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Voorwoord

Dit voorwoord wil ik graag benutten voor het bedanken van een aantal mensen
die tijdens mijn promotieperiode in belangrijke mate hebben bijgedragen aan het
tot stand brengen van dit proefschrift. Sommigen droegen hier heel direct aan bij,
anderen meer indirect door het creëren van de juiste omgeving om mijn werk zo
plezierig mogelijk te kunnen verrichten.

De meest directe bijdrage kwam natuurlijk van mijn begeleiders Frans Leerma-
kers en Gerard Fleer. Frans zette de ruwe lijn van het onderzoek uit en kwam met
allerlei ideeën voor verdere uitdieping. Gerard zette de puntjes op de i door zijn
gedegen en kritische lezing van alle versies. Hij had altijd aanwijzingen voor een
betere presentatie. In het geval van hoofdstuk 4 leidde dit tot een geheel ander ver-
haal, uiteindelijk toch nog zonder enige ellipsvergelijking. Frans en Gerard, bedankt
voor alle hulp.

Ondanks de grondige lezing door Gerard droeg één van de commissieleden, Joost
van Opheusden, nog enkele tekstuele verbeteringen aan, waar ik dankbaar gebruik
van gemaakt heb. Ik wil ook graag de overige leden bedanken voor het zitting
nemen in de promotiecommissie.

Jos van den Oever heeft zowel een directe als indirecte bijdrage aan dit proef-
schrift gehad. Zonder computer zou ik niet ver gekomen zijn en de grote rekenkracht
die Jos verzamelde door alle PC’s ingenieus te laten samenwerken heeft het een en
ander mooi versneld. Ik heb ook vaak dankbaar gebruik gemaakt van al zijn andere
computertips. Maar Jos, je indirecte bijdrage was ook belangrijk. Als kamergenoten
hebben we de bekende AIO-frustraties gedeeld, maar ook veel gezelligheid gehad.

De werkomgeving van het laboratorium beviel me erg goed. Deze heb ik in
het laatste jaar vanwege telewerken wel gemist. De labuitjes, de Veluweloop, het
voetballen, roeien en fietsen waren mooie aanvullingen op de prettige contacten
tijdens de werktijden. Hieraan hebben alle labgenoten bijgedragen.

Goede omstandigheden buiten de werkplek droegen indirect ook in belangrijke
mate bij tot dit proefschrift. In het laatste jaar van mijn AIO-tijd, waarin de
privé-omstandigheden minder goed waren, heb ik belangrijke steun van mijn familie
(broers, zus, ooms en tantes) kunnen ervaren. Bedankt allemaal!

Mijn ouders hebben mij altijd vrij gelaten in alle keuzes die ik maakte. Nooit
heb ik enige prestatiedrang ervaren. Die vrijheid en onvoorwaardelijke steun zijn
essentiële ingredienten om promotiestress te relativeren. Ik had graag via deze weg
mijn vader ook willen bedanken voor zijn aanstekelijke enthousiasme voor de muziek
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die mij in het ‘muziekwereldje’ heeft gebracht. Gedurende de gehele AIO-tijd heeft
dat muziekwereldje mij prettige afleiding gegeven.

In het studentenorkest van Enschede deelde ik met Bärbel niet alleen de muziek-
lessenaar, maar ook de laatste loodjes naar onze promoties. Edda, Wim en Niko
zorgden, behalve voor gezellige weekends, soms ook ongemerkt voor een spurt in
mijn onderzoek.

Degene die al mijn ‘ups’ en ‘downs’ echt heeft ondergaan is Werner. Vooral
tijdens zo’n down-moment leek ik maar weinig waarde te hechten aan je vertrouwen
in mijn onderzoek, maar het is toch heel belangrijk geweest. Dank je wel.

April 2004, Sonja.

vi



Contents

Voorwoord v

1 Introduction 1

1.1 Aim of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Stationary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Stationary polymer systems . . . . . . . . . . . . . . . . . . 4

1.2.3 Hindered polymer diffusion . . . . . . . . . . . . . . . . . . . 5

1.3 Equilibrium model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 The MFSD-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Lattice mean-field method for stationary polymer diffusion 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 The MFSD method . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Segment chemical potentials . . . . . . . . . . . . . . . . . . 22

2.2.4 Flux equations . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5 Four models . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6 Procedure and discretization . . . . . . . . . . . . . . . . . . 26

2.2.7 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 27

2.2.8 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Comparison with analytical results . . . . . . . . . . . . . . 35

2.4.2 General characteristics of binary systems . . . . . . . . . . . 36

2.4.3 General characteristics of multicomponent systems . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix 2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



Contents

Appendix 2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix 2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Conformations in stationary diffusion through a barrier 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 System, dynamics and barrier . . . . . . . . . . . . . . . . . 48

3.2.3 Evaluation of chain conformations . . . . . . . . . . . . . . . 52

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 General conformational changes . . . . . . . . . . . . . . . . 53

3.3.2 Barrier height . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Interactions inside the barrier . . . . . . . . . . . . . . . . . 58

3.3.4 Polymer concentration . . . . . . . . . . . . . . . . . . . . . 62

3.3.5 Driving force . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.6 Chain length . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.7 Scaling analysis . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.8 Conformations in a model lipid bilayer . . . . . . . . . . . . 70

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendix 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix 3B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Stationary dynamics approximation for coexistence curves 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Analytical binodal compositions . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Approximation for symmetrical blends . . . . . . . . . . . . 83

4.2.2 Approximation for polymer solutions . . . . . . . . . . . . . 83

4.2.3 Approximation for all binary mixtures . . . . . . . . . . . . 84

4.3 Stationary dynamics approximation . . . . . . . . . . . . . . . . . . 84

4.3.1 Flux expressions . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Application to binary blends, B̃A = B̃B . . . . . . . . . . . . 88

4.3.3 Application to binary blends, B̃A 6= B̃B . . . . . . . . . . . . 91

4.3.4 Application to symmetrical multicomponent blends . . . . . 92

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Symmetric binary blends . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Asymmetrical binary blends . . . . . . . . . . . . . . . . . . 94

4.4.3 Symmetric multicomponent blends . . . . . . . . . . . . . . 96

4.5 Spinodal compositions derived from flux expressions . . . . . . . . . 96

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix 4A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



Contents

5 Wetting transitions in symmetrical polymer blends 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Wetting transitions by χ-variation . . . . . . . . . . . . . . . . . . . 105

5.3 SF-SCF in wetting study . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 First regime: additional to Cahn . . . . . . . . . . . . . . . 110

5.4.2 Second regime: Cahn-type transitions . . . . . . . . . . . . 113

5.4.3 Third regime: instead of Cahn transitions (pseudo wetting) . 115

5.4.4 Combination of results . . . . . . . . . . . . . . . . . . . . . 119

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Adsorption at off-equilibrium interfaces 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Stationary state . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Concepts of the method . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Variable ∆φ . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Variable χAB . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.3 Variable χC . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 143

Summary 151

Samenvatting 157

1 Doel van het onderzoek . . . . . . . . . . . . . . . . . . . . . . . . . 157

2 Het model (Hoofdstuk 2) . . . . . . . . . . . . . . . . . . . . . . . . 159

3 Vouwing van polymeren in gehinderde diffusie (Hoofdstuk 3) . . . . 161

4 De samenstelling van mengsels in evenwicht

(Hoofdstuk 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5 Bevochtiging van grensvlakken tussen

evenwichtsmengsels (Hoofdstuk 5) . . . . . . . . . . . . . . . . . . . 162

6 Adsorptie aan niet-evenwichtsgrensvlakken

(Hoofdstuk 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Verder onderzoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Levensloop 165

ix





Chapter 1

Introduction

1.1 Aim of this study

Much time is spent waiting for a system to reach equilibrium. In equilibrium, all
properties such as temperature, pressure, and chemical potentials are constant in
time and space. Equilibrium is the final state of all isolated systems and therefore
of intrinsic interest. Moreover, equilibrium is a well-defined state and the most easy
to understand. But what information can be obtained while waiting for a system
to reach equilibrium? It is of great importance to understand how the molecules in
a system move, swap, rotate, fold and unfold before they attain their equilibrium
state. In other words, what are the dynamics of a system between its initial off-
equilibrium state and its final equilibrium?

To illustrate the relevance of this question, take the example of a nicotine patch.
This patch helps people who attempt to stop smoking to overcome the physical
withdrawal symptoms. Initially the patch contains a certain amount of nicotine.
The patch must be worn like a plaster onto the skin. The nicotine can then be
transported through the skin into the body. If nothing would happen to the nicotine
within the body, the equilibrium state would be the same concentration of nicotine
within the patch and the body. However, the nicotine is metabolized fairly fast
within the body so that the transport through the skin continues until the patch
has discharged. For the development of such a nicotine patch, or of any other plaster
that releases drugs in a steady flow, it is far more interesting to understand how the
transport takes place than to describe the eventual (trivial) equilibrium state. The
dynamics of the active molecules that diffuse through the various barriers (plaster
membrane, skin, arterial cell membranes) are essential for the design of the patch
material.

Transport processes are obvious examples to illustrate the relevance of investi-
gations on molecular dynamics. However, even when the equilibrium state is the
main goal, the dynamics between the initial state and the final equilibrium is of
great importance. Understanding the dynamical process, such as the identification
of the rate-limiting steps, may allow the manipulation and optimization of the time
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Chapter 1. Introduction

needed to reach the desired equilibrium. For example, knowledge about the fold-
ing dynamics of catalysing enzymes helps to select the best process conditions for
bread-making or industrial textile-treatments [1]. Although all systems have only
one well-defined thermodynamic equilibrium, we could (when the dynamics of the
process are understood) select the process conditions such that a distinct mechan-
ical equilibrium state is reached. This may dramatically change the outcome of
the process; a difference as large as the difference between graphite and diamond!
Graphite and diamond are both crystalline forms of carbon. A large energy barrier
must be overcome to produce graphite out of diamond. Nevertheless, graphite is
the thermodynamic equilibrium and it will never spontaneously transform into any
other state such as diamond. Many other compounds may form various crystal
morphologies depending on the process conditions; only one of those is the thermo-
dynamic equilibrium state. When the dynamics of crystal growth are understood,
one may predict the final (mechanically and/or thermodynamically stable) crystal
morphology. This knowledge may for example be applied to prevent the formation
of obstructing crystals in industrial pipes.

The aim of the research described in this thesis is to develop a theoretical model
by which not only the (thermodynamic) equilibrium can be studied, but also the
dynamical process towards equilibrium. The equilibrium state is an appropriate
starting point in the development of such a model. We may consider to extend
an equilibrium model directly into a dynamical model covering the whole process
between any arbitrarily chosen initial state and the final equilibrium. A dynami-
cal model would describe the off-equilibrium state in which all properties such as
concentrations and temperature may change both in time and in space. For such a
model we would have to make assumptions about molecular motions, have an idea
about the time interval in which physically critical steps occur (in order to allow
time-discretization), and select interesting systems that show relevant and interest-
ing dynamical features within a reasonable computation time. The development of
a full dynamical model would be overambitious, because the properties of a system
at a given time depend heavily on its history. There are however dynamical systems
that do not have such history dependence, which are known as stationary states. In
the stationary state the chemical potentials, temperature, pressure, and other prop-
erties may change in space, but not in time. The fluxes in stationary systems are
constant in space as well. As a first (modest) step towards a full dynamical model,
we aim at the extension of an existing equilibrium model to a stationary state model.
As in a dynamical model, the stationary state model includes assumptions about
the molecular motions. As in an equilibrium model, the result of the stationary
state calculation is one well-defined state. In contrast to more complete dynamical
models, the stationary state model does not need any discretization of the physical
time and the computation time is short, comparable to the computation time for
the equilibrium model.

In the following Section 1.2 we will define the stationary state and present
some examples of stationary states. In Section 1.3 the equilibrium Scheutjens-Fleer
model, which is the starting point of our stationary state model, is described. We
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preview our stationary state model and the differences between that model and the
equilibrium model in Section 1.4. Section 1.5 presents an outline of this thesis. After
development of the stationary state model, we applied it to three-component sys-
tems for which we also calculated the equilibrium properties in order to understand
and select interesting stationary systems.

1.2 Stationary states

1.2.1 General

All systems that are exposed to a time-independent input of some extra energy will
develop stationary off-equilibrium states. There are many examples of systems that
are in a stationary state. In industrial applications, fluids are driven by pumps
in a stationary manner through pipes into continuously operating reaction vessels.
Within these vessels the temperature is kept constant by means of a stationary heat
flux in the heat exchanger. In living organisms, stationary state mechanisms are
essential for the homeostasis, i.e., the maintenance of constant internal composi-
tions1. One example of homeostasis is the electrolyte contents of a human cell. The
cell interior needs a constant and specified concentration of sodium and potassium
ions to operate properly. The exterior of the cell, for example the blood plasma,
requires a much lower potassium concentration than the interior of the cell. Due
to the concentration difference, the potassium ions diffuse passively out of the cell.
This transport is opposed by the sodium/potassium pump which consumes energy
to transport potassium back into the cell. This sodium/potassium pump is a sta-
tionary state mechanism which maintains the necessary concentration gradient of
potassium over the cell membrane. Numerous metabolic pathways allow the mainte-
nance of stationary concentration gradients of other components within the human
body.

The general characteristic of stationary states (which are alternatively called
‘steady states’) is that all macroscopic quantities are constant in time. Thus, prop-
erties such as concentration gradients, temperature gradients and fluxes do not
change without external intervention. The velocity of a fluid pumped through an
industrial pipe may be stationary as long as nobody intervenes by adjusting the
energy input that is provided by the pumps. The diffusion of potassium through
the cell membrane is stationary until the sodium/potassium pump fails or until the
potassium concentration in the blood plasma changes as a result of, for example,
dietary intake. In other words, stationary states are characterized by a constant in-
put of energy or material. If the input is suddenly raised or lowered, the stationary
state is disturbed (although, after some time, a new but different stationary state
will be established). The energy or material input could also be constant and zero.
In that case we have a special stationary state, namely the equilibrium state. The

1In nature true stationary states do not occur, but in good approximation they may be treated
as such.
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system

mixture I mixture II

Figure 1.1. The stationary state considered in this thesis. Two bulk
mixtures of constant (but different) compositions are brought into contact.
The compositions of the bulk mixtures are maintained by continuous input
and output of material. We focus on the transition region between the two
bulk mixtures, denoted by ‘system’ in this figure.

interior and exterior of a cell are in equilibrium if they have equal concentrations
of potassium and other components (assuming that the cell membrane is equally
permeable to all ions and molecules occurring in the human body). No energy is
needed to maintain such an equilibrium, as follows from the first and second laws
of thermodynamics.

1.2.2 Stationary polymer systems

In this thesis, we concentrate on a particular type of off-equilibrium steady states,
namely a system as presented in Figure 1.1. Two bulk mixtures with different com-
positions are brought into contact. Material will diffuse from the concentrated bulk
mixture to the dilute bulk mixture. The compositions of the bulk mixtures are kept
constant by continuous supply of material into the concentrated bulk mixture and
continuous removal of material from the dilute bulk mixture. After some time, the
region between the two bulk mixtures will show a stationary concentration gradient
of the diffusing material. This is the region of interest. We aim at the develop-
ment of a theoretical model by which we can investigate the concentration profiles
within this region, also for more complex systems in which various compounds may
diffuse in opposite directions. A system as depicted in Figure 1.1 models for exam-
ple diffusion-limited catalysis: reactants diffuse from a large bulk solution towards
the catalyst surface at which the concentration of the reactant remains constant
through the reaction that takes place. Similar phenomena are relevant for electrode
surfaces where components are reduced or oxidised.

The diffusing molecules that we are interested in are polymers. Polymers are

4
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Figure 1.2. (a): Molecular structure of a copolymer (nylon), consisting
of two types of monomers (A and B). (b): Molecular structure of a ho-
mopolymer composed of monomer D (natural rubber). The subscript n is
the number of repeat units which is typically large (n >> 1).

long chains of repeating units, the monomers. A famous example of polymer mate-
rial is the first synthetic polymer fibre: nylon. This strong material, used for panty
hoses, shirts, and many other applications, was discovered when people searched
for a substitute of natural silk. Figure 1.2a shows the molecular structure of this
polymer. The nylon chain is an alternating sequence of two different monomers; it is
therefore called a copolymer. Copolymer chains may have a much higher complexity
than in nylon. Some natural copolymers, such as DNA or enzymes, appear to have a
random sequence of various monomers. However, the sequence of monomers within
these ‘polymers of life’ is critically defined for a proper functioning. Nature also
produces much simpler polymers: natural rubber is an example of a homopolymer.
It consists of only one monomer (see Figure 1.2b). Industrial polymers (plastics)
are often homopolymers; however, the modern trend is towards so-called functional
polymers with a more complex structure. Despite the simple molecular structure,
homopolymers are intriguing objects of study. They reflect several universal char-
acteristics of polymers, such as viscosity, strength, and elasticity.

1.2.3 Hindered polymer diffusion

In this study we focus on diffusing homopolymers. The theoretical model we devel-
oped to study stationary fluxes and concentration profiles also allows investigation
of the conformations (‘folding behaviour’) of the homopolymers. This is particularly
interesting when the diffusion of polymer chains is hindered due to the presence of
a barrier, such as a membrane. Hindered diffusion occurs for example in drug-
releasing plasters or in gel electrophoresis. In electrophoresis a mixture of different
polymers is separated into its components by letting the polymers diffuse through
a gel-like material in an electric field. The gel hinders the diffusion. Even in the
absence of an electric field the various components could still be separated from each
other in the gel when the various components have different flexibilities. Flexible
chains will diffuse more rapidly through the labyrinth of the gel than stiff chains.
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Figure 1.3. The reading of the genetic code written in the sequence of
monomers in DNA-chains. The DNA-molecule blocks the passage of ions
through the membrane, which can be measured as a drop in the ionic
current during a specific time interval.

After some time, flexible chains have diffused further than stiff chains. The flexi-
bility of a chain is reflected by the folding probabilities. Therefore, investigation of
chain conformations during hindered diffusion is of interest for gel electrophoresis
and some derived separation methods [2, 3]. In this thesis the driving force for dif-
fusion does not arise from an electric field but from chemical potential differences.
However, further extensions to our model are possible to describe the diffusion of
charged molecules in an electric field.

Hindered chain diffusion is also a promising tool for the investigation of human
genes. Genetic information is encoded by DNA, which is a sophisticated copolymer
which nevertheless is made up of only four different monomers. The genetic code
is the sequence of these four monomers within a DNA-chain. It has been suggested
that the genetic code could be found by investigating the diffusion of the DNA-chain
through a membrane [4]-[6]. This suggestion arose after diffusion experiments on
homopolymers and simple copolymers. In these experiments an electric potential is
applied over a membrane. The membrane is placed in an ionic solution as depicted
in Figure 1.3a. Ions will diffuse through the membrane as a result of the electric
field, and the ionic current can be measured. When a polymer chain is introduced at
one side of the membrane, it may diffuse through the membrane and thereby either
partially or completely block the ionic current during some time interval (see Figure
1.3b). It has been found in these experiments that the configuration of monomers
within the polymer chain and the chain length determine the characteristics of the
‘blockade current’. In other words, by recording the blockade current, it should be
possible to predict the sequence of monomers in the chain. However, such predic-
tions are only possible when the general physics of hindered polymer diffusion and
its relation to chain folding are understood in more detail. The theoretical model
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described in this thesis allows, in principle, a systematic study of the characteris-
tics of hindered diffusion. This method for DNA-sequencing may therefore be a
promising application for our stationary polymer diffusion model.

1.3 Equilibrium model

We aim at the development of a theoretical model for stationary systems. As dis-
cussed in Section 1.1 an equilibrium model might serve as an appropriate starting
point. Since we are interested in polymer systems one might think of the well-known
Flory-Huggins polymer theory as such a starting point [7, 8]. The Flory-Huggins
theory derives thermodynamic quantities, for example phase diagrams, from the
combinatorial entropy of mixing in combination with energetic contact interactions.
However, this theory only applies to homogeneous bulk systems, whereas our sta-
tionary polymer model must allow the development of concentration gradients in
the system. An equilibrium polymer model which accounts for inhomogeneities is
therefore a more appropriate starting point for our objectives; this extension of the
Flory-Huggins towards gradients was formulated by Scheutjens and Fleer. This
generalisation was developed around 1980 and since then successfully extended and
modified for a wide variety of systems [9]-[17]. All those systems have in common
that they consider the equilibrium properties of polymers in blends or solutions,
accounting for gradients near a surface or an interface. Examples of the properties
that can be derived from calculations by the Scheutjens-Fleer model are concen-
tration profiles, adsorption isotherms, adsorption layer structures, compositions of
coexisting phases, characteristic thermodynamic quantities, and elastic (bending)
properties of membranes, all at equilibrium.

As stated above, the Scheutjens-Fleer model is a generalisation of the Flory-
Huggins theory. In both approaches, the free energy is a function of the distri-
bution of the molecules. In the Flory-Huggins model, applying to bulk phases,
this distribution is homogeneous. The Scheutjens-Fleer model allows the volume
fractions of the components to be a function of position within the system. The
objective of Scheutjens-Fleer calculations is to find the (average) distribution of the
molecules (polymers, solvent, ions) in space for the equilibrium state. By an iter-
ative procedure, the molecules are rearranged, that is, their concentration profiles
and conformations are adjusted, until the minimum of the free energy is obtained.
This state with minimum free energy defines the equilibrium; such a state does not
consume or produce energy.

The positions of the molecules determine the force field that describes the forces
acting on each molecule in the system. In other words, a Scheutjens-Fleer calcula-
tion starts with a guess for the distribution of the molecules in the system. The force
field that results from this distribution gives rise to redistributions of the molecules
in order to minimize the total free energy of the system. This redistribution, per-
formed iteratively by the Scheutjens-Fleer method, gives rise to new force fields that
again force the molecules to rearrange. The iterative procedure finishes when self-
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(a)

flux in
flux out

(c)(b)

Figure 1.4. Examples of lattices in the equilibrium Scheutjens-Fleer
model. (a): Three-dimensional cubic lattice. (b): Cylindrical lattice that
reduces the three-dimensional space to two-dimensional calculations. (c):
Lattice that reduces the three-dimensional space to one-dimensional cal-
culations. This lattice has been used throughout this thesis. Indicated are
the directions of material fluxes in our steady-state calculations.

consistency is obtained between the force field and the molecular distribution that
corresponds to minimum free energy. The Scheutjens-Fleer model only considers
averaged forces and therefore requires and calculates only the average distribution
of the molecules in the system. This is called the mean-field approach. The average
distribution is given in terms of the probabilities to find (portions of) the molecules
at a specified position in space.

A few approximations are made to enable efficient calculations with the mo-
nomeric length as the yard-stick. First, the space to be filled with molecules is
discretized as in a lattice. Thus, instead of referring to a particular position by its
exact (continuum) coordinates, one refers to a lattice site. This allows discretization
of the calculations. Moreover, it is straightforward to incorporate incompressibil-
ity constraints in lattice models, simply by requiring that all lattice layers are, on
average, fully occupied by molecules. Figure 1.4 shows a few examples of lattices
that can be used in the Scheutjens-Fleer model. All lattices allow three-dimensional
folding of molecules, but in some lattices the concentrations are evaluated in only
two dimensions (Figure 1.4b) or even in only one dimension (Figure 1.4c). In this
thesis we use a lattice as depicted in Figure 1.4c, where only parallel layers are
accounted for. This means that we compute only the average properties (volume
fractions, interactions) in each lattice layer, which dramatically reduces the com-
putation time and computer memory demands, and which allows the calculation
of (only) the average molecular distributions. The constraint of incompressibility
is translated into the requirement that the sum of all volume fractions within one
lattice layer equals unity.

The Scheutjens-Fleer model efficiently describes the polymers as chains of seg-
ments (see Figure 1.5). Each segment may represent a few monomers. Thus the
information about monomer properties is ‘summarised’ by the properties of such a
segment. The properties of a segment are its ranking number in the chain and its
interaction with other segments. (The size of a segment is always taken to be equal

8



1.3 Equilibrium model

(a) (b)

Figure 1.5. Representations of polymers by chains as in the Scheutjens-
Fleer model. (a): An alternating copolymer (e.g. nylon, see Figure 1.2a).
(b): A homopolymer (e.g. natural rubber, see Figure 1.2b).

to the size of one lattice site or the width of one lattice layer). For example, a group
of monomers that together form a polar head of a copolymer may be represented by
one segment of type A. The apolar tail of this copolymer may be represented by a
number of segments of type B. Then the polymer chain is a surfactant given by the
sequence A-B-B-B-B-B.... Segment types A are defined to have favourable ener-
getic interactions with polar solvent segments, whereas segment types B will avoid
contacts with those solvent segments. In all cases chain connectivity is maintained
rigorously.

In the standard version of the model, the Scheutjens-Fleer model only includes
nearest-neighbour energetic interactions between the segments (as in the Flory-
Huggins theory). Then, segments residing in lattice layer z are assumed to feel only
interactions with segments in the layers z − 1, z, and z + 1. As an example, the
nearest-neighbour contacts for a segment in a two-dimensional space are indicated
in Figure 1.6a. The interactions of a central segment A in layer z = 3 with its
neighbours is indicated by the arrows. This central segment in this example has
three A−B interactions and one A−A interaction. Each A−B contact results in a
contribution χAB to the total energy of the central segment. The A−A contact has
the contribution χAA. (In fact, χij is the so-called Flory-Huggins parameter which
is defined to be zero for i = j [18]). As illustrated in Figure 1.4c, in a layer system
the exact positions of segments within layers z − 1, z and z + 1 are unknown; only
the volume fractions of segment types in each layer are exactly defined. A segment
in layer z is therefore assumed to interact with all segment types that occur in the
layers z − 1, z, and z + 1, but mainly with the segment type that has the highest
volume fraction in these layers. As discussed above, this is called the ‘mean-field
approach’; only the average force field is taken into account in the calculation of
interactions. This approach is illustrated in Figure 1.6b for the two-dimensional
space that corresponds to the lattice in Figure 1.6a. In the mean-field approach the
central segment interacts mainly with A-segments in layer z + 1, while the central
segment in Figure 1.6a happens to interact with the B-segment in layer z + 1. Due
to the high volume fraction of A-segments in layer z +1, the central segment would
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(b)

Figure 1.6. Nearest-neighbour interactions in two-dimensional space. (a):
The central segment interacts with four segments. The volume fractions
of B-segments are indicated as well as the four contributions to the total
interaction energy of the central segment. (b): Mean-field approach for the
same system as in (a). Again the contributions to the interaction energy
are given.

have a higher probability to interact with A-segments than with the B-segment in
layer z + 1.

The optimal distribution of the molecules in the system is not only determined by
the nearest-neighbour interactions, but also by the chain connectivities that highly
affect the conformational entropy. The Scheutjens-Fleer results yield information
about the preferred conformations (the way of folding) of the polymers in various
regions of the system. For example, polymer conformations near an adsorbing
surface will differ from the conformations in the bulk solution further from the
surface. For an efficient calculation of the equilibrium distribution of the molecules,
the Scheutjens-Fleer model allows (in its simplest form) backfolding of the polymer
chains. That means that if the segment with ranking number s is in layer z, and
the next segment s + 1 is in layer z + 1, then segment s + 2 may be found in layer z
as well (or in z + 1 or z + 2). Such exceptionally flexible chains greatly reduce the
memory demands and computer calculation times, since one does not have to keep
track of previous bond directions in order to decide on the direction of the next
bond. Backfolding may be limited or prevented by some adjustments to the basic
Scheutjens-Fleer model that reduce the chain flexibility [17].

The probability to find the chain segment with ranking number s in layer z
is calculated in the standard Scheutjens-Fleer model by means of a propagation
scheme that is closely connected to the Edwards diffusion equation [15]. Starting
from the probability to find segment s = 1 in layer z1, the propagation scheme
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determines the probabilities to find segments s = 2, 3, 4, ... of the same chain in any
layer of the system. The Edwards diffusion equation yields a continuum description
of the path followed by a diffusing Brownian particle. The diffusion path in the
Edwards diffusion equation corresponds to the contour of the polymer that results
from Scheutjens-Fleer’s propagation scheme. In fact, the Scheutjens-Fleer model is
a discrete version of the Edwards diffusion equation.

1.4 The MFSD-model

Our objective is to extend the equilibrium Scheutjens-Fleer model to a stationary
model in which the polymers are allowed to diffuse between two bulk mixtures
with arbitrarily chosen time-invariant compositions. The system of our interest is
sketched in Figure 1.1. Instead of calculating the average molecular distribution
that results in minimum free energy (as in the Scheutjens-Fleer model), we wish
to calculate the average distribution that is consistent with constant, non-zero,
material fluxes between the two bulk mixtures, whereby it is assumed that the
compositions of the bulk mixtures are maintained by sufficient supply and removal of
material. We call this extended Scheutjens-Fleer model the Mean-Field Stationary
Diffusion (MFSD) model.

As in the Scheutjens-Fleer model, the system (which is the region between the
two bulk mixtures) is described by a lattice. A lattice as depicted in Figure 1.4c
is used throughout this thesis. The polymers are modelled as chains of connected
segments. Only nearest-neighbour energetic interactions, described by the average
force field, are taken into account. Chain connectivity is maintained and immediate
step reversals (back-folding) are allowed. Unlike the Scheutjens-Fleer model, the
MFSD-model does not only require that the system is incompressible, but also that
the volume fractions are consistent with stationary diffusion and with the imposed
compositions of the bulk mixtures. The polymer diffusion is stationary when the
fluxes are constant in time and in space. Therefore, to obtain the stationary volume
fraction profiles, we need to find expressions for the segmental fluxes. (Obviously,
the same flux expressions could be applied if we would like to wait for equilibrium,
that is, if our MFSD-model would be extended towards a dynamic model that
follows the motions of molecules in a system that evolves towards equilibrium).

The flux expressions can only be found if some mechanism for the diffusion of
segments is specified. We adopt the ‘swap-mechanism’, in which we assume that
diffusion occurs through a sequence of position interchanges. The swap-mechanism
is depicted in Figure 1.7. In this figure segment A diffuses to the right and segments
B and C diffuse to the left, just by swapping their positions. The swapping process
is directed by the driving force acting on each segment type that may possibly be
involved in the swaps. The driving force for a particular segment type may vary
as a function of position. The larger the driving force, the stronger the segment is
pushed away. The driving force also determines the direction in which the segment
is pushed; segments will usually be pushed towards a lattice layer in which their
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B CA

time

CB A CB A

Figure 1.7. Two steps in the swapping diffusion mechanism. In the
first step, segment A diffuses to the right and segment B to the left by
interchanging their positions. Segment A diffuses further in the second
step, and segment C diffuses to the left.

concentration is lower. However, contact interactions do also play a role. Some seg-
ment types may be intrinsically slower than others. The intrinsic segment mobility
depends on the friction with other segments and on the length of the chain to which
the segment belongs. The longer the chain, the slower the motion of the segments.

When more than two segment types are present in the system, a complex in-
terplay between the driving forces on all segment types determines which segments
interchange their positions. It is therefore usually difficult to predict the outcome
of the diffusion process, in particular on the length scale of segments. We distin-
guish two theories that describe the complex interplay of the driving forces. The
first is the slow-mode model [19]. According to this theory, a segment A prefers to
swap positions with the segment type that has the highest mobility. The second
approach is the fast-mode model [20, 21]. Here it is assumed that there exists a
drift flux for all segment types: segments A are dragged along with the motions of
other segment types. The resulting diffusion profiles may be highly dependent on
the choice between either the fast-mode or slow-mode models. Some experiments
are in favour of the slow-mode results [22, 23], others are more accurately repre-
sented by fast-mode results [24]-[27]. We have translated both theories, originally
derived for binary diffusion, to multi-component diffusion in the framework of the
Scheutjens-Fleer model, yielding flux equations that are the essential ingredients for
the MFSD-method.

We do not only use the MFSD-model to calculate the stationary fluxes or con-
centration profiles between two arbitrarily chosen bulk mixtures, but also to derive
the conformations of the moving chains. Knowledge about these conformations is
of particular interest for separation techniques such as electrophoresis and for the
development of ‘DNA-reading’ techniques such as depicted in Figure 1.3.
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1.5 Outline of this thesis

Chapter 2 presents the details of the Mean-Field Stationary Diffusion (MFSD)
model. It allows to study polymers that diffuse in a steady state between two
mixtures of different compositions. The MFSD model is explicitly placed in the
framework of its equilibrium counterpart, the Scheutjens-Fleer Self-Consistent-Field
model. We show a few stationary diffusion profiles for athermal systems, calculated
by use of the MFSD-model. We apply both the slow-mode and the fast-mode
theories for the assumptions about the diffusion mechanism and we consider two
expressions for the driving forces. The results of the numerical MFSD-model are
verified by comparison with analytically calculated diffusion profiles. Such analyt-
ical calculations are only possible for simple systems in which the components are
completely miscible (all χij < 2/N , where N is the chain length). Excellent agree-
ment is found between MFSD-calculations and analytical results. It is shown for
an athermal three-component system (all χij = 0) that uphill diffusion may occur,
i.e., diffusion in the direction of increasing concentration gradient.

In Chapter 3 we apply the MFSD-model to study stationary hindered diffusion
of polymers. A simple barrier with the characteristics of a fluid film (‘membrane’)
is introduced in the system. This film acts as a barrier through the reduction of
the space available for the diffusing polymers. We focus on the conformations of
the polymers that reside partly within the barrier and partly outside the barrier.
We find that the conformations of flexible polymers are heavily disturbed by the
barrier. The results for simple barriers are compared with the predictions from a
scaling model. We model the diffusion through a lipid bilayer by including a barrier
that consists of two hydrophilic regions and a central hydrophobic region. Such a
barrier forces the polymer chains to adjust their conformations a few times during
their diffusion.

Chapter 4 considers the compositions of the two bulk mixtures in the MFSD-
model that determine the driving forces on the diffusing polymers. These mixtures
need to have stable compositions in order to allow unique solutions for the MFSD-
calculations. A bulk mixture has a stable composition when there is no driving
force for phase separation into two or more coexisting phases. The choice for the
compositions of the bulk mixtures is therefore limited, the limits being given by
the compositions of coexisting phases (the so-called binodal). The compositions of
coexisting phases can conveniently be estimated by analytical approximations. In
Chapter 4 we develop a new, more accurate, analytical estimation than the existing
approximations. Our analytical expressions are based upon the flux expressions
used in the MFSD-model.

In Chapter 5 we apply the equilibrium Scheutjens-Fleer model to study the
adsorption or wetting on polymer/polymer interfaces. The adsorbing polymeric
component C is equally soluble in both polymeric solvents A and B. We investi-
gate the transitions between two modes, called partial and complete wetting. The
transitions occur through variation of the solubility of component C or through vari-
ation of the mutual miscibility of the polymeric solvents. We find a large parameter
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space for which the transition is second order, which is rarely found experimentally.
The results of Chapter 5 are used in Chapter 6 in which we apply the MFSD-

model to study adsorption at off-equilibrium interfaces. As in Chapter 5 all three
components are polymers with the same chain length and the adsorbing component
C is equally soluble in the two demixing polymers A and B. Whereas in Chapter
5 the bulk mixtures at both sides of the A/B interface are coexisting phases, in
Chapter 6 they are stable but do not coexist so that polymer A diffuses from the
A-rich phase through the interface to the B-rich phase and polymer B diffuses in
the opposite direction. We do not impose a concentration gradient on the adsorbing
polymer C. We find interesting adsorption behaviour and stationary-flux charac-
teristics. The adsorbed amount is a strong non-linear function of driving forces,
A/B-miscibility and C-solubility. There is no unambiguous relation between the
adsorbed amount of C and the stationary fluxes of A and B. These findings are
related to the ternary phase composition diagrams.

All results and conclusions following from the research described in this thesis
are summarised (in English and Dutch) after Chapter 6.
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Chapter 2

Lattice mean-field method for
stationary polymer diffusion

We present a method to study mean-field stationary diffusion (MFSD) in polymer systems.
When gradients in chemical potentials vanish, our method reduces to the Scheutjens-Fleer
self-consistent field (SF-SCF) method for inhomogeneous polymer systems in equilibrium.
To illustrate the concept of our MFSD method, we studied stationary diffusion between
two different bulk mixtures, containing, for simplicity, non-interacting homopolymers.
Four alternatives for the diffusion equation are implemented. These alternatives are based
on two different theories for polymer diffusion (the slow- and fast-mode theories) and on
two different ways to evaluate the driving forces for diffusion, one of which is in the spirit
of the SF-SCF method. The diffusion profiles are primarily determined by the diffusion
theory and they are less sensitive to the evaluation of the driving forces. The numerical
stationary state results are in excellent agreement with analytical results, in spite of a
minor inconsistency at the system boundaries in the numerical method. Our extension of
the equilibrium SF method might be useful for the study of fluxes, steady state profiles
and chain conformations in membranes (e.g. during drug delivery) and for many other
systems for which simulation techniques are too time-consuming.

Published in Physical Review E 68, 011802 (2003).
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2.1 Introduction

Polymeric interfaces [28], brushes [29], vesicles [30] and individual polyelectrolytes [31]
are examples of systems that can be studied successfully by using the Scheutjens-Fleer
self-consistent-field (SF-SCF) method [9, 10]. This is a numerical mean-field approach,
yielding the (inhomogeneous) volume fractions and all thermodynamic properties for the
systems at equilibrium. However, the stationary states of such systems are of great interest
in the context of, for example, drug delivery over membranes, diffusion-controlled reac-
tions at catalyst surfaces or diffusion over technical membranes in separation processes.
To study such stationary polymer systems, the SF-SCF method needs to be extended by
dynamic equations and new boundary conditions. We implemented such an extension for
a relatively simple system, namely the diffusion layer between two different homogeneous
mixtures, consisting of homopolymer blends or homopolymer solutions. Such a system is
of interest for polymer diffusion at long time scales. Our method to study the station-
ary polymer diffusion will be referred to as the Mean-Field Stationary Diffusion (MFSD)
method. Equilibrium SCF-methods have been extended to dynamic SCF-methods before,
but our focus is different. The objective of previous extensions was to follow the evolu-
tion of a system towards its equilibrium or any other stationary state. Specifically, it was
attempted by means of a dynamic version of the SF-SCF method to follow polymer adsorp-
tion processes from near-equilibrium towards equilibrium [32]. Two other methods (an
off-lattice dynamic self-consistent-field method [33] and a dynamic density functional the-
ory [34, 35]) were applied to study the process of spinodal decomposition in (co-)polymer
blends. The dynamic density functional theory was also used to investigate the structure
development of polymer adsorption layers [36] and, more relevant to our study, the in-
terface formation by polymer interdiffusion [37]. Here we will not consider the evolution
towards a stationary state but focus on a well-defined time-independent solution, that is,
the (exact) stationary state itself. Obviously, this restriction allows more efficient compu-
tation algorithms than the dynamic methods that construct dynamical trajectories. Such
methods need an additional noise term in the diffusion equations to allow the system to
escape from local minima of the free energy profile [33, 35]. The density functional theory
has recently also been applied to study just the stationary state, but only in the applica-
tion to simple fluids [38]. As in the above mentioned dynamic mean-field theories, we do
not consider hydrodynamic interactions. At present, particle-based simulation methods,
which are rather time-consuming, are best suited to study polymer dynamics in the pres-
ence of hydrodynamic effects [39]. Our method can not deal with these hydrodynamic
effects in full detail. However, the average effect of chain entanglements may easily be
modelled in the MFSD method by introducing effective mobility parameters.

Polymer diffusion has attracted attention due to its occurrence and importance in
many processes, such as phase-separation and spinodal decomposition, bio-adhesion, sta-
bilization of polymer/polymer interfaces by copolymers, diffusion controlled reactions, etc.
A large activity in theoretical work [19]-[21],[23],[40]-[46] accompanies the experimental
studies [25]-[27], [47]-[50]in this field. The theoretical interest arises from the fundamental
problem of linking together thermodynamic and kinetic properties of polymer mixtures.
The mutual (or inter-)diffusion coefficient, governing the relaxation of concentration gra-
dients by the mechanism of particle exchange, is usually written as a product of a ther-
modynamic factor T and a kinetic factor K [19, 20, 42, 44]. Interdiffusion is a collective
process, in contrast to tracer or self-diffusion which concerns single-chain motions. The
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driving force for the latter is entropy and the mechanism may be described by the Rouse
[51] or reptation [52, 53] models. The tracer and self-diffusion coefficients are relatively
easily obtained from experiments. A major topic of research has been on the question
whether the mutual diffusion coefficient can be written in terms of these tracer diffusion
coefficients.

