frequently as shrubs-trunks, secondary forest-W (wet), swamp, logged mangrove, and 
coconut plantation. The class shrubs in the classification map is mainly validated as 
coconut plantation, logged mangrove and even water, and less frequently as secondary 
forest-Y-T (young with trunks). The class bare soil in the classification map is mainly 
validated as secondary forest-W (wet), mixed and swamp, and less frequently as 
shrubs and alang-alang.  
 
The oil palm class exists only in the original data set and is validated mainly as 
secondary forest-Y-T (young with trunks) and secondary forest, and less frequently as 
mixed and alang-alang. The validation accuracy for the rubber plantation class is 
high, but is sometimes validated as secondary forest-Y (young), secondary forest-Y-T 
(young with trunks) and alang-alang. The validation accuracy for mangrove is also 
high and only sporadically validated as shrubs, logged mangrove and water. 
 
Secondary forest in the classification map is mainly validated as secondary forest-Y 
(young) and secondary forest, and less frequently as alang-alang, secondary forest-O 
(old), secondary forest-Y-T (young with trunks) and shrubs. The classification 
accuracy for the primary forest is relatively high and is less frequently validated as 
secondary forest, secondary forest-O (old) and burnt primary forest. The validation 
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accuracy for burnt primary forest is also relatively high, and less frequently validated 
as logged mangrove, secondary forest-Y-T(young with trunks), secondary forest-Y 
(young) and shrubs-trunks.  
 
It can be concluded that classes which have a high agreement are water, rubber 
plantation and mangrove. Primary forest and burnt primary forest have a good level of 
agreement, secondary forest also has a good level of agreement with validation classes 
such as secondary forest (young), secondary forest-O (old) and secondary forest-Y-T 
(young with trunks), which all can be considered as secondary forest classes. Classes 
with lower validation level are: mixed, shrubs, alang-alang, bare soils and oil palm. It 
should be noted that the oil palm class exists only in the original data set. 
 
 
5.3.2 Reversed approach 
 
For further assessment of the potential of mapping and to test the physical 
consistency, the process has been reversed. A map was made based on the 
independent data set and this map is validated using the polygons from the original 
data set. The confusion matrix of this result is shown in table 5.2b, now with the 
original data set as the absolute truth.  
 
Water has very high classification accuracy, and is only slightly confused with shrubs 
and rice (padi) fields. Swamp exists only in the independent data set and is not 
coinciding with the basic truth of the original data set (there only 2 pixels of class 
mixed). Alang-alang is mainly validated as secondary forest and shrubs, and less 
frequently with mangrove and mixed. Shrubs has a low agreement, it is mainly 
validated with mangrove and alang-alang and less frequently with bare soils and 
mixed. Shrubs-trunks exists only in the independent data set and is validated mainly 
as shrubs, and is less frequently validated as alang-alang and mixed. The class mixed 
has a low agreement and is mainly validated with mangrove and less frequently with 
shrubs, alang-alang and padi field. The coconut plantation class exists only in the 
independent data set and, correctly, is not found in any of the areas of the original data 
set. The validation accuracy for the rubber plantation and mangrove classes is very 
high. 
 
Secondary forest is mainly validated as shrubs and rubber. Old secondary forest has a 
good agreement and is less frequently validated as primary forest. Wet secondary 
forest is mainly validated as bare soils, water and padi field. Young secondary forest 
is mainly validated as secondary forest and less frequently as shrubs and alang-alang. 
Young secondary forest with trunks is validated as shrubs. However, if classes such as 
young secondary forest, old secondary forest and young secondary forest with trunks 
can be considered as one class, i.e. the secondary forest, the validation has good 
agreement. 
 
Primary forest has a high accuracy and is less frequently validated as secondary 
forest, oil palm and rubber plantation. The accuracy for burnt primary forest is also 
relatively high and less frequently validated as secondary forest, oil palm and primary 
forest. 
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It can be concluded that classes with good agreement between both data sets are 
water, rubber plantation, mangrove, logged mangrove and primary forest. Burnt 
primary forest, old secondary forest and young secondary forest also have a good 
level of agreement. Wet secondary forest is difficult to validate because there is no 
clear corresponding class. Classes with a low validation level are swamp (abandoned 
padi field), alang-alang, shrubs, shrubs-trunks and mixed. It should be noted that the 
coconut plantation class exists only in the independent data set. 
 
 
5.3.3 Visual approach 
 
For qualitative evaluation, a visual comparison between the maps shown in Figures 
5.1a and 5.1b has been made. The legend of both Figures is shown in Figure 5.1c. 
According to the author’s terrain knowledge, as a general rule, the classification result 
in Figure 5.1a seems more general than the one of Figure 5.1b. The classification 
results show a good agreement in size and location for the classes water, mangrove, 
rubber plantation, secondary forest, primary forest and burnt primary forest. For the 
classes alang-alang, mixed, shrubs and bare soils, the agreement is poor. 
 
The main error in the ‘common’ legend map derived from the original data set 
appears to be a primary forest area located at the northern side of the Balikpapan Bay 
(at the eastern side of the Sungai Wain protected forest area). According to the 
common legend map, it is misclassified as oil palm. In the ‘radar’ legend map it is 
correctly classified as a burnt primary forest area. This misclassification may be 
caused by the absence of suitable legend units in the common legend map.  
 
 
5.3.4 Conclusions 
 
From the evaluation results above, it can be concluded that the radar legend and 
common legend maps have an acceptable consistency level. Water, rubber plantation 
and mangrove have a high validation level. Primary forest and burnt primary forest 
have a good level of validation, while the secondary forest also has a moderate 
validation level. Classes with a low validation level are mixed, shrubs, alang-alang 
and bare soils. This can be explained by the fact that these classes have a large 
variation of vegetation structure with a rapid vegetation transformation, and can be 
found on dry as well as on wetland, making them difficult to be clearly discriminated. 
 
It can be noted that the map resulting from the independent data set yields 
significantly better classification results. This may be explained by the fact that the 
variation in physical structures are much better captured in the ‘radar-based’ legend. 
A similar conclusion was drawn by Hoekman and Quiñones (2002). Moreover, it 
should be noted that the fact that a larger number of classes generally gives a lower 
classification result may not apply to these data sets. In Quiñones and Hoekman 
(2004) theoretical simulation results clearly reveal that multi-frequency polarimetric 
data sets have an enormous information content, and that well chosen classes, even 
when there are several hundreds of classes, can still be correctly separated. 
 
Since the classification approach utilizes the supervised classification method, the 
subjectivity of choice and spread of ROI’s may influence the classification results. 



5. Comparison and validation of land cover type classification with independent data sets 

 95

Accurate field observation and measurement play a crucial role in analysis and 
validation. Local variation in physical characterisation of the land cover types related 
to factors such as variation in forest structure and different conditions may also have 
important effects. In addition, the effect of a strong ICM process can be positive or 
negative. In this process, certain cells that initially are classified incorrectly can 
receive a new and correct class when neighbouring cells of the same class are 
correctly classified. However, when the relaxation parameters have values which are 
too high, isolated small areas may disappear. In order to achieve more optimal results 
such effects may need to be studied in more detail, i.e. maintaining good overall 
results without losing the fine spatial structures. It is noted that a large proportion of 
training area (ROI’s) are located in such fine-structured regions. 
 
