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Abstract 
 
Resource distribution is a fundamental factor governing the movement and 
distribution of herbivores. Specifically, the quality (foliar concentration of 
nitrogen, phosphorous, calcium, magnesium, potassium and sodium) and 
quantity (biomass) of vegetation are important factors. In this regard, the 
development of techniques that can model the distribution of vegetation quality 
and quantity are critical for an improved understanding of wildlife distribution 
as well as facilitating an optimal management of wildlife resources. The advent 
of hyperspectral remote sensing has offered unprecedented opportunities to 
accomplish this task. 

This study aimed to investigate the potential of hyperspectral remote 
sensing in estimating biomass of tropical grass at full canopy cover (a task that 
could not be achieved using broad band satellite images) and to predict and map 
the quality of tropical grasses at canopy level. Our approach was to investigate 
the potential of hyperspectral remote sensing at three levels of investigation – 
laboratory level, field level and airborne platform level. 

Our results showed that, at full canopy cover, tropical grass biomass is 
more accurately estimated by vegetation indices based on narrow wavelengths 
located in the red edge than the standard NDVI. At laboratory level, we could 
discriminate between different foliar nitrogen treatments using high-resolution 
spectra measured at canopy level. We also showed that there was a shift of the 
red edge position to longer wavelengths with an increase in nitrogen 
concentration. The laboratory experiment permitted the extension of the 
developed techniques to the field level. Using continuum-removed absorption 
features calculated from field spectra, we could reliably predict the quality (N, 
K, P, Ca, Mg, Na) of in situ grass measured in the Kruger National Park, South 
Africa.  We also showed a strong interaction between species type and 
biochemical concentration in effecting spectral reflectance. This provided a 
basis for the algorithms to use in mapping foliar biochemicals in a mixed 
species environment using airborne hyperspectral image. Therefore the 
techniques developed for accomplishing the final stage (airborne platform level) 
were largely built upon the laboratory and field observations. The new 
integrated approach, involving the red edge position, continuum-removed 
absorption features as well as a neural network was applied to map foliar 
nitrogen concentration in the Kruger National Park, South Africa.  

Overall, the study has shown the potential of hyperspectral remote 
sensing to predict the quality as well as the quantity of tropical grasses. The 
result is important for wildlife habitat modelling.  
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Samenvatting 
 
 
De verspreiding van natuurlijke hulpbronnen (vegetatie in het bijzonder) bepaalt 
in belangrijke mate de verspreiding van herbivoren. De kwaliteit (concentratie 
van stikstof fosfor, magnesium, kalium en natrium) en de hoeveelheid 
(biomassa) van vegetatie zijn belangrijke factoren. Voor het begrijpen van de 
verspreiding van wild en voor het optimale beheer van de vegetatie waarvan dit 
wild gebruik maakt is het daarom cruciaal om technieken te ontwikkelen, die de 
verspreiding van hoeveelheid en kwaliteit van vegetatie kunnen modelleren. 
Hyperspectrale aardobservatie biedt tot nu toe ongekende mogelijkheden om zo 
een ontwikkeling mogelijk te maken. 

Het doel van deze studie is het onderzoeken van de mogelijkheden van 
hyperspectrale aardobservatie voor het schatten van de biomassa van tropisch 
gras bij volledige bodembedekking en het bepalen van de kwaliteit van dit gras 
(iets wat met conventionele satellietbeelden met brede spectrale banden niet 
mogelijk is). De studie werd uitgevoerd op drie niveaus: in het laboratorium met 
potproeven, op veldniveau, en met behulp van digitale opnames vanuit een 
vliegtuig. 

De resultaten van de studie tonen aan dat de biomassa van tropische 
gras dat de bodem volledig bedekt nauwkeuriger kan worden bepaald met 
vegetatie indicatoren die gebruik maken van smalle golflengtebanden in het 
grensgebied van het rode en infrarode deel van het spectrum (“red edge”) dan 
door de veelal gebruikte NDVI. In het laboratorium was het mogelijk 
verschillen in stikstofgiften te onderscheiden met behulp van een hyperspectrale 
scanner. Dit onderzoek toonde aan dat bij een toename van het stikstofgehalte 
een verschuiving plaats vindt van de “red edge” naar hogere golflengtes. De 
resultaten van de laboratorium proeven werden verder getest op veldniveau. 
Met behulp van “continuum-removed absorption features” die uit, met een 
spectrometer gemeten, veldspectra werden berekend was een betrouwbare 
schatting van de kwaliteit (N, K, P, Ca, Mg, Na) van grassen in het Kruger 
Nationaal Park in Zuid Afrika mogelijk. De metingen toonden aan dat grassoort 
en biochemische samenstelling grote invloed hebben op de spectrale reflectie. 
Dit vormde de basis voor het ontwikkelen van algoritmes voor het karteren van 
de bladchemie van graslanden met een gemengde soortensamenstelling met 
behulp van hyperspectrale opnames vanuit een vliegtuig. De technieken om een 
kartering met behulp van opnames vanuit de lucht uit te voeren kwamen dus 
voort uit de laboratoriumproeven en veld observaties. De nieuwe geïntegreerde 
benadering, die gebruik maakt van “red edge” positie, “continuum-removed 
absorption features” en neurale netwerken werd toegepast voor het karteren van 
de stikstof concentratie van grasbestanden in het Kruger Nationaal Park in Zuid 
Afrika. 

 



 vii 

De studie heeft het potentieel aangetoond van hyperspectrale 
aardobservatie voor het bepalen van zowel de kwaliteit als de biomassa van 
tropische grassen. De resultaten zijn van belang voor het modelleren van het 
leef- en verspreidingsgebied (habitat) van wild. 
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1.1 The quantity and quality of tropical grasses 
 
Research in tropical grasslands has revealed that both quantity and quality of 
grasses are critical factors influencing the feeding patterns and distribution of 
wildlife (Drent & Prins, 1987; McNaughton, 1990; McNaughton & Banyikwa, 
1995; Prins, 1989; Prins, 1996). Specifically, wildlife exhibits preference for 
certain sites and certain grass species based on both quality and quantity (Muya 
& Oguge, 2000; Prins, 1989). In this regard, the measurement of the quality and 
quantity variables in grasslands is critical for understanding wildlife feeding 
patterns and distribution. In this thesis, quantity is defined as the biomass of 
grass (e.g. g cm –2, kg m –2) while quality is defined as the foliar concentration 
(e.g. mg/g or expressed as % per 100 g of dry weight) of macronutrients such as 
nitrogen, phosphorous, calcium, magnesium, potassium and sodium.   

Several studies in the African grasslands have shown the importance of 
grass quantity and quality to wildlife feeding behaviour. For example, in a study 
on the feeding behaviour of the African buffalo in East Africa, Prins (1989) 
found out that during the dry season the animals select sites with high biomass 
grass species where the bite size index is large. With regards to quality, studies 
in East and Southern Africa have shown that nitrogen is commonly the most 
limiting nutrient for grazers (Grant et al., 2000; Owen-Smith & Novellie, 1982; 
Prins, 1996). In addition, other mineral nutrients such as potassium, 
phosphorous, calcium, magnesium and sodium are also limiting factors. For 
example, Voeten, (1999) found out that phosphorous determines the migratory 
patterns of wildebeest in the Tarangire ecosystem. Therefore, in order to 
understand the spatial distribution of wildlife, the need to measure the quantity, 
as well as the quality of tropical grasslands is critical. In this regard, the advent 
of remote sensing, particularly hyperspectral remote sensing has offered 
possibilities to accomplish this task.  
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1.2 Hyperspectral remote sensing 
 
The prefix hyper, means excessive or above. In this thesis the term 
hyperspectral is used to refer to spectra consisting of large number of narrow, 
contiguously spaced spectral bands. In the field of remote sensing, the term 
hyperspectral is used interchangeably with other terms such as spectroscopy, 
spectrometry, spectroradiometry and rarely ultraspectral (Clark, 1999). 
Spectroscopy is a branch of physics concerned with the production, 
transmission, measurement and interpretation of electromagnetic spectra 
(Kumar et al., 2001). Spectrometry or spectroradiometry is derived from 
spectro-photometry, the measure of photons as a function of wavelength. 
Ultraspectral is beyond hyperspectral, a goal that has not been achieved yet 
(Clark, 1999). Spectrometers are used in laboratories, field, aircraft or satellites 
to measure the reflectance spectra of natural surfaces.  

When an image is constructed from an imaging spectrometer that 
records the spectra for contiguous image pixels, the terms shift to become 
imaging spectroscopy, imaging spectrometry or hyperspectral imaging. 
Hyperspectral imaging is a new technique for obtaining a spectrum in each 
position of a large array of spatial positions so that any one spectral wavelength 
can be used to make a recognisable image (Clark, 1999). By analysing the 
spectral features in each pixel, and thus specific chemical bonds in materials, we 
can spatially map materials.  

The narrow spectral channels that constitute hyperspectral sensors 
enable the detection of small spectral features that might otherwise be masked 
within the broader bands of multi-spectral scanner systems. In this regard, we 
hypothesise that hyperspectral sensors could help to overcome the traditional 
problems faced when using the broader bands of multi-spectral scanner systems, 
such as the saturation problem in estimating quantity (see section 1.3) and the 
estimation of quality (see section 1.4). 
 
 
1.3 Vegetation quantity and remote sensing 
 
Based on broadband satellite images, vegetation indices such as Normalised 
Difference Vegetation Index (NDVI), Simple Ratio (SR), Transformed 
Vegetation Index (TVI) and Transformed Soil Adjusted Vegetation Index 
(TSAVI) have been widely used to measure vegetation quantity, leaf area index 
(LAI) and percent green vegetation cover of vegetation at canopy scale 
(Blackburn & Steele, 1999; Boegh et al., 2002; Elvidge & Chen, 1995; Gao et 
al., 2000; Schowengerdt, 1983; Tucker, 1979). Although these indices have 
been successfully used in areas with open canopy cover or sparsely vegetated 
regions, they have not been successful in estimating quantity at high canopy 
density.  Specifically, the widely used vegetation indices particularly NDVI 
derived from broad band satellite images such as NOAA or Landsat TM tend to 
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saturate after a certain biomass density or LAI (Gao et al., 2000; Sellers, 1985; 
Thenkabail et al., 2000; Todd et al., 1998; Tucker, 1977). Figure 1.1 shows a 
hypothetical illustration of this biomass-NDVI relationship. 
 
 

0.10 0.20 0.30 0.40 0.50 0.60
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Figure 1.1 Relationship between NDVI and biomass. The saturation level is usually 
reached at about 0.3 g cm –2  (Hurcom & Harrison, 1998) 
 

In view of this limitation, the need to develop or improve techniques 
that can accurately estimate biomass in more densely vegetated areas is critical. 
In this thesis, we hypothesise that hyperspectral remote sensing, with its 
capability to resolve detailed spectral features can solve this problem. 

 
 
1.4 Vegetation quality and remote sensing 
 
The remote sensing of vegetation quality using available broadband satellite 
images is more difficult than the remote sensing of biomass or LAI. This is 
because the biochemicals absorb electromagnetic radiation (Curran, 1989; 
Johnson et al., 1994; Osborne et al., 1993) in specific wavelength regions, 
which may be masked by the broadband satellites images. Hyperspectral data 
acquired in many narrow, contiguous spectral bands can detect local variations 
in absorption features (Kokaly et al., 2003; Schmidt & Skidmore, 2003). Figure 
1.2 shows the mean canopy spectra of grasses measured in the Kruger National 
Park using a GER 3700 spectrometer. The biochemical absorption feature 
(R2006-2196) in the shortwave infrared region is shown. 
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Figure 1.2 Mean reflectance spectrum (flanked by 95 % upper confidence limit (UCL) 
and 95 % lower confident limit (LCL)) of the data collected at canopy level in the 
Kruger National Park (n = 96) using a GER 3700 spectrometer. The R2006-2196 
biochemical absorption feature is shown. The spectral region between 1824 nm and 
1954 nm was removed due to excessive noise. 
 

The absorption of electromagnetic radiation in plants originates from 
the energy transition of the molecular vibration (rotation, bending and 
stretching) of the C-H, N-H, O-H, C-N and C-C bonds, which are the primary 
constituents of the organic compounds of plant tissues (Elvidge, 1990). The 
chemical constituents of the plant tissue determine the nature and number of 
bonds present. Therefore, the wavelengths and the amount of energy reflected 
from the plant are partly a function of the chemical composition of that plant 
material (Foley et al., 1998). Table 1.1 lists the absorption features that have 
been related to particular foliar biochemical concentrations. 

Using this theoretical background, research has focused on using remote 
sensing techniques such as those developed for laboratory near infrared 
spectroscopy (NIRS)(Norris et al., 1976) to estimate foliar biochemicals (Foley 
et al., 1998; Marten et al., 1989). The extension of empirical laboratory NIRS to 
estimating foliar biochemicals at canopy level has had increasing attention as 
hyperspectral remote sensor systems of high quality became readily available 
(Kumar et al., 2001; Gastellu-Etchegorry & Bruniquel-Pinel, 2001; Johnson et 
al., 1994; Kupiec & Curran, 1995; Wessman et al., 1989; Zagolski et al., 1996).   

However, the presence of water in fresh canopies masks the 
biochemical absorption features, particularly in the shortwave infrared (Clevers, 
1999; Kokaly & Clark, 1999) and make the remote sensing of foliar 
biochemicals more difficult. In addition, leaf orientation and soil background 
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effects, as well as atmospheric absorption, further complicate the remote sensing 
of biochemicals at field level (Asner et al., 2000). As a result, the extension of 
the laboratory-based spectroscopy to canopy level has yielded inconsistent 
results so far (Grossman et al., 1996). The challenge is, therefore to develop 
techniques that can predict foliar quality at canopy level. This is the subject of 
this thesis. 
 
Table 1.1: Absorption features related to particular biochemicals: (Curran, 1989; 
Elvidge, 1990; Himmelsbach et al., 1988; Kumar et al., 2001)  
Wavelength (nm) Absorbing Compounds Absorption Mechanism 
430 Chlorophyll a Electron transition 
460 Chlorophyll b Electron transition 
640 Chlorophyll b Electron transition 
660 Chlorophyll a Electron transition 
910 Protein C-H stretch, 3rd overtone 
930 Oil C-H stretch, 3rd overtone 
970 Water, starch O-H bend, 1st overtone 
990 Starch O-H stretch, 2nd overtone 
1020 Protein N-H stretch 
1040 Oil C-H stretch, C-H deformation 
1120 Lignin C-H stretch, 2nd overtone 
1200 Water, cellulose, starch, lignin O-H bend, 1st overtone 
1400 Water O-H bend, 1st overtone 
1420 Lignin C-H stretch, C-H deformation 
1450 Starch, sugar, water, lignin O-H stretch, 1st overtone 

C-H stretch, C-H deformation 
1490 Cellulose, sugar O-H stretch, 1st overtone 
1510 Protein, nitrogen N-H stretch, 1st overtone 
1530 Starch O-H stretch, 1st overtone 
1540 Starch, cellulose O-H stretch, 1st overtone 
1580 Starch, sugar O-H stretch, 1st overtone 
1690 Lignin, starch, protein C-H stretch, 1st overtone 
1730 Protein C-H stretch 
1736 Cellulose O-H stretch 
1780 Cellulose, sugar, starch C-H stretch, 1st overtone 

O-H stretch, H-O-H deformation 
1820 Cellulose O-H stretch, C-O stretch 
1900 Starch O-H stretch, C-O stretch 
1924 Cellulose O-H stretch, O-H deformation 
1940 Water, protein, lignin, cellulose, 

Starch, nitrogen 
O-H stretch, O-H deformation 

1960 Starch, sugar O-H stretch, O-H rotation 
1980 Protein N-H asymmetry 
2000 Starch O-H deformation, C-O deformation 
2060 Protein, nitrogen N-H stretch, N=H rotation 
2080 Starch, sugar O-H stretch, O-H deformation 
2100 Starch, cellulose O-H rotation, O-H deformation, C-O-C 

stretch 
2130 Protein N-H stretch 
2180 Protein, nitrogen N-H rotation, C-H stretch, C-O stretch, 

C=O stretch 
2240 Protein C-H stretch 
2250 Starch O-H stretch, O-H deformation 
2270 Cellulose, sugar, starch C-H stretch, O-H stretch, C-H rotation, 

CH2 rotation 
2280 Starch, cellulose C-H stretch, CH2 deformation 
2300 Protein, nitrogen C-H rotation, C=O stretch, N-H stretch 
2310 Oil C-H bend, 2nd overtone 
2320 Starch C-H stretch, CH2 deformation 
2340 Cellulose C-H stretch, O-H deformation 
2350 Cellulose, nitrogen, protein CH2 rotation, C-H deformation 
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1.5 Objectives of the thesis 
 
The main objectives of this study were: (1) to investigate the potential of 
hyperspectral remote sensing in estimating biomass of tropical grasses at high 
canopy density or full canopy cover, and, (2) to develop techniques to predict 
and map the quality of tropical grasses at canopy level using hyperspectral 
remote sensing. 
 
1.6 Scope of the study 
 
This thesis investigates the potential of hyperspectral remote sensing to estimate 
tropical grass quality and quantity. However more emphasis is placed on the 
estimation and mapping of quality since the quantity of vegetation has been 
successfully estimated using coarser resolution satellite images, except for the 
saturation problem, which will be addressed in this thesis.  

The potential of hyperspectral remote sensing to predict quality 
variables at canopy level is investigated, (i) under controlled laboratory 
conditions, (ii) at field level using a field spectrometer, and (iii) at airborne 
platform level. Although a number of quality variables (N, P, K, Ca, Mg and 
Na) were investigated at field level, we placed more emphasis on the prediction 
and mapping of nitrogen concentration from laboratory level up to airborne 
platform level. This is mainly because nitrogen is regarded as the most limiting 
nutrient for grazers (McNaughton, 1988; Prins, 1989; Prins & Olff, 1998). The 
Kruger National Park (KNP) in South Africa was used as a test site for both 
field and airborne spectrometry.  

 
1.7 The study area 
 
The study area stretches from west (22 0 49′ S and 31 0  01′ E) to east, (22 0 44′ S 
and 31 0  22′ E) covering an area of about 25 * 6 km in the far northern region of 
the Kruger National Park (Figure 1.3). This strip cuts across a basalt and granite 
landscape mosaic. 

The granite areas are characterised by coarse sandy or gravelly soils 
with high infiltration rate and low clay forming potential. The uplands support 
broad – leaved savanna and a herbaceous layer dominated by moderate to low 
quality sandveld species. The midslopes (seepline areas) support few trees and a 
dense herbaceous layer. The base of the midslope and foot slope that are 
characterised by clay soils constitute thorny microphyllous shrubs and a 
productive grass layer (Grant et al., 2000).   

The basalt formations in the east are characterised by mafic rocks that 
are rich in iron, magnesium and rich clay minerals (Grant et al., 2000). This 
eastern part is mainly characterised by grasslands. The study area was selected 
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to cover a wide range of terrain gradients and therefore a variation in foliar 
nutrient concentration.  

Following the agreement signed on the 10th of November 2000 to form 
a Transfrontier National Park (Gaza-Kruger-Gonarezhou Transfrontier) between 
South Africa, Zimbabwe and Mozambique, traditional migration routes for 
wildlife were established. This agreement created a total area of around 95700 
km2, allowing the free movement of animals across a large area. Habitat 
condition, particularly nutrition therefore plays a significant role in determining 
the movement and distribution of wildlife in this area.   
 

  

 

LESOTHO

KNP

SOUTH AFRICA

Study area

FNR

NR

CR

SR

Figure 1.3: Location of the study area in the Kruger National Park (KNP) of South 
Africa. The study area is located in the far northern region (FNR), close to the Limpopo 
River and is characterised by grassland plains especially in the eastern part. The other 
administrative regions in the KNP are the northern region (NR), central region (CR) and 
the southern region (SR). 
 
1.8 Outline of the thesis 
 
This thesis constitutes a collection of 8 papers that have been submitted to peer 
reviewed international journals. Out of these 8 papers, 6 papers have been 
accepted for publication and the remaining 2 papers are still in preparation and 
preliminary review respectively. Each paper has been presented as a stand-alone 
chapter, making it a distinct piece of work contributing to the overall research 
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question. As much as possible, the content of the journal papers have been 
maintained. In this regard, each chapter is introduced separately with separate 
conclusions that link with the subsequent chapters. The approach makes some 
overlaps of method description and illustrations inevitable in the different 
chapters. This drawback is deemed to be of little significance when we consider 
the critical peer review process and it makes the different chapters solid papers 
that can be read individually without losing the context. The chapters are 
presented under three different levels of investigation: 

 
1.8.1 Laboratory level 
 
Chapter 2 addresses the problem of saturation in biomass estimation using 
experimental data. Widely used indices (NDVI, TVI, SR) are applied on 
hyperspectral bands to identify the most important portions of the 
electromagnetic spectrum that contain biomass information at high canopy 
density. New indices are proposed.  

Chapter 3 investigates whether canopy reflectance can discriminate 
different levels of foliar nitrogen concentration at canopy level. The concept of 
continuum removal is introduced and the importance of the visible region in 
canopy chemistry is demonstrated. Chapter 4 investigates the red edge as an 
important portion of the electromagnetic spectrum for predicting nitrogen 
concentration at canopy scale. Chapter 5 extends the observations made in 
chapter 3 and chapter 4 to HYMAP spectra (resampled resolution). The 
observations in chapters 3, 4 and 5 permit the up scaling of the approach to field 
as well as airborne imaging spectrometry.  
 
1.8.2 Field level 
 
Chapter 6 investigates new methods to predict macronutrients in a savanna 
rangeland using a field spectrometer. Chapter 7 extends the methods to foliar 
sodium. This nutrient (sodium in plants) was singled out since its importance 
has been overlooked in ecological studies and to the best of our knowledge, 
hardly investigated in remote sensing. To put the variations of macronutrients 
measured in an ecological context, chapter 8 explains the spatial distribution of 
the nutrients using several biotic and abiotic factors. 
 
1.8.3 Airborne platform level 
 
Chapter 9 uses observations and conclusions from chapter 3 to chapter 8 to 
develop a new approach for mapping nitrogen concentration using airborne 
hyperspectral imagery. 

Finally, chapter 10 summarises all the findings and discusses the 
contribution of the thesis in the context of herbivory. 
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CHAPTER 2:  
Estimating quantity at full canopy cover 

 
 
 
 
 
 
 
 
 
 
 
 
 

*This chapter is based on 
Mutanga, O and Skidmore, A.K, (2004) Narrow band vegetation 

indices overcome the saturation problem in biomass estimation, International 
Journal of Remote Sensing, 25, pp. 1-16. 
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Abstract 
 
Remotely sensed vegetation indices such as NDVI, computed using the red and 
near infrared bands have been used to estimate grass biomass. These indices are 
of limited value since they saturate in dense vegetation. In this study, we 
evaluated the potential of narrow band vegetation indices in characterizing the 
biomass of C. ciliaris grass measured at full canopy cover. Three indices were 
tested: modified normalised difference vegetation index (NDVI), simple ratio 
(SR) and transformed vegetation index (TVI) involving all possible two band 
combinations between 350 nm and 2500 nm. In addition, we evaluated the 
potential of the red edge position in estimating biomass at full canopy cover. 
Results indicated that the standard NDVI involving a strong chlorophyll 
absorption band in the red region and a near infrared band performed poorly in 
estimating biomass (R2 = 0.26). The modified NDVIs involving a combination 
of narrow bands in the shorter wavelengths of the red edge (700 nm – 750 nm) 
and longer wavelengths of the red edge (750 nm – 780 nm), yielded higher 
correlations with biomass (mean R2 = 0.77 for the highest 20 narrow band 
NDVIs). When the three vegetation indices were compared, SR yielded the 
highest correlation coefficients with biomass as compared to narrow band 
NDVI and TVI (average R2  = 0.80, 0.77 and 0.77 for the first 20 ranked SR, 
NDVI and TVI respectively). The red edge position yielded an R2 of 0.66, 
which is better than the result obtained from the standard NDVI. These results 
indicate that at high canopy density, grass biomass may be more accurately 
estimated by vegetation indices based on wavelengths located in the red edge 
than the standard NDVI.  

 
 
 

Key words: Laboratory experiment, red edge, canopy spectra, widely used 
indices, saturation problem 
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2.1 Introduction 
 
Remotely sensed vegetation indices have been recommended to remove 
variability caused by canopy geometry, soil background, sun view angles and 
atmospheric conditions when measuring biophysical properties (biomass, LAI 
and percent green vegetation cover) of vegetation at canopy scale (Blackburn & 
Steele, 1999; Boegh et al., 2002; Elvidge & Chen, 1995; Gao et al., 2000; 
Schowengerdt, 1983; Tucker, 1979). These indices are critical for assessing 
rangeland productivity and therefore facilitate effective management of 
livestock and wildlife.  

The most widely used vegetation indices are computed using data from 
the red and near infrared (NIR) portions of the electromagnetic spectrum (Treitz 
& Howarth, 1999). These vegetation indices operate by contrasting intense 
chlorophyll pigment absorptions in the red against the high reflectance due to 
multiple scattering in the near infrared (Elvidge & Chen, 1995; Hoffer, 1978; 
Todd et al., 1998). Widely used vegetation indices such as normalised 
difference vegetation index (NDVI)(Tucker, 1979; Wiegand et al., 1991), 
transformed vegetation index (TVI)(Richardson & Wiegand, 1977; Rouse et al., 
1973), simple ratio (SR)(Jordan, 1969; Maxwell, 1976) and difference 
vegetation index (DVI) respond to these differences in the near infrared and the 
visible regions (Lillesand and Kiefer 1994, Schowengerdt 1983). In addition, 
indices that control for variations in soil background effects as well as 
atmospheric induced variations have also been developed. These include the 
perpendicular vegetation index  (PVI)(Richardson & Wiegand, 1977), weighted 
difference vegetation index (WDVI) (Clevers, 1988), soil adjusted vegetation 
index (SAVI)(Huete, 1988), transformed soil adjusted vegetation index 
(TSAVI)(Baret & Guyot, 1991) and modified normalised difference vegetation 
index (MNDVI) (Liu and Huete 1995).  

The major limitation of using vegetation indices particularly NDVI 
based on the red and near infrared portion of the electromagnetic spectrum is 
that they asymptotically approach a saturation level after a certain biomass 
density or LAI (Gao et al., 2000; Sellers, 1985; Thenkabail et al., 2000; Todd et 
al., 1998; Tucker, 1977). NDVI yields poor estimates in areas where there is 
100 % vegetation cover and therefore, has limited value in assessing biomass 
during the peak of seasons (Thenkabail et al., 2000). Given this limitation, there 
is a need to develop or improve techniques that can accurately estimate biomass 
in more densely vegetated areas. Hyperspectral remote sensing offer 
possibilities to investigate vegetation indices based on narrow bands in the 
whole electromagnetic spectrum (350 nm – 2500 nm), rather than focusing on 
the red and near infrared bands alone. 

Studies have shown that narrow bands located in the red edge  
(680 nm – 750 nm) are influenced by canopy biomass (LAI), and leaf 
chlorophyll content (Blackburn & Pitman, 1999; Guyot et al., 1992; Thomas & 
Gaussman, 1987; Todd et al., 1998). The red edge can be defined as the rise of 
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reflectance at the boundary between the chlorophyll absorption feature in the 
red wavelengths and leaf scattering in the near infrared wavelengths (Collins, 
1978; Horler et al., 1983). Todd et al. (1998) found out that the red edge 
position (the point of maximum slope on the red infrared curve) appears to be 
sensitive to biomass variations for green vegetation as compared to senescing 
vegetation. Lucas et al. (2000) found a strong correlation between LAI and the 
red edge position for a conifer forest in Wales using CASI data. From this 
background, narrow wavelengths offer potential to estimate biomass at high 
canopy density as compared to broadband indices computed using the red and 
near infrared wavelengths. 

In this study we evaluated the performance of various hyperspectral 
vegetation indices as well as the red edge position in characterizing grass 
biomass in densely vegetated canopies. We selected and calculated band ratios 
that are widely used and readily adaptable in vegetation studies (Richards, 1993; 
Schowengerdt, 1983; Thenkabail et al., 2000), vis, narrow band normalized 
vegetation index (NDVI), simple ratio (SR) and transformed vegetation index  
(TVI) involving all possible two-band combinations of 647 channels between 
350 nm and 2500 nm. The band ratios were calculated from reflectance 
measurements taken on C. ciliaris grass at full canopy cover and under 
controlled laboratory conditions. In this regard, other vegetation indices that 
control for soil background and atmospheric effects such as SAVI, TSAVI, PVI, 
WDVI and MNDVI were not considered. 
 
 
2.2 Methods 
 
2.2.1 Experimental setup 
 
Blue Buffalo grass (C. ciliaris) was sown in a greenhouse for this experiment. 
C. ciliaris is a sweet perennial grass that grows naturally in East and Southern 
Africa and is widely used as a pasture grass (Van Oudtshoorn, 1999). The grass 
forms swards that range between 10 cm and 150 cm in height. C. ciliaris is 
tufted, erect, branching and rooting at the nodes (Bovey et al., 1984; Mayeux & 
Hamilton, 1983).  

A total of 96 pots (10 liters with a diameter of 24 cm and a height of 22 
cm) were used for planting. Five seeds were sown in each pot on 30 July 2001. 
The seedlings were grown under natural daylength with a night temperature of 
21º C and a day temperature of 25º C. The plants were supplied with an initial 
fertilization of 2.2 g of potassium and 3.6 g of super phosphate per pot and were 
watered at least once every day.  

In order to manipulate a variation in biomass, the pots were randomly 
divided into three equal groups (32 samples in each group) on 13 August 2001 
(14 days after sowing) and were supplied with different levels of nitrogen. The 
first group was supplied with 3.4 ml (120 kg/ha) of ammonium nitrate per pot. 
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The second group was supplied with 1.14 ml (40 kg/ha) of ammonium nitrate 
per pot. The fertilizer was supplied over several days. No nitrogen was added to 
the third group. To minimize the effect of microclimate on the experiment, the 
pots were arranged in blocks and were randomized and rotated by about 90 
degrees once a week. 
 
2.2.2 Canopy spectral measurements 
 
Measurements were taken after the grass biomass had become dense and 
completely covered the soil thereby controlling for multiple scattering 
interactions between the soil and vegetation. In addition, we used the same soil 
type for all treatments. In order to manipulate a further variation in biomass, 
measurements were taken at the beginning of every week for four weeks, from 
September 3rd 2001. The plants were transferred in their pots from the 
greenhouse to a laboratory on each day of measurement in order to control for 
atmospheric effects as well as to achieve uniform illumination conditions. A 
total of eight pots from each treatment were measured every week.  

A GER 3700 spectroradiometer was used for spectral measurements. 
The GER 3700 (Geophysical and Environmental Research Corp.) is a three 
dispersion grating spectroradiometer using Si and PbS detectors with a single 
field of view. The wavelength range is 350 nm - 2500 nm with a resolution of 
1.5 nm in the 350 nm - 1050 nm, 6.2 nm in the 1050 nm - 1900 nm range and 
9.5 nm in the 1900 nm - 2500 nm range. The sensor, with a field of view of 3º 
was mounted on a tripod in the laboratory and positioned 2 meters above the 
ground at nadir position. Each pot with standing biomass was placed on a fixed 
tray, directly under the sensor and a halogen lamp, positioned next to the sensor 
was used to supply illumination on the target. 

The pots were rotated by 45º after every 5th measurement in order to 
average out differences in canopy orientation on each pot. The radiance was 
converted to reflectance using scans of a spectralon reference panel. Four target 
measurements were made after measuring the reference (spectralon) panel.  

After spectral measurements, all standing biomass from each pot was 
clipped and fresh biomass was measured immediately using a digital weighing 
scale. Biomass was determined by dividing the weight of the harvested grass by 
the surface area of the pots (expressed as g cm –2) (Hurcom & Harrison, 1998). 

 
2.2.3 Data analysis 
 
Two main approaches were adopted in this study: (i) narrow band vegetation 
indices and (ii) the red edge position.  
The narrow band vegetation indices (NDVI, TVI, SR) were computed from all 
possible two – band combination indices involving 647 narrow bands between 
350 nm and 2500 nm. The discrete 647 narrow bands allowed a computation of 
N*N = 418,609 narrow band indices. Table 2.1 shows the indices that were 
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calculated. The narrow bands are shown as λ1 (350 nm to 2500 nm) and λ2 (350 
nm to 2500 nm) pairs. These indices were selected because they are the most 
widely used indices in estimating biomass for agricultural and ecological 
applications (Thenkabail et al., 2000). The indices were calculated covering the 
whole electromagnetic spectrum in order to recommend on the optimal narrow 
bands that can be used to estimate biomass. 
 
Table 2.1. Vegetation indices used in this study.  The narrow bands are computed as λ1 

(350 nm to 2500 nm) and λ2 (350 nm to 2500 nm) pairs 
Index name Abbreviation Computation Reference 
Normalized difference 
vegetation index 

NDVI 

21

21

λλ
λλ

+
−

 
(Rouse et al., 
1973) 

Simple ratio SR 

2

1

λ
λ

 
(Jordan, 1969) 

Transformed vegetation 
index 

TVI 
5.0

21

21 +
+
−
λλ
λλ

 

(Rouse et al., 
1973) 

 
To compare the predictive capability of the modified NDVI and the 

standard NDVI in estimating biomass, bootstrapping was applied on the 
correlation analyses. Bootstrapping is a technique used to resample the original 
data in order to generate a distribution for the statistic. This permits the 
calculation of standard error and confidence intervals, which in turn indicate 
statistical accuracy (Efron & Tibshirani, 1994; McGarigal et al., 2000). 
Bootstrapping simulates the sampling distribution of any statistic by treating the 
observed data as if it were the entire statistical population under study.  On each 
replication, a random sample of size N is selected, with replacement from the 
available data. The statistic of interest (in this case correlation coefficient) is 
calculated on this bootstrapped subsample and recorded. The process is repeated 
in order to obtain the sampling distribution. The main advantage of 
bootstrapping is that statistical inferences under resampling are based on the 
distributional properties of a “pseudosample” that is generated by resampling 
the data itself, and not the distributional properties of a sample drawn from an 
unknown underlying population (McGarigal et al., 2000). The method therefore 
facilitates accuracy assessment using the same data set. 

The red edge position was derived from the first derivative of the 
reflectance between 680 nm and 750 nm. A first difference transformation of 
the reflectance spectrum calculates the slope values from the reflectance and 
can be derived from the following equation (Dawson & Curran, 1998): 

 
FDSλ(i)= (Rλ(j+1)- Rλ(j))/∆ λ   (1) 
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where FDS is the first derivative reflectance at a wavelength i midpoint 
between wavebands j and j+1.  Rλ(j) is the reflectance at the j waveband, Rλ(j+1) is 
the  reflectance at the j+1 waveband  and ∆ λ is the difference in wavelengths 
between j and j+1.  The red edge position was determined as the wavelength 
inflection point (i.e., point of maximum slope). 
 