Two (conflicting) attempts to find such a relation for binary systems are the slow-
mode theory [19] and the fast-mode theory [20, 21]. The mutual diffusion coefficients
of both theories have the same thermodynamic factor T . However, the fast-mode theory
predicts the kinetic factor K to depend linearly on the tracer diffusion coefficients, whereas
according to the slow-mode theory the inverse of the kinetic factor depends linearly on
the inverse of the tracer diffusion coefficients. This discrepancy originates from different
assumptions concerning the compressibility of the system or, according to a statistical
mechanical approach [41], from different assumptions concerning the friction coefficient
between the diffusing components. Some experiments are in favour of the slow-mode
theory [22, 23], but most experiments seem to be described best by the fast-mode theory
[24]-[27]. However, it is stated in Ref. [45] that the initial concentration relaxations
as measured in experiments may incorrectly appear to be fast-mode. Shearmur et. al.
[48, 49] suggest that the preference for the fast-mode theory may arise from the fact
that experiments are usually performed at temperatures far from the glass transition
temperature. Their experiments follow slow-mode behaviour at low temperatures and
fast-mode behaviour at high temperatures. They find a transition region in which neither
of these theories applies. A few theories for polymer diffusion have been derived which
reproduce the slow- and fast-mode results in some limiting cases. For example, a hybrid
‘fast-slow’ theory was proposed [40]. According to this theory, there exists a critical
diffusion distance beyond which the diffusion changes from fast-mode behaviour to slow-
mode behaviour. Jilge et. al. [42] adopted an approach which is similar to the fast-
mode theory, but they took into account cross-coefficients and vacancy concentrations.
The slow- and fast-mode results were obtained by making some approximations, but
they concluded that in general no simple relation exists between the mutual diffusion
and the tracer diffusions. More recently, Akcasu, Nägele and Klein (ANK) presented
a statistical mechanical theory which reduces to the slow- and fast-mode models in the
limits of, respectively, vanishing or large vacancy concentrations [54, 44]. According to
the ANK-theory, a cooperative diffusion coefficient is involved in the mutual diffusion.
The conclusions of this theory and of Shearmur’s observations [49] are opposite to the
predictions of Brereton [23] who constructed a linear combination of the slow- and fast-
mode theory.

The above résumé illustrates that the behaviour of collectively diffusing polymers is
still controversial. We do not aim at resolving this controversy. Instead, we show that
it is possible to study stationary diffusion efficiently by our extension to the SF-SCF
method. In principle, the flux-equations that are employed in our MFSD method can be
chosen to conform any of the proposed theories in the literature. For our flux-equations,
we have chosen the most widely used limiting cases: the slow- and fast-mode theories.
The advantage of this choice is that the continuity equation can be solved analytically
for some simple stationary systems. This allows the verification of the MFSD results.
Using the MFSD method to solve the equation of continuity, the driving forces can be
calculated exactly and the detailed conformations of chains may be studied. Moreover,
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Figure 2.1. Schematic representation of the system of study. Stationary
diffusion occurs between two infinitely large bulk mixtures I and II which
are ideally stirred, so that the volume fractions in these mixtures are con-
stant. The volume fraction profiles in the system are drawn as straight
lines for simplicity.

MFSD calculations are much cheaper than simulations: it takes only minutes to calculate
all characteristics of the desired stationary state. The equilibrium SF-SCF method, which
is our starting point, has proven its applicability to many situations in which stationary
diffusion may be of interest.

This paper is organized as follows: in the theoretical section (Section 2.2) we first
describe the diffusion system for which we developed the MFSD method. We then outline
the MFSD method itself, thereby showing that it is based upon the ideas of the equilibrium
SF-SCF method. Attention is paid to the evaluation of the driving forces for diffusion
(segment chemical potential gradients) and to the slow- and fast-mode flux expressions.
These flux expressions were originally derived for binary mixtures, but they can easily
be generalised to multicomponent systems, as we will demonstrate. We use each flux
equation in combination with two ways to calculate the driving forces for diffusion, so
that we obtain four models for the polymer diffusion. Section 2.3 presents the results of
applying the MFSD method to these four diffusion models. We aim at showing the concept
of the MFSD method. Therefore, we focus on the stationary diffusion profiles, although
much more information may be extracted from the MFSD calculations. In Section 2.4 we
discuss the performance of the MFSD method by comparing its numerical results with
analytical results. Moreover, we discuss the general characteristics of the diffusion profiles
in athermal binary and multicomponent systems. Section 2.5 summarizes our conclusions.

2.2 Theory

2.2.1 System

We developed the MFSD method for a set-up as shown in Figure 2.1. Two homoge-
neous polymer bulk mixtures, denoted I and II, are connected by a diffusion layer. Each
of these two mixtures has its own composition, expressed in terms of volume fractions
as φI

A,φI
B,φI

C . . . and φII
A ,φII

B ,φII
C . . ., respectively. Here A,B,C. . . denote the various ho-
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mopolymers or solvent molecules in the mixtures. It is assumed that both mixtures are
infinitely large and continuously stirred. As a result, these solutions or blends can be
regarded as two bulk mixtures with invariant compositions. The actual system of inter-
est is the layer between the two bulk mixtures. At each side of the system the volume
fractions are known (namely φI and φII) and our MFSD method calculates the volume-
fraction profiles in the diffusion layer for the stationary state, resulting from diffusion of
the molecules for which µI 6= µII , where the µ’s are the chemical potentials. The station-
ary state is defined by constant material fluxes, ensuring that there is no accumulation of
any component within the system: JA(z, t) = constant in z and t. Note that the flux is
taken to be dependent on the z-coordinate only, where z is the direction along the diffu-
sion layer. This means that we use a one-dimensional mean-field method. The diffusion
layer is divided in M lattice layers perpendicular to z.

At present, we model only homodisperse homopolymers and solvent molecules (re-
garded as monomers). A system containing copolymers would require a different approach
for the boundary conditions. In the results Section 2.3 only athermal systems will be con-
sidered (i.e. all Flory-Huggins parameters χ are zero). In the present theoretical section,
we treat the more general case of systems with interactions.

The calculation of the volume fractions (as functions of segment potentials) is dic-
tated by the stationary condition. The derivation of the desired equation follows the
steps from equilibrium SF-SCF theory, but requires a different Lagrange parameter as
shown in Section 2.2.2. From the theory outlined in that section we find an expression
for the exact segment chemical potential (Section 2.2.3) which is inserted into the Smolu-
chowski equation that describes the diffusion of the polymers in an external potential field
(Section 2.2.4). In our case the external potential comprises contributions from segmen-
tal interactions and from the incompressibility constraint. The slow-mode and fast-mode
theories are different in the way they deal with the incompressibility constraint. They
thus yield different expressions for the segmental fluxes. In Section 2.2.4 these fluxes are
derived in terms of chemical potential gradients and concentration-independent diffusion
coefficients. In Section 2.2.8, we rewrite them in terms of concentration gradients and
concentration-dependent diffusion coefficients for analytical purposes.

2.2.2 The MFSD method

The equilibrium SF-SCF method [15] provides an easy way to calculate volume fraction
profiles for inhomogeneous (multicomponent) systems at equilibrium. The polymers in
these systems are described as chains of segments (comparable with Kuhn segments).
Since we are considering only homodisperse homopolymers the number of components is
equal to the number of segment types and we can refer to a component just by referring
to its constituent segment type A,B,C. . . The chain length of homopolymer A is given by
NA, i.e. the number of segments of type A that form the whole chain. The conformation
of a chain is given by the position of each segment. The SF-SCF method optimises the
partition function Q for a lattice in which each lattice site is occupied by a polymer
segment, a monomer or a vacancy. Consider a 1-D system described by M lattice layers
(z = 1, . . . ,M). Then the optimisation of the partition function must be performed under
M constraints: ∑

A

φA(z) = 1 ∀z ∈ [1,M ] (2.1)
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where the sum over A denotes summation over all components (or over all segments,
which is identical in our system of homodisperse homopolymers). Therefore, M Lagrange-
parameters α(z) are introduced in the equilibrium SF-SCF method, which are interpreted
as the space-filling potentials. The requirements for equilibrium then become

∂

∂nc
j

[
lnQ +

∑
z

α(z)

{∑
A

φA − 1

}]
= 0 ∀nc

j (2.2a)

∂

∂α(z)

[
lnQ +

∑
z

α(z)

{∑
A

φA − 1

}]
= 0 ∀z ∈ [1,M ] (2.2b)

The parameter nc
j denotes the number of molecules j in a specified conformation c. Obvi-

ously, Equation 2.2b ensures the constraint of incompressibility to be fulfilled. Equation
2.2a dictates the way in which the volume fractions φ must be calculated from given seg-
ment potentials to obtain the conformation distribution with minimal free energy. The
volume fractions depend on the potentials, but the potentials are also dependent on the
volume fractions, for example due to unfavourable segment-segment contacts. The equi-
librium SF-SCF algorithm is an iterative procedure which leads to a fixed point for which
the potentials are consistent with the volume fractions that obey the constraints.

In the MFSD method, the volume fractions are calculated similarly. Thus the vol-
ume fractions in the stationary state correspond to that conformation distribution of all
molecules for which the free energy is minimal. We apply the SF-SCF free energy func-
tional which is valid for equilibrium systems. It is common to use equilibrium functionals
for off-equilibria, since usually the true free energy functionals are unknown [55]. We do
not consider this as a approximation of serious error, since we are only interested in the
steady state and not in the evolution towards the steady state. We thus do not need
to include a noise term as is usually done in the density functional theory. There is a
small difference between the calculation of φ in SF-SCF and in MFSD. This is due to the
extended set of constraints for the stationary state. For the stationary state, we have the
constraints

φA(0) = φI
A ∀A (2.3a)

φA(M + 1) = φII
A ∀A (2.3b)∑

A

φA(z) = 1 ∀z ∈ [1,M ] (2.3c)

∂φA(z)
∂t

= 0 ∀A, z ∈ [1,M ]. (2.3d)

The first constraints (given by Equations 2.3a and 2.3b) are treated separately by the
boundary conditions (see Section 2.2.7). The next M constraints (Equation 2.3c) are
satisfied by additional stop-criteria for the iterations which must lead to the consistency
between the potentials and the volume fractions (see Section 2.2.6). The number of
constraints left is M*(number of segment types) (Equation 2.3d). We assume that there
exists only one volume fraction profile, that satisfies all constraints and has the minimal
free energy. If this profile is given by φstat

A (z) the constraints in Equation 2.3d may be
summarized by:

φA(z) = φstat
A (z) ∀A, z ∈ [1,M ]. (2.4)
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The requirements for the stationary state become

∂

∂nc
j

lnQ +
∑
A,z

αA(z)
{
φstat

A (z)− φA(z)
} = 0 ∀nc

j (2.5a)

∂

∂αA(z)

lnQ +
∑
A,z

αA(z)
{
φstat

A (z)− φA(z)
} = 0 ∀A, z ∈ [1,M ]. (2.5b)

We thus have the correct number of Lagrange parameters if we take α(z) to be dependent
on the segment type. The volume fractions in the stationary state are calculated in the
same way as in equilibrium, but now by introducing the new space filling potentials αA(z)
in the segment potentials uA(z). Following Ref. [14], we have

uA(z)
kBT

= αA(z) +
∑
B

χAB 〈φB(z)〉+
uref

A

kBT
. (2.6)

where the reference potential uref
A can be chosen arbitrarily. (In case of copolymers all

constraints should be written in terms of φAi, the volume fraction of segments A which
are part of molecule i. The Lagrange parameters α (and therefore also the segment
potentials u) would be dependent both on molecule type and on segment type. In SF-SCF,
the segment potentials are always independent on the type of molecules [14]). Angular
brackets are used to denote the contact-weighted average over three layers z− 1, z, z + 1:

〈φB(z)〉 = λ−1φB(z − 1) + λ0φB(z) + λ1φB(z + 1). (2.7)

The λ’s account for the number of contacts between lattice sites. For a simple cubic lattice
λ0 = 4/6 and λ−1 = λ+1 = 1/6. The potentials uA(z) determine the Boltzmann-weighting
factors GA(z), GA(z, s|1) and GA(z, s|NA):

GA(z) = exp
{
−uA(z)

kBT

}
(2.8a)

GA(z, s|1) = GA(z) 〈GA(z, s− 1|1)〉 (2.8b)

GA(z, s|NA) = GA(z) 〈GA(z, s + 1|NA)〉 . (2.8c)

The quantity GA(z, s|1) is the weighting factor for the last segment of a chain of length s,
where segment s is in layer z, while segment 1 may be anywhere in the system. Similarly,
GA(z, s|NA) is the weighting factor for the first segment of a chain of length NA − s + 1,
where the first segment (s) is in layer z, while the last segment (NA) may be any-
where. The starting conditions for Equations 2.8b and 2.8c are: GA(z, 1|1) = GA(z)
and GA(z, NA|NA) = GA(z). In terms of these weighting factors, the volume fraction of
segment s of component A in layer z must be calculated according to Equations 2.5a and
2.5b by

φA(s, z) = CA
GA(z, s|1)GA(z, s|NA)

GA(z)
(2.9)

where CA is a normalization constant. Ref. [14] considers different ways to normalize
volume fractions in equilibrium SF-SCF, but the MFSD results are not influenced by the
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choice for CA, since the driving forces for diffusion are gradients which are independent
on the constant CA. Equation 2.9 can also be derived intuitively: the volume fraction
of segment s in layer z is given by the normalized weighting factor for the probability
to find s in z while both the first and the last segment of the chain may be anywhere
in the lattice. The chain can be considered as consisting of two parts, one running from
segments 1 to s and one from segment s to NA. The desired weighting factor can thus be
decomposed into the end-segment weighting factors for these parts (as in the numerator
in Equation 2.9). The denominator of Equation 2.9 corrects for the double counting the
effect of the potential field felt by segment s that connects the two chain parts.

2.2.3 Segment chemical potentials

Since the partition function is known in the SF-SCF and MFSD calculations, all desired
thermodynamical quantities may be calculated. We are interested in the diffusion of
segments due to imposed gradients in the chemical potentials. The segment chemical
potential is defined as the derivative of the free energy with respect to the volume fraction
of the segment under consideration. As shown in Appendix 2A the resulting expression
is:
µSCF

A (z)
kBT

=
∂(F − F ∗)/kBT

∂φA(z)
= −∂(lnQ− lnQ∗)

∂φA(z)
=

lnNACA

NA
− uA(z)

kBT
+
∑
B

χAB 〈φB(z)〉

so that the gradient of the segment chemical potential is easily calculated by

∇
µSCF

A (z)
kBT

= −∇uA(z)
kBT

+∇
∑
B

χAB 〈φB(z)〉

= −∇αA(z). (2.10)

By these expressions we take into account the inhomogeneity of the system. In the follow-
ing, we will therefore refer to these potentials as the ‘exact segment chemical potentials’,
or the ‘SCF potentials’. Brochard [19] and Kramer [20], on the contrary, approximate
the segment chemical potentials by µapp

A = µchain
A /NA, where N is the chain length and

where µchain is obtained from the Flory-Huggins lattice theory [18]. This definition for
the segment chemical potential is less accurate when the compositions change significantly
within the region where the chain finds itself. Generalizing Brochard’s and Kramers ap-
proach for binary systems to multicomponent homopolymer systems, we obtain for the
segment chemical potential of segment type A:

µapp
A

kBT
=

lnφA

NA
+

1
NA

−
∑
B

φB

NB
− 1

2

∑
BC

(φB − δAB) χBC (φC − δAC) . (2.11)

Here, δAB (δAC) is the Kronecker delta which is unity for A = B (A = C) and zero
otherwise. The independent variables of the segment chemical potentials are given by
the volume fractions of all components except one, which we denote as component X.
The volume fraction φX is of course equal to 1 −

∑
B 6=X φB. In order to write the flux

in terms of φ-gradients instead of µ-gradients (for analytical purposes) we take the total
differential of the approximate segment chemical potential:

∇
µapp

A

kBT
=

1
kBT

∑
B 6=X

(
∂µapp

A

∂φB

)
φC 6=B,X

∇φB (2.12)
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=
∑
B

(
δAB

φANA
− 1

NB
+ χAB −

∑
C

φCχBC

)
∇φB.

The gradients of the approximate and exact potentials are indistinguishable if there are
only monomers or if the system is homogeneous.

2.2.4 Flux equations

One of the constraint-sets for MFSD, namely Equation 2.3d, can easily be translated in
terms of material fluxes by the equation of continuity:

∂φA(z)
∂t

= 0 = −∇JA(z) (2.13)

where JA is the flux of segments A. Obviously, in the stationary state, the fluxes are
independent of time and position. For simplification, we do not explicitly write the z-
dependence of the quantities in the following. We first present the derivation of the
so-called slow-mode flux-expression within the framework of the MFSD method. These
fluxes will then be rewritten in terms of Onsager coefficients. Using this short notation,
the fast-mode flux expression can readily be derived.

Slow-mode flux

The starting point is the Smoluchowski equation [53]:

∂φA

∂t
= ∇ 1

ζA
(kBT∇φA + φA∇UA) . (2.14)

Here, ζA is the monomer friction constant and UA is the potential field felt by segments of
type A. Two contributions to this potential can be distinguished: UA(z) = EA(z)+P (z).
There is a contribution EA arising from molecular interactions with segments of other
types:

EA = kBT
∑
B

χAB 〈φB〉 . (2.15)

The other contribution P is a pressure term due to the requirement of incompressibility,
which causes the fluxes of different segment types to be coupled.

Comparing the Smoluchowski equation with Equation 2.13 yields for the flux of seg-
ments A:

Js
A = −kBT

ζA
φA

(
1

φA
∇φA +∇

∑
B

χAB 〈φB〉+∇P

)
(2.16)

where we have substituted Equation 2.15. The superscript s refers to the slow-mode
approach.

The derivative of φA is found by writing Equation 2.9 as

φA(z, s)
CA

= GA(z) 〈GA(z, s− 1|1)〉 〈GA(z, s + 1|NA)〉 , (2.17)

so that
∇φA

CA
= ∇

(
GA(z)

∑
s

〈GA(z, s− 1|1)〉 〈GA(z, s + 1|NA)〉

)
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≈
∑

s

〈GA(z, s− 1|1)〉 〈GA(z, s + 1|NA)〉∇GA(z). (2.18)

In the last line, we used the so called Local Coupling Approximation (LCA), in which
the kinetic coupling between segments is neglected: one segment of a chain is allowed to
move independently from the motions of its neighbour segments. The LCA was also used
by Fraaije in the density functional theory [34]. It might be a approximation with serious
consequences (see Ref. [56] and the references therein), but it allows efficient computation
and analytical comparisons. Pair correlation functions or a completely different approach
would be needed to avoid the LCA [56]. Substitution of Equation 2.18 into the first term
of Equation 2.16 yields:

∇φA(z)
φA(z)

=
1

GA(z)
∇GA(z)

= ∇ lnGA(z). (2.19)

By inserting Equation 2.19 and the well-known Einstein relation for the diffusion coeffi-
cient (DA = kBT/ζA) into Equation 2.16 one arrives at

Js
A = −DAφA∇

(
lnGA +

∑
B

χAB 〈φB〉+ P

)

= −DAφA∇
(

µA

kBT
+ P

)
. (2.20)

For the second version of Equation 2.20, Equation 2.8a in the form uA = −kBT lnGA and
Equation 2.10 for µA were used. The last unknown flux contribution ∇P is obtained by
requiring ∑

A

JA(z) = 0 ∀z ∈ [1,M ] (2.21)

which is the incompressibility constraint. From Equations 2.20 and 2.21 it is found that

∇P = − 1∑
A DAφA

∑
A

DAφA∇µA. (2.22)

Substituting this into Equation 2.20 results after some rearrangement in the final expres-
sion for the slow-mode flux of segments A:

Js
A(z) = − DAφA(z)∑

C DCφC(z)

∑
B

DBφB(z)∇
(

µA(z)− µB(z)
kBT

)
. (2.23)

Onsager coefficients

The flux is conveniently written in terms of Onsager coefficients ΛA(z), by which the
single-chain dynamics enter the expressions for the collective dynamics. The Onsager
coefficients as defined by Brochard [19] and Kramer [20] relate the unconstrained fluxes
to their driving forces:

Ju
A = −ΛA∇µA. (2.24)
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The superscript u indicates that the incompressibility constraint is not yet taken into
account. The Onsager coefficients are generally written in terms of segment mobilities
B̃A:

ΛA = B̃AφA. (2.25)

Combining this with Equation 2.24 for the unconstrained flux and comparing the result
with Equation 2.20 where the constraint is given by the pressure term, it is found that
B̃A = DA/kBT = 1/ζA. Using this relation for the mobility coefficient, the slow mode
flux (Equation 2.23) may be written in terms of Λ’s as

Js
A = − ΛA∑

C ΛC

∑
B

ΛB∇ (µA − µB) . (2.26)

In Appendix 2B we show that this flux expression obeys Onsager’s reciprocal relations.
The relation B̃A = 1/ζA is only valid for the Rouse regime. Other expressions for

the mobility coefficients may also be used in Equation 2.26. If a polymer chain is longer
than the entanglement length, Rouse behaviour may no longer be assumed; the average
mobility of the segments will decrease due to the entanglements. According to Ref. [19],
this leads to a correction factor (Ne)A /NA so that B̃A = (Ne)A /(NAζA), where (Ne)A is
the effective entanglement length of A chains in the mixture. In pure A, the entanglement
length equals Ne0. If the chains are diluted by monomeric solvents, the constraints to the
segment motions are less pronounced than in pure A, so that the effective entanglement
length may be approximated as (Ne)A = Ne0(1−φmonomer(z)), where φmonomer is the total
volume fraction of all monomer components.

Alternative expressions for the Onsager coefficient might be obtained by including the
effect of chain connectivity (nonlocal coupling). Such Onsager coefficients are proportional
to the pair-correlation function [33].

Fast-mode flux

The difference between the slow-mode model and the fast-mode model is the incorporation
of vacancies. In the fast-mode model it is assumed that there exists a drift flux by the
presence of vacancies:

Jf
A = −ΛA∇µA + φAJvac. (2.27)

To obey the condition of incompressibility (Equation 2.21), the flux of the vacancies is
taken as Jvac =

∑
B ΛB∇µB, so that

Jf
A = −

∑
B

(φBΛA∇µA − φAΛB∇µB) . (2.28)

The superscript f indicates that it concerns the flux in the fast-mode model. In Appendix
2B Onsager’s reciprocal relations are verified.

2.2.5 Four models

The combination of the multi-component slow-mode flux (Equation 2.26) with the ap-
proximate segment chemical potentials (Equation 2.12) is a generalization of the binary
model developed by Brochard, Jouffroy and Levinson [19]. We refer to this model as the
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BJL model. The combination of Equation 2.26 with exact segment chemical potentials
(Equation 2.10) is called the slow-mode SCF model or the SCF-BJL model. Com-
bining Equation 2.28 with the approximate segment chemical potentials is a generalization
of the model developed by Kramer, Green and Palmstrøm [20]. We refer to this model
as the KGP model. The combination of Equation 2.28 with exact segment chemical
potentials is called the fast-mode SCF model or the SCF-KGP model.

2.2.6 Procedure and discretization

The stationary diffusion profiles are obtained by the following procedure. Segment weight-
ing factors are calculated for mixtures I and II in accordance with the desired volume
fractions in these bulk mixtures. Then the numerical iterations are started with an initial
guess for the potentials uA(z). These are used to calculate the segment weighting factors
within the diffusion layer. In this calculation the boundary conditions (Section 2.2.7) play
a role. The weighting factors enable the computation of the volume fractions (Equation
2.9). These volume fractions are needed to check whether the stop-criteria for the sta-
tionary state are met. If not, a new iteration loop with newly chosen potentials uA(z)
is started. This is repeated until the the volume fractions obey the constraints. One
constraint is a constant material flux for every component (Equation 2.3d). Therefore
the flux equation needs to be written in discrete form for use in the lattice model. The
continuity equation for a lattice with a one-dimensional gradient reads

∂φA(z)
∂t

= JA(z − 1 −→ z) + JA(z + 1 −→ z). (2.29)

As an example, we take the slow-mode flux expression, Equation 2.26, and rewrite it for
convenience as:

Js
A(z) =

∑
B

ΩAB(z)∇(∆µAB(z)) (2.30)

where ∆µAB is shorthand for µA − µB. Then JA(z − 1 −→ z) in the lattice can be
calculated as

Js
A(z − 1 −→ z) =

1
2

∑
B

[ΩAB(z − 1) + ΩAB(z)]
∆µAB(z)−∆µAB(z − 1)

z − (z − 1)
. (2.31)

The stop-criteria for the stationary diffusion become for all layers and for all components
except one (say X):∑

B

[ΩAB(z − 1) + ΩAB(z)] [∆µAB(z)−∆µAB(z − 1)]+

[ΩAB(z) + ΩAB(z + 1) ][ ∆µAB(z + 1)−∆µAB(z)] = 0 (2.32a)

The stop criterion for component X is for all lattice layers:

φX(z) = 1−
∑
B

φB(z). (2.32b)
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2.2.7 Boundary conditions

The boundaries of the diffusion layer deserve some extra attention. Behind the boundaries
(z ≤ 0 and z ≥ M + 1) are bulk mixtures with specified volume fractions φI

A and φII
A .

A property of any bulk system is the condition that Gb
A(z) = constant =

〈
Gb

A(z)
〉
. As

a result, Gb
A(z, s|1) =

(
Gb

A

)s and Gb
A(z, s|NA) =

(
Gb

A

)NA−s+1. For homopolymers or
monomers Gb

A is known:

Gb
A =

(
φb

A

φref
A

)1/NA

. (2.33)

We choose to have an abrupt transition between the bulk mixtures and the system; if
z = 1 is the first layer in the system, then z = 0 represents a true bulk. The consequence
is an inconsistency at the boundaries and some ‘forbidden’ chain conformations, which
will be discussed in a future publication. All results presented in this paper are obtained
from the ‘abrupt transition conditions’. We have used other boundary conditions as well
(e.g. mirrors for the calculation of φ combined with bulk conditions for the calculation of
the driving forces, or taking GA(z ≤ 0, s) = GI

A and GA(z ≤ 0, s|1) still dependent on
GA(z > 0, s∗ < s, 1)), but the influence on the resulting diffusion profiles is negligible.

2.2.8 Diffusion coefficients

An advantage of using the approximate segment chemical potentials, is that the flux-
expressions in terms of µ-gradients can easily be rewritten in terms of φ-gradients. This
allows the analytical description of the stationary diffusion profiles for some simple sys-
tems. Since we only consider athermal systems in the following and since we wish to avoid
unnecessary multi-line equations, we assume that χAB = 0 for all A,B in the present para-
graph. Generally, the flux-expression in terms of φ-gradients reads:

JA = −
∑
B

D̃
(X)
AB∇φB (2.34)

by which the mutual diffusion coefficients are defined. The superscript X indicates that
all volume fractions, except that for the component containing segment type X, are taken
as the independent variables for the flux. For example, the flux of segments A in a binary
(A/B) system can be written in two ways:

JA = −D̃
(B)
AA∇φA = −D̃

(A)
AB∇φB. (2.35)

Brochard [19] derived for the mutual diffusion coefficient D̃
(B)
AA for athermal binary sys-

tems:
D̃

s(B)
AA

kBT
=

ΛAΛB

ΛA + ΛB

(
1

φANA
+

1
φBNB

)
. (2.36)

As discussed in Section 2.1 (D̃s(B)
AA )−1 is proportional to (1/ΛA+1/ΛB)−1. By substituting

Equation 2.12 into the slow-mode flux-equation 2.26 and after some rearrangement, the
mutual diffusion coefficients for multicomponent systems in the BJL-model are found to
be

D̃
s(X)
AB

kBT
=

ΛA∑
C ΛC

[
ΛX

φXNX
− ΛB

φBNB
−
∑
Q

ΛQ

φANA
(δAX − δAB)

]
. (2.37)
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It is easily shown that for binary systems Brochard’s mutual diffusion coefficient is recov-
ered.

The mutual diffusion coefficients for the Kramer-model are obtained by inserting Equa-
tion 2.12 into the fast-mode flux-equation 2.28:

D̃
f(X)
AB

kBT
=

(
φA

∑
C

ΛC − ΛA

)(
1

NB
− 1

NX

)
−

φA

(
ΛB

φBNB
− ΛX

φXNX

)
− ΛA

φANA
(δAX − δAB) (2.38)

so that D̃
f(X)
AB is a linear combination of Λ’s.

Obviously, if φX is not an independent variable of the flux, D̃
(X)
XX and D̃

(X)
AX should

vanish, which is satisfied by Equations 2.37 and 2.38. D̃
(X)
AA is always positive for X 6= A.

For binary systems ∇φA = −∇φB, thus according to Equation 2.35, we must find that
D̃

(B)
AA = −D̃

(A)
AB , which can also be verified by Equations 2.37 and 2.38.

2.3 Results

We illustrate the concepts of the MFSD method by showing the stationary diffusion pro-
files for various athermal systems. Stationary diffusion profiles are the volume fractions
for each component as function of the spatial parameter z, such that the two bulk mix-
tures have the desired composition and such that there is no accumulation of material
anywhere between these bulk mixtures. We stress again that the stationary solution is
the only solution of the MFSD method. We do not obtain the stationary profiles by fol-
lowing the physical trajectories towards the steady state, but directly by computing the
volume fraction profiles that obey all conditions for the steady state. As outlined before,
the method has been applied for four different diffusion models. We treat binary and
multicomponent systems separately. All binary systems considered in this study have the
boundary conditions φI

A = 0.99 and φII
A = 0.01. First the results are presented. After

that, an attempt to rationalize them is given.
The most simple systems to study stationary diffusion are those for which all compo-

nents have the same chain length N and the same mobility B. Figure 2.2 presents the
MFSD stationary diffusion profile for such a system. It is seen that these simple systems
give rise to linear volume fraction profiles in the stationary state, independent on the
model used. The linear profiles turn into curved profiles if the components either have
different N or B, as shown in Figure 2.3 and 2.4, respectively.

In Figure 2.3 we have plotted the stationary diffusion profiles for two systems: one
system has NA/NB = 5, the other has NA/NB = 250. This figure shows that the BJL and
KGP results (dashed curves) coincide if the components only differ in their chain lengths.
The SCF-BJL and SCF-KGP models (solid curves) also yield indistinguishable profiles for
such systems. However, the exact calculation of segment chemical potentials yields profiles
which slightly differ from those calculated by approximated segment chemical potentials,
in particular for increasing φ-gradients and decreasing NA/NB. The discrepancy at large
∇φ is a result of the assumption of homogeneous mixtures in the Flory-Huggins expression
for the approximated chemical potential. It is seen that the larger the ratio between the
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Figure 2.2. Stationary diffusion profiles in a binary system calculated
with four different models. NA = NB = Ne0 = 100, B̃A = B̃B = 1. All
four models give the same result, with linear profiles.
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Ne0 = 100 so that B̃A = B̃B = 1. Solid lines correspond to calculations
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mate potentials (BJL and KGP).

29



Chapter 2. Lattice mean-field method for stationary polymer diffusion

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

φ(z)

z

φ
A

φ
B

B
B
 = 250B

B
 = 5

N
A
 = N

B

B
A
 < B

B

a)

fast

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

φ(z)

z

φ
A

φ
B

N
A
 = N

B

B
A
 < B

B

b)

slow

250B
B
 = 5

Figure 2.4. Stationary diffusion profiles in two binary systems calculated
with four different models. NA = NB = Ne0 = 100, B̃A = 1 and B̃B = 5
or 250. Solid curves correspond to SCF-potentials, dashed ones to ap-
proximate potentials. Figure (a) is obtained by the two fast-mode models,
Figure (b) by the slow-mode models.

chain lengths, the more convex the profiles are. The volume fractions change rapidly near
the bulk mixture that contains a large amount of short (and therefore, for given segment
mobilities, more mobile) chains.

If the chain lengths are the same, while the segment mobilities are different, the
profiles no longer coincide for any of the four models as is shown in Figure 2.4. For these
systems, it is the diffusion mechanism (slow- or fast-mode) which mainly determines the
stationary diffusion profiles; it is less important whether the segment chemical potentials
are calculated exactly or not: KGP profiles compare very well with SCF-KGP profiles
(Figure 2.4a), and BJL-profiles are similar to SCF-BJL profiles (Figure 2.4b). Since we
have combined the profiles for two different systems in Figures 2.4a and b (namely for
B̃B/B̃A = 5 and B̃B/B̃A = 250) it can directly be seen that the slow-mode expression
is more sensitive to the segment mobilities than the fast-mode expression. The volume
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Figure 2.5. Stationary diffusion profiles in a binary system calculated
with four different models. NA = 10, NB = Ne0 = 500, B̃A = 1, B̃B =
50 so that NA/NB = B̃A/B̃B. Solid curves are calculated by the fast-
mode models, dashed ones by the slow-mode models. For Figure (a) SCF-
potentials are used, for Figure (b) approximate potentials.

fractions change rapidly near the bulk mixture that contains a large amount of components
consisting of relatively mobile segments. This behaviour is more pronounced when the
ratio between segment mobilities increases.

Comparing Figure 2.3 with Figure 2.4a, it appears that longer chains act as less
mobile components. In particular, the stationary diffusion profiles calculated by the
KGP model were found to be exactly the same for two binary systems (α) and (β) if

(NA/NB)(α) =
(
B̃B/B̃A

)(β)
while

(
B̃B/B̃A

)(α)
= 1 = (NA/NB)(β). In other words, a

system containing two components with different chain lengths but equal segment mo-
bilities may be simulated by a system containing two monomers (or two polymers of the
same length) with different segment mobilities. This is only true for the KGP model.
This may suggest that the lower mobility of longer chains might be compensated by a
higher mobility of its constituting segments. It would then be expected that the compo-
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Figure 2.6. Stationary diffusion profiles in a ternary system containing
two homopolymers (A and B) and one monomer (C). NA = NB = Ne0 =
100, NC = 1, B̃A = B̃B = B̃C = 1. The only parameters that were varied
in systems (a)-(c) are φA(0) and φC(0). All models give essentially the
same results.
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Figure 2.7. Stationary diffusion profiles in a ternary system containing
one monomer (C) and two homopolymers (A and B) with equal chain
lengths and segment mobilities, and equal φA but different φB at the
boundaries. Note that φA(0) = φA(M + 1). NA = NB = Ne0 = 100,
NC = 1, B̃A = B̃B = B̃C = 1. Solid curves are obtained by the SCF-
potentials, dashed ones by approximate potentials. No difference is found
between the fast- or slow-mode mechanism.

nents would act as mutually indistinguishable if the system parameters were chosen such
that NA/NB = B̃A/B̃B. Indistinguishable components would result in linear profiles (cf
Figure 2.2). Figure 2.5 shows that this is true for the two slow-mode models, but not
for the fast-mode models. Note that the fast-mode results change significantly when the
exact segment chemical potentials are replaced by approximate ones. The discrepancy
does not only occur for the largest φ-gradients. The comparison between the models for
other choices of parameters generally yields the same conclusions as derived from Figure
2.5: usually the slow-mode results are less affected by the way to calculate the segment
chemical potentials than the fast-mode results.

The four variants of the MFSD method were also used to calculate the stationary dif-
fusion profiles for ternary systems: two equally long polymers in a solvent. The differences
between the models are too small to be observed in the systems presented in Figure 2.6.
This figure shows three systems which differ only slightly in the imposed volume fractions
at the left-hand boundary (z = 0): φB(0) = 0.1 in all cases and φA(0) = 0.75 (top), 0.8
(middle), and 0.85 (bottom). It is seen that these small differences result in very differ-
ent profiles. The solvent (monomer) has a rather flat and approximately linear profile
in all cases. The largest φ-gradients of the polymers are found at the highest monomer
concentration.

Another striking example of a ternary system is presented in Figure 2.7. Despite the
fact that the imposed values for φA are the same at both sides of the system (φA(0) =
φA(M + 1)), this component has large gradients within the system. The profiles are
the same for the fast- and slow-mode calculations, as was the case for binary systems
in which all segments had the same mobilities. Small differences occur if the segment
chemical potentials are not calculated exactly. However, the longer the polymer chains,

33



Chapter 2. Lattice mean-field method for stationary polymer diffusion

M = 100
M = 400
M = 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

φ(z)

z/(M+1)

N
A
 = N

B
 = N

eo
 = 400

φ
B

φ
C

φ
A

Figure 2.8. The same system as in Figure 2.7 for longer chains (NA =
NB = Ne0 = 400) and for various system sizes M , calculated by the SCF
potentials. Volume fractions are now plotted versus the normalized z-
variable. Increasing the system size above M = N does not change the
shape of the profiles significantly.

the larger these differences become (not shown).

As explained in Section 2.2.7, our boundary conditions are such that in the vicinity
of the bulk mixtures some chain conformations could not occur. The stationary diffusion
profiles do not suffer from these boundary conditions; the profiles scale accordingly with
the system size as long as the system is not too small in comparison with the chain lengths.
This is shown in Figure 2.8, where we plotted the diffusion profiles versus the normalized
distance parameter z/(M + 1). The diffusion profiles are not influenced by the size of
the system if M ≈ N , where N is the length of the longest polymer chains. Note that
we find oscillating volume fraction profiles if the chains are long compared to the system
size (N = 400, M = 100) and when the driving forces are calculated exactly. Using the
approximate segment chemical potentials does not give oscillating profiles.

2.4 Discussion

From Equations 2.26 and 2.28 it is easily concluded that the slow-mode and fast-mode
models are indistinguishable for ΛA(z)/φA(z) = ΛB(z)/φB(z) ∀A,B, z which means
B̃A(z) = B̃B(z) = B̃(z) ∀A,B, z. This can only be true if B̃ is independent of z. Figures
2.2, 2.3, 2.7 and 2.8 show that this exact agreement between the slow- and fast-mode mod-
els is indeed found. In the remainder of this discussion, we first discuss some analytical
descriptions and then focus on the general characteristics of binary and multicomponent
systems.
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2.4.1 Comparison with analytical results

Due to our choice of simple systems, we can compare the MFSD-results with analyti-
cal results. Analytical expressions for φA(z) are obtained by solving Equation 2.34 in
combination with the diffusion coefficients of either the BJL model or the KGP model.

Suppose that all components have the same mobility B (so that the BJL and KGP
models are identical) and the same chain length N . The flux is then simply given by
JA(z) = − B̃kBT

N ∇φA(z) ∀A, z. To satisfy the condition of constant fluxes, the analytical
expressions for φ are linear functions of z. The MFSD-result obeys this linear behaviour
for all four models as shown in Figure 2.2.

For binary systems φA(z) can be obtained by solving −
∫

D̃
(B)
AAdφA = JAz+k1. Expres-

sions for D̃
(B)
AA for various simple cases are given in Table 2.1. When B̃A = B̃B and NA 6=

NB, D̃
(B)
AA is given by D̃

(B)
AA = a− bφA with a = B̃kBT/NA and b = B̃kBT (1/NA− 1/NB).

The result for NA > NB is

φA(z) =
a

b
− 1

b

√
a2 + 2b(k1 + JAz). (2.39)

The integration constant k1 and the flux JA can be found from the known values of φA(0)
and φA(M + 1). Due to the condition that NA > NB, the sign of the square root term
is unambiguously determined. The volume fraction profile of the short-chain component
simply follows from φB = 1− φA.

In case of equal chain lengths but B̃A 6= B̃B, we find for the BJL-model D̃
(B)
AA =

a/(cφA + B̃B), with a = B̃AB̃BkBT/N and c = B̃A − B̃B. Thus, for B̃B > B̃A, the
stationary volume fraction profile is

φA(z) =
k2

c
exp

{
−cJA

a
z

}
− B̃B

c
(2.40)

with k2 = exp{−ck’
2/a}. The same system has for the KGP-model D̃

(B)
AA = a− cφA with

a = B̃AkBT/N and c = (B̃A − B̃B)kBT/N , so that

φA(z) =
a

c
− 1

c

√
a2 + 2c(k3 + JAz). (2.41)

Analytical explicit expressions for φA(z) do not exist for arbitrarily chosen chain
lengths and segment mobilities are chosen arbitrarily. In Figure 2.9 the analytical ex-
pressions 2.39, 2.40 and 2.41 are plotted together with the corresponding results from the
MFSD method. They match each other exactly.

In Appendix 2C, we show that for the three-component system in Figure 2.7 with
B̃A = B̃B = B̃C , NA = NB and NA > NC , the analytical expressions for the volume
fractions read:

φA(z) =
aJA

bJC
[d(z)− 1] + k5 exp {−d(z)}

φB(z) =
aJB

bJC
[d(z)− 1]− k5 exp {−d(z)} (2.42)

φC(z) =
a

b
[d(z)− 1] + 1
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Figure 2.9. Comparison of results from the MFSD method (markers) with
the corresponding analytical results (curves) in different binary systems.
In all cases M = 100, NB = 100 and B̃A = 1. The circles are for the BJL
and KGP model with NA/NB = 5 and B̃A = B̃B. The squares are for the
BJL model with NA = NB and B̃B/B̃A = 250. The crosses are for the
KGP model with NA = NB and B̃B/B̃A = 250.

where a = B̃kBT/NA, b = B̃kBT (1/NA − 1/NC), d(z) = 1
a

√
s + tz, s = a2 + 2bk4,

t = −2bJC and JC = −JA − JB. JA, JB and the integration constants k4 and k5 are
given by the compositions of the bulk mixtures. These equations reproduce the profiles
in Figure 2.7 (including the minimum in φA) with the same accuracy as shown for binary
systems in Figure 2.9.

