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1 INTRODUCTION 
 
1.1 Background 
 
Sustainable water resources planning and management requires data to enable 
quantification of  water quality and quantity (Oyebande, 2001). Information is 
required on the rates of transfers and storage of water within a catchment. Lack 
of adequate hydrological data introduces uncertainty in both the design and 
management of water resources systems. Much of sub-Saharan Africa has as a 
result of low conversion of rainfall to runoff a precarious balance between 
available water resources and water demand. The rapid population growth 
characteristic of this region, which is increasing water demand for domestic, 
agricultural, and industrial purposes, is causing water scarcity (Oyebande, 
2001). The magnitude of this scarcity and its variation in both space and time 
are largely unknown because of lack of hydrological data. Catchment 
degradation in its various forms continues without effective control measures 
due partly to uncertainty regarding the adverse effects on water resources. This 
uncertainty again arises from lack of adequate hydrological data that should 
enable quantification of effects of specific land use practices on quality and 
quantity of water resources. In addition, floods and droughts occur with 
frequencies and magnitudes that are poorly defined in sub-Saharan Africa 
because of lack of relevant hydrological data. These cause annually major 
social, economic and environmental tragedies. 
 
Lack of information about the quantity and quality of water resources arises 
from poorly developed hydrological networks. Most sub-Saharan countries lack 
financial, human and technical resources for developing and maintaining 
networks that can provide data for sustainable water resources planning, design, 
and management. While the needs for hydrological information for these 
countries are increasing, their technical and human capacities are declining as 
noted by the reduction in the number of meteorological stations in Africa during 
the last 30 years (Bonifacio and Grimes, 1998; Oyebande, 2001). If resources 
were to be made available for the extension of hydrometric networks, it will 
take 10 to 30 years before adequate data are collected. Therefore, problems 
arising from lack of data will persist in the foreseeable future. It is also not 
possible to set up an ideal network as some sites are inaccessible. Furthermore, 
some existing monitoring sites have already been affected by anthropogenic 
influences such as upstream abstractions and impoundments on rivers that 
render the data collected unsuitable for long-term planning. Consequently, there 
is a need to develop methods for predicting flow characteristics at ungauged 
sites. The International Association of Hydrological Sciences (IAHS) 
recognized this need in 2002, and adopted the Prediction of Ungauged Basins 
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(PUBS) as a research agenda for the coming decade 
<www.cig.ensmp.fr/~iahs/PUBs/PUB-proposal>.  
 
Estimation of flow characteristics of ungauged catchments is usually based on 
transferring or extrapolating information from gauged to ungauged sites, a 
process called regionalisation (Nathan and McMahon, 1990a; Bullock and 
Andrews, 1997; Hall and Minns, 1999). Several regionalisation approaches 
have been used, and the most common method involves derivation of empirical 
relationships between flow and catchment characteristics (Gan et al., 1990; Riggs, 
1990). These relationships are in most cases region specific. Therefore, regions 
within which they are applicable have to be delimited, for example using 
hydrometric zones (Mimikou, 1984). Flow characteristics at ungauged sites are 
estimated by applying a predictive equation developed for a particular 
hydrometric zone (NERC, 1975; IH, 1980). Catchments that belong to the same 
hydrometric zone, however, do not necessarily have similar hydrological 
responses since geographical proximity is not a sufficient condition for 
hydrological homogeneity (Acreman and Sinclair, 1986). Meijerink (1985) found 
that morpho-lithological characteristics could be used to identify catchment 
groups with similar hydrological responses. The delimitation of regions with 
similar hydrological responses or hydrologically homogenous regions has 
alternatively been done using multivariate techniques such as multiple regression, 
cluster and discriminant analysis (Tasker, 1982; Nathan and McMahon, 1990a; 
Burn and Boorman, 1993; Zrinji and Burn, 1994). Catchment characteristics that 
influence flow characteristics should ideally be used for cluster analysis. This 
enables determination of membership of an ungauged catchment on the basis of 
its catchment characteristics, to a region with a known relationship between flow 
and catchment characteristics. The selection of these catchment characteristics is 
problematic since different sets of predictive variables will identify different 
clusters. Nathan and McMahon (1990a) demonstrated that a combination of 
multiple regression, cluster analysis and multi-dimensional plotting improved the 
delimitation of these hydrologically homogenous regions within which predictive 
equations for flow characteristics can be developed.  
 
The use of ordination techniques like redundancy analysis to select catchment 
characteristics for classifying catchments into homogenous regions has not been 
explored. Ordination techniques have been found to be suitable for identifying 
explanatory variables for multidimensional responses (Kent and Coker, 1992; Ter 
Braak  and Smilauer, 1998; McGarial et al., 2000). Neural networks also offer 
an alternative approach for classifying catchments using catchment characteristics 
(Hall and Minns, 1999).  
 
Another approach that has been used for estimating flow characteristics of 
ungauged catchments is the use of rainfall-runoff models whose parameters have 
been regionalised. Previous studies such as in Ivory Coast (Servat and Dezetter, 
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1993), Australia (Post and Jakeman, 1996, 1999; Post et al., 1998), and the 
United Kingdom (Manley, 1978) have demonstrated the feasibility of 
regionalising lumped conceptual models. Regionalisation of the Pitman rainfall-
runoff model in South Africa has been the basis of assessing water resources for 
all drainage basins in that country. Hughes (1997) concluded that there appears to 
be a potential for regionalising the Pitman model in Zimbabwe. There have been 
few studies in southern Africa that have investigated the feasibility of deriving 
relationships between parameters of lumped models and catchment 
characteristics. If possible, this will offer an opportunity for estimating time series 
of flows at ungauged sites. 
 
A case study approach is used in this study to investigate the problem of 
estimating flow characteristics of ungauged catchments. The case study is based 
on selected catchments in Zimbabwe, a country with a tropical climate and 
rainfall occurring in one distinct season, mid-November to March. The spatial 
variation of rainfall is greatly dependent on altitude with lowlying areas receiving 
350 mm yr-1, and 2000 mm yr-1 for  highland regions. Most rivers dry up during 
the dry season, resulting in water scarcity. Water scarcity also results from high 
inter-annual variability of rainfall. Dam construction to create over-the-year 
storage is necessary to alleviate water shortages. Most dams are sited on 
ungauged catchments, and yet their design and subsequent management of 
reservoirs require hydrological data.  
 
1.2 Research objectives 
 
The main objective is to identify and assess the suitability of statistical methods 
and conceptual rainfall-runoff models to estimate flow characteristics of 
ungauged catchments in Zimbabwe. 
 
The specific objectives are: 
 
1. To identify catchment characteristics that can be used for predicting flow 

characteristics of ungauged catchments.  
 
2. To examine the feasibility of using catchment characteristics for identifying 

catchments with similar hydrological responses or delimiting hydrologically 
homogenous regions.  

 
3. To assess the potential of using hydrologically homogenous regions as the 

basis for estimating flow characteristics of ungauged catchments. 
 
4. To determine the possibility for regionalising parameters of selected 

lumped rainfall-runoff models on the basis of catchment characteristics, and 
using these to estimate flow characteristics of ungauged catchments. 
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5. To assess if neural networks have a better capability than multiple 
regression methods to predict flow characteristics and parameters of 
conceptual rainfall-runoff models from catchment characteristics. 

 
1.3 Outline of the thesis  
 
Chapter 2 describes the study area. The types of catchment and flow 
characteristics selected for use in this study, and justification for this selection 
are presented. A description of the variation of these characteristics among the 
selected catchments is also given. 
 
Chapter 3 develops relationships between catchment and flow characteristics 
using multiple regression, and neural networks. These relationships are used for 
estimating mean annual runoff, base flow index, average number of days per 
year with no flow, flow duration curves, and distribution of mean annual runoff 
into monthly flows. 
 
In Chapter 4 a direct gradient analysis method, redundancy analysis, is used to 
investigate the effects of catchment characteristics on multidimensional 
hydrological responses. The relative importance of each of the catchment 
characteristics in explaining the variance of all the flow characteristics is 
investigated. 
 
Chapter 5 investigates the possibility of clustering catchments using catchment 
characteristics into clusters with similar hydrological responses. An assessment 
of whether clustering of catchments improves the prediction of flow 
characteristics done in Chapter 3 is made. 
 
The feasibility of regionalising the abcd model and the Pitman model, both of 
which  are lumped conceptual models, is investigated in Chapter 6. The 
possibility of predicting model parameters from catchment characteristics using 
multiple regression and neural networks is examined. 
 
Chapter 7 presents the conclusions of this study. 
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2 THE STUDY AREA 
 
2.1 Introduction 
 
Zimbabwe has an area of 390 757 km2 of which over 60% is underlain by 
Archaen granite and greenstone that have considerable influence on relief. 
Altitude varies from 162 to 2592 m above sea level. The country can be divided 
into four physiographic regions on the basis of relief (Table 2.1; Figure 2.1). 

Figure 2.1: Relief map of Zimbabwe. A = rivers draining into the Gwayi River and then 
into the Zambezi River. B = rivers draining into the Limpopo River. C = catchment of 
Manyame and Sanyati Rivers which drain into the Zambezi River. D = basin of 
Mazowe River which drains into the Zambezi River. E = area drained by Save and 
Runde Rivers. F = rivers draining from the Eastern Highlands towards the east into 
Mozambique 

0 100 km 
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The topography is generally flat to undulating on the lowveld, undulating and 
rolling on the middleveld, and the highveld comprises an undulating plateau. 
The Eastern Highlands region is mountainous with the highest peak on Mt 
Nyangani, 2592 m. There are four seasons which can be identified (Table 2.2). 
 
Table 2.1: Physiographic Regions of Zimbabwe 
Relief Region Altitude 

 
(m) 

Min and Max  
Temperatures 

(°C) 

Mean Annual 
Rainfall  

(mm yr-1) 
Lowveld 
Middleveld 
Highveld 
Eastern 
Highlands 

162 – 600 
600 – 1200 

1200 – 1800 
1800 - 2592 

9.4 – 33.7 
5.5 – 30.7 
5.0 – 27.5 
5.0 – 22.0 

344 – 600 
600 – 700 
700 –1200 

1200 - 2000 

 
Table 2.2: Seasons of Zimbabwe 
Season Duration 
Rainy season 
Post-rainy season 
Cool season 
Hot season 

mid-November to mid-March 
mid-March to mid-May 
mid-May to August 
September to mid-November 

 
Figure 2.2 shows the seasonal variation of rainfall at Beit Bridge in the lowveld 
with mean annual rainfall of 345 mm yr-1, Harare 850 mm yr-1 on the highveld, 
and Nyanga 1227 mm yr-1 on the Eastern Highlands. 
 
Potential evaporation rates exceed rainfall except during the rainy season, and 
the aridity index is 6.0 for Beit Bridge, 2.3 for Harare, and 1.1 for Nyanga in the 
Eastern Highlands. The aridity index is the ratio of mean annual evaporation to 
the mean annual precipitation (Oyebande, 2001). Rainfall has a high inter-
annual variability as shown by the example of Harare in Figure 2.3. The 
northern part of the country is drained by the Gwayi, Sanyati, Manyame, and 
Mazowe Rivers which flow into the Zambezi River. The Save River drains the 
south-eastern part of the country, while the rest of the southern area flows into 
the Limpopo River (Figure 2.1). Runoff is highly variable in space and the 
mean annual runoff is approximately 20 mm yr-1 for most catchments on the 
north-western, and extreme southern parts of the country. Mean annual runoff 
for catchments on the central part of the country ranges from 60 to 80 mm yr-1, 
and from 200 to 600 mm yr-1 in the Eastern Highlands.  
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Figure 2.2: Mean monthly rainfall for Beit Bridge on the lowveld, Harare on the 
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Figure 2.4: Seasonality of river flows. Gwayi River with a mean annual runoff of 17 
mm/yr, Shavanhowe 195 mm/yr, and Nyambwa 290 mm/yr 
 
 
Most rivers flow only during the rainy season except for those on the Eastern 
Highlands. This is illustrated in Figure 2.4 with Gwayi River representing the 
dry northern and southern parts; Shavanhowe River, northern part; and 
Nyambwa River, Eastern Highlands. Water scarcity due to both high inter-
annual variability and seasonality of flows is a major problem for water 
resources management. Severe competition for these resources occurs between 
a) the commercial and peasant farming sectors, and b) urban and rural areas. 
Conflicts over water are numerous within the commercial farming sector. For 
some catchments, 50 to 90% of renewable annual water resources have already 
been allocated to existing water users (Mazvimavi, 1998). Water allocation to 
prospective new water users becomes highly problematic in the absence of 
adequate flow data as is common for several catchments. Most flow measuring 
stations are located on the developed central part of the country (Figure 2.5). 
The need to allocate some water for environmental purposes has been 
acknowledged recently, but very limited data is available for determining flow 
regimes to be maintained along rivers for this purpose.  
 
2.2 Selection of the catchments 
 
The main consideration in selecting catchments for inclusion in this study is the 
availability of flow data on each catchment to enable accurate estimation of 
flow statistics like means of daily and monthly flows, flow duration curves, and 
separation of base flows from total flow. With regards to base flows, flow data 
should not have gaps in most of the seasons so that base flow separation can be 
undertaken. Previous studies in Zimbabwe showed that a minimum of 10 years 
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of flow data gives a reasonable estimation of most flow statistics (Bullock, 
1988). This criterion is used to select catchments to be included in this study. 
 