2. 3. Results 
 
2. 3.1 Variation in biophysical data and the reflectance spectrum 
 
As expected, the fertilization treatments caused a wide variation in biomass 
(Table 2.2).  
Table 2.2.  Description of the data used in this study (total n = 96) 
Treatment No of 

samples 
Minimum 
g cm -2  

Mean 
g cm -2  

Maximum 
g cm -2  

StDev 
 

Low 32 0.21 0.32 0.41 0.05 
Medium 32 0.29 0.40 0.53 0.06 
High 32 0.33 0.52 0.66 0.08 
All combined 96 0.21 0.41 0.66 0.10 
 
Biomass varied between 0.2 g cm -2 and 0.66 g cm –2 with an average of 0.4 g 
cm –2. Previous studies have revealed that the saturation or curvature in biomass 
versus the NDVI indices is usually around 2 or 3 LAI (Franklin et al., 1991) and 
for biomass, around 0.3 g cm –2 (Hurcom & Harrison, 1998). The average 
biomass (0.32 g cm -2) recorded in the low nitrogen treatment (Table 2.2) had 
enough leaf material to cover the soil in the pots and above the saturation 
threshold level, therefore achieving the main objective of the experiment.  

Spectra of the mean reflectance and ± 95 confidence limits of all 
harvested plants are shown in Figure 2.1. Like any green vegetation spectrum, 
the average spectrum in Figure 2.1 shows high reflectance in the near infrared 
and low reflectance in the visible. However, NIR reflectance values are lower 
than the values for green vegetation, which are generally around 40 %. This can 
be attributed to the erectophile structure of the grass canopies, which were 
measured, and their associated shadow effect at nadir position (Sandmeier et al., 
1998). Studies have shown that, near infrared reflectance is suppressed in a 
complex canopy due to increased shadow (Sandmeier & Deering, 1999; 
Sandmeier et al., 1998; Treitz & Howarth, 1999). 
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Figure 2.1. Canopy reflectance spectra of C. ciliaris grass (n = 96). The mean, upper 95 
% confidence limit (UCL) and lower 95 % confidence limit (LCL) of the spectra are 
shown. 
 
2.3.2 Narrow band NDVI relationship with biomass 
 
The narrow band hyperspectral data contained in 647 discrete channels allowed 
the computation of 418,609 narrow band NDVIs for biomass estimation. Linear 
regression coefficients R and R2 between all two possible narrow band NDVIs 
and biomass were determined. Results of this analysis are presented in form of 
R2 for each λ1 (350 nm to 2500 nm) and λ2 (350 nm to 2500 nm) pair in Figure 
2.2.  
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Figure 2.2. Map showing the correlation coefficients (R2) between biomass and narrow 
band NDVI values calculated from all possible combinations spread across λ1 (350 nm 
to 2500 nm) and λ2 (350 nm to 2500 nm). The R2 values, were ranked and the first 20 
combinations recorded in Table 2.2. 
 

The R2 values range between 0.10 and 0.78 reflecting the wide variation 
in strength of the relationship between NDVIs and biomass. Figure 2.2 shows 
strong correlations in the portion where shorter wavelengths of the red edge 
(700 nm – 745 nm) coincided with narrow bands between 750 nm and 900 nm.  
The second highest R2 values are centred in the green band, 500 nm – 560 nm, 
combined with narrow bands in the near infrared portion, 750 nm and 1300 nm. 
Poor correlation coefficients were obtained beyond 1300 nm. 

The correlation coefficients were ranked and two band combinations 
that yielded the highest 20 R2 values were recorded as shown in Table 2.3. The 
narrow wavelength bands that yielded the best 20 R2 values are located in the 
red edge portion between 703 nm and 760 nm.  
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Table 2.3. Two-band combinations (NDVIs) that yielded the highest correlation 
coefficients (ranked according to R2) with biomass. A total of 418,609 NDVIs, 
computed from all possible two-band combinations between 350 nm and 2500 nm were 
correlated with biomass. 
Rank λ1 λ2 R R2 
1 746 755 0.886 0.784 
2 741 753 0.885 0.783 
3 735 759 0.885 0.783 
4 731 759 0.884 0.782 
5 732 757 0.884 0.781 
6 721 762 0.883 0.780 
7 728 757 0.883 0.779 
8 729 755 0.883 0.779 
9 716 762 0.882 0.779 
10 721 759 0.882 0.779 
11 713 762 0.882 0.779 
12 716 759 0.882 0.778 
13 710 760 0.882 0.778 
14 703 763 0.882 0.778 
15 715 759 0.882 0.777 
16 703 762 0.882 0.777 
17 707 760 0.882 0.777 
18 727 753 0.881 0.777 
19 706 760 0.881 0.777 
20 699 762 0.881 0.777 

 
 
For a detailed investigation, we compared the best-modified narrow band NDVI 
(746 nm and 755 nm) obtained in this study and an NDVI involving a near 
infrared narrow band (833 nm) and a red band (680 nm)(Hurcom & Harrison, 
1998). Figure 2.3 illustrates the scatter plots obtained from the two indices. The 
slope of the regression line for the standard NDVI is lower than that of the 
modified NDVI. To confirm this, we tested the research hypothesis that the 
slope of the regression model for the modified NDVI was different from the 
slope of the standard NDVI, viz. the null hypothesis Ho: β1 = β2 versus the 
alternate hypothesis Ha: β1 ≠ β2, where   β1 and β2 are slopes for the modified 
NDVI and standard NDVI respectively.  The conclusion from this test is that the 
slopes from the two models are different (t = 20.35, p < 0.001, df = 188). 
 

 
Figure 2.3. Relationship between biomass and the best-modified NDVI (A) calculated 
from 746 and 755 nm bands as well as the standard NDVI calculated from a near 
infrared (833 nm) and red band  (680 nm) (B). Note the almost flat scatter plot in B (n = 
96). 
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In order to test the performance of the modified NDVI versus the standard 
NDVI, bootstrapping was applied on the regression models.  The bootstrapped 
correlation coefficients are shown in Table 2.4.    

 
Table 2.4. Bootstrapped coefficients of determination between biomass and the 
standard NDVI (NIR - red) as well as the best NDVI obtained from an analysis of all 
possible combinations involving narrow bands between 350 nm – 2500 nm 
Index Mean r2 95% confidence 
Best modified NDVI 0.78 0.001 
Standard NDVI 0.25 0.008 
 

Results indicate poor performance of a NIR-red NDVI  (standard 
NDVI) combination as compared to a red edge NDVI combination. The 
confidence limits for the modified NDVI are lower than those for the standard 
NDVI. This implies that the bootstrapped mean of the modified NDVI 
approaches the population estimate with a high precision. Figure 2.4 shows the 
distribution of R2 values of the modified NDVI after bootstrapping. Note that 
the confidence limits are close to the mean. 
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Figure 2.4. Histogram showing the bootstrapped correlation coefficients between the 
biomass and the modified NDVI (based on 746 nm and 755 nm). A total of 1000 
iterations were executed. Two arrows indicating the upper and lower 95 % confidence 
limits flank the mean. 
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Figure 2.5. Map showing the correlation (R2) between biomass and narrow band simple 
ratio (SR) values (n = 96) calculated from all possible combinations spread across λ1 

(350 nm to 2500 nm) and λ2 (350 nm to 2500 nm).  
 
2.3.3 Narrow band simple ratio (SR) relationship with biomass 
 
The simple ratio index was calculated on all possible two - band combinations 
involving 647 discrete channels between 350 nm and 2500 nm. The correlation 
coefficients R2 obtained between SR and biomass are presented in Figure 2.5. 
The R2 values ranged from 0.10 to 0.80 and the pattern of variation in R2 
generally resembles the NDVI pattern in Figure 2.2. The highest R2 values are 
also located in the red edge region. The SR combinations were also ranked and 
the highest 20 combinations recorded  (not presented here). The SR 
combination that yielded the highest R2 of 0.80 involved 706 nm and 755 nm 
channels, followed by 702 nm and 753 nm channels. The best 20 SR indices 
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also involved the green portion (572 nm, 543 nm and 548 nm), combined with 
the shortwave infrared bands (2464 nm, 2154 nm, 2336 nm). 

 
2.3.4 Narrow band transformed vegetation index (TVI) relationship with 
biomass 
 
Figure 2.6 depicts R2 values for the linear relationship between biomass and 
TVI.   The map in Figure 2.6 is slightly different from the NDVI and SR maps. 
There are lower correlations in the green portion, 500 nm – 560 nm, combined 
with narrow bands in the longer red edge portion, 750 nm – 1200 nm.   
 

 
Figure 2.6. Map showing the correlation (R2) between biomass and narrow band 
Transformed vegetation index (TVI) values (n = 96) calculated from all possible 
combinations spread across λ1 (350 nm to 2500 nm) and λ2 (350 nm to 2500 nm).  
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However, the ranked TVI pairs, which yielded the highest 20 correlation 
coefficients with biomass, are all located in the red edge region, between 722 
and 760 nm.  Figure 2.7 summarizes the frequently occurring optimum bands 
using the NDVI, SR and TVI methods.  

 
Figure 2.7. Occurrence of the hyperspectral narrow bands in the best 20 models for 
each index 
 

Figure 2.7 clearly shows that an overwhelming proportion of biomass 
information is contained in the red edge portion, (680 nm to 780 nm) and the 
green portion (530 to 560 nm). TVI and NDVI show a larger proportion in the 
red edge region between 720 nm and 760 nm.  Narrow channels selected by the 
SR are widely spread, covering the green, red and the short wave infrared 
portion of the electromagnetic spectrum.  
 
2.3.5 Comparing the performance of the indices in estimating biomass 
 
The three methods applied in this study yielded slightly different results. The R2 
values increased from 0.784, 0.785, to 0.80 using NDVI (R755- R746 /R755+ R746), 
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Box plots in Figure 2.8 show the spread of the ranked correlation coefficients 
(highest 20 R2) produced by different ratios involving all possible narrow band 
combinations stretching from 350 nm to 2500 nm.  
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Figure 2.8. Box plots showing the spread of the ranked correlation coefficients (First 20 
R2) produced by different ratios involving all possible narrow band combinations 
stretching from 350 nm to 2500 nm 
 

The box plots show that SR yielded the highest mean R2 for the first 20 
narrow band combinations as compared to NDVI and TVI.  The mean R2 

differences were tested using one – way ANOVA, following normality test of 
the data using Kolmogrov-Sminov test (p > 0.05). We tested the hypothesis that 
the mean R2 for NDVI, SR and TVI was different, viz. the null hypothesis Ho: 
η1 = η2 = η3   versus the alternate hypothesis Ha: η1 ≠ η2 ≠ η3, where: η1, η2 and 
η3 are the mean coefficients of determination for NDVI, SR and TVI 
respectively. The conclusion from this test is that the indices yielded different 
R2 (p < 0.001). One - way ANOVA only shows that there is a significant 
difference in the mean coefficients of determination obtained using the three 
methods, but it does not show which pairs are different. We therefore executed 
a post hoc Scheffe test in order to establish differences between each pair. 
Results indicated that the mean R2 for SR is significantly different from those 
obtained by NDVI and TVI (p < 0.05). However results of NDVI and TVI are 
not significantly different (p > 0.05). 
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2.3.6 The Red edge position and its relationship with biomass 
 
The correlation between the red edge position and biomass yielded a coefficient 
of determination (R2) of 0.66  (p < 0.001).  The result from the red edge position 
is lower than the results obtained by the best narrow band NDVI (R2 = 0.78). 
However, the result from the red edge position is better compared to the result 
obtained by the standard NDVI, thereby confirming the utility of the 
information contained in the red edge to estimate biomass at full canopy cover. 
 
2.4. Discussion 
 
The problem of asymptotic saturation of vegetation indices is common on 
satellite multispectral imagery. This is particularly true for grassland or 
agricultural imagery (Tucker, 1977). As the growing season progresses and 
biomass increases, the canopy spectral reflectance in certain parts of the 
electromagnetic spectrum reaches an asymptotic spectral reflectance making 
widely used remotely sensed indices less effective. Results of this study indicate 
that we can overcome this problem by using novel narrow band indices to 
extract biomass information in areas of dense vegetation with a high degree of 
accuracy. 
 
2.4.1 Relationship between the narrow band indices and biomass 
 
The wide range in R2 values indicates that the narrow band combinations 
respond differently to a variation in biomass.  The study has shown that biomass 
information is not only contained in the red absorption and near infrared 
wavelengths. Most narrow bands selected by NDVI, SR and TVI, that yielded 
the highest correlation with biomass are located in the red edge (Figure 2.7).  In 
addition the red edge position yielded high correlation coefficient with biomass. 
The red edge denotes a region of transition from strong chlorophyll absorption 
to near infrared reflectance.  High correlations in this study were largely 
obtained by combining narrow bands from the shorter wavelengths of the red 
edge portion of the electromagnetic spectrum (700 nm - 750 nm) and the longer 
wavelengths of the red edge (750 nm – 800 nm). The shorter wavelengths of the 
red edge portion are sensitive to changes in chlorophyll content (Filella & 
Penuelas, 1994; Lichtenthaler et al., 1996). At longer wavelengths of the red 
edge portion, multiple scattering from leaf layers results in higher reflectance 
(Kumar et al., 2001).  This confirms strong correlations between the red edge 
and LAI or biomass (Blackburn & Pitman, 1999; Clevers et al., 2000; Filella & 
Penuelas, 1994; Todd et al., 1998).  

The almost flat scatter plot in Figure 2.3b indicates the asymptotic 
nature of the standard NDVI computed from a near infrared band and a strong 
chlorophyll absorption band as compared to high correlations obtained using the 
red edge bands (Figure 2.3a) for high biomass situations. Filella and Penuelas 
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(1994) also found strong correlations between LAI and the red edge position. 
The result in this study demonstrates the validity and significance of the red 
edge ratios and red edge position as indicators of the biophysical properties of 
vegetation as compared to the standard NDVI.  

The saturation of the relationship between biomass and the standard 
NDVI is a well-known problem (Gao et al., 2000; Tucker, 1977). However, the 
physical basis for this asymptotic nature of NDVI is not well documented. The 
most logical explanation is that, the red band  (680 nm) absorbs electromagnetic 
energy, represented by an exponential function (Tucker, 1977). When canopy 
cover reaches 100 %, the amount of red light that can be absorbed by leaves 
reaches a peak (Thenkabail et al., 2000; Tucker, 1977). On the other hand, NIR 
reflectance will increase because an addition of leaves results in multiple 
scattering (Kumar et al., 2001). The imbalance between a slight decrease in the 
red and high NIR reflection results in a slight change in the NDVI ratio, hence 
yields a poor relationship with biomass. In order to double the ratio, the NIR 
reflectance should almost double to compensate for the little change in red 
reflectance, however this is not always the case (Kumar et al., 2001). 
 
2.4.2 Comparison between the methods used in this study in estimating biomass 
 
Although the three indices (NDVI, SR and TVI) yielded high correlation 
coefficients with biomass, the mean correlation coefficients calculated from the 
first 20 band combinations are higher for SR as compared to NDVI and TVI 
(Figure 2.8).  Therefore, SR may be a better index for estimating biomass in 
dense canopies. SR selected narrow bands from a broader part of the spectrum 
that include the green as well as the mid infrared region apart from the red edge 
(Figure 2.7). In the green portion, the selected 548 nm band highlights the 
reflectance peak in the visible portion while the 572 nm band is the greatest 
negative change in slope per unit change in wavelength (Thenkabail et al., 
2000). The selected bands in the mid infrared are water sensitive. Therefore, 
there could be a strong relationship between biomass and leaf water. 

The red edge position yielded lower but significant correlation 
coefficient with biomass as compared to the narrow band vegetation indices. 
Nevertheless, the result from the red edge position emphasizes the importance 
of the slope of the red edge in estimating biomass at full canopy cover. 

 
2.5. Conclusions 
 
We conclude that: 
1. Modified normalised difference indices (NDVI) calculated from a 

combination of narrow channels in the shorter wavelengths of the red edge 
(700 nm – 750 nm) and longer wavelengths of the red edge (750 – 780 nm) 
yield higher correlation coefficients with biomass as compared to the 
standard NDVI. 
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2. The red edge contains more information on biomass quantity as compared 
to other parts of the electromagnetic spectrum  

3. SR yields the highest correlation coefficients with biomass as compared to 
narrow band NDVI and TVI. We therefore recommend the use of a simple 
ratio index based on a waveband located in the shorter red edge portion 
(706 nm) and a band located in the longer red edge portion (755 nm) for a 
better estimation of biomass at high canopy density, vis. (R755 /R706).  

Overall, the controlled experiment improved an understanding of the 
wavelength regions that can be used to estimate biomass at full canopy cover.  
The study has revealed that, narrow wavelengths located in the red edge slope 
contain information on biomass estimation at full canopy cover. We therefore 
recommend that, future research should test the utility of these methods under 
natural environmental conditions. 
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CHAPTER 3: 
Discriminating grass grown under 
different nitrogen treatments using 

spectrometry 
 
 
 
 
 
 
 
 
 
 

This chapter is based on  
Mutanga, O., Skidmore, A.K., and Van Wieren, S. (2003). 

Discriminating tropical grass canopies (C. ciliaris) grown under different 
nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry 
and Remote Sensing, 57, 263 - 272. 
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Abstract 
 
Techniques for estimating and mapping grass quality are critical for a better 
understanding of wildlife and livestock grazing patterns. Nitrogen is one of the 
most important elements that determine quality in plants. We assessed the 
potential to discriminate differences in nitrogen concentration using high-
resolution reflectance by growing C. ciliaris grass with different fertilization 
treatments in a greenhouse.  Canopy spectral measurements from each treatment 
were taken under controlled laboratory conditions within a period of four weeks 
using a GER 3700 spectroradiometer.  
Results show that there were statistically significant differences in spectral 
reflectance between treatments within certain wavelength regions - an 
encouraging result for mapping grasslands with different levels of nutrients 
using hyperspectral remote sensing. We further investigated the effect of 
varying nitrogen supply to a specific absorption feature in the visible region 
between 550 nm and 750 nm (R550 - 750) using continuum-removed spectra. 
Results show that the high nitrogen treatment had deeper and wider absorption 
troughs as compared to the low nitrogen treatment as well as the control (no 
nitrogen), which is important for the prediction of nitrogen in grass canopies.  
The potential use of the visible portion of the electromagnetic spectrum is a 
promising result for the remote sensing of canopy chemistry since foliar water 
effect is minimal in this region as compared to the shortwave infrared. Overall, 
the results provide the possibility to map variation in grass quality using 
hyperspectral remote sensing. 

 
Keywords:  Grass quality; absorption features; continuum removal; laboratory 
experiment 
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3.1 Introduction 
 
Grass quality is one of the major factors that determine grazing patterns of 
wildlife and livestock (Bailey et al., 1996). High quality grasses contain a high 
percentage of total digestible nutrients and have a high percentage of protein. 
Each of the many foods potentially available to an animal has a different 
nutritional value and exhibits a different spatial pattern. Between and within 
(macro and micro) species variation in grass quality can be induced by 
variations in nutrients such as nitrogen concentration (Cochrane, 2000). 
Wildlife and livestock exhibit preference for certain sites based on the variation 
in quality (Muya & Oguge, 2000). This in turn influences the grazing intensity 
of patches and their relationship to animal movement and distribution (Styles & 
Skinner, 1997).  

The determination of the spatial variation of grasses rich in nutrients 
helps to explain the distribution of wildlife and livestock. Techniques for 
estimating grass quality are therefore critical for a better understanding of 
wildlife feeding patterns, and ultimately to understand and explain animal 
distribution.   

Traditional methods for detecting grass quality require detailed 
sampling and laboratory analysis. This usually results in the collection and 
analysis of inadequate data that is not representative of the population (Foley et 
al., 1998). Hyperspectral remote sensing offers the potential to detect and map 
both macro and micro-variations in grass quality due to its use of narrow 
spectral channels of less than 10 nm. These narrow spectral channels allow the 
detection of detailed features, which could otherwise be masked by broadband 
satellites such as Landsat TM or Aster (Schmidt & Skidmore, 2001). 

In order to map grass quality, the underlying principle is that grasses 
with varying nutrient levels reflect differently in specific wavelengths. To date, 
no studies have focused on discriminating tropical grasses with different 
nutrient levels using their reflectance spectra at canopy scale. Nitrogen is one of 
the most important elements that induce vigor (plant’s physiological condition) 
in plants (Luther & Carroll, 1999). However, little is known about specific 
spectral channels that are sensitive to variation in nitrogen concentration in 
tropical grass canopies. These are important for mapping and therefore 
monitoring grass condition in space and time using airborne hyperspectral 
sensors such as HYMAP.  

The main research question in this study was whether canopy 
reflectance could be used to discriminate differences in foliar nitrogen 
concentration. The objective was to identify high-resolution spectral bands that 
are most sensitive to variation in nitrogen supply as well as explain any spectral 
differences between treatments. In order to achieve this we designed an 
experiment in which we varied the nitrogen concentration available to C. 
ciliaris and measured canopy reflectance spectra over four weeks. A secondary 
objective was to assess the utility of continuum removal in enhancing the major 
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absorption feature in the visible (550 nm – 750 nm) for a better separability of 
different nitrogen classes. 
 
3.2. Materials and methods 
 
3.2.1 Plant preparation 
 
Sweet perennial blue buffalo grass (C. ciliaris) was sown in a greenhouse for 
this experiment. The grass has a height from 10 cm to 150 cm and is tufted, 
erect, branching and rooting at the nodes (Pooley, 1998).  

A total of 96 pots (10 liters with a diameter of 26 cm and a height of 24 
cm) were used for planting. Five seeds were sown in each pot in a greenhouse 
on 30 July 2001. The seedlings were grown under a day temperature of 25º C 
and a night temperature of 21º C. The plants were supplied with an initial 
fertilization of 2.2 g of potassium and 3.6 g of super phosphate per pot and were 
watered at least once every day.  

The pots were randomly divided into three equal groups on 13 August 
2001. To manipulate foliar concentration of nitrogen, the first group (called 
high nitrogen) was supplied with 3.4 ml (120 kg/ha) of ammonium nitrate per 
pot. The second group (called low nitrogen) was supplied with 1.14 ml (40 
kg/ha) of ammonium nitrate per pot. This was supplied over several days 
spreading to the end of harvesting. No nitrogen was added to the control group. 
The pots were arranged in blocks and rotated once a week to minimize any 
effect of microclimate on the experiment. 
 
3.2.2 Canopy spectral measurements 
 
To compare the spectral response of the three treatments at different time 
periods, measurements were taken at the beginning of every week for four 
weeks, from September 3rd 2001. Measurements were taken from this date 
onwards because the grass had grown to an extent that it was largely covering 
the soil, thus minimising the background effects. The plants were transferred in 
their pots from the greenhouse to a laboratory on each day of measurement. A 
total of eight pots from each treatment were measured every week. 
Measurements were done under laboratory conditions in order to control for 
sources of variation that are not related to chemical absorption such as change 
in illumination angle and atmospheric effects (Luther & Carroll, 1999).  

Reflectance measurements were done using a GER 3700 
spectroradiometer. The GER 3700 (Geophysical and Environmental Research 
corp.) is a three dispersion grating spectroradiometer using Si and PbS detectors 
with a single field of view. The wavelength range is 350 nm - 2500 nm with a 
resolution of 1.5 nm in the 350 nm - 1050 nm, 6.2 nm in the 1050 nm - 1900 nm 
range and 9.5 nm in the 1900 nm - 2500 nm range. The sensor, with a field of 
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view of 3º, was mounted on a tripod and positioned 2 meters above the ground 
at nadir position. 

A halogen lamp, positioned next to the sensor was used to supply 
illumination on the target. Each pot was placed on a fixed tray, directly under 
the sensor for canopy spectral measurements. The pots were rotated by 45º after 
every 5th measurement in order to average out differences in canopy orientation 
on each pot. Each spectrum was determined as an average of 20 spectral 
measurements per pot. The radiance was converted to reflectance using scans of 
a spectralon reference panel. Four target measurements were made after 
measuring the reference (spectralon) panel. 
 
3.2.3 Chemical analysis 
 
Samples were oven dried at 70º C for 24 hours and were ground through a 
1 mm steel screen with a cyclone sample mill. Digestion of the samples was 
done before automated determinations. Salicylic acid was added to prevent loss 
of nitrate. After decomposition of the excess H2O2, the digestion was completed 
by concentrated sulphuric acid at elevated temperature under the influence of 
selenium powder as a catalyst. Nitrogen was measured with a segmented flow 
analyzer at 660 nm wavelength and was expressed as milligrams per gram 
(mg/g). 
 
3.2.4 Data analysis 
 
The research hypothesis was whether the means of the reflectance between the 
three treatments were significantly different at each wavelength. The research 
hypothesis was statistically tested using one-way analysis of variance. From this 
test one can conclude that there are differences between the treatment groups 
(Siegal & Castellan, 1988). The statistical tests were done at different time 
periods (first week, second week, third week and fourth week) in order to assess 
the spectral differences between treatments at different stages of plants’ 
physiological status. 

We also tested the utility of the visible absorption feature  
(R550 – 750 nm) to discriminate different levels of nitrogen concentration after 
continuum removal.  This red absorption feature was selected since it has 
consistently proved to be an indicator of vegetation condition (Luther & Carroll, 
1999) and is not affected by water absorption in fresh plants. This is in contrast 
to the SWIR bands where chemical absorption is largely masked by water 
(Elvidge, 1990; Kokaly & Clark, 1999).  

Continuum removal normalizes reflectance spectra to allow comparison 
of individual absorption features from a common baseline (Kokaly, 2001). The 
continuum is a convex hull fitted over the top of a spectrum utilizing straight-
line segments that connect local spectra maxima. The continuum is removed by 
dividing the reflectance value for each point in the absorption trough by the 
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reflectance level of the continuum line (convex hull) at the corresponding 
wavelength. The first and last spectral data values are on the hull and therefore 
the first and last bands in the output continuum-removed data file are equal to 1. 
The output curves have values between zero and one, in which the absorption 
troughs are enhanced and the absolute variance removed (Schmidt & Skidmore, 
2001).  

This method has been found useful in mapping the distribution of 
minerals by comparing remotely sensed absorption band shapes to those in a 
reference library (Clark & Roush, 1984). Kokaly and Clark (1999) applied the 
method to vegetation science using dried plant material. The extension of this 
method to fresh canopies for biochemical estimation has not been made to our 
knowledge. 
 
3.3. Results 
 
3.3.1 Variation in nitrogen concentration 
 
As expected, the experiment resulted in a variation in foliar nitrogen 
concentration between treatments (Table 3.1).  

 
Table 3.1 Foliar nitrogen concentration 
Treatment Mean Standard deviation 
Control 13.8 4.3 
Low 19.3 6.5 
High 34.2 6.2 
 
One-way ANOVA was used to test if differences in the mean nitrogen 
concentration between the treatments were significant. We tested the research 
hypothesis that the mean nitrogen concentration (mg/g) for the control, low and 
high nitrogen treatments were different, viz. the null hypothesis Ho: µ1 = µ2 = 
µ3 versus the alternate hypothesis Ha: µ1≠  µ2 ≠  µ3, where: µ1, µ2 and µ3 are 
the mean nitrogen concentrations for the control, low and high treatments 
respectively. The conclusions from these tests are that the mean nitrogen 
concentrations are significantly different (p < 0.001).  

There was also a decrease in nitrogen concentration for all treatments 
from the first week of measurement to the last week of measurement. Figure 3.1 
shows the mean decrease (± 95 % confidence limits) in nitrogen concentration 
from the first week to the fourth week of measurement. 
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Figure 3.1. Variation of nitrogen concentration  (± 95 % CL) from the first week to the 
fourth week of measurement. 
One-way ANOVA was used to test if differences in the mean nitrogen 
concentration between the four weeks of measurement were significant for each 
treatment. We also tested the research hypothesis that the mean nitrogen 
concentration (mg/g) for the first, second, third and fourth weeks were different, 
viz. the null hypothesis Ho: µ1 = µ2 = µ3 = µ4 versus the alternate hypothesis 
Ha: µ1≠  µ2 ≠  µ3 ≠  µ4 where: µ1, µ2, µ3 and µ4 are the mean nitrogen 
concentrations during the first, second, third and fourth week respectively. The 
conclusions from these tests are that for all the three treatments, the mean 
nitrogen concentrations are significantly different between the first, second, 
third and fourth week of measurement (p < 0.001).  

 
 
3.3.2 Reflectance differences between treatments 
 
 Figure 3.2 shows mean reflectance spectra of C. ciliaris grass by treatment 
from the first week to the fourth week of measurement. There is a variation by 
wavelength in the differences between treatment spectra as highlighted in the 
results.  
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 Figure 3.2. Mean canopy reflectance spectra of C. ciliaris grass by treatment.  
 
We statistically analysed the difference between treatments in each region of the 
electromagnetic spectrum at every measurement period as shown in Figure 3.3.  

Results of one-way ANOVA (Figure 3.3) show that generally, there is 
no significant difference between treatments in the visible region during the 
first, second and third week. There are however a few channels that are 
significantly different between treatments during the second and third week 
where canopies from the fertilized pots had a smaller reflectance than the 
control pots especially in the blue and red bands. Statistically significant bands 
occurred between 470 nm and 523 nm and also between 584 nm and 725 nm (p 
< 0.001).  

Several bands were statistically significant in the fourth week (400 nm 
to 507 nm, 533 nm to 579 nm), however they were concentrated in the blue and 
green regions. Channels 480 nm, 553 nm, 560 nm and 569 nm have the lowest 
p-values (p < 0.001). 

The near-infrared region experienced statistically significant differences 
between treatments in all weeks (except for a few bands in the first week). 
Channels that maximise reflectance are between 1022 nm and 1334 nm. The 
large differences in the near-infrared can be visually recognized in Figure 3.2. 

For the SWIR, Figure 3.3 shows that differences in reflectance were 
already significant in the first week for several bands, including those of known 
protein and nitrogen absorption (1509 nm, 1645 nm, 1671 nm – 1820 nm, 1727 
nm, 1733 nm, 2084 nm to 2200 nm, 2360 nm to 2307 nm). There were more 
bands with significantly low p-values in the fourth week (1898 nm, 1909 nm, 
1930 nm, 1940 nm, 1961 nm, 1972 nm, 2023 nm, 2183 nm, 2298 nm, 2307 nm, 
2345 nm, and 2354 nm). Figure 3.4d shows that reflectance for the high 
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nitrogen treatment dropped from the first to the fourth week of measurement for 
selected protein absorption bands. 
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Figure 3.3. Results of One-way ANOVA showing wavelengths where reflectance 
differences between the three treatments are significant. Horizontal dashed and solid 
lines show 95% and 90% confidence limits, respectively 
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 Figure 3.4. Change in mean reflectance (± 95 % CL) from the first week to the fourth 
week of measurement in the visible (a and b) and the SWIR regions (b and c). Channels 
that are sensitive to chemical absorption as well as those representing specific portions 
of the electromagnetic spectrum were selected to illustrate change in reflectance in time 
series. The low nitrogen treatment was not illustrated since its pattern strongly 
resembled the control. 
 
3.3.3 Continuum-removed spectra 
 
Figure 3.5 shows the continuum-removed spectra of the red absorption feature 
(R550 – 750 nm) in the visible region. The absorption feature shows change from a 
narrow feature in the control to a wider and deeper absorption feature in the 
high nitrogen treatment. The differences however vary from the first week to 
the fourth week of measurement. The difference between the three treatments is 
lowest in the third week and the high nitrogen treatment absorption trough 
widens rather than increasing in depth during the fourth week.  

One-way ANOVA results in Figure 3.6 shows that the treatments are 
statistically different, especially for the slopes of the absorption features.  
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Figure 3.5. Continuum-removed, mean canopy reflectance spectra of C. ciliaris grass in 
the visible region for the three treatments. 
 
 
3.4. Discussion 
 
3.4.1 Reflectance differences between the treatments 
 
Our results have shown that differences in nitrogen concentration largely 
influences spectral reflectance. In the visible region, wavelengths between 584 
nm and 725 nm, especially during the second week showed statistical 
differences between treatments, which can largely be explained by a variation in 
chlorophyll absorption. There is a strong (positive and linear) relationship 
between nitrogen and chlorophyll (Yoder & Pettigrew-Crosby, 1995). Therefore 
differences in reflectance between the treatments largely depend on differences 
in chlorophyll content as induced by nitrogen supply. Our results confirm those 
of Carter (1993) who reported the region 535 nm to 640 nm and 685 nm to 700 
nm as the most sensitive regions of the spectrum.  
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Figure 3.6. Results of One-way ANOVA showing wavelengths where continuum 
removed reflectance differences between the treatments are significant. Horizontal 
dashed and solid lines show 95% and 90% confidence limits, respectively. 
 
 

Differences in the visible reflectance for the fourth week are explained 
by changes in the physiological status of the control group. Figure 3.4a showed 
a drop in reflectance of the control in selected bands for the blue and green 
regions because rapid flowering and senescence resulted in higher absorption by 
carotenoid pigments and anthocianins. Plants with limited nitrogen supply 
develop greater concentrations of carotenoids relative to chlorophyll (Salisbury 
& Ross, 1985). This phenomenon is related to protective effect of carotenoids 
under conditions of excess radiation (Penuelas et al., 1994). As for the red 
region, our explanation for the statistical difference is that there was chlorophyll 
destruction in the control during the fourth week resulting in less absorption as 
compared to the treatments. 

It is perplexing to note that although the 680 nm region is a known 
centre of chlorophyll a absorption (Gitelson et al., 1999; Lichtenthaler et al., 
1996; Penuelas et al., 1994; Yoder & Pettigrew-Crosby, 1995), this study has 
revealed that the slopes of the absorption troughs are more significantly 
different than the 680 nm centre itself (Figure 3.3). This could be explained by 
the widening of the absorption trough at the expense of deepening at high 
chlorophyll levels (Buschmann & Nagel, 1993). Therefore, the development of 
algorithms that manipulate the slopes of absorption troughs (red edge) in the 
visible might be useful for the detection of biochemicals in plant canopies. 

The near-infrared shows significant differences between the treatments 
in all weeks. Nitrogen supply apparently effects mesophyll cell structure 
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resulting in higher reflectance with an increase in nitrogen supply (Kumar et al., 
2001). Multiple scattering of radiation due to the larger LAI of fertilized plot 
canopies may have caused differences between treatments. This is consistent 
with the theory of light scattering and absorption by tree canopies (Gates et al., 
1965).  

The SWIR region showed a decrease in reflectance in the nitrogen 
treatments from the first week to the fourth week (Figure 3.4c and 3.4d), 
whereas the control remained statistically constant during the same period. This 
may be explained by increasing leaf mass in the fertilized pots, which contained 
a greater mass of absorbing water and other biochemicals. Change in the control 
was not significant over the weeks due to less chemical absorption since the 
grass had apparently insufficient nitrogen to grow. Statistically significant 
channels such as, 1972 nm, 2023 nm, 2345 nm and 2354 nm are within ± 10 nm 
of the protein and nitrogen absorption bands (Dungan et al., 1996; Luther & 
Carroll, 1999); a promising result for the detection of nitrogen and protein. 

 
3.4.2 Continuum removal in the 550 nm to 750 nm absorption feature 
 
The red absorption feature (R550-750) was further explored. Results revealed 
widening and deepening of absorption feature with an increase in nitrogen 
supply. Statistically significant differences were obtained (Figure 3.6) between 
the treatments.  An increase in nitrogen concentration results in an increase in 
chlorophyll (Penuelas et al., 1994; Yoder & Pettigrew-Crosby, 1995). The 
porphyrin ring of the chlorophyll molecule contains nitrogen atoms confirming 
the nitrogen-pigment relationship (Kokaly, 2001).  