Though an extensive good quality data set was available, the importance of repeating 
the experiment in other areas of the Indonesian forests, and in different conditions, 
should be emphasized. Different land cover situations, such as levels of 
fragmentation, soil moisture variations or relief factors may have significant effects 
on the results. Such a wider scope study will provide further examination of how 
robust the algorithm employed in this study is, to enable operational applications in 
the future. It is interesting to note that such an experiment has been executed in 
November 2004 in the framework of the ESA-MOF INDREX-2 campaign. 
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Table 5.2a.  Confusion matrix for land cover type classification. The columns present the result of the classification in pixels and the rows represent data from 
the independent database used for validation. The result is obtained after applying 50 cycles of the extended ICM approach. 
 
 

 WATE PADI ALAN MIXE SHRU BARE PALM RUBB MANG SECO PRIM BURN   

WATE 2803 14 0 0 11 3 0 0 7 0 0 0 Water  
SWAM 0 0 5 34 0 49 0 0 0 0 0 0 Swamp  
ALAN 0 6 7 118 0 12 8 10 0 19 0 0 Alang alang  
SHRU 0 0 170 118 0 17 0 0 57 6 0 0 Shrubs  
SHRT 0 0 5 65 0 0 0 0 0 3 0 12 Shrubs-T  
MIXE 0 6 3 260 0 58 13 1 0 3 0 5 Mixed   

LOGG 0 6 9 19 11 1 0 0 22 0 0 57 Logged Mangrove 
COCO 0 0 37 19 13 0 1 0 0 0 0 0 Coconut plantation 
RUBB 0 0 0 0 0 0 0 240 8 1 0 0 Rubber plantation 
MANG 0 0 0 0 0 0 0 0 401 0 0 0 Mangrove  
SECF 0 0 0 2 0 0 26 3 0 65 55 1 Secondary forest 
SECO 0 0 0 0 0 0 0 0 0 14 47 2 Secondary forest-O 
SECW 0 0 31 22 0 90 0 0 0 0 0 0 Secondary forest-W 
SECY 0 0 9 6 4 1 0 14 0 248 0 16 Secondary forest-Y 
SECT 0 0 0 0 0 0 37 9 0 12 0 22 Secondary forest-Y-T 
PRIM 0 0 0 0 0 0 0 0 0 0 254 5 Primary forest 
BURN 0 0 0 0 0 0 0 0 0 2 22 193 Burnt primary forest 
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Table 5.2b.  Confusion matrix for the validation of land cover type classification using the reversed approach. The columns present the result of the 
classification of the independent data set in pixels and the rows represent data from the original data set. The result has been obtained after applying 20 cycles 
of the extended ICM approach. 

  

WATE SWAM ALAN SHRU SHRT MIXE LOGG COCO RUBB MANG SECF SECO SECW SECY SECT PRIM BURN  
WATE 1002 0 0 0 0 2 0 0 0 0 1 0 414 3 0 0 0 Water 
PADI 1 0 0 2 0 11 0 0 0 0 0 0 187 0 0 0 0 Padi field 
ALAN 0 0 3 27 17 56 0 0 0 6 0 0 97 70 0 0 14 Alang-alang 
MIXE 0 2 13 8 12 60 0 0 0 0 0 0 17 7 0 0 0 Shrub  
SHRU 2 0 55 36 36 59 1 0 0 0 3 0 45 98 1 0 15 Shrimp ponds 
BARE 0 0 1 13 2 11 0 0 0 0 0 0 563 3 0 0 0 Bare soil 
PALM 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 30 361 Oil palm 
RUBB 0 0 0 2 1 0 3 0 497 0 2 0 0 10 0 20 0 Rubber 
MANG 8 0 27 51 0 170 16 0 1 699 0 0 3 0 0 0 0 Mangrove 
SECO 0 0 65 0 0 1 1 0 0 0 0 25 0 229 0 46 339 Secondary forest 
PRIM 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 2570 211 Primary forest 
BURN 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2130 Burnt primary forest 
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5.4 Evaluation of land cover type classification results 
 
To evaluate the relative importance of the steps leading to the overall or final land 
cover type classification results, it is useful to distinguish between the choice of radar 
system parameters and the choice of image processing procedures. Important system 
parameters are polarisation, frequency band(s) and radiometric resolution (or number 
of looks). Image processing procedures can be divided into three main steps: the pre-
processing steps (such as relief correction), the processing steps (such as legend 
choice, the full-polarimetry model, ML or texture), and post-processing steps (such as 
ICM). 
 
 
5.4.1 Effect of the radar parameters 
 
Tables 4.2, 4.3 and 4.7 showed that the overall classification result is affected by 
many factors, including polarisation combination, combination of bands being used, 
and also the number of looks (radiometric resolution).  
 
Interaction of the radar with the land cover might result in a change of polarisation. 
First, microwave interaction may cause the polarisation plane of the scattered waves 
to be different from that of the incident wave. Second, the microwaves’ interaction 
with the land cover may cause depolarisation. Due to the depolarisation, the scattered 
waves become partially polarised. Changes in the polarisation and the depolarisation 
of the radar waves, and the combination of both, are often object specific, and, 
therefore, an important source of information for differentiating objects in radar 
images. Use of all polarisation factors will result in better classification results. 
Therefore, the results for the so-called fully polarimetric cases are superior 
 
The wavelength λ  is of primary importance in the interaction of microwaves with 
forest vegetation, as it affects the penetrating capacity of the microwaves and the 
spatial distribution of the scattered power. For instance, for C-band the penetration is 
low, and the backscatter from the crown layer dominates; for L- and P-band the 
penetration is higher and contributors to backscatter are the trunks and the trunk-soil 
interaction, respectively. Combining the information of these three bands may yield 
information over a range of forest elements, in relation to the size of the wavelength 
and forest scatterers. This implies that particular wavelengths are more suitable for 
certain applications. Therefore, multi-band radar provides complementary information 
sources of the forests. Hence, multi-band combinations are more suitable in 
differentiating objects (classification) of the forest than single-band. From the results 
in this thesis, the combination of 3 bands is superior to the combination of 2 bands.  
 
The accuracy of the estimation of field averaged values depends on the total number 
of independent looks N. The number of looks or radiometric resolution will affect the 
object detection. Detection becomes more difficult when speckle dominates the 
intensity images. By increasing the number of looks from N=20 to N=64, the 
classification result shows a considerable increase. 
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5.4.2 Relative importance of factors in the classification procedure 
 
Effect of relief correction 
 
Illumination effects caused by relief have been corrected in the AirSAR fully 
polarimetric data, which visually gives a much more homogenous perception (Figure 
4.1). Relief correction is a pre-processing step, an important step that must be 
executed before the classification process. However, for classification purposes, as 
shown in Table 4.7, cases d/e and cases f/g show that the effect of the relief correction 
is not significant for the overall classification results (in these cases for dual fully 
polarimetric band combinations). It can be explained as follows. 
 