Almost all river flow measurements in Zimbabwe are done using flumes and 
weirs. Discussions were held with staff of the Department of Water 
Development (DWD), and the Zimbabwe National Water Authority (ZINWA) 
to identify flow measuring stations with accurate flow data. These organizations 
have for each station a file documenting maintenance of the station and the 
accuracy of the rating curve of the flow measuring structure. These files were 
reviewed to identify stations with acceptable flow data. DWD undertook 
detailed assessments of rating curves of stations within the Odzi, Manyame, and 
Mazowe catchments in connection with rainfall-runoff modelling exercises 
during the 1990’s. The reports of these assessments were considered in 
selecting flow measuring stations. 
 
Non-parametric tests were applied to monthly and annual flows of stations that 
had a potential for being included in this study (Kite, 1988). These tests aimed 
at eliminating those stations with data showing statistically significant changes 
in their time series that can be due to measurement errors, upstream abstractions 
or impoundments. Stations with abstractions or impoundments that amounted to 
more than 10% of their estimated mean annual runoff were excluded.  
 
The number of selected catchments should be large enough to enable 
application of both univariate and multivariate analysis methods. In the case of 
cluster analysis the number of catchments should ideally be larger than 30. This 
study selected 52 catchments with areas varying from 3.5 to 2630 km2 (Table 
2.3 and Appendix 1). The locations of these catchments are shown in Figure 
2.5, while Appendix 1 provides the name of river and flow measuring station, 
and catchment area for each of these catchments. The station codes (C6, C13, 
etc) are used throughout this thesis to refer to these catchments, and Appendix 2 
shows locations of these catchments and their codes.  
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Table 2.3: Distribution of selected catchments according to catchment area 
Size of Catchment km2 Number of Catchments 
< 100 
101 – 500 
501 – 1000 
1001 – 2000 
>2001  

12 
23 
6 

10 
1 

 

Figure 2.5: Locations of flow measuring stations in Zimbabwe, and
selected catchments comprising the study area. 

0 100 km0 100 km 
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The range of areas of selected catchments is representative of catchment sizes 
used for water resources planning and design in Zimbabwe. The hydrological 
year is used in this study, and it starts in October and ends in September of the 
following year. 
 
2.3 Derivation of flow characteristics 
 
This study develops techniques for use at the drainage basin level to provide 
information for the following purposes;  
• allocation or licensing of abstraction and storage of water, 
• determination of instream or environmental flow requirements, 
• yield analysis of proposed reservoirs,  
• water quality management in terms of estimating effluent dilution 

requirements. 
 
These tasks are undertaken at the drainage basin or meso-scale level. Therefore, 
selected flow and catchment characteristics should reflect meso-scale 
hydrological characteristics. Relevant flow characteristics are 
• mean annual flow, 
• mean monthly flows, 
• coefficient of variation of flows, 
• flow duration curves,  
• base flow statistics,  
• average number of days without flow in a year. 
 
These flow characteristics are generally referred to as low flow measures (IH, 
1980; Gustard, et al., 1989; Smakhatin and Toulouse, 1998). According to a 
survey undertaken by Smakhatin et al. (1995) in South Africa, these flow 
characteristics were used for environmental impact assessment by 65% of the 
water resources practitioners, for water resources research by 55%, and for 
water supply and water quality management purposes by 50% of the same 
practioners. The same study showed that information about flow duration and 
low flow frequency was required by 70% of  water resources specialists, and 
40% of the same specialists or practioners indicated that they also required 
information on base flows. Although no similar survey has been undertaken in 
Zimbabwe, it is likely that the demands for such information are of similar 
importance. Consequently these flow characteristics are selected for use in this 
study. 
 
The flow duration curve is estimated from daily flows using the method 
described by IH (1980) and Gustard et al. (1989). Daily flows, qt, for each 
catchment are divided by the average daily flow ( q ) to give dimensionless 
flows so as to exclude the effects of catchment size as was the case in the study 
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by Gan et al. (1990) in Australia. The flow duration curve is used to derive 
percentile flows qp where p is the exceedance probability.  
 
2.3.1 Base flow and recession constant 
 
Base flow consists of the contribution of groundwater flow and delayed 
interflow to total flow, and this makes up most of the dry weather flow (Kirkby, 
1978; Linsley et al., 1982). Most regionalisation studies attempt to determine 
how magnitudes of base flows vary from one catchment to the other. A 
common quantitative measure of base flows is the base flow index (BFI) which 
is the proportion of the volume of base flows to the volume of total flows within 
a specified period (IH, 1980; Bullock, 1988; Gustard et al., 1989). Automated 
base flow separation techniques have been developed to estimate BFI from flow 
time series. The most commonly used are (a) the smoothed minima technique 
(IH, 1980), and (b) the recursive digital filter (Lyne and Hollick, 1974).  
 
The following procedure is used when separating base flows using the 
smoothed minima technique.  
• Daily flows, qt, are divided into m non-overlapping five day blocks starting 

at the beginning of the daily flow time series. 
 
• For each block the minimum daily flow is identified, and these form the 

,q~1  ,q~2  ,q~3 … mq~ series of minima. 
 
• Turning points among the iq~  are identified such that values multiplied by 

0.9 are smaller than both neighbours, i.e. iq~  is a turning point if 

190 −< ii q~q~.  and 190 +< ii q~q~. . 
 
• The turning points become base flow ordinates. Values between these 

ordinates are interpolated under the condition that the base flow cannot 
exceed the total daily flow, since base flow is part of the daily flow. 

 
A recursive digital filter separates the high frequency signals that are produced 
by surface runoff, from low frequency signals due to base flow (Arnold, et al., 
1995): 
 

 
( ) ( )11 2
1

−− −
+

+= ttt,st,s qqqq ββ     (2.1) 
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where qs,t is the filtered surface runoff at time t, β is the filter parameter which 
has to be estimated, and qt is the total daily flow. The base flow, qg,t, is defined 
as 
 
 t,stt,g qqq −=        (2.2) 
 
and the base flow index is given by 
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where nd = total number of days in the flow record. Nathan and McMahon 
(1990b) found a correlation coefficient of 0.94 between BFI’s estimated using 
smoothed minima and recursive digital filter techniques. Arnold et al. (1995) 
found that the BFI estimated using the smoothed minima and recursive digital 
filter technique was comparable to that obtained using manual methods. No 
significant differences between these two techniques have been reported in the 
literature. Recent studies in southern Africa have used the smoothed minima 
technique (Bullock, 1988; Bullock et al., 1997). This justifies selection of the 
smoothed minima technique in this study so that the results are comparable with 
those of other studies. For each year with flow data on a particular catchment, a 
BFI is estimated, and then the average of all the annual BFI’s gives the 
catchment BFI. 
 
The one day recession constant, dα , was derived from the flow recession 
equation (Arnold et al., 1995; Chapman, 1999): 
 

 







∆

=
t

d q
q

t
0log1α       (2.4) 

  
where q0  = daily flow at t = 0 
 dα  = recession constant derived from daily flows 
 t∆   = difference in time (days) between qt and q0. 
 
The recession constant, dα , varies from 0 to 1 and gives an indication of the 
rate of depletion of flows. This constant depends mainly on topography, 
drainage pattern and soil types. Rivers draining areas with substantial 
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subsurface storage, and therefore gradual depletion of dry season flows have 
dα  close to 1, e.g. limestone region with karst features. Those rivers draining 

areas with minor base flow contribution such as in a granitic terrain have dα  
close to 0. 
 
2.4 Selection and derivation of catchment characteristics 
 
Problems occur in selecting catchment characteristics or descriptors for use in 
developing methods to estimate flow characteristics of ungauged catchments. 
Ideally those catchment characteristics that have the strongest influence on flow 
characteristics of interest should be selected, but these are not known a priori. 
The literature provides some guidelines (Table 2.4). 
 
Table 2.4: Catchment characteristics used in similar studies 
Catchment Characteristic Study 
Area Tasker (1982), NERC (1975), Gustard et al. 

(1989), Gan et al. (1990), Nathan and McMahon 
(1990a), Riggs (1990), Burn and Boorman 
(1993), Sefton and Howarth (1998), Bullock 
(1988), Bullock et al. (1990).  

Elevation Nathan and McMahon (1990a), Gustard et al. 
(1989), Tasker (1982) 

Main stream length Nathan and McMahon (1990a), Gustard et a, 
(1989), Burn and Boorman (1993) 

Slope Nathan and McMahon (1990a), Gustard et al. 
(1989), Sefton and Howarth (1998), Burn and 
Boorman (1993), Lacey and Grayson (1998), 
Berger and Entekhabi (2001) 

Stream frequency Sefton and Howarth (1998), Nathan and 
McMahon (1990a), Gustard et al. (1989), Burn 
and Boorman (1993).  

Drainage density Nathan and McMahon (1990a), Lacey and 
Grayson (1998), Berger and Entekhabi (2001) 

Proportion of catchment under various soil types Sefton and Howarth (1998), Burn and Boorman 
(1993), Gustard et al. (1989) Tasker (1982) 

Land cover Sefton and Howarth (1998), Lacey and Grayson 
(1998), Nathan and McMahon (1990a) 

Proportion of catchment under various types of geological 
formations 

Sefton and Howarth (1998), Nathan and 
McMahon (1990a), Gustard et al. (1989), Yokoo 
et al. (2001) 

Location - latitude and longitude Sefton and Howarth (1998), Nathan and 
McMahon (1990a). 

 
This study took into account that selected catchment characteristics should be 
derived from sources that are readily available to practising hydrologists, i.e., 
maps, satellite imagery, and national databases. Selected catchment 
characteristics are given Table 2.5. 
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Table 2.5: Catchment characteristics selected for use in the study 
Catchment Characteristic Description and Data Source 
1. Means of monthly and annual 

rainfall, and the average 
number of rainy days per year 

 

Estimated from rain gauge data.  

2. Maximum, average, and 
minimum catchment elevation 

 

Derived from a digital elevation model (DEM) 
with a geographic projection of 30 Arc seconds 

3. Drainage density 1:50 000 topographical maps and blue lines on 
these maps are assumed to represent streams. 
 

4. Slope Estimated from a DEM 
 

5. Proportions of the catchment 
with different lithologies 

Derived from the 1:500 000 Hydrogeological 
Map of Zimbabwe (Interconsult A/S, 1985) 
 

6. Proportions of the catchment 
with different land cover types 

Determined from the 1:250 000 Vegetation Map 
of Zimbabwe produced by the Forestry 
Commission from the 1992 LANDSAT TM 
images (Kwesha, 2000) 
 

7. Means of monthly and annual 
potential evaporation 

 

USA Class A pan evaporation measurements 

8. Normalized difference 
vegetation index (NDVI) 

Obtained from SADC/RRSU archive 
(SADC/RRSU, 2000) 

 
2.4.1 Mean annual precipitation and number of rainy days 
 
Rainfall stations that are within or close to each of the 52 catchments were 
identified. This study uses all stations with over 10 years of continuous data 
since some catchments do not have a minimum of the recommended 30 years of 
rainfall data (Figure 2.6) (Dent et al., 1990).  Mean annual precipitation ( yrP ) 
for each of the catchments was estimated using the arithmetic mean method, 
and this varies from 604 to 1770 mm yr-1 (Figure 2.6). Catchments that occur 
along the central part of the country have mean annual precipitation in the 600 
to 800 mm yr-1 range. Mean annual precipitation of catchments in the northern 
part is in the 800 to 1000 mm yr-1 range. The highest rainfall is on catchments 
located on the Eastern Highlands (1300 to 1770 mm yr-1) which indicates that 
precipitation increases with altitude. 
 
De Groen (2002) demonstrated that the amount of rainfall intercepted per month 
is related to the number of rainy days. Therefore, the average number of rainy 
days per year is likely to affect the volume of runoff, and is included as a 
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catchment characteristic. The average number of rainy days per year, yrN , 
varies within the study area from 42 days yr-1 in the extreme south-western part, 
52-58 days  yr-1 on the central part, 62-71 days yr-1 on northern catchments, and 
105-125 days yr-1 on the Eastern  
Highlands. A strong linear relationship occurs between the average annual 
rainfall and the average annual number of rainy days. A high correlation, r = 
0.83, exists between yrP  and yrN . yrN  at a rainfall station can be predicted 
from the following equation 
 
 yryr PN 053.0905.22 +=  days yr-1 r2 = 0.69 (2.5) 
 
This result is in agreement with De Groen (2002) who established a relationship 
between monthly rainfall and the number of rainy days in a month. 
 

0  100 km 

 
Figure 2.6: Mean annual rainfall of the study area. 
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2.4.2 Maximum, average and minimum elevations, and relief  

 
Figure 2.7: Catchment relief derived from the difference between the highest and 
lowest pixel within a DEM. 
 
 
The estimation of drainage basin characteristics such as elevation has 
traditionally been hindered by the time consuming nature of this exercise when 
topographic maps are used (Meijerink, et al., 1994). A digital elevation model 
(DEM) with a geographic projection of 30 Arc seconds which is approximately 
one km was used to derive maximum, average, and minimum elevations of 
catchments. The maximum elevation varies from 1100 to 2250 m (Figure 2.7). 
Catchments that are along the Eastern Highlands have the highest elevation. 
C23, C47 and C70 have the lowest relief (50 to 305 m). The highest relief 
occurs on Eastern Highlands catchments where it varies from 1000 to 1300 m. 
 

