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1.1 Membrane filtration

In the field of separation processes, two groups can be distinguished, techniques to sep-
arate phases and techniques to separate components [1, 2]. Phase separation techniques
take advantage of differences in particle size (sieving, filtration) or density (sedimentation,
centrifugation). Component separation techniques are based on differences in vapour
pressure (distillation, stripping), freezing point (crystallization), charge (ion exchange,
electrolysis), affinity (absorption, extraction), or chemical nature (leaching, complexa-
tion).

Membrane filtration is a separation technique in which the flow through a membrane
is used to separate different components from each other. In pressure-driven membrane
filtration processes, such as microfiltration, ultrafiltration, nanofiltration and reverse os-
mosis, these components are present in a fluid and their separation is driven by a pressure
gradient over the membrane. These processes can be classified based on the separation
property of the process and on the membrane pore size (Table 1). Consequently, some
belong to the group of phase separation techniques and others to the group of component
separation techniques.

Table 1.1: Pressure-driven membrane filtration processes
Process Separation property Membrane Operating

pore size pressure
Microfiltration size 0.05 - 5 µm ≤ 3 bar
Ultrafiltration size 2 nm - 0.05 µm 1 - 10 bar
Nanofiltration size and/or affinity 0.5 - 2 nm 5 - 40 bar

and/or charge
Reverse osmosis affinity and/or charge - ∗ 10 - 100 bar

∗ subject of debate; often considered not to have pores

In general, advantageous aspects of pressure-driven membrane filtration processes are
their high selectivity and the possibilities for operation without a phase change. Further
they are operated at ambient temperatures, without the need for additives and with rel-
atively low energy consumption. Besides that, membrane filtration processes offer the
advantages of continuous and automatic operation, modular construction and simple in-
tegration in existing production processes, as well as relatively low capital and running
costs.

1.2 Microfiltration

Microfiltration (MF) is one of the pressure-driven membrane filtration processes. As
stated in table 1.1, MF membranes are size-selective, have relatively large pores and are
operated at pressures below 3 bar. In general, the size of the particles that are retained
during MF ranges from 0.02 to 20 µm.

Some of the particles in the feed solution may be small compared to the membrane
pores and are consequently able to pass the membrane. In this case, not only a fluid-
particle but also a size-selective particle-particle separation may be accomplished (see
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Figure 1.1: Schematic representation of “dead-ended flow” (left) and “cross-flow” (right)
MF.

e.g. Chapter 6).
MF is one of the oldest membrane filtration processes. In 1929 the process was first

commercialised by Sartorius Werke GmbH in Gottingen, Germany as a bacteriological
assay to rapidly determine the safety of drinking water. Application on an industrial scale
started in the late sixties. An important factor for the industrial application was the devel-
opment of cross-flow membrane filtration systems. In such a system, the feed suspension
flow is directed parallel or tangential to the membrane with inlet and outlet ports (Figure
1.1). Compared to “dead-ended flow” or “impact flow” with a perpendicular direction of
the feed suspension flow to the membrane, a “cross-flow” flow pattern results in much
higher permeation fluxes. This is due to re-entrainment of polarised and deposited parti-
cles by wall shear stresses along the membrane. Control over this re-entrainment process
is of key importance for process operation as is discussed in Chapters 5-8 for the applica-
tions under study in this thesis.

Nowadays MF has a broad application range in industries such as the biotechnologi-
cal, food, electronic and automobile industry. The applications are diverse, but to mention
a few:
• biotechnological applications: bacterial, yeast and mammalian cell harvesting; clari-
fication of antibiotics and virus containing solutions; sterilisation of solutions containing
antibiotics, valuable biological molecules and DNA, and tissue culture media;
• food applications: wine, juice and beer clarification, sterilisation, protein separation in
milk;
• medical applications: blood oxygenators, plasma separation from blood;
• water treatment: production of ultrapure water, oil-water separations, wastewater treat-
ment.

This thesis is targeted at future membrane separation processes for dairy applications.
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Figure 1.2: Components in milk: size indication and membrane processes [3].
MF=microfiltration UF=ultrafiltration NF=nanofiltration RO=reverse osmosis.

Milk consists of a wide variety of constituents with different functionalities. The function-
ality of these constituents could be used more effectively if they were available separately.
Because these constituents often have different sizes (Figure 1.2), membrane separation
technology is in general very suited to accomplish this separation. However, milk is also
a very complex feed for membrane separation, because of the broad particle size distribu-
tion (1 nm-20 µm), high volume fractions of dispersed components (± 15% in total) and
different properties of the feed constituents (deformability, charge, hydrophilicity, etc.).
As a consequence, current membrane processes for milk have either a rather low capacity,
due to strong particle accumulation at the membrane surface, or are energy demanding,
because of the high cross-flow velocity that has to be applied to control particle accumu-
lation. Also the selectivity of the membrane separation processes is affected negatively
by the complexity of milk, an effect that is often related to particle accumulation. Prac-
tical application of many promising separation steps of milk, such as the separation and
fractionation of fat globules, the reduction of bacteria and spores, and the separation of
casein micelles and serum proteins, is currently limited because of the low capacity and
selectivity. The main issue that has to be resolved for membrane separation to be applied
on industrial scale milk separation is control of particle accumulation at the membrane.
In order to do so, more detailed information on particle behaviour is required. This thesis
studies various aspects of this particle behaviour, in order to obtain better understanding
of the phenomena playing a role during MF of milk.
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wall membrane wall

Figure 1.3: Example of a concentration polarisation layer formed during MF. The colors
indicate the concentration, ranging from 0-0.1 v/v (light grey) to 0.5-0.6 v/v (dark grey). The
arrows indicate the flow velocity. This figure shows a result of the suspension flow model,
which is described in detail in Chapter 8.

1.3 Mass transport

During MF, the rejected particles usually form a cake layer on the membrane surface. The
pressure-driven permeate flux through this cake layer and the membrane may be described
by Darcy’s law:

J ≡ 1

A

dV

dt
=

�p

η0 (Rm +Rc)
(1.1)

where J is the permeate flux, V is the total volume of permeate, A is the membrane area,
t is the filtration time, �p is the pressure drop imposed across the cake and membrane, η0

is the viscosity of the permeate, Rm is the membrane resistance (which can increase with
time due to membrane fouling and compaction), and Rc is the cake resistance (which can
increase with time due to cake buildup and compression).

Cross-flow MF results in a (partial) re-entrainment of particles from the layer near
the membrane to the bulk phase. As a consequence of this re-entrainment, the cake layer
grows and reduces the permeate flux until a steady state is reached. At steady state,
the convection of particles toward the cake layer by the permeate flow is balanced by
back-transport of the particles away from the cake layer by diffusion and inertial lift.
A concentration-polarisation boundary layer is positioned adjacent to the cake layer in
which there is a rapid decrease in particle concentration from that at the edge of the cake
layer to that in the bulk suspension (Figure 1.3).

The flux during MF can be predicted by means of modelling of the particle accumu-
lation process including concentration polarisation. In models originally developed for
ultrafiltration, the re-entrainment or back-transport of particles is assumed to be governed
by Brownian diffusion. The Brownian diffusivity Db of a particle of radius a is given by
the Stokes-Einstein relationship:

Db =
kT

6πη0a
(1.2)

where k is the Boltzmann constant and T the absolute temperature.
These models predict the flux through a thin boundary layer where the mass transfer

coefficient is based on theoretical or empirical correlations developed for convective heat
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or mass transfer in tubes or channels having nonporous walls [4]. When this model is
however used for MF, the predicted fluxes are much lower than those observed in practice.
This discrepancy is often referred to as the “flux paradox for colloidal suspensions” [5].
The explanation for this flux paradox has been found in other back-transport mechanisms
that supplement or even exceed the Brownian back-diffusion away from the membrane.

One of the other proposed back-transport mechanisms is inertial lift, which leads to
the so-called “tubular-pinch effect”. Inertial lift is experienced by an isolated, neutrally
buoyant particle in a duct under laminar flow conditions as a result of complex interactions
with the flow field and the duct walls. When the channel Reynolds number is much larger
than unity, the maximum lift velocity vL,0 for a spherical particle near the wall of a two-
dimensional channel is [6]:

vL,0 = 0.577
ρ0a

3γ̇2
0

16η0
(1.3)

where ρ0 is the density of the suspending fluid and γ̇0 is the wall shear rate. With the
basic premise that particles are carried to the membrane walls only if the permeate flux
exceeds the maximum inertial lift velocity, the flux model can be (numerically) solved.
The numerical solutions showed that the inertial lift velocity is often much lower than the
permeation velocity in typical cross-flow MF systems, and therewith this mechanism is
clearly not the solution for the flux paradox.

An alternative back-transport mechanism is shear-induced diffusion, also called hy-
drodynamic diffusion. This diffusion is the result of particle displacements from the
streamlines in a shear flow as they interact with and tumble over other particles. The
shear-induced diffusivity is proportional to the square of the particle size multiplied by
the shear rate. Davis and Leighton [7] and Romero and Davis [8, 9] have developed an
integral MF theory, including both cake resistance and membrane resistance, that uses
concentration-dependent shear-induced diffusivities and shear viscosities appropriate for
particulate suspensions. The shear-induced diffusivity D̂s is given by:

D̂s (φ) = 0.33φ2
(
1 + 0.5e8.8φ

)
(1.4)

The diffusivity D̂s is a dimensionless parameter that is obtained by normalising for γ̇a2

(see also Equation 1.6). Obviously, the volume fraction of particles φ is of influence on
D̂s. The shear-induced diffusive behaviour of particulate suspensions is evaluated in great
detail in Chapters 2-4.

In Figure 1.4, the three back-transport mechanisms (Brownian diffusion, inertial lift,
shear-induced diffusion) are compared by calculation of the steady state flux as a function
of the particle size. MF is normally used for the separation of particles in the size range
of 0.02 - 20 µm. From Figure 1.4, it can be concluded that shear-induced diffusion is
the predominant back-transport mechanism for particles of this size. Therefore, our main
focus is on shear-induced diffusion in this thesis. The basics are explained in the next
section.

Other back-transport mechanisms that have been proposed for MF are for instance
scouring [11], turbulent burst [12] and friction forces [13]. Because these back-transport
mechanisms are more intuitive rather than theoretically founded, they are only mentioned
here but are not part of this thesis.
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Figure 1.4: Permeate flux as a function of particle size as predicted by models based on
three different back-transport mechanisms: Brownian diffusion, inertial lift, shear-induced
diffusion (modified version of the figure published by Belfort and co-workers [10]). The
permeate flux is indicated for shear rates ranging between 1000 (lower grey line) and 10000
(upper black line) s−1.

1.4 Shear-induced diffusion

Shear-induced diffusion is the result of particle displacements from the streamlines in a
shear flow as these particles interact with and tumble over other particles (Figure 1.5). In
a suspension where the particles are homogeneously distributed, these displacements give
rise to a diffusive behaviour called shear-induced self-diffusion. The shear-induced self-
diffusion coefficient can be deduced from the individual particle displacements following:

Ds ≡ lim
t→∞

1

2

d

dt
〈 x(t)x(t)〉 (1.5)

where dx(t) is the particle displacement vector, dt the time step and Ds the associated
diffusion tensor. A tensor is needed since the motion of particles is anisotropic due to the
anisotropy of shear flow. The motion of a non-Brownian particle is in principle purely de-
terministic and the displacement of a given particle only depends on the external velocity
field and its interactions with all other particles in the system. To obtain the random dis-
placements that are a characteristic of diffusive motion, the initial particle configuration
also needs to be changed. As a consequence, shear-induced diffusion is to be characterised
as a long-time diffusion process.

The relevant time and length scales in the system are the shear rate γ̇ and the particle
radius a, respectively. Because Ds has the dimension [length2/time], it scales as γ̇a2 and
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Figure 1.5: Schematic representation of shear-induced self-diffusion.

a dimensionless diffusivity D̂s can be defined:

D̂s =
Ds

γ̇a2
(1.6)

The dimensionless diffusivity still depends on dimensionless parameters like the particle
volume fraction φ.

In 1977, Eckstein, Bailey and Shapiro [14] were the first authors that reported about
diffusive-like behaviour of particles in shear flow. Since then, the phenomenon of shear-
induced diffusion has been studied experimentally [15–19], theoretically [20–24] and
computationally [25–27]. In general, it is technically complex to monitor individual par-
ticle displacements or other particle behaviour on a microscopic scale in an experimen-
tal set-up, therefore computer simulations play an important role in research on shear-
induced diffusion. In recent years, Acrivos and co-workers [25, 26] and Brady and co-
workers [27] have carried out extensive research on shear-induced self-diffusion, making
use of the Stokesian Dynamics computer simulation technique. As a result, shear-induced
self-diffusion in monodisperse suspensions and at Stokes flow conditions can be consid-
ered well-understood.

In MF systems, rather than shear-induced self-diffusion solely, the collective process
of gradient diffusion plays a role, leading to net migration of particles on the macroscopic
level. In one of their very recent papers, Brady and co-workers [28] present a technique
to determine migratory diffusion coefficients in homogeneous suspensions. The results
were in excellent agreement with available experimental results. It was postulated by the
authors that the gradient diffusivity D� may be approximated by:

D� ≈ Ds

Seq (0)
(1.7)
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where Seq (0) is the static structure factor corresponding to the hard-sphere suspension at
thermodynamic equilibrium.

1.5 Research aim and outline

In this thesis, factors affecting the efficiency of MF processes for milk separation are
studied on various levels of detail. The main focus is on concentration polarisation and
its effects, because this can be considered the key factor for the process efficiency.

For monodisperse suspensions of ideal hard spheres, concentration polarisation is a
relatively well-known process, but for suspensions with a complex composition like milk,
concentration polarisation can be considered an unexplored area because the diffusive
behaviour of suspensions is not yet sufficiently understood.

It is chosen to start at the basic level of shear-induced self-diffusion, because this diffu-
sive behaviour can be considered the basis for microfiltration (Figure 1.6: particle dynam-
ics). Up to now, computer simulations have been the most succesful research method for
shear-induced self-diffusion, since it is hard to experimentally monitor individual particle
trajectories in concentrated suspensions in shear flow. Presently, these computer simula-
tion studies were exclusively carried out with the Stokesian dynamics technique, which
resulted in a good knowledge of shear-induced self-diffusion of monodisperse suspen-
sions at Stokes flow conditions. In this study, the Lattice Boltzmann (LB) method is used
to study shear-induced diffusion by computer simulation. The LB method for suspension
flow is a well-established technique, which was originally developed by Ladd [29, 30].
Compared to Stokesian dynamics, the LB method has the advantage that it is not lim-
ited to the Stokes flow regime, which for instance facilitates computations on suspension
flow at non-zero Reynolds numbers, in the vicinity of walls and with multi-sized parti-
cles. These are all conditions that are relevant to membrane separation systems. The LB
method was preferred because it is considered better suited for these complex conditions
than the Stokesian dynamics technique. Although the LB method is a well-established
technique for suspension flow, the application to shear-induced self-diffusion is new.

The LB computer simulation results are validated by means of experiments on micro-
filtration processes, where different aspects of suspension composition have been investi-
gated (Figure 1.6: particle accumulation and deposition, particle separation and fractiona-
tion). Part of the experimental research is carried out on so-called microsieve membranes
[31]. In comparison with conventional MF membranes, they have exemplary properties,
such as a smooth and flat surface, a narrow pore size distribution, and a membrane thick-
ness in the order of µm, resulting in an extremely high permeability. Although these
membranes are not yet used for large-scale applications, they seem to be promising for
MF of complex suspensions. The success of these microsieves is however expected to
depend heavily on a proper control of concentration polarisation. This is an important
reason to take them into account in this thesis.

Chapters 2, 3 and 4 of this thesis focus on shear-induced diffusion, which is the pre-
dominant transport mechanism for particles in the size range under study (0.02-20 µm).
This phenomenon is studied by means of computer simulations following the LB method
(Figure 1.6). First (Chapter 2), the flow behaviour of 2D and 3D suspensions in a Cou-
ette system is studied, which resulted in a modelling approach for computer simulation
of shear-induced self-diffusion. Following this modelling approach, shear-induced dif-
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fusion at non-Stokesian conditions has been studied in Chapter 3. In Chapter 4, a study
of the mutual influence of different-sized particles on their shear-induced diffusivity is
presented.

The research described in Chapter 2, 3 and 4 lays the foundation for the research in the
next chapters, which focus on concentration polarisation in MF systems (Figure 1.6). In
Chapter 5, the effect of the presence of different-sized particles in the feed suspension on
the steady-state flux is investigated. Chapter 6 focuses on different-sized particles as well,
but here, the effect of these particles on the deposition of particles onto the membrane and
on the fractionation of particles is investigated. In Chapter 7, a step is made towards
actual milk ingredients. The properties of deposited casein micelles and fat globules from
bovine milk are studied. Finally (Chapter 8), a computer simulation model is developed
for suspension flow in MF systems, which allows the complete solution of the flow field in
systems with complex geometries and for polydisperse suspensions (Figure 1.6: particle
separation and fractionation). The computer simulation model is meant as a design tool
for microfiltration membranes, systems and processses.
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In this study, the Lattice Boltzmann (LB) method is applied for computer simulation
of suspension flow in Couette systems. Typical aspects of Couette flow such as wall
effects and non-zero Reynolds numbers can be studied well with the LB method because
of its time-dependent character. Couette flow of single, two and multi-particle systems
was studied, where two-dimensional (2D) systems were compared with three-dimensional
(3D) systems.

Computations on multi-particle 3D suspensions, for instance to assess the viscosity
or shear-induced diffusivity, were found to be very intensive. This was only partly a
consequence of the 3D system size. The critical particle grid size, necessary for accurate
results, was found to be relatively large, increasing the system to impractical sizes.

It is however demonstrated that it is possible to carry out computer simulations on 2D
suspensions and use relatively simple, linear scaling relations to translate these results to
3D suspensions, in this way avoiding intensive computations. By doing so, the LB method
is shown to be well-suited for study of suspension flow in Couette systems, particularly
for aspects as particle layering near solid walls, hydrodynamic particle interactions and
viscous stresses at non-zero Reynolds numbers, which cannot be easily solved with al-
ternative methods. It also opens the way to employ the LB method for other unexplored
aspects, such as particle polydispersity and high Reynolds number flow, with large rele-
vance to practical processing of suspensions.

2.1 Introduction

Since many manufacturing processes involve the transport of suspensions such as slurries,
colloids, polymers and ceramics, knowledge of the flow behaviour of suspensions is of
general interest. Not only the behaviour in shear flow but also in the presence of rigid
boundaries, such as a pipe wall, is important, because these rigid boundaries can induce
effects such as structuring, demixing and wall slip [32]. In experimental research as well
as theoretical research, Couette flow is often used as a means to investigate the suspension
flow behaviour in simple shear flow and in the presence of walls.

In the recent years, computer simulation models for colloidal suspension flow have
developed into powerful research tools [33]. These numerical models take explicit ac-
count of the hydrodynamic forces between the suspended particles, although the various
models do this in different ways. In Brownian and Stokesian dynamics, the hydrodynamic
interactions are assumed to be fully developed. This virtually means that the time scales
between the fluid dynamics and the motion of the solid particles are completely sepa-
rated. These methods are however not suited for suspensions bounded by walls, and are
therewith also not suited for Couette flow. Time-dependent models do not assume fully
developed hydrodynamic interactions, but take into account the development of hydrody-
namic interactions in time and space from purely local stresses generated at the solid-fluid
surface. These models, including Lattice Boltzmann (LB) and finite-element methods, as
well as particle-based schemes such as dissipative particle dynamics, are suited for de-
scribing Couette flow. In comparison to the LB method, finite-element methods require
much more computing power, while dissipative particle dynamics is less often used for
hydrodynamics. Therefore, the Lattice-Boltzmann method can be considered the best-
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developed of the time-dependent models for multi-particle suspensions.
In the time-dependent methods, the solid-fluid surface is explicitly present in the sys-

tem. This mostly means that the solid particles are represented on a numerical grid, which
introduces inaccuracy not only in the shape of the particle but also in the fluid flow around
the particle. The degree of inaccuracy is dependent on the particle grid size and this brings
up limitations in the range of conditions where accurate results can be obtained. One obvi-
ous limitation is the volume fraction of particles in the system. Dependent on the particle
size, there will be a limiting volume fraction above which the accuracy will be insufficient.

An advantage of computer modelling is that very detailed knowledge on the particle
dynamics and structure can be gained, such as the translational and rotational velocities of
the individual particles in the suspension. In spite of the large progress in computational
power, these computer modelling techniques still require a large computing effort, which
limits the system size in the computations. This is particularly the case when the particle
grid size needs to be relatively large in order to have sufficient accuracy. One way to
reduce the computing power can be to carry out simulations on two-dimensional (2D)
instead of three-dimensional (3D) suspensions. Adequate 2D-3D scaling relations are
then required to be able to translate the 2D results to predictions for 3D suspensions.

In this paper, we present a study on the use of the LB method for computer simulation
of 2D and 3D suspensions in Couette flow, with the aim to investigate whether computer
simulations on 2D suspensions can (partly) replace computer simulations on 3D suspen-
sions, especially when the latter are computationally intensive. Hereto, we compare dif-
ferent aspects of the flow behaviour of 2D and 3D suspensions in Couette systems in order
to find 2D-3D scaling relations. Furthermore we investigate the accuracy of the results
in relation to the particle size and the volume fraction, as related to the explicit presence
of the solid-fluid surface in the system. Therewith, this paper demonstrates the use and
the limitations of LB computations on 2D suspensions in Couette flow as compared to 3D
real suspensions.

2.2 Computer simulation method

For general information about the LB method, we refer to literature (see e.g. [34]). In this
section, the emphasis is on the suspended particles, their incorporation in the fluid and
their interactions.

2.2.1 Simulation of the fluid

The LB method is based on the well-established connection between the dynamics of a
dilute gas and the Navier-Stokes equations [35]. In the LB method, the discretised Boltz-
mann equation is solved for fictitious fluid particles, that are constrained to move on a
lattice. The state of the fluid is characterised by the single-particle distribution function
fi(x, t), describing the average number of particles at a particular node of the lattice x,
at a time t, with the discrete velocity ci, which brings the fluid particles in one time step
to an adjacent lattice node. It is known that only a small set of discrete velocities is
necessary to simulate the Navier-Stokes equations [36]. In the simulations described in
this paper, the fluid dynamics were solved with a D2Q9 or a D3Q19 LB scheme, which
is respectively defined on a 2D square lattice with rest particles and 8 non-zero particle
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Figure 2.1: Schematic representation of the 2D Couette system. The solid box lines represent
rigid walls and the dashed lines periodic boundaries. The 3D Couette system is similar, but
has an extra dimension Z , which is bounded by periodic boundaries.

velocities or on a 3D square lattice with rest particles and 18 non-zero particle veloci-
ties. The velocity directions link lattice sites to its nearest and next-nearest neighbours.
The hydrodynamic field’s mass density ρ, momentum density j, and the momentum flux
density Π are moments of this velocity distribution:

ρ =
∑
i

fi, j =
∑
i

fici, Π =
∑
i

ficici (2.1)

The fictitious fluid particles and their interactions evolve by collisions and subsequent
propagation to neighbouring lattice sites. In a collision step, the distribution function is
relaxed towards the local equilibrium distribution according to:

fi(x+∆xi, t+∆t) = fi(x, t)− fi(x, t)− f eqi (x, t)

τ
(2.2)

The relaxation time τ controls the relaxation of the viscous stress in the fluid and is linked
to the kinematic viscosity ν via:

ν = c2s

(
τ − 1

2

)
∆t (2.3)

where the speed of sound cs is defined by c2s = c2/3. In our simulations we applied
τ = 1.0 (in lattice units), which corresponds to a kinematic viscosity ν of the fluid of 1/6
(in lattice units). The equilibrium distribution f eq

i (x, t) is chosen such that the Navier-
Stokes equations for a weakly compressible system are obtained [37].

The 2D Couette system consists of a rectangular box with a width X and a height
Y (Figure 2.1). Periodic boundaries were applied at the left and right side of the box,
while the upper and lower boundaries consist of a rigid wall. The rigid walls move with
a constant velocity v in a horizontal but opposite direction in order to create a shear flow.
The 3D Couette system is similar to the 2D system, but has an extra dimension Z, which
is bounded by periodic boundaries.
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2.2.2 Fluid-particle interactions

In the LB scheme for particulate suspensions as developed by Ladd [29, 30], the solid par-
ticles are defined by a boundary surface, which can be of any size or shape. The spherical
(3D) or circular (2D) particles are projected on the lattice, where the boundary surface
cuts off some of the links between lattice nodes. Fluid particles moving along the bound-
ary surface interact with the surface at boundary nodes that are located at the lattice nodes
nearest to the boundary surface of the solid particles, following an alternative method to
Ladd’s, that was developed by Behrend [38]. In this method, called relaxed bounce back
conditions at the nodes, the LB collisions are carried out at every node, including the
boundary nodes. The method of Behrend avoids some complications of Ladd’s method,
where additional information is to be passed between lattice nodes because the boundary
nodes are placed in between instead of on lattice nodes. The resolution of the particles
on the grid is better for Ladd’s method, although Behrend showed that the translational
friction of the particles agreed well with results of Ladd and with independent numerical
results. The rotational friction however, agreed less well, due to the worse resolution.
Comparable results were obtained for the hydrodynamic interactions between pairs of
spheres, where the parallel friction coefficients were in excellent agreement with indepen-
dent numerical solutions, whereas the agreement of the perpendicular friction coefficients
was less. Results for three different transport coefficients were all again very accurate. In
this study, we have chosen for Behrend’s method because of its relative simplicity.

The collision rules at the boundary surface enforce a stick boundary condition on
the fluid, which means that the fluid velocity is matched to the local solid-body velocity
ub. This local solid-body velocity ub (at position xb) is determined by the solid-particle
velocity U, its angular velocity Ω and the position of its center of mass R:

ub = U + Ω× (xb − R) (2.4)

After the collision phase, the boundary nodes are updated in the following way:

fi(x +∆xi, t+∆t) = f ′
−i(x, t) +

2ρwi

c2s
ub · ci (2.5)

fi(x −∆xi, t+∆t) = f ′
i(x, t)−

2ρwi

c2s
ub · ci (2.6)

Here f ′
i(x, t) is the post-colllisional distribution function. For moving suspension par-

ticles, in this update, momentum is exchanged between the incoming particles from the
fluid and the solid side (the combined momentum of the fluid and the solid phase is how-
ever conserved). From this momentum exchange the force and torque exerted on a suspen-
sion particle is calculated. Hereafter the kinematic properties of the suspension particles
themselves are updated with a simple Euler forward integration of Newton’s second law.

The calculations on spherical (3D) and circular (2D) particles follow essentially the
same method. Only the mass M and the moment of inertia I in Newton’s second law
differ. For 3D particles, they are given by:

M = ρs
4

3
πa3 (2.7)

I = 0.4Ma2 (2.8)
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where ρ and ρs are the density of the fluid and the solid particle respectively, and a is the
particle radius. For 2D particles, M and I are given by:

M = ρsπa
2 (2.9)

I = 0.5Ma2 (2.10)

Since a suspended particle is essentially simulated by the introduction of a boundary
surface, separating the interior of the particle from the exterior, the interior of the particle
also consists of fluid. The particles thus comprise a solid shell of given mass and inertia,
filled with fluid of the same mass density as the bulk fluid. Ladd [30] examined the effects
of the interior fluid on the behaviour of the particle. Dynamically, the particle behaves as
if its mass is the sum of the shell mass and the mass of the interior fluid. With a sufficiently
high effective mass of the shell, the contribution of the interior fluid to the inertial force
is negligibly small. Our computations were carried out in this regime, with an effective
mass ρs/ρ of 10. Since our computations are carried out in the Stokes flow regime, inertial
effects do not play a role (see also Kromkamp and others [39]).

2.2.3 Accuracy of particle representation and particle-particle inter-
actions

By the projection of the suspended particles on the lattice, a discrete representation of the
surface is obtained, which becomes more and more precise as the surface curvature gets
smaller and which is exact for surfaces parallel to lattice planes. Together with the choice
of the location of the boundary nodes and the boundary update rules, the discretisation
of the particle surface onto the lattice induces a hydrodynamic particle diameter that is
slightly larger than the diameter based on the number of occupied lattice nodes [30]. It is
therefore often proposed that the particle diameter should be corrected for this hydrody-
namic effect. The magnitude of the correction is mostly based on the particle behaviour in
the Stokes flow regime and at low particle concentrations. As also presented in an earlier
paper [39], we have seen that in suspensions in shear flow, particles can approach each
other very closely, such that particles would largely overlap when the hydrodynamic par-
ticle size would be taken into account. The closest approach distance is moreover found
to be dependent on conditions such as the particle concentration and the shear rate. Since
assessment of the hydrodynamic particle diameter in these systems is virtually impossi-
ble, while the corrections would probably be very small, we did not apply this correction
but used the input particle diameter in our calculations.

Since the suspension flow behaviour in Couette systems is mainly governed by hy-
drodynamic particle-particle or particle-wall interactions, these interactions need to be
accurately resolved in the computations. When two suspension particles come into close
contact with each other, the lubrication force becomes important. This force is caused by
the attenuation of the fluid film in the gap between the two particles and is repulsive upon
approach and attractive upon separation of the particles. When the gap width between two
particles is in the order of one lattice spacing, the lubrication force is however not exactly
resolved with the LB method. This is due to the discretisation of the particles and fluid
on a grid and is a problem that is encountered by all numerical methods. This lubrication
breakdown leads to a so-called “depletion force” that pushes particles into each other. To
overcome this problem we applied a lubrication correction method based on an explicit
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calculation of the lubrication force F [40]. For a 3D system F is given by [40]:

F = −6πηU12.R̂12
a1a2

(a1 + a2)
2

(
1

h
− 1

hc

)
, h < hc (2.11)

F = 0, h > hc

where η is the viscosity, U12 = U1 − U2 and h = |R12| − (a1 + a2) is the gap (distance
between the particle surfaces). The unit vector R̂12 = R12/ |R12|. For a 2D system the
lubrication force per unit cylinder length F is given by (see appendix 2.6):

F = −1

2
ηU12.R̂12

((
a1 + a2

h

) 3
2

(F0 +
h

a1 + a2
F1)−

(
a1 + a2

hc

) 3
2

(F0 +
hc

a1 + a2

F1), h < hc

(2.12)

F = 0, h > hc

where F0 is the numerical constant 3
4
π
√
2 = 3.3322 and F1 is the first order correction

for the lubrication limit h/2a << 1 with a value of 231
80

· π · √2 = 12.829. In accordance
with Ladd and Verberg [33], we applied a correction on the lubrication force to account
for the lubrication force that is already resolved in the computations of the fluid dynamics.
This was done by subtracting the lubrication force at a cut-off distance hc from the total
lubrication force, as indicated in Equations 2.11 and 2.12. The cut-off distance hc rep-
resents the cut-off distance between the particle surfaces for the added lubrication force
and was chosen equal to 1.1 lattice units for a 3D system and to 2.0 lattice units for a
2D system (as was found optimal in our simulations). For 3D systems, Nguyen and Ladd
[40] showed that this correction leads to more accurate results for particle interactions
at short interparticle distances, even with neutrally buoyant particles very near to contact
and without causing instabilities in the particle dynamics.

Since tangential lubrication has a weaker logarithmic divergence and its breakdown
does not lead to serious problems, we have not included this correction in our simulations.

We have noticed before, that in suspensions with relatively high particle fractions or
at high particle Reynolds number, particle clustering and overlap can occur, which greatly
affects the diffusive behaviour of the particles [39]. This behaviour seems to be correlated
with the lubrication breakdown of concentrated colloids, that was reported by Ball and
Melrose [41]. As suggested by these authors, we applied a Hookean spring force between
the particles to avoid this clustering and overlap. This Hookean spring force was applied
for gaps h smaller than a thickness δ and was applied in the direction of the line of particle
centres, according to:

Fh = F0 −
(
F0

δ

)
h (2.13)

with a maximal Hookean spring force F0 of 2.5*10−6 (in lattice units) for a 3D system
and 10.0 (in lattice units) for a 2D system. The Hookean spring force is active in a layer
around the particle with a thickness δ/2 of 0.025 lattice units for a 3D system and 0.05
lattice units for a 2D system.
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Figure 2.2: The angular velocity ω as a function of the relative channel height Y/a for a
single cylinder with radius a in shear flow (Reshear,p = 0.058, a=8 lattice units). The distance
between the solid walls of the Couette system was varied between 2.5a and 40a. The results
are compared to results of Nirschl and co-workers [42] for a 3D system. The line represents
Taylor’s solution for Y/a = ∞ [43] and the inset shows a scheme of the simulated situation.

2.3 Single and pair particles in Couette flow

2.3.1 Wall effects on a single particle

In order to compare wall effects between a single suspended 2D particle and a 3D particle
in shear flow, the rotation was studied in Couette systems with varying ratio of channel
height to particle radius Y/a. For 3D particles, we take the data from Nirschl and others
[42], who used a finite volume numerical scheme. We studied the rotation of 2D particles
with our LB model.

The LB calculations were carried out for a 2D particle with a radius a of 8 lattice
units. The distance X/a between the periodic boundaries was 80, which was verified to
give results corresponding to a system with an infinitely large distance X/a. The channel
height Y/a varied between 2.5 and 40. The shear rate γ̇ was 3.75 ∗ 10−5 per time step,
which was verified to give results corresponding to Stokes flow. The shear-based particle
Reynolds number Reshear,p = 4γ̇a2/ν, where ν is the kinematic viscosity, was equal to
0.058. The 2D particle was placed at the horizontal centerline of the Couette system. We
assessed the equilibrium angular velocity ω of the 2D particle, which is normalised for
the shear rate.

For a channel height Y/a larger than 10, the angular velocity ω was close to the
analytical solution of Taylor [43] for a rotating particle in simple shear (Figure 2.2). For
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smaller channel heights, the angular velocity ω starts to decrease due to interaction with
the walls. The decrease starts earlier and is most pronounced for the 2D particle, where
the angular velocity ω decreased from the maximum value of 0.50 to a value of 0.33
at a channel height Y/a of 2.5. This effect can be understood because the intensity of
the flow field around a 2D particle is larger than around a 3D particle. As a result, for
2D particles, wall effects start at a channel height Y/a, which is about 3 units higher
than for 3D particles, while the wall effects for 2D particles are more intense as well.
The results suggest that a scaling relation can be obtained between 2D and 3D results
by normalisation of the channel height. For the 2D results, the channel height should be
multiplied with a factor of about 0.33.

2.3.2 Two colliding particles in shear flow

The hydrodynamic interactions between particles in a 2D and a 3D system can be com-
pared from the flow trajectory of two interacting particles. Batchelor and Green [44] have
derived an analytical solution for 3D particles, but a solution for 2D particles is not yet
available. Therefore, we calculated the flow trajectories with the LB model for 2D as well
as 3D particles, at equivalent conditions.

For 2D particles, two equal-sized particles (a=8 lattice units) were placed at equidis-
tant heights above and under the horizontal centerline. The initial horizontal distance
(x − xmidpoint)/a from the midpoint between the particles was 5, while the initial ver-
tical distance was varied. Both the channel height (Y/a=40) and the distance between
the periodic boundaries (X/a=80) were chosen such that they did not affect the particle
trajectories. Reshear,p was equal to 0.058, which was verified to give results in accordance
with Stokes flow. For 3D particles, virtually the same conditions are applied, except for
the particle radius, which was chosen as 11 lattice units.

The resulting flow trajectories are presented in figure 2.3. When the two particles
pass each other, they move away from the horizontal centerline upon approach and move
back to their original height upon separation, as is described by Batchelor and Green
[44]. When comparing 2D and 3D particles, it is clear that the 3D particles move closer
around each other: the minimal gap between the 2D particles is equal to 0.27a and 0.11a
for initial vertical distances from the midpoint of respectively 0.44a and 0.25a, while the
minimal gap between 3D particles is respectively 0.01a and 0.00a.

These differences between the inter-particle distances are caused by differences be-
tween the ratio of drag to lubrication force for 2D and 3D particles, which causes the fluid
to move less easily out of or into the gap for 2D particles. A consequence of the observed
behaviour is that the range of hydrodynamic interactions is longer for 2D particles. In
2D multi-particle systems, this may lead to more intense hydrodynamic interactions at a
similar particle fraction.

A full scaling of the particle trajectories would at least require a numerical solution of
the lubrication force, but here we apply an analytical scaling by simply rescaling of the
X-axis and Y -axis in figure 2.3. The X-axis is rescaled by normalising X for X∗, the
X-value where the particle has reached a distance Y ∗ = 0.5(Ymax − Yinitial). The Y -axis
is rescaled by normalising Y for the factor Ymax(Y −Yinitial)/(Ymax−Yinitial)+1.0(Ymax−
Y )/(Ymax−Yinitial). Obviously, this rescaling can only be applied when X∗ and Ymax are
already known. The result is presented in figure 2.4.

The rescaling lead to 2D and 3D trajectories with a good resemblance. This indicates
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Figure 2.3: Cylinder or sphere trajectory during interaction of two cylinders (a=8.0 lattice
units (2D)) or two spheres (a=11.0 lattice units (3D)) in a linear shear field (Reshear,p =
0.058) between two walls, for varying initial positions of the cylinders and spheres.
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Figure 2.4: Cylinder or sphere trajectory during interaction of two cylinders (a=8.0 lattice
units (2D)) or two spheres (a=11.0 lattice units (3D)) in a linear shear field (Reshear,p =
0.058) between two walls, for varying initial positions of the cylinders and spheres. The
values for X and Y are scaled as explained in the text (section 2.3.2).

that the trajectories of 2D and 3D systems can be scaled with the parameters X∗ and Ymax,
which can thus be considered characteristic for this system. Only when the particles are
relatively far apart discrepancies occur but these long-range effects are often less relevant
in concentrated suspensions.

2.4 2D and 3D multiparticle suspensions in Couette flow

2.4.1 Wall effects

The 2D multiparticle system consists of a rectangular box with X : Y = 1 : 2. The total
number of particles (particle radius 8 lattice units) was equal to 200. Reshear,p was equal
to 0.023. In the 3D multiparticle system, the particle radius and Reshear,p were similar to
the 2D system. The box size was X : Y : Z = 1 : 1.5 : 1 and the total number of particles
400.

Walls can induce effects as particle structuring, demixing and wall slip. In order to
analyse these effects, we compare the time-averaged concentration distribution and the
particle velocity profile as a function of the distance to the wall for 2D and 3D systems
(Figure 2.5). In the 2D system, a layer near the walls with a height close to a was depleted
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Figure 2.5: The time-averaged area (2D, cylinders) or volume (3D, spheres) fraction φ across
the channel width Y for a 2D suspension (top) with mean area fractions < φ > of 0.10 (a),
0.30 (b) and 0.45 (c) and a 3D suspension (bottom) with mean volume fractions < φ > of
0.10 (a), 0.30 (b) and 0.36 (c).

of particles, as can be expected based on the particle size. No additional wall depletion
was however found. For φ > 0.10, strong structuring effects are found near the walls,
which is clear from the concentration fluctuations. For φ = 0.3, the first concentration
peak appears at a distance from the wall between 0 and 1.3a and between 1.1a and 2.1a
for φ = 0.45. For φ = 0.45 at least two distinct particle layers are visible, at a distance
between 1.1a and 2.1a and between 3.2a and 4.2a from the wall respectively. From the
particle velocity profile in the 2D system, it is clear that the shear profile deviates slightly
from perfectly linear, but that, even for φ = 0.45 where the particle velocity near the walls
was up to 5% smaller than expected, this effect of wall slip is of minor importance.

