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                                               ABSTRACT 
 
 
For researchers concerned with soil compaction, soil structure is assessed by indirect 
measurement of parameters related to soil mechanical properties. In this study the mechanical 
properties of soil are investigated for the dynamic load – soil interaction of tyre – soil 
systems, tool penetration, shearing and soil cutting by a pendulum type machine. The 
methods selected for analyses are the Finite Element Method (FEM) and the Distinct Element 
Method (DEM). The dynamic module of Plaxis (a special purpose finite element program 
released in 2000), is more advanced than the previous version of Plaxis. In Plaxis 
calculations, the Mohr – Coulomb model is selected for deformable soil and the Cam – Clay 
type model is selected for compactable soil properties. Results of these model studies are 
presented briefly for the above load – soil interactions. Although the dynamic module of 
Plaxis performs better,  the problems of analysing the discontinuous properties of soil such as 
shearing (sliding), cutting and cracking (fracturing) still remain unsolved due to the 
continuous nature of the medium. In such cases, representing soil as a discontinuous medium 
as in DEM is more realistic. 
 
In DEM, soil is an assembly of discrete particles (discontinuous  medium) with the possibility 
of cyclic contact and failure, by updating contact interactions throughout the simulation. The 
appropriate models selected are: the original DEM for cohesionless particles and the modified 
Kyoto DEM in which the adhesion force between particles is considered. 
The simulation results show that the mechanical properties of the particles are dependent on 
the micromechanics of deformation. Shear stress and failure appear largely to be influenced 
by interparticle sliding and rolling. Sliding contacts are always greater for the low values of 
interparticle friction coefficient. If this value is sufficiently high, especially for coarse and 
medium granular particles sliding will be very low and rolling of particles dominates the 
system which results in low shear stress values. Moreover the contact stiffness and the 
particle size have an important influence on the deformation mechanisms. For instance, for 
coarse and medium granular particles, soft stiffness shows compaction whereas hard stiffness 
shows dilatancy during the shearing process. In the simulation of soil cutting by a pendulum 
type machine adhesive particles are displaced more or less together by forming soil clods. The 
deformation behaviour of particles and the crack propagation during the cutting process are 
significantly affected by the adhesion coefficient between particles, the interparticle friction 
coefficient and the particle size. 
 
In our simulation, parameter analyses were performed by varying the most relevant model 
inputs. Normal and tangential stiffness between particles, interparticle friction coefficient, 
adhesion coefficient between particles and particle size turned out to be the most influential 
input parameters. Finally results from this simulation are qualitatively compared with those of 
Plaxis and also some similar laboratory test results reviewed from literature are selected for 
benchmarking. By evaluating the model results using comparisons, the potential capability of 
the DEM model on showing the actual soil properties during the above load – soil interaction 
could be approved. 
 
 
 
Keywords:  Load – soil interaction,  soil structure,  soil mechanical properties,  FEM 
(Finite Element Method),  Plaxis (Finite Element Code),  granular particles,  shear stress,  
DEM (Distinct Element Method),  micromechanics of deformation,  interparticle friction 
coefficient 
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                                 I    BACKGROUND 
 
 
During the last decade granular materials have drawn interest, not only of engineers trying to 
solve practical problems, but also to physicists, realising that granular matter poses numerous 
interesting questions of fundamental nature (Thornton, 1993) and to researchers concerned 
with scientific modelling of granular systems (Williams et al, 1999 and Ferrez et al, 1999). 
Solving practical problems in real life requires expert knowledge in each of these domains. 
Granular materials abound in nature, soil is just one of the best examples of it. Granular 
matter is generally thought of as a simple and unsophisticated form of matter, being just an 
assembly of discrete macroscopic grains. This discrete assembly of macroscopic grains (soil 
in this case) can be treated using two basic models (FEM and DEM ) when it interacts with 
different loading systems (for example soil – tool interaction, tyre – soil interaction, etc.).  
 
The Finite Element Method (FEM) is a numerical procedure for solving linear as well as non 
– linear  ordinary and partial differential equations describing physical problems 
(Zienkiewicz, 1991). The physical problems can be subdivided into static problems in which a 
state of equilibrium is sought, and dynamic problems in which inertia effects become 
important (Braja, 1995). In FEM soil is generally modelled as a continuum and represented 
by a mesh of finite elements. FEM is a powerful tool to approximate solutions especially 
when the system is too complex to be solved analytically, which usually is the case for non – 
linear load – soil interaction. 
 
Problems occur with the assumption of soil as a continuum medium due to soil’s inherent 
granular nature and consequent deformation and failure modes. In this case it may be 
advantageous to treat soil as an assemblage of particles with the ability to break and reform 
contacts.  This discrete particulate modelling was first developed by Cundall (1971 & 1974) 
for the analysis of rock mechanics by using it to analyse the stability of fractured rock slopes. 
Even though Cundall pioneered DEM for particles of any shape, Cundall and Strack (1979a & 
1979b) extended DEM to soil using 2D discs and 3D spheres to study the structure of 
granular media during loading. 
 
In DEM soil is represented by assemblies of discs and or spheres with different diameters 
which is analogous to the most actual soil particle shape. 
Tanaka et al (2000) presented a simulation of the reaction of tool penetration by representing 
soil as an assembly of discs with two kinds of diameters in 2D state.  In his simulation, discs 
were randomly distributed and each disc was assumed rigid.  An overlap between discs was 
allowed.  This overlap causes a contact force and forces acting on a disc appear only when the 
disc makes contact with another disc (tool).  Furthermore, the magnitudes of forces depend on 
the relative positions and velocities of the discs to the others.  In the DEM model an elastic 
spring in between discs is introduced in order to estimate the force produced by the adjacent 
discs.  
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                     II    OBJECTIVES OF THE RESEARCH  
 
 
The main aims of this study are given below: 
 
• Analysis of simulation of dynamic loading cases using the more advanced version of 

FEM (The Dynamic Module of  Plaxis, a finite element code for soil and rock 
deformation analysis ) for better understanding of soil mechanical properties during 
dynamic load – soil interaction 

• Extensive review of the available DEM models based on contact modelling and initial 
arrangement of particles with the knowledge of selecting the appropriate DEM models for 
application of modelling agricultural soil structure and soil mechanical properties  

• Analysis of simulation of agricultural dynamic loading cases using the selected DEM 
(Kyoto DEM ) model with the intention of estimating soil mechanical properties from the 
simulation results 

• Evaluating the DEM results from the simulation and from literature review,  using the 
FEM results and some analogous experimental results as benchmarking to show the 
potential capability of the DEM model for its advantage of modelling granular soil  

 
 
 
 
 
 
 
                    III    OUTLINE OF THE THESIS 
 
 
Chapter one:  deals with the basic concepts of the finite element method (FEM) which 
includes the basic steps in a finite element analysis i.e. stress – strain relations.  The final part 
of this chapter includes basic models for agricultural soils which are elastic and plastic 
models. The content of this chapter can be used as stepping stone for the introduction to 
detailed working principles of Plaxis which are explained in the next chapter. 
 
Chapter two: deals with the basics of the dynamic modules of Plaxis (a finite element code 
for soil and rock analysis) and includes the two basic soil material models used in the Plaxis 
calculation, the Mohr – Coulomb and the Cam Clay type models.  
 
Chapter three: deals with modelling some of selected agricultural dynamic loading cases;  
tyre – soil system, wedge penetration,  simple shear test and soil cutting by a pendulum type 
machine. Analysis of the results and basic conclusions are given at the end of each topic. 
 
Chapter four: deals with analysis of the experimental or laboratory  test results of some of 
the loading cases mentioned in the previous chapter for later use of qualitative comparison of 
the FEM and DEM results obtained in this thesis. 
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Chapter five: deals with the basic concepts of the distinct element method (DEM) which 
include the contact force description and equations of particle motion, the working principles, 
review of the available DEM models and finally selection of the appropriate DEM models for 
modelling granular soil which is compatible with structured agricultural soil. The selected 
DEM models are jointly said to be the Kyoto DEM. The equations of particle motion and a 
summary of the user related characteristics of this model are also given in the final part of this 
chapter. The contents of this chapter can be used as the working principle or background 
information of the simulation given in the next chapter.    
 
Chapter six: deals with  analysis of simulation of the two dynamic loading cases (the shear 
box test and the soil cutting by pendulum type machine) using the Kyoto DEM program. 
Simulation results, discussion of results and basic conclusions are included. Among the 
output of  the shear box simulation, the effect of parameter variation, the simulated shear 
strength of coarse, medium and fine granular DEM particles, the volume change of these 
particles, the micromechanics of deformation of these particles and the failure point of these 
particles during shearing are very important. For simulation of the soil cutting by a pendulum 
type machine, snapshots of the cutting process with different values of coefficient of adhesion 
area ( ) are important. adC
 
Chapter seven: deals with analysis of a literature review of the DEM results of a tyre – 
soil system and a penetration test;  some general discussion and conclusion is included. 
The content of this chapter help for later evaluation of DEM results in the next chapter. 
 
Chapter eight: deals with evaluation of the DEM results;  model limitations and methods 
of comparison are included. Evaluation of DEM results has been carried out for all the 
available  simulations. Results used for comparison are different depending on the  type of 
simulation selected. Results from FEM simulation and from experimental or laboratory tests 
are used as benchmarking. This evaluation has been done by qualitative comparison of  
simulation results of the same load – soil interaction. 
  
Chapter nine: deals with general discussion and conclusion, recommendations on further 
studies and summary of the whole thesis. 
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                   1      FINITE ELEMENT METHOD ( FEM ) 
 
 
 
1. 1   INTRODUCTION 
 
In all branches of engineering the finite element method is becoming increasingly popular as a 
method of solving the systems of partial differential equations which describe various 
physical phenomena (Atkison et al, 1978 );  ( Zienkiewicz, 1991 ). These equations may 
describe the deformation of solid bodies, the flow of fluids or almost any effect which can be 
described by the laws of classical physics. 
 
In the 1950s the basic idea of the FEM originated from the matrix analysis of aeroplane 
structures in aviation engineering. According to the structure matrix analysis method an entire 
structure can be considered as an assembly formed by linking many finite mechanical 
elements together; the function of each element is similar to the role of a brick for a building. 
In 1960 this idea was extended in solving plane stress problems in elastic mechanics and a 
terminology of  “Finite Element Method” was adopted. 
However for a continuum medium which is actually composed of infinite number of elements 
the FEM can be used only after the continuum medium is discretized in the following manner: 
 

• The continuum medium is divided into a finite number of blocks (elements) which are 
linked to each other only at certain specified points, nodes; 

• Inside each element the displacement distribution is approximated using a simple 
function and the relation between nodal force and nodal displacement is determined by 
the variation principle; 

• Assembling the nodal force displacement relation of all elements yielding a set of 
algebra equations with nodal displacement being unknowns. Solving such a set of 
equations provides the displacement information at a finite number of nodes within the 
continuum medium, (i.e., the approximate solution to the problem). 

 
 
1.2   BASIC STEPS IN A FINITE ELEMENT ANALYSIS 
 
Analysis of the Finite Element Method can be generally outlined into the following six steps 
(Shen et al, 1998);  ( Zienkiewicz, 1991). 
 
1. Discretization of a system 
 
The discretization of a system is the first step in a finite element analysis. It consists of the 
following: (1) the domain of a system is divided into a finite number of elements; (2) nodes 
are set up at specified points on each element; (3) adjacent elements are linked together only 
through these nodes and (4) the assembly of all elements is used to replace the original 
system.  
 
2. Determination of a displacement model 
 
After the discretization of a system, the next step is to analyse the characteristics of a typical 
element.  
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In order to express displacements, strains and stresses inside an element by using the nodal 
displacements, a displacement distribution within the element has to be assumed for a 
problem of continuum medium, that is the displacement in the element is assumed to be a 
simple function of co – ordinates. This function is called a displacement model or 
displacement function.  
 
The proper choice of a displacement function is a key step in an entire FEM. 
Most often a displacement function is chosen as a polynomial because it provides some 
convenience with regard to mathematical operations such as derivation and integration and it 
can locally approximate all continuous functions using Taylor series. 
 
The maximum power and total number of terms in a polynomial are chosen on the 
consideration of the degrees of freedom of elements and the requirement for the solution 
convergence. Generally speaking, the total number of terms in a polynomial should be equal 
to the degrees of freedom of an element by counting both constant and linear terms. 
On the basis of the chosen displacement function, displacements at any point within an 
element can be expressed by the nodal displacements in the following matrix notation: 
 

Nuu f =                                                                                                                          (1.1) 
 
where 
           uf  =  the displacement column matrix for any point in an element 
           N  =  a shape function matrix, a function of co-ordinates 
            u  =  nodal displacement column matrix of an element 
 
In the aspect of approximating the displacement distribution in a system, the FEM has 
obvious advantages over the conventional approximation methods. For example in the classic 
Ritz method, a function is chosen to describe displacements in an entire system and to satisfy 
all the boundary conditions, while in the FEM an approximate displacement function is 
chosen with regard to an element (not the whole system) and such function needs not satisfy 
the boundary conditions of the entire system except for those at the interconnections with 
adjacent elements. 
 
 3. Analysis of mechanical properties of an element 
 
After the displacement function is determined, it is ready for the analysis of mechanical 
properties of an element, which mainly includes the following three parts: 
 
1.   On the basis of the geometric equation and Equation (1.1)  the relation between element   
             strains and nodal displacements is derived as follows: 

 
Bu=ε                                                                                                                    (1.2) 

 
where 
            ε  =  the strain vector at any point in an element 
           B  =  the element strain matrix 

                      u  =  nodal displacement column matrix  
 

2.   By combining the physical equation and Equation (1.2)  the relation between the element  
        stresses and the nodal displacements can be expressed as: 
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CBu=σ                                                                                                              (1.3)  
 
where 
           σ  =  the stress vector at any point in an element 
           C  =  a constitutive matrix depending on the material properties of the element 
 

3.  With reference to the virtual work principle and after some steps of derivations, the 
      element  stiffness equation, i.e., the relation between nodal force and nodal  nf
      displacement u on  an  element is expressed as: 

 
kufn =                                                                                                                 (1.4) 

 
where 
            = element nodal force column matrix  nf
             =  the element stiffness matrix k

 
 
4.  Calculation of equivalent nodal forces 
 
After a continuum medium is discretized, forces are assumed to pass from one element to 
another only through the nodes connecting these two elements. 
However, the forces in a continuum medium are actually transferred through the common 
boundary between two adjacent elements. Therefore the surface forces acting on the boundary 
of an element, volumetric forces as well as concentrated forces on the element are all needed 
to be equivalently translated to forces acting on the nodes associated to that element. In other 
words all forces acting on an element are replaced by their equivalent nodal forces. Such 
replacement is based upon the principle that the virtual work by two types of forces should be 
the same upon any virtual displacement. 
 
5.  Assembly of element stiffness equations and establishment of the equilibrium equations 
      for an entire system 
 
For a simple static problem, the establishment of equilibrium equations include both 
assembling element stiffness matrices into the global stiffness matrix K and assembling the 
equivalent nodal force vectors of all elements into the global load column matrix F. The 
underlying reason for doing the assembly is that for all pairs of adjacent elements, the 
displacement at a common node is the same. 
After K and F are known, the static equilibrium equation for the entire system is: 
 

FKU =                                                                                                                         (1.5) 
 
   where 
                K  =  global stiffness matrix 
                U  =  the column matrix composed of nodal displacements 
                F  =  the global load column matrix caused by external forces acting on the nodes  
 
6. Solution of unknown nodal displacements and calculation of element stresses 
 
In a linear equilibrium problem in which the matrix K is considered constant, algorithms for 
solving linear equations can be used to solve the unknown displacement column matrix in 
Equation (1.5).   
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For a non-linear equilibrium problem with the matrix K  being variant, an incremental 
procedure should be adopted to account for the gradual change of stiffness with stress states 
and paths. Finally the element stresses are calculated by using Equation (1.3) and the nodal 
displacements. 
 
 
1.3   STRESSES AND EQUILIBRIUM 
 
The traditional equations of continuum mechanics need some modification when applied to 
soils. Some of these modifications are straight forward in nature: for example, the sign 
convention for stress and strains for most engineering materials, tensile stresses and strains 
are taken to be positive. Soil mechanics uses the opposite sign convention (i.e., compressive 
stresses and strains are positive). 
The next section sets out the basic definitions and equations for an elastic material using this 
sign convention. The basic soil stress – strain relation is taken as elastic however soil 
behaviour is markedly non linear. 
 
Figure 1.1 shows a body of material that is acted on by a number of forces. If the body is in 
equilibrium then six equations of equilibrium can be written which relate the forces acting on 
the body to one another. 
 
Three of these equations state that the sum of all the forces in three mutually orthogonal 
directions is zero. The other three equations state that the sums of the moments of the forces 
about three orthogonal axes are also zero. If the body is not statically in equilibrium then 
these equations can be replaced by the appropriate forms of Newton’s second law of motion. 

 
Figure 1.1   Forces acting on a body  (Atkison et al, 1978) 
 

δA 

Fz  Fy 

Fx 

Z 
Y 

X 

 
Figure 1.2   Internal forces acting on a body  ( Atkison et al, 1978 )  
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Figure 1.2 shows a planar cut across a similar body of material. Since the part of the body on 
either side of the cut must be in equilibrium, there must be internal forces acting in the body 
(i.e., across the plane) to maintain the state of equilibrium. 
Using the equations of equilibrium described above, six resultants equivalent to this system of 
forces can be found.    
 
Considering the forces transmitted across a small area Aδ  inscribed on this plane, it is 
possible to define a measure of the local intensity of the internal force system.  
These are of course the internal stresses acting on the material. Taking the plane to be 
perpendicular to the x-axis internal stresses are obtained. 
 

( )
A
Fx

Ax δ
δσ δ

−
= →0lim                                                                                   (1.6) 

( )
A
Fy

Axy δ
δ

τ δ

−
= →0lim                                                                                   (1.7) 

( )
A
Fz

Axz δ
δτ δ

−
= →0lim                                                                                   (1.8) 

 
While six force resultants were necessary to describe the interaction of the two parts of the 
body only three stresses are needed to describe the local intensity of forces at one particular 
point on the surface. This is because the force distribution is considered to be essentially 
continuous and as the small area Aδ  shrinks in size the force distribution over the area 
approaches a constant value. 
 

σx 

σz 

σy  

τxy   

τxz   

τzy   
τzx  

τyx   

τyz           

X Y 

Z 

Figure 1.3   Stress components on a soil element 
 
 
 
To completely define the state of stress at a point in the material it is necessary to consider the 
internal forces acting on three mutually perpendicular planes through the point. 
Thus stress components yσ , yxτ  and yzτ  act on a plane perpendicular to the y axis and stress 

components zσ , zxτ and zyτ act on a plane perpendicular to the z axis. Considering the 
equilibrium of  an infinitesimal cube of material (Fig. 1.3) for τ  
 

yxxy ττ = ;   zyyz ττ = ;    xzzx ττ =  
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Hence there are six independent components of stress at a point in the material. Usually the 
state of a stress in a body is not constant but varies from point to point. Considering the 
equilibrium of an infinitesimal cube of material in a varying stress field, the following 
equations are obtained: 
 

x
zxyxx f
zyx

=
∂

∂
+

∂

∂
+

∂
∂ ττσ

                                                                           (1.9) 

y
zyyxy f
zyx

=
∂

∂
+

∂

∂
+

∂

∂ τστ
                                                                           (1.10) 

z
zyzxz f

zyx
=

∂
∂

+
∂

∂
+

∂
∂ σττ

                                                                           (1.11) 

 
      where  
                  ,  and  =  body forces in the directions of the xf yf zf x , and y
                   axis respectively. z
 
 
1.3.1   DISPLACEMENT AND STRAINS (COMPATIBILITY) 
 
When a material is strained a typical point with co – ordinates (x,y,z) moves to a new position 
(x+u, y+v, z+w). Except for the case when the body is given a rigid body translation the 
displacements u, v  and  w  will vary across the body (i.e., they will each be functions of x, y 
and z). Figure 1.4 shows three infinitesimal fibres of length δx, δy and δz  in a material and 
their new locations following straining.  

X Y 

Z 

δx 
δy  

δz d 

d = (u, v, w) 

Figure 1.4   Definition of displacements 
 
 
 
The principal strains  xxε  , yyε   and  zzε  and the shear strains  γxy , γyz  and  γzx  are given by 
 

x
u

xx ∂
∂−

=ε                                                                                                (1.12) 

y
v

yy ∂
∂−

=ε                                                                                                 (1.13) 

z
w

zz ∂
∂−

=ε                                                                                                 (1.14) 
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y
u
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v

xy ∂
∂−

+
∂
∂−

=γ                                                                                     (1.15) 

z
v

y
w

yz ∂
∂−

+
∂
∂−

=γ                                                                                     (1.16) 

x
w

z
u

zx ∂
∂−

+
∂
∂−

=γ                                                                                     (1.17) 

 
A more expressed notation is tensorial shear strains defined by: 
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zzyzxz
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εεε
εεε
εεε

ε 1  

 
 
Note that a side effect of reversing the normal sign convention for strains is that a positive 
shear strain  γxy  corresponds to an increase in the angle between two fibres initially aligned 
with the x and y axes. 
 
 
1.3.2   STRESS – STRAIN RELATIONS 
 
The displacement of a body may be a consequence of deformation, rigid body motion or some 
combination of both. The deformation is described by the strain which is of two classes: 
engineering strain and tensorial shear strain as defined by Equations (1.12)  to (1.17)  and 
(1.18).  If elastic material is stressed in the x direction by a direct stress σx then it experiences 
strains 
 

E
x

x
σε =                                                                                          (1.19) 

E
x

y
νσε −

=                                                                                     (1.20) 

E
x

z
νσε −

=                                                                                     (1.21) 

( ν )τ
γ += 12

E
xy

xy                                                                            (1.22) 

 
where 
            
         E = Young’s modulus of the material;  ν  =  the Poisson’s ratio; 
         τxy = shear stress;  xσ  = stress in x – direction;    xyγ  = shear strain 
 
 
 

 13



 
 
 
The effects of three direct stresses and shear stresses can be superposed to give the 
generalised form of Hook’s law: 
 

EEE
zyx

x
σν

σ
νσε −−=                                                                   (1.23) 

EEE
zyx

y
νσσνσε −+

−
=                                                                  (1.24) 

EEE
zyx

z
σνσνσε +−

−
=                                                                  (1.25) 

( ν )τ
γ += 12

E
xy

xy                                                                             (1.26 a) 

( ν )τ
γ += 12

E
yz

yz                                                                             (1.26 b) 

( ν )τγ += 12
E
zx

zx                                                                             (1.26 c) 

 
 
These equations can be written in matrix form: 
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where ( )ν+
=
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EG  ,  is the elastic shear modulus.  

 
 
The above relations can be inverted to give stresses in terms of strains: 
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The above relation is written in matrix notation: 
 

εσ D=                                                                                                      (1.27) 
 
  where 
                 σ  = total stress;   = stiffness matrix;  D ε = total strain 
 
Principal stresses 
A principal stress is defined as the normal stress on a plane in which the shear stress has 
vanished. Such a plane is called principal plane. In three dimensions it is always possible to 
rotate the co – ordinate system in such a way that there are three mutually perpendicular 
planes found such that all three shear stresses are simultaneously zero and there only remain 
three principal stresses with their principal directions. 
Consider the stress σ in an original x – y – z  co – ordinate system is transformed into σ ′  in 
another  system by   zyx ′−′−′
 

TTTσσ =′                                                                                                 (1.28 a) 
 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
















′′′
′′′
′′′

=
zzzyzx
yzyyyx
xzxyxx

T
,cos,cos,cos
,cos,cos,cos
,cos,cos,cos

        in  3D                              (1.28 b) 

 
 

( ) ( )
( ) ( )






=

',cos',cos
',cos',cos

yyyx
xyxx

T                             in   2D                             (1.28 c) 

 
   where 
                  T  =  the rotational matrix consisting of the direction cosines between two  
                        co – ordinate  systems 
 
 
The angle between two arbitrary co-ordinates is represented by parenthesis enclosing the 
corresponding co – ordinate labels separated by a comma as shown in Figure 1.5 
 

x 

x’ 
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(x,x’) 
(z,z’) 

(y,y’) 
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y y’ 

φ 

φ 

         a)   from  x – y – z  to zyx ′−′−′                      b)   from  x – y  to yx ′−′  
 
Figure 1.5   Rotation of co-ordinates ,  a)  3D  and  b)  2D 
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According to the matrix theory ,  a specific set of rotations of co – ordinates exists such that  
σ ′  becomes: 
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00
00
00
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σ

σ
σ

σ  

 
where              
            σ1 ,  σ2 , and   σ3  =  principal stresses  
 
 
The magnitudes of principal stresses become: 
 

2
2

2,1 22 xy
yyxxyyxx σ

σσσσ
σ +







 −
±

+
=                                                      (1.29) 

 
Principal strains 
The magnitudes of principal strains in two dimensional cases are: 
 

2
2

2,1 22 xy
yyxxyyxx ε

εεεε
ε +







 −
±

+
=                                                     (1.30) 

 
Volumetric strain 
The definition of volumetric strain is as follows: 
 

octzzyyxxvol V
V εεεεε 3=++=

∆
=                                                                  (1.31) 

 
Octahedral stresses 
Octahedral stresses refer to the stresses on an octahedral plane which can be easily determined 
in the σ1-σ2-σ3  co-ordinate system. They include octahedral normal stress  σoct and octahedral 
shearing stress τoct. The orientations of  σoct  and τoct  are respectively normal and tangential to 
an octahedral plane, their magnitudes are given by: 
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Octahedral strains 
An octahedral strain plane can be determined in the  ε1-ε2-ε3  co-ordinate system. 
The orientations of octahedral normal strain  εoct  and shear strain  γoct  are respectively normal 
and tangential to an octahedral plane, while their magnitudes are given by: 
 

3
321 εεεε ++

=oct ,   ( ) ( ) ( )13
2

32
2

213
1 εεεεεεγ −+−+−=oct                (1.33) 

 
 
The deviator stresses are defined as: 
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The deviator strains are defined as: 
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1.4   CONSTITUTIVE MODELS FOR AGRICULTURAL SOILS 
 
Constitutive models refer to the description of the relation between stress and strain with time 
being considered for dynamic cases. They are the central part of setting up a finite element 
analysis of a physical problem because they entirely determine the formulation of a 
constitutive matrix C  which is a key component of the basic FEM analytical equation as in 
Equation (1.3). Constitutive models can be classified as elastic, plastic and elasto – plastic 
models which depend on whether only elasticity or plasticity or both are considered in 
modelling or not. 
 
1.4.1   ELASTIC MODELS 
 
The most distinguished feature of elastic models is that all strains are recovered when the load 
is removed. Within the scope of elasticity, models may be of linear or non – linear form as in 
Figure 1.6 
 

load 

unload 

σ  

ε 
a)  linear 

σ 

ε 

load 

unload 

b)  non linear 
 
Figure 1.6 a, b.  Elastic stress – strain models  
 
 
 
1.4.1.1   Linear elastic model 
 
The stress – strain relation in a linear elastic model is linear as in Figure 1.6a. If soil is 
considered to be completely isotropic, only two material parameters, shear modulus G  and 
bulk modulus K, are required in the modelling as follows: 
 

xyxyxy GG γεσ == 2  ;      voloct Kεσ =  
 
In another way, a linear elastic model can be expressed in terms of  Young’s modulus E and 
Poisson’s ratio ν 
 

xxxx Eεσ =  ;      xxzzyy νεεε −==  
 
The following relations exist between the above sets of material parameters: 
 

( )ν+
=

12
EG                                                                                                  (1.36) 

( )ν213 −
=

EK                                                                                               (1.37) 
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The constitutive matrix for complete isotropic material is: 
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If soil is not considered completely isotropic, more material parameters are required to fill in 
the constitutive matrix. For example in the situation of cross anisotropy where there is some 
plane in which stress – strain relations are isotropic and outside which the elastic constants for 
stresses and strains are different, the constitutive matrix needs five independent constants. If 
the x-y plane is the plane of isotropy, the matrix is of the following form: 
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1.4.1.2   Non linear elastic models 
 
The simplest type of a non – linear relation is a bilinear one as shown in Figure 1.7a 
Soil has an initial constitutive matrix C1  until the stresses reach a yield value σy, after which 
the constitutive matrix is changed to C2.  
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Figure 1.7 a, b.  Bilinear and multi – linear  elastic models 
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The incremental stress – strain relation can be written as: 
 

εσ ∆=∆ 1C                                     σ < σy                                                    (1.38) 
εσ ∆=∆ 2C                                     σ ≥ σy                                                    (1.39) 

 
If the constitutive matrix is expressed interms of  E  and ν,  the Young’s modulus is usually 
reduced and the Poisson’s ratio considered constant before and after the stresses reach  σy. 
However the drawback associated to this treatment is that the bulk modulus is reduced as 
much as the shear modulus. The soil element therefore becomes highly compressible and 
often an unrealistic solution may follow. A better way to overcome this shortcoming is to 
express the constitutive matrix in terms of the shear modulus G and the bulk modulus K  by 
reducing G and keeping K constant. 
 
The dominant advantage of a bilinear model is its simplicity. However the modules E and G 
of real agricultural soils usually change gradually with the strains. To extend the bilinear 
models to accommodate this situation, multilinear or piece-wise linear models are introduced 
as shown in Figure 1.7b. The tangent modulus  Et  which can be E or G  on a given n-piece-
wised stress-strain curve is defined as the slope of the chord between two successive 
computed points as: 
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1
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−

−
−

=
ii

ii
tE

εε
σσ

                                                            ni ≤≤3                     (1.40) 

 
 
1.4.2   PLASTIC MODELS 
 
The theory of plasticity was originally developed on the basis of experiments on metals. 
Therefore, some basic concepts in soil plasticity were borrowed from those of metal 
plasticity.  Figure 1.8 shows a typical stress – strain relation for a metal bar. 
The initial state of the bar is supposed to be at point O.  At the beginning portion of loading, 
designated by OA , the stress – strain relation is invertible that means, loading is reversible.  
 
However, experiments revealed the existence of a certain point B beyond which the loading is 
irreversible. This point is called yield point. When the loading exceeds the yield point, any 
following unloading can only partially restore the developed total strain. 
The recovered and non – recovered component of the total strain are called elastic strain and 
plastic strain, respectively, as designated by DE  and OD  in the figure. The maximum stress 
that the material is able to sustain, is called failure point, as illustrated by point F in the figure. 
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Figure 1.8   A stress – strain curve of a typical metal bar 
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One distinguished feature of soil manipulation in agricultural production is that soil undergoes 
substantial deformation before the external load is removed, and a large amount of 
irreversible deformation remains after the removal of the load. 
In common laboratory experiments of triaxial shear and hydrostatic compression tests, 
researchers showed loading-reloading behaviour of soil after undergoing a noticeable amount 
of deformation (Chi et al, 1993). In both types of experiments, only a small amount of 
deformation is reversible, i.e., elastic, and most part of deformation is irreversible, i.e., plastic. 
This indicates that the plastic deformation dominates the soil deformation in agricultural 
operations and more attention is required for these phenomena. 
 
Classification of plastic models 
Constitutive models associated to plasticity can generally be divided into two types: 

 
• Rigid, perfectly plastic models 
• Elasto – plastic models 

 
1.4.2.1   Rigid, perfectly plastic models 
 
The simplest form of plasticity is a rigid, perfect plastic model as shown in Figure 1.9 
In the model there are no elastic or recovered strains and no changes related to a fixed yield 
surface.  Before stresses reach the yield point, soil is assumed not to deform like a rigid 
object;  beyond the yield point, pure plastic deformation is assumed to occur in soil without 
any limitation. This model can be used to estimate the limit capacity or load of soil, but 
generally it oversimplifies the stress – strain behaviour of agricultural soils. 

load 

σ 

ε 
 Figure 1.9   Rigid, perfectly plastic stress – strain model 
 
 
1.4.2.2   Elasto – plastic models 
 
There are some elastic and some plastic strains in the stress – strain relation for agricultural 
soils. After stresses have reached the yield stress, there exist three cases:  
 
Perfectly plastic;   Strain hardening and  Strain softening 

elastic strain hardening 
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ε b) 
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ε 

elastic 
perfectly plastic 

a) 

elastic 

strain softening 

σ 

ε
c) 

Figure 1.10 a, b and c.   Elasto – plastic stress – strain model 
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Figure 1.10  show all the three cases respectively. 
These types of model can be used to analyse all cases with or without reloading, at the cost of 
complexity in constitutive models and FEM calculations. 
 
Assumptions of soil plasticity 
Unlike the stress – strain relation of elasticity, the relations arising from plasticity theory 
usually are incremental that is the stress and strain are entirely related by their incremental or 
differential components. The incremental stress – strain relations for an elasto – plastic  
material are established on the basis of three basic assumptions: 
 
• Yield and failure criteria 
• Flow rule 
• Hardening law 

 
Yield and failure criteria 
A yield criteria  f  is a function of stress-strain and other parameters such that when  
soil is elastic and when  soil is in plastic state. Here,  k  is a yielding constant 
depending on material properties. The function  f  cannot be greater than  k  this requirement 
is known as the consistency condition. The yield criteria  f  designates a yield surface in stress 
space which divides the region into two parts. Inside the yield surface, only elastic strains 
occur;  at the surface both elastic and plastic strains are possibly generated. 

kf <
kf =

 
A failure criteria F is a function of stress-strain and other parameters such that when  
soil failure does not occur and when 

0kF <

0kF =  soil is in a failure state. Here  k0  is a failure 
constant depending on material properties. The failure function F corresponds to a failure 
surface in stress space which is the bound or limit to the yield surface. 
 
 A yield surface must lie inside or, at most coincide with the failure surface. The shapes of 
yield and failure surfaces are usually defined to be similar. 
The existing yield and failure criteria can be classified into two types: non-frictional and 
frictional models, according to whether models take account of frictional components to their 
shear strength, all the yield and failure criteria considered here are shear (frictional) type. 
 
Mohr – Coulomb failure criterion 
It is a frictional model based on the following Mohr – Coulomb law: 
 

φστ tan+= c                                                                                         (1.41) 
 
which can be transformed into the following form in the 3D  stress space: 
 

( ) ( )[ ]φσσφσσσ cos2sin 31311 cF ij ++−−=                                       (1.42) 
 
This equation is equivalent to an irregular hexagonal pyramid surface centred on the 
hydrostatic axis in principal stress space shown in Figure 1.11. 
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σ1 

σ2 

σ3 

hydrostatic axis 

Figure 1.11   Mohr – Coulomb failure surface 
 
 
Flow rule 
In most models of soil plasticity, it is assumed that the total soil strain increment is composed 
of elastic and plastic strain increments: 
 

p
ij

e
ijij ddd εεε +=                                                                                      (1.43) 

 
The direction of elastic strain increment generally coincides with the direction of the stress 
increment, and the magnitude of elastic strain increment is determined by: 
 

G
d

d ije
ij 2

σ
ε

′
=                                                                                                 (1.44) 

 
The direction of plastic strain increment is usually not coaxial with the direction of the stress 
increment, and its magnitude is not as easily determined as that of elastic strain increment. 
Therefore a flow rule is proposed to determine the direction and relative magnitude of plastic 
strain increment after the yield surface is contacted. 
 Since plastic flow is somehow similar to fluid flow, the use of a plastic potential function 

( )ijg σ   is a natural way to describe a vector quantity which depends only on the location of a 
point in space. A plastic potential function defines a plastic potential surface in stress space. 
The direction of the plastic strain increment is assumed to be the direction of maximum 
gradient of the plastic potential function at the point where a stress state contacts it. 
According to Drucker et al (1955), the plastic strain increment is given by a scalar constant β 
times a vector  mij  normal to the potential surface at the stress point: 
 

( )
ij

ij
ij

p
ij

g
md

σ
σ

ββε
∂

∂
==                                                                            (1.45) 

If the plastic potential function is known, the magnitude of plastic strain increment  is  
entirely dependent on the constant β  which can be determined by the plastic potential 
function and a work – hardening law. 

p
ijdε

 
Hardening law 
A yield surface is encountered in a work – hardening soil when the first plastic deformation 
occurs. Then if the stress continues to increase, the yield surface will expand away from the 
hydrostatic axis until it meets the failure surface. 
Yield surface hardening is mainly concerned with how the yield surface grows, if 
deformational stress of soil increases.  
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                    2      PLAXIS FOR DYNAMIC LOADING 
 
 
2.1   INTRODUCTION 
 
The Finite Element Method (FEM) is one of the best tools to study the deformation of soil 
mass. Plaxis is a special purpose finite element computer program suitable for the analysis of 
deformation problems in soil and rock (Plaxis, 1998).  A restriction is made in the sense that 
deformations are considered to be small. This enables a formulation with reference to the 
original undeformed geometry. It was explained in the previous chapter that displacements 
and stresses are maintained in a limited number of points in a finite element calculation.  
By interpolation of the displacements from the nodes, the displacements can be calculated 
everywhere throughout the element (Zienkiewicz, 1991). This interpolation is done by means 
of shape functions. The displacements within an element are determined solely by the nodes 
in that element. Depending on the number of nodes a certain degree of interpolation is 
possible.  Because the displacements are known throughout, the strains at any point can be 
determined. The strains at one point are calculated from the derivatives of the displacement at 
that point. The main output quantities of a finite element calculation (Plaxis) are the 
displacements at the nodes and the stresses at the stress points.  
 
2.2   THE  DYNAMIC  MODULE  USED IN  PLAXIS  
 
Although Plaxis was first developed for static loading cases, further improvement on the area 
of interest proved that it also works for dynamic loads.  The basic functionality of the 
dynamic module is explained in this part of the thesis.   
For the general explanation of the basic functionality of Plaxis you are refered to Plaxis 
scientific manual version 7 (Plaxis, 1998).  With the dynamic module the inertia effect is also 
included (Braja, 1995).  Inertia effect refers to the influence of inertia forces of soil mass on 
the load – soil interactions. 
The dynamic equilibrium equation for a finite element system can be expressed as: 
 

FKuuCuM =++                                                                                         (2.1) 
 
where 
                M  =  the mass matrix ( soil + water + any added object) ;   
                 , u , u   =  displacement, velocity and acceleration vectors ;  u
                  =  the damping matrix C ( )KMC RR βα += :  Rα , Rβ  are Rayleigh 
                  coefficients;   K  =  the stiffness matrix ;   =  the load vector F
 
 
The term corresponds to the static deformation calculation.  According to 
Newton’s Second Law (F = ma ), the greater the mass the less the acceleration brought about 
when a particular force is applied.  The material damping matrix C is caused by friction or 
viscosity. The greater the viscosity of the soil, the more vibration energy is dissipated and the 
less the materials move after applying a particular load.  

( FKu = )

 
As written above C  is a combination of mass matrix and stiffness matrix (Rayleigh damping 
with Rayleigh coefficients). 
In the standard setting of Plaxis calculation there is no Rayleigh damping ( Rα = Rβ = 0 )  
which is the condition applied in this thesis.   
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With respect to the stress – strain relationship in the soil, the theory applied here is based on 
what was explained in chapter one.  Furthermore for more detailed description of the dynamic 
calculation you are referred to Hughes (1987) 
 
2.2.1   FINITE  ELEMENT  DISCRETISATION   
 
In order to carry out a finite element simulation in Plaxis a continuum is divided into a 
number of triangular elements.  Each element consists of  a number of nodes and stress 
points.  The basic elements are the 6 – node triangular element and the 15 – node triangular 
element (Fig 2.1).  
The 6 – node triangle is the default element for 2D analysis.  It provides a second order 
interpolation for displacements and the element stiffness matrix is evaluated by numerical 
integration at three stress points.  For the 15 – node triangle the order of interpolation is four 
and the integration involves twelve stress points.  The 15 – node triangle is a very accurate 2D 
element which has been shown to produce high quality stress results, however using 15 – 
node triangles leads to relatively high memory consumption and slow calculation 
performance.  