The exact agreement between the analytical profiles and the MFSD results proves the
proper performance of the MFSD method. In addition, they show that the abrupt transi-
tion between the system and the bulk mixtures in the MFSD method does not disturb the
diffusion profiles. However, if the system is small compared to the longest chains, small
discrepancies may occur between the analytical results and the MFSD results.

2.4.2 General characteristics of binary systems

We now focus on general characteristics of the diffusion profiles for binary systems. It is
convenient to analyze how ∇φ should change with φ according to the flux-expressions for
the approximate models, since this behaviour of ∇φ can readily be checked by plots of
diffusion profiles. Since ∇φA = −JA/D̃

(B)
AA and JA = constant we have

∂∇φA

∂φA
= −∇φA

D̃
(B)
AA

∂D̃
(B)
AA

∂φA
. (2.43)

Given that D̃
(B)
AA is positive, it is concluded that for binary systems ∂D̃

(B)
AA

∂φA
and ∂|∇φA|

∂φA
must

have opposite signs. In Table 2.1 different classes of binary systems are distinguished by
different combinations of parameters. For each class and for both approximate models
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Table 2.1. Stationary binary systems: φ-derivatives of the diffusion co-
efficients and φ-gradients. The expressions for D̃

(B)
AA were obtained from

Equations 2.36-2.38 after inserting ΛA = B̃AφA and ΛB = B̃BφB (Equa-
tion 2.25).

NA = NB = N NA = xNB NA = NB = N

B̃A = B̃B = B̃ B̃A = B̃B = B̃ B̃B = xB̃A

(Fig. 2.2) (Fig. 2.3) (Fig. 2.4)

D̃
(B)
AA

B̃kBT

N

B̃kBT

NA

(φB + xφA)
B̃BkBT

N

1

(φA + xφB)

BJL-model[19]
∂D̃

(B)
AA

∂φA

0
B̃kBT

NA

(x− 1)
B̃BkBT

N

(x− 1)

(φA + xφB)2

∂ |∇φA|
∂φA

0

{
< 0 for NA > NB

> 0 for NA < NB

{
< 0 for B̃A < B̃B

> 0 for B̃A > B̃B

D̃
(B)
AA

B̃kBT

N

B̃kBT

NA

(φB + xφA)
B̃AkBT

N
(φB + xφA)

KGP-model[20]
∂D̃

(B)
AA

∂φA

0
B̃kBT

NA

(x− 1)
B̃AkBT

N
(x− 1)

∂ |∇φA|
∂φA

0

{
< 0 for NA > NB

> 0 for NA < NB

{
< 0 for B̃A < B̃B

> 0 for B̃A > B̃B

the sign of ∂|∇φA|
∂φA

is evaluated by first writing the general expression for D̃
(B)
AA and then

calculating its derivative with respect to φA. We first note that the KGP model yields the
same stationary diffusion profiles for the second (Figure 2.3) and third (Figure 2.4) classes
if (NA/NB)equal B̃ = (B̃B/B̃A)equal N , as can be seen from the diffusion coefficients in
the second and third columns of Table 2.1. This implies that the mobility of a chain can
effectively be changed by either its chain length or the segment mobility. The general
conclusion which can be drawn from Table 2.1 is that the larger the fraction of relative
mobile component, the steeper the volume fraction profiles for stationary diffusion: it is
observed that ∂|∇φA|

∂φA
is positive if φA is the relative mobile component. The first column

shows that if both components have the same mobilities, the gradients of the volume
fractions are constant. The second column implies an increasing ∇ |φ| for increasing
volume fraction of the shorter, and therefore more mobile, homopolymer. These columns
refer to classes of systems for which the slow-mode and the fast-mode fluxes are the
same, in accordance with previous statements. The third column in Table 2.1 refers to
systems for which the slow-mode and fast-mode models no longer coincide, but the general
conclusion remains valid for both models.

Barrer [57] and Crank [58] also present stationary diffusion profiles for diffusion coef-
ficients that are concentration-dependent. Their general conclusion is that the concentra-
tion profiles are convex towards the z-axis if ∂D̃

(B)
AA/∂cA < 0, and convex away from the

z-axis if ∂D̃
(B)
AA/∂cA > 0. Our results are in agreement with their conclusion, but we can
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Figure 2.10. Schematic picture of the developing diffusion profiles for fast
component diffusing to the right and slow component to the left.

state more specifically that the profiles are convex towards the φ-axis if ∂φfast/∂z < 0 and
vice versa, where φfast refers to the relative mobile component. This general behaviour
can be understood by considering how these stationary profiles develop from the initial
profile at t = 0 which is assumed to be discontinuous at z = 1

2M (see Figure 2.10(a)).
Suppose the major component at the left side of the system consists of relative mobile
A-segments, whereas at the right mainly low-mobile B-segments are present. From Ta-
ble 2.1 it follows that ∂D̃/∂φfast < 0 so that the diffusion coefficient is smaller at the
left than at the right. Segments A start diffusing to the right by exchanging their posi-
tions with segments B. At first instance, the φ-gradients at both sides will be similar:
∇φA(z = 1

2M − ε) ≈ ∇φA(z = 1
2M + ε) (Figure 2.10((b)). However, the gradient at

z = 1
2M + ε vanishes more rapidly than at z = 1

2M − ε due to the larger diffusion co-
efficient (Figure 2.10(c)). This results in flatter profiles at low concentration of mobile
component.

Comparing the approximate models with the exact models, we found two situations
in which discrepancies may occur. First, discrepancies occurred if the system was small
compared to the chain lengths. The oscillations in Figure 2.8 were only found if the driv-
ing forces are calculated by the exact segment chemical potentials and if the chains are
long compared to the system size. The smaller the system or the longer the chains, the
larger the gradients in the region in which the chains find themselves. In other words,
the assumption of local homogeneity, as used for the approximate segment chemical po-
tentials, is incorrect for such small systems with long chains. Secondly, discrepancies
between approximate and exact fast-mode calculations occurred if the components had
both dissimilar chain lengths and dissimilar segment mobilities (e.g. Figure 2.5). In gen-
eral, agreement was found between BJL and SCF-BJL for such systems. In other words:
the fast-mode model seems to be more sensitive to the calculation of the driving force than
the slow-mode model. Probably, the error in ∇µA is compensated by the error in ∇µB in
calculations applying the slow-mode fluxes, since the driving forces appear as ∇(µA−µB)
in these flux expressions (cf Equation 2.26). On the contrary, in the KGP-model, the
errors in ∇µ are weighted by segment mobilities due to the terms B̃A∇µA − B̃B∇µB in
the flux expressions (Equation 2.28).

2.4.3 General characteristics of multicomponent systems

Figure 2.6 can now be understood from Table 2.1. Since the homopolymer components
in Figure 2.6b are indistinguishable, the chemical potential of the monomer component
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is constant. Effectively, this system refers to binary diffusion of two homopolymers with
equal chain lengths and mobilities, for which the profiles must be linear. At first instance
Figure 2.6a and c may also be interpreted as the stationary diffusion profiles for binary
mixtures, one component being the monomer, the other the combination of both poly-
mers. Indeed, as predicted by Table 2.1, the profiles change rapidly at high monomer
concentrations. This is not only true for the monomer and the total of the two polymers,
but also for the individual polymer components. This can be understood from the obser-
vation that the polymers are identical and they have a similar absolute difference between
φI and φII . As a result, they must behave similarly and with opposite gradients.

A first remark for the three-component system in Figure 2.7 concerns the behaviour of
polymer A. Despite the equal volume fractions in both bulk mixtures, its volume fraction
within the system is not constant. Due to the requirement of stationary diffusion, the flux
of segments A needs to be constant throughout the system. For this particular system, JA

is found to be negative; A-segments diffuse from right to left. This implies that for small
values of z the A-segments diffuse against a concentration gradient. This phenomenon
is called ‘uphill diffusion’. It is found only in multicomponent systems and must be
due to either diffusive coupling of components (large |D̃(X)

AB | for A 6= B) or negative
‘main diffusion coefficients’ D̃

(X)
AA < 0. In our system, D̃

s(C)
AA = D̃

f(C)
AA = φA[1/NC +

φB/(φANA)] ≈ φA > 0 and D̃
s(C)
AB = D̃

f(C)
AB = φA[1/NC − 1/NB] ≈ φA (see Equations 2.37

and 2.38). The relatively large cross diffusion coefficient D̃
(C)
AB drives the flux of A-segments

towards the region of low φB. Experimental evidence for uphill diffusion has been reported
frequently for metallic systems and in the context of geological studies [59]-[61] in which
all diffusing components have nearly equal sizes. Negative main diffusion coefficients have
been measured in ternary surfactant mixtures [62]. Uphill diffusion has been found in
theoretical studies as well [63, 38] for example as a result of interparticle interactions. We
are not aware of any reports on uphill diffusion only due to chain-length effects. (Remind
that we consider athermal systems). Note that A-segments have φA(0) = φA(M +1), but
µchain

A (0) < µchain
A (M + 1) as a result of the different monomer contents at both sides.

The profile of the monomer can be understood by considering the system as a binary
mixture, since the polymers are indistinguishable. The monomer concentration must
therefore change rapidly at the left side, where its concentration is maximal.

2.5 Conclusions

The equilibrium Scheutjens-Fleer method has been extended to create a new framework
for the modelling of stationary diffusion in polymer systems. The numerical algorithm
converges fast and smoothly to stationary volume fraction profiles that obey the imposed
volume fractions at the system boundaries. It is important to note that, although we im-
plemented the transition between the bulk mixtures and the gradients in a rather rough
way, the diffusion profiles did not suffer from it. Two theories, presented in the literature
for binary homopolymer diffusion and referred to as ‘slow mode’ and ‘fast mode’, respec-
tively, were combined with two methods to calculate the segment chemical potentials.
This yielded four models for the fluxes. The parameters for the flux-equations are the
Flory-Huggins interaction parameters χ, the chain lengths of the components NA, the
entanglement length of the components Ne and the mobilities of the constituent segments
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1/ζA. In general, the diffusion profiles were more sensitive to the applied theory (slow
mode or fast mode) than to the calculation of segment chemical potentials. However,
results from the two slow-mode models are more similar than those from the two fast-
mode models. By analytical analysis of diffusion coefficients, we were able to verify the
usually asymmetric diffusion profiles. We have thereby verified the MFSD method since
the analytical results matched exactly the results from the MFSD method. It has been
found for stationary diffusion profiles that the volume fractions change more rapidly at
the location where the amount of mobile components is larger. The mobility of compo-
nents is determined both by the segment mobilities and by their chain lengths. We only
studied athermal systems, but mutually interacting components might be studied as well
by the MFSD method. It is therefore possible to study interfaces in the presence of con-
centration gradients, as well as diffusion through pores of membranes that energetically
interact with some components. Another interesting aspect of the MFSD method is that
it provides information about the chain conformations; this information was not discussed
in the present paper and will be presented elsewhere.

Appendix 2A Derivation of the segment chemical

potential in the MFSD-method

The segment chemical potential is defined as the derivative of the free energy with respect
to the volume fraction:

µA(z)
kBT

=
∂(F − F ∗)/kBT

∂φA(z)
(2A.1)

According to statistical thermodynamics, the free energy is given by

F − F ∗

kBT
= − ln

Q

Q∗ , (2A.2)

where Q is the canonical partition function, defined by Q = Ω exp {−U/kBT}, with Ω
the degeneracy for the system with energy U . In Equation 2A.2, F ∗ and Q∗ are the free
energy and the partition function for a set of reference states. Each reference state is a
pure amorphous bulk state. The number of reference states equals the number of molecule
types in the system under consideration. Thus a system containing two molecular types
i and j has two reference states: one with φ∗i = 1, the other with φ∗j = 1. The partition
function for the set of reference states, Q∗, is defined as Q∗ = ΠiQ

∗
i , where the product is

taken over all molecule types i. The free energy in Equation 2A.2 can then be rewritten
by using

lnQ = ln
Ω
Ω∗ −

U − U∗

kBT
+ lnQ∗, (2A.3)

with U∗ =
∑

i U
∗
i . The total energy U of the system under consideration is easily obtained

by introduction of the Flory-Huggins interaction parameters χAB:

U

kBT
=

1
2

∑
z,A,B

φA(z)χAB 〈φB(z)〉 . (2A.4)
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The reference state i of molecules i has total energy U∗
i :

U∗
i

kBT
=

niNi

2

∑
A,B

φ∗AiχABφ∗Bi =
1
2

∑
z,A,B

φAi(z)χABφ∗Bi. (2A.5)

Here, φAi is the volume fraction of segments A that belong to molecule type i. Both
the reference state i and the system under consideration contain ni molecules of type i.
The number of A segments in the reference state i is therefore equal to the number of A
segments in all molecules i in the system: niNiφ

∗
Ai =

∑
z φAi(z). The expressions for the

degeneracies Ω and Ω∗
i in Equation 2A.3 is derived by counting the number of different

ways in which a collection of molecules can be placed in the lattice [14]. The resulting
logarithm for Ω/Ω∗ can be approximated by Sterling’s formula (lnX! = X lnX −X) as

ln
Ω
Ω∗ =

∑
i,c

nc
i ln

λc

nc
iNi

, (2A.6)

where nc
i is the number of molecules of type i with conformation c, and where λc is

a product of the weighting factors λ0 and λ1 that occur in molecular conformation c.
Substituting Equations 2A.3 and 2A.6 into Equation 2.3a, using φAi(z) =

∑
c nc

iN
c
Ai(z)

and defining the segment potential as uAi(z) = kBTαAi(z) + ∂U/∂φA(z) + uref
Ai yields

ln
nc

i

λc
= ln Ci −

∑
z,A

uA(z)
kBT

NAi(z). (2A.7)

In this expression, the constant Ci only depends on the type of molecule and on the
choice for the reference potentials uref

Ai . This constant appears in the calculation of the
volume fractions as a normalisation constant (cf Equation 2.9). When the system under
consideration is in equilibrium with a homogeneous bulk mixture in which the reference
potentials equal zero, the normalisation constant is given by Ci = φbulk

i /Ni.
The free energy of the inhomogeneous system can be written by combination of Equa-

tions 2A.2-2A.7 as:

F − F ∗

kBT
=

∑
z,A,i

φAi(z)
Ni

lnNiCi −
∑
z,A,i

φAi(z)
uAi(z)
kBT

+
1
2

∑
z,A,B

φA(z)χAB 〈φB(z)〉 − 1
2

∑
z,A,B,i

φAi(z)χABφ∗Bi. (2A.8)

When the system under consideration contains only homopolymers the last term vanishes.
This is because if homopolymer chains of type i are constituted of segments of type A,
then φBi = 0 for all B 6= A and because χAA = 0. For a homopolymer system the segment
chemical potential of segment type A becomes according to Equation 2A.1:

µA

kBT
=

∂

∂φA

∑
z,A

φA(z)
NA

lnNACA −
∑
z,A

φA(z)
uA(z)
kBT

+
U

kBT


=

1
NA

lnNACA −
uA(z)
kBT

+
∑
B

χAB 〈φB(z)〉 . (2A.9)
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Chapter 2. Lattice mean-field method for stationary polymer diffusion

Note that all volume fractions were made mutually independent by the introduction of
the Lagrange parameters αA(z) so that ∂φi/∂φj equals one for i = j and zero otherwise,
and ∂αi(z)/∂φj(z) = 0 for all i, j.

We may also calculate the segment chemical potentials in the homogeneous bulk mix-
tures I and II. These mixtures are in equilibrium with a homogeneous bulk mixture in
which φA = φref

A and uref
A = 0 for all segment types A,B, .... In other words, CA = φref

A /NA

and (using Equation 2.33):

uI
A

kBT
= − lnGI

A = − 1
NA

ln
φI

A

φref
A

, (2A.10)

For the segment chemical potentials in mixture I we obtain from Equation 2A.9:

µI
A

kBT
=

1
NA

lnφI
A +

∑
B

χABφI
B. (2A.11)

These chemical potentials differ from the segment chemical potentials in the Flory-Huggins
theory for homogeneous bulk mixtures. The segment chemical potential according to the
Flory-Huggins theory is defined as NAµapp

A = ∂FFH/∂nA. As explained in Chapter 4 in
the derivation of Equation 4.2 the segment chemical potential µapp

A is then calculated as

µapp
A = f + (1− φA)

∂f

∂φA
(2A.12)

where f = FFH/
∑

A nANA and where the volume fractions are mutually dependent.

Appendix 2B Onsager’s reciprocal relations

Mass transport driven by chemical potential gradients may be written in the standard
form of Onsager’s phenomenological equations:

JA = −
∑
B

LAB∇µB (2B.1)

where LAA are the main transport coefficients and LAB are the cross-coefficients describing
the coupling between the fluxes. According to Onsager’s reciprocal relations we should
have LAB = LBA ∀A,B.

The slow mode flux of Equation 2.26 may be written in the form of Equation 2B.1 by
realizing that the summation in Equation 2.26 may also be taken over all segment types
except A and by using

∑
B 6=A ΛB =

∑
B ΛB − ΛA. We then obtain for the slow-mode

transport coefficients:

Ls
AA =

Λ2
A∑

C ΛC
− ΛA (2B.2a)

Ls
AB =

ΛAΛB∑
C ΛC

(2B.2b)

so that Onsager’s reciprocal relations are obeyed.
For rewriting the fast mode flux of Equation 2.28 we first add the term ΛA

∑
B φB∇µB.

This term equals zero according to Gibbs-Duhem relation
∑

B φBdµB = 0. Rewriting the
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extended Equation 2.28 in the form of Equation 2B.1 yields for the fast mode transport
coefficients:

Lf
AA = ΛA(2φA − 1) (2B.3a)

Lf
AB = φAΛB + φBΛA (2B.3b)

so that again Onsager’s reciprocal relations are obeyed.

Appendix 2C Derivation of Equation 2.42

For a three-component system with NA = NB and B̃A = B̃B = B̃C , we have a set of two
independent fluxes which may be written by the help of Equations 2.34 and either 2.37
or 2.38 as:

JA = −a∇φA + bφA∇(φA + φB) (2C.1)

JB = −a∇φB + bφB∇(φA + φB) (2C.2)

where a = B̃kBT/NA and b = B̃kBT (1/NA − 1/NC). We want to solve this set for φA(z)
and φB(z) with 0 ≤ φA(z) + φB(z) ≤ 1 for z ∈ [0,M + 1]. The values for φA(0), φB(0),
φA(M + 1) and φB(M + 1) are known.

Summation of the differential equations and defining φA(z) + φB(z) = h(z), we find
for h(z):

h(z) =
a

b
± 1

b

√
a2 + 2b(k4 − JCz). (2C.3)

The integration constant k4 and the flux JC = −(JA + JB) can be calculated from h(0)
and h(M + 1). h(z) must be positive and for our specific case (NA > NC) we have a > 0
and b < 0. Therefore, we must select the minus sign in Equation 2C.3.

Using h(z), we can now solve φA(z) from Equation 2C.1 by the standard procedures
of separation of variables and variation of parameters. This introduces a new constant
k5. k5 and JA may be calculated from φA in z = 0 and z = M + 1. JB is then known
from the values for JC and JA. φB(z) is simply the difference between h(z) and φA(z),
and φC(z) = 1− h(z).
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Chapter 3

Polymer conformations in
stationary diffusion through a
barrier

The transport of macromolecules through confined space, such as a membrane or a slit,
is of interest for biological, industrial and scientific applications. Hindered transport is
influenced by the conformations of the diffusing macromolecules. We studied the con-
formations of homopolymers that diffuse through a barrier from one unconfined bulk
mixture to another. By the use of the Mean-Field Stationary Diffusion method we were
able to model the barrier in direct contact with the unconfined bulk and to investigate
the average conformational properties of an unlimited number of molecules. The mem-
brane is modelled as a region with a reduced available space for diffusing components.
This barrier membrane disturbs the ideal coil structure of the polymers dramatically. We
either find weakly deformed coils or dramatically deformed conformations, namely inho-
mogeneous flower conformations. The degree of deformation depends on barrier height,
barrier interactions, polymer concentration and driving force, but not on the chain length
or barrier width. The latter parameters only affect the fraction of all chains that deform.
Our results are particularly important for the experimental characterisation of membrane
morphologies, whereby the maximum pore size of a membrane is derived from the size of
the largest polymers that are able to cross the membrane. It is thereby usually assumed
that the polymers maintain a spherical coil conformation. Our results show that this
assumption is incorrect.
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Chapter 3. Conformations in stationary diffusion through a barrier

3.1 Introduction

When molecules have to travel through a barrier such as a hole, a porous material, or a
membrane, we have a case of hindered diffusion or translocation. Hindered macromolec-
ular translocation is a rate-limiting event in various biological processes. For example,
the synthesis of proteins in biological cells is preceded by the passage of macromolecular
translated gene material (m-RNA) through the nuclear pores. Subsequently, the newly
synthesized proteins often have to be transported from one side of a membrane to the
other to perform their task. Another example is the injection of macromolecular genetic
material (DNA) from a virus head into the host cell [64]. The rate-limiting macromolec-
ular translocation is also of great importance for new drug delivery methods whereby
complex molecules have to diffuse through the skin of a patient into the blood stream
[65]. Apart from the biologically inspired interest, there is an economically driven interest
in hindered macromolecular diffusion. Important technical processes such as separation
steps (e.g., by electrophoresis or gel permeation chromatography) and catalytic reactions
may heavily depend on the transport characteristics of macromolecules through a barrier.
Direct industrial interest in this field may also arise from the synthesis of nanocomposites
of polymer and silicate layers. These nanocomposites can be formed by the so-called in-
tercalation process whereby polymers diffuse from their melt into the porous structure of
a substrate [66]. Hindered diffusion may be relevant in other fields. Membrane scientists
exploit hindered macromolecular diffusion to study the morphology of porous material in
solute retention measurements [67]. Scientists in biotechnology attempt to elucidate the
sequence of nucleic acids in DNA by making use of the physically and chemically deter-
mined translocation time of DNA through an appropriate membrane channel [6, 68, 69].

The hindrance in macromolecular diffusion may originate from hydrodynamic resis-
tance, from volume exclusion or from both. Volume exclusion simply means that part
of the total volume is taken by other material; that part is then not available for the
macromolecular species.

Interesting aspects of hindered diffusion are the migration times of macromolecules
through a barrier and the partitioning of the macromolecules between a porous material
and the bulk solution. Even if we only focus on the hindrance through volume exclusion,
both aspects still depend on many variables, for example on the length, composition, and
flexibility of the translocating macromolecule and on barrier characteristics such as pore
sizes, pore distributions, and chemical interactions with translocating molecules. All these
variables have in common that they determine the conformation that the macromolecule
can or must adopt to be able to diffuse from one side of the barrier to the other.

In the present paper we limit ourselves to the computational study of volume exclusion
effects on the conformations of the macromolecules (in our case homopolymers) that are
forced to diffuse through a barrier by an imposed concentration gradient. Our results
are of direct interest to various modes of barrier crossing, but particularly so for the
characterisation of membranes. A standard method to estimate the maximum pore size
in a technical membrane is to determine the size of the largest polymer that is able to cross
the membrane. It is then generally assumed that the polymers maintain their bulk coil
conformation during the translocation and the maximum pore size is related to the size
of those coils [67, 70]. We show that already in very simple systems the coil conformation
may be significantly disturbed, even in the absence of convection-induced deformation
[71]. For sufficiently high barriers, we find so-called flower conformations, where one part
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of the chain is stretched, and the other part has a (perturbed) coil conformation. Similar
conformations have been found in experiments on long DNA molecules driven from one
entropic trap to another [3, 72, 73]. Such conformations, in particular the coil-to-flower
transitions, have been studied before at liquid/liquid interfaces [74]-[76]. Flowers have
also been found in Monte Carlo simulations of a chain near the exit of a pore [77]. An
advantage of our method over Monte Carlo or other simulations is that we obtain the
statistical average properties of a macroscopic system in a very efficient way. Our mean-
field calculations cover the complete configurational space in a CPU time of minutes.
Monte Carlo or Molecular Dynamics simulations are in principle more accurate to follow
the transport of a selected molecule, but only a few molecules can be included in the
simulations. The study of confined polymers is usually restricted to partition studies
[78, 79], to concentration profiles [80]-[82], or to conformational studies of chains that are
fully inserted in the confinement [83]-[86]. Chains in a bulk mixture that are in contact
with a confinement are studied as well [87]-[90], but little attention has been paid to the
conformations [77, 91, 92]. Some studies focus on the probability to cross a barrier by
considering the barrier as an infinitely thin sheet that is only penetrable via a hole [93]-
[95]. This allows the generalisation of the Kramers approach for barrier crossing, whereby
assumptions are needed for the shape of the potential energy curve. In our approach, we
fill the gap between the studies on bulk conformations and studies on completely confined
conformations at equilibrium; we study the conformations in systems where bulk and
barrier are in direct contact and where the number of (diffusing) molecules is unlimited.
We do not need to make assumptions about potential energy curves. The potential energy
in our approach directly follows from two barrier parameters: its width and its porosity.
The latter is represented by the volume fraction taken by barrier material.

The structure of this chapter is as follows: in Section 3.2 we explain the relevant
details of the statistical method used to obtain the polymer conformations. As a result
of this method, our barrier is of a special character since we can not assign a specific
pore size distribution. Section 3.3 presents and discusses the effects of polymer proper-
ties and barrier characteristics on the conformations of translocating chains. Section 3.4
summarizes our conclusions.

3.2 Method

3.2.1 General

We use a numerical lattice model to obtain the conformations of polymers that diffuse over
a barrier. That model is based upon the rules of statistical thermodynamics. Originally,
Scheutjens and Fleer developed the model for equilibrium polymer systems containing
interfaces [9], but recently we extended it with dynamics equations to enable the modelling
of stationary diffusion as well [96]. We call this extension the Mean-Field Stationary
Dynamics (MFSD) method.

In the MFSD method, the polymers are described as a chain of segments, as in the
original theory. The length of the chains is measured by the number of segments N .
Homopolymers are chains of only one segment type, copolymers are made up of different
segment types. Each segment takes one site on a three-dimensional (3D) lattice. A 3D
lattice with K × L × M sites may be seen as M layers in the z-direction, where each
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layer has K ×L lattice sites whose positions are given by coordinates x and y. In our 1D
calculations, we are only interested in the fraction of sites in each layer taken by segments
of type A, the fraction taken by segments of type B,...etc. Thus, the exact distribution
of the different segment types within such a layer is not taken into account, which is
typical for a ‘mean-field’ method. The only relevant position variable is the coordinate z
that runs from 0 to M . Moreover, the lattice does not have any boundaries in the other
directions (K →∞ and L →∞).

The MFSD-method generates segment weighting factors GA(z) = e−uA(z)/kBT , where
u is the segment potential. Both G and u are functions of z and the segment type A.
These segment weighting factors are the essential information to calculate the chain con-
formations. They determine the probability for a certain segment to be found at a certain
position z. The chain connectivity and the (average) interactions with all other segments
are taken into account, as well as some imposed constraints. These constraints are the
following: (i) the system is completely filled with segments and thereby incompressible,
(ii) the volume fraction of each polymer at z = 0 and z = M is fixed at a certain value, and
(iii) the system is in a stationary state, so the volume fractions do not change in time. For
a particular stationary-state solution the density profile in the system is chosen such that
the free energy is minimal. In other words, the optimisation of the partition function un-
der these constraints determines how the volume fractions are calculated from a given set
of segment weighting factors. On the other hand, the segment weighting factors depend
on the volume fractions through, for example, contact interactions, which are modelled
through Flory-Huggins parameters χ. The MFSD-method is a self-consistent field calcu-
lation that starts with a choice for the segment potentials u and thus for the weighting
factors, then calculates from these the volume fractions in a way that is imposed by the
optimisation of the partition function, and subsequently adjusts the segment weighting
factors iteratively until the values for the volume fractions are such that all constraints
are obeyed.

In the next section we define the system. Special attention is paid to the properties of
the barrier. We then explain in Section 3.2.3 how to obtain information about the chain
conformations from the segment weighting factors.

3.2.2 System, dynamics and barrier

The system used to study hindered diffusion of polymers is presented in Figure 3.1. Two
mixtures I and II, for which we may choose any composition, are brought into contact.
These mixtures are ideal sinks and sources for the components in the system, i.e., their
compositions do not change in time. If these mixtures have equal compositions and if these
compositions correspond to the stable one-phase region in a phase diagram, the system
represents the equilibrium state of a bulk mixture. When the mixtures have different
compositions, the components will diffuse in the direction determined by the chemical
potentials of the segments. We only consider stationary diffusion, with the material fluxes
constant in time and space. In other words, there is no time-dependent accumulation of
material anywhere in the system. Accumulation in space can occur, as shown later in
Figure 3.2.

The flux equations for two different diffusion mechanisms, the slow-mode mechanism
and the fast-mode mechanism, are presented elsewhere [96, 97]. These mechanisms become
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Figure 3.1. The system for hindered diffusion of polymers. The composi-
tions of mixtures I and II are kept at a constant value. The diffusion profile
in the system is such that the material fluxes are constant throughout the
system. The characteristics of the barrier are discussed in the text.

identical if all segment types have equal mobility coefficients, as will be assumed in the
present study. Both diffusion mechanisms may then be described as a ‘swap’-mechanism;
segments of different types diffuse by exchanging their positions. When we also assume
that entanglement effects on the diffusion may be ignored, the flux of segments of type A
is given by

JA(z) = −B̃
∑

j

φA(z)φj(z)∇ (µA(z)− µB(z)) . (3.1)

Here, B̃ is the segment mobility coefficient, φA is the volume fraction of segment type
A and µA(z) is the segment chemical potential, calculated as the derivative of the free
energy with respect to the number of A-segments in layer z.

The polymers must diffuse over a barrier, which may be located anywhere in the
system (cf. Figure 3.1). In the present study, we simply construct the barrier by limiting
the available space for the diffusing components. This is achieved by requiring that in a
number of lattice layers a certain volume fraction φ∗ is taken by barrier material (φ∗ < 1).
The width of the barrier is given by the specified number of lattice layers containing barrier
material. The ‘height’ of the barrier is varied for all diffusing components collectively by
varying φ∗. The height of the barrier may also be varied for a specific component i by
varying the chemical interactions between the barrier material and that component. These
interactions are quantified by the Flory-Huggins parameter χi*. We do not ascribe any
structure to the barrier, for instance by specifying specific pore sizes or pore shapes. Due
to the 1D mean-field calculations, we can only specify the volume fraction of φ∗ in layer
z and not the distribution of barrier material within that layer. In a 2D version of the
MFSD method it would be possible to model, for example, a cylindrical pore.

For a description of the nature of the barrier, we may imagine the barrier as a fluid film,
bounded by infinitely thin semi-permeable membranes. These membranes are permeable
(in fact even invisible) to all components in mixtures I and II, but completely impermeable
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to the barrier material, which is the component that builds up the fluid layer. Thus, these
membranes allow a sharp interface between the fluid film and the polymer blends outside
the barrier. The fluid film acts as a solvent in which the solubility of the components
is suddenly decreased compared to the solubility outside the barrier region. The easiest
way to show this solubility drop is by considering the diffusion in a special homopolymer
blend. In that blend all polymers have the same chain length and there are no contact
interactions; Ni = N , χij = 0 and χi* = 0 for all components i and j (athermal system).
We used the MFSD-method to calculate the stationary volume fraction profiles in this
system in the presence of a barrier. The resulting diffusion profiles are plotted in Figure
3.2. (In the absence of any barrier, we would obtain linear volume fraction profiles in the
stationary diffusion regime, even when there would exist concentration gradients [96]).
From the volume fractions just outside the barrier and just inside the barrier for profiles
as in Figure 3.2 we found that the effect of the barrier is given by a solubility drop,
quantified by the partitioning coefficient

Kpar
i =

φin
i

φout
i

= 1− φ∗ ∀i, (3.2)

where φin and φout are evaluated at the first barrier layer and at the layer adjacent to the
barrier, respectively. There is no such simple relation between the barrier volume fraction
and the partitioning coefficient for polymer solutions (where the chain lengths of polymer
and solvent are greatly different) or for systems that have a solubility gap (χ > χcrit). A
more detailed description of the diffusion profiles and flux characteristics is beyond the
focus of the present chapter.

The underlying principle of our barrier is the entropy effect (if all χ-parameters are
taken zero). Chains that approach the barrier experience a sudden decrease in the number
of possible conformations, similar to chains close to a solid wall or inside a cylindrical pore.
This is clearly seen by the occurrence of a depletion layer at the outside of the barrier
for polymers in solution. The depletion results from the reluctance of polymer chains to
reside within the region that limits their entropy. Figure 3.2a depicts the volume fraction
profiles throughout the system containing a barrier with two different heights. This figure
plots the volume fraction profiles for a homopolymer with length NA = 1000 in a solvent
with NB = 1. There are no contact interactions; χAB = χA* = χB* = 0. In Figure 3.2b
we zoom in into the region just outside the barrier. The curves in this figure illustrate the
similarity between the depletion layer next to a solid wall (dotted curve) and the depletion
layers next to the (fluid) barrier. The dotted curve was obtained by standard Scheutjens-
Fleer calculations. The solid curves in Figure 3.2 were calculated by MFSD-calculations.
The depletion at the solution sides resembles the depletion due to the solid wall if the
barrier is sufficiently dense, in other words if φ∗ is sufficiently large. In fact, for the solid
wall we have φ∗ = 1. At solid walls, the profile of the depletion layer is known to be
given approximately by φA(z) = φbulk

A tanh2
(

z+p
ξ

)
, where the so-called proximal length

p is related to the adsorption energy of the wall and where ξ is the correlation length in
the bulk [98, 99]. It can be anticipated that a similar equation can be derived for the
depletion layer at the barrier, where p will be related to φ∗ and thereby to the potential
energy associated with the barrier (u∗A in Section 3.3.7).

The entropic effect of the barrier is also illustrated by the ‘accumulation layer’ (in
contrast to the depletion layer) just inside the barrier (see Figure 3.2c). Chains that
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Figure 3.2. Volume fraction profiles in the presence of a fluid barrier or
a solid wall. (a): Profiles in the total system for φ∗ = 0.05 and φ∗ = 0.20.
(b): Depletion layers near a solid wall (dotted curve) and near a fluid
barrier with varying barrier densities. (c): Accumulation layer within a
fluid barrier with varying barrier densities. The parameters are: NA =
1000, NB = 1, χAB = χA* = χB* = 0, φbulk

A = φI
A = φII

A = 0.05.

reside within the barrier experience a sudden increase of their conformation possibilities
when they approach the exit of the barrier. Therefore, there is an excess of polymer
near the exit of the barrier with respect to the amount of polymer in the centre of the
barrier. The depletion layer and accumulation layer are not symmetrical with respect to
the barrier/blend transition, since φbulk

A , which appears in the equation for the depletion
profile, is independent of φ∗, whereas φ∗A, the volume fraction in the barrier interior,
decreases with increasing φ∗. The analogy between the accumulation layer just inside the
barrier and the adsorption layer next to an adsorbing wall is also interesting. The equation
φA(z) = φbulk

A coth2
(

z+p∗

ξ∗

)
may serve as an ‘educated guess’ for the accumulation profile,

where p∗ is related again to φ∗ and ξ∗ to the correlation length for chains in the barrier.
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3.2.3 Evaluation of chain conformations

Information about the chain conformations may be obtained through the concept of ‘con-
ditional volume fractions’. We first explain how the usual (unconditional) volume fractions
are computed.

The MFSD-method calculates the segment weighting factors Gi(z, s). The subscript
i refers to the molecule type, z is the position coordinate, and s is the ranking number
of the segment in the chain. The parameter s runs from 1 to Ni. Since we consider
monomers or monodisperse homopolymers, segments of type A always belong to only one
molecule type. The definition of the weighting factor is:

GA(z, s) = exp−uA(z)
kBT

. (3.3)

Here, kB is the Boltzmann constant, T the temperature, and uA(z) is the segment poten-
tial felt by segment A in z. The segment potential depends on the interactions with other
segment types and on the space-filling potential αA:

uA(z)
kBT

= αA(z) +
∑
B

χAB

〈
φB(z)− φref

B

〉
. (3.4)

The space-filling potential αA ensures that the lattice is completely filled. For example, a
polymer melt near a non-interacting solid wall needs low values for α in the lattice layer
next to that wall, otherwise the components would avoid this lattice layer due to the
entropy loss of polymers. In the standard Scheutjens-Fleer method, αA does not depend
on the segment type and the subscript A can be dropped. In MFSD, the space-filling
potential only depends on segment types if mixtures I and II have different compositions.
The volume fraction φref

B refers to a reference mixture which can be chosen arbitrarily.
The angular brackets in 〈φB(z)〉 generally denote the average over three layers z − 1, z,
z + 1:

〈φB(z)〉 = λ−1φB(z − 1) + λ0φB(z) + λ1φB(z + 1). (3.5)

The average over the three layers is weighted by λ’s which account for the number of
contacts for a segment in layer z. For a cubic lattice λ0 = λz→z = 4/6 and λ−1 =
λz→z−1 = λz→z+1 = λ1 = 1/6.

From GA(z, s) we may calculate the end-segment weighting factors GA(z, s|1) for
chains (‘walks’) starting from s = 1 and GA(z, s|NA) for walks starting from s = NA. Here,
GA(z, s|1) is the weighting factor for the last segment of a chain of length s, where segment
s is in layer z, and segment 1 may be anywhere in the system. Similarly, GA(z, s|NA) is
the weighting factor for the first segment of a chain of length NA − s + 1, where the first
segment (s) is in layer z, and the last segment (NA) may be anywhere. The end-segment
weighting factors follow from the segment weighting factors GA(z, s) according to a prop-
agation scheme which incorporates the chain connectivity. The starting conditions are
GA(z, 1|1) = GA(z, 1) and GA(z,NA|NA) = GA(z,NA), and for the consecutive segments
we have

GA(z, s|1) = GA(z, s) 〈GA(z, s− 1|1)〉 (3.6a)

GA(z, s|NA) = GA(z, s) 〈GA(z, s + 1|NA)〉 (3.6b)

Note that this (first-order Markov) propagation scheme allows immediate step reversals.
A more refined scheme is possible [17], but is not used in the present study.
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By combining two end-segment weighting factors we can calculate φA(z, s), the volume
fraction in layer z for segment s of molecule A. Connecting the chain parts from 1 to s
and from s to NA and correcting for the double counting of segment s we find

φA(z, s) = CA
GA(z, s|1)GA(z, s|NA)

GA(z, s)
. (3.7)

where CA is a normalisation factor given by the composition of the reference mixture.
Expressions for so-called ‘conditional volume fractions’ can be derived in a similar

way. An example of a conditional volume fraction is φA(z, s|z′, s′). This evaluates the
volume fraction φA(z, s) for a chain that has segment s′ in layer z′:

φA(z, s|z′, s′) = CA
GA(z′, s′|1)GA(z, s|z′, s′)GA(z, s|NA)

GA(z, s)GA(z′, s′)
for s′ ≤ s (3.8a)

φA(z, s|z′, s′) = CA
GA(z, s|1)GA(z, s|z′, s′)GA(z′, s′|NA)

GA(z, s)GA(z′, s′)
for s′ ≥ s (3.8b)

The propagation scheme of Equation 3.6 is used to calculate GA(z, s|z′, s′), but the starting
conditions are

GA(z, s′|z′, s′) =
{

GA(z′, s′) for z = z′

0 for z 6= z′
(3.9)

The segment weighting factors and conditional volume fractions are calculated slightly
differently near the two bulk mixtures at the boundaries of the system. As stated in
Chapter 2 we have an inconsistency at the boundaries at z = 0 and z = M . Appendix
3A explains the consequences for the calculation of the conditional volume fractions and
for the the chain conformations near the boundaries. One expects artifacts if there exist
large density gradients near the boundaries. We consider systems where these gradients
are typically small so that these problems do not affect our results. Moreover, we are
interested in the conformations of chains for layers far from the system boundaries at
z = 0 and z = M .