In a 3D system, the situation was slightly different (figure 2.5). The height of the layer
near the walls that was depleted of particles, was again close to a. Structuring effects were
found to differ from 2D systems. In 3D systems, for volume fractions higher than 0.10,
only one concentration peak was visible, which was more pronounced than in 2D systems.
For φ = 0.3, and 0.36 this concentration peak appears at a distance from the wall between
0.93a and 1.40a and between 0.88a and 1.09a respectively. As in accordance with wall
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effects in a 2D and 3D single particle system, where these effects were only evident at
small channel heights for 3D spheres, the concentration peak was closer to the wall in
a 3D system (at the highest concentration). As a consequence of this more pronounced
structuring in 3D systems, the particle velocity profile was also found to deviate more
from perfectly linear. The profile exhibited a tendency towards a sigmoid shape. The
velocity of particles near the walls deviated around 10% from the velocity expected for a
linear velocity profile.

2.4.2 Viscosity

The viscosity of a concentrated suspension is a characteristic that strongly depends on
hydrodynamic interactions. By calculation of the squeezing flow contribution, the viscos-
ity can be calculated as a function of the particle fraction, as is done for 3D particles by
Frankel and Acrivos [45]. The result is practically identical to the semi-empirical model
of Krieger and Dougherty [46], which is valid for both 2D and 3D suspensions:

ηr =

(
1− 〈φs〉

φmax

)−[η]φmax

(2.14)

where ηr is the relative viscosity, 〈φs〉 is the averaged particle fraction and φmax, the
maximum packing fraction. The dimensionless factor [η] is the intrinsic relative viscosity
of the suspension. It is often suggested that the factor [η]φmax is similar for 2D and 3D
suspensions [47]. Here we will use [η]φmax=1.82, as derived from the values for φmax

and [η] of 0.68 and 2.68 respectively, that are reported by Phillips and co-workers [16] for
3D suspensions. The value for φmax in the denominator of Equation 2.14 followed from
a subsequent fit of the simulation results.

Because the viscosity simply evolves from the lubrication force as a function of the
mean distance between the particles, the scaling relation between 2D and 3D systems
directly follows from this derivation. Therefore, we only determined the viscosity as a
function of the particle fraction to compare the accuracy between 2D and 3D systems. In
our simulations, the viscosity is determined from the stress at the walls in a multiparticle
Couette system. For a 2D system, the height Y/a and width X/a of the Couette system
are equal to respectively 64.75 and 32.38. The particle fraction was varied by varying
the number of particles up to a maximum of 365. Reshear,p was equal to 0.012, which
was verified to give results in accordance with Stokes flow. For a 3D system, the system
properties were as described in section 2.4.1.

Figure 2.6 presents the results. There is a good agreement between the 2D computer
simulation results and the Krieger-Dougherty model for φmax=0.88. At a particle fraction
φ exceeding 0.49 however, the viscosity is slightly lower than according to the Krieger-
Dougherty model. Also the 3D computer simulation results show a good agreement with
the Krieger-Dougherty model (φmax=0.69). Similar to the 2D system, at higher concen-
trations, the viscosity starts to get lower than the Krieger-Dougherty model. This occurs
however at a particle fraction φ exceeding 0.3 instead of 0.49 for a 2D system. More-
over, from Figure 2.6, it is clear that an appropriate scaling is obtained when the particle
fractions of both 2D and 3D suspensions are related to φmax.

From comparison of our 2D viscosity data with LB results from literature (see e.g.
[47] for an overview), it is clear that our data do not significantly differ from these data.
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Figure 2.6: Effective viscosity of a 2D and a 3D suspension as a function of the area (cylin-
ders) or volume (spheres) fraction. The lines represent fits of the results to the Krieger-
Dougherty model with a value of 1.82 for [η]φmax, both for 2D and for 3D suspensions (the
fit result for φmax was 0.88 for 2D and 0.69 for 3D). The inset shows the viscosity as a
function of φ/φmax.

3D viscosity data are amongst others given by Heemels and others [48]. These authors
could accurately describe the viscosity up to a volume fraction of at least 0.45, making use
of the similar LB method as Ladd, but adapted in order to simulate truly solid particles.
They also showed that when the original LB method of Ladd is used [29, 30], the internal
fluid in the particles contributes to the effective density, which leads to an underestimation
of the viscosity over the total volume fraction regime. A leveling off at higher volume
fractions, as occurs in our simulations, is however not observed. Because this behaviour is
found at lower volume fractions in 3D suspensions, where the particles come into closer
contact, we hypothesize that the inaccuracy in the viscosity has to do with this close
contact. It may therefore be that the less accurate particle representation, that is associated
with Behrend’s boundary rules as used in this study, is the main reason for the inaccuracy
at higher particle fractions. The viscosity results indicate that particle radii in concentrated
3D suspensions should be relatively large in order to obtain sufficient accuracy. Since 3D
suspensions require much computing power, this is a clear disadvantage of the method
followed.
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2.4.3 Shear-induced diffusion

Computer simulation

Another interesting phenomenon in multiparticle suspensions in shear flow is shear-induced
diffusion, a phenomenon that arises from the hydrodynamic interactions between the par-
ticles. As can be seen in Figure 2.3, apart from the displacement caused by the affine flow,
two-particle interactions do not lead to permanent displacements of these particles. In a
concentrated multi-particle suspension however, simultaneous interactions between more
than two particles can lead to permanent displacements, which can have a diffusive char-
acter on a sufficiently large timescale. The shear-induced self-diffusivity is thus defined
as the time rate of change of one half times the mean-square displacement:

Dxx ≡ lim
t→∞

1

2

d

dt
〈 x(t)x(t)〉 (2.15)

Sierou and Brady [27] have done extensive computer simulation work on shear-induced
self-diffusion, using the Stokesian dynamics technique. As far as we know, they have not
published any results from 2D simulations. In contrast to Stokesian dynamics, our LB
method enables research on shear-induced diffusion at non-Stokesian conditions, such as
in the presence of walls and at non-zero Reynolds number. Here, we investigate 2D-3D
scaling relations for shear-induced diffusion because this knowledge may enable the use
of computationally less intensive 2D simulations.

The 2D and 3D systems were as described in section 2.4.1. For a 2D system, the
shear-induced diffusivity is determined over a strain range between 18 and 60. In order
to evaluate the effect of the initial particle configuration on the diffusion coefficient, we
splitted the displacement curve of one simulation run into several curves which start at dif-
ferent times of the simulation run (and consequently at different particle configurations).
In each separate curve, the mean square displacement was monitored over a strain of 30.
The final diffusion coefficient is the mean value of the diffusion coefficients that were de-
termined from the individual mean square displacement curves. Dependent on the particle
volume fraction, the 2D calculations required between 70 and 650 h CPU time. With a
similar particle radius, the 3D system requires much more computational power per sim-
ulated particle than a 2D system. For 3D systems, a particle number of 400 is found to
be sufficiently high to obtain results that are representative for an infinitely large system.
This particle number was twice as high as in a 2D system, which results in an improved
statistical reliability of the 3D simulations. In order to limit the computational effort, the
shear-induced diffusivity is determined over a strain range between 4.5 and 15, which was
verified to give results representative for the long-range diffusive regime. In this way, the
3D simulations required about 40 times more CPU time than the 2D simulations (with
equal particle radius).

For a 3D system and φ ≥ 0.20, our simulations generated shear-induced diffusivities
that are smaller than the results found by Sierou and Brady [27]. In order to try to elucidate
these differences, we assessed the influence of the particle radius on the shear-induced
diffusivity at φ =0.10, 0.20 and 0.30 (figure 2.7). The shear-induced diffusivity increased
with the particle radius, but seems to have reached a plateau value for φ = 0.10 at a
particle radius of 8 lattice units. For φ =0.20 and 0.30, even at a particle radius of 10
lattice units, a plateau value was not reached. The values for φ =0.30 were furthest away
from the values presented by Sierou and Brady [27].
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Figure 2.7: Component Dyy of the shear-induced self-diffusion coefficient, as related to the
values found with Stokesian dynamics by Sierou and Brady [27], in a 3D suspension as a
function of the particle radius for φ =0.10, 0.20 and 0.30 (N = 400, Reshear,p = 0.023).
The lines are drawn as a guide to the eye.

One hypothesis for the cause of the differences could be that a jammed state of hy-
drodynamic clusters is formed, as for instance put forward by Farr and co-workers [49].
Because the particles have more or less fixed positions in such system-spanning clusters,
the particle displacements may be smaller than in an unjammed state. It can be expected
that system size will be of large influence on the jamming transition. We did however not
find these effects when varying the distance between the two moving walls. Therewith,
this hypothesis is less likely to be the cause for the differences in shear-induced diffusivity.

Another reason might be in the occurrence of short-range multi-particle interactions.
In our code, multi-particle interactions are solved by pair-wise calculation of the inter-
action effects, which are successively calculated for all particle pairs. The problem does
not seem to be in the pair-wise calculation itself, because this would not lead to an effect
of the particle radius as shown in Figure 2.7. It may however be that the solution of the
short-range multi-particle interactions in our code is too inaccurate because of the ragged
particle surface. This explanation is in line with the observed effect of the particle radius
and our hypothesis based on the viscosity results. Because of the relative close approach
of particles in 3D systems, this problem might be more pronounced in 3D than in 2D
systems.

Since the inaccuracy is found to increase with φ, it can be expected that for volume
fractions higher than 0.20, even larger particles are required. However, a particle radius
of 14 would already require about 2000 times more CPU time than 2D simulations, while
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Figure 2.8: Component Dyy of the shear-induced self-diffusion coefficient as a function of
the cylinder area fraction for a 2D suspension (N = 200) in shear flow at Reshear,p = 0.023.
The open symbols represent the relation found by Sierou and Brady [27] for a 3D system
with spheres instead of cylinders.

the CPU time would increase with a factor of about 25000 for a particle radius of 20. Even
on advanced supercomputers, one would run into problems with these requirements.

The 2D results on shear-induced diffusivity are presented in figure 2.8. These results
were not found to be dependent on the particle size within a range of plus or minus
25%. We can thus conclude that, similar to the viscosity results, the 2D results for shear-
induced diffusion are less sensitive to inaccuracy in the particle representation on the
grid. At area fractions higher than 0.45 however, very large standard deviations were
found, which may be caused by comparable reasons as mentioned above for 3D systems,
namely formation of a jammed state or inaccuracies in the calculation of the short-range
multi-particle interactions. Therefore, we limited the results up to an area fraction of 0.45.

The relation between shear-induced diffusivity and φ is clearly different from the 3D
relation. For volume fractions lower than 0.25, the 2D shear-induced diffusivity was
around three times higher, and at higher fractions around two times. In order to better
understand these differences and to be able to translate 2D results into 3D results, we have
developed an analytical model for shear-induced diffusivity. This model is discussed in
the next section.
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Analytical model for 2D-3D scaling

We used an analytical model for shear-induced diffusion (an adapted version of the model
that was originally published by Breedveld [50]), which is based on a simple collision
mechanism.

Our simple collision model, described in appendix 2.7, approaches self-diffusion in
a similar way as Leighton and Acrivos [15] did. It describes the movement of individ-
ual particles in a homogeneous suspension and shear field under the action of excluded
volume effects that are caused by interactions with neighbouring particles on different
streamlines in the shear flow. The particle motion during each encounter is described as a
deterministic process, but it is assumed that this can lead to diffusive behaviour in systems
with many particles and random initial positions. An encounter of particles is modelled
as an effective two-particle collision process, which proceeds unhindered until it is ter-
minated by the presence of a third neighbouring particle. Without the presence of a third
neighbouring particle, the collision is ended when the angle θ = π is reached (see figure
in appendix 2.7), which does not result in a net displacement of the colliding particle.
This is consistent with the shear flow trajectories that are obtained in the symmetric prob-
lem of two colliding ideal hard spheres [21]. When particle concentrations are high, the
average time between subsequent collisions is shorter than the time needed to complete
the interaction and then the collisions end when interaction with a third incoming particle
occurs. Under these model assumptions, in a following step, particle trajectories are cal-
culated as a function of initial particle positions and finally, averaging the displacements
over all configurations provides a measure for shear-induced self-diffusion. It is clear that
the model will be valid for a restricted range of particle fractions. This range is deter-
mined by factors such as the presence of two-particle interactions and the homogeneity of
the suspension. In previous work [39], we have seen that particles in an inhomogeneous
suspension can have an increased shear-induced diffusivity. But, although the model is
simplistic in that it does not at all consider complex hydrodynamics, it provides inter-
esting insights into the nature of the microscopic processes that could be responsible for
shear-induced self-diffusion, even more because the model does not contain adjustable
parameters.

With our collision model, the components Dxx, Dyy, Dzz and Dxy of the diffusion
tensor have been calculated for a 3D system (figure 2.9). The calculated values for the
components Dyy and Dzz are almost a factor 4 lower than most experimental data (see
e.g. [17, 18]). The latest numerical results, calculated with ASD, are however a factor 2
lower than experimental data; it was postulated by the authors that discrepancies are due
to analysing over too short strains in the experiments [27].

A feature that seems to be captured well by the collision model is the volume fraction
dependence. Dyy and Dzz level off for volume fractions above 25%. In the model, this is
due to the fact that above this critical concentration, the average duration of an interaction
is shorter than needed for the completion of the trajectory to θ = π. The diffusion com-
ponents Dyy and Dzz reach a plateau value at a volume fraction of 25%. This is due to
the fact that the decrease in displacement at a higher volume fraction is exactly balanced
by the increase in collision frequency, resulting in constant diffusion coefficients. Such
a plateau value for Dyy and Dzz is also found in experiments, although at a somewhat
higher volume fraction of around φ = 0.35. Only Sierou and Brady [27] found a plateau
value for Dyy as well as Dzz in their latest model calculations with the ASD technique.
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Figure 2.9: The components Dxx, Dyy , Dzz and Dxy of the diffusion tensor for a 3D system,
as calculated from the collision model (part a) and Dyy for a 2D system as compared to a 3D
system (part b).
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Most model predictions however do not show a plateau value at all.

The anisotropy Dyy/Dzz between the velocity gradient and vorticity direction is equal
to 2 in our model. The value of 2 agrees well with experimentally observed values for
the anisotropy Dyy/Dzz. Although only a limited number of results on Dxx and Dxy

is available in literature, the results of our collision model exhibit large differences with
these results. Particularly the volume fraction dependence is different in our model results.
The negative sign of Dxy is however correctly predicted. Since considerable debate still
exists on the magnitudes of Dxx and Dxy, it is hard to assess the accuracy of the model
predictions; more elucidation is needed.

For a 2D system, the collision model predicts a different volume fraction dependence
of Dyy than for a 3D system (figure 2.9b). For 2D, Dyy starts to increase at an area fraction
between 0.2 and 0.3. After it has started increasing however, the diffusion component Dyy

not only increases faster with the area/volume fraction, but it also reaches its plateau value
at a critical area fraction, which is two times higher than for a 3D system. Moreover, at
area fractions above the critical value, the diffusion component shows a decrease instead
of staying at a constant level. A relevant factor for these differences is the collision rate
per particle. In a 2D system, the collision rate per particle at a certain fraction is two
times smaller than in a 3D system. On the other hand, the average displacement during a
collision is larger because the angle ϕ is equal to 0 in 2D systems, resulting in the maximal
value of 1 for cos(ϕ). The combination of these two effects leads to a somewhat steeper
increase of Dyy with the area/volume fraction than in 3D systems, although the difference
is not large. The lower collision rate per particle in 2D systems is also relevant for the
onset concentration of Dyy and the critical concentration where levelling off occurs. The
onset concentration is directly related to the collision rate, because it is determined by
the point where a two particle collision starts to be disturbed by a third particle. For
the critical concentration, the average collision time is also important. Since the average
time needed for a collision does not differ much between 2D and 3D systems, the smaller
collision rate causes a shift of the critical concentration from 0.25 to about 0.50 in 2D
systems. At higher concentrations in 2D systems, the effect of decreasing displacement
is larger than the effect of increasing collision rate, leading to a net decrease of Dyy.

Based on this understanding, our expectations for 2D systems are that at relatively low
area fractions, the shear-induced diffusion component Dyy is smaller than for 3D systems.
At area fractions above 0.25, the 2D diffusion component can become up to a factor 3.5
higher, due to the difference in area/volume fraction dependence. A normalisation was
carried out by dividing the area or volume fraction by φ∗, the fraction where the diffusivity
has reached half of the maximal value (0.5Dmax), and by dividing the diffusivity by its
maximal value (Dmax) (Figure 2.10). As a result, the normalised 2D and 3D values of
the collision model nicely coincide with each other. The same procedure has been carried
out on the 2D and 3D simulation results, but here, because the collision model did not
capture the Dyy − φ relation well, the normalisation parameters were derived from the
simulation results itself. In this way, a good agreement is found between the normalised
data of our 2D LB simulations and the 3D Stokesian dynamics simulations of Sierou
and Brady [27]. This indicates that the 2D-3D scaling relation as determined from the
collision model, is suited for the translation of (future) 2D simulation results to 3D. In
this way, computationally intensive 3D simulations can be avoided.



2D AND 3D SUSPENSIONS IN COUETTE FLOW 33

Figure 2.10: Comparison of the shear-induced diffusivity as predicted by the collision model
and by computer simulation. The shear-induced diffusivity Dyy and the area or volume frac-
tion φ are normalised following scaling rules derived from the results of the collision model.
The values for φ∗ and Dmax are determined separately for each curve from the results pre-
sented in Figure 2.7 and 2.9. For the 2D results of the present study, the value for Dmax is
derived from Dyy at φ∗.

2.5 Conclusions

In this study, we have analysed the flow behaviour of suspensions subjected to Couette
flow, making use of the LB method. The focus was on a comparison of the flow behaviour
of 2D and 3D suspensions. Since computations on 3D suspensions can computationally
be very intensive, it is investigated whether and when it is advantageous to carry out
computations on 2D suspensions and translate these results to 3D suspensions with the
help of scaling relations.

We have found particle structuring near the walls in both 2D and 3D suspensions. The
thickness of the structuring layer was thinner for 3D suspensions, which is in accordance
with wall effects in 2D and 3D single particle systems. Wall slip was found in both
systems as well, and was more intensive in 3D systems and at higher concentrations.
An important consequence of the differences between 2D and 3D is that when one is
interested in the bulk particle behaviour, in the 2D system, a larger system size should be
chosen than in a 3D system.

For computation of the viscosity and shear-induced diffusion, limitations are found in
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the maximum volume fraction of particles that gives accurate results; these limitations are
found to be related to the grid size of the suspended particles. In 3D systems, for a particle
radius of 8 lattice units, the inaccuracy became evident at φ larger than 0.30 (viscosity)
or larger than 0.15 (shear-induced diffusion), which is at much lower concentrations than
in 2D systems. This sensitivity of 3D systems to inaccuracy is probably related to the
closer approach distance of two interacting particles in shear flow and may be caused by
inaccuracy, introduced by the particle discretisation on the grid.

Because of the very large particle grid sizes, necessary to obtain accurate results for
3D systems, only advanced supercomputers are currently suited for LB computations on
3D systems, while the computations on 2D systems can be carried out well on a single
processor or on small computer clusters. Therefore, adequate scaling relations would be
helpful to translate 2D simulation results to 3D systems. For the viscosity, such scaling
relations are already known, and we were able to reproduce those in our LB simulations.
For shear-induced diffusion, we have developed an analytical collision model, which is
able to predict qualitatively correct shear-induced diffusivities, and which captures the
scaling between 2D and 3D well.

This study shows that the feasibility of 3D LB simulations is restricted to smaller
parameter domains than 2D simulations. With the use of relatively simple, linear scaling
rules, it proved possible to translate 2D simulation results to 3D real systems, which
opens the way to employ the LB method for unexplored aspects of suspension flow in
Couette systems, such as particle polydispersity and high Reynolds number flow, with
large relevance to practical processing of suspensions.
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2.6 Lubrication force in a 2D suspension

We apply lubrication theory to calculate the hydrodynamic force between two cylinders
in a 2D suspension. For small gaps (i.e. rim to rim distances) 2h the force between two
adjacent cylinders can be calculated, solving the flow field in the gap upto first order in
ε = h/a. In the calculation two cylinders are considered, approaching each other with
a velocity 2U . A Carthesian coordinate system (ex, ez) was used with the origin at the
center of the gap. The z-coordinate, taken along the line of centers, was scaled on h and
the x-coordinate was scaled on

√
ah; the z-component of the velocity was scaled on U , the

x-component on
√

a/hU . The pressure was scaled on aηU/h2. Under these conditions
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the differential equation for the dimensionless stream function ψ becomes:

∂4ψ

∂z4
+ 2ε

∂4ψ

∂x2∂z2
+ ε2

∂4ψ

∂x4
= 0 (2.6.1)

The rim of both disks is described by z = ±b(x) with

b(x) = 1 + 1
2
x2 + ε1

8
x4 + ε2 1

16
x6 + ... (2.6.2)

and the boundary conditions on these rims read:

vz = − ∂ψ

∂x
= ∓1, (2.6.3)

vx =
∂ψ

∂z
= 0, (2.6.4)

For convenience ψ = 0 is chosen at z = 0, so ψ is odd in z. This equation can be solved
assuming

ψ = ψ0 + εψ1 + ... (2.6.5)

where ψ0 fulfills the boundary conditions (2.6.3) and (2.6.4) and ∂ψ1/∂x = ∂ψ1/∂z = 0
on the rim of the particle. The solution is given by:

ψ0 =
1

2
x

(
3
(z
b

)
−
(z
b

)3
)

(2.6.6)

ψ1 =
3

20
g(x)

(z
b

)(
1−

(z
b

)2
)2

(2.6.7)

where g(x) = 4x(b′)2 − 2bb′ − xbb′′ and b′, b′′ are the first and second derivative of
b = b(x), respectively. The pressure along the line z = 0 can be calculated by integrating:(

∂p

∂x

)
z=0

= −3b−3

(
x+ ε

(
3

5
g(x)− 1

2
f(x)

))
(2.6.8)

where f(x) = 2x(b′)2 − 2bb′ − xbb′′. The zz-component of the total stress tensor (the
superfix [D] indicates the dimensional form)

T [D]
zz = −p[D] + 2η

∂v
[D]
z

∂z[D]

reads in dimensionless form

Tzz = −p + 2ε
∂vz
∂z

= −p− 2ε
∂2Ψ

∂x∂z

where also Tzz has been scaled on p0 = aηU/h2. The (dimensionless) force per unit
length, F , on the particle is calculated by integrating Tzz along the line z = 0 (with
swopping the order of integration of the ∂p/∂x term):

F (ε) = 2

∫ ∞

0

(Tzz)z=0 dx (2.6.9)

= 2

∫ ∞

0

x

(
∂p

∂x

)
z=0

dx− 4ε

∫ ∞

0

(
∂2Ψ

∂x∂z

)
z=0

dx

=

∫ ∞

0

3x

b3(x)

(
2x+ ε

(
6

5
g(x)− f(x)

))
dx− 4ε

∫ ∞

0

3

2b2
(b− xb′)dx
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This expression can be rewritten as:

F (ε) = F0 + ε (F1 − F2)

where

F0 =

∫ ∞

0

6x2(
1 + 1

2
x2
)3dx =

3

4
π
√
2 = 3.3322

F1 =

∫ ∞

0

3x(
1 + 1

2
x2
)3
((

25

10
x3 − 3

5
x− 6x5

(8 + 4x2)

))
dx =

207

80
π
√
2 = 11.496

F2 =

∫ ∞

0

6

(
1− 1

2
x2
)

(
1 + 1

2
x2
)2dx = 0.0

are numerical constants. In our simulations, we have erroneously used a value of F1 =
12.829, which lead to about 1% overestimation of the lubrication force. The lubrication
force per unit length in dimensional form, F [D] = p0

√
ahF , follows from Equation 2.6.10

as:

F [D] =

(
h

a

)−3/2

ηU F (h/a) =

(
h

a

)−3/2

ηU

(
F0 +

h

a
F1

)
(2.6.10)

which expression is correct to the first order of ε.

2.7 Analytical model for shear-induced diffusion

2.7.1 The collision frequency of the particle in 3D

Consider a simple shear field in which the velocity of the fluid (in Carthesian coordinates)
is given by:

v = γ̇yex (2.7.1)

so the x-direction is the velocity direction, the y-direction along the gradient and the z-
direction along the vorticity direction. A collision takes place when two particles touch
each other: rij = p = ai + aj , where ai is the radius of particle (i).

Using spherical coordinates (r, ϑ, ϕ) (see Figure 2.11) and the unit vectors:

er = − cos ϑ ex + sinϑ es
eϑ = sinϑ ex + cosϑ es
eϕ = − sinϕ ey + cosϕ ez

(2.7.2)

where es is defined by:

es = cosϕ ey + sinϕ ez (2.7.3)

the relative position between two particles is given by:

rrel = p(− cosϑ ex + sinϑ es) (2.7.4)
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Figure 2.11: Geometry for describing a typical collision.

and the relative velocity before collision by:

vrel = γ̇p sinϑ cosϕ ex (2.7.5)

We consider a monodisperse suspension with volume fraction φ of particles with radius
a. The particle flux onto the surface of a tagged particle can be estimated as:

j = nvrel = 2naγ̇ sinϑo cosϕo ex (2.7.6)

where n is the number density of the particles in the suspension. ϑo and ϕo define the
orientation of the colliding particles. The collision rate in a certain space angle dṄc/dΩ
is given by:

dṄc = −nvrel · (2a)2 dΩ er (2.7.7)

dṄc

dΩ
= 8na3γ̇ cosϕo sin ϑo cosϑo (2.7.8)

and the total collision rate:

Ṅc = 2

∫
Ω(1)

dṄc

dΩ
dΩ

=
12

π
φγ̇

∫ π/2

0

sin2 ϑo cosϑodϑo

∫ π/2

−π/2
cosϕodϕo

=
8

π
γ̇φ (2.7.9)

where Ω(1) is the space angle for which 0 < ϑ < π/2 and −π/2 < φ < π/2. The
probability that a given collision occurs with orientation (ϑo, ϕo) or (π − ϑo, π + ϕo) is
given by the function Φ(ϑo, ϕo):

Φ (ϑo, ϕo) =

(
dṄc/dΩ

)
∫
Ω(1)

(
dṄc/dΩ

)
dΩ

=
3

2
cosϕo cosϑo sinϑo (2.7.10)
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and the mean time, τ , between two collisions of particle 1 with another particle follows
from Equation 2.7.9:

τ = 1/Ṅc =
π

8γ̇φ
(2.7.11)

2.7.2 The collision frequency of a particle in 2D

In 2D the collision rate under a certain angle dṄc/dϑ is given by:

dṄc = −nvrel · 2adϑ er (2.7.12)

dṄc

dϑ
= 4na2γ̇ sin ϑo cosϑo (2.7.13)

and the total collision rate:

Ṅc = 2

∫ π/2

0

dṄc

dϑ
dϑ =

8

π
φγ̇

∫ π/2

0

sin ϑo cosϑodϑo

=
4

π
γ̇φ (2.7.14)

hence, in 2D

Φ (ϑo) = 2 cosϑo sin ϑo (2.7.15)

and

τ = 1/Ṅc =
π

4γ̇φ
(2.7.16)

2.7.3 The displacement of the particle in a collision

To describe the displacement of a particle (i) during a collision with particle (j) we de-
scribe the collision with respect to the center of resistance of the two colliding parti-
cles. The initial position of particle (i) is given by ϑo, ϕo (in 2D: ϕo = 0): rcm =
a(− cosϑoex + sin ϑoes(ϕ)). To obtain a simple collision rule we assume affine motion
of the particles as not prohibited by excluded volume effects. When the particles become
into contact they role over each other in the xs-plane. Under this assumption the velocity
during the collision, ϑo ≤ ϑ ≤ ϑ1, is:

v = v∞ · (I − erer) (2.7.17)

= aγ̇ cosϕo sin
2 ϑ (sinϑ ex + cosϑ es)

while the undisturbed velocity would be given by:

v∞ = aγ̇ cosϕo sin ϑ ex (2.7.18)

The angular speed ϑ̇ is given by: ϑ̇ = γ̇ cosϕo sin
2 ϑ so the time a collision takes, is given

by:

∆t =
1

γ̇ cosϕo

∫ ϑ1

ϑo

dϑ

sin2 ϑ
=

(cotϑ0 − cotϑ1)

γ̇ cosϕo
(2.7.19)
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where ϑ1 is the value of ϑ at which the collision stops, ϑ1 = π − ϑ0, or is taken over by
the next collision:

cotϑ1 =




− cotϑ0 ( 2 cot ϑ0

γ̇ cosϕo
≤ τ)

cotϑ0 − γ̇τ cosϕo ( 2 cot ϑ0

γ̇ cosϕo
> τ)

(2.7.20)

Assuming a collision stops at a certain angle ϑ1 irrespective of the initial values of ϑ0 and
ϕo, the average collision time in 3D is calculated as:

〈∆t〉 = 3

∫ π/2

0

∫ π/2

0

(cotϑ0 − cotϑ1)

γ̇ cosϕo
cosϕo cosϑo sin

2 ϑodϑodϕo

=
π

2γ̇
(1− cotϑ1) (2.7.21)

and in 2D as:

〈∆t〉 = 2

∫ π/2

0

(cotϑ0 − cotϑ1)

γ̇
cosϑo sinϑodϑo

=
1

γ̇

(π
2
− cotϑ1

)
(2.7.22)

The displacement ∆r can be obtained from integration, from time 0 to τ , of the velocity
(Equation 2.7.17):

∆r =

∫ ∆t

0

v (ϑ, ϕ0) dt+

∫ τ

∆t

v∞ (ϑ1, ϕ0) dt+ vcmτ

= a

∫ ϑ1

ϑ0

(sin ϑ ex + cosϑ es (ϕ0)) dϑ+

∫ τ

∆t

aγ̇ cosϕo sinϑ1 exdt+ vcmτ

where vcm is given by:

vcm = γ̇ (y0 − a sin ϑ0 cosϕo) ex

The stochastic part of the displacement s can be obtained by subtraction of the convective
contribution to ∆r :

∆rc =
1

2
γ̇τ (y0 + y1) ex

which results in:

s =

∫ ∆t

0

v (ϑ, ϕ0) dt+

∫ τ

∆t

v∞ (ϑ1, ϕ0) dt+ γ̇τ (y0 − a sinϑ0 cosϕo) ex −
1

2
γ̇τ (y0 + y1) ex

In these expressions ∆t is given by: ∆t = min {τ, (2 cotϑ0) / (γ̇ cosϕo)}. Hence, for
( 2 cot ϑ0

γ̇ cosϕo
≤ τ) one obtains:

s = 0



40 CHAPTER 2

and for ( 2 cot ϑ0

γ̇ cosϕo
> τ):

s/a = [sinϑ1 − sinϑ0] es + [cos ϑ0 − cos ϑ1 − (2.7.23)
1
2
(sinϑ0 + sinϑ1) (cotϑ0 − cotϑ1) ex

where we have used:

γ̇τ cosϕo = cotϑ0 − cotϑ1

(in 2D the obtained expressions for the displacements are valid if one substitutes ϕo = 0).

2.7.4 The self-diffusion tensor

The self-diffusion tensor D for a particle can be calculated from:

D =
〈s s〉
2τ

(2.7.24)

The averaging has to be done with the weight function Φ (Equation 2.7.10) in the follow-
ing way:

〈s s〉 =

∫ π/2

−π/2

∫ π/2

0

(s s) Φ(ϑo, ϕo) sinϑodϑo dϕo (2.7.25)

= 3

∫ π/2

0

∫ π/2

0

(s s) sin2 ϑo cosϑodϑo cosϕo dϕo (2.7.26)

The diad (s s) is for ∆t = (2 cotϑ0) / (γ̇ cosϕo) < τ given by:

〈s s〉 = a2 〈s̃ s̃〉

〈̃s s̃〉 = 3

∫ π/2

0

∫ ϑm(ϕo)

0

(̃s s̃) sin2 ϑo cosϑodϑo cosϕo dϕo

where ϑm(ϕo) = arctan (16φ/ (π cosϕo)). The dyad (̃s s̃) is given by:

s̃ = [sinϑ1 − sinϑ0] es + [cosϑ0 − cos ϑ1 − (2.7.27)
1
2
(sinϑ0 + sinϑ1) (cotϑ0 − cotϑ1) ex

with

cotϑ1 = cotϑ0 − π cosϕo

8φ

Finally one obtains an expression for the diffusion tensor:

D = γ̇a24φ

π
〈s̃ s̃〉 (2.7.28)

Using Equations 2.7.27 and 2.7.28 all the components of the self-diffusion tensor can
be calculated. In the 2D calculations no ϕ dependence exists and the weight function Φ
is given by Equation 2.7.15, while in the expressions for the displacements one has to
replace ϕo by 0.
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This paper addresses shear-induced self-diffusion in a monodisperse suspension of
non-Brownian particles in Couette flow, by two-dimensional computer simulations fol-
lowing the Lattice Boltzmann method. This method is suited for the study of (many-
particle) particulate suspensions and can not only be applied for Stokes flow, but also for
flow with finite Reynolds number.

At relatively low shear particle Reynolds numbers (Reshear,p) (up to 0.023), shear-
induced diffusivity exhibited a linear dependence on the shear rate, as expected from
theoretical considerations. Simulations at Reshear,p between 0.023 and 0.35, however,
revealed that in this regime, shear-induced diffusivity did not show this linear dependence
anymore. Instead, the diffusivity was found to increase more than linearly with the shear
rate, an effect that was most pronounced at lower area fractions of 0.10 and 0.25.

In the same shear regime, major changes were found in the flow trajectories of two
interacting particles in shear flow (longer and closer approach) and in the viscosity of the
suspension (shear thickening). Moreover, the suspended particles exhibited particle clus-
tering. The increase of shear-induced diffusivity is shown to be directly correlated with
this particle clustering. As for shear-induced diffusivity, the effect of increasing shear
rates on particle clustering was the most intensive at low area fractions of 0.10 and 0.25,
where the radius of the clusters increased from about 4 to about 7 particle radii with an
increase of the Reshear,p from 0.023 to 0.35. The importance of particle clustering to
shear-induced diffusion might also indicate the importance of other factors that can in-
duce particle clustering, such as, for example, colloidal instability.

3.1 Introduction

In concentrated non-Brownian suspensions, shear-induced diffusion affects the motion of
the suspended particles and is consequently of major importance for the flow behaviour
of these suspensions. A variety of interesting rheological phenomena in concentrated
suspensions is invoked by shear-induced diffusion, such as viscous resuspension (during
sedimentation and cross-flow filtration) and particle segregation in radial and pipe flow
(see e.g. [51, 52]). Therefore, this subject has attracted considerable attention from re-
searchers, starting with the first direct experimental study of Eckstein, Bailey and Shapiro
in 1977 [14]. Later, theoretical as well as numerical work followed (see e.g. [26, 53]).

In contrast to the more familiar diffusion concepts of Brownian diffusion and turbu-
lent diffusion, which are, respectively, caused by thermal fluctuations and inertial effects,
shear-induced diffusion is caused by hydrodynamic particle-particle interactions. The
diffusivity of the particles is the result of the spatial hindrance that they experience in a
concentrated suspension which is macroscopically forced to flow. Although this process
in principle is a deterministic process, it can be described as a diffusion process owing to
the complex nature of the hydrodynamics.

A distinction can be made between shear-induced self-diffusion and shear-induced
gradient diffusion (or migration). The first concept considers the motion of individual
particles in a homogeneous suspension, whereas the latter considers collective particle
migration in the presence of a gradient. This paper addresses the concept of shear-induced
self-diffusion only.
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To obtain information about shear-induced self-diffusion, the motion of individual
particles in a suspension must be monitored. Experimental work is mostly carried out
with the use of tracer particles in a suspension. An overview of experimental data on
shear-induced self-diffusion is given in two articles of Breedveld and co-workers [17, 18].
Unfortunately, experimental techniques mostly impose severe limitations on the range of
strain values during which the particles can be monitored, which complicates the work on
shear-induced self-diffusion considerably. Theoretical analyses and numerical computa-
tions can therefore be helpful for comparison and for information that cannot be obtained
with experiments.

A theoretical approach of shear-induced self-diffusion is complicated by the fact that
a two-body system in the presence of only hydrodynamic interactions, either does not
exhibit diffusive behaviour (for the motion parallel to the velocity gradient and vorticity
directions) or exhibits singular behaviour (for the motion parallel to the fluid velocity).
Approaches that have been applied to overcome this problem in the theoretical compu-
tation of shear-induced diffusion, are the introduction of an additional pair of particles
[20], examination of three particle interactions [22], introduction of surface roughness on
the particles [21] and introduction of residual Brownian motion and a hard-sphere inter-
particle force [53]. The latter approach by Brady and Morris can be considered the most
successful up to now. It predicts the correct level of anisotropy between the diffusion in
the velocity gradient (Dyy) and vorticity (Dzz) direction. The calculated diffusivities are,
however, a factor of about six higher than values from experimental studies. Moreover,
the theory predicts a continuous increase of the diffusion coefficient with volume fraction,
while experimental values level off at high volume fractions. We can therefore conclude
that, in spite of the aforementioned rigorous attempts, up to now, no theory is available
that satisfactorily predicts shear-induced diffusive behaviour.

Some numerical studies on shear-induced diffusion have been reported using Stoke-
sian Dynamics (SD) simulations [25, 26, 54, 55]. Many-body hydrodynamic interactions
are included in this simulation technique. The SD simulations provided self-diffusion co-
efficients that are of the same order of magnitude as experimental results. The computed
anisotropy between Dyy and Dzz also compared well with experimental data. Although
the SD simulations strongly contributed to the level of understanding of shear-induced
diffusion, the results of the simulations are not uncontroversial. The dependence of the
diffusion coefficient on the volume fraction, for example, is not clear. While earlier work
shows a continuous increase of the diffusion coefficient with the volume fraction, recent
work suggests the existence of a plateau at high volume fractions [25, 55]. This plateau
was, however, only found for Dyy and not for Dzz. Another controversial aspect is the
number of particles incorporated in the system. The computational costs for calculations
on non-colloidal systems (dominated by hydrodynamics) are very high with SD and in
most published work, systems were used with 27 particles only. Since this system size is
small compared to any realistic system, the results have to be treated with care. The recent
introduction of the Accelerated Stokesian Dynamics (ASD) simulation technique [56],
based on a much faster computational algorithm, allows the study of large systems with
typically 1000 suspension particles. Using ASD to study shear-induced self-diffusion,
Sierou and Brady [27] indeed showed the relevance of high particle numbers and suf-
ficiently high strains for reliable diffusion coefficients. Their results, covering the full
diffusivity tensor, can probably be considered the most accurate up to now.