Figure 2.1 a, b.    Location of nodes and stress points in triangular elements of Plaxis  
 
 
 
2.2.2   INTERFACE  ELEMENTS 
 
Interfaces are used to model the interaction between the structure and the soil (Plaxis, 1998).  
Interfaces are composed of interface elements.  Figure 2.2 shows how interface elements are 
connected to soil elements. When using 6 – node soil elements the corresponding interface 
elements are defined by three pairs of nodes, whereas for 15 – node soil elements the 
corresponding interface elements are defined by five pairs of nodes.  In the Figure the 
interface elements are shown to have a finite thickness, but in the finite element formulation 
the co-ordinates of each pair are identical which means the element has a zero thickness.    
Each interface has assigned to a ‘virtual thickness’ which is an imaginary dimension used to 
obtain the material properties of the interface.   
 
The virtual thickness is defined as the virtual thickness factor times the average element size.   
For Plaxis the default value of the virtual thickness factor is  0.1.      
A typical application of interfaces is placed at the sides of the structure – soil interaction. 
The roughness of the interaction is modelled by choosing a suitable value for the strength 
reduction factor R in the interface. The factor relates the interface strength (friction and 
cohesion of interface) to the soil strength (friction angle and cohesion of the soil).   
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According to the Plaxis manual the following relations are applied between interface strength 
and soil strength. 
 
       c                                                                                             (2.2) soili Rc=

soili R φφ tantan =                                                                                     (2.3) 
 
  where 
               =  cohesion of the interface;  ic R  =  strength reduction factor ; 
               =  cohesion of soil;   soilc iφ   =  angle of friction of the interface; 
              soilφ  =  angle of internal friction of the soil 
 
 
If  R  is set to unity the interface properties are the same as those within the associated data 
set. In the case R is  set to a value less than unity then the interface is weaker and more 
flexible than the associated  soil. 
 

Figure 2.2 a , b.    Distribution of nodes and stress points in the interface elements connected  
                                to the soil elements ( Plaxis, 1998)  
 
 
 
2.2.3   BOUNDARY CONDITION 
 
Applying appropriate boundary conditions are among the essential features of modelling 
dynamic loading cases in Plaxis.  For dynamic loading cases the boundaries should in 
principle be much further away from the loading than for static loading. This is because 
vibrations generally disperse very quickly in the former case, giving rise to unnatural 
reflections that lead to distortion of the results (Plaxis dynamic module version 7.2, 2000).  
 
However, locating the boundaries far away requires many extra elements and therefore a lot 
of extra memory and calculating time. To counteract such reflections special measures are 
needed at the boundaries which are called ‘absorbent boundaries’ (Plaxis dynamic module 
version 7.2, 2000). An absorbent boundary  aims at absorbing the reflection waves on the 
boundaries caused by dynamic loading, that otherwise would be reflected inside the soil body.    
The use of absorbent boundaries in Plaxis means using a damper on the boundaries.  The 
damper ensures that an increase in stress on the boundary is absorbed without rebounding. 
The boundary then starts to move (Plaxis dynamic manual version 7.2, 2000) 
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2.2.4    THE  DYNAMIC  CALCULATION 
 
Problems of interest like tyre – soil or tool – soil  systems are usually dynamic, that is an 
interaction between a tyre or a tool and a specific portion of soil is completed within a limited 
stretch of time (Shen et al, 1998);  (Wiermann et al, 1999). The response of soil for such 
dynamic loads can be simulated by one of four direct time integration methods. 
 
2.2.4.1   Time  integration   
 
For the numerical calculation of dynamics, the form of time integration is the determining 
factor for the stability and accuracy of the calculation process.  Soil reaction to dynamic loads 
can be simulated by one of the four direct time integration methods.   
These are: the central difference method, the Haubolt method, the Newmark method and the 
Wilson-θ method. The main weakness of the central difference method is that its solution is 
only conditionally stable, i.e., the time step must be smaller than a critical time step to obtain 
a stable solution. The weakness associated to the Houbolt method is the requirement of a 
special starting procedure to obtain the displacement at two instants t∆  and 2  where  
is the time interval.  

t∆ t∆

 
On the other hand the Newmark and the Wilson-θ   method belong to the class of linear 
acceleration methods and are unconditionally stable if  5.0≥β ;    for the 
Newmark method  where, 

( 25.025.0 βα +≥ )
α  and β  determine the accuracy of the numeric time integration, 

(and are not equal to α  and β  of the Rayleigh damping) and 37.1≥θ for the  Wilson-θ   
method. The main difference between the Newmark method and Wilson - θ  method is that 
the latter assumes linear change of acceleration in time range [ t , tt ∆+θ ] , where θ  
determines the accuracy of the numerical time integration. 
 
In this section only the algorithm implementation based on the Newmark method is discussed. 
The Newmark method is a frequently used method of implicit time integration (Sluys, 1992).  
The conventional Newmark step-by-step integration method is not well suited in solving 
problems with dynamic loading and material non-linearity. Therefore an incremental and 
iterative algorithm is proposed. For all kinematic and static variables at time t  and t  
Equation (2.1)  is expressed as: 

t∆+

 
ttttttt FuKuCuM =++                                                                              (2.4) 

tttttttttttttt FuKuCuM ∆+∆+∆+∆+∆+∆+∆+ =++                                                     (2.5) 
 
Assuming  if the incremental step is small enough. The 
subtraction of Equation (2.4)  from Equation (2.5)  yields the following basic dynamic 
equation in increment form 

ttttttttt KKCCMM ≈≈≈ ∆+∆+∆+ ;;

 
( ) ( ) ( ) ttttttttttttttt FFuuKuuCuuM −=−+−+− ∆+∆+∆+∆+                          (2.6) 

 
According to the Lagrangian median theorem, 
 

tuuu ttt ∆+=∆+ ~
                                                                                                 (2.7) 

 
where 
           u~ = value of  at certain point in the domain ( ,   u t tt ∆+ ) 
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The Newmark method assumes 
 

( ) ttt uuu ∆++−= ββ1~
                                                    0 1≤≤ β                     (2.8) 

 
therefore Equation (2.7)  is written as: 
 

( )ttttttt uuautuu −+∆=− ∆+∆+
0                                                                        (2.9) 

 
where  
             ta ∆= β0  
 
According to Taylor expansion of the displacement vector 
 

( ) thttttt uttuuu ∆+∆+ ∆+∆+= 25.0                                              10 << h         (2.10) 
 
By further assumption of the Newmark method 
 

( ) ttttht uuu ∆+∆+ +−= αα 221                               120 ≤≤ α                              (2.11) 
 
Thus Equation (2.10)  can be written as  
 

( ) tttttttt uauauuauu 321 ++−=− ∆+∆+                                                              (2.12) 
 
where  

          21
1
t

a
∆

=
α

 ;  22
1
t

a
∆

−=
α

 ;  
α2
1

3 −=a  

      
By substitution of Equations (2.9) and (2.12) into Equation (2.6)  the final equation becomes 
 
( )( ) ( )

( ) ( )tttttt

ttttttttt

uauaCuauaM

FFuuKCaMa

6532

41

−−+−−

+−=−++ ∆+∆+

                                              (2.13) 

 
where 
           ;    ;    104 aaa = 205 aaa = 306 aata +∆=  
 
The unknown displacement column matrix ( )ttt uu −∆+  can be solved from Equation (2.13)  if 

 and  u  are known.  Then on the basis of Equation (2.9) and (2.12)  u and 
 are determined by the following Equations 
,, tt uu

ttu ∆+

t tttt u ∆+∆+ ,

 

( ) ttttttt

tttttt

tttttt

uauauuau

uauauu
uuuu

721

08

++−=

++=

−+=

∆+∆+

∆+∆+

∆+∆+

                                                                    (2.14) 

 
where 
              ;     137 += aa 08 ata −∆=
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2.2.4.2   Time  step 
 
Based on the above discussion of the Newmark method the time integration is the 
determining factor for the stability and accuracy of the calculation process. 
Despite the implicit integration the time step used in the calculation is subject to limitations. 
If the time step is too large, the solution will display major deviations and the calculated 
response will be unreliable ( Plaxis dynamic module version 7.2, 2000). 
 
The critical time step depends on the maximum frequency occurring in the model and the 
accuracy of the finite element mesh. The chosen time step is so small that a wave in a single 
step displaces less than one single element. 
 

( )
( )( ) 



 −
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                                    (2.15) 

 
where 
       ς   =  multiplying factor depends on finite element type ;   B  =  the average length of the 
        element ;    =  surface area of the element ;  S ρ  =  density of the material ; 
       E  =  Young’s modulus ;    ν  =  Poisson’s ratio 
 
 
2.3     SOIL MATERIAL MODELS  
 
A material model is a set of mathematical equations that describes the relationship between 
stress and strain. All material models implemented in Plaxis are often expressed in a form in 
which infinitesimal increments of stress rates are related to infinitesimal increments of strain 
rates. 
In this thesis, the two types of soil models used for the Plaxis calculation are the  
Mohr-Coulomb and the Cam Clay type models.  Details of the models with some 
mathematical formulations are given below. 
 
2.3.1    MOHR – COULOMB MODEL 
 
The Mohr-Coulomb model is a perfectly plastic model, which is used as a first approximation 
of soil behaviour in general. Soil plasticity is associated with the development of irreversible 
strains. In order to evaluate whether or not plasticity occurs in a calculation a yield function is 
introduced as a function of stress and strain ( Plaxis material model manual version 5, 1994).  
 
A perfectly plastic model is a constitutive model with a fixed yield surface that is fully 
defined by model parameters and not affected by plastic straining.  For stress states 
represented by points within the yield surface the behaviour is purely elastic and all strains are 
reversible. 
 
Elastoplasticity  of the Model 
The basic principle of elastoplasticity is that strains and strain rates are decomposed into an 
elastic and a plastic part. 

pe εεε +=                                 pe εεε +=                                                            (2.16) 
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Substitution of Equation (2.16)  into Hook’s law  Equation (1.27) gives: 

( peee DD εεεσ −==′ )                                                                             (2.17) 
 
According to the classical theory of plasticity ( Hill, 1950) plastic strain rates are proportional 
to the derivative of the yield function with respect to the stresses. This means that the plastic 
strain rates can be represented as  vectors perpendicular to the yield surface. 
 
This classical form of the theory is referred to as associated plasticity. However for Mohr-
Coulomb type yield functions the theory of associated plasticity leads to an overprediction of 
dilatancy. Therefore in addition to the yield function a plastic potential function is introduced. 
For the cases is the yield function and f g  is plastic potential function, fg ≠  is denoted as 
non-associated plasticity.  In general the plastic strain rates are written as: 
 

σ
λε

′∂
∂

=
gp                                                                                                (2.18) 

 
in which λ  is the plastic multiplier.  For purely elastic behaviour  0=λ ,  where as in the 
case of plastic behaviour λ  is positive: 
 

0=λ  for  or  0<f 0≤
′∂

∂ ε
σ

e
T

Df
                  (elasticity)                          ( 2.19) 

0>λ  for   and  0=f 0>
′∂

∂ ε
σ

e
T

Df
               (plasticity)                          (2.20) 

 
Considering only elastic perfectly plastic behaviour and the consistency condition for plastic 
flow,  the plastic multiplier λ  can be formulated as: 
 

ελ e
T

Df
d ∂′

∂
=

1
                                                                                       (2.21) 

   
  where                               

                  
σσ ′∂
∂

′∂
∂

=
gDfd e

T

                                                                     (2.22) 

 
By substituting Eqn (2.22) into Eqn (2.21) and further substituting Eqn (2.21) into Eqn (2.18), 
with further substituting into Eqn (2.17) gives Eqn (2.23), which is the general elastoplastic 
relation  between  stress rates and strain rates, see  Smith and Griffith (1982) ;  Vermeer and 
De Borst (1984). 
 

ε
σσ

ασ 







′∂

∂
′∂

∂
−=′ e

T
ee DfgD

d
D                                                             (2.23) 

             
The parameter  α   is used as a switch.  If the material behaviour is elastic as defined by 
Equation (2.19)  the value of  α   is equal to zero, whilst for plasticity the value of α   is 
unity. 
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Mathematical formulation of the yield function 
The Mohr-Coulomb yield condition is an extension of Coulomb’s friction law to general 
states of stress.  In fact this condition ensures that Coulomb’s friction law is obeyed in any 
plane within a material element. 
The full Mohr-Coulomb yield condition can be defined by three yield functions when 
formulated in terms of principal stresses: 
 

( ) 0cossin
2
1

2
1

32321 ≤−′+′+′−′= φφσσσσ cf                                    (2.24) 

( ) 0cossin
2
1

2
1

13132 ≤−′+′+′−′= φφσσσσ cf                                    (2.25) 

( ) 0cossin
2
1

2
1

21213 ≤−′+′+′−′= φφσσσσ cf                                    (2.26) 

 
The two plastic model parameters appearing in the yield functions are the well known friction 
angleφ  and the cohesion c . 
In addition to the yield functions ( f )  three plastic potential functions ( g ) are defined for the 
Mohr-Coulomb model: 
 

( ) ψσσσσ sin
2
1

2
1

32321 ′+′+′−′=g                                                        (2.27) 

( ) ψσσσσ sin
2
1

2
1

13132 ′+′+′−′=g                                                         (2.28) 

( ) ψσσσσ sin
2
1

2
1

21213 ′+′+′−′=g                                                           (2.29) 

 
The plastic potential functions contain a third plasticity parameter, the dilatancy angle ψ . 
This parameter is required to model positive plastic volumetric strain increments for  ψ > 0 
and volume decrease for ψ < 0  and no volume change for ψ = 0 .  
By differentiating the plastic potential function g  according to Equation (2.18) the parameter 
ψ  is obtained as: 
 

p

p
v

γ
ε

ψ =sin                                                                                                    (2.30) 

 
where 
                      is the increment of plastic volumetric strain ;    is the plastic  p

vε pγ
                     distortion increment 
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2.3.1.1   Parameters for the Mohr – Coulomb model 
 
The Mohr-Coulomb model requires a total of five basic parameters. These parameters with 
their standard units are listed below: 
 
E         Young’s modulus                                [kPa] 
v           Poisson’s ratio                                    [-] 
φ          Angle of friction                                  [0] 
c           Cohesion                                             [kPa] 
ψ          Dilatancy                                             [0] 
 
Young’s modulus of elasticity 
Plaxis uses the Young’s modulus as the basic stiffness modulus in the Mohr-Coulomb model. 
A stiffness modulus has the dimension of stress. A value is derived from a standard triaxial 
test as shown in the Fig 2.3. 
In such a test the sample is first loaded by a hydrostatic pressure ( 321 σσσ == ) and then an 
increasing deviatoric stress  ( 31 σσ − )  is added by increasing  1σ . 
                

1 
σ1-σ3   

 E50    

     ε1 

y 

x 

Figure 2.3   Elasticity modulus from results of standard triaxial test ( Plaxis material models 
                        manual version 5, 1994 ). 
 
 
The secant modulus at 50  strength, denoted as   is a suitable stiffness parameter in 
many problems (Plaxis material models manual version 5, 1994 ). For moist or wet rather 
dense clay soils an 

% 50E

E  value is obtained by recognising that under these conditions the soil 
compressibility is mainly caused by the compressibility of entrapped air bubbles in the soil 
pores.  Barneveld (2000) assumed that the entrapped air follows Boyle’s gas law and that the 
external mean normal stress is fully transmitted to the entrapped air bubbles. In this way he 
could calculate E  from a standard triaxial test and the initial soil air content. 
 
Poisson’s ratio 
The other elastic property in the relationships of elastic theory is Poisson’s ratio, which is 
defined as the ratio of lateral strain to axial strain.  It has values between 0 and 0.5 depending 
on the material.  The value 0.5 corresponds to a material showing no volume change and the 
value 0 represents a perfect rigid material.   
In Plaxis in many cases ν is determined from the coefficient of lateral earth pressure . 0K
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As the Mohr – Coulomb model gives the well known ratio of   ( )v
v
−

=
11

3

σ
σ

  for one  

dimensional compression; it is easy to select Poisson’s ratio such that a realistic value of  
is obtained.  For agricultural soils a usual value of  this coefficient is  0.5.  In clay  type, rather 
dense, wet agricultural soils a loading will generate compressive water stresses in the pore 
system. Under these conditions    may reach values up to  0.9 (Klaij, 1975). 

0K

0K
Application of Boyle’s law to the entrapped air  in a quick standard triaxial test at this soil 
condition  will also give a value for  because v 3ε  may be derived from the  air  volume 
reduction and  1ε (Barneveld, 1994). 
 
Cohesion and Angle of Internal Friction 
Cohesion and angle of internal friction are parameters which determine the shear strength of 
the soil.  Koolen and Kuipers (1983) presented values of  c  and  φ . 
Several authors measured the cohesion in the range between  9 to 140 kPa  depending on the 
type of  the soil.  A minimum value of cohesion may be estimated as φχ tanwsc = , where 
χ is degree of saturation and   is  suction in the soil water. ws
For unsaturated soil the angle of internal friction varies between 250 for moist, relatively loose 
and fine particles to 450 for drier, relatively dense and coarse particles. 
 
Dilatancy angle 
According to Plaxis manual clay and silty soils that are not heavily overconsolidated tend to 
show little dilatancy  (Plaxis materials model manual version 5, 1994). Furthermore the 
dilatancy of sand depends on both the density and on the friction angle.  For quartz sands the 
order of magnitude is  30−= φψ .  A small negative value for  ψ  may be realistic for 
extremely loose sands.  ψ  is a measure of plastic volume change in a plastic state of a 
material ; if 0=ψ , no volume change, 0>ψ , volume increase and  0<ψ  implies volume 
decrease. 
 
 
2.3.2   CAM – CLAY  TYPE  MODEL 
 
The Cam –Clay  type models are derived from the critical state theory (Atkinson and 
Bransby, 1978).  Critical state soil mechanics may be treated as an empirical description that 
unifies different aspects of soil deformation.  Soil exhibits permanent (plastic) deformation, 
non-permanent (elastic) deformation, yield surfaces that mark the onset of permanent plastic 
deformation at critical state on which shear deformation occurs without volume change.  
 
The Soft – Soil model in the FEM package named Plaxis (Plaxis scientific manual version 7) 
is one of  the  Cam – Clay type models which can be used to simulate the behaviour of soft 
soils like normally consolidated clays. The model performs best in situations of primary 
compression. 
 
Some of the basic characteristics of the soft-soil model are:  
 
• Stress dependent stiffness (logarithmic compression behaviour) 
• Distinction between primary loading and unloading – reloading  
• Memory for pre – consolidation stress  
• Failure behaviour according to the Mohr-Coulomb criterion 
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Based on isotropic states of stress and strain ( )321 σσσ ′=′=′   in the soft-soil model it is 
assumed that there is a logarithmic relation between the volumetric strain and the mean 
effective stress, which can be formulated as: 
 








 ′
−=− 0

*0 ln
p
p

vv λεε                   primary compression / loading                          (2.31) 








 ′
−=− 0

*0 ln
p
pe

v
e
v κεε                unloading and reloading                                     (2.32) 

 
where 
               vε  =   the volumetric strain ;   =  the mean effective stress ;   p ′

                =  the modified compression index, which determines the compressibility of  the  *λ
                          material in primary loading ;   
               *κ  =  the modified swelling index, which determines the compressibility of  the 
                           material in unloading and subsequent reloading  
 
Note that the soil response during unloading and reloading is assumed to be elastic, which 
explains the superscript e in Equation (2.32).  The elastic behaviour is described by Hook’s 
law of elasticity (see section 1.3.2). 
 
When plotting Equation (2.31)  and Equation (2.32)  one obtains a straight line as shown in  
Fig 2.4.  In order to maintain the validity of Equation (2.31) and Equation (2.32) a minimum 
effective stress value of  one stress unit is incorporated.  An infinite number of unloading-
reloading lines exist in Fig 2.4  each corresponding to a particular value of isotropic  
preconsolidation stress  ( ppre ).  
 
The preconsolidation stress represents the largest stress level experienced by the soil.  During 
unloading and reloading this preconsolidation stress remains constant.  In primary loading 
however the preconsolidation stress increases with the stress level, causing irreversible 
volumetric strains. 
   

lnp’ 

1 

1 

εv 

λ*   

 κ* 

  ppre 

Figure 2.4   Logarithmic relation between volumetric strain and mean stress. 
 
 
As explained before the soil response during unloading and reloading is assumed to be elastic. 
The elastic behaviour of soil is explained by Hook’s law of elasticity in section 1.3.2 
 

 35



 
 
Yield function and yield surface of the soft-soil model 
For convenience the stress state selected here is the triaxial loading condition with 32 σσ ′=′ .  
For such state of stress the yield function of the soft-soil model is defined as: 
 

prepff −=                                                                                                     (2.33) 
 
 where 

                ( ) p
cpM

qf ′+
+′
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φcot2
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                                                          (2.34) 
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prepre pp                                                                (2.35) 

 
The yield function describes an ellipse in   plane as shown in Fig 2.5. f qp −′
The development of plastic strains is evaluated by means of a yield function  f  and the 
direction of the plastic strain increments is evaluated from the plastic potential function  g   
(Eqn. 2.18). For a negative value of the yield function no plastic strain increments occur and 
the response is purely elastic (Eqn. 2.19). 
 
In the Soft – Soil model the yield surface is the boundary of the elastic stress area, which has 
a limit of the Mohr – Coulomb failure line as shown in the Fig 2.5.  Stress paths within this 
boundary only give elastic strain increments whereas stress paths that tend to cross the 
boundary generally give both elastic and plastic strain increments. 
 
The parameter M in Equation (2.34)  determines the height of the ellipse.  The height of the 
ellipse is responsible for the ratio of horizontal and vertical stresses in primary one 
dimensional compression.  
 

q  

M o h r-C o u lom b 
fa i lu re  l in e 

th re s h o ld  
e l l ip s e 

M  

1  

c  c o t φ     p p r e  p ’ 

Figure 2.5   Yield surface of the Soft – Soil model in qp −′  plane  ( Plaxis, 1998 ) 
 
 
The tops of all ellipses are located on a line with inclination M  in the  plane. qp −,

In the modified Cam – Clay model  (Burland, 1965 and 1967) the M line is referred to as the 
critical state line and represents stress state at post peak failure. The parameter M is then 
based on the critical state friction angle.  In the Soft – Soil model however failure is not 
necessarily connected to crtical state.  The Mohr – Coulomb failure criterion is used with 
strength parameters φ and  which does not correspond to thec M line. 
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The isotropic preconsolidation stress,  determines the magnitude of the ellipse.  In fact an 
infinite number of ellipses exists (see Fig 2.5) each one corresponding to a particular value of 

.  The left hand side of the ellipse is extended into the tension zone of the principal stress 

space 

prep

prep

( )0<′p   by means of the term  φcotc   in Equation (2.34). 
 
In order to make sure that the right hand side of the ellipse will remain in the compression 
zone ( )0>′p   a minimum value of φcotc  is adopted for .   prep
For    a minimum value of  equal to 1 stress unit is adopted.  Hence there is a 
threshold ellipse as shown in the  Fig 2.5. 

0=c prep

 
The value of  is affected by volumetric plastic straining and follows from the hardening 
relation as formulated in Equation (2.35).  This equation reflects the principle that the  

prep

preconsolidation stress increases exponentially with decreasing volumetric plastic strain 
(compaction).  The value    can be regarded as the initial value of the preconsolidation 
stress.  The value of the initial volumetric plastic strain is assumed to be zero.   

0
prep

 
In Soft – Soil model the yield function as defined in Equation (2.33) is only active to model 
the irreversible volumetric straining in primary compression and is used as the cap of the 
yield contour.  In order to model failure behaviour a perfectly plastic Mohr – Coulomb type 
yield function is introduced. This yield function represents a straight line in  plane.  
This line is indicated in Fig 2.5 as a Mohr – Coulomb failure line. 

qp −′

 
 
2.3.2.1  Parameters for the Cam – Clay type model 
 
This Soft – Soil model requires a total of seven parameters. These parameters with their 
standard units are listed below: 
 
v           Poisson’s ratio                                      [-] 
φ          Angle of friction                                    [0] 
c           Cohesion                                               [kPa] 
ψ         Dilatancy                                               [0] 

*λ         Modified Compression index                [-] 
*κ        Modified  Swelling index                      [-] 
prep     Preconsolidation stress                          [kPa] 

 
Poisson’s ratio 
For the Soft – Soil model  Poisson’s ratio plays a minor role when normally consolidated soils 
are loaded but Poisson’s ratio is important for unloading problems. It is observed that in 
unloading of a uni-axial compression test the decrease of the lateral stress is relatively small 
compared with the decrease in vertical stress;  this implies a low ν  value. According to Plaxis 
manual ν will usually be in the range between 0.1 and 0.2. 
 
Cohesion and Angle of  Internal Friction 
The cohesion has the dimension of  stress.  Entering a cohesion will result in an elastic region 
that is partly located in the tension zone of the stress space as shown in the Fig 2.5. 
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The effective angle of internal friction is specified in degrees and represents the increase of 
shear strength with effective stress level. All the other remarks are the same as that of the 
Mohr – Coulomb model, see section 2.3.1.1. 
 
Dilatancy angle 
For the type of materials where the soft soil model should be used, dilatancy can generally be 
neglected. A dilatancy angle of zero degree is included in the standard settings for the Soft-
Soil model. 
 
Modified Compression  and  Swelling index 
These parameters can be obtained from uniaxial compression test with loading and unloading 
stages as shown in Fig 2.4. The slope of the primary loading line gives the modified 
compression index and the slope of the unloading line gives the modified swelling index.  
Note that there is a difference between the modified indices and *λ *κ defined in  
Equation (2.31) and (2.32) and the original Cam-Clay parameters λ and κ . The latter 
parameters are defined in terms of the void ratio instead of the volumetric strain vε ;  for 
details refer the Plaxis material manual version 7 ( Plaxis, 1998 ). 
 
 
2.4    USER  RELATED  CHARACHTERISTCS OF THE FEM MODEL 
 
In order to carry out FEM calculations using Plaxis dynamic module the following three basic 
steps have to be fulfilled:  the input step, the calculation step and the output step 
 
2.4.1   THE  INPUT  STEP 
 
General settings 
In the general settings of the new project the user can define the basic conditions for the 
dynamic analyses to be performed. These are: the dimensions of the draw area, basic units 
(for length, force and time) , the type of the model and the type of elements. 
In addition to these the user may input an independent acceleration component or he can 
consider the default gravity acceleration (9.8 m/s2) to calculate the wave velocities. 
 
Units 
In a dynamic analysis the units are usually [ s ] for time, [ m ] for length, and [ kN ] for force. 
These units can be changed by the user if necessary. The two well known models used to run 
Plaxis are a plane strain model and an axisymmetric model. 
 
Models 
A plane strain model is used for structures with uniform cross section and corresponding 
stress state and loading scheme over a certain length perpendicular to the cross section. 
An axisymmetric model is used for circular structures with uniform radial cross section and 
loading scheme around the central axis, where the deformation and stress state are assumed to 
be identical in any radial direction. 
 
Elements 
6 – node triangular element is the default element for a 2D analysis of either plane strain or 
axisymmetric models. It provides a second order interpolation for displacements. The element 
stiffness matrix is evaluated by numerical integration using a total of three stress points (see 
Fig 2.1 a ). 15 – node triangular element is also used for 2D analysis of either plane strain or 
axisymmetric models. The element stiffness matrix is evaluated by numerical integration 
using a total of twelve stress points (see Fig 2.1 b) 
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2.4.1.1  Geometry model 
 
After completing the general settings the user has to create a 2D  geometry model which is a 
representation of the problem of interest. A geometry model consists of points, lines and 
clusters. Points and lines are entered by the user whereas clusters are generated by the 
program. In addition to these basic components, structural objects or special conditions can be 
assigned to the geometry model.  
 
Loads and boundary conditions 
Based on the problem of interest the user has to select the right loading and boundary 
conditions. The load submenu in the input program contains distributed loads (tractions), 
point forces and prescribed displacements.  Loads and prescribed displacements can be 
applied within the model as well as the model boundaries. 
 
Loads 
Based on the problem of interest the user has to select the right loading conditions.  
Tractions are distributed loads that can be applied to geometry lines. The input values of 
tractions are given in force per area (kPa). Two load systems are available for tractions (A and 
B) which can be activated independently. Traction loads are controlled by the load multipliers 
MloadA ( ) or MloadB (∑MloadA ∑MloadB ) respectively. The applied magnitude of 
traction loads during calculations is the product of the input value and the corresponding load 
multiplier. 
Point forces are concentrated forces that act on a geometry point. The input values of point 
forces are given in force per unit of length (kN/m). Two load systems are available for 
tractions (A and B) which can be activated independently.  Point forces are controlled by the 
load multipliers MloadA ( ) or MloadB (∑MloadA ∑MloadB ) respectively. The applied 
magnitude of point forces during calculations is the product of the input value and the 
corresponding load multiplier. 
 
Prescribed displacements are conditions that can be imposed on geometry lines to control the 
displacement of these lines. The input values of the prescribed displacements are given in 
meter (m). Prescribed displacements are controlled by the load multipliers Mdispl 
( ).  The applied magnitude of prescribed displacements during calculations is the 
product of the input value and the corresponding load multiplier.  
∑Mdispl

 
Boundary conditions 
Based on the problem of interest the user has to select the right boundary conditions.  
 
Fixities 
Plaxis automatically imposes a set of general boundary conditions to the actual geometry 
model. These boundary conditions can be applied to geometry lines as well as to geometry 
points. Distinction can be made between horizontal fixity ( 0=xu ) , vertical fixity ( ) 

and total fixity (

0=yu
0== yx uu ). Fixities are prescribed displacements equal to zero.    

 
Absorbent boundaries 
The user has to use geometry model boundaries  sufficiently distant to the area of interest or 
uses special boundary conditions (absorbent boundaries) at the bottom and right hand side 
boundaries to avoid disturbances due to the boundary conditions ( Plaxis dynamic module 
version 7.2, 2000). Without these special boundary conditions the waves would be reflected 
on the model boundaries, returning into the model and disturbing the results. 
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2.4.1.2  Material properties 
 
After the geometry has been completed the user should compose data sets of material 
parameters.  In Plaxis soil properties and material properties of structures are stored in 
material data sets. 
All data sets are stored in a material data base. From the data base the data sets can be 
assigned to the soil clusters or to the corresponding structural objects in the geometry model.  
 
Soil material models 
In this section the user has to select the right soil material model based on the properties of 
the soil. The two well known soil material models are the Mohr – Coulomb soil model and 
the Cam – Clay type soil model. 
The Mohr – Coulomb model can be considered as a first order approximation of real soil 
behaviour. This elastic perfectly – plastic model requires five basic input parameters namely a 
Young’s modulus, Poisson’s ratio, Cohesion, Friction angle and Dilatancy angle. For details 
see section 2.3.1.1. 
The Cam – Clay type model can be used to simulate the behaviour of soft soils. The model 
performs best in situations of primary compression. The model has seven basic parameters 
namely Poisson ratio, Cohesion, Friction angle, Dilatancy, Modified compression index, 
Modified swelling index and Preconsolidation stress. For details see section 2.3.2.1. 
  
2.4.1.3   Mesh generation 
 
When the full geometry is defined, all geometry components have their properties and the 
geometry model is complete, mesh can be generated. Plaxis allows for a fully automatic 
generation of finite element meshes which means the geometry model has to be divided into 
elements. A composition of  finite elements is called a finite element mesh. The basic 
elements are the 6 - node triangular element and the 15 – node triangular element. Their 
difference is that a mesh composed of 15 – node elements gives a much finer distribution of 
nodes and thus much more accurate results than a similar mesh composed of the same number 
of 6 – node elements. 
 
Global coarseness 
Distinction is made between five levels of global coarseness: very coarse, coarse, medium, 
fine and very fine. The average element size and the number of generated elements depend on 
this global coarseness setting.   
 
2.4.1.4  Initial conditions 
 
Once the geometry model has been created and the finite element mesh has been generated, 
the initial stress and the initial situation must be specified. 
The generation of initial stresses by means of the K0 – procedure using the K0 value from 
Jaky’s formula ( φsin−1 ) is the last part of the input step. The initial stress in a soil body is 
influenced by the weight of the material (∑Mweight ) and the history of its formation.  

This stress state is usually characterised by an initial vertical stress ( vσ ) which is related to 
the coefficient of lateral earth pressure ,  by  0K vh K σσ 0= . 
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2.4.2   THE CALCULATION  STEP 
 
With the generation of the initial stresses, the generation of the initial situation of the finite 
element model is complete. After this step the actual finite element calculations can be 
executed by using the calculation program. The calculation program contains all facilities to 
define and start up finite element calculations. When all parameters have been set the user 
starts the calculation process. In Plaxis a calculation process is divided into calculation phases 
and each phase is generally divided into a number of calculation steps. This is necessary 
because the non – linear behaviour of the soil requires loading to be applied in small portions 
(load increments).   
 
2.4.2.1  Selecting the dynamic analysis 
 
The dynamic calculation can be defined by selecting dynamic analysis together with 
automatic time stepping.  
 
Dynamic analysis parameters 
In the calculation program the user can define the control parameters of the dynamic 
calculation. 
 
Time stepping 
The time step used in a dynamic calculation is constant and equal to  

mn
tt
*

=δ   where t is the duration of the dynamic loading, n is the number of additional 

steps and m is the number of dynamic sub steps.  
 
Time duration 
For each phase in the calculation program the user has to specify the duration of the dynamic 
load. The estimated end time is calculated automatically by adding the duration time of all 
consecutive phases. 
 
Additional steps 
Plaxis stores the calculation results in several steps.  By default the number of additional steps 
is 100 but the user can enter any value between 1 and 250 in the calculation program. 
 
Dynamic sub steps 
For each additional step Plaxis can calculate the number of sub steps necessary to reach the 
estimated end time with a sufficient accuracy on the basis of the generated mesh and the  
calculated time step ( crittδ ). The time step used in the calculation must be less than the 
calculated time step ( crittt δδ ≤ ). For  crittδ ,  see Eqn (2.15).  
 
Dynamic loads 
In Plaxis a dynamic load can consist of an harmonic load, a block load or a special user 
defined load. A dynamic load is activated in the calculation program by means of multipliers. 
 
2.4.2.2   Selecting points for curves 
 
After the calculation phases have been defined and setting all necessary input dynamic 
parameters and before the calculation process is started, some points may be selected for the 
generation of load – displacement curves or stress paths. These points could be nodes or  
stress points depending on the users interest. 
 

 41



 
During the calculations information for the selected points is stored in a separate file. After 
the calculation the curve program may be used to generate load – displacement curves or  
stress paths. It is therefore not possible to generate curves for points that have not been pre-
selected. Because of limitations in the computer memory only a few points can be selected to 
store data during the calculation process. 
 
2.4.2.3  Execution of the calculation process 
 
When all the calculation phases have been defined and points for curves have been selected,  
the calculation process can be executed starting the calculation program. 
 
2.4.3   THE  OUTPUT  STEP 
 
The main output quantities of a finite element calculation are the displacements at the nodes 
and the stresses at the stress points.  In addition, when a finite element model involves 
structural elements, structural forces are calculated in this elements. 
An extensive range of facilities exist within Plaxis to display the results of a finite element 
analysis. The output program contains all facilities to view and to list the results of generated 
input data and finite element calculations.  Among the many output possibilities some are 
described below.  
 
2.4.3.1  Deformed mesh 
 
The deformed mesh is a plot of the finite element mesh in the deformed shape, super-imposed 
on a plot of undeformed geometry. If it is desired to view the deformations on the true scale 
or larger scale then the scale option may be used. 
 
Total displacements 
The total displacements are the total vectorial displacements u at all nodes at the end of the 
current calculation step, displayed in a plot of the undeformed geometry. 
The total displacement may be presented as arrows or contours or shadings by selecting the 
appropriate option from the output program. 
In addition to the vectorial components,  the horizontal component ( ) and the vertical 
component (u ) of the total displacement may be viewed separately by selecting the 
corresponding option from the output program. 

xu

y

 
Total strains 
The total strains are the total strains in the geometry at the end of the current calculation step, 
displayed in a plot of the undeformed geometry.  In Plaxis by default the total strains are 
presented as principal strains.  The length of each line represents the magnitude of the 
principal strain and the direction indicates the principal direction. In addition to this the 
horizontal strain ( xε ), vertical strain ( yε ),  shear strain ( xyγ ) and  volumetric strain ( vε ) can 
be viewed separately from the output program.  
 
2.4.3.2   Total stresses 
 
The total stresses are the total stresses in the geometry at the end of the current calculation 
step, displayed in a plot of the undeformed geometry.  By default the total stresses are 
presented as principal stresses. The length of each line represents the magnitude of the 
principal stress and the direction indicates the principal direction. 
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In addition to the total stresses, the vertical stress ( yσ ), the horizontal stress ( xσ  ) and the 

shear stress ( xyτ ) can be viewed separately by selecting the corresponding output form from 
the output program 
 
Total effective stresses 
The effective stresses are the effective stresses in the geometry at the end of the current 
calculation step, displayed in a plot of the undeformed geometry.  By default effective 
stresses are presented as principal stresses calculated from the Cartesian stress components. 
The horizontal effective stress ( xσ ′ ) and the vertical effective stress ( yσ ′ ) can also be viewed 
from the output program 
 
Plastic points 
The plastic points are the stress points in a plastic state, displayed in a plot of the undeformed 
geometry. The plastic stress points are indicated by small symbols that can have different 
shapes and colours depending on the type of plasticity that has occurred. 
 
An open square indicates that the stress lies on the surface of the Coulomb failure envelope. A 
white solid square indicates that the tension cut – off criteria was applied. A crossed square 
represents a state of normal consolidation  where the preconsolidation stress is equivalent to 
the current stress state. 
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 3      ANALYSES OF MODELLING DYNAMIC  
              LOADING CASES IN  PLAXIS 

 
 
3.1   INTRODUCTION 
 
Apart from the dynamic aspects like inertia and dynamic loads it is possible to model 
dynamic load soil interaction with Plaxis. When soil is subjected to different loading cases 
non – linear soil behaviour will result. However Plaxis can cope with problems involving  
non – lnear soil behaviour under even complex dynamic loads. 
In order to describe this behaviour of soil in a constitutive model a distinction can be made 
between elasticity, plasticity, hardening and softening behaviour. Details of these models are 
given in chapter one. A very detailed soil model contains all these aspects but simpler models 
can be formulated by adopting only elasticity or by simple combination of elasticity and 
plasticity. Examples of such models are Mohr – Coulomb and Cam – Clay type models. 
Based on the user related characteristics of the FEM model explained in the previous chapter, 
we are now performing Plaxis calculations for selected load – soil interactions. 
These are: tyre – soil system, tool – soil system, simple shear box test and soil cutting by a 
pendulum type machine. 
 