Re-writing equation 2.14: 
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Written in this way, fully polarimetric radar target properties contain five values: two 
polarisation ratios, three complex coherences (3 x 2 numbers) and only one 
backscatter value. The complex coherence numbers represent the difference in the 
phase angle for the HH and VV polarized signal, the two polarisation ratio numbers 
represents correlation magnitude for the HH and VV polarized signal and both of 
them are not affected by backscatter intensity. Since only this single backscatter value 
is modulated by relief, and all other values are not, relief correction only affects 1 out 
of 9 numbers of the polarimetric backscatter signal properties. The effect of relief 
correction on the full polarimetric classification can be small in the case that the 
other 8 numbers provide sufficient information. The runs mentioned above prove that 
this is indeed the case. Of course, in case the full polarimetric information is not used, 
then the effect of relief correction can be large, such as visually in the intensity image 
(Figure 4.1), or in the relationship between biomass and backscatter intensity (Section 
4.7), or in the classification of single polarisation data 
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Effect of using texture 
 
Since 3-D texture derived from C-band InSAR DEM and C-band backscatter intensity 
differentiates between forest structural types, it can be expected to have a significant 
influence on the classification result. Nevertheless, this additional source of 
knowledge, as Table 4.7: cases i/c and cases h/a show, hardly has any effect. The 
reason may be very similar as the one discussed above for the relief. If we only have 
the C-band for the classification process, the use of texture might be important, but 
using a fully polarimetric combination of C- and L-band or C-, L- and P-band will 
provide enough information, so that additional information of texture will not be 
required.  
 
This evaluation shows that the main factor affecting the classification result is the 
amount of polarimetric information and the number of frequency bands; the best 
results will be achieved by using fully polarimetric information. Definitely, a high 
number of radar looks will be very helpful, while relief correction and texture or 3-D 
texture is not significant in the process of improving classification results, provided a 
sufficient amount of polarimetric information and frequency bands is available. 
 
 
Effect of using ICM   
 
Post-processing through ICM is very useful. The likelihood of a pixel was modified 
by a conditional probability in which the number of neighbours of a certain class is 
used in the classification. This technique proved to have an important effect on the 
classification accuracy. Variations in the confusion between classes have to be 
carefully studied when applying this algorithm, since classes occurring in spatially 
small areas can disappear under the presence of more extended classes. The number of 
ICM cycles applied to a classified image increased the classification accuracy until 
reaching a maximum, in which a stable solution was found, although the appropriate 
selection of parameters used in the neighbourhood operations has to be optimised by 
trial-and-error. 
 
 
Effect of legend choice 
 
Two different types of legend have been used to create classifications of the 
polarimetric radar images. First, a ‘common’ map classification legend (14 classes), 
where the land cover is divided into different classes based on the usual definitions of 
land cover in Indonesia. The second legend (the ‘radar’ legend with 18 classes), is 
based on the identification of land cover types which are expected to give different 
backscatter signatures. These classes correspond more to different structural types for 
the forested areas, where the main difference between the 2 legends for example is the 
sub-division of the ‘secondary forest‘ class into 5 different classes based on observed 
differences in the forest structure. Initially, all secondary forests types were grouped 
in one single class. The results showed that the radar based legend has higher overall 
accuracy than the common legend. Some non-forest classes could not be 
differentiated well with the radar in both legends, and therefore confusion between 
these classes remained (e.g alang-alang, shrubs and mixed). Other forested classes 
(e.g. primary forest, primary forest burnt) could be differentiated with the radar 
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legend. Even though more legend sub-divisions were used, the radar based legend 
still gave better results. 
 
  
5.4.3 Conclusions 
 
Using the classification procedures introduced here the polarimetric AirSAR images 
allow for the creation of map legends with more details related to forest structure than 
are currently in use. A combination of at least two bands will yield good classification 
results, but combinations of C-, L- and P-band fully polarimetric radar data will be 
the best. A good radar based legend should present classes that are possible to be 
distinguished with a certain level of accuracy. ICM post-processing cycles improve 
the result significantly.  
 
In the future, the further developments of unsupervised classification approaches of 
polarimetric data instead of using a good radar based legend may automatically allow 
better structural classifications of the images. These new developments will probably 
bring new insights into the capabilities of radar systems for tropical forest mapping 
applications, especially in those areas where it is difficult to obtain field data.  
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Summary and conclusions 
 
 
Problem statement 
 
The deforestation rate in Indonesia tends to increase sharply. The Indonesian 
Government, through the Ministry of Forestry, has decided to stop and/or mitigate this 
process, and to support actions for sustainable forest management. The Indonesian 
forests contain a large biodiversity and are an important factor of the hydrological and 
biochemical cycles, indispensable to keep nature in balance. 
 
To monitor and evaluate the condition of these forests, the government needs up-to-
date and accurate information, which is currently still based on photographic images 
obtained through optical technology, such as airborne aerial images, LANDSAT or 
SPOT. This kind of technology always encounters problems related with cloud cover. 
Therefore, the technology that is based on microwaves (RADAR) has the potential to 
solve the problem. Modern radar techniques such as interferometry and polarimetry 
are currently advancing rapidly, and this progress is expected to offer the best solution 
to provide up-to-date and accurate information related with land cover alteration, 
degree of crown cover opening, biomass, and so on. 
 
Currently, significant obstacles in providing continuous and up-to-date information 
regarding the forests are: 
 
• The forests in Indonesia are almost continuously covered with clouds, haze or 

smoke, making it difficult to obtain clear images with optical technology. 
• There is limited experience in using alternative technologies such as radar. 
• Suitable approaches/software to analyse the accomplishment of this radar 

technology are not yet commonly available. 
 
Even though the assessment/investigation of radar technology applications in 
Indonesian forests started in 1991, the results had not been yet satisfactory. In the last 
decade scientists/researchers spent considerable time and effort to develop algorithms 
able to classify vegetation structure and estimate the biomass. In the case of 
Indonesian forests, such algorithms had not been tested or used. In consideration of 
that situation, this research aimed to evaluate the use of the new generation C- and L-
band  interferometric (TopSAR) and C-, L- and P-band fully polarimetric (PolSAR) 
NASA/JPL AirSAR data for tropical forest type mapping and biomass estimation, and 
to study the combined use of radar data and additional knowledge base in order to 
improve the  results. 
 
To assess the value of information contained in the data of this sophisticated AirSAR 
radar system, this study used and analysed available algorithms, and modified these in 
order to optimise the application. This study combined a DEM, which was derived 
from InSAR data, and fully polarimetric data, for which the parameters are: spatial 
variability, radar backscatter intensity, polarisation and phase. These parameters were 
corrected for relief illumination effects.  Predefined regions in the corrected image, 
where ground truth was available, were used to construct a database (in this thesis 
termed as ‘the original data set’). A new method based on a reversible transform of 
the polarimetric radar covariance matrix was applied to describe the full polarimetric 
target properties. 3-D spatial variations of InSAR data were conceived as image 
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texture, which could be related to the forest canopy roughness. Subsequently, post-
processing steps were performed; using information of the neighbouring pixels (ICM) 
and with the additional information from the texture the accuracy of the classification 
results could be increased. Maximum likelihood and Kappa statistics were utilised to 
evaluate the overall classification results. This technique and the theoretical analysis 
have been elaborated in Chapter 2. 
 
 
Study area 
 
The research for this study was executed in the area of tropical forest near Sungai 
Wain, not far from Balikpapan City (0083’S, 116076’E), in the East Kalimantan 
Province, Republic of Indonesia. The size of the area covered by the radar was 10x60 
km2, and was characterised by a complex mosaic of vegetation and land cover types, 
from tropical lowland evergreen and semi-evergreen dominated by Dipterocarpaceae, 
a variation of primary forest with emergent trees exceeding 30 m, and burnt primary 
forest. The secondary forest originated from deforestation, burnt remains and natural 
regeneration, and also from vegetation alteration caused by local farming activities. In 
this area, alang-alang covers vast areas throughout the whole study site. The 
mangrove forest covers the southern area which is located nearby the Balikpapan Bay, 
and the rest consists of plantations, rice fields, transmigration areas, shrimp ponds, 
and wasteland. 
 