Besides the relatively high computational cost, SD, and also ASD, have other limi-
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tations for the simulation of shear-induced diffusion. The suspending fluid is assumed
to be Newtonian and to be flowing under conditions approximating Stokes flow (particle
Reynolds number Rep −→ 0). Although ASD may have better possibilities, with SD,
the application of non-spherical particle shapes and size distributions is complex. More-
over, it is difficult to make the method suitable for simulations in bounded regimes with
container walls [33]. These aspects may be of importance to gain a better insight into
shear-induced diffusion in practical systems. Therefore, although SD and ASD are ro-
bust methods that accurately resolve hydrodynamic interactions, they are not yet able to
address all relevant aspects of shear-induced diffusion.

In this paper, a study on shear-induced diffusion is presented making use of a Lattice
Boltzmann (LB) model for particulate suspensions [33]. This model combines Newtonian
dynamics of solid particles with a discretised Boltzmann equation for the fluid phase.
The many-body hydrodynamic interactions are fully accounted for (with inclusion of an
explicit lubrication force for hydrodynamic interactions over very short distances). The
LB model may have a number of advantages for the simulation of shear-induced diffusion
over the SD model. Since the interactions between the fluid and the suspended solid
particles can be calculated with simple local rules, the computational cost depends linearly
on the amount of suspended particles, which makes many-particle simulations feasible.
The LB model is also not restricted to the Stokes flow regime for fluid flow and can
easily be applied for non-spherical particles, for particles with a size distribution and
for systems bounded by container walls [33]. This may make the LB technique more
suitable for the simulation of shear-induced diffusion in more complex systems, where
the aforementioned aspects play a role.

The aim of this work is to examine shear-induced diffusion outside the Stokes flow
regime, at finite Reynolds numbers, and investigate the effect of inertia. The fact that these
conditions of finite Reynolds numbers are frequently applied in (industrial) processes of
suspensions, such as milk and other foods, paints and river water, makes the relevance
of this work evident. Although it is well-known that the rheological behaviour of con-
centrated suspensions can become non-Newtonian in this regime, as far as we know, the
scaling of shear-induced diffusion with the shear rate has not been studied yet. In this
study, we furthermore compare the shear-induced diffusive behaviour with the effects of
shear on the flow trajectories of one particle and two interacting particles and on the vis-
cosity of a multi-particle suspension, so as to be able to detect possible correlations. The
study is carried out for two-dimensional (2D) systems in order to limit the computational
costs. Although this might lead to differences in the scaling of the relations in comparison
with three-dimensional systems, the trends will be similar as is presented in [78].

In section 3.2, we present an outline of our LB method for particulate suspensions.
Subsequently, we show results of the shear-dependent behaviour of one (flow trajectory),
two (flow trajectory) and multi-particle (viscosity) systems (section 3.3). In section 3.4,
we present our results on shear-induced diffusion. As a relevant parameter, in section 3.5,
an analysis is made of the suspension microstructure at different shear rates, whereafter
we draw our conclusions.
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3.2 Computer simulation method

We have applied the LB method in our simulations. Since this method has already been
outlined extensively in literature (see e.g. [29, 33]), we will only recapitulate the most im-
portant points. The LB method models a compressible fluid (in which the speed of sound
is finite) in the limit of low Mach number (Ma=flow velocity/speed of sound), by solving
the discretised Boltzmann equation for fictitious fluid particles, that are constrained to
move on a lattice. The state of the fluid is characterised by the single-particle distribution
function fi(x, t) , describing the average number of particles at a particular node of the
lattice x, at a time t, with the discrete velocity ci, which brings the fluid particles in one
time step to an adjacent lattice node. In the simulations described in this paper, the fluid
dynamics were solved with a D2Q9 LB scheme, which is defined on a 2D square lattice
with rest particles and 8 non-zero particle velocities. The velocity directions link lattice
sites to its nearest and next-nearest neighbours. The velocity vectors on this 2D lattice are
defined as:

ci =




(0, 0) , i = 0(
cos i−1

2
π, sin i−1

2
π
)
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2
(
cos
(
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2
π + π

4

)
, sin

(
i−1
2
π + π

4

))
, i = 5, 6, 7, 8

(3.1)

The hydrodynamic fields mass density ρ, momentum density j, and the momentum flux
density Π are moments of this velocity distribution:

ρ =
∑
i

fi, j =
∑
i

fici, Π =
∑
i

ficici (3.2)

The fictitious fluid particles evolve by collisions and subsequent propagation to neigh-
bouring lattice sites. This two-step process is described by the following equations:

f ′
i(x, t) = fi(x, t)−

∑
j

Ωijf
neq
j (x, t) (3.3)

fi(x+∆xi, t+∆t) = f ′
i(x, t) (3.4)

Here f ′
i(x, t) is the post-colllisional distribution function. The non-equilibrium part of the

distribution function is defined as f neq
i (x, t) = fi(x, t)− f eqi (x, t). The lattice spacing is

defined as ∆xi = ci∆t . The collision operator Ωij controls the shear stress relaxation at
every lattice site. In our simulations, we applied the collision operator of the Bhatnagar-
Gross-Krook (BGK) model [37, 57], which is a simplification of the full LB model. The
BGK collision operator is defined such that the distribution functions are simply relaxed
at each time step towards the local equilibrium distribution with the relaxation time τ :

fi(x+∆xi, t+∆t) = fi(x, t)− fi(x, t)− f eqi (x, t)

τ
(3.5)

The relaxation time τ controls the relaxation of the viscous stress in the fluid and is linked
to the kinematic viscosity ν via:

ν = c2s

(
τ − 1

2

)
∆t (3.6)
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where the speed of sound cs is defined by c2s = c2/3. In our simulations we applied
τ =1.0 (in lattice units), which corresponds to a kinematic viscosity ν of the fluid of 1/6
(in lattice units). The equilibrium distribution f eq

i (x, t) is chosen such that the Navier-
Stokes equations for a weakly compressible system are obtained [36]. It can be expressed
as a series expansion in powers of the flow velocity u:

f eqi = ρwi(1 +
1

c2s
u · ci +

1

2c4s
ūū : c̄ic̄i − 1

2c2s
u2) (3.7)

where ūū is the traceless part of uu, and the double dot product is defined as A : B =∑
α,β AαβBβα. The weight factors are given by w0 = 4/9, w1 = w3 = w5 = w7 =1/9

and w2 = w4 = w6 = w8 =1/36.
In the LB scheme for particulate suspensions as developed by Ladd [29], the solid

particles are defined by a boundary surface, which can be of any size or shape. The solid
particles are placed on the lattice, where the boundary surface cuts some of the links be-
tween lattice nodes. Fluid particles moving along the boundary surface interact with the
surface at boundary nodes that are located at the lattice nodes nearest to the boundary
surface of the solid particles, following an alternative method to Ladd’s, that was devel-
oped by Behrend [38]. In this method, called relaxed bounce back at the nodes, the LB
collisions are carried out at every node, including the boundary nodes. The collision rules
at the boundary surface enforce a stick boundary condition on the fluid, which means that
the fluid velocity is matched to the local solid-body velocity ub. This local solid-body
velocity ub (at position xb) is determined by the solid-particle velocity U, its angular
velocity Ω and the position of its center of mass R:

ub = U + Ω× (xb − R) (3.8)

After the collision phase, the boundary nodes are updated in the following way:

fi(x +∆xi, t+∆t) = f ′
−i(x, t) +

2ρwi

c2s
ub · ci (3.9)

fi(x −∆xi, t+∆t) = f ′
i(x, t)−

2ρwi

c2s
ub · ci (3.10)

For moving suspension particles, in this update, momentum is exchanged between the
incoming particles from the fluid and the solid side (the combined momentum of the
fluid and the solid phase is, however, conserved). From this momentum exchange, the
force and torque exerted on a suspension particle is calculated. Hereinafter, the kinematic
properties of the suspension particles are updated with a simple Euler forward integration
of Newton’s second law.

The choice of the location of the boundary nodes, the discretisation of the particle sur-
face onto the lattice and the boundary update rules induce a certain hydrodynamic particle
diameter that is larger than the diameter based on the number of occupied lattice nodes
[30]. In dilute systems, in the Stokes flow regime and for sufficiently large particles, the
difference between the input particle diameter and the hydrodynamic particle diameter
can be considered constant (but dependent on the kinematic viscosity). In that situation,
the hydrodynamic instead of the real particle diameter could be used for the calculation
of the particle fraction or shear-induced diffusivity. In our simulations, we focus on rather
concentrated suspensions outside the Stokes flow regime, where we not only expect the
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deviation to be smaller than for dilute systems in the Stokes flow regime, but also to
be dependent on the actual hydrodynamic conditions. Because determination of the ac-
tual hydrodynamic diameter in concentrated suspensions outside the Stokes flow regime
would become very complex, we used the real particle diameter in our simulations, know-
ing that this gives a small, albeit probably negligible error. For the relatively large particle
diameters of 16 lattice units applied in this study, this would give a deviation on the in-
put particle diameter of at most 5%. The particle fraction and shear-induced diffusivity
are the most important parameters that depend on the particle diameter. The quadratic
dependence of these parameters on the particle diameter would, in its turn, give rise to a
maximal deviation of 10% on the particle fraction and the shear-induced diffusivity. In
general, this deviation lies within the standard deviation of our simulation results.

Since a suspended particle is essentially simulated by the introduction of a boundary
surface, separating the interior of the particle from the exterior, the interior of the particle
also consists of fluid. Ladd [30] examined the effects of the interior fluid on the behaviour
of the particle. With a sufficiently high effective mass of the particle, the interior fluid
only contributes an inertial force due to the extra mass of the particle. Our computations
were carried out in this regime, with an effective mass density ρs/ρ of 10. By comparing
simulation results at low Rep with an effective mass of 3 and 10, we found that the rela-
tively high effective particle mass did not contribute to the observed effects of Rep on the
viscosity and shear-induced diffusion in this paper. It can therefore be hypothesized that
fluid inertia plays a larger role than particle inertia in our system; here, we do not take it
into consideration any further.

Since shear-induced diffusion is mainly governed by hydrodynamic particle interac-
tions, these interactions must be accurately resolved in the computations. When two sus-
pension particles come into close contact with each other, the lubrication force becomes
important. This force is caused by the attenuation of the fluid film in the gap between the
two particles and is repulsive upon approach and attractive upon separation of the parti-
cles. When the gap width between two particles is of the order of one lattice spacing, the
lubrication force is, however, not exactly resolved with the LB method. This is due to the
discretisation of the particles and fluid on a grid and is a problem that is encountered by
all numerical methods. To overcome this problem, we applied a lubrication correction as
proposed by Ladd and Verberg [33] for a 3D system. It starts with an explicit calculation
of the lubrication force when the gap width is smaller than two lattice units (= 0.25a).
Since we considered a 2D system, we used the following equation for the lubrication
force per unit length F , which is valid for the lubrication force between two cylinders
(see Appendix 3.7):

F = ηU

((
h

a

)− 3
2

(F0 +
h

a
F1)−

(
hc

a

)− 3
2

(F0 +
hc

a
F1)

)
,

h < hc (3.11)

F = 0, h > hc (3.12)

where two particles approach each other with a velocity U , 2h = |R12| − 2a is the gap
(distance between the particle surfaces), F0 and F1 are numerical constants. In accordance
with Ladd and Verberg [33], we applied a correction on the lubrication force to account
for the lubrication force that is already resolved in the computations of the fluid dynamics.
This was done by subtracting the lubrication force at a cut-off distance hc from the total
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lubrication force, as indicated in Equation 3.12. The cut-off distance hc represents the cut-
off distance between the particle surfaces for the added lubrication force and was chosen
equal to one lattice unit (= 0.125a) in our study. For 3D systems, Nguyen and Ladd
[40] showed that this correction leads to more accurate results for particle interactions
at short interparticle distances, even with neutrally buoyant particles very near to contact
and without causing instabilities in the particle dynamics. These improvements are also
expected for a 2D system.

We have noticed, that in suspensions with particle fractions exceeding 0.40 and at rel-
atively high shear rates, particle clustering and overlap can occur, which greatly affected
the diffusive behaviour of the particles. This behaviour seems to be correlated with the
lubrication breakdown of concentrated colloids, that was reported by Ball and Melrose
[41]. As suggested by these authors, we applied a Hookean spring force between the
particles for particle fractions exceeding 0.40 to avoid this clustering and overlap. This
Hookean spring force was applied for gaps 2h smaller than a thickness δ and was applied
in the direction of the line of particle centres, according to:

Fh = Fm −
(
Fm

δ

)
2h (3.13)

with a maximal Hookean spring force Fm of 10.0 (in lattice units). The Hookean spring
force is active in a layer around the particle with a thickness δ/2 of 0.05 lattice units
(= 0.00625a). When using the LB model as described above, we found a good agree-
ment between our computer simulation results for the viscosity and model results of the
Krieger-Dougherty model (particle fractions between 0.05 to 0.55), which is known to de-
scribe experimental data well. Especially at high particle fractions, the viscosity is known
to be highly dependent on particle interactions. The good agreement with the Krieger-
Dougherty model therefore indicates that our model captures the particle behaviour well.

3.3 Effects of hydrodynamics and inertia in particle sus-
pensions

Our simulations on shear-induced diffusion are carried out in a 2D multi-particle suspen-
sion (actually cylinders) in a Couette system with solid moving walls. Before examining
this rather complex system, we firstly studied the behaviour of a single cylinder and of
two interacting cylinders in shear flow, in order to investigate some relevant effects in
a simpler system. The case of the single cylinder studies wall effects and the effect of
Rep and is compared with data from literature concerning 3D systems. The case of two
interacting cylinders is presented to show the effect of Rep on the flow trajectory of two
interacting cylinders in shear flow. For this specific case, neither analytical nor numer-
ical (2D) solutions were available so the comparison with literature is only qualitative.
Besides these one and two cylinder systems, we determined the effects of Rep on the
viscosity of a multi-particle suspension, which enabled us to examine the collective par-
ticle behaviour in a Couette system with solid moving walls and relate this behaviour to
the results presented in section 3.4 and 3.5 of this paper. The results of the preliminary
simulations are discussed in this section.

The computer simulations on a single and on two interacting cylinders were carried
out in a Couette system, consisting of a box with solid walls at the upper and lower
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Figure 3.1: The angular velocity ω as a function of Reshear,p for a single cylinder with radius
a in shear flow. The distance between the solid walls of the Couette system was varied
between 2.5a and 40a. The results are compared to results of Nirschl and co-workers [42]
for a 3D system. The inset shows a scheme of the simulated situation.

side and periodic boundaries at the left- and right-hand side of the box. The walls move
parallel to each other with a constant velocity, but in opposite directions. The width of
the box between the periodic boundaries was equal to 640 lattice units (=80a). The height
of the box between the two parallel walls was 320 lattice units (=40a) (in most cases)
and the wall velocity was between 0.002 and 0.054 lattice units per time step, resulting
in a shear rate between 1.25*10−5 and 7.50*10−4 per time-step. Therewith, the shear
based particle Reynolds number Reshear,p (= 4γ̇a2/ν, with ν the kinematic viscosity) was
between 0.019 and 1.152. For the case of a single cylinder, the height of the box and the
wall velocity were varied, but in such a way that the shear rate and Reshear,p were in the
range indicated above.

For a single cylinder placed at the horizontal centerline of the Couette system, the
equilibrium angular velocity of the cylinder is determined as a function of the distance
between the solid walls and as a function of Reshear,p. In this paper, the angular velocity
ω is normalised for the shear rate. We compare our results to results of Nirschl and others
[42], who carried out comparable computations with a finite volume numerical scheme,
but for a 3D system. Taylor [43] derived an analytical solution for low Reynolds number
flow over a rotating sphere in simple shear, which predicts an angular velocity ω of a half.
The computed angular velocity ω is presented as a function of Reshear,p in Figure 3.1.

For a distance between the walls Y = 10a and Y = 40a and Reshear,p <0.5, the
angular velocity ω approached Taylor’s solution to within a few percent. For Reshear,p up
to 1.152, no large influence of Reshear,p on the angular velocity ω is seen. The influence
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was slightly larger for larger distances between the walls. This is in agreement with the
findings of Nirschl and others [42] for a 3D system. The influence of Reshear,p can be
attributed to the blockage of fluid near the particle axis. This blockage creates a recircu-
lation of fluid, and the streamlines divert into the gap between the wall and the particle.
Therewith the resistance to flow in the gap increases, and the flow losses are larger with
increasing Reshear,p, leading to a decrease of the angular velocity ω. When the distance
between the walls is smaller, the recirculation is inhibited so that the effect of Reshear,p

is less than for larger distances. When the distance between the walls decreased to 5a or
smaller in our simulations, the walls had an increasing effect on the angular velocity ω.
Compared to the 3D results of Nirschl and others, this effect is more pronounced in a 2D
system. This can be understood because the intensity of the flow field around a cylinder
is larger than around a spherical particle.

All together, these results lead us to the conclusion that in the shear regime of our
study, Reshear,p does not have a significant effect on the rotation of a single cylinder.
When the cylinder closely approaches a solid wall, the angular velocity decreases owing
to the interaction with the wall. This effect is larger in a 2D than in a 3D system. These
results also give an indication of wall effects in a Couette system where the cylinder is
placed eccentrically in that system. It is known that cylinders tend to migrate to the
centerline of a Couette system [58]. The migration velocity is, amongst others, dependent
on the distance from the wall. We can expect that migration becomes important at particle
distances from the wall where the angular velocity is significantly affected. Consequently,
when wall effects on the total system need to be negligible, the distance between the walls
in a multi-particle system needs to be sufficiently high. Therefore, the distance between
the walls was minimally 56a in the simulations on multi-particle systems in the rest of
this paper.

In another study, we determined the drag coefficient of a single cylinder settling along
the centerline of a confined channel (results not shown). These results were found to be
in good agreement with results of Feng and others [59] and Aidun and Lu [60], indicating
that the drag of a transposing cylinder is accurately resolved with our LB method.

The interactions between two cylinders subjected to simple shear flow provide an im-
portant basis for analysing shear-induced diffusive behaviour of suspensions, because this
behaviour can be considered the basis for shear-induced diffusion in the low concentra-
tion limit. Batchelor and Green [44] have derived analytical solutions for 3D systems of
spheres without inertia. Trajectories can either extend to infinity (open trajectory) or not
(closed trajectory). The interaction between equal-sized spheres is symmetric and such
spheres can approach each other to exceedingly small separations. Factors such as surface
roughness can disturb the symmetry of the process, because this can impose an additional
force onto the spheres when in close contact. Therefore, closed trajectories will probably
only occur for very smooth spheres. We have studied the effect of inertia on hydrodynam-
ically interacting cylinders by varying Reshear,p in a system with two equal-sized cylinders
in an open trajectory.

In our simulations, these two cylinders were placed in the box at heights symmetrical
around the horizontal centerline, at a distance of 19.25a from the moving wall and 0.75a
from the centerline. The initial horizontal distance between the cylinders was 10.0a.
Based on the simulations on one cylinder as presented in Figure 3.1, it can be expected
that the walls did not affect the flow of the cylinders. The trajectories of the interacting
cylinders were computed for various shear rates (Figure 3.2).
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Figure 3.2: Flow trajectories for two interacting cylinders with radius a in shear flow.
Reshear,p varied between 0.019 and 0.518. The positions are related to the initial midpoint of
the two cylinders.

At Reshear,p 0.019 and 0.058, no clear effects of inertia can be seen in the flow tra-
jectories. In their tumbling movement around each other, the cylinders reach a minimum
separation of 0.20 ∗ 2a (Figure 3.3). When compared to 3D systems, this minimum sep-
aration is large. This can be explained because the flow of fluid out of or into the gap
during respectively approach or separation of two parallel cylinders is more hindered than
for the case of spheres. The trajectories upon approach and upon separation are prac-
tically symmetric, which is in accordance with the relatively large separation distances
in this system. At Reshear,p >0.058, inertial effects become visible in the trajectories.
One effect is that the separation distance between the cylinders became smaller, both
during approach and during separation. The minimum separation between the cylinders
decreased to 0.11∗2a for Reshear,p equal to 0.52 (Figure 3.3). This effect can be explained
because inertia causes the cylinders to move to different streamlines, and is probably due
to particle inertia rather than fluid inertia. A second effect is that at larger separation dis-
tances, the cylinders slowly moved towards the center axis of the system before they start
tumbling over each other. Upon separation, a similar movement away from the center
axis took place. Inertial effects in the fluid flow around the cylinders are the most proba-
ble cause for this effect. Finally, the trajectories upon approach and separation exhibited
an increasing asymmetry with increasing Reshear,p. This effect, although small, can be
seen in Figure 3.3. The minimum separation was still too large to be able to explain the
observed asymmetry with the action of the repulsive Hookean spring force Fh or with
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Figure 3.3: Separation distance as a function of the horizontal position of the upper cylinder,
for two interacting cylinders with radius a in shear flow. Reshear,p varied between 0.019 and
0.518.

the effect of surface roughness (a different flow trajectory would then also be expected).
Inertial effects seem, therefore, to be responsible for this asymmetry.

The inertial effects during the interaction between the cylinders lead to a dispersal of
the cylinders at Reshear,p=0.52, which proceeded with repeated encounters of the cylin-
ders (Figure 3.4). Even when the separation distance between the cylinders has become
larger than 7 ∗ 2a, the dispersal still proceeds. Because the vertical velocity decreases
with increasing separation distance and does not exhibit a logarithmic trend in time, it
is expected that the cylinders will have reached their equilibrium position at a separation
distance of about 8 ∗ 2a. The distance from the walls was still about 12a, so that it is not
likely that this final separation distance is affected by the presence of the walls.

The viscosity is determined from a multi-cylinder suspension in a Couette system,
with Reshear,p varying between 0.003 and 0.33. Our results for the viscosity are presented
as relative values to results from the semi-empirical model of Krieger and Dougherty [46].
This model is known to give accurate predictions for the viscosity at low Re, for both 2D
and 3D suspensions. The effective viscosity µs/µf is calculated as follows:

µs/µf =

(
1− 〈φs〉

φmax

)−[η]φmax

(3.14)

where 〈φs〉 is the averaged solid volume or area fraction and φmax is the maximum packing
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Figure 3.4: Vertical position (Y −Ycenter)/a as a function of the strain γ̇t for two interacting
cylinders with radius a in shear flow. Reshear,p was equal to 0.518. The initial position of
the cylinders was symmetrical around the center axis, at a distance of 0.75a from the center
axis and of 19.25a from the nearest wall. The oscillations in the trajectory are caused by the
repeated encounters of the cylinders.

fraction, which has a value of 0.82 for a 2D suspension. The dimensionless factor [η] is
the intrinsic relative viscosity of the suspension and has a value of 2 for a 2D suspension.

In our computations, the system height and width were 518 (= 64.75a) and 259
(= 32.38a) lattice units, respectively, and the shear rate varied between 1.93*10−6 and
2.16*10−4 per time step. An amount of 66, 166 or 266 cylinders with radius a were ran-
domly suspended in the domain, corresponding with area fractions φ of 0.10, 0.25 and
0.40, respectively. The viscosity was determined from the average stress at the walls over
a strain range of at least 1.5 at a shear rate of 1.93*10−6 per timestep, increasing to a
strain range of 86 at a shear rate of 2.16*10−4 per time-step. This increase of strain range
was necessary to acquire sufficient accuracy at high shear rates, where the time-dependent
fluctuations of the stress were higher.

Our viscosity data in the regime with low Reshear,p agree well with the Krieger-
Dougherty model since the normalised viscosity is around 1.0 (Figure 3.5). At higher
Reshear,p, however, starting at Reshear,p=0.012, shear thickening occurred in the suspen-
sions with area fractions of 0.25 and 0.40. This shear thickening was most intense at an
area fraction of 0.40, where the effective viscosity increased about 35% for an increase
of Reshear,p to a value of 0.1. At these high values for Reshear,p, the viscosity starts to
level off. The velocity profile in the Couette system was found to be linear, except for
φ =0.40 and Reshear,p >0.2, where slip started to occur near the wall. At φ =0.40 and
Reshear,p =0.33, this lead to a decrease of the shear rate in the bulk phase of about 15%
when compared to a situation with a linear profile. This might also have consequences
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Figure 3.5: Viscosity of a 2D suspension as a function of Reshear,p for suspensions with
a cylinder area fraction φ of 0.10, 0.25 and 0.40. The viscosity is presented as the effective
viscosity, normalised for model results of the Krieger-Dougherty model (φmax =0.82, [η] =2)
at the respective area fractions. The lines are fits to the data points and are drawn as a guide
to the eye.

for the accuracy of the viscosity calculations, since the viscosity is determined from the
stress near the wall. For the great majority of the calculations, however, slip did not play
a role and the viscosity calculations are expected to be accurate. For highly concentrated
suspensions, the increase of viscosity with increasing particle fraction in the Stokes flow
regime has been found to coincide with particle clustering [61]. It might be that in our
case, where we found a viscosity increase with shear rate, particle clustering also plays a
role. An analysis on particle clustering in our system is therefore presented in section 3.5.

Although limited results are available, shear thickening behaviour has also been ob-
served by other authors, experimentally as well as in computer simulations (see e.g.
[47, 62]). Shear thickening is found particularly in suspensions where hydrodynamic
forces are dominant (at high Peclet number (= 8µfa

3γ̇
kT

where k is the Boltzmann con-
stant and T the absolute temperature)). Similar to our results, Shakib-Manesh and others
[47] observed shear thickening of 2D suspensions. In their study, for suspensions with
a cylinder area fraction up to 0.52, the effect of shear thickening on the viscosity was
only relevant when Reshear,p was larger than about 0.5, so, in a quantitative sense, their
results do not fully agree with ours. This may, however, be due to differences in the way
the particle interactions are handled at short distances in the codes used. In contrast to
our method, Shakib-Manesh and co-authors did not correct for the lubrication force at
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short particle distances; this difference might be relevant for clustering behaviour of the
suspension. This comparison shows that shear thickening can be delicately affected by
interparticle forces, which hampers quantitative comparison of data.

3.4 Shear-induced diffusion at non-zero Reynolds num-
bers

In this section, we present results of LB simulations on shear-induced diffusion in 2D
systems. In these 2D systems, we can distinguish components of the shear-induced self-
diffusion tensor in the fluid velocity and in the velocity gradient direction, and their diag-
onal component. Whereas the displacements in the velocity gradient direction are purely
determined by the hydrodynamic interactions between the cylinders, the displacements
in the fluid velocity direction also consist of a convective term due to the shear flow of
the fluid. The analysis of shear-induced self-diffusion in the velocity gradient direction is
consequently more straightforward. Since the component in the velocity gradient direc-
tion is, in practice, the most relevant, we only describe our results for this direction.

The relevant time and length scales in the system are the shear rate γ̇ and the cylinder
radius a, respectively. On the basis of dimensional arguments, it can be shown that the
self-diffusivity scales as γ̇a2 (in the Stokes flow regime). All diffusivities reported are
therefore normalized on γ̇a2 .

The shear-induced self-diffusion coefficients can be determined from the increase of
the mean-square displacements with time after diffusive motion has been established,
according to:

〈y(t)y(t)〉 ≈ 2Dyyt (3.15)

The angle brackets denote an average over all cylinders in the system, while y denotes
the displacement of a single particle in the direction of the velocity gradient. Dyy denotes
the self-diffusivity in the velocity gradient direction. This self-diffusivity is defined as the
time rate of change of a half multiplied by the mean-square displacement:

Dyy ≡ lim
t→∞

1

2

d

dt
〈 y(t)y(t)〉 (3.16)

The motion of a non-Brownian cylinder is, in principle, purely deterministic and the dis-
placement of a given cylinder depends only on the external velocity field and its inter-
actions with all other cylinders in the system. To obtain the random displacements that
are a characteristic of diffusive motion, the initial cylinder configuration must also be
changed. As a consequence, the sampling time must be relatively long in order to deter-
mine the diffusion coefficients. Therefore, shear-induced diffusion can be characterised
as a long-time diffusion process.

As for the aforementioned studies on one or two interacting cylinders in shear flow
and on the viscosity in relation to the particle fraction, the system consisted of a Couette
system with periodic boundaries in the flow direction of the fluid and two moving walls
in the velocity gradient direction. A varying number of cylinders with a radius of 8 lattice
units is randomly distributed in the system at the start of the simulation. The simulation
runs were started with position-dependent fluid and cylinder velocities according to linear
shear flow.
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Figure 3.6: Mean-square displacement in the velocity gradient direction as a function of
time, both presented as dimensionless values, for a 2D suspension (N =200, φ =0.25) in
shear flow at Reshear,p =0.023.

As an example of the typical time-dependent behaviour of the cylinder displacements,
in Figure 3.6, a mean-square displacement curve is shown for a system with a cylinder
number N of 200 and an area fraction φ of 0.25. From the double-logarithmic plot in Fig-
ure 3.6, it becomes clear that, at very short times, the mean-square displacement shows a
quadratic temporal behaviour, which corresponds to the deterministic strongly correlated
cylinder displacements in this regime. Only after a strain of about γ̇t =8 do the cylinder
displacements become random, resulting in a linear behaviour of the mean-square dis-
placement curves. The diffusion coefficient, which is evaluated from this simulation run,
is also given in Figure 3.6. In order to evaluate the effect of the initial particle configu-
ration on the diffusion coefficient, we split the displacement curve of one simulation run
into several curves which start at different times of the simulation run (and consequently
at different particle configurations). In each separate curve, the mean square displacement
was monitored over a strain of 30. The final diffusion coefficient is the mean value of the
diffusion coefficients that were determined from the individual mean square displacement
curves.

From a strain γ̇t of about 1 to 8, a transitional regime exists, in which the temporal
behaviour is neither quadratic nor linear. The time-dependent behaviour in our (2D) sim-
ulations seems to compare well with the findings of Sierou and Brady [27] from their (3D)
ASD simulations. Our results confirm their statement that strains must be sufficiently long
in order to obtain an accurate value for the shear-induced diffusion coefficient. Strains that
are too small lead to an overestimation of the shear-induced diffusion coefficients. This
probably explains the relatively high diffusion coefficients in some experimental studies,
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Figure 3.7: Component Dyy of the shear-induced self-diffusion coefficient as a function of
the cylinder number N for a 2D suspension (φ =0.25) in shear flow at Reshear,p =0.023.
The width of the simulation box between the periodic boundaries is varied, while the height
between the confined walls is kept constant at 71a. The error bars indicate the standard
deviation of the mean shear-induced self-diffusion coefficient, which is determined from 6-
12 individual mean-square displacement curves with different initial particle positions and
over a strain of 30.

e.g. the study of Breedveld and co-workers [18].
The number of cylinders in the system is known to be an important factor in the de-

termination of the diffusion coefficients [27]. The main reason for this is that for cylinder
separations greater than the length of the system, the cylinders can interact with their pe-
riodic images, which affects the diffusivities. Smaller cylinder numbers correspond with
a smaller system size, which might lead to a larger deviation in the calculated diffusivity.
For concentrated suspensions, it can be expected that this deviation depends more on the
cylinder number than on the system size (in other words, at higher concentrations, smaller
system sizes would suffice). In our system, this idea is only relevant for the velocity direc-
tion, since we have no periodic boundaries in the velocity gradient direction. Because the
number of cylinders that is sufficient for an accurate calculation of the diffusivity cannot
be theoretically evaluated, it needs to be established in an empirical way. Therefore, in
Figure 3.7, the calculated diffusion coefficients are presented as a function of the number
of cylinders for an area fraction φ of 0.25. To investigate the effect of the number of
cylinders, only the width X of the simulation box was varied, while the height Y between
the confined walls was kept constant at 71a.

For cylinder numbers smaller than N =100, there is a rather sharp increase in diffu-
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sivity with the number of cylinders. This is followed by a levelling off of the diffusivity
with higher numbers of cylinders. The decrease of the standard deviation from N =200
to N =600 reflects the improved statistical accuracy by the increased cylinder number,
since the same number of configurations is used for the calculation of shear-induced dif-
fusivity. From the observed relationship, we draw the conclusion that a cylinder number
of more than 100 is required for the determination of diffusivities with sufficient accu-
racy. Although not expected a priori, the relation between the diffusivity and the cylinder
number is found to compare well with the one that was found in SD simulations for 3D
systems [27]. Our results therewith confirm a statement of Sierou and Brady [27], namely
that the results of Foss and Brady [55] are influenced by the fact that they only used a
particle number N of 27 in their SD simulations. For the following simulations presented
in this paper, we applied a cylinder number N of 200, unless otherwise stated. The size
of the simulation box is chosen such that Y was always twice as large as X , as is the
case in the simulations presented in Figure 3.7 with N =200. The distance between the
solid walls Y was such that the measured shear-induced diffusivity agrees with that of an
infinitely large system (results not shown).

LB simulations are not limited to the Stokes flow regime. This makes it possible to
determine the particle movements in systems with non-zero Reynolds numbers, which can
be considered relevant for many practical systems. During pipeflow and microfiltration for
example, the shear rate can, in general, easily exceed values of 1000 s−1, which is already
beyond the Stokes flow regime for suspensions with particles sizes in the micrometer
range. On the basis of the consideration that particle interactions cause shear-induced
diffusion and that the number of particle interactions scales linearly with the shear rate,
it can be expected that the dimensionless diffusion coefficient Dyy/γ̇a

2 is independent
of γ̇ in the regime where inertial or other shear-related effects do not (yet) play a role.
To our knowledge, however, it is not known at which conditions inertial or other shear-
related effects come into play and how they affect shear-induced diffusion. We therefore
analysed the particle movements in the velocity gradient direction in relation to Reshear,p.

For Reshear,p from 0.023 up to 0.346 and cylinder area fractions of 0.10, 0.25 and 0.40,
the mean square displacement 〈yy〉 /a2 as a function of the strain γ̇t is presented in Figure
3.8. The relation was linear (after a strain γ̇t ≈8), as in accordance with shear-induced
diffusive behaviour. We also observed that the average displacement in the velocity gra-
dient direction remained (nearly) zero for particle area fractions of 0.10, 0.25 as well as
0.40. The particle distribution across the height between the two walls remained nearly
constant in time as well, which also indicates that no net particle transport has taken place.
At a cylinder area fraction of 0.10 and 0.25, a systematic increase of 〈yy〉 /a2 with γ̇t is
observed when Reshear,p was increased. At a cylinder area fraction of 0.40, this increase
with Reshear,p was also present, although not as evident as for an area fraction of 0.10 and
0.25. The diffusivity seems to reach a plateau value at this area fraction of 0.40. As men-
tioned in section 3.3, wall slip starts to occur at φ =0.40 and for Reshear,p >0.2. The effect
of wall slip on the shear rate seems too small to explain the relatively small increase of
the diffusivity at φ =0.40, but the behaviour might be related to microstructural features.
This is investigated in the next section.

The results indicate that the dimensionless diffusion coefficient Dyy/γ̇a
2, as deter-

mined from the slope of the curves in Figure 3.8, was not independent from the shear
rate, as is shown in Figure 3.9. For φ =0.10, 0.25 and 0.40, the increase started at about
Reshear,p =0.04, which is comparable to where the shear thickening behaviour started.
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Figure 3.8: Mean-square displacement in the velocity gradient direction as a function of
time, both presented as dimensionless values, for a 2D suspension (N =200, φ = 0.10 (a),
0.25 (b) and 0.40 (c)) in shear flow at Reshear,p =0.023 (solid line), 0.115 (dotted line), 0.161
(medium dashed line) and 0.346 (dash-dot-dotted line).
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Figure 3.9: Component Dyy of the shear-induced self-diffusion coefficient as a function of
Reshear,p for a 2D suspension (N =200) in shear flow with a cylinder area fraction φ of 0.10
(filled circles), 0.25 (open triangles) and 0.40 (filled squares). The error bars indicate the
standard deviation of the mean shear-induced self-diffusion coefficient, which is determined
from 6-12 individual mean-square displacement curves with different initial particle positions
and over a strain of 30. The lines are fits to the data points and are drawn as a guide to the
eye.

The effect of the cylinder fraction was, however, opposite to the effect on the viscosity,
because we observed the largest relative effects on shear-induced diffusion at the lower
cylinder fractions.

In spite of the lower number of particle collisions, the standard deviation of the shear-
induced diffusivity was relatively low at a particle area fraction φ =0.10. This indi-
cates that, in principle, the averaging took place over sufficiently large strains and with
sufficiently high cylinder numbers. The standard deviation, however, increased with in-
creasing Reshear,p and when Dyy/γ̇a

2 exceeded a value of about 0.10, the standard devia-
tion was relatively large, indicating time-dependent fluctuations in the collective cylinder
movements. This might be a combined effect of correlated movement of the cylinders,
caused by particle clustering, and high stresses on the cylinders. Improving the accu-
racy of the shear-induced diffusion coefficients in this regime would require much larger
systems, which was not deemed necessary in this study.

It may be expected that the dependence of the shear-induced diffusivity on Reshear,p is
due to the correlated motion of cylinders, in other words, to the formation of a suspension
microstructure. In the next section, this microstructure is analysed in order to have a
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clearer picture of shear-induced changes in the suspensions.

3.5 Shear-induced changes in microstructure

In order to analyse the microstructure, we determined the 2D pair-distribution function,
which represents the concentration distribution of cylinders around a cylinder. This pair-
distribution function was assessed by averaging the pair-distribution function of two sep-
arate simulation runs. In each simulation run, the distribution function was determined
by averaging the distribution at five different strains, namely at γ̇t =30.0, 37.5, 45.0,
52.5 and 60.0. Cylinders at a position closer than a distance 0.2Y (Y=height between the
walls) from the wall were excluded as reference particles from the distribution function,
in order to avoid wall effects. The concentration distributions are only shown for ∆X and
∆Y smaller than 3.5a, because outside this region no cylinder preference positions could
be observed. For a cylinder area fraction of 0.10, a clear effect of Reshear,p can be seen
(Figure 3.10).

At Reshear,p =0.023, a concentration peak can be observed above and under the cylin-
der, at a distance of about 2a − 3a. The concentration distribution was anisotropic as no
peak can be observed left and right of the particle. At higher Reshear,p, the concentration
peak at a distance of about 2a − 3a becomes more circular (isotropic) as well as more
pronounced. A maximum concentration peak with a value of about 1.4 a.u. is found at
Reshear,p =0.161. These results clearly show that the cylinders tend to stay closer to each
other at higher Reshear,p. For a cylinder area fraction of 0.25, already at Reshear,p =0.023
a circular concentration peak was present at a distance of about 2a − 3a (Figure 3.10).
Small peaks with a maximum concentration of about 2.8 a.u. were already present as well.
With increasing Reshear,p, the concentration peak was more pronounced, which again in-
dicates an increased clustering of the particles. The concentration profile at a cylinder
area fraction of 0.40 was already very pronounced at Reshear,p =0.023 with locally maxi-
mum concentrations of about 5.0 a.u. (Figure 3.10). In contrast to cylinder area fractions
of 0.10 and 0.25, high Reshear,p, however, did not invoke more clustering. This seems
to be consistent with the effects on shear-induced diffusion, where we also found minor
changes at a cylinder area fraction of 0.40.