 
3.2 SOIL  MATERIAL  PROPERTIES  USED FOR THE  
             MOHR – COULOMB MODEL 
 
For the Mohr – Coulomb model the reference soil for all the presented simulations is a 
Wageningen clay. This soil was taken from the 7 – 17 cm depth of a Wageningen silty clay 
loam in a field of mature sugarbeets (Dawidowski and Koolen, 1987). 
Soil stress – strain behaviour at low stress levels, or in a first part of severe loading, is usually 
considered to be elastic. Realistic values of elastic modulus E and Poisson’s ratio ν  for 
agricultural soils are hardly available. Barneveld (1994) mentioned the values E = 2.20 MPa 
and ν = 0.45  for wet dense clay soil having an air content of 5%. These values have been 
derived from triaxial tests of Dawidowski and Koolen (1987). Realistic values of the lateral 
earth pressure at rest K0  are also hardly available for agricultural soil conditions.  
A classic way to describe plastic behaviour without hardening uses the concepts of cohesion  
c and angle of internal friction φ. Therefore using the lateral earth pressure derived from 
Jaky’s formula ( K0 = 1 – sin φ ) is reasonable. The obtained parameter set is shown in Table 
3.1 below.                                                                                                                                
 
 

Table 3.1   Soil material properties of the Mohr – Coulomb model 
 
Parameters Symbol Value Unit 
Material behaviour 
Mataerial model 
Young’s modulus 
Poisson’s ratio 
Cohesion 
Friction angle 
Dilatancy angle 
Wet soil weight 
Dry soil weight 

Type 
Model 
E 
v  
c 
φ 
ψ 
γw  
γd  

Drained 
Mohr – Coulomb 
2200 
0.45 
82 
0 
0 
18.74 
18 

- 
- 
kPa 
- 
kPa 
0  
0  
kN/m3 
kN/m3  
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3.3 SOIL MATERIAL PROPERTIES USED FOR THE CAM – CLAY TYPE   
              MODEL 
 
For the Cam – Clay type model the reference soil for all the presented simulations is a silty 
loam soil. 
Konijn (1978)  took core samples at different depths of the 20 – 60 cm  layer of loam soil 
after potato harvesting and measured the preconsolidation stress on the sample at field water 
content.  Poodt (1999) estimated for this soil  c,  φ,  λ*,  and  κ*.  
For details of parameter estimation one can see Koolen et al (2000). The numerical results of 
Poodt’s estimate for the above parameters are shown in Table 3.2 
 
 
 

Table 3.2   Soil material properties of the Cam – Clay type model 
 
Parameters Symbol Value Unit 
Material behaviour 
Mataerial model 
Poisson’s ratio 
Cohesion 
Friction angle 
Dilatancy angle 
Wet soil weight 
Dry soil weight 
Preconsolidation stress 
Modified compression index 
Modified swelling index 

Type 
Model 
v  
c 
φ 
ψ 
γw  
γd  
Ppre 
λ* 
κ* 

Drained 
Soft – Soil  
0.15 
23 
35 
0 
17.79 
17 
187 
0.07 
0.0047 

- 
- 
- 
kPa 
0  
0  
kN/m3 
kN/m3  
kPa 
- 
-  

 
 
3.4    MODELLING  TYRE – SOIL  SYSTEM   
 
In this section the dynamic  tyre – soil system is modelled by a drained uniaxial loading test 
using real soil parameters. The two selected soils are the Wageningen clay soil and the Silty 
loam soil. The default parameters of these soils are listed in Table 3.1 and  Table 3.2. 
 
 
3.4.1   CREATING A GEOMETRY MODEL 
 
As explained in the input step of  the user related characteristics of the FEM model, for each 
new project to be analysed it is important to create a geometry model first. A geometry model 
is a representation of a real problem and consists of points, lines and clusters. 
The real problem in this case was the tyre – soil system. The tyre – soil system is modelled by 
an axisymmetric loading where the tyre is simulated by a circular area with uniformly 
distributed vertical stresses and the soil is modelled by vertical cylinder with fixed bottom 
boundaries in horizontal and vertical directions and with two horizontally fixed lateral walls. 
 
Special boundary conditions have to be defined to account for the fact that in reality the soil is 
a semi-infinite medium. Without these special boundary conditions the waves would be 
reflected on the model boundaries which means, returning into the model and disturbing the 
results.  
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To avoid these spurious wave reflections absorbent boundaries are specified at the bottom and 
right hand side boundaries. 
 
The radius ( r ) of the loaded area is calculated as: 
 

2raTL IP=                                                                                                                     (3.1)    
  
where 
                 =  Vertical load ;   T  =  Tyre inflation pressure ;   = Tyre constant L IP a
 
 
The diameter and height of the soil cylinder are  6 m and 2 m  respectively. Because of the 
existing axisymmetry the calculation only considers the cylinder half to the right of the 
vertical cylinder axis.  
The assumed  total dynamic load ( L ) is 96 kN,  the inflation pressure (T ) is 150  kPa and 
the tyre constant ( a ) is 4.  The radius ( r ) of  the loaded area could be estimated by using  

IP

Equation (3.1)  of  Chancellor (1977) 
                                                                                                                      
 
 

x

y

AA

 
Figure 3.1   The geometry model of a uniaxial loading test  with absorbent boundaries 
 
 
 
 
3.4.2   BASIC CALCULATION 
 
After creation of the geometry model a finite element mesh composed of 15-node triangular 
soil elements is used in the discretization. The mesh is generated with the global coarseness 
set to ‘medium coarse’ and of  228 total elements . The initial state of stress is generated by 
the - procedure that was derived from Jaky’s formula 0K ( )φsin10 −=K .  
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The loading consists of a vertical traction of  187.5 kPa and is controlled by the load 
multiplier ∑ . The calculation has been carried out using the dynamic analysis with  MloadA
automatic time stepping procedure. The time step used in the calculation is  0.0001 s  and the 
duration of the vertical load is vary between 0.01 and 0.1 s. 
The calculation results are illustrated by using figures and curves in the following section 
 
 
 3.4.3   FIGURES  PRESENTING  CALCULATION  RESULTS 
 
The following figures show the soil  deformation behaviour during loading 
 
3.4.3.1    Using the Mohr – Coulomb model 
 
The soil used for the Mohr – Coulomb model is the Wageningen clay soil of  Table 3.1 
 
For relatively shorter duration (loading time = 0.01 s ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Deformed mesh ,  extreme total displacement = 9.71 mm   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Total displacement vectors 
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c)  Total stress distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  Tension failure points 
 
 
Figure 3.2 a – d.   Deformation behaviour of  Wageningen clay soil after loading duration of  
                                      0.01 s   
                                 
 
 
 
 
 

 49



 
 
 
For relatively longer duration of loading ( Loading time = 0.1 s ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  Deformed mesh ,  extreme total displacement = 48.06 mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  Total displacement vectors 
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c)  Total stress distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  Tension failure points 
 
 
 
Figure 3.3 a – d.   Deformation behaviour of  Wageningen clay soil after loading duration of  
                                   0.1 s 
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Time effect on load bearing capacity  
 
 

 
Figure 3.4    Load-displacement curves of  the tyre load for  Wageningen clay soil 
 
 
 
 
Effect of tyre inflation pressure 
 

 
a)   Tyre inflation pressure (IP)  =  125 kPa 
 
 

 52



 
 
 

 
b)  Tyre inflation pressure ( IP )  =  150 kPa 
 
 
 
 

 
c)  Tyre inflation pressure ( IP )  =  175 kPa 
 
Figure 3.5 a – c.    Total vertical stress ( yyσ ) distribution versus depth of  Wageningen  clay 
                                soil. Point A is the nodal point just at the centre of  the load 
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Loading time and shear stress 
 
 
 
 
 

A A* 

a)   loading time = 0.001 s  
      extreme shear stress =  -20.61  kPa 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A A* 

b)   loading time = 0.01 s  
      extreme shear stress =  -39.65  kPa 
 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A A* 

c)   loading time = 0.1 s   
      extreme shear stress =  -40.02  kPa 
 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 a – c.    Shear stress distribution of  Wageningen clay soil on the cross-section  
                                of the surface plane  
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3.4.3.2   Using the Cam – Clay type model 
 
The soil used for the Cam – Clay type model is the Silty loam soil of  Table 3.2  
 
For relatively shorter duration (loading time = 0.01 s ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  Deformed mesh ,  extreme total displacement = 3.57 mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  Total displacement vectors 
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c)  Total stress distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  Mohr – Coulomb (empty) and  plastic cap (filled) failure points 
 
 
Figure 3.7 a – d.   Deformation behaviour of Silty loam soil after loading duration of  0.01 s. 
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For relatively longer duration ( Loading time = 0.1 s ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  Deformed mesh ,  extreme total displacement = 6.02 mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  Total displacement vectors 
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c)   Total stress distribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  Mohr – Coulomb (empty) and  plastic cap (filled) failure points 
 
 
 
Figure 3.8 a – d.   Deformation behaviour of Silty loam soil after loading duration of  0.1 s 
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Time effect on load bearing capacity  
 
 

 
Figure 3.9   Load – displacement curves of  the tyre load on silty loam soil 
 
 
 
 
Effect of tyre inflation pressure 
 

 
a)  Tyre inflation pressure ( IP )  = 125 kPa 
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b)  Tyre inflation pressure ( IP )  =  150 kPa 
 
 
 

 
c)  Tyre inflation pressure ( IP )  =  175 kPa 
 
 
Figure 3.10 a – c.   Total vertical stress ( yyσ )  distribution versus depth of  Silty loam 
                               soil.  Point A is the nodal point  just at the centre of  the  load 
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Time effect and shear stress 
 
 
 
 
 

A A* 

a)  loading time = 0.001 s  
       extreme shear stress = -52.51 kPa 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 

A A* 

b)  loading time = 0.01 s  
       extreme shear stress = -33.09  kPa 
 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A A* 

c)  loading time = 0.1 s  
       extreme shear stress = -31.46  kPa 
 
 
 

B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 a – c.    Shear stress distribution of  Silty loam soil on the cross-section of   
                                the surface plane 
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3.4.4    GENERAL  DISCUSSION AND CONCLUSION  
 
Soil structural deterioration is mainly caused by forces (Febo, 1999). These forces may be 
applied by tractor  tyres, tracks, tillage tools, human or animal traffic, etc. 
The reaction of these forces depends on their magnitude,  duration,  soil type and  soil 
conditions (structure, moisture, etc.). 
Dynamic loads applied to the soil surface induce stresses at the load - soil interface as well as 
deeper in the soil profile. Whether  these stresses cause soil deformation or compaction  
depends on the internal soil strength and on properties of the external applied load and its 
duration. Dynamic loading events exceeding the internal soil strength induce changes in soil 
structure, which is the rearrangement of the solid particles due to tension, shear or  plastic 
failure (Wiermann et al, 1999). 
 
 
3.4.4.1    Dynamic tyre – soil system 
 
The main objective of the present study was to introduce a feasible constitutive relationship of 
the propagation of vertical stresses within the soil resulting from the applied loads and the 
duration of such loads. The load transmitted by the moving  tyre is dynamic rather than static 
so effects of soil  inertia are included.   
 
The results discussed here are based on a number of simplifications and idealisations of real 
dynamic tyre-soil systems. Nevertheless, the results suggest that it should be possible to 
develop general guide lines for the assessment of the extent of soil structure damage under 
dynamic loads. Our reference case of modelling dynamic loads on the soil is selected based 
on similarities with measurements of dynamic tyre pressure on the agricultural fields. 
 
In the present calculation the duration of the load is selected based on short time loading 
events such as for example wheeling. Time can be an important factor in compaction. For  
example (Harris, 1971) the time required for a tractor wheel travelling at normal speed to 
rotate through the angle of effective soil contact (i.e., the duration of loading) is generally less 
than 0.2 s.  
 
The degree of soil structure deterioration is further determined by increasing dynamic loads 
and inflation pressures of the tyre.  In the present case the dynamic load is increased by 
increasing the inflation pressure (IP) of the tyre. 
In the present  study effects of  increasing dynamic loads (due to inflation pressure increase) 
are also investigated. From the calculation results increasing the dynamic load significantly 
affects especially the first 50 cm depth of the soil and the effect is decreasing when the depth 
of the soil increases  ( see Fig. 3.12).  
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Effect of increasing dynamic loads 
 
 

 
a) Wageningen clay soil 
 
 

 
b) Silty loam soil 
 
Figure 3.12 a , b.   Vertical stress ( yyσ ) distribution within  the depth of the soil profile ; 
                                point A is the nodal point just under  the centre of the load  
                                the load duration is  0.1 s  
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As we have seen from the deformed mesh of  Wageningen clay soil (Fig. 3.2 a) the load 
sinkage for loading time 0.01s is smaller than that of 0.1s. This is also clearly seen on the load 
sinkage curves (Fig. 3.4).  An area with tensile stresses developed near the surface plane of 
the soil body (Fig. 3.2 d  & 3.3 d). However there are no Mohr – Coulomb failure points, this 
is because the shear stress is sufficiently small when compared with the cohesion of the soil 
(Fig. 3.6).  Moreover the stress points increased in number when  the loading time increased. 
For instance the number of stress points on the tension state of  0.1 s loading duration is five 
times as much as that of  0.01 s;  this shows deformation of Wageningen clay soil increased 
when duration of the load increased. However still no Mohr – Coulomb plastic points 
occurred. This is due to the high cohesion value of the Wageningen clay soil.  
 
In case of Silty loam soil we didn’t see significant sinkage difference between  0.01 and 0.1s 
of loading time ( see the comparison between Fig. 3.7 a   &  3.8 a ). Besides the sinkage is 
very small in both  durations, when comparing with that of Wageningen clay soil  (see the 
comparison between Fig. 3.2 a  & 3.7 a  for loading time of  0.01s and Fig. 3.3 a  &  3.8 a for 
loading time of  0.1 s ).  However the number of stress points on the plastic cap state is 
increased reasonably for loading time of  0.1 s (compare Fig. 3.7 d  & Fig. 3.8 d) which 
means compaction increased.  
 
When comparing soil displacement vectors of the two soils , displacement vectors are 
generally directed towards the load displacement for both soils. However at small instant of 
loading time ( for example at t = 0.01s, Fig. 3.2 a, b ) some soil displacement vectors of 
Wageningen clay soil especially at the edge area of the load have moved upwards. This 
behaviour of  Wageningen clay soil together  with the deformed mesh qualitatively agree with 
Barneveld (2000) and Soehne (1953). 
 
When we see the vertical stress (pressure) distribution  under the load (Fig. 3.5 and 3.10), it 
was also loading time dependent for both soils.  However the effect of  loading time is lower 
for the case of  Silty loam soil. Especially for relatively longer duration this is due to the high 
shear strength of Silty loam soil due to its higher friction angle;  the results are qualitatively 
similar to Othman (1999).  Furthermore pressure differences have been seen on pressure 
distributions between 0.01and 0.1s  and the magnitude of pressure distribution at  0.1s is 
higher than that of  0.01s  for both soils.  However the pressure distribution was much more in 
the horizontal direction for Silty loam soil especially at t = 0.01s. Of course the magnitude is 
minimised for silty loam soil.  Soehne (1958) also analysed pressure spread much more in the 
horizontal direction when tyres interacted with dry soil.  
 
The extreme shear stress appeared at the edge of the load-soil contact area (point B of Fig. 3.6 
and Fig. 3.11). However no Mohr-Coulomb failure points appeared for Wageningen clay soil.  
This is because shear stress due to applied load is less than shear strength of the soil. 
Only plastic tension points are existing;  this indicates that soil may also fail in tension instead 
of shear.  For the Mohr – Coulomb model used in Plaxis the tension cut-off  is by default 
selected with a tensile strength of zero. 
 
For Silty loam soil a few number of  Mohr – Coulomb failure points are existing at the edge 
of the load – soil contact area. This implies that the shear stress due to applied load reached 
the shear strength of the soil  at least at this point (point B, Fig. 3.11).   
 
In both soil types the magnitude of shear stresses is  very small and very  non – linear in 
distribution compared with that of total vertical stresses.  
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On the other hand plastic cap points were existing in higher numbers at the load – soil contact 
area where the uniformly distributed vertical stresses are higher  than the preconsolidation 
stress of the soil ( see Fig. 3.7 d  &  3.8 d;  these show areas of soil structural damage 
(compaction)). 
 
 
 3.4 .4 .2   Basic conclusion 
 
• Dynamic loads applied to the soil surface induce stresses at the load – soil interface as 

well as deeper in the soil profile.  These stresses increase when the load and the duration 
increase. Besides such stresses affect the structure of the soil under the load. These 
structures refer to the arrangement of the soil particles under the area of the load. The 
voids between particles (called pores) serve as conduit to move water, air and plant 
nutrients into the root zone, they also provide pathways for root growth and development 

• Effect of dynamic load varies depending on soil mechanical properties 
• Increase of magnitude of dynamic load increases magnitude of compaction or 

deformation, depending on the soil type on which the load is applied 
• Magnitude of soil stress (pressure) distribution deeper in the soil profile depends on the 

duration of the load applied 
• The type of soil structure deterioration under dynamic load is different for both soil types: 

structure of Silty loam soil deteriorates easily by compaction whereas that of Wageningen 
clay soil deteriorates by deformation especially for relatively longer duration of loads 

• Soil particle movement during dynamic loading is also time dependent. For example at 
small instant of loading time some soil displacement vectors have moved upwards and for 
relatively longer loading time soil displacement vectors have moved towards the loading 
direction   

• In general it is not erroneous to summarise that tractor loads and the duration of such 
loads are among the factors which predict the extent of soil structure degradation by 
dynamic loads.  
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3.5    MODELLING  WEDGE  PENETRATION  TEST  
 
In this section the modelling of a  wedge penetration test is presented using real soil 
parameters. The types of wedges selected are the 60 and 30  degree wedges.  For simplicity 
the wedges are assumed to be fully smooth.  The forces acting on the wedge could be 
separated into several components and these components must be in equilibrium. The force 
components are shown in Figure 3.13, where N  represents normal forces and T  represents 
tangential forces.  
 
 

( ) ( )2/cos22/sin221 αµα ′+=+= NNPPP                                                              (3.2) 
   
where 
                  P   =  total force (load) on the wedge 
                    =  component of resistance resulting from the normal force on the wedge 1P
                   =  component of resistance resulting from the tangential force on the wedge 2P
                   =  normal force;  N T  =  tangential force;  α  =  wedge angle ; 
                   µ′ =  coefficient of soil-metal friction  
 
 
For fully smooth wedge 0=′µ , so that 
                                
                                      ( )2/sin21 αNPP ==                                                               (3.3) 
 
 
The selected two soils are the Wageningen clay soil and the Silty loam soil. The default 
parameters of these soil are listed in Table 3.1 and  Table 3.2. 
 

y 

x 

N N 

T T 

P 

α 

 
Figure 3.13  Forces on and shape of  the wedge (Kostritsyn, 1956). 
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3.5.1    CREATING A GEOMETRY MODEL 
 
For each new project to be analysed it is important to create a geometry model first. A 
geometry model is a representation of a real problem and consists of points, lines and clusters. 
The geometry of the soil bin was 2 m by 6 m dimensions. Furthermore the case is plane strain 
modelled with  6 - noded triangular elements. The total number of discretized elements is 248 
for a 60 degree wedge and 238 for a 30 degree wedge. The finite element mesh used for the 
discretization is the ‘medium coarse’ mesh.  Element nodes that represent the bottom of the 
soil bin are fixed in both (vertical and horizontal) directions.  
Element nodes representing the raised edge of the soil bin are fixed in horizontal direction and 
can move freely in vertical direction. For simplicity take one half of the geometry model by 
assuming a symmetrical wedge penetration. The following Table 3.3 summarises the 
discretization process.  Absorbent boundaries are applied at the bottom and right hand side 
boundary. 
 
 

Table 3.3   Soil body discretization for penetration 
 
Types of wedge 30 tip angle 60 tip angle  
Model 
Elements 
Mesh 
Number of elements 
Number of nodes 
Number of stress points 

Plane strain 
6 – node 
Medium coarse 
238 
517 
714 

Plane strain 
6 – node 
Medium coarse 
248 
537 
744 

 

 
 
 
The finite element model simulation is starting by creating the geometry model  
 
 

 
Figure 3.14    The magnified initial geometry model of  30  degree wedge penetration  
                         with prescribed displacement  

3

4
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3.5.2   BASIC CALCULATION 
 
After creation of a geometry model and consecutive mesh generation, the initial state of stress 
was generated by the - procedure that is derived from Jaky’s formula 0K ( )φsin10 −=K  
before starting the penetration process.  
The penetration consists of the prescribed vertical wedge displacement of  10 cm. 
The calculation is controlled by the displacement multiplier ∑Mdisp . The calculation 
involves the dynamic analysis with automatic time stepping procedure. The time step used in 
the calculation is  0.0003 s  which is less than the critical time step calculated by  
Eqn (2.15).  The ratio of  low penetration velocity to high penetration velocity  ( vl / vh )  
varies between 0.01 &  0.02. The following Table 3.4 shows the penetration velocity for the  
above prescribed displacement. 
 
 
 

Table 3.4  Penetration velocity during wedge penetration 
 

           Penetration velocity in [m/s] 
                Types of wedge 
        30 tip angle      60 tip angle 

Penetration time in [s] Wclay Sloam Wclay Sloam 
0.01 
0.10 
1.0 

5.0 
0.6 
0.1 

5.0 
0.7 
0.1 

5.0 
0.7 
0.1 

8.0 
0.8 
0.1 

 
Where 
                Wclay  =  Wageningen clay soil 
                Sloam  =  Silty loam soil 
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3.5.3   FIGURES  PRESENTING  CALCULATION  RESULTS 
 
The following Figures 3.15 to 3.18 show the soil penetration behaviour during penetration 
with low and relatively high velocity. 
 
3.5.3.1  Using the Mohr – Coulomb model  
 
The soil used for this model is the Wageningen clay soil and the wedge used for penetration is 
the 30 degree wedge.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a )  Deformed mesh ,  vp  =  0.1 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b )  Deformed mesh ,  vp  = 5.0 m/s 
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c)   Soil total stress distribution ,   vp  = 0.1 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d )  Soil total stress distribution ,  vp  = 5.0 m/s 
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e )  Tension failure points ,  vp  = 0.1 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f )  Mohr – Coulomb (empty) and tension failure points ,  vp  = 5.0 m/s 
 
 
 
Figure  3.15 a – f.   Deformation behaviour of  Wageningen clay soil  after  penetration of 
                                  30 degree wedge with low and relatively high velocity 
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Effect of  penetration velocity to resistance force 
 
 

a)  30 degree wedge   
 
 
 
 

     b)   60 degree wedge  
 
 
Figure 3.16 a, b.   Resistance force versus displacement curves of  30 and  60  degree  

                         wedges during penetration of  Wageningen clay soil 
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 3.5.3.2    Using the Cam – Clay type model 
 
The soil used for this model is the Silty loam soil of  Table 3.2 and the wedge used for 
penetration is the 30 degree wedge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a )  Deformed mesh ,   vp  = 0.1 m/s   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b )  Deformed mesh ,   vp  = 5.0 m/s 
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c)  Total stress distribution ,   vp = 0.1 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  Total stress distribution ,   vp = 5.0 m/s 
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e)  Mohr – Coulomb (empty) and plastic cap (filled) failure points,   vp = 0.1 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f)  Mohr – Coulomb (empty) and plastic cap (filled) failure points,   vp = 5.0 m/s 
 
 
 
Figure  3.17 a – f.    Deformation behaviour of  Silty loam soil  after penetration of   
                                    30 degree wedge with low and relatively high velocity  
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Effect of penetration velocity to resistance force 
 
 
 

a)  30  degree wedge 
 
 

b)  60  degree wedge  
 
 
Figure 3.18 a , b.   Resistance force versus displacement curves of  30 and  60 degree  
                              wedges after  penetration into Silty loam soil  
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3.5.4    GENERAL  DISCUSSION  AND  CONCLUSION   
 
Background summary 
Soil reactions associated with the overall orientation of tools have been studied with 
simplified systems (Fig. 3.13).  Generally inclined planes have been forced through the soil to 
determine the force relations that are associated with different tool orientations (William et al, 
1968).  William and Glen (1968) further showed (depending on the shape and types of  the 
tool used) basic processes of  cutting or separation, shear failure, friction failure, compression 
failure and/or plastic failure.  Moreover any combination of these processes may occur as the 
tool is forced into the soil. 
 
This means when soil is strained by the passage of a tillage tool the soil may react by 
compacting, deformation or by some type of failure that causes detachment of the soil. When 
the soil is compacted its strength may be increased and larger draft resistances of tools may 
result.  Soil behaviour can thus be described by expressing the resistance to penetration at a 
given depth, the type and degree of failure occurring, and the direction of soil particles 
movement at different penetration times. 
 
Wedges are used frequently as aids to support machines that are studied in the field (Koolen 
and Kuipers, 1983 ).  Wedges  are also applied in a number of trench making machines. A 
penetrating wedge induces a two dimensional process in the soil and is therefore well – suited  
for process studies (Koolen and Kuipers, 1983 ).   
 
Penetration is thus often termed cutting since cutting usually implies a localised soil failure in 
the neighbourhood of the cutter.  Furthermore dynamic penetration is important in a dynamic 
situation such as the vibratory cutting of soil  (Kondner, 1959). 
If the penetration is conducted slowly with time allowing for equilibrium, then the penetration 
should be static penetration. 
 
 
3.5.4.1  Penetration of Wclay soil 
 
Two types of acute wedges are selected for the process; one with 30 degree and the other with 
60 degree. Both wedges have the same height but different width relative to their variations of 
tip angles. 
A displacement of 10 cm  inside the soil has been investigated by using different penetration 
velocity (low and high).  The dimensions of the wedge, tip angle and penetration velocity are 
selected based on their suitability for process studies. 
 
A 30 degree wedge penetration 
When the 30 degree wedge penetrates into the Wclay soil,  the reaction of the soil depends on 
the dimensions of the wedge, tip angle, soil properties and penetration velocity.  As expected 
the resistance force of the soil increases as the penetration velocity increases ( Fig. 3.16 a  &  
3.18 a).  At the initial phase of penetration (for the first few displacements) the resistance 
force increases rapidly and thereafter the force changes steadily; this was true especially at 
low penetration velocity. 
 
At higher penetration velocity, the resistance force rises rapidly in the same way for the low 
penetration velocity case but with large amplitude at the first instance of penetration. 
Thereafter it fluctuates with diminishing amplitude to come to residual value. 
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The following differences were listed at low and high penetration velocity. The nodal point 
selected for the comparison was the node at the tip of the wedge. 
 
 
 
 
 
 
Zone of influence: 
 
Deformation: 
 
 
 
 
 
Soil movement: 
 
 
 
Stress distribution: 
 
 
 
Failure points: 
 
 
 
 
 
 

Low penetration velocity 
 
 
large zone of influence 
 
large, tensile cracks appeared 
at the surface boundary and at the 
bottom of the symmetry axis 
(Fig. 3.15 a) 
 
 
mainly downward following 
deformation patterens 
 
 
relatively high around the wedge tip 
(Fig. 3.15 c) 
 
 
only few tension points due to 
tensile cracks (Fig. 3.15 e) 
 
 
 
 
NOTE: Zone of influence means 
area of the soil body influenced by 
the wedge during penetration at a 
certain time 
 
 
 
 
 
 
 

High penetration velocity 
 
 
relatively small 
 
relatively small, tensile cracks 
as well as shear strain (Fig. 
3.15 b) 
 
 
 
mainly upward opposite to the 
wedge movement 
 
 
very high at wedge tip and 
concentration specified in the 
zone of influence (Fig. 3.15 d) 
 
increased number of tension 
points and shear points around 
the wedge tip and wedge 
surface (Fig. 3.15 f) 
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60 degree wedge penetration 
What has been  described above for 30 degree wedge penetration also occurs for 60 degree 
wedge penetration. The main differences are differences in magnitude (quantitatively). 
Qualitatively they are similar. 
 
 
 
 
 
 
Zone of influence: 
 
Deformation: 
 
Penetration force: 
 
 
 
 
Failure points: 

30 degree tip angle wedge 
 
 
small 
 
small 
 
fewer in magnitude 
 
 
 
 
generally fewer in numbers the 
difference is significant after 
Silty loam penetration, fewer 
cap points and more shear 
points are resulted 

60 degree tip angle wedge 
 
 
relatively large 
 
relatively large 
 
relatively large especially at  
higher penetration velocity and 
the difference is small at low 
penetration velocity 
 
increased in number, more 
number of cap points and few 
number of shear points after 
Silty loam penetration  
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3.5.4.2   Penetration iof Silty loam soil 
 
30 / 60  degree wedge penetration 
What has been described for penetration into Wclay is also listed for penetration into silty 
 loam soil;  the main differences are listed below. 
 
 
 
 
 
Deformation: 
 
 
 
 
Penetration force: 
 
 
 
 
 
 
 
 
 
Failure points: 

Silty loam soil 
 
 
small, much compaction 
especially at low penetration 
velocity 
 
 
at higher penetration 
velocity, very large in 
magnitude, increases 
unsteadily (very fluctuating 
by large and varying 
amplitude) whereas at low 
velocity, increase steadily 
(Fig. 3.18) 
 
 
more number of caps and 
shear points appeared 
towards the depth of the soil 
in front of the wedge tip 
especially at low penetration 
velocity (Fig. 3.17 f)  

Wageningen clay soil 
 
 
large, especially at lower 
penetration velocity and 
little compaction at higher 
penetration velocity 
 
at higher penetration 
velocity, relatively small in 
magnitude, increases 
unsteadily (relatively less 
fluctuating with smaller 
amplitude) whereas at 
lower velocity increases 
steadily (Fig. 3.16) 
 
 
few number of tensile 
points and few shear points 
appeared around the wedge 
tip and wedge surface at 
high penetration velocity 
(Fig. 3.15 f) 
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3.5.4.3    Basic conclusion 
 
• As the wedge tip angle increases, the penetration force increases, the size of the zone of 

influence increases, deformation / compaction increases (depends on soil deformability or 
compactability).  At low penetration velocity increase of tip angle among acute wedges is 
insensitive.  

    
• As acute wedges penetrated into the soil  at high velocity,  the reaction force reached its 

maximum during the first instance of penetration and thereafter changes steadily with 
diminishing amplitude and comes to residual resistance. 

 
• As the wedge tip angle increases, not only penetration force increases but also the 

amplitude of fluctuation force increases.  This was true especially at penetration of hard 
soil (silty loam) with high velocity.  

 
• At lower penetration velocity,  relatively much soil compaction resulted after hard soil 

(Sloam) penetration and large deformation resulted after soft soil (Wclay) penetration . 
 
• In general  soil reactions during acute wedge penetration depend on wedge dimension, tip 

angle, soil properties and penetration velocity. 
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3. 6    MODELLING  SHEAR  BOX  TEST  IN  PLAXIS 
 
In this section, the modelling of drained shear box tests is presented using real sets of soil 
parameters.  The two models used for the FEM calculation are the Mohr – Coulomb and the 
Cam – Clay models, the soil material properties used for  these models are given in Table 3.1 
and Table 3.2 respectively. 
Calculation results are presented in the following section using figures. 
 
3.6.1   CREATING A GEOMETRY MODEL 
 
For each new case to be analysed it is important to create a geometry model first. 
A geometry model is a representation of a real problem and consists of points, lines and 
clusters. 
A shear box test can simply be modelled by means of plane strain geometry of  0.1 by  0.1 m 
dimensions (Figure 3.19 ). 
The boundaries are horizontally fixed during vertical loading and vertically fixed for shearing 
displacements. 
 
 
 

x

y

A

 
Figure 3.19   Simplified geometry model of shear box test with load  A  and prescribed  
                      displacement 
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3.6.2   BASIC CALCULATION 
 
After the creation of a geometry model, a finite element mesh composed of  6-node triangular 
soil elements is used in the discretization. The mesh is generated with the global coarseness 
set to ‘medium coarse’ and a total of 284 elements is formed after the discretization. The 
result is shown in Fig. 3.20. The initial state of stresses is generated by the - procedure 
that is derived from Jaky’s formula 

0K
( )φsin10 −=K , where  is coefficient of lateral earth 

pressure and 
0K

φ  is internal friction angle.   
 

A

                                                    
Figure 3.20   The medium coarse undeformed mesh generated for Wageningen clay soil 
                      before shear started  
 
 
 
The applied values of the point force (vertical load ) and the prescribed displacement are 
controlled by the load multiplier ( ) and the displacement multiplier ( ) 
respectively. The calculation involves two phases. The loading phase and the shearing phase. 
Both phases are analysed in dynamic way with automatic time stepping procedure.  

∑MloadA ∑Mdisp

The time step used in the calculation is ( )st 410*1 −=∆  which is less than the critical time 
step calculated by Eqn (2.15).  If the time step is too large, the solution will display major 
deviations and the calculated response will be unreliable. Therefore the chosen time step must 
be small so that a wave in a single step displaces less than a single element. 
 
In the first calculation phase the sample is vertically compressed  by vertical  pressure of  

kPan 82=σ   (∑ )  for  Wageningen clay soil and  = kPaMloadA 82 kPan 39=σ  for  

Silty loam soil  ( ) and assuming fully drained behaviour of the two 
soils for a duration of  1 s.   

kPaMloadA∑ = 39
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After this phase the displacements are reset to zero. On the second phase the soil specimen of  
the lower box is horizontally sheared by a horizontal shear velocity of  0.1 cm/s  for a 
displacement of  1 cm.  
 
 
 
3.6.3   FIGURES PRESENTING CALCULATION RESULTS  
 
The following Figures 3.21 to 3.24 show the soil deformation behaviour during shearing 
process 
 
3.6.3.1    Using the Mohr – Coulomb model 
 
The soil used for the Mohr – Coulomb model is the Wageningen clay soil of  Table 3.1. 

 
 

A

 
Figure 3.21   The deformed mesh of  Wageningen clay soil after shearing for 1cm 
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Figure 3.22   Total displacement contour in the shear zone of  Wageningen clay soil 
 
 
 
 
 

 
 
Figure 3.23   Mohr – Coulomb failure points in the shear zone of  Wageningen clay soil 
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A A* 
 
 
Figure 3.24    The shear stress distribution on the shear plane of  Wageningen clay soil 
   
 

 
 
 
The following curves, from Fig. 3.25 to 3.27 show the effect of stiffness, cohesion and 
friction angle variation during the shearing process  
 
 
 

 
Figure 3.25   Effect of  stiffness variation on shear force of  Wageningen clay soil 
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Figure 3.26   Effect of cohesion variation on shear force of Wageningen clay soil 
 
 
 
 
 

 
Figure 3.27    Effect of friction angle variation on shear force of Wageningen clay soil 
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3.6.3.2     Using the Cam – Clay type model 
 
The soil used for the Cam – Clay model is the Silty loam soil of  Table 3.2 
Figures 3.28 and 3.29 show the soil deformation and shear behaviour. 
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Figure 3.28   Total displacement contour in the shear zone of  Silty loam soil 
 
 
 
 
 

 
Figure 3.29   Mohr – Coulomb (empty) and plastic cap (filled) failure points in the shear zone  
                      of  Silty loam soil 
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The following curves, from Fig. 3.30 to 3.31 show the effect of cohesion and friction angle 
variation during the shearing process  
 

 
 Figure 3.30    Effect of cohesion variation on shear strength of Silty loam soil                     
  
        
 
 

 
Figure 3.31   Effect of friction angle variation on shear strength of  Silty loam soil 
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3.6.4     DISCUSSION  AND  CONCLUSION  
 
For investigation of the failure conditions of soils one must know the internal resistance 
exerted by the soil to displacement, slip, deformation and volume change. Such internal 
resistance is characterised by the shear strength of the soil. 
In soil mechanics the Mohr – Coulomb condition is usually used as the condition of failure.  
Accordingly the shear strength may be given by two parameters: φ,  the slope of the Coulomb 
line and  c,  the shear strength measured at a zero normal stress. These are called friction 
angle and cohesion respectively. The shear box test is the simplest laboratory soil test 
available for the direct measurement of soil cohesive and frictional strength parameters 
whereas our interest now is modelling of the dynamic shear box test with Plaxis which is used 
to study the failure and the deformation patterns of the soil. Using Plaxis has lots of 
advantages; therefore we discuss the merits of Plaxis on modelling shear box test. When we 
compare sources of error for laboratory shear box test and Plaxis shear box test, Plaxis shear 
box test gives much more reliable results. 
 
In the laboratory test sometimes coarse particles might be trapped in the clearance of the 
boxes disturbing the magnitude of shear resistance of the soil during shearing (Kezdi, 1974). 
This can be corrected in Plaxis by taking very thin clearances using input of digital numbers. 
Further difficulty of laboratory tests is the precise setting of the plane of forces.  If we fail to 
make the horizontal force exerts its effect precisely in the shear plane specified, then the 
results would be disturbed. Again this can be corrected in Plaxis by selecting nodal points 
exactly on the shear plane. In Plaxis soil samples are placed inside the two boxes and a  
vertical load A is applied on the upper box.  The soil is allowed to come to drainage 
equilibrium after  the load A is applied for 1s. Then the lower box is displaced relative to the 
other with constant velocity of  1mm/s (strain – control method) and the required horizontal 
force is “measured” by Plaxis incrementally. On the force – displacement curve for each 
parameter under study the failure point P is determined as indicated for Fig. 3.25 to 3.27 and 
also for Fig. 3.30 & 3.31.  This point is the largest shear force ( Fx )  or that point where the 
shear force versus displacement curve increases only slowly. 
 
For the case of  the Mohr – Coulomb soil model using different input values of the parameter  
E (Young’s modulus) we didn’t see failure force difference despite the failure occurred earlier 
for the higher values of  E  (Fig. 3.25).  For parameters of  c  and  φ   which are the two 
strength determining parameters the failure force is different for different values of those 
parameters.  As expected failure force is increasing where c is increasing and the same is true 
for φ  ( Fig. 3.26 and 3.27 ). For the case of Silty loam soil the conditions of what was 
explained for c and φ  of Wageningen clay soil remain the same. That means when values of 
these parameters increase the shear strength will be increased (Fig. 3.30 and 3.31).  
 
The force – displacement curves of Silty loam soil also show similar behaviour with that of 
Wageningen clay besides the failure force differs depending on the magnitude of normal load. 
Inspection of plastic points (Fig. 3.23 and 3.29) showed that failure is concentrated on  the 
predetermined shear plane and the shear stresses on the plane seem uniformly 
distributed (Fig. 3.24).  However the failure zone of  Wageningen clay was larger than that of 
Silty loam soil;  this is due to deformation behaviour of Wageningen clay soil. 
In fact such shear force – displacement curves reflect how a soil would behave on a 
predetermined thin shear zone in the field such as under a tractor tyre ( Mckyes, 1989). 
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3.7     MODELLING OF  SOIL BLOCK CUTTING BY A PENDULUM TYPE  
               MACHINE 
 
The finite element modelling of soil block cutting by a pendulum type machine is first started 
by creating the initial geometry model of the soil block together with the shape of the tool. 
The model used for the FEM calculation is the Mohr – Coulomb model together with the 
Wageningen clay soil which is given in Table 3.1. 
 
 
3.7.1   CREATING A GEOMETRY MODEL  
 
For each new case to be analysed it is important to create a geometry model first. 
A geometry model is created by the input program of Plaxis and it is a representation of a real 
problem consisting of points, lines and clusters. 
The initial geometry model of the soil block has the dimensions as shown in the Fig. 3.32 . 
This and all the other dimensions of the geometry model are equal with the dimensions of the 
laboratory test of soil block cutting by a pendulum type machine analysed on the MSc thesis 
of  Fissha (1998) and Tadesse (1999).  
The standard boundary conditions ( total fixities ) are used to fix the boundaries and the 
absorbent boundaries are used at the boundaries where total fixities are used.  
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Figure 3.32    The created geometry model with total fixities, absorbent boundaries, and  
                                applied prescribed displacement 
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3.7.2    BASIC CALCULATION 
 
After the creation of a geometry model a finite element mesh composed of 6 – node triangular 
soil elements is used in the discretization process.  The mesh is generated with the global 
coarseness set to ‘medium coarse’ and a total of 162 elements, 363 nodes and 486 stress 
points is formed after the discretization.   
The initial state of stress is generated by the K0 – procedure ( φsin10 −=K ), where  is 
coefficient of lateral earth pressure and 

0K
φ  is internal friction angle.   

 
 
 

 
 
Figure 3.33    Discretized soil  block with tool displacement direction, 162 elements  
                           and 363 nodes  
 
 
 
The applied values of the displacements are controlled by the displacement multiplier 
( );  in this case the tool has been displaced in the tangential direction with 
a magnitude of  0.049m.  The prescribed displacement has the co-ordinates of A (1, -1 ) and B 
(-1 , 2) where A and B are the two positions of the tool as shown in Fig. 3.32 .  The tangential 
motion of the tool is the correct way of estimating soil cutting by pendulum type machine.  In 
Plaxis it is difficult to model the curved motion of the tool, so we used tangential motion with 
a small displacement that shows a similar effect of the curved motion rather than vertical or 
horizontal motion of the tool. The calculation involves a single phase dynamic analysis with 
automatic time stepping procedure. The time step selected is (

mMdisp 02.0=∑

st 0001.0=∆ ) and the total 
calculation time would be  st 02.0=
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3.7.3   FIGURES PRESENTING CALCULATION RESULTS 
 
The following Figure 3.34 shows the deformation behaviour of the Wageningen clay soil 
when cutting by the pendulum type machine. 
 