3.3 Results and discussion

3.3.1 General conformational changes

We start with the description of the general conformational changes during stationary
hindered diffusion of polymer chains. Figure 3.3 presents the system under consideration:
the two bulk mixtures are in equilibrium. They contain a polymer component with chain
length NA = 100 and volume fraction φA = 0.05 in a monomeric solvent (NB = 1,
φB = 0.95). There are no contact interactions (χij = 0). The barrier in the centre of the
system reduces the available space by 20% (φ∗ = 0.20) for 19 of the 149 lattice layers. The
volume fraction profiles in Figure 3.3 show that the polymer volume fraction φ∗A (nearly)
vanishes in the barrier region. Also, the concentration of solvent decreases significantly,
from φB = φbulk

B = 0.95 to a value 1− φ∗ − φ∗A ≈ 0.8.
The chain conformations can be monitored by considering the conditional volume

fractions φA(z, s|z′, s′). For convenience we normalise these volume fractions as

PA(z, s|z′, s′) =
φA(z, s|z′, s′)∑M

z=0 φA(z, s|z′, s′)
, (3.10)
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so that we obtain the ‘conditional segmental probabilities’. The profiles of these proba-
bilities are plotted in Figure 3.4. The difference between the four diagrams in this figure
is the position of segment s′ = 1. In each diagram the profiles for various values of s are
plotted. Obviously the curves flatten for increasing |s − s′|, as is clearly seen in Figure
3.4a. The Gaussian profiles in Figure 3.4a illustrate that the chains that have their first
segments sufficiently far from the barrier (s′ = 1 in z′ = 30) adopt a coil structure. Closer
to the barrier, the coil starts to deform in order to avoid the barrier region ((Figure 3.4b).
Interesting conformational deformations occur for chains that have some segments within
the barrier as in Figures 3.4c and 3.4d. If s′ = 1 is in the centre of the barrier (z′ = 75),
the next segments are forced to be in the adjacent layers. The higher the segment number,
the larger its preferred distance from z′ = 75. Thus, the chain stretches. For sufficiently
high ranking numbers, the chain escapes from the barrier, either at the left or at the right
side of the barrier. The part of the chain that has escaped from the barrier remains close
to the barrier. We call these conformations ‘flowers’ as sketched in Figure 3.5. The stem
of the flower is formed by the stretched part of the chain within the barrier. The part of
the chain that has escaped forms the crown of the flower. For the system presented in
Figure 3.3, where ∆φ = φII − φI = 0, most chains stretch to the left if s = 1 is at the
left of the barrier centre and most to the right if s = 1 is at the right of the centre. Both
directions are equally probable if s = 1 is at the centre.

To investigate whether some segments are preferred over other segments in lattice
layer z we calculate the segmental preferences p(z, s):

p(z, s) = NA
φA(z, s)
φA(z)

. (3.11)

The preference p(z, s) equals unity for all s if all segments of polymer A have the same
probability in layer z (which is the case in the homogeneous bulk solution). The contour
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Figure 3.4. The conditional segmental probability profiles for the system
of Figure 3.3, with the centre of the barrier in z = 75. (a): Confor-
mations far from the barrier, (b): conformations near the barrier, (c):
conformations for first segment within the barrier (s′ = 1 at z′ = 74), (d):
conformations for first segment in the centre of the barrier (s′ = 1 at
z′ = 75).
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Figure 3.5. Sketch of the flower conformation that a chain adopts at the
transition between the barrier and the solution, where the stem is found
within the barrier and the crown outside the barrier.
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Figure 3.6. Segmental preferences for the system of Figure 3.3. Grey
regions: 0.995 < p(z, s) < 1.005, white regions: p(z, s) < 0.995, black
regions: p(z, s) > 1.005.

plot in Figure 3.6 presents the values of p(z, s) as a function of s and z. Dark regions in
this plot indicate a preference (p(z, s) > 1) and white regions a shortage (p(z, s) < 1) of
segment s. In the grey regions there exists no (significant) preference. The symmetry in
Figure 3.6 in the direction of z is due to the identical bulk compositions. The symmetry
in the direction of s is due to the properties of homopolymers; segments s = 1 and s = NA

have the same distribution. The barrier clearly exhibits a preference for end segments (s
close to 1 or close to NA). Middle segments are underrepresented. Outside the barrier,
distortions of segmental contributions are found only close to the barrier. It is seen that
chains tend to direct their ends towards the barrier. These chains are prepared for barrier
entrance in such a way that so called ‘hair pin’ conformations are avoided. Such hair pin
conformations would have some middle segments within the barrier and two tails sticking
out of the barrier.

The highly preferred flower-conformations, combined with the preference for end seg-
ments in the centre of the barrier, suggest that chains that permeate through the barrier
must suddenly change the direction of their flower. However, in equilibrium systems, such
translations will be rare, since there is no chemical potential gradient which forces the
chains to diffuse. In the next sections we discuss the influence of various variables on
the chain conformations, where we also consider stationary diffusion between two bulk
systems that are not in equilibrium.
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barrier. The system is the same as in Figure 3.3. Chain stretching is
maximal if the slope equals that of the dashed line. The blob size ξ of the
stretched stem is equal to the slope ds/dz of the linear part for small s.

3.3.2 Barrier height

The height of the barrier can simply be adjusted by varying φ∗. It may be expected that
the stem of the flower conformations will stretch stronger for higher φ∗. Chain stretching
can be quantified by the notion of blob size ξ. The stem of the flower is described as a chain
of blobs that behave Gaussian on their own length scale. The stronger the stretching, the
smaller the blob size. By calculating φ(z, s|z′, s′) for z′ within the barrier region, we may
obtain the first segment number sout that escapes from the barrier and to take part in the
crown of the flower starting at z = zout. The S segments between s′ and sout form the
stem that stretches over Z = |z′ − zout| layers. The blob size can then be calculated as
ξ = S/Z; here ξ acts as a stretching parameter. A simple scaling argument for the blob
size will be discussed in Section 3.3.7.

We find the first segment that prefers to escape from the barrier by calculating the
positions of the local maxima of φ(z, s|z′, s′). In Figure 3.7 the positions of these local
maxima are plotted as a function of s for a system as in the Figure 3.3, with φ∗ = 0.20
(sout = 25) and φ∗ = 0.40 (sout = 17). The first segment of each chain is in the centre
of the barrier, thus a chain may stretch either to the right or to the left, so that we have
two curves for each φ∗ in Figure 3.7. The higher the ranking number s, the further out
the maximum of φ(z, s|z′, s′) is found. Outside the barrier, the position of the maximum
is independent of s (for s > sout), meaning that the crown is an unperturbed coil. Figure
3.7 shows that the higher φ∗, the smaller s′− sout, thus the stronger the stretching of the
chain. The slopes of Figure 3.7 represent the blob sizes of the stretched part of the chain.
Figure 3.8 presents these blob sizes as function of φ∗. The barrier must be sufficiently
high to find chain deformations. With increasing φ∗, the concentration of polymer in the
centre of the barrier decreases faster than the blob size. Thus the number of chains in the
barrier must decrease if the barrier height increases.
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3.3.3 Interactions inside the barrier

The barrier height can be adjusted for a specific component i by adjusting the contact
interaction between i and the barrier, as expressed by the parameter χi*. The volume
fractions of other components in the system will also be influenced, but each component
may react differently, depending for example on its chain length. For a polymer solution
with NA = 100 and NB = 1 we varied either χA* with χB* = 0 or we varied χB* with
χA* = 0. Increasing χA* for given φ∗ has the effect of increasing the barrier. As expected,
Figure 3.9 shows that the stretching is stronger (smaller blob size) for higher barriers, i.e.
for higher χA*. As we will see in Figure 3.13, the blob size increases for increasing χA*,
which lowers the barrier for the polymer A. With increasing χA* the polymer is not only
forced to stretch more strongly, but also to increase its fraction of stretched chains. A
measure for this fraction is

fout(NA|z′, s′) =
∑

z /∈barrier

PA(z,NA|z′, s′) (3.12)

since (most of) the stretched chains will have s = NA outside the barrier. The fraction of
chains with s = NA outside the barrier is plotted as a function of χA* also in Figure 3.9.
Note that fout(NA|z′, s′) is only a rough measure for the fraction of stretching chains, since
also coil conformations around z′ = 75 have a small contribution to fout(NA|z′, s′). The
fraction suddenly decreases with decreasing χA* at the moment that we can not longer
identify the blob size. The blob size can not be identified any more if the stretching is so
weak that φA(z, s|75, 1) only has a visible maximum for z = z′.

The interactions with the barrier are not only felt within the barrier, but also by
segments in the two solution layers adjacent to the barrier. We therefore may expect
a significant effect of χA* and χB* on the segment preferences p(z, s) in these layers.
The segmental contributions to the volume fractions are plotted in contour plots for
various χA* in Figure 3.10. For comparison, Figure 3.11 shows similar contour plots for a
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polymer solution next to a solid impenetrable wall for different polymer-wall interactions.
Figure 3.10a is nearly the same as Figure 3.6. Both figures are characteristic for systems
containing flowers. The segmental contributions to the volume fractions outside the barrier
are comparable to those near a low-attractive, inert or rejective solid wall (see Figure 3.11
for χA* = −1 or χA* = 0). We obtain a segment preference pattern as for a polymer
adsorbing on a solid wall if we increase the affinity of the barrier material to χA* = −1.3
(Figure 3.10b and Figure 3.11 for χA* = −2 or χA* = −1.5). The preference for middle
segments next to the barrier or the wall can be explained by the presence of tails with their
ends relatively far from the surface [10]. Therefore, middle segments are preferentially
adsorbed, and the chain parts with the end segments stick into the solution. Increasing
the attractiveness further results in patterns that are unique for low barriers. In contrast
to flower-forming barriers, the low barriers prefer middle segments (Figure 3.10c). Despite
the reduced available space, the barrier region is made attractive for polymer segments
by the negative value of χA*. This can clearly be seen in Figure 3.12, where we evaluated
the direction of the chains by calculating the fractions of chains with s = 1 in z′ that have
their last segment either left or right of z′:

fleft(NA|z′, 1) =
z′−1∑
z=0

PA(z, NA|z′, 1), (3.13a)

fright(NA|z′, 1) =
M∑

z=z′+1

PA(z,NA|z′, 1). (3.13b)

Without any distortion, both directions are equally probable as can be seen for z′ at some
distance from the barrier in Figures 3.12b and 3.12c. With some simple statistics it is
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Figure 3.12. The directions of chains that have their first segment in layer
z′ for different values of χA*. The system is the same as for Figures 3.9
and 3.10.
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found that about 46, 5% of unperturbed coils have NA = 100 at the left of s = 1, and
an equal percentage have NA = 100 at the right. These percentages are calculated as
1
2 ∗ [1− PA(z′, NA|z′, 1)] with

PA(z′, s|z′, 1) =
imax∑
i=0

λ
(s−1−2i)
0 λ2i

1

(
s− 1

2i

)(
2i
i

)
, (3.14)

where imax equals 1
2(s−1) for s odd and 1

2s−1 for s even. For the derivation of Equation
3.14 see Appendix 3B. Figure 3.12a refers to flower-forming barriers. For convenience,
only the fraction of chains going to the left is shown. Chains with their first segment
within the barrier escape from the barrier. In accordance with the observation in Figure
3.4, the flowers change their direction for s = 1 in the centre of the barrier. Chains
that have their first segment near the barrier have a disturbed coil conformation to avoid
the barrier. Figure 3.12b corresponds to Figure 3.10b, which resembles an attractive solid
wall. Indeed, we see in Figure 3.12b that polymers that approach the barrier are attracted
by the barrier. Chains with one of their ends within the barrier prefer to reside within the
barrier, taking advantage of the attractive barrier material (by the negative term χA*φ

∗

in Equation 3.4). Only when they have their first segment in the first layer of the barrier,
they prefer to escape, taking advantage of the available space and a smaller contribution
of attractive barrier material (the term λ1χA*φ

∗ in Equation 3.4). For χA* = −3, as in
Figure 3.12c the barrier is attractive for all chains, also if s = 1 is in the first layer of the
barrier.

3.3.4 Polymer concentration

The chain deformations depend on the concentration of polymer, as shown already in
Figure 3.8. Figure 3.13 shows both the blob size and fout(NA|75, 1) as a function of φbulk

A

for two values of χB*. From this figure it is observed that the larger the bulk concentration
of polymer, the smaller the chain deformations. The blob size increases and the fraction of
stretching chains decreases with increasing polymer concentration (see also Section 3.3.7).
The highest polymer concentration is obtained for pure polymer melt (φbulk

A = 1) or for
a polymer blend where all components have equal chain lengths. In the polymer melt we
only see coil deformations if the polymer resides close to the exit of the barrier region or
if the barrier width is small compared to the coil size, e.g. if the barrier constitutes 10
layers and N = 100. In case of a polymer solution, the solvent competes with the polymer
component to fill the barrier region and it wins due to the entropy loss for polymers. This
greatly reduces the concentration of polymer within the barrier compared to systems with
pure polymer. When, in the presence of a solvent, the polymer can avoid the barrier, it
does so by adopting flower conformations. When, in the absence of a solvent, the polymer
is forced to fill the barrier, its volume fraction does not reduce sufficiently to adopt flower
conformations. Note, especially from Figure 3.8 but also from Figure 3.13, that flowers
usually occur for χA* = χB* = 0 only if φbulk

A < φ∗.
Since the chain conformations depend on the polymer concentration φ∗A within the

barrier, it may be expected that the parameter χAB also influences the conformations.
This parameter describes the polymer-solvent interactions. When χAB is sufficiently high,
there will be a miscibility gap. Phase separation will occur for a range of concentrations of
polymer A in the solvent B. An interface may develop somewhere between the two bulk
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Figure 3.13. The blob size as a function of φbulk
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φ∗ = 0.80, barrier width = 19 lattice layers, χAB = χA* = 0.

mixtures I and II, with a polymer-rich phase at one side of the interface and a solvent-rich
phase at the other. The position of this interface is affected by the position of the barrier.
In other words, φ∗A (and thus the average chain conformation) depends on the position of
the barrier relative to the position of the liquid/liquid interface.

3.3.5 Driving force

The driving force for diffusion can simply be varied by adjusting the composition of one of
the bulk mixtures. Obviously, this also changes the polymer concentration in the barrier
region. In Figure 3.14 the volume fraction profile for the polymer is shown for three values
of ∆φA = φII

A − φI
A, with φI

A = 0.05 and φ∗ = 0.50. Depending on the barrier height (φ∗)
and the driving force ∆φA, the volume fraction profiles remain flat outside the barrier (as
for ∆φA = 0.40 in Figure 3.14), or they may have three different gradients at the left,
the right, and in the interior of the barrier (as for ∆φA = 0.50 and ∆φA = 0.90 in Figure
3.14). If the barrier is sufficiently high or the driving force is not too large (∆φA ≤ 0.4 in
Figure 3.14), the volume fraction profile remains flat and the discontinuities at the barrier
boundaries account for the transition between low and high φA of the bulk mixtures.

Flower conformations are only found if the gradient of φA(z) is small outside the
barrier. When φI

A 6= φII
A the blob size depends on the direction of the stretched stem.

This is illustrated by the conditional segmental probability profiles in Figure 3.15 where
φ∗ and ∆φA are chosen such that the volume fraction profile φA remains flat outside
the barrier. Moreover, φI

A < φII
A . In this figure it is seen that if s = 1 is at z = 90,

the flower may stretch both to the right and to the left. From the asymmetry of the
s = 5 and s = 15-profiles with respect to z′ = 90 it is observed that a stem going to the
left stretches stronger than a stem going to the right, thus the flowers to the left have a
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Figure 3.16. Fraction of chains that have their last segment either left or
right of the barrier or in the barrier, given that their first segment is in
layer z′. The system is the same as in Figure 3.15.

smaller blob size than the flowers to the right. This is due to the fact that the barrier
potential u∗A differs at the left and right side of the barrier: u∗A = uA(in) − uI

A is larger
than u∗A = uA(in)−uII

A (see also Section 3.3.7). However, given the direction of the flower,
the blob size is independent of the position of s′ = 1.

Apart from flower conformations, we may also find deformed coils within the barrier.
In these conformations, the chains remain in the barrier, but prefer a direction towards
the higher φbulk

A . Such a conformation is shown in Figure 3.15 by the central peak in
PA(z, s|90, 1) for s = 50. The two other peaks for s = 50 correspond to flower conforma-
tions.

In Figure 3.16 we plotted for every position of s = 1 the fraction of chains that have
s = NA at the left of the barrier, within the barrier, or at the right of the barrier. These
fractions were calculated analogously to Equation 3.12:

fleft(NA|z′, s′) =
zB−1∑
z=0

PA(z,NA|z′, s′), (3.15)

where zB denotes the first barrier layer. It is clearly seen that the flowers reverse their
direction from the left to the right if the first segment is still at the left of the barrier
centre when φII

A > φI
A. We found that the direction is reversed if s′ = 1 passes the layer

z for which φA(z) is minimal. It is also visible that the flowers to the left do usually not
occur simultaneously with other conformations. The fraction of chains with both s′ = 1
and NA within the barrier refer to the disturbed coil conformations. These conformations
occur generally near the layer z for which the flowers reverse their direction.

3.3.6 Chain length

In this section we focus on the effect of the chain length on the conformations. We
calculated the blob sizes in systems with varying chain lengths and barrier widths. One
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could expect that long chains could permit smaller blob sizes, because the stretching can
be compensated by a crown with a larger number of segments. We found that the blob size
is independent of chain length or barrier width. It turns out that for χAB = χA* = χB* = 0
the blob size is only determined by φ∗, φI

A, and φII
A .

The requirement for chain stretching is that the chain must be sufficiently long com-
pared to the barrier width so that there is a significant number of segments left for the
crown of the flower to compensate the entropy loss due to stretching (see also the scaling
analysis in Section 3.3.7). For example, when φ∗ = 0.93 and φI

A = φII
A = 0.90, chains with

N = 100 in solution need about 50 segments to stretch through 24 barrier layers to escape
from the barrier (not shown). If the chains in this system are replaced by shorter chains
with N = 70, flowers do no longer occur (not shown) because the remaining number of 20
segments available for the crown of the flower is too small to compensate for the entropy
loss in the stretched stem. Chains with N = 70 have a coil conformation in the barrier.

If short chains stretch, they stretch with the same blob size as longer chains, but
the fraction of polymers in the barrier that deforms into a flower conformation is smaller
for shorter chains. This can be shown by studying polymer chains with NA ≥ 80 that
have segment s′ = 40 somewhere within the barrier. We calculated for these chains the
fraction with segment s = 1 at the left of the barrier, as well as the fraction with segment
s = 79 at the left of the barrier. Along the contour of the chain these segments are equally
far from s′ = 40, but segment s = 79 is found more frequently outside the barrier than
segment s = 1. Thus, the longer tail stretches more frequently then a shorter tail. The
longer the chain, the larger the fraction with s = 79 at the left of the barrier. These
results are presented in Figure 3.17, where we calculated the first term of Equation 3.12
as a function of s for s′ = 40 fixed at z′ = 72 (a few layers left of the barrier centre) for
different chain lengths. The right-hand part of this figure shows the average conformation
of these chains. The long tail forms a flower (stretched stem plus crown outside), the
short tail only an (inside) crown. The chains thus have a ‘double-crown’ conformation.
From the diagram in Figure 3.17 it is observed that the short tails have a constant (small)
fraction outside the barrier, independent of NA. The long tails have a larger fraction
outside the barrier that increases with increasing NA until NA = 200, where nearly all
chains have a double-crown conformation.

3.3.7 Scaling analysis

In this section we interpret our results with a scaling analysis of the flower conformation,
analogous to that given in Ref. [74] for flower conformations due to an external step
potential u. For sufficiently high barriers that cause the volume fraction profile of polymer
A to be nearly flat, we can define a potential u∗A corresponding to such an external step
potential: u∗A = uA(in) − uA(out), where uA(in) and uA(out) are given by Equation 3.4
for the appropriate z. If the bulk mixtures I and II have equal compositions there exists
equilibrium and all space filling potentials α are independent of segment type (see Chapter
2). An expression for α(z) can easily be obtained for a monomeric component B, since
it follows from Equations 3.7 and 3.3 that uB/kBT = ln (φB(z)/φref

B ). Assuming that
φA(in) ≈ 0 and that φA(out) (= φI

A) does not depend on position, and considering only
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Figure 3.17. Fraction of chains with different NA that have segment s at
the left of the barrier as a function of s, given that their segment s′ = 40 is
in layer z′ = 72 (just left of the barrier centre). The barrier extends over
the layers z = 66−84. At the right, the conformation is shown that occurs
frequently for sufficiently large NA; if segment s = 40 is fixed within the
barrier segments s = 1 to s = 50 are usually found within the barrier as
well. The other segments form a crown outside the barrier. The system
parameters are NB = 1, φ∗ = 0.35, φI

A = φII
A = 0.30, χAB = χA* = χB* =

0.

binary mixtures, we obtain for the potential felt by A-segments:

u∗A
kBT

= − ln
1− φ∗

1− φI
A

+ 2χABφI
A + φ∗(χA* − χB* − χAB), (3.16)

which is now independent of the position inside the barrier.
The free energy in units of kBT for a flower with S segments residing in the barrier

and NA−S segments outside the barrier with respect to a unperturbed coil in the barrier
reads for Gaussian chains of sufficiently high lengths [74]

F =
3
2

Z2

S
− (NA − S)u∗A (3.17)

where Z is the number of lattice layers taken by the flower stem in the barrier. From
Equation 3.17 it is seen that when the stretching energy (3

2Z2/S) is compensated by the
gain in energy due to the crown (−(NA − S)u∗A), this free energy is zero. By definition,
F = 0 means that the free energy of the flower equals the free energy of coils in the barrier.
The coil conformations in the barrier and the flower conformations are in equilibrium if
∂F/∂S = 0 and F = 0. This is referred to as the binodal point in Ref. [74]. The flower
conformation is found to be in equilibrium with the coil if Z = NA

√
u∗A/6 = Zbin and

S = 1
2NA = Sbin.

From the ratio between Zbin and Sbin we can derive the scaling of the blob size ξ. The
stem of a flower is a string of n blobs, each of which has a stretching energy of 1 kBT .
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The stretching energy of the whole stem (nkBT ) should correspond to (Z2/S)kBT , hence
n = Z2/S. The number of segments per blob g is given by S/n = S2/Z2. Since the chain
remains Gaussian on the length scale of a blob, the blob size ξ must scale as

√
g, like the

radius of gyration of a Gaussian chain scales as
√

NA. The blob size is therefore found
to scale as ξ = S/Z = Sbin/Zbin ∝ 1/

√
u∗A. In the previous section it was confirmed that

ξ does not depend on the chain length. Given this scaling behaviour of Z/S = 1/ξ, it is
easily verified that Sbin and Zbin are upper limits: the free energy of coil conformations
is lower than for flower conformations if either S > Sbin or Z > Zbin.

In Figure 3.18 we check the scaling behaviour of ξ for the blob sizes as reported in
the previous sections. Only the equilibrium systems (where mixtures I and II have equal
compositions) are considered. The blob sizes reported in Section 3.3.2 and Figure 3.8 are
a function of u∗A through its dependence on φ∗ (see Equation 3.16). In Section 3.3.3 and
Figure 3.9 the potential u∗A varies with χA* and in Section 3.3.4 and Figure 3.13 it varies
with φbulk

A . Indeed the correct scaling is found in Figure 3.18 for all variations of u∗A.
In Section 3.2.2 we discussed the accumulation layers in the interior of the barrier (see

Figure 3.2). We suggested a description of the volume fraction profile in terms of p∗ that
should be related to u∗A. We have found that p∗ scales as 1/

√
u∗A (not shown).

To verify the scaling of Zbin with u∗A, we used plots as in Figure 3.12. As an ap-
proximation for Zbin we took the largest value of Z for which all chains have a direction
towards the barrier exit (fraction =1). This is of course an underestimation of the true
Zbin for which the flowers are in equilibrium with the coil conformation. For χA* = −0.5
in Figure 3.12a we would assign a value of 73 − 65 = 8 to Zbin. To check the scaling of
Zbin we chose the barrier width very large (151 layers) to ensure that chains residing in
the left side of the barrier were not affected by the exterior solution at the right of the
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Figure 3.19. The value of Zbin (underestimated as explained in the text)
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A = 0.10, barrier width=151 layers. Filled circles: χA* = 0,
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barrier. The values obtained for Zbin by variation of φ∗ and χA* are plotted as a function
of
√

u∗A in Figure 3.19. The correct scaling is found with, indeed, a slight underestimation
of the numerical Zbin.

When φI
A 6= φII

A , there is not a single barrier potential, but two different ones. We
may approximate these again as two step functions from one potential level to another
if it is assumed that the volume fraction profiles are nearly flat (such as the profile for
∆φA = 0.40 in Figure 3.14). A local equilibrium is assumed between mixture I and
the left part of the barrier and a distinct local equilibrium between mixture II and the
right part of the barrier. For φI

A < φII
A we obtain u∗A(left) > u∗A(right). The larger step

potential at the left corresponds to a smaller blob size for flowers stretching to the left
than for flowers stretching to the right. This is indeed found as discussed in Section 3.3.5.
The scaling behaviour of Zbin predicts Zbin

left > Zbin
right. This prediction is not confirmed by

the MFSD-results. This is shown in Figure 3.20 for a system with u∗A(left) > u∗A(right).
Figure 3.20b presents the volume fraction profile of the chains in such a system with a
large barrier (φ∗ = 0.95, width=151 layers). The solid curve in Figure 3.20a shows the
fraction of chains in that system that have a direction to the left as a function of the
position of the first segment. Considering the solid curve it is found that the flowers
in the left-hand side of the barrier have Zbin ≈ 15 and the flowers in the right-hand
side Zbin ≈ 28, thus Zbin

left < Zbin
right. If we could indeed accurately describe the potential

profile by two step potentials u∗A(left) and u∗A(right), we would expect Zbin
left = Zbin

0.1 and
Zbin

right = Zbin
0.9 . The definitions of Zbin

0.1 and Zbin
0.9 are depicted in Figure 3.20a: they are the

values of Zbin for φI
A = φII

A = 0.10 and φI
A = φII

A = 0.90 respectively. We indeed obtain
Zbin

right = Zbin
0.9 , but Zbin

left < Zbin
0.1 . Apparently, at the left-hand side the segment potential

uA(z) is a stronger function of z than at the right-hand side. As a consequence, the step
potential u∗A(left) is a poor description of the profile for uA(z). As noted in Section 3.3.5
the chains reverse their direction for the layer where φA(z) is minimal. In Figure 3.20 the
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Figure 3.20. Comparison of expected and actual values of Zbin for a
system with u∗A(left) > u∗A(right). Figure a presents for three systems the
fraction of chains that have s = NA left of s′ = 1 where the position of
s′ is given by z′. The solid curve in Figure a corresponds to the system
presented by the polymer volume fraction profile in Figure b where φI
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system with φI

A = φII
A = 0.90 and the dashed curve to a system with

φI
A = φII

A = 0.10. The other parameters are NA = 100, NB = 1, φ∗ = 0.95,
χAB = χA* = χB* = 0.

minimum in φA(z) occurs for Z < Zbin
0.1 . It was discussed in Chapter 2 that the volume

fraction profiles change more rapidly if the concentration of mobile component is higher.
In Figure 3.20 the left-hand side of the barrier contains more relatively mobile solvent B
than the right-hand side. The concentration φA(z) will therefore change more rapidly at
the left-hand side than at the right-hand side.

In conclusion, when φI
A 6= φII

A , the barrier potentials u∗A(left) and u∗A(right) can be
used to predict the blob sizes ξleft and ξright, but not to predict the stem lengths Zbin

left

and Zbin
right. The step sizes u∗A(left) and u∗A(right) are good approximations for the barrier

potentials, but only for a small number of layers within the barrier.

3.3.8 Conformations in a model lipid bilayer

Our barrier is a liquid-like film. Biologically more interesting systems would need a
barrier consisting of polymers that are able to adjust their conformations in response
to the transport of other molecules. We can approximate such a system by considering
a liquid-like barrier that consists of three different regions to mimic a lipid bilayer. In
the present section we consider such a lipid-like bilayer in between two homogeneous
phases, just to illustrate the possibilities of the MFSD method. We here present the
results for polymers (A) that diffuse in water (B) through a barrier as plotted in Figure
3.21. In this example, the barrier has the following characteristics: five hydrophilic layers
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χB*=-1.5 χB*=-1.5χB*=1.5

(a) (b) barrier

Figure 3.21. A lipid bilayer (a) is modelled by a barrier consisting of
three different regions (b), where each region has its own interaction χB*

with water. The interactions with the polymer (χA*) are taken to be zero.

(χB*1
= −1.5), 11 hydrophobic layers (χB*2

= 1.5) and again five hydrophilic layers
(χB*3

= −1.5). The polymer-barrier interactions are taken zero and the polymer-water
interaction has the arbitrarily chosen value of χAB = 0.62 such that there is a miscibility
gap between φA = φα

A = 0.0312 and φA = φβ
A = 0.18602 [97]. The volume fraction of

barrier material is chosen to be φ∗ = 0.70 for all three barrier sublayers; for comparison
we show also results for a dilute barrier with φ∗ = 0.05. We imposed a concentration
gradient over the system: φI

A = 0.01 and φII
A = 0.30. Figure 3.22a shows the volume

fraction profiles in the absence of the bilayer, both for χAB = 0 and χAB = 0.62. For
χAB = 0 the profile varies smoothly from φA = 0.01 at z = 0 to φI

A = 0.30 at z = M = 150.
The slope of φA(z) is larger near z = 0 than near z = M due to the larger volume fraction
of relatively mobile water near z = 0 (see Chapter 2). For χAB = 0.30 there is a steep
variation around z = 10, because a phase separation interface develops in which the major
part of the total increase ∆φA = 0.30−0.01 = 0.29 occurs. This interface is closer to z = 0
than to z = M because |φα

A − φI
A| < |φII

A − φβ
A|. The effect of the model lipid bilayer on

the volume fraction profiles is shown in Figure 3.22b. If the barrier is low (φ∗ = 0.05), the
phase separation interface is still visible around z = 10. If the barrier is high (φ∗ = 0.70),
φ-gradients only occur near or within the barrier region.

The segmental contributions to the polymer volume fraction are plotted in Figure
3.23 for φ∗ = 0.70. Outside the barrier region the same preferences are obtained as for
flower-forming barriers. However, within the barrier, there exists a preference for middle
segments. Small asymmetries with respect to the centre of the barrier (z = 75) occur
due to the gradient in φA(z). From Figure 3.24 we derive the conformations of chains
that diffuse through the lipid-like barrier with ∆φA = 0.29 and χAB = 0.62. In Figure
3.24a we plotted the fraction of chains with a direction to the left as a function of the
position of the first chain segment. We follow the chains during their diffusion from z = M
towards z = 0. Most chains that approach the barrier from the right (85 < z′ < 100)
avoid the barrier region by adopting a conformation with s = NA located at the right
of s = 1. If the diffusing chains enter the barrier they first encounter the hydrophilic
region for 80 ≤ z′ ≤ 85. Polymer segments avoid this region by escaping either to the
right out of the barrier (for 83 < z′ ≤ 85) or to the left into the hydrophobic part of the
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Figure 3.23. The segmental contributions to the polymer volume fraction
for the polymer profile given by the thick curve in Figure 3.22b.

barrier (for 81 ≤ z′ < 83). In Figure 3.24b we plotted the conditional segment probability
PA(z,NA|83, 1), i.e. the probability to find s = NA in z if segment s = 1 is in the centre of
the hydrophilic region. The two possible escapes from the hydrophilic region are clearly
seen. When chains continue to diffuse they enter the hydrophobic region of the barrier
(70 ≤ z′ ≤ 80). Figure 3.24a indicates that if the first segment of a chain resides within
that hydrophobic region, the last segment is kept in the same region. This is confirmed
by the conditional segment probability PA(z, NA|75, 1) plotted in Figure 3.24c. When
the chains enter the second hydrophilic region (65 ≤ z′ < 70) with their first segment,
they again have two possibilities to escape. According to Figure 3.24a they fold into the
hydrophobic region for 67 < z′ ≤ 69. They escape from the barrier if 65 ≤ z′ < 67. The
conditional segment probability PA(z,NA|67, 1) in Figure 3.24d shows that most chains
with s = 1 in z = 67 escape from the hydrophilic region by folding into the hydrophobic
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Figure 3.24. Conformational properties of chains in the same system as
presented by the thick curves in Figure 3.22b. (a): Fraction of chains that
is directed to the left as a function of the position of segment s = 1. (b)-
(d): Probability to find segment s = NA in z for chains that have their
first segment in the layer that is indicated by the thick dashed line: in
the centre of the first hydrophilic barrier region (b), in the centre of the
hydrophobic barrier region (c), or in the centre of the second hydrophilic
region (d).

region. Due to the low polymer content at the left of the barrier, only a small amount of
chains escapes out of the barrier. In contrast, a considerable portion of chains is able to
escape from the barrier if s = 1 resides within the other hydrophilic part (Figure 3.24b).

3.4 Conclusions

We modelled the stationary hindered diffusion of polymers through a barrier by the Mean-
Field Stationary Diffusion (MFSD) method. The barrier is in principle a liquid film with a
given (excluded) volume fraction φ∗ that is inaccessible to polymer and solvent. The liquid
film is made to resemble a lipid bilayer by subdividing the barrier into three (or more)
parts and choosing the appropriate interaction parameters. The MFSD method computes
the weighting factors for polymer segments or monomers such that the free energy is
minimal for given bulk compositions, chemical interactions and barrier properties. From
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these weighting factors we derive the conformational distributions of the polymers. The
polymer chains near or within the barrier region generally show large deformations as
compared to the coil conformations that are found further from the barrier. Chains
near the barrier tend to avoid the barrier by deforming their coil conformation. Within
a sufficiently high barrier they adopt so called flower conformations, where part of the
chain (the stem) is stretched to allow the rest of the chain (the crown) to escape from the
barrier. Within the barrier also deformed coil conformations may occur, namely when
∆φ 6= 0, where the chain does not escape, but still folds towards the exit of the barrier.

We quantified the deformations by defining a stretching parameter, expressed as the
blob size. This blob size is calculated as the number of segments in the stretched part
of the chain (the stem) divided by the length of the stem. The blob size decreases with
increasing barrier height (that is, with increasing φ∗, increasing polymer-barrier repulsion,
or increasing solvent-barrier attraction). The blob size increases with increasing polymer
concentration within the barrier. In the absence of solvent, we only found deformed
conformations when the chains are long compared to the barrier width. The blob sizes
of polymers in solution are independent of chain length or barrier width. However, for
shorter chains a smaller portion prefers the flower conformation than for longer chains.
We have interpreted these observations by means of a Gaussian scaling model. Blobs can
be distinguished only when the conformations of chains are heavily perturbed. Smaller
perturbations (for example of chains at a liquid/liquid interface) can be made visible by
evaluating the preferred direction of the chains. In this study the preferred direction was
evaluated by calculating the fraction of chains with their first segment in a given layer z′

that have their last segment either left or right of z′.
Near the barrier some segment ranking numbers are preferred over other ranking

numbers, depending on the repulsions or attractions between the segments and the barrier
material. The patterns for segmental preferences near the barrier are usually the same as
the patterns near a solid wall. However, the segment preferences differ if φ∗ and χA* are
sufficiently low so that the barrier becomes an attractive region for the polymer. Then
middle segments are preferred within the barrier, whereas the end segments are preferred
within the barrier if φ∗ is high or if polymer-barrier repulsions are small or absent. This
preference for end segments within the barrier indicates that hair pin conformations are
avoided.

The MFSD-method is a suitable and efficient tool to study the polymer conformations
during (hindered) transport. A future refinement would be the implementation of a barrier
that itself consists of (co)polymers which can not escape from the barrier region and whose
conformations adjust when other (co)polymers or salts diffuse through them.

Appendix 3A Conformations near boundaries

The conditional volume fractions φA(z, s|z′, s′) can be calculated by means of Equations
3.8 and 3.9. However, the starting conditions in Equation 3.8 have to be slightly adjusted
if part of a chain might reside in one of the bulk solutions at z = 0 and z = M . Moreover,
the expression for the conditional volume fraction in Equation 3.8 is not valid for z = 0
or z = M . In this appendix we present the proper starting conditions and the expressions
for φA(0, s|z′, s′) and φA(M, s|z′, s′).

The deviation from Equations 3.8 and 3.9 arises from the bulk properties in the
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Figure 3.25. Examples of chain conformations near the system boundaries
that are either included accurately (a) or inaccurately (b) in the MFSD
calculations.

layers z = 0 and z = M . Instead of calculating GA(0, 2|1) according to Equation
3.6 as GA(0, 2|1) = GA(0, 2) {λ−1GA(−1, 1) + λ0GA(0, 1) + λ1GA(1, 1)} we assume real
bulk characteristics in layer z = 0 so that GA(0, 2|1) is computed as [GA(0)]2 (where
GA(0) = GI

A), since in a bulk mixture GA should be independent of position. More
generally

GA(0, s|1) = [GA(0)]s, (3A.1a)

GA(0, s|NA) = [GA(0)]NA−s+1, (3A.1b)

and analogous expressions for GA(M, s|1) and GA(M, s|NA) (with GA(M) = GII
A ). The

consequence is that some chain conformations near the boundaries are not accurately
accounted for. For example, in the calculation of φ(1, s) we include the possibility that
segment s−1 finds itself in the bulk mixture (z = 0). The term Cλ−1G(0, s−1|1)G(1, s|N)
in Equation 3.7 accounts for this conformation. Due to the assumed bulk properties
of layer z = 0, this term is calculated as Cλ−1[G(0)]s−1G(1, s|N). This implies that
conformations for which segment s − 1 is in z = 0 and s′ < s − 1 is in z > 0 are not
accounted for with the correct weight. Figures 3.25a and 3.25b show some conformations
that are calculated correctly and incorrectly, respectively.

These boundary conditions have some effect on the computation of the conditional
volume fractions. In short, we have to take care of the following additional rules if
Equation 3.8 is applied:

GA(1, s)λ−1GA(0, s− 1|z′, s′) = 0 for z′ > 0, s′ ≤ s− 1 (3A.2a)

GA(1, s)λ−1GA(0, s + 1|z′, s′) = 0 for z′ > 1, s′ ≥ s + 1 (3A.2b)

Similar rules apply for the transition between layer M−1 and M . Moreover, new equations
are needed for the conditional volume fractions in the bulk mixtures. For bulk mixture I
(layer z = 0) these equations read:

φA(0, s|z′, s′) = CA
GA(z′, s′|1)
GA(z′, s′)

s−1∑
σ=s′

GA(1, σ|z′, s′)λ−1[GA(0)]NA−σ for s′ < s (3A.3a)
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to the right if segment s = 1 is in layer z. The dashed curve is the
volume fraction profile of the polymer. Parameters: NA = 100, NB = 1,
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φA(0, s|z′, s′) = CA
GA(z′, s′|NA)

GA(z′, s′)

s′∑
σ=s+1

GA(1, σ|z′, s′)λ−1[GA(0)]σ−1 for s′ > s

(3A.3b)
The noticeable effect of the boundary conditions is that if a chain from the system enters
the bulk with one of its tails, it will not be able to leave the bulk with that tail; the bulk
soaks up the tail. This soaking effect is clearly seen in Figure 3.26 where the direction
of chains is plotted as a function of the position of the first segment. The interface in
Figure 3.26 influences the preferred direction of the chains only in the interfacial region.
Chains in the solvent-rich phase fold into the direction of the polymer-rich phase to obey
the requirement of suddenly increasing polymer concentration.

The soaking effect of the bulk mixtures is not accompanied by preferences for certain
segment numbers. Only if ∇φ is large near z = 0 or z = M , there may exist segment
preferences near the bulk mixtures in which ∇φ suddenly needs to vanish. In all systems
discussed in this chapter, the bulk effects on the chain conformations are too small to
influence the conformations of chains that diffuse through the barrier in the centre of the
system.

Appendix 3B Derivation of Equation 3.14

The probability that segments with ranking numbers 1 and s reside within the same lattice
layer z′ is denoted by PA(z′, s|z′, 1). We are interested in the value for PA(z′, s|z′, 1) in
a homogeneous mixture (bulk) in which GA(z, s) = GA(z) = constant. Therefore, the
contribution of a certain chain conformation to PA(z′, s|z′, 1) is completely determined by
the bond parameters λ0 and λ1(= λ−1) (see Equation 3.5) that are associated with the
s−1 bonds between segments 1 and s. For example, a conformation that has all segments
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1, 2, 3,..., s within the same lattice layer has a contribution λs−1
0 to PA(z′, s|z′, 1). Other

conformations may have bonds that connect segments between two adjacent lattice layers.
The weight of these bonds is λ1 per bond. For chain conformations that contribute to
PA(z′, s|z′, 1) the number of such layer-crossing bonds must always be an even number,
otherwise segments 1 and s will not be found in the same layer. The number of layer-
crossing bonds is counted as 2i in Equation 3.14 which results in the factor λ2i

1 . The
remaining s − 1 − 2i bonds do not cross the layers and have a weight λ0. There are(

s− 1
2i

)
possibilities to select the layer-crossing bonds. Only half of these layer-crossing

bonds may have an arbitrary direction, either to the right or to the left. The other half of

these bonds must have the opposite direction. This is accounted for by the factor
(

2i
i

)
in Equation 3.14.
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Chapter 4

Stationary dynamics approach to
analytical approximations for
polymer coexistence curves

Phase separation in polymer blends is an important process. However, the compositions
of the coexisting phases can only be predicted by numerical methods. We provide sim-
ple analytical expressions which serve as good approximations for the compositions after
phase separation of binary homopolymer blends. These approximations are obtained by
a stationary dynamics approach: we calculate the compositions of two polymer mixtures
such that the stationary diffusion between these distinguishable mixtures vanishes. For
the diffusion equations we employ composition-dependent diffusion coefficients, as de-
rived according to the slow- and fast-mode theory from the Flory-Huggins free energy.
The analytical results are in good agreement with exact (numerically calculated) bin-
odal compositions. Our coexistence curves are more accurate than some conventional
approximations. Another advantage of the stationary dynamics approach is that it is not
only applicable to binary polymer blends or polymer solutions, but also to symmetrical
multicomponent blends. The same diffusion coefficients may be used to obtain the exact
spinodal compositions in multicomponent systems.