In the pair-distribution function, the concentration peaks at short interparticle dis-
tances are generally very high, whereas they are less pronounced at longer interparticle
distances, especially in the case of isotropic distributions. This makes the pair-distribution
function less sensitive to concentration variations at longer interparticle distances and
therefore not suited for the analysis of the size and density of the particle clusters. These
parameters can, however, be determined from the scaling of the integrated pair correlation
function, according to a version of the so-called sandbox method [63]. In this method, we
consider the number of particles n(r) in a sphere of radius r around any particle of the
cluster. Simple linear regression on log(n) versus log(r) yields the parameters n0 and df

from the scaling relation for fractal clusters:

n(r) = n0 ·
(r
a

)df

(3.17)

where n0 is a dimensionless proportionality constant (generally of order unity, the actual
value of n0 depends on the definition of r used) and df is the fractal dimensionality. In a
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Figure 3.10: The 2D pair-distribution function, averaged over a strain γ̇t from 30 to 60, for
a 2D suspension (N =200) in shear flow with a cylinder area fraction φ of 0.10 (top), 0.25
(middle) and 0.40 (bottom) at Reshear,p =0.023 (left), 0.161 (middle) and 0.346 (right). Dark
regions represent high probability and light low.

plot of log(n) versus log(r), we would see a fractal regime for low values of r which ends
at the size of the average cluster in the system (we have neglected effects of monomers,
which have zero close neighbours and hence suppress n0). At high values of r we have
the homogeneous regime, where the number of neighbouring particles simply scales with
the volume of the surrounding sphere. The prefactor then becomes the volume fraction:

n(r) = φ ·
(r
a

)3

(3.18)

In our 2D system, the number of neighbouring cylinders scales with the area of the sur-
rounding cylinder, which changes the power in this equation from 3 to 2. If the fractal
regime extends all the way to the homogeneous regime, there is an intersection point be-
tween the two regimes. The radius which corresponds to this intersection point is called
the correlation length ζ and is an indication of the average size of the aggregates. In many
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systems, however, there will be a finite cross-over regime between the fractal and ho-
mogeneous regime, which can, for example, be due to the existence of clusters of various
sizes and shapes. In this case, the correlation length can be defined by linear extrapolation
of the fractal and homogeneous scaling regime to the intersection point.

In our results, from a distance of 5a − 10a, the regime is indeed found to be homo-
geneous (Figure 3.11). The regime is clearly non-homogeneous for smaller distances, but
the slope varies with the distance. This indicates that aggregates are present, but that the
fractal dimensionality varies with the distance from the center of the aggregate. The aver-
aged size of the aggregates can be obtained from the point where the non-homogeneous
regime turns into the homogeneous regime; a constant fractal dimensionality is not re-
quired. Therefore, the correlation length was assessed by determining the distance r/a
where the fit value, obtained by linear regression of the log(n(r))-log(r/a)-plot at dis-
tances r/a larger than 10, deviated more than 5% from the actual value of log(n(r)).
These data are also given in figure 11. The correlation length is found to depend on the
cylinder area fraction in the system as well as on Reshear,p. The lowest correlation length
of 2.3a is found for an area fraction of 0.40 and Reshear,p =0.023. For area fractions of
0.10 and 0.25, the correlation lengths were 4.0a and 3.9a, respectively (Reshear,p =0.023).
With increasing Reshear,p, the correlation length tends to increase, to maximal 7.5a, 6.9a
and 5.3a for area fractions of 0.10, 0.25 and 0.40, respectively. The largest clusters are
again found at the lowest area fraction.

Compared to the pair-distribution functions, these results provide additional informa-
tion about the size of the clusters. The results agree well with each other; the largest
effects of Reshear,p on the microstructure are found for the lowest area fractions. More-
over, the trends in the effects of Reshear,p on the microstructure agree well with the effects
on shear-induced diffusion. It seems likely that the microstructure is the coupling factor
for the effect of Reshear,p on shear-induced diffusion. The development of particle clus-
tering might, moreover, be related to the longer and closer approach of two interacting
particles at higher shear rates. This direct relationship with microstructure does, however,
not exist for the viscosity of the suspension, where not only the microstructure seems to
be important but also the averaged solid volume fraction, resulting in a more pronounced
effect of Reshear,p at high area fractions [47]. Because of the direct coupling between
microstructure and shear-induced diffusion, it can be expected that other factors that can
affect the microstructure, such as attractive colloidal forces between the particles, will
also affect shear-induced diffusion.

In our results, Reshear,p starts to have a significant effect on the shear-induced diffu-
sivity at a value of about 0.1. In practical systems, for a suspension with particles with a
radius a of 3 µm, for example, a shear rate of about 2800 s−1 would be required in order
to obtain this significant effect. For larger particles, this value quickly drops to even lower
values. The shear rate in this example is well within the range of commonly applied shear
rates, which indicates the relevance of this study to practical systems.

3.6 Conclusions

In this study, the LB method was applied in order to examine the effects of shear rate on
the flow behaviour and microstructure of non-Brownian suspensions in a Couette system.
In the shear regime studied, inertial effects on a single cylinder were negligibly small.
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Figure 3.11: The number of cylinders n(r) contained in a circle of radius r for a 2D sus-
pension in shear flow with a cylinder area fraction of 0.10 (a), 0.25 (b) and 0.40 (c) at
Reshear,p =0.023-0.346. The values are time-averaged over a strain γ̇t from 30 to 60. The
correlation length ζ represents the distance where the cylinder distribution changes from non-
homogeneous into homogeneous.
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In a system with two interacting cylinders, however, some effects of the shear rate were
present. First, the cylinders approached each other more closely and during a longer
time with increasing shear rate, which is in accordance with expectations when inertia
causes them to move to other streamlines. Secondly, at Reshear,p higher than 0.06, the
particle trajectory started to become asymmetric, finally leading to a dispersal of the two
particles. The viscosity was also dependent on the shear rate in the shear regime studied:
the suspension namely exhibited shear thickening behaviour.

In order to know how we could reliably evaluate shear-induced self-diffusion in our
system, first, the displacements of the particles were monitored as a function of strain. The
simulations clearly showed that shear-induced self-diffusion is a long-time diffusive be-
haviour, which typically only established itself after a strain of about 5-10. Furthermore,
it is shown that at least a few hundred suspended particles are needed in the simulations
to resolve shear-induced diffusion coefficients reliably. For systems with fewer than 100
particles, the suspended particles interact with their periodic images over the periodic
boundaries in the system, leading to an underestimation of the diffusion coefficients.

Following the developed method, the effect of Reshear,p up to 0.35 on shear-induced
self-diffusion was investigated for particle fractions of 0.10, 0.25 and 0.40. In contrast
to theory for the Stokes flow regime, which predicts a linear increase of the diffusivity
with shear rate, the mean square particle displacements were found to increase faster
at increasing Reshear,p, leading to a similar increase of the dimensionless shear-induced
diffusion coefficient Dyy/γ̇a

2. This increase was most pronounced at particle fractions of
0.10 and 0.25 and started already at Reshear,p equal to 0.05-0.07, which is comparable to
the shear regime where effects on two interacting particles and the viscosity arose.

Analysis of the microstructure of the suspensions revealed that an increase of Reshear,p

leads to an increase of particle clustering, especially at particle fractions of 0.10 and
0.25. The effects of Reshear,p on particle clustering relate well to the effects on shear-
induced diffusion, indicating that the microstructure of suspensions is a key factor for
shear-induced diffusivity. This will be very relevant for suspensions with attractive inter-
particle forces.
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3.7 Lubrication force in a 2D suspension

We apply lubrication theory to calculate the hydrodynamic force between two cylinders
in a 2D suspension. For small gaps (i.e. rim to rim distances) 2h the force between two
adjacent cylinders can be calculated, solving the flow field in the gap upto first order in
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ε = h/a. In the calculation two cylinders are considered, approaching each other with
a velocity 2U . A Cartesian coordinate system (ex, ez) was used with the origin at the
center of the gap. The z-coordinate, taken along the line of centers, was scaled on h and
the x-coordinate was scaled on

√
ah; the z-component of the velocity was scaled on U , the

x-component on
√

a/hU . The pressure was scaled on aηU/h2. Under these conditions,
the differential equation for the dimensionless streamfunction ψ becomes:

∂4ψ

∂z4
+ 2ε

∂4ψ

∂x2∂z2
+ ε2

∂4ψ

∂x4
= 0 (3.7.1)

The rim of both disks is described by z = ±b(x) with

b(x) = 1 + 1
2
x2 + ε1

8
x4 + ε2 1

16
x6 + ... (3.7.2)

and the boundary conditions on these rims read:

vz = − ∂ψ

∂x
= ∓1, (3.7.3)

vx =
∂ψ

∂z
= 0, (3.7.4)

For convenience, ψ = 0 is chosen at z = 0, so ψ is odd in z. This equation can be solved
assuming

ψ = ψ0 + εψ1 + ... (3.7.5)

where ψ0 fulfils the boundary conditions (3.7.3) and (3.7.4) and ∂ψ1/∂x = ∂ψ1/∂z = 0
on the rim of the particle. The solution is given by:

ψ0 =
1

2
x

(
3
(z
b

)
−
(z
b

)3
)

(3.7.6)

ψ1 =
3

20
g(x)

(z
b

)(
1−

(z
b

)2
)2

(3.7.7)

where g(x) = 4x(b′)2 − 2bb′ − xbb′′ and b′, b′′ are the first and second derivatives of
b = b(x), respectively. The pressure along the line z = 0 can be calculated by integrating:(

∂p

∂x

)
z=0

= −3b−3

(
x+ ε

(
3

5
g(x)− 1

2
f(x)

))
(3.7.8)

where f(x) = 2x(b′)2 − 2bb′ − xbb′′. The zz-component of the total stress tensor (the
superfix [D] indicates the dimensional form)

T [D]
zz = −p[D] + 2η

∂v
[D]
z

∂z[D]

reads in dimensionless form

Tzz = −p + 2ε
∂vz
∂z

= −p− 2ε
∂2Ψ

∂x∂z



SHEAR-INDUCED SELF-DIFFUSION AT NON-ZERO REYNOLDS NUMBERS 67

where also Tzz has been scaled on p0 = aηU/h2. The (dimensionless) force per unit
length, F , on the particle is calculated by integrating Tzz along the line z = 0 (swopping
the order of integration of the ∂p/∂x term):

F (ε) = 2

∫ ∞

0

(Tzz)z=0 dx

= 2

∫ ∞

0

x

(
∂p

∂x

)
z=0

dx− 4ε

∫ ∞

0

(
∂2Ψ

∂x∂z

)
z=0

dx (3.7.9)

=

∫ ∞

0

3x

b3(x)

(
2x+ ε

(
6

5
g(x)− f(x)

))
dx− 4ε

∫ ∞

0

3

2b2
(b− xb′)dx

This expression can be rewritten as:

F (ε) = F0 + ε (F1 − F2)

where

F0 =

∫ ∞

0

6x2(
1 + 1

2
x2
)3dx =

3

4
π
√
2 = 3.3322

F1 =

∫ ∞

0

3x(
1 + 1

2
x2
)3
((

25

10
x3 − 3

5
x− 6x5

(8 + 4x2)

))
dx =

207

80
π
√
2 = 11.496

F2 =

∫ ∞

0

6

(
1− 1

2
x2
)

(
1 + 1

2
x2
)2dx = 0.0

are numerical constants. In our simulations, we have erroneously used a value of F1 =12.829,
which lead to about 1% overestimation of the lubrication force. The lubrication force per
unit length in dimensional form, F [D] = p0

√
ahF , follows from Equation 3.7.9 as:

F [D] =

(
h

a

)−3/2

ηU F (h/a) =

(
h

a

)−3/2

ηU

(
F0 +

h

a
F1

)
(3.7.10)

which expression is correct in first order of ε.
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Shear-induced diffusion is an important transport mechanism in concentrated suspen-
sions in shear flow, and is relatively well understood, but only for monodisperse suspen-
sions. Presently, not much attention is paid to shear-induced diffusion in polydisperse sus-
pensions, in spite of the widespread incidence of these suspensions. This paper adresses
shear-induced diffusion in bidisperse suspensions. Our study is carried out by means of
computer simulations on two-dimensional suspensions in a Couette system, following
the Lattice Boltzmann method. Two aspects were found to be of particular importance,
namely particle clustering and the dominance of large particles. From the shear thick-
ening behaviour of the suspensions at non-zero Reynolds numbers, which is known to
be highly correlated with particle clustering, it became clear that particle clustering in-
creased with increasing relative fraction of large particles and with increasing size of the
large particles. This effect is explained with the fact that larger particles experience more
inertia. This is opposite to what happens in the Newtonian regime, where the viscosity of
bidisperse suspensions is always lower than that of corresponding monodisperse suspen-
sions. Because particle clustering also induces an increase of shear-induced diffusivity,
the presence of large particles can amplify this increase.

The second aspect is the dominance of large particles over small particles. It is found
that when the relative area fraction of large particles exceeds 0.3, the shear-induced diffu-
sivity is totally determined by these large particles, in other words the small particles be-
have as ’slave particles’. In this situation, their shear-induced diffusivity could be strongly
increased by the presence of the large particles. Below this relative fraction of 0.3, the
large particles did not have a specific effect on the small particles. The shear-induced
diffusivity of the large particles was much lower than expected for a monodisperse sus-
pension. When the relative fraction of large particles exceeded 0.3, the shear-induced
diffusivity of the large particles increased to a level that would be expected for the sus-
pension without the small particles. The results presented in this paper are relevant for
prediction of rheology and shear-induced mass transport in polydisperse suspensions.

4.1 Introduction

Shear-induced diffusion is a transport phenomenon that occurs in concentrated suspen-
sions under shear flow. It is important for various processes, such as sedimentation and
filtration, and for transport of suspensions, such as in pipes and channels. In a previous
paper [39], we addressed the topic of shear-induced self-diffusion in non-Brownian sus-
pensions at non-zero Reynolds numbers. These suspensions were monodisperse, as in
most other studies on shear-induced self-diffusion (see e.g. [27, 50]). Because in general,
industrially relevant suspensions are not monodisperse, but have a relatively broad par-
ticle size distribution, it is important to understand the effects of polydispersity. In this
paper we address shear-induced self-diffusion in suspensions containing particles with a
bimodal size distribution, hereafter shortly called bidisperse suspensions.

In concentrated suspensions undergoing shear flow, hydrodynamic particle interac-
tions are responsible for the shear-induced diffusion process. This leads to particle dis-
placements in the fluid velocity direction, as well as in the velocity gradient and in the
vorticity direction, but in an anisotropic way. Because the mechanism is different from
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that of Brownian diffusion (thermal fluctuations) and turbulent diffusion (inertial effects),
shear-induced diffusion becomes important at conditions of high Péclet numbers, where it
dominates Brownian diffusion, and of low Reynolds numbers, where turbulent diffusion
is not yet strong. The Péclet number is defined as Pe = 8µfa

3γ̇/kT , where µf is the
dynamic viscosity of the fluid phase, a is the particle radius, γ̇ is the shear rate, k is the
Boltzmann constant and T the absolute temperature. The relevant Reynolds number is
the shear based particle Reynolds number, which is defined as Reshear,p = 4γ̇a2/ν, where
ν is the kinematic viscosity.

When adressing the topic of shear-induced diffusion, two types of behaviour need
to be distinguished. The first is shear-induced self-diffusion, which concerns the be-
haviour of suspended particles in a homogeneous suspension and reflects the mobility of
individual particles in such a suspension. The second is shear-induced migration, which
concerns collective particle migration processes and leads to macroscopically observable
effects such as viscous resuspension [64], particle size segregation [65] and net migration
of particles within inhomogeneous shear flows [15].

Only a few studies address the topic of shear-induced diffusion in non-monodisperse
suspensions. Moreover, the majority of these studies considers the effects of polydis-
persity in systems with non-homogeneous particle concentrations, where shear-induced
migration plays a role, like e.g. in pipe flow, systems with curvature (parallel-plate geom-
etry, wide-gap Couette device) and systems with particle sedimentation (see e.g. [65–68]).
As far as we know, up to now, the subject of shear-induced self-diffusion in bi- or poly-
disperse suspensions has not been addressed at all. Therefore, we first review the work
on shear-induced migration in non-monodisperse suspensions and afterwards consider
the effects of particle polydispersity in a wider prespective. The rheological behaviour
of particulate suspensions is put forward to reveal some relevant aspects of flow of non-
monodisperse suspensions.

Experimental studies on shear-induced migration in bidisperse suspensions mostly re-
port an overall suspension behaviour that is similar to monodisperse suspensions. In pipe
flow for example, as for monodisperse suspensions, high overall particle concentrations
were found in the centre of the channel, where the shear rate is lowest, in the presence
of blunted velocity profiles [68, 69]. Overall shear-induced diffusivities for bidisperse
suspensions are sometimes reported to be somewhat less than for the monodisperse sus-
pensions with the respective small and large particles [67]. While aforementioned studies
focused on well-mixed bidisperse suspensions, some other studies reported on the phe-
nomenon of shear-induced size segregation in bidisperse suspensions [68, 70]. In systems
with a spatially varying strain rate, as for example in pipe flow, particle size segregation
as well as non-uniform overall particle distributions can occur. When size segregation
occurs, the larger particles are mostly enriched in regions with lower shear rates. The
distribution of the smaller particles can also be non-uniform, but this only seems to occur
at higher concentrations than for large particles. A notable exception on this behaviour
is reported by Krishnan and others [65], who measured particle segregation in a parallel
plate device. Tracer particles that were larger than the bulk particles, were found to mi-
grate to regions of higher stress instead of lower stress. This behaviour was explained in
terms of a curvature-induced migration flux.

Numerical work on shear-induced migration in polydisperse suspensions is scarce. In
the field of analytical models however, some progress has been achieved. A phenomeno-
logical model for shear-induced migration, based on particle migration mechanisms pro-
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posed by Leighton and Acrivos [15], Phillips and others [16] and Krishnan and others
[65], was extended to a model for polydisperse suspensions by Shauly and others [71].
This model was found to predict experimental data on shear-induced migration well, both
size segregation and migration of large and small traces were recovered. Because the
model is based on dimensional and phenomenological considerations, while the explicit
forms of the effective properties are, as yet, unknown, succesful application of this model
depends on the available knowledge of these effective properties. As an example, the
effective viscosity of the suspensions under consideration should be known.

Numerous experimental as well as numerical work reports on the viscosity of bidis-
perse suspensions (see e.g. [72–75]). They all consider the viscosity in the region of low
shear rates (Reshear,p � 1), where the viscosity is independent of the shear rate (New-
tonian regime). Differences with the viscosity of monodisperse suspensions are found
when the total volume fraction exceeds a value of about 0.40. At these high fractions, the
viscosity of bidisperse suspensions is lower than of monodisperse suspensions. The mini-
mum viscosity is reached when the relative volume fraction of small particles is about 0.25
to 0.35 [74, 76]. Probstein and co-workers [75] proposed an approach for the viscosity
of bidisperse suspensions, in which the maximum packing concentration for a bidisperse
suspension φmax is calculated in relation to the maximum packing fraction for a monodis-
perse suspension φmax0:

φmax

φmax0
=

[
1 +

3

2
|b|3/2

(
φ1

φ

)3/2(
φ2

φ

)]
(4.1)

where b = (a1 − a2) / (a1 + a2), a1 and φ1 are the radius and the local concentration of
species 1 and a2 and φ2 are the radius and the local concentration of species 2 (a1 > a2).
Chang and Powell [72] found that when the relative viscosity of bidisperse suspensions
is related to the volume fraction after normalisation with the maximum packing fraction,
one mastercurve is obtained, that accurately describes experimental as well as numerical
viscosities for three-dimensional (3D) as well as two-dimensional (2D) suspensions. The
reduction of viscosity compared to monodisperse suspensions is explained by the authors
with differences in microstructure of the suspensions. As already put forward by Bossis
and Brady [77] for monodisperse suspensions, high viscosities have been related to the
formation of particle clusters in the suspensions. Bidisperse suspensions are thought to
have smaller average clusters at a fixed total volume fraction, due to the presence of
smaller particles. This effect of bidispersity on particle clustering might be relevant for
shear-induced diffusion as well, because we already noticed before that particle clustering
strongly affects shear-induced diffusion for monodisperse suspensions [39].

The aim of the present work was to study shear-induced self-diffusion in bidisperse
suspensions. In order to do this, we applied the same numerical technique as in our pre-
vious study [39], namely the Lattice Boltzmann (LB) method for particulate suspensions,
originally developed by Ladd [29, 30]. In another study [78], we have noticed that 3D
LB simulations on shear-induced self-diffusion are computationally very intensive. Since
it is also shown that simple scaling relations suffice for the transposal of 2D simulation
results into data for 3D real systems [78], this study comprises a 2D study. In contrast to
the often applied Stokesian dynamics method, the LB method is not only suited for the
Stokes flow regime, but also for higher Reynolds number flows. Because of the practical
interest of higher Reynolds number flows and the lack of knowledge on the rheological



SHEAR-INDUCED SELF-DIFFUSION IN BIDISPERSE SUSPENSIONS 73

behaviour of bidisperse suspensions at these higher Reynolds numbers, the first part of our
work is devoted to these effects. The second part focuses on shear-induced self-diffusion
of bidisperse suspensions and the observed behaviour is related to the rheological be-
haviour. Finally, we draw conclusions about the effect of Reynolds number and particle
interactions on shear-induced self-diffusion in bidisperse suspensions.

4.2 Computer simulation method

The LB method has already extensively been explained in literature (see e.g. [34]). Here,
we will only briefly recapitulate some general information about the LB method so that
the emphasis is more on specific aspects of our own model.

The LB method models a compressible fluid (in which the speed of sound is finite)
in the limit of low Mach number (Ma=flow velocity/speed of sound), by solving the dis-
cretised Boltzmann equation for fictitious fluid particles, that are constrained to move on
a lattice. The state of the fluid is characterised by the single-particle distribution func-
tion fi(x, t), describing the average number of particles at a particular node of the lattice
x, at a time t, with the discrete velocity ci, which brings the fluid particles in one time
step to an adjacent lattice node. In the simulations described in this paper, the fluid dy-
namics were solved with a D2Q9 LB scheme, which is defined on a 2D square lattice
with rest particles and 8 non-zero particle velocities. The velocity directions link lattice
sites to its nearest and next-nearest neighbours. The hydrodynamic field’s mass density
ρ, momentum density j, and the momentum flux density Π are moments of this velocity
distribution:

ρ =
∑
i

fi, j =
∑
i

fici, Π =
∑
i

ficici (4.2)

The fictitious fluid particles evolve by collisions and subsequent propagation to neigh-
bouring lattice sites. In a collision step, the distribution function is relaxed towards the
local equilibrium distribution according to:

fi(x+∆xi, t+∆t) = fi(x, t)− fi(x, t)− f eqi (x, t)

τ
(4.3)

The relaxation time τ controls the relaxation of the viscous stress in the fluid and is linked
to the kinematic viscosity ν via:

ν = c2s

(
τ − 1

2

)
∆t (4.4)

where the speed of sound cs is defined by c2s = c2/3. In our simulations we applied
τ = 1.0 (in lattice units), which corresponds to a kinematic viscosity ν of the fluid of 1/6
(in lattice units). The equilibrium distribution f eq

i (x, t) is chosen such that the Navier-
Stokes equations for a weakly compressible system are obtained [37].

In the LB scheme for particulate suspensions as developed by Ladd [29], the solid par-
ticles are defined by a boundary surface, which can be of any size or shape. The spherical
(3D) or circular (2D) particles are projected on the lattice, where the boundary surface
cuts some of the links between lattice nodes. Fluid particles moving along the boundary
surface interact with the surface at boundary nodes that are located at the lattice nodes
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nearest to the boundary surface of the solid particles, following an alternative method
to Ladd’s, that was developed by Behrend [38]. In this method, called relaxed bounce
back conditions at the nodes, the LB collisions are carried out at every node, including
the boundary nodes. The collision rules at the boundary surface enforce a stick boundary
condition on the fluid, which means that the fluid velocity is matched to the local solid-
body velocity ub. This local solid-body velocity ub (at position xb) is determined by the
solid-particle velocity U, its angular velocity Ω and the position of its center of mass R:

ub = U + Ω× (xb − R) (4.5)

After the collision phase, the boundary nodes are updated in the following way:

fi(x +∆xi, t+∆t) = f ′
−i(x, t) +

2ρwi

c2s
ub · ci (4.6)

fi(x −∆xi, t+∆t) = f ′
i(x, t)−

2ρwi

c2s
ub · ci (4.7)

For moving suspension particles, in this update, momentum is exchanged between the
incoming particles from the fluid and the solid side (the combined momentum of the fluid
and the solid phase is however conserved). From this momentum exchange the force and
torque exerted on a suspension particle is calculated. Hereafter the kinematic properties of
the suspension particles themselves are updated with a simple Euler forward integration
of Newton’s second law.

By the projection of the suspended particles on the lattice, a discrete representation of
the surface is obtained, which becomes more and more precise as the surface curvature
gets smaller and which is exact for surfaces parallel to lattice planes. Together with the
choice of the location of the boundary nodes and the boundary update rules, the discretisa-
tion of the particle surface onto the lattice induces a hydrodynamic particle diameter that
is slightly larger than the diameter based on the number of occupied lattice nodes [29]. It
is therefore often proposed that the particle diameter should be corrected for this hydrody-
namic effect. The magnitude of the correction is mostly based on the particle behaviour in
the Stokes flow regime and at low particle concentrations. As also presented in an earlier
paper [39], we have seen that in suspensions in shear flow, particles can approach each
other very close, such that particles would largely overlap when the hydrodynamic par-
ticle size would be taken into account. The closest approach distance is moreover found
to be dependent on conditions such as the particle concentration and the shear rate. Since
assessment of the hydrodynamic particle diameter in these systems is virtually impossi-
ble, while the corrections would probably be very small, we did not apply this correction
but used the input particle diameter in our calculations.

Since a suspended particle is essentially simulated by the introduction of a boundary
surface, separating the interior of the particle from the exterior, the interior of the particle
also consists of fluid. Ladd [30] examined the effects of the interior fluid on the behaviour
of the particle. With a sufficiently high effective mass of the particle, the interior fluid only
contributes an inertial force due to the extra mass of the particle. Our computations were
carried out in this regime, with an effective mass ρs/ρ of 10. The magnitude of the inertial
effects in our computations was limited because Reshear,p was relatively small. Moreover,
by comparing simulation results with an effective mass of 3 and 10, we found that the
relatively high effective particle mass did not contribute to the observed effects on the
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viscosity and shear-induced diffusion in this paper. The observed effects of changing Re
therefore seem to be caused by fluid inertial effects and not by the inertia of the particles.

Since shear-induced diffusion is mainly governed by hydrodynamic particle interac-
tions, these interactions need to be accurately resolved in the computations. When two
suspension particles come into close contact with each other, the lubrication force be-
comes important. This force is caused by the attenuation of the fluid film in the gap
between the two particles and is repulsive upon approach and attractive upon separation
of the particles. When the gap width between two particles is in the order of one lattice
spacing, the lubrication force is however not exactly resolved with the LB method. This
is due to the discretisation of the particles and fluid on a grid and is a problem that is
encountered by all numerical methods. To overcome this problem we applied an explicit
calculation of the lubrication force when the gap width was smaller than two lattice units
(= 0.25a). Since we considered a 2D system, we used the following equation for the
lubrication force per unit length F , which is valid for the lubrication force between two
cylinders [39]:

F =
1

2
ηU12.R̂12

((
a1 + a2

h

) 3
2

(F0 +
h

a1 + a2
F1)−

(
a1 + a2

hc

) 3
2

(F0 +
hc

a1 + a2

F1), h < hc

(4.8)

F = 0, h > hc

where U12 = U1 − U2, h = |R12| − (a1 + a2) is the gap (distance between the particle
surfaces), F0 is the numerical constant 3

4
π
√
2 = 3.3322 and F1 is the first order correction

for the lubrication limit h/2a << 1 with a value of 231
80

·π ·√2 = 12.829. The unit vector
Γ̂R12 = R12/ |R12|. In accordance with Ladd and Verberg [33], we applied a correction
on the lubrication force to account for the lubrication force that is already resolved in the
computations of the fluid dynamics. This was done by subtracting the lubrication force
at a cut-off distance hc from the total lubrication force, as indicated in Eq. 4.8. The
cut-off distance hc represents the cut-off distance between the particle surfaces for the
added lubrication force and was chosen equal to two lattice units (= 0.25a) in our study.
For 3D systems, Nguyen and Ladd [40] showed that this correction leads to more accurate
results for particle interactions at short interparticle distances, even with neutrally buoyant
particles very near to contact and without causing instabilities in the particle dynamics.

We have noticed, that in suspensions with relatively high particle fractions or at high
particle Reynolds number, particle clustering and overlap can occur, which greatly affects
the diffusive behaviour of the particles. This behaviour seems to be correlated with the
lubrication breakdown of concentrated colloids, that was reported by Ball and Melrose
[41]. As suggested by these authors, we applied a Hookean spring force between the
particles to avoid this clustering and overlap. This Hookean spring force was applied for
gaps h smaller than a thickness δ and was applied in the direction of the line of particle
centres, according to:

Fh = F0 −
(
F0

δ

)
h (4.9)

with a maximal Hookean spring force F0 of 10.0 (in lattice units). The Hookean spring
force is active in a layer around the particle with a thickness δ/2 of 0.05 lattice units



76 CHAPTER 4

(= 0.00625a). When using the LB model as described above, we found a good agree-
ment between our computer simulation results for the viscosity and model results of the
Krieger-Dougherty model (particle fractions between 0.05 to 0.55), which is known to de-
scribe experimental data well. Especially at high particle fractions, the viscosity is known
to be highly dependent on particle interactions. The good agreement with the Krieger-
Dougherty model therefore indicates that our model captures the particle behaviour well.

For reasons of clarity, we chose to denote the suspended cylinders as particles, al-
though our system actually consists of a 2D suspension. The simulation results are pre-
sented in dimensionless parameters to make interpretation easier. Unless otherwise stated,
length scales are normalised with respect to the particle radius of the smallest particle in
the system (=8.0 lattice units).

4.3 Rheology and microstructure of bidisperse particle
suspensions at non-zero Reynolds numbers

In our previous paper [39], we showed that the shear-induced diffusive behaviour of the
suspended particles is affected by particle clustering, which was found to be increasingly
relevant with increasing Reshear,p. The viscosity of hydrodynamically interacting hard
sphere suspensions is known to be affected by particle clustering, which coincides with
a shear thickening behaviour of the suspension [68]. This was confirmed in our previous
paper as well. To obtain a better understanding of shear-induced diffusion in bidisperse
suspensions, it is therefore relevant to analyse rheology and microstructuring phenomena
in these suspensions. In addition to particle clustering, bidisperse suspensions can also
exhibit particle size segregation, which may also affect shear-induced diffusion. Although
the velocity profile is in principle linear in our Couette system, we have noticed that
the presence of the walls can induce nonlinearity, especially at high particle fractions.
Herewith, the shear rate can spatially vary and this might invoke particle size segregation,
in a similar way as for pressure-driven flow [68, 70].

In order to analyse the rheology and microstructure of bidisperse suspensions, we car-
ried out computer simulations on 2D suspensions in Couette flow. The distance between
the two moving walls was 64.75a and the distance between the two periodic boundaries
32.375a. The simulation box was filled with a varying number of suspension particles, up
to a maximum of 375. The radius of the smallest particle a in the bidisperse suspension
was always equal to 8.0 lattice units, while the radius of the largest particle depended on
the size ratio. Shear flow was created by moving the walls with constant velocity in oppo-
site directions. This resulted in Reshear,p varying between 0.003 and 0.66. In this paper,
the viscosity is normalised for the viscosity according to the Krieger-Dougherty model
[46], which holds for a monodisperse suspension in the Newtonian regime:

ηr =

(
1− 〈φs〉

φmax

)−[η]φmax

(4.10)

where 〈φs〉 is the averaged particle fraction and φmax, the maximum packing fraction, has
a value of 0.82 for a 2D suspension. The dimensionless factor [η] is the intrinsic relative
viscosity of the suspension and has a value of 2 for a 2D suspension. By means of this
normalisation procedure, it can easily be seen when the actual viscosity deviates from
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Figure 4.1: Simulation results for the viscosity of a 2D bidisperse suspension (φtotal=0.40,
alarge/asmall=3) as a function of the relative fraction of large particles φlarge/φtotal at a
Reshear,p (calculated for the smallest particles) of 0.012. The viscosity is normalised for
the viscosity according to the Krieger-Dougherty model. The error bars indicate the stan-
dard deviation. The line without symbols represents model calculations for the viscosity in
the Newtonian regime, according to Eq. 4.1 [75]. The inset presents similar results but for
alarge/asmall=2 and 4. The lines connecting the data points are drawn to guide the eye.

the viscosity that is predicted for a monodisperse suspension in the Newtonian regime
(η �= 1).

The viscosity of a bidisperse suspension was determined as a function of the relative
fraction of large particles for a diameter ratio of large to small particles of 2, 3 and 4
(Figure 4.1). In contrast to the results of Chang and Powell [72, 73], the viscosity was
not always lower than that of the respective monodisperse suspensions. This can be ex-
plained with the shear thickening behaviour of the suspension. For the large particles in
the suspension, Reshear,p is respectively 4, 9 or 16 times higher than for the small particles
at a certain shear rate, because of the proportionality of Reshear,p to a2. It can therefore
be expected that the large particles exhibit more intense shear thickening and this prob-
ably causes the increase of viscosity with increasing fraction of large particles. In spite
of this effect however, at first the viscosity remains relatively stable at low fractions of
large particles, whereas it increases faster at relative fractions exceeding 0.5 − 0.6. This
behaviour might be related to microstructuring phenomena in the bidisperse systems, as
also occurs in the Newtonian flow regime. No clear minimum is observed in the viscosity
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Figure 4.2: Viscosity dependence of 2D bidisperse suspensions (φtotal=0.40,
alarge/asmall=3) on Reshear,p (calculated for the smallest particles) as compared to a
monodisperse suspension. The viscosity is normalised for the viscosity according to the
Krieger-Dougherty model. The symbols on the Y-axis represent model calculations for the
viscosity in the Newtonian regime, according to Eq. 4.1 [75]. The error bars indicate the
standard deviation and lines are drawn as a guide to the eye.

for diameter ratios of 2 and 3, which might be due to the dominance of the shear thick-
ening behaviour of the large particles. The total area fraction of particles of 0.40 is still
quite low as well, so that the decrease of viscosity compared to monodisperse suspen-
sions (in the Newtonian regime) is small, less than 10%, as becomes clear from the model
calculcations in Figure 4.1. This is different for the suspension with a diameter ratio of
4. Although the effective viscosity does not become smaller than 1.0, a clear minimum
is present at a relative fraction of 0.5− 0.6. This seems to be a combined effect of 1) an
intense shear thickening due to the large size of the largest particles and 2) intense mi-
crostructuring phenomena leading to a pronounced viscosity minimum, as predicted by
Eq. 4.1 [75]. These results show that the viscosity of bidisperse suspensions can be af-
fected by shear thickening, leading to higher viscosities with increasing fractions of large
particles, which is in contrast to the Newtonian regime where the viscosity of bidisperse
suspensions is lower than for monodisperse suspensions. The Reshear,p for the largest par-
ticles in the suspension probably determines whether an effect of shear thickening will be
present.

The shear thickening behaviour of bidisperse suspensions is investigated in more de-
tail by examining the effect of Reshear,p on the viscosity (Figure 4.2). The increase of
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Figure 4.3: Snapshots of the particle configuration (2D bidisperse suspensions, φtotal=0.40,
alarge/asmall=3, φlarge/φtotal=0.34) at a Reshear,p (calculated for the smallest particles) of
0.023 (left), 0.046 (middle) and 0.16 (right).

viscosity with the Reshear,p was slightly dependent on the relative fraction of large parti-
cles. At a relative fraction of large particles of 0.672, the onset of shear thickening was at
a lower Reshear,p, which resulted in a higher viscosity. From a Reshear,p of about 0.1 up-
ward, the viscosities were of the same order of magnitude again, due to the faster increase
of viscosity of the other two suspensions with less large particles. The effects of shear
on bidisperse suspensions do not differ fundamentally from the effects on monodisperse
suspensions as presented in [39]. This can also be seen in Figure 4.3, where snapshots
of the particle configurations are shown. At higher Reshear,p, the particle clustering was
more intense, in a comparable way as has been seen in monodisperse suspensions [39].
This figure also demonstrates that there was no important particle segregation of large and
small particles in the system. In that respect, this figure can be considered illustrative for
the other simulation results, where no particle segregation is found as well.

4.4 Shear-induced self-diffusion in bidisperse suspensions

Shear-induced self-diffusivity reflects the mobility of individual particles in a suspension
under shear flow and can be determined from the individual diffusive particle displace-
ments. Shear-induced diffusion is a so-called long-time diffusive behaviour, which shows
stochastic behaviour after a longer time. The reason for this behaviour is that the motion
of a given particle is in principle purely deterministic and dependent on the external ve-
locity field and its interactions with all other particles in the system. Only when the initial
particle configuration has drastically changed, do the particle displacements become ran-
dom, due to the complex nature of the hydrodynamics. This long-time diffusive effect is
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reflected in the definition of shear-induced self-diffusivity:

Ds ≡ lim
t→∞

1

2

d

dt
〈 x(t)x(t)〉 (4.11)

Ds denotes the shear-induced self-diffusivity tensor. The angle brackets denote an average
over all particles in the system, while x denotes the displacement of a single particle.
The long-time diffusive character of shear-induced self-diffusion is also clear from the
relation between mean square displacement of particles in a monodisperse suspension
and the strain γ̇t, as presented in our previous paper [39]. This relation exhibited a linear
dependence, indicating that the behaviour has become stochastic, only after a strain γ̇t of
about 8.

As is usual, we normalised all reported shear-induced diffusivities on γ̇a2. The shear
rate γ̇ and the particle radius a are relevant time and length scales in the system, so that af-
ter normalising, a dimensionless parameter is obtained that is independent from the actual
velocities. In a 2D system, we distinguish components of the shear-induced self-diffusion
tensor in the fluid velocity and in the velocity gradient direction and their diagonal com-
ponent. The displacements in the velocity gradient direction are purely determined by
the hydrodynamic interactions between the particles, whereas the displacements in the
fluid velocity direction are mainly determined by the convective flow. In our system, the
convective particle displacements are hard to assess with sufficient accuracy because of
the time-dependent velocity fluctuations in the system and the characteristic shear flow
pattern, which slightly deviates from perfectly linear. Because the component in the ve-
locity gradient direction is most relevant for many practical situations, we have limited
ourselves to the analysis of this latter component of the shear-induced diffusion tensor.
Our system consists of a Couette system, with periodic boundaries in the flow direction
and two moving walls in the velocity gradient direction. The distance between the bound-
aries was chosen such, that the obtained diffusion coefficients correspond with diffusion
in an infinitely large system [39]. The distance between the two moving walls was twice
as large as between the periodic boundaries. The simulation box contained a number
of 200 or 150 particles, respectively with one size (monodisperse) or two different sizes
(bidisperse). The simulation runs were started with a random particle distribution and
position-dependent fluid and particle velocities according to linear shear flow.