In the year 2000, the study area was imaged by the C-, L-band InSAR and C-, L- and 
P-band PolSAR data of the AirSAR/TopSAR NASA/JPL in the framework of the 
PacRim-2 campaign. To support the study objectives, field data were collected 
through extensive and intensive observation. Another ‘independent data set’ was 
available to validate the results of this study. Detailed description of the study areas 
and available radar data can be found in the Chapter 3. 
 
 
Biophysical parameter retrieval and land cover type classification 
                                                        
Chapter 4 discussed the research results with emphasis on the evaluation of radar 
system characteristics in capturing tropical forest parameters, land cover classification 
and biomass estimation. 
 
Analyses of the relief correction applied to the multi-band composite of C-, L- and P-
band PolSAR data using the InSAR DEM showed that the illumination effects of 
terrain slope and canopy undulation had been reduced. Images produced generally 
appeared more uniform and more homogenous and enabled to visual distinction of 
land cover differences more clearly. 
 
Land cover type classification simulations, before and after relief correction, were 
required to find optimal band combinations, to assess the effect of the number of radar 
looks and the polarimetric description models.  Confusion matrices were used to 
analyse the result and accuracy for every individual land cover class. Results showed 
that the combination of three fully polarimetric bands gave optimal results, and the 
results obtained from 0.5 dB data (64-look data) were always better than from 1.0 dB 
data (20-look data). Simulation results using a new reversible transform method (7I 
model) gave the best results.  
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Analysis of 3-D textural features derived from C-band InSAR data and 2-D textural 
attributes derived from C-band total power (TP) data showed that the classification 
capacity of Standard Deviation and GLCO-COR textural features are less pronounced 
compared to the GLCO-CONT feature which was more sensitive to canopy 
architecture, while qualitative analysis using scatter plots showed that textural features 
based on GLCO-CONT[d1-w21] are able to differentiate forest types and plantation. 
Scatter plots of TP and DEM textural features could not clearly differentiate all the 
forest classes studied. 
 
Post-processing using neighbouring pixel information (ICM), DEM information and 
3-D textural information as additional information, resulted in a considerable increase 
in the overall classification accuracy. Classification results showed that the C-, L- and 
P-band combination with β1 = 10 and 50 ICM iterations without a priori knowledge 
showed optimal results. The use of a priori knowledge (i.e. texture and relief 
correction) did not necessarily provide better results. When using dual-band 
combinations the C- and L-band combination showed that burnt primary forest was 
difficult to separate from secondary forest; the C- and P-band combination could 
sufficiently separate primary and secondary forest, while for the L- and P-band 
combination the classification result for the primary forest was slightly inferior 
compared to the two bands combinations mentioned previously. 
 
Single-band data were not sufficient to give good classification results; it appears that 
L-band or P-band alone can not be used for classifying the images. However, 
combined with other information (e.g. C- or L-band fully polarimetric data) the results 
could be improved considerably. 
 
Biomass estimation using empirical relationships with backscatter intensity was 
studied for secondary forest, primary forest and burnt primary forest classes. By 
including as well as excluding dead standing trees, two cases were considered.  It was 
shown that the coefficient of correlation was smaller for biomass excluding dead 
standing trees compared to biomass including dead standing trees. Correlation before 
and after slope (relief) correction were slightly different. A small increase took place 
after slope correction. P-HV showed maximum correlation results. The L- and P-band 
backscatter intensity increased with the increase of biomass until a certain saturation 
limit was reached.  
 
A model describing the multi-frequency complex coherence was used to achieve a 
better physical interpretation of the radar backscatter signal characteristics. Different 
forest types showed characteristic multi-frequency complex coherence signatures 
which could be linked to different structural forest types. A clear example was the 
single and double-bounce mechanism. Single-bounce (direct trunk scattering) 
occurred at the trunks in ‘open’ forest, whereas double-bounce only occurred in open 
flooded mangrove areas. The existence of dead standing trunks caused significant 
backscatter in L- and P-band. Hence these are an important factor to be considered in 
the biomass estimation. 
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Comparison and validation of land cover type classification with the independent 
data set 
 
In Chapter 5 the classification results have been evaluated by the use of an 
independent data set acquired by another researcher. The map resulting from the 
independent data set yields significantly higher classification results. The use of a 
structural or ‘radar’ legend increased the accuracy.  This ‘radar’ legend is based on 
radar’s ability to capture forest information, such as the structure of forest/trees, and 
the sub-division of secondary forest into old secondary forest, secondary forest with 
young trunks, etc. 
 
Maps with ‘common ‘legends based on the original data set and maps with the ‘radar’ 
legend based on the independent data set show acceptable consistency levels. Water, 
rubber plantation and mangrove have high accuracy and agreement levels. Primary 
forest and burnt primary forest also have good levels of accuracy and agreement. The 
secondary forest has a moderate result. Classes with poor results are mixed, shrubs, 
alang-alang and bare soils.  
 
Qualitative evaluation by visual comparison shows, generally, that the classification 
results show a good agreement in size and location for the classes of water, mangrove, 
rubber plantation, secondary forest, primary forest and burnt primary forest. For the 
classes alang-alang, mixed, shrubs and bare soils the agreement is poor. 
 
Analysis of factors affecting classification processes has been made. The overall 
results depend on many factors such as polarisation or polarisation combinations, 
single or multi-band and radiometric resolution (or number of looks). The effect of 
relief correction on the full polarimetric classification can be small. Of course, in case 
the full polarimetric information is not used, then the effect of relief correction can be 
large, such as visually in the intensity image, or in the relationship between biomass 
and backscatter intensity, or in the classification of single polarisation data. Similarly, 
a fully polarimetric combination of C- and L-band or C-, L- and P-band will provide 
enough information, so that additional information of texture will not be required. 
Post-processing through ICM is very useful and was used to produce radar derived 
classifications. A good radar based legend is one of main key factors to achieve a 
good classification result. 
 
 
Key Conclusions and recommendations 
 
A new approach for tropical forest type and biomass mapping using interferometric 
and multi-band polarimetric SAR has been introduced and evaluated. The PacRim-2 
experiment has provided the first experiences with this kind of new technology and 
methodology in Indonesia. The approach presented in this thesis includes new 
elements such as (1) slope correction using InSAR, (2) mapping using a new 
reversible transform technique and (3) ICM using prior knowledge (e.g. terrain height 
or image texture) including spatial aggregation. The new reversible transform of the 
covariance matrix was used to describe the full polarimetric target properties in an 
alternative way, allowing simpler statistical descriptions. It has been shown that this 
transform yields versatile and robust classification approaches. Comparisons of results 
for the various classification methods have been given, using several combinations of 
frequency bands. Classification results could be simulated for certain combinations of 
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frequency bands and polarisation as a function of speckle level. In addition biomass 
estimations before and after relief correction by using a digital elevation model 
(DEM) derived from InSAR data have been compared.  
The problem caused by the presence of topographic slopes in the interpretation of the 
AirSAR images has been solved. Backscatter quality was improved by utilising the 
information on the topography. The radar cross section modulation by slopes could be 
compensated for by radiometric slope correction, using slopes derived from across 
track interferometry or from a DEM.  
 