 

Deformed Mesh
Extreme total displacement 49.19*10-3 m

(displacements at true scale)

  
a)  Deformed mesh with nodal points after cutting with small displacement 
 
 
 
 

Deformed Mesh
Extreme total displacement 223.61*10-3 m

(displacements at true scale)

 
 
b)  Deformed mesh with nodal points after cutting with relatively large displacement   
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c)   Distribution of soil particles displacement vectors for small displacement  
 
 
 
 
 

 
 
d)  Distribution of soil particles velocity vectors for small displacement  
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e)   Total stress distribution for small displacement  
 
 
 
 

 
f)    Mohr – Coulomb (open with stress points inside)and tension failure (white with stress  
                points inside) points;  the dots are stress points, for small displacement 
 
 
 
Figure  3.34  a – f.   Soil deformation behaviour of Wageningen clay soil after cutting by a  
                                     pendulum type machine 
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3.7.4   DISCUSSION AND CONCLUSION  
 
 
We analyse the FEM calculation of the cutting process of a soil block by a pendulum type  
machine and investigate the dynamic behaviour of cohesive soil. 
Figure 3.34 a  shows the deformed mesh after 5 cm displacement of the tool in tangential 
direction. The mesh is deformed in the upward direction in front of the tool surface and little 
deformation occurred behind the tool surface at the instant of displacing the tool. All  this 
deformation behaviour is expected with regard to the tool motion since the tool pushes the 
soil mass in front of its surface in horizontal as well as upward direction during cutting. 
Figure 3.34 b shows the deformation behaviour of the soil mass after cutting with relatively 
large displacements (22 cm). In this case the irregularity of the mesh deformation is 
increased. This is due to the increased particle motion resulting from the increased force of 
the tool during the cutting process. 
 
Figure 3.34 c shows the analogue soil displacement vectors for the deformed mesh with small 
displacement.  The first three nodal points on the surface of the tool show the displacement 
direction of the tool and the rest of the nodes with arrows shows the displacement direction of 
the soil particles. It seems that most of these nodes are displaced in the horizontal direction 
rather than vertically except very few nodes at the surface of the soil mass in front of the tool. 
However, there should also be an upward and downward movement of soil particles.  These 
movements of soil particles are clearly seen from the velocity vectors diagram (Fig. 3.34 d) 
which shows the soil particle movement at the time of soil deformation. 
 
Figure 3.34 e shows the total stress concentration area of the soil mass. The area of the soil 
mass near to the tool tip and in front of the tool surface shows relatively high concentration of 
stresses which is expected.  The length of each line represents the magnitude of the principal 
stress and the direction indicates the principal direction.   
 
Plastic points are shown by Figure 3.34 f ;  these points show the area of the soil mass, where 
failure occurred.  Stress points near  the tool tip or in front of the tool surface (where high 
concentration of stresses occurred) are in a failure state. These failure points are Mohr – 
Coulomb failure points and located in the Figure as an open square with stress points inside.  
The Mohr – Coulomb failure points are stress points where the Mohr stress circle touches the 
Coulomb failure envelope ( Plaxis, 1998).  The other plastic points are called tension points;  
these points are located on the figure as white squares with stress points inside. A tension 
point is a stress point which fails in tension. In  the present calculation the tensile strength of 
Wageningen clay is considered to be 20.5 kPa.  
 
In FEM calculations of the soil cutting process by a pendulum type machine it is difficult to 
see an open crack formation on the remaining part of the soil block or on the part of the soil 
block displaced by the tool. This may be due to  the continuum nature of the medium, so that 
there is no distinction between individual elements during the cutting process. Rather 
elements are displaced at nodal points.  In the case of analysing crack formation, DEM or 
laboratory experiments are more useful than FEM. In DEM calculation of soil block cutting 
by a pendulum type machine, particles are separated from each other during the cutting 
process and open crack formation can easily be formed in front of the tool (for details see the 
Figures of section 6.2.2 ).      
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3.8    ACCURACY OF FEM RESULTS ACCORDING TO BENCHMARK 
              EVALUATION 
 
The performance and accuracy of FEM has been carefully tested by carrying out analyses of 
problems with known analytic, semi – analytic or numerical solutions.  
Plaxis (1998) gives a selection of these benchmark problems. Section 3.8.1 and 3.8.2 present 
two of them. 
 
3.8.1    ELASTIC BENCHMARK PROBLEMS 
 
A large number of elasticity problems with known exact solutions is available for use as  
benchmark problem. Only one example of the elastic calculation has been selected for 
verification because it resembles the calculation that FEM might be used for in practice. 
 
3.8.1.1   Example  ‘ footing’ 
 
The problem of a smooth strip footing on an elastic soil layer with depth  h = 4 m  and length 
l = 14 m. The soil has elastic properties of  Poisson’s ratio ν = 0.33 and bulk modulus G = 
500 kPa.  A uniform vertical displacement of 10 mm is prescribed to the footing and the 
indentation force, F, is calculated from the results of the finite element calculation. 
 
Results: The footing force calculated from the finite element calculation was  F = 15.26 kN. 
The analytical solution to this problem can be found in the formula,   
settlement =  ( )GF

ν
δ

+12   ( Giroud, 1972). 

For the dimensions and material properties used in the finite element analysis this formula 
gives a footing force of F = 15.15 kN. The error in the numerical solution is therefore about 
0.7 %.  Figure 3.35 shows that the FEM results agree very well with the analytic solution.  
 
  

  
Figure 3.35   The analytical and FEM results for the pressure distribution underneath a 
                       smooth rigid footing on an elastic medium ( Plaxis version 7, 1998) 
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3.8.2     PLASTIC BENCHMARK PROBLEMS 
 
A series of benchmark calculations involving plastic material behaviour is described in the 
Plaxis version 7 material models manual.  Only one example with known analytic solution is 
described below for verification. 
 
3.8.2.1   Example  ‘cavity’ 
 
For the expansion of a cylindrical cavity in an elastic perfectly cohesive soil theoretical 
solutions exist for both large and small displacement analysis. 
A cylindrical cavity of initial radius a is expanded to radius a  by the application of an 
internal pressure

0

p . The radius of the elastoplastic boundary is represented by r . The soil is 
incompressible with an angle of friction of zero and cohesion . c
In this calculations the ratio c

G  is taken to be 100 and Poison’s ratio is  495.0=ν . 

 
Results:  Figure 3.36 shows relationships between cavity pressure and radial displacement. 
The FEM calculated results agree very well with the analytical solutions. 
  
 

 
Figure 3.36   FEM and theoretical results of cavity pressure versus radial displacement 
                     (Plaxis version 7, 1998) 
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3.8.3   VALIDATION  FOR  AGRICULTURAL SOIL PROPERTIES 
 
 

The Finite Element Method has been used by a number of scientists to study soil compaction  
by tyre – soil system and  the process of  soil – tool interaction (Koolen et al, 2003;  
Koolen,1999;  Carol et al, 1999;   Fielke, 1997 and Kirby, 1989) 
Those studies have shown that the FEM results reasonably approximate the real situation in 
the agricultural fields. 
 
Very recent ones are (Koolen et al, 2003) and (Koolen, 1999)  for analysis of soil compaction 
by tyre – soil system and (Carol et al, 1999) and (Fielke, 1997) for analysis of soil 
deformation during tool – soil interaction.  As many of these researchers agree it is very 
difficult to study the tyre – soil system or the soil – tool interaction by field experiments 
whereas the FEM model is a convenient one to do so. 
 
Koolen et al (2003) presented FEM analysis of subsoil reaction on heavy wheel loads that 
frequently occur in arable farming, Fig. 3.37 b. The results showed that the preconsolidation 
stress of the subsoil was an upper bound of the vehicle induced stresses in the subsoil. This 
finding is a result that one will expect. It can therefore be considered as a validation of the 
FEM analysis (Fig. 3.37 a).  
 
They used the same soil type (Silty loam soil) as was explained in this thesis from different 
soil depths with different preconsolidation stresses and cohesion values.  The FEM 
calculations were done with automatic mesh generation and with updated mesh analysis, for 
tyre sizes, inflation pressures and wheel loads that occur with the heaviest sugarbeet 
harvesters available on the European market in 1999.    
 
The results of the calculation include the detection of regions with Mohr – Coulomb plasticity 
regions, with cap plasticity (compaction hardening) and the distribution of soil pressure 
beneath the centre of the tyre. These results are parallel with the dynamic FEM simulation 
results presented in this thesis for the tyre – soil system.  In the present case the author  used 
Plaxis version 7.2 (2000)  that is the dynamic analysis (automatic mesh generation with 
automatic time stepping)  which is even more realistic for dynamic loading cases like tyre – 
soil system or soil – tool interaction.  
 
Therefore besides the benchmark problems presented in Plaxis (1998)  we can  use the above 
already published FEM results as a validation of the FEM calculation results presented in  this 
thesis. 
 
Probably  deviation of the FEM calculation results from the actual results are mainly caused 
by the inaccuracy in  measuring soil properties, which is a main problem in FEM calculations.  
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a)   Preconsolidation stress and air content from uniaxial compression test 
 
 
 
 

 
b)   Preconsolidation stress from FEM calculations 
 
 
Figure 3.37 a , b.   Validation of FEM results by comparing  a) preconsolidation stress  
                               from laboratory test and  b) preconsolidation stress from FEM 
                               calculations (Koolen et al, 2003) 
 

 100



              4          EXPERIMENTAL  RESULTS  
 
 
The laboratory experimental results of soil block cutting by a pendulum type machine,  
dynamic tyre – soil system and simple shear test are presented in this section. Only selected 
parts of the results are presented here for later comparison analysis of DEM and FEM results. 
 
For detailed analysis of the experimental results one can read the MSc theses of  Fissha 
(1998) and Tadesse (1999) for soil block cutting by the pendulum type machine, Lebert et al 
(1988) and Horn et al (1988) for the dynamic tyre – soil system and Kezdi (1974 & 1980) and 
Craige (1992) for the shear box test. 
 
 
4.1    ANALYSIS OF SOIL CUTTING BY A PENDULUM 
             TYPE  MACHINE 
 
4.1.1   INTRODUCTION 
 
The process of soil loosening has been performed all over the world for many centuries. 
Operating tools (mouldboard plow, rotary tine, wedge, discplough etc.) have to move through 
the soil to get the desired loosening process. 
Tools are labelled “tines” if the loosening effect reaches considerably further than the width 
of the body and “plough body” if the loosening effect is mainly confined to the soil within the 
width of the operating tool (Koolen, 1977). 
 
A tillage tool is labelled as a two dimensional tool if the horizontal cutting edge is always 
perpendicular to the direction of travel. For two dimensional cutting blades the important 
characteristics are the shape of the surface, the cutting angle, the working depth in relation to 
the size, and the height of the tool. The tool used in the experiment (Fig. 4.2) can be 
considered as a two dimensional tool. Basically all soil loosening processes transfer soil from 
its original position. Thus mechanical failure of the soil material is involved in the sense that 
the mass of the soil being moved doesn’t retain its original geometric shape. 
 
An experiment was done by Fissha (1998) and later by Tadesse (1999) in the soil Tillage 
laboratory of Wageningen University in order to analyse the dynamic behaviour of soil under 
tillage. The difference between the experiments of Fissha and Tadesse was about tool shape. 
Fissha used the common rotary tillage tool without modification. 
Tadesse used a modified rotary tine by increasing the stiffness of the tool.    
The case of Fissha is presented in the following section since he used the original rotary tine 
which is commonly used in soil loosening processes.   
 
 
4.1.2    SOIL PREPARATION AND THE EXPERIMENTAL SET-UP 
 
4.1.2.1  Soil properties used in the experiment 
 
Two different types of soil as described in Table 4.1 are selected among the soils which are 
prepared to be investigated at moisture content equal to their field capacity and porosity 
which is convenient for soil handling.  
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Table  4.1   Soil physical properties used in the experiment 
 
Soil type % of mineral 

    content 
     % of soil Limit of consistency Porosity 

    % 
MC at pF 2  
      %      

Density 
(g/cm3 ) 

Wageningen  
(silty clay loam)   

clay  silt  sand 
 
36     47    16 

calcium 
carbonate    humus 
   33              23    

liquid   sticky  plastic 
 
43.7        32         30.5 

 
 
45  

 
 
27 

 
 
1.87 

 
Ede (sand) 

 
4       9      87 

  
                    3.6 

 
1.9          15.4 

 
41 

 
17 

 
1.78 

 
 
The next step was preparing the soil block by filling the soil bin. The soil bin was 45 cm long, 
40 cm wide and 12 cm deep (Fissha, 1998). The shape of the soil block was such  that the 
blade motion during pendulum rotation was similar to that of the assumed rotary tiller as 
shown in Fig. 4.2:  the shape of the soil block was derived from the impact position, cutting 
path and bite length of the assumed tiller condition. 
 
The actual shape of soil slice produced by the rotating pendulum in a single strike is shown in 
Figure 4.1 a.  However the laboratory preparation of a soil block with a curved shape has a 
practical difficulty.  This problem was avoided by replacing the curved front face part with a 
straight line as shown in Figure 4.1 b.   
 

          a)  Actual shape of soil block                 b)  Modified shape of soil block 
 
Figure 4.1 a, b.   Setting shape of soil block 
 
 
The main parameters of the blade selected for simulation were derived from the rotary tiller 
blade which is commonly used for cultivation in the Far East (Nguyen, 1996).  Figure 4.2 
shows the blade cross sections and Table 4.2 shows its important  parameters. 
 

 
Figure 4.2   Cross section of the rotary tiller blade 
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Table  4.2  Rotary tiller blade parameters 
 
Parameters Values 
Tip angle (β) 
Setting angle (γ ) 
Rotation radius (R) 
Traveling velocity  
Angular velocity 
Working depth (H) 
Bite length (L) 
 

25 0  
52.11 0  
22 cm 
111.11 cm/s 
275 rpm 
15 cm 
12.1 cm 

 
 
4.1.2.2  The experimental set-up 
 
After the soil block was prepared white headed pins were placed on the front face of the soil 
block in order to form a grid. The pins are placed at every intersection point of horizontal and 
vertical lines 2 cm apart.  
The soil block was moved and securely placed on the pendulum type impact machine as 
shown in Fig. 4.3 b, which is arranged to simulate the rotary cutting process. And then the 
pendulum was released from 105 degree position and strikes the soil block at 72 degree 
measured from the vertical axis (after rotation of 33 degree) at a velocity of 3 m/s. Based on  
the pendulum type impact machine and blade – soil impact setup in Fig. 4.3 a and 4.3 b 
respectively the selected working radius of the pendulum machine is R = 0.819 m.  
 

 
  a)  Pendulum type impact machine                               b)   Blade – soil impact setup   
 
Figure  4.3  Pendulum type machine (a) and experimental setup (b)  
 
 
 
4.1.3   RESULTS AND DISCUSSION 
 
4.1.3.1  The pendulum motion and absorbed energy during the cutting process 
 
The images of soil behaviour during the cutting process were recorded by a high speed video 
camera and the angular top position was measured after cutting. The pendulum motion was 
measured from recorded images after the experiments. If a large reaction force had worked on 
the blade the pendulum motion would become slower.  
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In general the motion of the pendulum during a cutting process is controlled by the  
following kinetic equation (Eqn 4.1) 
 

θθα ∆+−= eLmgRFI ttt cos0                                                                              (4.1) 
 
where 
                is moment of inertia of the pendulum;  0I tα  is angular acceleration of the  
                pendulum;   R  is distance from axis to blade tip;   is resistance force against  tF
               blade motion;  is length from rotation axis to centre of gravity of the pendulum;   L
                m  is the mass  of the pendulum;  g  is acceleration  due to gravity;  
                tθ  is rotation angle of  the pendulum;   is the friction energy lost by the bearings  e
  
 
The energy absorbed by the soil loosening process during the pendulum motion is calculated  
by  using Equation 4.2. 
 

θ∆−∆= ehmgEabs                                                                                                 ( 4.2) 
 
where 
            m  is mass of the pendulum machine;  g  is the acceleration due to gravity;  
            ∆  is the change in heights between the starting and stop positions of the pendulum; h
            θ∆  is a rotation angle during pendulum motion 
 
 
Therefore the energy absorbed by the loosened soil during the cutting  process was related to 
the pendulum stop angle after cutting as shown in Table 4.3. This shows that the absorbed 
energy of the loosened soil increased as the content of clay in the soil increased. 
 
 
 

Table  4.3  Energy absorbed during the cutting process 
 
Pendulum motion Wageningen clay soil Ede sand soil 
 
Pendulum release 
angle [deg] 

Exp. one 
  
105 

Exp. two 
 
105 

Exp. one 
 
105 

Exp. two 
 
105 

Pendulum stop  
angle [deg] 

 
-34 

 
-30 

 
-79 

 
-79 

 
Absorbed energy [J] 
 

 
110.73 

 
114.81 

 
36.9 

 
36.9 
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4.1.3.2  Crack formation during the cutting process 
 
The behaviour of the soil when the cutting blade passed through soil block is shown in Fig. 
4.4. Crack formation in the thrown  part in front of the blade or in the remaining part behind 
the blade and the consumption of pendulum kinetic energy varied with soil type.  
In the case of Wageningen clay soil (since clay content is highest) the crack proceeded faster 
than the blade motion (Fig. 4.4 a).  Shape of the thrown block was kept through the cutting 
process. Whereas in the case of Ede sand  crumbling was found at the top of the thrown block 
and some cracks were found in the remaining part of soil (Fig. 4.4 b). 
  
 

 
          a)  Wageningen clay soil                                b)  Ede sand soil 
 
Figure 4.4   Snapshot pictures showing cutting processes visualising with pins 
 
 
 
4.1.3.3   Motion of soil particles during the cutting process 
 
Soil particle movement can be analysed from measurements of displacement, compaction, 
deformation, velocity and acceleration (Koolen, 1977).  Displacements and velocities are 
selected in the present case. The use of white headed pins during the experiment has 
facilitated measurements of these processes. 
 
Particle flow path 
Using successive film frames the flow paths of some soil particles were constructed. A flow 
path of a particle may be a particle path relative to the blade or to the untouched soil.  
In the present case the flow path is selected with the assumption that the untouched soil was 
considered as fixed. The flow path was constructed approximately during the time interval 
where the blade starts to loosen the soil and the loosened particles start to fall due to 
gravitation effect. Fig. 4.5 with Table 4.4  and Fig 4.6 with Table 4.5  show the particle flow 
paths obtained at different points of time for Wageningen clay soil and Ede sand soil 
respectively. 
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Segments            Distance (mm)                         Position Time (ms) 
                      
                      I         II        III       IV       V      VI        a          472     
 
ab                50.4    37.8   25.2  16.8  16.8  12.6        b          520           
   
bc                  42     50.4    50.4   42   33.6  29.4        c          568          
 
cd                           58.8    58.8  46.2  42    33.6        d          616  
 
de                           58.8   50.4   46.2 37.8  29.4        e          664    
 
ef                                      16.8   12.6 12.6  8.4           f          680  

Table 4.4  Particles distance during cutting process 

 
Figure 4.5   Flow paths of six selected particles I – VI during the cutting process of  
                    Wageningen clay soil. 
 
 
 

Segments            Distance (mm)                         Position Time (ms) 
                      
                      I         II        III       IV       V      VI        a          528     
 
ab                41      16.4    8.2     8.2    4.1    4.1        b          564           
   
bb’              36.9     50.4    50.4   42   33.6  29.4        b’         588          
 
bc                           53.3     41   20.5   8.2   12.3        c          600  
 
cc’                           45.1                                             c’         624    
 
cd                                     57.4  61.5  77.9  36.9         d         636  
 
dd’                                             20.5  24.6  20.5         d’         648 

Table 4.5  Particles distance during cutting process 

 
Figure 4.6   Flow paths of six selected particles I – VI during the cutting process of Ede sand  
                   soil. 
 
 
 
Particle velocity distribution 
For selected soil particles between two successive frames of  I – VI as shown in Figure 4.5 
and 4.6 the average velocity could be calculated over a short interval of time.  
For Wageningen clay soil the interval of time was 96 ms and for Ede sand soil it was 36 ms. 
Figure 4.7 with Table 4.6 and Figure 4.8 with Table 4.7 show the average particle velocity 
distribution of Wageningen clay soil and Ede sand soil respectively. 
  

Particle number    I              II        III      IV       V         VI 
 
 
Velocity (cm/s)    96.3      91.9     78.8   61.3   52.5   43.8 

Table 4.6  Average velocity of particles  
                   for Wageningen clay soil 

 
Figure 4.7  Particles average velocity distribution for Wageningen clay soil 
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Particle number    I              II        III      IV       V         VI 
 
 
Velocity (cm/s)    113.9      45.6    22.8  22.8    11.4   11.4 

Table 4.7  Average velocity of particles  
                   for  Ede sand soil 

 
Figure 4.8  Particles average velocity distribution for Ede sand  soil 
 
 
 
 
4.1.4   CONCLUSION 
 
The energy absorbed by the loosened soil during the cutting process was related to clay 
content. The absorbed energy increased as the content of clay in the tested soil block 
increased. 
 
It was also observed that the cutting process was dependent on the kind of soil in terms of 
crack formation in the remaining part of soil block and the shape of thrown soil. In case of 
cutting Wageningen clay soil (cohesive soil) no crack was seen or very small cracks were 
generated;  besides velocity of the thrown soil was small. This is because the clay caused 
larger resistance against mutual soil particle motion.  
 
In the case of cutting Ede sand soil (soil with highest sand content) crumbling was found at 
the top of the thrown block with higher velocities and some cracks were found in the 
remaining part of the soil. 
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4.2       ANALYSIS OF DYNAMIC TYRE – SOIL SYSTEM UNDER FIELD 
               CONDITIONS AND IN LABORATORY EXPERIMENTS 

 
4.2.1  INTRODUCTION 
 
Mechanical compression of soils by tyre loads is still subject to much discussion and research. 
The transmission of total stresses as effective stresses on the solid phase of  the soil is a time 
dependent process, because the decrease of pore water pressure is a function of the hydraulic 
conductivity of the soil (Lebert et al, 1988).   
 
Most laboratory research has been carried out with relatively long periods of stress 
application and slow deformation rates, which are often most convenient for laboratory 
equipment. Therefore these experiments can only be associated with very slow vehicle 
speeds. 
 
Horn et al (1988) described that the tractor speed of wheeling and the number of passes cause 
different degrees of compaction. But there is a lack of information about the process in detail, 
that occurs during loading in structured soils. 
 
 
4.2.2  FIELD EXPERIMENTS 
 
The field  experiment of Horn et al (1988) for analysing the effect of stress duration on the 
pressure transmission of soil under running wheels is presented in the next section. 
 
4.2.2.1  Materials and methods 
 
Horn et al (1988) used the following soil properties in the field experiment. The used soil was 
a transitional red – brown earth, ameliorated by deep ploughing to 30 cm. It had two horizons, 
the A – horizon was sandy clay loam, while the B – horizon consists of sandy clay. 
The bulk density was 1.22 and 1.46 g/cm3 respectively. After the last cultivation the soil was 
spray irrigated with 80 mm of water at 50 mm/h by a lateral move irrigator and covered with 
a polythene sheet to allow redistribution of water. 
 
Each wheeling was on a different plot at water contents of the ameliorated soil just below or 
above the casagrande lower plastic limit (21% w/w) and a  suction between 6 or 12 kPa that is 
field capacity. Two different kinds of speed were used, (slow (0.7 km/h) and fast (4.5 km/h)). 
 
Forward speed and wheel slippage were calculated from measurements of distance and time. 
The wheeling was one pass by a single rear wheel of a 100 kW tractor with 18.4 – 38 size 
water ballasted tyre, an inflation pressure of 140 kPa and contact area of 3,600 cm2. 
In each plot stress transducers were installed at 20 and 35 cm depths. After a transducer was 
inserted its hole was firmly back – filled with soil. The transducers measured vertical stress 
( vσ ) or horizontal stress ( hσ ) with at least two replicates at each depth. 
 
Wheeling signals from the transducers in various horizons of the soil profile were recorded 
simultaneously each 0.1s by a field data logger. The stresses were calculated by applying 
individual calibration curves for each transducer. Water contents at 20 cm depth after 
wheeling were also measured. Bulk density and air permeability after wheeling were 
measured at 20 cm on soil cores taken in metal rings of 100 mm diameter. 
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4.2.2.2   Results and discussion 
 
In Figure 4.9 the mean vertical stress at 20 cm depth is shown for the two tyre speeds. At the 
slowest speed the stresses lasted longer and the shape of the graph resembled a flattened sine 
wave.    
 

  
Figure 4.9    Change of vertical stress with time for two tractor  speeds ( Horn et al, 1988) 
 
 
 
Average vertical stress at 20 cm depth changed significantly with speed (from 0.2 – 0.6 MPa). 
Which means the vertical stress increased when the speed is lowered. However at a water 
content above the lower plastic limit the vertical stress increased when the speed increased. 
 
At 35 cm depth an increase in speed resulted in a decrease of vσ . Thus the maximum vertical 
stresses decline as speed increased for the subsoil.  The longer periods of stress application at 
lower speeds allowed a greater opportunity for subsoil stress to reach the maximum value.  
 
Hence increasing speed resulted in lower maximum vertical stress in the subsoil. 
Because soil compaction is a time dependent process increasing speed resulted in decreasing 
increments of bulk density values. Wheeling also caused considerable surface soil 
deformation. The formation of ruts and the mean rut depth decreased when speed increased. 
In general faster forward speeds of a tractor should minimise damage to the soil structure. 
 
 
4.2.3   LABORATORY EXPERIMENTS 
 
Lebert et al (1988) also showed the effect of stress duration on the pressure transmission of 
tilled soil by laboratory experiments. Pressure transmission is affected not only by load 
intensity but also by speed. In their experiment, the load and time dependent settlement of the 
undisturbed and predried soil samples have been simulated by a confined compression test 
with a load range of 10 to 800 kPa.   
 
They analysed, that at constant load, pressure will be transmitted deeper down the soil profile 
with the longer stress duration at the soil surface (Fig. 4.10) 
Horn et al (1988) also showed the longer the stresses are applied at the soil surface the greater 
the permanent deformation vσ∆ , as shown in Fig. 4.9. 
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Thus fast wheeling protects soil structure from compaction especially in soils with low 
hydraulic conductivity. 
 

 
Figure 4.10  Time dependent alteration of the stress lines ( Lebert et al, 1989 ) 

 
 
 
4.3     LABORATORY EXPERIMENTS OF THE SHEAR BOX TEST 
 
4.3.1   INTRODUCTION 
 
The direct shear test is used to measure the shear strength of a soil under drained conditions.  
A square specimen of soil is placed in a square box that is divided horizontally into two 
frames. The specimen is confined under a vertical or normal stress and a horizontal force is 
applied so as to fail the specimen along a horizontal plane at its midheight. 
Generally a minimum of three specimens each under a different normal stress are tested to 
establish the relation between shear strength and normal stress. The magnitude of normal 
stresses used depends on the range of stresses anticipated for design. Because of the 
difficulties involved in controlling drainage of the soil specimen during the direct shear test, 
only the drained test method in which complete consolidation is permitted under each 
increment of normal and shear stress shall be used. 
 
4.3.2  Materials and methods 
 
The apparatus consists of a square metal box split across the middle into two parts, one fixed 
the other movable in the horizontal direction. The soil specimen is held between two indented 
porous stones or metal grilles. 
Dimensions of the shear box are selected with respect to the size of the grains in the soil 
under test. For sand and silty sand a box of (6 * 6 ) or  (10 * 10 cm ) is used.  Coarse gravel or 
rubble are tested in large size (30 * 30 cm ) boxes, types of apparatus with a surface 1 m2 are 
also known for both in-situ and laboratory experiments. The complete experimental setup of 
the shear box is shown in Figure 4.11 
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                   1-pressure screw; 2-dial gauge to measure horizontal displacement; 3-dial 
                    gauge to measure vertical displacement; 4-measuring frame; 5-moving frame; 
                    6-pressing  block; 7-soil  sample; 8-shear surface; 9-bottom frame 
 
Figure 4.11  The experimental setup of shear box test (Kezdi, 1980) 
 
 
 
During the test a vertical confining load is first applied to the specimen through a rigid top 
block. Then a gradually increasing horizontal shearing force is applied through the upper 
movable part until the sample fails. Both the horizontal shear displacement and the vertical 
deformation are measured by precise dial gauges. 
The loading causes the void ratio of the specimen to decrease. If the voids are filled only with 
air compression occurs almost instantaneously, whereas in water saturated soils consolidation 
may take a very long time. 
 
The direct shear test can be performed by a continuous duration of the shear force. This is 
applied in a stepwise manner;  the vertical and horizontal displacements are read off and the 
next load step is applied thereafter (stress control method). 
Another experimental technique consists of  a relative displacement at a constant speed 
between the two shear box frames and the measurement of the shear force is recorded (strain 
control method). 
 
 
4.3.3  RESULTS AND DISCUSSION 
 
Fig 4.12 shows  results obtained with the strain control method. The soil here was coarse 
sand. For various constant normal loads the horizontal forces that cause the specimen to fail 
in shear were measured and the corresponding stress values calculated.  
 
In Fig. 4.12 a  the shearing resistance and the vertical displacement (expansion or 
compaction) of the sample are plotted against the horizontal displacement. By reading off the 
ultimate shear stress values from the stress – strain curves and plotting them against the 
corresponding normal stresses we obtain the Coulomb lines as a result and hence the shear 
strength parameters φ and  can be determined graphically (Fig. 4.12 b).   c
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                  a)  Shear test results                                    b)  Calculated shear strength         
 
Figure 4.12   Shear test results of coarse sand with different normal stresses (a) and calculated  
                       shear strength;  Mohr – Coulomb line (b)  (Kezdi, 1980) 
 
 
 
In general the following points are discussed for laboratory experiments of  the shear box test.  
 
1. The direct shear test is simple and fast to operate. Because thin specimens are used in the 

shear box, they facilitate drainage of pore water from a saturated sample in short time. 
2. In some cases of shear box test the specimen is not failing along its weakest plane but 

along a predetermined or induced failure plane that is the horizontal plane separating the 
two halves of the shear box. This is the main draw back of this test. Moreover during 
loading the state of stress cannot be evaluated. It can be evaluated only at failure 
condition,  Mohr’s circle can be drawn at the failure condition only. Failure usually starts 
at the edge and propagates towards the centre which means failure is  progressive with 
non uniform stress conditions in the specimen.  

3. The friction angle (φ ) of sand depends on the state of compaction, the coarseness of 
grains and the particle shape. It varies between 28 degrees (uniformly graded sands with 
round grains in very loose state) to 46 degrees (well graded sand with angular grains in 
dense state (Kezdi, 1980)). 

4. The friction between sand particles is due to sliding and rolling friction and interlocking 
action. 

5. The volume change in sandy soil is a complex phenomenon depending on particle size, 
particle shape, state and type of packing, etc. In general loose sands contract and dense 
sands expand in volume on shearing.     
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                     5      DISTINCT  ELEMENT  MODELLING (DEM) 
 
 
5.1   INTRODUCTION 
 
While soil is a multi-phase particulate medium it is generally modelled as a continuum. 
Problems occur with this assumption due to soil’s inherent granular nature and consequent 
deformation and failure modes. The problem is particularly acute when local yield occurs in 
narrow shear zones, resulting in bifurcation behaviour such as fracture, cutting and sliding or 
dividing as a result of soil – machine interaction or dynamic loading cases. 
 
In such cases it may be advantageous to treat soil as an assemblage of particles with the 
ability to break and reform contacts since each particle would have its own physical 
properties governed by physical laws. This method simulates the fracture process sequentially 
from the formation of small cracks to large slides.  In the DEM soil is represented by a system 
of numerous discrete particles, the dynamic behaviour of each being calculated individually. 
This method is based on the concept that each particle satisfies the equation of motion and 
that particle interaction is simple. The discrete particulate modelling was first developed by 
Cundall (1971 and 1974) for the analysis of rock mechanics problems by using it to analyse 
the stability of fractured rock slopes.  In his method the interaction of particles is viewed as a 
transient problem with the state of equilibrium developing whenever the internal forces 
balance. 
 
Even though Cundall pioneered DEM for particles of any shape, Wakabayashi (1957) 
proposed a testing technique for assemblies of discs that enables the direct determination of 
contact forces between particles. Analysis of the force distribution in their test technique was 
described by Josselin de Jong and Verruijt (1969).  
They have developed a method to determine the magnitude and the direction of the contact 
forces between particles, by measuring the rotation of polarised light through those particles 
made of photoelastic materials. 
Other researchers (Serrano and Rodriguez-Ortiz, 1973 ) developed a numerical model for 
assemblies of discs and spheres. 
In their model contact forces and displacements are calculated for equilibrium conditions 
assuming that the increments of contact forces are determined by incremental displacements 
of particle centres.  
 
After ten years of intensive research Cundall (1971) developed a computer model, named 
‘BALL’ to describe the behaviour of granular materials.  This model is based on the basic 
elements of those structures, which are the particles themselves and their interactions. It can 
be used for both non-coherent particles and coherent particles.  The model is validated by 
Cundall and Strack (1979) by comparing force vector plots obtained from the computer 
program ‘BALL’ with the corresponding plots obtained from the photoelastic analysis which 
was done by De Josselin de Jong and Verruijt (1969).      
Cundall and Strack (1979 a  and  1979 b) extended DEM to soil using two dimensional disc 
elements and three dimensional spheres.   
 
The DEM has been used primarily to study the fabric and structure of granular media during 
loading and to aid the development of constitutive relations for soils using discs and spheres 
(Bathurst and Rothenburg, 1988  and  Oner, 1984).  In addition it has been used to study the 
flow of granular media down inclined chutes (Campbell and Brennen, 1983);  slope stability 
(Uemura and Hakuno, 1987);  liquefaction process (Tarumi and Hakuno, 1988) and stress 
around  tunnel openings (Lorig and Brady, 1984). 
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Agricultural soils are structured and usually compacting. Thus structured soil plays a major 
role in plant growth.  DEM work from the past didn’t concentrate on this. In DEM simulation 
soil is represented by assemblies of discs or spheres with different particle size distribution 
which is analogous to the actual soil particle shape. 
 
Tanaka et al (2000) presented a simulation of the reaction of tool penetration by representing 
soil as discs with two kinds of diameters in two dimensional states.  In their simulation discs 
were randomly distributed and each disc was assumed rigid.  An overlap between discs was 
allowed; this overlap causes a contact force and forces acting on a disc appear only when the 
disc contacts other disc or tool. Furthermore the magnitudes of forces depend on the relative 
positions and velocities of the discs to the others.  In their work an elastic spring between 
discs is introduced in order to estimate the force produced by the contacts of mutual discs. 
 
Momozu et al (2000) presented a simulation of the cutting process of a soil block by a 
pendulum type tool by modifying the conventional DEM model to be applicable for cohesive 
soil. In conventional DEM the particles have complete discreteness and normally resemble  
non – cohesive soil. However in his modification adhesion effect between particles is 
included in the normal direction between particles, when particles are departing from each 
other after contact. This is because actual soil particles are not completely discrete, especially 
the cohesive ones. 
 
 
 5.2     GRANULAR MATERIALS AND THEIR STRUCTURE 
 
As the word “granular” in “granular material” implies, this material consists of discrete 
grains. Liquids and metals also consist of discrete molecules, but the discrete nature of 
granular materials is much more evident than that of metals and liquids. 
This is so because the ratio of a microscopic (particle) length scale over a macroscopic length 
scale is much larger for granular materials, Kruyt (1994).  
The concept of continuum mechanics is based on the assumption that this ratio is extremely 
small. This is the so-called continuum hypothesis (Batchelor, 1967). 
 
The behaviour of granular structures depends on the individual particles and their interaction. 
In order to be able to model this on a microscopic level three approximations have to be done 
(Baars, 1995). 
 
• Number of dimensions of particles 
• Shape and size of particles 
• Nature of contact between particles 

Two dimensional 
particles 

Disc 
shaped 
particles 

Contact 
between 
particles 

 
 A first approximation is made due to the number of dimensions. Three dimensional computer 
 modelling consumes a lot of time and memory whereas two dimensional modelling is simple 
 and consumes less time and memory. Therefore two dimensional modelling is selected for 
 the present case. 
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The second approximation is made with respect to the particle shape. Analysis of a medium 
which consists of irregularly shaped particles is a major problem in the DEM studies. In early 
versions of the DEM model polygonal particles were often used (Meguro et al, 1991). The 
forces acting between these particles being assumed to be transmitted through contact 
between corners or edges. Moreover using such particles required much more computation 
time because of the complexity in judging the contact between particles. The most common 
and simplified  shape is a disc or a sphere. For the present case a disc is selected as the best 
particle shape for two dimensional cases. 
 
The third approximation is the description of contact behaviour between particles which  
includes: normal deformation, shear deformation and  slip or crack. 
All differences between real measurements and model results have to be explained by those 
three approximations besides selecting the right input parameter values. 
 
 
5.2.1   DESCRIPTION OF CONTACT BETWEEN  DISCS (PARTICLES)  
            
In conventional DEM model the equilibrium contact forces and displacements of a stressed 
assembly of discs are found through a series of calculations tracing the movements of the 
individual particles. These movements are the result of the propagation through the medium 
of disturbance originating at the boundaries which is a dynamic process.  In describing this 
dynamic behaviour numerically, small time steps are taken over which velocities and 
accelerations are assumed to be constant.   
 
The deformations of the individual particles are small in comparison with the deformation of 
a granular assembly as a whole. The latter deformation is due primarily to the movements of 
the particles as rigid bodies.  In the ‘BALL’ program the particles are allowed to overlap one 
another at contact points.  This overlap causes a contact force.  Forces acting on a disc appear 
only when the disc contacts with other discs or wall/tool and the magnitude of forces depends 
on the relative positions and velocities of the disc to the others.   
 
The judgement of contact of discs is based on the geometrical relationship between the discs 
and the disc/wall. In other words if the distance between two centres of two discs is smaller 
than the sum of the radii (Eqn 5.1) of these two discs it follows that the discs are contacting 
each other (see Fig. 5.1).  Also in the case of the contact between the disc and the wall /tool, if 
the distance between the centre of the disc and the wall/tool is smaller than the radius of the 
disc it follows that the disc contacts the wall/tool (see Fig. 5.1, disc x  contacting the lower 
wall ( ))  . xRx <2

  
Figure 5.4  shows the mechanical relationship in normal and tangential directions between 
contacting discs. The reaction force by the spring and viscosity resistance by the dashpot are 
calculated for a disc which is overlapped by another disc in both normal and tangential 
directions. Each disc particle receives contact forces from contacting particles/walls. 
The magnitude of the contact force is determined by the relative displacement and relative 
velocity of the disc particle. See Eqns (5.9 and 5.10). 
 
The calculations performed in the distinct element method alternate between the application 
of  Newton’s second law to the discs and a force-displacement law at the contacts. 
Newton’s second law gives the motion of a particle resulting from the forces acting on it.   
The force – displacement law is used to find contact forces from displacements. 
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 5.2.1.1   The force – displacement law and equations of particle motion 
 
In the general case of an assembly of many discs, the force – displacement law is applied at 
each contact of any disc and the vectorial sum of these contact forces is determined to yield 
the resultant force acting on that disc. When this has been accomplished for every disc, new 
accelerations are calculated from Newton’s second law. 
The force-displacement law will be presented for the case of two discs in contact, disc x  and 
disc y  in Figure 5.1 
 

 
Figure 5.1  Contact between two discs ( Cundall & Strack, 1979 ) 
 
 
 
The co-ordinates of the disc centres are represented as ( )21 , xxxi =   and   where 
the indices 1 and 2 refer to the co-ordinates of a Cartesian co-ordinate system as indicated in 
the figure above. 