The diffusion coefficient was determined from the regression coefficient in the linear
part of the simulation curve of the mean square displacement versus the strain. In order
to evaluate the effect of the initial particle configuration on the diffusion coefficient, we
split the simulation curve of one simulation run into several curves with a strain span of
30, which start at different times and consequently at different initial positions. The final
diffusion coefficient is the mean value of the diffusion coefficients that are obtained from
these individual curves, mostly from two different simulation runs.

In Figure 4.4, we present the dependence of the shear-induced diffusivity on Reshear,p

for the smallest particles in a bidisperse suspension with a relative fraction large parti-
cles of 0.34. The increase of shear-induced diffusivity with increased Reshear,p is prob-
ably caused by a stronger particle clustering, as can be observed visually in Figure 4.3.
This effect of particle clustering may be the underlying cause of the effect on viscos-
ity as well (see previous section). When comparing the bidisperse suspension with the
monodisperse, it becomes evident that the shear-induced diffusivity is not only higher
for a bidisperse suspension than for a monodisperse suspension, but also that the bidis-
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Figure 4.4: Component Dyy of the shear-induced self-diffusion coefficient of the small par-
ticles in a 2D bidisperse suspension (alarge/asmall=3, Ntotal=150) as compared to monodis-
perse suspensions (Ntotal=200) in shear flow as a function of Reshear,p (calculated for the
small particles) at a total particle area fraction φtotal = 0.40. Error bars indicate the standard
deviation. Lines are drawn to guide the eye.

perse suspension shows a larger increase with increasing Reshear,p. Both results indicate a
more intense particle clustering and are probably due to the higher susceptibility of large
particles to particle clustering.

We continue with results on shear-induced diffusivity at Reshear,p=0.023. It is clear
from Figure 4.4 that the difference in shear-induced diffusivity between the monodisperse
suspension and the bidisperse suspension at this Reshear,p is relatively small, while the
intensity of particle clustering is relatively low. This regime was therefore considered to
be suitable for the analysis of interactions between large and small particles.

In order to investigate the volume fraction dependence of the shear-induced diffusivity
for bidisperse suspensions, simulations were carried out with bidisperse suspensions with
a diameter ratio of large to small particles of 3. In Figure 4.5, Dyy is presented for the
smallest particles in the system. From this figure, it is clear that the diffusivity of particles
in a bidisperse suspension is dependent on the composition. At a relative area fraction of
large particles of 0.34, the diffusion coefficients were already slightly higher than for a
monodisperse suspension with the same total area fraction of particles. At higher relative
area fractions, the increase was even larger.

In Figure 4.6, the data for the large particles in the bidisperse suspension are shown.
The results clearly show that in this case, the diffusivity was much lower than expected
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Figure 4.5: Component Dyy of the shear-induced self-diffusion coefficient of the small par-
ticles in a 2D bidisperse suspension (alarge/asmall=3, Ntotal=150 (bidisperse suspensions)
or 200 (monodisperse suspensions)) as a function of the total particle area fraction φtotal in
shear flow at a Reshear,p of 0.023 (calculated for the small particles). Error bars indicate the
standard deviation. Lines are drawn to guide the eye.

for a monodisperse suspension. It is evident that the diffusivity of the small as well as the
large particles is not only the result of the total particle fraction in the system, but also
of the particle size distibution. The presence of large particles is found to have a positive
effect on the diffusivity of small particles, whereas small particles have a reverse effect
on large particles.

We compared the (non-normalised) diffusivity of the small particles to the expected
diffusivity of the large particles when these large particles are present in a monodisperse
suspension with the same area fraction as that of large particles in the bidisperse sus-
pension. Figure 4.7 shows that the diffusivity of the small particles in the bidisperse
suspensions is practically the same as the expected diffusivity of the large particles. This
strongly suggests that the small particles behave as ’slave particles’ in the suspension,
whose mobility is completely determined by the presence of the large particles in the sys-
tem. For the large particles, this would mean that their diffusivity is unaffected by the
presence of the small particles and that their diffusivity is the same as for a monodisperse
suspension with the large particles solely. From Figure 4.8, it can be seen that this was
indeed the case in the bidisperse suspensions. Also when φlarge > 0.2, the small and the
large particles are expected to behave as ’slave’ and ’master particles’ respectively, thus
following the curves of the monodisperse large particles in 4.7 and 4.8.
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Figure 4.6: Component Dyy of the shear-induced self-diffusion coefficient of the large par-
ticles in a 2D bidisperse suspension (alarge/asmall=3, Ntotal=150 (bidisperse suspensions)
or 200 (monodisperse suspensions)) as a function of the total particle area fraction φtotal in
shear flow at a Reshear,p of 0.023 (calculated for the small particles). Error bars indicate the
standard deviation.

In Figure 4.5, the shear-induced diffusion coefficients of the small particles in the
bidisperse suspensions were all higher than for the monodisperse case. We can however
expect that there will only be an increase when the large particles in the bidisperse sus-
pensions are present in a sufficient amount and/or with a sufficient diameter ratio. We
investigated this for bidisperse suspensions with a total particle area fraction of 0.40, but
with varying diameter ratio and relative area fraction of large particles. The results in
Figure 4.9 show that the diffusivity of the small particles is indeed related to the diameter
ratio. At a fixed relative amount of large particles, the diffusivity increases with the diam-
eter ratio. This increase with the diameter ratio was steeper when the relative amount of
large particles was higher. The increase starts at a certain onset point, indicating that when
the diameter ratio and the relative amount of large particles are not sufficiently high, the
diffusivity of the small particles is not affected compared to the monodisperse case. This
onset value is mostly determined by the relative fraction of large particles and to a much
lower extent to the diameter ratio. After putting the relative fraction of large particles on
the X-axis (Figure 4.10), for φlarge/φtotal < 0.6 a mastercurve is obtained from which can
be seen that the diffusivity starts to increase at a relative area fraction of large particles
of about 0.3. At relatively high amounts of large particles, e.g. with 26.7 number% of
large particles (Figure 4.10), the diffusivities seem to level off, so that the diffusivity of
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Figure 4.7: The non-normalised diffusivity (in lattice dimensions) of the small particles in
a bidisperse suspension (alarge/asmall=3, Ntotal=150) in relation to the fraction of large par-
ticles φlarge at a Reshear,p of 0.023 (calculated for the small particles), as compared to the
non-normalised diffusivity of large particles in a monodisperse suspension. Error bars indi-
cate the standard deviation.

the small particles is smaller than expected. Although we did not explore this regime in
more detail, we think that this might be due to the effect of the relatively limited box size
for the large particles. Sierou and Brady [27] have shown earlier that a limited box size
can lead to a decrease of the diffusivity.

It is of importance to interpret the reason why the onset value is at a fraction of large
particles of 0.3. For a monodisperse suspension, Dyy/γ̇a

2 is dependent on φ. It can be
debated that the onset point is determined by the situation in which the diffusivity of
the larger particles starts to become larger than the diffusivity of a monodisperse suspen-
sion with φtotal = 0.4. In Figure 4.5, it can be seen that the latter diffusivity is equal to
0.11, corresponding with a non-normalised diffusivity of 0.00011 (in lattice dimensions,
at Reshear,p=0.023). For particle size ratios of 2, 3 and 4, the larger particles obtain this
non-normalised diffusivity at a fraction φ of respectively 0.21, 0.12 and 0.06. These val-
ues are smaller than found for the onset point, which indicates that the contribution of the
small particles themselves to the diffusivity cannot be neglected at this onset point. There-
fore, this phenomenon does not seem to completely explain the value of the onset-point.
Another related phenomenon is the area surrounding a large particle that is significantly
influenced by the presence of this large particle. At a relative fraction of large particles of
0.3, the fraction φlarge was 0.12. From 2D simulations on the rotation of a single particle
in the vicinity of a wall and on the interaction between two particles in shear flow [39], it
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Figure 4.8: The non-normalised diffusivity (in lattice dimensions) of the large particles in
a bidisperse suspension (alarge/asmall=3, Ntotal=150) in relation to the fraction of large par-
ticles φlarge at a Reshear,p of 0.023 (calculated for the small particles), as compared to the
non-normalised diffusivity of large particles in a monodisperse suspension. Error bars indi-
cate the standard deviation.

can be estimated that such a particle affects the fluid flow in an influence area, which we
assume to be of circular shape, with a radius of about 3a. This indicates that the influence
area measures a fraction of 32 ∗ 0.12 = 1.08, in other words, at this point the influence
of the large particles can be felt in the whole box. This estimation agrees well with the
actual onset point. Since it is known that Re only has a minor effect on the size of this
influence area, it can be anticipated that the onset value of 0.3 is not dependent on Re.

It would also be of interest to investigate the shear-induced diffusivity of the larger
particles in a bidisperse suspension with a relative area fraction of large particles smaller
than 0.3. It can be hypothesized that the large particles then would have a diffusivity that
is about (alarge/asmall)

2 times as small as for a monodisperse suspension with the same
total particle fraction. At these conditions however, the amount of large particles in our
simulations was too low to be able to determine this diffusivity with sufficient statistical
reliability.

These results lead us to the conclusion that the shear-induced diffusivity of the small
particles in bidisperse suspensions with a total area fraction of 0.40 can be roughly di-
vided into two regimes: (1) when the relative area fraction of large particles is less than
0.3, the small particles move as in a monodisperse suspension with the same total particle
area fraction and no particular effect of the large particles can be seen, (2) when the rel-
ative area fraction of large particles however exceeds the value of 0.3, the small particles
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Figure 4.9: Component Dyy of the shear-induced self-diffusion coefficient of the small par-
ticles in a 2D bidisperse suspension (φtotal=0.40,Ntotal=150 (bidisperse suspensions) or 200
(monodisperse suspensions)) as a function of the ratio of the particle radii alarge/asmall in
shear flow at a Reshear,p of 0.023 (calculated for the small particles) and for different number
frequencies of large particles. The number frequencies correspond with relative fractions of
large particles φlarge/φtotal ranging between 0.05-0.40 (1.3 number%), 0.18-0.58 (5.3 num-
ber%), 0.32-0.66 (10.7 number%) and 0.59-0.77 (26.7 number%). Error bars indicate the
standard deviation. Lines are drawn to guide the eye.

behave as ’slave particles’ and obtain a higher diffusivity, which is totally governed by the
diffusivity of the large particles in the system. Shear-induced diffusivity is affected by the
particle size distribution, which is of importance for the relation between shear-induced
diffusivity in polydisperse suspensions and in monodisperse suspensions.

4.5 Conclusions

It is shown that bidisperse suspensions, in analogy with monodisperse suspensions, ex-
hibit shear thickening behaviour. The size and relative fraction of large particles highly
determine the degree of shear thickening at a certain shear rate. This can be explained
because the shear based particle Reynolds number Reshear,p, which is a relevant param-
eter for shear thickening, has a quadratic dependence on the particle radius. Moreover,
the viscosity of the bidisperse suspensions was not always lower than for monodisperse
suspensions, as is the case in the Newtonian regime, but increased with increasing relative
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Figure 4.10: Component Dyy of the shear-induced self-diffusion coefficient of the small par-
ticles in a 2D bidisperse suspension (φtotal=0.40,Ntotal=150 (bidisperse suspensions) or 200
(monodisperse suspensions), alarge/asmall=2, 3, 4 or 5) as a function of the fraction of large
particles φlarge in shear flow at a Reshear,p of 0.023 (calculated for the small particles) and
for different number frequencies of large particles. The number frequencies correspond with
relative fractions of large particles φlarge/φtotal ranging between 0.05-0.40 (1.3 number%),
0.18-0.58 (5.3 number%), 0.32-0.66 (10.7 number%) and 0.59-0.77 (26.7 number%). Error
bars indicate the standard deviation. The dashed line indicates the value of Dyy in a monodis-
perse suspension.

fraction of large particles. This increase was not gradual, which can be caused by particle
structuring phenomena in the bidisperse suspensions.

Shear thickening behaviour in monodisperse suspensions is known to coincide with
particle clustering and an increase of shear-induced diffusivity. In bidisperse suspensions,
we have also found an increase of shear-induced diffusivity with increasing Reshear,p.
The rheology as well as the shear-induced diffusivity of bidisperse suspensions is largely
determined by the larger particles in the suspension. The influence of the larger particle on
the fluid flow field can not only lead to increased particle clustering and shear thickening,
but also to an increased diffusivity of the smaller particles.

In bidisperse suspensions, the small and large particles exhibited a different (nor-
malised) shear-induced diffusivity Dyy/γ̇a

2. Whereas the diffusivity of the small particles
increased compared to the monodisperse situation, the diffusivity of the large particles
declined. The non-normalised shear-induced diffusivity Dyy was however similar for the
small and large particles, indicating an equal absolute mobility, which was predominantly
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determined by the relative fraction of large particles in the system. The predominance of
the large particles became evident when the relative fraction of large particles exceeded a
value of about 0.3, independent of the size ratio of the particles. In that case, the shear-
induced diffusivity of both the small and the large particles are dependent on φlarge solely.
Or in other words, the small particles can be seen as ’slave particles’ that are totally ruled
by the large ’master particles’. Below the onset value of 0.3, the shear-induced diffusivity
Dyy/γ̇a

2 of the small particles was similar to that of equal-sized particles in a monodis-
perse suspension with the same total particle fraction.

In this study, it is shown how shear-induced diffusivity is affected by the particle
size distribution, leading to a better understanding of the relation between shear-induced
diffusivity in polydisperse suspensions and in monodisperse suspensions.
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A detailed study on concentration polarisation during microfiltration (MF) was carried
out in order to improve control on cake layer formation. Concentration polarisation is re-
duced by several back-transport mechanisms, however, for particles in the size range 0.5-
30 µm shear-induced diffusion is the predominant one. Shear-induced diffusion is caused
by the hydrodynamic interactions between particles in shear flow, which are strongly de-
pendent on the particle size. Because of this, the polydispersity of suspensions is expected
to have a large effect on cake layer formation. Although this aspect will be of consider-
able practical relevance, it has only received minor attention in literature. In this work,
the effect of particle size distribution on MF was investigated by studying the steady-state
flux of bidisperse suspensions with a ratio of particle radii of 3. The flux appeared to be
completely determined by the smaller particles; it remained almost constant between a
volume fraction of 0.2 and 1 of small particles. This trend in the steady-state flux was
in good agreement with calculations based on a shear-induced particle migration model
for polydisperse suspensions. Since polydispersity is a common property of suspensions,
the present work may contribute to optimisation of flux and selectivity in MF processes,
which depend largely on adequate control of cake layer formation. This can be achieved
by implementation of the developed model in process control routines.

5.1 Introduction

Crossflow microfiltration (MF) is a well-known technique for the separation of micropar-
ticles, emulsion droplets and micro-organisms from fluids, with many (potential) indus-
trial applications in food and bioprocess engineering [79]. In these processes, concen-
tration polarisation mostly leads to the formation of a cake layer at the membrane sur-
face, which has a large negative effect on flux and selectivity. Therefore, concentration
polarisation can be considered a key factor in the control of MF processes. Concentra-
tion polarisation is governed by two simultaneous processes: (1) convective transport of
particles towards the membrane along with the permeate flow and (2) back-transport of
particles from the concentrated layer into the bulk phase. In case of an excess particle
flux towards the membrane, a cake layer builds up. When convective transport balances
back-transport, the situation can be considered a steady-state. In this situation only minor
variations in cake layer resistance and flux are expected. Shear-induced diffusion can be
considered the predominant back-transport mechanism during MF of suspensions with
particles in the range of 0.5-30 µm [10]. This mechanism comprises the diffusive move-
ments of particles in a shear field that are caused by hydrodynamic interactions. In the
presence of a concentration or shear rate gradient, shear-induced diffusion leads to a net
migration of particles in the direction of a lower concentration or shear rate, therewith
effectively reducing concentration polarisation. Using the fundamental knowledge about
shear-induced diffusion, the MF behaviour of monodisperse suspensions can, in general
be predicted well. However, practically relevant suspensions are seldom monodisperse.
Polydispersity, that is known to influence permeate flux and flow resistance of cake layers,
seems to be the rule. Incorporation of effects of polydispersity in shear-induced diffusion
models for MF would therefore be an important step toward a better control of concen-
tration polarisation during MF of practically relevant suspensions. In this article, we
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present our research conducted on the effects of polydispersity on concentration polarisa-
tion during MF. We investigated the effect of the particle size distribution of a bidisperse
suspension on the steady-state flux and compared our results with predictions obtained
with a particle migration model for polydisperse suspensions [71].

5.2 Shear-induced migration model for polydisperse sus-
pensions

For the quantitative description of shear-induced diffusion, most MF models use the re-
search of Eckstein and co-workers [14] and Leighton and Acrivos [15, 80]. The research
of these authors was directed at self-diffusion of monodisperse particles in a suspen-
sion under shear. A frequently applied equation for shear-induced diffusion, reported
by Leighton and Acrivos, is

Ds = 0.33γ̇a2φ2
(
1 + 0.5e8.8φ

)
(5.1)

All symbols are explained in the nomenclature list. For the steady-state permeate flux,
Davis and Sherwood [81] derived the following equation, using an exact similarity solu-
tion with shear-induced diffusion as the dominant mechanism for particle back-transport

〈J〉 = 0.072γ̇0

(
φwa

4

φbL

)1/3

(5.2)

Shear-induced self-diffusion of particles in polydisperse suspensions has to our knowl-
edge not been reported. Phillips and co-workers [16] proposed a phenomenological model
for shear-induced particle migration. The model is based on particle migration potentials.
Migration is induced by two mechanisms, a nonuniform frequency of particle interactions
in a shear field and a nonuniform viscosity field. Shauly and co-workers [71] extended this
model to polydisperse suspensions with various particle sizes. For the system investigated
here, the total flux of particles of species i can be described with

ji = −kγ̇āaiφφi

[
∇ ln (γ̇φi) +

ā

ai
∇ lnµλ

]
(5.3)

The term outside the brackets equals the shear-induced diffusion coefficient for the ith
particle. The migration potential in the shear-induced particle migration model consists
of an interaction and a viscosity term. For the viscosity of monodisperse suspensions,
Krieger [46] found:

µ =

(
1− φ

φm

)−m

(5.4)

where m = 1.82 and the maximum packing density for a monodisperse suspension (φm0)
is assumed to be 0.68. This expression was extended by Probstein and co-workers [75] to
describe the effective viscosity of a bidisperse suspension. In the approach of Probstein
and co-workers the maximum packing density is not taken as a constant but is calculated
as a function of the species local concentrations φ1 and φ2, as is shown in Equation 5.5:

φm

φm0
=

[
1 +

3

2
|b|3/2

(
φ1

φ

)3/2(
φ2

φ

)]
(5.5)

with b = (a1 − a2)/(a1 + a2).
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Figure 5.1: Electron microscope photo of a microsieve.

5.3 Materials and methods

Microfiltration (MF) experiments were performed with microsieves, MF membranes that
are fabricated with silicon micromachining technology. This technology allows the con-
struction of smooth, thin membranes with very well defined pores. The membrane re-
sistance of microsieves is typically 100 to 1000-fold smaller than for conventional mem-
branes. The microsieves we used had a membrane surface area of 30.2 mm2 and slit-
shaped pores with a length and width of 3 and 0.7 µm respectively. The thickness of
the membrane was only 1 µm. A SEM-photo is given in Figure 5.1. The feed for
MF consisted of suspensions of polystyrene spherical particles (surfactant-free, sulfate
polystyrene, Interfacial Dynamics Corporation, USA) in a neutrally buoyant mixture of
demineralized water and glycerol (density 1.055 g/ml at 293 K). The experiments were
carried out in a parallel plate device with a channel height of 0.25 mm. The temperature
of the feed was kept constant at 298 K. The pressure was monitored with two pressure
sensors in the parallel plate device, one before and one after the microsieve. The pressure
at the permeate side of the microsieve was atmospheric. The feed flow rate was moni-
tored with a rotameter and the permeate flux was measured with an analytical balance.
Since the microsieve was divided into porous and non-porous fields, the permeate flux
was calculated based on the surface area of the porous fields only.

5.4 Results and discussion

5.4.1 Predicted steady-state fluxes

Using Equation 5.3, we first calculated the diffusion coefficients for the separate particles
in a bidisperse suspension as a function of the suspension composition and related these
values to the diffusion coefficients in case of a monodisperse suspension (Figure 5.2).
The ratio of the particle radii a2/a1 was 3 (equal to that in the experiments). In the
calculations, the total volume fraction of particles φ in the concentration polarisation layer
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Figure 5.2: Relative diffusion coefficient for the separate particles in a bidisperse suspension
as a function of suspension composition for a total volume fraction of 0.6 and a2/a1=3, as
calculated on basis of the particle migration model.

was always assumed 0.6. Starting from a monodisperse suspension of particle 1 (φ1/φ=1),
the diffusion coefficient first increases with increasing amount of particle 2. This is due
to the increase of the mean particle radius (Equation 5.3: ā) in the suspension. From a
volume ratio φ1/φ of 0 up to 0.75, the increasing volume fraction of particle 1 (φ1) in the
suspension causes the diffusion coefficient to increase. In contrast to particle 1, particle
2 shows a monotonous decrease of the diffusion coefficient with increasing volume ratio
of the small particle. This is because the mean particle radius and the concentration of
particle 2 both decrease. Apparently, the diffusion coefficient of the smaller particle in the
bidisperse suspension has a different dependence on suspension composition as compared
to that of the larger particle. But what does this imply for the steady-state flux during MF?
To analyse this effect, we calculated the steady-state flux using Equation 5.2, but adjusted
for the relative change of the diffusion coefficients of both particles 1 and 2, as compared
to the monodisperse case. With these model calculations we get two relations for the
steady-state flux as a function of suspension composition (Figure 5.3).

We can expect that the lowest value for the steady-state flux will actually be measured
during MF, because this represents the situation in which neither for particle 1 nor for
particle 2 an excess particle flux exists. According to Figure 5.3, this would imply that for
a volume ratio φ1/φ lower than 0.75, the back-transport flux of particle 1 determines the
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Figure 5.3: Length-averaged steady-state permeate flux for cross-flow MF, calculated for the
separate particles (a1=0.8 µm; a2=2.4 µm) in a bidisperse suspension based on the particle
migration model. The bold lines indicate the predicted actual steady-state flux. Microfiltra-
tion conditions: γ̇0 =2.0*103 s−1; φw =0.6; φb =1.5*10−5; T =298 K; L =4.1*10−3 m.

steady-state flux, while for a volume ratio φ1/φ higher than 0.75 particle 2 does (except
for a volume ratio φ1/φ of exactly 0 or 1). From this, it follows that the flux is comparable
to the flux of the monodisperse suspension of the smaller particle for a volume ratio from
0.25 up to 0.75. For volume ratios φ1/φ near 0 or 1, the experimentally determined flux
values should be considered with care, because measured fluxes may easily be influenced
by particle depletion in the concentration polarisation layer or by very slow cake layer
formation. Please note, in the calculations we only consider the concentration difference
between concentration polarisation layer and bulk phase for the migration potential. We
assume that the shear rate and the viscosity do not change the migration potential sig-
nificantly from that of the monodisperse case. This seems a reasonable assumption. We
calculated, using the model of Probstein and co-workers (Equation 5.5), that for the bidis-
perse suspension, the volume fraction in the concentration polarisation layer would need
to rise from φ=0.60 to 0.66 (in the most extreme case) in order to achieve the same viscos-
ity as for the monodisperse suspension. This increase in volume fraction gives an increase
in steady-state flux of only 3%.
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Figure 5.4: Flux and transmembrane pressure during microfiltration of a bidisperse suspen-
sion of polystyrene particles (a1 =0.8 µm, φ1/φ =0.8 and a2 =2.4 µm, φ2/φ =0.2). The
transmembrane pressure was step-wise increased during the run. Microfiltration conditions:
γ̇0 =2.0*103 s−1; φb =1.5*10−5;T =298 K.

5.4.2 Experimental results

Steady-state flux levels were determined for monodisperse suspensions with particle radii
of 0.8 and 2.4 µm and for bidisperse suspensions, consisting of mixtures of these two
particles. This was done by step-wise increasing the transmembrane pressure during a
filtration run and measuring the steady-state flux (an example is shown in Figure 5.4).

Due to the low membrane resistance of microsieves, already at an extremely low trans-
membrane pressure a cake layer is formed and a steady-state flux level is achieved. In a
steady-state situation, an increase of the transmembrane pressure only resulted in a tem-
porary increase of the permeate flux. The subsequent decrease of the flux can be explained
with extra accumulation of particles on the membrane surface, resulting in a thicker cake
layer. From our calculations on bidisperse suspensions, we expected that the particle with
the largest excess particle flux would determine the steady-state flux level.

As can be seen from Figure 5.5, for all bidisperse mixtures the steady-state flux was
comparable to the flux of the monodisperse suspension with the smaller particles. The
variation in flux between the mixtures was relatively small. Apparently, in the bidis-
perse mixtures, the smaller particle had a larger excess particle flux and determined the
steady-state flux level. This is in agreement with our model predictions. Comparison of
the measured steady-state flux levels with values that are predicted by the shear-induced
diffusion model reveals that the measured fluxes are about 5 times lower. This might
be due to an overestimation of the predicted steady-state flux for short filter lengths (L).
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Figure 5.5: Measured steady-state flux for microfiltration of a bidisperse suspension of
polystyrene particles (a1 =0.8 µm; a2 =2.4 µm) as a function of suspension composition.
Microfiltration conditions: γ̇0 =2.0*103 s−1; φb =1.5*10−5;T =298 K.

According to Equation 5.2, the flux of monodisperse suspensions increases with the di-
ameter of the particles with a power-dependence of 1.33. For the particles investigated
here (a2/a1 =3), a flux ratio (J2/J1) of 4.3 is expected, while we measured a flux ratio of
2.7. This effect is currently investigated further.

5.5 Conclusions

In this study, we found that the steady-state flux for MF of a bidisperse suspension with
a ratio of particle radii of 3 has a level that is comparable to that of a monodisperse sus-
pension of the smallest particle (in the bidisperse suspension). The trend in the observed
behaviour could be described accurately with a particle migration model for polydisperse
suspensions. This model takes the effect of the particle size distribution on the shear-
induced migration of individual particles into account.

List of symbols

a particle radius, m
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ā average particle radius, m
b dimensionless function in Eq. 5.5
Ds shear-induced diffusivity, m2/s
〈J〉 lengt-averaged permeate flux, m/s
ji migratory flux of particle i, m2/s
k dimensionless particle migration parameter in Eq. 5.3
L filter length, m
Ptm transmembrane pressure, bar

Greek symbols:
φ particle volume fraction
φb particle volume fraction in the bulk suspension
φm maximum packing density
φm0 maximum packing density for a monodisperse suspension
φw particle volume fraction at the channel wall
γ̇ shear rate, s−1

γ̇0 nominal shear rate at the membrane surface, s−1

λ dimensionless particle migration coefficient in Eq. 5.3
µ viscosity, kg/m.s
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Although the principal mechanisms of crossflow microfiltration (MF) are well-known,
the practical applicability of the resulting microfiltration models is still limited. This can
be largely attributed to the lack of understanding of effects of polydispersity in the par-
ticulate suspensions, as relevant to concentration polarisation in MF. This paper describes
an investigation of concentration polarisation behaviour of bidisperse suspensions, in the
regime where shear-induced diffusion is the dominant back-transport mechanism. In the
transient flux regime, the particle deposition onto the membrane was monitored by means
of Confocal Scanning Laser Microscopy. As in accordance with the linear dependence of
the shear-induced diffusivity on a2, only the small particles in the bidisperse suspensions
were found to deposit onto the membrane. The back-transport flux that was calculated
from the deposition rate and the actual permeate flux, was found to be independent of
the composition of the suspension, whereas it was equal to the back-transport flux of a
monodisperse suspension of the small particles only, with a similar total particle fraction.
These results can be explained with the occurrence of particle size segregation in the feed
flow, which leads to an enrichment with small particles of the suspension near the mem-
brane. The findings are also shown to be relevant to particle fractionation processes by
MF. In such fractionation processes, particle size segregation is found to have a strong
effect on the separation characteristics such as particle size and fat content of the perme-
ate. A polydisperse suspension could be fractionated using a membrane having a pore
size larger than the largest particles present. The fractionation thus results not from size
exclusion in the membrane, but from segregation effects in the feed channel.

6.1 Introduction

It is already known for a century that the yield of microfiltration (MF) processes can be
improved by means of a crossflow parallel to the membrane [82]. The shear flow that is
induced in this way, reduces the deposition of suspended particles onto the membrane and
enables operation at a (quasi-)stationary filtration rate for a long time.

In spite of the succes of MF, the process of particle deposition and its effects on MF are
only marginally understood, because of the great number of parameters that is involved.
Just to name a few, particle size distribution, shape and deformability of the suspended
particles, flow resistance of the deposited layer, and membrane morphology. It is obvious
that for process design and improvement, a better understanding of crossflow MF is of
major importance; preferably based on (model) predictions. The two key aspects for this
are: 1) the kinetics of particle deposition and 2) the properties of the deposited layer. This
paper will focus solely on the kinetics of particle deposition.

The last twenty years, significant progress has been made in the understanding of
crossflow effects on suspensions with hard spherical particles of one size. The mod-
els that are available for such systems, distinguish different mechanisms for the reduced
particle deposition onto the membrane such as Brownian diffusion, shear-induced diffu-
sion, inertial lift and surface transport [10]. The relevance of these particle back-transport
mechanisms for an actual MF system is determined by mainly the shear rate and the par-
ticle radius. When colloidal interactions play a role, normally for particle sizes between
10 nm and 1 µm, the potential barrier between particles is also relevant [83].
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For particle sizes between 0.5 and 30 µm, shear-induced diffusion is the most rele-
vant back-transport mechanism [10]. Since particle-particle interactions determine shear-
induced diffusion, modelling of the MF process of polydisperse suspensions in the shear-
induced diffusive regime requires knowledge of the ensemble behaviour of the suspended
particles. Kramadhati and co-workers [84] evaluated the shear-induced diffusion model
of Romero and Davis [8] for MF of a polydisperse feed suspension. Their calculations
showed amongst others that the average particle size in the deposited layer was in general
smaller than in the bulk phase, due to the lower deposition rate of the larger particles.
Although their calculations may be illustrative for the effects of polydispersity, the pre-
dictions of Kramadhati and co-workers have not been validated yet. In earlier work [85],
we adapted a shear-induced migration model of Shauly and co-workers [71] for MF of
bidisperse suspensions and found that this model gave a good description of the stationary
filtration rate for relative volume fractions of large particles between 20 and 80%. The
paper is one of the few that include the effects of particle polydispersity on the kinetics of
particle deposition, albeit directed at stationary situations.

Experimental work of several authors revealed that the average particle size in the
deposited layer is smaller than in the bulk phase of the suspension [86–88]. Kim and
co-workers [89] found a good correlation between experimental results on the cake resis-
tance and a newly defined effective particle diameter, which was related to shear-induced
diffusivity. In our earlier work [85], we analysed the stationary filtration rate for a bidis-
perse particle suspension, in the regime of shear-induced diffusion. We found that the
smallest particle in the suspension determined the filtration rate. For the particle size ratio
of 3 used in this study, the stationary filtration rates for the bidisperse suspensions were
similar to that of monodisperse suspensions of the smallest particle.

This paper presents an experimental study on the behaviour of bidisperse suspensions
in the shear-induced diffusive back-transport regime of MF. The particle deposition onto
the membrane is monitored in the transient flux regime by means of Confocal Laser Scan-
ning Microscopy. In this way, the back-transport of the separate particles in the bidisperse
suspension is quantified as a function of the suspension composition (ratio of particle
radii, relative volume fraction of large and small particles). The observed behaviour is re-
lated to different shear-induced diffusion phenomena described in literature. The practical
relevance of our findings is demonstrated in a study on fractionation of milk fat globules.
In the next paragraph, we give an overview of those shear-induced diffusion phenomena
in bi- or polydisperse suspensions that are relevant to MF.

6.2 Shear-induced diffusion in polydisperse suspensions

6.2.1 Particle back-transport as determined by shear-induced mi-
gration

Shear-induced migration comprises the phenomenon of collective particle behaviour as
a result of shear-induced diffusion. In a suspension that is subjected to a shear flow,
hydrodynamic particle-particle interactions can give rise to this diffusive behaviour, which
is the main cause for back-transport of particles between 0.5 and 30 µm [10]. Romero and
Davis used a model of Leighton and Acrivos [15] for the description of the shear-induced
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diffusivity Ds of a monodisperse suspension with hard, spherical particles:

Ds = 0.33γ̇a2φ2
(
1 + 0.5e8.8φ

)
(6.1)

From this equation, it becomes clear that the particle radius strongly affects the shear-
induced diffusivity. It can therefore be anticipated that the particle size distribution will
be of considerable influence as well.

Romero and Davis [8] have developed a MF model, describing the particle deposition
onto the membrane and the permeate flux, with shear-induced migration as the back-
transport mechanism for monodisperse suspensions. According to an exact similarity
solution of this model [81], the stationary permeate flux Jss is given by:

〈Jss〉 = 0.072 · γ̇wall,0 ·
(

φc · a4

φb · Lm

)1/3

(6.2)

where γ̇wall,0 is the nominal shear rate at the wall, φc and φb are respectively the particle
volume fraction in the particle layer and in the bulk phase, a is the particle radius, and
Lm is the total membrane length. The angle brackets denote that the flux is averaged over
the membrane length. This solution is valid for a bulk particle volume fraction φb <0.1,
for a situation where the permeate flux is determined by the flow resistance of the particle
layer at the membrane, and for a membrane length that is much longer than the length of
the particle layer-free zone at the beginning of the membrane.

Shauly and co-workers [71] took the particle size distribution into account in a shear-
induced migration model, which was originally developed by Phillips and co-workers
[16]. This phenomenological model describes shear-induced diffusive particle fluxes re-
sulting from a gradient in particle interactions and a gradient in shear stress [71]:

ji = −kγ̇āaiφφi

[
� ln (γ̇φi) +

ā

ai
� lnµλ

]
(6.3)

where ji is the migratory flux of particle i, k and λ are dimensionless constants, ā is the
average particle radius and µ is the viscosity. The term outside the brackets denotes the
shear-induced diffusivity Ds,i for the ith particle.

In previous work [85], we carried out calculations on the stationary flux by introducing
the shear-induced diffusivity of the small particles (in bidisperse suspensions: Equation
6.3) in the model for the stationary permeate flux Jss (Equation 6.2). Therewith, the
particle volume fraction remains as a driving force for shear-induced migration.

6.2.2 Shear-induced particle segregation in channel flow

It is known from literature that shear-induced migration can also lead to size segregation
of particles in a suspension subjected to channel flow. The center region of the channel
is found to be enriched with large particles, whereas the zone near the channel wall was
almost depleted of large particles [68]. This size segregation could be important for mi-
crofiltration systems, because the crossflow is usually much larger than the flow through
the membrane. In that way, only the composition of the suspension that flows closely
along the membrane wall may be relevant to concentration polarisation and cake layer
formation. Whether this is also the case in this study, is discussed in the results section.
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Figure 6.1: Schematic drawing of the microfiltration set-up with on-line monitoring of parti-
cle deposition onto the membrane by means of CSLM. A detailed description is given in the
text.

6.3 Materials and methods

6.3.1 CSLM experiments

Microfiltration set-up

A crossflow MF system was used, consisting of a parallel plate device with a channel
height of 0.25 mm and a channel width of 26 mm (Figure 6.1). The feed was continuously
recirculated over the parallel plate device with a crossflow velocity of 0.04 m/s. This
yields a shear rate γ̇ at the membrane surface of 1000 s−1. The volume in the recirculation
loop was such that no significant concentration took place during an experiment. The
pressure was monitored with two pressure sensors in the parallel plate device, at equal
distance up- and downstream of the membrane. At the permeate side the pressure was
atmospheric. The experiments were performed at ambient temperature.

A polyethersulfon MF membrane (Omega, low-protein binding modified, Filtron,
USA) with a Molecular Weight Cut-Off (MWCO) of 100 kDa and a membrane area
of 36 mm2 was used. The feed consisted of a suspension of dyed polystyrene spheri-
cal particles (surfactant-free, sulfate polystyrene, density 1.06 g/ml, Interfacial Dynamics
Corporation, USA) in demineralised water. The particles were dyed with fluorescent col-
oring agents in order to make them visible with the Confocal Scanning Laser Microscope
(CSLM). Particles with a diameter of 1.6 and 4.0 or of 1.6 and 9.8 µm were mixed to
obtain a bidisperse suspension. With these particle diameters, together with the relatively
low shear rate of 1000 s−1, we are well within the shear-induced diffusive regime [10].
The total volume fraction φtotal of particles was always 1.8*10−5. Because it is known
that the smaller particles mainly deposit onto the membrane and it is expected that these
smaller particles will be influenced most at relatively high concentrations of large parti-
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Figure 6.2: Example of the particle deposition onto the membrane during MF of a bidisperse
suspension, as monitored with CSLM. The images represent a time sequence, where time
proceeds from left to right, and consist of an overlay of images that were taken separately of
the different-sized particles (particle diameter 1.6 and 9.8 µm).

cles, bidisperse suspensions with more than 70% v/v large particles were chosen for the
experiments.

Analysis of the particle deposition and the permeate flux

The permeate flux through the membrane was monitored with an analytical balance. The
particle deposition onto the membrane was monitored with CSLM (Leica TCS SP2, Leica
Microsystems, Heidelberg, Germany). Hereto, a lens was used with a magnification of
20 and a working distance of 3.2 mm. The CSLM images encompassed 0.036 mm2

membrane surface. The excitation wave length of the laser was 488 nm. The different-
sized particles had different colors, so they were viewed separately at an emission wave
length of 500-536 nm and 568-621 nm respectively. The CSLM generates x-y images of
the focal plane. Because the depth z at which the particles deposit was not exactly known
beforehand, the 2-D images were scanned at different depths. The acquisition time for
one x-y image was about 1 s, while the total scan took about 30 s.

Figure 6.2 shows an example of CSLM images, taken during MF of a bidisperse sus-
pension at three points in time. The figure shows an overlay of the images that were taken
separately for each particle-size. These separate images were analysed with the image
processing software Qwin (Leica Microsystems, Heidelberg, Germany), which first con-
verts the image into a binary file. The amount of particles deposited onto the membrane
was assessed by counting the pixels with an intensity above a certain treshold value. For
each experiment, a calibration was carried out first in order to relate the amount of pixels
to the number of particles. The assessment of the amount of particles was only possible
when less than one layer of particles was deposited onto the membrane. Therefore, only
data for a total surface occupation of less than 60-65%, as derived from the counting of the
pixels, were taken into account. The amount of particles on the membrane is presented as
the surface load Γ, which corresponds to the volume of particles per surface area of mem-
brane (unit: ml/m2). The theoretical maximum surface load Γ corresponds to the surface
load of one layer of particles with a volume fraction of 1.0 and is dependent on the particle
size: 1.1 ml/m2 (1.6 µm), 2.7 ml/m2 (4.0 µm) and 6.5 ml/m2 (9.8 µm)). Since we are only
interested in concentration polarisation-controlled particle deposition, we have corrected
the surface load for the amount of particles that deposited otherwise (physico-chemical
adsorption). This amount of adsorbed particles is determined from calibration curves,
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Figure 6.3: Cumulative particle size distribution of milk, as analysed by laser diffraction.

which were measured for the respective monodisperse suspensions at φtotal= 1.8*10−5.
It is assumed that the adsorption rate is linearly dependent on the concentration of the
respective particle in the bulk phase.