The role of continuum removal in enhancing differences in depth 
between the treatment groups (Figure 3.5) as compared to the original spectra 
(Figure 3.2) has been revealed. This is mainly because the method emphasizes 
absorption troughs whilst removing the absolute variance caused by albedo 
effects (Schmidt & Skidmore, 2001). Despite canopy and background effects on 
reflectance, the continuum removal method has successfully discriminated 
standing grass canopies. This result is critical for the development of algorithms 
that analyse the shape, depth and slopes of the major absorption feature in the 
visible (where water absorption is minimal) to estimate nitrogen and to 
ultimately map rangeland quality at canopy scale.  
 
 
3.5. Conclusions 
From this study, we conclude that: 
1. Canopy reflectance can be used to discriminate differences in foliar 

nitrogen concentration. This implies that the same species can reflect 
differently depending on environmental factors such as nutrient levels. This 
offers the possibility to map variation in grass quality using high-resolution 
sensors. 
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2. Band depth analysis has shown that an increase in nitrogen supply widens 
absorption troughs - an interesting result for estimating nitrogen on grass 
canopies using hyperspectral remote sensing. 

3. The visible (R550 - 750) absorption feature distinctively separates the three 
treatments. This implies that new algorithms in the visible domain can be 
developed for the direct estimation of nitrogen on standing canopies. 

4. Transformation techniques such as continuum removal increase the 
separability of grass with different levels of nitrogen in specific absorption 
features, offering possibilities to map rangeland quality.  

5. There is variation in spectral response of plants with time. This has potential 
implications for remote sensing missions in that reflectance at different 
times could require specific calibration for the time of sampling due to 
variation in physiology. Timing of field sampling and knowledge of the 
physiological status of plants is therefore important when acquiring 
remotely sensed data. To be more precise, seasonal snapshots of 
hyperspectral imagery might be useful for monitoring rangeland quality. 

Overall, results of this study offer possibility to estimate canopy grass quality at 
the field level. The results trigger the need to investigate band depths and 
slopes, particularly the red edge to estimate grass quality at canopy level.  
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CHAPTER 4: 
Red-edge shift and the quality of tropical 

grass canopies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is based on 
Mutanga, O and. Skidmore, A.K (In review) Red edge shift and the quality of 
tropical grass canopies, ISPRS Journal of Photogrammetry and Remote Sensing.  
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Abstract 
 
Grass quality, as determined by the concentration of nitrogen is one of the major 
factors that explain the distribution of wildlife and livestock. Therefore the 
remote sensing of foliar nitrogen is critical to understand wildlife and livestock 
feeding patterns. This study evaluated the response of the continuum-removed 
wavelength of the red edge peak to a variation in nitrogen supply to three 
groups of C. ciliaris grass grown in a greenhouse. Canopy spectral 
measurements from each treatment were taken under controlled laboratory 
conditions within a period of four weeks using a GER 3700 spectroradiometer. 
Results indicate that the mean wavelength positions of the three-fertilization 
treatments were statistically different. An increase in nitrogen supply resulted in 
the red edge shift to longer wavelengths.  The red edge position, amplitude, 
slope at 713 nm and slope at 725 nm were significantly correlated to nitrogen 
concentration (bootstrapped r = 0.89, -0.28, 0.63 and 0.75 respectively) at 
canopy level. From our results, the red edge position is better for estimating 
quality as compared to the other methods tested. The result is promising for 
detecting grass quality using remote sensing in rangelands. 

 
Keywords:  Nitrogen concentration, red edge position, continuum removal, 
bootstrapping 
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4.1. Introduction 
 
Grass quality (expressed as a percentage of total digestible nutrients) is one of 
the major factors that explain the distribution of wildlife and livestock (Bailey et 
al., 1996; Grant et al., 2000). The concentration of nitrogen that largely 
determines quality is important for animal nutrition (van Soest, 1994). 
Therefore, the  remote sensing of grass quality is critical for understanding 
wildlife and livestock feeding patterns.  

Attempts to remotely sense grass quality at canopy level have not been 
very successful to date (Curran et al., 2001; Kumar et al., 2001). The presence 
of water in fresh canopies masks the biochemical absorption features especially 
in the shortwave infrared (Clevers, 1999; Kokaly & Clark, 1999). In addition, 
leaf orientation, soil background effects, atmospheric absorption as well as 
BRDF further complicate the remote sensing of grass quality at canopy level 
(Asner et al., 2000).  

Recently, studies have shown that the red edge is less sensitive to soil 
background and atmospheric effects and can provide information, not covered 
by the information derived from a combination of near infrared and visible 
spectral bands (Clevers, 1999; Clevers et al., 2000). The red edge position is the 
point of maximum slope in vegetation reflectance spectra (Fillella & Penuelas, 
1994) that occurs between 680 – 750 nm region. This phenomenon is caused by 
strong chlorophyll absorption in the red and canopy scattering in the near 
infrared (Dawson & Curran, 1998). An increase in chlorophyll concentration 
results in the broadening of the absorption feature centred around 670 nm, 
causing the movement of the red edge position to longer wavelengths (Dawson 
& Curran, 1998). As a result, the red edge position has been successfully used 
in studies to estimate chlorophyll concentration, biomass and LAI (Curran et al., 
1991; Danson & Plummer, 1995; Thomas & Gaussman, 1987).  

Chlorophyll a and chlorophyll b concentration in plants have also been 
shown to correlate strongly with nitrogen (Katz et al., 1966; Penuelas et al., 
1994). Nitrogen is related with the protein synthesis, which promote the 
photosynthetic process. The nitrogen deficiency disturbs the metabolic function 
of the chlorophyll, which is the photosynthetic element responsible for the 
absorption of electromagnetic radiation (Ponzoni & Goncalves, 1999).  Studies 
have therefore used the red edge - chlorophyll relationship to infer the nitrogen 
status of plants in vegetation science (Fillella & Penuelas, 1994).  

In this study, we hypothesize that, since chlorophyll largely determines 
the red edge shift, a strong correlation between the red edge position and 
nitrogen concentration is also expected. The objective of this study was to 
evaluate the response of the red edge to a variation in nitrogen supply at canopy 
level and to establish the relationship between foliar nitrogen concentration and 
the red edge. The wavelength of the red edge position  (λre), amplitude 
(reflectance at the maximum slope), slope at 713 nm and 725 nm channels were 
compared. We designed an experiment in which we varied nitrogen supply to 
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three groups of C. ciliaris grass grown in a greenhouse, and measured canopy 
reflectance in the laboratory for four weeks.    
 
 
4.2. Materials and methods 
 
4.2.1. Plant preparation 
 
Blue Buffalo grass (C. ciliaris) was sown in a greenhouse for this experiment. 
C. ciliaris is a sweet perennial grass that grows naturally in Southern Africa and 
is widely used as grass for ruminants. The grass grows from 10 cm to 150 cm 
and is tufted, erect, branching and rooting at the nodes (Pooley, 1998). The 
grass grows fast and is currently recommended for planting in dry land areas in 
order to provide grass to ruminants (Pooley, 1998). Details of the planting, 
application of nitrogen treatments and monitoring of growth are found in 
Mutanga et al. (2003). 
 
4.2.2. Canopy spectral measurements 
 
To manipulate a variation in chemical concentration, spectral measurements 
were taken at the beginning of every week for four weeks, from September 3rd 
2001. Measurements were taken from this date onwards because the grass had 
grown to an extent that it was largely covering the soil, thus minimising the 
background effects. The plants were transferred in their pots from the 
greenhouse to a laboratory on each day of measurement. A total of eight pots 
from each treatment were measured every week. A GER 3700 
spectroradiometer was used and the measurement protocol is well detailed in 
Mutanga et al. (2003). Figure 4.1 shows the mean and standard deviation of the 
measured spectra. 
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Figure 4.1. Mean canopy reflectance and standard deviations (n = 32 for each 
treatment) of C. ciliaris grass canopy measured under controlled laboratory conditions 
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4.2.3. Chemical analysis 
 
All standing grass from each pot was clipped and oven dried at 70º C for 24 
hours. The samples were ground through a 1mm steel screen with a cyclone 
sample mill. Destruction of the samples was done before automated 
determinations.  Organic matter was oxidized by applying hydrogen peroxide at 
relatively low temperature. Salicylic acid was added to prevent loss of nitrate. 
After decomposition of the excess H2O2, the destruction was completed by 
concentrated sulphuric acid at elevated temperature under the influence of 
Selenium powder as a catalyst.  

Nitrogen concentration was measured with a segmented flow analyser 
at 660 nm wavelength. Table 4.1 shows the resulting data set. 
 

Table 4.1: Nitrogen concentration of the plant material collected over the four-week 
period (n = 96) 
Treatment Mean Min max CL (95%) 
Control (mg/g) 13.8 9.27 24.1 1.59 
Low (mg/g) 19.3 11.4 42.2 2.52 
High (mg/g) 34.2 25.8 44.9 2.37 
 
 
4.2.4. Calculating the red edge parameters 
 
The red edge parameters were derived from the first derivative of the 
reflectance. The first derivative is commonly used to enhance absorption 
features that might be masked by interfering background absorptions and 
canopy background effects (Dawson & Curran, 1998; Elvidge, 1990). The first 
derivative spectra were calculated from each reflectance spectrum. A first 
difference transformation of the reflectance spectrum calculates the slope values 
from the reflectance and can be derived from the following equation (Dawson & 
Curran, 1998): 

FDSλ(i)= (Rλ(j+1)- Rλ(j))/∆ λ   (1) 
 
where FDS is the first derivative reflectance at a wavelength i midpoint 

between wavebands j and j+1.  Rλ(j) is the Reflectance at the j waveband, Rλ(j+1) 
is the  reflectance at the j+1 waveband  and ∆ λ is the difference in wavelengths 
between j and j+1.  Table 4.2 summarizes the parameters derived from the first 
derivative reflectance.  
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Table 4.2. The red edge parameters 
Red edge parameter Definition 
Position (λre) Wavelength of the red edge peak (maximum slope position)  
Amplitude First derivative value at the red edge peak (maximum slope) 
Slope 1 First derivative reflectance at 713 nm 
Slope 2 First derivative reflectance at 725 nm 
 
Slope 1 was obtained from the corresponding mean red edge position. Slope 2 
was selected since the 725 nm wavelength has been used as a red edge 
parameter for estimating chlorophyll and LAI (Fillella & Penuelas, 1994). The 
first derivative spectra were calculated on the continuum-removed spectra. 

Continuum removal was applied on the absorption feature centred on 
670 nm. The continuum is a convex hull fit over the top of a spectrum utilizing 
straight-line segments that connect local spectra maxima. The continuum is 
removed by dividing the reflectance value for each point in the absorption 
troughs by the reflectance level of the continuum line (convex hull) at the 
corresponding wavelength. The first and last spectral data values are on the hull 
and therefore the first and last bands in the output continuum-removed data file 
are equal to 1. The output curves have values between zero and one, in which 
the absorption troughs are enhanced (Mutanga et al., 2003) and the absolute 
variance removed (Schmidt & Skidmore, 2001).  
 
4.2.5.  Statistical analysis 
 
We tested the hypothesis that there is no significant difference in the position of 
the red edge inflection point among nitrogen supply treatments. This was tested 
using one-way analysis of variance following a confirmation of normality in the 
data set using the Kolmogrov-Smirnov test. The null hypothesis was that the 
mean wavelengths (λre) of the red edge position are equal for all treatments 
versus the alternative that they are not equal. A post hoc-Scheffe´ test was used 
to determine the significant differences between two treatment means in an 
analysis of variance setting. 

In order to ascertain a relationship between the red edge parameters and 
nitrogen concentration, bootstrapping correlation was executed. Bootstrapping 
is a technique for estimating standard error, confidence intervals and sampling 
distributions for any statistic as the most common way of indicating statistical 
accuracy (Efron, 1982). Bootstrapping simulates the sampling distribution of 
any statistic by treating the observed data as if it were the entire statistical 
population under study.  On each replication, a random sample of size N is 
selected, with replacement from the available data. The statistic of interest (in 
this case correlation coefficient) is calculated on this bootstrapped subsample 
and recorded. The process is repeated for several times in order to obtain the 
sampling distribution. The method facilitates accuracy assessment using the 
same data set. 
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A total of 200 replications were executed for each correlation between 
the wavelength position of the red edge and nitrogen concentration. The mean 
and confidence intervals were calculated for the bootstrapped data. Analysis of 
variance and hoc-Scheffe´ tests were executed between bootstrapped 
correlations from the four red edge parameters. This was done to ascertain if the 
results produced by the four methods are comparable. 
 
4.3. Results 
 
4.3.1. Shift in the red edge 
 
Figure 4.2 shows the continuum-removed mean canopy reflectance in the red 
edge. The reflectance curves shift to longer wavelength with an increase in the 
amount of nitrogen to the treatments.  
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Figure 4.2. Continuum-removed, mean canopy reflectance spectra of C. ciliaris grass 
by treatment. Continuum removal was applied on the absorption feature between 550 
nm and 750 nm. The reflectance values were normalised and have output values 
between 0 and 1. The red edge positions for each treatment are shown. The low N 
treatment shows two peaks, at 705 nm and at 725 nm. 
 
 
4.3.2. The red inflection point 
 
Figure 4.3 shows the first derivative reflectance on continuum-removed spectra. 
The inflection points of the three treatments are located at different positions. 
The inflection point for the control is at 703 nm, which implies that the curve 
for the control in Figure 4.2 quickly changes from concave to convex at shorter 
wavelength as compared to the high nitrogen treatment which remained 
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concave, and then changes into convex at longer wavelengths, around 725 nm. 
The inflection point for the high nitrogen treatment therefore shifted to longer 
wavelength. It is also interesting to note from Figure 4.3 that the low nitrogen 
treatment has a plateau (with a slight dip in the middle) between 705 nm and 
720 nm. This confirms the long straight slope between 705 nm and 720 nm in 
Figure 4.2.  

Although the peak of the low nitrogen treatment is at 705 nm, the height 
of the peak is not statistically different from the one at 720 nm. This implies that 
there are two peaks in the low nitrogen treatment as compared to the control and 
the high nitrogen treatments. 
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Figure 4.3.  First derivative reflectance on continuum-removed spectra of    C. ciliaris 
grass measured under controlled laboratory conditions. The highest peaks show the 
position of the red edge inflection point. Note the plateau on the low nitrogen treatment. 
 
The box plots in Figure 4.4 show the medians and spread of the red edge 
positions in three different treatments. Results of one - way analysis of variance 
(ANOVA) indicate that the means of the three treatments (red edge positions) 
are statistically different (p  < 0.000).  
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Figure 4.4. The red edge inflection points related to their corresponding levels of 
nitrogen supply (C = control, LN = Low nitrogen, HN = High nitrogen) in C. ciliaris 
grass. The red edge positions were obtained from maximum peak of the continuum 
removed, first derivative reflectance spectra. 
 
A hoc-Scheffe´ test was used to test if there was any significant difference 
between two treatments. Results indicate that there is statistically significant 
difference between each pair of treatments tested   (p < 0.000). 

 
4.3.3.Relationship between the red edge parameters and nitrogen concentration 
 
We investigated if the position and slope components (amplitude, slope at 713 
nm and 725 nm) of the red edge are related to the concentration of nitrogen in 
grass. Table 4.3 shows the mean, standard errors and confidence intervals of the 
bootstrapped correlation coefficient between the red edge parameters and 
nitrogen. 
 
Table 4.3. Bootstrapped correlation coefficients between nitrogen concentration and the 
red edge parameters (n = 96). A total of 200 iterations were executed for each pair. 
 Mean SE 95% CL  
Red edge position 0.89** 0.0011 0.0022 
Amplitude -0.28* 0.0056 0.011 
Slope 1 0.63** 0.0042 0.0083 
Slope 2 0.75** 0.003 0.006 
**Significant: p < 0.01 * Significant: P < 0.05 
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The red edge position yielded the highest correlation with nitrogen 
concentration. The maximum slope (amplitude) yielded the lowest negative 
correlation with nitrogen. Note that the 95% confidence limits for all the red 
edge parameters are lower than 0.05. Figure 4.5 shows the histogram of the 
bootstrapped correlations between the red edge parameters and nitrogen 
concentration. The histograms show the normal distribution correlations 
produced by the bootstrapping methodology. The small 95% confidence limits 
in Table 4.3 imply that the bootstrapped mean correlation coefficients approach 
the population estimate with a high precision. 

One - way analysis of variance was used to test if there was any 
difference in the bootstrapped correlations produced by the different red edge 
parameters. Results show that the mean correlation coefficients from the four 
red edge parameters were significantly different (p < 0.000). A hoc-Scheffe´ test 
confirmed that the mean correlation coefficients between each pair were 
significantly different (p < 0.000).    
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Figure 4.5. Bootstrapped correlation coefficients between nitrogen concentration and a) 
the red edge position, b) amplitude, c) slope at 713 nm and d) slope at 725 nm. A total 
of 200 simulations were run between the red edge position and nitrogen concentration   
(n = 96). 
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4.4. Discussion 
 
Our results have shown that there is a difference in spectral reflectance with 
response to nitrogen supply.  The red edge changed significantly with an 
increase in nitrogen supply to plants. There is a strong nitrogen-pigment 
relationship (Kokaly, 2001). Therefore an increase in nitrogen supply to plants 
results in an increase in chlorophyll (Penuelas et al., 1994; Yoder & Pettigrew-
Crosby, 1995), which ultimately widens the 680 nm absorption feature and 
thereby shifting the red edge to longer wavelengths. 

The configuration of the curves in Figure 4.2 confirms the response of 
the red edge to nitrogen supply. The position of change from concave to convex 
is different for the three treatments. The control curve quickly changes around 
703 nm whereas the high nitrogen treatment changes around 725 nm. This 
implies that there was not much widening of the absorption feature in the 
control treatment as compared to the high nitrogen treatment. This is clearly 
evident in Figure 4.3, which shows the red edge peaks as well as the box plots 
in Figure 4.4 that shows the position of the red edge. Statistical tests showed 
that the mean red edge positions of the three treatments were significantly 
different.  

Of interest is the shape of the low nitrogen treatment (Figure 4.2). 
Visually, there is no sharp change of the curve from concave to convex. There is 
a straight line between the two slope forms, which implies a gradual transition 
from concave form to convex form. This explains the plateau observed in 
Figure 4.3. Horler et al., (1983) also identified two components in the first 
derivative spectrum with peaks around 700 and 725 nm. The plateau represents 
a gradual transition zone from concavity to convexity and confirms other 
studies that have also yielded two peaks in the first derivative analysis (Clevers 
& Jongschaap, 2001). 

Many studies have shown that there is a relationship between the red 
edge position and chlorophyll concentration as well as LAI (Boochs et al., 
1990; Curran et al., 1990; Fillella & Penuelas, 1994). They used this 
relationship to infer the nitrogen status of plants. We directly tested the 
relationship between several red edge parameters and the actual concentration 
of nitrogen at canopy level in this study. The design of this experiment resulted 
in a wide range of foliar biochemicals (Table 4.1) that resulted in different 
spectral signatures (Figure 4.1).  The red edge position yielded the highest 
correlation coefficient with nitrogen (r = 0.89) as compared to the slope 
components tested. Analysis of variance and hoc-Scheffe´ test results indicate 
that the bootstrapped correlations obtained using the four methods are 
significantly different and therefore not comparable. The red edge position is 
therefore a better estimator of nitrogen concentration as compared to slope. The 
accuracy of the correlation was tested through the bootstrapping methodology, 
which resulted in very low confidence limits (Table 4.3), therefore a high 
precision of the estimate.  
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4.5. Conclusion 
 
Results from this study show that the red edge shift is related to nitrogen supply 
in plants. The mean wavelengths (λre) of the red edge position were statistically 
different for all treatments. This implies a significant shift of the red edge 
position to longer wavelength as nitrogen supply increases. The red edge 
parameters were significantly correlated to nitrogen concentration even at 
canopy level - an interesting result for the remote sensing of foliar chemistry in 
rangelands. When the four methods used were compared, the red edge position 
yielded the highest correlation coefficient. The technique is important for 
strengthening models that have been developed to explain wildlife distribution 
and feeding patterns. However, the potential use of these laboratory methods 
developed from fine spectral resolution data (GER) can be made operational by 
investigating their capability to estimate grass quality using relatively coarser 
spectral resolution data such as the HYMAP spectra.  
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CHAPTER 5: 
Discriminating tropical grass grown 
under different nitrogen treatments 
using spectra resampled to HYMAP  
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Abstract 
 
The development of techniques to estimate and map grass quality is important 
for a better understanding of wildlife feeding patterns. We tested whether 
canopy reflectance spectra, resampled to HYMAP resolution could discriminate 
between groups of tropical grass containing different levels of nitrogen 
concentration. Canopy spectral measurements were taken from C. ciliaris grass 
grown under three different nitrogen treatments using a GER 3700 
spectrometer. Using the resampled spectra, the red edge position was calculated 
and continuum removal was applied on the red absorption feature between 550 
nm and 757 nm. Canonical variate analysis was used to discriminate between 
the three nitrogen treatment groups using the spectra. Results show that 
canonical variates derived from continuum removed red absorption feature, in 
combination with the red edge position (resampled to HYMAP resolution) can 
discriminate between the three nitrogen treatment groups. The canonical 
structure matrix also revealed that the greatest discrimination power is 
contained in the red edge slope. The results show the importance of the visible 
portion of the electromagnetic spectrum (where foliar water effect is minimal) 
in predicting foliar nitrogen concentration. Overall, the study demonstrated the 
potential of airborne sensors such as HYMAP for mapping tropical grass 
quality.  

 
 
 

Keywords 
Canopy reflectance, canonical variate analysis, red edge position, red absorption 
feature, continuum removal, and nitrogen concentration 
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5.1 Introduction 
 
The quality of tropical grass (as determined by the concentration of foliar 
nitrogen) is an important factor influencing the feeding patterns and distribution 
of wildlife and livestock in savanna rangelands (Drent & Prins, 1987; 
McNaughton, 1990; McNaughton & Banyikwa, 1995; Prins, 1989; Prins, 1996). 
Better quality patches in rangelands contain high percentages of total digestible 
nutrients and have high percentages of nitrogen concentration. Techniques for 
mapping grass quality are therefore important to better understand wildlife 
feeding patterns. 

The advent of hyperspectral remote sensing has offered unprecedented 
opportunities to detect and map variations in grass quality due to its use of 
narrow spectral channels. These narrow spectral channels allow the detection of 
detailed features, which are otherwise masked by the broad bands of satellites 
such as Landsat TM (Kumar et al., 2001; Landgrebe, 1999; Schmidt & 
Skidmore, 2001). In order to map grass quality, the underlying premise is that 
patches or sites with different nitrogen levels reflect differently in specific 
wavelengths.  

The detection of foliar nitrogen concentration at canopy level has been 
largely achieved using very high-resolution spectrometers such as GER 3700 
with a spectral sampling interval of less than 2 nm and a band width of less than 
5 nm (Curran et al., 1992; Mutanga & Skidmore, 2003; Mutanga et al., In 
press). However, current operational airborne sensors do not reach such a fine 
spectral resolution. Instead, the current airborne sensors such as HYMAP MK 1 
have wider bandwidths of 15 nm (Boegh et al., 2002; Johnson et al., 1994; 
Kokaly et al., 2003; Kupiec & Curran, 1995). In view of the current availability 
of these relatively coarser spectral resolution airborne sensors, it is of interest 
whether specific spectral channels that are related to foliar nitrogen 
concentration from these sensors are investigated, for instance, through 
resampling fine spectral resolution data to coarser spectral resolutions. If 
positive, such results could make the mapping and monitoring of rangeland 
condition in space and time operational.  

The aim of this study was to investigate whether canopy reflectance 
spectra, resampled to HYMAP spectral resolution could be used to discriminate 
between groups of tropical grass grown under different nitrogen treatments. We 
also sought to identify the spectral bands that are most important in 
discriminating the foliar groups.  

In order to achieve this, we designed an experiment in which we varied 
the nitrogen concentration available to C. ciliaris grass and measured canopy 
reflectance spectra over four weeks. Subsequent analysis was done by applying 
canonical variate analysis (CVA) on the R550-757 red absorption feature (Mutanga 
et al., 2003) as well as the red edge position (Mutanga & Skidmore, In review), 
using spectra resampled to HYMAP MK 1 resolution. Canonical variate 
analysis (CVA) is a multivariate statistical tool that has been shown to be 
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effective in exhibiting optimal separation of groups and learning which 
variables are most related to the separation of groups (McGarigal et al., 2000; 
Schmidt, 2003).  
 
5.2. Materials and methods 
 
Blue Buffalo grass (C. ciliaris), a sweet perennial grass (C4) that grows 
naturally in East and Southern Africa and is widely used as a pasture grass (Van 
Oudtshoorn, 1999, was grown in a greenhouse for this experiment. The grass 
forms swards that range between 10 cm and 150 cm in height and has proved to 
be a suitable species for growing in a greenhouse. The experimental set up, 
planting and monitoring of growth is detailed in Mutanga et al. (2003).  
 
5.2.1 Canopy spectral measurements 
 
Reflectance measurements were taken using a GER 3700 spectroradiometer. To 
manipulate a variation in chemical concentration, measurements were taken at 
the beginning of each week for four weeks from 3 September 2001. The 
measurement protocol is fully described in Mutanga et al. (2003). Figure 5.1 
shows the mean and confidence limits of the measured spectra. A total of 96 
samples were measured.   
 

0

5

10

15

20

25

350 850 1350 1850 2350
Wavelength (nm)

R
ef

le
ct

an
ce

 (%
)

 UCL

 Mean

LCL

Continuum line

 
Figure 5.1. Canopy reflectance spectra of C. ciliaris grass (n = 96) measured over 4 
weeks. The mean, upper 95 % confidence limit (UCL) and lower 95 % confidence limit 
(LCL) of the spectra are shown. The continuum line shows the start and end points of 
the absorption feature that was transformed for analysis in this study. 

 
The high-resolution GER spectra were resampled to the HYMAP spectra using 
the ENVI (Environment for visualising images, Research Systems, Inc.) 
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software. The method uses a gaussian model with a full width at half maximum 
(FWHM) equal to the band spacings provided. The modelled HYMAP spectra 
were used for subsequent analysis. 
 
5.2.2 Chemical analysis 
 
Samples clipped from each pot were taken to the Department of Tropical Nature 
Conservation and Vertebrate Ecology, at Wageningen University in the 
Netherlands for chemical analysis. Samples were oven dried at 70º C for 24 
hours and were ground through a 1 mm steel screen with a cyclone sample mill. 
Digestion of the samples was done before automated determinations. Salicylic 
acid was added to prevent loss of nitrate. After decomposition of the excess 
H2O2, the digestion was completed by concentrated sulphuric acid at elevated 
temperature under the influence of selenium powder as a catalyst. Nitrogen 
concentration was measured with a segmented flow analyzer at 660 nm 
wavelength and was expressed as milligrams per gram (mg/g). 
 
 
5.3 Data analysis 
 
5.3.1 Continuum removal 
 
Continuum removal was applied on the resampled HYMAP spectra between 
550 and 757 nm (Curran et al., 2001; Mutanga et al., 2003). The red absorption 
feature has been found to be related to foliar nitrogen concentration using fine 
spectral resolution data (Mutanga et al., 2003) and was therefore selected for 
this study. Furthermore, compared to other absorption features in the shortwave 
infrared, there is minimum foliar water effect on the red absorption feature 
therefore suitable for detecting nitrogen on fresh canopies.  The waveband of 
757 nm was selected as the endpoint on the absorption feature since it is the 
closest band to the formally used 750 nm band (Mutanga et al., 2003), which is 
not available on the HYMAP sensor. Continuum removal is calculated by 
dividing reflectance at the continuum line by the absolute reflectance at the 
corresponding wavelength. This results in values between 0 and 1. Continuum 
removal normalizes reflectance spectra to allow comparison of individual 
absorption features from a common baseline (Kokaly, 2001). The technique also 
enhances the absorption features (Mutanga et al., 2003; Schmidt & Skidmore, 
2003). Figure 5.2 shows the R550-757 continuum removed absorption feature for 
the HYMAP resampled spectra. 
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Figure 5.2. Continuum-removed absorption feature between 550 nm and 757 nm for the 
control, low nitrogen and high nitrogen treatments. Continuum removal was applied to 
the absorption feature after resampling the GER 3700 spectra to the HYMAP spectra. 
 
 
Resampling resulted in 14 bands between 550 and 757nm. The first and last 
bands of the absorption feature were excluded since they had values of 1 after 
continuum removal. Therefore 12 bands were used for further analysis. 

 
5.3.2 The red edge position (REP) 
 
The red edge position (REP) was also calculated from the resampled spectra. 
The REP is the point of maximum slope (inflection point) in vegetation 
reflectance spectra (Fillella & Penuelas, 1994) that occurs in the 680 – 750 nm 
region. The REP has been found to be strongly correlated with nitrogen 
concentration (Mutanga & Skidmore, In review) and was  therefore applied in 
this study. 

The linear method was used to calculate the red edge position (Clevers 
& Jongschaap, 2001; Guyot & Baret, 1988). This interpolation method was used 
rather than the first derivative (Dawson & Curran, 1998) method because the 
degraded HYMAP spectrum has only five wavelengths in the red edge slope. 
The linear interpolation assumes that the reflectance at the red edge can be 
simplified to a straight line centred around a midpoint between the reflectance 
in the NIR at 780 nm (788 nm for the resampled spectra used in this study) and 
the reflectance minimum of the chlorophyll absorption feature at about 670 nm 
(663 nm for the resampled spectra used in this study). The procedure is as 
follows: First, the reflectance value at the inflection point is estimated (equation 
1). Second, the linear interpolation procedure between the measurements at 695 
nm and 742 nm is applied to estimate the wavelength corresponding to the 
estimated reflectance at the inflection point (equation 2). Formally stated: 
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Calculating the reflectance value at the inflection point (Rre) 
(Rre) = (R663 + R788)/2 (1) 

 
 
Calculating the red edge position 
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where R663, R695, R742 and R788 are the reflectance values at 663, 695, 

742 and 788 nm respectively. The value 695 refers to wavelength position 
belonging to R695. The value 47 refers to the wavelength interval in nm between 
695 nm and 742 nm. Figure 5.3 shows box plots of the red edge positions for 
the three treatments.  The red edge position shifted to longer wavelengths with 
an increase in nitrogen concentration. 

Control Low High

N treatment class

716

718

720

722

724

726

728

R
EP

 
Figure 5.3. Box plots showing the mean and spread of the red edge position (REP) for 
the three nitrogen treatment groups (Control, Low and High). The REP was calculated 
using the resampled spectra (from GER 3700 spectra to HYMAP spectra). A linear 
interpolation technique (Guyot & Baret, 1988) was used to calculate the REP. 
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The REP was used with the variables from the continuum-removed absorption 
feature as input to canonical variate analysis (CVA). 
 
5.3.3 Canonical variate analysis 
 
Canonical variate analysis (CVA) is a multivariate analysis technique whose 
objective is to discriminate among prespecified groups of sampling entities 
based on a suite of characteristics (McGarigal et al., 2000).  The technique 
involves deriving linear combinations of two or more discriminating variables 
that will best discriminate among the a priori defined groups. The best linear 
combination of variables is achieved by the statistical decision rule of 
maximizing the among-group variance, relative to the within-group variance in 
canonical scores. Canonical variate analysis was applied in this study since it 
has been shown to significantly improve the mapping of saltmarsh vegetation as 
compared to other transformation techniques such as principal component 
analysis (Schmidt, 2003). 

The CVA can only be solved for one less than the number of classes g  
(in this study two canonical functions were generated) and the result is a matrix 
of eigen vectors (A) with ( )1−g  dimensions and ( )1−g  single value 
decompositions or eigen values. In this regard, the canonical transformation 
matrix is used to transform the reflectance spectra into lower dimensional space 

.y  
The first canonical function defines the specific linear combination of 

variables that maximizes the ratio of among-group to within-group variance in 
any single dimension. The second canonical function explains the remaining 
variance (also based on among-group to within-group variance) and so forth. 
Therefore a meaningful interpretation can be given to the gradient based on the 
relative importance of the original variables in the linear function and there is 
data reduction in the process. 
From this background, we used CVA to achieve two main objectives: 
(i) to exhibit optimal separation of the three treatment groups, based on 

linear transformations (canonical functions or canonical variates) of the 
HYMAP spectra and establish which wavelengths are most related to 
the separation of groups (called descriptive canonical variate analysis), 
and; 

(ii) to predict the group membership for samples of undefined origin based 
on its measured values of the discriminating variables. In other words, 
to establish the potential of canonical variates derived from reflectance 
spectra in classifying samples to their respective treatment classes 
(called predictive canonical variate analysis or classification).  
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These two objectives were used to evaluate the potential of canopy reflectance 
spectra; resampled to HYMAP resolution (our main research question) in 
discriminating grass subjected to different nitrogen treatments. 

Classification of the treatment groups was applied using spectra after a 
canonical variate transform. The classification method utilises a linear 
combination of discriminating variables that maximises group differences while 
minimising variation within groups. The linear combinations yield canonical 
functions for each group. Each function allows the computation of canonical 
scores for each case for each group. Each case is then classified into the group 
with the closest group mean canonical score.  

We used the leave-one-out cross validation technique for estimating the 
error rate conditioned on the training data. Using this cross validation technique, 
each observation is systematically dropped, the canonical function re-estimated 
and the excluded observation classified. The confusion matrix was constructed 
to compare the true class with the class assigned by the classifier to the test 
samples. We also calculated a discrete multivariate technique called kappa 
analysis that uses the K̂  statistic as a measure of agreement with the reference 
data (Cohen, 1960; Skidmore, 1999; Congalton, 1993). If kappa coefficient is 
one or close to one then there is perfect agreement between the training and test 
data. 
 
 
5.4. Results  
 
5.4.1 Variation in foliar nitrogen concentration 
 
In order to evaluate whether the experiment yielded distinct groups with 
different foliar nitrogen concentration, we assessed the amount of nitrogen 
contained in the three foliar groups. Results showed that, the design of the 
experiment resulted in a variation in the foliar concentration of nitrogen 
between treatments (Table 5.1).  

 
Table 5.1: Foliar nitrogen concentration 
Treatment Mean Confidence level (95%) 
Control 13.8 1.59 
Low 19.3 2.36 
High 34.2 2.23 
 

We tested the research hypothesis that the mean nitrogen concentration 
(mg/g) for the control, low and high nitrogen treatments were different, viz. the 
null hypothesis Ho: µ1= µ2 = µ3 versus the alternate hypothesis Ha: µ1< µ2 < 
µ3, where: µ1, µ2 and µ3 are the mean nitrogen concentrations for the control, 
low and high treatments respectively. We used a one-way ANOVA to test this 
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research hypothesis. The conclusion from this test is that the mean 
concentrations are significantly different (p < 0.001).  

One - way ANOVA only shows that there is a significant difference in 
the mean nitrogen concentrations from the three treatments, but it does not show 
which pairs are different. We therefore executed a post-hoc Scheffe’ test in 
order to establish differences between each treatment. Results indicated that the 
mean nitrogen concentration differed significantly for each treatment pair (p < 
0.001), prompting an investigation of the potential of high-resolution 
reflectance data in discriminating between the treatment groups containing 
different mean foliar nitrogen concentrations. 
 
5.4.2 Canonical variate analysis result  
 
The overall discrimination between the three treatment groups was highly 
significant  (Wilks’ lambda = 0.14, F = 7.6, p < 0.000). Table 5.2 shows the 
eigen values as well as the factor structure matrix from the canonical variate 
analysis. The factor structure coefficients represent the correlations between the 
variables and the canonical functions and are used to interpret the meaning of 
the canonical functions. 