( 21 , yyyi = )

)The components of the velocity vectors of discs x  and  are   and   

respectively and the angular velocities are and ,  taken positive in counter clockwise 
direction. 

y ( 21, xxxi = ( )21, yyyi =

xθ yθ

Discs x  and have radii and  and masses and .  Points  and  are defined 
as the points of intersection of the line connecting the disc centres with the boundaries of 
discs 

y xR yR xm ym xp yp

x  and  respectively.  Two discs are taken to be in contact only if the distance  
between their centres is less than the sum of their radii, 

y D

 
yx RRD +<                                                                                                  (5.1) 

 
If the above condition is met, the relative displacement at contact C ( Fig. 5.1) is determined 
by integration of the relative velocity. The relative velocity at the contact is defined as the 
velocity of point  with respect to .  The unit vector  xp yp ( )αα sin,cos=ie  is introduced 
as pointing from the centre of disc x  to the centre of disc , y
  

( ) ( )αα sin,cos/ =−= Dxye iii                                                              (5.2) 
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and the unit vector   is obtained by a clockwise rotation of  e  through 90it i

0

)

)

) )

)

}

   i.e.  
 

( 12 eeti −=                                                                                                      (5.3) 
 
The relative velocity of point with respect to expressed as, xp yp

( ) ( iyyxxiii tRRyxX θθ +−−=                                                                        (5.4) 
 
The normal  and tangential (  components of the relative velocities are the projections 

of  on to and t respectively, 

( nu

ie

su

iX i

 

( ) ( ) ( iiiiiyyxxiiiiin eyxetRReyxeXu −=+−−== θθ                                 (5.5) 

( ) ( ) ( ) ( )yyxxiiiiiyyxxiiiiis RRtyxttRRtyxtXu θθθθ +−−=+−−==       (5.6) 
 
 
Integration of the relative velocity component with respect to time gives the components  

  and   of the relative displacement increment, nu∆ su∆
 

( ) ( ){ teyxtuu iiinn ∆−=∆=∆                                                                         (5.7) 

( ) ( ) ( ){ }tRRtyxtuu yyxxiiiss ∆+−−=∆=∆ θθ                                                (5.8) 
 
These relative displacement increments are used with the force – displacement law to 
calculate increments of the normal and shear forces, 
 

( ){ teyxkukF iiinnnn ∆−=∆=∆ }                                                                      (5.9) 

( ) ( ){ } tRRtyxkukF yyxxiiissss ∆+−−=∆=∆ θθ                                             (5.10) 
 
where  
           and represent the normal and shear stiffness, respectively. nk sk
 
 
Finally at each time step the force increments nF∆  and sF∆  are added to the sum of all force 
increments,  and  determined from previous time steps: nF sF
 
( ) ( ) nNnNn FFF ∆+= −1                                                                                    (5.11) 
( ) ( ) sNsNs FFF ∆+= −1                                                                                     (5.12) 
 
where the indices  and  refer to times    and   such that . N 1−N Nt 1−Nt ttt NN ∆=− −1

The sign convention for the normal and shear forces acting on disc x  is as shown  
on the Figure 5.2 
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Figure 5.2   Sign convention for  Fn  and  Fs  ( Cundall & Strack, 1979 ) 
 
 

nF   and are taken as positive in the directions opposite to e and  . sF i it
The magnitude of the shear force found from Equation (5.12)  is checked against the 
maximum possible value  defined as ( )maxsF
 
( ) cFF ns += φtanmax                                                                            (5.13) 
 
where 
              φ   is the interparticle friction angle of the two discs in contact and  c  is the smaller  
                  of  their cohesions. 
 
If the absolute value of   found from Equation (5.12)  is larger than ( )NsF ( )maxsF ,  then 

  is  equal to  ( )NsF ( )maxsF ,  preserving the sign obtained from Equation (5.12). 
 
Once the normal and the shear forces have been determined for each contact of a disc, for 
example disc x ,  they are resolved into components in the directions  1  and  2, see Fig. 5.1  
The sum of these contact force components gives the resultant forces ∑ 1xF  and . ∑ 2xF

The resultant moment acting on disc x , ∑ xM

xM

is taken positive if acting in the counter -

clockwise direction and is found from xx RF∑∑ = ,  where summation is taken over 
all contacts of disc x . The resultant moments and forces acting on disc x  are used with 

Newton’s second law to determine the new accelerations  and . ix xθ

The velocities  and  used in the force – displacement law in Equations (5.9)  and (5.10)  
are obtained as follows. The current resultant force and the moment at time t are assumed to 
act on disc

ix xθ

N

x  during the time interval t∆  from   to  . 2/1−Nt 2/1+Nt
 
Newton’s second law applied to disc  x  is, 
 

∑=
ixix Fxm                                                                                          (5.14) 

∑= xxx MI θ                                                                                          (5.15) 
 
where,    and  represent  the mass and moment of inertia of discxm xI x  respectively.   
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Taking  and  constant over the time step ix xθ t∆  the expressions for the velocities are, 
 
( ) ( ) [ ] tmFxx

NxxNiNi i
∆+= ∑−+ /2/12/1                                                   (5.16) 

( ) ( ) [ ] tIM
NxxNxNx ∆+= ∑−+ /2/12/1 θθ                                                  (5.17) 

 
These new values for the velocities are used in the force – displacement law and the cycle is 
repeated for a new time increment. 
The new values for velocities are used also to update the positions and rotations of the discs 
by a further numerical integration, 
 
( ) ( ) ( ) txxx NiNiNi ∆+= ++ 2/11                                                                  (5.18) 

( ) ( ) ( ) tNxNxNx ∆+= ++ 2/11 θθθ                                                                 (5.19) 
 
Body forces, such as gravitational forces may be included if so desired. In that case a term 

is added to the force sum  in Equation (5.16),  where   ix gm ∑ ixF ( )21 , gggi =  represents 
the two components of the acceleration vector due to the body force. 
 
Friction damping occurs during sliding when the absolute value of the shear force at any 
contact is  ( ) .  Contact damping operates on the relative velocities at the contacts and 
may be envisioned as resulting from dashpots acting in the normal and shear directions at 
contacts. The viscous damping in the shear direction is not applied when sliding occurs.  In 
this case friction damping alone operates. 

maxsF

 
The coefficients of viscous contact damping in the normal and shear directions are 
represented by nη  and sη .  If contact damping is taken into account the damping forces must 
be included in the force  sums in Equations (5.16) and (5.17)  which become, 
 
( ) ( ) [ ]{ } tmDFxx

NxxxNiNi ii
∆++= ∑−+ /2/12/1                                     (5.20) 

 ( ) ( ) { } tIM
NxxNiNx ∆+= ∑−+ /2/12/1 θθ                                                (5.21) 

 
where   represents the sum of the components of the contact damping forces and  

includes the contribution of the contact damping forces to the moment sum. 
∑ ixD

x∑ M
The global components  are found from the normal and the shear  components of 
the damping force at the contacts. 

ixD nD sD

 

( ) ( ) iNiinnnNn eyxuD 2/1−−== ηη                                                       (5.22) 

( ) ( ) ( ){ }
2/12/1 −− +−−==

NyyxxiNiisssNs RRtyxuD θθηη                   (5.23) 

 
In the original version of  ‘BALL’ or the current version of  DEM  the contact damping 
coefficients  nη  and  sη  are taken to be proportional to the stiffness  and  with 
proportionality constant  

nk sk
γ  
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nn kγη =                                                                                                   (5.24) 

ss kγη =                                                                                                    (5.25) 
 
 
5.2.1.2   Numerical stability 
 
As a consequence of the explicit nature of the numerical scheme employed in the DEM 
programme, a time step must be selected small enough to make the numerical simulation 
stable. Its stability properties are analysed in Corkum & Ting (1986) for the constitutive 
relation at the contact as discussed here, that is less than the maximum critical value 
calculated from the following relations 
 

n
crit k

matt =∆≤∆                                                                                  (5.26) 

where  
           is  the input time step;  ∆  is the critical time step calculated from the  t∆ critt
            simulation;  a  is a proportionality constant;   and  are the mass and the  m nk
            stiffness of the particles, respectively. 
 
 
5.3    PRINCIPLES OF DEM CALCULATION 
 
The calculations performed in the distinct element method alternate between the application 
of  Newton’s second law to the discs and a force-displacement law at the contacts. 
Newton’s second law gives the motion of a particle resulting from the forces acting on it.   
The force – displacement law is used to find contact forces from displacements. 
 
This calculation is based on the idea that the chosen input time step (Eqn 5.26)  may be so 
small that during a single time step disturbances can not propagate from any disc further than 
its immediate neighbours. The positions of each particle are determined step – by – step at 
intervals of this time step ( ). The position and contact force on each particle determine the 
motion of the particle. Simulation is conducted by repeating the calculations of these two 
values. The concept of this algorithm is shown in Fig. 5.3  

t∆

 

 
Figure 5.3   The calculation cycle of the DEM simulation algorithm (Adapted from: Tanaka et  
                    al, 2000) 
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 5.4    REVIEW OF THE  DEM  MODELS 
 
Although the distinct element modelling was first developed by Cundall (1971 and 1974) for 
the analysis of rock mechanics problems and later extended to soil using  
two – dimensional disc particles (Cundall and Strack, 1979 a) and three – dimensional spheres  
(Cundall and Strack, 1979 b), numerous other researchers have modified the conventional 
DEM model (Fig. 5.4) to improve its potentiality on different areas of expertise.  
 
The DEM has been used primarily to study the fabric and structure of granular media during 
loading and to aid in the development of constitutive relations for soil using disc and sphere 
(Bathurst et al, 1988  and  Oner, 1984).  
 
In addition it has been used to study the flow of granular media down inclined chutes 
(Campbell and Brennen, 1983;  Hawkins, 1983), stress around tunnel openings (Lorig and 
Brady, 1984), analysis of soil cutting (Momozu et al, 2000), blockage of cohesive particles in 
a hopper (Umekage et al, 1998), shear zone kinematics (Morgan et al, 1999), dynamic 
fracture analysis of ground and resistance against rolling at contacts (Iwashita and Oda, 
1998), fracture analysis of media composed of irregularly shaped regions (Meguro et al, 
1991), modelling in geomechanics (Sharma et al, 1999) and constitutive relations for 
cohesionless granular material (Kruyt, 1994). 
 
Now we focus our attention on the review of some of the models which are in our areas of 
interest. Among them the models of  Momozu (2000),  Umekage and Shinkia (1998),   
Morgan (1999),  Iwashita and Oda (1998) and  Meguro and Hakuno (1991). Their models are 
very relevant for our areas of research but the optimal model is still under investigation. We 
here focus on areas of soil dynamics. For clear understanding, this review is classified into 
two parts: one is referring to the contact model of particles and the second is referring to the 
initial structure of those particles. 
 
 

 
Figure  5.4   Mechanical contact model of  Conventional DEM     
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5.4.1    REVIEW CONTACT  MODEL OF PARTICLES IN DEM 
 
The nature of contact between particles is one of the approximations used to explain the DEM 
model properties. In some cases the advantages and disadvantages of the model were 
analysed based on this contact properties. The two familiar drawbacks of the conventional 
DEM model are:  it is used only for  non – cohesive particles (Umekage and Shinkia, 1998;  
Momozu, 2000) and its high degree of particle rotation due to the circular shape of particles 
(Iwashita and Oda, 1998;  Morgan, 1999) 
 
In the conventional DEM model the particles are in a complete discreteness in which the 
effect of cohesion force between particles was ignored.  However real soil particles have 
cohesive properties due to clay properties or pore water suction. Conventional DEM has a 
problem to determine the behaviour of cohesive soil.  In order to be able to determine the 
behaviour of cohesive soil the DEM model has to be modified. 
 
 
1.  Momozu (2000) has modified the conventional DEM model by assuming the adhesion 
effects between particles. In his hypothesis such an adhesion force restricts the movements of 
soil particles in actual soil. In order to assume such adhesion effects he introduced ‘adhesion 
spring’ in the normal directions of particle contact and its effect was considered when the 
particles are departed from each other. See the mechanical contact model in Fig. 5.5. 
 
 

i 

j 

kn  
ηn  

kad 

 
Figure 5.5    Contact model between two particles with adhesion spring in  
                      the normal direction,  Momozu (2000) 
 
 
 
If the co-ordinates ( )ii yx ,  and ( )jj yx ,  in Figure 5.6 are the centres of the contacting 
particles and j respectively and overlap between particles is allowed, then the distance D 
between centres of the two particles where the adhesion acts can be calculated as: 

i

 

( ) ( )22
jiji yyxxD −+−=                                                                                       (5.27) 
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Figure 5.6   Particle – particle contact displacement components  
                                                                                   
                                                                                                                                                                         
 
The adhesion force will act between two particles which distance satisfies the following 
equation (with  ‘C ’ is adhesion coefficient): ad

 
( )( )jiadji rrCDrr ++≤<+ 1                                                                         (5.28) 

 
According to Kyoto DEM  ( Momozu, 2000) the conventional DEM model is applied when 
compression occurs between particles (Fig. 5.4), whereas a modified model (Fig. 5.5) is 
utilised when the particles start departing each other. Then the adhesion force  is  adF
 

( )DrrCF jiadad −+=                                                                                     (5.29) 
 
where                   
             =  adhesion force ;  =  adhesion spring ;   D  = distance between centers of  adF adk
              particle i and particle j ;     =  radii of particle  and particle ji rr , i j  respectively. 
 
2.  Umekage et al (1998) also modified the conventional DEM in order to account for the 
effect of cohesion forces between particles. They introduced normal and shear cohesion 
forces between particles.  In this case the cohesion force is defined as the attractive force 
which acts at the contact point in the opposite direction of separation only when the contacted 
particles move away from each other. Both the normal and the shear cohesion force have the 
same value.  
 
When particles do not contact each other the cohesion force becomes zero. 
The equations of the contact force of the particles in the normal and tangential directions are 
as follows. Fig. 5.7 shows the mechanical contact model with cohesion force.   
 
[ ] [ ] [ ] ( )[ ]tFnnntntntn CxxxdfF ∆∆−∆−+= 2/                                         (5.30) 

[ ] [ ] [ ] [ ]( )[ ]tFtstststs CfsigndfF −+=                                                          (5.31) 
 
where 

          ;    [ ]  ;   [ ] [ ] nnttntn xkff ∆+= ∆− [ ] xdd nttntn ∆−= ∆− η [ ] [ ] ssttsts xkff ∆+= ∆−  ;    

          [ ] [ ] ssttsts xdd ∆−= ∆− η
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 In which   and   are the normal and tangential contact forces respectively;  and  
are the normal and tangential dispersion forces;   and  are the normal and tangential 
damping forces;   and k  are elastic spring constants in normal and tangential directions; 

nF sF

n

nf sf

nd sd
k s

nη  and sη  are viscous dashpots in normal and tangential directions;  nx∆  and  are the 
increments of the relative particle displacement in normal and tangential directions;   

sx∆

nx∆  and  are the increments of the relative particle velocity in normal and tangential 
direction;  is the cohesion force that acts as the resistance force against the dispersion 
force.  They assumed that the cohesion force is the resistance against particle dispersion so 
that  the following conditions are required, 

sx∆

FC

 
If   Fnn Cdf <+  ,  ;   If   0=nF Fss Cdf <+ ,   0=sF  ; 

If   [ ]Fns Cff +≥ µ  ,   [ ][ ]Fnss Cffsignf += µ   and  0=sd  (for sign rule see what is 
explained for  Eqns 5.12  and 5.13). The summation of contact force components in each 
direction gives the resultant force, [ ] [ ]( )∑ + tstn FF

[ ]( )∑ tsFr

 .  The resultant moment acting on the 

particles is found from . These summations are taken over all contact points of 
the particle. 

i 

j 

i 

j 

Normal direction 

Tangential direction 

kn  ηn  

 ηs 

ks 

No tension 
Friction slider 

CF CF 

 
  Figure 5.7   Contact model between two particles with cohesion effect, Umekage et al (1998)  
 
 
3.  Meguro et al (1991) improved the DEM model by introducing a new pore-spring model 
(Meguro’s model) in which both transmission of the moment and rotation of the particles are 
considered. In their model an aggregate of particles connected by pore springs rotates as one 
body. Combining the DEM with this new pore-spring, they developed a new simulation 
program that uses arrays of different material parameters and called it “Extended Distinct 
Element Method (EDEM) or Modified Distinct Element Method (MDEM). 
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Figure 5.8    Contact model between two particles with pore – spring,  Meguro et al (1991)   
 
 
 
This Extended Distinct Element method (EDEM) is a numerical method applicable both to 
homogeneous and perfect discrete media and to complex, heterogeneous and continuous 
media (Meguro et al, 1991).  Figure 5.8 shows the mechanical modelling of a medium for the 
EDEM model. The EDEM was developed by the introduction of modified pore-springs (  

and )  and arrays of different material parameters to extend the application of the DEM.  
pnk

psk
 
The pore-spring used was established by Meguro based on Iwashita’s model. With this  
pore-spring, rotation of particles and the transmission of moment can be taken into account. 
Moreover an aggregate of particles connected by pore-springs rotates as one body. 
For  EDEM  the equations of particle motion having the mass and the moment of inertia m
I are as follows 

0=++ FuCum                                                                                      (5.32) 

0=++ MDI φφ                                                                                      (5.33) 
 
In which is the sum of all the forces acting on the particle;  F M is the sum of all the 
moments acting on it; C and  are the damping coefficients; is the displacement vector;  D u
φ  is the rotational displacement. Because two kinds of forces act on it (the force received 
from all the particles in contact and the force of all the pore material surrounding it), and F
M are expressed as Equations (5.34)  and  (5.35): 
 

[ ]agmFFF porep +++=                                                                         (5.34) 

porep MMM +=                                                                                       (5.35) 
 
 In which  is the sum of all the force vectors from all the particles in contact,  is the 
force from all the pore material surrounding the particle. 

pF poreF

pM and  are the respective sums of all the moments of all the particles in contact and 
of all the pore material surrounding the particle. 

poreM

g  is the acceleration due to gravity and  is the external acceleration acting on it. a
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4.  Iwashita and Oda (1998)  further  modified the conventional DEM in which resistance 
against rolling at contacts is taken into account.  He added an additional set of an elastic 
spring ( ), a dashpot (C ), a no tension joint and a slider (rk r rµ ) at each contact, which 
respond to the moment M of the couple force.   
 
Resistance against rolling is supplied by the elastic spring and the dashpot (Fig. 5.9).  
The elastic spring yields rotational resistance equal to rrk θ , 
where  is the rotational stiffness and rk rθ is the relative rotation by rolling. 
These relative movements taking place at a contact during incremental deformation can in 
general be decomposed into two components: sliding and rolling.  
 
The rolling component leads to the relative rotation between two particles with a common 
contact. The dashpot supplies rotational resistance equal to dtdC rr /θ . 
Where d dtr /θ   is the speed of relative particle rotation  and C  is the viscosity.  r

The sum of these resistances must be in equilibrium. The moment M satisfies an inequality of  

naFM ∆≥ ξ . Where   is a length scale typical for a related contact surface and a∆ ξ  is a 
non-dimensional coefficient (Sakaguchi et al, 1993). The contact model of the MDEM is 
shown in the Figure 5.9 below. 
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Normal direction 
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Rolling direction 

kr  Cr  
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Figure 5.9  Contact model between two particles with rolling effect, Iwashita and Oda (1998) 
 
 
 
5.4.2    REVIEW INITIAL STRUCTURE OF PARTICLES IN DEM 
 
In the conventional DEM model the initial structure (arrangement) of particles is determined 
from randomly generated particles within specified boundaries (walls) in a manner at which 
positions and radii of such particles are given with respect to the x, y co – ordinate system 
(Cundall and Strack 1979). The particles are allowed to overlap one another at contact points. 
This overlapping behaviour takes the place of the deformation of individual particles. The 
magnitude of the overlap is related directly to the contact force in the way explained in 
section 5.2.1.1 and  5.5.1).  It should be noted however that these overlaps are small in 
relation to the particle sizes.  
 
 
 
 
 

 126



 
 
1.  Momozu et al (2001) used the conventional DEM model to develop a randomised initial 
arrangement of particles for the shearing simulation. At first the particle centres were 
regularly arranged in the calculation area.  In this case the calculation area is defined as the 
area of the box which is larger in size than the shear box:  2.5 times the height of the shear 
box, with the same width as the shear box. In the calculation area particles were assumed to 
have the same radius ( ) and being packed densely. After this step the radius of each particle 
was determined by 

cr

 
Rrrr cci 5.05.0 +=                                                                                                  (5.36) 

 
where 
          = radius of each particle;  = constant radius; ir cr R = random number between 0 and 1 
 
He finally reached to the conclusion that the results obtained from the simulation were similar 
to the case of sand soil. The internal friction coefficient of the particle assembly which was 
obtained from the simulation was significantly different from the corresponding input value 
and the initial arrangement of particles was affecting the internal friction of elements.    
 
2.  Kruyt (1994) investigated the behaviour of granular assemblies by simulation of biaxial 
tests. The initial arrangement of particles is developed in such a manner that the particles 
were positioned inside a rectangular container without contacting each other. After that all 
walls (boundaries) were moved inwards at the same speed until the sample is compacted to a 
certain degree. The deformation of the particles is small, the overlap is specified to be smaller 
than a fraction of the particle radius. A typical assembly of discs after deformation is shown 
in Figure 5.10. 
 
 

 
Figure 5.10   Assemblies of discs  (Kruyt, 1994 ) 
 
 
 
The disc radii were chosen according to a log-normal distribution (Prasher, 1987): 
 

( ) ( ) ( )(
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 127



 
where    
              parameters  α  and β  are related to the mean radius R  and standard deviation  

              Rs.  of the probability distribution by 
21 s

R
+

=α    and ( )22 1ln s+=β  

              The average radius R is 1mm,  and two cases were considered for the standard  
              deviation of the disc radii ( 125.0=s  and 25.0=s ) 
 
 
3.  Morgan and Boettcher (1999)  also investigated  the character of deformation in the 
simulated assemblages, especially in relation to interparticle deformation mechanisms, 
localisation tendencies and geometries of micro-structures.  The study mainly focused on  the 
numerical simulation of the granular shear zone .  
 
The initial particle assemblage was created by randomly generating a specified number of 
spheres of four different sizes: 500,  250,  125, and  62.5µm  within the 2D domain. 
Relative particle abundance was determined according to the following power law 
relationship, Sammis et al (1986 ) and Sammis and Biegel (1987) 
 

D

i
i R

RNN 







= max

max                                                                               (5.38) 

where 
               ,  = maximum and incremental particle sizes;   ,  = maximum and  maxR iR maxN iN
               incremental abundances;   D = power law exponent. 
 
The largest particles were generated first and the smaller ones squeezed into the remaining 
space with no overlap (Fig. 5.11) 
Spherical particles centred on the  x,  y  plane were used in these 2D simulations. The volume 
was then consolidated by moving the x and y  boundaries of the domain inward until the 
desired isotropic mean stress ( mσ ) was attained. 
Deformation in this numerical assemblage is accommodated in large part by interparticle 
rolling. The distribution of rolling particles is strongly influenced by the particle size 
distribution and the geometry of particle packing. 
 
                                                                                                            

 
Figure 5.11   Initial structure of generated particles within the medium, Morgan and  
                       Boettcher (1999) 
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4.  Sharma et al (1999) also studied the biaxial test simulation. The primary objective of his 
study was to investigate the microstructure and contact force distribution of soil particles 
during compaction. The generation of the initial structure of particles is described below. 
The program reads the particle information and its distribution data and generates an 
assembly of discs.  Further the program locates these discs with respect to a fixed rectangular 
co-ordinate system.   
 
Disc generation is accomplished using a random number generator that places  
non-overlapping discs of desired sizes corresponding to desired distribution at random  
x – y  locations within a specified size of circular regions within a box of specified size. 
He showed that if this assembly is hydrostatically compacted using strain controlled boundary 
conditions, a denser state of an assembly is obtained (Fig. 5.12 b). 
 
The initially generated discs are an assembly of 1000 frictional discs of 20 different types in 
contact with a gradation of uniformly graded granular soils. The chosen normal and shear 
stiffness values ranged from 1.5 MN/mm for the largest size discs to 2.5 MN/mm for the 
smallest size discs, which are in conformity with real granular materials, Hakuno and Tarumi 
(1988).  
 
 

 
Figure 5.12  Discs and contact force distribution in the assembly at different stages of loading  
                       from initially generated non-overlapping discs (Sharma et al, 1999). 
 
 
 
5.5    SELECTION OF APPROPRIATE  DEM  MODELS                           
 
For the present simulations two appropriate DEM models are selected based on the contact 
properties and initial arrangement of particles. The conventional DEM model (Fig. 5.4) is 
selected for the contact properties of completely discrete (non – cohesive) particles  and their 
initial structure is very similar to the structure of non – cohesive natural soil.  
 
For contact properties of adhesive particles which form soil clods during cutting, the modified 
DEM model (Fig. 5.5) of  Momozu (Momozu et al, 2000) is selected. The two models (the 
conventional DEM model for non – cohesive particles property and the modified DEM model 
for cohesive particles property) are jointly said to be the ‘Kyoto DEM’.  
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The Kyoto DEM is the DEM software of the shear box test and the soil cutting test by a 
pendulum type machine that was originally composed by Dr. Momozu of the Kyoto 
University of Japan. For further understanding of Kyoto DEM,  see the user related 
characteristics of Kyoto DEM in the next section (section 5.6.1.2).   
The force – displacement equations of the conventional DEM model used in the Kyoto DEM 
are explained below. For the modified part see the DEM review of Momozu (2000).  
 
 

5.5.1    THE FORCE – DISPLACEMENT EQUATIONS IMPLEMENTED IN THE 
             SELECTED DEM MODEL 

 
The force – displacement equations explained for the Kyoto DEM program in the following 
section are in different capacity compared to the force – displacement equations explained in 
the original DEM program of ‘BALL’ ( section 5.2.1 1). However some of the Kyoto DEM 
equations, for example, Eqns. 5.39 and 5.41 are in the same capacity as Equations 5.7 to 5.12. 
The only difference is that the damping forces (normal and tangential damping forces), are 
included  in the Kyoto DEM program.  
 
 

 
Figure 5.13   Particle – particle contact and direction of contact force and particles  
                     displacement (Tanaka et al, 2000) 
 
 
The normal contact force    between two particles is expressed as, nF
                  
[ ] [ ] [ ] [ ] [ ]tuukedeF nnnnttntntntn ∆∆+∆+=+= ∆− /η                                     (5.39)          

( ) ( ) ijvvuuu jiijjin αα sincos ∆−∆+∆−∆=∆                                                     (5.40) 
 
where, [ ]  is analogous to Eqn. 5.11 which is further related with Eqns. 
5.9 and 5.7.  In other words Eqn. 5.39 is the scalar sum of Eqn. 5.11 and the normal damping 
force ( ). In the normal direction the tension force is assumed to be zero as shown in the 
contact model ( Fig. 5.4 )   

[ ] nnttntn ukee ∆+= ∆−

[ ]tnd

 
 If    [ ]  ,      0<tne [ ] [ ] 0== tntn de       implies no tension force          
 
where        
           is normal contact force ;  is time point; is elastic force in the normal   nF t ne
           direction ;  is damping force in the normal direction; is normal spring  nd nk
           constant; nη is normal damping coefficient; t∆  is time step ;  
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  is normal relative displacement of particle  to particlenu∆ i j during t∆ ;  
  , ∆ are horizontal displacements of particle i  and iu∆ ju j during t∆ ; 

   ,  are vertical displacements of particles i  and iv∆ jv∆ j during  t∆ ;  

  ijα is the angle between the line connecting the centres of the particles and the X – axis  
 
    
The tangential contact force    between two particles, sF
 
[ ] [ ] [ ] [ ] [ ]tuukedeF ssssttstststs ∆∆+∆+=+= ∆− /η                                       (5.41) 

( ) ( ) jjiiijjiijjis rrvvuuu ϕϕαα ∆+∆+∆−∆+∆−∆−=∆ cossin                         (5.42) 
  
where, [ ] is analogous to Eqn. 5.12 which is further related with Eqns. 
5.10 and 5.8.  In other words Eqn. 5.41 is the scalar sum of Eqn. 5.12 and the tangential 
damping force ( [ ).  In the tangential direction the particles slip against each other when 
the tangential force reaches the maximum friction force. 

[ ] ssttsts ukee ∆+= ∆−

]tsd

     
If   [ ]  ,    [ ]  , 0<ne [ ] 0== tsts de
If   [ ] [ ]tnts ee µ>  ,   [ ] [ ] [ ]tntsts eeF µ==      also preserve  sign of [ ]tse   as it was 
explained in Equation (5.13),  then  slip or plastic deformation occurs 
                             
where      
               is tangential contact force ;  is tangential elastic force ;  is tangential sF se sd
               inelastic force ;  is tangential spring constant ;  sk sη is tangential damping  
               coefficient ;  is time point ;  t t∆  is time step ;  su∆ is tangential relative  
               displacement of the particle  to the particlei j during t∆  ;  µ  is coefficient of  
                sliding between two particles ;  r  ,  r  are radii of particles and i j i j  ; 

               iϕ∆  , jϕ∆  are rotational displacements of the particles i and j during  t∆
                  
   
The sign rule for relative displacement of the element  to the particlei j is shown in Figure 
5.13. In the normal direction,  is taken as positive for compression. In the tangential 
direction, is taken as positive in the clockwise direction around the particle 

nu∆

su∆ j . 
[ ]tnF  and [  are taken as positive in the direction opposite to ]tsF nu∆  and su∆ (Fig. 5.13).  
As for the rotational displacement iϕ∆  and the moment [ ]tiM , each value is taken as positive 
in the counterclockwise direction as shown in the Figure 5.13. 
           
The contact forces in the normal and tangential direction are transformed into the forces in the 
horizontal, vertical and rotational directions. And next the contact forces caused by all of the 
particles which contact the particle i are summed up. Resultant forces which act on the 
particle  in the horizontal, vertical and rotational directions are obtained as   i
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[ ]tiX    =                                                     (5.43) ( ){ ( ) ijtsij

j
tn FF αα sincos +−∑ }

[ ]tiY     =                                          (5.44) ( ){ ( ) } gmFF iijtsij
j

tn −−−∑ αα cossin

[ ]tiM   =                                                                                          (5.45) ( ){ }∑−
j

tsi Fr

   where                        
                [  =  horizontal resultant force on particle i  at time t ; ]tiX [ ]tiY =  vertical  

                resultant force on particle i  at time t ;  ijα  =  angle between the X -axis and  

                the common normal of two contacted particles  i  and j ;   =  mass of single  im
                particle ;   =  radius of particle ;  i ir i g =  gravitational acceleration   
                [  = resultant moment on particle i at time t  ]tiM
 
 
The same procedure is operated in the calculation between the particle and the wall/tool. 
 
 
Using the axial summation of contact forces from Equation 5.43 to 5.45 , we calculated  the 
accelerations of particle  in the horizontal, vertical and rotational directions as,  i
         

( ) [ ]
i

ti
ti m

x
u =    ;   ( ) [ ]

i

ti
ti m

Y
v =   ;     ( ) [ ]

i

ti
ti I

M
=ϕ                                            (5.46) 

  
where  

                u  =  acceleration of particle    in i

..
i X - direction ;  v  =  acceleration of particle   i

..

                i   in Y - direction ;  =  angular acceleration of rotation of particle  i  
..

iϕ
 
Integrating the accelerations over the time interval t∆ and adding the values to the previous 
velocities, the velocities of particle i in each direction at time t are obtained as, 
 
 
[ ] [ ] [ ] tuuu tittiti ∆+= ∆−  ;  [ ] [ ] [ ]( ) tgvvv tittiti ∆−+= ∆−  ;                                    (5.47) 
[ ] [ ] [ ] ttittiti ∆+= ∆− ϕϕϕ          
 
where 
              ,   are horizontal velocities of the particle at t and [ ]tiu [ ] ttiu ∆− i tt ∆−  ;   
              is the horizontal acceleration of particle at time t ;   [ ]tiu i
              ,   are vertical velocities of particle at time t  and t[ ]tiv [ ] ttiv ∆− i t∆−  ;    
              is the vertical acceleration of particle i at time t ;  [ ]tiv
              g  is acceleration due to  gravity ;    [ ]tiϕ  ,  [ ] tti ∆−ϕ  are rotational velocities of  
              particle i at time t and  ;   tt ∆− [ ]tiϕ  is rotational acceleration of particle at  i
              time t  
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The displacements of particle i  in each direction at time t are given by integrating the 
velocities over the time interval ∆ .  t
 

[ ] [ ] [ ]( )tuuu tittiti ∆+∆=∆ ∆−2
1

 ;    [ ] [ ] [ ]( )tvvv tittiti ∆+∆=∆ ∆−2
1

  ;  

[ ] [ ] [ ]( ttititi ∆+∆=∆ ϕϕϕ
2
1 )                                                                                (5.48) 

where 
              [ ] ,   are horizontal displacements of particle at time t and t  ;     tiu∆ [ ] ttiu ∆−∆ i t∆−
              [ ] ,   are vertical displacements of the particle at time t and  ;    tiv∆ [ ] ttiv ∆−∆ tt ∆−
              [ ]tiϕ∆ , [ ] tti ∆−∆ϕ  are rotational positions of the particle at time t and  tt ∆−
 
Conducting these calculations for all particles new co-ordinates (positions) of the particles are 
determined after ∆  from the previous time. For the new positions the contact conditions of 
each particle are investigated and new contact forces are found for contacting particles. 

t

Then the new displacement increments are obtained again during the next time interval.  
By repeating these calculations (Fig. 5.3) for a certain period of time the behaviour of 
particles is determined through simulation. 
 
                                                         
5.6    THE  KYOTO DEM  PROGRAM 
 
Computer simulations of real problems have always been attractive because they provide a 
means of investigating model systems in order to gain understanding and to conduct 
“computer” experiments in cases where experimental systems are hard to probe. 
This is especially the case for granular systems where experiments with non – ideal materials 
are extremely hard to probe and a general theory is not available (Tijskens et al, 2003). 
 
The Kyoto DEM  is the DEM software of the shear box test and the soil cutting by a 
pendulum type machine that was originally written in ‘C ’ language by Dr. Momozu of the 
Kyoto University of Japan. The software is composed for the purpose of studying the 
dynamic interaction between soil and agricultural machinery, soil deformation behaviour, soil 
strength, and soil material properties by considering soil as a discrete medium. The software 
is written in ‘C’ language which is a high level general purpose programming language 
developed in 1972 at AT&T Bell laboratories (Ritchie and Kernighan, 1978).  
 
5.6.1  THE  C  PROGRAMMING  LANGUAGE 
 
C is a general purpose programming language (Ritchie and Kernighan, 1978). It has been 
closely associated with the Unix system, because ‘C ’ was designed by Dennis Ritchie as a 
language in which to write the Unix operating system (Hanly et al, 1995). It was originally 
used primarily for systems programming. Besides it has been used equally well to write major 
numerical, text processing and data-base programs (Ritchie and Kernighan, 1978).   
In ‘C ’ the fundamental data objects are characters, integers of several sizes and floating point 
numbers. In addition, there is a hierarchy of derived data types created with pointers, arrays, 
structures, unions and functions.  C  provides the fundamental flow-control constructions 
required for well-structured program statement grouping; decision making (if); looping with 
the termination test at the top (while, for), or at the bottom (do); and selecting one of a set of 
possible cases (switch).      
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5.6.1.1   Main steps in creating the Kyoto DEM  program 
 
There are four fundamental steps in the creation of any C  program, these are:  Editing, 
Compiling, Linking, and Executing the program.    
 
Editing:  editing is the process of creating and editing C  source codes - the name given to the 
program instructions we write.   
 
Compiling:  the compiler converts all source codes into languages that the computer can 
understand and detects and report errors in the conversion process. The input to this stage 
includes the files we produced during editing, which are usually referred to as source files. 
The compiler can detect a wide range of errors that are due to invalid or unrecognised 
program codes, as well as structural errors where for example, part of a program can never be 
executed. The output from the compiler is known as object code and is stored in files called 
object files which usually have names with the extension ‘.obj’. In Unix, object files have the 
extension ‘.o’  
 
Linking:  the linker combines the various files generated by the compiler, adds required code 
modules from program libraries supplied as part of  C and welds everything into an 
executable whole. The linker can also detect and report errors, for example if part of the 
program is missing or a non-existent library component is referenced. 
In practice if the program is of any significant size, it will consist of several separate source 
code files, which can be linked together. The source files can be compiled separately, which 
makes eliminating the simple typographical errors a bit easier.  
 
Furthermore, the whole program can usually be developed incrementally, this is how the 
Kyoto DEM software was developed. Each source file will have its own file name, and the set 
of source files that make up the program will usually be integrated under a project name, 
which is used to refer to the whole program.  
A successful linking step will produce an executable file. In a Microsoft Windows 
environment, this executable file has ‘.exe’ extension ;  in Unix there will be no  
such extension, but the file will be an executable type.    
 
Execution:  the execution step is where we run our program, having completed all the 
previous processes successfully. Unfortunately this stage can also generate a wide variety of 
error conditions, ranging from producing the wrong output, through to sitting there and doing 
nothing. In all cases it’s back to the editing process to check the source codes. The following 
diagram (Fig. 5.14)  summarises all the above steps. 
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               Editing 
          create/modify 
          program source code 
                                                      source file 
                                                         (*.c) 
              Compiling 
         generate machine  
           instructions 
 
                                                     object file 
        yes   Errors ?                           (*.obj) 
                     no  
     
         Linking 
         link in libraries 
 
 
        yes   Errors ?                        executable file 
                     no                                 (*.exe) 
                       
             Executing 
             run program 
                   
          
        yes    Errors ? 
 
                     no    
         
              Success!                       

 
Figure 5.14  Main procedure of  the Kyoto DEM  program  (Adapted from:  Horton, 1997)       
 
                                                                                                           
 
5.6.1.2    User related characteristics of the Kyoto DEM program 
  
The Kyoto DEM  program has two parts as explained above;  these are the shear box test and 
the soil cutting by a pendulum type machines.    
 
I    Shear box test 
  
The shear box test has three source code files. These are:  Input_Shear.c,  Shear.c  and 
Shear_Plot.c. All these files are written in ‘C’ language. 
 
Compiling the shear box test  program 
Compiler:   gcc… with Visual Studio (C++ ) 
CPU:    Pentium III  266MHZ, Debian linux, with kernel version 
RAM:   256MB 
 
Input_shear.c  
 
This program code prepares an executable ‘Input’ file  by displaying input parameter lists 
that help us to enter values of each parameter [ normal spring constant between particles ( ), 
tangential spring constant between particles ( ), normal spring constant between particle 
and wall ( k ),  friction coefficient between particles (

nk

sk

nw ppµ ), friction coefficient between 

particle and wall ( pwµ ),  shear velocity (V ), time step (sh t∆ ), precalculation time ( t ),  pre

shearing time ( t ),  step output ( ), particles mass ( ), height of the shear box ( ) 

and width of the shear box ( ) ].   
sh outputs pm bh

bw
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% Input ‘filename’ 
( % = command prompt) 
 
‘Input’ generates the following five files.  All these files are generated automatically when 
the program operates ‘Input’. 
 
filename.are,  filename.cal,  filename.chr,  filename.exp,  filename.con  
 
These files contain the total information of all the particles. Let us see the contents of these 
files one by one. 
 
‘filename.are’ contains the total number of particles generated at the first stages of 
consolidation, width and height of the shear box , maximum value of the co-ordinates in the x 
and y – direction (that helps to set the calculated area, particles that going out of the 
calculated area are ignored ), height of the shear surface from the bottom of the shear box . 
‘filename.cal’ contains the time step , shearing time , loading time and step output. 
‘filename.chr’ contains normal and tangential spring constants of particle – particle 
 and particle – wall contacts, normal and tangential damping coefficients of  
 particle – particle and particle – wall contacts, friction angle of particle – particle and  
 particle – wall contacts and particles mass. 
 
‘filename.exp’ contains shear velocity and vertical load of the plate. 
‘filename.con’ contains data before the first stages of consolidation. The particles are here 
consolidated due to their gravity weight;  the contents are: total number of particles generated 
before consolidation, x and y – co-ordinates of all particles, radius of all particles, mass of 
all particles and moment of inertia of all particles.  
 