6.3.2 Fractionation of milk fat globules

Raw milk (fat content 4.40%) was used in the experiments. The particle size distribution
(psd), which is primarily determined by the milk fat globules present in milk, is shown in
Figure 6.3.

The MF set-up consisted of the Alfa Laval MFS-1 system, equipped with a 5.0 µm
ceramic MF membrane (SCT Membralox P19-40, tubular α−Al2O3 membrane, tube di-
ameter 4.0 mm, membrane area 0.20 m2). The filtration temperature was 50◦C and the
crossflow rate was set at 2.2 or 6.6 m3/h, corresponding to a crossflow velocity (CFV)
of 2.6 and 7.7 m/s respectively. The wall shear rate γ̇wall,0, which is given by 8v/dt
(v=velocity, dt=tube diameter), was equal to 5.1 ∗ 103 and 15.4 ∗ 103 s−1 respectively.
At a CFV of 7.7 m/s, not only shear-induced diffusion, but also inertial lift may play a
role as back-transport mechanism, especially for the largest milk fat globules [10]. The
experiments were carried out following the so-called Uniform Transmembrane Pressure
concept [90] by circulating permeate co-current to the retentate. The permeate circulation
capacity was adjusted to the actual crossflow rate in order to create a permeate pressure
drop equal to the retentate pressure drop. The experiments were carried out in continuous
mode at a concentration factor CF (=Qfeed/Qretentate) of 2.5. The transmembrane pressure
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Figure 6.4: The relative flux J/J0 as a function of time for a suspension with 1.6 µm particles
at a TMP of 0.1 and 0.4 bar and for suspensions with 4.0 and 9.7 µm particles at a TMP of
0.4 bar.

was adjusted in such a way that the permeate flux was between 0.069 and 0.56 mm/s.
Each experiment was started at a low permeate flux of 0.069 mm/s, allowed to settle for
0.5 h, and followed by a run of 0.5 h at a similar permeate flux. Then the permeate flux
was increased stepwise to 0.139, 0.278 and 0.417 or 0.556 mm/s, in three more runs of
0.5 h each. At the end of each run, samples were taken of the retentate and permeate,
and analysed for fat content (Röse Gottlieb method) and particle size distribution (laser
diffraction, Mastersizer X (Malvern Instruments, Malvern, UK)).

6.4 Results

6.4.1 Kinetics of particle deposition

The CSLM experiments are carried out at a transmembrane pressure (TMP) of 0.4 bar,
which goes together with a clean water flux (CWF) of 0.3 mm/s. From Figure 6.4, it
becomes clear that at a TMP of 0.4 bar the flux decrease is strongest for the 1.6 µm particle
suspension. The fluxes for the other particles are fairly constant. This is in agreement with
Equation 6.2, which predicts that only monodisperse suspensions with a particle diameter
of 1.6 µm will exhibit flux decline and particle deposition. At a TMP of 0.1 bar, the flux
was also fairly constant for 1.6 µm particles, as was expected from Equation 6.2.

For particle diameters of 4.0 and 9.8 µm, some particle deposition has been monitored
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with CSLM (Figure 6.5). The surface load Γ was found to increase almost linearly in
time. Since the initial flux J0 was lower than the flux predicted by Equation 6.2 for the
respective particles, it is unlikely that this particle deposition is caused by an unbalance in
the concentration polarisation-controlled transport of particles towards the membrane. We
therefore hypothesize that this particle deposition is due to physico-chemical adsorption,
which is not related to the phenomena that are currently under investigation. For the
particle size of 1.6 µm, the total particle deposition was much faster at a TMP of 0.4 bar
than at 0.1 bar, therewith indicating that it is still well-possible to distinguish between the
concentration polarisation-controlled kinetics in which we are interested and adsorption
effects. In the following results, we have therefore corrected the surface load for the
amount of adsorbed particles, as described in section 6.3. The corrections that we have
applied this way are in the order of 17% of the original surface load Γ.

The flux and surface load during filtration of bidisperse suspensions (particle sizes 1.6
and 4.0 µm) were investigated. The flux decline was very slow and depended on the con-
centration of small particles: the fastest flux decline is found for the suspension with the
highest concentration of small particles (Figure 6.6). In the first few minutes of filtration,
for concentrations of small particles of 10, 15 and 20%, the flux was relatively low and
unstable, due to start-up effects. Therefore, the following analysis of our results is based
on the momentaneous flux. The surface load Γ for the small particles increases to 0.07-
0.16 ml/m2 in the first 10 min of the filtration run (Figure 6.6). After the start-up period,
the increase was practically linear in time and was faster with increasing concentration of
small particles. The surface load for the large particles was found to be negligibly small
(results not shown). Apparently, the back-transport velocity of the large particles in the
bidisperse suspensions does not decrease drastically compared to a monodisperse suspen-
sion. The linear increase of the surface load can be understood as follows: the transport of
particles towards the membrane only decreased very slowly, as is reflected in the observa-
tion that the flux is almost constant, and the back-transport of particles is also expected to
be constant in time since bulk volume fractions and CFV remain constant. Therefore, the
deposition rate of particles, which is the difference between the two transport velocities,
is constant as well.

For bidisperse suspensions with particle sizes of 1.6 and 9.8 µm, similar trends were
found as with particle sizes of 1.6 and 4.0 µm (Figure 6.7). The higher the amount of small
particles, the more small particles are deposited. Moreover, both experiments carried out
with 10% small particles show similar numerical values for the surface load. The surface
load Γ of the large particles was negligibly small again (results not shown). The flux
decline was very gradual, albeit that the suspension with 2.5% small particles showed
some start-up problems.

6.4.2 Shear-induced diffusive particle behaviour

In order to analyse the shear-induced diffusive behaviour of the small particles in the
bidisperse suspensions, we calculated the back-transport fluxes in our experiments and
compared these to the back-transport fluxes as predicted by Equation 6.2. The back-
transport flux in the experiments is calculated in three steps: 1) determine the particle
deposition rate as a function of time by progressive regression of Γ over t over a time
interval of 4 min, moving along the time axis, 2) determine the maximum value for the
deposition rate as to exclude possible start-up effects, 3) determine the back-transport
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Figure 6.5: The surface load Γ as a function of time for a monodisperse suspension with 1.6
µm particles at a TMP of 0.1 and 0.4 bar (top) and for suspensions with 1.6 (TMP 0.1 bar),
4.0 (TMP 0.4 bar) and 9.7 (TMP 0.4 bar) µm particles (bottom).
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Figure 6.6: The surface load Γ (top) and the relative flux J/J0 (bottom) as a function of time
for bidisperse suspensions with 1.6 and 4.0 µm particles (TMP 0.4 bar).
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Figure 6.7: The surface load Γ (top) and the relative flux J/J0 (bottom) as a function of time
for bidisperse suspensions with 1.6 and 9.8 µm particles (TMP 0.4 bar).



EFFECTS OF PARTICLE SIZE SEGREGATION ON CROSSFLOW MICROFILTRATION 111

Figure 6.8: The back-transport flux as measured for bidisperse suspensions and compared to
model predictions of three different models, as explained in the text.

flux by subtracting the deposition flux from the actual flux at the corresponding time. The
results are shown in Figure 6.8. The experimental data are compared with the predictions
for three different cases, each with other assumptions for the interaction between the two
different-sized particles.

The first case is based on the assumption that the shear-induced diffusivity of the small
particles is not influenced by the presence of the large particles at all. Most likely, this
will only occur when the concentration polarisation layer is free of large particles, because
otherwise interactions between the small and large particles in this layer are expected to
change the shear-induced diffusivity (Equation 6.1 and 6.3). The back-transport flux for
this first case is consequently calculated with Equation 6.2, with the actual concentra-
tion of small particles in the bulk φb and a fraction of small particles at the membrane
φc =0.6 (as mostly assumed in shear-induced diffusion models for monodisperse suspen-
sions [8, 10, 81]). Because the concentration difference between bulk phase en concentra-
tion polarisation layer is highest, the maximal back-tranport flux is calculated in this way.
In the second case, we assume that the shear-induced diffusivity of the small particles in
the concentration polarisation layer is affected by the presence of large particles. This
implies that the ratio of small to large particles is the same in the bulk phase and in the
concentration polarisation layer (but only the small particles deposit). The shear-induced
diffusivity is calculated according to Ds,i in Equation 6.3, which depends on the actual
ratio of particle sizes. Next, Equation 6.2 is corrected for this change of the shear-induced
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diffusivity by correction of the value of a. Hereafter the back-transport flux is calculated
(Equation 6.2). In the third case, we assume that particle size segregation as measured
in bidisperse suspensions by Lyon and Leal [68] occurs in the feed flow. These authors
found that the region close to the wall was totally depleted of large particles, whereas
the fraction of small particles was equal to that of a monodisperse suspension with the
same total volume fraction of particles. We have therefore taken the total particle fraction
(=φlarge + φsmall) as the bulk fraction φb in our calculations (φc =0.6) and subsequently
calculated the back-transport flux with Equation 6.2.

The three cases described earlier are used to calculate the back-transport flux as a
function of the fraction of small particles. In Figure 6.8, the normalised back-transport
flux (relative to back-transport in a monodisperse suspension) is shown. In the first case,
the normalised back-transport flux is a function of the concentration of small particles
and will decrease with increasing concentration of small particles (Equation 6.3). For
the second case, the normalised back-transport flux is a function of the concentration of
both particles and their size aspect ratio. The curves show an optimal ratio of small to
large particles for back-transport. The third case shows back-transport behaviour which
is independent of the fraction of small particles. The measured back-transport fluxes are
all between 0.64 and 1.33 of the back-transport flux for a monodisperse suspension. The
experimental data are best described by model 3 that takes particle size segregation into
account. The back-transport flux of the small particles in the bidisperse suspension does
not seem to be affected by the particle composition and is equal to that of a monodisperse
suspension with the same total volume fraction of particles. Based on these results, it
can be expected that the steady-state flux 〈Jss〉 of these bidiperse suspensions will also
be equal to that of monodisperse suspensions, which is in accordance with our previous
findings [85]. Measuring the steady-state flux 〈Jss〉 for the suspensions used in this paper
is very difficult, since the flux decline is very slow. Therefore, these measurements were
not carried through till steady-state was reached.

Our CSLM method has given us important clues on the kinetics of particle deposition
during MF and shows that particle size segregation is a factor that can be of importance
while designing MF processes. Whether this is the case is tested in a milk filtration set-up.

6.4.3 Fractionation of milk fat globules

The fractionation of milk fat globules is carried out partly following a patented process
[91], but at much lower flux levels and with a membrane with a relatively large pore size.
The measured TMP is shown as a function of J in Figure 6.9. The TMP increases nearly
linear with J , with an identical slope for the different CFV’s. Moreover, the slope was
identical to the slope for clean water. This indicates that no deposition of fat globules
has taken place and that J is controlled by the membrane resistance solely. Apparently,
the membrane pore size is larger than the fat globule size of the permeating fat globules,
such that they can pass the membrane. The absolute values of the TMP are higher at a
CFV of 7.7 m/s. As can also be concluded from the measurements of the cleanwaterflux,
these higher values are due to the presence of an offset pressure in the system, probably
caused by the placement of the pressure sensors near a pipe constriction, just outside the
membrane module.

At a CFV of 2.6 m/s, the relative fat content of the permeate increased from 0.43
(J=0.069 mm/s) to 0.79 (J=0.42 mm/s) with increasing J (Figure 6.10). The mean par-
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Figure 6.9: Transmembrane pressure TMP as a function of the permeate flux J (crossflow
velocity CFV 2.6 and 7.7 m/s) during MF (5.0 µm, 50◦C, CF 2.5) of milk. The solid lines
represent fit results of linear regression, whereas the dashed lines show the relation between
TMP and J for clean water.

ticle size showed a similar trend and increased from 3.0 to 3.6 µm. At a CFV of 7.7 m/s,
the relative fat content was always lower and the particle size was always smaller. The
increase with J was less pronounced as well. The average values were 0.29 (relative fat
content) and 2.9 µm (median psd).

It is clear that the fat globules are separated on size. As stated above, deposition of fat
globules onto the membrane can be excluded as the cause for this separation. It could be
debated whether the membrane itself could act as a screen, without resulting in particle
deposition. It can be seen in Figure 6.10 that at CFV=2.6 m/s and J=0.42 mm/s, the fat
globule size and the fat content of the permeate approaches that of the feed very near. At
different conditions, but with the same membrane however, the fat globule size and the fat
content of the permeate shifted to totally different values. This effect cannot be explained
with the screening action of the membrane.

The results in Figure 6.10 indicate that particle size segregation takes place. In contrast
to the bidisperse suspensions, for the largest fat globules and CFV=7.7 m/s, the particle
size segregation may not be solely induced by shear-induced diffusion. Because of the
relatively large particle size and high wall shear rate, inertial lift can also play a role. As
can be seen in Figure 6.10, also in this regime, particle size segregation was still evident.
In general, particle size segregation increases with increasing shear rate. This will result
in smaller particle sizes in the region near the wall and consequently in smaller particle
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Figure 6.10: The fat content, relative to the fat content of milk, and the median of the particle
size distribution in MF-permeate as a function of the permeate flux J (crossflow velocity CFV
2.6 and 7.7 m/s) during MF (5.0 µm, 50◦C, CF 2.5) of milk.

sizes in the permeate. In Figure 6.10, the median indeed decreases with increasing CFV
indicating that particle size segregation was more severe at a CFV of 7.7 m/s. Moreover,
an increase of particle size in the permeate can be expected with increasing J (no retention
by membrane), a trend that is expected to be more pronounced at lower shear rates. This
is because a larger part of the crossflow, with larger particle sizes, permeates through
the membrane. Again, this was measured. We can therefore conclude that particle size
segregation is not only significant for bidisperse suspensions, but also for polydisperse
particle fractionation by MF. In such particle fractionation processes, the composition of
the permeate can be controlled with the CFV and J, while the only limitation for the pore
size of the membrane is that it is larger than the largest particles in the feed suspension.

6.5 Conclusions

In order to investigate the shear-induced diffusive behaviour of particles in bidisperse sus-
pensions, as relevant to concentration polarisation in MF processes, we have analysed the
flux and particle deposition onto the membrane. The particle deposition was monitored by
means of on-line CSLM. From the measured deposition rate of the small particles and the
flux, it could be concluded that the back-transport flux of the small particles did not de-
pend on the composition of the bidisperse suspension and was equal to the back-transport
flux of the monodisperse suspension with the same total particle volume fraction. These
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results can be explained with the occurrence of particle size segregation in the feed flow,
leading to an enrichment with small particles of the suspension in the vicinity of the
membrane wall. This conclusion is not only relevant to concentration polarisation in MF
processes, but also to particle fractionation by MF as is shown in a study on the frac-
tionation of milk fat globules. Here, particle size segregation leads to a distinct effect on
the separation characteristics of the process such as particle size and fat content of the
permeate, leading to fractionation of a polydisperse suspension with a membrane having
a pore size that is larger than the largest particle present.

List of symbols

a particle radius, m
CF concentration factor
CFV crossflow velocity, m/s
CWF clean waterflux, m/s
d diameter, m
D diffusivity, m2/s
j migratory particle flux, m2/s
J transmembrane flux, m/s
k dimensionless particle migration parameter in Eq. 6.3
L length, m
Q mass flow rate, m3/s
t time, s
TMP transmembrane pressure, bar
v velocity, m/s

Greek symbols:
γ̇ shear rate, s−1

Γ surface load, ml/m2

λ dimensionless particle migration coefficient in Eq. 6.3
µ viscosity, kg/m.s
φ particle volume fraction

Subscripts:
b bulk
c cake
m membrane
s shear-induced
ss steady-state
t tube
0 nominal
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Particle deposition behaviour on membrane filters is of the utmost importance for the
flux and selectivity. For milk filtration not only the particle behaviour as such but also
the behaviour in time is a factor to take into account. Therefore we applied a differential
analysis to the flux decline during dead-end filtration of latex, casein micelles and milk
fat globules.

Based on our analysis for latex we distinguished two regions, one best described by
pore blocking and one by cake filtration. Besides these two regions, no other time depen-
dent behaviour was observed, as was expected for latex. However, for casein micelles and
milk fat globules various other time dependent effects were observed and quantified.

Pore blocking of an UF membrane by micellar casein was relatively inefficient, as
concluded from the values of the pore blocking parameter of 0.1-0.2. In contrast, the cake
resistance was relatively high, 35 times higher than expected from the Carman-Kozeny
theory. This may be attributed to a decrease of the size of the casein micelles, leading to
the formation of very compact layers. The specific cake resistance of micellar casein was
lower for a MF membrane where depth filtration played a role.

Milk fat globules generate layers with a very high cake resistance, both for liquid and
for partly crystallised fat. For liquid fat, spreading of milk fat globules onto the mem-
brane and deformation of milk fat globules seem to be the main cause for the high cake
resistance. When a large part of the milk fat was crystallised (T=5◦C), partial coalescence
of milk fat globules in the cake layer seems to play a role.

Differential cake analysis proved to be a valuable method for the evaluation of con-
centrated particle layers, resulting in better knowledge about the specific (time dependent)
particle behaviour in these layers. In this way, parameters are identified that are essential
for the design of microfiltration or ultrafiltration processes.

7.1 Introduction

Microfiltration is a widely applied technique in the food and bioprocess industry for the
separation and fractionation of particles in suspensions, such as present in milk. Milk
contains about 15% v/v colloidal particles, mainly casein micelles (proteins) and (emul-
sified) fat globules. The development of the Uniform Transmembrane Pressure (UTP)
concept in the 70’s and 80’s of the last century [90] enabled succesful microfiltration of
this concentrated suspension on an industrial scale. This opened the way for the applica-
tion of microfiltration for e.g. the reduction of bacteria and spores [92], fractionation of
fat globules [91] and the separation of casein micelles and serum proteins in milk [92].

The performance of microfiltration processes is governed by particle deposition onto
the membrane. Therefore, prediction of flux (decline) and separation performance re-
quires a good understanding of this particle deposition process. Not only the deposition
rate, but also the properties of the deposited layer play an important role.

Studies on the properties of deposition layers of (other) proteins [93–97] and emul-
sion droplets [98] are mostly carried out by modelling of dead-end filtration processes
with a constant pressure drop. Two different modelling approaches can be distinguished:
1) based on the filtration equations of Hermia [99], and 2) based on the sieve mechanism
of Flippov [100]. Both approaches recognise two different mechanisms: pore blocking
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and cake filtration. The first mechanism is usually relevant in the beginning of the depo-
sition process, and the second one after the deposition process has progressed for some
time. Both approaches as well as both mechanisms can be expressed in one characteristic
filtration law, describing how the change in resistance ( d2t

dV 2 ) is related to the resistance
(inverse flux, dt

dV
):

d2t

dV 2
= k ·

(
dt

dV

)n

(7.1)

The values of the constant k and the exponent n depend on the filtration mechanism.
For pore blocking, n can vary between 1 and 2, and for cake filtration n=0. The two
approaches of Hermia and Flippov are only different in the formulation of pore blocking.
Hermia distinguishes three blocking mechanisms, complete, standard and intermediate
blocking, each with a fixed value for n of 2, 1.5 and 1 respectively. Flippov uses a single
parameter β (see section 7.2.4) to describe pore blocking for a given filter and suspension.
This parameter has physical meaning: it is the ratio of the area of influence of a particle
above a pore and the pore area itself. In other words, the value of the single parameter is
a measure for the relative flux decline caused by the deposition of a single particle onto
the membrane as related to the relative projection area of this particle on the membrane.
The exponent n does not have a specific value in this approach.

The abovementioned models are valid for non-compacting and non-compressive par-
ticle layers. For soft and polydisperse colloids such as casein micelles and fat globules,
these models may be lacking sufficient detail. Models that do take compaction and com-
pression during a filtration run into account are also available (see e.g. [101–103]), but
these models require detailed data on the concentration distribution in the particle lay-
ers. Since in general, the layers formed during milk microfiltration are very thin, analysis
of the concentration distribution is technically complex. This may be the reason that
presently, no systematic study on the properties of milk deposition layers has been pub-
lished.

In this paper, we present a new differential approach for the analysis of the properties
of deposition layers, based on simple flux measurements in dead-end filtration experi-
ments. In this method, one single flux curve is separated into a series of curves, such
that a time-sequence of flux curves is obtained, each representing a different stage of the
filtration process. The time interval of each stage is taken such that the constant k and the
exponent n can be considered constant. In this way, pore blocking and cake filtration can
be evaluated separately in each stage of the process, but one can also discern the effects
of compaction and compression of the particles on the flux decline in time.

We applied this approach to dead-end filtration of colloidal suspensions of casein mi-
celles and milk fat globules. In this way we focus on the properties of these industri-
ally relevant components, that, surprisingly enough, have not been studied systematically.
With our differential flux analysis approach we were able to quantify the particle be-
haviour and found very large differences between the various particles under study.
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7.2 Materials and methods

7.2.1 Preparation of colloidal suspensions

Latex particles

Three different suspensions were used; suspensions of latex particles, casein micelles and
of milk fat globules. The latex particles (surfactant-free, sulfate polystyrene, density 1.06
g/ml, Interfacial Dynamics Corporation, USA) had mean diameters of 0.42 and 0.60 µm
and were suspended in a mixture of demineralised water with 23.1 % w/w glycerol, which
has the same density as the latex particles. The viscosity of the water-glycerol mixture is
2 mPa·s (25◦C).

Casein micelles

The suspension of casein micelles was prepared from pasteurised skimmilk. The skim-
milk contained 3.6% w/w protein (Kjeldahl method), consisting of 2.7% w/w casein and
0.7% w/w serum protein. The skimmilk was microfiltered (Alfa Laval MFS-1 system,
filtration temperature 50◦C) with a 0.2 µm ceramic MF membrane (SCT Membralox
P19-40, tubular αAl2O3 membrane, tube diameter 4.0 mm, membrane area 0.20 m2) up
to a concentration factor (=Qfeed/ Qretentate) of 7 (viscosity measurements) or of 4 and
subsequently diafiltered (100%) and diluted (100%) with protein-free milkserum (dead-
end filtration measurements), in order to increase the protein purity of the casein micelle
fraction. After MF to a concentration factor of 4 and subsequent diafiltration, a micel-
lar casein suspension was obtained with 6.1% w/w casein and 1.4% w/w serum protein.
Since the voluminosity of casein micelles is about 4 ml/g and of serum proteins about 1.5
ml/g (room temperature) [104], the volumetric protein purity was about 92%. By means
of ultrafiltration (filtration temperature 50◦C) with a membrane with a Molecular Weight
Cut Off (MWCO) of 5 kDa, a protein-free milkserum was obtained from milk, which was
used to suspend the casein micelle fraction. After preparation of both the casein micelle
fraction and the milkserum, a preservative was added after which the liquids were kept at
a temperature of 2◦C. The mean diameter of the casein micelles was 104 nm, as according
to Walstra and others [104]. For viscosity measurements at 50◦C, the voluminosity was
taken equal to 3 ml/g [104]. The viscosity of the milkserum was assumed to be equal to
that of water.

Milk fat globules

Pasteurised cream, prepared by centrifugation of milk, was used as raw material for the fat
globule suspension. To remove protein from the cream, it was diafiltered with protein-free
milkserum (prepared following the aforementioned method). Diafiltration was carried
out batch-wise, with an intensity of four times 100%, using a microfiltration set-up (Alfa
Laval MFS-1 system, filtration temperature 50◦C) with a 0.8 instead of a 0.2 µm ceramic
MF membrane. The ratio of protein to fat (Röse Gottlieb method) decreased from about
0.87 in milk (4% w/w fat) to about 0.02 in the cream after diafiltration. The fat globule
fraction was suspended in the same medium and kept in the same way as the casein
micelle fraction. The size distribution of the fat globules was assessed by laser diffraction
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Figure 7.1: Cumulative particle size distribution of milk fat globule suspension, as analysed
by laser diffraction.

(Mastersizer X, Malvern Instruments, Malvern, UK). The median of the distribution was
3.59 µm (batch I, Figure 7.1) and 3.50 µm (batch II).

Milk fat consists of a heterogeneous mixture of lipids with a melting range between
-30 and +40◦C [104]. At low temperatures, the amount and the morphology of the fat
crystals can vary strongly depending on the (temperature) history of the product. To
exclude temperature history effects in the filtration experiments at 5◦C, the fat globules
were molten and subsequently recrystallised in the following standardised way. The fat
globule suspension was prepared 16 h before the start of the experiment, heated to 40-
45◦C and cooled down and kept at 5◦C.

The concentrations of particles in the suspensions are given in this paper as volumetric
concentrations, unless indicated otherwise.

7.2.2 Viscosity of micellar casein suspensions

Viscosity measurements were carried out at 50◦C with a Physica MCR300 rheometer.
For casein micelle concentrations lower than 0.5, the double gap cylinder geometry DG
26.7 with gap diameters of 0.42 and 0.47 mm was used; for higher concentrations the gap
diameter was 1.13 mm (type CC 27). The measurements were carried out by starting at a
shear rate of 0.01 1/s, increasing the shear rate logaritmically to 1000 1/s and subsequently
decreasing it again to 0.01 1/s. The casein micelle concentrate was measured after storage
at 4◦C. The viscosity in relation to the casein micelle concentration was determined from
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the viscosity in the descending series of shear rates.

7.2.3 Dead-end filtration

For dead-end filtration we made use of a device (type Omegacell, Pall Life Sciences) that
was thermostatted by means of a jacket which was connected to a waterbath. The latex and
micellar casein suspensions were filtered at a temperature of 25◦C, the milk fat globule
suspensions at 5◦C and 45◦C. Compressed air was used to control the transmembrane
pressure. The weight of the permeate was continuously monitored with an analytical
balance connected to a computer. The volume of the membrane cell was 150 ml. The
membrane was placed at the bottom of the cell and had a membrane area of 23.2 cm2.
The membrane material was polyethersulfon (Omega, Pall Life Sciences). Two different
pore sizes were used, a pore size of 0.3 µm and a MWCO of 10 kDa.

7.2.4 Analysis of cake properties

Filtration properties

We distinguish two different mechanisms for flux decline, pore blocking and cake filtra-
tion. For pore blocking, we follow the approach of Flippov and others [100], who derived
the following filtration equation:

V ∗ =
1

β
ln (1 + βt∗) (7.2)

The dimensionless variables V ∗ and t∗ are defined as follows:

V ∗ = γnV and t∗ = γn
dV

dt

∣∣∣∣∣
t=0

t (7.3)

where n is the number of particles per unit volume, V is the permeate volume, t is the
filtration time and γ represents the area ratio of the pore to the filter area:

γ =
πd̄2

4S
(7.4)

where d̄ is the mean pore diameter and S is the filter area. The parameter γ is a single
dimensionless constant for all suspension concentrations and operating pressures. In this
pore blocking model, β is the only parameter that must be identified from experimental
measurement. It represents the ratio of the area of influence of a particle above a pore
and the pore area itself and relates the relative flux decline caused by the deposition of
a single particle onto the membrane to the relative projection area of this particle on the
membrane. For a membrane with distinct circular pores, such as track-etched membranes
and microsieves, β should have a value of slightly larger than unity. For tortuous path
membranes as used in this study, the value of β can also lie between zero and unity
because the fluid has the possibility to flow laterally within the membrane structure.

The value of β was evaluated by regression analysis, minimising the residual sum
of squares between the (smoothed) measured and model fluxes. Smoothing of the mea-
surements was found to be necessary, since the resolution of the weight measurements
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introduced too much noise in relation to the relative short time interval that was used in
the fit. The measurements were smoothed by fitting the measured permeate volume ver-
sus time with a cubic polynomial. Because the value of β is expected to be dependent on
the amount of particles deposited onto the membrane, we have split the initial flux curve
into various stages and assessed β in every stage. The length of the stage matches with the
deposition of a fixed amount of particles. This fixed amount corresponds to one deposited
layer of average-sized particles with a volume fraction of 0.6. In this way, values for β are
obtained for each “separate layer”. For the latex and micellar casein suspensions, β was
analysed for the first up to the tenth layer, and for the milk fat globule suspensions for the

first, second and third layer. The value for the initial flux dV
dt

∣∣∣
t=0

was reset at each stage.

For cake filtration a comparable approach is used. The equation for the flux during
dead-end microfiltration with a constant pressure drop is [105]:

J (t) = J0

(
1 +

2R̂c φs ∆p t

(φc − φs) η0 R2
m

)−1/2

(7.5)

where J is the permeate flux, R̂c is the specific cake resistance, φs and φc are the particle
fraction in the bulk and in the cake respectively, ∆p is the transmembrane pressure, η0 is
the viscosity of the particle-free medium and Rm is the membrane resistance. The initial
flux J0 is given by:

J0 =
∆p

η0 Rm
(7.6)

When the cake resistance is the dominating resistance, the equation for J (t) as well as
the corresponding equation for V (t) reduce to power law functions of t, with slopes
of -0.5 and 0.5, respectively, in a log-log plot. Here, the values of R̂c and φc need to
be determined from measurements. Since we cannot determine them independently, we
consider them as coupled parameters. A least squares fit on the fluxes (no smoothing) was
carried out to assess R̂c and φc. The flux curve was again split into various stages. For
the latex and micellar casein suspensions, the stages comprise five particle layers from
2.5-7.5, 7.5-12.5, 12.5-17.5, etcetera up to 42.5-47.5 particle layers thick. For the fat
globule suspensions, the stages comprise a one-particle thick layer, from layer 1 up to 12.
During cake filtration of monodisperse suspensions of rigid spherical particles, the values
for R̂c and φc are constant and pressure-independent. The specific cake resistance R̂c can
be estimated with the Carman-Kozeny equation, which is given by:

R̂c =
K (1− εc)

2 S2
c

ε3c
(7.7)

where εc is the void fraction of the cake, and Sc is the solids surface area per unit volume
of solids in the cake. For rigid spherical particles of radius r, the specific surface area is
Sc = 3/r, the void fraction of a randomly packed cake is εc ≈ 0.4 (so φc≈ 0.6), and the
constant K is reported to have a value of 5.0. For polydisperse suspensions, Thies-Weesie
and Philipse [106] developed the following equation:

R̂c =
C (1− εc)

2

ε3c

1

[1 + 4σ2] 〈r〉2 (7.8)
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where C is a constant with a value of 45, 〈r〉 is the number-averaged radius, and the
standard deviation σ is equal to:

σ =
〈r2〉 − 〈r〉2

〈r〉2 (7.9)

In case of compaction or compression, R̂c and φc are not constant during filtration, but
increase with the amount of deposited particles. The increase of R̂c and φc reflect both
the properties of the newly deposited layer(s) and the changes in the existing layer(s).

Both for pore blocking and for cake filtration, and for every fit procedure, the 95%
confidence interval of the fit parameter was determined. Sometimes, this 95% confidence
interval was relatively large, for instance due to start-up effects or pressure fluctuations.
Therefore, it was decided to exclude values if the confidence interval was larger than ±
50% of the fit parameter itself.

Fat content milk fat globule layer

For the analysis of the fat content of the milk fat globule layer, a filtration run was carried
out at a temperature of 5◦C and a TMP of 2.2 bar. After the total suspension was filtered
and only a cake layer of fat globules was left on the membrane, this cake layer is collected
and analysed with NMR. 1H-NMR experiments were carried out on a Bruker DRX500
spectrometer operating at 500.13 MHz. Spectra were taken at 21◦C, using 90◦ pulses and
a relaxation delay of 30 s. Samples were prepared by dissolving 45 mg of the milk fat
sample in 1.5 g CDCl3 and separation of the chloroform layer by centrifugation at 14000
g for 5 min. The signal of residual CHCl3 was used as an internal reference. The fat
content was determined by comparing the intensity of the glycerol-CαH2 resonance of
the milk fat sample with that of a butter sample with a known fat content.

7.3 Results

7.3.1 Latex suspensions

Figure 7.2 shows the collected permeate volume as a function of time for latex suspen-
sions with 0.42 µm particles. The order of the relation varied from 0.8 at the start, to 1.0 a
short time later and to 0.7 at the end of filtration. This indicates that the volume increase
is relatively fast at the start, accelerates slightly and then slows down gradually during
filtration. Because both pore blocking and cake filtration do not necessarily give constant
orders, it cannot be assessed where either mechanism prevails. Therefore, we applied our
differential cake analysis method to these data in order to determine the respective model
parameters.

For pore blocking as well as cake filtration, different stages of the flux curve are fitted.
Figure 7.3 shows the measured values together with the fitted model lines. Fits with the
pore blocking model are used for the first ten particle layers. These layers were formed
within 0.5 h. Due to start-up instabilities, the fit line for the first particle layer could not
be assessed, but for the others (up to particle layer 10) β has a value between 0.016 and
0.021 (Figure 7.4), and shows a tendency to increase slightly with increasing number of
particle layers. The values are much lower than 1.0, indicating that the particles block
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Figure 7.2: Permeate volume versus time during MF (TMP 16 mbar) of a latex suspension
(0.42 µm, 3*10−6%).

the membrane rather inefficiently. This is probably related to the tortuous membrane
structure, which allows lateral flow of the fluid in the membrane structure. The flux
decline per formed layer is fairly equal.

The cake filtration model is fitted over a trajectory corresponding with 2.5 up to 47.5
particle layers. For the cake filtration model, R̂c is shown in Figure 7.4, which is calcu-
lated for φc =0.6. The values of R̂c are slightly scattered. Except for the first 10 particle
layers of the 0.42 µm particle, R̂c is found to be independent of the number of particle
layers. The mean values for R̂c are 8.2*1015 (0.42 µm particles) and 5.5*1015 (0.60 µm
particles) 1/m2. This is comparable to the values predicted by the Carman-Kozeny model:
5.7*1015 (0.42 µm) and 2.8*1015 (0.60 µm). The fact that the measured R̂c is slightly
higher than the predicted values can be attributed to particle polydispersity.

The differential cake analysis method thus enables us to analyse the evolution of the
cake properties during a filtration run. The constant value of R̂c indicates that no com-
pression or compaction occured, which is in accordance with expectations. The slightly
lower values of R̂c for the first 10 particle layers could indicate that the (pure) cake fil-
tration regime had not started yet, but that pore blocking is the prevailing mechanism.
This agrees with the constant values found for β, and with the findings of Kosvintsev and
others [107], who found cake filtration for 12 and more particle layers.
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Figure 7.3: Comparison of measured flux and model lines according to the differential cake
analysis method. The symbols represent the measured flux (MF, TMP 16 mbar, latex 0.42 µm,
3*10−6%), the bold lines the fits of the pore blocking model and the normal lines represent
the fits of the cake filtration model.

7.3.2 Micellar casein suspensions

Pore blocking and cake filtration

Compared to MF of a 0.42 µm latex suspension, the order at the start of filtration of a
micellar casein suspension is similar (0.8), whereas at the end a much larger part of the
curve follows an order of 0.7 (results not shown). This latter point indicates that the ratio
of cake resistance to membrane resistance was higher for filtration of micellar casein than
of 0.42 µm particles, since the order is 0.5 for a negligible membrane resistance. It is
however not yet clear whether this is an effect of the first particle deposition layers or of
later formed layers.

From the permeate flux decline (Figure 7.5), it is found that the flux decline was less
gradual than for latex particles. At the start, the flux decline was very fast, but slowing
down strongly after about 0.15 h. This indicates that the specific resistance of the deposit
is relatively high. In order to investigate whether compaction or compression occurs, the
influence of TMP was determined as well by differential flux analysis.

The values for β are higher than for the latex particles (Figure 7.6), indicating that
the casein micelles block the membrane more effectively than the latex particles. No
clear effect of TMP on β is observed. The more effecive blocking may be due to: 1) the
relatively large size of the micelles as compared to the pores, so that they do not enter
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Figure 7.4: Overview of the fit parameters β and R̂c (calculated under the assumption that
φc =0.6) as a function of the amount of latex (0.42 and 0.60 µm) deposited onto the mem-
brane during MF at a TMP of 16 mbar.

the membrane and occupy a maximum area on the membrane and 2) the high packing
density of the micellar casein layers. During the formation of the first seven particle
layers, β seems to increase slightly, while β decreases when 7-10 particle layers have
formed (TMP higher than 0.5 bar). The reason for this change is not totally clear, but it
may indicate a flux-dependent cake morphology.

The mean R̂c (12.5-47.5 particle layers) was 3.3*1018 1/m2, which is 400-600 times
higher than that of the latex particles (Figure 7.6). The Carman-Kozeny equation gives
9.4*1016 1/m2, so the measured value is approximately 35 times higher. No clear trend
is observed for R̂c as a function of number of particle layers or TMP, which indicates
that compaction or compression does not play a major role. The relatively high value for
R̂c may be caused by particle polydispersity but also by a change of the specific micelle
volume. Casein micelles are highly swollen particles which contain around 75% water.
The outer layer exists of a “hairy” layer of hydrophilic κ-casein tails, which is relatively
even more voluminous. Mechanical interparticle forces and hydrodynamic forces may
therefore lead to shrinkage and/or deformation of the micelles when present in a concen-
trated suspension, and thus result in very dense layers. The shrinkage and/or deformation
may occur so quickly that no dependency of TMP or the layer thickness is observed in
the experimental parameter regime. Such a behaviour can be evident from the viscosity
at higher concentrations.

Therefore, the viscosity of micellar casein suspensions was measured as a function
of the concentration of casein at different shear rates (Figure 7.7). The casein volume
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Figure 7.5: Permeate flux as a function of time for UF of a micellar casein suspension
(0.0024%) at a TMP of 0.5, 1.0, 1.5 and 2.0 bar.

fraction was calculated with a voluminosity of 3 ml/g and ranged between 0 and 0.76.
The micellar casein suspensions were shear thinning; at a shear rate of 10 1/s, the relative
viscosity increased to about 17 and 13000 at casein volume fractions of 0.37 and 0.76
respectively, but at a shear rate of 1000 1/s, the relative viscosity was about 6 and 560 at
similar concentrations. In theory, at a concentration of 0.74, the viscosity as described by
the Eilers model has an asymptote, whereas the measured values increase more gradually.
These results indicate that micellar casein suspensions can be highly concentrated, but
that they also are very shear-sensitive. This can be due to a stress-dependent voluminos-
ity of the casein micelles, possibly in combination with attractive interactions between
the micelles. The viscosity measurements thus confirm our hypothesis that the specific
micellar volume may have decreased in a cake layer.