The largest proportion of the explained variance (95%) is contained in 
the first canonical function. The highest factor structure coefficients are 
contained in the red edge slope (the coefficients are greater than 0.70 for the 
REP and the 726 nm, 710 nm, as well as 742 nm bands). The second canonical 
function also shows that the largest contribution is contained in the red edge 
slope (742 nm, 726 nm, REP) and to a lesser extent, the green portion of the 
electromagnetic spectrum (583 nm).  
 
Table 5.2: Factor Structure Matrix representing the correlation between the variables 
and the canonical functions.  
 Root 1 Root 2 
Eigenvalues 4.6576 (95%) 0.2672 (100%) 
  REP -0.708376 0.255207 
567 0.670072 -0.095898 
583 0.619955 -0.191510 
599 0.594963 -0.053645 
615 0.568852 -0.033682 
631 0.537990 -0.016494 
647 0.496565 -0.027894 
663 0.417850 -0.054934 
679 0.368828 -0.092437 
695 0.558773 -0.037651 
710 0.723892 -0.069436 
726 0.743228 -0.220834 
742 0.706960 -0.359094 
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Table 5.3 shows means of canonical variables, which indicate the nature of the 
discrimination for each canonical root or function. The results in Table 5.3 
indicate that the first canonical function discriminates mostly between the 
control group and other treatments, followed by the high treatment group.  
 
Table 5.3: Means of canonical variables to determine the nature of the discrimination 
for each canonical root 
 Root 1 Root 2 
Control -2.61408 0.354514 
Low 0.02523 -0.719493 
High 2.58885 0.364979 
 
The second canonical function discriminates mostly between the low treatment 
group and other treatments, however, based on the review of the eigenvalues 
(Table 5.2), the magnitude of the discrimination is much smaller for the second 
canonical function than that of the first canonical function. The scatter plot in 
Figure 5.4 shows the positions of samples in the canonical space. 
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Figure 5.4. Scatterplot of two canonical scores produced by canonical variate analysis. 
The positioning of the treatment groups indicates the gradient of foliar nitrogen 
concentration contained by the groups.  
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The positioning of the canonical scores shows a gradient from the 
control, with very low nitrogen concentration, to the high treatment with high 
nitrogen concentration. 

 
5.4.3 Classification 
 
To further investigate the effectiveness of hyperspectral data to discriminate 
between treatment groups as well as explaining the observed patterns, we 
classified the samples using the Fisher’s linear discriminant function with 
proportional to group size prior probabilities (McGarigal et al., 2000; Richards, 
1993). Following the leave one out cross validation, the confusion matrix in 
Table 5.4 shows that we could classify samples to their respective groups with 
an overall accuracy of 77.1%.   
 
Table 5.4. Testing the predictive discriminatory power of the canonical functions. We 
used the leave-one-out technique for estimating the error rate conditioned on the 
training data. Consequently, each observation is systematically dropped, the canonical 
function re estimated and the excluded observation classified. The confusion matrix 
includes the kappa statistic, commission error (CE), user accuracy (UA), omission error 
(OE), and producer accuracy (PA). 
 Control Low High CE UA 
Control 27 5 0 16 84 
Low 4 22 6 31.2 68.8 
High 0 7 25 21.9 78.1 
OE 12.9 35.3 19.4 % acc = 77.1 
PA 87.1 64.7 80.6 Kappa = 0.66 

 
 

This high classification rate indicates the degree of discrimination achieved by 
the canonical functions.  

A posthoc analysis of the misclassified samples indicate that 56% of the 
misclassified samples have foliar nitrogen concentration values that falls within 
the lower and upper quartiles of the nitrogen concentration ranges of the 
treatment groups to which they were classified. These samples therefore 
represent the overlapping nitrogen concentration samples between the groups 
(Figure 5.4). This result confirms the effect of foliar nitrogen concentration on 
spectral reflectance. 
 
 
 
 



Chapter 5 
 

 71

5.5 Discussion 
 
This study aimed at discriminating treatment groups of tropical grass containing 
different levels of nitrogen concentration using spectrometry. The motivation of 
the study was to investigate whether there is a possibility to map rangeland 
patches exhibiting different levels of nitrogen concentration using their 
reflectance spectra. To achieve this ultimate goal of mapping rangeland quality, 
an investigation of the utility of the operational airborne sensors with a coarser 
spectral resolution than the field spectrometers is critical. 

We tested the utility of spectra, resampled to HYMAP resolution (15 
nm band width in the visible domain) in discriminating between the treatment 
groups containing different foliar nitrogen concentrations. The study has shown 
that, canonical functions derived from continuum removed red absorption 
feature, in combination with the red edge position (resampled to HYMAP 
resolution) can discriminate between the treatment groups with different foliar 
nitrogen concentrations. This result permits the extension of laboratory 
experiments to airborne hyperspectral images for mapping the concentration of 
nutrients (quality) in tropical grasses. Furthermore, the successful use of the 
visible portion of the electromagnetic spectrum in accomplishing this task is of 
significance in remote sensing. 

Relative to other parts of the electromagnetic spectrum such as the 
SWIR, the effect of water absorption in the visible portion of the 
electromagnetic spectrum is minimum. Therefore, the wavebands in this region 
can be used as additional information for mapping foliar biochemical 
concentration on fresh canopies. Experiments using the red edge slope have also 
shown that, this portion is insensitive to atmospheric and background effects 
(Broge & Leblanc, 2000; Clevers, 1999; Demetriades-Shah et al., 1990; Guyot 
et al., 1992), therefore useful for mapping grass quality under natural 
environmental conditions. These results are comparable to those of Mutanga et 
al., (2003) who found out that the visible red absorption feature as well as the 
REP can discriminate between different nitrogen treatment groups using a high 
resolution field spectrometer (GER 3700). Such consistent results demonstrate 
the potential use of the visible region even at a coarser HYMAP spectral 
resolution, is of significance in mapping rangeland quality. 

Canonical variate analysis (CVA) has helped to reduce dimensionality 
in the hyperspectral data set to two canonical functions as well as describing 
and exploring the relative importance of individual wavelengths in explaining 
foliar nitrogen differences. The technique also provided an insight in the 
relationships among the treatment groups, thereby unravelling the potential of 
hyperspectral remote sensing in discriminating between different levels of foliar 
nitrogen concentration.  

The analysis using CVA has shown that the highest factor structure 
coefficients (canonical loadings) for the first canonical function are contained in 
the red edge slope (Table 5.2). As shown by the eigenvalues, the magnitude of 
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canonical discrimination in the first canonical function (the first function 
accounts for 95% of the explained variance) is higher than the other function, 
thereby indicating the importance of the significant red edge variables. The red 
edge is caused by strong chlorophyll absorption in the red region and canopy 
scattering in the near infrared (Dawson & Curran, 1998). As a result of a strong 
relationship between chlorophyll and foliar nitrogen concentration (Katz et al., 
1966; Penuelas et al., 1994), a strong relationship between the red edge and 
nitrogen concentration is expected (Mutanga & Skidmore, In review). Overall, 
this analysis shows the importance of the red edge slope in discriminating foliar 
treatment groups with different levels of nitrogen concentration. 

The relative positioning of the groups along the canonical axes in 
Figure 5.4 provides an insight in the relationships among the treatment groups. 
Treatment groups in close proximity in canonical space are similar with respect 
to the gradients defined by the canonical functions. The control is positioned to 
the left, followed by the low treatment in the middle, and the high treatment is 
positioned to the right of the feature space. This positioning indicates the 
gradient of foliar nitrogen concentrations contained by the groups, thereby 
confirming the potential of hyperspectral remote sensing in separating groups 
with different levels of foliar nitrogen concentration. 

Canonical variate analysis using hyperspectral data has also classified 
foliar nitrogen cases (entities) into their respective groups with an accuracy of 
77%. Considering that the spectra was degraded to HYMAP resolution, this 
result shows potential to use airborne hyperspectral remote sensing to map 
foliar nitrogen concentration in rangelands. 

In summary, the results presented in this study show the potential use of 
hyperspectral remote sensing to predict and map tropical grass quality. 

 
5.6. Conclusions 
 
This paper aimed at discriminating between the nitrogen treatment groups of 
tropical grass using a combination of continuum-removed spectra and the REP, 
resampled to HYMAP resolution. Our results have shown that: 

(i) Canonical functions computed from spectral data can discriminate 
between the treatment groups containing different foliar nitrogen 
concentrations. 

(ii) Even though the spectral resolution was degraded to HYMAP 
spectra it was still possible to classify test samples to their respective classes 
with an accuracy of 77.1 %. 

(iii) The canonical structure matrix has revealed that greater 
discrimination power is contained in the red edge slope. The first canonical 
function (Root 1) is strongly related with the 726 nm, 710 nm, and 742 nm 
wavebands as well as the REP. This shows the importance of the red edge in 
predicting foliar nitrogen concentration, thereby confirming previous studies 
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that found strong correlations between foliar nitrogen and the red edge 
(Mutanga and Skidmore, 2003). 

Overall, this study has demonstrated that, it is possible to discriminate 
grass containing different levels of nitrogen concentration at canopy level, 
thereby setting the basis to use hyperspectral data to predict grass quality under 
natural field conditions. In addition, the study demonstrated the possibility to 
discriminate grass with different levels of nitrogen concentration using 
resampled hyperspectral data. This permits the up scaling of the method to 
airborne sensors such as HYMAP for mapping tropical grass quality. Such 
studies will further enhance an understanding of wildlife feeding patterns and 
their spatial distribution. 
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CHAPTER 6: 
Predicting in situ grass quality in the 
Kruger National Park, South Africa, 
using continuum-removed absorption 

features 
 
 
 
 
 
 
 
 

*This chapter is based on  
1. Mutanga, O., Skidmore, A. K., and Prins, H.H.T, (2004), Predicting in situ 
pasture quality in the Kruger National Park, South Africa, using continuum-
removed absorption features, Remote Sensing of Environment, 89 (3), 393-408. 

The paper is a modified version of a conference paper entitled:  
 

2. Mutanga, O., Skidmore, A. K, (2003), Continuum-removed absorption 
features estimate tropical savanna pasture quality in situ, 3rd EARSeL Workshop 
on Imaging Spectroscopy, 13-16 May 2003. EARSeL, Hersching , Germany  

Best conference paper presentation award 
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Abstract 
 
The remote sensing of grass quality as determined by nitrogen, phosphorous, 
potassium, calcium and magnesium concentration is critical for a better 
understanding of wildlife and livestock feeding patterns. Although remote 
sensing techniques have proved useful for assessing the concentration of foliar 
biochemicals under controlled laboratory conditions, more investigation is 
required to assess their capabilities in the field, where inconsistent results have 
been obtained so far. We investigated the possibility of determining the 
concentration of in situ biochemicals in a savanna rangeland, using the spectral 
reflectance of five grass species. Canopy spectral measurements were taken in 
the field using a GER 3700 spectroradiometer. We tested the utility of using 
four variables derived from continuum-removed absorption features for 
predicting canopy nitrogen, phosphorus, potassium, calcium and magnesium 
concentration: (i) continuum-removed derivative reflectance (CRDR), (ii) band 
depth (BD), (iii) band depth ratio (BDR) and (iv) normalised band depth index 
(NBDI). Stepwise linear regression was used to select wavelengths from the 
absorption-feature-based variables. Univariate correlation analysis was also 
done between the first derivative reflectance and biochemicals. Using a training 
data set, the variables derived from continuum-removed absorption features 
could predict biochemicals with R2 values ranging from 0.43 to 0.80. Results 
were highest using CRDR data, which yielded R2 values of 0.70, 0.80, 0.64, 
0.50 and 0.68 with root mean square errors (RMSE) of 0.01, 0.004, 0.03, 0.01 
and 0.004 for nitrogen, phosphorous, potassium, calcium and magnesium, 
respectively. Predicting biochemicals on a test data set, using regression models 
developed from a training data set, resulted in R2 values ranging from 0.15 to 
0.70. The error of prediction (RMSE) in the test data set was 0.08 (±10.25 % of 
mean), 0.05 (± 5.2 % of mean), 0.02 (± 11.11 % of mean), 0.05 (± 11.6 % of 
mean) and 0.03 (± 15 % of mean) for nitrogen, potassium, phosphorous, 
calcium and magnesium, respectively using CRDR. When data was partitioned 
into species groups, the R2 increased significantly to > 0.80. With high-quality 
radiometric and geometric calibration of hyperspectral imagery, the techniques 
applied in this study (i.e. continuum removal on absorption features) may also 
be applied on data acquired by airborne and spaceborne imaging spectrometers 
to predict and ultimately to map the concentration of macronutrients in tropical 
rangelands.  

 
 

Key words: Field spectra, absorption features, bootstrapping, continuum 
removal, and savanna rangelands 
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6.1. Introduction 
 

Macronutrients (nitrogen, phosphorous, potassium, calcium and 
magnesium) are mainly responsible for plant development and health; therefore 
they determine nutritional quality of forage for herbivores (Salisbury & Ross, 
1985). Nitrogen is commonly the most limiting nutrient for grazers (Grant et al., 
2000; Owen-Smith & Novellie, 1982; Prins, 1996; Scholes & Walker, 1993). 
Therefore, an understanding of nitrogen concentration in pastures is relevant to 
understanding the survival and productivity of wildlife and livestock 
populations. Studies of Southern African pastures have also shown that, besides 
nitrogen, phosphorous and to a lesser extent potassium are limiting factors (Du 
Toit & Malan, 1940). In the Serengeti ecosystem, McNaughton and Banyikwa 
(1995) discovered that phosphorous was an important element in discriminating 
between grazing hot spots and control swards. In the Tarangire ecosystem, 
nitrogen and phosphorous determine the migratory patterns of wildebeest 
(Voeten, 1999). Studies have also shown that potassium deficiency in wildlife 
results in muscle weakness, cardiac as well as respiratory failure (Groenewald 
& Boyazoglu, 1980; Robbins, 1983). Calcium and magnesium are largely 
responsible for bone and tooth formation. To prevent malnutrition and disease, 
wildlife exhibit preferences for certain sites and certain plant species or 
communities based on quality (Muya & Oguge, 2000). In this regard, the 
development of techniques to predict pasture quality is critical for explaining 
the distribution and feeding patterns of wildlife and livestock (Styles & Skinner, 
1997; van Soest, 1994). 

The traditional methods available for detecting pasture quality require 
detailed sampling and expensive laboratory analysis. This usually results in the 
collection and analysis of inadequate data that are not representative of the 
population if large areas are investigated (Foley et al., 1998). Remote sensing 
offers potential to predict foliar biochemical concentrations in rangelands, 
thereby reducing the tedious process of intensive sampling and laboratory 
analysis. 

The remote sensing of foliar biochemicals has developed rapidly since 
the late 1970s (Curran et al., 1995; Peterson et al., 1988; Wessman, 1994; 
Yoder & Pettigrew-Crosby, 1995), using mainly laboratory near-infrared 
spectroscopy (NIRS) methods (Marten et al., 1989; Norris et al., 1976). NIRS 
can provide accurate predictions of protein, amino acids, lignin and cellulose 
concentrations contained in dried ground forage (Norris et al., 1976), and in 
many laboratories the technique has replaced wet chemistry as the standard 
analytical procedure for assessing plant biochemicals (Yoder & Pettigrew-
Crosby, 1995).  

Extending the use of empirical laboratory NIRS to predicting 
biochemicals at canopy level has not been very successful to date (Curran et al., 
2001; Kumar et al., 2001). This is because the presence of water in fresh 
canopies masks the biochemical absorption features, particularly in the 
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shortwave infrared (Clevers, 1999; Kokaly & Clark, 1999). In addition, leaf 
orientation and soil background effects, as well as atmospheric absorption, 
further complicate the remote sensing of biochemicals in the field (Asner et al., 
2000). Studies that used NIRS methods such as multiple linear regression to 
predict canopy chemistry have yielded inconsistent results when applied across 
different vegetation types (Grossman et al., 1996). NIRS-based techniques such 
as stepwise regression also suffer from problems of overfitting, especially when 
more wavebands than samples are used (Curran et al., 2001).  

In order to minimize the effect of spectral variability that is independent 
of the biochemical concentration, Kokaly and Clark (1999) applied a refined 
approach that enhances and standardises known chemical absorption features. In 
their study, continuum removal was applied to broad absorption features of dry 
leaf spectra in the shortwave infrared region (1730 nm, 2100 nm and 2300 nm) 
and absorption band depths relative to the continuum were calculated. Like 
NIRS, this approach uses stepwise regression. The risk of overfitting is 
minimised by concentrating on known absorption troughs that are enhanced by 
continuum removal (Clark & Roush, 1984). The method showed strong 
correlation (r2 = 0.95) between nitrogen concentration and the continuum-
removed and normalised band depths at five locations in the 2100 nm 
absorption feature. Recently, Curran et al. (2001) applied the Kokaly and Clark 
methodology to 12 biochemicals and achieved high accuracy. Mutanga et al. (In 
review) applied the method to predicting biochemicals in live standing 
canopies, using the major chlorophyll absorption feature in the visible domain. 
However, all the above studies were conducted under controlled laboratory 
conditions. The method has not been extended to the field to our knowledge. In 
addition, only a few studies (Gong, 2002; Milton et al., 1991; Ponzoni & 
Goncalves, 1999) have attempted to determine the foliar nutrient status of 
potassium, phosphorous, magnesium and calcium.  

A relationship between spectral reflectance, particularly visible 
absorption and macronutrients such as phosphorous, potassium, magnesium and 
calcium is expected due to their effect on the photosynthetic process in plants 
(Al-Abbas et al., 1974; Thomas & Oerther, 1972). For example, phosphorous is 
fundamental to tissue composition as well as being one of the components of 
the nucleic acids and enzymes. Potassium is also important, both for activating 
enzymes responsible for the metabolism of carbohydrates and in the apical 
dominance (Ponzoni & Goncalves, 1999). These elements are therefore 
responsible for both the photosynthetic process and the tissue composition of 
plants, and hence related to the visible absorption bands (Salisbury & Ross, 
1985). Nitrogen exhibits specific absorption features in the shortwave infrared 
(Curran, 1989) and is also responsible for the metabolic function of the 
chlorophyll. Since chlorophyll largely determines spectral reflectance in the 
visible, a strong relationship between visible absorption bands and nitrogen 
concentration is also expected. 
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In this study, we aimed at improving and extending the band depth 
analysis method in order to predict the concentrations of macronutrients in 
grasses (nitrogen, phosphorous, potassium, calcium and magnesium) measured 
in the Kruger National Park, South Africa. In addition to the shortwave infrared 
absorption features used by Kokaly and Clark, we considered the two major 
absorption features located in the visible region, where the effect of water is 
minimal. A modified first derivative reflectance approach and a new index were 
also developed and tested. 
 
6.2. Materials and methods 
 
6.2.1. The study area 
 
The study area was located in the northern plains of the Kruger National Park 
(KNP) in South Africa. A strip of 2 km by 25 km was selected, stretching west 
(22º 49′ S and 31º 01′ E) to east (22º 44′ S and 31º 22′ E) and covering granitic 
and basaltic formations. The site is generally flat, particularly the eastern part, 
which is underlain by basalt. Grass production is higher in the basalts than in 
the granite area, and there is considerable variation in species as well as 
nutritional quality between the two geological formations (Grant et al., 2000). 
The area is generally covered by open grassland in the east, mixed mopane  
(Colophospermum mopane) and grass in the basalt-granite transition, and 
woodland in the granite area.  

Stratified random sampling with clustering was adopted in this study. 
The area was stratified (using the land cover map provided by the KNP GIS 
division) into open grassland in the basalt area, and mixed woodland and 
woodland in the granite area. Coordinates (x y) were randomly generated in 
each stratum to select plots. A total of 30 plots were initially generated. To 
increase the number of samples in a time and labour constrained situation, two 
extra plots were clustered at least 100 m from each of the initially generated 
plots. This resulted in a total of 90 plots that were sampled. Each plot covered 
10 m by 10 m, largely homogenous in species cover. The plot size was decided 
in order to clearly identify the dominant grass species as well as for collecting 
other ancillary data  (e.g slope, terrain position and species cover) that was used 
in a separate paper.  
 
6.2.2. Canopy spectral measurements and collection of samples for laboratory 
analysis 
 
Replicates of canopy spectral measurements were taken from a bunch of grass 
representing one dominant grass species in each plot using a GER (Geophysical 
and Environmental Research Corporation, Buffalo, New York) 
spectroradiometer and samples for laboratory analysis were collected from that 
particular bunch of grass. The GER 3700 is a three dispersion grating 
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spectroradiometer using Si and PbS detectors with a single field of view. The 
wavelength range is 350 nm to 2500 nm, with a spectral sampling of 1.5 nm in 
the 350 nm to 1050 nm range, 6.2 nm in the 1050 nm to 1900 nm range, and 9.5 
nm in the 1900 nm to 2500 nm range. The bandpass is 3 nm, 11 nm and 16 nm 
in the 350 nm to 1050 nm range, 1050 nm to 1900 nm range, and 1900 nm to 
2500 nm range, respectively.   

The fibre optic sensor was pointed at the target (a bunch of grass 
species representing one dominant grass species) in nadir position from about 
1 m height for each spectral measurement. The ground field of view was about 
18 cm in diameter, which was large enough to cover a bunch of a grass species, 
without measuring possible surrounding bare areas.  For each measurement, a 
single dominant species was represented in the field of view and a total of 25 
replicate spectral measurements were taken from that dominant species in the 
plot. In other words, the replicates are repeated spectral measurements of the 
same field of view from a bunch of grass representing one dominant grass 
species. The resulting spectrum was determined as an average of the 25 spectral 
measurements. In few cases where two species dominated in a plot, replicates of 
spectral measurements were taken separately for each species. The calibrated 
GER spectrometer automatically converted the digital numbers to radiance 
units. These radiance units were in turn converted to reflectance using scans of a 
calibrated Spectralon reference panel (Labsphere, Inc, North Sutton, New 
Hampshire).   

The fieldwork was conducted at the beginning of the dry season from 
mid April to mid May in 2002. Spectral measurements were taken on clear 
sunny days between 11:30 a.m. and 2:00 p.m. For the wooded western portion 
of the study area, spectral measurements were taken in sun lit areas between the 
trees. In the few cases where two species dominated in a plot, both spectra and 
samples were collected separately for each species and stored in separate paper 
bags. This means that both spectra and samples for laboratory analysis were 
collected according to species and subsequent analysis was done using subsets 
of individual species and then using a combined data set for all the samples. A 
total of 96 samples, comprising five grass species (C.  ciliaris, E. lehmanniana, 
U. mosambicensis, P. maximum and T.  triandra) were collected for analysis 
(Table 6.1).  

Since the fieldwork was conducted at the beginning of the dry season, 
the grass was already starting to senesce. The senescing state of the grass is 
reflected in the mean spectral profile (Figure 6.1) of the data collected, which 
distinctively shows the R2006-2196 biochemical absorption feature that could 
otherwise be masked by water in fresh plants (Kokaly & Clark, 1999). 

Although it is known that foliar nutrient quality is important to 
herbivores at all times of the year (Prins, 1989), we carried our fieldwork during 
the beginning of the dry season because nutrient quality becomes more critical 
during the dry season as compared with the wet season (McNaughton, 1988; 
Prins & Olff, 1998). The wet season grass is green and highly nutritious, 
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whereas during the dry season nutrient concentration becomes low and patchy 
as the grass senesces causing herbivores to concentrate on patches with 
relatively high nutrient concentration (Owen-Smith & Novellie, 1982). In other 
words, we assert that nutrient concentration becomes an even more critical 
determinant of herbivore distribution during the dry season. 
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Figure 6.1: Mean reflectance spectrum (flanked by 95 % upper confidence limit (UCL) 
and 95 % lower confident limit (LCL)) of the data used in this study    (n = 96). The 
R2006-2196 biochemical absorption feature is shown indicating the senescing state of the 
grass during the period of measurement. The spectral region between 1824 nm and 1954 
nm was removed due to excessive noise. 
 
6.2.3. Biochemical analysis 
 
The spectrally measured grass in the plots was clipped and oven-dried at 70º C 
for 24 hours. Plant tissue was analysed at the Institute of Tropical and 
Subtropical Crops under the Agricultural Research Council (ARC-ITSC) in 
Nelspruit, South Africa using the wet digestion techniques with 98% sulphuric 
acid and 30% hydrogen peroxide for N extraction and 55% nitric acid and 70% 
perchloric acid for P, K, Ca, Mg and Na extraction (Giron, 1973). Atomic 
absorption flame spectroscopy using air-acetylene was used for detecting 
potassium, calcium and magnesium (Poluektov, 1973). The colometric method 
was used to detect nitrogen (Technicon Industrial method 329 - 74W) and 
phosphorous (Technicon Industrial method 4 – 68W).  For phosphorous 
detection the phosphomolybedenum complex was read at 660 nm and for 
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nitrogen detection the ammonia-salicylate complex was read at 640 nm 
(Grasshoff et al., 1983). 
 
6.3. Data analysis 
 

Univariate as well as multivariate statistical techniques were applied in 
this study. Univariate correlations were calculated on standard first derivative 
reflectance (FDR). Multivariate analyses were carried out on variables 
calculated from continuum-removed absorption features, as proposed by Kokaly 
and Clark (1999), i.e. band depth (BD) and band depth ratio (BDR). We also 
proposed and tested two new variables: continuum-removed derivative 
reflectance (CRDR) and normalised band depth index (NBDI).  
 
6.3.1. First derivative reflectance  
 
A first difference transformation of the reflectance spectrum (FDR) calculates 
the slope values from the reflectance and can be derived from the following 
equation (Dawson & Curran, 1998): 
 

FDRλ(i)= (Rλ(j+1)- Rλ(j))/∆ λ  (1) 
 
where FDR is the first derivative reflectance at a wavelength i midpoint 

between wavebands j and j+1. Rλ(j) is the reflectance at waveband j, Rλ(j+1) is the 
reflectance at waveband j+1, and ∆ λ is the difference in wavelengths between j 
and j+1. The GER spectrometer wavelength intervals (described earlier) were 
used to denote the intervals between channels j and j+1. Correlations between 
the FDR and foliar biochemicals were calculated at each wavelength, and 
correlograms were plotted.  
 
6.3.2. Absorption features 
 
Six known chemical absorption features were selected for this study: the 
chlorophyll absorption features in the visible domain (R 470 – 518 and R550 –  

750), which have been found to be related to nitrogen concentration and 
other biochemicals in both fresh standing canopies (Mutanga et al., In review) 
and dried ground plant material (Curran et al., 2001); and shortwave absorption 
features (R1116 – 1284, R1634 – 1786, R2006 – 2196 and R2222 – 2378) that have hitherto used 
in studies of dried plant material (Curran et al., 2001; Kokaly & Clark, 1999).  

Continuum removal was applied to the selected absorption features. 
Continuum removal normalises reflectance spectra in order to allow comparison 
of individual absorption features from a common baseline (Kokaly, 2001). The 
continuum is a convex hull fitted over the top of a spectrum to connect local 
spectral maxima. The convex hull can be considered as the shape that a rubber 
band would attain if it were stretched over the reflectance spectrum. This means 
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that the convex hull will be in contact with the reflectance spectrum at 
maximum reflectance points such as the red edge shoulder.  

Since we were interested in isolating specific absorption features in this 
study, we defined local start and end points on a particular absorption feature. 
These endpoints were initially used by Kokaly and Clark (1999) as well as 
Curran et al (2001) and we adapted them in this study for comparison and 
consistency. Linear continua were fitted between the start and endpoints of the 
absorption features and then continuum removal was applied. The continuum-
removed reflectance R′ (λ) is obtained by dividing the reflectance value R (λ) for 
each waveband i in the absorption feature by the reflectance level of the 
continuum line (convex hull) Rc(λ) at the corresponding wavelength i:  

R′ (λi)
    = 

)(

)(

ic

i

R
R

λ

λ  (2) 

The first and last spectral data values are on the hull and therefore the 
first and last values of the continuum-removed spectrum are equal to 1. The 
output curves have values between 0 and 1 in which the absorption troughs are 
enhanced (Schmidt & Skidmore, 2001). Continuum removal enhances bands by 
correcting for apparent shifts in the band minimum caused by wavelength-
dependent scattering that imparts a slope to the spectrum. Removal of the 
continuum slope corrects the band minimum to that of the true band centre 
(Clark & Roush, 1984). Figure 6.2 shows continuum-removed absorption 
features (averaged over samples of each of the three species) in the visible 
region, with a variation in band depth for different species.  

Continuum removal has proved useful in mapping the distribution of 
minerals by comparing remotely sensed absorption band shapes with those in a 
reference library (Clark & Roush, 1984). Efforts to apply the method in 
vegetation science have been made using dried plant material in the laboratory 
(Kokaly, 2001; Kokaly & Clark, 1999). At canopy scale, Kokaly et al., (2003) 
applied spectral feature analysis of continuum removed plant absorption 
features to discriminate species composition of in situ forest stands.  This 
method has not to our knowledge been extended to predict foliar biochemicals 
in situ. 
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Figure 6.2: The absorption features     (R470 – 518 and R550 – 750) enhanced by continuum 
removal for three species collected in this study (U. mosambicensis, T.  triandra, E. 
lehmanniana). The absorption features shown are averaged spectrum of all the samples 
representing each of the three species respectively. 
 
 
The four variables (CRDR, BD, BDR, NBDI) were calculated from the 
continuum-removed absorption features as follows:  

(i) Continuum-removed derivative reflectance (CRDR) was calculated 
by applying the first difference transformation described in equation 1 to the 
continuum-removed reflectance spectrum R′ . CRDR approximates the slope of 
reflectance, which is more closely related to absorption features enhanced by 
continuum removal (Schmidt & Skidmore, 2003) than the reflectance 
magnitude per se (Serrano et al., 2002).  

 
(ii) Band depth (BD) was calculated by subtracting the continuum-

removed reflectance at wavelength i from 1: 
BD (λi)

   = 1- R′ (λi) (3) 
 
(iii) Since remotely sensed measurements of vegetation canopies are 

affected by factors such as atmospheric absorptions, soil background and water, 
a normalisation procedure using band indices was also carried out to minimise 
these influences (Kokaly & Clark, 1999). The normalised band depth ratio 
(BDR) was calculated by dividing the band depth (BD) of each channel i by the 
band centre (Dc), which is the maximum band depth: 

BDR (λi)
    = 

c

i

D
BD )(λ  (4) 
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(iv) The normalised band depth index (NBDI) was calculated by 
subtracting the maximum band depth (Dc) from the band depth (BD) and 
dividing it by their sum: 

NBDI (λi)
    = 

ci

ci

DBD
DBD

+

−

)(

)(

λ

λ  (5) 

Where i is the band depth at a particular wavelength. 
 
6.3.3. Feature selection 
 
Although the number of spectral bands used for analysis in this study had been 
reduced from 647 bands to 294 by concentrating on known chemical absorption 
features, we further reduced them by using stepwise linear regression.  Stepwise 
regression has been widely used to relate remotely sensed data to vegetation 
variables (Curran et al., 2001; Kokaly & Clark, 1999; Martin & Aber, 1997; 
Serrano et al., 2002). To avoid overfitting problems, the maximum number of 
steps in the stepwise regression analysis for predicting individual species was 
set at three. This was extended to a maximum of six for the combined data set 
of all the species (n = 96). Most authors recommend 10 to 20 times as many 
observations as variables, otherwise the regression line predictions are very 
unstable and unlikely to replicate if the experiment is repeated (Serrano et al., 
2002; Skidmore et al., 1997b).  

Building regression models with field spectroradiometry is important 
for fast and efficient prediction of foliar biochemical concentrations in 
rangelands. In other words, the regression models can be applied on field 
reflectance spectra acquired at the same resolution and under similar ecological 
conditions. This in turn, saves time spend in field data collection, as well as 
reducing costs on laboratory biochemical analysis. 
 
6.3.4. Testing the predictive capability of regression models 
 

A modified bootstrap procedure was used to test the predictive 
capability of multiple linear regression models developed between selected 
absorption feature variables and biochemicals (Efron & Tibshirani, 1994; 
McGarigal et al., 2000).  The data was randomly divided into training and test 
samples (n = 72 and 24 respectively). A regression model was developed from 
the training data set. Next, the test data set was bootstrapped with replacement 
for n = 1000 times, and for each iteration a regression model from the training 
data set was used to predict biochemicals in the test subsample and the R2 
values as well as the root mean square errors were recorded. The mean and 95% 
confidence levels of R2 values as well as RMSE values for the test data were 
calculated and recorded. A routine developed in IDL (Interactive Data 
Language) was used. Confidence levels of the bootstrapped R2 as well as the 
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RMSE values were used in this study as the most conventional way to assess the 
degree of certainty in our results. 

We adopted this bootstrap procedure in order to improve upon the 
approach followed in many similar studies on predicting foliar biochemicals. 
Several studies (Curran et al., 2001; Kokaly & Clark, 1999) tested the 
predictive capability of a developed regression model on a single test data set. 
This resulted in only one RMSE between the predicted and the measured data. 
We therefore bootstrapped the test sample in order to obtain several RMSEs, 
thereby assessing the degree of certainty in our results (Efron, 1982; Efron & 
Tibshirani, 1994; McGarigal et al., 2000), whilst maintaining the approach 
followed in similar studies. The method adopted in this study takes the form of 
the "split-sample” validation where data is divided into two sets (Burman, 1989; 
Goutte, 1997; Stone, 1977) and is deemed more objective than the standard 
bootstrap procedure because there is validation with a test data set (Stone, 
1977). 

To check the validity of the bootstrap approach that we used, we also 
applied a slightly different bootstrap procedure using the nitrogen data set as an 
example. This involves splitting the data into training and test samples several 
times (cross-validation), and for each iteration, the stepwise regression model 
from the training set is used to predict biochemicals on the test sample 
(Diaconis & Efron, 1983; Efron, 1982).  
 
6.4. Results 
 
6.4.1. Foliar biochemical concentration 
 
The concentration of biochemicals varied among species. Table 6.1 details the 
descriptive statistics of the data set. Average nitrogen concentration ranged 
from 0.69 ± 0.12 % CL (95% confidence limit of the mean) in T.  triandra to 
0.94 ± 0.29 % CL in E. lehmanniana. The mean phosphorous concentration 
ranged from 0.14 ± 0.03 % CL in T.  triandra to 0.2 ± 0.03 CL in U. 
mosambicensis. The lowest potassium concentration was found in T.  triandra 
(mean concentration = 0.74 ± 0.15 % CL) and the highest in E. lehmanniana 
(mean concentration = 1.12 ± 0.54 % CL). The mean magnesium concentration 
ranged from 0.176 ± 0.035 % CL in T.  triandra to 0.256 ± 0.035 % CL in U. 
mosambicensis. For foliar calcium concentration, the mean ranged from 0.35 ± 
0.052 % CL in T.  triandra to 0.57 ± 0.062 % CL in U. mosambicensis. The 
ranges of biochemical concentrations recorded in this study are relatively lower 
than the concentration levels usually recorded in green grass. Most of the foliar 
chemicals recorded are intercorrelated. Table 6.2 shows the intercorrelation 
between the measured biochemicals when all species were combined. Results 
indicate a significant positive correlation between all pairs of foliar 
biochemicals (p < 0.05), except between nitrogen and calcium. Most of the 
biochemicals measured constitute the productive function in plants and are 
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responsible for metabolic processes; hence there is a positive correlation among 
the biochemicals. 
 