Published in Physical Review E 69, 021808 (2004).
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Chapter 4. Stationary dynamics approximation for coexistence curves

4.1 Introduction

Phase equilibria in polymer solutions and polymer blends are of great interest since in
many instances different macromolecular species are combined to obtain materials with
favourable properties. The implications of the phase behaviour, such as the stability of
polymer solutions and blends, is important not only in manufacturing and processing of
materials, but also in their applications.

Different approaches have been developed to study the phase behaviour theoretically,
aimed at finding more general characteristics than experiments allow. In the 1940s Flory
[100, 7] and Huggins [8] described polymer mixtures by a random mixing approach on a
lattice, a model which is nowadays known as the Flory-Huggins theory. The Flory-Huggins
theory is still widely applied to understand phase behaviour, it is used as a reference to
newly developed models and it has served as the basis of new approaches. For example,
the theory has been extended to compressible systems by Sanchez and Lacombe [101] and,
impelled by experiments, the Flory-Huggins interaction parameter χ has been proposed
to be a function of temperature [102]-[107], concentration [102]-[106][108], chain length
[108, 109], and/or chain architecture [105, 107, 110, 111]. A generalization of the Flory-
Huggins theory, which is known as the lattice cluster theory and which may include details
of monomeric shapes [111] was developed by Dudowicz and Freed [112]. An improvement
on Flory-Huggins’ random mixing approach has been suggested by Gujrati, in the form of
a recursive lattice approach [113, 114]. The Flory-Huggins theory and its derivatives aim
at the description of the full thermodynamics of polymer mixtures; the coexistence curves
are just examples of the information which may be extracted from these theories. The
great interest in the phase diagrams has led to a variety of simulation methods which were
exclusively developed for the determination of coexistence curves. De Pablo et. al. present
a clear overview of the simulation methods [115]. One easy and robust way to obtain
the compositions of coexisting phases is by Panagiotopoulos’ Gibbs ensemble simulations
[116, 117]. This method needs n simulation boxes if n phases may coexist at the imposed
temperature and overall composition. The Monte Carlo movements in the simulation
allow subsequently the displacement of particles (NVT-simulations), adjustment of the
volumes (NPT-simulations) and of the number of particles (µVT-simulations) in each of
these n boxes. The boxes are in contact due to the condition that particles and volume
are exchanged, so that N,V and T are constant for the total of all boxes. Equilibrium
is obtained when the pressure and chemical potentials are the same in all boxes. The
computation time may be decreased by performing the simulation on a lattice, but then
the volume exchanges need some extra attention [118, 119]. The strength of the Gibbs
ensemble method lies in the absence of interfaces: only bulk phases are simulated. One
single simulation box containing two coexisting phases plus the interface in between would
soon suffer from finite-size effects, especially near the critical point. However, problems
arise in the Gibbs ensemble method when it is applied to macromolecules, since particle
exchanges become extremely difficult. The acceptance probability of these exchanges
may increase if chains are inserted by a growth-process, known as the configurational-bias
method [120, 121]. Other approaches to circumvent the insertion problem were proposed
by Escobedo [122] and by Brennan and Madden [123]. The Gibbs ensemble simulation
result is a good starting point for the Gibbs-Duhem integration scheme [124]-[126], which
constitutes an efficient search for coexisting phases.

There are some attempts to find the coexistence curve by simulations in one cell only.
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4.2 Analytical binodal compositions

The configurational-bias-vaporization method [127, 128] and the adhesive-wall method
[129] simulate the coexisting phases with their interface. The histogram reweighing
method [130, 131] is a powerful tool to find the coexistence curves by a limited num-
ber of simulations in which the interfaces need not be present.

This large number of attempts to find coexistence curves in polymer fluids indicates the
importance of the issue. One general feature of such simulation methods is that one needs
to start with a good estimate of the compositions of the coexistent phases. Such an initial
guess might be obtained from a series of (time-consuming) trial simulations (e.g. by Virtual
Gibbs ensemble simulations [132]) or from simple analytical expressions. Some analytical
expressions are available in the literature. We review them in the following section.
In Section 4.3 we explain our ‘stationary dynamics approach’ to obtain new analytical
approximations for coexistence curves. In this approach, we look for the compositions
of two mixtures at which the stationary flux between these mixtures vanishes. We show
that this approach in principle yields the exact binodal compositions when the equations
are solved numerically. However, when the equations are solved analytically only an
approximation is obtained due to the analytically inaccessible discontinuity in the diffusion
profiles. We apply this approach to binary and symmetric multicomponent blends. Our
analytical coexistence curves from the stationary dynamics approach are compared with
other approximations and with exact results in Section 4.4. It is found that our approach,
which is applicable for a wide range of polymer blends, yields better approximations than
those available from literature. Spinodal curves are strongly related to the coexistence
curves. Section 4.5 shows that the exact spinodals of binary and multicomponent polymer
blends may be obtained from our flux expressions. The last section (4.6) summarizes our
findings.

4.2 Analytical binodal compositions

In this section, we focus on binary blends of homopolymers A and B. The approximations
that are available from the literature apply the Flory-Huggins theory to find an expres-
sion for the chemical potential. This theory is simple and sometimes of limited use for
experimental purposes, but it is still widely applied to understand phase behaviour. It
is used as a reference for newly developed models and it has served as the basis of new
approaches [102, 107, 108, 112, 113]. Our stationary dynamics approach is not limited to
the use of Flory-Huggins theory. We use this only to compare with the approximations
available in the literature.

The free energy of mixing per lattice site for incompressible homopolymer mixtures
in the Flory-Huggins model is:

f

kBT
=

g

kBT
+ constant =

∑
i

φi

Ni
lnφi +

1
2

∑
i,j

φiχijφj . (4.1)

Here, φi and Ni denote the volume fraction and the chain length (that is, the number
of constituent segments) of polymer i, respectively, and the parameters χij quantify the
repulsive (χ > 0) or attractive (χ < 0) net interactions between segments i and j. Solvents
are simply described as molecules with N = 1. Due to the assumption of incompressibility,
the Helmholtz (f) and Gibbs (g) free energies differ only by a constant.
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Chapter 4. Stationary dynamics approximation for coexistence curves

We are looking for the binodal compositions, i.e., the volume fractions of both compo-
nents in the two phases (α and β) that coexist at thermal equilibrium, for a given set of χ’s.
These compositions will be denoted, for polymer A, by φα

A and φβ
A. Thermal equilibrium

implies equal chemical potentials in both phases: µchain,α
A = µchain,β

A and µchain,α
B = µchain,β

B .
These chemical potentials follow from the standard procedure: µchain

A = ∂G
∂nA

, where nA

is the number of A-molecules. Using φA = nANA
nANA+nBNB

and G = (nANA + nBNB)g it is
then easy to obtain µchain

A /NA = g + (1− φA) ∂g
∂φA

so that

µchain
A

kBT
= ln φA +

(
1− NA

NB

)
φB + NAχφ2

B (4.2)

where the pure phase A was taken as the reference point. The expression for µchain
B

is obtained by interchanging the subscripts A and B. Obviously, in a binary mixture
φB = 1− φA. One relation between φα

A and φβ
A follows from µchain,α

A = µchain,β
A :

ln
φα

A

φβ
A

+
(

1− NA

NB

)
(φβ

A − φα
A) + NAχ

[
φα

A(φα
A − 2)− φβ

A(φβ
A − 2)

]
= 0 (4.3)

and a second relation, obtained from µchain,α
B = µchain,β

B , is found by interchanging the
subscripts A and B in Equation 4.3 and substituting φB = 1− φA. A numerical method
is needed to find φα

A and φβ
A from these two relations. Even for the simplest case of

symmetrical polymer blends (i.e. NA = NB = N), which includes mixtures of monomers
(N = 1), the binodal compositions are not analytically accessible. In this symmetrical
case φβ

A = 1− φα
A and Equation 4.3 reduces to

χN =
1

2φα
A − 1

ln
(

φα
A

1− φα
A

)
. (4.4)

Numerical methods need good initial guesses to avoid divergence [133], for which
analytical approximations are very helpful. We review three analytical approximations
for the binodal compositions taken from the literature. Only one of these is generally
applicable, the others are either for symmetrical blends (NA = NB = N) or for polymer
solutions (NB = 1) only.

In the following discussion we need some extra quantities which may easily be derived
from the Flory-Huggins free energy expression for a binary system. These are the spinodal
compositions φspin

A = 1− φspin
B that follow from the spinodal condition (∂2G

∂φ2 = 0) and the
critical composition and critical interaction parameter which are given by the critical
condition ( ∂2G

∂φ2
A

= ∂3G
∂φ3

A
= 0):

φspin
A = k ± b√

2
(4.5)

φcrit
A = kcrit (4.6)

χcrit =
1
2

(
1√
NA

+
1√
NB

)2

. (4.7)

Here, we introduced parameters k and b defined by

k =
1
2

+
1
4χ

(
1

NA
− 1

NB

)
(4.8)
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4.2 Analytical binodal compositions

b2 = 2k2 − 1
χNA

. (4.9)

The parameter kcrit is the value of parameter k after substitution of χ = χcrit into Equation
4.8:

kcrit =
√

NB√
NA +

√
NB

. (4.10)

4.2.1 Approximation for symmetrical blends

We first consider an analytical approximation for binodal compositions in blends that
consist of two homopolymers with equal chain lengths (NA = NB = N). The compositions
are calculated by minimization of a Ginzburg-Landau expansion for the Flory-Huggins
free energy [134]. The minimization is preceded by expanding the entropic contribution
in terms of the order parameter Ψ = φ−φcrit, which must be close to zero. This means that
the system should be not far from its critical point. The minimization itself is carried out
according to variational calculus. The result is therefore the coexistence curve according
to a free energy functional that merely serves as an upper bound for the real free energy.
Here we are only interested in the approximation for the binodal compositions,

φVdW =
1
2
±
√

3
8
(χN − 2), (4.11)

but the procedure provides the complete composition profile between two liquid phases.
It is known as the Van der Waals-theory of liquid/liquid interfaces.

4.2.2 Approximation for polymer solutions

For a polymer A in a solvent B we have NA = N and NB = 1. The analytical approxi-
mation considered here provides only the binodal composition of the polymer-rich phase.
The key element of this approximation is the assumption that the polymer-rich phase β
coexists with a very dilute phase α which is essentially pure solvent. In other words, µchain

B

is assumed to be equal to zero in both phases so that the composition of the concentrated
phase must obey

µchain,β
B

kBT
=

µchain,α
B

kBT
= ln (1− φβ

A) +
(

1− 1
N

)
φβ

A + χ(φβ
A)2 = 0. (4.12)

This assumption results in an underestimation of the polymer content in the concentrated
phase, in particular for small values of χ and for chains that are relatively short. This
can immediately be seen by inspection of µchain

B as a function of φA [123]. An analytical
approximation for Equation 4.12 in the long-chain limit is obtained by neglecting the term
1
N and expanding the logarithm, assuming small φA even in the polymer-rich phase, which
is valid for N → ∞ and small (χ − χcrit) = (χ − 1

2). If the expansion is truncated after
the term proportional to (φβ

A)3, we obtain for the binodal composition of the polymer-rich
phase:

φ
sol(i)
A = 3(χ− 1

2
). (4.13)
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Truncation after the next term still results in an analytical expression:

φ
sol(ii)
A =

2
3

(
−1 +

√
1 + 9(χ− 1

2
)

)
. (4.14)

Due to the truncation, these approximations are overestimations of the underestimating
Equation 4.12. The result of this error-compensation will be shown in Section 4.4. The
assumption that a concentrated polymer solutions coexists with pure solvent forms the
basis for an osmotic Gibbs ensemble simulation technique that circumvents the necessity
for insertion and deletion of macromolecules [123].

4.2.3 Approximation for all binary mixtures

Sanchez [135] has derived an approximation for Flory-Huggins coexistence curves that is
valid both for symmetrical and asymmetrical binary blends as well as for polymer solu-
tions. His derivation is based upon a Landau-type expansion of the free energy around
the critical interaction parameter χcrit and the critical composition φcrit

A . He assumed
that close to the critical point the binodal compositions are equidistant from the critical
composition: φα

A−φcrit
A = φβ

A−φcrit
A . Combining the Landau-expansion with this assump-

tion, the equilibrium condition (µchain,α
A = µchain,β

A ), and the spinodal condition (∂2G
∂φ2 = 0)

results in a simple relationship between the coexistence curve and the spinodal, which is
known as the root-three rule:

∆φbin
A

∆φspin
A

=
√

3 (4.15)

where ∆φbin
A = φ

α/β
A − φcrit

A and ∆φspin
A = φ

spin1/spin2
A − φcrit

A . Here, φ
α/β
A means either

φα
A or φβ

A. Substituting Equation 4.5 and 4.6 into Equation 4.15 yields for the root-three

approximation for binodal compositions (denoted by φ
(
√

3)
A ):

φ
(
√

3)
A = kcrit +

√
3(k − kcrit)±

1
2
b
√

6. (4.16)

4.3 Stationary dynamics approximation

Our approach to find an approximation for the coexistence curve for given χ is com-
pletely different from the approaches in Section 4.2. We consider two polymer mixtures
that differ in their compositions and that are brought into contact as shown in Figure
4.1. It is assumed that these mixtures are infinitely large and ideally stirred, so that
their compositions do not change in time. Generally, a diffusion flux will occur between
these mixtures, driven by the concentration gradients, or, more precisely, by the chemical
potential gradients. This is the key idea of our approach: if the compositions of the mix-
tures are chosen such that the mixtures represent coexisting phases, there is no diffusion
flux. This statement can not be inverted: the diffusion flux may also be absent for other
compositions than that of coexisting phases, the trivial case being equal compositions for
both mixtures. In the stationary situation, there is no accumulation of material within
the contact zone between the two mixtures, and the fluxes are constant in time. Thus we
can assign one value to the flux of each polymer in the stationary state. Our approach
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φA1

φB1

φB2

φA2

mixture 1 mixture 2

zz1 z2

Figure 4.1. Schematic picture of the system that is used to obtain approx-
imations for binodal compositions: two ideally stirred mixtures in contact
and a composition profile in between. There is no flux if the mixtures are
coexistent at equilibrium.

is to find those compositions that result in vanishing stationary fluxes for all polymers.
A similar idea forms the basis of a numerical algorithm to obtain phase diagrams [136].
The analytical approximations for binodal compositions that we find from this stationary
dynamics approach (SDA) will be denoted by φSDA

A .
We first need to derive expressions for the segment fluxes (Section 4.3.1), where we

consider only one-dimensional diffusion perpendicular to the interface between the two
mixtures. We will present the equations for stationary fluxes according to two different
diffusion mechanisms. The assumptions about the diffusion mechanism are critical; they
do not have an effect on the exact numerical results, but they determine whether it is
possible to obtain an approximation for the coexistence curve.

The flux can be written in terms of Onsager coefficients and driving forces so that we
generally have

J = −f(φ)∇µ ⇔ Jdz = −f(φ)dµ. (4.17)

The function f(φ) depends on the diffusion mechanism as will be seen in Section 4.3.2.
In the stationary state, the flux is a constant so that integration of Equation 4.17 from
z = z1 to z = z2 yields for vanishing stationary fluxes

[z2 − z1]J stat = −
∫ z2

z1

f(φ)dµ = 0 (4.18)

At least one of the solutions of this equation yields the exact binodal compositions, in-
dependent of the function f(φ). This is because

∫ µ=α
µ=α f(φ)dµ always equals zero; one of

the solutions of Equation 4.18 is found for µ(z1) = µ(z2), which is the requirement for
binodal compositions at z1 and z2. However, an analytical approach requires the fluxes
to be rewritten in terms of diffusion coefficients D̃:

[z2 − z1]J stat = −
∫ z2

z1

D̃(φ)dφ = −
∫ z2

z1

f(φ)
∂µ

∂φ
dφ = 0. (4.19)

Now the function f(φ) determines (together with the chosen expression for the chemi-
cal potential) whether this equation can be solved analytically or not, and if it can be
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Figure 4.2. Stationary volume fraction profiles between two stable mix-
tures calculated numerically (thin curve) and analytically (thick curve).
NA = 30, NB = 10, χ = 0.14.

solved analytically, it determines the accuracy of the approximation. If the function f(φ)
is a constant, Equation 4.19 requires a numerical calculation. If f(φ) is not a constant,
analytical solutions may be possible, but numerical calculations still yield the exact bin-
odals, since Equation 4.19 is equivalent to Equation 4.18. The discrepancy between the
numerical and analytical solutions of Equation 4.19 originates from the shape of the vol-
ume fraction profiles between z1 and z2; numerical profiles show a discontinuity while the
analytical profiles have a loop. This is shown in Figure 4.2 for a binary system. The nu-
merical profiles are calculated by the Mean-Field Stationary Diffusion method (Chapter
2,[96]) and the analytical profiles by solving Equation 4.19 with the help of a simple form
for the diffusion coefficient, presented later in Equation 4.27. The analytical computation
yields the inverse of the volume fraction profile, z(φA), instead of φA(z). Since analytical
solutions will never yield the discontinuous jumps, we only obtain an approximation for
the exact binodals by analytically solving Equation 4.19. The discontinuous jumps are a
consequence of our simple definition for the segmental chemical potential, necessary for
the analytical approach; this definition yields the correct value in the bulk phases but
implies a simplification in the interfacial region. A more sophisticated expression of this
potential, presented in Chapter 2, yields continuous profiles without any loop.

We will see in Section 4.3.2 that Equation 4.18 or 4.19 is a sufficient condition for
vanishing stationary fluxes between positions z1 and z2, but only a necessary condition for
coexisting phases at these positions. We will need an additional criterion for coexistence.

4.3.1 Flux expressions

The expressions for the fluxes between polymer mixtures can be derived along the lines
of the well-known fast-mode [20, 21] and slow-mode [19] models. Experimentalists have
tried to verify the predictions of each model, but there is no definite preference for any of
them: some experiments are more consistent with the slow-mode model [22, 23], others

86



4.3 Stationary dynamics approximation

with the fast-mode model [26, 27]. For a more detailed discussion, see Chapter 2.
The diffusion models were originally developed for binary blends, but may easily be

generalized to multicomponent blends as shown in Chapter 2. Here, we only present the
results. In order to describe the diffusion on the scale of segments, the segment chemical
potentials µ are needed. They are simply calculated by dividing the chemical potential
of a chain µchain by the number of chain segments N . This is an approximation since it
is assumed that all segments of one chain have the same environment, although in the
interfacial region the mixture is inhomogeneous on the length scale of the chain. In both
diffusion models the segment fluxes satisfy the relation∑

i

Ji = 0 (4.20)

where the summation is taken over all segment types i. According to the slow-mode model,
the system is incompressible and it is assumed that segments A diffuse by exchanging their
positions with the positions of segments of type B,C,D.... The fluxes are then given by

Js
A = −ΛA∇µA +

ΛA∑
i Λi

∑
j

Λj∇µj . (4.21)

The fast-mode model assumes that there is an additional flux of segments due to drift
flow. This results in fluxes that are expressed by

Jf
A = −ΛA∇µA + φA

∑
j

Λj∇µj . (4.22)

The difference between these two equations is thus a different prefactor of
∑

Λ∇µ: the
volume fraction in Equation 4.22, and an ”Onsager fraction” in Equation 4.21. In the
above equations ΛA is an Onsager coefficient, which can be expressed in terms of the
mobility coefficient B̃A of segments A:

ΛA(z) = B̃AφA(z) (4.23)

The mobility coefficients may reflect the influence of entanglements on the dynamics of
chains. This can be accounted for by considering the mobility coefficients to be a function
of the monomer concentrations and chain lengths [20, 96]. However, in this study we
consider the mobility coefficients B̃ as being constant. Since we are interested in equi-
librium properties of the blends, the choice of mobility coefficients should not be critical.
In Section 4.3.3 we explore the influence of segment mobilities on the approximations
for binodal compositions. Note that the slow-mode and fast-mode expressions become
identical if all segments have the same mobility B̃A = B̃B = · · · = B̃.

In the following we apply the stationary dynamics approach to binary and multicom-
ponent blends. We simply use the Flory-Huggins expression for the segment chemical
potential, since it allows direct comparison with the approximations discussed in Section
4.2. In principle, any expression for the segment chemical potential could be chosen, as
long as Equation 4.19 can be solved analytically.
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4.3.2 Application to binary blends, B̃A = B̃B

We first apply the stationary dynamics approach to binary blends. For binary blends with
B̃A = B̃B = B̃ we have according to Equations 4.21 and 4.22

Js
A = Jf

A = −B̃φAφB∇(µA − µB). (4.24)

Thus a vanishing stationary flux corresponds to:

J stat,s
A = J stat,f

A = − B̃

[z2 − z1]

∫ z2

z1

φAφBd(µA − µB) = − B̃

[z2 − z1]

∫ z2

z1

φAdµA = 0. (4.25)

For the third equality we used the Gibbs-Duhem equation (
∑

i φidµi = 0) and φA+φB = 1.
We see that the flux vanishes if µA(z1) − µB(z1) = µA(z2) − µB(z2), or in other words
if ∆µA = ∆µB, where ∆µ = µ(z2) − µ(z1). This occurs (i) if mixtures 1 and 2 are
identical, (ii) if they are coexistent or, (iii) if the driving force for diffusion of segments
A is non-zero and the same (equal and in the same direction) as for segments B. In the
third scenario none of the segments will be able to diffuse due to the incompressibility
constraint (Equation 4.20). This scenario can only occur if at least one of the two mixtures
is not stable (i.e. inside the binodal), since different stable mixtures always have different
chemical potentials if the mixtures are non-coexistent.

Comparing Equation 4.25 with Equation 4.18 we find that in this case the function
f(φ) in Equation 4.18 is given by

f(φA) = B̃φA (4.26)

and by using Equation 4.19 and the Flory-Huggins chemical potential we find for D̃(φ):

D̃(φA)
kBT

= f(φA)
∂

∂φA

µA

kBT
= B̃φAφB

(
1

φANA
+

1
φBNB

− 2χ

)
. (4.27)

The function f(φA) is linear in φA, which allows an analytical expression for the stationary
flux according to J = −

∫
D̃dφA:

J stat
A = C̃ (φA1 − φA2)

(
φ2

A1 + φA1φA2 + φ2
A2 − 3k(φA1 + φA2) + 3k2 − 3

2
b2

)
, (4.28)

where C̃ = 2
3B̃χkBT/[z2 − z1]. There may exist many combinations of φA1 and φA2 for

which the stationary flux vanishes. One of these combinations is the trivial case of identical
blends (φA1 = φA2), another combination must be the coexisting blends (φA1 = φα

A and
φA2 = φβ

A or vice versa), the remaining combinations must have either φα
A < φA1 < φβ

A or
φα

A < φA1 < φβ
A or both.

To find the best approximation for coexisting phases at z1 and z2, we need an extra
criterion in addition to the requirement

φ2
A1 + φA1φA2 + φ2

A2 − 3k(φA1 + φA2) + 3k2 − 3
2
b2 = 0, (4.29)

in particular for NA 6= NB. Therefore it is convenient to inspect the general plot of the
stationary flux versus the composition of mixture 2 for given φA1 (see Figure 4.3). If both
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Figure 4.3. Analytically calculated stationary flux as function of the com-
position of mixture 2 for different compositions of mixture 1, as indicated
by the value of φA1. NA = 100, NB = 1, χ = 0.63.

mixtures are stable, we have J stat
A > 0 (diffusion to the right) for φA2 < φA1 and J stat

A < 0
(diffusion to the left) for φA2 > φA1. If one of the mixtures is unstable (inside the binodal
curve) the stationary flux may be negative for φA2 < φA1 and positive for φA2 > φA1

depending on the chemical potentials of all components. Differentiating Equation 4.28
with respect to φA2 at constant φA1 gives ∂J stat

A /∂φA2 = 0 when φA2 = k ± b/
√

2.
Comparing this with Equation 4.5, we see that the minimum and maximum in Figure 4.3
correspond to the spinodal composition of mixture 2. Also, ∂2J stat

A /∂φ2
A2 = 0 for φA2 = k;

the inflection point lies halfway between the two local extremes. Hence, the positions of
the two extremal points and the inflection point in between do not depend on φA1. In
fact, upon changing φA1 the curves translate vertically, as follows from Equation 4.28.

Depending on the choice for φA1 the curve has either one, two, or three zero points.
These points are indicated by the numbers 1, 2, and 3 for φA1 = 0.22. Point 3 corresponds
to φA2 = φA1, points 1 and 2 can be found by solving the quadratic equation 4.29. If
mixture 1 has a binodal composition (φA1 = φα

A) the three zero points are φA2 = φα
A

(point 3), φA2 = φβ
A (point 1), and φβ

A < φA2 < φα
A (point 2). This zero point 2 gives the

necessary condition for coexisting phases in addition to Equation 4.29. It must represent
the situation that ∆µA = ∆µB 6= 0. The additional condition is that φA2 must have a
certain given value (that of zero point 2), so that Equation 4.29 is obeyed only if mixture
1 has a binodal composition. We look for the appropriate value of zero point 2 in Section
4.3.2 after exploring the approximation for symmetrical systems in the following section.

B̃A = B̃B and NA = NB

In a symmetrical binary blend, both components have the same chain length. For such
systems, we do not explicitly need the plot of J stat

A versus φA2: the extra criterion for
coexistence is simply φβ

A = φα
B = 1 − φα

A. Substitution of φA2 = 1 − φA1 and NA =
NB = N into Equation 4.29 yields the analytical approximation for binodal compositions
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in symmetrical binary blends in which B̃A = B̃B:

φSDA
A = k ± 1

2
b
√

6 =
1
2
±

√
3χN − 6

4χN
. (4.30)

For symmetrical blends k = kcrit = 1
2 , so that for these blends our approximation is

identical to the root-three rule approximation (Equation 4.16).
Although we did not need the plot of J stat

A versus φA2 for the additional criterion,
we can of course still relate this plot to φSDA

A . The inflection point of J stat
A (φA2) for

symmetrical blends does not only lie exactly halfway between the spinodal compositions,
but also halfway between the binodal compositions, since

∣∣∣φα
A − φspin1

A

∣∣∣ =
∣∣∣φβ

A − φspin2
A

∣∣∣.
In other words, for symmetrical systems the zero point 2 in Figure 4.3 is also the inflection
point. Thus, for symmetrical blends the stationary flux vanishes if mixture 1 has a binodal
composition, and mixture 2 has either the same composition (point 3), or the coexisting
composition (point 1), or the composition of the inflection point (φA2 = k, point 2).
Hence, instead of selecting φA2 = 1 − φA1 as the additional criterion, we could have
selected φA2 = k. Indeed, substitution of φA2 = k = kcrit = 1

2 into Equation 4.29 yields
the same approximation for the binodal compositions as presented by Equation 4.30.

B̃A = B̃B and NA 6= NB

We do not have a simple relation between φα
A and φβ

A for NA 6= NB which could be
used as the necessary criterion in addition to Equation 4.29. We propose two alternative
additional criteria for vanishing fluxes if mixture 1 has a binodal composition: φA2 = k or
φA2 = kcrit. For NA = NB these criteria are identical and they yield the approximation as
presented in Equation 4.30. Both criteria obey the requirement that J stat

A (φA2) has three
intersections with the line J stat

A = 0 if mixture 1 has a binodal composition, since both k
and kcrit are somewhere between the two spinodal compositions which correspond to the
local extreme of the curve.

The first choice for the additional criterion (φA2 = k) is related to the inflection point
of J stat

A (φA2). By taking this criterion, we assume that we must vertically translate the
curve J stat

A (φA2) until the inflection point is also a zero point of J stat
A . The other zero

points are then supposed to be the binodal compositions.
The alternative choice for the additional criterion (φA2 = kcrit = φcrit

A ) is related to the
observation in Equation 4.25 that the stationary flux vanishes if ∆µA = ∆µB. By taking
this criterion we assume that both components in a mixture with a binodal composition
feel the same driving force for diffusion when the other mixture has a critical composition.
This is equivalent to the assumption that the chemical potential difference between the
two components, µA − µB, is equal in the binodal and the critical compositions.

We also based the selection of these two criteria on numerical calculations of the
stationary flux. By use of the Mean-Field Stationary Diffusion method (Chapter 2) the
flux can be calculated exactly according to Equation 4.18. In these numerical calculations
(also based upon the Flory-Huggins free energy functional), mixture 1 was kept at the
binodal composition φα

A. We varied the composition of mixture 2 between φA2 = kcrit

and φA2 = k. Figure 4.4 presents the results for various systems with NA > NB and
B̃A = B̃B. Each curve is in fact part of a curve as presented in Figure 4.3, viz. the part
close to point 2. The two main intersections with the horizontal axis would occur for

90



4.3 Stationary dynamics approximation

0 0.1 0.2 0.3 0.4 0.5

st
at

io
na

ry
 fl

ux

φ
A2

N
A
=100,N

B
=1,χ=0.66

N
A
=100,N

B
=1,χ=0.74

N
A
=100,N

B
=50,χ=0.037

N
A
=300,N

B
=1,χ=0.58

0

k
k

crit

Figure 4.4. The exact stationary flux between two mixtures for four differ-
ent systems. In all systems, one mixture (φA1) has a binodal composition.
The composition φA2 of the other mixture increases from kcrit to k. For
the four combinations of NA, NB, and χ given in the figure (from left to
right) kcrit = 5.46 · 10−2, 9.09 · 10−2, 9.09 · 10−2, 0.414 and k = 7.04 · 10−2,
0.125, 0.166, 0.432. The exact stationary flux always vanishes for some
value of φA2 in between these limits.

φA2 = φα
A and φA2 = φβ

A. Indeed, the third intersection of the stationary flux with the
horizontal axis occurs for kcrit < φA2 < k.

To select the best of our two additional criteria, we observe that the first (φA2 = k)
yields the same result as obtained in Equation 4.30: φSDA

A = k ± 1
2b
√

6. A weak aspect
of this criterion is that the resulting binodal compositions are both equally far from the
spinodal compositions, which is not true for real binodal compositions. We therefore
select the alternative (φA2 = kcrit) as the necessary condition for a binodal composition of
the mixture at the right hand side. Substitution of φA2 = kcrit into Equation 4.29 yields
the stationary dynamics approximation for binodal compositions in binary blends with
NA 6= NB and B̃A = B̃B:

φSDA
A =

1
2

(
3k − kcrit ±

√
6b2 − 3(k − kcrit)2

)
. (4.31)

We have compared this approximation with the approximation obtained from φA2 = k
in plots similar to those to follow in Section 4.4. Indeed, φA2 = kcrit yields a better
approximation than φA2 = k although the numerically calculated flux has zero point 2
closer to k than to kcrit.

4.3.3 Application to binary blends, B̃A 6= B̃B

The segment mobilities enter the expressions for the stationary flux via the function f(φ),
and may thereby determine whether an analytical prediction of the binodal compositions
is possible or not.
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Chapter 4. Stationary dynamics approximation for coexistence curves

Slow-mode diffusion mechanism

From Equation 4.21 we find for the slow-mode flux

[z2 − z1]J
stat,s
A = −B̃AB̃B

∫ z2

z1

φAφB

B̃AφA + B̃BφB

d(µA − µB). (4.32)

The function f(φA) is found by applying the Gibbs-Duhem equation to Equation 4.32:

f(φA) = B̃AB̃B
φA

φA(B̃A − B̃B) + B̃B

(4.33)

This function does not allow the analytical solution of J stat = −
∫

D̃dφ = 0, in contrast
to the function f(φ) in Equation 4.26, which is linear in φA and follows from Equation
4.33 by substituting B̃A = B̃B.

If segments B are almost immobile compared to segments A, i.e. in the limit of
B̃A/B̃B → ∞, we obtain f(φA) → B̃B. The diffusion may thus be described by the
diffusion of only one (the slowest) component. Density gradients are immediately relaxed
by the other component. Since f(φA) is a constant, J stat = −

∫
D̃dφ would again require

a numerical calculation. In the limit of B̃B/B̃A →∞ it is found that f(φB) → B̃A.

Fast-mode diffusion mechanism

The fast-mode stationary flux for binary systems is given by

[z2 − z1]J
stat,f
A = −B̃A

∫ z2

z1

φAφBdµA + B̃B

∫ z2

z1

φAφBdµB, (4.34)

so that we find for f(φA):

f(φA) = B̃AφA + (B̃B − B̃A)φ2
A. (4.35)

In combination with the Flory-Huggins potentials, this function only provides an analyt-
ical solution for J stat = −

∫
D̃dφ = 0 if NA = NB.

4.3.4 Application to symmetrical multicomponent blends

We now consider symmetrical systems containing K components. The symmetry in these
systems arises from requirements on chain lengths and interaction parameters: Ni=N ∀i
and χij=χ ∀i, j 6= i. Moreover, we assume B̃i=B̃ ∀i. At the corners of the K-phase
region the volume fractions of (K − 1) components are equal to φco, and one component
has volume fraction 1− (K−1)φco. It is our aim to find φco as function of χN . The exact
solution is numerically available from ([137]):

1
1−Kφco

ln
[

1
φco

− (K − 1)
]

= χN. (4.36)

For our approach we write the flux by use of either Equation 4.21 or 4.22 and the
Gibbs-Duhem equation as

JA = −B̃φA∇µA = −
∑

i

f(φA)
(

∂µA

∂φi

)
φj 6=i,n

∇φi. (4.37)
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4.4 Results

In analogy to the approach for binary blends, we find for the mutual diffusion coefficients
D̃

(K)
Ai , defined by JA = −

∑
i D̃

(K)
Ai ∇φi:

D̃
(K)
Ai

B̃kBT
= φAφiχ− φAφKχ + (δAK − δAi)(φAχ− 1

N
). (4.38)

The Kronecker delta δAB equals unity for A = B and is zero otherwise. The superscript
(K) indicates that φK is written as 1−

∑
i6=K φi, which is necessary in the calculation of

the total differential in Equation 4.37.
We assume that we should always find the same compositions for the coexisting phases

independent on the profiles of components B,C · · · ,K − 1 at the interface between these
phases. In other words, we substitute ∇φi = 0 for all i 6= A,K into Equation 4.37 so
that JA = −D̃

(K)
AA∇φA. We need to calculate φco for which

∫ z2

z1
D̃

(K)
AA dφA = 0. After

the integration we substitute φA1 = φK2 = φco, φA2 = φK1 = 1 − (K − 1)φco and
φi1 = φi2 = φco ∀i 6= A,K. Again (as for the binary systems, Equation 4.28) the result
is a cubic equation in φco. One root of this polynomial is known: the flux should at
least vanish if all components have the same volume fractions, thus φco = 1

K . The two
remaining roots are then found to be

φco =
1

2K2

{
6−K ±

√
3K2(3− 8

χN
) + 12(3−K)

}
(4.39)

Only one of these two roots is a valid approximation (unless K = 2 for which φco reduces
to Equation 4.30). Since the K-phase region increases with χN , φco must decrease with
χN . We must therefore use the minus-sign in Equation 4.39.

We can also find approximations for the compositions at the corners of (K − 1)-phase
regions (for K > 2). At these corners, one minority component has volume fraction
φm, (K − 2) components have volume fractions φco and the volume fraction of the last
component is 1− φm − (K − 2)φco. We want to obtain φco as a function of φm and χN .
The exact solution can be calculated numerically from ([137]):

1
1− φm − (K − 1)φco

ln
[
1− φm

φco
− (K − 2)

]
= χN. (4.40)

Taking the integral of the mutual diffusion coefficient and substituting two corner com-
positions into the result yields a cubic equation in φco. One root is given by φco =
(1− φm)/(K − 1). The others are:

φco =
φm

1−K
+

1
2(K − 1)2

{
7−K ±

√
24(1−K)φm + (7−K)2 + 8(K − 1)2(1− 3

χN
)
}

(4.41)
This reduces to Equation 4.39 for φm = φco.

4.4 Results

The performance of our approximations for the binodal compositions can easily be eval-
uated by comparing them with the numerically calculated binodal and with other ap-
proximations. In this section, we only consider our approximations for systems with
equal segment mobilities for all components, so that the fast- and slow-mode models are
identical.
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Figure 4.5. Comparison of exact and approximated coexistence curves for
binary homopolymer systems with NA = NB = N . Curve 1 is the exact
binodal (Equation 4.4), curve 2 is our analytical approximation (Equation
4.30) which in this case equals the root-three rule approximation (Equation
4.16), curve 3 is the analytical Van der Waals-approximation (Equation
4.11).

4.4.1 Symmetric binary blends

In Figure 4.5 we have plotted three binodals (coexistence curves). The use of the variable
χN allows to cover all possible symmetrical binary systems at once. Curve 1 is the exact
binodal, curve 2 is our approximation (Equation 4.30), which in this case equals the root-
three rule approximation, and curve 3 is the approximation obtained by the Van der Waals
theory of fluid interfaces (Equation 4.11). It is seen that all approximations perform well
for systems not too far from their critical point (χN = 2) and that our approximation (or
the root-three rule) is significantly more accurate than Van der Waals’ approximation for
larger χN .

4.4.2 Asymmetrical binary blends

Figures 4.6a-d illustrate the performance of our approximation for some typical examples
of asymmetrical binary blends. The dots in these figures always represent the exact
binodals, the solid curves correspond to our approximation given by Equation 4.31, and
the dashed curves to the root-three rule. In Figure 4.6a the chain lengths do not differ
too much, and our approximation almost coincides with the root-three result. Moreover,
the accuracy of our approximation is comparable to that for symmetrical systems. With
increasing NA/NB the discrepancy between our approximation and the root-three result
increases, in particular for the branch of the coexistence curve that corresponds to the
phase that is relatively rich in the longer chains. Our approximation is more accurate
for this branch. For the other branch (dilute in the longer chains), the root-three rule
is slightly more accurate than our approximation, but the difference is very small. Both
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Figure 4.6. Comparison of our approximation Equation 4.31 (thick solid
curves) with the exact binodal (dots), the root-three rule of Equation 4.16
(dashed curves), and the solution approximations of Equations 4.13 and
4.14 (dotted and thin solid curves respectively).

approximations for the diluted branch fail for high χ, since they predict negative volume
fractions.

We can also compare our approximation with the approximations for polymer solutions
(Equations 4.13 and 4.14). In Figures 4.6c and d (NB = 1), where the polymer in solution
has chain lengths 100 and 1000 respectively, we see that our approximation is much more
accurate than φ

sol(i)
A and φ

sol(ii)
A (dotted lines). The accuracies of φ

sol(i)
A and φ

sol(ii)
A increase

with NA. We may substitute NA →∞ into Equations 4.12 -4.15 and 4.31 and then write
for each approximation χ as function of φA. In Figure 4.7 the results for infinitely long
chains in a monomeric solvent are compared for all approximations. Taking the most
accurate equation (the underestimating Equation 4.12) as the reference, it is concluded
that our stationary dynamics approach yields the best approximations also for NA →∞.
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4.4.3 Symmetric multicomponent blends

In Figure 4.8 we compare our approximation (Equation 4.41) with the exact results (Equa-
tion 4.40) for 2-phase regions in symmetrical 3-component blends. The smaller χN , the
better our approximation. The product χN needs to be sufficiently large for the exis-
tence of a 3-phase region. Figure 4.9 gives the result for the lowest possible χN , which is
2 ln 4 = 2.77 [137]. In this case there is a large discrepancy between our approximation
(Equation 4.39) and the exact result (Equation 4.36), in line with the conclusion above
that our model becomes worse for high χN .

4.5 Spinodal compositions derived from flux ex-

pressions

Spinodal compositions are strongly related to the binodal compositions. In phase dia-
grams, the stable and metastable mixtures are separated by the binodal line, while the
metastable and unstable mixtures are separated by the spinodal line. Spinodal com-
positions are sometimes calculated numerically [137], although they may be calculated
analytically (also for multicomponent systems) by Gibbs’ determinant approach [138].
We show that exactly the same spinodal compositions are obtained by means of our
flux-expressions.

Suppose that at some value of z the volume fractions and their gradients are such
that Ji(z) = 0 for all i. (Note that we now turn to z-dependent fluxes, in contrast to
the stationary fluxes considered in the search for binodal compositions). At this z a
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Figure 4.8. Two-phase regions in symmetrical three-component blends
(K = 3). Comparison of our approximation (curves) with exact results
(dots: χN = 2.3 and squares: χN = 8

3).
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C

Figure 4.9. Three-phase region in a symmetrical three-component blend
for lowest value of χN leading to phase separation, i.e. χN = 2 ln 4 [137].
Comparison of our approximation (line) with exact results (dots).

component does not ‘know’ in which direction it should diffuse, although there may still
exist gradients in the segment chemical potentials. This indicates that the composition of
the blend at z may obey the spinodal conditions. Here we show that indeed the spinodal
is found by requiring that all fluxes are zero at the same position z.