When micellar casein suspensions are filtered over the MF membrane, the flux decline
differs from that of the UF membrane (Figure 7.8). At the start of filtration, the flux
decline was less steep. This is also clear from the values of β (Figure 7.9), which are
smaller for MF, especially for the first particle layer. R̂c was about 10-35 times smaller
than for UF. Since the mean pore size of the MF membrane was about 3 times larger than
the size of the casein micelles, while the retention of casein micelles was verified to be
equal to 1.0, it is most likely that depth filtration was an important filtration mechanism
here. During depth filtration, casein micelles deposit in the internal pore structure of the
membrane, which apparently leads to relatively small specific cake resistances, depending
on the filtration velocity. The low TMPs seem to correspond to low R̂c’s while the high
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Figure 7.6: Overview of the fit parameters β and R̂c (calculated under the assumption that
φc =0.6) as a function of the amount of casein deposited onto the membrane during UF at a
TMP of 0.5, 1.0, 1.5 and 2.0 bar.

TMPs correspond to high R̂c’s. The results thus show that different membrane structures
can lead to large differences in flux decline, even for permeate fluxes of the same order of
magnitude, and that the membrane used has a big influence on the behaviour of the cake
layer formed.

7.3.3 Milk fat globule suspensions

During UF of milk fat globule suspensions, the order of the increase of permeate volume
versus time was again 0.8 at the start of filtration, comparable to that of latex and the
micellar casein suspension (results not shown). After about 0.2 h filtration, the order
decreased to 0.5, indicating cake filtration with negligibly small membrane resistance.
The initial flux decline was very fast for the milk fat globule suspension (Figure 7.10), as
is also reflected in the values for R̂c (Figure 7.11). In spite of the relatively large mean
particle size of 3.6 µm, R̂c has a value of 1-7*1018 1/m2, which is of the same order as
for UF of the micellar casein suspension. The Carman-Kozeny model for polydisperse
suspensions (Equation 7.8) predicts a R̂c of 1.4*1014 1/m2, so the experimentally found
R̂c is 9.0-47*103 times larger for the fat globules. On top of that, R̂c increased with
a factor 7 when the TMP was increased from 0.4 to 2.2 bar. The high values for R̂c,
together with the pressure dependency, point to compression of the cake layer, which can
be expected since milk fat is liquid at 45◦C so the droplets can deform easily. Based on
the Laplace pressure, which is given by 2γ/a (γ=interfacial tension), it can be expected
that fat droplets start to deform at a pressure of 0.01-0.1 bar (γ estimated at 1-10 mN/m).
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Figure 7.7: The effective viscosity (=ηsuspension/ηwater) of micellar casein suspensions as a
function of the volume fraction of casein micelles, at shear rates of 10, 100 and 1000 1/s
(temperature 50◦C). Each data point represents the average of two or three different measure-
ments. The lines connecting the data points are drawn as a guide to the eye. The solid line
indicates the viscosity as predicted by the Eilers model, with φmax =0.74.

Although part of the TMP is present over the membrane itself, a TMP between 0.4 to
2.2 bar is expected to be sufficient for deformation of fat droplets. During filtration at
constant TMP, R̂c remained constant between 3 and 12 particle layers formed onto the
membrane, indicating that the deformation of the milk fat droplets did not vary with cake
height.

The values for the pore blocking parameter β are substantially higher than for casein
micelles. For the first particle layer, β has a value of about 1.3, which indicates that the
fat globules spread on the membrane surface. The value of β for the second layer is 0.4.
For the third layer, the value of β seems to exhibit a pressure dependency. These results
show a similar tendency as for R̂c, i.e. that milk fat globules form very compact and
compressible particle layers at a temperature of 45◦C.

The flux curves for UF of milk fat globule suspensions at a temperature of 5◦C are
presented in Figure 7.12. Due to the 2.6-fold higher viscosity, the permeate fluxes are
lower than at 45◦C. The flux decline is again very fast, and R̂c was found to be even higher
than at 45◦C (Figure 7.13). Due to its dependency on TMP, R̂c varied between 4*1018

1/m2 at a TMP of 0.8 bar and 8*1018 1/m2 at a TMP of 2.2 bar. The dependency of R̂c

on TMP is however much less than at 45◦C. Especially at the lowest TMP values, R̂c is
higher than at 45◦C. The fat content of the milk fat globule layer, as analysed with NMR,
was 76%. When both the particle polydispersity and the fat content of 76% are taken into
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Figure 7.8: Permeate flux as a function of time for MF of a micellar casein suspension
(0.0024%) at a TMP of 16, 24, 40 and 60 mbar.

account, according to Equation 7.8, the calculated value of R̂c is 1.1*1015 1/m2, which is
about 7 times higher than when the fat content is 0.6. This can however still not explain
the difference with measured values.

The values for β are slightly higher as well and exhibit a similar trend as for 45◦C.
Based on the fact that about 50-60% of the milk fat is crystallised at 5◦C [108], one would
expect that the milk fat globules are less deformable and form less compressible particle
layers. This does not appear to be true. On the other hand, it is known that partly crys-
tallised fat globules can easily coalesce when they are brought together. This phenomenon
is often referred to as partial coalescence [109], and leads to the formation of a network
of fat crystals, “glued” together by liquid fat. Partial coalescence is known to occur for
instance during the whipping of cream and the churning of butter. Our hypothesis is that
partial coalescence occurs in the cake layers at 5◦C, and that this has a negative effect on
the permeate flux.

The differential flux analysis method proved to be a valuable method for the evaluation
of time-dependent behaviour of particle deposition layers from micellar casein and milk
fat globule suspensions, which are relevant inputparameters for process design.

7.4 Conclusions

In order to analyse the properties of particle depostion layers on membrane filters, a differ-
ential method is applied, which gives an estimate of the properties per layer of particles



132 CHAPTER 7

Figure 7.9: Overview of the fit parameters β and R̂c (calculated under the assumption that
φc =0.6) as a function of the amount of casein deposited onto the membrane during MF at a
TMP of 16, 24, 40 and 60 mbar.

deposited onto the membrane. This enabled the independent assessment of model pa-
rameters of the pore blocking and the cake formation mechanism and allowed for the
detection of compaction or compression during the filtration run. Differential analysis
of deposition layers of latex particles revealed that these did not exhibit compaction or
compression and that the specific cake resistance agreed fairly well with that predicted by
the Carman-Kozeny equation.

The behaviour of casein micelles and milk fat globules was found to differ strongly
from that of ideal hard spheres. This can for example be concluded from the specific
cake resistance, which was in general much higher than predicted by the Carman-Kozeny
equation. For UF of micellar casein, no compaction or compression is observed in the
pressure range studied, but high specific cake resistances are found. This is probably due
to the formation of very compact layers. For a membrane with a much larger pore size
(0.3 µm), the specific cake resistance was about 10-35 times lower than for UF, which
can be ascribed to the formation of particle layers into the membrane rather than on the
membrane. Virtually all casein micelles were retained by the membrane.

The behaviour of milk fat globules differed substantially from the micellar casein. For
temperatures of 45◦C (at which milk fat is liquid) as well as 5◦C (at which 50-60% of
milk fat is crystallised), the value of β for the first particle layer was higher than one,
which probably indicates that the fat globules spread on the membrane surface. The
values of β for the second and third layer were again higher than for micellar casein. At
45◦C, compression was found, such that the specific resistance increased 5 times upon an
increase of TMP from 0.4 to 2.2 bar. At 5◦C, compression was less intense, but the specific
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Figure 7.10: Permeate flux as a function of time for UF (T 45◦C) of a milk fat globule
suspension (0.12%) at a TMP of 0.4, 0.8, 1.2 and 2.2 bar.

resistance was similar to that found at the highest pressures for 45◦C. This, together with
the very high values of β, points to partial coalescence, leading to a network of fat crystals,
“glued” together by liquid fat, comparable to what is also seen during the whipping of
cream and the churning of butter.

A general conclusion is that the properties of the cake layer depend not only on the
properties of the feed suspension and the operating conditions, but on the type of mem-
brane as well.

Differential cake analysis proved to be a valuable method for the evaluation of con-
centrated particle layers and can be used as a method to identify characteristic parameters
of these particle layers. The generated knowledge is not only relevant for the design of
membrane filtration processes but also of other systems where concentrated suspensions
are used.
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Figure 7.11: Overview of the fit parameters β and R̂c (calculated under the assumption that
φc =0.6) as a function of the amount of milk fat deposited onto the membrane during UF
(T 45◦C) at a TMP of 0.4, 0.8, 1.2, 1.6 and 2.2 bar. For the determination of β of the first
particle layer, J0 is not fitted, but calculated according to a value for Rm of 8.4*1012 1/m.
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Figure 7.12: Permeate flux as a function of time for UF (T 5◦C) of a milk fat globule sus-
pension (0.12%) at a TMP of 0.8, 1.2, 1.6 and 2.2 bar.
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Figure 7.13: Overview of the fit parameters β and R̂c (calculated under the assumption that
φc =0.6) as a function of the amount of milk fat deposited onto the membrane during UF (T
5◦C) at a TMP of 0.8, 1.2, 1.6 and 2.2 bar.
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A new computer simulation model is proposed for suspension flow in microfiltration
systems. In this model, the diffusion of the suspended microparticles is governed by the
mechanism of shear-induced migration. Using an Euler-Euler approach, hydrodynamics
and convection-diffusion are simultaneously resolved according to the Lattice Boltzmann
method. The new suspension flow model allows the complete solution of the flow field
(including calculation of the actual local shear rate) in systems with complex geometries
and the application of a pressure gradient over the feed flow channel as well as over the
membrane. The cake layer dimensions and permeability are explicitly taken into account.
For a simple cross-flow system, a comparison is made between the new suspension flow
model and existing models. The more realistic approach of the suspension flow model is
found to be especially significant for the calculation of the cake layer profile at the be-
ginning and the end of the membrane. Also the effect of narrowing of the flow channel
by cake formation on the suspension flow pattern (at a constant pressure gradient over
the flow channel) is more realistically predicted. Finally, some examples are presented
of the concentration polarisation and cake layer formation in microfiltration systems with
more complex geometries. The newly developed suspension flow model has generic ap-
plicability as a design tool for microfiltration membranes, systems and processes. Ex-
tensions of the model to three-dimensional systems (including parallel computations), as
well as adaptations of the diffusion model to anisotropic diffusivity can be relatively eas-
ily achieved.

8.1 Introduction

The performance of microfiltration processes is in general mainly determined by con-
centration polarisation, which arises from the simultaneous transport of non-permeable
species towards and back from the membrane surface. Modelling of flow and concentra-
tion polarisation in microfiltration systems is already often put forward as an important
tool to help understand and optimise these systems. Although numerous filtration models
of varying degrees of complexity and simplification have appeared in literature, most of
them do not apply for microfiltration, due to the different diffusion mechanism in partic-
ulate suspensions as compared to molecular solutions.

As has been identified by Belfort and others [10], for particulate suspensions with
particle sizes between 0.5 and 30 µm, shear-induced diffusion can often be considered
the relevant back-transport mechanism in the concentration polarisation process. Other
back-transport mechanisms are Brownian diffusion and inertial lift, which are respec-
tively dominant for particle sizes smaller than 0.5 µm and larger than 30 µm. This paper
addresses modelling of flow and concentration polarisation in the shear-induced diffusive
regime. Shear-induced diffusion, also called hydrodynamic diffusion, is a transport mech-
anism that is caused by hydrodynamic particle interactions in a suspension in shear flow.
Excluded volume effects can then lead to particle displacements. In contrast to inertial
lift, which is only relevant in the regime where the Reynolds number based on the particle
size is not negligible, shear-induced diffusion occurs in the slow laminar flow regime as
well. A general property of shear-induced diffusion is that it increases proportionally with
the shear rate.
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About two decades ago, shear-induced diffusion was first introduced in relation to mi-
crofiltration theory by Zydney and Colton [110]. Their concentration polarisation model
is based upon the classical Lévèque solution for mass transfer in which they replaced the
Stokes-Einstein diffusivity with the shear-induced diffusivity, as determined from exper-
imental data of Eckstein and others [14]. In the same year as Zydney and Colton, Davis
and Leighton presented a model that describes the transport of a concentrated layer of par-
ticles along a porous wall under laminar flow conditions [7]. In this model, shear-induced
diffusion accounts for the lateral migration of particles away from the porous wall. In-
stead of the approximate fit to the data of Eckstein and others, Davis and Leighton applied
data of Leighton and Acrivos [64] for shear-induced diffusion, which were about 25 times
greater and were shown to better describe the viscous resuspension of a settled layer of
rigid particles in shear flow.

Romero and Davis [8] extended the model of Davis and Leighton from a local treat-
ment of the particle layer to a global model of crossflow microfiltration. This global
model is able to predict the axial dependence of the permeate flux and the thickness of
the concentrated particle layer under steady or quasi-steady operation. The model also
describes under which conditions a stagnant layer of packed particles exists beneath the
flowing layer. In a following step, the global model was converted into a transient model,
which not only describes the steady-state behaviour but also the time-dependent decline
of the permeate flux due to particle layer buildup [9].

In the aforementioned models, particle convection parallel to the membrane walls was
ignored. As a consequence, the models are only valid for very small particle volume frac-
tions in the bulk of the suspension φb. Davis and Sherwood overcame this limitation in
their similarity solution for crossflow microfiltration under conditions where the stagnant
particle layer provides the controlling resistance to flow [81]. In their solution, the stag-
nant particle layer grows like x1/3, where x denotes the dimensionless distance from the
filter entrance. Their solution is however only valid in the situation that the critical length
needed for the stagnant layer to form is much smaller than the filter length. Pelekasis de-
veloped a model which does not have this limitation [111], although his solution is only
valid in situations where the permeate flux can be considered constant over the membrane
length. This model is valid over a wide range of bulk particle concentrations. It is shown
that in the limit where the particle volume fraction in the bulk suspension φb → 0, the
model of Davis and Leighton is recovered.

All the abovementioned models have in common that they assume the bulk flow to
be fully developed Poiseuille flow with a time-independent flow rate. This is valid for
a straight flow channel, when the permeate velocity is much smaller than the average
downchannel velocity of the suspension and when the stagnant layer is much thinner than
half the channel width. These conditions are often not met in reality. First of all, the
flow channel may deviate from perfectly circular or rectangular, e.g. when turbulence
promotors are present. Secondly, when suspensions are filtered with particles that have
a relatively low cake resistance, the cake layer height can become sinificant compared to
the channel half width. Poiseuille flow can still be considered present when the cake layer
height does not vary much along the filter length (and the actual flow velocity profile can
be adapted to the actual channel height). The flow pattern can however easily deviate
from Poiseuille flow when the cake layer height strongly varies along the filter length,
like e.g. at the beginning and at the end of the filter. Thirdly, the flow pattern can also
be time-dependent, such as when oscillating cross-flow or backpulsing is applied. One
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should moreover realise that, in contrast to Brownian diffusion, shear-induced diffusion
depends linearly on the shear rate. Local deviations of the flow field from Poiseuille flow
will therefore have a large influence on the local morphology of the flowing and stagnant
particle layer.

This indicates that a more generic model with broad applicability to membrane sys-
tems requires an accurate, more detailed solution of the fluid flow field. This is possible
with computational fluid dynamics (CFD). So far, this technique is not often applied to
membrane systems. Recently, Wiley and Fletcher [112] succesfully developed a generic
CFD model that incorporates the flow across the membrane wall. In their article, they also
reviewed earlier attempts in this field, which in general lead to less generic solutions than
their model. Another recent approach is that of Richardson and Nassehi [113]. These
authors developed a finite element model for the solution of concentration profiles in flow
domains with curved porous boundaries. Although both models may be extensible to
modelling of concentration polarisation in microfiltration processes, with shear-induced
diffusion as back-transport mechanism and with cake layer formation, up to now no re-
sults on this subject have been published.

The present work is directed at the development of a CFD model for flow and con-
centration polarisation in microfiltration systems with shear-induced diffusion as back-
transport mechanism. We apply the Lattice Boltzmann (LB) method for this aim, which
is based on kinetic theory, the physical theory describing the dynamics of large systems
of particles. The LB method, being a discrete version of the Boltzmann equation, is in
special cases identical to the finite volume scheme as used by Wiley and Fletcher [112].
Both methods can be applied for laminar as well as turbulent flows. The LB method
may however have some advantages when compared to other finite difference schemes.
Complex geometries can be quickly set-up and easily used in the LB method, while in
other methods, the use of complex geometries is a major issue. The LB method is also
very convenient for systems with moving boundaries and multiphase systems such as fluid
flow with suspended particles. In the present work, this may be relevant for the simulation
of rapidly growing, flowing and stagnant layers. Finally, LB schemes can be very easily
implemented on a parallel computer, which facilitates computations of large systems.

Although the LB simulations can be easily carried out in three dimensions, as a first
step, the present work presents results on two-dimensional (2D) systems. In order to val-
idate the model, the simulation results are compared with results of approximate models
when appropriate. Hereafter, the effects of some variations in the geometry on the flowing
and stagnant particle layers and the resulting flux will be shown.

8.2 Computer simulation method

8.2.1 Suspension flow model

The suspension flow model is based on an Euler-Euler description of the system, in which
both the hydrodynamics and the suspension flow are completely resolved. The hydrody-
namics are calculated according to the continuity and Navier-Stokes (NS) equations:

∂ρ

∂t
= � · ρu

∂ρu

∂t
+ u · �ρu = −� p+ ν �2 ρu+ F (8.1)
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where − � p is the pressure gradient and F is the body force. The LB method solves
the NS equation for weakly compressible conditions, therewith behaving as a pseudo-
compressible scheme [114]. An advantage of this approach is that the Poisson equation
does not need to be solved for the pressure. For the calculation of the NS equation, the
kinematic viscosity ν (= η/ρ, with η representing the dynamic viscosity) of the fluid
needs to be known. In our suspension flow model, we took into account that the viscosity
η depends on the local concentration of suspended microparticles. Hereto, a model is
used that is also applied by Romero and Davis [8]:

η(φ) = η0

[
1 + 1.5

φ(
1− φ

0.6

)
]2

(8.2)

where φ represents the particle volume fraction and η0 the viscosity of the particle free
medium. In our suspension flow model, the feed for the microfiltration process consists of
a particulate suspension with particles of a size between 0.5 and 30 µm. These suspended
particles are described as a component that is continuously distributed in the fluid. Their
distribution over the system is calculated according to the convection-diffusion equation:

∂φ

∂t
+ u · �φ = D �2 φ (8.3)

The velocity field u is calculated according to the NS equation. In our simulations, the
diffusion coefficient D represents the shear-induced diffusion coefficient, following the
shear-induced migration model of Leighton and Acrivos [8, 64]:

D = 0.33γ̇a2φ2
(
1 + 0.5e8.8φ

)
(8.4)

where γ̇ is the shear rate and a is the radius of the suspended particles. Both the vis-
cosity η and the shear-induced diffusivity D are treated as time and location dependent
variables in our suspension flow model. In order to resolve the NS equation as well as the
convection-diffusion equation the LB method is followed, which is explained in the next
two paragraphs.

8.2.2 Lattice Boltzmann method for hydrodynamics and convection-
diffusion

For a general introduction to the LB method, we refer to Succi [34]. In this article, we will
explain relevant aspects of our method, without going into much detail. Hydrodynamics
and convection-diffusion were solved with two separate LB schemes. Here, we will first
introduce the LB method for the case of hydrodynamics.

The LB method discretises kinetic theory by collecting fluid mass in discrete lattice
gas particles, locating these particles on points of a regular lattice and moving the particles
according to a finite, discrete set of velocities, taking them to adjacent lattice points. As a
consequence of this discretisation procedure space, time and particle velocity are discrete
variables. Physical quantities are represented by moments of a particle distribution func-
tion, in contrast to finite volume schemes, where physical quantities are represented by
continuous fields. The lattice gas particles behave like real particles: they move and col-
lide on the lattice. Collision occurs when particles encounter each other at a lattice point.
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After collision they move to adjacent lattice points. If this is done within the constraints
of physical conservation laws and with a lattice with sufficient symmetry, real physical
phenomena can be modelled this way.

In analogy with the Boltzmann equation of the classical kinetic theory, the state of the
particles on a lattice point is characterised by the particle distribution function f i(x, t) ,
describing the average number of particles at a particular node of the lattice x, at a time
t, with the discrete velocity ci, which brings the particles in one time step to an adjacent
lattice node. In the simulations described in this paper, the hydrodynamics were solved
with a D2Q9 LB scheme, which is defined on a 2D square lattice with rest particles and
8 non-zero particle velocities. The velocity directions link lattice sites to its nearest and
next-nearest neighbours. The velocity vectors on this 2D lattice are defined as:

ci =




(0, 0) , i = 0(
cos i−1

2
π, sin i−1

2
π
)
, i = 1, 2, 3, 4√

2
(
cos
(
i−1
2
π + π

4

)
, sin

(
i−1
2
π + π

4

))
, i = 5, 6, 7, 8

(8.5)

The particle distribution function contains information on physical properties of the
fluid. The hydrodynamic field’s mass density ρ, momentum density j, and the momentum
flux density Π, being identical to the field’s in the NS equation, are moments of this
velocity distribution:

ρ =
∑

i

fi, j =
∑

i

fici, Π =
∑

i

ficici = ρc2s,fI + ρuu = pI + ρuu (8.6)

The lattice gas particles evolve by collisions and subsequent propagation to neighbouring
lattice sites. This two-step process is described by the following equations:

f ′
i (x, t) = fi(x, t)− fi(x, t)− f eqi (x, t)

τf
+

ciαFα

c2s,f
(8.7)

fi(x +∆xi, t+∆t) = f ′
i (x, t) (8.8)

Here f ′
i (x, t) is the post-colllisional distribution function. The lattice spacing is defined as

∆xi = ci∆t. F is the body force and the speed of sound cs,f is defined by c2s,f = c2/3. In
our simulations, we applied the BGK model [37, 57], which is a simplification of the full
LB model. In this BGK model, the distribution functions are simply relaxed at each time
step towards the local equilibrium distribution f eq

i (x, t) with the relaxation time τf . This
relaxation time τf controls the relaxation of the viscous stress in the fluid and is linked to
the kinematic viscosity ν via:

ν = c2s,f

(
τf − 1

2

)
∆t (8.9)

In our simulations τf , and therewith the kinematic viscosity ν (= η/ρ) of the fluid on each
lattice point was dependent on the local particle concentration, according to Equation
(8.2). The equilibrium distribution f eq

i (x, t) is chosen such that the weakly compressible
NS equations (8.1) are obtained [36]. It can be expressed as a series expansion in powers
of the flow velocity u:

f eqi = ρwi(1 +
1

c2s,f
u · ci +

1

2c4s,f
ūū : cici − 1

2c2s,f
u2) (8.10)
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where ūū is the traceless part of uu, and the double dot product is defined as A : B =∑
α,β AαβBβα. The weight factors are given by w0 =4/9, w1 = w3 = w5 = w7 =1/9 and

w2 = w4 = w6 = w8 =1/36.
The computation scheme for convection-diffusion has a strong analogy with the scheme

for hydrodynamics. The particle distribution function gi(x, t) now contains information
on physical properties of the diffusive component, in our case the suspended particles. For
reasons of clarity, we will refer to fluid particles for the lattice gas particles in the hydro-
dynamics scheme and to suspended particles for the lattice gas particles in the convection-
diffusion scheme. The relevant continuum field derived from the latter scheme represents
the concentration of suspended particles φ:

φ =
∑

i

gi (8.11)

The relaxation parameter in the collision operator of the convection-diffusion scheme is
not related to the kinematic viscosity ν but to the diffusion coefficient D:

D = c2s,g

(
τg − 1

2

)
∆t (8.12)

Here, the speed of sound cs,g is also defined by c2s,g = c2/3. In our simulations, this
diffusion coefficient D represents the shear-induced diffusion coefficient, according to the
shear-induced migration model of Leighton and Acrivos [64], which is given by Equation
(8.4). Since the diffusion coefficient is dependent on the time and location dependent
variables γ̇ and φ, it is recalculated every timestep at every lattice point. The shear rate
γ̇ is calculated from the diagonal vectors of the non-equilibrium part of the distribution
function according to [115]:

−c2s,f
ω

ργ̇ =

i=8∑
i=0

ci,xci,y (fi − f eqi ) (8.13)

Because we considered the diffusion to be isotropic, the absolute value for γ̇ was used for
the calculation of the shear-induced diffusivity D. More recent investigations have shown
that shear-induced diffusion is not an isotropic process, but that the diffusivity depends
on the direction relative to the shear field (see e.g. [19, 27]). Moreover, improved models
have become available for shear-induced migration (see e.g. [16]). Our model can be
easily adapted to implement such modifications of the shear-induced diffusivity models.
We do however not expect that taking into account anisotropy will have a large effect,
since convection is strongly dominant along the flowlines.

Typical for the LB scheme is that the resulting finite difference equation for the evo-
lution of φ is identical to the Lax-Wendroff (LW) finite volume scheme in case of τg=1
[116]. Both the LW and the LB scheme automatically correct for numerical diffusion,
for the LB scheme as a consequence of the constraints for the equilibrium distribution.
If τg �= 1, spurious oscillations, which are present in the LW scheme, are damped in the
LB scheme. The LB scheme therewith behaves like a third order accurate scheme (for
τg �= 1) [116].

In order to have stable calculations, stability criteria have to be met. In the hydro-
dynamics scheme, the grid Courant number Cr, which is a measure for the relative flow
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velocity on the grid, should meet the following condition:

Cr =
u � t

�x
< 1 (8.14)

Also the compression of the medium should be sufficiently small, such that the Mach
number Ma:

Ma =
u

cs,f
� 1 (8.15)

The abovementioned conditions are met by a proper choice of the model parameters in
our system. For the convection-diffusion scheme, the criteria for the diffusivity need
some more attention because of the variation of the diffusivity with the shear rate and
the concentration of suspended particles. The Fourier number Fo∗ is a measure for the
diffusion velocity on the grid:

Fo∗ =
D � t

�x2
≤ 0.5 (8.16)

We have chosen our model parameters such that even when D is maximal in our system,
this condition is met. Also the ratio between convection and diffusion is subjected to a
stability condition. The timescale of diffusivity needs to be sufficiently fast compared to
convection, which is reflected in the grid Peclet number Pe∗:

Pe∗ =
u � x

D
≤ 25 (8.17)

Because the LB method behaves as a third order accurate scheme, the limiting value can
be higher than the common value of 2. We have estimated the value of 25 ourselves by
carrying out simulations with different maximal values for Pe∗. When Pe∗ >25, spurious
oscillations were sometimes found, leading to anomalous results. Because of its depen-
dency on the shear rate and the concentration of suspended particles, the shear-induced
diffusivity D can strongly vary in our system. In order to meet the condition for Pe∗, the
value of Pe∗ was calculated at every time-step and at every node of the lattice. When the
condition Pe∗ <25 was not met, the diffusivity was locally adjusted such that Pe∗ =25.
The consequence is that D cannot become zero (as e.g. in the center of the flow channel,
where the shear rate is equal to zero), but has a certain minimum limit, depending on
the actual flow velocity u. When u is relatively high, such as in the center of the flow
channel, the minimum limit for D is also high. In our system, the maximal flow velocity
in the channel and therewith the shear rate at the wall was so high, that D did not need to
be adjusted in the largest part of the concentration polarisation layer. Only in the center
area of the flow channel with relatively high flow velocity and where the concentration
of suspended particles φ was lower than about 0.10, might the diffusivity be set slightly
higher than according to the shear-induced migration model. The effect of this correction
on the simulation results was however found to be negligibly small.

8.2.3 Initial and boundary conditions

In figure 8.1, the geometry of the microfiltration system is depicted. Its geometry and
dimensions are inspired on the newly emerging class of micro-engineered membranes,
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Figure 8.1: Lay-out of the 2D microfiltration system. Black lines indicate solid walls,
whereas grey lines indicate pressure boundaries. A detailed description is given in the text.

called microsieves [31]. The feed side consists of a rectangular flow channel with a length
L of 90 µm and a height 2H0 of 36 µm.

A cross-flow is induced by a pressure gradient (pin − pout)/L over the channel of 3.0
Pa/µm, which results in U0=0.32 m/s and γ̇wall,0=54000 s−1. The permeate side consists
of a rectangular box with a width L of 90 µm and a height Hp of 2.4 µm. At the wall
underneath the membrane, a constant pressure is applied, such that the average TMP was
1780 Pa. The feed and the permeate side are separated from each other by a wall with a
thickness δm of 1.2 µm. From the flow inlet side (left) up to the flow outlet side (right),
this wall consecutively consists of 15 µm solid wall, 45 µm membrane and 30 µm solid
wall. The membrane resistance Rm was 1.62*108 m−1. The feed suspension contained
particles with a radius a of 2.5 µm in a volume fraction φ of 0.05. The viscosity µ and
specific cake resistance R

′
c were calculated according to Equation (8.2) and (8.23). At the

inlet and the outlet of the flow channel as well as at the permeate side, pressure boundary
conditions are applied. This is done following the method proposed by Zou and He [117].
The pressure is kept constant at these boundaries:

p (x = 0) = pin; p (x = L) = pout; p (y = 0) = ppermeate (8.18)

The transmembrane pressure (TMP) is defined as the pressure difference between the flow
channel and the permeate side at a position halfway the membrane (x = L0) and, when
assuming a linear pressure gradient, is given by:

TMP = pin − L0

L
(pin − pout)− ppermeate (8.19)
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For the suspended particles, boundary conditions with a fixed inlet concentration and a
free outflow are applied at these boundaries, according to:

φ (x = 0) = φb;
∂φ (x = L)

∂x
= 0 (8.20)

There is no need for a boundary condition for suspended particles at the permeate side
(y=0), since a no-flux condition is applied at the membrane. At the solid walls at the top
side of the feed side and at the left and right side of the permeate side no-slip conditions
are applied to the fluid. The suspended particles are subjected to a no-flux condition at
these boundaries.

The geometry is divided into a feed and a permeate side by the presence of a horizon-
tally placed membrane. The membrane is placed between two solid walls at the beginning
and the end of the flow channel. The suspended particles are fully retained by the mem-
brane, by application of no-flux conditions. For the fluid, the membrane is described as
a porous medium. The fluid experiences a hydraulic resistance when passing the mem-
brane, because part of the fluid is retained. Hereto, a body force F is applied on the fluid
when passing the membrane, following Darcy’s law:

F = − ρu

Kmembrane
(8.21)

The coefficient Kmembrane is dependent on the membrane resistance Rm, the membrane
thickness δm and the viscosity of the fluid phase, according to:

1

Kmembrane
= η

Rm

δm
(8.22)

During filtration, a high concentration of suspended particles may be reached at the
membrane surface, which may subsequently lead to the formation of a stagnant cake
layer. Suspensions with monodisperse, hard spherical particles form a cake layer when
the concentration reaches a value of 0.60. This cake layer behaves as a porous medium;
suspended particles are fully retained by the cake, while the fluid experiences a flow
resistance. In our simulations, this process of cake layer formation is simulated in a
similar way. When the concentration of suspended particles locally exceeds a value of
0.60, the respective lattice point is described as a porous medium, in a similar way as
the membrane. No-flux conditions are applied for the suspended particles, while the fluid
experiences a body force as given by Equation (8.21) with the coefficient Kcake. This
coefficient is chosen such that the Carman-Kozeny relation is obeyed:

1

Kcake
= ηR

′
c = η

C (1− εc)
2 S2

c

ε3
c

(8.23)

The Carman-Kozeny relation describes the specific cake resistance of a monodisperse,
non-compressible cake with porosity εc, specific surface Sc = 3/a and constant C. Ran-
domly packed cake layers normally have a porosity εc ≈ 0.4, while the constant C ≈ 5.
Not only the stagnant cake layer, but also the flowing concentrated layer can be consid-
ered a porous medium. In general, the flow resistance of this layer is negligibly small.
Therefore, we have neglected this effect, as is usual in MF modelling [10].
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The initial conditions of the simulations are consistent with a fully developed parabolic
velocity profile for the fluid particles in the flow channel, following Poiseuille type flow
by a downchannel pressure gradient:

−dp
dx

= 3
ηbU0

H2
0

(8.24)

where ηb is the viscosity in the bulk of the suspension, U0 is the average flow velocity, H0

is the channel half width. The concentration of suspended particles in the flow channel
was initially equal to the bulk concentration. At the permeate side of the membrane, the
initial velocity of the fluid particles as well as the concentration of suspended particles
was equal to zero.

8.3 Results

8.3.1 Simulation of microfiltration with the suspension flow model

In this section of the paper, we will first present results of the suspension flow model
on the effect of transmembrane pressure. In this way, the development of the permeate
flux in time is analysed at conditions with and without the presence of a cake layer. It
is also investigated whether a steady-state situation occurs. The suspension flow model
is compared with the existing model of Romero and Davis [8] and Davis and Sherwood
[81], in order to validate our model. This comparison is made on basis of the position-
dependence of the flux and cake layer thickness in the steady-state regime so as to analyse
the differences in cake layer profile along the membrane between the different models.
To make comparison with the similarity solution of Davis and Sherwood possible, the
simulations were carried out in the regime where the cake layer is thin compared to the
channel height. Finally, we will step from a simple cross-flow system to systems with a
more complex geometry, in order to illustrate the advanced possibilities of the suspension
flow model compared to existing models. As examples of systems with a more complex
geometry, simulation results of the steady-state flux will be presented of a system with
a discontinuous membrane, a system with flow barriers and a system with a corrugated
membrane. The permeate flux J in the simulation results is equal to the fluid velocity
u underneath the membrane. The length-averaged flux 〈J〉 is the average permeate flux
over the length of the membrane.

8.3.2 Effect of transmembrane pressure on flux and cake layer for-
mation

In figure 8.2, the development of the length-averaged flux 〈J〉 in time is shown for differ-
ent transmembrane pressures (TMP). The initial flux increases proportional to the TMP.
At a TMP of 1180 Pa, the flux 〈J〉 remains constant in time. Here, the transport of
suspended particles towards the membrane is too low to cause cake layer formation. At a
TMP of 1780 Pa and higher however, the flux 〈J〉 declines in the initial phase, but reaches
a steady-state at about 0.01 s. Figure 8.2 also shows the flux at t=0 as calculated from the
membrane resistance and TMP (=flux particle-free medium J0). This makes clear that the
cake formation process does not start immediately at t=0, but about 1 ms later. This is due
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Figure 8.2: The length-averaged flux as a function of time for a transmembrane pressure of
1180, 1780, 2980 and 4180 Pa. Other system parameters as in figure 8.1. The calculated
values for J0 are depicted as circles on the Y-axis.

to the time required to develop the concentration polarisation profile. The steady-state
concentration distribution near the membrane is presented in figure 8.6.

In accordance with the fluxes in figure 8.2, it can be seen that the cake is thickest at
the highest TMP (4180 Pa), namely 5.7 µm, while no cake is formed at a TMP of 1180
Pa. The cake gradually increases in thickness along the membrane, reaches a maximum
thickness at about 2/3 of the membrane length and then decreases to a thickness of zero at
the end of the membrane. The cake at the end of the membrane is steep. The concentration
polarisation layer follows more or less the shape of the cake layer. It has a thickness of
about 5 µm, which is equal to 1 suspended particle diameter in this case. It can be seen that
the concentration change is relatively fast at low particle concentrations, which results in
a sharp transition from concentration polarisation layer into bulk phase. This effect is due
to the dependence of the shear-induced diffusivity on φ, and is different from Brownian
diffusion-dominated concentration polarisation. Behind the membrane, the concentration
polarisation layer disappears only very gradually. The difference between the length-
averaged steady-state flux 〈Jss〉 at 1780 and 4180 Pa (see also figure 8.3) can mainly be
explained with the relative length of the cake-free zone at the beginning of the membrane,
but differences in the cake-morphology at the end of the membrane and the narrowing of
the flow channel by the cake formation may also have some effect.

At lower TMP, the length of the cake-free zone is relatively long so that in a large
part of the membrane the maximum particle concentration at the membrane wall has not
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Figure 8.3: Length-averaged steady-state flux as a function of transmembrane pressure. Also
indicated is the calculated line for the nominal flux 〈J0〉. System parameters as in figure 8.2.

reached the value of 0.6, which leads to less back-transport of suspended particles and
therewith to a lower steady-state flux. At higher TMP, the cake-free zone disappears
completely (which is contrary to the model of Romero and Davis). In this regime, the
difference in cake height can also contribute to the difference in steady-state flux 〈Jss〉.
We can take the situation at a TMP of 2980 Pa as an example. Here the maximal thick-
ness of the cake is 3.0 µm, which is about 8% of the total channel height. The pressure
gradient ∆p over the channel is kept constant, so if we assume that the channel height has
decreased with 8% over the total channel length, the crossflow velocity U will decrease
according to:

∆p = f · L

Dh

· 1
2
ρU2 (8.25)

where f is the friction factor, L the length of the flow channel, Dh the hydraulic diameter
and ρ is the fluid density. Since it follows that the velocity only decreases with a factor√
0.92 = 0.96, it becomes clear that according to:

γ̇wall =
2Umax

H0

(8.26)

the shear rate at the wall γ̇wall will be raised locally with about 4% by the presence of
the cake layer (compared to the situation without a cake layer). This higher shear rate
can cause a thinner concentration polarisation layer and faster particle back-transport (a
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higher shear-induced diffusivity), therewith resulting in a higher steady-state flux 〈Jss〉.
This behaviour results in a steady-state flux 〈Jss〉 as a function of TMP as presented in
figure 8.3. At low TMP, no cake layer is formed so that the flux follows the linear trend
for the particle-free medium. At a TMP of 1780 Pa, a cake layer starts to be formed, so
that the flux 〈Jss〉 levels off and becomes almost constant at a TMP of 3600 Pa.

These results show that the suspension flow model is not only able to simulate the
flux and cake layer formation in time, but also the dependence on TMP. This is not only
possible in the limits of infinitely thin cake layers or infinitely small flux decline, but also
in transient regimes, as described in the model of Romero and Davis [8, 9].

8.3.3 Position-dependence of flux and cake layer thickness

The suspension flow model incorporates a number of factors that are neglected in the
model of Romero and Davis [8], such as 1) the variation of TMP over the length of the
membrane, 2) the fully resolved velocity field following NS and 3) the axial migration
of suspended particles between the bulk phase and the concentration polarisation layer
(which e.g. enables the calculation of the dispersion of the concentration polarisation
layer at the end of the membrane). In this paragraph, we will analyse which differences
this brings about for the cake layer thickness and the flux. In the situation of an infinitely
thin cake layer, and for a distance along the membrane x � xcr, where xcr is the length
of the cake-free zone at the beginning of the membrane, Romero and Davis predict that
the steady-state flux decreases along the membrane with the distance x, as given by:

Jss (x) = J0 ·
[
3

2
· (x− xcr)

xcr

+ 1

]−1/3

(8.27)

where J0 is the nominal transmembrane flux (=flux of particle-free medium). According
to the similarity solution of Davis and Sherwood [81], under the conditions of φb <0.1,
cake-dominated resistance and L � xcr, the length-averaged flux 〈Jss〉 is given by:

〈Jss〉 = 0.072 · γ̇wall,0 ·
(

φc · a4

φb · Lm

)1/3

(8.28)

where γ̇wall,0 is the nominal shear rate at the wall, φb the bulk particle volume fraction and
Lm is the total membrane length. For the particle volume fraction in the cake φc (=1− εc)
a value of 0.6 was taken in our calculations.