Table 6.1: Descriptive statistics of the biochemical variables measured (by species) in 
the laboratory 
Biochemical by species No. of samples Mean (%) Confidence CL  of  

mean (95%) 
Minimum (%) Maximum (%) 

Nitrogen      
P. maximum 17 0.76 0.068 0.5 1.06 
T.  triandra 20 0.69 0.117 0.38 1.38 
U. mosambicensis 28 0.79 0.129 0.43 2 
C.  ciliaris 21 0.76 0.08 0.43 1.03 
E. lehmanniana 10 0.94 0.299 0.44 1.81 
 All combined 96 0.78 0.055 0.38 2 
      
Magnesium      
P. maximum 17 0.217 0.038 0.061 0.377 
T.  triandra 20 0.176 0.035 0.084 0.414 
U. mosambicensis 28 0.256 0.035 0.07 0.409 
C.  ciliaris 21 0.189 0.034 0.08 0.336 
E. lehmanniana 10 0.177 0.056 0.085 0.309 
 All combined 96 0.209 0.017 0.061 0.414 
      
Calcium      
P. maximum 17 0.392 0.048 0.26 0.56 
T.  triandra 20 0.353 0.052 0.14 0.68 
U. mosambicensis 28 0.57 0.062 0.24 1.03 
C.  ciliaris 21 0.41 0.055 0.18 0.6 
E. lehmanniana 10 0.368 0.086 0.19 0.56 
     All combined 96 0.437 0.031 0.14 1.03 
      
Potassium      
P. maximum 17 1.038 0.199 0.46 1.8 
T.  triandra 20 0.745 0.157 0.21 1.58 
U. mosambicensis 28 0.97 0.198 0.33 2.43 
C.  ciliaris 21 1.01 0.211 0.22 1.85 
E. lehmanniana 10 1.124 0.537 0.31 2.71 
 All combined 96 0.96 0.098 0.21 2.71 
      
Phosphorous      
P. maximum 17 0.191 0.054 0.064 0.421 
T.  triandra 20 0.143 0.034 0.042 0.318 
U. mosambicensis 28 0.202 0.032 0.108 0.423 
C.  ciliaris 21 0.19 0.053 0.046 0.479 
E. lehmanniana 10 0.174 0.035 0.121 0.281 
 All combined 96 0.182 0.018 0.042 0.479 

 
Table 6.2: Intercorrelation of biochemical concentrations measured in the laboratory 
 P K Ca Mg 
P 1.00    
K 0.74** 1.00   
Ca 0.53** 0.39** 1.00  
Mg 0.75** 0.78** 0.60** 1.00 
N 0.41** 0.72** 0.26 0.50** 
** Significant: p < 0.05 
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6.4.2. Discriminating species using the continuum removal method 
 
Prior to biochemical analysis of the species subsets, we tested whether the 
species could be discriminated with respect to their spectral signatures, thereby 
permitting their separation for analysis. The visible absorption (R550-750) feature 
was used for this task, following its successful application in other studies 
(Kokaly et al., 2003; Schmidt & Skidmore, 2003). We used one-way ANOVA 
to test the hypothesis that the mean reflectance (continuum-removed) values for 
T. triandra, C. ciliaris, U. mosambicensis, P. maximum and E. lehmanniana 
were significantly different at wavelength i, viz. the null hypothesis Ho: µ1 = 
µ2= µ3…µn versus the alternate hypothesis Ha: µ1 ≠ µ2 ≠ µ3…µn. Where, µ1, µ2, 
and µ3…µn are the mean reflectance values of the n species at wavelength i. 
The conclusions obtained from these tests were that different species yielded 
different spectral responses (P values ranging between 0.000064 and 0.0049) for 
the wavelength region between 560 and 746 nm. Following this, subsequent 
analysis was done using species subsets as well as using a combined data set. 

 
6.4.3. The first derivative reflectance (FDR) 
 
The correlograms in Figure 6.3 show the correlations between the FDR and 
biochemicals for 647 bands.  
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Figure 6.3:Relationship between the first derivative reflectance (FDR) and 
biochemicals using the whole data set (n = 96). Wavelengths of highly correlated picks 
are shown. 
 
There are significant correlations between the FDR and biochemicals 
particularly in the red edge. Generally, the nitrogen, phosphorous and potassium 
correlograms show a strong correlation with the red edge. There are, however, 
poor correlations with calcium and magnesium in the whole region of the 
electromagnetic spectrum. All biochemicals also show weak correlations in the 
SWIR between 2000 nm and 2500 nm.  For some intercorrelated biochemicals 
(Table 6.3), the correlograms of these chemicals are similar as shown in Figure 
6.3 (nitrogen, phosphorous and potassium correlograms). This similarity largely 
depends on similarities in the absorption properties of the biochemicals 
themselves. 
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6.4.4. Species-based biochemical prediction using multiple linear regression on 
absorption features 
 

Multiple linear regressions were used to predict biochemicals in 
different species studied in this research. All variables (CRDR, BD, BDR and 
NBDI) were applied. Table 6.3 shows regression terms and selected 
wavelengths by stepwise regression using the first derivative reflectance of the 
continuum-removed absorption features (CRDR) to predict biochemicals for C.  
ciliaris.  

The majority of wavelengths selected for all chemicals are located in 
the visible domain of the electromagnetic spectrum. A detailed report of 
selected wavelengths is provided in section 6.4.5, using the pooled data set.  
Results in Table 6.4 show that all the variables tested in this study generally 
yielded high coefficients of determination for all species (R2 ranged from 0.50 
to 0.99). Low root mean square errors were also obtained. Compared with the 
other variables tested, CRDR yielded relatively higher coefficients of 
determination and lower RMSE for all biochemicals.  
 
6.4.5. Using absorption features to predict biochemicals in the training data set 
 

 Stepwise linear regression was carried out between biochemicals and 
the four variables (CRDR, BD, BDR and NBDI), using the randomly selected 
training data set (n = 72) from the combined species data set. The maximum 
number of selected wavelengths was set at six for each regression equation in 
order to avoid overfitting. Detailed results of the frequency of wavelengths 
selected by stepwise regression using the four data sets (CRDR, BD, BDR, 
NBDI) are shown in Table 6.5.  

The frequency of bands that occur within ± 12 nm of a known chemical 
absorption wavelength is shown. The ± 12 nm range was defined by Curran et 
al. (2001) to indicate causal chemical absorption. This was adapted in this study 
for consistency and comparison. The highest frequency of bands occurs in the 
R1634 – 1786 absorption feature (frequency = 32), followed by the R550 – 750 
absorption feature (frequency = 29). A total of 64 % of the bands selected are 
attributed directly or indirectly to known causal wavelengths (Curran et al., 
2001) as well as to bands reported in other studies. Bands that are directly 
attributed means that they occur within ± 12 nm of the biochemical of interest 
and bands that are indirectly attributed means that they are within ± 12 nm of a 
biochemical with which the biochemical of interest was correlated. 
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Table 6.3: Regression terms and selected wavelengths by stepwise regression using first 
derivative reflectance of the continuum-removed absorption features (CRDR) to predict 
foliar chemicals for C.  ciliaris (n = 21) 
Index Wavelength (nm) Coefficient R2 P 
Nitrogen     
Intercept  0.855  0.00 
λ1 438 -120.62 0.65 0.00 
λ2 2125 -164.06 0.82 0.00 
λ3 417 -63.82 0.88 0.01 
     
Potassium     
Intercept  0.31  0.00 
λ1 599 -943.26 0.68 0.000 
λ2 738 -513.88 0.86 0.000 
λ3 444 -166.26 0.90 0.01 
     
Phosphorous     
Intercept  0.089  0.000 
λ1 611 -105.83 0.84 0.000 
λ2 483 63.38 0.91 0.000 
λ3 429 -15.25 0.94 0.007 
     
Calcium     
Intercept  0.304  0.000 
λ1 675 -193.10 0.60 0.000 
λ2 424 -62.90 0.73 0.000 
λ3 2310 44.29 0.88 0.000 
     
Magnesium     
Intercept  0.14  0.000 
λ1 627 -129.56 0.63 0.000 
λ2 667 63.43 0.73 0.001 
λ3 422 -12.47 0.81 0.020 
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Table 6.4: Linear regression results by species (R2 and the RMSE) between 
biochemicals and continuum-removed derivative reflectance (CRDR), band depth (BD), 
band depth ratio (BDR) and normalised band depth index (NBDI)  

 Species CRDR BD BDR NBDI 
  R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
N P. maximum 0.94 0.04 0.83 0.05 0.93 0.03 0.97 0.02 
 T.  triandra 0.92 0.06 0.83 0.09 0.79 0.14 0.80 0.11 
 U. mosambicensis 0.91 0.09 0.90 0.1 0.68 0.18 0.53 0.22 
 C.  ciliaris 0.88 0.01 0.67 0.02 0.58 0.03 0.52 0.02 
 E. lehmanniana 0.99 0.008 0.97 0.02 0.97 0.02 0.87 0.04 
 Average 0.93  0.84  0.79  0.74  
          
Mg P. maximum 0.87 0.02 0.80 0.03 0.90 0.03 0.88 0.02 
 T.  triandra 0.93 0.02 0.93 0.02 0.70 0.03 0.77 0.03 
 U. mosambicensis 0.72 0.04 0.62 0.05 0.54 0.06 0.52 0.06 
 C.  ciliaris 0.81 0.005 0.87 0.005 0.71 0.008 0.69 0.008 
 E. lehmanniana 0.98 0.001 0.99 0.001 0.96 0.001 0.99 0.001 
 Average 0.86  0.84  0.76  0.77  
          
Ca P. maximum 0.89 0.03 0.84 0.03 0.87 0.04 0.88 0.03 
 T.  triandra 0.81 0.04 0.73 0.057 0.86 0.05 0.85 0.05 
 U. mosambicensis 0.62 0.09 0.58 0.1 0.52 0.08 0.50 0.1 
 C.  ciliaris 0.88 0.01 0.82 0.01 0.78 0.01 0.79 0.01 
 E. lehmanniana 0.98 0.001 0.98 0.005 0.98 0.003 0.99 0.002 
 Average 0.84  0.79  0.80  0.80  
          
K P. maximum 0.85 0.14 0.80 0.16 0.52 0.21 0.83 0.15 
 T.  triandra 0.86 0.11 0.75 0.17 0.80 0.14 0.85 0.12 
 U. mosambicensis 0.92 0.14 0.89 0.16 0.78 0.24 0.65 0.24 
 C.  ciliaris 0.90 0.02 0.89 0.03 0.56 0.06 0.53 0.06 
 E. lehmanniana 0.98 0.01 0.97 0.03 0.93 0.05 0.95 0.04 
 Average 0.90  0.86  0.72  0.76  
          
P P. maximum 0.92 0.02 0.93 0.02 0.77 0.04 0.75 0.05 
 T.  triandra 0.94 0.02 0.89 0.02 0.78 0.03 0.68 0.03 
 U. mosambicensis 0.81 0.03 0.69 0.04 0.78 0.03 0.73 0.04 
 C.  ciliaris 0.94 0.004 0.94 0.005 0.71 0.01 0.68 0.01 
 E. lehmanniana 0.98 0.001 0.99 0.000 0.97 0.001 0.96 0.002 
 Average 0.92  0.88  0.80  0.76  
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Table 6.5: Frequency of wavelengths selected for all dependent variables by stepwise regression applied to the four data sets 
(CRDR, BD, BDR, NBDI) and their relation with known absorption wavelengths. The unattributed are wavelengths that are 
not within ± 12 nm of known chemical absorption as well as those not reported in other studies. The total number of bands 
selected in each absorption feature is also expressed as a percentage of the total (in brackets). 
Absorptio
n feature  

Wavelengths of 
known chemical 
influence (nm) 

Known causal 
biochemical 

Reference Frequency of bands 
selected (± 12 nm of 
known wavelength) 

430 Chlorophyll a (Curran, 1989; Kumar et 
al., 2001) 

7 

460 Chlorophyll b (Curran, 1989; Kumar et 
al., 2001) 

1 

Unattributed   4 

R408 – 518 

Total   12 (10) 
570 Chlorophyll + nitrogen (Penuelas et al., 1994) 7 
640 Chlorophyll b (Curran, 1989; Kumar et 

al., 2001) 
4 

660 Chlorophyll a (Curran, 1989; Kumar et 
al., 2001) 

4 

Red edge (700 – 750) Chlorophyll + nitrogen (Clevers & Buker, 1991; 
Curran et al., 1991; Fillella 
& Penuelas, 1994; Horler et 
al., 1983) 

8 

Unattributed    6 

R550 – 750 

Total   29 (25) 

1120 Lignin (Curran, 1989; Kumar et 
al., 2001) 

4 

Unattributed    10 R1116-1284 

Total   14 (12) 
1690 Nitrogen (Curran, 1989; Kumar et 

al., 2001) 
8 

1730 Nitrogen (Curran, 1989; Kumar et 
al., 2001) 

8 

Unattributed   16 
Total   32 (27) 

R1634- 1786 

    
2060 Nitrogen (Curran, 1989; Kumar et 

al., 2001) 
2 

2130 Nitrogen (Curran, 1989; Kumar et 
al., 2001) 

6 

2180 Nitrogen (Curran, 1989; Kumar et 
al., 2001) 

8 

Unattributed   
 

 5 

R2006 - 2196 
 

Total   21 (18) 

2240 Nitrogen (Curran, 1989 (Kumar et 
al., 2001) 

5 

2300 Nitrogen (Curran, 1989; Kumar et 
al., 2001) 

2 

2350 Nitrogen (Curran, 1989; Kumar et 
al., 2001) 

2 

Unattributed    2 

R2222 - 2378 

Total   11 (9) 
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Table 6.6: Linear regression results between biochemicals and continuum-removed 
derivative reflectance (CRDR), band depth (BD), band depth ratio (BDR) and 
normalised band depth index (NBDI), using the training data set (n = 72)  
Chemical CRDR BD BDR NBDI 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
N 0.70 0.01 0.62 0.02 0.53 0.02 0.60 0.02 
K 0.64 0.03 0.72 0.02 0.56 0.04 0.60 0.04 
P 0.80 0.004 0.69 0.005 0.51 0.006 0.64 0.007 
Ca 0.50 0.01 0.47 0.01 0.46 0.01 0.56 0.02 
Mg 0.68 0.004 0.58 0.006 0.43 0.007 0.55 0.01 

 
 
Table 6.6 shows the results of linear regressions between foliar biochemicals 
and absorption feature variables when using the training data set (n = 72). 

Generally, CRDR yielded the highest coefficient of determination for 
all biochemicals. The results are, however, lower than those obtained by Kokaly 
and Clark (1999) and Curran et al. (2001) using dried ground plant material. 
 
6.4.6. Developing regression models from a randomly selected training data set 
to predict foliar biochemicals in a test data set 
 

Regression models developed from the training data set were used to 
predict foliar biochemicals in an independent test data set. To install confidence 
in the predictive capability of the regression models, a modified bootstrap 
procedure was adopted (as already explained). Figure 6.4 shows an example of 
the predicted versus measured biochemicals for a test data set (n = 24) using  a 
regression model developed from a randomly selected training set (n = 72). 
Histograms showing the sampling distribution of the R2 values calculated from 
the predicted and measured biochemicals in the test data set (CRDR data) 
following bootstrapping are shown in Figure 6.5. 
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Figure 6.4: Measured versus predicted biochemicals for a randomly selected test data 
set  (n = 24) using CRDR. Regression equations developed from the training data set (n 
= 72) were used to predict biochemicals on an independent test data set. 
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Figure 6.5: Histograms showing the frequency of R2 values between the measured and 
predicted biochemicals in a test data set. Data was randomly divided into training and 
test data sets. Next, the test data set was bootstrapped with replacement for n = 1000 
times, and for each iteration a regression model from the training data set was used to 
predict biochemicals in a test subsample and R2 values were recorded. 

 
The confidence intervals are narrower for all biochemicals, implying 

that the bootstrap method predicted with high precision. Table 6.7 details the 
mean bootstrapped regression results between the measured and predicted 
biochemicals for a test data set using the four variables (CRDR, BD, BDR and 
NBDI). The results are presented in form of the mean R2 values as well as the 
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mean RMSE between the measured and predicted biochemicals. The confidence 
levels of the mean R2 and the mean RMSE are also shown. The highest R2 and 
the lowest RMSE were obtained using CRDR for phosphorous prediction. 
However, the coefficients of determination in Table 6.7 are lower than those 
presented in Table 6.4, where chemical concentrations were predicted according 
to species. Foliar biochemicals in the test data set could be predicted with mean 
R2 values ranging between 0.15 and 0.70 and with the mean RMSE values 
ranging between 0.29 and 0.02 from the entire absorption feature based 
variables. 

To check the validity of the bootstrapping procedure that we applied in 
this study, we also applied a slightly different procedure involving splitting data 
into training and test samples several times (cross-validation). Results for 
nitrogen concentration using CRDR data yielded a mean RMSE of 0.077 with a 
standard deviation of 0.011 on the test data set. The result is comparable to the 
modified bootstrap procedure, which yielded a mean RMSE of 0.08 (Table 6.7). 
We tested whether the mean RMSE values produced by the modified bootstrap 
procedure and the cross validation procedure were significantly different. 
Results of the t-test showed that there was no significant difference between the 
two RMSEs (t = 1.949, p > 0.05). However, a comparison of the standard 
deviations from the two approaches showed that, a much narrower distribution 
is observed using the cross validation (Diaconis & Efron, 1983) approach 
(Standard deviation = 0.011) than the modified bootstrap approach used in this 
study (Standard deviation = 0.023). Therefore, we conclude that the modified 
bootstrap approach gives better and more informative information output. 
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Table 6.7: Testing the predictive capability of the regression models developed from a 
training data set (n = 72) on an independent test data set (n = 24). The test data set was 
bootstrapped with replacement for n = 1000 times, and for each iteration a regression 
model from the training data set was used to predict biochemicals in a test subsample 
and R2 values as well as the RMSE were recorded. The mean R2 values and the mean 
RMSE are presented. The 95 % confidence levels (CL) for the mean R2 as well as the 
mean RMSE are also presented.  
  N K P Ca Mg 

Mean R2 0.60 0.53 0.70 0.40 0.52 
CL 0.01 0.01 0.007 0.007 0.009 
Mean RMSE 0.08 0.05 0.02 0.05 0.03 

 
CRDR 

CL 0.001 0.0004 0.0003 0.0009 0.0004 
Mean R2 0.50 0.60 0.54 0.29 0.42 
CL 0.013 0.009 0.009 0.008 0.009 
Mean RMSE 0.05 0.04 0.02 0.08 0.02 

 
BD 

CL 0.001 0.0009 0.0004 0.001 0.0004 
Mean R2 0.38 0.33 0.32 0.26 0.23 
CL 0.012 0.011 0.009 0.01 0.009 
Mean RMSE 0.06 0.07 0.04 0.3 0.13 

 
BDR 

CL 0.002 0.002 0.0009 0.006 0.004 
Mean R2 0.38 0.30 0.42 0.15 0.27 
CL 0.012 0.011 0.009 0.008 0.008 
Mean RMSE 1.58 0.54 0.09 0.29 1.58 

 
NBDI 

CL 0.049 0.008 0.001 0.01 0.049 
 
 
6.5. Discussion 
 

The results from this study are discussed in three main sections: (i) the 
utility of the methods applied for nutrient prediction, (ii) the effect of using the 
whole data set versus using data partitioned into species, and (iii) the selection 
of wavelengths from absorption features by stepwise linear regression.  
 
6.5.1. Utility of the methods applied for quality prediction 
 
Results from this study indicate that spectroscopic data contains information on 
the nutrient status of grass. Univariate correlation analyses have shown that 
substantial information on grass quality is contained in the red edge region, 
where significant correlations were obtained (Figure 6.3). This region has been 
shown to be insensitive to atmospheric and background effects (Clevers & 
Buker, 1991) and to be related to chlorophyll absorption. Since there is a strong 
pigment-nitrogen relationship, a relationship between the red edge and 
biochemicals with a productive function in plants is also expected (Katz et al., 
1966). This result confirms the laboratory analysis results presented in chapters 
3, 4 and 5. 
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For multivariate analyses using continuum-removed absorption 
features, the methods presented in this study could explain between 43 % and 
80 % of the variation in nutrient concentration of standing grass canopies 
measured in the field. The RMSE values ranged between 0.04 and 0.004. 
Considering that data was collected in the field under natural atmospheric and 
illumination conditions, this study has shown that there is potential to use 
reflectance spectra to predict in situ grass quality in rangelands. With high-
quality radiometric and geometric calibration of hyperspectral imagery, the 
techniques applied in this study such as continuum removal on specific 
absorption features may also be applied on data acquired by airborne and 
spaceborne imaging spectrometers to predict and ultimately to map the 
concentration of macronutrients in tropical rangelands.  

The methods benefited from continuum removal, which enhances 
differences in absorption strength (Clark & Roush, 1984; Schmidt & Skidmore, 
2003). This assertion is confirmed by a separate study, which showed that 
continuum removal increases the separability of grass canopies grown under 
different nitrogen treatments as compared to absolute reflectance (Mutanga et 
al., 2003). Furthermore, in a study on spectral discrimination of vegetation 
types in a salt marsh, Schmidt and Skidmore (2003) found that continuum 
removal in the visible domain increases the spectral separability of vegetation 
types on absorption features, as compared to absolute reflectance. Our results 
are therefore consistent with previous studies. It is also imperative to note that 
the standard first derivative approach (Figure 6.3) yielded little correlation 
between wavelengths in the SWIR (2000 nm – 2500 nm) and biochemical 
concentrations, however, stepwise linear regression selected bands in this 
region. This indicates the importance of continuum removal as well as using 
multiple bands to predict biochemical concentration. 

There was a marked difference in the R2 between predicted and 
observed biochemical concentration for the four variables derived from 
absorption features. The R2  values for nitrogen prediction were 0.70, 0.62, 0.53 
and 0.60 for CRDR, BD, BDR and NBDI, respectively, using the training data 
set. The same pattern occurred for the other biochemicals. Therefore, the new 
variable, CRDR, yielded higher correlations with biochemical concentrations 
than the other  variables tested.  
 
6.5.2.  Partitioning data into species versus the combined data set 
 
This study has shown that partitioning data into species increases the predictive 
capability of the regression models, as compared to using the combined data set. 
The average R2 for nitrogen prediction from partitioned species data was 0.93 
using CRDR (Table 6.4), compared with 0.70 for the pooled data set (Table 6.6) 
using the same method. Serrano et al. (2002) found that partitioning data into 
vegetation types yielded the highest R2 value of 0.97 for nitrogen prediction, 
while pooling the data set yielded an R2 value of 0.75. Our results are therefore 
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consistent with the existing literature. This result has profound implications for 
using airborne hyperspectral data to map biochemicals in savanna rangelands. 
To improve the mapping accuracy of grass quality, the plant type, morphology 
and structure should be taken into consideration for mapping grass quality in 
rangelands composed of mixed species in Southern Africa. Non- linear 
algorithms could be applied to capture this variation. 
 
6.5.3. Wavelength selection 
 
The selection of wavelengths by stepwise regression is an important step 
towards the development of general models for predicting chemicals in plants. 
The method presented in this study has partly solved the problem of 
inconsistencies found in wavelength selection from a full spectrum (Grossman 
et al., 1996) by concentrating on a few known features of chemical absorption. 
However, there is still a need to understand particular absorption features, as 
well as wavelengths that are important for biochemical prediction. 

Wavelengths selected for biochemical prediction in the visible region 
are linked to pigment absorption (Table 6.5). Several publications have shown a 
strong relationship between the concentration of nitrogen and the concentrations 
of chlorophyll a and b (Katz et al., 1966; Penuelas et al., 1994; Ponzoni & 
Goncalves, 1999). Nitrogen is related to the protein synthesis that promotes the 
photosynthetic process. Therefore, nitrogen deficiency disturbs the metabolic 
function of the chlorophyll, which is the photosynthetic element responsible for 
the absorption of electromagnetic energy at specific wavelengths in the visible 
region (Ponzoni & Goncalves, 1999). Since chlorophyll largely determines 
spectral reflectance in the visible, a strong relationship between visible 
absorption bands and nitrogen concentration is also expected. The same applies 
to other biochemicals such as phosphorous and potassium which are also 
responsible for both the photosynthetic process and tissue composition in plants. 

Most wavelengths selected in the shortwave infrared (66 %) are within 
± 12 nm of the known protein absorption bands, specifically bonds including 
nitrogen. The intercorrelation of chemicals (Table 6.2) explains the selection of 
most bands close to regions of nitrogen absorption. The selected wavelengths 
(Table 6.5) are linked to the absorption of electromagnetic radiation by 
biochemicals that originate from the energy transition of the molecular vibration 
(rotation, bending and stretching) of the C-H, N-H, O-H, C-N and C-C bonds in 
plant tissues (Elvidge, 1990). The chemical constituents of the plant tissue 
determine the nature and number of bonds present. Therefore, the wavelengths 
and the amount of energy reflected from the plant are partly a function of the 
chemical composition of that plant material (Foley et al., 1998).  
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6.6. Conclusions 
 
This study has applied an empirical method to predict grass quality in the field. 
Normalised band depths, as well as derivatives calculated from continuum-
removed reflectance spectra, were used in stepwise regression using six major 
absorption bands in the visible and the shortwave infrared. The following 
conclusions can be drawn from this study: 

 
1. Stepwise regression on normalised bands calculated from continuum-

removed reflectance spectra could explain the variation of in situ grass 
quality, with R2 values ranging between 0.43 and 0.80 and RMSE values 
ranging between 0.04 and 0.004. 

2. The new variable, CRDR, performed better than any other variable tested in 
predicting grass quality, both when using the training data set and when 
data was partitioned into species. The NBDI variable did not perform any 
better than the other procedures. 

3. The error of prediction (RMSE) in the test data set was 0.08 (±10.25 % of 
mean), 0.05 (± 5.2% of mean), 0.02 (± 11.11% of mean), 0.05 (± 11.6% of 
mean) and 0.03 (± 15% of mean) for nitrogen, potassium, phosphorous, 
calcium and magnesium, respectively using CRDR.  

4. Prior partitioning of data into species classes increases the prediction 
capability of the method applied in this study. 

5. The major absorption feature in the visible (R550 – 750) and the nitrogen 
absorption features (R1634 – 1786 and R2006-2196) in the shortwave infrared 
account for 69 % of the wavelengths selected by stepwise regression. This 
serves as a guideline for the selection of important absorption features for 
mapping grass quality in tropical rangelands. 

Overall, the successful use of absorption features for predicting grass 
quality at field level is an important step towards the remote sensing and 
mapping of rangelands. These results have important implications, not only for 
animal ecology but also for agriculture and for understanding biogeochemical 
cycles. The application of non-linear algorithms such as artificial neural 
networks to hyperspectral data may be useful in capturing the possible non-
linear patterns due to species differences. 
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CHAPTER 7: 
Field spectrometry to discriminate foliar 

sodium concentration in mixed grass 
species 
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Mutanga, O, Skidmore, A, K., Prins, H H.T, Grant, R, Peel, M. J. S. (In 

review), Discriminating sodium concentration in a mixed grass species 
environment of the Kruger National Park using field spectrometry, International 
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Abstract 
 
Sodium has been found to be a scarce element needed and sought by mammals. 
To date, most geophagical studies have mainly concentrated on sodium in the 
soil with limited attention being given to the plant component. Mapping foliar 
sodium distribution is important to understand wildlife feeding patterns and 
distribution. In this study, we established whether remote sensing can be used to 
discriminate different levels of sodium concentration in grass. A GER 3700 
spectrometer was used to measure spectral reflectance of grass in the field. 
Since savanna rangelands are characterised by mixed grass species, we first 
established the variation of foliar sodium concentration in different grass 
species and tested for possible effects of species - sodium interaction on spectral 
reflectance.  

Our results showed statistically significant differences between the 
mean reflectance for the low and medium sodium classes. No significant 
differences were observed between reflectance in the high sodium class and the 
lower classes. However, there was a significant interaction between sodium 
classes and species in influencing reflectance. We concluded that, in 
combination with knowledge of grass species distribution, hyperspectral remote 
sensing maybe useful in mapping foliar sodium concentration in savanna 
rangelands. This may help to understand the distribution of mammals in some 
African savannas where mineral nutrient availability is limiting. 

 
Keywords:  Foliar sodium, sodic patches, visible reflectance, species – sodium 
interaction, Kruger Northern Plains 
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7.1 Introduction 
 
Sodium (Na) is an essential element for mammals since it is responsible for 
regulating body fluid volume, acid-base balance and tissue pH, muscle 
contraction, and nerve impulse transmission (Brady et al., 2002; Lammertsma 
& Bruinderink, 1998; Woolfenden & Millar, 1997). Mammals require sodium 
amounts ranging from 0.05 to 0.15% in the diet (Robbins, 1983). However, few 
terrestrial plants require sodium, therefore there is a potential for herbivores to 
incur sodium deficiencies in areas where plant species contain low amounts of 
sodium.  

Research has revealed that herbivores are attracted to mineral licks or 
sodic sites, which are characterized by an increased concentration of cations, 
most frequently in the form of salts, relative to surrounding sites (Ruggiero & 
Fay, 1994; Scholes & Walker, 1993). In the northern plains of Kruger National 
Park (South Africa), roan antelope has been found to concentrate on sodic 
areas next to the drainage lines and vleis (Grant et al., 2002). Grass species such 
as S. ioclados, P. maximum and E. superba have been intensely utilised in these 
patches (Grant et al., 2002; Jourbert, 1976).  

Whilst many studies demonstrated that natural lick soils ingested by 
ungulates had high concentrations of sodium (Ruggiero & Fay, 1994; Stark, 
1986), few of them have analysed sodium concentration in different plant 
species, let alone its spatial variation in vegetation (Scholes & Walker, 1993).  
An understanding of the variation of sodium in plants may help to explain 
animal feeding patterns and productivity. Techniques for mapping sodium 
concentration in pastures are therefore critical.  

Traditional techniques for vegetation analysis are time consuming 
resulting in the collection and analysis of inadequate data that is not 
representative of the population (Foley et al., 1998). The use of hyperspectral 
remote sensing techniques with narrow channels of less than 10 nm may be 
useful in estimating foliar sodium. This is because of its potential to capture 
detailed spectral features, which could be masked by broadband satellite images 
such as Landsat TM or Aster (Kumar et al., 2001).  Attempts to estimate foliar 
biochemicals developed from the 1970s onwards mainly using methods from 
laboratory near infrared spectroscopy (Norris et al., 1976). The methods paid 
attention to the estimation of amino acids, lignin, protein, and cellulose of dried 
ground forage. During the 1990s, emphasis was put on the use of airborne 
imaging spectrometers to estimate biochemical concentration of tree canopies 
(Curran, 1989; Curran et al., 1992; Dungan et al., 1996; Johnson et al., 1994; 
Martin & Aber, 1997). Recently, Kokaly and Clark (1999) developed the band 
depth analysis methodology to estimate foliar concentrations of nitrogen, lignin 
and cellulose. This technique was successfully used by Curran et al., (2001) to 
estimate 12 biochemicals using dried ground plant materials. To the best of our 
knowledge, no attempts have been made to estimate and map the foliar 
concentration of sodium in situ using remote sensing techniques. 
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The underlying principle behind mapping sodium concentration is that 
pastures with different sodium levels reflect differently in specific wavelengths. 
Sodium is important in regulating and stimulating the photosynthetic pathway in 
plants, especially the C4 plants (Johnston et al., 1988; Matoh & Murata, 1990; 
Murata & Sekiya, 1992), and is therefore related to chlorophyll and nitrogen 
concentration (Salisbury & Ross, 1985). Since chlorophyll absorbs 
electromagnetic radiation in the visible domain, a relationship between sodium 
and reflectance is therefore expected. In addition, since tropical rangelands are 
characterized by mixed grass species, grass species type may also effect 
reflectance.   

In this study we tested whether differences in foliar sodium 
concentration could be discriminated using reflectance signatures alone or 
whether differences in the type of species is also important. The study was 
conducted in two phases. First, we tested the differences in sodium 
concentration between grass species found in the northern plains of the Kruger 
National Park. Second, we tested for differences in reflectance between three 
different foliar sodium classes and for a possible interaction between sodium 
and species in influencing reflectance. Band depths of the two major absorption 
features (408 nm – 518 nm and 550 nm – 750 nm) in the visible region (Curran 
et al., 2001; Mutanga & Skidmore, 2004; Mutanga et al., 2003) were used to 
discriminate the foliar concentration of sodium. 
 
 
7.2 Methods 
 
7.2.1 The study area 
 
The study area is located in the northern plains of the Kruger National Park in 
South Africa. A strip of 2 km by 25 km stretching from the west (22 0 49′ S and 
31 0  01′ E) to the east  (22 0 44′ S and 31 0  22′ E) covering granitic and basaltic 
formations was selected. The basalt formations are characterised by mafic rocks 
that are rich in iron, magnesium and rich clay minerals (Grant et al., 2000). 
Sodium and other minerals occur at wetland edges in these basalt formations 
(Jourbert, 1976). Soil and geology play an important role in determining the 
vegetation structure and composition, with higher grass production in the 
basaltic areas than in the granitic area.  The granitic area is characterised by 
uplands that support broadleaved savanna and a herbaceous layer dominated by 
moderate to low quality sandveld species. The midslopes (seepline areas) 
classically support few trees and a dense herbaceous layer. The base of the 
midslope and footslope are characterised by thorny microphyllous shrubs and a 
productive grass layer which is generally of high quality (Grant et al., 2000).  
The area for this study was selected to cover a wide range of vegetation with 
different foliar sodium concentration. 
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 Stratified random sampling with clustering in combination with 
purposive sampling was adopted to select field sites using a land cover map 
developed using aerial photographs and Landsat TM image. The area was 
stratified into open grassland in the basalt, mixed woodland and woodland in 
the granite area. Coordinates (x,y) were randomly generated in each stratum to 
determine plot locations.  Each plot covered 10 m by 10 m. The dominant 
species (covering at least 30 per cent of the area) in each plot were recorded and 
foliar samples collected. Purposive sampling was done on known natural lick 
areas (sodic patches) where foliar samples were recorded. A total of 106 
samples were collected. This was done in order to increase the range in the 
variation of foliar sodium of the samples. 
 
7.2.2 Reflectance measurements and chemical analysis 
 
In situ, canopy spectral measurements were taken for the dominant species in 
each plot using a GER (Geophysical and Environmental Research Corp.) 
spectroradiometer. The GER 3700 is capable of taking measurements in the 
wavelength range of 350 nm to 2500 nm. The spectrometer has a spectral 
sampling of 1.5 nm in the 350 nm to 1050 nm range, 6.2 nm in the 1050 nm to 
1900 nm range, and 9.5 nm in the 1900 nm to 2500 nm range. The bandpass is 3 
nm, 11 nm and 16 nm in the 350 nm to 1050 nm range, 1050 nm to 1900 nm 
range, and 1900 nm to 2500 nm range, respectively.  