0  100 km 
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2.4.3 Slope 
 
Slope is an important characteristic of a catchment as it gives an indication of 
the kinetic energy available for water to move towards the basin outlet, and it 
has been found to be related to total runoff and base flows (Bullock, 1988; 
Vogel and Kroll, 1992). Slope is highly variable within a basin, and hence no 
single measure of slope is commonly agreed upon. Before the advent of DEMs, 
it was almost practically impossible to derive slopes for all the landscapes 
within a basin. Consequently various slope measures assumed to be 
representative for the effects of slope on runoff processes have been used 
(Drayton et al., 1980; IH, 1980; Seyhan and Keet, 1981; Bullock, 1985; Gustard 
et al., 1989; Nathan and McMahon 1990a). A single slope index for the whole 
basin may not be representative for all the landscapes that affect runoff 
processes. This study uses a DEM to estimate slopes for all pixels within a 
catchment, and then constructs a cumulative frequency distribution of slopes 
from which slope indices ψS  are derived.  ψS  denotes a slope value for which 
ψ  % of the pixels in a basin are equal to or less than this value. Berger and 
Entekhabi (2001) recommended the use of S50, the median slope, instead of the 
average slope which they considered to be unrepresentative. This study includes 
several slope indices for values of ψ  from 5 to 95% to identify ψS  that best 
explains each of the flow characteristics.  
 
Figure 2.8 shows cumulative frequency diagrams of slopes for 8 selected 
catchments. The shapes of these curves indicate whether relatively flat or steep 
slopes dominate in particular catchments. Curves for E106 and E129 in the 
Eastern Highlands show major differences between the largest and smallest 
slopes. These catchments will have fast flowing rivers. There are no major 
differences between the largest and smallest slopes for catchments C6, C23 and 
E49 on the central part of the country, and therefore river flows will have 
relatively low velocities. The median slope, S50, is shown in Figure 2.9.  
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Figure 2.8: Cumulative frequency distribution of slopes on 8 selected catchments. 
 
Catchments located on the central part of the country have the lowest median 
slopes, varying from 1.5 to 3.04%. The effects of the Shurugwi Hills are evident 
on E42 which has a median slope of 5.5% while neighbouring catchments have 
median slopes in the 1.5 to 3% range. The hilly topography around the Great 
Zimbabwe National Monument has also resulted in E107 having a median slope 
of 6% while neighbouring catchments have lower slopes. E114 and E115 drain 
the Bikita Highlands that have numerous dwalas with steep slopes, and 
therefore these catchments have median slopes of 10% and 7% respectively. 
The highest median slopes range from 12 to 17% and occur on the Eastern 
Highlands catchments. 
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Figure 2.9: Median slopes of the study area. 
 
2.4.4 Drainage density 
 
Drainage density (Dd) is derived by dividing the total stream length within a 
catchment by the catchment area, and is regarded as an important landscape 
characteristic (Gregory and Walling, 1973; Seyhan, 1977). It is a measure of 
how dissected a basin is, and it is expected that Dd affects the transformation of 
rainfall into runoff (Seyhan and Keet,1981; Pitlick, 1994; Tucci, 1995; Berger 
and Entekhabi, 2001). The main deterrent to the use of Dd is that it is laborious 
and time consuming to estimate from aerial photographs or topographical maps. 
In addition the definition of a stream is not consistent among mapping agencies 
(Gregory and Walling, 1973; Seyhan and Keet, 1981). This study assumed that 
blue lines on 1:50 000 topographical maps produced by the Surveyor General of 
Zimbabwe are representative of stream networks. While drainage densities 
estimated from these maps may not be accurate in an absolute sense, they allow 
a comparison of the effects of differing intensities of dissection on runoff 
among catchments. Streams on all selected catchments are digitized, and the 
total stream length for each catchment is then estimated using standard routines 
available in most GIS packages. Values of catchment areas used here are those 

0  100 km 
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which are officially used by the Department of Water Development in 
Zimbabwe.  
 

 
Figure 2.10: Drainage density derived from blue lines on 1:50 000 topographical maps. 
 
 
Drainage density (Dd) varies from 0.22 to 6.30 km km-2 (Figure 2.10). In 
general the central part of the country has the lowest Dd values, while the 
Eastern Highlands region has the highest values. The region within which C23, 
C70, C6, C47, and C41 are located has numerous dambos. Dambos are 
seasonally waterlogged valleys with grasslands. Similar features occur on the 
E49. These basins have Dd of approximately 1.5 km km-2. Dd is positively 
correlated with the median slope, r = 0.65, and relief, r  = 0.42. Thus areas with 
steep slopes and high Dd are expected to have fast channel flow. Low Dd in 
Zimbabwe is associated with pedimentation (sheet wash plains) and therefore 
low groundwater contribution to streamflows. A somewhat weak relationship 
exists between Dd and yrP  (r = 0.35). All these correlation coefficients are 

significant at the 5% level. The relationship between Dd and yrP  can be 
explained by both being positively correlated with elevation. The lack of a 
strong relationship between Dd and yrP , shows that current drainage networks 
reflect the long geomorphological history of the landscape and its associated 

0  100 km 
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previous climates. Geological processes such as faulting, fracturing, uplifting, 
and pediplanation influenced the creation of current drainage networks. In 
addition previous changes in climate like the drying during the Miocene which 
resulted in the deposition of large quantities of aeolian sands caused changes in 
drainage patterns in Zimbabwe (Lister, 1987). Current precipitation patterns 
have not had major effects on the development of the main drainage lines. 
There is no relationship between Dd and the proportion of the catchment that is 
covered by different lithologies. The type of lithology underlying a particular 
area may not be as important in affecting drainage density as geomorphological 
processes that have shaped the landscape. 
 
2.4.5 Geology 
 
The derivation of quantitative geological indices that express the geological 
effects on runoff processes at the basin level is a major challenge in hydrology. 
Hydrogeological characteristics like permeability and depth to the water table 
that have been used in some studies are highly variable in space. In developing 
countries such data are rarely available, since most countries only developed 
and maintained geological databases relevant for planning and managing 
mining operations. Therefore, most regionalisation studies used the proportions 
of  catchments with different lithologies (Gustard et al., 1989; Nathan and 
McMahon, 1990a; Sefton and Howarth, 1998; Yokoo et al. 2001). This study 
uses the same approach since detailed geological mapping has not covered the 
whole of Zimbabwe. The generalised 1:500 000 Hydrogelogical Map of 
Zimbabwe is used (Interconsult A/S, 1985). This map has 17 lithological classes 
developed for assessing the potential for groundwater occurrence, and 
development of rural water supply systems abstracting groundwater.  
 
The study area is underlain mostly by rocks belonging to the crystalline 
basement of Africa comprising granite-gneiss-greenstone belts of the Archaean 
craton (Key, 1997). These rocks lack primary porosity, and aquifers only occur 
within the weathered regolith and fractured bedrock (Key, 1997; Wright, 1987; 
Wright, 1997). Aquifers have localized groundwater flow systems, with 
recharge on the interfluve and discharge in valley bottomlands (Wright, 1997). 
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Figure 2.11: Lithology of the catchments derived from the 1: 500 000 Hydrogeological 
map (Interconsult A/S, 1985). 
 
 
Figure 2.11 shows the different types of lithologies occurring within the study 
area and Table 2.6 below shows the coverage of the dominant lithologies. 
Average water table depths and borehole yields presented in Table 2.6 were 
obtained from Interconsult A/S (1985). 
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Table 2.6: Lithological types of the study area, their coverage, average water 
tables and borehole yields 
Lithology No. of 

Catchments
% Area Water 

Table 
Depth 

(m) 

Borehole 
Yield 

 
(m3 day-1) 

Gneiss and young 
intrusive granite on the 
African surface 

30 0.3 – 100.0 < 10 50 –100 

Gneiss and young 
intrusive granite on post 
African and Pliocene 
surface 

53 0.6 – 99.1 < 10 10 - 50 

Mafic metavolcanics 
(Greenstone) 

31 0.2 – 70.0 10 – 20 10 – 250 

Acid metavolcanics 
(Greenstone) 

27 0.2 – 63.5 < 10 10 - 25 

Dolerite dykes and sills 31 0.1 – 30.4 < 10 25 - 100 
Kalahari aeolian sands 13 1.3 – 80.9 > 20 100 - 1000 
Alluvial deposits 7 2.5 – 40.8 variable 100 -5000 
Umkondo assemblage 3 51.6 – 92.6 5 – 20  10 - 100 
Upper Karoo basalt 3 5 – 10 5 – 15 20 – 100 
Upper Karoo sandstone 3 17.0 – 43.0 > 20 50 – 300 
Great Dyke 13 0.1 – 50.0 unknown unknown 
 
The following notation is used to denote the proportion in percentages of a 
catchment with the above lithologies; 
GLGG granite and gneiss   GLGR greenstones 
GLDO dolerite dykes and sills   GLKL Kalahari sands 
GLAL  alluvial deposits   GLLM Umkondo group 
GLBA upper Karoo basalt   GLSA upper Karoo sandstone 
GLGD Great Dyke 
 
The dominant lithologies are gneiss and young intrusive granite (Table 2.6 and 
Figure 2.11). The potential for groundwater occurrence in granites is variable 
depending on the depth and areal extent of both fracturing and secondary 
weathering. Weathering depths tend to be considerable on the African surface, 
and rather limited on the Post-African surface with prominent rocks outcrops 
(Interconsult A/S, 1985). The potential for groundwater occurrence in granite is 
favourable in areas where it is closely jointed resulting in castle koppies and 
balancing rocks as part of the landscape. Areas with bornhardts that are rounded 
or whale-back shaped have limited potential due to shallow depth of 
weathering. Well yields in granites in general are variable. Water yielding 
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properties of granite also depend on its texture (Jordan, 1968; Meijerink, 1974). 
Therefore, the contribution of groundwater to runoff may vary between 
catchments although all of them could be underlain by granite. Granite often 
gives rise to sandy soils that are moderately deep, and with high infiltration 
rates. Due to low water holding capacity of these sandy soils and shallow depth 
of impermeable underlying granite, shallow water tables generally occur during 
the rainy season (Thompson and Purves, 1978). 
 
Mafic and acid metavolcanics commonly referred to as the greenstone 
formations are frequent on catchments in the northern part of the study area, and 
on parts of C6, C18, E45, E49, and E1 (Figure 2.11). Mafic metavaolcanics tend 
to have considerable depth of weathering, and high potential of groundwater 
occurrence. Groundwater contribution to runoff is expected to be relatively high 
in comparison to granites. The high potential for groundwater occurrence in 
these formations has led in some cases to over extraction, and this has adversely 
groundwater contribution to some rivers (Jordan, 1968). Mafic rocks give rise to 
red clays with considerable water holding properties (Thompson and Purves, 
1978).  
 
Acid metavolcanics have rather limited potential for groundwater occurrence 
due to variable depth of weathering. 
 
Dolerite dykes and sills are numerous within the study area, and occur as 
intrusions into the granite and gneiss (Figure 2.11). They generally occur on 
small portions of the catchments. The degree of weathering of the dykes and 
sills is variable, ranging from fresh to decomposed. Groundwater occurrence is 
favourable where the dolerite has been weathered, or along the lower contact 
zone between the sill and granite or gneiss. Where aquifers occur, they tend to 
have water tables with depths less than 10 m.  
 
Kalahari sands cover over 50% of E156, E40, and E42.  They also cover 1-30% 
of C13, C18, C41, and C47 (Figure 2.11). Kalahari sands are generally fine to 
medium grained unconsolidated sands (Interconsult A/S, 1985). They have 
primary porosity and permeability, and the potential for groundwater 
occurrence is very high. Aquifers in these formations are unconfined with water 
table depths greater than 20 m. Rivers draining Kalahari sands may not benefit 
from groundwater flow because water tables are often below river beds.  
 
Alluvial deposits comprising gravel sand and silts cover 26% of C41, and 41% 
of C47 (Figure 2.11). They also cover small portions of C6, and C18. Alluvial 
deposits have primary porosity and permeability, and a high potential for 
groundwater occurrence. Water table depths are variable. 
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The Umkondo assemblage consists of quartzite, shale, limestone and dolerite 
intrusions, and occur on three catchments in the Eastern Highlands, E37, E121, 
and E125. They lack primary porosity. Groundwater tends to occur along the 
shale/dolerite, and quartzite/dolerite contacts, and fractures within quartzites. 
Karst features have not been reported on these catchments (Interconsult A/S, 
1985). 
 
Upper Karoo basalt and sandstone occur on C6, C18 and C70. The Great Dyke 
which is 3-10 km wide and 550 km long running from NNE to SW in 
Zimbabwe occurs on 13 catchments within the study area, for example C25, 
D28, D48, E29 and E40. It is an elongated intrusion comprising mafic and 
ultramafic rocks such as pyroxenites and gabbro. Very little hydrogeological 
information exists about the dyke. 
 