The use of the new reversible transform technique for simulation studies was proven 
to be useful; most classes could be recognized and distinguished. Such results cannot 
be related easily to image classification results because of the presence of texture and 
relief. Commonly used image processing techniques to mitigate or to capitalise on 
these effects appear to be of limited use for several reasons, which were indicated in 
Chapter 4. The transform to an ‘intensities-only’ system is very supportive as it 
allowed for the development of the 7I system, which outperforms slightly the system 
3I+, as introduced in Hoekman and Quiñones (2000). Though the improvement is 
sometimes not more than a few percent, this can be relatively large in case of high 
values of accuracy. 
 
In general, the difference of forest types in tropical regions are by far the most 
difficult to identify. This is partly due to the fact that tropical rain forests do not 
generally consist of a collection of homogeneous, well-defined forest types with 
distinct boundaries. In fact, these forests are characterised by a high variability in 
species composition and architecture, with the presence of transitional forest types as 
well as transitions between forest types. Image 3-D texture derived from a DEM 
might offer a possibility for distinguishing natural forest and plantation forest. 
However, the appraisals in Table 4.6 and previous discussion lead to the general 
conclusion that textural patterns in high resolution of C-band DEM and total power 
backscatter radar images are only of limited additional value in the case multi-band 
fully polarimetric data are available.  
 
A technique based on iterated conditional modes (ICM) appeared to be useful. The 
classification result reached 88.9%. An independent data set with 17 classes yielded 
even a much higher accuracy of 93.8%. Validation of the results and its reverse 
process provide sufficient consistency. Natural forest types (primary forest, burnt 
primary forest and secondary forest) were successfully discriminated, as well as forest 
plantation types (oil palm and rubber). Alang-alang, mixed and shrub cannot be easily 
discriminated because they have similar vegetation and grow quickly everywhere. The 
vigorous growth may also have caused discrepancies between conditions at the time 
of field observation and the time of radar observation. By visual interpretation, the 
area which appears to be the most misclassified is the primary forest located at the 
northern side of Balikpapan Bay (eastern side of the Sungai Wain protected forest 
area). According to the classification map it is classified as oil palm while it is 
actually a burnt primary forest area, as shows up correctly in the ‘radar’ legend map. 
The misclassification may occur because the primary forest at that location may have 
a different vegetation structure than the primary forest in the middle of the protected 
forest area. This may be due to a low degree of fire damage, consequently yielding 
radar signal characteristics more similar to oil palm or burnt primary forest in the 
ground reference sets. 
 



Tropical forest mapping using polarimetric and interferometric SAR data  

 108

The use of direct empirical relationships for biomass estimation in tropical forests 
based on C-band backscatter shows poor results. For L- and P-band, moderate results 
are achieved. The HH and HV polarisations do not always provide better results than 
VV polarisation. The results are difficult to interpret because of the complexity of 
vegetation, frequent forest fires, relief modulation on the backscatter level and the 
effect of radar saturation at a certain biomass level. The possibility of using an 
indirect approach, in which forest type classification is a first step, as proposed in 
Quiñones (2002), was considered. In this case, a biomass map will show a number of 
physical vegetation structure classes; and biomass levels can be associated to each 
cover class. Thus an estimation of biomass levels beyond the saturation level may be 
obtained.  
 
An analysis of physical interpretation of signal characteristics data appeared to be 
useful to increase the understanding of specific effects of forest structure. These 
results clearly show that the different sets of multi-frequency complex coherence 
numbers can be recognised and linked to the different structural types, based on the 
physical interaction with the waves. It was shown that forests with similar structures 
generate similar radar signatures. Changes in intensity are expected to occur as 
described in the literature, i.e. higher backscatter values where more scatterers of a 
certain size (in relation to wavelength) occur. To understand the physical interaction 
between the forest and radar waves, the scattering mechanisms can be simplified into 
a model composed of three contributions (Ulaby et al., 1986). These are: (1) the direct 
backscattering from the vegetation layer, (2) the direct backscattering from the ground 
attenuated by the vegetation cover and (3) the backscattering originating from ground-
trunk interaction attenuated by the vegetation cover. These are sometimes referred to 
as the diffuse (volume) term, the single-bounce (odd) term and the double-bounce 
(even) term, respectively.  
 
The main conclusions could be summarised as follows. Isolated dead standing trees 
give a significant contribution in L- and P-band through direct (single-bounce) 
scattering from the trunk, and not through the double-bounce trunk-ground interaction 
mechanism. Double bounce scattering is rare. Some indications were found it occurs 
in flooded parts of relatively open canopy mangrove areas in P-band. In general, for 
all forests canopies, single bounce dominates in C-band (high coherence) and diffuse 
scattering dominates in L- and P-band. These finding can be used as a model for a 
direct (unsupervised) physical approach to classification in less known areas, and may 
contribute to classification potential on inaccessible areas with very little additional 
field information. 
 
The results presented in this thesis give insight into the difficulty of optimising the 
utility of interferometry and C-, L- and P-band polarimetry in tropical rain forest 
areas, and the accuracy that can be obtained. In the near future some capabilities that 
are currently exclusive to airborne SAR may be available from spaceborne SAR and 
could measure global biomass to increase the accuracy of climate change models. 
Japan’s Advanced Land Observing Satellite (ALOS) PALSAR and possibly the 
TerraSAR-X or the combination of advanced C-band systems such as RADARSAT-2, 
ENVISAT with Shuttle Radar Topography Mission (SRTM) data may appear very 
useful for land cover type mapping as well as  biomass estimation. In addition the 
combination of two techniques: interferometry and polarimetry or polarimetric 
interferometry (Pol-InSAR) can be used to assess forest height and three-dimensional 
forest structural views. 
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Samenvatting en conclusies 
 
 
Probleem omschrijving 
 
De ontbossingsnelheid in Indonesië heeft de neiging sterk toe te nemen. De 
Indonesische regering, middels het Ministerie van Bosbeheer, heeft besloten dit 
proces te verminderen of te stoppen, en om maatregelen voor duurzaam bosbeheer te 
ondersteunen. De Indonesische bossen hebben een grote biodiversiteit en zijn een 
belangrijke factor in hydrologische en biochemische cycli, die onontbeerlijk zijn om 
de natuur in evenwicht te houden. 
 
Om de conditie van deze bossen te monitoren en te evalueren heeft de regering 
informatie nodig die nauwkeurig en up-to-date is. Deze informatie is op het moment 
gebaseerd op fotografische beelden verkregen door optische technologie zoals 
luchtfoto’s, LANDSAT of SPOT. Deze technieken geven vaak problemen als gevolg 
van bewolking. Daarom heeft de technologie die gebaseerd is op microgolven 
(RADAR) de potentie om dit probleem op te lossen. De vooruitgang van moderne 
radartechnieken zoals interferometrie en polarimetrie gaat snel en verwacht wordt dat 
deze vooruitgang de beste oplossing biedt om nauwkeurige en up-to-date informatie te 
geven op het gebied van verandering van land cover, hoeveelheid opening in het 
kronendak, biomassa, enz.. 
 
Belangrijke obstakels voor het verstrekken van continue en up-to-date informatie met 
betrekking tot de bossen zijn momenteel: 
 

• De bossen in Indonesië zijn bijna voortdurend bedekt met wolken, mist of 
rook, wat het moeilijk maakt om met optische technologie duidelijke beelden 
te verkrijgen. 

• Er is onvoldoende ervaring in het gebruik van alternatieve technologieën zoals 
radar. 

• Geschikte toepassingen/software om de kracht van deze radar technologie te 
analyseren is nog niet algemeen beschikbaar. 