Background effects such as the rock and soil substrate usually attenuate 
in situ spectral measurements. To reduce these effects, replicates of canopy 
spectral measurements were taken from a bunch of grass representing one 
dominant grass species in each plot and a fiber optic sensor, with a field of view 
of 10 º was pointed on the target canopy at nadir position from about 1 m 
height. This resulted in a ground field of view of about 18 cm in diameter, 
which was large enough to cover a bunch of a grass species, with minimum 
measurement of possible surrounding bare areas. A total of 25 replicate spectral 
measurements were taken from the dominant species in the plot. The resulting 
spectrum was determined as an average of the 25 replicate spectral 
measurements per species in each plot, a technique used to control for variations 
in illumination (Mutanga et al., 2004; Schmidt and Skidmore, 2001). The 
fieldwork was undertaken during the end early dry season (May 2002), a period 
of bright sunshine. Measurements were taken on clear sunny days at high sun 
angle between 11:30 A.M and 2:00 P.M.  Six grass species were measured in 
the field vis. C. ciliaris, P. maximum, T. triandra, U. mosambicensis, E. 
lehmanniana, and S.ioclados.Figure 7.1 shows the average in situ reflectance of 
the species measured. 
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Figure 7.1: Mean reflectance values for the species measured  
 
The spectrally measured grass species in the plots were clipped and oven dried 
at 70º C for 24 hours. The samples were taken to the Agricultural Research 
Council (ARC) laboratory in Nelspruit (South Africa) for chemical analysis. 
Sodium was extracted through wet digestion with 55 % nitric acid and 70 % 
perchloric acid (Giron, 1973). Atomic absorption flame spectroscopy using air – 
acetylene was used for the detection of sodium, which was expressed as 
percentage per 100 g of dry weight (Poluektov, 1973). 
 
7.2.3 Data analysis 
 
Using the reflectance spectra, continuum removal was applied to the known 
chemical absorption features (between 408 nm and 518 nm and between 550 nm 
and 750 nm) in the visible region (Curran et al., 2001; Mutanga et al., In 
review). These two regions are pigment absorption features. Since the amount 
of sodium influence the photosynthetic pathway in plants (Marschner, 1995), 
we hypothesised that the two absorption features are also related to sodium 
concentration. In addition, atomic absorption spectroscopy for sodium is done at 
589 nm (Svanberg, 2001), which is within the R550 – 750 nm absorption feature. 
Continuum removal normalizes reflectance spectra in order to allow comparison 
of individual absorption features from a common baseline (Kokaly, 2001). The 
continuum is a convex hull fitted over the top of a spectrum to connect local 
spectrum maxima. The continuum-removed reflectance R′ (λ) is obtained by 
dividing the reflectance value R (λ) for each waveband in the absorption trough 
by the reflectance level of the continuum line (convex hull) Rc(λ)  at the 
corresponding wavelength (Mutanga et al., 2004). Stated formally:  
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The first and last spectral data values are on the hull and therefore the 
first and last values of continuum-removed spectrum are always equal to 1. The 
output curves have values ranging between 0 and 1, in which the absorption 
troughs are enhanced (Schmidt & Skidmore, 2001).   

The continuum-removed reflectance spectra were divided into three 
classes corresponding to pre-defined foliar sodium concentration classes.  Foliar 
sodium was divided into three classes based on the amount of sodium required 
by most mammals. Sodium requirements for growth and reproduction of 
mammals range from 0.05 % to 0.15 % of the diet (Robbins, 1983). From this 
background knowledge, the lowest sodium class was taken to be any sample 
with less than 0.05 % sodium concentration, medium was taken to be any 
sample with between 0.05 % and 0.15 % sodium concentration (considered as 
the adequate range for herbivore consumption), and the high class was taken to 
be above 0.15 % sodium concentration. Analysis of variance as well as the t – 
test were used to ascertain whether differences in spectral reflectance between 
different classes of sodium concentration exist. Two-way factorial ANOVA was 
used to test whether the interaction between species and sodium concentration 
influences the reflectance spectra. 
 
7.3 Results 
 
7.3.1 Variation in foliar sodium concentration  
 
The range of foliar sodium concentration was large as a result of sampling 
different species as well as sampling species growing at natural salt lick areas.  
Average amount of sodium ranged from 0.02 % in T. triandra to 0.2 % in S. 
ioclados (Table 7.1).  

 
Table 7.1. Descriptive statistics of foliar sodium concentration by species  
 No. of samples Minimum (%) Mean  (%) Maximum (%) Std. Dev 
 P. maximum 17 0.00 0.10 0.27 0.08 
T. triandra 20 0.00 0.02 0.08 0.02 
U. mosambicensis 28 0.00 0.05 0.39 0.09 
C. ciliaris 21 0.00 0.04 0.27 0.07 
E. lehmanniana 10 0.00 0.08 0.31 0.10 
S. ioclados 10 0.02 0.20 0.78 0.26 
      

 
One-way ANOVA was used to test if differences in foliar sodium 

concentration between species were significant. We tested the research 
hypothesis that the mean percentage sodium concentration for the species 
measured in this study was different, viz. the null hypothesis Ho: µ1 = µ2 = 
µ3…µn versus the alternate hypothesis Ha: µ1≠  µ2 ≠  µ3…µn where: µ1, µ2 and 
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µ3…µn are the mean percentage sodium concentrations of the n different 
species. The conclusions from these tests are that different species yielded 
different foliar sodium concentrations  (p < 0.001). This is mainly explained by 
large disparities among species in uptake of sodium by roots and the 
translocation to the shoots as well as the varied availability of sodium in the soil 
(Marschner, 1995).   

Foliar sodium concentration also varied between the known salt lick 
areas and non – salt lick areas. A large percentage (80 %) of S. ioclados 
recorded in this study was found on natural salt licks (sodic patches), followed 
by U. mosambicensis (34%). The average sodium concentration in these species 
is generally higher than the other species (the mean foliar sodium concentration 
was 1.6 % on salt licks and 0.05 in other areas). High foliar sodium 
concentration on these sites is strongly determined by the occurrence of nutrient 
– rich material exposed through weathering and erosion of dolerite and basalt 
intrusions (Klaus et al., 1998). It should be emphasized that these variations in 
foliar sodium concentration relate specifically to the period when data was 
collected. Therefore there might be differences as a result of seasonal changes, 
which is beyond the scope of this study. 

Sampling different species as well as different sites resulted in foliar 
sodium concentration ranging between 0 % and 0.78 %. Table 7.2 shows the 
descriptive statistics of foliar sodium concentration after partitioning into three 
different sodium concentration classes. 
 
Table 7.2: Descriptive statistics of foliar sodium concentration by sodium classes. Low 
= < 0.05, Medium = 0.05 – 0.15 and High = > 0.15 
Na concentration No of samples Minimum % Mean % Maximum % Std. Dev 
Low 61 0 0.02 0.047 0.014 
Medium 21 0.053 0.091 0.146 0.032 
High 24 0.149 0.296 0.78 0.176 

 
A large amount of samples collected are in the low foliar sodium class 
indicating the scarcity of sodium in African savannas.  
 
7.3.2 Reflectance differences between foliar sodium classes 
 
We classified reflectance values according to three different levels of foliar 
sodium concentration and the continuum-removed reflectance is shown in 
Figure 7.2.  
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Figure 7.2: Continuum-removed band depth profiles for high (H), medium (M) and low 
(L) sodium classes. 
 

A t-test was used to test the research hypothesis that there is a 
significant difference in mean spectral reflectance between different sodium 
classes, viz. the null hypothesis Ho: µ1i = µ2i versus the alternate hypothesis Ha: 
µ1i≠  µ2i where: µ1i, and µ2i are the mean reflectance values (at wavelength i) 
between each pair of low, medium or high sodium classes. Figure 7.3 shows 
probability values from the t-test executed at every wavelength.  
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Figure 7.3: Results of T-test showing wavelengths where reflectance differences 
between different classes (L = low sodium, M = medium sodium, H = high sodium) of 
sodium concentration are significant. Horizontal dashed and solid lines show 90% and 
95% confidence limits, respectively.  
 

It can be seen that there were significant differences between low and 
medium sodium classes for most wavelengths ranging from 560 nm to 730 nm.  
Significant differences between low and high sodium classes were found in the 
blue wavelength region (410 nm to 430 nm). However there were no significant 
differences in mean reflectance between the medium and high sodium classes. 
 
7.3.3 The interaction between sodium concentration and species in influencing 

reflectance 
 
Research has revealed that there is difference in species tolerance to sodium 
supply in the soil (Flowers et al., 1977; Johnston et al., 1988; Qiu & Lin, 2002). 
Plant species such as S. ioclados, P. coloratum, and E. superba are salt tolerant 
whereas others are not (Matoh & Murata, 1990; Murata & Sekiya, 1992; Van 
Oudtshoorn, 1999). These plant species respond to sodium concentration by 
maintaining low cytosolic sodium concentrations and a high cytosolic 
potassium/sodium ratio (Flowers et al., 1977; Murata & Sekiya, 1992), which 
implies that they can absorb high amount of sodium. For the plant species that 
do not have a salt tolerance mechanism, there is evidence of salt damage 
through chlorosis and rapid browning off when there is an oversupply of 
sodium. The variation in species response to sodium concentration causes a 
difference in spectral reflectance. We therefore hypothesize that both sodium 
concentration and species type influence spectral reflectance and there is an 
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interaction effect between the two factors. A Two – way factorial ANOVA was 
used to test the hypothesis that there is a significant interaction between species 
and foliar sodium concentration in influencing reflectance in the visible region. 
Table 7.3 shows results of the two-way ANOVA at the 589 nm wavelength. 
 
Table 7.3: Two-way ANOVA results showing the effect of sodium and species on 
reflectance means at 589 nm wavelength. Absorption spectroscopy for sodium is done 
at 589 nm. ** Significant at p < 0.01. 

 DF 
Effect 

MS 
Effect 

DF 
Error 

MS 
Error 

F P 

{1} Sodium 2 0.017 91 0.007 2.285 0.107 
{2} Species 5 0.046 91 0.007 6.267 0.000** 
1*2 Interaction 7 0.017 91 0.007 2.389 0.003** 

 
Results indicate that, the interaction between species and sodium is 

significant  (p < 0.05). Figure 7.4 details results of the two-way factorial 
ANOVA for the rest of the wavelengths between 410 nm and 750 nm. 
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Figure 7.4: Results of two – way factorial ANOVA showing wavelengths where the 
interaction between sodium and species is significant in influencing reflectance in the 
visible domain. Horizontal dashed and solid lines show 90% and 95% confidence limits, 
respectively. Absorption spectroscopy for sodium is done at 589 nm. 
 

 
There is a significant interaction effect between species and foliar sodium for 
most wavelength channels. 
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7.4 Discussion 
 
Sodium is required by all terrestrial mammals, particularly ruminants that 
selectively utilize sodium rich vegetation (Stark, 1986; Wheelock, 1980). 
Therefore, the development of techniques that can estimate foliar sodium 
concentration helps to explain the distribution of mammals.  

Results from this study have shown that for certain wavelengths in the 
visible, there is a significant difference in reflectance between grasses with 
different levels of sodium concentration. This is mainly explained by the 
relationship between foliar sodium and pigments, particularly chlorophyll which 
influences spectral reflectance in the visible domain. Sodium is important for 
regulating the photosynthetic pathway and functioning of the mesophyll 
chloroplasts in plants especially the C4 plants (Johnston et al., 1988; Murata & 
Sekiya, 1992), and is therefore partly related to chlorophyll and nitrogen 
concentration (Salisbury & Ross, 1985).  

From our study, statistically significant spectral differences were 
obtained between grasses in the low sodium concentration class and those in the 
medium sodium concentration class (Figure 7.3). The absorption trough in the 
medium sodium class is deeper than the absorption trough in the low sodium 
class (Figure 7.2). This confirms the hypothesis that an increase in foliar sodium 
concentration enhances the functioning of the mesophyll chloroplasts thereby 
stimulating growth and leaf expansion (Marschner, 1995; Ohta et al., 1989), 
which in turn increases the absorption of electromagnetic radiation in the visible 
region.  

However, no significant differences were obtained with the high sodium 
concentration class except for a few bands in the blue region.  The high sodium 
class is in the middle (Figure 7.2). This implies that, after a certain 
concentration level of foliar sodium, band depth did not increase with a 
corresponding increase in foliar sodium. This may be because excess sodium 
concentration adversely affects certain grass species, which are not sodium 
tolerant by inhibiting metabolic functions and growth that in turn affect spectral 
reflectance (Pardo & Quintero, 2002; Ponzoni & Goncalves, 1999). This 
interpretation needs confirmation using data obtained from a controlled 
laboratory set up since the results reported in this study are based on situ 
measurements where there are possible effects of differences in soil background 
and senesced plant material. 

This study has shown that not only sodium concentration but also the 
mixture of species in a savanna environment effects spectral reflectance. There 
is a significant interaction between species and foliar sodium concentration in 
effecting reflectance in the visible domain of the electromagnetic spectrum. An 
example of two – way factorial ANOVA in Table 7.3 shows that sodium classes 
alone could not significantly influence spectral reflectance at 589 nm channel (p 
> 0.05). However, with the addition of species type as a second factor, there was 
a significant interaction (P < 0.05). Including a second factor (species), that 
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influences spectral reflectance, has therefore reduced residual variation in the 
model.  

The interaction effect between sodium and species type is based on the 
different response of different species to sodium supply. Some plant species 
such as S. ioclados are salt tolerant through maintenance of a high 
potassium/sodium ratio in the cytosol and the compartmentalization of sodium 
in the plant vacuole (Flowers et al., 1977; Murata & Sekiya, 1992). Therefore, 
the rate of chlorosis and browning as a result of high sodium supply varies with 
different grass species. This grass species variation effects a variation in spectral 
reflectance. Therefore for mapping foliar sodium in savanna rangelands using 
GIS and remote sensing, additional information on species composition may be 
a useful input for obtaining a higher accuracy. Alternatively, the application of 
non-linear algorithms that are capable of capturing the response of different 
species to spectral reflectance may be useful in mapping quality in the tropical 
rangelands. 
 
7.5 Conclusions 
 
This study has shown that, there is potential to discriminate different levels of 
foliar sodium concentration using reflectance spectroscopy. Spectral reflectance 
could successfully discriminate between low and medium sodium classes. The 
result also emphasizes the importance of species types as a factor to estimate 
foliar sodium concentration using remotely sensed data. Species typing is 
possible in African rangelands given sufficiently detailed imagery (Schmidt & 
Skidmore, 2001). We anticipate that the results can be used as a precursor to 
mapping the concentration of grass quality in African rangelands using remotely 
sensed data derived from airborne (e.g. HYMAP) and space borne (e.g. ASTER, 
LANDSAT TM) sensors. This would facilitate a better understanding of the 
movement and behaviour of wildlife in relation to foliar sodium variation.  
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CHAPTER 8: 
Explaining grass–nutrient patterns in a 
savanna rangeland of Southern Africa 

 
 
 
 
 
 
 
 
 
 
 
 

This chapter is based on 
Onisimo Mutanga, Herbert H.T Prins, Andrew, K. Skidmore, Herman Huizing, 
Sipke van Wieren, Rina grant, Mike Peel, and Harry Biggs (In Press), 
Explaining grass–nutrient patterns in a savanna rangeland of Southern Africa, 
Journal of Biogeography. 
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Abstract 
 
The search for possible factors influencing the spatial variation of grass quality 
(N, P, K, Ca, Mg, Na) is an important step towards understanding the 
distribution of herbivores, as well as a step towards identifying crucial areas for 
conservation and restoration. A number of studies have shown that grass quality 
at a regional scale is influenced by climatic variables. At a local scale, site 
factors and their interaction are considered important. In this study, we aimed at 
examining environmental correlates of grass quality at a local scale. The study 
also sought to establish if biotic factors interact significantly with abiotic factors 
in influencing a variation in grass quality. Our results indicate that there is a 
significant relationship between grass quality parameters and site-specific 
factors such as slope, altitude, percentage grass cover, aspect and soil texture. 
Relatively, percentage grass cover and soil texture were more critical in 
explaining a variation in grass quality. Plant characteristics such as species type 
interact significantly with slope, altitude and geology in influencing nutrient 
distribution. The results of this study provide a better insight on foliar nutrient 
distribution patterns at a landscape scale in savanna rangelands.  

 
 

Keywords: Landscape scale, biotic and abiotic factors, interaction, savanna 
rangelands, post rainy season, Kruger National Park 
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8.1 Introduction 
 
Grass quality, as determined by the concentration of nitrogen, phosphorus, 
potassium, calcium, and sodium is an important factor influencing the 
distribution of grazing mammals (McNaughton, 1990, Olff et al., 2002, Prins, 
1987). Therefore, the search for factors determining the spatial variation of 
grass quality is an important step towards understanding the concentration of 
herbivores, as well as a step towards identifying crucial areas for conservation 
and restoration. 

Explaining spatial patterns of grass quality is one of the most complex 
problems in biogeography. This is because these patterns are not influenced by 
a single factor, but by a complex array of interacting factors, both biotic and 
abiotic (McNaughton, 1990, Seagle & McNaughton, 1992), whose relative 
importance varies with spatial scale (Roberts, 1987). Research on factors 
influencing spatial variation of grass quality has been conducted mainly at a 
regional scale, demonstrating the importance of climatic variables such as 
temperature and rainfall (Robbins, 1983, Roberts, 1987, Seagle & McNaughton, 
1992, Skarpe, 1992). 

 At landscape scale, topographic factors such as slope, aspect and 
altitude (McNaughton, 1983, Roberts, 1987), together with soil characteristics 
such as nutrients, structure and texture which largely depend on underlying 
geology (Anderson & Talbot, 1965; Bell, 1982) are critical. For example, 
Kumar et al., (2002) found significant differences in the growth rates and 
quality of vegetation between clayey and sandy soils in Burkina Faso, an area 
where rainfall is a limiting factor. On sandy soils a large fraction of rainfall 
infiltrates and becomes available for plant growth, while on clayey soils low 
infiltration rates generate runoff, leading to slower herbage growth rates (Kumar 
et al., 2002). Since the Kruger National Park is underlain by two major 
geological formations (granite and basalt), which support different soil 
characteristics, differences in quality are expected.   

Other studies emphasize the importance of biotic factors such as species 
type or genotype, growth stage, above ground biomass and tree canopy cover, 
many of which vary between the grazed and ungrazed areas as important factors 
in influencing the spatial variation of grass quality (Bakker et al., 1983; 
Ludwig, 2001; McNaughton, 1988; Olff & Ritchie, 1998; Orians et al., 2003; 
Prins, 1987; Wilson, 1984). For example, Ludwig (2001) found out that grasses 
under trees are highly nutritious as compared to surrounding areas mainly due to 
the nutrient pump mechanism by tree roots.  

It is also imperative to note that plant species exploit environments 
differentially (Duncan, 2000; Orians et al., 2003; Via & Lande, 1985).  Certain 
vegetation communities or plant species with different rates of nutrient 
accumulation can tolerate certain slope or catena positions whilst others may 
not (Bell, 1982; McNaughton, 1983). For example, Seagle & McNaughton, 
(1992) found out that a higher percentage of T. triandra is found on middle 
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catena position and P. mezianum (which accumulates nutrients such as sodium) 
is found on flat catena position. In addition, studies have shown that some 
species are tolerant to stress conditions such as high sodium supply whilst 
others quickly develop chlorosis (Duncan, 2000). We therefore hypothesise an 
interaction between both biotic and abiotic factors in influencing a spatial 
variation of grass quality.   

Whilst studies have examined singly, the biotic (e.g. species type, 
biomass, vegetation type) or abiotic factors (e.g. slope, altitude, aspect, soil 
texture, and drainage lines) influencing nutrient distribution in savannas (Bell, 
1982; Scholes & Walker, 1993, McNaughton, 1990), few of them have 
examined them simultaneously. In addition, an investigation of the interaction 
between environmental factors in influencing nutrient distribution patterns has 
been overlooked (Orians et al., 2003; Via & Lande, 1985; Wilkinson, 2000).  

The aims of this study were twofold: First, to identify environmental 
factors that correlate with grass quality at a landscape scale. The relationship 
between grass quality parameters and landscape variables (slope, altitude, 
aspect, soil texture, distance from drainage lines, vegetation type, geology, 
biomass, species type and percentage cover) were examined. Second, the study 
sought to establish if biotic factors interact significantly with abiotic factors in 
influencing a variation in grass quality. We used correlation analysis and 
ANOVA to relate environmental variables to grass quality. Multivariate 
analysis techniques were used to simultaneously analyse and explore the 
complex interactions between variables. Foliar nitrogen concentration was used 
in the interpretation of multivariate relationships since it is considered the most 
important limiting quality parameter for herbivores (Prins & Olff, 1998). 
 
 
8.2 Methods 
 
8.2.1 The study area 
 
The study area is located in the Kruger National Park of South Africa. The 
study area stretches from west (22 0 49′ S and 31 0  01′ E) to east, (22 0 44′ S and 
31 0  22′ E) covering an area of about 25 x 2 km in the far northern region of the 
Kruger National Park. This strip cuts across a basalt and granitic landscape 
mosaic. The granite areas are characterised by coarse sandy or gravelly soils 
with high infiltration rates and low clay forming potential. The uplands support 
broad–leaved savanna and a herbaceous layer dominated by moderate to low 
quality sandveld species. The midslopes (seepline areas) support few trees and a 
dense herbaceous layer. The base of the midslope and foot slope that are 
characterised by clay soils constitute thorny microphyllous shrubs and a 
productive grass layer (Grant et al., 2000).  

The basalt is a mafic rock that is rich in iron, magnesium and weathers 
to form rich clay minerals (Grant et al., 2000). Sodium and other minerals occur 



Chapter 8 
 

 123 

on wetland edges in these basalt formations (Jourbert, 1976). The vegetation of 
these soils consists mainly of mopane woodlands (Colophospermum mopane) in 
the north and knobthorn (Acacia nigrescens) and marula woodlands 
(Sclerocarya birrea) in the south (Grant et al., 2002).  
 
8.2.2 Field data collection  
 
The data was collected in April and May 2002. Stratified random sampling with 
clustering was adopted in this study. The area was stratified into open grassland 
in the basalt, and into mixed woodland and woodland in the granite area. 
Coordinates (x y) were randomly generated in S - PLUS statistical software to 
select plots. Using a GPS, plots of 10 m by 10 m were located and demarcated 
in the field.   The dominant grass species (covering at least 30 per cent of the 
area) in each plot were recorded. Purposive sampling was also done on known 
natural lick areas (sodic patches), which were located on wetland edges. Six 
grass species were recorded, viz. C. ciliaris, E. lehmanniana, P.  maximum, T. 
triandra, U. mosambicensis and S. ioclados. Grass samples were taken from 
these species for chemical analysis.  

Percentage grass cover was estimated as the total area occupied by 
grass canopy cover in a plot. This was calculated using the line intercept 
method, a technique that has been widely used in terresrial, wetland and aquatic 
systems (Bauer, 1943; Schmid, 1965). Two transect tapes were stretched along 
the diagonal lines of the 10 m by 10 m plots. The corner of the plot was the 
starting point of the transect (baseline), which stretched to join the opposite 
corner. The horizontal linear length of the grass canopy that intercepted the line 
was measured and recorded (Grieg-Smith, 1983; Titus, 1993). Percent grass 
cover was then calculated by totalling the intercept measurements for all plant 
species along the transect line and this total was expressed as percentage of the 
length of the transect line. The same was done on the other diagonal transect. 
The final percentage grass cover was calculated as the average percent grass 
cover from the two diagonal transect lines. To permit an analysis of the 
interaction between canopy cover and other categorical variables, the 
percentage canopy cover was categorized into four classes using the quartile 
ranges. 

In situ grass biomass was measured in each plot using a weighing scale. 
A 1m2 wire was randomly thrown into the plot, and the standing grass that fell 
within the wire was clipped and measured (Kent & Coker, 1992). The process 
was repeated for 3 times in every plot and the resultant biomass was calculated 
as the average of the three-recorded biomass measurements in each plot. This 
was expressed as the fresh weight of grass per m2. 

Soil texture was measured in the field using the “feel” method (Thein, 
1979). In each plot, a soil sample was collected and uniformly moistened. By 
squeezing the soil between fingers, the soil was classified into three classes. The 
first class was clay, which feels sticky and hard to squeeze (smooth). The 
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second class was silt, which feels soft (smooth). The third class was sand, which 
feels gritty and the grains are large to see individually (course).  The data were 
verified and formatted before being stored in a GIS. Table 8.1 shows the 
explanatory variables that were used in this study. 
 
8.2.3 GIS data layers 
 
A raster GIS was developed coincident with the field plot centres. A digital 
elevation model (DEM) with a resolution of 5 m was used to derive elevation, 
slope and aspect using the map calculation functions in ILWIS GIS. Distance 
from river was derived by rasterising and resampling digitized topographic 
maps of a 1: 50 000 scale. The distance of sample locations from drainage lines 
was calculated using a distance function in ILWIS.  
 
Table 8.1: Explanatory variables used in this study, together with their definitions 
Variable Definition 
Altitude Continuous variable derived from a DEM, measures height above sea level 
Slope Continuous variable derived from a DEM, expressed in degrees 
Aspect Continuous variable derived from a DEM, expressed in degrees 
DLs Continuous variable, measures distance from drainage lines  
Cover Area under grass canopy cover (%) 
Biomass Fresh weight of grass per m2 
Soil texture Categorical variable, measures soil coarseness 
Geology Binary variable, 1 for Basalt areas and 0 for Granite areas 
Vegtype Categorical variable, vegetation types 
Species type Categorical variable, species types 
Salt licks Binary variable, 1 for lick sites and 0 for non lick sites 

 
 
8.2.4 Laboratory analysis 
 
For biochemical analysis, samples of grass species from each plot were clipped 
and oven-dried at 70º C for 24 hours. Plant tissue was analysed at the Institute 
of Tropical and Subtropical Crops under the Agricultural Research Council 
(ARC-ITSC) in Nelspruit, South Africa. A two-step analysis procedure was 
followed: (i) digestion and extraction, and subsequently (ii) automated 
detection. Sulphuric Acid and Hydrogen Peroxide microwave digestion was 
done for N extraction and Nitric Acid as well as Perchloric Acid digestion was 
done for P, K, Ca, Mg and Na extraction (Giron, 1973).  

Atomic absorption flame spectroscopy using air-acetylene was used for 
detecting potassium, calcium, magnesium and sodium (Poluektov, 1973). The 
colometric method by auto analyzer was used to detect nitrogen (Technicon 
Industrial method 329 - 74W). Using this method for N detection, an emerald-
green colour was formed by the reaction of ammonia, sodium salicylate, sodium 
nitroprusside and sodium hypochlorite. The ammonia-salicylate complex was 
then read at 640 nm (Grasshoff et al., 1983). The determination of phosphorus 
was also based on the colorimetric method (Technicon Industrial method 4 – 
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68W) in which a blue colour was formed by the reaction of ortho phosphate and 
the molybdate ion. The phosphomolybdenum complex was then read at 660 nm. 
 
8.2.5 Univariate data analysis 
 
Correlation analysis was done to establish the relationship between continuous 
variables and foliar macronutrients. For categorical variables, one–way 
ANOVA and two-sided t–tests were used to test if there were any significant 
differences in foliar nutrient concentrations between different environmental 
classes. 
 
8.2.6 Multivariate data analysis 
 
Many patterns in a real world ecological system are driven by a number of 
interacting ecological processes that vary in space and time (McGarigal et al., 
2000). The multiplicity and interaction of many causal factors make it plausible 
to analyse relationships simultaneously. We applied two–way factorial ANOVA 
and Principal component analysis to assess the interaction of variables as well 
as identifying the most important factors explaining the variation in grass 
quality. 

Two–way factorial ANOVA is a simultaneous analysis of the effect of 
more than one factor on population means. An interaction between factors 
means that the effect of one factor is not independent of the presence of a 
particular level of the other factor (McGarigal et al., 2000). Biotic variables 
(species type, percentage cover and biomass) were tested if they significantly 
interact with the abiotic variables (soil texture, geology, altitude, slope and 
distance from drainage lines) to influence a variation in nitrogen concentration. 
Nitrogen was selected since it is generally considered the most critical limiting 
quality parameter for herbivores (Prins, 1987, Sinclair, 1977). Continuous 
variables were categorized using quartile ranges in order to compare them with 
the other categorical variables. Since interactions come in many shapes and 
forms (Moore & McCabe, 1998), plots of group means helped to properly 
interpret the data. 

Principal component analysis (PCA) condenses information contained 
in a large number of original variables into smaller set of new composite 
dimensions, with a minimum loss of information (McGarigal et al., 2000). The 
technique also reveals complex interrelationships among variables, which can 
be interpreted through the principal component structure (Griffith & Amrhein, 
1997).  

We used PCA to compose the original variables into linearly 
independent orthogonal principal components (PCs) thereby reducing 
dimensionality in the data. We used a correlation matrix R instead of a 
covariance matrix to summarize the variance structure of the original data 
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matrix since the scale or unit of measurement differed among variables 
(McGarigal et al., 2000).  

We used the principal component loadings to assess the relative 
importance of the independent variables in each principal component. The 
principal component loadings are defined as (McGarigal et al., 2000): 

 ( ) ijiijS λν=  (1) 

where ijS  is the correlation between the ith principal component and 

the jth variable, ijν is the principal component weight of the jth variable in the 

ith principal component and iλ is the eigenvalues associated with the ith 
principal component. 
 
 
8.3 Results 
 
8.3.1 Variations in the data set 
 
Table 8.2 shows the distribution of the macronutrients measured at the sample 
sites. There was a marked variation in the range of foliar macronutrients 
(dependent variables) between the granites and basalts as well as among 
species. Figure 8.1 shows histograms of the distributions. Data was tested for 
normality using the Kolmogrov-Sminov test. Magnesium, phosphorus and 
calcium follow a normal distribution (p > 0.05). A log 10 transformation was 
used to normalize nitrogen, potassium and sodium.  This subsequently led to the 
use of parametric statistical tests, which assume a normal distribution of the 
data. Table 8.3 shows the distribution of the continuous environmental variables 
that were used in this study. 
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Table 8.2: Descriptive statistics of the measured biochemicals per species and per 
geology 
 
Biochemical by species Geology No. of samples Mean (%) St dev 
Nitrogen     

Granite 11 0.79 0.13                  P.  maximum 
Basalt - - - 
Granite 9 0.77 0.2                  T.  triandra 
Basalt 7 0.66 0.36 
Granite 16 0.84 0.49                  U. mosambicensis 
Basalt 9 0.66 0.26 
Granite 1 1.01 -                  C.  ciliaris 
Basalt 12 0.79 0.15 
Granite 7 0.91 0.42                  E. lehmanniana 
Basalt 7 0.72 0.27 
Granite - - -                   S. ioclados 
Basalt 12 1.21 0.94 

                  All combined  91 0.86 0.46 
Magnesium     

Granite 11 0.23 0.08                  P. maximum 
Basalt - - - 
Granite 9 0.23 0.09                  T.  triandra 
Basalt 7 0.16 0.05 
Granite 16 0.26 0.1                  U. mosambicensis 
Basalt 9 0.23 0.08 
Granite 1 0.31 -                  C.  ciliaris 
Basalt 12 0.24 0.04 
Granite 7 0.23 0.06                  E. lehmanniana 
Basalt 7 0.15 0.1 
Granite - - -                  S. ioclados 
Basalt 12 0.27 0.1 

                 All combined  91 0..23 0.09 
Calcium     

Granite 11 0.38 0.09                  P. maximum 
Basalt -  - 
Granite 9 0.42 0.13                  T.  triandra 
Basalt 7 0.33 0.06 
Granite 16 0.54 0.13                  U. mosambicensis 
Basalt 9 0.49 0.17 
Granite 1 0.59 -                  C.  ciliaris 
Basalt 12 0.49 0.07 
Granite 7 0.39 0.05                  E. lehmanniana 
Basalt 7 0.40 0.17 
Granite - - -                  S. ioclados 
Basalt 12 0.46 0.17 

            All combined  91 0.45 0.13 
Potassium     

Granite 11 1.07 0.38                  P. maximum 
Basalt - - - 
Granite 9 0.9 0.42                  T.  triandra 
Basalt 7 0.75 0.26 
Granite 16 1.01 0.66                  U. mosambicensis 
Basalt 9 0.60 0.195 
Granite 1 1.39 -                  C.  ciliaris 
Basalt 12 1.33 0.42 
Granite 7 1.82 0.75                  E. lehmanniana 
Basalt 7 0.63 0.38 
Granite - - -                  S. ioclados 
Basalt 12 0.59 0.39 

                 All combined  91 0.97 0.57 
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Table 8.2: Descriptive statistics of the measured biochemicals per species and per 
geology (cont) 
 
Phosphorous     

Granite 11 0.23 0.11                  P.  maximum 
Basalt - - - 
Granite 9 0.19 0.08                  T.  triandra 
Basalt 7 0.17 0.04 
Granite 16 0.21 0.07                  U. mosambicensis 
Basalt 9 0.16 0.02 
Granite 1 0.16 -                  C.  ciliaris 
Basalt 12 0.28 0.09 
Granite 7 0.21 0.07                  E. lehmanniana 
Basalt 7 0.16 0.04 
Granite - - -                  S. ioclados 
Basalt 12 0.21 0.05 

                 All combined  91 0.21 0.08 
Sodium     

Granite 11 0.1 0.09                  P.  maximum 
Basalt - - - 
Granite 9 0.03 0.03                  T.  triandra 
Basalt 7 0.02 0.03 
Granite 16 0.05 0.098                  U. mosambicensis 
Basalt 9 0.06 0.09 
Granite 1 0.1 -                  C.  ciliaris 
Basalt 12 0.02 0.05 
Granite 7 0.14 0.06                  E. lehmanniana 
Basalt 7 0.03 0.05 
Granite - - -                  S. ioclados 
Basalt 12 0.21 0.25 

                 All combined  91 0.08 0.122 
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Figure 8.1.  Distribution of the foliar macronutrients measured in the Kruger National 
Park. 
 
 
Table 8.3:  Mean and standard deviation of the continuous data collected (n = 91) 
Variables Mean  Standard deviation 
Altitude (m) 401 18.87 
Cover (%) 84.75 15.56 
Biomass (kg/m2) 0.48 0.33 
Distance from DLs (m) 445 504 
Slope  (Degrees) 6.38 3.80 
Aspect (Degrees) 187.6 95.16 
* Significant level: p < 0.05 
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Table 8.4a: Correlation coefficients (r) between macronutrients and continuous 
environmental factors (n = 91). For the relationship between macronutrients versus 
slope as well as aspect, sample plots with slope and aspect values greater than 0 were 
used. 
 N Ca K P Mg Na 
Altitude -0.44* 0.26* 0.30* 0.31* 0.04 -0.21 
Slope -0.72* -0.71* -0.57* -0.23 -0.26 -0.65* 
Aspect -0.62* -0.14* -0.79* -0.53* -0.65* -0.60* 
DLs -0.09 0.23* 0.19 -0.05 -0.16 0.13 
Cover -0.29* -0.04 -0.51* -0.23 -0.23 -0.4* 
Biomass -0.24* -0.20 0.14 0.08 0.06 -0.21 
* Significant level: p < 0.05 

 
Table 8.4b:  Results of One-Way analysis of variance and t – tests between foliar 
chemical variables and categorical environmental factors. One-way ANOVA was used 
on factors with more than two groups of samples viz. Soil texture, vegetation type as 
well as species type and t–tests were used on binary factors viz. Geology, salt licks. S 
represents significant variables (p < 0.05) and NS represents variables that are not 
significant (p ≥ 0.05) 
 
  N Ca K P Mg Na 
Soil texture s ns s ns ns s 
Geology s ns s ns ns ns 
Vegtype ns ns s ns ns ns 
Species type s s s s ns s 
Salt licks ns ns s s s s 
 
 
8.3.2 Univariate analysis  
 
Results of Pearson’s correlation analysis in Table 8.4a generally show that the 
independent variables are negatively correlated with the quality variables (N, 
Ca, K, P, Mg, Na), with a few exceptions. The strongest inverse correlation with 
all quality variables is observed with slope. Percentage grass cover and aspect 
also show significant inverse relationships with all quality variables. Relatively 
weak correlations were obtained between quality variables and distance from 
the drainage lines. There is also a negative relationship between nitrogen 
concentration and biomass. When data was partitioned into dry and wet biomass 
(observed in the field), the relationship was stronger between dry biomass and 
nitrogen concentration (correlation coefficient = -0.36, p <0.05) as compared to 
the fresh biomass (correlation coefficient  = -0.24, p < 0.05). 