We first consider binary blends. The slow- and fast-mode fluxes (Equations 4.21 and
4.22) may be written in terms of only one segment chemical potential by applying the
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Gibbs-Duhem equation:

Js
A(z) = −D̃

s(B)
AA (z)∇φA(z) = − B̃B

ΛA(z) + ΛB(z)
ΛA(z)∇µA(z) (4.42)

Jf
A(z) = −D̃

f(B)
AA (z)∇φA(z) = −B̃B

(
φA(z)
B̃A

+
φB(z)
B̃B

)
ΛA(z)∇µA(z). (4.43)

Due to the condition in Equation 4.20, both components have zero flux at z = z∗ if

D̃
(B)
AA (z∗) = f(z∗)

∂µA(z∗)
∂φA

= 0. (4.44)

The function f(z) is different for the slow- and fast mode models. It is determined by
the factors in front of ∇µA in Equations 4.42 and 4.43 respectively. We conclude from
Equation 4.44 that the fluxes are zero only for the trivial solution (φA(z∗) = 0 ⇒ f(z∗) =
0) or for the spinodal condition ( ∂2F

∂φ2
A

= 0 ⇔ ∂µA
∂φA

= 0).
Multicomponent blends containing n + 1 components have Ji(z∗) = 0 for all i if

|D̃| = 0. (4.45)

D̃ is a matrix with dimensions n × n. Its elements are the mutual diffusion coefficients
D̃

(n+1)
ij for either the slow mode or the fast mode model. Following the procedure for

binary blends, these diffusion coefficients are written as:

D̃
s(n+1)
ij = Λi

(
xij +

k=n+1∑
k=1

1
Λk

n∑
l=1

(B̃n+1 − B̃l)φlxlj

)
(4.46)

D̃
f(n+1)
ij = Λi

(
xij +

1
B̃i

n∑
l=1

(B̃n+1 − B̃l)φlxlj

)
(4.47)

These expressions are found by substituting the Gibbs-Duhem equation and the total
differential of µi into the flux equations 4.21 and 4.22. Here, xij is an element of the

(n × n)-matrix Xn and it is equal to
(

∂µi

∂φj

)
φm 6=j

. After some matrix manipulations (see

Appendix 4A) it is found that the fluxes are all equal to zero if

|D̃s| = B̃n+1

n+1∑
k=1

1
Λk

(
n∏

l=1

Λl

)
|Xn| = 0 (4.48)

|D̃f | = B̃n+1

n+1∑
k=1

φk

B̃k

(
n∏

l=1

Λl

)
|Xn| = 0. (4.49)

Since all terms in the summations are definite positive, the fluxes are found to be zero
only if any of the components vanish or if

|Xn| = 0 (4.50)

which is exactly the spinodal condition for homopolymer blends containing n + 1 compo-
nents [138]. Both diffusion mechanisms result in the same spinodal. It is easily verified
that Equations 4.48 and 4.49 are indistinguishable if all segments have the same mobil-
ities, that they reduce to Equation 4.44 for binary blends, and that their solutions are
independent of the segment mobilities.
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4.6 Conclusions

The stationary dynamics approach is in principle an exact approach to obtain the compo-
sitions of coexisting phases. The binodal curves result from calculating the compositions
of two distinguishable mixtures such that (i) there is no diffusion between these mixtures
in the stationary state and (ii) an appropriate additional criterion is satisfied. For binary
blends with NA = NB this additional criterion is φβ

A = 1 − φα
A. In our approximations

we took as a general additional criterion (both for symmetrical and asymmetrical binary
blends) that the stationary flux also vanishes between a binodal mixture and a critical
mixture, assuming that for this situation the chemical potential differences are approxi-
mately equal for both components.

The stationary dynamics approach becomes an approximation when the fluxes, written
in terms of diffusion coefficients, are calculated analytically instead of numerically. The
analytically calculated function z(φA) is not an injection if χ > χcrit (i.e. one value of z
may have several values for φA) so that the analytical volume fraction profile between two
mixtures is necessarily unrealistic. The expressions for the diffusion coefficients require
a choice for the diffusion mechanism as well as a choice for the chemical potentials as a
function of the volume fractions. These choices determine whether an analytical approach
is possible or not, and the diffusion mechanism determines the accuracy of the approx-
imated binodals, although the numerical results will always remain exact. The slow- or
fast-mode diffusion mechanism in combination with the Flory-Huggins chemical potential
yields an analytical approximation for the binodals when all segments have the same mo-
bilities. This approximation for symmetrical blends (NA = NB) is equal to the root-three
approximation, and more accurate than the Van der Waals-approximation. For blends
with NA 6= NB, our approximation is more accurate than the root-three rule as for the
composition of the phase that is relatively rich in the longer chains, and comparable as for
the other (diluted) phase. Our stationary dynamics approximation is also more accurate
than the approximations for polymer solutions obtained by assuming that the dilute phase
is essentially pure solvent. The stationary dynamics approach also yields approximations
for coexisting phases in symmetrical multicomponent systems, but the accuracy decreases
as the number of coexisting phases increases. Our approximations may serve as good ini-
tial guesses for the search of coexisting phases by numerical calculations or simulations.
Probably, the stationary dynamics approach may also yield analytical approximations if
it is combined with other diffusion mechanisms than the fast- or slow-mode mechanisms
or when it is applied to another chemical potential than the Flory-Huggins potential.

We also analyzed the fast- and slow-mode flux expressions for a specific non-stationary
situation. If two mixtures have arbitrary compositions, it may occur that all fluxes are
zero at some moment t∗ at some position z∗ between these mixtures. This occurs if the
composition at t∗ and z∗ corresponds to a spinodal composition. Therefore, the spinodal
compositions may be calculated for systems with n + 1 components from the condition
|D̃n| = 0, where the matrix D̃n contains n × n diffusion coefficients D̃. Both the slow-
mode and the fast-mode models yield exactly the same spinodal as calculated by Gibbs’
condition |Xn| = 0, with elements xij = ∂µi/∂φj .
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Chapter 4. Stationary dynamics approximation for coexistence curves

Appendix 4A Calculation of |D̃|
Using Equations 4.46 and 4.47 we have for |D̃|:

|D̃s| =

(
n∏

l=1

Λl

)
|Xn + Yn| (4A.1)

|D̃f | =

(
n∏

l=1

φl

)
|WnXn + Zn| (4A.2)

The subscript n refers to the dimension of the square matrices. The matrices Wn, Xn, Yn,
and Zn have elements defined by

wii = B̃i, wij = 0 ∀j 6= i (4A.3)

xij =
(

∂µi

∂φj

)
φm6=j,n+1

(4A.4)

yij =
n+1∑
k=1

1
Λk

n∑
l=1

(B̃n+1 − B̃l)φlxlj (4A.5)

zij =
n∑

l=1

(B̃n+1 − B̃l)φlxlj (4A.6)

Note that all rows of Yn are identical, which is also the case for Zn.
We define the matrix An(k, l) as the one that is obtained by replacing rows k and l in

An with the corresponding rows of matrix Bn. For example, matrix A4(1, 2) is identical to
matrix B4(3, 4). From |An + Bn| =

∑n
k=1(a1k + b1k)|(A1k)n−1 + (B1k)n−1| it can be shown

by induction that |An + Bn| may be calculated as

|An + Bn| = |An|+ |Bn| for n = 1 (4A.7)
|An + Bn| = |An|+ |Bn|+ |An(1)|+ |Bn(1)| for n = 2 (4A.8)

|An + Bn| = |An|+
n∑

i1=1

|An(i1)|+
n−3∑
i2=1

n∑
i1=i2+1

|An(i2, i1)|

+
n−4∑
i3=1

n−3∑
i2=i3+1

n∑
i1=i2+1

|An(i3, i2, i1)|+ · · ·+

+
n∑

i1=n−2

|An(1, 2, 3, · · · , n− 3, i1)|+ |Bn|+
n∑

i1=1

|Bn(i1)|

+ · · ·+
n∑

i1=n−2

|Bn(1, 2, 3, · · · , n− 3, i1)| for n ≥ 3. (4A.9)

We will focus on the most complex systems with n ≥ 3. Fortunately, most terms
in Equation 4A.9 vanish if this equation is applied to |Xn + Yn| or to |WnXn + Zn| (the
determinants in Equation 4A.1 and 4A.2). This is due to the fact that |An| = 0 if An has
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at least two identical rows. Applying Equation 4A.9 we obtain for |D̃|:

|D̃s| =

(
n∏

l=1

Λl

)(
|Xn|+

n∑
i1=1

|Xn(i1)|

)
(4A.10)

|D̃f | =

(
n∏

l=1

φl

)(
|WnXn|+

n∑
i1=1

|(WX)n(i1)|

)
(4A.11)

Equations 4.48 and 4.49 are now readily computed by substituting

|Xn(i1)| =

(
n+1∑
k=1

1
Λk

)
(B̃n+1 − B̃i1)φi1 (4A.12)

|(WX)n(i1)| =

(
n∏

l=1

B̃l

)
1

B̃i1

(B̃n+1 − B̃i1)φi1 (4A.13)

into Equations 4A.10 and 4A.11.
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Chapter 5

Wetting transitions in
symmetrical polymer blends

The characteristics of wetting in polymer blends are investigated by a self-consistent-field
theory. A symmetrical system is chosen: the interface between two homopolymer liquids
AN and BN is wetted by a third homopolymer CN which is equally insoluble in both
liquids. All components have the same chain length (NA = NB = NC = N = 10 or 100).
The emphasis of this study is on the wetting transitions induced by varying the interactions
between the components. Cahn’s argument, which predicts complete wetting near the
critical temperature of two system components, is verified in this context. We show that
it is necessary to consider the effective interaction parameters χeff

AC = χeff
BC to establish the

validity of Cahn’s argument. Since we vary the solubility of C (given by χAC = χBC) and
the thickness of the A/B-interface (determined by χAB) independently we have a two-
dimensional parameter space. In this parameter space we can distinguish three regimes
representing wetting transitions with different characteristics. One of these regimes indeed
shows Cahn-type transitions. A key observation is that the wetting transitions near the
simultaneous critical point of mixtures A/C and B/C are of a second-order type. A second
regime in the parameter space represents wetting transitions which are understood from
the high surface tension of the A/B-interface. In many cases these wetting transitions are
also of a second-order type, but become first order when NχAB > 8. In the third regime
we find what might be called ‘pseudo wetting’: from inspection of the adsorption isotherms
it follows that C seems to wet the A/B-interface, but upon increasing the amount of C in
the system, the wetting layer is suddenly destroyed. The reason for this is clear. Here the
apparent wetting point χwet

AC is close to χeff,crit
AC , but χAB < χAC = χBC, the wetting film is

unstable. As a result, while at first Cahn’s argument seems to be fulfilled, it eventually
fails in this region of the parameter space.

Published in Journal of Chemical Physics 114, 4267 (2001).
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5.1 Introduction

In the field of wetting the development of a new phase at the interface between two other
phases is studied. Since wetting occurs in numerous systems and under many conditions,
the study of wetting is of great interest for a large variety of applied research topics. One
example is the development of new coatings. A coating should, for example, protect a
surface against another (wetting) compound. There are also many examples in which
two materials should remain in contact with each other, not allowing a third component
to intervene. Adhesive tape for instance should not easily be removed by moisture. Re-
cently, it was proposed that wetting also plays an important role in protein organization
in cell membranes [139]. Obviously, this is important for the investigation of membranes
or protein functions. In the literature there is a special interest for systems which may dis-
play second-order type wetting transitions, alternatively called critical wetting. Systems
showing second-order wetting transitions are so attractive from an experimental point of
view since uniform layer thicknesses can easily be achieved in such systems. However, in
experimental studies, second-order transitions are rarely observed. Recently the wetting
transitions of only three experimental liquid systems have been identified as being critical.
Two of these experimental systems are of interest for petroleum engineering: with increas-
ing temperature both pentane and octane films grow continuously onto the water-vapour
interface [140, 141]. The third experimental observation of critical wetting concerned
the methanol/nonane system in which methanol wetted the nonane liquid/vapour inter-
face [142]. In theoretical studies it is possible to investigate wetting characteristics for a
large parameter space, for example for a range of molecular weights, as has been done
by Pereira and Wang in Monte Carlo simulations [143], by Ragil et al. in Cahn-type cal-
culations [144] and by Leermakers and Van Eijk in self-consistent-field Scheutjens-Fleer
calculations [145, 146]. Ragil’s calculations led to the experimental observation of critical
wetting by pentane.

The present theoretical study can be viewed as a continuation of the work of Leer-
makers [145] and Van Eijk [146]. In contrast to the previous self-consistent-field wetting
studies our focus is on a mixture of three homopolymers. The solvents are denoted by
A and B, and the wetting component by C. The system is chosen as symmetrical as
possible: all polymers have the same degree of polymerization (NA = NB = NC = N)
and the wetting component is equally soluble in both solvents (χAC = χBC where χ is
the well-known Flory-Huggins parameter). The advantage of using such a symmetrical
system is that curvature effects of the macroscopic interface are not present; the interface
remains flat. By avoiding curved interfaces many complications like curvature-dependent
surface tensions are eliminated, which facilitates the prediction of trends. Moreover, in our
self-consistent-field calculations simple flat lattices can be used for non-curved interfaces.

The emphasis is on the wetting transitions occurring in the ternary system by varying
the solubility of the wetting component (keeping χAC = χBC) and the mutual miscibility
of the solvents χAB. As a consequence of the variation in the miscibility the width of
the interface which will be wetted is varied as well. Our results show that for this simple
system there exists a large parameter space for the interaction parameters which give rise
to second-order wetting transitions (if the long-range Van der Waals contributions are
negligible). We also check the occurrence of complete wetting close to the critical point
as predicted by Cahn. Cahn’s argument holds a special position in the field of wetting as
it is the only general statement available to search for wetting transitions. The argument
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is based on considerations of temperature effects. Here we study the effect of interaction
parameters instead of temperature. We indeed find Cahn wetting, and the associated
transitions are of second-order type. If we enter the region where χAB < χAC = χBC,
Cahn wetting at first instance seems to occur, but real wetting is never found. The
wetting-like transitions which do occur in the metastable regime of this region can be
investigated in small finite systems and are associated with what might be called ‘pseudo
wetting’, which has unusual behaviour. The Cahn wetting argument thus fails for a set of
systems. This means that the Cahn argument is not as generally true as claimed in the
literature.

In the following, we will first explain which wetting transitions can be expected if
the interaction parameters are varied. We therefore position Cahn’s argument in the
context of interaction parameters. We do not review the general aspects of wetting, but
refer to Schick [147], who introduces wetting transitions in terms of adsorption isotherms
and wetting phase diagrams. We then briefly explain those aspects of the self-consistent-
field method of Scheutjens and Fleer which are of importance for this study. In the
subsequent section the results are presented and discussed, where we distinguish three
different regimes in our two-dimensional parameter space spanned by χAB and χAC = χBC.
In the last section the conclusions are summarized.

5.2 Wetting transitions by χ-variation

Cahn’s argument states that a wetting transition from partial to complete wetting must
take place before the critical temperature T crit is reached [148, 149]. At the critical
temperature the phase boundary between two phases ceases to exist and the three-phase
system turns into a two-phase system. Cahn’s argument is based upon a consideration of
the temperature dependence of the surface tensions for systems in which the long-range
forces are less important than the short-range forces. Suppose that we have a situation
of partial wetting in a solid-liquid-vapour system. According to Young’s equation [150]
(σsv = σsl + σlv cos α) we then have for the surface tensions: σlv > σsv − σsl. The surface
tension of the interface which becomes critical (σlv in this example system) decreases
more rapidly with (T crit − T ) than the difference between the surface tensions of the
non-critical interfaces (σsv − σsl) does. Consequently, at a certain moment σlv will no
longer exceed σsv − σsl so that Young’s condition for complete wetting by the liquid
phase (σsv = σsl + σlv) is met. This phenomenological consideration of the temperature
dependencies does not only apply to the wetting of a solid wall. It is also applicable in
the case of three liquids: if the temperature approaches the critical temperature at which
phases α and β will become miscible, either α will wet the β/γ-interface (if σαγ < σβγ)
or β will wet the α/γ-interface (if σαγ > σβγ).

Cahn’s argument does not predict the order of the wetting transition which has to
occur before the critical temperature is reached. It only states that the interface will be
completely wetted before T = T crit and this can occur either after prewetting or after a
continuous growth of the layer. It has been shown that Cahn’s argument can be violated
if long-range forces have to be taken into account and if short-range forces favour wetting,
but the long-range forces do not [151, 152]. In that case, the wetting phase γ might
form a layer at the interface between phases α and β, but this layer will not grow to an
infinite thickness as is the case for complete wetting. Its thickness will be bounded by
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the long-range forces which attract the β/γ-interface to the α/γ-interface. The thickness
of the wetting layer will therefore be comparable to the bulk correlation length so that
only at the critical point the layer can grow to macroscopic thicknesses. Thus instead of
Twet < T crit, as stated by Cahn, long-range forces could lead to Twet = T crit.

In this study, we assume that the polymers are long enough to describe their wetting
behaviour by short-rage forces only. Pereira and Wang have shown that it follows from
numerical calculations that the Van der Waals (long-range) model give similar results to
the short-range model if the effective range of the Van der Waals interaction is much
smaller than the size of the polymer chains [153]. The wetting temperature in one of
the experimental observations of a second-order transition was very close to the critical
temperature of the nonane-methanol mixture under consideration [142]. If long-range
forces would be important for this mixture, no second-order transition would be found.
(The other second-order transitions observed where not close to the critical point [140,
141], but also in these cases it was assumed by the analysis of the Hamaker constant that
the short-range forces became more important than the long-range forces near the wetting
temperature).

Temperature is of course not the only parameter influencing the surface tensions. The
interactions between the components are other examples of surface tension-determining
variables. These variables are also experimentally accessible, for example by varying the
concentration of an additional solute [141]. The Flory-Huggins interaction parameters χ
are the variables of interest in the present study. The effect of a decreasing value for χ is
similar to the effect of an increasing temperature: the interface becomes less sharp and the
separate phases cannot exist anymore if χ becomes critical. From the Flory-Huggins free
energy expression, it can easily be derived that for a three-component system the critical
χ for two components P and Q depends on the volume fraction of the other component
R as

χcrit
PQ =

1
2(1− φR)

(
1√
NP

+
1√
NQ

)2

(5.1)

which reduces for our system to

χcrit
PQ =

2
N(1− φR)

(5.2)

While the temperature is the only variable in Cahn’s argument, the interaction parame-
ters between each pair of components (χAB/χAC/χBC) can in principle be chosen indepen-
dently from each other. However, the resulting (triangular) phase composition diagram
depends on the combination of all χ-parameters. Like the temperature influences the
mutual miscibilities of all components collectively, the value of each χ-parameter also
changes all miscibilities collectively. Thus each value of χAC = χBC will have a corre-
sponding critical χAB. Cahn’s argument can therefore easily be translated in terms of
interaction parameters instead of temperature. Before χAC becomes critical either the
A-rich phase or the C-rich phase will wet the interface between the two other phases
depending on the relative values of σAC and σBC . If both χAC and χBC become critical,
the only possible outcome is that the C-rich phase will wet the solvent-rich phases.

Thus according to Cahn’s argument, decreasing the value of χAC (keeping χBC equal
to χAC) should give rise to a wetting transition. However, if we consider the effective
interaction parameter χeff

AC = χeff
BC, it can be seen that this wetting transition should also
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Figure 5.1. The effective interaction parameter Nχeff
AC (= Nχeff

BC) as func-
tion of the real NχAB. For small χAB the effective interaction between the
wetting component and the solvents can already be close to the critical
value χcrit

AC if the real value of χAC is still relatively far from χcrit
AC . The

diagram also shows the volume fraction φ
(B)
A of component A in the B-rich

solvent phase as function of NχAB.

be found by decreasing the value of χAB [145]. By the effective interaction parameter
the wetting component is considered as being in contact with just one solvent which
combines the properties of both solvent A and solvent B. To first order we can make
the simplification of neglecting the volume fraction of C in the solvent-rich phases. The
effective interaction parameter can then be written as

χeff
AC = χAC − χABφ

(B)
A (1− φ

(B)
A ) (5.3)

Obviously φ
(B)
A , which is the volume fraction of A in the B-rich phase, is dependent on

χAB: the larger the interactions between A and B, the smaller the volume fraction of A
in B. If χAB is sufficiently close to the critical point of A and B, the quantitative relation
between φ

(B)
A and χAB can be derived from the Van der Waals theory for liquid/liquid-

interfaces [134]:

φ
(B)
A =

1
2
−
√

3
8

(NχAB − 2) (5.4)

This can be substituted into Equation 5.3 and the resulting χeff
AC as function of χAB is

plotted in Figure 5.1. It is seen that χeff
AC < χAC and that χeff

AC decreases with decreasing
χAB. This means that if we have a certain combination of χAB and χAC > χcrit

AC giving rise
to partial wetting, the effective interactions χeff

AC can become equal to χcrit
AC with constant

χAC = χBC and decreasing χAB, while χAB remains non-critical. Thus we can expect
the Cahn-type wetting transition to occur also by decreasing the value of χAB instead of
decreasing χAC. As a consequence, the larger the value for χAC, the smaller the value
for χAB for which χeff

AC equals χcrit
AC . From all of this, it still remains impossible to predict
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the conditions, i.e. the exact values of the interaction parameters, for Cahn-type wetting
transitions. It is only known that their values should be such that χeff

AC is sufficiently close
to χcrit

AC . It should be emphasized again that Equation 5.4 and Figure 5.1 can only be used
as indications since they are only directly applicable for systems in which χAB ≈ χcrit

AB and
χAC = χBC � χcrit

AC = χcrit
BC , so that the volume fractions of C in A and B are negligible.

Therefore, we use Equation 5.4 only to indicate the trends which could be expected. In
the self-consistent field calculations, performed to create the adsorption isotherms, we do
not neglect the amount of C in the solvents.

An additional type of wetting transition can be expected to occur. The Cahn-type
wetting transition from partial to complete wetting occurs for decreasing χAB. If how-
ever χAB is increased, the polymeric solvent A-solvent B interactions become more and
more unfavourable. (Note that an increasing χAB is not accompanied by a proportional
increase in σAB, since χAB only concerns the enthalpic effects and σAB also has entropic
contributions). A polymer film between the solvents can help to avoid these unfavourable
contacts. Indeed, this type of wetting transition has been found for a system of two
monomeric solvents wetted by a polymer [145].

Consequently it is possible to have at a fixed value for χAC = χBC a window of partial
wetting in terms of χAB. Both with increasing and decreasing χAB a wetting transition
occurs.

5.3 SF-SCF in wetting study

To study the wetting characteristics of the homopolymers, the lattice mean field method
developed by Scheutjens and Fleer [9, 10, 15] is applied. The Scheutjens-Fleer self-
consistent-field (SF-SCF) method provides an easy way to calculate volume fraction
profiles for (multicomponent) systems at equilibrium and their corresponding partition
functions. For our non-curved interfaces we can use a simple one-dimensional lattice.
Partial and complete wetting are distinguished by constructing adsorption isotherms: the
excess amount of C at the A/B-interface is plotted versus the chemical potential of the
wetting component. Both quantities can be calculated from the volume fraction profiles:

θexc
C =

M∑
z=1

(
φC(z)− φbulk

C

)
(5.5)

µC − µbulk
C

kBT
= ln φbulk

C − N

2

∑
XY

(φbulk
X − δCX)χXY(φbulk

Y − δCY ) (5.6)

δCX is the Kronecker delta which equals one for X = C and zero otherwise. In the
following we denote the total amount of C in the system by θC .

As a result of the mean-field method, the adsorption isotherms show Van der Waals
loops indicating metastable states. For example Figure 5.2a shows a typical isotherm
for partial wetting as calculated by the SF-method. This isotherm could simply be cut
off at the coexistence line (∆µC = 0, where ∆µC is the difference between the actual
chemical potential of the wetting component and its value at coexistence). Isotherms
which represent prewetting steps have loops already before coexistence is reached, see
Figure 5.2b. The prewetting step can be located by an equal-area method as indicated
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Figure 5.2. Typical examples of adsorption isotherms following from mean-
field calculations. The dashed lines represent the metastable states, not
found in experiments. Mean-field isotherms for partial wetting are like
the isotherm in (a). They can simply be cut off at the coexistence line
(∆µC = 0). The corresponding surface tension, plotted in (c), decreases
continuously until coexistence is reached from ∆µC < 0. Mean-field
isotherms with prewetting steps are similar to the isotherm in (b). One
way to find the ∆µC corresponding with the prewetting step is to apply
the equal-area method. Another way is to use the corresponding plot of
the surface tension as in (d), where ∆µC(kink) = ∆µC(prewetting, step).

in that figure, but it is more convenient to use the surface free energy σ as function of
∆µC , see for example Figure 5.2d. For our system σ can be calculated by the equilibrium
volume fraction profiles as

σA

kBT
=

∑
z,X

φX(z) ln GX(z) (5.7)

+
1
2

∑
z,X,Y

χXY

(
φX(z) 〈φY (z)〉 − 2φX(z)φbulk

Y + φbulk
X φbulk

Y

)
In this equation GX(z) = exp{−uX(z)/kBT}, where uX(z) is the potential felt by seg-
ments of type X; the angular brackets represent a three-layer average.

σ is higher for the metastable state than for the equilibrium state. Figures 5.2c and
5.2d show examples of curves for σ as function of ∆µC . In the partial wetting regime,
there is no intersection point for ∆µC ≤ 0. The surface tension decreases continuously
until coexistence is reached as in Figure 5.2c. In case of prewetting, there is a discontinuity
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in the first derivative of the surface tension as function of ∆µC . This discontinuity occurs
if the curve for the stable state intersects with that of the metastable state (for ∆µC ≤ 0)
as in Figure 5.2d. It means that there is a transition from one stable state (microscopically
thick film) to another stable state (mesoscopically thick film). Thus the prewetting step
occurs at ∆µC corresponding with this intersection point. The critical prewetting point
is that T or χ for which the kink disappears because the loop in the figure shrinks to a
point.

5.4 Results and discussion

The calculations are performed for two different chain lengths: either all polymers in the
system have length N = 10, or they all have N = 100. Since the results for both values
of N are nearly identical when the values for the interaction parameters are changed in
order to keep Nχ constant, we can generally write the results in terms of NχAC = NχBC

and NχAB. However, the analyses around critical points are carried out for systems in
which N = 10 only, to reduce computation time. Therefore, the results for systems near
critical points are presented in terms of χ and it has to be reminded that for these results
N equals 10.

As has been outlined in the discussion of the effective interaction parameter, it is
not possible to predict a priori the exact values of the interaction parameters for which
Cahn-type wetting transitions occur. What we can predict from the effective interaction
parameter is that Cahn-type transitions occur for decreasing NχAB. Detailed numerical
analysis around critical points must be done carefully and a large number of lattice lay-
ers (i.e. a large system) is needed, leading to time-consuming trials to find the wetting
transitions.

If we consider the two-dimensional parameter space given by the interaction param-
eters χAB and χAC = χBC, we find three different regimes, each with their own char-
acteristics for the wetting transitions. In one of these regimes (where χwet ≈ χcrit

and χwet
AB > χwet

AC = χwet
BC ) Cahn-type wetting transitions are found. Another regime

(χwet � χcrit and χwet
AB > χwet

AC = χwet
BC ) shows wetting transitions which are not associated

with any critical state and which must therefore be additional to Cahn-transitions. In
the third regime (χwet ≈ χcrit and χwet

AB < χwet
AC = χwet

BC ) unusual ‘hidden pseudo-wetting
transitions’ occur instead of Cahn’s transitions and these transitions are thus violating
Cahn’s argument. We will discuss these three regimes separately.

5.4.1 First regime: additional to Cahn

These results concern a type of wetting transition which is additional to Cahn’s wetting
transition. In Figure 5.3 two collections of adsorption isotherms are presented as cal-
culated by SF-SCF; for two values of NχAC = NχBC the isotherms were calculated for
a range of NχAB-values. Cahn’s wetting transition is expected to occur if the interface
between the solvents A and B becomes less sharp, i.e. if χAB is decreased. However
Figure 5.3 shows that we find wetting transitions by increasing χAB (at constant χAC).
This kind of wetting transitions has also been found for a monomer/monomer-interface
wetted by a polymer [145]. Wetting for increasing χAB can be explained by the fact that
the developing layer of C at the interface between A and B screens the A/B- interactions
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Figure 5.3. Examples of the adsorption isotherms obtained for χAC =
χBC = 7/N and χAB = χBC = 3/N , respectively. Diagram (a)is a typical
example of a first-order wetting transition. Diagram (b) presents a second-
order wetting transition. The wetting transitions for these polymer-solvent
interactions are induced by increasing the value for χAB. (In these pictures,
the isotherms are given for χAB incremented by 0.5/N).
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Figure 5.4. Phase diagrams showing the prewetting lines as function of
χAC (a) and as function of χAB (b). Extrapolating the line connecting
the critical prewetting points predicts a tricritical point for χAC = χBC ≈
4.3/N and χAB ≈ 8/N . For smaller values of interaction parameters,
second-order wetting transitions occur.

which become more and more unfavourable with increasing χAB. From Figure 5.3 it can
also be seen that it is possible to find either first or second-order wetting transitions. Fig-
ure 5.3a presents a family of adsorption isotherms for χAC = χBC = 7.0/N which proofs
the presence of first-order wetting transitions. In Figure 5.3b another set of adsorption
isotherms for χAC = χBC = 3.0/N clearly shows a second-order character of the wetting
transition. For several combinations of interaction parameters the prewetting lines have
been localised by the µ-dependence of the surface free energy. The prewetting lines are
shown in the wetting phase diagrams collected in Figure 5.4. Usually the temperature
T or T − T crit is used as control parameter instead of χ. Since χ ∝ 1/T , the relative
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positions of wetting point, critical prewetting point and critical point are reversed with
respect to standard wetting phase diagrams [147, 154] where Twet < T cpr < T crit. In
Figure 5.4a the control parameter is NχAC = NχBC. The wetting transition from par-
tial to complete wetting occurs with decreasing control parameter; component C will wet
the A/B-interface if the repulsive interactions between the wetting component and the
solvents are sufficiently low. In Figure 5.4b the control parameter is NχAB which (as
already shown in Figure 5.3) has to be increased to find a wetting transition. From the
steepness of the prewetting lines it can be concluded that small variations in the value
of the interaction parameters have relatively large effects. Focusing on the region near
coexistence (not shown), it appears that the prewetting lines approach the coexistence
line tangentially, as should be expected [154]. It is seen that the prewetting lines will
disappear if both χAC = χBC and χAB are sufficiently low, namely for χAC = χBC ≈ 4/N
and χAB ≈ 8/N . These χ’s mark the tricritical point, at which the wetting transitions
change from first order to second order. Note that for binary systems the critical χ equals
2/N , which is far from our tricritical point. Thus in our system second-order transitions
occur for a relatively large range of χ-values. Replacing our polymeric solvents by mo-
nomeric solvents would result in a system showing the same kind of wetting transitions
additional to Cahn wetting, but these are generally first-order [145].

If one would not consider the effective interaction χeff
AC, but only the interaction χAC

itself, one could incorrectly conclude from the results above, especially from the upper
diagram in Figure 5.4, that Cahn’s argument has been verified: complete wetting occurs
for smaller χAC, partial wetting for larger χAC. However, from the consideration of the
effective interaction, it is expected that complete wetting will also occur for smaller χAB

and partial wetting for larger χAB. The lower diagram in Figure 5.4 shows the contrary.
Thus these wetting transitions found for sharp interfaces between the solvents (i.e. large
χAB) must be additional to Cahn-type transitions.

5.4.2 Second regime: Cahn-type transitions

We now discuss the wetting transitions found in our system near the critical points. As
said before, each value of χAB will give rise to its own value for χcrit

AC . The easiest way
to find an indication for a combination of critical interaction parameters is to calculate
the binodals of a system in which χ = χAB = χAC = χBC. We then have only one
parameter which controls the existence of three-phase coexistence. The three phase region
in ternary phase diagrams arises from overlap of the binodals. The critical χ is that χ
for which the three-phase region just disappears, thus for which the binodals do not
overlap but are just tangential to each other. Because of the symmetry in a system with
χAB = χAC = χBC = χ and NA = NB = NC = N , the binodals are then also tangent
to the equimolar lines φA = φB, φB = φC , and φA = φC in the ternary phase diagram.
If we know that the three phase region just disappears for χcrit, we can expect that in a
system with χAC = χBC = χcrit and χAB > χcrit the mixtures A/C and B/C will become
critical if χAB is decreased, but according to Cahn, C will first wet the A/B-interface.

The binodals are calculated numerically by the generalised Flory-Huggins free-energy
density expression, which coincides with the Scheutjens-Fleer result for homogeneous sys-
tems and which for χ = χAB = χAC = χBC reads:

113



Chapter 5. Wetting transitions in symmetrical polymer blends

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4

φ
A

φ
C

χ
AB

=2.9/N

χ
AB

=2.7/N

φ
B
=φ

C

χ
AB

=2.8/N

A B

C
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χAB = χAC = χBC = χ, calculated by minimization of the Flory-Huggins
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the (straight) line φB = φC . The ternary phase composition diagram for
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fFH =
φA

N
lnφA +

1− φA − φC

N
ln(1− φA − φC) +

φC

N
lnφC

+χφA(1− φA − φC) + χφC(1− φA − φC) + χφAφC (5.8)

Figure 5.5a shows the results for different values of χ. (Only binodals of the mixture A/B
are shown, but the same figure applies for mixtures A/C and B/C if all subscripts in
the figure are changed accordingly). If χ exceeds the value of about 2.7/N , the binodals
overlap and three phases can coexist. If χ is smaller than about 2.7/N , the ternary
phase diagram has only one- and two-phase regions bounded by three separate binodals.
Choosing for the interaction parameters χAC = χBC ≈ 2.7/N should give rise to a wetting
transition according to Cahn’s argument with complete wetting for χAB < χwet

AB . Indeed,
this is found as shown in Figure 5.6. Note that for a clearer picture, the isotherms are not
plotted against ∆µC but against µC itself. In this figure a set of adsorption isotherms is
given for χAC = χBC = 0.27 and different values of χAB (note that N = 10). If χAB equals
0.35 component C will partially wet the A/B-interface. Increasing χAB up to χwet

AB ≈ 0.40
results in a second-order wetting transition which is similar to the wetting transitions in
the first regime presented above and in Figure 5.4b. Another wetting transition is found
in agreement with Cahn’s argument by decreasing χAB from 0.35. This wetting transition
occurred for χwet

AB ≈ 0.287. It is also seen that Cahn’s wetting transition is of second order.
Summarizing: a window of partial wetting exists for 0.287 < χAB < 0.40.
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Figure 5.6. Adsorption isotherms for NA = NB = NC = 10 and χAC =
χBC = 0.27. From left to right the adsorption isotherms have χAB-values
of 0.27, 0.28, 0.29, 0.31, 0.35, 0.40, 0.45, and 0.50. Note that θexc

C is plotted
versus µC instead of ∆µ. It is easy to see that the system is in the partial
wetting regime for χAB = 0.35, whereas it is in the complete wetting regime
both for χAB = 0.27 and χAB = 0.50. Both wetting transitions are of a
second-order type.

χAC = χBC χwet
AB

0.270 0.287
0.274 0.282
0.277 0.279

Table 5.1. If χAC = χBC is increased, Cahn’s (second-order) wetting tran-
sitions are found for decreasing χAB.

If now the value of χAC is increased, the critical value for χAB can be expected to
decrease. This can be understood by Figure 5.1: the larger χAC = χBC, the larger the
difference between χAC = χBC and χcrit

AC = χcrit
BC . Therefore, if χAC = χBC is increased,

the difference between χAC = χBC and χeff
AC = χeff

BC must also be increased to achieve
χeff

AC = χcrit
AC (= χeff

BC = χcrit
BC). According to Figure 5.1, χAB must then be smaller. Indeed,

as shown in Table 5.1 we find decreasing values for χwet
AB if χAC = χBC is increased.

5.4.3 Third regime: instead of Cahn transitions (pseudo
wetting)

From Table 5.1 it is seen that Cahn’s wetting transitions are found for situations in which
all interaction parameters have almost the same values, but still χwet

AB > χwet
AC = χwet

BC . As
mentioned before, if we increase χAC = χBC, Cahn’s wetting transition is expected to be
found for decreasing χAB. This means that at some point the value of χwet

AB would equal
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that of χwet
AC = χwet

BC . If we imagine a system in which χAB = χAC = χBC, all components
may act as the wetting component, because all interfaces have the same surface tensions.
However, due to the way in which we perform our calculations, we always pre-assume C
as the wetting component. We start with an ‘empty’ A/B-interface and use this as an
initial guess for the self-consistent-field calculation for a system in which C is the minority
component. With this initial guess C will accumulate at the interface. Then, the total
amount of C in the system is incremented by small steps, each time using the previous
step as initial guess.

If we cross the line χAB = χAC = χBC in the two-dimensional parameter space, we
arrive in the third regime where χAB < χAC = χBC. Here, unexpected wetting-like
transitions are observed. In this regime the surface energy of the A/B-interface is lower
than that of either the A/C- or the B/C-interface. Complete wetting by component C can
therefore not be expected although the critical point is approached. Thus, for macroscopic
systems, it is obvious that Cahn’s argument is violated in this regime. As long as C would
not wet the A/B-interface completely, it is energetically more favourable to have a droplet
of C at the interface than to have a droplet of C either in the A or the B-rich phases.
However, in our numerical calculations we have access to the metastable states, due to the
fact that we (only) do calculations on finite sized systems. It turns out that we are able to
see what could happen if wetting experiments are carefully performed in microscopically
small and closed systems: at first instance the systems seem to act in agreement with
Cahn’s argument, but eventually the argument also fails in these microscopic systems.

Figure 5.7 shows a collection of isotherms for the case χwet
AB < χwet

AC = χwet
BC . In this

example χAC = χBC = 0.30 (and still N = 10). Decreasing the value for χAB down to 0.30
results in regular isotherms for partial wetting. The excess amount θexc

C at coexistence
is still decreasing: the system does not show any approach to complete wetting. If we
decrease χAB further below χAC = χBC, the characteristics of the isotherms change.
θexc
C at coexistence (∆µC = 0) still decreases, but unexpectedly a vertical part in the

isotherm occurs in the meta-stable region, i.e. where ∆µC > 0. Consider for example the
isotherm for χAB = 0.265 in Figure 5.7. With increasing θC , the isotherm first resembles
isotherms of complete wetting: θexc

C increases without changing the chemical potential.
However, we should call this ‘pseudo wetting’ instead of complete wetting, since if θC in
the system has sufficiently increased, the volume fractions of C in the A-rich and B-rich
phases suddenly decrease, and θexc

C increases discontinuously. This is reflected of course
by a sudden decrease in the chemical potential µC and ∆µC → 0. Associated with this
there is a very pronounced change in the volume fraction profile of the C component at
the A/B-interface (not shown). The jump from pseudo wetting back to the coexistence
line is presented by the dashed line in Figure 5.7. (It is particularly difficult to find the
exact shape of this kind of isotherms). For the isotherm with χAB = 0.265, the value of
χAB is smaller than that of χAC = χBC, thus the pseudo wetting must be meta-stable.
The smaller the value of χAB, the longer the vertical part in the isotherm, i.e. the more
pronounced the pseudo wetting: compare the isotherms for χAB = 0.265 and χAB = 0.260.
Before the system changes from regular partial wetting to pseudo wetting, we see ‘pseudo
partial wetting’ as presented by the isotherm for χAB = 0.27 in Figure 5.7. This isotherm
differs from the regular partial wetting isotherms, since it is less curved at maximum µC .

This wetting-like behaviour can be explained by the fact that our microscopic systems
can maintain a situation of supersaturation as long as the amount of C is not sufficient to
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Figure 5.7. Adsorption isotherms for NA = NB = NC = 10 and χAC =
χBC = 0.30. As long as χAB is larger than χAC = χBC, the isotherms
show regular partial wetting behaviour. If χAB becomes smaller, no Cahn
wetting but pseudo wetting is found. Component C seems to wet the
interface in the meta-stable region (∆µ > 0), but suddenly the system
finds its state of coexistence. The smaller χAB, the longer the pseudo
wetting persists. Also the isotherm χAB = 0.260 will jump to ∆µC = 0,
but this occurs for values of θexc

C > 14.The transition from pseudo partial
to pseudo wetting is of a second-order type.

form a third (C-rich) phase in coexistence with the A- and B-rich phases. In Figure 5.8
it is shown how the volume fraction of C in the solvents A and B (φ(A)

C = φ
(B)
C ) develops

with increasing θexc
C . At coexistence (∆µC = 0) the solvents A and B are saturated

with C. If ∆µC > 0, the solvents are supersaturated. If we enter the region where
∆µC > 0 by increasing the total amount of C in the system, first the volume fractions
of C in the supersaturated solvents (φ(A)

C = φ
(B)
C ) continue to increase, but at a certain

point of supersaturation, φ
(A)
C and φ

(B)
C do not change any more and ∆µC has a constant

(positive) value. From that moment, the excess amount of C at the A/B-interface (θexc
C )

still increases if more C is added to the system. This is the moment where the isotherms
behave as if wetting occurs. Suddenly, a sufficient amount of C has been added to the
system to form three phases at coexistence, and the wetting-like behaviour turns out to
be pseudo wetting. Since the supersaturated system is in a meta-stable state, it can be
expected that hysteresis will occur if now the amount of C in the system is decreased.
This has indeed been found as shown in Figure 5.9.