  
Hoewel de toepassing van radar technologie in Indonesische bossen sinds 1991 wordt 
beoordeelt/onderzocht zijn de resultaten nog niet bevredigend. De laatste tien jaar 
hebben wetenschappers/onderzoekers een aanzienlijke hoeveelheid tijd en moeite 
gestopt in het ontwikkelen van algoritmes om de vegetatie structuur te classificeren en 
de hoeveelheid biomassa te schatten. In het geval van de Indonesische bossen zijn 
deze algoritmes niet getest of gebruikt. Dit onderzoek heeft als doel, deze situatie in 
ogenschouw nemend, om het gebruik van de nieuwe generatie C- en L-band 
interferometrisch (TopSAR) en C-, L- en P-band volledig polarimetrisch (PolSAR) 
NASA/JPL AirSAR data voor het in kaart brengen van tropische bostypes en biomassa 
schattingen te evalueren, en het gecombineerde gebruik van radar data en 
toegevoegde kennis om de resultaten te verbeteren te bestuderen.  
 
Om de waarde van de informatie in de data van het verfijnde AirSAR radar systeem te 
beoordelen werden in deze studie beschikbare algoritmes gebruikt, geanalyseerd en 
aangepast om de toepassing ervan te optimaliseren. Deze studie combineerde een 
DEM, afgeleid van InSAR data, en volledig polarimetrische data, met de volgende 
parameters: ruimtelijke variabiliteit, intensiteit radar backscatter, polarisatie en fase. 
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Deze parameters werden gecorrigeerd voor de hellingseffecten op licht. Van te voren 
vastgestelde regio’s, waarvan de situatie in het gecorrigeerde beeld in het veld bekend 
was, werden gebruikt om een database te construeren (in deze thesis genoemd ‘the 
original data set’). Een nieuwe methode gebaseerd op een reversible transform  van 
de polarimetrische radar covariantie matrix werd toegepast om de volledige 
polarimetrische eigenschappen te beschrijven. 3-D Ruimtelijke variaties van InSAR 
data werden ontvangen als beeldtextuur, welke gerelateerd kon worden aan de 
ruigheid van het kronendak van het bos. Vervolgens werden naverwerkingsstappen 
uitgevoerd; gebruikmakend van informatie van naburige pixels (ICM) en met 
additionele informatie van de textuur kon de nauwkeurigheid van de 
classificatieresultaten verbeterd worden. Maximum likelihood en Kappa statistiek 
werden gebruikt om de overall classificatie resultaten te evalueren. Deze techniek en 
de theoretische analyse zijn uitgewerkt in Hoofdstuk 2. 
 
 
Studiegebied 
 
Het veldwerk voor deze studie werd uitgevoerd in een tropisch bosgebied vlakbij 
Sungai Wain, wat niet ver is van Balikpapan City (0083’Z, 116076’O), in de provincie 
Oost-Kalimantan in Indonesië. Het gebied wat door de radar bestreken werd was 
10x60 km2, en werd gekarakteriseerd door een complex mozaïek van vegetaties en 
land cover types, van tropisch altijdgroen laagland en semi-altijdgroen bos 
gedomineerd door Dipterocarpaceae, een verscheidenheid aan primair bos met 
sommige bomen uitschietend boven de 30 m, en verbrand primair bos. Het secundaire 
bos is voortgekomen uit ontbossing, overblijfselen van branden en natuurlijke 
regeneratie, maar ook door vegetatieverandering door lokale agrarische activiteiten. 
Alang-alang beslaat grote gebieden door het gehele studiegebied. Het mangrove bos 
beslaat het zuidelijke gebied wat vlakbij de Baai van Balikpapan ligt, de rest bestaat 
uit plantages, rijstvelden, overgangsgebieden, garnalen vijvers en wildernis. 
 
In 2000 werd het studiegebied binnen het kader van de PacRim-2 campagne in beeld 
gebracht door de C-, L- en P-band PolSAR data van de AirSAR/TopSAR NASA/JPL. 
Voor het ondersteunen van de studieobjecten werden velddata verzameld door zowel 
extensieve als intensieve observaties. Een tweede ‘onafhankelijke data set’ was 
voorhanden om de resultaten van deze studie te valideren. Een gedetailleerde 
omschrijving van de studiegebieden en de aanwezige radar data kan gevonden worden 
in Hoofdstuk 3.  
 
 
Biofysische parameter inwinning en landbedekkings classificatie 
 
Hoofdstuk 4 behandelt de onderzoeks resultaten met nadruk op de evaluatie van de 
radar karakteristieken bij het vastleggen van de parameters van het tropische bos, land 
cover type classificatie en biomassa schatting. 
 
Analyses van de hellingcorrecties toegepast op de multi-band composiet van C-, L- en 
P-band PolSAR data met gebruik van de InSAR DEM laat zien dat de effecten van 
terreinhelling en golvingen in het kronendak op de invallende straling gereduceerd 
worden. Geproduceerde beelden bleken over het algemeen meer uniform en 
homogeen te zijn en maakten visueel onderscheid tussen landbedekkingen duidelijker. 
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Land cover type classificatie simulaties, voor en na hellingcorrectie, waren 
noodzakelijk om een optimale combinatie van banden te vinden, om het effect van de 
hoeveelheid radar looks en de beschrijvende polarimetrische modellen te 
onderzoeken. Verstrooiing matrices werden gebruikt om het resultaat en de 
nauwkeurigheid van elke individuele land cover klasse te analyseren. De resultaten 
lieten zien dat de combinatie van 3 volledig polarimetrische banden een optimaal 
resultaat gaf, en de resultaten verkregen van 0.5 dB data (64-look data) waren altijd 
beter dan van 1.0 data (20-look data). Simulatieresultaten, gebruikmakend van een 
nieuwe reversible transform methode (7I model) gaf de beste resultaten.  
 
Analyse van 3-D textuur eigenschappen afgeleid uit de C-band InSAR data en 2-D 
textuur attributen afgeleid uit de C-band total power (TP) data lieten zien dat de 
classificatie capaciteit van Standaard Deviatie en GLCO-COR texturele 
karakteristieken minder uitgesproken zijn in vergelijking met de GLCO-CONT 
karakteristieken die gevoeliger was voor kronendak architectuur, terwijl een 
kwalitatieve analyse met behulp van scatter plots liet zien dat textuurkarakteristieken 
gebaseerd op GLCO-CONT(d1-w21) in staat zijn om onderscheid te maken in 
bostypes en plantage. Scatter plots van TP en DEM textuur eigenschappen konden 
geen duidelijk onderscheid maken in alle bestudeerde bostypes. 
 
Naverwerking met behulp van informatie van naburige pixels (ICM), DEM informatie 
en 3-D textuur informatie als toegevoegde informatie, resulteerde in een aanzienlijke 
toename van de overall classificatie nauwkeurigheid. Classificatie resultaten lieten 
zien dat de C-, L- en P-band combinatie met β1 = 10 en 50 ICM herhalingen zonder a 
priori kennis (bijv. textuur en hellingcorrectie) niet noodzakelijk betere resultaten 
opleverden. Wanneer een duo-band combinatie werd gebruikt, lieten de C- en L-band 
combinatie zien dat verbrand primair bos moeilijk te onderscheiden was van secundair 
bos; de C- en P-band combinatie kon voldoende onderscheid maken tussen primair en 
secundair bos, terwijl bij de L- en P-band combinatie het classificatie resultaat voor 
primair bos iets minder was vergeleken met de twee eerder genoemde band 
combinaties. 
 