For categorical variables, significant differences were obtained between 
most quality variables and species type as well as the salt licks (Table 8.4b). 
Exploratory data analysis through box plots showed that the concentration of 
most quality variables was high on salt licks and in certain species such as S. 
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ioclados. Nitrogen and potassium also differed significantly between the two 
major geological types. Higher N and K were recorded in granitic areas as 
compared to the basalts. 
 
8.3.4 Multivariate analysis 
 
Two–way factorial ANOVA was used to test the interaction between the biotic 
and abiotic independent variables in influencing a variation in nitrogen 
concentration. Plots of means were used to identify the direction and form of 
interaction. Figure 8.2 shows the form and direction of the interaction between 
geology and grass cover. The interaction effect was tested using the two–way 
ANOVA. 
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Figure 8.2: The form and direction of interaction between geology and grass cover (± 
95% CL) in influencing a variation in nitrogen concentration. Grass cover was 
categorized into Low density (LD), Medium density (MD), High density (HD) and Very 
high density (VHD) using the quartile ranges. 
 
 

In the low grass cover class, there are significant differences in nitrogen 
concentration between the granite and basalts (P < 0.001). However there are no 
significant differences in the high cover class (P > 0.05). Detailed pair wise 
results of the interaction between landscape variables in influencing a variation 
in nitrogen concentration are shown in Table 8.5.  
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There is also a significant interaction between cover and species type (p 
< 0.001). Although all species show a general decrease in nitrogen 
concentration with increasing grass cover, there is a marked difference in the 
rate of decrease between the species themselves. For example, species such as 
S. ioclados have very high nitrogen concentration in the low cover class, which 
decreases rapidly in the high cover classes, whereas there is a gradual decrease 
for P. maximum. Significant interaction between slope and species type, 
between salt licks and distance from the drainage lines as well as between 
geology and cover have also been uncovered. 
 
Table 8.5: Two–way Factorial ANOVA testing for interaction between independent 
variables in influencing variation in foliar nitrogen concentration. S represents 
significant variables (p < 0.05) and NS represents variables that are not significant (p ≥ 
0.05) 
  Soil 

texture 
Geology Salt licks Altitude Slope DLs Species 

type 
Cover 

Species type - S S S S NS -  
Cover NS S NS S NS NS S - 
Biomass S NS S NS NS S NS NS 
Vegtype NS NS S NS NS S NS S 

 
Principal component analysis was executed using 8 continuous 

variables described in Table 8.1. This list comprises all continuous variables as 
well as categorical variables that could be ranked according to a certain criteria 
i.e. soil texture and vegetation cover. Soil texture varied from fine to coarse 
texture, while vegetation type varied from open mopane to dense mopane. From 
the explanatory variables analysed, five PCs collectively yield 91 % of the total 
variance as shown by the eigen values in Figure 8.3.  
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Figure 8.3: Scree plot for the eigenvalues associated with the 8 principal components. 
The eigenvalues were normalised as percentage of the total and the numbers on the 
scree plot indicate the cumulative percentage contribution.  
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Principal component loadings were used to explore and interpret the complex 
interrelationships represented in the principal component structure (Table 8.6).  
 
Table 8.6: Principal components and their corresponding scores (loadings). ** shows 
the highest significant absolute loadings for each variable. 

 PC1 PC2 PC3 PC4 PC5 
Eigen values 2.74 1.63 1.40 0.90 0.61 
Altitude -0.800924** -0.073823 -0.445750 0.081822 -0.130805 
Slope -0.695063 0.241425 -0.698677** 0.026322 -0.108623 
Aspect -0.660718 0.153006 -0.668985** -0.015838 -0.115422 
Vegtype -0.729681** -0.032906 -0.300378 -0.340566 0.358929 
Cover -0.161445 -0.713498 0.339347 0.223477 0.515977** 
Biomass -0.027636 -0.815378** 0.010945 0.364344 -0.342848 
Soil texture 0.061842 0.608907** -0.072907 0.739646** 0.219295 
Dls -0.784820** -0.013228 -0.435174 0.222641 -0.083641 

 
The highest significant scores for each PC in Table 8.6 indicate the 

relative contribution of the independent variables to the principal component as 
follows: 

PC1 is related to altitude, distance from the drainage lines, and 
vegetation type with a negative sign, implying a positive relationship 
between these variables 
PC2 is related to biomass and percentage grass cover 
PC3 is inversely related to slope and aspect 
PC4 is related to soil texture, and, 
PC5 is related to percentage grass cover 

Stepwise linear regression (both forward selection and backward elimination) 
between the principal components and nitrogen concentration resulted in the 
following model: 
 

Y = 0.83-0.138PC4-0.08PC5-0.04PC3+0.03PC2 
 

The model selected principal components dominated by percentage 
grass cover (PC2 and PC5) implying the relative importance of percentage grass 
cover in modelling nitrogen variation. The importance of edaphic factors is 
reflected in the selection of PC4, whose major contribution comes from soil 
texture. It is surprising to note that, PC1, which contains the largest variance, 
was not selected by the stepwise linear regression. The model could explain 
58% of the variation in foliar N concentration, with a root mean square error 
(RMSE) of 0.035. 
 
8.4 Discussion 
 
The variation of grass quality in space is commonly invoked to explain the 
movement of grazers (McNaughton, 1990; Prins, 1996). We have demonstrated 
in this study that nutrient distribution in the Kruger National Park is 
significantly correlated with several environmental variables such as slope, 
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aspect, biomass and percentage grass cover. Whilst univariate statistical 
analyses have shown individual variables that are related to quality parameters, 
multivariate analyses have shown the interrelationships between the 
independent variables themselves as well as their relative importance in 
explaining a variation in quality, particularly nitrogen.  

Contrary to the general notion that basalt areas that are rich in clay 
minerals support  more nutritious grasses than granite areas, the results of this 
study indicated that there is higher nitrogen and potassium concentration in 
grasses over the granites as compared to grasses over the basalt. These findings 
are supported by similar results obtained by Grant et al., (2000) who found high 
foliar nitrogen concentration in granitic areas as compared to basaltic areas. 
There are two possible explanations for this, which are now discussed.  

Firstly, data was collected during the post rainy season (in April and 
May), a period when most annual grasses in the basalt (open grasslands 
characterised with heavy clayey soils) had used their nutrients quickly (Prins et 
al., 1996), and dried up as a result of higher soil moisture tension, a measure of 
energy a plant must apply to the soil in order to extract the available moisture 
(Murphy et al., 2000). This is in contrast to perennial grasses on the granites 
such as P. maximum, which provided nutritious green leaves long into the dry 
season (Grant et al., 2000). The granites are characterised by sandy and loamy 
soils (Ventor, 1990), which have low moisture tension, hence the plants could 
extract water for survival. This relationship is confirmed by PC4 (whose major 
significant loading comes from soil texture) being significant in a stepwise 
modelling of nitrogen variation (Table 8.6). Secondly, the high tree density in 
granitic areas accumulates nutrients on the surface by pumping them from 
deeper soil layers (Scholes & Archer, 1997), thereby supporting many grasses.  
In a study on tree–grass interactions in an East African savanna, Ludwig (2001) 
found out that grasses under trees were highly nutritious compared to the 
surrounding grasses. Although this study did not focus at such a microscale of 
analysis, the explanation may still hold since the granites have higher woody 
cover as compared to the basalts.  

In addition to the tree–grass interaction explanation, some grass species 
(e.g. P. maximum and S. ioclados) are also common along many drainage lines 
that traverse the granitic areas (Ventor, 1990). These drainage lines are rich in 
clay, minerals and soil moisture, and the grasses growing there have high foliar 
nitrogen concentration (Grant et al., 2000). This probably explains the inverse 
relationship between drainage lines and quality parameters obtained in this 
study. The type of species and their location as reflected in the significant 
interaction between species and geology in Table 8.5 is therefore critical in 
explaining the variation in grass quality.  

Generally, there is a strong inverse relationship between all quality 
parameters and micro variations in slope, altitude as well as aspect. The effect 
of slope and aspect were more pronounced in the granite areas where high slope 
and aspect values were obtained. The influence of slope, aspect and altitude act 
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through their effects on soil temperature and water runoff (Roberts, 1987).  
Steeper slopes result in higher runoff and are therefore characterised by thinner 
soils, which do not support high quality grass whereas there is deposition of 
nutrient soils on foot slopes resulting in high quality grasses. Higher radiation 
on slopes in the Kruger National Park generally results in drier soils that support 
xerophytic plant species with low nutrient content. Slope and aspect contribute 
significant negative loadings to PC3 in the PCA and have been selected in the 
stepwise model indicating their relative importance in modelling nitrogen 
distribution. The effect of these site-specific factors is modified by the influence 
of other interacting variables such as plant characteristics as will be discussed. 

Slope interacts significantly with species type in influencing nitrogen 
variation (Table 8.5). Grass species such as E. lehmanniana have high nitrogen 
concentration on steep slopes as compared to S. ioclados, which contains very 
high nitrogen concentration on flat to gentle slopes next to vleis (salt licks). E. 
lehmanniana can survive on thin soils whereas S. ioclados grows particularly in 
and around seasonal pans with deep soils (Van Oudtshoorn, 1999). Species type 
also interacts significantly with known salt lick areas and non-salt lick areas. 
Some plant species such as S. ioclados are salt tolerant through maintenance of 
a high potassium/sodium ratio in the cytosol and the compartmentalization of 
sodium in the plant vacuole (Flowers et al., 1977). Therefore, even at high 
sodium concentration, the plants resist chlorosis and rapid browning off as 
compared to salt sensitive plant species. Therefore, species that are found on 
salt licks have higher mineral concentration, and these areas are selected for 
grazing (McNaughton, 1988; Wheelock, 1980). 

This study has shown an inverse relationship between quantity 
(expressed as percentage cover and biomass) and most quality parameters 
(McNaughton, 1987; Prins et al., 1996). From results of stepwise modelling 
using PCs, percentage grass cover and biomass turns out to be strong variables 
in explaining quality variation. This is reflected in the selection of PC2 where 
biomass and then percentage cover contributes the largest loadings (Table 8.6). 
Percentage cover also contributes the largest loading in PC5. This pattern can be 
partly explained by the dilution of nutrients in high biomass regions (van de 
Vijver, 1999, Wilson, 1984).  A further analysis of the relationship between 
nitrogen concentration and dry biomass as well as fresh biomass that were 
observed in the field revealed a stronger negative relationship with dry biomass 
as compared to fresh biomass. This observation is expected due to the influence 
of water in the plants. Nevertheless, the relationship with nitrogen for both dry 
and fresh biomass indeed revealed a negative direction, confirming the results 
of other similar studies (Prins & Olff, 1998).   

Principal component analysis has helped to reduce dimensionality in the 
data set as well as describing and exploring the relative importance of variables 
in explaining quality variation. Four PCs were retained to explain the variation 
in nitrogen concentration (the most limiting quality parameter for grazers). It is 
interesting to note that the stepwise regression model for nitrogen did not select 
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PC1. Variables such as vegetation type and distance from drainage lines that 
contribute significantly to PC1 are not related to nitrogen. These variables are 
relatively measured at a coarser scale than variables such as percentage cover 
(PC2) and biomass that are measured at a finer scale.  For example, within a 
vegetation type class, there is a variation in percentage grass cover, which is 
closely related to a variation in quality. Therefore, site-specific factors are 
considered more critical in explaining a variation in grass quality as compared 
to regional variables.  

It should be emphasized that due to the large number of factors of the 
environment which may affect the vegetation nutrient patterns, it is usually 
impossible to measure more than a limited number of factors (Roberts, 1971). 
Therefore the factors considered in this study are undoubtedly not exhaustive in 
explaining nutrient distribution patterns. Nevertheless, the results presented in 
this study provide strong evidence that selected environmental factors and their 
interaction do influence foliar nutrient distribution patterns.  
 
8.5 Conclusion 
 
The pattern of grass quality at regional, continental or global scale is largely 
determined by major climatic factors such as rainfall, temperature and latitude 
(Robbins, 1983, Roberts, 1987). However, these factors are known to be largely 
constant at a local scale like the one considered in this study. The evidence 
presented in this study indicates that site-specific factors such as availability of 
herbage and species type, which interact significantly with abiotic factors such 
as slope and altitude, are critical in influencing nutrient distribution. In 
particular, we have shown that, under some circumstances nitrogen can be 
higher in a granitic landscape than a basaltic landscape.  In this regard, we 
anticipate that the results of this study can be used to better understand factors 
influencing foliar nutrient patterns at a landscape scale in savanna rangelands. 
This can be further enhanced by developing techniques to map the variation in 
grass quality. However, we acknowledge that this study is based on one 
snapshot, therefore some slightly different findings maybe obtained during other 
times of the year. Nevertheless, the study has revealed that under the conditions 
experienced during the study period, nutrient distribution varies with varying 
biotic and abiotic factors. 
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Abstract 
 
A new integrated approach, involving continuum-removed absorption features, 
the red edge position and neural networks is developed and applied to map grass 
nitrogen concentration in an African savanna rangeland. Nitrogen, which 
largely determines the nutritional quality of grasslands is commonly the most 
limiting nutrient for grazers. Therefore, the remote sensing of foliar nitrogen 
concentration in savanna rangelands is important for an improved understanding 
of the distribution and feeding patterns of wildlife. Continuum removal was 
applied on two absorption features located in the visible (R550-757) and the SWIR 
(R2015-2199) from an atmospherically corrected HYMAP MKI image. A feature 
selection algorithm was used to select wavelength variables from the absorption 
features. Selected band depths from the absorption features as well as the red 
edge position (REP) were input into a backpropagation neural network. The 
best-trained neural network was used to map nitrogen concentration over the 
whole study area. Results indicate that the new integrated approach could 
explain 60% of the variation in savanna grass nitrogen concentration on an 
independent test data set, with a root mean square error (rmse) of 0.13 (± 8.30% 
of the mean observed nitrogen concentration). This result is better compared to 
the result obtained using multiple linear regression, which yielded an R2 of 
38%, with a RMSE of 0.16 (±10.30% of the mean observed nitrogen 
concentration) on an independent test data set. The study demonstrates the 
potential of airborne hyperspectral data and neural networks to estimate and 
ultimately to map nitrogen concentration in the mixed species environments of 
Southern Africa. 
 
Key words: Hymap image, absorption features, continuum removal, red 
edge position, foliar nitrogen concentration, savanna rangelands 
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9.1. Introduction 
 
Research in Southern Africa has revealed that wildlife species such as roan 
antelope, wildebeest, zebra, tsessebe, warthog, reedbuck, hartebeest, topi, and 
buffalo favour open savanna or open grassland plains (Coetzee, 1983; Jourbert, 
1976; Prins, 1989) and their spatial distribution is mainly influenced by a 
variation in grass quality, as determined by nitrogen concentration (Grant et al., 
2002; Heitkonig & Owen-Smith, 1998; McNaughton, 1988). In this regard, the 
determination and monitoring of spatial variations in nitrogen concentration in 
wildlife reserves is critical to facilitate an optimal management of wildlife 
resources. However, cost effective methods to accomplish the task of mapping 
grass quality remain largely underdeveloped. 

The development of hyperspectral remote sensing has offered 
unprecedented opportunities to estimate and map foliar quality. This is mainly 
because hyperspectral images are acquired in many narrow, contiguous spectral 
bands that can detect local variations in absorption features (Kokaly et al., 2003; 
Schmidt & Skidmore, 2003). Research has therefore focused on using remote 
sensing techniques such as those developed for laboratory near infrared 
spectrometry (NIRS) to estimate foliar biochemicals (Foley et al., 1998; Marten 
et al., 1989). NIRS can provide accurate estimates of protein, lignin, and 
cellulose contained in dried ground forage (Norris et al., 1976), and in many 
laboratories the technique has replaced the standard analytical procedure for 
assessing plant biochemicals (Barton et al., 1992).  

The extension of empirical laboratory NIRS to estimating foliar 
biochemicals at canopy level has had increasing attention as hyperspectral 
remote sensor systems of high quality became readily available recently (Kumar 
et al., 2001).  However, the presence of water in fresh canopies masks the 
biochemical absorption features, particularly in the shortwave infrared (Clevers, 
1999; Kokaly & Clark, 1999) and make the remote sensing of foliar 
biochemicals more difficult. In addition, leaf orientation and soil background 
effects, as well as atmospheric absorption, further complicate the remote 
sensing of biochemicals at field level (Asner et al., 2000). NIRS-based 
techniques such as stepwise regression also suffer from problems of overfitting, 
especially when more wavebands than samples are used (Curran et al., 2001).  

To overcome these problems, some vegetation studies aimed at 
estimating foliar biochemical concentration have recently focused on the use of 
specific channels that correspond to the principal absorption features of 
vegetation at laboratory scale (Curran et al., 2001; Kokaly & Clark, 1999; 
Mutanga & Skidmore, 2003; Mutanga et al., In review) as well as field scale 
(Mutanga et al., 2004). The absorption feature analysis approach is based on 
isolation and normalisation of absorption features by continuum removal – a 
technique that was successfully applied in the geological sciences for mapping 
minerals (Clark & Roush, 1984). The advantages of using continuum-removed 
absorption features as compared to the standard NIRS approach are that; (i) 
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concentrating on specific absorption features reduces the problem of selecting 
wavebands that are non-causal (Curran et al., 1992; Fourty et al., 1996), and 
(ii), absorption features are enhanced and standardized to minimise the effect of 
spectral variability that is independent of the biochemical concentration (Curran 
et al., 2001; Mutanga et al., 2004).  

Despite its advantages, the major drawback of the continuum-removed 
absorption feature analysis technique in combination with stepwise regression is 
that assumptions are made about the data characteristics such as assuming a 
linear relationship between the dependent and independent variables (Kokaly & 
Clark, 1999; Mutanga & Skidmore, 2003). Although the feature of linearity in a 
data set may be transformed mathematically, complex non-linearity in some 
data may never be approximated (Boyd, 2002; Zhang et al., 2002). In such 
situations, the use of nonlinear regression requires a priori knowledge of the 
nature of the nonlinear behaviour, something that is not usually available and 
non-linear regression is cumbersome to implement (Keiner & Yan, 1998).  

In view of the above, neural networks have been shown to be useful in 
modelling a variety of non-linear behaviour, including modelling a large range 
of transfer functions (Atkinson & Tatnall, 1997; Keiner & Yan, 1998). From 
this background, Mutanga et al., (2004) recommended the use of absorption 
features with a neural network algorithm, which does not assume linearity for 
mapping grass quality in the mixed species environments of Southern Africa.  

The red edge position has also been found to be correlated with foliar 
nitrogen concentration (Mutanga et al., In review; Penuelas et al., 1994), 
because of a strong relationship between chlorophyll and nitrogen  (Katz et al., 
1966; Penuelas et al., 1994; Yoder & Pettigrew-Crosby, 1995; Mutanga et al., 
In review). Therefore, the integration of neural networks with variables from 
continuum-removed absorption features as well as the red edge position might 
be applicable to mapping grass quality in mixed species environments such as 
those found in African rangelands.  

The main objective of this study was to investigate whether a neural 
network, combined with continuum-removed absorption features as well as the 
red edge position could reliably map grass quality (nitrogen concentration) in a 
mixed species environment of the Kruger National Park, South Africa. We also 
compared the results obtained by the neural networks to those obtained by 
stepwise linear regression. This study is an extension of a field spectra study, 
which showed the potential of continuum-removed absorption features in 
predicting in situ grass quality (Mutanga et al., 2004). The successful prediction 
of foliar quality using field spectroradiometry showed potential for the 
application of the approach using airborne sensors. The field spectra study also 
provided an insight on the most informative absorption features for predicting 
foliar biochemicals and these absorption features were used in this study.  To 
the best of our knowledge, this study is the first to map nitrogen concentration 
at canopy level using high-resolution image in an African savanna rangeland. 
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9.2. Methods 
 
9.2.1. Study area 
 
The study area was located in the northern plains of the Kruger National Park in 
the Republic of South Africa. A strip of 2.5 km by 18 km was selected, 
stretching from west (22º 46′ S and 31º 11′ E) to east (22º 46′ S and 31º 21′ E) 
and covering basaltic formations. Grass production is high and there is 
considerable variation in species as well as nutritional quality (Grant et al., 
2000). This area is a subset of a larger study area that was used for estimating 
grass nutrient concentration using field spectrometry and the results are 
published in a separate paper (Mutanga & Skidmore, 2003; Mutanga et al., 
2004). For mapping grass nitrogen concentration using airborne hyperspectral 
imagery in this study, we concentrated on the eastern grassland plains, which 
had advantages of being generally flat with high grass cover and very few 
shrubs. 

Initial sample sites were randomly selected within strata based on the 
land cover map of the area, which was provided by the GIS section of the 
Kruger National Park. To increase the number of samples in a time and labour-
constrained situation, two extra samples were clustered at least 100 m from each 
of the initially generated plots. Samples to determine grass N concentration 
were collected in March 2003, the period of the Hymap MK1 overflight. The 
samples were collected from plots of 5 m by 5 m in area (largely homogenous 
in species cover), and x, y coordinates of the centre of each plot was recorded. 
Representative samples from each plot were collected by randomly clipping 
grass from several spots in the 5 m by 5 m plots. The samples from several 
spots in each plot were then mixed (about 300 g in total weight per plot) and 
collected in paper bags for laboratory analysis. A total of 44 samples falling 
within the subset window were used for this study. 

The grass samples were oven-dried at 70º C for 24 hours. Plant tissue 
was analysed at the Institute of Tropical and Subtropical Crops under the 
Agricultural Research Council (ARC-ITSC) in Nelspruit, South Africa, using 
the wet digestion technique with 98% Sulphuric Acid and 30% Hydrogen 
Peroxide. The detection of nitrogen was based on the colorimetric method, 
(CHEMetrics, Inc) in which an emerald-green colour was formed by the 
reaction of ammonia, sodium salicylate, sodium nitroprusside and sodium 
hypochlorite (Grasshoff et al., 1983). The ammonia-salicylate complex was 
read at 640 nm for nitrogen detection. The colorimetric method has been widely 
used for nutrient determination in terrestrial plants, agricultural and seawater 
analysis (Boltz, 1978; Giron, 1973; Grasshoff et al., 1983; Koroleff, 1983; 
Norton et al., 1987; Sapan et al., 1999). Since the technique uses fewer samples 
and is less time-consuming than the standard Kjeldahl method, it is frequently 
used in many research laboratories (Sapan et al., 1999). With the selection of a 
standard for the calibration that is representative of the population, the 
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colorimetric method provides accurate results, which are comparable to the 
Kjeldahl procedure (Sapan et al., 1999).  
 
9.2.2. Hyperspectral image acquisition and pre-processing 
 
Hyperspectral imagery was acquired using the De Beers HYMAP MK1 scanner 
(originally called AMS scanner) on 18 March 2003. The De Beers diamond 
company (South Africa) commissioned the scanner from an Australian 
consortium consisting of Integrated Spectronics Ltd, CSIRO Division of 
Materials and Auspace. The system has three spectrometers covering the 
following wavelength regions: 

500 nm-1100 nm visible to near infrared 
1450 nm-1800 nm shortwave infrared 1 
1950 nm-2450 nm shortwave infrared 2 

Each spectrometer images 32 bands with approximately 15 nm 
bandwidths and is mounted on a zeiss stablised platform to minimise distortions 
due to pitch, yaw and roll of the aircraft during data collection. GPS and c-
migits inertial navigation gyros were attached to the system to provide data for 
automated geometric correction. The De Beers Company processed the imagery 
and undertook the geometric and radiometric corrections. Atmospheric 
correction of the image was done using the ACORN (Atmospheric CORrection 
Now) model, a product of ImSpec LLC. The model uses the Modtran 4 
radiative transfer model to calculate the effect of atmospheric gases as well as 
molecular and aerosol scattering on the spectra. These atmospheric 
characteristics are used to convert the calibrated sensor radiance measurements 
to apparent surface reflectance (Analytical and Imaging Geophysics, 2000). The 
term apparent surface reflectance is used to refer to the reflectance values 
derived mainly from the methods of radiative transfer calibration, which are not 
exact but show some residual atmospheric absorptions and scattering effects 
(Clark et al., 1993). The acquired imagery had a pixel size of 4.2 x 4.2 meters.  
 
9.3. Data analysis 
 
9.3.1. Absorption features 
 
Two known chemical absorption features were used for this study: the 
chlorophyll absorption features in the visible domain (R550 – 757), which have 
been found to be related to nitrogen concentration in both fresh standing 
canopies (Mutanga et al., In review) and dried ground plant material (Curran et 
al., 2001); and the shortwave absorption feature (R2006–2196) which has been 
found to be strongly related to N concentration (Curran et al., 2001; Kokaly & 
Clark, 1999). Compared to other absorption features used for estimating N 
concentration in situ, Mutanga & Skidmore, (2003) showed that the two 
absorption features selected for this study contained more information on foliar 



Chapter 9 
 

 145 

quality. The other important absorption feature (R1634-1786) was not used due to 
excessive instrument noise. 

Continuum removal was applied to the selected absorption features. 
Continuum removal normalises reflectance spectra in order to allow comparison 
of individual absorption features from a common baseline. The continuum is a 
convex hull fitted over the top of a spectrum utilising straight-line segments that 
connect local spectral maxima. The convex hull can be considered as the shape 
that a rubber band would attain if it were stretched over the reflectance 
spectrum. This means that the convex hull will be in contact with the reflectance 
spectrum at maximum reflectance points such as the red edge shoulder 
(Mutanga et al., 2004). Since we were interested in isolating specific absorption 
features in this study, we defined local start and endpoints on a particular 
absorption feature as defined above. Linear continua were fitted between the 
start and endpoints of the absorption features and then continuum removal was 
applied. 

The continuum-removed reflectance R′ (λ) is obtained by dividing the 
reflectance value R (λ) for each waveband in the absorption pit by the reflectance 
level of the continuum line (convex hull) Rc(λ) at the corresponding wavelength:  

R′ (λi)
    = 

)(

)(

ic

i

R
R

λ

λ  (1) 

The first and last spectral data values are on the hull and therefore the 
first and last values of the continuum-removed spectrum are equal to 1. The 
output curves have values between 0 and 1, in which the absorption pits are 
enhanced (Schmidt & Skidmore, 2003). Continuum removal enhances bands by 
correcting for apparent shifts in the band minimum caused by wavelength-
dependent scattering that imparts a slope to the spectrum. Removal of the 
continuum slope corrects the band minimum to that of the true band centre 
(Clark & Roush, 1984).  

Continuum removal has proved useful in mapping the distribution of 
minerals by comparing remotely sensed absorption band shapes with those in a 
reference library (Clark & Roush, 1984). Efforts to apply the method in 
vegetation science have been made using dried plant material in the laboratory 
(Kokaly, 2001; Kokaly & Clark, 1999). This method has not to our knowledge 
been extended to canopies in situ for nitrogen concentration  mapping. 

Previous studies in both geological and vegetation science have 
calculated several parameters from the continuum-removed absorption features 
(Clark & Roush, 1984; Kokaly, 1999; Mutanga & Skidmore, 2003). In this 
study, we used the band depth, which is computationally efficient and therefore 
suitable for practical applications. 

Band depth (BD) was calculated by subtracting the continuum-removed 
reflectance R′ (λi)

 from 1.  Stated formally: 
BD (λi)

   = 1- R′ (λi)
 (2) 
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Where R′ (λi) is the continuum-removed reflectance at wavelength i. 
Figure 9.1 shows band depths of the two absorption features following 

continuum removal. The band depths were calculated using extracted image 
spectra corresponding to the x,y centre coordinates of the field sample points 
(44 samples). Each image spectrum was extracted from a single pixel. 
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Figure 9.1. Continuum-removed absorption features located in the visible (A) and the 
SWIR (B), inverted to band depths. The means are flanked by the upper (UCL) and 
lower (LCL) 95 % confidence limits. The image spectra corresponding to the x,y centre 
coordinates of the field sample points (44 samples) were extracted and analysed. 
 
The two absorption features used in this study had a total of 25 bands. The first 
and last wavebands of each absorption feature were removed since they all had 
values of 1 after continuum removal. Therefore 21 bands were used for further 
analysis. Figure 9.2 shows a band depth image at 679 nm. 
 
9.3.2. The red edge position 
 
The red edge position (REP) was also calculated as an input into the neural 
network. The REP is the point of maximum slope in vegetation reflectance 
spectra (Fillella & Penuelas, 1994) that occurs in the 680 – 750 nm region. This 
phenomenon is caused by strong chlorophyll absorption in the red and canopy 
scattering in the near infrared (Dawson & Curran, 1998). As a result of a strong 
relationship between chlorophyll and foliar nitrogen concentration (Penuelas et 
al., 1994) the REP has been successfully related to nitrogen concentration in 
plants (Clevers & Buker, 1991;Mutanga et al., In review).  The REP was 
therefore used as an input variable to map nitrogen concentration in this study.  



Chapter 9 
 

 147 

 

 

Wetland

1
23

4 5

 
Figure 9.2. Band depth at 679 nm. The 679 nm waveband was selected for illustration 
since it was considered to be the centre of the R550-557 absorption feature. Numbers 1-5 
represent blocks in the roan antelope camp, a fenced area to conserve roan antelopes. 
The image was sliced for clarity. 

 
The linear method was used to calculate the red edge position (Guyot & 

Baret, 1988). Clevers & Jongschaap (2001) successfully tested the technique 
against the other interpolation techniques. The linear interpolation assumes that 
the reflectance at the red edge can be simplified to a straight line centred around 
a midpoint between the reflectance in the NIR at 780 nm (788 nm for the censor 
used in this study) and the reflectance minimum of the chlorophyll absorption 
feature at about 670 nm (663 nm for the sensor used in this study). The 
procedure is as follows: First, the reflectance value at the inflection point is 
estimated (equation 3). Second, linear interpolation  between the measurements 
at 695 nm and 742 nm is applied to estimate the wavelength corresponding to 
the estimated reflectance at the inflection point (equation 4). Formally stated: 

Calculating the reflectance value at the inflection point (Rre) 
(Rre) = (R663 + R788)/2 (3) 

 
Calculating the red edge position 
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Where R663, R695, R742 and R788 are the reflectance values at 663, 695, 

742 and 788 nm respectively. The value 695 refers to wavelength position 
belonging to R695. The value 47 refers to the wavelength interval between 695 
nm and 742 nm. Figure 9.3 shows the calculated REP. 
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Figure 9.3. The red edge position as calculated using the linear method (Guyot and 
Baret, 1988). Wavelength positions were sliced into four classes for clarity 
 
9.3.3. The neural network algorithm 
 
An artificial neural network was used to map nitrogen concentration in grass 
using the band depth of absorption features as well as the REP. Neural networks 
are essentially learning systems consisting of interconnected networks of simple 
processing elements (Atkinson & Tatnall, 1997). They have powerful pattern 
recognition capabilities that enable them to learn to represent complex 
multivariate data patterns (Carling, 1992). Neural networks can perform more 
accurately than other statistical techniques, particularly when the feature space 
is complex and the source data has different statistical distributions (Atkinson & 
Tatnall, 1997).  

In vegetation science, neural networks have been mainly used for land 
cover classifications (Bischof et al., 1992; Civco, 1993; Hepner et al., 1989; 
Zhang et al., 1997), forest classifications (Ardo et al., 1997; Skidmore et al., 
1997a) and wildlife habitat classifications (Liu et al., 2002).  Only a handful of 
studies have applied the technique to estimate continuous vegetation variables 
such as biomass or canopy density (Boyd, 2002; Smith, 1993), and none to our 
knowledge have applied it to map nitrogen concentration using hyperspectral 
data.  

The back-propagation algorithm was used in a three-layer network 
consisting of an input, hidden and output layer. Figure 9.4 shows an example of 
the structure of a neural network. 
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Figure 9.4. The neural network structure. The input layer (oi) consists of selected band 
depth variables as well as the red edge position (REP). The inputs are connected to 
hidden nodes (oj), which are in turn connected to the output layer (ok). Wji and wkj 
refer to the weights between the input layer and the hidden nodes and between the 
hidden nodes and the output layer respectively.  
 

This algorithm was used because of its frequent use in many studies and 
it is generally applicable (Foody, 1995; Skidmore et al., 1997a). The back-
propagation algorithm is designed to minimise the root mean square error 
between the actual output of a multi-layered feed forward perception and the 
desired output (Skidmore et al., 1997a). The following description of a network 
follows Skidmore et al., (1997a).  

The algorithm can be divided into a feed forward phase and a back- 
propagation phase. The feed forward phase commences with input data values. 
In this case selected band depths (oi) for a grid cell are being presented to a node 
of the neural network and multiplied by a weight factor (wji). The products are 
summed to produce a value zj for the jth layer. 

Stated formally:  
zj = i

j
ji ow ×∑  (5) 

 
For a three-layer network lettered i, j, k and k being the output layer, zk 

is similarly calculated as equation 5. To add non–linearity to the network, the 
value zj for each hidden node is passed through a sigmoidal activation function. 
The output from this function is  

ojzj e
o θθ /)(1

1
+−+

=  (6) 

where zj is defined in equation 5, θ is a threshold or bias, and θo is a 
constant. 
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The feedforward phase stops after the output value (ok) has been 
calculated. The second phase involves the comparison of the target values 
(measured nitrogen values during the training of the network) and the calculated 
output node values. The system error is calculated as the difference between the 
target value (tjk) as defined by the training area pairs and the output value (ojk). 
This process represents one epoch (iteration) of the backpropagation algorithm. 
Error is reduced by back-propagating it from the output nodes to the hidden 
nodes and from the hidden nodes to the input nodes. Back-propagation of the 
error is achieved by changing the weights of each node during training. The 
iteration process stops after the system error declines to a pre-specified level or 
after achieving a user-defined number of epochs.  
 
9.3.4. Selecting and preparing the input data set 
 
Although the neural network applied in this study (i.e multiplayer perceptron) 
can learn to weight the significant variables and ignore less important ones 
(implying that in principle all available wavebands may be input to the network) 
(Boyd, 2002), we reduced the input data using a feature selection algorithm. 
Data reduction has the advantage of improving the performance of the neural 
network by reducing the processing time (Kavzoglu & Mather, 2002). The input 
variables from continuum-removed absorption features were reduced (Figure 
9.4) through a sequential forward selection algorithm, an efficient and fast 
procedure for hyperspectral data (Kavzoglu & Mather, 2002; Pudil et al., 1994).  
The selected band depth variables as well as the REP were input into the neural 
network.  

In order to speed convergence to a minimum error (Skidmore et al., 
1997a)  the nitrogen concentration data were normalised to a range between 0 
and 1 using the following equation: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

minmax

min

XX
XX i  (7) 

where, X in this case is nitrogen concentration, Xmin is the minimum 
value and Xmax is the maximum value in the data set. 
 