2.4.6 Land cover 
 
Land cover has been shown in several studies to affect flow characteristics 
(Edwards and Blackie, 1981; Bosch, 1979; Mumeka, 1986; Bosch and Hewlett, 
1982; Andrews and Bullock, 1994). Land cover is selected for use in this study. 
The Vegetation Map of Zimbabwe has land cover classes given in Table 2.7, 
and these are used in this study (Kwesha, 2000).  
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Table 2.7: Land cover classes used derived from the 1:250 000 Vegetation Map 
of Zimbabwe 
Land Cover Type 
(Notation) 

Description 

Forest plantation 
(LCPL) 

80 – 100% canopy cover and with height > 15 m. Exotic 
species. 
 

Natural forest 
(LCFO) 

Canopy cover > 80%, tree height > 15 m. Moist evergreen 
and deciduous species. 
 

Woodland 
(LCWD) 

Open to dense stand of indigenous trees. Canopy cover of 
20 – 80%. Tree height 5 – 15m. Trees are widely spaced. 
An incomplete under storey of small trees and large bushes. 
 

Bushland (LCBU) Indigenous woody cover with 20 – 80% canopy cover, and 
heights of 1-5m. Usually multi-stemmed.  

Wooded 
grassland (LCWG) 

Clumped or scattered trees, or bushes with height 1 – 15 m. 
Canopy cover 2 – 20%. Bushes or tree clumps often occur 
on termite mounds. 
 

Grassland (LCGR) Absent or scattered trees. Canopy cover of bushes or trees 
less than 2%. Often occur in areas that are seasonally 
waterlogged, e.g. dambos. 
 

Cultivation 
(LCCU) 

Agricultural crop production including tea, coffee, banana, 
sugar plantations, and orchards. 

The sum of the proportions of areas with wooded grassland and grassland is 
denoted by LCCG. 
 
Woodlands are the most dominant land cover within the whole study area, and 
cover 38% of the area, followed by cultivation which covers 30%. Grasslands 
and wooded grasslands cover 16%, and forest plantation and bushland each 
cover approximately 7% of the area (Figure 2.12). 
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Figure 2.12: Land cover types obtained from the Vegetation Map of Zimbabwe which 
was derived from 1992 Landsat TM images by the Forestry Commission of Zimbabwe. 
 
Forest plantations occur mostly on the Eastern Highlands and cover almost all 
of E72, E106, E127, E128, and E129. There are also small portions of some 
catchments not on the Eastern Highlands with plantation forests, e.g. 1.7% on 
C41  due to Mtao Forest. Woodlands, and cultivation  occur on almost all 
catchments. Wooded grasslands occur mostly on catchments on the central part, 
where they cover 30-49% of the areas of  C6, C18, C41 , and C47. Grasslands 
cover almost the whole of E23 (90%), and E33 (97%). They also cover about 
28% of C47. Catchments with both wooded grasslands and grasslands usually 
have dambos. 
 
2.4.7 Normalized Difference Vegetation Index 
 
The normalized difference vegetation index (NDVI) gives an indication of the 
photosynthetic activity of vegetation, and is related to vegetation density 

0  100 km 
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(Bastiaanssen, 1998; Meijerink, et al., 1994). Several studies have found a 
relationship between NDVI and rates of evaporation, which suggests that NDVI 
is likely to affect flow characteristics  (Hendricksen and Durkin, 1986; Cihlar et 
al., 1991; Yang et al., 1994). NDVI is therefore selected as one of the catchment 
characteristics.  Dekadal NDVI data starting from October 1981 to 1999 are 
used to estimate monthly and annual NDVI for each catchment (SADC/RRSU, 
2000).  
 
The average annual NDVI varies from 0.24 to 0.44 (Figure 2.13).  Catchments 
which occur on the central part of the country show some interesting differences 
in NDVI values. C23 and C70 have lower NDVI values than their neighbouring 
C6, C18, and C47. The differences are due to communal areas that are densely 
populated on the former catchments, while the latter are under large scale 
commercial farming. Most communal lands are dominated by cultivated lands 
on which vegetation has been cleared, resulting in low NDVI values. The 
Eastern Highlands region which is well vegetated has the highest NDVI values. 
The increase in NDVI from the central part of the country to the Eastern 
Highlands reflects the close relationship between NDVI and the leaf area index 
(LAI). An approximately linear relationship exists between NDVI and LAI, up to 
LAI = 3 to 4, after which the NDVI does not change significantly. A positive 
correlation exists between NDVI and yrP  (r = 0.65). This is a reflection of 
active vegetation growth in areas with high rainfall, which is the case in the 
Eastern Highlands, and poor vegetation cover in areas with low rainfall. 
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Figure 2.13: Average annual NDVI estimated from dekadal NDVI values from October 
1981 to October 1999 
 
2.4.8 Evaporation 
 
Evaporation is an important component of the water budget in Zimbabwe where 
about 90% of the annual rainfall returns back to the atmosphere through this 
process. Evaporation has therefore considerable effects on runoff. The Penman 
type of equations for estimating potential evaporation cannot be used for most 
parts of the study area as they do not have all of the required meteorological 
data (Penman, 1948 & 1956; Schulze and Kunz, 1995). Methods that use 
temperature for estimating potential evaporation have a capability of being used 
in the study area (Hargreaves and Samani, 1985; Hargreaves and Hargreaves, 
1985; ASCE, 1996). The Hargreaves and Samani (1985) method performed 
better than other temperature based methods in South Africa (Schulze and 
Kunz, 1995), and therefore has a capability for estimating potential evaporation 
rates of selected catchments. The following equation derived by Hargreaves and 
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Samani (1985) with an additional factor (1.25) to convert reference crop 
potential evaporation rate to a pan evaporation equivalent (Schulze and Kunz, 
1995) is used: 
 
 ( )8.17)(0023.0)25.1( 5.0

minmax, +−= aatpan TTTRE   (2.6) 
  
where 
Epan,t = monthly pan evaporation equivalent (mm/day), 
Ra = average monthly extra-terrestrial solar radiation (mm equivalent per day), 
Tmax = maximum monthly temperature (°C), 
Tmin = minimum monthly temperature (°C), 
Ta = mean monthly air temperature (°C). 
 
Pan evaporation measurements are undertaken at 58 stations in Zimbabwe using 
the screened USA Class. These measurements are used to estimate potential 
evaporation rates for the selected catchments. Evaporation rates for catchments 
without pan measurements are estimated by extrapolating from nearby sites. A 
comparison of potential evaporation rates estimated by the Hargreaves and 
Samani (1985) method with pan evaporation measurements is conducted to 
identify the most suitable method for estimating monthly potential evaporation 
rates for selected catchments. 
 
Figure 2.14 shows mean annual evaporation rates based on USA Class A pan 
measurements. Catchments on the southern and central part of the study area 
have mean annual evaporation rates of 1800 – 2000 mm yr-1. D6, D24, E136, 
E37, E121, and E125 have pan evaporation rates of 1600 – 1800 mm yr-1. 
Catchments with very high altitudes such as E127, E128, E129, and E132 have 
low pan evaporation rates, 1300 – 1400 mm yr-1. Evaporation rates decline with 
altitude since temperature also decreases with altitude. Figure 2.15 shows that 
low evaporation rates occur during the cool season, from May to July. 
Evaporation rates then increase and reach a maximum in October. The increase 
in cloud cover and humidity during the rainy season reduces evaporation rates. 
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Figure 2.14: Mean annual potential evaporation estimated from pan evaporation 
records 
 
 
Evaporation rates estimated from the Hargreaves and Samani (1985) method are 
1-10% less than pan evaporation rates during the August to October period, 
while these are 5-40% greater than pan evaporation during the rainy season, 
November to May (Figure 2.16) In general the differences between these two 
methods are less than 10% during the May to November period. It seems that 
the increase in relative humidity which reduces evaporation rates during the 
rainy season is not accurately reflected by  the Hargreaves and Samani (1985) 
method. Consequently, this study uses evaporation rates based on USA Class A 
pan. 
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2.5 Flow characteristics 
 
The mean annual runoff, yrQ ,  ranges from 38  to 45 mm yr-1 for the south-
western catchments, and from 45 to 85 mm yr-1 for the central catchments 
(Figure 2.17). Most of the northern catchments have yrQ  in the 100 to 200 mm 

yr-1 range. The Eastern Highlands catchments have the highest yrQ , 200 to 460 

mm yr-1. There is only one catchment, E72, with yrQ of 778 mm yr-1. The 

coefficient of variation (CV) of annual flows is inversely related to the yrQ . 
Thus Eastern Highlands catchments have the lowest CV, 55 to 75%, while the 
south-western and central catchments have CVs between 120 and 160%. 

Figure 2.16: Differences between Hargreaves and Samani (1985) and pan evaporation rates

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May JunPe
rc

en
ta

ge
 d

iff
er

en
ce

Makoholi Binga Beit Bridge Chivhu
Banket Marondera Masvingo

Figure 2.15: Mean monthly evaporation
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Figure 2.17: Mean annual runoff estimated from flow records 
 
 
BFI ranges from 0.08 to 0.76 and the average BFI for all the catchments is 0.36 
(Figure 2.18). Bullock (1988), and Bullock, et al. (1992) found a similar value 
for different sets of catchments in Zimbabwe. Central catchments have the 
lowest BFI values, while most of the northern and all the eastern catchments 
have high BFI from 0.44 to 0.76. Catchments with low BFI have the greatest 
variability in their annual BFIs. The CV of BFI was found to vary from 70 to 
105% for the central and south-western catchments, while the eastern 
catchments had values ranging from 5 to 35%. BFI has a linear relationship 
with the recession constant, dα , derived using daily flows (r = 0.80). The 
recession constant varied from 0.83 to 0.96 among the selected catchments. 
Catchments with small BFI have small recession constants indicating rapid 
depletion of subsurface storage. 
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Figure 2.18: Base flow index estimated using the smoothed minima method. 
 
Flow duration curves have a gradation from relatively dry catchments with 
curves at the bottom of Figure 2.19, to wet catchments with top most curves. 
The very bottom curves are representative of relatively dry catchments in the 
south-western and central parts of the study area. For these catchments the flow 
with an exceedance probability greater than 0.40 is the zero flow. These 
catchments have small BFI values and experience quick recession. For the 
relatively wet catchments, the flow with an exceedance probability of 0.30 is 
the annual average flow. The shapes of these curves reflect flow regimes of 
these catchments. Catchments with steep flow duration curves dry quickly, 
while flat curves indicate gradual depletion of flows. 
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Most catchments in the eastern and northern parts have the number of days with 
no flow per year, DZN , varying from 0 to 10 days, while for the extreme south-
western catchments this ranges from 130 to 244 days in a year (Figure 2.20). 

DZN  was found to be negatively correlated to both yrQ  (r = -0.42) and BFI (r 
= -0.70), and positively correlated to CV (r  = 0.50). 

Figure 2.19: Flow duration curves for some catchments 
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3 PREDICTION OF FLOW CHARACTERISTICS 
 
3.1 Introduction 
 
Variations of flow characteristics in space and time are influenced by catchment 
characteristics such as climate, catchment morphometry, lithology, and land 
cover. Climate sets the broad limits to the transfer of water between the 
atmospheric system and the drainage basin. Other factors affect the 
transformation of net rainfall into various transfer processes and storages that 
occur within a drainage basin hydrological system. Flow characteristics are 
indicators of the status of some of these processes and storages. Catchment 
characteristics affect differently each of the flow characteristics. Consequently, 
prediction of each of the flow characteristics requires identification of 
influential factors. For some of the flow characteristics, multiple regression 
methods are capable of identifying the influential catchment characteristics. 
Prediction of such flow characteristics can be done using these methods. 
Multiple regression methods may be inappropriate for some flow 
characteristics, as these methods assume a) a linear relationship between flow 
and catchment characteristics, and b) that variables have distributions that 
approximate a normal distribution. Both assumptions are not always valid, and 
therefore other methods have to be used for identifying influential catchment 
characteristics, and the subsequent development of predictive techniques. One 
such method is the use of neural networks that are capable of modelling non-
linear relationships, and do not assume a specific underlying distribution for the 
data (Ripley, 1994; Ardo, et al., 1997; Hall and Minns, 1999; Orr, et al., 1999). 
Neural networks have mostly been used in hydrology for flow forecasting 
(Chibanga et al., 2003; Cigizzoghi, et al., 2003; Dolling and Varas, 2003). 
 
The aim of this chapter is to identify catchment characteristics that influence 
selected flow characteristics using univariate statistical methods and neural 
networks. The possibility of predicting these flow characteristics from 
catchment characteristics is explored using the same methods. 
 
3.2 Neural networks 
 
A neural network consists of computational units or nodes that are linked 
(Figure 3.1).  
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                    wi1                                                                                            wki 
 
                         wi2                                                                                       wki 
 
                         wi3                                                                                                 wki 
 
 
Input layer, j                               Neuron i                         Output 
layer,k 
 
wij = weight from unit j to i 
 
The net input to the neuron i is weighted sum of inputs, ∑

j
jij yw  

yj is the input from unit j. The output of neuron i, yi, is given by 
 









= ∑ jiji ywfy  

 
where f is a function referred to as an activation function, for 
example a linear, sigmoid, hyperbolic tangent, and radial basis 
function. 
 