 
For further elaboration see the example below.  
For the executable file of ‘Input’ give a filename of  ‘cgps’ and enter the following values for 
the parameters [ mkNkn /7.80= , mkNks /1.16= , 7.0=ppµ , 5.0=pwµ , V , 

, t , t , 

smmsh /1=

00001.0=∆t sl 3= sh 10= s gmmp 1700= , h cmb 10= , cmwb 10= , 

].   10000=outputS
 
Now see the contents of the above files 
 
% Input  ‘cgps’ 
 
cgps.are  =  [104, 10cm, 10cm, 30cm, 50cm, 5cm  respectively as explained above ]. 
 
cgps.cal  =  [ 0.00001s, 10s, 3s, 10000 respectively ] 
 
cgps.chr  =  [ 80.7kN/m, 16.1kN/m, 80.7kN/m, 16.1kN/m, 100.8Ns/m, 45.1Ns/m,  
                         100.8Ns/m,  45.1Ns/m, 0.7, 0.5, 1700gm respectively ] 
cgps.exp  = [ 1mm/s, 10 kg ] 
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cgps.con  =  
                  part. no.    x-coord         y-coord           radius                mass             inertia 
                      0         1.000000         1.000000        0.920094        22.270253        9.426694 
                      1         3.000000         1.000000        0.697191        12.786892        3.107700 
                      2         5.000000         1.000000        0.891550        20.909898        8.310228 
                      .           .                       .                      .                      .                        .              
                      .           .                       .                      .                      .                        .              
                      .           .                       .                      .                      .                        .              
                    103       9.000000        39.105118       0.960064        24.247187      11.174597 
 
 
Shear.c  
 
This source file is the main program code of the shearing process. Shear started after the third 
stage of consolidation, by an executable file of ‘Shear’. That means after the particles are 
generated by ‘Input’ the first stage of consolidation takes place due to gravity particles for a 
time of t . The particles out of the box are removed and the remaining particles were 

consolidated again for the second time due to gravity for a time of t . This is called the 

second stage of consolidation;  after this stage the loading plate is applied for a time of  
and the system is consolidated for the third time and then shear is started.  

pre

pre

pret

 
%  shear ‘filename’ 
 
‘shear’ generates the main output of the shearing process:  ‘filename.dat’, ‘filename_*. dat’ , 
and ‘filename_*. pos’.  It is generated as soon as shear started and ends when the simulation 
is over. The contents of these files: ‘filename.dat’ contains time step, shear displacement, 
shear stress, vertical reaction stress and height of loading plate from the start of shear to the 
end of shear. This file is written as ‘ASCII’ file whose values are set apart by tabs. 
Furthermore it is a very huge file since it contains data for every time step for a duration of 
total shearing time.  For instance, for the above example of shearing time and time step  
‘cgps.dat’ contains 10 data which need 53MB memory for a single simulation.  Which is of 
course a very huge file to run in a normal PC. This is one of the drawbacks of DEM;  it needs 
longer CPU time and large storage memory;  

6

‘filename_*. dat’ contains current calculated time, height of loading plate and shear distance;  
‘filename_*. pos’ contains remaining number of particles,  x and y  co-ordinates (position of 
particles) and radius of particles at the same time as ‘filename_*.dat’ is generated.   
 
 
% Shear  ‘cgps’ 
 
cgps_0001. dat = [0.1s, 11.030928, 0.01] 
 
cgps_0001. pos =   
                            part. no         x-coord         y-coord             radius     
                             0                   0.923498       0.893129         0.920094 
                             1                   2.981003       0.688843         0.697191 
                             2                   4.961491       0.865141         0.891550 
                             .                            .                     .                   . 
                             .                            .                     .                   . 
                             .                            .                     .                   . 
                            42                   8.266625      9.255822        0.641657 
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cgps.dat  =  
                time step        shear disp       shear stress           v. reaction stress       height of plate 
                0.000000        0.000000        3946.061537          9749.300697             11.043348 
                0.000010        0.000001        3378.496454          9748.717009             11.043348 
                0.000020        0.000002        3378.496454          9747.749352             11.043348 
                       .                       .                             .                       .                                . 
                       .                       .                             .                       .                                . 
                       .                       .                             .                       .                                . 
               10.000000       0.010000        13300.00000         9807.588795            11.500000 
 
 
Shear_Plot.c 
 
This program code prepares ‘Plot’ for drawing snapshots at each output interval time. 
‘Plot’ generates the snapshots in the form of  ‘GIF’ files as ‘filename.gif’. 
This output shows particle behaviour after shearing at that instance of time. 
 
 
For the above example see the following snapshots at different time 
 
% Plot  ‘cgps1’,  ‘cgps2’,  ‘cgps3’  generates snapshots of  cgps1.gif,  cgps2.gif and  
cgps3.gif  for the simulation time of t = 0 , 5 and 10 s respectively. 
 
 

                   t = 0 s                                  t = 5 s                             t = 10 s 
                    cgps1.gif                            cgps2.gif                               cgps3.gif              
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II   Soil cutting by pendulum type machine 
 
Soil cutting by a pendulum type machine consists of  nine source code files which are written 
in ‘C’  language 
 
pendmain.c – main source file 
contact.c – judgement of contacts between particles 
force.c – calculation of contact force 
tool_touch.c – contact judgement between particle and tool  
pendulum.c – motion of pendulum 
Inputgen.c – preparation of input parameter files 
precalc.c – reading parameter files 
snap_pos.c – plot of snapshots of particle motion 
snap_vel.c – plot of snapshots of particle velocity vectors 
 
 
Compiling the cutting simulator 
Compiler:   gcc… with Visual Studio ( C++ ) 
CPU:    Pentium III  266MHZ, Debian linux, with kernel version 
RAM:   256MB 
 
 
Two executable programs are made out of  the above source codes. One for the preparation of 
simulation which has the filename of ‘ INP’ and the other for the simulation process which 
has the filename of ‘SIM’.  
 
‘INP’ is used to display parameter lists which help us to enter parameter values. Then it 
automatically generates three files with extension ‘.chr’, ‘.cal’  and ‘.con’. 
 
% INP  ‘filename’ 
First display lists of parameters then we can enter the value of each parameter 
 
[normal spring constant between particles ( ), tangential spring constant between particles 
( ), normal spring constant between particle and wall ( ),  adhesion spring constant 
( ), coefficient of adhesion area ( C  ),  coefficient of rolling friction (C ), 

nk

sk

adk
nwk

ad r

number of particles on the bottom layer ( ),  friction coefficient between particles (bN ppµ ), 

friction coefficient between particle and wall ( pwµ ),  time step ( t∆ ),  precalculation time 

( ),  simulation time ( ) and  step output ( ), ]. pret st outputs
 
‘INP’ generates the following three files. All these files are generated automatically when the 
program operates ‘INP’. 
 
filename.chr, filename.cal, filename.con 
 
The contents of these files are: 
‘filename.chr’ contains normal and tangential spring constants of particle – particle and 
particle – wall contacts, adhesion spring constant, coefficient of adhesion area, coefficient of 
rolling friction, normal and tangential damping coefficients of particle – particle and particle 
– wall contacts, friction coefficient of particle – particle and particle – wall contacts and 
number of particles. 
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‘filename.cal’ contains simulation time, precalculation time, time step, and step output 
‘filename.con’ contains particles number, initial position, radius, mass, and moment of inertia 
of all particles. 
 
 
% SIM  ‘filename’ 
Now ‘SIM’ generates three files at each time step where output interval is setting. 
the particles position file,  the tool position file,  the tool force file 
 
The particle position file is named ‘filename.x’, where ‘x’ is a numeral that shows how many 
files ‘SIM’ has to be made, which means ‘filename.x’ has data at time of ( ) 
seconds after pendulum started motion. The contents of this files are: particle number,  
particles x and y co-ordinate and particles  x and y displacement, which are written as ‘ASCII’ 
files whose values are separated by tabs and show some information of each particle in a row 
of the file.  

xsdt output **

The tool position file is named ‘filename_tool.x’, where ‘x’ is a numeral explained above for 
the particle position file. The contents of this file show coordinates of  four points of the tool 
cross section as shown in the Figure below. 
 
Where PO.0, PO.1, PO.2, PO.3 are different co-ordination points of the tool at calculation 
step.   PO.0 = ( ) ,  PO.1 = ( ),  PO.2 = ( ),  PO.3 = ( ) 00 , yx 11, yx 22 , yx 33, yx
 

  
 
                                       
 
 
 
 
 
 
 
 
                                      

PO.2 PO.1 

PO.0 

PO.3 

 
The tool force file is named ‘filename.dat’. Its contents are: the total time steps, angular 
position of the tool, angular velocity of the tool, normal and tangential force of the tool and 
the work done by the tool. This file is an ‘ASCII’ file. Values are set apart by tabs. 
 
The following example is shown for a brief understanding of the cutting simulator. 
 
% INP  ‘cgppc’  where ‘cgppc’ is a file name. 
 
Now we can enter values for the input parameters as follows, 
 
[ ,  ,   mkNkn /10= mkNks /2= mkNknw /10= ,  k mkNad /2= ,  7.0=ppµ , 

, C , , 05.0=adC r 1.0= 20=bN 5.0=pwµ ,  0001.0=∆t , t s2pre = , , 

].   

sts 1=

100=outputS
 
The following three files are automatically generated by ‘INP’  
 
cgppc.chr  = [10000 , 2000 , 2000 , 0.05 , 0.1 , 12.92 , 5.78 , 12.92 , 5.78 , 0.7 , 0.5 , 345 ] 
cgppc.cal   = [1 , 2 , 0.0001 , 100 ] 
 
 

 140



 
 
cgppc.con  =   
                       part.no.       x-coord           y-coord       radius            mass            m.of inertia 
                         0                6.125000      1.125000      1.125000       8.349764        5.283835 
                         1                8.375000      1.125000      1.125000       8.349764        5.283835 
                         2              10.625000      1.125000      1.125000       8.349764        5.283835 
                          .                 .                    .                     .                    .                     . 
                          .                 .                    .                     .                    .                     . 
                          .                 .                    .                     .                    .                     . 
                       344            24.125000     40.096143    1.125000       8.349764         5.283835 
 
 
% SIM  ‘cgppc’ 
 
Now ‘SIM’ generates three files as stated above. 
 
See content of particle position files.  For example if we are interested to calculate  
‘cgppc.30’, this file contains information of all particles after ( ) seconds = 30** outputsdt
(0.0001*100*30) seconds = 0.3 s after the pendulum started cutting. 
  
 
cgppc.30  =   
                       part.no        x-coord       y-coord           x-displ           y-disp  
                         0                6.1249         1.1118           0.000518      -0.000527 
                         1                8.3754         1.1086          -0.000264      -0.000007 
                         2               10.6264        1.1082           0.000211      -0.000008 
                          .                    .                  .                      .                    . 
                          .                    .                  .                      .                      
                          .                    .                  .                      .                      
                      344             24.1250       40.0961          8.349764        5.283835 
 
 
The contents of the tool position file ‘cgppc_tool.30’ are 
 
cgppc_tool.30 =   [ (12.492872, 42.257268),  (12.691685, 48.253973), 
                             (11.692234, 48.287109),  (11.564481, 44.433733) ] 
 In other words the tool is at this position at 0.3 s after the pendulum started motion. 
 
The contents of the tool force file ‘cgppc.dat’ are 
 

cgppc.dat  =    
                         time step        ang. pos       angu. vel     n.force       t.force       torque 

                                0.00000         104.9999     -0.0681       0.0000        0.0000      0.0000 
                                0.00001         104.9999     -0.1361       0.0000        0.0000      0.0000 
                                0.00002         104.9998     -0.2042       0.0000        0.0000      0.0000 
                                .                          .                 .                  .                     .             . 
                                .                          .                 .                  .                     .             . 
                                .                          .                 .                  .                     .             . 
                               1.00000         -54.7959     -105.4977     -2.1618     -0.1668    -0.0278 
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Below it is explained how to develop the ‘GIF ‘ files by using ‘Snap_pos.c’ or ‘Snap_vel.c’. 
After the simulation is over that means when ‘SIM’ finished the cutting process, we obtain 
the simulated results in ASCII files. ‘Snap_pos’ and ‘Snap_vel’ read the ASCII data files and 
generate ‘GIF’ files. 
 
% Snap_pos  cgppc.30 … generates the position of the particles after 0.3 s  
% Snap_vel  cgppc.30  … generates the velocity vectors after 0.3 s  
 
 
 
 
 
 
 
 
 
 
 
 
 



         6     SIMULATION OF  SHEAR BOX TEST  
               AND SOIL CUTTING BY PENDULUM TYPE   
               MACHINE USING  KYOTO DEM 

 
 
6.1    SIMULATION OF  SHEAR BOX  TEST 
 
Introduction 
 
The shear box test is a standard laboratory test which is often held for measuring the shear 
strength of the soil. This  strength is explained with cohesion and interparticle friction angle. 
Numerous data are available from laboratory experiments of shear box tests and calculating 
the shear strength of soil based on continuum mechanics. See among these,  
Kezdi (1974 and 1980);  Craig (1992) and Roberts (1996).  Moreover results of these 
experiments  are highly investigated.  However data on the expertise of soil behaviour or soil 
reaction against loading or shearing based on discrete mechanics is very limited because of 
the difficulty of analysing motion of the individual particles and the numerous time and 
memory usage even for the fastest PC. 
 
By nature soil is a granular material and has been considered as assemblies of discrete 
particles. Behaviour of such soil will be studied here using the discrete medium rather than 
continuous. Attention is focused on investigating deformation, shear strength and volume 
change properties of the simulation. Information regarding the micromechanics of the 
assembly,  the shear strength, the volume change distribution at loading with different normal 
stresses and the effect of parameter variation is presented. 
The process of shearing in between granular particles can be visualised with the help of plots 
indicating the curve trajectory for 1cm  shear displacement, the volume change, snapshots that 
show the micro – structure of the assembly and the position distribution of the particles. The 
power and benefits of the distinct element method can be valued from the results of the 
simulation.   
 
Shape and dimension of the shear box used for the simulation was a cube which has a cross 
section as shown in the Fig. 6.1 
This chapter is intended to examine the feasibility of numerical simulation of granular 
particles by using the shear box test and the pendulum simulator.   
 

 
Figure 6.1  Cross section of the shear box 
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6.1.1   SELECTION OF PARAMETERS FOR THE SIMULATION 
 
The mechanical behaviour of DEM particles depends on material constants dealing with 
contact properties such as normal and tangential stiffness, normal and tangential dashpot and 
interparticle friction coefficient values. 
The selection of these constants is of great importance, in particular when the simulation is 
compared with the results of real tests, see Iwashita and Oda (1998).  However until now we 
did not develope the right method to selec the DEM parameters for a simulation without trial 
and error.  Furthermore, model improvements made parameter selection a difficult task since 
the number of input parameters is increased  simultaneously. 
 
6.1.1.1   The normal stiffness value between particles 
 
Efforts have been done to estimate the parameter value of one of the above basic material 
constants (normal stiffness value) based on Hertz’s contact theory (Johnson, 1985).  Next, 
tangential stiffness constant related with normal stiffness could also be estimated as has been 
shown by many researchers (for example Momozu et al (2000) and Umekage et al (1998)) . 
Since the force – displacement laws and equations of particle motion explained in Chapter 5 
section 5.2.1.1 and 5.5.1, are derived from the general contact theory,  the normal stiffness of 
an elastic spring at the contact point  between particles i and  j  can be estimated from the 
relation   
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where  
           ,   and  iE jE iν , jν   are the modulus of elasticity and Poisson’s ratio of particles  i   

            and j ;    and  are radius of particles  and ir jr i j ;  δ  is the overlap  

            displacement between the particles ;   is the normal contact force between  nF
            the particles 
                         
              
By assuming that all particles are made from the same material, modulus of elasticity of 
particles and Poisson’s ratio of particles are the same ,  EEE ji ==   and  ννν == ji . 
Thus the normal stiffness of particles is estimated as  
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The normal stiffness estimated by the above method was best fit for analysing shearing 
behaviour of cohesionless granular soil, for example, sand. For cohesive soil the estimation 
was poor because of its low Young’s modulus. The normal stiffness will become very low so 
that the load cannot be resisted anymore and the simulation will collapse.  
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 6.1.1.2   The damping coefficient value between particles 
 
The damping coefficient η of the dashpot is given by the critical damping condition of the 
vibration equation for computational stability, 
 

ntempn km2=η                                                                                             (6.3) 

stemps km2=η                                                                                             (6.4) 

 
where   
           nη  and  sη  are the normal and the tangential damping coefficients of the particles, 
            for  see the following appendix A. tempm
 
 
Appendix A ( Momozu et al, 2001) 
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where 
             is number of layers ;   is height of the shear box ( see Fig. 6.1 ) ; layerN boxH
            is maximum radius of the particles ;  is number of particles at the bottom maxR bedN
            layer of the box and  is the mass of the particles in the box. m
 
 

Table 6.1  Material properties of medium granular particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Normal dashpot 
Tangential spring constant 
Tangential dashpot 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Shear velocity 
Time step 
Precalculation time 
Shearing time 
Number of particles at bottom 
Vetical load 
 

kn 
ηn 
ks 
ηs 
µpp 
µpw 
vsh 
∆t 
tpre 
tsh 
Nbed 
vl 

35.5 
33.9 
7.1 
15.16 
0.577 
0.5 
0.001 
0.00001 
3 
10 
10 
5 
 

kN/m 
Ns/m 
kN/m 
Ns/m 
- 
- 
m/s 
s 
s 
s 
- 
kg 
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6.1.2   GENERATION AND CONSOLIDATION OF THE  INITIAL SAMPLE 
 
The DEM simulation of the shear box test consists of three phases. The first phase is the 
automatic generation of the particles. The second phase is the consolidation of the generated 
particles and the third phase is the actual simulation of shearing. 
In the first phase the program reads the particle information and its distribution data and 
generates randomised assembly of particles. The centres of particle are regularly arranged in a 
calculated area. In this case the height of the calculated area was 5 times as high as the height 
of the box and the width of the calculated area was 3 times the width of the shear box. In this 
phase particles are assumed to have a constant radius called r . The centre points are 
arranged equivalently to be most dense in the calculated area. 

c

During the second phase the radius of each particle was decided by the following equation  
 

Rrrr conconi 5.05.0 +=                                                                                           (6.5)  
 
where  
           is  the radius of particle i ;    is a constant radius when particles are regularly ir conr
           arranged in a calculated area;  R  is a random number between 0 and 1 ( ) .   10 ≤< R
           If we set  1=R   all the particles have the same radius.  
 
After decision of particle radius, the friction coefficients  µpp  and  µpw  were applied to all 
particle – particle and particle – wall contacts respectively and then  the assembly was 
equilibrated for a duration of  due to gravity. pret
 
The particles beyond the box height were removed after the first consolidation and the 
remaining particles were consolidated again for the second time with the same duration  
by gravity;  in this way the box was almost filled with particles. 

pret

After the second consolidation the assembly  was compacted by the loading plate for a 
duration of  t  and  again consolidated for the third time. In this way the particles reached a 
denser state of arrangement. Figure 6.2  shows a snapshot of particle distribution at the 
beginning of shear.   

pre

  
 

 
Figure 6.2  Snapshot of  the initial arrangement of  the particles inside the box. 
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6.1.3   THE SHEARING PROCESS 
 
The shearing process started during the third phase and was completed after a constant shear 
velocity ( Vsh ) had been assigned to the lower box to impose shear conditions on the particles;  
in this case the upper box was fixed. Shear force and height of the loading plate were 
recorded during the process. Contact forces between particles and the right side wall of the 
upper box were summed up. The resultant force was assumed to be the shear force and this 
shear stress was solved by using equation: 
  

( )[ ]boxshbox

sh
t dDW

F
−

=τ                                                                                             (6.6) 

  where  
                tτ  =  shear stress at time t;   =  the shear force;  W =  width of shear box shF box

                 =  shear distance;  d  =  depth of the box      shD box

 
Shear stress was increasing linearly in almost all cases and failure rarely occurs. This is 
because particles moved so slowly that the dampers in the model could not work effectively. 
The volume change was computed from the differences of the height of the loading plate. 
Shearing has been performed by varying values of input parameters and the effect of these 
parameters has also been investigated. The normal stress selected for parameter investigation 
was kPan 9.4=σ   unless otherwise mentioned separately.  
 
6.1.3.1   Effect of  parameter variation on the shearing process 
 
In this section the effect of some parameters (those parameters which are expected  to affect 
the mechanical properties of the particles) was investigated in relation to the stress ratio-
displacement and the volume change-displacement curves. The parameters in Table 6.1 are 
considered to be the default parameters of the simulation.   
 
Effect of interparticle friction coefficient  ( ppµ ) 
When the interparticle friction coefficient increases then the shear stress of the particles was 
also increased, as is expected (see left in Fig. 6.3). Which means a larger friction angle 
between particles raises the shear stress. This is consistent with the property in which sliding 
dominates the plastic deformation of granular soil. However this larger friction angle is 
limited to a certain maximum, which was 350 at least in this case. Applying beyond this value 
means rotation of particles dominates the system and the shear stress becomes lower.  
In general the average volume change also increases as interparticle friction increases.  
 

  
Figure 6.3    Effect of  interparticle friction coefficient on the shearing of DEM particles  
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Effect of the normal spring constant  ( kn ) 
The effect of the normal spring constant was investigated by simulating the shear stress 
behaviour and the volume change with  kn = 17.75 kN/m and  kn = 71 kN/m.  All the other 
parameters are taken as a default parameter of  Table 6.1 except the normal spring constant 
between the wall and the particles. For simplicity, we assume the normal spring constant 
between the particles and between the particle and the wall the same. 
Equation (5.26) shows that the critical time step depends on the normal spring constant. 
The time step used in the simulation is less than the critical time step calculated by this 
equation. 

The gradient of the  
nσ
τ

 curve (left in Fig. 6.4) becomes steeper when the contact stiffness 

( kn ) increases. That means a model with a small contact stiffness needs larger shear 
displacement to reach the same peak stress. Therefore it is possible to consider that shear 
strength of  DEM particles is independent of contact stiffness (Iwashita and Kojima, 1992).   
 
However the contact stiffness influences the deformation mechanism since particles with 
small contact stiffness can move in the horizontal direction easier than those with large 
stiffness. The volume change also increases (negative to positive) as the particles have larger 
stiffness. These results are shown in Fig. 6.4, right 
 

                                                                                        
Figure 6.4   Effect of contact stiffness constant on shearing of DEM particles 
 
Effect of tangential spring constant ( ks ) 
The effect of  increasing tangential spring constant  ks  from 7.1 kN/m (Table 6.1) to values of  
ks = 14.2 kN/m  and  ks = 21.3 kN/m  was investigated by simulating the shear stresses and 
volume change behaviour.  At least in this case increasing  ks  has no significant effect on the 
shear stress ratio of the DEM particles (left in Fig. 6.5).  More or less  both tangential spring 
values mentioned above have almost the same peak stresses as the original one. However the 
volume change increases with increasing  ks ( right in Fig. 6.5). 
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Figure 6.5   Effect of tangential spring constant  on shearing of DEM particles  
 
 
Effect of particle sizes ( r ) 
The effect of the size of particles was investigated by performing additional simulations with 
distribution of coarse particles of radius  5 ≤ r ≤ 10 mm  and fine particles distribution of 
radius 1 ≤ r ≤ 2 mm. The radius distribution of particles for the default case of the medium 
was 2 ≤ r ≤ 5 mm. The shear stress of DEM particles slightly increases with increasing size of 
the particles (left in Fig. 6.6). Also interparticle contacts are dominated by large particle pairs 
which leave large pore spaces between them (see section 6.1.4.4 ). In case of smaller size 
particles, interparticle contacts are distributed among relatively large and small particle pairs. 
However large pore spaces are still occasionally present, but the system was  more tightly 
packed. The volume change increases from coarse to fine during shearing (right in Fig. 6.6).   
 

                                                                                    
 Figure 6.6   Effect of particle size distribution on shearing of DEM particles  
 
 
 
6.1.4    OUTPUT AND DISCUSSION OF THE  SHEAR BOX SIMULATION 
 
The following properties of DEM particles are investigated from the output of the shear box 
simulation: comparison check of input interparticle friction coefficient with output 
interparticle friction coefficient, shear strength, volume change, deformation behaviour 
(micro-mechanics of deformation) and failure property. 
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For simplicity we divided the simulation output into three parts, depending on the size 
distribution of the particles. Each part has its own material properties.  
 
Part I………..Coarse granular particles with radius distribution of  (5 – 10 mm) 
Part II……… Medium granular particles with radius distribution of (2 – 5 mm) 
Part III……...Fine granular particles with radius distribution of (1 – 2 mm) 
 

 
 
6.1.4.1  Simulated maximum shear strength of DEM particles 
 
Investigation of simulated shear strength of DEM particles was done by running a number of 
simulations with different normal stresses ( kPa8.91 =σ   , kPa7.142 =σ   , kPa6.193 =σ  

kPa5.244 =σ   , kPa4.295 =σ  ) and considering the corresponding maximum shear 
stresses within 1cm of shear displacement.   
The simulated maximum shear strength is calculated from the linear regression of the 
maximum shear stress and the corresponding normal stress and has two parts:  the cohesion 
and the simulated interparticle friction coefficient (the output interparticle friction 
coefficient).  Since we are considering cohesionless particles here our attention is only 
focused on investigating the simulated interparticle friction coefficient.  
 
Figure 6.7 a  to  6.12 a  show the shear stress increment behaviour during shearing of DEM 
particles. Because of the difficulties in manipulating 250 MB of memory for five simulations 
at once only three simulations for normal stresses of kPa8.91 =σ ,  kPa7.142 =σ  and   

kPa6.193 =σ   are shown. The linear regression shown in Figure 6.7 b  to  6.12 b are based 
on  all the five normal stresses.  
 
 
Part I   Coarse granular particles (5 – 10 mm) 
 
Simulation has been done for two selected input values of interparticle friction coefficients. 
These are 0.7 and 1.0.  Such values are selected based on properties of coarse granular soil. 
 
The material properties of coarse granular particles in Table 6.2 were used as an input value 
of the simulation. 
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Table 6.2  Material properties of coarse granular particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Normal dashpot 
Tangential spring constant 
Tangential dashpot 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Shear velocity 
Time step 
Precalculation time 
Shearing time 
Number of particles at bottom 
Vetical load 
 

kn 
ηn 
ks 
ηs 
µpp 
µpw 
vsh 
∆t 
tpre 
tsh 
Nbed 
vl 

80.7 
100.8 
16.1 
45.1 
0.7 
0.5 
0.001 
0.00001 
3 
10 
5 
10 
 

kN/m 
Ns/m 
kN/m 
Ns/m 
- 
- 
m/s 
s 
s 
s 
- 
kg 

 
 
Figures 6.7 and 6.8 show the shear stress increment curves and the linear regression for the 
calculation of the Mohr – Coulomb strength envelope.     
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      a)  Shear stress increment                                            b)   Regression equation 
 
Figure 6.7  Shear stress increment ( a ) and regression equation ( b ) for 7.0=ppµ  
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  a)  Shear stress increment                                           b)  Regression equation 
 
Figure 6.8  Shear stress increment ( a ) and regression equation (b) for 0.1=ppµ  
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Part II   Medium granular particles  (2 – 5 mm) 
 
Simulation has been done for two selected input values of interparticle friction coefficients. 
These are 0.57 and 0.7.  Such values are selected based on properties of medium granular soil. 
 
The material properties of medium granular particles in Table 6.3 were used as an input value 
of the simulation. 
 
 
 

Table 6.3  Material properties of medium granular particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Normal dashpot 
Tangential spring constant 
Tangential dashpot 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Shear velocity 
Time step 
Precalculation time 
Shearing time 
Number of particles at bottom 
Vetical load 
 

kn 
ηn 
ks 
ηs 
µpp 
µpw 
vsh 
∆t 
tpre 
tsh 
Nbed 
vl 

80.7 
49.6 
16.1 
22.2 
0.57 
0.5 
0.001 
0.00001 
3 
10 
10 
10 
 

kN/m 
Ns/m 
kN/m 
Ns/m 
- 
- 
m/s 
s 
s 
s 
- 
kg 

 
 
 
Figures 6.9 and 6.10 show the shear stress increment behaviour and the linear regression for 
the calculation of the Mohr – Coulomb strength envelope. 
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         a) Shear stress increment                                     b)  Regression equation 
 
Figure 6.9  Shear stress increment ( a ) and regression equation ( b )  for 57.0=ppµ  
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          a)  Shear stress increment                                        b)  Regression equation 
 
Figure 6.10  Shear stress increment ( a ) and regression equation (b) for 7.0=ppµ  
 
 
 
Part III   Fine granular particles   (1 – 2 mm) 
 
Simulation has been done for two selected input values of interparticle friction coefficients. 
These are 0.466 and 0.57.  Such values are selected based on properties of fine granular soil. 
The material properties of  fine granular particles in Table 6.4 were used as an input value of 
the simulation. 
 
 

Table 6.4  Material properties of fine granular particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Normal dashpot 
Tangential spring constant 
Tangential dashpot 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Shear velocity 
Time step 
Precalculation time 
Shearing time 
Number of particles at bottom 
Vetical load 
 

kn 
ηn 
ks 
ηs 
µpp 
µpw 
vsh 
∆t 
tpre 
tsh 
Nbed 
vl 

80.7 
19.5 
16.1 
8.7 
0.466 
0.5 
0.001 
0.00001 
3 
10 
25 
10 
 

kN/m 
Ns/m 
kN/m 
Ns/m 
- 
- 
m/s 
s 
s 
s 
- 
kg 

 
 
 
Figures 6.11 and 6.12 show the shear stress increment behaviour and the linear regression for 
the calculation of the Mohr – Coulomb strength envelope. 
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         a)  Shear stress increment                                  b)  Regression equation 
 
Figure 6.11  Shear stress increment ( a ) and regression equation ( b ) for 466.0=ppµ  
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        a)  Shear stress increment                                     b)  Regression equation 
 
Figure 6.12  Shear stress increment ( a ) and regression equation ( b ) for 57.0=ppµ  
 
 
6.1.4.2   Discussion of  simulated shear strength  
 
According to the simulation output presented in the above section (6.1.4.1)  simulated shear 
strength (the simulated interparticle friction coefficient) was generally lower than the input 
interparticle friction coefficient (µpp). See output summary in Table 6.5 
 

Table  6.5  Output summary from shear box simulation 
 
Figure / ( b ) Particle size 

distribution 
Input µpp  Regression equation 

τ  =  c + σ tanφ 
6.7 
6.8 

coarse 0.7 
1.0 

τ  = 6.8 + 0.6673 σ 
τ  = 0.8 + 0.7816 σ 

6.9 
6.10 

medium 0.57 
0.70 

τ  = 9.7 + 0.4376 σ 
τ  = 5.8 + 0.4753 σ 

6.11 
6.12 

fine 0.466 
0.577 

τ  = 3.2 + 0.6075 σ 
τ  = 5.5 + 0.6317 σ 
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This was especially true for coarse and medium granular particles. For example, Fig. 6.8 b of 
coarse particles has a simulated value of  0.78  which is lower than the input interparticle 
friction coefficient of µpp =1.0.  Fig. 6.7 b also shows a decrease from 0.7 to 0.667. The same 
is true for medium granular particles,  ( Fig. 6.10 b, lowered  from 0.7 to 0.475  and  Fig. 6.9 
b, lower from 0.577 to 0.438 ).  
 
There may be three possible reasons for the low simulated shear strength (simulated 
interparticle friction coefficient) values of DEM particles.  The first reason is the ease with 
which the DEM particles (which are disc shaped) can roll easily. This means there was 
significant rotation of particles in the shear zone. The second reason may be the use of a 
completely discontinuous particle distribution and the third reason could be the degree of 
particle size distribution. 
According to the first reason we now start to focus on the rotation of particles in the shear 
zone as illustrated in Fig. 6.24. The magnitude of such rotation increased with  
high µpp values.  Scott (1996)  confirmed if  µpp is sufficiently high, then sliding will not occur 
and changes in contact configuration will occur only by particle rolling or separation.  
 
Due to such a rotation of particles for high µpp values the shear strength decreased with 
increasing µpp whereas for the low µpp , the shear strength increased with increasing µpp . 
This is because sliding will be activated more readily for the low µpp surface than for the high 
µpp surface.  Morgan (1999) showed that the percentage of sliding contacts will always be 
greater for the low  µpp system. From the linear regression equations given in Table 6.5 it can 
be seen that a minor increase in the simulated interparticle friction coefficient φtan  occurred 
when the input value of ppµ  was increased. 
 
For example, in the case of coarse granular particles the simulated interparticle friction 
coefficient increased from 0.667 to 0.782  for the increase of ppµ value from 0.7 to 1.0. 

And from 0.438 to 0.475 for the increase of ppµ value from 0.57 to 0.7 in the case of medium 
granular particles.  In both cases the increase is minor which is expected and in agreement 
with Morgan (1999).  Morgan states that if particle rotation was allowed the simulated shear 
strength increased rapidly over low values of interparticle friction coefficient ( 2.0<ppµ ) but 

levelled out over relatively higher ppµ values.  In other words for input values of interparticle 

friction coefficient which are greater than 0.3  ( 3.0>ppµ ) , only minor increases ( ≤  in 
magnitude in most cases) in simulated interparticle friction coefficient occurred due to 
increased frictional resistance at the few sliding contacts.  In the present case the increase is 
0.115 for coarse granular and 0.037 for medium granular particles, which agrees with the 
above statement.  

1.0

 
The second  possible factor contributing to the low simulated interparticle friction coefficient 
is the use of a completely discontinuous particle distribution.  In real soil behaviour finer 
particles are generated during progressive particle fracture and will tend to fill the pore space. 
This increases the contact area and consequently the frictional resistance to shear deformation 
(Morrow and Byerlee, 1989). 
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In case of fine granular particles, Table 6.5, bottom, the simulated interparticle friction 
coefficient φtan  is higher than the input µpp which is in contrast with that of coarse and 
medium granular particles. This is due to the very many fine particles generated in the system 
i.e.,  2818 particles, packed densely.  As a result “rolling” has decreased and “contact sliding” 
dominates the system. Due to this phenomena  the shear strength significantly increases, see 
 Fig. 6.11 b,  from 0.466 to 0.608, and Fig. 6.12 b,  from   0.577 to 0.632. 
 
In general the above findings made clear, that simulated shear strength of  DEM particles is 
highly dependent on the interparticle friction coefficient  (µpp) and the particle size 
distribution. 
 
 
6.1.4.3   Discussion of  volume change of DEM particles  
 
During shearing, the DEM particles tend to slide over one another. That leads to a volume 
increase (dilatancy) or tends to be tightly packed that leads to a volume decrease 
(compaction). This causes a change of the initial particles structure. The volume change of the 
DEM particles during shearing is measured by the ratio of  incremental height ( ) to  initial 
height of the specimen ( ).  For simplicity we divided the simulation results into three parts, 
depending on the size distribution of the particles and each part has its own input particle 
material properties as was given in Table 6.2 , 6.3  and  6.4  for coarse, medium and fine 
granular particles, respectively .  

h∆
h

 
Part I………..Coarse granular particles with radius distribution of  (5 – 10 mm) 
Part II……… Medium granular particles with radius distribution of  (2 – 5 mm) 
Part III……...Fine granular particles with radius distribution of  (1 – 2 mm) 
 
 
 
Part I    Coarse granular particles  (5 – 10 mm) 
 
Simulation was done for two selected input values of interparticle friction coefficient. These 
are 0.7 and 1.0; such values are selected based on properties of coarse granular soil. 
 

 
        a)      Height of loading plate                             b)  Volume change  
 
Figure 6.13  Height of loading plate ( a ) and volume change ( b ) for 7.0=ppµ   
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a)   Height of loading plate                                           b)  Volume change 
 
Figure 6.14  Height of loading plate ( a ) and volume change ( b ) for 0.1=ppµ   
 
 
Part II     Medium granular particles  (2 – 5 mm) 
 
Simulation was done for two selected input values of interparticle friction coefficient. These 
are 0.57 and 0.7;  such values are selected based on properties of medium granular soil. 
  

a)  Height of loading plate                                           b)   Volume change 
 
Figure 6.15  Height of loading plate ( a ) and volume change ( b ) for 57.0=ppµ   
 

a)  Height of loading plate                                             b)   Volume change                                          
 
Figure 6.16   Height of loading plate (a) and volume change (b) for 7.0=ppµ   
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Part III   Fine granular particles   (1 – 2 mm) 
 
Simulation was done for two selected input values of interparticle friction coefficients. These 
are 0.466 and 0.57;  such values are selected based on properties of fine granular soil. 
 

a)  Height of loading plate                                       b)  Volume change  
 
Figure 6.17   Height of loading plate ( a ) and volume change ( b ) for 466.0=ppµ   
 
 

           a)  Height of loading plate                                      b)  Volume change  
 
Figure 6.18   Height of loading plate (a ) and volume change ( b ) for 57.0=ppµ   
 
 
From the present output of the shear box simulation the degree of volume increase or decrease  
depends on the input interparticle friction coefficient (µpp) and the particle size distribution.  
Most of the results obtained from the present simulation show  volume increase for coarse and 
medium granular particles and  volume decrease for fine granular particles (see  
Fig. 6.13 b  and  6.14 b for coarse granular particles, Fig. 6.15 b for medium granular particles 
and  Fig. 6.18 b for fine granular particles).  
 
As we  see from Fig. 6.13 b to 6.18 b, in general the degree of  volume change was decreased 
when the particle size was decreased. This may be due to the generation of many smaller 
particles in the medium and finer granular cases. These particles fill the voids between larger 
particles leading towards a tighter packing.  One thing is clear: when the particle size 
decreases the number of particles increases. 
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In case of coarse granular particles, (Fig. 6.13 b  and  6.14 b) for high µpp  ,  volume increases 
with increasing µpp  for instance when µpp increases from 0.7 to 1.0 , with σn = 19.6 kPa, the 
volume increase from 2% to 3% . This minor increase is expected . 
For almost all simulations of fine granular particles the volume change over about the first 
30% of shearing fluctuates with large amplitude. Moreover the magnitude of this amplitude 
increases with increased level of the normal stress ( σn ). 
 
The concept of dilatancy during shearing of DEM particles 
Depending on the closeness of the particles in the box the sample is in a loose or a dense 
initial state. During shearing the density will change;  a loose sample will compact while a 
dense one will dilate. This phenomenon of volume change induced by shear deformation is 
called dilatancy. In the context of classical plasticity theory  plastic strains are derived from a 
plastic potential (detailed in Chapter  2).  A plastic potential similar to the Mohr – Coulomb 
failure criterion is shown in Fig. 6.19, depicting the Mohr diagram for the strains 
(compressive strains are counted positive). 
 
The arrow perpendicular to the plastic potential gives the direction of the plastic strains.  
A positive value for the angle of dilation ψ means that the plastic strains lead to an increase of 
volume and hence the particles become looser. So a dense particle packing will have a 
positive angle of dilation and a loose particle will have a negative angle of dilation.  
 

γ  

ε 
 ψ 

 
Figure 6.19  Mohr – Coulomb criterion depicting the plastic potential 
 
 
 
 
6.1.4.4    Discussion of  micro-mechanics of deformation DEM particles 
 
At the beginning of the shearing process all DEM particles were moved into the direction of 
the applied shear velocity. 
Particle stresses will vary with the distribution of contacts, forces and microstructures. 
In case of coarse granular particles the system contains relatively many large particles and 
interparticle contacts are dominated by large particle pairs leaving large pore spaces between 
them. This is clearly seen on the snapshots of coarse granular particles, Fig. 6.20  and  6.21 
for various nσ  levels.  
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                  t = 0 s                                         t = 5 s                                     t = 10 s    
Figure 6.20   Snapshots of  coarse particle behaviour,  µpp = 0.7,   σn = 9.8 kPa  

 
 
 

              t = 0 s                                              t = 5 s                                             t = 10 s 
Figure 6.21  Snapshots of coarse particle behaviour,  µpp = 0.7,  σn = 49 kPa 
 
 
Whereas for medium granular particles, the system contains a higher number of particles and 
proportionally more relatively small particles. Besides interparticle contacts are distributed 
among large and small particle pairs. Also large pore spaces are still occasionally present but 
the system is apparently more tightly packed ( see snapshots of medium granular particles, 
Fig. 6.22  and  6.23 ).  Deformation proceeded with local slip points. These slip points 
increase in number with decreasing particle size. Furthermore, as smaller particles filled the 
pore spaces the variation in volume change was reduced (compare volume change of coarse 
granular particles, Fig. 6.14 b with  volume change of medium granular particles, Fig. 6.15 b). 
 

                 t = 0 s                                        t = 5 s                                       t = 10 s  
 
Figure 6.22   Snapshots of  medium particle behaviour,  µpp = 0.7,   σn = 9.8 kPa  
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             t = 0 s                                          t = 5 s                                         t = 10 s                      
 
Figure 6.23   Snapshots of  medium particle behaviour,  µpp = 0.7,  σn = 49 kPa 
 
 
For fine granular particles, the increased number of small particles dominates the system, pore 
space is not evident and the particles are quite densely packed. This implies the shear force is 
distributed over more contacts such that individual contacts carries a smaller contact force 
than that of coarse or medium granular particles.  
 