First, the flux Jss of the suspension flow model is compared with the model of Romero
and Davis (figure 8.4). The latter model does not take the pressure drop over the flow
channel into account, so that the flux Jss is equal to the flux of the particle-free medium
(at the average TMP) from the beginning of the membrane until the critical distance xcr.
Behind this point, the flux declines as predicted by Equation (8.27). In the computer sim-
ulations, conditions are chosen such that the cake layer did not become thicker than 10%
of the channel height, so that γ̇wall can be considered constant in time. In the suspen-
sion flow model, the critical distance xcr and the flux at the beginning of the membrane
are dependent on the total membrane length. This can mainly be ascribed to the vari-
ation of TMP over the length of the membrane; since the average TMP is similar, the
TMP at the beginning of the membrane is higher with longer membrane lengths. Due to
these differences in TMP, the flux Jss also drops off more quickly for longer membrane
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Figure 8.4: Steady-state flux as a function of position along the membrane for total mem-
brane lengths between 90 and 360 µm. Also indicated is the calculated line for the steady-
state flux as predicted by the model of Romero and Davis (Equation (8.27)). Other system
parameters as in figure 8.1.

lengths. At the end of the membrane, the flux exhibits a peak due to the dispersion of the
concentration polarisation layer.

In figure 8.5, it is shown how the length-averaged steady-state flux 〈Jss〉 depends on
the membrane length. For short membrane lengths, the difference between the suspension
flow model and the model of Romero and Davis is relatively large. At a membrane length
of 90 µm, the flux was almost 30% higher for the suspension flow model. The fluxes are
however practically the same at longer membrane lengths, indicating that differences in
cake layer formation between the models mainly occur at the beginning and the end of the
membrane. This is in accordance with our expectations, since axial convective transport
can be expected to be most relevant in these regions. With increasing membrane length,
there is an increasing difference between the fluxes at different TMP. An increase of TMP
can apparently lead to a more than proportional growth of the cake layer with eventually
a lower flux. This may be due to the decrease of the mass flow rate Q (= 2U ·H0) through
the flow channel at higher TMP. The decrease of flux with increasing TMP does not agree
with the expected effect of narrowing of the channel as explained in paragraph 8.3.2, since
we then would expect an increase of γ̇wall and therewith an increase of the flux as well.
As explained before, the effect of narrowing of the channel by cake formation will lead
to a lower cross-flow velocity but a higher shear rate at the place where the cake layer is
at its highest point. At other places along the membrane however, where the cake layer
is thinner, the cross-flow velocity U will even be lower, which, in combination with the
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Figure 8.5: Length-averaged steady-state flux as a function of membrane length. Also in-
dicated is the steady-state flux as predicted by the model of Davis and Sherwood (Equation
(8.28)). Other system parameters as in figure 8.1.

higher channel height, can now lead to a drop of the shear rate. Thus, at places along the
membrane where the cake layer height is less than maximal, the drop of the shear rate can
lead to a decrease of the flux Jss. This latter effect seems to prevail in the simulations in
figure 8.5.

The results in this paragraph show that for simple cross-flow systems with relatively
long membranes, our suspension flow model predicts cake layer profiles that converge to
the profiles that are predicted by the model of Romero and Davis. Differences between the
predicted cake layer profiles mainly occur at the beginning and the end of the membrane,
resulting in a higher 〈Jss〉 for short membrane lengths with the suspension flow model.
Since the suspension flow model incorporates extra features as compared to the model
of Romero and Davis, the results of this model can be considered to be more accurate,
which is particularly relevant to systems with short membrane lengths and large variation
of TMP over the length of the membrane.

8.3.4 Microfiltration in systems with different geometries

The solution of the flow field in the suspension flow model enables the calculation of
concentration polarisation in more complex flow geometries. In this paragraph we will
demonstrate some possibilities of the model by showing some examples. First, the effect
of the presence of separate pore fields will be demonstrated. In such a situation, pore
fields and solid walls alternate along the length of the membrane channel. This will result
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in extra membrane beginnings and ends, where the flux is relatively high. The passage
of the concentration polarisation layer over a piece of solid wall will namely lead to a
(partial) dispersion, so that the flux at the start of the next membrane field will be higher
than without the presence of the solid wall. The division of a homogeneous membrane
into pore fields and fields with solid walls might be used as a means to optimise the
flux. The benefit of dispersion of the concentration polarisation layer and the presence of
repetitive membrane ends should then compensate for the diminished back-transport due
to the reduced wall concentration at the solid walls. The suspension flow model enables
an accurate flux prediction for these types of membranes. The presence of separate pore
fields can also be an intrinsic property of some membrane types, such as the so-called
microsieves [31], membranes prepared by micro-engineering which usually feature these
distinct pore fields. The mechanical strength of these ultrathin microsieves is dependent
on the size and division of the pore fields over the membrane surface. Here, the suspension
flow model can be used to find the optimal lay-out of the pore fields as determined by both
flux and mechanical strength.

In figure 8.7, the steady-state flux Jss is presented for a homogeneous membrane with
a total length of 135 µm and for a membrane with the same total length, which is divided
into three evenly distributed membrane fields with a length of 33 µm and two solid walls
with a length of 18 µm. It can be seen that the flux at the pore fields is clearly higher
for the subdivided membrane. The length-averaged flux 〈Jss〉 (membrane length similar
to homogeneous membrane) is however about 5% lower. In this situation, the dimin-
ished back-transport is the dominant effect, which is unfavourable for the flux. In case
of microsieves, the mechanical strength will however improve much by this subdivision
[118].

The dispersion of the concentration polarisation layer might improve with the pres-
ence of flow barriers at the solid walls. Whether or not this will render a positive flux
effect is dependent on the trade-off between this improved dispersion on the one hand and
the decreased wall shear rate on the other hand. With the suspension flow model, we are
able to compute the effect of flow barriers. An example is given in figure 8.8.

Here, triangles with a height of 2.7 µm were placed centrally on the solid walls. It can
be seen in figure 8.8 that the flux is hardly influenced by the presence of these barriers,
although their height exceeds the height of the cake layer. This might be related to the
microscale of the flow barriers. Because the Reynolds number is linearly dependent on the
square height of the flow barrier, it will hardly be affected by the presence of these small
flow barriers. In figure 8.8, it can accordingly be seen that the flow barriers do not induce
flow disturbances such as vortices. On the other hand, because of the mechanism of shear-
induced diffusion, the wall shear rate has a large effect on the flux. The decrease of the
wall shear rate, due to an increased flow resistance of the flow channel, is the dominant
effect in this example, such that the length-averaged steady-state flux 〈Jss〉 was about 3%
lower. Although more research is needed, this example might indicate that microscale
flow barriers are not effective for flux improvement.

Another possibility for a higher flux would be the use of corrugated membranes. These
corrugations are expected to lead to a better dispersion of the concentration polarisation
layer and increased flow resistance, as for the system with triangles, but would also affect
the shear rate profile at the membrane wall for the total membrane length. More infor-
mation on the application of corrugated membranes can e.g. be found in [119]. In our
example, the membrane corrugations consist of triangles of membrane material, which
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Figure 8.6: Concentration distribution and flow field near the membrane in the steady-state
situation for a transmembrane pressure of 1180 (a), 1780 (b), 2980 (c) and 4180 (d) Pa. Only
the part just above the membrane, with a height of 9.0 µm is presented. The colors indicate
the particle volume fraction, ranging from 0.0-0.1 (turquoise) to 0.5-0.6 (pink). The con-
centration polarisation layer already develops before the beginning of the membrane. Other
system parameters as in figure 8.1.

are placed centrally on the membranes. The size was such that the membrane surface area
was increased with 1.8 %. Because the membrane has become much thicker at the posi-
tion of the triangles, application of a similar TMP as for the aforementioned computations
would lead to a suboptimal flux. Therefore TMP was increased to 5340 Pa.

Figure 8.9 shows the flux along the membrane in steady-state situation. At the be-
ginning and the end of the membrane, the steady-state flux Jss is about 1.5 times higher
than without the membrane corrugations. Because of the reduced cake formation in these
regions, the relatively high TMP results in this high steady-state flux Jss. This result also
indicates that the membrane corrugations are particularly favourable in a system with
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Figure 8.7: Steady-state flux as a function of position along the membrane for a homoge-
neous membrane with a total membrane length of 135 µm and for a membrane with the same
total length, which is divided into three evenly distributed pore fields with a length of 33 µm
and two solid walls with a length of 18 µm (see figure above graph). Also indicated is the
length-averaged steady-state flux for both situations. The figure on top shows the concen-
tration distribution and the flow field for the membrane with interspaces (settings as in 8.6).
Other system parameters as in figure 8.1.

membrane interspaces, where we have an increased number of membrane beginnings and
ends. In the center region of the membrane pieces, the flux is lower than without corruga-
tions. The presence of the corrugations apparently results in a lower mean wall shear rate
γ̇wall, which leads to a lower steady-state flux Jss. The length-averaged flux 〈Jss〉 is how-
ever higher in the system with membrane corrugations, suggesting that further research in
this direction would be worthwhile. Clearly, the suspension flow model presented in this
article can be a very helpful tool for these types of optimisations.

8.4 Conclusions

In this article, a new computer simulation model is proposed which enables the study of
concentration polarisation behaviour and cake layer formation in crossflow microfiltra-
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tion systems. The new model solves the NS equations for the suspension flow together
with the convection-diffusion equation for the suspended particles and follows the Lat-
tice Boltzmann method. Diffusion of the suspended particles takes place according to the
mechanism of shear-induced migration, which describes the migration of particles in a
suspension in shear flow. The shear-induced migration velocity increases linearly with
the shear rate and is strongly concentration-dependent.

Upon application for simple crossflow systems, the new suspension flow model yields
more realistic results for the flux and cake layer profile than existing models. This is
due to the fact that the suspension flow model totally resolves the suspension flow and
the shear-induced diffusion behaviour of the suspended particles, including a time- and
location-dependent shear rate, whereas the existing models normally assume a Poiseuille
flow profile and neglect axial transport between the bulk phase and the concentration po-
larisation layer. In contrast to existing models, the new suspension flow model moreover
accounts for pressure loss in the flow channel.

From comparison with results of the model of Romero and Davis [8], it became clear
that the more realistic approach of the suspension flow model is especially significant for
the calculation of the cake layer profile at the beginning and the end of the membrane.
Also the effect of narrowing of the flow channel by cake formation on the suspension
flow pattern (at a constant pressure gradient over the flow channel) leads to a substantial
improvement of the predictions. In the situation of long membrane lengths and thin cake
layers, the solution of the suspension flow model converges to that of the model of Romero
and Davis.

The suspension flow model has a wider applicability than the existing models. Besides
the use for simple crossflow systems, the suspension flow model allows for application
in microfiltration systems with complex geometries and moving boundaries. In order to
exemplify these possibilities, calculations are presented on systems with a discontinuous
membrane, with flow barriers and with corrugated membranes. From these examples,
it became clear that this model can be a valuable tool for the design of microfiltration
membranes, systems and processes.

List of symbols

Symbols Lattice Boltzmann method (in lattice units):
a particle radius
ci discrete velocity fluid particles
cs,f speed of sound fluid particles
cs,g speed of sound suspended particles
D diffusion coefficient
F body force
fi (x, t) particle distribution function fluid particles
f ′
i (x, t) post-colllisional distribution function

gi (x, t) particle distribution function suspended particles
j momentum density
p pressure
t time
u flow velocity
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x a particular node of the lattice
wi weight factor

Greek symbols:
γ̇ shear rate
η dynamic viscosity
ν kinematic viscosity
Π momentum flux density
ρ mass density
τf relaxation time fluid particles
τg relaxation time suspended particles
φ suspended particle volume fraction

Symbols system parameters:
a radius of the suspended particles, m
C constant in Eq. (8.23)
D diffusion coefficient, m/s
Dh hydraulic diameter, m
f friction factor
H0 half-height of the channel, m
Hp height permeate side, m
J transmembrane flux, m/s
〈J〉 length-averaged flux, m/s
J0 nominal transmembrane flux, m/s
Jss steady-state flux, m/s
K coefficient in Eq. (8.21)
L length of the flow channel, m
L0 length from flow inlet until halfway membrane, m
Lm total membrane length, m
p pressure, Pa
Q mass flow rate, m2/s
Rm membrane resistance, m−1

R
′
c specific cake resistance, m−2

Sc specific surface, m−1

TMP transmembrane pressure, Pa
u velocity, m/s
U crossflow velocity, m/s
U0 average nominal flow velocity, m/s
Umax maximal flow velocity, m/s
x dimensional distance along the filter, m
xcr critical distance, m

Greek symbols:
γ̇ shear rate, s−1

γ̇wall shear rate at the wall, s−1

γ̇wall,0 nominal shear rate at the wall, s−1

δc thickness of the cake layer, m
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Figure 8.8: Steady-state flux as a function of position along the membrane for two different
membranes: 1) a membrane with a total membrane length of 135 µm, which is divided into
three evenly distributed pore fields with a length of 33 µm and two solid walls with a length
of 18 µm and 2) the same membrane but with flow barriers placed at the solid walls (see
figure above graph). The flow barriers had a triangular form, with a width of 9.9 µm at the
bottom side to 0.3 µm at the top side. The height was 2.7 µm. Three flow barriers were
placed in total, each with the center at a distance of 9 µm after a piece of membrane. Also
indicated is the length-averaged steady-state flux for both situations. The figure on top shows
the concentration distribution and the flow field for the membrane with flow barriers (settings
as in 8.6). Other system parameters as in figure 8.1.

δm thickness of the membrane, m
εc porosity of the cake
η0 viscosity of the particle free medium, Pa s
ηb viscosity in the bulk of the suspension, Pa s
ρ fluid density, kg/m3

φ particle volume fraction
φb particle volume fraction in bulk suspension
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Figure 8.9: Steady-state flux as a function of position along the membrane for two different
membranes: 1) a membrane with a total membrane length of 135 µm, which is divided into
three evenly distributed pore fields with a length of 33 µm and two solid walls with a length
of 18 µm and 2) the same membrane but with a corrugated structure (see figure above graph).
The corrugations consist of triangular pieces of membrane which are put on top of the pore
fields. The triangular pieces had a width of 24.3 µm at the bottom side to 0.3 µm at the
top side. The height was 2.7 µm. Three triangular pieces were placed in total, each with the
center at a distance of 16.5 µm from the beginning of a pore field. Also indicated is the length-
averaged steady-state flux for both situations. The figure on top shows the concentration
distribution and the flow field for the membrane with corrugations (settings as in 8.6, but the
height is 20.2 µm). Other system parameters as in figure 8.1.
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Summary

Microfiltration (MF) is a process that is used for the separation or fractionation of par-
ticles (0.02-20 µm) in a suspension. A suspension is pressed through a MF membrane;
larger particles are retained by the membrane and a size-selective separation is obtained,
which can be applied for e.g. water treatment and the manufacture of many products in
biotechnological, food and medical applications.

In general, accumulation and deposition of retained particles in and onto the mem-
brane, often referred to as concentration polarisation and cake layer formation respec-
tively, severely limit the flux and selectivity of MF processes. This is especially the case
for MF of complex suspensions such as milk, which contains a high volume fraction of
dispersed matter (± 15%) with a broad particle size distribution (1 nm - 20 µm). In this
thesis, factors affecting the flux and selectivity of MF processes for milk separation are
studied on various levels of detail. The initial focus was at a microscopic scale by study-
ing suspension flow at conditions relevant to MF (Chapter 2, 3 and 4) and then gradually
shifted to a macroscopic scale, studying the filtration behaviour of complex suspensions
(Chapter 5, 6 and 7), for which a computer simulation model was developed to support
the design of MF processes (Chapter 8).

In Chapter 2, a computer simulation model for suspension flow is presented, based
on the Lattice Boltzmann (LB) method. With this model, the flow behaviour of two-
dimensional (2D) and three-dimensional (3D) suspensions in Couette systems are com-
pared. Scaling relations were found for the translation of 2D computer simulation results
to 3D real systems therewith reducing the computational effort considerably.

Chapter 3 discusses the effect of non-zero Reynolds numbers on Couette flow of 2D
suspensions. Shear-induced diffusion, a diffusion mechanism that reduces concentration
polarisation and cake layer formation in cross-flow MF systems, is found to increase with
the Reynolds number. A similar effect is found for the suspension viscosity. These effects
correlated with the occurrence of particle clustering in the suspensions, which can not
only be achieved by increasing the Reynolds number but also by increasing the attraction
between particles.

Shear-induced diffusion in suspensions with a bimodal particle size distribution is
described in Chapter 4, as studied by computer simulations with the LB method. In
monodisperse suspensions, shear-induced diffusivity scales with the squared particle ra-
dius, which stresses the importance of particle size. In bidisperse suspensions, the larger
particles behave as “master particles” when they are present in a sufficient amount: the
shear-induced diffusivity is totally determined by these larger particles. The smaller
“slave particles” acquire a shear-induced diffusivity similar to the large particles, but
larger than in the respective monodisperse suspension (equal total volume fraction, same
particle size). Moreover, it is found that the larger particles can enhance the effects of
non-zero Reynolds number as found in Chapter 3, since these particles experience a larger
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shear intensity. The results clearly demonstrate that the particle size distribution affects
the shear-induced diffusion coefficients of the individual particles in the suspension.

Chapter 5 reports on an experimental study on the steady-state flux in cross-flow MF
of latex suspensions with a bimodal size distribution. For monodisperse suspensions, the
steady-state flux is known to relate to a4/3, where a is the particle radius. In bidisperse sus-
pensions with various concentration ratios of small to large particles but with a constant
total volume fraction, it turned out that the steady-state flux is similar to the steady-state
flux of a monodisperse suspension of the small particles. The influence of the presence
of the large particles on the shear-induced diffusivity of the smaller particles could be
explained with a model for shear-induced particle migration of polydisperse suspensions,
which is also relevant in practice.

In Chapter 6, the study of the MF behaviour of suspensions with a particle size dis-
tribution is extended towards particle deposition onto the membrane, and towards par-
ticle fractionation. In the transient flux regime, particle deposition is the net result of
transport of particles towards the membrane by the flux through the membrane and the
back-transport of particles from the membrane towards the bulk phase by shear-induced
diffusion. By monitoring the particle deposition onto the membrane during MF by means
of Confocal Scanning Laser Microscopy, it was found that only the small particles in the
bidisperse suspension deposit on the membrane. These results can be explained by the oc-
currence of particle size segregation in the feed flow, which leads to an enrichment of the
smaller particles near the membrane. The findings are also shown to be relevant to parti-
cle fractionation processes by MF as was demonstrated with the fractionation of milk fat
globules in milk. This polydisperse suspension could be fractionated using a membrane
having a pore size larger than the largest particles present. The separation characteris-
tics of the process, such as particle size and fat content of the permeate, could be totally
controlled by the cross-flow velocity and permeate flux. This demonstrates that the frac-
tionation is not due to size exclusion by the membrane, but instead due to segregation
effects in the feed channel.

Some particle deposition is often inevitable in MF processes. For the purpose of pro-
cess design, it is important to know the relevant properties of these deposition layers. For
many complex suspensions, these cannot be predicted easily. In Chapter 7, the proper-
ties of particle deposition layers from micellar casein and milk fat globule suspensions
are studied. By following a differential approach, it was possible to evaluate the particle
deposition layers during their formation in a dead-end filtration process. Both micellar
casein and milk fat globules were able to form layers with a very high hydrodynamic
resistance. While the permeability of layers of micellar casein was independent of the
pressure gradient applied, the layers of (liquid) milk fat globules were dependent on the
pressure gradient. When the fat was partly crystallised, the compressibility was smaller,
but the hydrodynamic resistance of the deposition layers was still very high, probably
because of the occurrence of partial coalescence of the fat globules. The parameters iden-
tified in this study are considered essential for the rational design of UF and MF processes
of milk.

Process models that predict the flux and selectivity as a function of system and process
parameters, are important tools in the design of MF processes. Chapter 8 presents a newly
developed MF model which predicts concentration polarisation and cake layer formation,
and which is, unlike other MF models, suited for MF processes of complex suspensions
and in MF systems with complex membrane or module geometries or process conditions.
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The so-called suspension flow model is a computer simulation model, in which the hy-
drodynamics and convection-diffusion are resolved simultaneously, using an Euler-Euler
approach. This model, which is based on the LB method, allows the complete solution of
the flow field (including calculation of the actual local shear rate) and the application of a
pressure gradient over the feed flow channel as well as over the membrane. The general
applicability of the suspension flow model as a design tool for MF membranes, systems
and processes is demonstrated with computations on concentration polarisation and cake
layer formation in MF systems with complex geometries, such as feed flow channels with
flow barriers and corrugated membranes. The suspension flow model is a practical tool
for the design of MF processes of complex suspensions such as milk.





Samenvatting

Microfiltratie (MF) is een proces dat wordt gebruikt om deeltjes (0.02-20 µm) in een
suspensie af te scheiden of te fractioneren. De suspensie wordt hierbij door een MF
membraan geperst; grotere deeltjes worden tegengehouden door het membraan, zodat een
scheiding op grootte wordt verkregen. Deze scheiding kan bijvoorbeeld worden ingezet
voor waterbehandeling en voor de vervaardiging van producten voor biotechnologische,
voedings- en medische toepassing.

In het algemeen wordt de flux en selectiviteit van MF processen ernstig beperkt door
ophoping en afzetting van de tegengehouden deeltjes aan en op het membraan, verschijn-
selen die vaak aangeduid worden met respectievelijk concentratiepolarisatie en koeklaag-
vorming. Dit treedt in het bijzonder op tijdens MF van suspensies met een complexe
samenstelling, zoals melk, dat een hoge volumefractie aan gedispergeerd materiaal bevat
(± 15%) met een brede grootteverdeling (1 nm - 20 µm). Dit proefschrift beschrijft een
onderzoek waarin op verschillende detailniveaus factoren zijn bestudeerd die de flux en
selectiviteit van MF processen voor de scheiding van melk beinvloeden. Het begin van
dit proefschrift focuseert op de microscopische schaal, met een studie van het stromings-
gedrag van suspensies onder condities die relevant zijn voor MF (Hoofdstuk 2, 3 en 4),
waarna de focus geleidelijk verschuift naar macroscopische schaal, met een studie van
het filtratiegedrag van suspensies met een complexe samenstelling (Hoofdstuk 5, 6 en 7).
Het laatste Hoofdstuk beschrijft een computersimulatiemodel dat is ontwikkeld om het
ontwerp van MF processen te ondersteunen (Hoofdstuk 8).

In Hoofdstuk 2 wordt een computersimulatiemodel gepresenteerd, dat is gebaseerd
op de Lattice Boltzmann (LB) methode. Aan de hand van dit model is een vergelijking
gemaakt tussen het stromingsgedrag van twee-dimensionale (2D) en drie-dimensionale
(3D) suspensies in Couette systemen. Er zijn schalingsrelaties gevonden voor de vertaling
van 2D computersimulatie resultaten naar 3D reële systemen, waarmee de benodigde
computercapaciteit voor het berekenen van het stromingsgedrag aanzienlijk gereduceerd
kan worden.

Hoofdstuk 3 bediscussiëert het effect van Reynolds getallen groter dan nul op Couette
stroming van 2D suspensies. Shear-induced diffusie, een diffusiemechanisme dat con-
centratiepolarisatie en koeklaagvorming in cross-flow MF systemen reduceert, bleek toe
te nemen met een toenemend Reynolds getal. Een vergelijkbare toename werd gevonden
voor de viscositeit van de suspensie. Deze effecten correleerden met het optreden van
clustering van deeltjes in de suspensie, hetgeen niet alleen optrad met een toename van
het Reynolds getal maar ook met een toename van de attractie tussen deeltjes.

Shear-induced diffusie in suspensies met een bimodale deeltjesgrootteverdeling, be-
studeerd door middel van computersimulaties met de LB methode, is beschreven in Hoofd-
stuk 4. In monodisperse suspensies schaalt de shear-induced diffusiviteit met het kwadraat
van de deeltjesstraal. Het belang van de grootteverdeling wordt duidelijk in bidisperse



174 SAMENVATTING

suspensies, waar de grotere deeltjes, wanneer aanwezig in voldoende hoeveelheid, hun
gedrag volledig opleggen aan de kleinere deeltjes: de shear-induced diffusiviteit is dan
volledig bepaald door deze grotere deeltjes. De kleinere deeltjes nemen een shear-induced
diffusiviteit aan die gelijk is aan die van de grotere deeltjes, en daardoor groter dan in een
monodisperse suspensie van alleen de kleinere deeltjes (met gelijke totale volumefractie).
De grotere deeltjes blijken bovendien de effecten van toenemende Reynolds getallen, zo-
als gevonden in Hoofdstuk 3, te kunnen versterken, doordat deze deeltjes in een bidisperse
suspensie een groter shear Reynolds getal ervaren dan de kleinere deeltjes. De resulta-
ten tonen duidelijk aan dat de deeltjesgrootteverdeling van invloed is op de shear-induced
diffusiecoëfficienten van de individuele deeltjes in de suspensie.

Hoofdstuk 5 doet verslag van een experimentele studie naar de steady-state flux tijdens
cross-flow MF van latex suspensies met een bimodale grootteverdeling. Voor monodis-
perse suspensies is het bekend dat de steady-state flux lineair schaalt met a4/3, waar a
gelijk is aan de deeltjesstraal. Voor bidisperse suspensies met verschillende concentratie-
verhoudingen van kleine tot grote deeltjes, maar met een constante totale volumefractie,
bleek de steady-state flux gelijk te zijn aan die van een monodisperse suspensie van alleen
de kleine deeltjes. De invloed van de aanwezigheid van grote deeltjes op de shear-induced
diffusiviteit van kleine deeltjes kon worden verklaard met een model voor polydisperse
suspensies, dat shear-induced migratie van individuele deeltjes in een polydisperse sus-
pensie beschrijft in aanwezigheid van een concentratie-gradiënt. Hiermee is een stap
gemaakt naar de beschrijving van shear-induced diffusie gedrag zoals relevant voor MF
van polydisperse suspensies.

In Hoofdstuk 6 is de studie naar het MF gedrag van suspensies met een deeltjesgroot-
teverdeling uitgebreid naar deeltjesdepositie op het membraan en deeltjesfractionering. In
het dynamische flux regime is deeltjesdepositie het netto resultaat van enerzijds het trans-
port van deeltjes naar het membraan, veroorzaakt door de flux door het membraan, en
anderzijds het terugtransport van deeltjes vanaf het membraan naar de bulkfase, veroor-
zaakt door shear-induced diffusie. Door de deeltjesdepositie op het membraan tijdens MF
te volgen door middel van Confocal Scanning Laser Microscopie is gevonden dat alleen
de kleinere deeltjes van de bidisperse suspensie zich afzetten op het membraan. Deze re-
sultaten kunnen worden verklaard met het optreden van deeltjessegregatie in de crossflow,
gedreven door grootteverschillen tussen de deeltjes, die leidt tot een verrijking met klei-
nere deeltjes van de suspensie bij het membraan. Met een studie naar de fractionering van
melkvetbollen in melk is aangetoond dat de bovengenoemde resultaten ook relevant zijn
voor deeltjesfractioneringsprocessen middels MF. De polydisperse melkvetbolsuspensie
kon worden gefractioneerd met gebruik van een membraan waarvan de poriegrootte gro-
ter was dan de grootste deeltjes in de suspensie. De scheidingseigenschappen van het
proces, waaronder de deeltjesgrootte en het vetgehalte van het permeaat, kon volledig in-
gesteld worden met de crossflow snelheid en de permeaatflux. Dit maakt duidelijk dat de
fractionering niet toegeschreven kan worden aan uitsluiting door het membraan op basis
van afmetingen, maar dat deze toegeschreven kan worden aan segregatie effecten in het
stromingskanaal.

Enige mate van deeltjesdepositie blijkt vaak onvermijdbaar in MF processen. In het
kader van procesontwerp is het belangrijk om de relevante eigenschappen van deze depo-
sitielagen te kennen. In Hoofdstuk 7 zijn de eigenschappen van deeltjesdepositielagen van
suspensies van micellair caseine en melkvetbollen bestudeerd. Door een differentiële be-
nadering te gebruiken was het mogelijk om de deeltjesdepositielagen te bestuderen tijdens
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hun vorming in een dead-end filtratieproces. Zowel micellair caseine als melkvetbollen
vormden lagen met een zeer grote hydrodynamische weerstand. Terwijl de permeabili-
teit van lagen van micellair caseine onafhankelijk was van de toegepaste drukgradiënt,
vertoonden lagen van (vloeibare) melkvetbollen wel een afhankelijkheid van de druk-
gradiënt. Wanneer het vet gedeeltelijk gekristalliseerd was, was de drukafhankelijkheid,
en daarmee de compressibiliteit van de lagen, kleiner. De hydrodynamische weerstand
van de depositielagen was dan echter nog steeds zeer hoog, waarschijnlijk vanwege het
optreden van partiële coalescentie van de vetbollen. De parameters die zijn vastgesteld in
deze studie, zijn van belang voor het rationeel ontwerpen van UF en MF processen van
melk.

Procesmodellen die de flux en selectiviteit voorspellen als functie van systeem en pro-
ces parameters vormen belangrijke instrumenten voor het ontwerp van MF processen.
Hoofdstuk 8 presenteert een nieuw ontwikkeld MF model, dat concentratiepolarisatie en
koeklaagvorming voorspelt en dat, in tegenstelling tot andere MF modellen, geschikt is
voor MF processen van complexe suspensies en voor MF systemen met complexe mem-
braan of module geometriën of procescondities. Dit zogenoemde suspensie flow model is
een computersimulatie model, waarin de hydrodynamica en convectie-diffusie gelijktij-
dig worden opgelost, gebruikmakend van een Euler-Euler benadering. Het model is geba-
seerd op de LB methode en maakt het volledig oplossen van het stromingsveld mogelijk
(inclusief het berekenen van de actuele lokale afschuifsnelheid) in aanwezigheid van een
drukgradiënt over zowel het crossflow kanaal als het membraan. De algemene toepas-
baarheid van het suspensie flow model als een ontwerpinstrument voor MF membranen,
systemen en processen is gedemonstreerd met berekeningen van concentratiepolarisatie
en koeklaagvorming in MF systemen met complexe geometriën, zoals crossflow kanalen
met flow barrièrres en gecorrugeerde membranen. Het suspensie flow model is daarmee
een praktisch instrument voor het ontwerp van MF processen van complexe suspensies
zoals melk.





Nawoord

Het nawoord: de plek om iedereen te bedanken die op enigerlei wijze heeft bijgedragen
aan de totstandkoming van dit proefschrift. En dat zijn er veel! Allereerst wil ik mijn
werkgever Friesland Foods van harte bedanken dat zij mij de gelegenheid heeft geboden
dit promotie-onderzoek uit te voeren. Voor mij betekende dit onderzoek een prachtige
kans mijn kennis te verdiepen en uit te breiden, en daarbij tegelijk een optimale bijdrage
aan innovatie binnen Friesland Foods te leveren.

Voor dit promotie-onderzoek ben ik op part-time basis gedetacheerd geweest bij de sectie
Proceskunde aan de Landbouwuniversiteit in Wageningen, waar ik begeleid werd door
Remko Boom, Karin Schroën (eerst nog even door Albert van der Padt, maar die besloot
al snel collega bij Friesland Foods in Deventer te worden) en Ruud van der Sman. Al-
lereerst wil ik Remko bedanken voor zijn enthousiaste en inspirerende begeleiding. Onze
besprekingen heb ik altijd als zeer prettig ervaren en ik ging altijd weer met nieuwe ideeën
jouw deur uit. Karin, met veel plezier hebben we samen studenten begeleid bij hun af-
studeeronderzoek. Bovendien werden mijn artikelen door jouw correcties zienderogen
sterker. Ruud heeft mij geintroduceerd in de wereld van computersimulaties, mijn groot-
ste avontuur in mijn promotie-onderzoek. Dit is mij niet alleen erg goed bevallen, maar
ik heb er ook heel veel van geleerd. Ook jullie van harte bedankt!

Ook buiten de sectie Proceskunde zijn er een aantal mensen geweest die een belang-
rijke rol hebben gespeeld. Allereerst wil ik Drona Kandhai (destijds) van het Kramers
Laboratorium voor Fysische Technologie van de TU Delft noemen. Drona, jij hebt jouw
computercode voor Lattice Boltzmann simulaties aan suspensies ter beschikking gesteld
en mij daarin wegwijs gemaakt. Daarnaast heb jij mij geweldig geholpen door als klank-
bord te fungeren voor mijn onderzoek op dit gebied. Dirk van den Ende van Science and
Technology van de UT Twente heeft mij een stuk verder gebracht op het gebied van de fy-
sica van suspensies en met een analytisch model voor shear-induced diffusie. During my
thesis, I have worked for a period of seven weeks at the University of Edinburgh, under
the terms of the European program for Training and Research on Advanced Computing
Systems. I was impressed by the large knowledge and research infrastructure at the De-
partment of Physics and Astronomy and the Edinburgh Parallel Computing Centre, and
acknowledging the pleasant supervision by Mike Cates and Kevin Stratford, I have learnt
a lot more of physics and computer science, and on top of that, thanks to the Burns supper,
about Scottish traditional poetry and food (haggis, tatties and neeps with whiskey). Du-
ring my stay in Edinburgh, I have shared a student flat with Fatima Lucas. Fatima, your
company was always very nice, not only in our flat, but also during our weekend trips in
Scotland and in our meetings with so many other people! Joost van Opheusden van de
leerstoelgroep Wiskundige en Statistische Methoden van Wageningen Universiteit heeft
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me goed op weg geholpen met het analyseren van deeltjesaggregatie en microstructuren
in suspensies. John Brady, due to your part-time professorship at the UT Twente, I had the
unique opportunity to discuss my work with you on several occasions. These discussions
have been very interesting and clarifying for me, so I have really appreciated them.

Ook aan de studenten heb ik veel te danken. Mark, Jeroen, Rob, Annet, Jan, Nienke,
Bieuwe, Frits, Sarah en Sylvia, het was een plezier met jullie samen te werken. Jullie heb-
ben een belangrijke bijdrage geleverd, welke jullie in meer of mindere mate terug kunnen
zien in de hoofdstukken 5 t/m 8. Andere mensen die een rechtstreekse bijdrage aan dit
proefschrift hebben geleverd zijn Henk Streppel, Miriam Krijgsman en Anno Koning (al-
len van Friesland Foods Corporate Research) en Harry Rollema (NIZO Food Research).
En natuurlijk de mensen van de technische werkplaats van het Biotechnion van Wagenin-
gen Universiteit, en in het bijzonder Hans, die heel wat ideeën in mooie meetopstellingen
heeft omgezet. Mijn dank daarvoor!

Mijn onderzoek was onderdeel van een groot samenwerkingsproject, D-Force genaamd.
Het projectteam, met mensen van verschillende expertise en achtergrond, kwam op re-
gelmatige basis bij elkaar, wat meestal leidde tot levendige en interessante discussies.
Meningsverschillen werden overbrugd of juist niet (computersjoemulaties!). Hoewel de
samenwerking zowel ups als downs heeft gekend, vind ik dat er de afgelopen jaren veel
is bereikt. Aan de basis van het D-Force project ligt de samenwerking tussen Friesland
Foods en Aquamarijn, met Cees van Rijn als de uitvinder van de microzeven. Cees, on-
danks jouw initiële scepsis over de toepasbaarheid van microzeven voor melk, denk ik
dat het nut van microzeven ondertussen meer dan bewezen is. Rolf, bedankt dat je als
projectleider van het D-Force project mijn promotie-onderzoek altijd hebt ondersteund.
Miriam en Gerben waren collega-promovendi binnen het D-Force project. Bedankt voor
de fijne samenwerking en jullie vriendschap! Bij Friesland Foods voerden we ondertus-
sen onderzoek aan microfiltratie van melk uit. En dat was weer heel andere koek dan
onderzoek aan keurige modelsystemen. Reinier, Bas, Henk, Frank, Albert, Kees, Gerrit
en Rolf, wat hebben we geploeterd met z’n allen, maar wat mogen we trots zijn op het
resultaat!

Voor mijn promotie-onderzoek is er een Friesland Foods begeleidingscommissie in het
leven geroepen, bestaande uit verschillende “kennisiconen”. Tjeerd, Geert, Albert, Hans,
Ger, Evert en Tom, bedankt voor jullie betrokkenheid, opbouwende kritiek en ideeën.
Tjeerd, jij bent altijd een belangrijke motor geweest achter het D-Force project en hebt
daarmee ook een onmisbare rol gespeeld in de totstandkoming van dit boekje. Rolf en
Albert, bedankt voor jullie inbreng in de bilaterale besprekingen. Daarnaast was er ook
de Technology Circle “Separations” met collega’s van verschillende werkmaatschappijen
van Friesland Foods. Sytze, Gerard, Marc, Krin, Cor, Evert, Bert, Tjeerd en Albert, be-
dankt voor jullie belangstelling voor het onderzoek en de goede besprekingen, ondermeer
over de praktische toepassing van microfiltratie.

Door mijn part-time detachering bij de sectie Proceskunde kreeg ik opeens veel extra col-
lega’s. En dat heeft veel voordelen. Pieter en Olivier, bedankt voor het aan de gang krijgen
en houden van het rekencluster, Gerrit, bedankt voor het oplossen van computer- en net-
werkproblemen, en Jos, voor de ondersteuning op het lab. Ik heb genoten van de AIO-reis
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naar Zuid-Afrika (hoewel wel erg kort voor mij) en vooral Canada, de verschillende feest-
jes en borrels, wielrentochten in België en Duitsland en natuurlijk de dagelijkse sfeer en
gein op de afdeling. Kamergenoten te over voor serieuze en minder serieuze kletspraatjes
(in wat soms ook wel het kippenhok werd genoemd): Marieke, Rolf, Marcel, Nick, Hadi,
Julita, Judy en Jan (die na zijn afstudeeronderzoek terugkwam als promovendus).

En dan natuurlijk het thuisfront. Allereerst de sportclubjes (wielrennen en korfbal), voor
de broodnodige lichamelijke inspanning en geestelijke ontspanning! Familie en vrienden,
bedankt voor de gezelligheid tijdens feestjes, etentjes, ski-vakanties, fietskampeerweek-
enden en wat al niet meer. Lieve ouders en schoonouders, bedankt voor jullie onvoor-
waardelijke liefde en steun. Mam, het was kantjeboord drie jaar geleden, maar ik ben blij
dat je er nog bent en dat ik alles wat nu gebeurt met je kan delen!

Lieve George, bij niemand voel ik me zo thuis als bij jou! Je geloof in mij heeft me
gesterkt bij het uitvoeren van dit onderzoek. Hopelijk hebben we samen nog een mooie
tijd te gaan.
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ysis of particle deposition layers from micellar casein and milk fat globule suspensions,
submitted 2005.



184 LIST OF PUBLICATIONS

Kromkamp, J., Ende, D.T.M. van den, Kandhai, D., Sman, R.G.M. van der, Boom, R.M.,
Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow,
submitted 2005.

Kromkamp, J., Kandhai, D., Sman, R.G.M. van der, Boom, R.M., Shear-induced self-
diffusion in bidisperse suspensions, submitted 2005.

Brans, G., Kromkamp, J., Pek, N., Gielen, J., Heck, J., Schroën, C.P.G.H., Sman, R.G.M.
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