Figure 3.1: Illustration of a simple neural network 
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The output of a neuron can be an input to the next neuron. The most commonly 
used neural network architecture is one with three layers, comprising (i) an 
input layer, (ii) a hidden layer, and (iii) an output layer. A neural network is 
denoted for example by MLP5-7-6 meaning a multiplayer perceptron with 5 
units in the input layer, 7 units in the hidden layer, and 6 units in the output 
layer. A neural network without a hidden layer, and describing a linear input-
output relationship is denote by for example L5-2 meaning 5 units in the input 
layer, and 2 units in the output layer. The number of units in the input layer, and 
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those in the output layer depend on the problem being analysed. The number of 
units or neurons within the hidden layer are selected by trial and error so as to 
best describe the input-output relationship. A general recommendation is that 
the number of hidden units should be half the sum of the number of units in the 
input and output layers. It is possible to have more than one hidden layer. In 
most neural networks, each neuron in a preceding layer is connected to all the 
neurons in the next layer. Such a neural network is described as being fully 
connected. Neural networks in which information passes from one preceding 
layer to the next, and not backwards, are called  feedforward networks, and 
being the most commonly used. 
 
Neural networks can be used for modelling input – output relationships, 
supervised and unsupervised classification (Ripley, 1994; Orr, et al., 1999; 
Bals, 2002). The process of adjusting weights of the network to minimise 
differences between the outputs predicted by the network, and the actual outputs 
is called network training. A back propagation algorithm is commonly used for 
training a neural network (Ripley, 1994; Ardo, et al., 1997; Skidmore, et al., 
1997; Orr, et al., 1999). This algorithm is  used in this study. Two approaches 
can be used to select explanatory variables. First, all  relevant variables are 
included, and through trial and error some variables are removed and the effect 
of this on the prediction error is assessed. This is done until only those variables 
that are necessary for describing relationships between variables are retained in 
a network. Second, a small number of variables are initially used, and other 
variables are added until the inclusion of additional variables has no effect on 
the prediction accuracy. The variables used in this study for neural network 
analysis are given in Table 3.1 below. Different configurations of neural 
networks for predicting each of the flow characteristics are assessed.  
 
Table 3.1: Variables for neural network analysis 
Catchment Descriptors 
(Inputs) 

 Flow Characteristics (Outputs) 

yrP , S10,, S25, S34, S50, S68, 

S75, S80, S90, Dd, yrpotE , , 
GLGG, GLGR, GLKL, GLLM, 
LCBU, LCWD, LCWG, LCGR, 
and LCCU. 
 

 
yrQ , BFI, q90, q80, q70, q60, q50, q40, q30, q20, 

q10. 

 
When training a neural network there is a need to prevent overtraining of the 
network, and this is done by training a network on a separate data set (training 
sub-sample). Training continues as long as the root mean square error (RMSE) 
decreases. But when this error no longer decreases on a second sub-sample 
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(selection sub-sample), this indicates that the network is being overtraining. A 
third sub-sample is used to validate the network (testing sub-sample). There are 
52 catchments in this study, and these are split by random sampling into 26 
catchments for training, 13 for selection, and 13 for testing (StatSoft Inc., 2001).  
 
The software used for neural network analysis in this study is STATISTICA 
Version 6 by StatSoft Inc (2001). This allows for testing of as many different 
configurations of networks (e. g., 500 networks) as possible, and the best 
network in terms of minimising the RMSE is selected.  
 
3.3 Results 
 
3.3.1 Correlation between flow and catchment characteristics 
 
Table 3.2 shows the correlation between flow characteristics and catchment 
descriptors. Only correlation coefficients significant at the 5% significance level 
are presented.  
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Table 3.2: Correlation Between of Flow Characteristics and Catchment 
Descriptors 
 

yrQ  CV BFI q90 q70 q50 q20 DZN  

yrP  0.85  0.71 0.87 0.83 0.75 0.56 -0.52 

NDVI 0.64 -0.41 0.71 0.63 0.74 0.72 0.61 -0.44 
Dd 0.29   0.31 0.39 0.37   
GLGG 0.33        
GLLM   0.30   0.28   
GLBA       -0.28  
GLSA   -0.30    -0.33  
GLKL   -0.30      
GLAL   -0.32    -0.31  
S10 0.49 -0.43 0.75 0.50 0.70 0.78 0.70 -0.48 
S25 0.68 -0.44 0.80 0.72 0.84 0.84 0.68 -0.56 
S34 0.72 -0.43 0.77 0.71 0.80 0.81 0.65 -0.55 
S50 0.65 -0.45 0.76 0.60 0.73 0.77 0.69 -0.53 
S68 0.59 -0.40 0.76 0.60 0.74 0.76 0.65 -0.56 
S75 0.58 -0.42 0.73 0.54 0.67 0.71 0.66 -0.52 
S80 0.44 -0.36 0.72 0.49 0.67 0.71 0.64 -0.56 
S90 0.46 -0.37 0.73 0.51 0.69 0.72 0.64 -0.56 
DB   -0.39    -0.43 0.38 
LCWD -0.27   -0.33     
LCWG   -0.45  -0.36 -0.42 -0.51 0.29 
LCGR   -0.37   -0.29 -0.42 0.49 
LCCU    -0.43 -0.38 -0.29   
LCCG -0.31  -0.53  -0.38 -0.45 -0.60 0.53 

 
Notes: DB is the proportion of the catchment covered by dambos. Dambo 
figures are available for only 37 catchments (Bullock,1988). 
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3.3.2 Mean annual runoff 
 
Table 3.2 above shows a strong correlation between yrQ  and yrP , (r = 0.85) 
caused by the correspondence of rainfall with runoff increases (Figure 3.2). The 
mean annual runoff has also a moderately strong relationship with NDVI. Both 
NDVI and yrQ  are positively related with yrP , and therefore the correlation 

between yrQ  and NDVI is just showing that both variables are dependent on 
one variable. 

 
A weak positive relationship exists between yrQ  and GLGG (r = 0.33). Areas 
under  gneiss and granite (GLGG) tend to have rock outcrops, such as dwalas 
which promote the formation of runoff as they are impervious. yrQ  also  
increases with slope, for example S50 (r = 0.65). Steep slopes promote the 
formation of runoff. Areas with steep slopes generally have high altitudes and 
high rainfall, e.g. Eastern Highlands. The positive correlation between yrQ  and 
slope also reflects this phenomenon. A weak negative relationship seems to 
exist between yrQ  and LCCG (r = -0.31).  Areas with wooded grasslands and 
grasslands tend to have dambos, and the correlation between LCCG and DB is r2 
= 0.72. The negative correlation between yrQ  and LCCG  is likely to reflect 
increased evaporation losses within dambos (McCartney, 1998; Wolski, 1999). 

Figure 3.2: Mean annual runoff against mean annual rainfall
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The following linear equations for predicted yrQ  using catchment descriptors 
were developed using a step-wise multiple regression technique (Box 3.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bullock (1988) derived the following equation using 108 catchments located on 
the central part of Zimbabwe 
 

2585.0 −= yryr PQ      (3.7) 
 

with r2 = 0.42. Predictive equations presented in Box 3.1 above have higher 
levels of explained variance of yrQ  than Eqn (3.7). Eqn (3.6) is recommended 

for estimating yrQ  from catchment descriptors for ungauged catchments within 
the study area. If slope data are not available, then Eqn (3.1) can be used. The 
intercept in Eqn (3.1) reflects the effects of interception on runoff production 
(Savenije,1997). Equation (3.1) can be generalized to 
 
 )IP(Q yryryr −= γ       (3.8) 
 
where yrI = average annual interception (mm yr-1) 

Box 3.1 Predictive equations for yrQ  (mm yr-1) from catchment 
characteristics using multiple regression methods 
 

41973930 .P.Q yryr −=          r2=0.75  (3.1) 
 

523275503760 .GL.P.Q GGyryr −+=        r2=0.78  (3.2) 
 

0200574980302930 34 .S.GL.P.Q GGyryr −++=       r2=0.81  (3.3) 
 

91433000101603064402470 8034 .S.S.GL.P.Q GGyryr −−++=  r2=0.86 (3.4)  
 

42763730411160002790 7534 .S.S.GL.P.Q GGyryr −+++=      r2=0.89 (3 .5) 
 

9278702769331600102820 8075 .S.S.GL.P.Q GGyryr −−++=   r2=0.89 (3.6) 
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 γ    = effective runoff coefficient (Savenije, 1997) . 
 
( yryr IP − ) is the effective rainfall that reaches the surface and then partitioned 
into surface runoff, transpiration, and subsurface storage. Savenije (1997) 
derived the effective runoff coefficient from analysis of monthly flows and this 
gives an estimate of an annual effective runoff coefficient. When the annual 
average number of rainy days per year, yrN , is included as an explanatory 

variable for yrQ , the step-wise multiple regression method indicates that this 

variable does not improve the prediction of yrQ . yrN  is highly correlated with 

yrP (r = 0.83), and therefore the variability of yrQ that yrN  may explain is 

already accounted for by yrP which is included in Eqn (3.1). 
 
An assessment of whether neural networks are better than Eqn (3.1) to (3.6) 
which assume that  yrQ  is linearly related to catchment characteristics was 
undertaken. Several neural networks were calibrated with the restriction that the 
possible number of hidden layers does not exceed one. Table 3.3 gives neural 
networks which were considered best at predicting yrQ on the basis of the 
coefficient of determination. The coefficient of determination was estimated by 
comparing predicted yrQ  and that estimated from observed flows. 
 
The explanatory variables are given in Table 3.3 for each network in their order 
of importance. A linear neural network performs equally well as the multi-layer 
perceptron with 2 units in the hidden layer.  This analysis shows again that yrP , 

is the most important explanatory variable for yrQ . The slope of a catchment 

also influences yrQ . GLLM, yrpotE , , and LCCU have also been identified as 

influencing yrQ  but they were not identified during multiple regression 
analysis. 
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Table 3.3: Neural networks for predicting yrQ from catchment characteristics 

Type of 
Network 

No. of Units in 
the Hidden Layer 

Explanatory Variables r2 

L 3-1 None yrP , yrpotE , , GLLM 0.76 

MLP 5-3-1 3 yrP , GLLM, yrpotE , , S75 0.72 

MLP 6-2-1 2 yrP , GLLM, yrpotE , , LCCU, S75, 
S68 

0.76 

Notes: 
a) L3-1: linear neural network with 3 input unit, no hidden layer, and 1 output unit. 
b) MLP5-3-1: multi-layer perceptron with 5 input units, 3 units in the first and only 

hidden layer, and 1 output unit. 
c) MLP6-2-1: multi-layer perceptron with 6 input units, 2 units in the first and only 

hidden layer, and 1 output unit. 
 
An illustration of the structure of one of the above neural networks is provided 
in Figure 3.3. 
 
Neural networks can model non-linear relationships and the inclusion of GLLM, 

yrpotE , , and LCCU indicates that these are non-linearly related to yrQ . The 
coefficients of determination given in Table 3.3 are smaller than those of Eqn 
(3.4) to (3.6) presented in Box 3.1. A comparison of predictions of yrQ  
produced by Eqn (3.6) and those of an MLP6-2-1 does not show major 
differences (Figure 3.4).  
 

 
Figure 3.3: The MLP 6-2-1 neural network, with 6 units in the input layer, 2 units in 
the hidden layer, and one unit in the output layer. 
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An MLP6-2-1 underestimates yrQ for one catchment with very high yrQ  value. 

Prediction of yrQ  for ungauged catchment using multiple regression is 
recommended as this method is simpler than the use of neural networks. 
 
3.3.3 Base flow index 
 
BFI has a strong relationship with yrP , NDVI, and slope. If all other factors are 
constant, areas with high rainfall will have larger amounts of water stored in 
subsurface storage than areas with low rainfall. A large subsurface storage will 
increase delayed interflow and groundwater flows, and therefore has high BFI. 
Both BFI and NDVI depend upon yrP , and hence the relationship between BFI 
and NDVI reflects this dependence on a common variable. Slopes within a 
catchment have a considerable effect on base flows (Figure 3.5). 

Figure 3.4: Comparison of the performance of multiplie regression and an
MLP6-2-1 neural network in predicting mean annual runoff.

c = MPL6-2-1,  = multiple regression equation.
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Subsurface water can only contribute to runoff if a hydraulic gradient exists. 
The slope of the water table usually conforms to the slope of the land above 
(Freeze and Cherry, 1979). According to Darcy’s Law catchments with steep 
slopes will have high hydraulic gradients, resulting in high base flow rates. 
Besides the effect of slope on the hydraulic gradient, steep slopes occur in 
mountainous and hilly parts of catchments. Some of these hills and mountains 
have substantial fractures and fissures that store water during the rainy season, 
and then release it as base flow during the dry season. This was observed on 
some catchments in South Africa (Hughes, personal communication). Thus, 
steep slopes may also indirectly reflect areas with substantial subsurface storage 
due to these fractures and fissures. 
 
BFI has a weak and negative relationship with GLKL, GLAL, and GLSA. Water 
tables within Kalahari sands are usually at depths greater than 20 m, and 
therefore river beds do not intersect aquifers in these formations (Interconsult 
A/S, 1985). This reduces the potential for groundwater to contribute to stream 
flows. A negative relationship exists between BFI and LCCG. Most catchments 
with grasslands have dambos. It is likely that the negative relationship between 
LCCG and BFI reflects that catchments with dambos have high evaporation 
losses resulting in reduced base flows. Studies by Faulkner and Lambert (1991), 
McCartney (1998), and Wolski (1999) have shown that evapotranspiration rates 
are higher within dambos than on the surrounding interfluves. Dambos have in 
comparison to interfluves denser vegetation, shallower water tables, and heavier 

Figure 3.5: Influence of slope on base flow index
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textured soils which have high capillary rises, and all these contribute towards 
higher evapotransipiration rates than on interfluves. 
 