In case of  fine granular particles, at the beginning of shearing the amplitude of volume 
oscillation was larger especially for relatively higher normal stresses (see the volume change 
curves of fine granular particles, Fig. 6.17 and 6.18).   
 
Generally particle deformation and configuration were accommodated through interparticle 
sliding and rolling. For instance if the shear force at the contact point is less than the critical 
force necessary to activate interparticle sliding, the moments acting on the particles may 
cause one or two particles to roll until the contact is favourably oriented and interparticle 
sliding is allowed. However sliding will be activated more readily for the low µpp  with the 
same contact force which means that the percentage of sliding particles is higher for a low µpp  
than for a relatively higher one.  
If µpp is high enough, rotation of particles (Fig. 6.24) dominates the deformation behaviour 
and change of contact configuration will occur due to this rolling. This is in line with Morgan 
(1999) and  Scott (1996 ). 

   
Figure 6.24   Illustration of particle rotation in the shear zone ( Adapted from: Morgan, 1999 ) 
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6.1.4.5     Discussion of  failure points of  DEM particles 
 
Failure appears to be highly influenced by interparticle sliding and rolling. 
This sliding and rolling behaviour is highly influenced by the input values of interparticle 
friction coefficient (µpp ), particle size distribution and initial arrangement of particles. 
 
Hence the percentage of sliding contacts will always be greater for the low  µpp  value 
(compare Fig. 6.25 a  and Fig. 6.25 b ;  arrows indicate sliding contacts).  Normally sliding 
contacts increase for µpp values ranging between 0.1 and 0.4 for all particle size distributions 
(coarse, medium and fine). Moreover in fine granular particles failure also occurs for µpp = 
0.466 and  0.577 values. In this case, particles are more tightly packed and peak stress is equal 
to failure stress (see shear stress increment curves of fine granular particles, Fig. 6.26 b ). 
 

a)  µpp  = 0.7                                                                            b)   µpp = 0.3 
 
Figure 6.25 a, b.  Stress trajectories that show sliding contacts for medium granular particles 
 
 
 
At the failure point, trajectories of stress – displacement curves are characterised by a sudden 
drop in  stress, accompanied by localised slip (see the failure curve, Fig. 6.26).  However this 
behaviour varies depending on the input µpp and the particle size distribution. The failure 
force increases with increasing particle size. 
 

     
a)  Coarse granular, peak stress = 8.3 kPa                   b)  Fine granular, peak stress = 6.5 kPa 
 
Figure 6.26    Stress trajectories that show failure behaviour for the coarse ( a ) and fine ( b )  
                       granular particles σn = 9.8 kPa ,  µpp = 0.2                                             
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6.2   SIMULATION OF SOIL CUTTING BY A PENDULUM TYPE MACHINE 
 
With the advancement of modern computer performance, analysis of numerical simulation of 
soil cutting by a pendulum type machine has been one of the phenomena used to study the 
dynamic interaction between soil and agricultural machinery (Momozu et al, 2000).  The 
numerical method according to DEM has the potential that the analysed object is assumed to 
be an assembly of distinct particles and its properties have been explained in detail in Chapter 
5. DEM particle properties used in the simulation are listed in Table 6.6. 
 
 

Table 6.6  Material properties of DEM particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Normal dashpot 
Tangential spring constant 
Tangential dashpot 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Adhesion spring 
Coefficient of adhesion area 
Coefficient of rolling friction 
Time step 
Precalculation time 
Simulation time 
Number of particles at bottom 
Particle radius 
 

kn 
ηn 
ks 
ηs 
µpp 
µpw 
kad  
Cad 
Cr 
∆t 
tpre 
ts  
Nbed 
r 

10 
12.9 
2.0 
5.8 
0.7 
0.5 
2.0 
0.01 
0.1 
0.0001 
2 
1 
20 
12.5 
 

kN/m 
Ns/m 
kN/m 
Ns/m 
- 
- 
kN/m 
- 
- 
s 
s 
s 
- 
mm 

 
 
 
6.2.1   GENERATION OF THE  INITIAL SAMPLE 
 
After the values of the input parameters ( Table 6.6) were entered by using one of the 
executable program files ‘INP’, as was explained in the user related characteristics of Kyoto 
DEM, the particles were generated with their x , y - co-ordinates and the box filled as shown 
in Fig. 6.27. 
In this case all the particles have the same radius in order to keep the system stable with the 
required shape of the box.  Each particle was assigned by a  number, in order to show the 
initial position arrangement of the particle.  
 
The box has the shape of the soil block which was designed based on the laboratory 
experiment of soil block cutting by a pendulum type machine.  All the geometric dimensions 
of either the soil block or the pendulum machine were equal to those of the laboratory 
experiment. For details, see Fissha (1998). 
After the particles were generated and filled into the box in the shape of a soil block, the 
system was consolidated by gravity for  s. pret
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                               t =  0.300000 s 
                              blade tip position (12.492872, 42.257268) 
 
Figure 6.27   Initial arrangement of DEM particles in the form of a soil block 
 
 
 
6.2.2   THE CUTTING PROCESS 
 
The pendulum position was set at + 105 0  as a starting position, the soil block was set such 
that the height of the soil allowed the blade to strike the soil block at  + 72 0  after a rotation of  
33 0 . The bite length of the blade was 12.5 cm and its tip angle was  25 0.  
The motion of the pendulum was controlled by the following equation when ‘SIM’ was 
operated: 
 

θθα ∆+−= eLmgRFI ttt cos0                                                                                 (6.7) 
 
where 
              = moment of inertia of the pendulum;  0I tα = angular acceleration of the pendulum;  
              R = rotation radius of the blade ;  = resistance force against blade motion ;  tF
               = length from rotation axis to centre of gravity of the pendulum ;  m = mass of the L
               pendulum including the blade ;  g  = acceleration due to gravity ;   tθ  = rotation 
               angle of pendulum ;   e = energy lost  per unit degree of rotation by the pendulum.   
      
The conventional Kyoto DEM was modified in order to analyse the behaviour of  natural 
cohesive soil during cutting.  In order to fulfil such task the cohesion properties of the DEM 
particles were investigated from the output of the cutting simulation.  
The simulation was done for three different input values of the ‘adhesion coefficient’ ( ). 
These are (0.01, 0.05 and 0.10 );  for simplicity all the values of other parameters were kept 
constant as the default value of  Table 6.6.   

adC
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To investigate the adhesion property of the DEM particles, varying the coefficient of adhesion 
area is very important. According to the Kyoto DEM , increasing this value will also increase 
the adhesion force of the particles in the normal direction during separation as calculated in 
Eqn (5.29).   
 
 
6.2.3    OUTPUT AND DISCUSSION OF THE CUTTING PROCESS 
 
The output of the simulation was given in the form of snapshots, which show  particle 
motions in the cutting processes, the x  and y displacements of  these particles, and the work 
done by the tool during the simulation. 
 
Figure 6.28 to 6.30  show  snapshots of the cutting process with three different C  values 
which were simulated within a duration of  0.1 s.  The snapshots were taken with intervals of   
0.02 s  since the tool touched the soil block.  

ad

 
According to the present simulations , the motion of particles depends on the magnitude of 
the coefficient of adhesion area ( C ).  For a relatively small magnitude of coefficient of 
adhesion area,  particle motions were dominated by scattering behaviour (Figure 6.28) and 
also particle displacement was relatively large. However this effect was decreasing when the 
coefficient of adhesion area was increasing (see from Fig. 6.28 to 6.30).  

ad

For relatively large values of coefficient of adhesion area there was a resistance against the 
motion of  these particles (Fig. 6.30)  while particles moved together in a sticked manner and 
later formed soil clods.  
 
 

 
a)   t = 0.3 s                                                             b)  t = 0.32 s     
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c)  t = 0.34 s                                                                 d)  t = 0.36 s   
 
 
 

 
 e)  t = 0.38 s                                                                 f )  t = 0.4 s 
                                                                                                                                                               
Figure 6.28  a,b,c,d,e,f.     Snapshots of particles position distribution at different 
                                          points of time  during simulation, C  = 0.01 ad

 
 
 
 

 
   a)  t = 0.3 s                                                                   b)  t = 0.32 s 
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c)  t = 0.34 s                                                                       d)  t = 0.36 s       
 
 

 
e)  t = 0.38 s                                                                     f )  t = 0.4 s 
 
Figure 6.29  a,b,c,d,e,f.    Snapshots of particles position distribution at different 
                                         points of time  during simulation, = 0.05 adC
 
 
 
 
 

 
a) t = 0.3 s                                                                      b)  t = 0.32 s 
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c)  t = 0.34 s                                                                  d)  t = 0.36 s 
  
 
 
 

     
e)  t = 0.38 s                                                                 f)  t = 0.4 s 
 
Figure 6.30  a,b,c,d,e,f.     Snapshots of particles position distribution at different 
                                          points of time  during simulation, C  = 0.100 ad

 
 
 
For all simulations of the cutting process, the particles motion  was dominated by its 
displacements into x-direction.  
The magnitude of displacement was higher on areas where the blade and the soil block have 
interactions;  that concerns the particles at the top of the soil block, as assigned by higher 
numbers i.e., 250 – 350 ,  see Fig. 6.31 for C = 0.01.   ad

This displacement decreased in magnitude for particles which were placed far from the 
cutting area (bottom end) and had no access to contact with the cutting tool.  Particles were 
also displaced in the y-direction however this displacement was relatively small due to the 
direction of tool motion.  
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Figure 6.31   Particles displacement at different instants of time during cutting simulation 
                      for  = 0.01, assigned particle number refers to its position in the soil block, adC
                       see Fig. 6.27 
 
 
 
The energy consumption by the cutting tool was also analysed during the simulation.  
The magnitude was very fluctuating ;  one possible reason for this was the variation in 
material properties of the particles (Oida et al, 1995).  But the magnitude of fluctuation is 
increased for increased values of the coefficient of adhesion area (Fig. 6.32). This means the 
energy consumption of the cutting tool is increased when the motion of the particles is 
restricted by an increasing coefficient of adhesion area.   
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Figure 6.32  The energy consumption of the tool during the cutting process 
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                     7         DEM RESULTS FROM LITERATURE 
 
 
7.1    INTRODUCTION 
 
Computer simulations of real problems have always been attractive because they provide a 
means of investigating model systems in order to gain understanding and to conduct computer 
experiments in cases where experimental systems are hard to probe. This especially is the 
case with granular systems where experiments with non – ideal materials are extremely hard 
to probe and a general theory is not available (Tijskens et al, 2003). The DEM is well suited 
for such a task and its advantage over FEM is obvious. However, a realistic DEM simulation 
of granular soil demands a large number of disks which is beyond the current computational 
capability. Thus a balance has to be reached between a realistic simulation and practicality in 
computation. 
 
In this section a review of still scarce DEM applications for agricultural purposes is presented. 
These applications are related to the study of tyre – soil interaction and soil – tool interaction 
during wedge or bar penetration.  For recent results the reader is referred to Oida et al (1998 , 
and 1999);  Tanaka et al (2000)  and Huang et al (1992)  
 
 
7.2   SIMULATION OF TYRE – SOIL SYSTEM USING DEM 
 
The principle and merits of DEM were already described in the previous Chapters (5 and 6). 
It was explained that DEM was utilised to simulate the behaviour and reaction of an assembly 
of particles when the assembly was loaded or sheared. Oida et al (1999) show the effect of 
tyre reaction force on tyre performance by using the modified part of  the Kyoto DEM for 
adhesive DEM particles. The virtual soil bin was prepared and filled by 8379 DEM particles 
to a height of 17 cm.  A rigid wheel with a radius of 21 cm and a mass of  1.5 kg was put on 
the particle assembly.  Next a vertical load of 8 N and a horizontal load of 6 N were applied to 
the wheel. Then the wheel was rotated on the surface of the particles assembly with an 
angular speed of  80 deg/s. The movement of the wheel is also governed by Newton’s Law.  
The DEM parameters in Table 7.1 were used for this preliminary simulations. 
 
 

Table  7.1  Material properties of DEM particles 
 
Parameters Symbol Value Unit 
Normal spring constant 
Tangential spring constant 
Adhesion spring constant 
Prticle – particle friction coefficient 
Particle – wall friction coefficient 
Vertical load 
Horizontal load 
Tyre velocity 
Total number of particles 
 

kn 
ks 
kad  
µpp 
µpw 
Fv   
Fh  
vt  
n 

1.8 
0.45 
0.9 
2.0 
1.8 
8.0 
6.0 
80.0 
8379 

kN/m 
kN/m 
kN/m 
- 
- 
N 
N 
deg/s 
- 

 
 
Figure 7.1 shows simulated deformation results of the particles assembly by the rigid wheel 
with tyre lugs. As easily shown in the Figure holes made by lug prints can be found after 
running.  
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The volume change of particles assembly (corresponding to the soil compaction) is also 
observed on areas where the wheel and the particle assembly surface contacted each other and 
even deeper in the profile.  
 

  
Figure 7.1  Deformation of particles assembly after wheeling (Oida et al, 1999) 
 
 
Oida et al (1999)  performed more simulations by using different sizes and masses of particles 
to analyse the vertical reaction forces of the wheel. In his simulation, two kinds of radii of 
particles were set to 2.0 mm and 2.5 mm in order to express moving restrictions such as  
interlocking of particles.  
 
The density of particles was also tried to vary according to its depth.  Three cases were 
considered:  a standard case with constant density of 50000 kg/m3 and normal spring constant 
of 12500 N/m;  an exponential case where the density increases exponentially with the depth 
(6000 to 120513 kg/m3 ) and also the normal spring constants increase exponentially with 
depth from 1500 to 30128 N/m;  a linear case where the density increases linearly with the 
depth (6000 to 120000 kg/m3 ) and also the normal spring constant increases linearly with 
depth from 1500 to 30000 N/m. The adhesion spring was set 20 % of the normal spring 
constant in each case. The friction coefficient was assumed as 0.52 between particles and also 
between particle and wheel surface. 
 

 
Figure 7.2  Distribution of vertical reaction forces along the contact surface in three cases of  
                      density variation  with depth (Oida et al, 1999)  
 
 
Figure 7.2 shows the simulated result of vertical reaction forces for three cases of density 
variations with depth when the pulling force of the wheel was 7.4 N. There is no significant 
difference between these force distributions of the three cases. As a result of the deformation 
of the particle assembly,  the deep region was considerably deformed in the standard case.  
These force distribution patterns are surely similar to experimental results ( Oida et al, 1991).    
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7.3    SIMULATION OF PENETRATION TEST USING DEM 
 
A numerical technique which is known as the distinct element method (DEM) was developed 
by scientists ( Huang et al, 1992 ;  Tanaka et al, 2000 ) to simulate two – dimensional 
penetration tests in a granular material.   
A series of simulated penetration tests of a 600 tip angle penetrometer was performed in a 
normally consolidated granular soil by Huang et al (1992).  
The test was conducted by pushing the cone into the soil at a constant rate of  2 cm/s, while 
recording the penetration resistance at the tip.  
 
The cone has a radius of 5 mm, the DEM region contains 12000 disks using a linear contact 
stiffness, the radius of the disks is ranging between 0.2 to 2 mm, specific gravity of  2.67, the 
coefficient of restitution is  0.25, normal contact stiffness of 300 MN/m2 , tangential contact 
stiffness of 210 MN/m2 and interparticle friction angle of 250 .  
 
The penetrometer has a 600 tip angle which is the same as a standard cone penetrometer (Fig. 
7.3). The disk assembly was normally consolidated under  zero lateral strain conditions and 
under a vertical consolidation stress of vcσ = 1200 kPa.  Taking advantage of symmetry only 
one half of the penetrometer and soil mass was simulated. 
 

 
Figure 7.3  The standard penetrometer used in the simulation (Huang et al, 1992) 
 
 
When we analyse the results of the test,  at the penetration depth approximately  –3.5 R 
(where, R is the radius of the cone) a relatively constant penetration resistance was reached 
which is an indication of uniformity of the simulated assembly.  
The directions of particle contacts and contact forces rotate towards the tip of the 
penetrometer and a substantial increase of contact forces was noticed as the penetrometer tip 
passes the initial state of penetration.  
 
Figure 7.4 shows the distribution of normal contact forces within the assembly. The line 
thickness is proportional to the magnitude of contact force. The result shows that the contact 
forces are concentrated in the vertical direction below and around the face of the penetrometer 
tip. The contact forces between the particles and the penetrometer are low in areas 
immediately behind the penetrometer tip.   
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Figure 7.4   Distribution of normal contact force (Adapted from:  Huang et al, 1992) 
 
 
 
Tanaka et al (2000) also showed that the directions of particles contact and contact forces 
rotate towards the tip of the penetrating bar (Fig. 7.5) 
 

 
Figure 7.5   Particle behaviour during bar penetration for different particle wall friction  
                   coefficients pwµ  (Adapted from:  Tanaka et al, 2000) 
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                       8      EVALUATION OF DEM RESULTS 
 
 
8.1   COMPARISON BETWEEN FEM AND DEM RESULTS 
 
8.1.1   INTRODUCTION 
  
One can evaluate the FEM and  DEM models by comparing their simulation results. 
However such a model comparison is fairly hard and very limited in quality since soil reacts 
very non – linearly when manipulated under dynamic load. Furthermore the distinctiveness of 
the nature of the medium in which the models work, together with their limitations on using 
different soil parameters, are an uneasy task to make the comparison very effective.   
 
FEM operates on media which are continuous;  here the assumed soil body is discretized into 
finite elements that are connected to each other at nodal points. Whereas DEM works on 
discrete medium, with the assumption that the soil body is an assembly of discrete disc 
particles which are contacting each other at contact points with possible overlap.     
 
Much discussion has been presented in the previous Chapters about the fundamental 
procedures and working mechanisms of these two models (FEM & DEM).  Detailed 
description of the models is not needed in this section;  rather only a selected comparison of 
the simulation results to give the reader a general overview of the similarities and differences 
found between the models. Besides, such comparison may help to judge which model is 
relatively better in reflecting the real soil behaviour under dynamic loading or in case of 
dynamic tool – soil interactions. For this reason experimental results have been included in 
our comparisons. They can act as a check on real soil behaviour and so be used for 
benchmarking. 
          
 
8.1.2  MODEL LIMITATIONS AND METHODS OF COMPARISON 
  
8.1.2.1  Model limitations 
 
All engineering simulation models have limitations. First of all it is important to be aware of 
and to understand all the limitations used in the two simulation models (FEM & DEM). 
Furthermore some of these limitations are specific to the type of simulation ( shear box test, 
soil cutting and tyre – soil system etc. ) used in the models, which means they are case – 
sensitive. Other limitations are local, which means they are limited to the program used in the 
current models. 
 
In general the results obtained from these simulation models depend on all such limitations 
and the quality of the input data. Especially, care has to be taken by the user  when results are 
applied to compare with results of a real laboratory test.  
Below, a short list of significant limitations in model implementation is presented. 
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FEM model limitations 
 
• Cannot  be used for discrete particles (particles separated from each other by pores or 

voids) 
• Only  applicable for small deformations (strains) 
• Insufficient to create the exact model geometry of the problem of interest    
• Precision of simulation results depends on the number of nodes, input parameters and the 

coarseness of the discretized mesh. Increasing such values consume lots of computer 
memory and require longer calculation time 

• Output is stored only for a few selected nodes or stress points 
 
 
DEM model limitations 
 
• Cannot be used for a large number of particles even with the fastest PC because of its 

required longer CPU time and large storage memory 
• The big number of input parameters used and the difficulty to attach the right values to 

them 
• It is a rather new method and still needs lots of improvement   
 
 
8.1.2.2   Methods of comparison 
 
Comparison of simulation results of FEM and DEM models can be made by the two 
commonly used comparison methods which are quantitative and qualitative. 
 
Quantitative method 
Quantitative descriptions of simulation of FEM and DEM models are rarely used in 
agriculture because of the complexity of agricultural processes, for example, soil –tool 
interaction in tillage processes.  Deformation and failure patterns in tillage processes depend 
on many complex factors such as tool shape, working depth, forward speed, soil type, soil 
moisture content, soil porosity and structure, etc., which can all vary widely (Koolen, 1977).   
 
Moreover some of the simulation results, for example the forces required to move the tool (in 
the soil – tool interaction) are frequently not quantitatively assessed (Fissha, 1998). So, in 
general unfortunately the idea of full quantitative description of such agricultural processes 
like soil – tool interaction, or tyre – soil system has still not been reached (Fissha, 1998).  
The other basic problem why not to use quantitative comparison in FEM and DEM simulation 
results is the very big magnitude differences between the two results.   
 
Since DEM is best working for non – cohesive soil, the forces necessary to shear (in case of 
shear box test) or to cut (in case of  even cohesive soil by applying the modified part of Kyoto 
DEM) are very low in magnitude when compared with the forces of either FEM results or 
actual results. Oida et al (1998) showed some examples of these magnitude comparisons by 
using DEM simulation of soil deformation and reaction under a track shoe. 
 
By selecting the DEM simulation parameters by matching the simulated soil deformation with  
the actual deformation pattern, the simulated soil reaction force (max 15 N ) was smaller than 
the actual one (about 170 N).  Tanaka et al (2000) also showed the resistance force during bar 
penetration using the DEM model producing a much lower value (1.5 N) than that of the 
experimental one (20 N).   
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However there could be some chances of comparison between FEM and DEM results using 
ratios of stresses rather than single force or stress. The author has shown some efforts to 
compare the stress ratios of the curves at failure points by using FEM and DEM results of the 
shear box simulations (compare Fig. 8.3 with 8.4).  From this Figures it might be concluded 
that if the magnitude of the input parameters is rightly assessed there could be a chance of 
similarity between these stress ratios, quantitatively.  Furthermore Iwasita and Kojima (1992) 
showed that peak value stress ratio and number of slidings at contact point are almost 
quantitatively equal to the one obtained from the laboratory tests of  Oda and Konishi (1974).  
But in general all DEM simulation results are in one way or another less in magnitude than 
that of FEM or experimental results. Therefore this method of ratio comparison could not be 
used for the current simulation results of FEM and DEM models. 
 
 
Qualitative method 
 The qualitative descriptive method is a very common method to compare model simulation 
results.  Many researchers used qualitatively described methods to compare their simulation 
results  either with other, similar, simulation models or with experimental results (Momozu et 
al, 2000;  Tanaka et al, 2000;  Oida et al, 1999).   
 
In this thesis the  qualitative descriptions of some of the results produced in the simulations 
(shear box, soil cutting, tyre – soil system and tool penetration) are selected for comparison of 
FEM and DEM simulation results.   
 
 
8.2      TYPES OF SIMULATION AND RESULTS  SELECTED FOR 
           COMPARISON  
 
8.2.1    SHEAR BOX SIMULATION   
 
Based on our previous discussion of FEM results (of shear box tests in Chapter 3 and DEM 
results of shear box test in Chapter  6) among the many simulation results, deformation 
behaviour or particle displacement vectors, shear stresses and failure properties, stiffness and 
volume change during shear were selected for our comparison purpose.  
Furthermore these results stand for the basic output to determine the micromechanics of 
deformation for granular soils. Comparison has been taken place at different stages of 
shearing. 
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8.2.1.1   Deformation behaviour and particle displacement vectors during shearing 
 
During FEM simulation of the shear box test, soils are deformed in the direction of shearing 
(Figure 8.1). Especially soil particles in the lower box are displaced horizontally, the direction 
in which the shear velocity is applied. Similar behaviour has occurred when shearing with 
DEM particles (Fig. 8.2). The length of each vector represents the magnitude of the 
displacement.  
 

 
a)   Deformed mesh with nodes relative to undeformed mesh after shearing  

 
b)   Horizontal displacement vectors distribution at nodal points 
 
Figure 8.1   FEM results of deformation behaviour (a) and nodal displacement vectors 
                     (b) of  Silty loam soil ( Table 3.2) after shearing for 1 cm 
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a)   Deformation behaviour of medium granular particles after shearing for 1 cm 
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b)   Displaced position of  DEM particles relative to initial position of  DEM particles in the 
          shear box   
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c)    Horizontal displacement vectors direction of  DEM particles after shearing; the length of   
       the arrow shows the magnitude of its displacement  
 
Figure 8.2    DEM results of deformation behaviour (a),  particles displaced 
                     position (b) and  horizontal displacement vectors direction (c) of  
                     medium granular DEM particles ( Table 6.3) after shearing for 1 cm  
 
 
8.2.1.2   Shear stresses and failure properties 
 
According to FEM or analogous laboratory results from literature review (Chapter 4) of shear 
box tests of granular soils the shear stresses of such soils are made up, in general of two 
components:  firstly the frictional resistance to the relative movement between the particles 
which is the sliding friction coefficient ( µpp );  secondly the structural resistance due to the 
interlocking of the particles (c ).  Since the conventional Kyoto DEM is working best for 
cohesionless soil we skip the second term. 
 
During FEM simulation of the shear box test (as it was explained in Chapter three) the shear 
stress is increased when the interparticle friction angle is increased (Fig. 3.31).  Similar 
behaviour has occurred when increasing interparticle friction angle of DEM particles (Fig. 
6.3).  However this may not be true for interparticle friction angles beyond 400.  In this case 
the shear strength of DEM particles was decreased because of the increased particles rotation 
in the shear zone.  Besides these, Mehrabadi et al (1992) show the potential of DEM for 
calculating the shear stress of loosely and densely packed granular particles respectively. 
Although not included here, their results are in line with shear stresses of loose and dense 
sand of FEM simulation results.  
 
When we compare failure properties, for example failure forces from FEM simulation results 
can easily be determined from the stress – displacement (stress ratio – displacement in the 
present case) curves rather than that of  DEM simulation results.  From FEM output of stress 
ratio – displacement curves one can easily determine the maximum failure force (Fig. 8.3). If 
we further increase the displacement after reaching the failure point then the force increases 
gradually and hardening continues (see hardening law in section 1.4.2). Besides, the curve 
trajectories are very smooth as shown in Fig. 8.3. 
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Whereas in the current DEM simulation, failure has been reached only locally after large 
displacement which means for example, we can determine the failure force within the range 
of 1 cm shearing displacement (Fig. 8.4). If we further increase the shearing displacement, the 
failure force goes up steeply. This last increase of failure force is caused by the right wall of 
the shear box. Besides, these failure forces are indicated by sudden drops in stresses in the 
shear zone. The periodicity and magnitude of these stress drops varied with both interparticle 
friction angle and particle size (Fig. 6.25).   
 
If we compare both FEM and DEM simulation results with benchmarking laboratory test 
results of granular soil, failure behaviour from FEM simulation results was similar with the 
failure of loose granular soil and failure from DEM simulation results was similar with that of 
dense granular soil. 
In general for all results from simulation and from laboratory tests failure stress increases as 
interparticle friction angle increases and the patterns also coincide.  
 

 a)    φ = 35 
 
 

b)   φ = 40                                                                                                                   
 
Figure 8.3    FEM results of  shear stress trajectory of Silty loam soil, for  
                    interparticle friction angle of 350 (a) and that of 400 (b)    
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 a)   ppµ  = 0.4 
 

 

 b)   ppµ  = 0.5         
 
Figure 8.4    DEM results of stress ratio trajectory for medium granular particles;  
                    interparticle friction coefficient ppµ of 0.4 (a) and that of  0.5 (b)  
 
 
 
8.2.1.3   Volume change and stiffness  
 
The volume change was not analysed from FEM calculations of shear box test since the 
selected soil has no dilatancy.  However when we see literature reviews of shearing test of 
real granular soil (Craig, 1992);  (Kezdi, 1980)  we notice that a dense soil tends to dilate, 
whereas a loose soil will decrease in volume. This is qualitatively similar with our DEM 
results. See the comparison in Fig. 8.5.  
 
Analysis of volume change during shearing of DEM particles is considered in two cases.  In  
the first case, the material constants are chosen so that the behaviour of the model 
corresponds to that of loosely packed DEM particles;  while in the second case, the material 
constants are chosen so that the model behaviour corresponds to a densely packed sample. 
 

 182



 
 
In the first case, to start shear it is only necessary to make the particles slide upon one 
another. The small slip surface lies approximately in the same plane. 
In the second case (dense soil) a shear displacement is possible only if the particles do not 
merely slip along the plane of shear but also move upwards and roll over one  
another (dilatancy).  These are  similar behaviours of shearing DEM particles as it has been 
shown in Fig. 8.5 a.  During shear of loosely packed DEM particles volume was decreased 
and for that of densely packed particles volume was increased (dilatancy). 
                    
 

   a)  DEM simulation results                          b)  Experimental results (Craig , 1992 )           
 
Figure  8.5 a, b.   Volume change behaviour of granular soil  during shear  
 
 
 
Iwashita and Kojima (1992) also showed the potential of DEM models by using a laboratory 
test of simple shear with artificial DEM particles.  He analysed that the results (the shear 
stress and the volume change behaviour)  from DEM simulations were qualitatively similar 
with that of the analogous laboratory tests,  see Figure 8.6.  
 
 

 
Figure 8.6    Comparison between DEM simulation results (S) and laboratory test results (L)  
                         of a simple shear test ( Iwashita and Kojima, 1992 )  
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The other important parameter that can influence the deformation mechanisms of granular 
soil is the normal contact stiffness between the particles. This parameter has a significant 
effect on simulation of  DEM particles and can be considered as an important parameter, 
despite its effect was minimum on deformation using FEM simulation.  During FEM 
simulation of very stiff soil, failure has been reached in an earlier stage than that of less stiff 
soil (Fig. 3.25). In DEM also similar behaviour occurs. So a DEM model with a soft contact 
stiffness needs larger shear displacement to reach the peak state than that of hard contact 
stiffness.  
 
In case of  DEM simulation of soft stiffness particles, the particles move mainly in the 
horizontal direction and few of them move vertically; while in the case of a hard stiffness  
(twice the value of soft stiffness ) they move in both directions as if they were rolling over 
other particles. For the latter case the specimen shows a dilatation ( Fig. 8.7 ). 
 

 
Figure 8.7   Volume change of DEM particles during shearing for different stiffness 
 
 
 
For the same loading force a soft contact stiffness allows large overlapping at the contact 
between particles, while a hard stiffness allows relatively lower overlapping. 
And according to the shear force, soft particles can move easier than the hard ones in  
horizontal direction. Therefore the contact stiffness has an important influence in the 
deformation mechanism during DEM simulation.    
 
In general based on the above comparisons one can conclude that the deformation 
mechanisms, the shear stresses and the volumetric behaviour of the DEM model are in good 
qualitative agreement with the observed behaviour of real granular soil. 
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8.2.2    SIMULATION OF SOIL CUTTING 
 
In this section, among the FEM simulation results of soil cutting by a pendulum type 
machine, particle displacement vectors during the cutting process and particle velocity vectors 
at initial and final stages of cutting are analysed in order to compare them with those of DEM 
simulation results. The 6 cm long and 25 degree tip angle blade is assumed for the cutting 
process (Fig. 4.2). In the FEM simulation the tool is used to move 7 cm inside the 
Wageningen clay soil (Table 3.1) for a duration of  0.05 s. The soil block is discretised with a 
finite element mesh of 158 elements and 346 nodes.   
 
The soil elements with the nodes very close to the tip and the area in front of the cutting blade 
surface are selected for analysing the displacement and velocity vectors. These nodes are the 
first which meet with the blade when the blade is in action.                                                     
Table 8.1 shows these nodes with the corresponding x and y displacement of the particles for 
the first three steps of the initial stage of the cutting process.  
 
 
8.2.2.1   Particles displacement direction 
 
When the blade has displaced its first 0.7 mm (first step in the cutting process, nodes 60, 63 
and 62 show  the direction of the tool displacement, Fig 8.8 ) inside the soil. Then the soil 
particles at the top surface (for example node 61) move upward. Those in front of the tool 
surface (node 59 and 64) move with relatively large magnitude in horizontal direction and 
less magnitude in downward directions but the soil particles around the tip of the tool (node 
58) move in downward direction. This behaviour of particles displacement at the initial stage 
of cutting is also seen at DEM particles cutting process. 
 
 
 

 
 
Figure 8.8  Soil particles displacement direction at the initial stage of cutting ( first step, tool  
                  moves from 0 to 0.7 mm),  FEM simulation results 
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Table 8.1 shows the horizontal and vertical displacements of all the selected nodes at the time 
of the first three steps of the cutting process. 
 

 
 
Figure 8.9 shows the particles displacement magnitude distribution at the first three initial 
steps of  the first stage of cutting.  
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a) First step ( tool moves from 0 to 0.7 mm) 
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b) Second step ( tool moves from 0.7 to 1.4 mm) 
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c) Third step ( tool moves from 1.4 to 2.1 mm) 
 
 
Figure 8.9 a,b and c.   Soil particles displacement at the first three initial stages of cutting;  
                                     FEM simulation results 
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From Figure 8.9 it follows that the particle displacement increases in both directions when the 
tool displacement increases. However the magnitude of displacement increases more in 
horizontal direction than in the vertical direction. This is similar with DEM results of particles 
displacement behaviour during cutting (Fig. 8.10).   
Besides in both simulations (FEM and DEM ) the number of particles displaced also increases 
when the tool displacement increases. This can clearly be seen from the Figures 8.9 and 8.10. 
 
 

Figure 8.10   Soil particles displacement at the first three initial steps of  cutting DEM 
                      particles by using pendulum type machine. With increasing  simulation 
                      time, the number of particles with horizontal displacement increases 
 
 
 
8.2.2.2   Particles velocity  vector 
 
Figures 8.11, 8.12 and 8.13  show the velocity distribution vectors of the soil particles for the 
above three steps of initial stage of the cutting processes simulated with FEM.  
These velocity distribution vectors are similar with those of DEM particles, especially at the 
first step of  the initial stage of cutting (compare Fig. 8.11a with Fig. 8.15 a). The magnitude 
of the velocity vectors decreases with increasing relative positions of  the particles to the 
cutting tool. 
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Table 8.2 shows the horizontal and vertical velocity magnitude distribution of the selected 
nodes during the first three initial steps of cutting 
 
 

 
 
Figures 8.11, 8.12, 8.13 and 8.14 show the velocity vectors direction and their corresponding 
magnitudes at different stages of cutting process during FEM simulation. 
 
   

 
 
 a)   Velocity vectors, tool displaced ( 0 – 0.7 mm)   
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b)  Magnitude distribution of the above velocity vectors 
 
Figure 8.11 a, b.  Velocity vectors with their magnitude at first step of cutting   
 
 
 

 
 
a)  Velocity vectors, tool displaced ( 0.7 – 1.4 mm) 
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b)  Magnitude distribution of  the above velocity vectors at second step of cutting  
 
 
Figure 8.12 a, b.  Velocity vectors with their magnitude at second step of cutting   
 
 
 

 
 
a)   Velocity vectors, tool displaced ( 1.4 – 2.1 mm) 
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b)  Magnitude distribution of the above velocity vectors at third step of cutting 
 
 
Figure 8.13 a, b.  Velocity vectors with their magnitude at the third step of cutting   
 
 
 
 
When we analyse the displacement and the velocity  vectors distribution at the final step of 
cutting (after 70 mm of tool displacement), during FEM simulation, almost all the particles 
with the above selected nodes are displaced in horizontal direction with relatively large 
magnitude (Fig. 8.14 b) . This can been seen especially from the velocity distribution ( Fig. 
8.14 a for velocity vectors  and  Fig. 8.14 c, for their magnitude). 
 

 
a)  Velocity vectors at the final stage, tool displaced (69.3 – 70.0 mm) 
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b)  Displacement distribution of soil particles at the final stage of cutting 
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c)  Velocity vectors distribution at the final stage of cutting 
 
Figure 8.14 a, b, c.  Displacement and velocity distribution at the final stage of cutting 
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However, this has been true only for the above selected nodes. For other nodes, not shown 
here, the motion of the soil particles would be largely downward, especially those soil 
particles at the right bottom of the soil block (see Fig. 3.34 d).     
 
Moreover during FEM simulation of cutting the particle velocity vectors have an almost equal 
distribution of motion in the downward, upward and horizontal directions at the first step of 
cutting (Fig. 8.11 a). Downward and upward motion of particles dominate during the 
intermediate stage and horizontal motion of particles dominates the system till the end of the 
cutting action or the final step of cutting (Fig. 8.14 a), except for particles at the right bottom 
of the soil block. All particle motions are determined from the initial positions of the particles 
before cutting. 
 
In case of DEM  simulation of cutting, the DEM results show similar behaviour with those of 
FEM at the first step of the initial stage of cutting (Fig 8.15 a). Upward motion dominates at 
the intermediate stage (Fig 8.16 a). Downward motion of particles dominates during the final 
stage (Fig. 8.16 b).    
 
The increased downward motion of particles at the final stage of cutting during DEM 
simulation is perhaps explained by soil particles falling down due to gravity;  which is similar 
with the real laboratory test.  For the DEM results presented in this section  the DEM 
parameters used are of  Table 6.6, with adhesion coefficient of 1.0=adC , unless otherwise 
mentioned explicitly.  
 
 
Particle velocity distribution at the initial stage of cutting 
 
 

 
a)  Velocity vectors at first step, after 0.2 s of  tool – particles contact   
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b) Velocity vectors at second step, after 0.4 s of tool – particles contact 
 
Figure 8.15 a, b.    Velocity  vectors distribution at the first two steps of the initial stage of   
                                 cutting process;  DEM results   
 
 
 
 
 
Particle velocity distribution at  intermediate and final stages of cutting 
 
 

 
a)  At intermediate stage, shows upward motion 
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b)  At final stage, shows downward motion  
 
Figure 8.16 a, b.   DEM particles velocity distribution at intermediate and final stages of  
                               cutting 
 
 
 
 
After running and analysing a number of soil cutting simulations by DEM and FEM models, 
the general pattern of  particles velocity vectors distribution has become clear. Figure 8.17 
shows the general patterns of DEM and FEM particle velocity vectors distribution at different 
stages of the cutting process.  In  Fig. 8.17 double arrows show the dominant distribution and 
the single arrow shows a relatively normal distribution concerning an almost equal number of 
particles.    
 

Figure 8.17   The general pattern of  DEM and FEM particles velocity vectors distribution at  
                         different stages of the  cutting process 
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By comparing the results of  DEM and FEM simulations with the benchmarking laboratory 
test results, we can easily judge the advantages of DEM over FEM simulation models. 
DEM results show more behaviour similar to the real soil laboratory tests than FEM results 
during soil cutting, for both adhesive and non - adhesive DEM particles. 
  

 
a)  Adhesive particles  (  = 0.1)                        b)  Non – adhesive particles (C  = 0.01) adC ad

 
Figure 8.18 a, b.   Particles behaviour during cutting of DEM particles assembly, where   adC
                              is coefficient of adhesion area ( 10=bedN , 7.0=ppµ , r = 10 mm) 
                                          
 
During cutting of adhesive DEM particles we do not see much scattering of particles during 
the process (Fig. 8.18 a), whereas for non-adhesive DEM particles, scattering of particles 
dominates the cutting process (Fig. 8.18 b).  This  scattering behaviour of soil particles is also 
seen in laboratory test of cutting Ede sand soil (Fig. 4.4 b).    
In case of adhesive DEM particles cutting, particles are displaced more or less together by 
forming  soil clods. Cracks are preceeding the blade motion (Fig. 8.19 a, b), which is similar 
with the laboratory results (Fig. 4.4 a)      
 

 
               a)  466.0=ppµ                                                        b) 36.0=ppµ  
 
Figure 8.19 a, b.  Particles behaviour during cutting of DEM particles assembly ( = 0.1,  adC
                             ,  r = 4.5 mm) 50=bedN
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8.2.3    SIMULATION OF TYRE – SOIL SYSTEM 
 
8.2.3.1  Vertical stress and volume change 
 
During  FEM simulation of  the tyre – soil system soil vertical reaction stresses (total stresses 
in this case) increased on areas around the tyre –  soil contact (Fig. 3.8 a).  Soil plastic cap 
points (soil compaction) were seen on areas where such vertical stresses were greater than the 
preconsolidation stress of the soil.   
 