Data van een enkele band was niet voldoende om goede classificatie resultaten te 
verkrijgen; het lijkt erop dat de L-band of P-band alleen niet gebruikt kan worden om 
de beelden te classificeren. Hoewel een combinatie met andere informatie (bijv. C- of 
L-band volledige polarimetrische data) de resultaten aanzienlijk kon verbeteren. 
 
Biomassaschatting met gebruik van empirische relaties met backscatter intensiteit is 
bestudeerd voor secundair bos, primair bos en verbrande primaire bostypes. Door het 
wel of niet uitsluiten van dode staande bomen werden twee gevallen in acht genomen. 
Aangetoond is dat de correlatiecoëfficiënt kleiner was voor biomassa zonder dode 
staande bomen in vergelijking met biomassa met dode staande bomen. Correlatie voor 
en na hellingcorrectie verschilden erg weinig. Een kleine toename vond plaats na 
hellingcorrectie. P-HV liet maximale correlatie resultaten zien. De L- en P-band 
backscatter intensiteit nam toe met een toename van biomassa tot een zekere 
verzadigingslimiet werd bereikt. 
 
Een model welke de multi-frequente complexe coherentie beschreef werd gebruikt om 
een betere fysische interpretatie van de karakteristieken van de signalen van de radar 
backscatter te krijgen. Verschillende bostypes lieten een karakteristieke signatuur van 
de multi-frequente complexe coherentie zien die in verband konden worden gebracht 
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met de verschillende structurele bostypes. Een duidelijk voorbeeld was het enkele en 
dubbele reflectie mechanisme. Enkele reflectie (directe reflectie van de stam) vond 
plaats op stammen in ‘open’ bos, terwijl dubbele reflectie alleen voorkwam in open 
ondergelopen mangrove gebieden. De aanwezigheid van dode staande stammen 
zorgde voor een significante backscatter in de L- en P-band. Vandaar dat dit een 
belangrijke factor is die meegenomen moet worden bij de schatting van de biomassa.  
 
 
Vergelijking en validatie van land cover type classificatie met de onafhankelijke 
dataset 
 
In Hoofdstuk 5 zijn de classificatieresultaten geëvalueerd met behulp van een, door 
een andere onderzoeker verzamelde, onafhankelijke dataset. De onafhankelijke 
dataset levert een kaart met significant hogere classificatie resultaten op. Het gebruik 
van een structurele of ‘radar’ legenda deed de nauwkeurigheid toenemen. Deze 
‘radar’ legenda is gebaseerd op de mogelijkheid van radar om informatie over bossen 
vast te leggen zoals de structuur van het bos/de bomen, het onderverdelen van 
secundair bos in oud secundair bos en secundair bos met jonge stammen, enz..  
 
Kaarten met ‘normale’ legenda’s gebaseerd op de originele dataset en kaarten met de 
‘radar’ legenda’s gebaseerd op de onafhankelijke dataset laten acceptabele niveau’s 
van eenduidigheid zien. Water, rubber plantages en mangrove hebben een hoge 
nauwkeurigheid. Primair bos en verbrand primair bos hebben ook een goede 
nauwkeurigheid. Het secundaire bos heeft een matige nauwkeurigheid. Klassen met 
slechte resultaten bestaan uit een gemengde vegetatie, struikgewas, alang-alang en 
kale bodems. 
 
Een kwalitatieve evaluatie door een visuele vergelijking laat zien, dat over het 
algemeen, de classificatieresultaten een goede overeenstemming in grote en plaats 
hebben voor de klassen water, mangrove, rubberplantage, secundair bos, primair bos 
en verbrand primair bos. Bij de klassen alang-alang, gemengde vegetatie, struikgewas 
en kale bodems is deze overeenstemming slecht.  
 
Er is een analyse van de factoren die classificatieprocessen beïnvloeden gemaakt. De 
overall resultaten hangen van veel factoren af zoals de polarisatie of polarisatie 
combinaties, enkele of meerdere banden, radiometrische resolutie (aantal looks). Het 
effect van hellingcorrectie op de volledig polarimetrische classificatie kan klein zijn. 
Natuurlijk, wanneer de volledig polarimetrische informatie niet gebruikt wordt, kan 
het effect van helling correctie groot zijn, zoals visueel in het intensiteitsbeeld, in de 
relatie tussen biomassa en backscatter intensiteit, of in de classificatie van enkel 
gepolariseerde data. Op dezelfde wijze bevat een volledig polarimetrische combinatie 
van C- en L-band of C-, L- en P-band genoeg informatie, zodat additionele informatie 
over de textuur niet noodzakelijk is. Nabewerking door middel van ICM is erg 
behulpzaam en werd gebruikt om classificaties afgeleid van radar te maken. Een 
goede, op radar gebaseerde legenda, is een van de belangrijkste factoren om een 
goede classificatie te krijgen. 
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Belangrijkste conclusies en aanbevelingen 
 
Een nieuwe benadering van tropische bostypes en het in kaart brengen van biomassa 
met gebruik van interferometrische en multi-band polarimetrische SAR werd 
geïntroduceerd en geëvalueerd. Het PacRim-2 experiment heeft de eerste ervaringen 
met deze technologie en methodologie in Indonesië mogelijk gemaakt. De benadering 
die in deze thesis gepresenteerd wordt bevat nieuwe elementen zoals (1) 
hellingcorrectie met behulp van InSAR, (2) cartograferen met behulp van een nieuwe 
reversible transform techniek en (3) ICM met gebruik van a priori kennis (bijv. 
terreinhoogte of beeldtextuur) waaronder ruimtelijke aggregatie. De nieuwe reversible 
transform van de covariantie matrix werd gebruikt om de volledig polarimetrische 
doeleigenschappen op een alternatieve manier te beschrijven waardoor simpelere 
statistische beschrijvingen mogelijk werden. Getoond werd dat deze transformatie een 
veelzijdige en robuuste manier van classificeren is. Vergelijkingen van resultaten van 
de verschillende classificatie methoden, met verschillende combinaties van 
frequentiebanden, zijn gepresenteerd. Classificatieresultaten voor sommige 
combinaties van frequentiebanden en polarisatie konden gesimuleerd worden als 
functie van ruisniveau. Bovendien werden ook de biomassa schattingen voor en na 
hellingcorrectie met behulp van een digitaal hoogtemodel (DEM) afgeleid van InSAR 
data, vergeleken.  
 
Problemen, veroorzaakt door de aanwezigheid van hellingen, bij de interpretatie van 
de AirSAR beelden zijn opgelost. Backscatter kwaliteit werd verbeterd met behulp 
van informatie over de topografie. De radar cross section modulatie als gevolg van 
reliëf kan gecompenseerd worden door de radiometrische hellingcorrectie met behulp 
van reliëf afgeleid van across track interferometrie of van een DEM. 
 
Het gebruik van de nieuwe reversible transform techniek voor simulatie studies is 
nuttig gebleken; de meeste klassen konden herkend en onderscheiden worden. Zulke 
resultaten kunnen niet eenvoudig gerelateerd worden aan beeldclassificatie resultaten 
door de aanwezigheid van textuur en reliëf. Algemeen gebruikte 
beeldverwerkingstechnieken hebben een beperkt nut om deze effecten te matigen of 
geheel het hoofd te bieden om verschillende redenen die aangegeven zijn in hoofdstuk 
4. De omschakeling naar een systeem met uitsluitend ‘intensiteit’ verdiend 
ondersteuning omdat het de ontwikkeling van het 7I systeem, welke net beter was dan 
het 3I+ systeem, zoals geïntroduceerd door Hoekman en Quiñones (2000) mogelijk 
maakte. Hoewel de verbetering soms niet meer dan een paar procent is kan dit relatief 
veel zijn in geval bij hoge nauwkeurigheden.  
 