Box 3.2 gives the equations for predicting BFI derived using the step-wise 
multiple regression technique.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the study by Bullock (1988) the following Eqn (3.13) for predicting BFI was 
derived for catchments on the central part of Zimbabwe 
 

( ) 3460170091980007060 104070 ....
yr

. 1085SAFALAKEPBFISOIL.BFI +=
∧

  (3.13) 
 
with r2 = 0.48. BFISOIL was defined as a function of the soil types and is given 
by 
 

560430
3450260160040

SOIL.SOIL.
SOIL.SOIL.SOIL.Dambo.BFISOIL

++
+++−=

∧

  (3.14) 

 
SOIL1…SOIL5 are the proportions of the catchment with soil types 1 to 5 
distinguished in that area. FALAKE is the proportion of the catchment covered 
by small dams. The predictive equation for BFI derived by Bullock (1988) is 
non-linear and has a lower coefficient of determination than Eqn (3.9) to (3.12). 
BFI for catchments in western Europe was found to be related to soil types, but 
for most countries the coefficient of determination of the predictive equations 
developed was low (< 0.50) (Gustard et al. 1989).  
 

Box 3.2 Predictive equations for BFI from catchment characteristics 
using multiple regression methods 
 

2506401620 S..BFI +=
∧

                      r2 = 0.63  (3.9) 
 

CGLC.S..BFI 002005602130 25 −+=
∧

                   r2 = 0.66  (3.10) 
 

CGKL LC.GL.S..BFI 0020003005602370 25 −−+=
∧

        r2 = 0.69  (3.11) 
 

CGKLyr LC.GL.P.S.BFI 00100030000300720 10 −−+=
∧

  r2 = 0.75  (3.12) 
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The potential for predicting BFI using neural networks was investigated, and 
Table 3.4 gives neural networks for predicting BFI. 
 
Table 3.4: Neural networks for predicting BFI from catchment characteristics. 
Type of 
Network 

No. of Units in 
the Hidden Layer 

Explanatory Variables r2 

L 5-1 None  S50 , Dd, yrP , yrpotE , , GLKL.  0.71 

MLP 4-3-1 3 
yrpotE , , LCCG, GLKL, yrP . 0.72 

MLP 2-2-1 2 yrP , S10 0.71 

MLP 4-5-1 9 S50, yrP , yrpotE , , GLKL 0.75 

 
Neural networks identified catchment characteristics that are almost the same as 
those for multiple regression. The only additional catchment characteristics are 

yrpotE , and GLGG. An MLP 4-5-1 is marginally best at predicting BFI. When the 
coefficients of determination of predictive equations for BFI, Eqns (3.9) to 
(3.12), derived using multiple regression are compared with those of neural 
networks, these show that neural networks are marginally better at predicting 
BFI than multiple regression equations.  
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Figure 3.6: Prediction of BFI by an MLP 4-5-1 neural network and multiple regression. 
Circle = neural network, shaded triangle  = multiple regression. 
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However, Figure 3.6 shows no significant differences between predictions made 
by Eqn (3.12) and an MLP 4-5-1. Both methods are recommended for 
predicting BFI for ungauged as there is no difference in the root mean square 
error. 
 
3.3.4 Flow duration curves 
 
An examination of shapes of each of the flow durations curves of catchments 
considered in this study, suggested that the following functions are likely to be 
appropriate for modelling the relationship between dimensionless daily flows, 
qp, and their exceedance probabilities, p: 
 

 
p
b

bq p
1

0 +=        (3.15) 

 
 2

210 pbbbq p +−=       (3.16) 
 
 3

3
2

210 pbpbbbq p −+−=      (3.17) 
 
 )exp( 10 pbbq p −=       (3.18) 
 
where  b0,.., b3 are coefficients, and exp is the exponential function 
 
For each of the catchments, dimensionless daily flows were regressed against 
their exceedance probabilities. Eqn (3.15) and (3.18) best describe the 
relationship between qp and p. Mimikou and Kaemake (1985) also found that 
the exponential model described flow duration curves of rivers in Greece. b0 in 
Eqn (3.15) can be related to BFI, and b1 is not related to any catchment 
characteristic for catchments considered in this study. Both coefficients in Eqn 
(3.18) can be related to BFI, which enables derivation of flow duration curves 
for ungauged catchments, if BFI is known. For all catchments, the exponential 
model is capable of explaining over 99% of the variation of qp for given values 
of  p. 
 
The following equations were derived 
 

0b̂  = 11.852 – 11.519 BFI  r2 = 0.74   (3.19) 
 

)BFI.exp(.b̂ 878231101 −=   r2 = 0.92   (3.20) 
The exponential model for the flow duration curve then becomes 
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[ ]{ }p)BFI.exp(.exp)BFI..(q̂ p 878231105191185211 −−−=  (3.21) 

 
Figure 3.7 shows the spatial variation of coefficients b0 and b1.  
 

 

 

Figure 3.7: Spatial patterns of coefficients of the exponential model of flow 
duration curves 

0 100 km 
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Coefficient b0 tends to be large (7.0 -12.0) for catchments on the central part, 
and small (3.0 - 6.0) for Eastern Highlands catchments. Flow duration curves 
were constructed using dimensionless flows which were derived by dividing 
daily flows by mean daily flows. Coefficient b0 gives the magnitude of flow 
when the exceedance probability (p) approaches zero. Catchments in dry areas 
will have this flow being many times the mean daily flow, while for the Eastern 
Highlands this flow will not be many times the mean daily flow. Hence b0 is 
relatively large for catchments on the central part, while this is small for Eastern 
Highlands catchments. Catchments on the central part of the country have rapid 
flow depletion and therefore steep flow duration curves. Consequently b1 which 
determines the slope of a flow duration curve is relatively large (0.120 - 0.200) 
on these catchments. The Eastern Highlands catchments have a gradual flow 
depletion shown by the flattish flow duration curves, and hence b1 is relatively 
small (0.032 - 0.095) for these catchments.  
 
The possibility of predicting flow duration curves from catchment 
characteristics using neural networks was explored. For this purpose the inputs 
for the neural network comprise catchment characteristics shown in Table 3.1. 
As the outputs comprise nine percentile flows, q90, q80, q70, q60, q50, q40, q30, q20, 
q10, neural networks also have 9 output units. The best prediction of flow 
duration curves was made by a multi-layer perceptron with 5 input units and 17 
units in the single hidden layer. (MLP 5-17-9). Catchment characteristics for 
predicting flow duration curves  in their order of importance are S25, S75, 

yrpotE , , yrP , and Dd. The coefficients of determination for the various 
percentile flows ranged from 0.64 to 0.92 as shown below. 
 
Table 3.5: Coefficients of determination for percentile flows predicted using a 
neural network. 
Percentile Flow r2 Percentile Flow r2 
q90 
q80 
q70 
q60 
q50 

0.92 
0.88 
0.85 
0.86 
0.83 

q40 
q30 
q20 
q10 

0.83 
0.77 
0.72 
0.64 

 
The coefficients of determination in Table 3.5 show that a neural network has a 
higher ability to predict low flows, q90, q80, q70, q60, than flood flows, q10. Flood 
flows mainly depend upon characteristics of specific rainfall events rather than 
catchment characteristics used in this study. 
 
Figure 3.8 compares flow duration curves derived using observed flows, those 
predicted using a) the MLP 5-17-9 neural network,  and b) the exponential 
model with BFI estimated from catchment characteristics using Eqn (3.12). For 
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the catchments presented in Figure 3.8, the neural network has a smaller root 
mean square error than the exponential model on C25, D6, and E72. This shows 
that a neural network gives better predictions of flow duration curves than the 
exponential model. Figure 3.8 also shows that both the neural network and 
exponential model have problems predicting flows with exceedance 
probabilities less than 0.20 which are flood flows. Flood flows are mainly 
influenced by specific rainfall events.  
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Figure 3.8: Comparison of flow duration curves based on observed daily flows and 
those predicted using an exponential model, and a neural network for C25, D6, E49 and 
E72 respectively. 
 
3.3.5 Average number of days with zero flows ( DZN ). 
 

DZN  has a negative exponential relationship with yrQ  because rivers with high 

runoff tend to be perennial. DZN  also decreases with increasing groundwater 
flow contribution to river flows. This is appears from the negative correlation 
between BFI and DZN   (r = -0.72).  
 

)0171.0exp(7.391 yrDZ QN −=   r2 = 0.60  (3.22) 
 
The best prediction of DZN  was made using Eqn (3.22). 
 
3.3.6 Mean monthly runoff distribution 
 
The prediction of 12 mean monthly runoff values from catchment 
characteristics is rather problematic, as each of the monthly values requires its 
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own model. If simple linear regression models for predicting each of the 
monthly values are used, then 24 model parameters have to be estimated. With 
such a large number of model parameters the effects of estimation errors will be 
considerable. The possibility of predicting the mean monthly runoff distribution 
from flow and catchment characteristics using neural networks is therefore 
investigated. For each catchment the proportion of mean annual runoff 
occurring in each of the months, hj, is given by 
 

yr

j
j Q

Q
h =         (3.23) 

where j      = 1,2,…, 12, and jQ  = mean monthly runoff for month j. Thus 

∑
=

=
12

1
0.1

j
jh  and ∑

=

=
12

1j
jyr QQ  

 
Neural network analysis is firstly undertaken with catchment characteristics 
only as inputs and the outputs are the 12 values of the hydrograph, hj. For the 
second case, inputs to the neural network consists of flow characteristics and 
catchment characteristics. 
 
For the first case an MLP 8-13-12 gave the best predictions, and the correlation 
coefficients between the predicted hj and those derived from measured flows are 
given in Table 3.6 below. 
 
Table 3.6: Correlation coefficients between predicted and observed annual 
hydrograph values 
Month Catchment Characteristics 

MLP8-13-12 
Flow and Catchment 

Characteristics MLP4-12-12 
October 
November 
December 
January 
February 
March 
April 
May 
June 
July 
August 
September 

0.91 
0.54 
0.70 
0.74 
0.81 
0.42 
0.65 
0.85 
0.85 
0.91 
0.91 
0.91 

0.96 
0.61 
0.87 
0.81 
0.85 
0.37 
0.82 
0.95 
0.90 
0.97 
0.96 
0.96 
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Predictive catchment characteristics for an MLP8-13-12 are GLGR, yrpotE , , S10, 
S50, GLGG, S34, and GLKL in order of importance.  No problems occur when 
predicting the recession limb of the hydrograph from May to October. Flows 
start to rise in November and the neural network cannot predict accurately the 
hydrograph value for this month. The onset of the rainy season is highly 
variable in both space and time and hence leads to poor prediction. The 
inflection point on the annual hydrograph occurs around March, and again is 
difficult to predict from catchment characteristics. Lithology, slope and 
potential evaporation rates affect runoff distribution within a year. These 
variables were earlier identified as affecting BFI. Catchments with relatively 
high BFI values will have a gradual depletion of subsurface storage, and hence 
a significant proportion of the annual flow will occur during the recession 
period (relatively large hj values from May to October). Slope affects the rate of 
drainage of both surface and subsurface water, and therefore affects hj. 
Catchments with relatively high values of yrpotE ,  are expected to have rapid 
depletion of subsurface storage, and hence low hj values during the dry season 
May to October. 
 
Figure 3.9 compares hydrographs predicted by this neural network, and those 
derived from observed flows on some of the catchments that were used for 
validation during neural network training. A close agreement occurs between 
these hydrographs. Therefore this neural network can be used to distribute 

yrQ into monthly flows, and hence predicting mean monthly flows.  
For the second case an MLP 4-12-12 with BFI, LCCG, S75  and S10 in that order 
of importance, gave the best predictions when both flow and catchment 
characteristics were inputs to the neural network. The correlation coefficients 
are higher than when catchment characteristics alone are used. BFI is the most 
important variable for predicting the annual hydrograph. All lithological effects 
on the distribution of runoff are reflected in the BFI and hence these are not 
included as inputs to the network. S75  and S10 are identified as explanatory 
variables. The inclusion of LCCG is likely to reflect that catchments with this 
land cover type have dambos that enhance evaporation rates, and therefore 
reducing dry season, hj.  
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Figure 3.9: Comparison of hydrographs of the distribution of mean annual flow into 
monthly flows for D27, E35, E49 and E106. Solid line = estimated from observed 
flows, dashed line = predicted by a neural network. 
 
3.4 Summary 
 
This chapter has shown that yrP , the input to the catchment hydrological 
system, and slope are the main explanatory variables for flow characteristics.  

yrQ  is best predicted using a linear equation as shown in Figure 3.10. 
 
BFI can be predicted using a linear equation, but a neural network yields a more 
parsimonous model. The mean annual hydrograph can be predicted from BFI, 
slope, and LCCG using a neural network. However, ordinates at the onset of the 
rise of the hydrograph, and its inflection point after the crest are not predicted 
accurately. The predicted yrQ  and mean annual hydrograph allow estimation of 
mean monthly flows.,  
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Figure 3.10: Prediction of flow characteristics. A linear equation is used for the shaded 
box, while neural networks are used for other boxes. 
 