In case of DEM simulation of tyre performance, the volume change of the particles assembly 
(soil compaction) is observed on areas where the wheel and the particle assembly surface 
contacted each other and even deeper in the profile (Oida et al, 1999). 
This behaviour of DEM particles is similar to the previously mentioned FEM results of soil 
compaction.  Figure 8.20 also shows the distribution of the vertical reaction force along the 
wheel-tyre contact surface from the DEM model. For detailed information of tyre 
performance by the DEM model, see Chapter 7.  
 
The DEM parameters (Table 7.1) were selected by a trial and error method in such a way that 
the simulated values approach the experimental values. The vertical reaction force 
distribution pattern from DEM simulation results is similar to that of the experimental result 
of the rigid wheel of mass 7 kg,  pull force of 7.4 N and wheel rotation  angular speed of 36 
deg / s  on silty sand soil with moisture content of 10 % (Oida et al, 1991).  
 

 
a)  DEM results ( Adapted from:  Oida et al, 1999)        b)   Experimental results (Adapted  
                                                                                                from:  Oida et al, 1991) 
 
Figure 8.20    Distribution of vertical reaction force during tyre – soil simulation  from DEM  
                         (a ) and  experiment (b) 
 
 
 
8.2.4    SIMULATION OF PENETRATION TEST 
 
8.2.4.1   Resistance force and particle motion during penetration 
 
Among the FEM simulations of penetration, analysis of a  60 0 tip angle wedge penetration 
into Silty loam soil of  Table 3.2  with wedge height of 20 cm, wedge width of 23 cm, a 
constant penetration velocity of 20 cm/s, time step of 0.0001 s, duration of penetration of 1 s, 
and penetration depth of 10 cm was selected to compare soil behaviour during penetration 
with that of DEM simulation.   
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During FEM simulation of the 60 0 wedge penetration, the soil particles are moving in the 
direction of the wedge displacement and the maximum total stress is concentrated at the tip 
and the front surface of the wedge (Fig. 8.21 a).    
Because of such concentration of stresses, soil compaction (cap failure points) occurred at the 
tip and around the surface of the wedge (Fig. 8.21 b).  
 

a)  Total stress distribution 
 
 

           Mohr - Coulomb  failure point 
           Plastic  cap  failure  point  ( compaction) 

b)  Failure points 
 
Figure 8. 21 a, b.   Silty loam soil behaviour during penetration of a 60 degree wedge; FEM  
                              results 
 
 

 199



 
The DEM simulation of  penetration of a 60 degree tip angle penetrometer into normally 
consolidated granular soil was analysed by Huang et al (1992).  For detailed information of 
the simulation see Chapter 7 section 7.1.2. 
 
When we analyse the results of this simulation, the contact forces appear to be concentrated 
on the vertical direction below and around the face of the penetrometer tip and the contact 
forces are low in the area immediately behind the penetrometer tip (Fig. 7.4).  
This behaviour of DEM particles during penetration are analogous to the total stress 
concentration at the tip and surface of the wedge during FEM simulation of a 60 0 tip angle 
wedge penetration. These contact forces are decreasing in magnitude when the distances of 
the particles from the penetrometer surface are increasing, which is the same as total stresses 
decreasing for soil particles far from the penetrating wedge.  
 
When penetration starts (Fig. 8.22) during DEM simulation displacement of particles by the 
penetrating bar is accompanied by a rise of the particles surface near the place of penetration. 
This behaviour of DEM particles during penetration is analogous to soil deformation 
behaviour during initial penetration of wedges (Fig. 3.15 b).  During FEM simulation of 
penetration, soil can be deformed or compacted based on the deformability or compactability 
of the soil (Koolen and Kuipers, 1983)   
 

 
Figure 8.22   Behaviour of DEM particles at different points of time during penetration 
                      (Tanaka et al, 2000) 
 
 
For the FEM simulation results of  the current penetration test, the resistance force of the soil 
is increasing when the depths of penetration increases ( Fig. 8.23).  It seems that the curve is 
very smooth when we compare it with that of the DEM simulation result.  

 
Figure 8.23   Resistance force during FEM simulation of penetration into silty loam soil 
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Figure 8.24 shows the curve of  penetration resistance versus depth of the penetrometer tip 
during penetration.  After a penetration of 1.75 cm,  the penetration resistance fluctuates with 
less magnitude and a relatively constant value is reached which is an indication of uniformity 
of the simulated particulate assembly (Huang et al, 1992). This is analogous to the obtained  
steady state condition  after large depth of penetration of a wedge into incompactible soil 
(Koolen and Kuipers, 1983).  
 
In general, DEM simulation results showed, that  penetration resistance increases when depth 
of the penetrometer increases. Curve fluctuation of the penetration resistance also occurs in 
DEM simulation. One possible reason for such a fluctuation was the lack of cohesion effect as 
explained by (Tanaka et al, 2000) due to the no – tension joint in the contact model (Fig. 5.3). 
Which means a frequent small change of resistance given by one particle would cause even a 
big change of penetration resistance.    
 

 
Figure 8.24   Resistance force versus depth during DEM simulation of penetration  
                        (Adapted from: Huang et al, 1992) 
 
 
The DEM simulation indicates that fine particles around the penetrometer tip experience a 
sharp increase of contact stresses. This may result in crushing of the particles during 
penetration of real granular soil (Hauang et al, 1992) .  
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8.2.5    DISCUSSION AND CONCLUSION 
 
Even though the FEM simulation model has many advantages, like its easiness of considering 
soil as a continuum medium without any holes or gaps, being very advanced, well known and 
easily available, it has also many basic limitations as explained before to show real granular  
soil behaviour and properties. 
 
Whereas the DEM simulation model, although being not very advanced and having also  
some limitations, the results from this model show very convincing granular soil properties. 
Despite those limitations the DEM models have also many advantages over the FEM models.   
 
In the DEM model the soil medium is represented by assemblies of discrete particles with 
pores (voids) which represent true soil structure.  Moreover in the DEM model (since it is not 
yet very advanced) there are many possibilities to modify and adjust the soil properties. For 
example concerning the cohesion force between particles as has been introduced in Kyoto 
DEM for cohesive soil properties.  
 
Comparison of  DEM simulation results with analogous FEM simulation results demonstrate 
qualitatively similar behaviour. Moreover particles behaviour from DEM results are in good 
agreement with that of experimental or laboratory test results. Therefore it is not erroneous to 
conclude that DEM has the potential capability to model granular soils better than that of 
FEM. 
 
In other words DEM is a potentially useful and a more realistic method for simulating the 
deformation mechanisms of granular soil since its results are more convincing and similar to 
the behaviour of real granular soil during laboratory tests and in the field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



              9        GENERAL DISCUSSION AND CONCLUSION 
 
 
Agricultural soil is structured, has a certain strength and is usually compacting, thus 
structured soil plays a major role in plant growth (McKenzie and Mcgarry, 1999; Lebert et al, 
1988; Gysi et al, 1999; Koolen, 1999). Although soil structure and soil mechanical properties 
have been extensively studied, they are  still the least understood of soil characteristics 
affecting crop production, sustainability, environmental quality and tillage requirements.  
For an agricultural engineer concerned with soil compaction soil structure is assessed by 
indirect measurement of parameters related to soil mechanical properties.   
 
The assessment of soil mechanical properties when soil interacts with different dynamic  
loading systems, for example tyre – soil system, wedge penetration , shearing and soil block 
cutting by pendulum type machine, can be treated using the two basic soil models (FEM and 
DEM). A number of scientists used such models particularly FEM to approximate the soil 
mechanical behaviour when soil interacts with agricultural machinery or tillage tools (see 
section 3.9.3). However modelling these dynamic load – soil systems ( for example tyre – soil 
interaction) with FEM still remains complicated (Barneveld, 2000). 
 
In this thesis, analysis of FEM and DEM of  the previously mentioned loading systems is 
presented. Our focus is to evaluate simulation results and to determine the type of model 
which best reflects the real soil properties during such load – soil interactions, despite their 
limitations. This can be done based on the model simulation results (output).  
 
Plaxis, one of the best examples of the finite element method (FEM) is used to treat soil 
during load – soil interactions, by assuming soil as a continuous medium. Plaxis has a number 
of limitations (see section 8.1.2.1) despite its advantages to treat dynamic load – soil 
interactions (Plaxis for the dynamic module version 7.2). Almost all agricultural processes are 
dynamic processes; tyre – soil interaction and tool – soil interaction are best examples. 
Therefore the basis of  prediction of a good set of soil properties (stresses and deformations) 
under load – soil interactions using the finite element method is the choice of the right 
constitutive model in connection with the proper assessment of model parameters. However 
besides all the limitations of FEM modelling, determination of the right model parameters and 
their values still remains challenging.  
 
The available models in Plaxis can roughly be divided into first order (the linear elastic model 
and the Mohr – Coulomb model) and high order models (Cam - Clay type model and 
Hardening – Soil model) . The first order model (Mohr – Coulomb in this thesis) is 
characterised by a simple relationship between increments of stress and increments of strain 
with only a few model parameters (see section 2.3.1.1).  Parameters of  like E, v , ψ , c  and 
φ  are the basic model parameters of the Mohr – Coulomb model. Measuring  values for these  
model parameters is not an easy task. Besides data for such parameters are hardly available 
particularly for agricultural soil. Therefore all parameter  values are taken based on different 
assumptions as explained in this thesis.  
 
Furthermore the high order model (Cam - Clay in this thesis) has a more complex formulation 
based on hardening plasticity and has more parameters (see section 2.5.2.1).  Parameters of  

, c φ , , cp *κ  and  are the basic model parameters of the Cam – Clay type model. The 
same explanation of what is stated for Mohr – Coulomb model works for that of Cam – Clay 
type model about determining and availability of parameter values.  

*λ
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It is often believed that performing finite element calculations is only useful if results of 
extensive laboratory testing are available from which model parameters can be determined 
directly. However laboratory tests are more costly and proper sampling is difficult. 
In general all deviation of the FEM calculation from the actual results is perhaps caused by 
the inaccuracy in  measuring the correct input soil parameter values applied in the calculation. 
 
 
Distinct Element Method (DEM) is one of the best tools used to treat soil under load – soil 
interactions by assuming soil as discontinuous (discrete) medium. This is the basic difference 
of DEM from FEM. The medium is represented as an assembly of discrete particles with the 
possibility of cyclic contact and failure by updating contact interactions throughout the 
simulation.  DEM has a potential capability to represent the real soil medium from the 
beginning. In the same way as for FEM,  a number of scientists also used DEM to treat 
granular materials in general since DEM has many other applications than soil. 
However very few are in the areas of Agricultural Engineering. DEM is a very recent model 
in comparison with FEM, and still needs lots of improvement to increase its potentiality 
despite the many modifications done till now.    
 
Although DEM is potentially rich to represent the real soil medium, it has also limitations 
(8.1.2.1) and is not applicable in all circumstances. Selecting the right contact model and 
determining the right model parameters inclusive validation still needs lots of investigation.  
The initial particle arrangement, the mechanical contact modelling and determination of the 
right model parameters with associated parameter values are the main features on which the 
model results are dependable. All these features are still under investigation. Particularly a 
method of determining the right model parameters with correct estimated values is very 
challenging. In this thesis ,  , , nk sk adC ppµ and r  are the most influential parameters of the 
DEM model results. For example if DEM is modified depending on our domain of interest 
(see section 5.4), the number of input parameters is increased. This all needs the right 
assessment of input values which further increases the problem in model studies, since 
parameter values are given by trial and error methods.  

i

 
Mostly, parameter values are selected by assumption of similar patterns of soil behaviour 
during laboratory tests (Oida et al, 1999).  In this thesis some assumptions are made to 
estimate the spring constant value ( ) of sand soil using the Hertz contact theory (Eqn 6.2). 

From , k could easily be estimated  from the relation (

nk

nk s ns k
5
1

=k ). This is a generally 

accepted estimate by many scientists (Momozu, 2001;  Umekage, 1998). But still the theory is 
applicable for only sand soil with high Young’s module ( E ) value and large overlap between 
particles (δ ) relative to their radius ( ). For cohesive soil which has a very low E  value 
compared with that of sand soil, the estimated k  value could be very low and such a value 
does not bear the applied load during load – soil interaction. Then the  calculation fails.  

ir

n

 
In DEM simulation, the interparticle friction coefficient ( ppµ ) is one of the most influential 
parameters in the study of micromechanics of particle deformation. That means, interparticle 
sliding and rolling appear to be highly influenced by the input values of ppµ .  A number of 
scientists concluded that the output interparticle friction angle, estimated from linear 
regression (Coulombs failure envelope) is lower than the input interparticle friction angle 
(Momozu et al, 2001;  Morgan, 1999).   
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Therefore the interparticle friction coefficient obtained from DEM simulation should not be 
used directly as an input of the interparticle friction coefficient between soil particles. This 
conclusion agrees with some of the results presented in this thesis. However in contrast to 
this, the author has estimated the range of the input interparticle friction coefficients of 
granular soil from DEM simulation of the shear box test (see Table 6.5). The results in Table 
6.5 at least imply a possibility of estimating the input interparticle friction coefficient of 
granular soil directly from the  DEM simulation of shear box test. This under the condition 
that all the input parameter values are rightly assessed.   
 
In general, and still under investigation until now, there is no such method to estimate the 
input DEM model parameter  values directly from the real soil properties. However the DEM 
simulation results presented in this thesis are in good qualitative agreement with the real soil 
properties under the same conditions of  load – soil interaction. Which means, DEM 
simulation results presented in this thesis are in better qualitative agreement with laboratory 
experimental results than similar simulation results of FEM presented in this thesis (refer 
Chapter 8). Due to the low magnitude values of DEM results, quantitative comparison could 
not be carried out at least in this case. This with exception of the failure point indication by 
using quantitative comparison of stress ratios given in this thesis. 
 
The DEM results presented in this thesis have been compared with similar FEM results and  
laboratory test results from literature review. They are selected as benchmarking for those 
FEM and DEM simulation results.  
 
Although DEM seems still on its early stage of development relative to comparison with 
FEM, the results are very promising and pointing their high potential capability for analysing 
the actual soil properties during load – soil interactions, when at least some of the limitations 
are removed and a better method for determining the right model parameter values is reached.    
 
 
 
 
 
            RECOMMENDATIONS ON FURTHER STUDIES 
 
 
A number of improvements still has to be made regarding FEM and DEM simulation models, 
to further analyse and determine the best simulation results, from which the potentiality of the 
models is increased with respect to proper selection and validation of  the real granular soil 
properties. By using the very latest FEM simulation models other than Plaxis , for example 
MSC.MARC,  ABAQUS/Explicit interactive version 6.3 (released in 2002) we can minimise 
the limitations of the FEM models used in this thesis and improve the results. 
 
The FEM simulation model of Plaxis can be used for analysis of small deformation but this 
limitation is removed in the FEM simulation model of MSC.MARC. Which enables to apply  
relatively large deformations.  Besides, simulation of this model is computationally intensive 
which means minimising the time spent during the simulation. It can be applied with many 
options of operating systems (Windows 2000, Linux, Windows NT etc.). 
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ABAQUS/Explicit: Interactive version 6.3 (released in 2002) has also many advantages over 
the FEM simulation model Plaxis used in this thesis. One advantage is the use of a central 
difference rule to integrate the equations of motion explicitly through time, using the 
kinematics conditions at one increment to calculate the kinematics conditions at the next  
increment. In other words ABAQUS/Explicit uses explicit time integration rather than 
implicit time integration which is used in Plaxis.  
 
This explicit time integration used in ABAQUS/Explicit has many advantages over implicit 
integration. The explicit method is especially a well suited to solve high speed dynamic 
events that require many small increments to obtain high resolution solution. If the duration of 
the event is short the solution can be obtained efficiently. Contact conditions and other 
extremely discontinuous events are readily formulated in the explicit method and can be 
enforced on a node – by – node basis without iteration. ABAQUS/Explicit reduces the 
computational costs by speeding up the simulation.  
 
Therefore, by considering all the above benefits of the very advanced FEM simulation models 
we can increase our possibilities of using such simulation models on the areas of  load – soil 
interactions. 
 
 
On the other hand DEM models also need lots of improvement first in the initial arrangement 
of particles, second in the mechanical contact modelling and third in assessment of the right 
parameter values. In general the magnitude of  the DEM simulation results is very low when 
compared with that of FEM simulation results or laboratory experimental results. 
For example, in order to increase the magnitude of shear stress of DEM particles during 
shearing simulation or to increase the work done by the pendulum cutting blade we have to 
improve the initial arrangement of particles for the former case and the mechanical contact 
modelling for the latter case. 
 
During shearing of real soil, finer particles are generates which will tend to fill the pore 
spaces, increasing the contact area and consequently the frictional resistance to shear 
deformation. This phenomenon would be most apparent for fine granular particles where 
smaller particles contribute relatively more to the area of the assemblage (see section 6.1.4.2). 
DEM still needs improvements on its application for cohesive soil. Although the assumption 
of an adhesion spring (on the normal direction of the contact modelling of DEM particles) 
decreases the scattering of DEM particles and rather forms soil clods during cutting, the 
magnitudes of the normal as well as the tangential forces of the cutting blade are very low 
when compared with that of FEM or laboratory experimental results. 
 
Developing methods to estimate the right model parameter values that correlate with the real 
soil properties is one of the main features that scientists on this area of expertise have to focus 
on. DEM also needs improvements on reducing the number of model parameters. Especially 
at the time of modification. This has to be done by using degrees of sensitivity of parameters 
which help to concentrate on the selected (most influential) parameters. Attention should also 
be given to mechanisms to reduce the computational time of DEM simulations. 
 
Finally  current advancement in computer technology together with the possibilities of 
moving from 2D modelling to 3D modelling will enhance the potential capability of DEM 
over the coming years.  
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                                           SUMMARY 
 
 
Although soil structure and soil mechanical properties have been extensively studied during 
load – soil interactions, they are still the least understood in agricultural soil mechanics. They 
directly or indirectly affect crop production, environmental quality and tillage requirements. 
Agricultural soil is structured, has a certain strength and is often tilled by machinery or 
compacted by vehicles. Agricultural soil structure and strength affect the growth of roots and 
rooting patterns which directly or indirectly affect the quantity and  the quality of the crop 
yield. Tillage and compaction are processes that affect soil structure and strength. Besides, 
soil water content at the time of tillage and traction, tractor loads, implement design, speed 
and tyre size, type and inflation are important parameters which affect soil structure and soil 
mechanical properties.   
 
There is no doubt that a good investigation of soil structure and soil mechanical properties 
during load – soil interaction is highly dependent on the type of the methods (models) used to 
accomplish such a task. The two basic soil models used for the assessment of soil structure 
and soil mechanical properties are the well known finite element method (FEM) and the 
distinct element method (DEM) which is relatively new and still under investigation.  
 
This thesis covers an extensive review of  the two models (FEM and DEM) for analysis of 
application of the models for dynamic loading cases like tyre – soil system, wedge 
penetration, shear box test and soil cutting by a pendulum type machine.  Moreover the thesis 
covers the evaluation of the two models by showing some basic qualitative comparisons of 
the simulation results to show the potential capability of the models and to determine our first 
priority of the models based on similarities between the model results and the real soil 
mechanical properties under the same conditions of load – soil interaction. 
 
 
FEM simulations  
Plaxis, one of the best examples of the finite element method (FEM) is used to treat soil 
during load – soil interactions, by assuming soil as a continuous medium. Plaxis has a number 
of limitations despite its advantages to treat the dynamic load – soil interactions common in 
agricultural processes. 
 
The basis of a good prediction of soil properties (stresses and deformations) under load – soil 
interactions using the finite element method is the choice of the right constitutive model in 
connection with the proper assessment of model parameters. However besides all the 
limitations of FEM model, determination of the right model parameters and their values still 
remains challenging. The available models in Plaxis can roughly be divided into first order 
(the linear elastic model and the Mohr – Coulomb model) and high order models (Cam - Clay 
type model and Hardening – Soil model).  
 
The first order model (Mohr – Coulomb model in this thesis) is characterised by a simple 
relationship between increments of stress and increments of strain with only a few model 
parameters.  Parameters of Young’s modulus, Poisson’s ratio, dilatancy, cohesion and internal 
friction angle are the basic model parameters of the Mohr – Coulomb model. Measuring  
values of such model parameters is not an easy task.  
Besides, data for such parameters are hardly available particularly for agricultural soil. 
Therefore all parameter values are taken based on different assumptions as explained in this 
thesis. The soil under investigation for the Mohr – Coulomb model is the Wageningen clay 
soil. 
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On the other hand the high order model (Cam - Clay type model, in this thesis) has a more 
complex formulation based on hardening plasticity and has more parameters.  Parameters of  
cohesion, internal friction angle, dilatancy, preconsolidation stress, swelling index and 
compression index are the basic model parameters of the Cam – Clay type model. The same 
explanation of what is stated about the Mohr – Coulomb model works for that of Cam – Clay 
type model about determination and availability of parameter values. The soil under 
investigation for the Cam – Clay type model is the Silty loam soil. 
 
In general all deviation of the FEM calculation results from the actual results is perhaps 
caused by the inaccuracy in  measuring soil parameter values which is the main problem in 
FEM calculation as explained above. 
 
 
DEM simulations 
Distinct element method (DEM) is one of the best tools used to treat soil during load – soil 
interactions by assuming soil as discontinuous (discrete) medium. This is the basic difference 
of DEM from FEM: its assumption of the medium as an assembly of discrete particles with 
the possibility of cyclic contact and failure by updating contact interactions throughout the 
simulation. DEM has a potential capability to represent the real soil medium from the process 
beginning. In the same way as FEM, also a number of scientists used DEM to treat granular 
materials based on the area of their interest. However very few are in the areas of Agricultural 
Engineering. DEM is a very recent model in comparison with FEM, and still needs lots of 
improvement to increase its potentiality despite the many modifications already done until 
now.    
 
Although DEM is potentially rich to represent the real soil medium it has also limitations and 
is not applicable in all circumstances. Determining the optimum initial arrangement of 
particles, which represents the actual initial soil structure, having the right contact model and 
determining the right model parameters with their right parameter values still need lots of 
investigation.  
 
The initial particle arrangement, the mechanical contact modelling and determination of the 
right model parameters with their right parameter values are the main features on which the 
model results are dependable. All these features are still under investigation. Particularly a 
method of determining the right model parameters with their estimation of parameter values is 
very challenging. In this thesis the contact stiffness between particles, the tangential stiffness 
between particles, the adhesion coefficient between particles, the interparticle friction 
coefficient and and the particle size are turned out to be the most influential parameters of the 
DEM model results. 
 
 
Conclusion 
Despite all the limitations of the DEM model, its simulation results presented in this thesis are 
in a good qualitative agreement with FEM simulation results or analogous laboratory 
experimental results of real soil under the same conditions of  load – soil interaction.  
Therefore it is not erroneous to conclude that DEM has the high priority and good potential 
capability for assessing soil structure and studying fundamental soil mechanical properties 
during dynamic load – soil interaction. 
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                                             SYMBOLS 
 
  

fu  displacement column matrix of any point in an element 

N shape function matrix 
u nodal displacement column matrix of an element 
ε  strain vector at any point in an element 
B element strain matrix 
σ  stress vector at any point in an element 
C a constitutive matrix depending on the material properties of the element  

nf  element nodal force column matrix 
k element stiffness matrix 
K global stiffness matrix 
U column matrix composed of nodal displacements 
F global load column matrix caused by external forces 

zyx fff ,,  body forces in x, y and z axis respectively 

zzyyxx εεε ,,  principal strains in x, y and z axis respectively 

E Young’s modulus of the material 
v  Poisson’s ratio 

xyτ  shear stress 

xyγ  shear strain 

D stiffness matrix 
G shear modulus 

zyx σσσ ,,  principal stresses in x, y and z axis respectively 

vε  volumetric strain 

octσ  octahedral normal stress 

octτ  octahedral shear stress 

octε  octahedral normal strain 

octγ  octahedral shear strain 

ijσ ′  deviator stresses 

ijε′  deviator strains 

K bulk modulus (page 16) 
σ∆  incremental stress 
ε∆  incremental strain 

τ  shear stress 
c cohesion 
φ  angle of internal friction 

ijdε  total strain increment 

e
ijdε

p

 elastic strain increment 

ijdε  plastic strain increment 

k 
pv  

 
 

yield constant (page 20) 
penetration velocity 
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0k  failure constant 
e

ijdσ  elastic stress increment 

M mass matrix 
C damping matrix (page 22) 

uuu ,,  displacement, velocity and acceleration vectors 

RR βα ,  Rayleigh coefficients 

ic  interface cohesion 
R strength reduction factor 

soilc  soil cohesion 

iφ  angle of friction of the interface 

soilφ  angle of internal friction of the soil 

βα ,  constants that determine numerical time integration 
t time 

t∆  time interval or time step 
θ  a constant that determine the accuracy of the numerical time integration 

critt∆  critical time step 
ς  multiplying factor 
B average length of an element (page 27) 
S surface area of an element 
ρ  density of the material 
ε  strain rates 

eε  elastic strain rate 
pε  plastic strain rate 

f yield function 
g plastic potential function 
λ  plastic multiplier 

tE  tangent modulus 
T rotational matrix 

TT  transpose of matrix 
α  a switch constant (page 28) 
ψ  dilatancy angle 

P
Vε
P

 increment of plastic volumetric strain 

γ  plastic distortion increment 

0K  coefficient of lateral earth pressure 
χ  degree of saturation 

wS
′

 suction in the soil water 

p
∗

 mean effective stress 

λ
∗
 modified compression index 

κ  modified swelling index 

cp ,   prep preconsolidation stress 

hv σσ ,
t

 vertical and horizontal stresses respectively 

δ  time step 
n number of additional steps 
 
f  

 
surface function of the stress state 
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q  deviatoric stress 
ijσ  stress tensor 

m number of dynamic sub steps 
yx σσ ′′ ,  horizontal and vertical effective stresses respectively 

wγ  wet soil density 

dγ  dry soil density 
L vertical load 

IPT  tyre inflation pressure 
r radius of the loaded area 
IP inflation pressure 
P total force on the wedge 

1P  normal resistance force of the wedge 

2P  tangential resistance force of the wedge 
N normal force (page 62) 
T tangential force (page 62) 
α  wedge angle (page 62) 
µ′  coefficient of soil – metal friction 

lv  low penetration velocity 

hv  high penetration velocity 

nσ  vertical pressure 
e

vε  elastic volumetric strain 

F footing force (page 94) 
r radius of elastic boundary (page 95) 
β  tip angle (page 100) 
R rotation radius 
γ  setting angle (page 100) 
H working depth 
L bite length (page 100) 

0I  moment of inertia of the pendulum 

tα  angular acceleration of the pendulum 
R distance from axis to blade tip (page 101) 

tF  resistance force against blade motion 
L length from rotation axis to centre of gravity of the pendulum (page 101) 
m mass of the pendulum (page 101) 
g acceleration due to gravity (page 101) 

tθ  rotational angle of the pendulum 
e friction energy lost by the pendulum bearings 

absE  energy absorbed by the soil loosening process 

h∆  change in heights between the starting and stop position of the pendulum 
θ∆  rotation angle during pendulum motion 

vσ∆
y

 change in vertical stress 
x,  discs x and y respectively 

ii yx ,  centre co-ordinates of discs x and y respectively 

ii yx ,  velocity vectors of discs x and y respectively 

ii yx ,  acceleration vectors of discs x and y respectively 
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yx θθ ,  angular velocities of discs x and y respectively 

yx θθ ,  angular accelerations of discs x and y respectively 

yx RR ,  radii of discs x and y respectively 

yx mm ,  masses of discs x and y respectively 

D distance between centres of disc x and disc y (page 113) 
ie  unit vector 

sn uu ,  normal and tangential displacements of discs 

sn uu ,  normal and tangential velocities of discs 

sn uu ∆∆ ,  increments of normal and tangential displacements 

sn FF ∆∆ ,  increments of normal and tangential forces 

( ) ( )NsNn FF ,  total sum of normal and tangential forces 

sn kk ,  normal and tangential stiffness between discs (particles) 

sn ηη ,  normal and tangential damping coefficients 
γ  proportionality constant (page 117) 
m mass of particle (page 117) 
a proportionality constant  

ji rr ,  radii of particles I and j respectively 

adk  adhesion spring 

adC  adhesion coefficient 

adF  adhesion force 

sn FF ,  normal and tangential contact forces 

sn ff ,  normal and tangential dispersion forces 

sn dd ,  normal and tangential damping forces 

sn xx ∆∆ ,  normal and tangential increments of relative particle displacement 

sn xx ∆∆ ,  normal and tangential increments of relative particle velocity 

FC  cohesive force 
µ  interparticle friction coefficient (page 121) 
I moment of inertia (121) 
C , D damping coefficients (page 122) 
φ  rotational displacement (page 122) 

pF  sum of all the force vectors from all the particles in contact 

poreF  force from the pore material 

pM  sum of all the moments from all the particles in contact 

poreM  moments from all the pore material  

a external acceleration acting on the particle (page 122) 
M sum of all the moments acting on the particle (page 122) 

rk  elastic spring (page 122) 
F sum of all the forces acting on the particle (page 122) 
  

rc  dashpot 

rµ  slider at contact 
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rθ  relative rotation by rolling 

cr  constant radius 

R random number between 0 and 1 (page 124) 
iRR ,max  maximum and incremental particle size 

iNN ,max  maximum and incremental abundance 
D power law exponent (page 125) 

mσ  isotropic mean stress 
e void ratio (page 126) 

sn ee ,  normal and tangential elastic forces 

ji uu ∆∆ ,  horizontal displacements of particles i and j 

ji vv ∆∆ ,  vertical displacements of particles i and j 

ijα  angle between the line connecting the centres of particles and x-axis 

ji ϕϕ ∆∆ ,  rotational displacements of particles i and j 

[ ]tiX  horizontal resultant force on particle i  

[ ]tiY  vertical resultant force on particle i 

[ ]tiM  resultant moment on particle i 

ii vu ,  acceleration of particle i in x and y direction 

iϕ  angular acceleration of rotation of particle i 

nwk  normal spring constant between particle and wall 

ppµ  interparticle friction coefficient 

pwµ  particle – wall friction coefficient 

shV  shear velocity 

pret  precalculation time 

sht  shearing time 

outputS  step output 

pm  particle mass 

bh  height of shear box 

bw  width of shear box 
cgps coarse granular particles simulation 

rc  rolling friction coefficient (page 137) 

bN  number of particle at bottom layer 

st  simulation time 
INP input  
SIM simulation 
cgppc coarse granular particles pendulum cutting 

ji EE ,  Young’s modulus of particles i and j  

σ ′  stress vector transformed in to another co-ordinate system 

ji vv ,  Poisson’s ratio of particles i and j  

δ  overlap displacement between particles 

layerN  number of layers 
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boxH  height of shear box 

maxR  maximum radius of particles 

ijε  tensorial shear strains 

tτ  shear stress at time t 

shF  shear force 

shD  shear distance 

boxd  depth of the shear box 

vF  vertical load 

hF  horizontal load 
n total number of particles (page 168) 

vcσ  vertical consolidation stress 
R radius of the cone (page 170) 
  
 
 
 
 
Note:  page numbers are used to identify those symbols with more than one definition 
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                                                 SAMENVATTING 
 
 
Hoewel de structuur en de mechanische eigenschappen van de bodem veel onderzocht zijn 
voor bodem-belasting interacties, zijn deze in de landbouwgrondmechanica het minst 
begrepen. Zij beïnvloeden direct of indirect de gewasopbrengsten, de kwaliteit van het milieu, 
en de grondbewerkingseisen. Landbouwgrond is gestructureerd, heeft een zekere sterkte, en 
wordt vaak bewerkt met machines of verdicht door voertuigen. De structuur en sterkte van 
landbouwgrond beïnvloeden de groei van de plantenwortels en het bewortelingspatroon, 
welke direct of indirect de kwantiteit en de kwaliteit van de gewasopbrengst beïnvloeden. 
Bewerking en verdichting zijn processen die de bodemstructuur en –sterkte beïnvloeden. Het 
bodemvochtgehalte tijdens bewerking en berijding, voertuiggewichten, werktuigontwerp, 
rijsnelheid en maat, type, en spanning van banden zijn daarnaast parameters welke de 
structuur en de mechanische eigenschappen van de bodem beïnvloeden. 
 
Een goede bestudering van de structuur en de mechanische eigenschappen van de grond 
gedurende belasting – grond interactie is ongetwijfeld sterk afhankelijk van het type van 
methodes (modellen) die gebruikt worden om deze taak uit te voeren. De twee basismodellen 
welke gebruikt worden voor het berekenen  van de structuur en de mechanische 
eigenschappen van de bodem zijn de bekende Eindige-Elementen Methode (EEM) en de 
Discrete-Elementen Methode (DEM) welke relatief nieuw en in ontwikkeling is. 
 
Dit proefschrift geeft een uitgebreid overzicht van de twee modellen (EEM en DEM) ten 
behoeve van de analyse van de toepassing van de modellen op dynamische belastingsgevallen 
zoals het band – grond systeem, wigpenetratie, de test met het lineaire afschuif-apparaat, en 
het snijden van grond met een slagapparaat van het slinger-type. Bovendien omvat het 
proefschrift een evaluatie van de twee modellen door de presentatie van een aantal 
fundamentele kwalitatieve vergelijkingen van de simulatie-resultaten, uitmondend in het 
tonen van de potentiële mogelijkheden van de modellen en het bepalen van de eerste prioriteit 
van de modellen, gebaseerd op de overeenkomsten van de model-resultaten en de 
mechanische eigenschappen van reële grond bij gelijke condities van belasting – bodem 
interactie. 
 
 
EEM simulaties 
Plaxis, een van de beste voorbeelden van de eindige elementen methode (EEM), is gebruikt 
voor de behandeling van de grond gedurende belasting – bodem interacties, met de aanname 
dat de grond een continu medium is. Plaxis heeft een reeks van beperkingen ondanks zijn 
voordelen bij de berekening van dynamische belasting- bodem interacties welke in de 
landbouw processen algemeen zijn. 
 
De basis van een goede voorspelling van bodem eigenschappen (spanningen en deformaties) 
tijdens belasting – bodeminteracties door het gebruiken van EEM is de keuze van het juiste 
constitutieve model, in samenhang met het geven van de juiste waardes aan de model 
parameters. Echter, naast alle tekortkomingen van EEM, blijft de bepaling van de juiste 
model parameters en hun waardes een uitdaging. De beschikbare modellen in Plaxis kunnen 
globaal ingedeeld worden in eerste-orde (het lineair-elastische model en het Mohr-Coulomb 
model) en hogere-ordes modellen (Cam-Clay modeltype en het versteviging grondmodel). 
 
Het eerste orde model (in dit proefschrift het Mohr-Coulomb model) is gekarakteriseerd door 
een eenvoudig verband tussen spannings-incrementen en vervormings-incrementen met 
slechts enkele model parameters. 
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De parameters elasticiteitsmodulus, de dwarscontractie – coëfficiënt, dilatatiehoek, cohesie en 
hoek van inwendige wrijving zijn de basis parameters voor het Mohr-Coulomb model. 
 
Het meten van deze model parameters is geen eenvoudige opgave. Bovendien zijn waardes 
voor deze parameters nauwelijks beschikbaar, in het bijzonder voor landbouwgrond. Daarom 
zijn waardes voor deze parameters gekozen op basis  
 
van verschillende aannames, zoals uitgelegd in dit proefschrift. De bodem welke met het 
Mohr-Coulomb model bestudeerd wordt is “Wageningen” matig zware klei. 
Van de andere kant heeft het hogere orde model (in dit proefschrift het Cam-klei type) een 
meer complexe formulering, gebaseerd op plastische versteviging, met meer parameters. De 
parameters cohesie, hoek van inwendige wrijving, dilatatiehoek, voorverdichtingsdruk, 
terugveringsindex en samendrukkingsindex zijn de basis parameters voor het model van het 
Cam-klei type. Dezelfde uitleg, gegeven bij het Mohr-Coulomb model, geldt voor het Cam-
klei type waar het de bepaling en beschikbaarheid van parameter waardes betreft. De bodem 
welke gebruikt is bij het model van Cam-klei type is sterk zandige klei. 
 
In het algemeen zijn de verschillen tussen EEM berekeningsresultaten en “waar” gedrag 
vooral veroorzaakt door onnauwkeurigheden bij het meten van de waardes van de bodem 
parameters, wat een hoofdprobleem is van de EEM berekening zoals hierboven omschreven. 
 
 
DEM simulaties 
De discrete elementen methode (DEM) is een van de beste hulpmiddelen die gebruikt zijn 
voor de behandeling van grond gedurende belasting – bodem interacties, dit door de aanname 
dat grond een discontinu (discreet) medium is. Dit is het fundamentele verschil tussen DEM 
en EEM: de veronderstelling dat het medium een samenstelling is van discrete delen met de 
mogelijkheid van cyclisch contact en verdwijnen van contact door herhaald berekenen van de 
contact-condities gedurende het verloop van de simulatie.  
 
DEM heeft het potentiële vermogen om het werkelijke grondmedium weer te geven vanaf de 
aanvang van het proces. Zoals bij EEM gebruikten veel onderzoekers DEM voor de 
behandeling van korrelvormige materialen, gebaseerd op hun specifieke interesse gebieden. 
Slechts weinigen waren echter werkzaam in de landbouwtechniek. In vergelijking met EEM 
is DEM een zeer recent model, welke nog steeds veel verbetering behoeft ten einde zijn 
toepasbaarheid te verbeteren, ondanks de vele verbeteringen die al tot dusver bereikt zijn. 
 
Ofschoon  DEM een groot potentieel heeft om het werkelijke grondmedium weer te geven, 
heeft het ook beperkingen en is het niet onder alle omstandigheden toepasbaar. Veel 
onderzoek vragen nog: het bepalen van de optimale initiële rangschikking van de deeltjes, wat 
de initiële bodemstructuur bepaalt; het verkrijgen van het juiste contactmodel; het bepalen 
van de juiste modelparameters. 
 
De initiële deeltjes rangschikking, het modelleren van het mechanische contact, en de 
bepaling van de juiste model parameters met hun juiste waardes zijn de hoofd-aspecten 
waarvan de modelresultaten afhangen. Al deze aspecten zijn nog in onderzoek. In het 
bijzonder het vinden van een  methode voor voor het bepalen van de juiste model parameters 
met een schatting van hun waardes vormt een grote uitdaging. In dit proefschrift bleken 
normale veerconstante, tangentieel veerconstante, adhesie coëfficiënt, wrijvingscoëfficiënt 
tussen deeltjes en deeltjesgrootte de parameters te zijn welke de grootste invloed hebben op 
de DEM resultaten. 
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Conclusie 
Ondanks alle beperkingen van het DEM model zijn de DEM simulatieresultaten die in dit 
proefschrift gepresenteerd zijn in goede kwalitatieve overeenstemming met de EEM simulatie 
resultaten of analoge resultaten van laboratorium experimenten met reële grond onder 
dezelfde condities van belasting – bodem interactie. Daarom is het niet onjuist om te 
concluderen dat DEM een grote prioriteit en potentie heeft waar het gaat om de simulatie van 
de structuur van de bodem en het bestuderen van de mechanische eigenschappen van de 
grond gedurende dynamische belasting – grond interactie. 
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