We can conclude that we have hidden (second-order) wetting-like transitions for sys-
tems in which C is the wetting component while χAB < χAC = χBC. At these hidden
transitions the system changes from pseudo partial to pseudo wetting. These wetting
transitions can only be found if one is able to keep the solvents supersaturated with wet-
ting component C. This could happen in microscopic closed systems. However, since
we are very close to the critical point, where molecular fluctuations have relatively large
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Figure 5.9. Pseudo wetting is related to supersaturation. No pseudo wet-
ting is found if the adsorption isotherm is obtained by decreasing the total
amount of C in the system. (χAC = χBC = 0.30, χAB = 0.265, N = 10)

118



5.4 Results and discussion

effects, this regime is difficult to explore.
If χAC is chosen too large, no hidden wetting transition is found anymore. For large

χAC, the interaction parameter χAB approaches its critical value faster than its value for
which χeff

AC equals χcrit
AC = 2/N . We find for example if χAC = 0.50 that (pseudo) partial

wetting occurs for 0.23 < χAB < 1.0. The wetting transition for χAB = 1.0 has already
been presented in Figure 5.4b. If χAB equals 0.23, the wetting component accumulates at
the A/B-interface for small amounts of C, but before the amount of C is large enough
to reach three-phase coexistence, the A/B-interface disappears. This occurs if φC obeys
Equation 5.2 for χAB = 0.23.

5.4.4 Combination of results

Since we had two control parameters in this study (NχAB and NχAC = NχBC) we can
combine all wetting characteristics of our system in a two-dimensional plot with each
of the control parameters along the axes, as in Figure 5.10. The solid line in this pic-
ture represents the combinations of interaction parameters which give rise to first-order
or second-order wetting transitions. The critical prewetting points which are associated
with the first-order wetting transitions are represented by the dashed line. It is seen that
for first-order transitions both NχAB and NχAC = NχBC must be very large. For smaller
values of the control parameters second-order transitions occur. For points above the
wetting line in this figure partial wetting is found, for points under the lines complete
wetting or a phase transition to a one-phase system is found. The picture clearly indi-
cates that indeed a transition to complete wetting can be found both for decreasing and
increasing NχAB. The wetting transitions at the right-hand side of the diagram (region
I) are transitions to avoid unfavourable contacts between the A- and the B-rich phases.
This type of transitions are also found in a system with monomer solvents [145]. The
lower part of the left-hand side of the diagram (region II) is associated with Cahn-type
wetting transitions, because they occur close to the critical point of the mixtures A/C
and B/C. Cahn-type transitions must exist for all three-phase systems. (The wetting
transitions in the left part of region I may also be due to Cahn-wetting, since the wetting
occurs not too far before the value of χAC = χBC has diminished to its critical value.
Therefore, the boundary between region I and II should not be considered sharp). Region
III contains the hidden wetting transitions from pseudo partial wetting to pseudo wetting
which occur instead of the Cahn-type transitions. Interestingly, this means a failure of
the Cahn argument for parameters corresponding to region III. Note that in our systems
the long ranged Van der Waals interactions are not included. Therefore, the failure of
the Cahn argument is of special interest. Our results show that the Cahn argument can
not be as general as claimed in the literature. The pseudo-wetting transitions lie on a
line that smoothly continues the line representing the Cahn-transitions. These hidden
wetting transitions can in principle occur in other systems as well, but it is more difficult
to predict where they occur if the system is less symmetrical. The fact that they have not
been found before, for example by Leermakers et al. in their study of interfaces between
two monomeric components [145], might be due to the part of parameter space which has
been investigated.

These results are in agreement with simple considerations, which we collect for conve-
nience in Table 5.2, concerning the relative size of the interaction parameters. As long as
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Figure 5.10. The wetting behaviour for all combinations of χAB and χAC

(= χBC) collected in one figure. Three regimes can be distinguished in this
parameter space. Region I (χwet

AC � χeff,crit
AC and χAB > χAC = χBC) con-

tains wetting transitions which are not associated with any critical point.
The dashed line in region I indicates the critical prewetting points, which
are associated with first-order wetting transitions. The critical prewet-
ting points are absent for smaller values of interaction parameters, which
means that for these values second-order transitions are found. Region II
(χwet

AC ≈ χeff,crit
AC and χAB > χAC = χBC) includes Cahn-type wetting tran-

sitions which occur since χeff
AC ≈ χcrit

AC . In region III (χwet
AC ≈ χeff,crit

AC and
χAB < χAC = χBC) pseudo-wetting transitions are found. Second-order
transitions are found for a large parameter space. All Cahn-type wetting
transitions and pseudo-wetting transitions are of a second-order type.

χAB > χAC = χBC 0◦ ≤ α < 60◦

χAB = χAC = χBC α = 60◦ or σAB = σAC = σBC = 0
χAB < χAC = χBC 60◦ < α ≤ 90◦

Table 5.2. The effects of the relative size of interaction parameters on the
contact angle.
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Figure 5.11. If χAB = χAC = χBC and θA = θB = θC the system can choose
between different equilibrium states which will have the same energy: the
contact angle α must equal 60◦ (a), or σAB = σAC = σBC = 0: α can take
every value, each of the components may act as wetting component (b).

χAB > χAC = χBC, it may be favourable to form a macroscopic layer of C to avoid the ex-
istence of an energetically unfavourable A/B-interface, and complete wetting may occur.
If χAB < χAC = χBC, it is always unfavourable to create new A/C- and B/C-interfaces.
Complete wetting will not occur. Still, component C will adsorb at the A/B-interface (as
long as three phases may coexist) to compensate the newly formed interfaces by elimi-
nating A/B-contacts. The contact angle will not exceed 90◦, otherwise less A/B-contacts
are eliminated than possible. If all interaction parameters are equal (χAB = χAC = χBC),
none of the components A, B or C is preferred as the wetting component: all interfaces
A/B, A/C and B/C have the same surface energies. As a consequence of Young’s equa-
tion either the contact angle α will be equal to 60◦ or all surface tensions will equal zero.
The first possibility means that partial wetting will occur, but the second possibility al-
lows every possible behaviour between complete wetting (α = 0◦) and complete drying
(α = 180◦) (see Figure 5.11). Because of our choice of system, it is still component C
which adsorbs at the A/B-interface (0 ≤ α ≤ 90◦). Indeed we find complete wetting for
χAB = χAC = χBC = 0.278 in combination with σA

kBT approaching zero. Physically, this
indicates the formation of a micro-emulsion without the presence of a classical amphiphilic
surfactant.

5.5 Conclusions

The Scheutjens-Fleer method is a powerful tool to study systematically the wetting char-
acteristics of a variety of systems. In the present study a system of three homopolymers
was investigated, but we could also have chosen a system containing monomeric compo-
nents or copolymers. Although we had a very simple system with NA = NB = NC and
χAC = χBC, we still found a rich wetting behaviour. Close to the critical points of the
A/C- and B/C-mixtures, approached by decreasing the effective interaction parameters,
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the A/B-interface is completely wetted by C as long as χAB > χAC = χBC. This is in
agreement with Cahn’s argument which was based on considerations of the temperature-
dependence of surface tensions. In our homopolymer blends Cahn’s wetting transitions
are found to be of second-order type. However, Cahn’s transitions occur only for a very
small part of our two-dimensional parameter space. We see two characteristics of Cahn’s
transitions in our system. First: if, starting in a Cahn wetting transition point, the value
of χAC = χBC is increased, the next wetting transition point according to Cahn will be
found by decreasing χAB. Secondly: in our system with three polymers of the same length
these transitions are found if all interaction parameters are almost equal. As a result of
these two facts, very soon the value of χAC = χBC exceeds the value of χAB for which
Cahn’s transition would be expected. In that case it is energetically unfavourable for
component C to wet the interface between A and B and indeed Cahn’s argument fails.
We then find hidden wetting transitions occurring in the metastable regime. In those sit-
uations, C seems to wet the A/B-interface, but suddenly the volume fraction of C in the
solvents decreases and the system jumps to another state. We call this pseudo wetting. It
is emphasized again that these transitions are not found in real macroscopic systems, but
may only exist in finite systems. For macroscopic systems there is no wetting transition
available in this region of parameter space, even though the system is close to a critical
point.

In addition to Cahn’s wetting transition and pseudo-wetting transitions another wet-
ting transition was found by increasing χAB. This wetting transition could be explained
by the screening effect of the developing C-layer. If the effective interactions are not taken
into account, these wetting transitions could incorrectly be considered as Cahn-type wet-
ting transitions, since complete wetting is found for χAC < χwet

AC . This type of transitions
is not violating Cahn’s argument. Second-order wetting transitions are found for a large
parameter space. Only for relatively large χAC first-order wetting transitions occur.
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Chapter 6

Steady-state analysis of polymer
adsorption at off-equilibrium
polymer interfaces

We consider an interface of two immiscible polymer liquids AN and BN at which a third
polymer CN may adsorb. Equilibrium characteristics of this system, in which all polymer
lengths N are the same, were discussed in Chapter 5. In the present chapter, we study
these interfaces in a stationary off-equilibrium state: due to imposed chemical-potential
gradients, polymer AN diffuses from the A-rich bulk phase through the interface to the
A-poor bulk phase. Polymer BN diffuses in the opposite direction. We select symmetric
conditions for which the polymer CN that accumulates at the A/B-interface has no net
diffusion in the stationary state. This system is described by the Mean-Field Stationary
Diffusion model, an approach that incorporates the transport of polymer segments and
has the well-known Scheutjens-Fleer Self-Consistent-Field (SF-SCF) results as its limits
(i.e., when the chemical-potential gradients vanish). From this method we obtain the sta-
tionary volume fraction profiles and segmental fluxes. We select the governing interaction
parameters such that at equilibrium a macroscopically thick wetting layer of C develops
at three-phase coexistence, i.e., the complete wetting case as described in Chapter 5. Here
we focus on the off-equilibrium system where C has a sub-saturation concentration in the
bulk phases and thick wetting films are thus not expected. We vary the driving forces
for diffusion by variation of the concentration gradients and of the interactions between
the polymers. By increasing the concentration gradients (the system is put further from
three-phase coexistence), an unexpected sudden increase in the adsorbed amount of C
is observed. A similar transition from microscopic to mesoscopic adsorbed amounts at
the off-equilibrium interface is observed by increasing the interactions between the poly-
mers. We study the susceptibility of the fluxes of A and B with respect to the imposed
concentrations gradients and the interactions. The susceptibility changes simultaneously
with the transitions in the adsorbed amounts. This means that upon variation of the
concentration gradients, the fluxes of A and B are enhanced by the accumulation of C
at the interface. Another interesting phenomenon is that the fluxes may vary even if the
driving forces remain constant.
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6.1 Introduction

Most theoretical studies on adsorption at interfaces focus on equilibrium. This is not sur-
prising since the equilibrium is a well-defined state to which all ergodic systems tend to
evolve. However, it may take a very long time before true equilibrium is achieved. More-
over, during the evolution from off-equilibrium to equilibrium, systems may encounter
local minima in the free energy landscape, which may cause a system to be ‘frozen’ into
an off-equilibrium state for a long time. Apart from such aspects that may prevent a
system to reach equilibrium, there exist processes that never reach the equilibrium state.
Cells in the human body, for example, constantly maintain concentration gradients over
their membranes at the expense of an energy input. In catalysed reactions, reactants may
be converted into products by interacting with the catalyst surface. The maintenance of a
concentration gradient for the reactants towards the catalyst surface is essential to prevent
the reaction rate to decrease. To analyse these and related systems it is relevant to study
systems in stationary off-equilibrium states. Understanding the behaviour of stationary
systems is a necessary step towards describing dynamic processes since the properties of
a stationary state are governed by the dynamics and the state is well-defined.

We investigate the steady state of adsorption at and transport across an off-equilibrium
interface between two immiscible polymer liquids AN and BN . The interface is off-
equilibrium by imposing and maintaining driving forces to these polymers. The interface
is due to the mutual immiscibility of AN and BN , but there is transport across this inter-
face due to imposed gradients in chemical potentials. A similar system, but in equilibrium
state, was studied in Chapter 5. There we were interested in the transitions from thin
to thick adsorption layers induced by variation of the intermolecular interactions. The
results of that study can be used to select the relevant systems for a steady-state analysis.

The equilibrium adsorption was studied in Chapter 5 by means of the Scheutjens-
Fleer Self-Consistent Field (SF-SCF) method [15]. This lattice mean-field method has
proven to be a powerful tool to investigate a variety of inhomogeneous polymer systems
at equilibrium. For off-equilibrium interfaces we use an extension of the SF-SCF method,
namely the Mean-Field Stationary Diffusion (MFSD) method. The details of this method
were outlined in Chapter 2. The SF-SCF and MFSD methods use the same language in
the description of the system, the polymers, and the interactions. The methods differ
in the input requirements. In the equilibrium SF-SCF calculations the composition of a
bulk system that is in equilibrium with the interface is uniquely defined. For the MFSD
calculations one can select arbitrary bulk compositions, from which the driving forces
for each component in the system follow. If these driving forces happen to be zero the
solutions of the MFSD and SF-SCF calculations coincide. The MFSD method selects a
solution in which the material fluxes are constant throughout the system, whereas the
SF-SCF method focuses on the homogeneity of intensive variables. The fluxes in MFSD
calculations are related to the free energy functional of SF-SCF calculations through the
definition of the chemical potentials.

In Chapter 2 we illustrated the performance of the MFSD method by comparing the
resulting diffusion profiles with analytic results for the simplest systems possible. The
MFSD profiles matched the analytic profiles exactly. In the present chapter, we study
diffusion profiles in a system that does not allow analytical solutions. This is due to the
presence of energetic interactions between the components. In Chapter 4 it was shown
that analytic calculations of the diffusion profiles fail even for simple binary systems.
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Although fluxes were computed in these systems, they were not analysed in depth. In
this chapter we will discuss both the steady state profiles as well as the stationary fluxes.

In the next section we first introduce our system. A connection is made to the equi-
librium study of adsorption and wetting (Chapter 5) since the results of that study were
used to select the appropriate boundary conditions for the stationary-state analysis. The
stationary diffusion occurs between two bulk mixtures. The driving forces are defined by
choosing the compositions of these bulk mixtures. The compositions were chosen such
that the mixtures are stable, i.e., within these mixtures no phase separation will occur.
Section 6.3 presents the necessary details of the MFSD method. The relation between
the composition of the bulk mixtures and the driving forces (the chemical potential dif-
ferences) is given. We distinguish three ways to vary the chemical potentials in the bulk
mixtures. The consequences of these three variations for the adsorption layer and on
the stationary fluxes are shown and discussed subsequently in Sections 6.4.1 to 6.4.3. In
Section 6.5 we present a short outlook on further studies that may start from the results
presented here. The conclusions are summarised in Section 6.6.

6.2 System

6.2.1 Equilibrium

We study an off-equilibrium interface between polymer components AN and BN . The
adsorbing component CN is also polymeric. The chain lengths N are chosen to be the
same for the three polymers. In the corresponding equilibrium situation CN would be
referred to as the wetting component, that would either partially or completely wet the
A/B-interface. In equilibrium the surface tensions between the three coexisting phases
determine whether the C-rich phase forms a lens or a thick layer at the interface. These
surface tensions depend on the (conformational) entropy of the chains at the interface
and on the segmental interactions which we quantify by the Flory-Huggins parameters
χAB, χAC and χBC. Two components i and j with equal chain lengths N are completely
miscible if Nχij < 2. An example of a concentration profile across an interface very close
to three-phase coexistence in the case of complete wetting is shown in Figure 6.1a. It
presents the volume fractions φ for all three components as a function of position z for
NχAB = 3.4 and NχAC = NχBC = 2.3. The phase diagram in Figure 5.10 shows that
for this combination of interaction parameters we are in the complete wetting regime.
The profiles in Figure 6.1a were calculated by use of the SF-SCF method. The details
of the calculation were given in Chapter 5. At the left side of the system in Figure 6.1a
(low z-values) we have an A-rich phase α, at the right a B-rich phase β, and in the
centre the wetting phase γ which is enriched in C. The A- and B-rich phases contain
equal volume fractions of C since χAC = χBC. For the same reason we have φA = φB

in the C-rich phase. Due to the fact that χAB > χAC the A-rich phase contains more
C than B. From these volume fraction profiles, we can easily extract the compositions
of the three coexisting phases α, β, and γ. (Note that the phase compositions in Figure
6.1a are calculated for a mesoscopic system. This means that these phases are actually
only (good) approximations for the macroscopic phases that coexist at equilibrium). By
separate numerical calculations we can obtain the compositions of coexisting phases in
binary AN/BN , AN/CN , and BN/CN mixtures as explained in Chapter 4. Thus in total
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Figure 6.1. Ternary system with NA = NB = NC = 10, χAB = 0.34,
χAC = χBC = 0.23. (a): Equilibrium volume fraction profiles for complete
wetting of the A/B interface by C extremely close to three-phase coex-
istence. See Chapter 5 for more information on the wetting transition in
this system. (b): Approximate phase composition diagram. The nine dots
are numerically calculated compositions. The numbers 1, 2, and 3 refer to
the number of phases that coexist for a certain overall composition within
the system. (Thus they refer to one-phase, two-phase, and three-phase
regions). The three phases α, β, and γ coexist.

we can easily generate nine phase composition points (the dots in Figure 6.1b), which
allows us to construct an approximate phase composition diagram as given in Figure 6.1b.
The coexisting phases in binary mixtures are represented by the six points on the three
sides of the triangle. As an approximation for the binodals in the phase composition
diagram we simply connect the coexisting phases in binary systems to the the three-phase
coexistence points. We note that it is possible to generate a more accurate phase diagram
but this approximated version is sufficient for our present purpose.

6.2.2 Stationary state

To study adsorption at off-equilibrium interfaces, we put the wetting system of Figure 6.1a
into an (off-equilibrium) steady state condition. This is done by defining two infinitely
large bulk mixtures each with a composition corresponding to a one-phase region of the
phase composition diagram (Figure 6.1b). An example of such a system is shown in Figure
6.2. Mixture I is rich in AN with concentrations φI

A > φα
A, φI

B < φα
B, and φI

C < φα
C .

Mixture II is rich in BN with φII
A < φβ

A, φII
B > φβ

B, and φII
C < φβ

C . The composition
differences between mixtures I and II for AN and BN are denoted by ∆φ = |φII−φI|. We
restrict ourselves to the situation that φI

C = φII
C , thus ∆φC = 0. The bulk mixtures are

brought into contact. Since their compositions do not correspond to coexisting phases,
the polymer components will start to diffuse in order to make mixtures I and II identical
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with ∆µA = −∆µB and ∆µC = 0. The dashed levels are the coexistence
concentrations of Figure 6.1.

or coexisting. However, we keep the compositions of mixtures I and II constant (ideal
sink-source system). Eventually, a steady state will occur, where all components diffuse
with a flux that is constant in time and space. Although the dynamics of the system
developing towards this steady state is certainly highly interesting, we limit ourselves to
the steady state itself.

The steady state is studied by means of the Mean-Field Stationary Diffusion (MFSD)-
method. This method yields the stationary volume fraction profiles, chemical potential
profiles, material fluxes and chain conformations. That information is obtained for the
region between bulk mixtures I and II as depicted in Figure 6.2. The region is described
by a one-dimensional lattice, whose layers lie perpendicular to the diffusion direction. As
in Figure 6.1a these layers are numbered by z = 1, 2, 3, ...M (M = 200 in Figure 6.1a).
The flux of segments A through layer z is denoted by JA(z). Due to the imposed volume
fraction gradients and the constraints ∇JA = ∇JB = ∇JC = 0, the C-rich wetting layer
(cf. Figure 6.1) is replaced by a C-rich adsorption layer that has a different width and
composition. For example, the mesoscopically thick wetting layer may shrink to a small
accumulation of CN at the interface. The presence of an adsorption layer highly influences
the material fluxes. Intuitively it reduces the available space for the diffusing components
and may thereby act as a barrier. The effect of a similar, but static, barrier on the chain
conformations was studied in Chapter 3. We will show in Section 6.4 that in the case of
a ‘dynamic’ barrier it is highly nontrivial to relate the fluxes of A and B to the amount
of C at the A/B-interface.

Note that we have chosen a system with a high degree of symmetry: NA = NB =
NC = N , φI

C = φII
C , and χAC = χBC. (In the following, we will write χC for χAC and

χBC). The choice for this system allows comparison with our equilibrium wetting study
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described in Chapter 5. In the results that we present we have chosen the compositions of
mixtures I and II such that ∆φA = −∆φB. Then, due to the other symmetric properties,
∆µA = −∆µB, ∆µC = 0, and the adsorption layer will be situated exactly in the centre
of the system. Even for such symmetric systems we obtain a rich adsorption behaviour.

6.3 Concepts of the method

The Mean-Field Stationary Diffusion method [96] was outlined in Chapter 2. The system
is described by a lattice and the polymers are described by chains of segments. Each
segment takes one lattice site. In the case of a three-dimensional lattice, each site would
contain one segment. However, it suffices to divide the system in lattice layers per-
pendicular to the diffusion direction, as depicted in Figure 6.2. For a segment in such
one-dimensional lattice, the precise identities of surrounding segments are unknown. The
interactions between segments are calculated by using the average compositions of lattice
layers. This is the so-called mean field approach.

Our systems contain three polymer components, AN , BN and CN . All polymer chains
have equal numbers of segments, which is the chain length N . We only consider homopoly-
mers so that component AN only consists of segments of type A. We may therefore refer
to any component just by its constituent segment type.

The MFSD-method starts, as the SF-SCF method [15], with a guess for the segment
potentials uA(z) [96]. These potentials can be expressed in terms of Boltzmann-weighting
factors GA(z) through the relation uA(z) = − lnGA(z). (In this Chapter, we express
the segment potentials and chemical potentials in units of kBT ). The segment potentials
depend on the volume fractions φ of all other segments since energetic interactions, quanti-
fied by the Flory-Huggins parameters χij, chain connectivities, and space filling determine
the possibility to find segment A in layer z. Thus uA = uA[φ]. On the other hand, the
volume fraction φA(z) of segments A depends on the Boltzmann-weighting factors and
therefore on the segment potentials: φA = φA[u]. The MFSD-calculation converges if
self-consistency is obtained between the potentials and the volume fractions. When the
weighting factors or segment potentials are known, the volume fractions φi and chemical
potentials µi of all segments can be calculated as a function of position z. From these, we
may calculate other system properties such as adsorbed amounts and stationary segment
fluxes.

In the MFSD-method the segment weighting factors are calculated under the con-
straints of incompressibility and stationary volume fractions. Moreover, the solution of
the MFSD-calculation must obey the desired compositions for bulk mixtures I and II lo-
cated at z = 0 and z = M . By defining the compositions of bulk mixtures I and II we fix
the chemical potentials for the segments at both sides of the system. We thus impose a
certain driving force ∆µi = µII

i − µI
i to each segment type. As derived in Appendix 2A

the segment chemical potential for segment type A in bulk mixture I is given by:

µI
A =

1
NA

lnφI
A + χABφI

B + χACφI
C . (6.1)

In the following, we will vary the chemical potentials in bulk mixtures I and II in three
ways: (i) by variation of the compositions of mixtures I and II at constant χ-parameters,
such that ∆φA = −∆φB and ∆φC = 0, (ii) by variation of χAB at constant composition
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and constant χC = χAC = χBC, (iii) by variation of χC at constant composition and
constant χAB. Of interest to the diffusion are the consequences of these variations for the
imposed driving forces |∆µA| and |∆µB|. In all three cases we have |∆µC | = 0 due to the
symmetry of our system. With the varying compositions of mixtures I and II (case (i))
|∆µA| and |∆µB| are rather complex functions of these compositions. However, as long
as both bulk mixtures have a stable composition, i.e. if they fall into the one-phase region
of a phase composition diagram, the driving forces increase monotonously with increasing
|∆φA| and |∆φB|. For varying χAB (case (ii)), the driving forces |∆µA| and |∆µB| are
linear functions of χAB. The driving forces decrease with increasing χAB, since mixtures I
and II approach coexistent phases if χAB is increased for a fixed composition of mixtures
I and II. Case (iii), the variation of χC, has no effect on the driving forces due to our
choice that φI

C equals φII
C . In this case, |∆µA| = |∆µB|.

We study the effect of varying driving forces on the adsorption and on the stationary
segment fluxes. These fluxes were derived for multicomponent systems in Chapter 2. Two
different diffusion mechanisms were put forward, the so-called slow-mode and fast-mode
diffusion. According to the slow-mode model, the diffusion occurs through swapping the
positions of two different segments [19]. According to the fast-mode model the slow-mode
diffusion mechanism must be accompanied by a drift flux [20, 21]. In terms of Onsager
coefficients Λi, the slow-mode flux and fast-mode flux are given by, respectively,

Js
A = − ΛA∑

i Λi
kBT

∑
j

Λj∇ (µA − µj) (6.2a)

Jf
A = −kBT

∑
j

(φjΛA∇µA − φAΛj∇µj) . (6.2b)

The Onsager coefficient Λi equals B̃iφi, where B̃i is the mobility of segment type i. We
assume equal mobilities for all types of segments (B̃i = B̃ ∀i), so that the slow-mode and
fast-mode fluxes become identical:

Js
A = Jf

A = −B̃kBT
∑

j

φAφj∇ (µA − µj) . (6.3)

We do not specify the conversion factor between our (dimensionless) fluxes and real fluxes.
We are only interested in the trends of the flux behaviour. Values for stationary fluxes
given in graphs are only specified to illustrate such trends.

6.4 Results and Discussion

6.4.1 Variable ∆φ

Composition profiles

Figure 6.3 presents the stationary volume fraction profiles for two distinct situations
in very similar systems. Figure 6.3a and 6.3b both refer to a system with N = 10,
χAB = 0.34, and χC = 0.23. Moreover, we have chosen for both systems φI

C = φII
C = 0.15

and ∆φ = −∆φA = ∆φB. There is no net diffusion of C-segments (JC = 0). The only
difference between the two cases is the value for ∆φ. In Figure 6.3a the imposed driving
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Figure 6.3. Stationary volume fraction profiles for adsorption at off-
equilibrium interfaces in two similar systems; N = 10, χAB = 0.34,
χC = 0.23, φI
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forces are substantially smaller than in Figure 6.3b: ∆φ = 0.73 and 0.84998 respectively.
In fact, the true measure for the driving force is ∆µA instead of ∆φA, but in the present
system ∆µA grows monotonously with ∆φA (see the inset of Figure 6.7a). For the smaller
driving force, the volume fraction profiles of all components are nearly flat up to a small
distance from the interface. Despite the fact that the system is nearly at equilibrium and
(with respect to the χ-values) identical to the system in Figure 6.1, the adsorption layer
of CN remains microscopically small. Presumably, the system is closer to a two-phase
coexistence with an A- and B-rich phase than to the three-phase coexistence with phases
α, β, and γ. In other words, the system remains subsaturated with C. The larger driving
force in Figure 6.3b significantly changes the adsorption layer. It grows to mesoscopic
scales (a liquid film develops) and the volume fraction of C within this film exceeds the
value of φγ

C in the equilibrium γ-phase.
The origin of this quite different behaviour for seemingly similar systems is clarified by

Figure 6.4. In this figure the volume fraction profiles of Figures 6.3a and 6.3b are plotted
as composition profiles in the equilibrium phase composition diagram. Each point in
Figure 6.4 corresponds to the composition of one lattice layer in Figure 6.3. The starting
point to the left of a composition profile in Figure 6.4 is the composition of mixture I in
the A-rich phase. The end point to the right corresponds to the composition of mixture
II in the B-rich phase. The composition profile for small driving forces (Figure 6.3a and
grey dots in Figure 6.4) runs through the A/B-binodals and the three-phase coexistence
region. The profile does not cross the C-rich one-phase region; therefore there is only a
(microscopic) adsorption layer. From the small number of points within the three-phase
region it is clear that only a few layers have a composition which would be unstable in
homogeneous macroscopic systems. These layers form the interface between the two stable
portions of the system that are rich in A and B respectively. The gradients of φ within the
interface stabilize the instability, as in Van der Waals’ theory of liquid/liquid interfaces.
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Figure 6.4. The composition profiles of Figure 6.3 plotted in the equilib-
rium phase composition diagram. The grey curve corresponds to Figure
6.3a, the black curve to Figure 6.3b. Each dot is the composition of one
lattice layer.

For a larger driving force (Figure 6.3b and black dots in Figure 6.4) the composition
profile first crosses the A/C-binodals so that a stable C-rich phase develops, which is the
liquid film at the A/B interface. Then the B/C-binodals are crossed to arrive in the
stable B-rich phase. Within the one-phase regions the composition profiles ‘travel’ more
slowly through the composition diagram than within two- or three-phase regions. We
conclude that whether a mesoscopic film will develop at the A/B interface or not depends
in general on the location of one-phase regions in the phase composition diagram and on
the driving forces between two points in this diagram. When the C-rich one-phase region
or the driving forces are small, or when mixtures I and II are far from the A/C and B/C
binodals, the adsorption layer will remain of microscopic size. We call the adsorption
layer a ‘film’ when the composition profile enters the stable C-rich phase region of the
phase composition diagram.

Adsorbed amount

From the composition profiles in Figure 6.4 it can be anticipated that when these profiles
cross a phase barrier, that is, when they reach the stable C-rich phase, the adsorbed
amount of C may increase faster. Figure 6.5 shows how the film develops with increasing
driving force. The black curve presents a measure for the excess adsorbed amount θex

C of
component C at the interface. This quantity is calculated as

θex
C =

∑
z

[
φC(z)− φI

C

]
=
∑

z

[
φC(z)− φII

C

]
. (6.4)

This is only an approximation for the adsorbed amount, since the φC-gradients in the A-
and B-rich phases also contribute (to a minor extent) to θex

C . We define the susceptibility
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of θex
C with respect to a change in ∆φ as

Xθ
∆φ =

∂θex
C

∂∆φ
, (6.5)

so that Xθ
∆φ follows immediately from the slopes in Figure 6.5. In this figure it is seen that

the excess amount of C grows continuously with increasing ∆φ, but the susceptibility Xθ
∆φ

changes suddenly for ∆φ ≈ 0.77. We can distinguish three contributions to the increase of
θex
C : (i) the volume fraction of C within the adsorption layer is higher, (ii) the adsorption

layer widens, (iii) the gradients of φC near the system boundaries increase. The first
contribution to θex

C is related to the concentration φcenter
C in the middle of the adsorption

layer; this quantity is plotted as the grey curve in Figure 6.5. It is seen that as soon as
φcenter

C exceeds the value of φγ
C , in other words, as soon as the composition profiles enter

the stable C-rich phase region, the adsorbed amount starts to grow faster. This supports
the observations from Figure 6.4. The transition that occurs in Figure 6.5 for ∆φ ≈ 0.77
could be seen as a dynamic phase transition.

Fluxes

In Figure 6.6 the stationary flux of A segments, JA, is plotted as a function of the imposed
volume fraction differences. As expected, the flux increases with increasing driving force.
The susceptibility of the flux with respect to ∆φ, XJ

∆φ = ∂JA/∂∆φA, suddenly increases
at ∆φ = 0.77 (the value at which φcenter

C reaches φγ
C). This is shown by the slopes of the

two dotted lines that are linear fits to the upper and lower part of the JA-curve. The
slopes differ by a factor 1.7. The same flux is plotted as a function of ∆µ (defined as
|∆µA| = |∆µB|) in Figure 6.7a. Whereas the susceptibility XJ

∆φ suddenly changes at
∆φA = 0.77 (where ∆µ ≈ 0.04), the susceptibility XJ

∆µ = ∂JA/∂∆µ hardly changes at
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∆µ ≈ 0.04. This is because ∆µ is only a weak function of ∆φ in this part of parameter
space, as shown by the inset in Figure 6.7a. When the flux would be a linear function of
∆φ according to either one of the dashed lines in Figure 6.6, the flux would either follow
the thick curve or the thin curve in Figure 6.7b. These curves cross, as they should, at
∆µ ≈ 0.04. The initial part of the flux is plotted again in Figure 6.7b (dots). The flux
follows the thick curve for small ∆µ and the thin curve for larger ∆µ. Around ∆µ ≈ 0.04
a smooth transition between both curves occurs so that XJ

∆µ remains almost constant
around the cross-over.

Combination of Figures 6.5 and 6.6 indicates that the flux increases with the growing
adsorption layer that accompanies the increasing driving force. Apparently, the adsorption
layer does not act as a barrier to the segmental fluxes. This result shows that the C-
segments participate in the swap-diffusion mechanism. The flux of segments A can be
decomposed through Equation 6.3 into two partial fluxes JAB and JAC which denote the
contributions of A/B and A/C position swaps to the overall diffusion of A:

JA =
∑

i

JAi (6.6a)

JAi = −B̃kBTφAφi∇ (µA − µi) (6.6b)

Although the overall flux JA is independent of z, the partial fluxes JAB and JAC may
strongly vary. Figures 6.8a and 6.8b show the separate contributions to JA as a function
of z for ∆φ = 0.73 and ∆φ = 0.84998, respectively. It is clearly seen that segments C
have an important contribution to the overall flux of A. This contribution even exceeds
the contribution of A/B-swaps in the film in Figure 6.8b. Figures 6.8a and 6.8b also show
that JAB = −JBA, as it should according to the definition in Equation 6.6b. Moreover,
JAC = −JBC due to equal interactions (χAC = χBC) and the symmetry of mixtures I and
II. As a consequence, JC = 0 and JA = −JB. Figure 6.6 would change significantly if
we would only allow position swaps between segments A and B so that JAC = JBC = 0.
Polymer CN would statically occupy a part of the diffusion space. The adsorption layer
or film would then act as a barrier and reduce the fluxes of A and B. In the static-CN

case ∆φ must be larger than 0.77 (as in Figure 6.5) in order to have a thick adsorption
layer. The static-CN case may be approximated by choosing the segment mobilities B̃A

and B̃B much larger than B̃C . Here we do not consider the static-CN case any further.
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Figure 6.9. Results for varying χAB and N = 10, φI
A = φII

B = 10−5,
φI

C = φII
C = 0.10. (a): The excess amount of C as a function of χAB

for two values of χC. (b): Phase composition diagrams for χC = 0.26
and three different values of χAB. The dots present the compositions of
mixtures I and II. Boundaries of the three-phase regions have been omitted
for χAB = 0.37 and χAB = 0.5.

6.4.2 Variable χAB

Adsorbed amount

In this section we vary the interactions between components AN and BN while keeping the
compositions of I and II constant, such that these mixtures remain sub-saturated with CN .
As can be verified from Equation 6.1, the driving forces |∆µA| and |∆µB| decrease linearly
with increasing χAB. Despite this simple relation between χAB and the driving forces, the
systems show rich behaviour upon variation of χAB as can be seen in Figure 6.9a. This
figure gives the excess amount of C as a function of χAB, for two values of χC. Let us
first consider the curve for χC = 0.26 in Figure 6.9a. For χAB ≈ 0.25 the susceptibility
Xθ

χAB
= ∂θex

C /∂χAB suddenly increases in a way similar to the susceptibility Xθ
∆φ in

Figure 6.5. In contrast to the curve in Figure 6.5, the adsorbed amount now exhibits a
maximum (at χAB ≈ 0.38). Such a maximum is also observed if χC is diminished to a
value of 0.25, but the suddenly increasing growth rate is not observed for this χC.

In Section 6.4.1 we have explained the suddenly increasing susceptibility Xθ
∆φ by the

observation that at some moment the system is able to reach the C-rich one-phase region
of the composition diagram. We now find that Xθ

χAB
suddenly increases as soon as the

composition profiles start to cross the two-phase regions that are bounded by A/C and
B/C binodals. The three-phase region in the phase composition diagram may be absent
for small values of χAB so that the phase composition diagram only contains one 1-phase
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region and three 2-phase regions. Crossing the 2-phase regions still allows the occurrence
of thick adsorption layers. For example, Figure 6.9a reveals the existence of a thick
adsorption layer for χAB = 0.25 and χC = 0.26, whereas the three-phase region will only
appear when χAB > 0.26 (see the discussion on binodals in symmetric three-component
systems in Section 5.4.2).

Despite the maximum in θex
C we found that φcenter

C remains an increasing function of
χAB. The maximum in θex

C reflects a maximum in the width of the adsorption layer. The
width of the adsorption layer decreases as a result of diminishing driving forces: upon
increasing χAB, mixtures I and II approach the coexistent phases α and β (cf. Figure
6.1b) or any other combination of coexistent points on the A/B binodals. This is seen
from the collection of phase composition diagrams in Figure 6.9b. The boundaries of two
three-phase regions have been omitted in this figure for the sake of clarity. For χAB = 0.37
or χAB = 0.5 (and χC = 0.26) only the one-phase regions are depicted. For χAB = 0.29
and χC = 0.26 the two-phase regions and the three-phase region are plotted as well.
From the evolution of the A and B-rich regions with increasing χAB it is understood
that mixtures I and II approach phase coexistence. Due to subsaturation of C within the
bulk mixtures, the adsorption layer must become microscopically thick upon approach
of coexistence. Figure 6.9a shows that the maximum of θex

C for χC = 0.25 occurs before
the composition profiles cross any two-phase region. For χC = 0.25 the A/C and B/C
two-phase regions are smaller than for χC = 0.26.

Fluxes

Figure 6.10a shows that the stationary flux of A decreases with increasing χAB, that is
(according to Equation 6.1) with decreasing driving force. There is no direct correlation
between the excess amount of C and the flux of A. The maximum in θex

C (Figure 6.9b)
is not related to some special feature in the flux curve. For χC = 0.26 and χAB <
0.38 the flux decreases whereas the adsorption of C increases. In Section 6.4.1 it was
shown that the adsorption layer does not act as a barrier since XJ

∆φ and Xθ
∆φ increase

simultaneously. Figure 6.10b gives the contribution of C to the total flux of A for z = M/2,
i.e. JAC(M/2) = Jcenter

AC . Note that, due to the symmetry of the system, ∇µcenter
C = 0,

∇µcenter
A = −∇µcenter

B and φcenter
A = φcenter

B . Therefore Equation 6.6 yields Jcenter
AC /JA =

φcenter
C . The contribution JAC and the volume fraction φcenter

C simultaneously have a sharp
increase for χAB ≈ 0.25. The volume fraction φcenter

C continues to grow for larger χAB.
This growth is insufficient to compensate for the diminishing driving force ∇µ so that
JAC and JA must decrease.

6.4.3 Variable χC

Equation 6.1 reveals that upon variation of χC (= χAC = χBC) the driving forces between
mixtures I and II remain constant since φI

C = φII
C . Even so, the stationary flux is an

interesting function of χC. This is illustrated by Figure 6.11 where we plotted both the
flux of A and the excess adsorbed amount of C versus χC. Whereas in Figures 6.9a and
6.10a we observed a maximum in θex

C and a monotonic behaviour of the flux as a function
of χAB, we now see a monotonic increase of θex

C and a maximum in the flux as a function
of χC. Figure 6.11a shows again that the flux behaviour changes simultaneously with the
transition between the adsorption regime and the film-forming regime for χC ≈ 0.254 .
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Figure 6.10. Results for varying χAB and χC = 0.26, N = 10, φI
A =

φII
B = 10−5, φI

C = φII
C = 0.10. (a): The stationary flux of A-segments

as a function of χAB (main figure) and as a function of the driving force
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system (z = M/2) as a function of χAB, plotted as JAC (left scale) and as
JAC/JA = φcenter
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The one-phase regions in the phase composition diagram become smaller for increasing χC

(see Figure 6.11b). The A/C and B/C binodals approach the compositions of mixtures I
and II. Although the driving forces remain constant, the difference between µI

A and µcoex
A

decreases upon increasing χC. For χC = 0.254 the binodals are sufficiently close to be
crossed by the composition profiles so that the stable C-rich phase is reached and a faster
increase in θex

C (or a larger susceptibility Xθ
χC

) is observed.