The flow duration curve can be predicted using a neural network with slope. 

yrpotE , , yrP  and Dd as inputs. This chapter has demonstrated that it is possible 
to predict some of the flow statistics that are required for water resources 
planning and management.  
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4 ORDINATION 
 
4.1 Introduction 
 
The landscape on any catchment is made up of several combinations of 
physiographic attributes. These combinations are usually variable among 
catchments, giving rise to different hydrological responses. The effect on flow 
characteristics of a change in a single catchment characteristic such as land use 
is likely to be identifiable (Bosch, 1979; Edwards and Blackie, 1981; Bosch and 
Hewlett, 1982; Mumeka, 1986). But effects of changes of several catchment 
characteristics are not easily identifiable. Different combinations of catchment 
characteristics give rise to different responses. Changes in some catchment 
characteristics may counteract the effects of other catchment characteristics. In 
addition effects of some of the catchment characteristics are only identifiable 
within certain ranges of catchment areas, and outside these ranges, their effects 
are masked by other catchment characteristics (Pitlick, 1994). Several flow 
characteristics such as mean annual runoff, yrQ , daily flows with 0.90, 0.75, 
and 0.50 exceedance probabilities (q90, q75, q50), base flow index, BFI, and 
average number of days per year with no flow, DZN , have to be examined in 
order to identify the effects of different combinations of catchment 
characteristics.  
 
Multivariate analysis methods such as ordination are best suited at determining 
effects of different combinations of catchment characteristics on several flow 
characteristics. These methods enable explanation of the variability of a set of 
flow characteristics by a set of catchment characteristics. The relative 
importance of explanatory catchment characteristics can also be determined by 
ordination techniques. The aim of this chapter is to identify among the set of 
catchment characteristics those which explain the variability of flow 
characteristics. If catchment characteristics that influence flow characteristics 
can be identified, then these can hopefully be used to cluster catchments into 
clusters with similar hydrological responses. 
 
4.2 Methodology 
 
Ordination techniques fall into two categories that are indirect and direct 
gradient analysis (Kent and Coker, 1992; Legendre and Legendre, 1998; Ter 
Braak and Smilauer, 1998) (Table 4.1).  
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Table 4.1: Methods for indirect and direct gradient analysis 
Indirect Gradient Analysis Direct Gradient Analysis 
Principal component analysis 
(PCA) 
Correspondence analysis (CA) 
Detrended correspondence 
analysis (DCA) 

Redundancy Analysis (RDA) 
Canonical correlation (CanCor) 
Canonical Correspondence analysis 
(CCA) 
Detrended canonical correspondence 
analysis (DCCA)   

 
Indirect gradient analysis aims to explain the variability of variables such as 
flow characteristics by a relatively small number of components. Let yik be a 
flow characteristic k, k  = 1,2,…, nq, and i = 1,2,…, nc denote the number of 
catchments. The variation of flow characteristics yik is explained by an unknown 
explanatory variable xi  
 
 ikkik xbay +=        (4.1) 
 
where ak and bk are unknown regression coefficients. Since xi is unknown, the 
regression coefficients are derived to explain the variation of yik. This is similar 
to PCA. The derivation of the components does not take into account catchment 
characteristics that explain the variation of flow characteristics. This is a major 
weakness of indirect gradient analysis methods. PCA has been applied in some 
studies to identify catchment characteristics for use in regionalisation (Seyhan 
and Keet, 1981).  
 
A direct gradient analysis aims to identify the underlying structure in a data set 
by considering the relationships between response variables (flow 
characteristics) and explanatory variables (catchment characteristics). In the 
case of RDA, xi is a linear combination of explanatory variables, zij, where j = 1, 
2,…, np is the number of  explanatory variables (Ter Braak and Prentice, 1988; 
Ter Braak and Smilauer, 1998). For example, if p = 2, xi is given by 
 

2211 iii zczcx +=       (4.2) 
 
where c1 and c2 are the weights applied to the measured explanatory variables zij 
to derive xi the theoretical explanatory variable. Substituting for xi in Eqn (4.1) 
gives the RDA model 
 

2211 ikikkik zcbzcbay ++=       (4.3) 
 
The aim of RDA is to estimate ak and bk being parameters of the response 
variables, and c1 and c2 weights from response and explanatory variables. These 
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equations can be extended to more than two response and explanatory variables. 
RDA is also referred to as constrained ordination since the weights on 
environmental variables are constrained to fit the response variables.  
 
CCA and RDA are both direct gradient analysis methods that combine 
correlation and multiple regression to identify explanatory variables for 
response variables. The selection of which technique to use depends on the 
assumed underlying relationship between flow and catchment characteristics. 
CCA assumes a unimodal relationship, in which increases in magnitudes of 
catchment characteristics are associated with increases in flow characteristics up 
to a certain level, beyond which flow characteristics will decrease as catchment 
characteristics increase. RDA assumes that flow characteristics increase linearly 
as the catchment characteristics increase. This model is attractive for 
hydrological applications since flows increase with increasing precipitation, 
slope and decreasing evaporation rates.  RDA is selected for use in this study 
for the following reasons: 
• The main aim of the study is to determine the effect of catchment 

characteristics on flow characteristics, and therefore it is a problem of direct 
gradient analysis. 

• Univariate analysis shows that most variables in this study have some form 
of linear relationship between flow and catchment characteristics, 

• RDA has no restriction on the number of variables in both data sets in 
relationship to the number of catchments or samples. 

 
Monte Carlo permutation tests identify catchment characteristics that are 
significant in explaining variability in flow characteristics. Table 4.2 shows 
flow and catchment characteristics that are selected for  RDA. Catchment 
characteristics given in Table 4.2 are selected on the basis that they are likely to 
explain the various hydrological responses reflected by flow characteristics 
given in the same table. RDA is undertaken with standardized variable since 
different measurement units are used for most variables. 
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Table 4.2: Flow and catchment characteristics selected for redundancy analysis 
Flow Characteristics Catchment Characteristics 

i. Mean annual runoff ( yrQ ) 
ii. Coefficient of variation of annual 

runoff (CV) 
iii. Base flow index (BFI) 
iv. DZN  
v. q90 

vi. q70 
vii. q50 

i. Mean annual precipitation 
( yrP ) 

ii. Mean annual potential 
evaporation ( yr,potE ) 

iii. Catchment area (A) 
iv. Median slope (S50) 
v. Drainage density (Dd) 

vi. Proportions of each 
catchment under the various 
lithologies 

vii. Proportions of each 
catchment with various land 
cover types 

 
Ter Braak and Smilauer (1998) have developed the CANOCO software package 
for ordination using techniques given in Table 4.1. Both RDA and CCA derive 
two sets of ordination axes. One set is a linear combination of flow 
characteristics, whereas the second set is a linear combination of catchment 
characteristics. The first ordination axis of catchment characteristics explains as 
much as possible the variability of flow characteristics within the first 
ordination axis of flow characteristics. The second ordination axis is again a 
linear combination of catchment characteristics, orthogonal to the first axis. It 
explains as much as possible the variance of the flow characteristics that is not 
contained in the first ordination axis.  Similarly the third ordination axis is again 
a linear combination of catchments characteristics, orthogonal to the first and 
second ordination axes, and explaining as much as possible the unaccounted for 
variance of flow characteristics. 
 
4.3 Results 
 
4.3.1 Relationships between ordination axes 
 
Table 4.3 presents a summary of the results of RDA in terms of the proportion 
of the total variance of the flow characteristics explained by the ordination axes 
of the catchment characteristics. 
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Table 4.3: Proportion of variance of flow characteristics explained by the 
ordination axes of catchment characteristics. 
 AXIS 1 AXIS 2 AXIS 3 AXIS 4 
Eigenvalues 
 

0.637 0.059 0.034 0.014 

Flows-catchment correlations 
 

0.916 0.763 0.776 0.552 

Cumulative percentage of variance 
of flow characteristics 
Cumulative percentage of variance 
of flow-catchment relation 

63.7 
 

84.8 

69.6 
 

92.7 

73.0 
 

97.1 

74.4 
 

99.1 

 
The eigenvalue for each axis shows the amount of variance of the flow 
characteristics that is explained by the particular axis. The first axis explains 
63.1% of the variance of the flow characteristics, while the second axis explains 
an additional 5.9% of the variance. The third axis accounts for 3.4% of the 
variance of flow characteristics, while the fourth axis explains 1.4%.  
 
The flow-catchment correlation coefficients in Table 4.3 indicate the strength of 
the linear association between the derived ordination axes. Thus, the first flow 
characteristics axis has a correlation coefficient of 0.916 with the first 
catchment characteristics axis. A high correlation indicates that the derived axis 
have strong linear association with the catchment characteristics. This does not 
necessarily indicate that the catchment characteristics explain the variability of 
flow characteristics. It is possible that the derived axes are closely correlated but 
without significantly explaining the variability of the flow characteristics.  The 
amount of variance of flow characteristics that is explained by the catchment 
axes is shown as “Cumulative percentage of variance of flow characteristics”. In 
RDA the amount of variance explained is equal to the eigenvalue for each axis, 
and therefore the cumulative percentage of variance is obtained as the sum of 
the relevant eigenvalues as is shown in Table 4.3. The four ordination axes 
explain 74.7% of the variance of flow characteristics. 
 
Table 4.3 also shows the contribution of each catchment axis in accounting for 
the total variance of flow characteristics that is explained by all the catchment 
axes. The “Cumulative percentage variance of flow-environment relation” 
shows that 84.8% of this explained variance is accounted for by the first axis, 
and the first and second axes account for 92.5%.   
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4.3.2 Relationships between catchment characteristics and their 
ordination axis 

 
Table 4.4 presents the correlation coefficients between catchment characteristics 
and their ordination axes or intra-set correlations. The first ordination axis (Axis 
1) has a strong positive correlation with yrP , S50, and LCPL. yr,potE  has a 
negative relationship with this axis. These variables are the most important in 
defining this ordination axis as is also shown in Figure 4.1, in which the 
correlation coefficient between a catchment characteristic and the first 
ordination axis (horizontal axis), is plotted against correlation coefficient 
between the same catchment characteristics with the second ordination axis 
(vertical axis). 
 
Table 4.4: Correlation between ordination axes of catchment characteristics 
with the catchment characteristics used to derive these axes 
 Axis 1 Axis 2 Axis 3 Axis 4 

yrP       0.861    

 yr,potE      -0.869    

 A   -0.391    
 Dd       0.436    
GLGG   0.361   
GLGR  -0.331  -0.460 
GLLM     -0.391 0.428  
GLKA        
GLAL    -0.280    
 S50      0.814    
LCPL 0.763 0.464   
LCWD      -0.468   
LCBU     
LCCU    -0.530 -0.451  
 LLCG     -0.450 0.490   
 
LCPL has a positive correlation with the first ordination axis (r = 0.76), which is 
likely due to plantations occurring mostly on catchments within the Eastern 
Highlands, a region associated with high yrP , steep slopes, and relatively low 

yr,potE . A weak positive correlation (r = 0.44) exists between Dd and the first 
ordination axis. The weak negative correlation with catchment area, A, is likely 
due to areas of gauged catchments generally decreasing with altitude, while 

yrP and S50 are increasing. This is not a causal relationship. The first ordination 
axis is defined by climatological and morphometric properties of a catchment. 
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Land cover types (LLCG, LCCU, LLBU) and lithology (GLGG, GLGR, GLLM) are 
important in defining the second ordination axis. Similarly the third and fourth 
ordination axes depend on lithology and land cover types.   
 
 

 
Figure 4.1: Relationship between catchment characteristics and their ordination axes. 

 
 
4.3.3 Relationship between flow characteristics and their ordination 
axes 
 
The correlation coefficient between each flow characteristic and the first 
ordination axis is plotted against the correlation coefficient between the same 
flow characteristic and the second ordination axis in Figure 4.2. yrQ  has a 
positive and strong relationship with the first axis. Other flow characteristics 
such as q90, q70, q50, and BFI have also positive relationships with the first 
ordination axis. This shows that catchments with large yrQ  will also have large 
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values of these flow characteristics. DZN  and CV have negative relationships 
with the first axis (Figure 4.2). BFI and DZN  have also moderate correlation 
with the second axis.  
 

 

 
Figure 4.2: Relationship between flow characteristics with the first and second 
ordination axes 
 
4.3.4 Relationship between flow and catchment characteristics 
 
The relationships between catchment characteristics and flow characteristics are 
illustrated in Figure 4.3. In addition, Table 4.5 shows correlation coefficients 
between catchment characteristics, and ordination axes of flow characteristics, 
or inter-set correlations. yrP , yr,potE  and S50 have the highest correlation with 
the first ordination axis and are therefore the most important in explaining the 
variation of flow characteristics contained in this axis. The positive correlation 
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between flow characteristics, and areas under plantation is as result of 
plantations being mostly confined to the Eastern Highlands that have high 
rainfall and consequently high runoff. This is not a causal relationship. 
 