9.3.5 Preparing the neural network parameters 
 
Predictive modelling of foliar N concentration using artificial neural networks 
involved a search of system parameters (i.e. number of epochs and the number 
of nodes) that can increase the accuracy of the model. The possible combination 
of system parameters is large, and there is little literature to guide an analyst 
about the optimal values at which to set these parameters. Testing for suitable 
network parameters with the data set is also important to avoid overtraining of 
the neural networks (Atkinson & Tatnall, 1997). 
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The total data set was randomly divided into two groups, one subset for 
training (30 samples) and the other subset for testing (14 samples). A number of 
experiments were executed. In each experiment, one neural network system 
parameter was varied while holding the other system parameters constant. A 
combination of parameters that could predict foliar N concentration (as assessed 
by the R2 and RMSE between the measured and predicted N concentration) was 
ultimately applied to model the spatial distribution of grass nitrogen 
concentration in the study area.  
 
 
9.4. Results 
 
9.4.1 Variation in N concentration (Standard statistical analyses) 
 
Table 9.1 shows the variation in foliar nitrogen concentration in the study area. 
 
Table 9.1: Descriptive statistics of foliar nitrogen concentration used in this study. The 
95 % confidence limit (CL) is shown.  
 

Nutrient Minimum Mean Maximum CL of mean  (95 %) 
N 0.83 1.55 3.42 0.151 

 
 
The variation is mainly due to a large range of grass species as well as varying 
landscape variables such as soil type, slope and human induced fires 
(McNaughton, 1988). The N concentration data was tested for normality using 
the Kolmogorov-Smirnov test since normality is often a pre-requisite for certain 
statistical techniques. Parametric statistical tests are powerful but they are more 
efficient if the data follow a normal distribution. If the data are not normally 
distributed, then the less powerful but more robust non-parametric statistics 
should be used (Siegal & Castellan, 1988). We tested the null hypothesis that 
the data under test follow a normal distribution versus the alternate hypothesis 
that the data under test do not follow a normal distribution. Stated formally:  
Ho: p>0.05 versus the alternate hypothesis Ha: p<0.05, where p is the 
probability of normality from the Kolmogorov-Smirnov test. Results of this test 
showed that the data is normally distributed p>0.05. Therefore, in cases where 
statistical analysis was required in this study, we used parametric methods. 
 
9.4.2 Selecting the neural network parameters 
 
Figure 9.5 shows results of an experiment testing the effect of using an 
increasing number of epochs on system error, the training correlation coefficient 
as well as test correlation coefficient between the measured and predicted N 
concentration.  
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Figure 9.5. Number of epochs versus system error and number of epochs versus 
correlation coefficients for the training as well as the test data sets 
 
 

The system error decreases as the number of epochs increases, while the 
correlation coefficient for the training data increases as the number of iterations 
increases. The system error as well as the correlation coefficient on the training 
data tends to become asymptotic around 10000 epochs. The correlation 
coefficient on the test data set increases with increasing number of epochs up to 
a threshold, beyond which it begins to decrease. The threshold indicates the 
point at which overtraining of the neural network commences. Overtraining 
occurs when the neural network memorizes specifics of the training data but is 
not able to generalize when applied to a different data set (Atkinson & Tatnall, 
1997; Skidmore et al., 1997a). In this experiment, the correlation coefficient for 
the training data continued to increase but the correlation coefficient for the test 
data began to decrease after 10000 epochs indicating the point at which the 
system was failing to generalize. 

As shown in Figure 9.5, the system error is inversely correlated with the 
training accuracy (correlation coefficient of –0.97 at p<0.0001). The system 
error is also inversely correlated with the test accuracy, but the relationship is 
weak (correlation coefficient of –0.47 at p< 0.09). This result confirms that of 
Skidmore et al, (1997) who concluded that the system error is highly correlated 
with training accuracy because the training data are iteratively used to reduce 
system error. However the system error is not significantly correlated to the test 
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accuracy, therefore system error should not be used as the only criterion for 
assessing mapping capability of the neural network.  

We also tested the effect of increasing the number of nodes on the 
performance of the neural network. In general, the larger the number of nodes in 
the hidden layer, the better the neural network is able to represent the training 
data, however at the expense of the ability to generalize (Atkinson & Tatnall, 
1997). Figure 9.6 shows that the correlation coefficient for the training data is 
consistently high with an increase in the number of nodes. However the 
correlation coefficient for the test data increased up to 6 nodes, and then began 
to decline with some fluctuations. 
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Figure 9.6. Number of nodes versus correlation coefficients for the training as well as 
test data sets 
 

Table 9.2 shows the input parameters that were used for mapping 
nitrogen concentration. 
 
Table 9.2. Parameters for the trained neural network used for mapping nitrogen 
Parameter Value 
Number of inputs 7 
Number of outputs 1 
Number of layers 3 
Number of nodes 6 
Learning rate 0.7 
Momentum 0.7 
Number of epochs 10000 
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9.4.3. Training, testing and applying the network to map N distribution 
 
The neural network parameters presented in Table 9.2 were used in training the 
neural network. The training process was run 5 times with random initial 
weights (Zhang et al., 2002). The prediction capability of the neural network to 
map N concentration was assessed using the correlation coefficient as well as 
the RMSE. The network that yielded the highest correlation coefficient as well 
as the lowest RMSE between the measured and predicted nitrogen concentration 
on the independent test data set was retained for mapping nitrogen 
concentration. Figure 9.7 shows a scatter plot of the predicted and measured 
nitrogen concentration using the best-retained neural network.  
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Figure 9.7. Scatterplot obtained from the best-trained neural network that was 
subsequently used for mapping 
 

The retained neural network was applied on the study area to map 
nitrogen concentration using the selected image layers. Since the input data had 
been scaled to values between 0 and 1, the output nitrogen map from the neural 
network had a value range between 0 and 1. To transform the values to the 
actual nitrogen concentration (%), we used the inverse of equation 7. Figure 9.8 
shows the continuous nitrogen map produced by the neural network. 
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Figure 9.8. Spatial distribution of nitrogen concentration (%) using the integrated 
approach  
 
 

The same map was sliced into 4 classes for better visualisation as 
shown in Figure 9.9. 

 
 

 
Figure 9.9. Spatial distribution of nitrogen concentration (%) using the integrated 
approach. The continuous map in Figure 9.8 was sliced for better visualisation 
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9.4.4. Comparison between neural networks and multiple linear regression 
 
The performance of the neural network in mapping savanna grass quality was 
compared with that of stepwise linear regression using the two absorption 
features as well as the REP. A total of five variables were selected (REP, 583 
nm, 2128 nm, 679 nm and 647 nm), largely similar to the bands used in neural 
networks. Table 9.3 shows results obtained from multiple linear regression as 
well as those yielded by the neural network. 
 
Table 9.3. Comparison between multiple linear regression and Neural networks 
 Multiple Linear 

regression 
Neural networks 

 Training Test Training Test 
Nitrogen     
Correlation coefficient (r) 0.78 0.62 0.96 0.77 
Coefficient of determination (r2) 0.61 0.38 0.92 0.60 
RMSE 0.05 0.16 0.02 0.13 
 

Neural networks yielded a higher r2 as compared to the linear regression 
results on the independent test data set. The prediction capabilities of the 
regression model and the neural network were also measured using the RMSE. 
The RMSE between the predicted and measured nitrogen concentration using 
neural networks on the independent test data is lower than that obtained using a 
regression.  
 
9.5 Discussion 
 
The distribution of tropical grass quality is pre-requisite to an understanding of 
the movement and feeding patterns of mammalian grazers. Traditionally, 
ecologists have estimated grass quality based on random field points scattered 
across the landscape. In this regard, estimates of grass quality have not been 
spatially explicit, thereby making spatially explicit rangeland management 
decisions imprecise. The results from this study are discussed in two main 
sections (i) the utility of the integrated approach to mapping nitrogen in savanna 
rangelands and (ii) an explanation of the foliar nitrogen patterns revealed on the 
map.  
 
9.5.1 Utility of the integrated approach to mapping foliar nitrogen 
concentration 
 
This study has demonstrated that hyperspectral data in combination with 
artificial neural networks has potential to map tropical grass quality. Using band 
depth variables as well as the REP in a neural network yielded an R2 of 0.60 
with a RMSE of 0.13 between the predicted and measured foliar N 



Chapter 9 
 

 157 

concentration on an independent test data set. Considering that data were 
collected using an airborne sensor, this study has shown that there is potential to 
use imaging spectrometry to map nitrogen concentration in tropical rangelands. 
This can be attributed to the integration of continuum removal, the REP and 
neural networks. Continuum removal enhances differences in absorption 
strength thereby increasing the potential to discriminate between different levels 
of foliar nutrients. This confirms previous studies that have successfully applied 
the method in vegetation science. For example, Mutanga et al., (2003) 
demonstrated that the separability of grass grown under different nitrogen 
treatments was greater using continuum-removed spectra than absolute 
reflectance. In a study on spectral discrimination of vegetation types in the 
coastal wetland of the Netherlands, Schmidt & Skidmore (2003) could increase 
the number of pairs of vegetation types that were statistically different using 
continuum removal as compared to absolute reflectance. In addition, Kokaly et 
al. (2003) successfully applied spectral feature analysis of continuum-removed 
plant absorption features to discriminate the species composition of in situ 
forest stands.  

The addition of the red edge position is also significant. The REP has 
been widely used to estimate chlorophyll concentration (Clevers, 1999; Curran 
et al., 1990; Curran et al., 1991; Jago et al., 1999). A strong pigment-nitrogen 
relationship in plants (Katz et al., 1966; Penuelas et al., 1994) has been well 
established, therefore a relationship between nitrogen concentration and the red 
edge is expected (Clevers & Buker, 1991). A sensitivity analysis of the 
variables used in the neural networks showed that the REP was ranked the 
second most important variable in the neural networks (Table 9.4). This 
indicates the relative importance of the REP in modelling foliar nitrogen 
concentration.  
 
 
Table 9.4. Sensitivity analysis of the variables used in the neural network. Values in the 
ratio column were calculated as follows. For each variable, the network is executed as if 
that variable is unavailable. Next, the error obtained when the variable is unavailable is 
divided by the error obtained when the variable is available. Important variables have a 
high ratio, indicating that the network performance deteriorates badly if they are not 
present. 
Rank Variable Ratio 
1 2128 1.33 
2 REP 1.23 
3 679 1.17 
4 2146 1.16 
5 710 1.10 
6 2091 1.07 
7 583 1.06 
 

 



Integrating Imaging spectrometry and neural networks to map grass quality 
 

 158 

The neural network algorithm has a capability to model the non-linear 
transfer functions that may not be known or cannot be approximated (Boyd, 
2002) for mixed species environments of Southern Africa. Compared with 
multiple linear regression, neural networks yielded a smaller RMSE between 
the predicted and measured nitrogen concentrations. Therefore, the combination 
of hyperspectral data and neural networks facilitated the mapping of foliar 
nitrogen concentration in a savanna rangeland.  
 
9.5.2 An explanation of the foliar-nutrient patterns revealed  
 
Although the area mapped is underlain by relatively homogeneous basalt 
formations, there are undoubtedly spatial variations in foliar nitrogen 
concentration as depicted in the final map. The nitrogen map (Figure 9.9) shows 
high nitrogen concentration in the wetland area (Figure 9.2) and the eastern part. 
Wetland areas are characterised by clay soils that are rich in nutrient 
concentration therefore support grasses of high quality. However, it should be 
noted that wetlands support high quality grass as long as the soil is moist (i.e 
during and soon after the rainy season) thereby facilitating extraction of 
nutrients from the soil. Since the image was taken soon after the rainy season in 
March 2003, and there was no dry spell during this period, the grass had high 
nitrogen concentration. In addition, nutrient-rich grass species such as S. 
ioclados are usually found in the wetland areas. The eastern part is also 
dominated by grass species such as U. mosambicensis that have high nutrient 
concentrations as compared to the western parts that are dominated by relatively 
nutrient poor species such as C. ciliaris and S.  papphoroides (Mutanga & 
Skidmore, 2003). We therefore infer that the spatial variation of species 
characterised by different levels of nutrients do influence the variation of 
nitrogen in savanna rangelands. 

The Roan Camp enclosure on the output map also shows some 
differences in nitrogen concentration between different blocks (divided by 
roads) shown in Figure 9.2. The Roan Camp is a fenced area in the Kruger 
National Park (2 km * 2 km) for protecting roan antelopes from predators. 
Blocks 3 and 5 were burned during the season prior to image acquisition and the 
other blocks were not burnt. From the field samples, the burnt blocks show high 
foliar nitrogen concentration. Figure 9.10 shows the spatial distribution of foliar 
nitrogen concentration in the burnt (block 3) and unburnt (Block 4) blocks as 
mapped by the integrated approach applied in this study, as well as box plots of 
the measured foliar N concentration in the blocks. 
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Figure 9.10. Percentage nitrogen distribution map and box plots showing the mean and 
spread of nitrogen concentration (%) in the burnt (Burnt (3)) and unburnt blocks 
(Unburnt (4)) of the Roan camp.  
 
 

We tested whether the foliar nitrogen concentration in the burnt and 
unburnt blocks were significantly different. Results of T-test indicate that there 
is a statistically significant difference between the two blocks (p < 0.05). The 
phenomenon of high foliar nutrient concentration in post fire re-growth is well 
established in ecological literature (Christensen, 1977; Cook, 1994; Frost & 
Robertson, 1987). High nutrient concentration in burnt areas is primarily due to 
rejuvenation of plant material, distribution of similar amounts of nutrients over 
less above-ground biomass and change in plant tissue composition (i.e. higher 
leaf: stem ratios with leaves having higher nutrient concentration) (Boerner, 
1982; Van de Vijver, 1999).  

In summary, the technique applied in this study seemed to unveil spatial 
patterns of nitrogen concentration in the northern basalt plains of the Kruger 
National Park. 
 
9.6 Conclusions 
 
This study has applied an integrated approach to mapping foliar nitrogen 
concentration in an African savanna. Two continuum-removed absorption 
features located in the visible and the SWIR regions as well as the REP were 
used as input to the neural network algorithm. The following conclusions can be 
drawn from this study: 
1. The new integrated approach (continuum-removed absorption features, the 

REP and a neural network) could explain 60 % of the variation in savanna 
grass nitrogen concentration on an independent test data set using airborne 
hyperspectral data, 
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2. The airborne sensor data could predict canopy nitrogen concentration with a 
rms error of 0.13 (± 8.30% of the mean observed nitrogen concentration) on 
an independent test data set, 

3. Neural networks performed better than the traditional multiple linear 
regression analysis in predicting savanna grass quality; and, 

4. Foliar nitrogen concentration in the re-growth of grass from fires of the 
previous season was successfully mapped in the roan antelope camp. 

Overall, the utility of the new integrated approach to mapping foliar 
nutrient concentration in an African savanna has been demonstrated. This is an 
important step towards understanding the movement and distribution of 
wildlife. We recommend that future studies should focus on monitoring 
seasonal changes in foliar nutrient concentration using imaging spectrometry as 
well as extending the method to predict other macro nutrients (P, K, Na, Mg, 
Ca) in both grass and tree canopies. An improvement on the spectral resolution 
of the sensors and the development of algorithms that can remove the effect of 
water in the SWIR could further improve the prediction and mapping of foliar 
nutrients in African rangelands. 
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CHAPTER 10: 
Tropical grasses and hyperspectral 

remote sensing  
A synthesis 
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10.1 Introduction 
 
Why do we need to measure the quantity and quality of tropical grasses? 
Research in ecology has revealed that, both the quantity (biomass) and quality 
(the foliar concentration of nitrogen, phosphorous, calcium, magnesium, 
potassium and sodium) of grass are important factors influencing the feeding 
patterns and distribution of wildlife and livestock in savanna rangelands (Drent 
& Prins, 1987; McNaughton, 1990; McNaughton & Banyikwa, 1995; Prins, 
1989; Prins, 1996). Therefore, mapping the quantity and quality of tropical 
grasses is critical for understanding wildlife distribution patterns. In this regard, 
remote sensing has offered possibilities to accomplish this task.  

However, two critical problems have limited the application of remote 
sensing to map the quantity and quality of tropical grasses. Firstly, the use of 
remotely sensed indices such as NDVI has been bedevilled by the saturation 
problem at high canopy density. In other words, the widely used vegetation 
indices asymptotically approach a saturation level after a certain biomass 
density or LAI (Gao et al., 2000; Sellers, 1985; Thenkabail et al., 2000; Todd et 
al., 1998; Tucker, 1977), thus yielding poor estimates of biomass during the 
peak of seasons.  Secondly, the methods developed in the laboratory for the 
estimation of quality from remote sensing have had limited success when 
applied under outside or field conditions. This is mainly because; the presence 
of water in fresh canopies masks the biochemical absorption features, 
particularly in the shortwave infrared (Clevers, 1999; Kokaly & Clark, 1999) 
and make the remote sensing of foliar biochemicals more difficult. In addition, 
leaf orientation and soil background effects, as well as atmospheric absorption, 
further complicate the remote sensing of biochemicals at field level (Asner et 
al., 2000). As a result, the extension of the laboratory-based spectrometry to 
canopy level has yielded inconsistent results so far. The challenge is therefore to 
develop techniques that can predict foliar quality at canopy level.    

In this thesis, the objectives were: (1) to investigate the potential of 
hyperspectral remote sensing in solving the saturation problem when estimating 
biomass of tropical grasses at high canopy density, and, (2) to develop 
techniques to reliably estimate and map the quality of tropical grasses at canopy 
level using hyperspectral remote sensing, under both laboratory and field 
conditions (both ground and airborne spectrometry).  
 
10.2 Overcoming the saturation problem in biomass estimation  
 
The saturation problem (Figure 10.1) was addressed in this thesis (chapter 2) by 
evaluating the potential of narrow band vegetation indices in characterising the 
biomass of C. ciliaris grass measured at high canopy density. 
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Figure 10.1 Relationship between NDVI and biomass. The saturation level is usually 
reached at about 0.3 g cm –2  
 

The utility of the widely used vegetation indices, particularly NDVIs 
involving all possible two band combinations between 350 nm and 2500 nm 
were tested. The narrow band hyperspectral data contained in 647 discrete 
channels allowed the computation of 418,609 narrow band NDVIs for biomass 
estimation. Results of this analysis are presented in form of R2 for each λ1 (350 
nm to 2500 nm) and λ2 (350 nm to 2500 nm) pair, in Figure 10.2.  
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Figure 10.2. Map showing the correlation coefficients (R2) between biomass and 
narrow band NDVI values calculated from all possible combinations spread across λ1 

(350 nm to 2500 nm) and λ2 (350 nm to 2500 nm) 
 
This study has shown that biomass information is not only contained in the red 
absorption trough and near infrared wavelengths. Most narrow bands selected 
by the indices (Normalized Difference Vegetation Index, Transformed 
Vegetation Index, Simple Ratio) that yielded the highest correlation with 
biomass are located in the red edge slope as shown in Figure 10.2. Figure 10.3 
shows that the modified NDVI (R755-R746/R755+R746) involving narrow bands 
located in the red edge yielded a higher correlation coefficient with biomass as 
compared to the standard NDVI (R833-R680/R833+R680).  
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Figure 10.3. Relationship between biomass and the best-modified NDVI (A) calculated 
from 746 and 755 nm bands as well as the standard NDVI calculated from a near 
infrared (833 nm) and red band  (680 nm) (B). Note the almost flat scatter plot in B (n = 
96).  
 

The red edge position also yielded a higher coefficient of determination 
with biomass as compared to the standard NDVI. In summary, the key finding 
in this chapter is that, at high canopy density, grass biomass may be more 
accurately estimated by vegetation indices based on narrow wavelengths located 
in the red edge slope than the standard NDVI involving bands located in the 
near infrared and the red absorption trough. The results in this study show that 
techniques for remotely estimating biomass have been steadily improved by 
using the full information content of hyperspectral data, calibration as well as 
improved field sampling techniques. In other words, the early results with red 
edge and vegetation indices have been refined to a point where biomass can be 
reliably estimated, including in areas of high grass canopy density.   

 
 10.3 Quality under controlled laboratory conditions 
 
We assessed the potential to discriminate differences in nitrogen concentration 
using high-resolution reflectance by growing C. ciliaris grass with different 
fertilization treatments in a greenhouse. We measured canopy reflectance under 
controlled laboratory conditions. We found out that canopy reflectance can be 
used to discriminate differences in foliar nitrogen concentration in specific 
wavelength regions. Of particular importance is the widening and deepening of 
the red absorption feature (R550-750) with an increase in nitrogen supply (chapter 
3) - an important finding for using the visible absorption feature (where the 
influence of foliar water content on reflectance is minimal) to estimate grass 
quality. 

 We also revealed that transformation by continuum removal increased 
the separability of grass with different levels of nitrogen in the visible 
absorption feature (Figure 10.4). This result permitted the development of 
continuum-removed absorption feature variables, which were used to predict 
grass quality.  
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Figure 10.4. Results of One-way ANOVA showing wavelengths where reflectance 
differences between the treatments are significant for, (A) the original spectra and (B), 
continuum removed spectra in the R550-750 absorption feature. Horizontal dashed and 
solid lines show 95% and 90% confidence limits, respectively. Note that the number of 
significant wavelengths in the R550-750 absorption feature increased after continuum 
removal. 

 
As shown in Figure 10.5, the experiment under controlled laboratory 

conditions also showed that there is a significant shift in the position of the red 
edge to longer wavelengths with an increase in nitrogen concentration at canopy 
level (chapter 4). The red edge position was significantly correlated to nitrogen 
concentration - an interesting result for the remote sensing of foliar chemistry in 
rangelands.  

Observations made using a finer resolution GER 3700 data were also 
made using the degraded HYMAP data. Canonical functions (through canonical 
variate analysis) derived from continuum-removed red absorption feature, in 
combination with the red edge position (resampled to HYMAP resolution) 
could discriminate between the treatment groups containing different foliar 
nitrogen concentrations (chapter 5). This result permitted the extension of 
laboratory experiments to airborne hyperspectral images for mapping the 
concentration of nutrients (quality) in tropical grasses. The canonical structure 
matrix (Table 10.1) also revealed that greater discrimination power is contained 
in the red edge slope. 
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Figure 10.5. Continuum removed, mean canopy reflectance spectra of C. ciliaris grass 
by treatment. The red edge positions (703 nm, 705 nm and 725 nm) for each treatment 
are shown. There is red edge position shift to longer wavelengths with an increase in 
nitrogen concentration. The red edge positions for each treatment are shown. The low N 
treatment shows two peaks, at 705 nm and at 725 nm. 
 
Table 10.1: Factor structure matrix representing the correlation between wavelengths 
and the canonical functions. The reflectance from GER 3700 was resampled to HYMAP 
spectra and continuum removal was applied on the R550-757 absorption feature. The red 
edge position (REP) was calculated using the linear interpolation method. These 
variables were used in canonical variate analysis to discriminate groups of C. ciliaris 
grass containing different levels of nitrogen concentration. 
 Root 1 Root 2 
Eigenvalues 4.6576 (95%) 0.2672 (100%) 
  REP -0.708376 0.255207 
567 0.670072 -0.191510 
583 0.619955 -0.095898 
599 0.594963 -0.053645 
615 0.568852 -0.033682 
631 0.537990 -0.016494 
647 0.496565 -0.027894 
663 0.417850 -0.054934 
679 0.368828 -0.092437 
695 0.558773 -0.037651 
710 0.723892 -0.069436 
726 0.743228 -0.220834 
742 0.706960 -0.359094 
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In summary, the experiments revealed that there is a strong relationship 
between spectral reflectance and foliar nitrogen concentration at canopy scale. 
Transformation of absorption features by continuum removal as well as an 
analysis of the red edge provides more information on foliar biochemical 
concentration. These observations were tested and further developed under 
natural environmental conditions using field data collected in the Kruger 
National Park, South Africa. 
 
 10.4 Quality at field level 
 
Although remote sensing techniques have proved useful for assessing the 
concentration of foliar biochemicals under controlled laboratory conditions, 
more investigation is required to assess their capabilities at field level, where 
inconsistent results have been obtained so far. Building on the observations that 
we made under controlled laboratory conditions, we developed and improved 
on a new approach to quantify the biochemical concentration of tropical grasses 
in situ (chapter 6, and chapter 7). The new approach, analysis of continuum-
removed absorption features, is superior to other techniques such as the 
conventional near infrared reflectance spectrometry (NIRS) in that: 
1. there is concentration on known chemical absorption features, and therefore 

the problem of selecting non-causal bands in the prediction models is 
avoided (Curran et al., 2001; Mutanga et al., 2003); 

2. the effect of over fitting, which usually occurs when more wavebands than 
samples are used  is minimised by concentrating on fewer known absorption 
features (Curran et al., 2001); 

3. continuum removal enhances the absorption features (Mutanga et al., 2003; 
Schmidt & Skidmore, 2003),and; 

4. the normalisation procedure removes the overall albedo effects (Mutanga et 
al., 2003; Schmidt & Skidmore, 2003). 

 
We tested the utility of using four variables derived from continuum-removed 
absorption features for predicting canopy nitrogen, phosphorus, potassium, 
calcium and magnesium concentration: (i) continuum-removed derivative 
reflectance (CRDR), (ii) band depth (BD), (iii) band depth ratio (BDR) and (iv) 
normalised band depth index (NBDI). It was shown in this study (chapter 6) that 
stepwise regression on normalised bands calculated from continuum-removed 
reflectance spectra could explain the variation of in situ grass quality, with R2 
values ranging between 0.43 and 0.80 – an encouraging result under natural 
conditions. Low root mean square errors (RMSE) for an independent test data 
set were also obtained using the new variable, CRDR as compared to the other 
variables tested. Figure 10.6 shows an example of the predicted versus 
measured biochemicals, using  randomly selected training and test data sets with 
CRDR data. Scatterplots between the measured and predicted biochemicals on 
the test data set are shown. 
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Figure 10.6: Measured versus predicted biochemicals for a randomly selected test data 
set (n = 24) using CRDR. Regression equations developed from the training data set (n 
= 72) were used to predict biochemicals on an independent test data set. 

 
The message from this finding is that, we can reliably predict foliar 

quality using field spectrometry. The regression models built using field 
spectrometry are important for fast and efficient prediction of foliar biochemical 
concentrations in rangelands. In other words, the regression models can be 
applied on field reflectance spectra acquired at the same resolution and under 
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similar ecological conditions. This in turn, saves time spend in field data 
collection, as well as reducing costs on laboratory biochemical analysis. 
Rangeland management will therefore be done more efficiently by identifying 
grasses and patches with high quality nutrients or areas that require restoration. 

To summarise, the successful prediction of quality using field 
spectrometry showed the potential application of the approach using airborne 
sensors. The experiment revealed the most informative absorption features (the 
major absorption feature in the visible (R550 – 750) and the nitrogen absorption 
features (R1634 – 1786 and R2006-2196) in the shortwave infrared account for 69 % of 
the wavelengths selected by stepwise regression), which were later used for 
mapping quality using airborne sensors. Field spectrometry was therefore a step 
stone towards the mapping of grass quality as well as an important study to 
evaluate the potential of data collected using a field spectrometer in predicting 
tropical grass quality. 

Another important finding in this study was that, prior partitioning of 
data into species classes increases the prediction capability of the method 
applied as compared to predicting biochemicals using data for all species 
combined. We attributed this to differences in the condition (biophysical and 
biochemical) of the various species thereby yielding different models. We also 
observed this in chapter 7, where there is a significant interaction between 
species and foliar sodium classes in influencing spectral reflectance (Figure 
10.7). 
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Figure 10.7 Results of two–way factorial ANOVA showing wavelengths where the 
interaction between sodium and species is significant in influencing reflectance in the 
visible domain. Horizontal dashed and solid lines show 95% and 90% confidence limits, 
respectively. Absorption spectrometry for sodium is done at 589 nm. 
 

A solution for mapping biochemicals will therefore be to classify the 
area into species first and then predict biochemicals separately, or to apply a 
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non-linear model that caters for species differences. We adopted the latter for 
mapping quality since it is easier to implement than first developing methods 
for mapping species in a more complex savanna rangeland before any attempt at 
mapping quality. 

In order to better understand the variation of the nutrients that were 
measured in the field, we established the possible factors influencing that 
variation at a local scale (chapter 8). Our results indicate that there is a 
significant relationship between grass quality parameters and site-specific 
factors such as slope, altitude, percentage grass cover, aspect and soil texture. 
Plant characteristics such as species type interact significantly with slope, 
altitude and geology in influencing nutrient distribution. The results of this 
study provide a better insight on foliar nutrient distribution patterns at a 
landscape scale in savanna rangelands.  
 
 10.5 Airborne hyperspectral remote sensing of grass quality 
 
The last aspect in this thesis was to map quality using airborne hyperspectral 
imagery. This is, in my opinion the most challenging task since there are a lot of 
influences affecting reflectance signatures (leaf orientation, soil background 
effects, atmospheric absorption effects, water effects in fresh canopies as well 
as the occurrence of mixed species with different responses to electromagnetic 
radiation). 

We developed a new technique, largely built upon the laboratory and 
field observations (chapter 3, 4, 5 6, and 7).  The new integrated approach, 
involves continuum-removed absorption features, the red edge position (REP) 
and neural networks. The approach was applied to map grass nitrogen 
concentration in the Kruger National Park. Transformation by continuum 
removal has its advantages as shown by the evidence in chapter 3 and discussed 
in section 10.5. The red edge position was shown to be strongly related to 
quality (chapter 4) and has been found to be insensitive to atmospheric and 
background effects (Clevers & Jongschaap, 2001) and therefore suitable for 
measurements under natural conditions. 

 Finally, a neural network algorithm was applied so as to cater for the 
possible non-linear relationships in a mixed species environment. To permit a 
detailed study, only nitrogen (the most limiting nutrient for grazers) was 
selected for the development and application of the technique. 

We showed that the new integrated approach (continuum-removed 
absorption features, the REP and a neural network) could explain 60 % of the 
variation in savanna grass nitrogen concentration on an independent test data set 
using airborne hyperspectral data, with a RMSE of 0.13 (± 8.30% of the mean 
observed nitrogen concentration). The resultant map is shown in Figure 10.8. 
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Figure 10.8. Spatial distribution of nitrogen concentration (%) in grass, mapped using 
the integrated approach involving continuum removed absorption features, the REP and 
a neural network. 
 

This result was better compared to the conventional multiple linear 
regression analysis in predicting savanna grass quality. Figure 10.9 clearly 
shows the spatial patterns of nitrogen concentration (mapped by the new 
technique) in two blocks subjected to different fire regimes.  
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Figure 10.9. Percentage nitrogen distribution map and box plots showing the mean and 
spread of nitrogen concentration (%) in the burnt (Burnt (3)) and unburnt blocks 
(Unburnt (4)) of the Roan camp. The Roan camp is a 2 km by 2 km fenced area in the 
Kruger National Park, which was constructed for the protection of Roan antelopes from 
predators. 
 

The result clearly shows that, a fenced area (Roan camp), which had 
been treated with a burnt and an unburnt area had noticeable difference in foliar 
nitrogen concentration. There is high nutrient concentration in the burnt areas, 
primarily due to rejuvenation of plant material, distribution of similar amounts 
of nutrients over less above ground biomass and change in plant tissue 
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composition (i.e. higher leaf: stem ratios with leaves having higher nutrient 
concentration) (Christensen, 1977; Cook, 1994; Frost & Robertson, 1987). This 
example shows the capability of the method developed in this thesis to unearth 
the spatial distribution of foliar nitrogen concentration in a mixed species 
environment of Southern Africa and to the best of our knowledge, this 
distribution is shown for the first time using remotely sensed data. 
 
10.6  Conclusions 
 
The main objective addressed in this thesis was to investigate the potential of 
hyperspectral remote sensing to predict and map tropical grass quality. The 
other objective was to investigate whether indices computed from hyperspectral 
data can estimate grass biomass at high canopy density. We have shown in this 
thesis that the information contained in hyperspectral data can accomplish these 
tasks. This main conclusion was reached from the following observations made 
in this thesis under three levels of investigation (Figure 10.10): 
 
10.6.1 Laboratory level 
 
1. We have shown that at high canopy density, pasture biomass may be more 

accurately estimated by vegetation indices based on wavelengths located in 
the red edge slope than the standard NDVI involving a strong chlorophyll 
absorption band in the red trough and a near infrared band  

2. This thesis has shown that canopy reflectance can be used to discriminate 
differences in foliar nitrogen concentration in specific wavelength regions. 
Moreover, transformation of absorption features by continuum removal 
increased the separability of grass with different levels of quality thereby 
permitting the development of continuum-removed absorption feature 
variables, which were used to predict grass quality  

3. We found a strong correlation between the red edge position and foliar 
nitrogen concentration - an interesting result for the further use of the red 
edge in combination with other hyperspectral techniques such as absorption 
features to map tropical grass quality.  

4. Using the resampled (HYMAP) spectral data, canonical functions (through 
canonical variate analysis) derived from continuum-removed red absorption 
feature, in combination with the red edge position could also discriminate 
between the treatment groups containing different foliar nitrogen 
concentrations. This result permitted the extension of laboratory 
experiments to airborne hyperspectral images for mapping the concentration 
of nutrients (quality) in tropical grasses. The experiment with resampled 
data also showed the importance of the red edge slope in predicting nitrogen 
concentration. 
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10.6.2 Field level 
 
The new approach, analysis of continuum-removed absorption features could 
predict the foliar concentration nitrogen, phosphorus, potassium, calcium and 
magnesium with R2 values ranging between 0.43 and 0.80 – an encouraging 
result at canopy level and under natural conditions. The result confirmed 
observations made under controlled laboratory conditions. Knowledge of 
species type has also been shown to be significant in improving the modelling 
of quality in tropical rangelands.  

 
10.6.3 Airborne platform level 
 
The new integrated approach involving continuum-removed absorption features, 
the REP and a neural network could explain 60 % of the variation in savanna 
grass nitrogen concentration on an independent test data set using airborne 
hyperspectral data. This result was better as compared to the use of multiple 
linear regressions. Therefore for the mixed species environment of Southern 
Africa, the new approach with neural networks is preferred. 
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Figure 10:10. Conceptual diagram showing the levels of investigation carried out in 
this study 
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10.7 The future 
 
The future lies in further understanding herbivory in a spatial context and as 
such, the improvement and application of techniques to model spatial 
phenomena is a pre-requisite. In line with the findings in this thesis, the 
prediction and mapping of other spatial variables that are important in the 
distribution and feeding patterns of wildlife is imperative. This includes the 
mapping of other macronutrients (P, K, Mg, Ca, Na) as well as deterrents such 
as polyphenols, lignin, cellulose and tannins in both trees and grass. An analysis 
of the interaction of these biochemicals in a spatial context helps in facilitating 
proper management decisions. 

Research should also focus on mapping both species and quality. This 
facilitates an understanding of the species–quality interactions in a spatial 
context. The final focus will be to extend the methods developed in this study to 
space borne sensors such as MERIS, ASTER or Landsat TM for the prediction 
and mapping of vegetation quality on large areas. This can then be linked to 
spatial models explaining the distribution of herbivores. Therefore, the ultimate 
goal is to develop several GIS data layers of factors that derive the distributions 
of animals. These GIS layers will then be linked to animal population data and 
assess how the factors explain the distributions. In addition, habitat suitability 
models and maps can be generated from such GIS data layers and therefore 
used as a tool for managing the  “hot spots” in African rangelands. 
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