With increasing χC the width of the adsorption layer continues to increase; the A/C
and B/C interfaces move towards z = 0 and z = M respectively, since the bulk mixtures
approach the binodal compositions associated with the A/C and B/C interfaces. Despite
the continuously increasing width and increasing φcenter

C the stationary flux has a maximum
for a relatively high value of χC (Fig. 6.11a). The maximum in JA shifts to lower χC for
higher values of φI

C = φII
C (not shown). The origin of this flux behaviour is illustrated in

Figure 6.12 for φI
C = φII

C = 0.10. In Figure 6.12a the µA-profiles are shown for different
values of χC. Although the driving force ∆µA = µII

A − µI
A is constant for varying χC,

the profile of µA is not. The peaks in the µA profiles occur at the interfaces. It is seen
that locally ∇µA(z) may be positive although µII

A < µI
A. The profile of µA thus makes a

‘detour’ to arrive eventually for z = M at the imposed value of µII
A. For increasing χC this

detour initially extends over a longer distance through the system. Putting it differently,
the layer z∗ for which µA(z∗) = µI

A initially increases with increasing χC. This is shown
in Figure 6.12b where we have plotted the value of z∗ as a function of χC. A larger
flux JA compensates for the detour to overcome ∆µA. The detour of µA(z) is caused
by the relatively high chemical potential within the adsorption layer. This potential
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decreases with increasing χC and eventually z∗ falls within the adsorption layer. From
this moment, the value of z∗ decreases with increasing χC (see Figure 6.12a). The detour
of µA(z) shortens which means that lower fluxes are sufficient to overcome the imposed
drop in µA between mixtures I and II. One would expect a direct correlation between z∗
and JA. However, in Figure 6.12b the maximum in JA does not exactly coincide with the
maximum in z∗. This is due to the inaccurate calculation of z∗ near its maximum: for
χC ≈ 0.26 we find that z∗ is positioned at the µA peak occurring at the B/C interface.

6.5 Outlook

Our three-component system could be used to study the diffusion over a barrier that
consists of polymers. The adsorption layer acts as a barrier to the diffusion of A and B if
the polymer segments that constitute the adsorption layer do not contribute to the fluxes
of A and B. These fluxes should then be calculated as JA = −B̃φAφB∇ (µA − µB) = −JB.
The polymer chain conformations of the barrier material may still respond to the diffusing
segments. Cell membranes are natural barriers that consist of short chains, namely lipids.
During transport of substances through these membranes, the structure of the membrane
or the conformations of the lipids may change. Transport through cell membranes is a
vital process in life, for example in the communication between brains and muscles, but
also in the secretion of waste products by the kidneys or in drug delivery. It is therefore
interesting to study the transport through a polymer layer that responds to the transport
by conformational adjustments but that does not necessarily support the transport. The
systems studied in this chapter may thus form the basis for further investigations in
biological systems.

6.6 Conclusions

We have shown that off-equilibrium interfaces in simple symmetric systems exhibit a
very rich adsorption behaviour. The adsorption and associated material fluxes have been
studied in stationary three-component homopolymer systems. Two of these components,
AN and BN , formed an interface at which the third component, CN , adsorbed. (N is the
chain length, which was the same for all three components). Due to imposed concentration
gradients, the systems were off-equilibrium. Polymers AN diffused from the A-rich phase
through the interface to the B-rich phase. Polymers BN diffused in the opposite direction.
Polymer CN did not have any net-diffusion since we imposed symmetric driving forces
to AN and BN such that the driving force on CN remained zero. The driving force was
expressed in terms of ∆µ = |∆µA| = |µII

A − µI
A| = |∆µB|. The symmetry arose from the

symmetric compositions at both sides of the interface (∆φ = |∆φA| = |φII
A−φI

A| = |∆φB|,
∆φC = 0), from symmetric Flory-Huggins interaction parameters (χAC = χBC = χC),
and from the equal chain lengths and segment mobilities. The interaction parameters
were chosen such that all systems studied would display complete wetting in equilibrium.
We quantified the adsorbed amount of C by θex

C , i.e. the excess amount of C compared to
the bulk mixtures. In short we can conclude the following:

• The excess amount of C increases with increasing ∆φ or χC. The susceptibilities
Xθ

∆φ = ∂θex
C /∂∆φ and Xθ

χC
= ∂θex

C /∂χC increase if the composition in the centre of
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the adsorption layer corresponds to the composition of a stable C-rich phase. From
phase composition diagrams it can be verified that this should occur for sufficiently
large values of ∆φA or χC. The changing susceptibilities of θex

C indicate a transition
from molecular adsorption to film formation (in other words, from thin to thick
adsorption layers).

• The excess amount of C as a function of χAB exhibits a maximum. This maximum
can occur in both regimes of adsorption and film formation. The maximum in θex

C

reflects a maximum in the width of the adsorption layer. For large χAB the bulk
mixtures approach coexistence between an A-rich and a B-rich phase so that the
adsorbed amount of C must decline, because for our choice of φI

C = φII
C the A and

B-phases are subsaturated with C in equilibrium.

• The stationary segment fluxes decrease, as expected, with decreasing driving forces.
The fluxes and θex

C decrease simultaneously for varying ∆φA. However, for varying
χAB the fluxes decrease while θex

C increases.

• The stationary segment fluxes are a function of χC even if the driving forces between
the two bulk mixtures are constant for all χC. This is due to the µ-profiles that
must be followed to keep the fluxes constant throughout the system. For example,
∇µA may be positive for some values of z, even though µII

A < µI
A.
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Summary

Theoretical models for the study of polymers mainly deal with equilibrium properties,
such as the compositions of coexisting phases, the morphology of micro-phase separated
mixtures, or the conformations of polymer chains near phase boundaries. In practice
however, it may take a long time before equilibrium is obtained in polymer systems.
Moreover, many polymer processes in industry, biology, and research occur off-equilibrium,
since driving forces are maintained by the reactions that take place (for example at catalyst
surfaces) or by the continuous input of mechanical energy (for example to transport
polymer liquids through industrial pipes). Therefore it is necessary to go beyond the
equilibrium considerations. This thesis presents a new theoretical model, as well as its
applications, for the study of polymer systems in stationary off-equilibrium states.

The new model, outlined in Chapter 2, is called the Mean-Field Stationary Diffusion
model. It provides more insight into the steady state behaviour of polymers that diffuse
between two bulk mixtures with different compositions. Calculations with this new model
yield information about the stationary concentration profiles, sometimes showing interface
formation, and stationary fluxes. The polymers are studied on the length scale of a few
monomers so that their conformational changes can be followed during the diffusion.

The basis for the Mean-Field Stationary Diffusion (MFSD) model is the equilibrium
Scheutjens-Fleer (SF) model. As a result, when the two bulk mixtures that determine
the driving force for diffusion in the MFSD-model have equal compositions, the system
is in equilibrium and the results of the MFSD and SF calculations coincide. The SF
model has already been applied for a wide variety of interfacial systems, including solid
surfaces, liquid/liquid interfaces, and self-assembling interfaces such as membranes and
vesicles composed of (charged) amphiphilic molecules. The MFSD model might be used
to study all these systems in stationary off-equilibrium situations.

The basic result of an SF or MFSD calculation is the average distribution of molecules
in the system under the appropriate constraints and boundary conditions. The boundary
condition for the SF calculations is given by the composition of a bulk mixture that
must be in equilibrium with the system under consideration. The constraints for the
SF model are minimum free energy and incompressibility of the system. In the MFSD
model the boundary conditions are the compositions of the two bulk mixtures between
which the stationary diffusion occurs. The constraints for the molecular distribution in
MFSD calculations are system incompressibility and concentrations that are constant in
time on every position in the system. Both methods provide only the average molecular
distributions in contrast to simulation methods in which, in principle, the location of
every particle is exactly known at any moment. The average distribution is calculated
more efficiently in the SF and MFSD models and it provides statistical information about
a large collection of molecules without any statistical noise.
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The development of the MFSD model requires an assumption about the diffusion
mechanism. We adopt two diffusion theories from the literature: the slow-mode and
fast-mode theories, which both assume a ‘swap’ mechanism where particles move by in-
terchanging their positions with others. The parameters for the MFSD calculations are
the Flory-Huggins interaction parameters, the chain lengths of the polymers, and the mo-
bilities of the constituent segments. If desired, the slowing-down effect of entanglements
between chains may be taken into account by defining the entanglement length of the
chains. The numerical MFSD calculations are found to converge rapidly and smoothly to
the average molecular distributions as long as the bulk mixtures are stable, in the sense
that they do not feel a driving force for phase separation into two or more coexisting
phases.

For athermal homopolymer mixtures and solutions we find from MFSD calculations
that the stationary concentration profiles can be very asymmetrical as a result of different
chain mobilities. A shorter polymeric component has a larger chain mobility than a longer
polymer; when the chains are equal in length, there may be a different chain mobility due
to a difference in segmental mobilities. The stationary concentration profile is a stronger
function of position for those locations that are occupied by larger amounts of relatively
mobile chains.

In Chapter 3 we apply the MFSD model to study hindered polymer diffusion, a fre-
quently occurring process in biology. Chains diffusing from one bulk mixture to another
encounter a barrier that has the characteristics of a fluid film. This means that the chains
experience a reduction in the available space for diffusion, but that the barrier material has
no structural pore morphology. The barrier may resemble a lipid bilayer by subdividing
the barrier into regions and choosing the appropriate interaction parameters. The ideal
coil conformations of the polymer chains are dramatically disturbed when they approach
or cross the barrier. The chains are found to adopt inhomogeneous flower conformations
when they reside partly in the barrier and partly in unconfined space. The part of the
chain within the barrier (the stem of the flower) is stretched to allow the remaining coil
part of the chain (the crown) to escape from the barrier. This result is particularly im-
portant for the experimental characterisation of membrane morphologies, whereby the
maximum pore size of a membrane is derived from the size of the largest polymers that
are able to cross the membrane. It is thereby usually assumed that the chains retain a
spherical coil conformation. Our results show that this assumption is incorrect.

The stretching of the confined chains is quantified by the notion of ‘blob sizes’. The
smaller the blob size, the stronger the stretching. We find that the blob size decreases if
the barrier occupies more space or if the repulsive interactions between the polymer and
the barrier are made stronger. The blob sizes are independent of chain length or barrier
width. However, the shorter the chains, the smaller the fraction of chains that adopt a
flower conformation. These finding are in agreement with the predictions from a Gaussian
scaling model.

As mentioned above, the bulk mixtures that in the MFSD model determine the driving
force for polymer diffusion need to be stable, at least one of them. The limits of stability
are given by the compositions of coexisting phases. When both bulk mixtures have a
different, but coexistent composition, all components have equal chemical potentials in
both mixtures. This means that all fluxes between these mixtures remain zero. This ob-
servation is the basis of a new analytical approximation for the compositions of coexisting
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phases in homopolymer systems that we present in Chapter 4. We use the MFSD-flux
expressions to calculate the conditions for vanishing fluxes. For binary mixtures the fluxes
not only vanish when the bulk mixtures have equal or coexistent (also called binodal) com-
positions, but more generally if the driving force on molecules A is the same (equal and
in the same direction) as the driving force on molecules B. This is due to the constraint
of incompressibility. As a result, the condition of vanishing fluxes between two mixtures
is only a necessary and not a sufficient condition for phase coexistence. We therefore use
an additional condition to find an analytical approximation for coexistent phases. This
condition is that the flux between two mixtures also vanishes when one of these mixtures
has a binodal composition and the other has the critical composition. The critical compo-
sition is defined as the composition for which both the second and the third derivative of
the Gibbs free energy with respect to the composition vanish: ∂2G/∂φ2 = ∂3G/∂φ3 = 0.
This assumption is motivated by results for symmetrical homopolymer blends and from
numerical MFSD calculations of the stationary flux between a binodal composition and
unstable compositions. When our stationary dynamics approach is applied to the Flory-
Huggins free energy functional the result is an analytical expression for the coexisting
phase compositions in terms of chain lengths and interaction parameters. We compare
our approximation with numerically calculated binodal compositions. Our approximation
is more accurate than the Van der Waals approximation, the ‘pure-phase’ approximation
for polymer solutions and the so-called root-three rule. Our stationary dynamics approach
to obtain analytical approximations for coexisting compositions is not only applicable to
binary homopolymer mixtures, but also to symmetrical multicomponent homopolymer
mixtures in which all components have equal chain lengths and interaction parameters.
However, results are more satisfactory for binary mixtures.

Two coexisting phases are separated by an interface. When the two phases are stable
but not coexistent, the interface is off-equilibrium and molecules will diffuse through
this interface. We study polymer adsorption both at equilibrium (Chapter 5 and off-
equilibrium interfaces (Chapter 6. The interface separates an A-rich phase from a B-rich
phase, where A and B are homopolymers with length N . The adsorbing component C is
also a polymer with length N and it is equally soluble in A and B. The corresponding
Flory-Huggins interaction parameters are: χAC = χBC = χC 6= χAB, with all χij > 2/N .

In Chapter 5 the Scheutjens-Fleer model is used for the study of equilibrium adsorp-
tion. When the adsorption layer is a coexisting phase with the A- and B-rich phases,
the phenomenon is also called wetting. Depending on the solubility of C (the value of
χC) and on the miscibility of A and B (the value of χAB), the wetting will be partial or
complete. In partial wetting only a finite amount of C accumulates at the interface. In
practice, we would see droplets of C at the interface. In complete wetting a thick film
of C may develop at the interface, thereby minimising the unfavourable A/B contacts.
Upon variation of the interaction parameters a transition may occur between partial and
complete wetting. This is analogous to the transition that occurs from partial to complete
wetting upon increasing temperature. When this transition occurs gradually so that the
wetting film grows continuously, the transition is called second order. This is rarely seen
in experiments. We find second-order transitions for a large parameter space.

Cahn’s argument states that a wetting transition must occur at a temperature below
the critical temperature. In other words, at the critical temperature the wetting must be
complete. This can be explained by considering the temperature dependence of the surface
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tensions. In order to verify Cahn’s argument in terms of interaction parameters instead of
temperature, we need to express the interaction between the wetting component and the
solvents as an effective interaction parameter which also incorporates the miscibility of
A and B. Cahn’s argument is then translated to the statement that a wetting transition
must occur either upon decreasing the solubility of C in A and B (χC) or upon decreasing
the miscibility of A and B (χAB). We indeed find wetting transitions as predicted by
Cahn’s argument.

The wetting behaviour becomes more complex when it is unfavourable to screen the
A/B contacts by a wetting layer consisting of C, that is if χAB < χC. In this case we
find so-called pseudo-wetting, where a thick wetting film develops while the A and B-
rich phases become supersaturated with C. The supersaturation is finite so that, upon
increasing the amount of component C, the wetting film eventually breaks down.

Cahn’s argument predicts a transition from partial to complete wetting upon decreas-
ing χAB, but we find an additional wetting transition by increasing the value of χAB. This
is readily explained, since the screening of A/B contacts, as is possible by the development
of a wetting layer, becomes more important with increasing χAB.

The equilibrium adsorption study is followed in Chapter 6 by a study of adsorption
with stationary diffusion. From the equilibrium wetting results we select the conditions
for the complete wetting regime by the appropriate choice for χAB and χC. We also choose
the compositions of the bulk mixtures on both sides of the interface such that they are
stable, but not coexisting, and sub-saturated with C. This results in an off-equilibrium
interface. Polymer A diffuses from the A-rich phase through the interface to the B-rich
phase and B diffuses in the opposite direction. The A-rich and B-rich phases are chosen to
contain equal amounts of C, so that there exists no driving force on this component. The
adsorption and stationary fluxes in this system are studied by use of the MFSD model.
Although the system is rather simple it shows rich adsorption behaviour together with
interesting variations in the stationary fluxes.

We first follow the adsorption of C at the off-equilibrium interface during variation
of the concentration gradients of A and B. For small gradients, only little adsorption
occurs, as would also occur at equilibrium interfaces due to the choice for sub-saturation
of the bulk mixtures. However, when the concentration gradients are increased a thick
adsorption layer develops at the off-equilibrium interface. This means that a third phase
develops which is rich in C. This third phase is able to contain a large amount of C so that
the adsorption becomes a stronger function of concentration gradients. The stationary
fluxes of A and B become stronger functions of the concentration gradients as well. The
fluxes increase with increasing adsorption, indicating that component C facilitates the
swapping diffusion mechanism.

The adsorption also grows for increasing χAB and constant concentration gradients.
Again, the adsorption becomes a stronger function of the variable when a C-rich phase
exists at the off-equilibrium interface. However, the adsorption shows a maximum for
some value of χAB. As can be explained from ternary phase composition diagrams, this
maximum occurs since the bulk mixtures that determine the driving force for diffusion
approach phase coexistence upon increasing χAB. At phase coexistence, the mixtures are
sub-saturated with C and the adsorbed amount is only small. As expected, the stationary
fluxes are found to decrease to zero upon approach of phase coexistence.

For increasing χAB and constant concentration gradients we thus find a maximum in
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the adsorbed amount of C. For increasing χC we find a maximum in the stationary fluxes
although the driving forces remain constant. The stationary flux first increases with
increasing χC, supported by the development of a C-rich phase at the off-equilibrium
interface. When the width of the adsorption layer is sufficiently large, there exists a place
somewhere within the adsorption layer where the composition is such that component A
has the same chemical potential as in the A-rich bulk mixture. The stationary flux of A
(and therefore also of B) depends on the distance between that place and the A-rich bulk
mixture. That distance decreases with increasing χC and the stationary fluxes decrease
accordingly.

This thesis shows the performance and broad applicability of the Mean-Field Station-
ary Diffusion method. It provides insight into the diffusion profiles and flux characteristics
for stationary diffusion between two stable polymer mixtures. Future applications could
be in the field of biological transport of (charged) molecules through membranes. These
membranes could consist of polymer chains that may facilitate the diffusion through the
swapping mechanism, but on the other hand act as barriers through the occupation of
space. It would be of interest to study the conformational changes of these chains during
diffusion of molecules. The mixtures at both sides of the membrane could have compo-
sitions that are not coexisting, so that some of the features observed for off-equilibrium
adsorption will also occur for transport through a membrane.

The equilibrium Scheutjens-Fleer model was developed to study the equilibrium in
polymer systems. The Mean-Field Stationary Diffusion model developed in this thesis
allows calculations for stationary off-equilibrium polymer systems. This is a step forward
towards the development of a ‘Mean-Field Dynamics model’ that would enable the efficient
study of dynamic processes in polymer systems that evolve from any arbitrary initial state
to either a stationary off-equilibrium or an equilibrium state.
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1 Doel van het onderzoek

De eindtoestand van alle processen is een systeem in evenwicht. Wanneer een systeem in
evenwicht verkeert, zijn alle eigenschappen zoals temperatuur, druk en volume constant
in de tijd en in de ruimte. Uiteindelijk zullen alle gëısoleerde systemen een evenwicht
bereiken. Dit, en het feit dat de evenwichtstoestand goed te begrijpen is, verklaart waarom
in onderzoek vaak evenwichtssystemen worden bestudeerd.

Het kan echter geruime tijd duren voordat evenwicht wordt bereikt, met name in syste-
men die polymeren bevatten. Polymeren zijn lange moleculen die opgevat kunnen worden
als aaneenschakelingen van kleinere moleculen, de monomeren. Als gevolg van de grootte
van de polymeren zijn veel processen in polymeersystemen traag. Veel systemen die van
belang zijn in de industrie, in de biologie of in het onderzoek verkeren helemaal niet in
evenwicht; in veel processen worden systemen juist uit hun evenwicht gehouden doordat
er reacties plaatsvinden (zoals aan katalysatoroppervlakken) of doordat er voortdurend
energie aan het systeem wordt toegevoegd (bijvoorbeeld om vloeistoffen door fabriekslei-
dingen te pompen). Het is daarom ook nodig om in het onderzoek verder te kijken dan
de evenwichtstoestand.

Het doel van het onderzoek dat beschreven is in dit proefschrift is het ontwikkelen van
een theoretisch model waarmee polymeersystemen kunnen worden bestudeerd die niet in
evenwicht verkeren. Het is wat ambitieus om de volledige dynamica van een willekeurige
begintoestand naar het evenwicht te beschrijven, vandaar dat we ons beperkt hebben
tot zogenaamde stationaire niet-evenwichtssystemen. In een stationaire toestand kunnen
bijvoorbeeld concentraties afhankelijk zijn van positie, maar niet van de tijd.

In de natuur vinden we veel voorbeelden van processen die (in goede benadering) sta-
tionair zijn. Er kan (en moet) bijvoorbeeld een stationair verschil in concentratie bestaan
van kaliumionen aan de binnenkant en de buitenkant van een cel. Dit zorgt er onder
andere voor dat spieren kunnen samentrekken. Omdat er binnen de cel veel meer kaliu-
mionen zijn dan buiten de cel, hebben ze de neiging naar buiten te diffunderen. Als deze
diffusie het enige proces zou zijn, zou uiteindelijk een evenwichtstoestand ontstaan waarin
de kaliumionen binnen en buiten de cel gelijke concentratie hebben; het functioneren van
de cel in het metabolisme is dan onmogelijk. De natuur zorgt voor een constante energi-
etoevoer via een pompmechanisme in de celwand waardoor het concentratieprofiel van de
kaliumionen stationair blijft op de gewenste waarde. Om een systeem in een stationaire
niet-evenwichtstoestand te houden is altijd een constante aanvoer van energie of materi-
aal naar het systeem nodig. Eigenlijk is de evenwichtstoestand een bijzondere stationaire
toestand; hier is namelijk de aanvoer van energie of materiaal constant en gelijk aan nul.
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diffusieregio

mengsel I mengsel II

Figure I. Het stationaire polymeersysteem dat in dit proefschrift wordt bestudeerd.

In dit proefschrift bestuderen we een specifiek stationair polymeersysteem, zoals in
Figuur I weergegeven. Twee bulkmengsels met verschillende samenstelling worden met
elkaar in contact gebracht. Er zullen dan polymeermoleculen van de geconcentreerde
oplossing naar de verdunde oplossing diffunderen. Door continue aanvulling van de
geconcentreerde oplossing met nieuwe polymeer en door continue afvoer vanuit de ver-
dunde oplossing blijven de twee bulkmengsels constant van samenstelling. Tussen de twee
bulkmengsels zal na verloop van tijd een stationaire concentratiegradiënt van polymeren
ontstaan. Hoe die gradiënten eruit zien voor complexere systemen waarbij meerdere com-
ponenten in verschillende richtingen diffunderen is niet eenvoudig te voorspellen, maar
wel met ons theoretische model te berekenen. Het systeem in Figuur I kan dienen als een
model voor diffusie-gelimiteerde katalyse: de reactanten diffunderen vanuit de bulk naar
het katalysatoroppervlak waar de concentratie van reactanten laag wordt gehouden als
gevolg van de reactie die er plaatsvindt.

We kunnen het systeem van Figuur I nog wat complexer maken door tussen de bulko-
plossingen een barrière te plaatsen, zodat de diffusie van polymeren bemoeilijkt wordt.
Die barrière zou bijvoorbeeld een membraan kunnen voorstellen. We hebben dan een
model voor nicotinepleisters of voor vergelijkbare methoden van medicijnafgifte. Nicotine-
pleisters bevatten moleculen die vanuit de pleister door de huid (bestaande uit diverse
barrières) naar het lichaam moeten diffunderen waar ze omgezet worden. Bij een dergeli-
jke methode van medicijnafgifte wordt gestreefd naar een stationaire diffusie van moleculen
door de huid heen. Het ontwerp van zulke pleisters vereist onderzoek naar de juiste sa-
menstelling van het pleistermateriaal en naar het transportmechanisme door de huid. Ons
model, waarin polymeerdiffusie ook gehinderd kan worden door een barrière, helpt bij het
ophelderen van dit soort transportmechanismen.

Een andere toepassing van gehinderde diffusie is een veelbelovende techniek om de
monomeervolgorde in DNA-moleculen te ontrafelen. DNA-moleculen zijn polymeren die
in iedere levende cel aanwezig zijn en die genetische informatie bevatten. Deze informatie
is gecodeerd in de vorm van een voor ieder individu specifieke volgorde van vier ver-
schillende monomeren. Elk van de vier bouwstenen is in grote aantallen aanwezig in een
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DNA-molecuul. Kasianowicz heeft laten zien dat bij diffusie van een synthetisch DNA-
molecuul door een speciaal ontworpen membraan de transporteigenschappen afhankelijk
zijn van de monomeervolgorde [6]. Als we meer zouden begrijpen van het transportgedrag
van polymeren door een membraan, dan zouden we mogelijk uit het transportgedrag con-
clusies kunnen trekken over de volgorde van monomeren in een echt DNA-molecuul. Het
model dat in dit proefschrift beschreven wordt geeft een eerste aanzet tot meer begrip van
gehinderd polymeertransport.

Transportbarrières worden ook veelvuldig gebruikt in de industrie: zeven met zeer
kleine poriën worden gebruikt om stoffen met verschillende molecuulgrootte van elkaar
te scheiden. Bij het maken van deze zeven (technische membranen) is het van groot
belang om te weten hoe groot de poriën zijn. Vaak wordt de poriegrootte vastgesteld
door polymeren van verschillende lengte door het membraan te laten diffunderen. Daarbij
wordt aangenomen dat iedere polymeerketen is opgevouwen als een bolvormige kluwen. De
grootte van die kluwen hangt af van de lengte van de keten. Van de langste polymeerketens
die nog net door de poriën kunnen diffunderen wordt de afmeting van de kluwen geschat.
De poriegrootte wordt dan gelijk gesteld aan deze afmeting. De vraag is echter of de
ketens wel hun kluwenvorm behouden tijdens de gehinderde diffusie. Als de ketens in
staat zijn om zich te strekken, dan wordt de poriegrootte (veel) te groot ingeschat. Het is
dus interessant om te onderzoeken hoe polymeerketens zich vouwen tijdens diffusie door
een barrière. Ons theoretische model maakt dit mogelijk.

2 Het model (Hoofdstuk 2)

Het nieuw ontwikkelde theoretische model wordt het ‘Gemiddeld-veld Stationaire Diffusie’-
model genoemd, of in het Engels het ‘Mean-Field Stationary Diffusion’ (MFSD) model.
Hoofdstuk 2 van dit proefschrift beschrijft alle (technische) details van dit model. De
basis is een bestaande evenwichtstheorie ontwikkeld door Scheutjens en Fleer (SF) [15].
Het SF-model is een geschikt startpunt voor de ontwikkeling van het MFSD-model om-
dat de SF-resultaten al ruimschoots geverifieerd en onderbouwd zijn met experimentele
bevindingen, echter alleen voor evenwichtssituaties. In tegenstelling tot het gangbare
Flory-Hugginsmodel staat het SF-model toe dat het systeem niet homogeen hoeft te
zijn. Dat wil zeggen dat bijvoorbeeld het grensvlak tussen twee niet-mengbare fasen
bestudeerd kan worden (mits de fasen met elkaar in evenwicht zijn). Er mogen dus
concentratie-verschillen in het systeem bestaan. Ook in een niet-evenwichtsmodel moeten
er concentratie-verschillen kunnen bestaan, vandaar dat het SF-model geschikt is als basis
voor het MFSD-model.

Het doel van SF-berekeningen is het vinden van de gemiddelde verdeling van moleculen
in de ruimte voor de evenwichtstoestand. Door middel van een iteratief proces worden de
moleculen steeds herverdeeld tijdens de berekening totdat de vrije energie van het systeem
minimaal is. Deze toestand met minimale vrije energie is per definitie de evenwichtstoes-
tand. De krachten die een molecuul in het systeem ondervindt hangen af van de posities
van alle andere moleculen. Een SF-berekening (waarvoor altijd een computer nodig is)
start met een beginschatting voor de verdeling van de moleculen. Deze verdeling levert een
krachtenveld op dat ervoor zorgt dat de moleculen zich herschikken om de vrije energie te
verminderen. De herschikking levert weer een nieuw krachtenveld op zodat opnieuw een
herverdeling nodig kan zijn. De SF-berekening stopt zodra het krachtenveld consistent is
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met de moleculaire verdeling met minimale vrije energie: verdere herschikking verlaagt
de vrije energie niet meer.

Het MFSD-model doet iets soortgelijks: door middel van een iteratieve procedure wor-
den de moleculen steeds herschikt totdat het krachtenveld consistent is met de opgelegde
eis dat voor iedere component de flux overal in het systeem gelijk is, gegeven de samen-
stelling van de bulkmengsels. In een stationaire toestand is namelijk per definitie voor
iedere component de flux constant. Het verschil met SF-berekeningen is tweeledig. Ter-
wijl in een evenwichtssysteem de chemische potentialen van de moleculen overal gelijk
zijn, is dat bij MFSD niet het geval: de concentraties in de beide bulkfasen (zie Figuur
I) zijn niet gelijk of met elkaar in evenwicht maar worden (op een verschillend niveau)
vastgelegd. Vervolgens moeten we in het MFSD-model vergelijkingen voor de moleculaire
fluxen hebben; die spelen geen rol in het SF-model (de flux is immers nul). Zoals in
Hoofdstuk 2 wordt beschreven gebruiken we twee verschillende theorieën uit de literatuur
voor het opstellen van de fluxvergelijkingen.

Het is zowel voor SF- als voor MFSD-berekeningen nodig om enkele trucs toe te passen
zodat de computer niet al te lang bezig is om de uiteindelijke moleculaire verdeling te vin-
den, terwijl we toch voldoende gedetailleerde informatie over die verdeling willen hebben,
namelijk op de schaal van monomeren. Ten eerste worden de polymeerketens beschreven
als een soort kralenketting. Ieder polymeermolecuul bestaat uit segmenten (de ‘kralen’),
waarbij ieder segment een klein aantal monomeren representeert. Homopolymeren bestaan
uit identieke segmenten, terwijl copolymeren twee of meer soorten segmenten kunnen be-
vatten. Een segment beschrijft dus op efficiënte manier de eigenschappen van een klein
aantal monomeren. Deze eigenschappen zijn de plaats in de polymeerketen en de interac-
ties met andere segmenten.

Ook de ruimte wordt in de SF- en MFSD-berekeningen vereenvoudigd, namelijk door
middel van een rooster. Een rooster maakt snellere discrete berekeningen mogelijk. We
zouden een rooster kunnen gebruiken waarin op iedere roosterplaats precies één segment
past zoals in Figuur IIa. De berekeningen gaan echter nog sneller als we het rooster in
roosterlagen verdelen, waarbij we alleen kijken naar de gemiddelde concentratie van ieder
segmenttype in zo’n laag. Een dergelijk rooster (als in Figuur IIb) wordt in dit proefschrift
gebruikt. Een gevolg van deze aanpak is dat we niet precies weten welke segmenten buren
van elkaar zijn in het rooster. Om interacties tussen segmenten te berekenen moeten we
dus gebruik maken van hun gemiddelde verdeling over het rooster. Hier komt de naam
‘Mean-Field’ vandaan: er wordt aangenomen dat elk segment van een bepaald type in
een gegeven roosterlaag hetzelfde krachtenveld voelt, ongeacht de precieze positie in de
roosterlaag.

In het MFSD-model gaan we ervan uit dat polymeren door het systeem diffunderen
door middel van een uitwisselingsmechanisme. Dat wil zeggen dat een segment van de
ene polymeerketen van plaats verwisselt met een ander segment van dezelfde keten of
met een segment van een andere keten. Gedurende de diffusie zal dus steeds de vouwing
(ruimtelijke structuur) van de polymeerketen veranderen.

In Hoofdstuk 2 wordt niet alleen de MFSD-methode beschreven, maar ook geëvalueerd.
Dit doen we door voor enkele eenvoudige systemen de resultaten van de MFSD-methode
te vergelijken met analytische resultaten. De resultaten blijken goed met elkaar overeen
te komen. Het voordeel van MFSD-berekeningen is dat ook hele ingewikkelde systemen
onderzocht kunnen worden waarvoor geen analytische berekeningen mogelijk zijn.
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(a)

flux in
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(b)

Figure II. Het MFSD-model beschrijft de ruimte door middel van een
rooster. In ieder roostervakje van Figuur (a) past precies één segment. Om
nog effiëntere berekeningen mogelijk te maken, kijken we in dit proefschrift
alleen naar de gemiddelde vulling van een aantal roostervlakjes die samen
in dezelfde roosterlaag liggen (Figuur (b)).

3 Vouwing van polymeren in gehinderde diffusie

(Hoofdstuk 3)

In Hoofdstuk 3 bestuderen we met behulp van de MFSD-methode de diffusie van poly-
meren door een barrière. De barrière is een vloeistoflaag waarin de polymeren minder
ruimte tot hun beschikking hebben en/of waarin ze maar moeizaam oplossen. We bek-
ijken hoe de barrière de concentratieprofielen bëınvloedt. Dit blijkt sterk af te hangen
van de dichtheid van de vloeistoflaag. We bestuderen ook met behulp van verschillende
parameters hoe de polymeerketens zich vouwen tijdens hun diffusie. In de bulkmengsels
zijn de ketens als kluwens opgevouwen. Zodra ze echter de barrière naderen, vervormt de
kluwen om de keten zo min mogelijk in contact te laten zijn met de barrière. Bevindt
een segment van de keten zich in de barrière, dan strekt de keten zich om toch voor een
groot deel buiten de barrière te blijven. De keten heeft dan de vorm van een bloem: de
gestrekte steel bevindt zich in de barrière, de kluwenvormige kroon erbuiten.

We kunnen de barrière laten lijken op het omhulsel van een lichaamscel (een mem-
braan) door drie (of meer) verschillende gebieden in de barrière te definiëren. De twee
buitenste gebieden worden slecht toegankelijk gemaakt voor olie-oplosbare stoffen (de
hydrofiele gebieden), het binnenste gebied wordt juist slecht toegankelijk gemaakt voor
water-oplosbare stoffen (dit gebied is hydrofoob). We bekijken in Hoofdstuk 3 polyme-
ren die olie-oplosbaar zijn en vinden grote veranderingen in hun vouwing als ze door de
barrière heen moeten bewegen.

De resultaten van Hoofdstuk 3 zijn onder andere van belang voor het maken van
technische membranen en de bepaling van de poriegrootte daarvan door middel van po-
lymeerdiffusie. Vaak wordt aangenomen dat de polymeren hun kluwenvorm behouden,
maar deze aanname blijkt incorrect.
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4 De samenstelling van mengsels in evenwicht

(Hoofdstuk 4)

Het MFSD-model beschrijft polymeerdiffusie tussen twee bulkmengsels met een gegeven
samenstelling. Er is een beperking aan de keuzevrijheid voor deze samenstelling: de
mengsels mogen niet allebei instabiel zijn, want dan komt de MFSD-methode niet tot een
eenduidige oplossing. Een mengsel is instabiel als het wil ontmengen in twee fasen, bijvoor-
beeld een olie- en een waterrijke fase die met elkaar in evenwicht zijn. Een oververzadigde
oplossing is een voorbeeld van een instabiel mengsel.

Voor het gebruik van de MFSD-methode is het daarom handig als we snel kunnen
inschatten welke mengsels stabiel zijn. In Hoofdstuk 4 ontwikkelen we een analytische
vergelijking waarmee we een benadering hebben voor de samenstelling van twee polymeer-
mengsels (een verdunde en een geconcentreerde fase) die met elkaar in evenwicht zijn. Alle
mengsels die meer verdund zijn dan de verdunde evenwichtsfase en alle mengsels die gecon-
centreerder zijn dan de geconcentreerde evenwichtsfase zijn stabiel; alle samenstellingen
tussen de evenwichtssamenstellingen in noemen we hier instabiel.

Onze analytische benadering voor evenwichtsmengsels is gebaseerd op de fluxvergelij-
kingen die in het MFSD-model worden gebruikt. Het komt erop neer dat we berekenen
voor welke samenstelling van de bulkmengsels alle fluxen gelijk aan nul worden. Dit
gebeurt natuurlijk als de bulkmengsels gelijke samenstelling hebben, maar ook als ze met
elkaar in evenwicht zijn; in beide gevallen is het SF-model van toepassing. De vergelijkin-
gen die afgeleid worden door de MFSD-flux nul te stellen blijken nauwkeuriger te zijn dan
benaderingen uit de literatuur.

5 Bevochtiging van grensvlakken tussen

evenwichtsmengsels (Hoofdstuk 5)

In Hoofdstuk 5 maken we gebruik van het SF-model, waarop ons MFSD-model is gebaseerd,
en we kijken dus alleen naar evenwicht. We bestuderen het grensvlak tussen twee mengsels
die met elkaar in evenwicht zijn. Ieder mengsel bestaat uit drie verschillende homopo-
lymeercomponenten A, B en C. Het ene mengsel is rijk in A, het andere is rijk in B.
Homopolymeer C is niet goed oplosbaar in A en B en zal zich daarom ophopen aan het
grensvlak tussen de twee evenwichtsmengsels. Met toenemende hoeveelheid C zal deze
ophoping steeds groter worden, zodat uiteindelijk drie fasen met elkaar in evenwicht zijn;
er is nu ook een C-rijke fase. Nu hangt het van de interacties tussen A, B en C af of de
C-rijke fase een dikke vloeistoflaag vormt of dat er druppeltjes, bestaande uit de C-rijke
fase, op het grensvlak ontstaan. Iets dergelijks kun je ook zien op vaste waterminnende
oppervlakken: als het oppervlak wat vettig is dan zal water in druppeltjes op het op-
pervlak blijven liggen. Op schone oppervlakken spreidt het water zich juist uit als een
dunnen film.

In Hoofdstuk 5 variëren we de interacties tussen A, B en C. Hierdoor kunnen de drup-
peltjes (bestaande uit de C-rijke fase) overgaan in een dikke laag of vice versa. Meestal
verloopt de overgang heel plotseling. Er zijn maar een paar experimenten bekend waarbij
de overgang geleidelijk verloopt. Voor ons systeem met drie polymeercomponenten vinden
we juist wel vaak geleidelijke overgangen.
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6 Adsorptie aan niet-evenwichtsgrensvlakken

(Hoofdstuk 6)

De resultaten van Hoofdstuk 5 worden gebruikt in Hoofdstuk 6 waarin we met behulp van
het MFSD-model de adsorptie aan niet-evenwichtsgrensvlakken bestuderen. In Hoofdstuk
5 zijn de twee mengsels aan weerszijden van het grensvlak met elkaar in evenwicht (de
fluxen zijn nul), in Hoofdstuk 6 zijn de mengsels stabiel, maar niet in evenwicht. Het
gevolg is dat in Hoofdstuk 6 polymeer A vanuit de A-rijke fase door het grensvlak naar
de B-rijke fase diffundeert, terwijl polymeer B in tegengestelde richting diffundeert. De
twee mengsels hebben zodanige samenstelling dat polymeer C geen drijvende kracht voor
diffusie ondervindt.

Polymeer C hoopt zich weer op aan het grensvlak. De interacties tussen de polymeren
en de samenstellingen van de bulkmengsels worden zo gekozen (op basis van de resultaten
in Hoofdstuk 5) dat zich in de evenwichtstoestand een kleine hoeveelheid van de C-rijke
fase op het grensvlak ophoopt. Voor de stationaire niet-evenwichtstoestand vinden we
dat de hoeveelheid C op het grensvlak sterk afhangt van de drijvende krachten op po-
lymeren A en B. Wanneer de drijvende krachten voldoende groot zijn, kan er een dikke
adsorptielaag ontstaan. We vinden een abrupte verandering in de groeisnelheid van de
adsorptielaag als we de drijvende krachten op A en B laten toenemen. Het relatief een-
voudige evenwichtssysteem dat we in Hoofdstuk 6 bestuderen levert al een zeer gevarieerd
gedrag op voor de fluxen van A en B en voor de adsorptie van C als we het systeem uit
evenwicht brengen. We vinden een vorm van dynamische adsorptie-overgangen.

7 Verder onderzoek

In dit proefschrift demonstreren we de brede toepasbaarheid van het MFSD-model. Het
model verschaft inzicht in de diffusieprofielen en fluxeigenschappen voor stationaire diffusie
tussen twee stabiele polymeermengsels. Het model zou ook gebruikt kunnen worden
voor de bestudering van biologische systemen, waarin (al dan niet geladen) moleculen
door membranen diffunderen. Die membranen zouden zelf uit polymeerketens kunnen
bestaan die hun vouwing aanpassen aan het diffusieproces. Enerzijds kan dit bijdragen
aan versneld transport, anderszijds kunnen de polymeerketens een barrière voor transport
vormen omdat ze ruimte innemen.

Wanneer het MFSD-model verder wordt uitgebreid zodat ook berekeningen in twee-
dimensionale roosters mogelijk zijn, dan zouden speciale transportkanalen in de mem-
branen ingebouwd kunnen worden. Twee-dimensionale roosters zouden het ook mogelijk
maken om barrières te bestuderen die een specifieke poriestructuur hebben. Dit is van
belang voor verder onderzoek naar het vouwingsgedrag van diffunderende polymeren.

Het MFSD-model vormt een noodzakelijke stap tussen evenwicht- en dynamica-studies.
Uitbreiding naar een ‘Mean-Field Dynamics model’ zou een efficiënte bestudering mogelijk
maken van dynamische processen in polymeersystemen. Uit hoofdstuk 6 van dit proef-
schrift blijkt al dat inzichten verkregen uit het bestuderen van systemen in evenwicht
nuttig zijn voor het begrijpen van systemen in een steady state. Op dezelfde manier vor-
men de steady-state resultaten uit dit proefschrift een opstapje om de resultaten van een
volledig dynamisch model te gaan doorgronden.
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