Over het algemeen is het verschil in bostypes in tropische regio’s verreweg het 
moeilijkst te identificeren. Dit ligt deels aan het feit dat tropische regenwouden over 
het algemeen niet bestaan uit een samenstelling van homogene, goed te definiëren 
bostypes met duidelijke grenzen. In feite worden deze bossen gekarakteriseerd door 
een grote variabiliteit in soortensamenstelling en architectuur, met de aanwezigheid 
van zowel overgangs bostypes als overgangen tussen bostypes. 3-D beeldtextuur 
afgeleid van een DEM geeft mogelijk de mogelijkheid om onderscheid te maken 
tussen natuurlijk bos en plantage bos. Hoewel, de schattingen in tabel 4.6 en 
voorgaande discussie leiden tot de algemene conclusie dat texturele patronen in de 
hoge resolutie C-band DEM en de total power backscatter radarbeelden slechts van 
aanvullende waarde zijn wanneer de multi-band volledig polarimetrische data 
beschikbaar zijn.   
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Een op iterated conditional modes (ICM) gebaseerde techniek bleek bruikbaar te zijn. 
Het classificatieresultaat bereikte een waarde van 88.9%. Een onafhankelijke dataset 
met 17 klassen leverde zelfs een veel hogere nauwkeurigheid van 93.8% op. Controle 
van deze resultaten en het omgekeerde proces hiervan leverde voldoende 
eenduidigheid op. Natuurlijke bostypes (primair bos, verbrand primair bos en 
secundair bos) werden succesvol onderscheiden, net als bosplantage types zoals 
oliepalmen en rubberplantages. Alang-alang, gemengde vegetaties en struikgewas 
kunnen niet gemakkelijk onderscheiden worden omdat ze een vergelijkbare vegetatie 
hebben en overal snel groeien. Deze snelle groei kan ook verschillen tussen het 
tijdstip van veldobservatie en radar observatie veroorzaakt hebben. Bij een visuele 
interpretatie, lijkt het gebied met de meeste misclassificaties het primaire bos aan de 
noordkant van de Baai van Balikpapan (oostzijde van het Sungai Wain beschermde 
bosgebied) te zijn. In overeenstemming met de classificatiekaart is dit gebied 
geclassificeerd als olie palm terwijl het eigenlijk verbrand primair bosgebied is, zoals 
correct wordt weergegeven in de kaart met de ‘radar’ legenda. De misclassificatie kan 
het gevolg zijn van een verschillende vegetatiestructuur van het primaire bos in die 
locatie en primair bos in het midden van het beschermde bosgebied. Dit kan 
veroorzaakt zijn door een kleine hoeveelheid schade door brand, wat consequent leidt 
tot karakteristieken van de radarsignalen die meer overeenstemming vertonen met 
oliepalmen of verbrand primair bos bij de referentie data. 
 
Het gebruik van directe empirische relaties gebaseerd op C-band backscatter voor het 
schatten van biomassa in tropische bossen laat slechte resultaten zien. Bij de L- en P-
band worden matige resultaten bereikt. De HH en HV polarisaties leveren niet altijd 
betere resultaten op dan VV polarisatie. De resultaten zijn moeilijk te interpreteren 
vanwege de complexiteit van de vegetatie, frequente bosbranden, reliëf modulatie op 
het backscatter niveau en het effect van radar verzadiging bij een zeker niveau van 
biomassa. De mogelijkheid van het gebruik van een indirecte benadering, waarbij 
bostypes classificatie een eerste stap is, zoals voorgesteld door Quiñones (2002), is 
overwogen. In dit geval zal het een biomassa kaart met een aantal fysische 
vegetatiestructuur klassen opleveren waarbij biomassa niveau’s gerelateerd kunnen 
worden aan elke cover klasse. Hierdoor kan een schatting van biomassa niveau’s 
voorbij het verzadigingsniveau gemaakt worden. 
 
Een analyse van de fysische interpretatie van data van signaalkarakteristieken bleek 
nuttig te zijn om specifieke effecten van bosstructuur beter te kunnen begrijpen. Deze 
resultaten lieten duidelijk zien dat verschillende sets van complexe multi-frequentie 
coherentie waarden konden worden herkend en gelinked konden worden aan 
verschillende structuurtypes, gebaseerd op de fysische interactie bij deze golflengtes. 
Bossen met vergelijkbare structuren leverden vergelijkbare radar signaturen op. 
Veranderingen in intensiteit worden verwacht voor te komen zoals in de literatuur 
beschreven, bijv. hogere backscatter waardes wanneer er meer scatterers van een 
zekere grootte (in relatie met golflengte) zijn. Om de fysische interactie tussen bos en 
radar golven te begrijpen kunnen de scatter mechanismes versimpeld worden in een 
model met 3 factoren (Ulaby et al., 1986). Deze zijn: (1) de directe backscattering van 
de vegetatie laag, (2) de directe backscattering van de grond verminderd door de 
vegetatie bedekking en (3) de backscattering van grond-stam interactie verminderd 
door de vegetatie bedekking. Deze worden ook wel respectievelijk de diffuse 
(volume) term, de single-bounce (odd) term en de double-bounce (term) genoemd.  
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De hoofdconclusies kunnen als volgt samengevat worden. Geïsoleerde dode staande 
bomen geven een significante bijdrage in de L- en P-band door middel van directe 
(single-bounce) scattering van de stam, en niet door het double-bounce stam-grond 
interactie mechanisme. Double bounce scattering is zeldzaam. Er zijn een paar 
aanwijzingen gevonden dat het voorkomt in de P-band in overstroomde delen van 
mangrove gebieden met een relatief open kronendak. Over het algemeen, bij alle 
kronendaken in bossen, domineert single bounce in C-band (hoge coherentie) en 
diffuse scattering domineert in de L- en P-band. Deze bevindingen kunnen gebruikt 
worden als een model voor directe (unsupervised) fysische benadering voor het 
classificeren van minder onderzochte gebieden, en kan het classificatie potentieel van 
ontoegangbare gebieden met erg weinig informatie uit het veld verhogen. 
 
De resultaten die in deze thesis gegeven worden geven een inzicht in de 
moeilijkheden voor het optimaliseren van het gebruik van interferometrie en C-, L- en 
P-band polarimetrie in tropische regenwouden en de nauwkeurigheid die bereikt kan 
worden. In de nabije toekomst kunnen sommige mogelijkheden die nu uitsluitend met 
SAR vanuit de lucht mogelijk zijn ook beschikbaar komen met SAR vanuit de ruimte, 
hiermee kan de globale biomassa gemeten worden om de nauwkeurigheid van 
klimaatveranderingsmodellen te vergroten. Japan’s Advanced Land Observing 
Satellite (ALOS) PALSAR en mogelijk de TerraSAR-X of de combinatie van 
geavanceerde C-band systemen zoals RADARSAT-2, ENVISAT met Shuttle Radar 
Topography Mission (STRM) data zijn mogelijk erg nuttig bij het in kaart brengen 
van land cover types en het schatten van de biomassa. Bovendien kan de combinatie 
van 2 technieken: interferometrie en polarimetrie of polarimetrische interferometrie 
(Pol-InSAR) gebruikt worden om boshoogte en driedimensionale bosstructuren te 
schatten. 
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