 
Figure 4.3: Relationship between flow characteristics and catchment characteristics 
 
LCCG has a moderate negative correlation with the first flow axis (r = - 0.42). 
The number of days with zero flows per year, DZN , are close to LCCG which 
mostly occurs in areas with relatively low rainfall, and therefore the association 
of LCCG and DZN . In addition, LCCG, in Figure 4.3 has a negative association 
with BFI (Figure 4.3). Catchments with large proportions under grasslands 
usually have dambos, and therefore have higher evaporation rates than the 
surrounding interfluves. (Bullock, 1988; McCartney, 1998; Wolski, 1997). 
Drainage density (Dd) is also correlated with the first ordination axis of flow 
characteristics suggesting that Dd contributes in explaining flow characteristics. 
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Table 4.5: Correlation coefficients between catchment characteristics and 
ordination axes of flow characteristics 
 Axis 1 Axis 2 Axis 3 

yrP       0.808   

 yr,potE  -0.816   

A     -0.367   
 Dd       0.409   
GLGG  0.282  
GLLM     -0.306 0.344 
 S50      0.764   
LCPL 0.716 0.363  
LCWD      -0.366  
LCCU    -0.415 -0.363 
 LLCG     -0.422 0.383  
 
The proportions of a catchment under a) cultivation, (LCCU), b) woodlands 
(LCWD), underlain by c) Umkondo assemblage, (GLLM), and d) granites and 
gneiss (GLGG) are correlated to the second ordination axis. These catchment 
characteristics explain the variance of flow characteristics that is not accounted 
for by the first ordination axis. There is no significant correlation between 
catchment characteristics and the fourth ordination axis of flow characteristics. 
 
The Monte Carlo permutation test was used to determine those catchment 
characteristics that are significant at the 5% level in explaining the variance of 
the flow characteristics. Table 4.6 below shows the catchment characteristics 
that were found to be significant, and the proportion of the variance of flow 
characteristics that each variable explains. 
 

yrP , S50, LCPL, and LCCU are the only variables that significantly explain the 
variance of flow characteristics. 
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Table 4.6: Proportion of variance flow characteristics explained by catchment 
characteristics 
Catchment Characteristic Percentage Explained Cumulative Percentage 

yrP  
S50 
LCPL  
LCCU 
 

50 
7 
5 
3 
 

50 
58 
62 
65 

 
The following variables improved the fit between ordination axes, but were not 
significant at the 5% level; GLGG,. GLKL, GLAL, LCWD, ,Dd, A, LLCG and LLBUThe 
inclusion of these variables increased the cumulative percentage of explained 
variance to 75 %.  
 
4.4 Discussion and Conclusion 
 
Direct gradient analysis has shown the variation of flow characteristics is 
explained by yrP , S50, LCPL, and LCCU. The study area is located in a region 
where annual potential evaporation exceeds annual rainfall. Thus runoff is 
greatly dependent on the availability of excess rainfall which is determined by 

yrP and yr,potE . The dominance of climatological characteristics over 
topographical characteristics in explaining runoff characteristics has also been 
observed in other studies (Meijerink, 1985; Pitlick, 1994).  S50 greatly 
determines the kinetic energy available for water droplets to move towards 
stream channels, and along these channels. Slope can also be a surrogate for soil 
thickness, since thin soils occur on areas with steep slopes (Pitlick, 1994). Fast 
overland flow occurs on thin soils. 
 
The proportion of the catchment under cultivation (LCCU) has been found to be 
significant in explaining part of the variability of flow characteristics. LCCU 
tends to explain the variation of flow characteristics not explained by the first 
ordination axis. Effects of cultivation greatly depend on tilling methods and 
crop types. Tilling across the slopes and construction of contour bunds for the 
purpose of reducing soil erosion from cultivated lands encourage retention of 
surface runoff within cultivated lands. These are standard land use practices 
recommended within the study area. It is likely that these land uses practices 
result in some reduction in flows as is suggested by the LCCU arrow in Figure 
4.3 pointing in a slightly opposite direction to q90 and yrQ . 
 
Kalahari sands and alluvial deposits are plotted pointing in a direction opposite 
that of BFI in Figure 4.3 revealing that these formations have minor negative 
effects on groundwater contribution to streams. Kalahari sands are most 
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extensive in the north-western part of Zimbabwe, and rivers in that part of the 
country have insignificant dry weather flows due to limited groundwater 
contribution. Groundwater often occurs in Kalahari sands at some depth below 
river beds. The same is true for alluvial deposits.  
 
Catchment characteristics cannot account for 25% of the variation in flow 
characteristics. The unaccounted variation in flow characteristics can be due to 
random behaviour in the hydrological response. There is a possibility that 
effects of some of catchment characteristics used in this study cannot be 
detected at the catchment scale. The influence of these factors is masked by 
other factors, and cannot explain this unaccounted variation of flow 
characteristics. Alternatively this suggests that further investigations have to be 
made to identify additional catchment factors that account for this unexplained 
variation. There is also the possibility of using alternative quantitative measures 
of catchment characteristics to those that have been used in this study. For 
example, instead of using area covered by different lithologies, hydrogeological 
parameters like transmissivity and well yields, could be considered. Data for 
these parameters are only available for sites at which wells have been drilled. 
Groundwater exploration for well development aims at selecting sites with high 
transmissivity and well yield. Therefore, the available transmissivity and well 
yield data are not representative of hydrogeological conditions within the whole 
catchment. This inhibits application of these parameters in regionalisation 
studies.  
 
The analysis in this chapter has demonstrated the value of direct gradient 
techniques like RDA in regionalisation studies. Nathan and McMahon (1990a) 
highlighted one of the major problems encountered in regionalisation studies, 
which is the selection of those catchment characteristics that affect the multi-
dimensional hydrological response. Catchment characteristics identified in this 
chapter provide a basis for delimiting hydrologically homogenous regions. 
Univariate correlation analysis will only suggest explanatory variables for each 
of the response variables but without taking into account the multi-dimensional 
nature of the hydrological response. Under these circumstances several different 
sets of catchment characteristics would have to be used during cluster analysis 
aimed at delimiting hydrologically homogenous regions. In contrast RDA does 
determine those catchment characteristics that significantly affect the several 
different flow characteristics. yrP , S50, LCPL, and LCCU explain the variability 
of the set of selected flow characteristics. Although other catchment 
characteristics vary between catchments, they are not significant in explaining 
the variability of flow characteristics. Cluster analysis can be undertaken using 
these catchment characteristics that have been identified as being significant. 
This is done in the next chapter. 
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5 IDENTIFICATION OF CATCHMENTS WITH SIMILAR 
HYDROLOGICAL RESPONSES 

 
5.1 Introduction 
 
Classification of catchments into groups with similar hydrological responses has 
been proposed as a feasible approach for regionalising flow characteristics 
(Gustard et. al., 1989; Nathan and McMahon, 1990a). Flow characteristics of an 
ungauged catchment can then be estimated from those of the cluster to which it 
belongs. A major problem with cluster analysis for purposes of regionalisation is 
the selection of catchment descriptors, which ensure that clusters derived have 
similar hydrological responses. Redundancy analysis done in Chapter 4 enables 
identification of explanatory catchment descriptors for several flow 
characteristics, and these catchment descriptors can be used for classifying 
catchments. The aim of this chapter is to use these catchment descriptors to 
classify catchments into clusters with similar hydrological responses, and then 
determine if these clusters improve the prediction of flow characteristics from 
catchment characteristics. 
 
5.2 Methodology 
 
Cluster analysis aims to partition a set of objects into similar sub-sets. For these 
clusters the within-group dissimilarity should be minimised while maximising 
dissimilarity between clusters (Klastorin, 1983; Punj and Stewart, 1983; Everitt, 
1993; Legendre and Legendre, 1998; Gordon, 1999; McGarigal et al., 2000). 
Catchments are partitioned using catchments characteristics so that an ungauged 
catchment can hopefully be allocated using the same catchment characteristics 
to one of the clusters. Flow characteristics are used to verify if clusters have 
similar hydrological responses. This study uses hierarchical cluster analysis 
because the number of clusters is not known a priori. Ward’s minimum 
variance linkage method together with the Euclidean distance similarity 
measure is used. 
 
5.2.1 Selection of catchment descriptors 
 
Legendre and Legendre (1998) pointed out that the inclusion of insignificant 
descriptors of entities introduces noise in clustering, and therefore the results 
may not reveal clusters that represent the variation of hydrological responses. 
Punj and Stewart (1983) emphasized that proper selection of variables used for 
classification is critical in order to ensure that clusters identified satisfy 
classification objectives. Redundancy analysis revealed that the following 
catchment characteristics explain the variation of flow characteristics 
• mean annual precipitation ( yrP ), 
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• median slope (S50), 
• proportion of the catchment with plantations (LCPL), 
• proportion of the catchment cultivated (LCCU), 
• proportion of the catchment underlain by granite and gneiss (GLGG) 
• proportion of the catchment underlain by Kalahari sands (GLKL) 
• proportion of the catchment with alluvial deposits (GLAL) 
• proportion of the catchment with woodlands (LCWD),  
• drainage density (Dd)  
• proportion of the catchment underlain greenstones (GLGR) 
• size of the catchment area (A), 
• proportion of the catchment with bushlands (LCBU). 
  
These catchment characteristics are standardized (Eqn 5.1) to ensure that the 
analysis is independent of measurement units used for these variables.  
 

  
j

jij
ij s

xx
z

−
=       (5.1) 

where  
i = 1,…,nc catchments, 
j = 1,..,np explanatory variables, 
zij = standardized variable j at catchment i, 
xij = value of variable j at catchment i,   

jx  = mean of variable j for the nc catchments, 
sj = standard deviation of variable j over all the nc catchments. 

 
Redundancy analysis showed that different catchment characteristics were not 
equally important in explaining the variance of flow characteristics (Table 4.6). 
There is justification to take into account these differences during cluster 
analysis. Everitt (1993) argued against weighting variables used for 
classification since weights cannot be established before undertaking cluster 
analysis. But redundancy analysis provides a basis for weighting variables. This 
study explores the utility of weighting catchment characteristics on the basis of 
the amount of variance of flow characteristics that each variable accounts for. 
The standardized variables zij are weighted by wj. All the selected catchment 
characteristics together explain 75.% of the variance of flow characteristics 
(Chapter 4). yrP  explains 50%, and therefore a weight, wj = 0.67 (=50/75) is 
used. Weights of other catchment characteristics are similarly derived. A 
weighted explanatory variable, yij is hence given by  
 
 yij = wj zij       (5.2) 
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5.2.2 Determination of the number of clusters and validation 
 
There is no completely satisfactory method for testing the significant number of 
clusters (Everitt, 1993; Punj and Stewart, 1983; Sarle, 1996). The null 
hypothesis to be tested is that catchments have been randomly classified. Sarle 
(1996) reviewed several tests and shows that most of these have major 
weaknesses. Everitt (1993) and McGarigal et al. (2000) recommend a visual 
inspection of the fusion levels displayed on a dendogram. Fusion of clusters at 
large distances suggests dissimilarity between clusters. Therefore, an 
examination of distances at which clusters fuse is used in this study to assist in 
determining the number of clusters.  
 
Validation of the results of cluster analysis aims at ascertaining whether the 
results are hydrologically sensible. This can be done in a non-statistical sense by 
means of a visual inspection of cluster membership. For example, a clustering 
of catchments in the high rainfall and high runoff Eastern Highlands region 
together with catchments in the dry south-western part of Zimbabwe is not 
hydrologically sensible. This validation method is not effective for those 
catchments with no easily discernible differences, especially those occurring 
along the central watershed of Zimbabwe. 
 
Nathan and McMahon (1990a) suggested the use of curves developed by 
Andrews (1972) to assess the homogeneity of cluster membership and 
allocating catchments with doubtful cluster membership to the most feasible 
cluster. These curves are produced as 
 

...)vcos(z)vsin(z)vcos(z)vsin(z
z

)v(f iiii
i +++++= 5432
1

2
 (5.3) 

 
where zi1, zi2,… are standardized catchment characteristics, and v ranges from –
π  to + π . This function preserves the distance measure and can therefore be 
used to visually assess the homogeneity of clusters.  The shapes of curves are 
affected by the order which catchment characteristics are entered into f(v). 
Nathan and McMahon (1990a) suggested that the most important variable in 
terms of explaining flow characteristics should be designated as zi1, and the 
second most important variable as zi2, and so on. The reason being that variables 
entered at the beginning have low frequency cycles that are readily discerned, 
while later variables have high frequency cycles that are not easily discerned.  
The following order which reflects the importance of the variables based on the 
results of redundancy analysis is used in constructing the Andrews’ curves 
zi1 = yrP ,   zi2 = S50,   zi3 = LCPL, 
zi4 = LCCU,   zi5 = GLGG,  zi6 = GLKL 
zi7 = GLAL,  zi8 = LCWD,  zi9 =Dd 
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zi10 =GGGR   zi11 = A  zi12 =LCBU 
 
If a catchment has a curve with a shape that differs from those of other members 
of the same cluster, then the membership of such a catchment to that cluster is 
doubtful (Nathan and McMahon, 1990a). 
 
Within the context of regionalisation studies, it is important that grouping of 
catchments explains the variability of flow characteristics. Therefore an 
important validation technique is to compare clusters based on a) catchment 
characteristics, and b) with those derived from flow characteristics. Flow 
characteristics that are of interest to this study are 
• mean annual runoff ( yrQ ), 
• coefficient of variation of annual runoff (CV), 
• base flow index (BFI), and 
• q90, q70, and q50. 
 
The above flow characteristics are used to cluster catchments. If there is 
agreement between clusters based on catchment characteristics and those based 
on flow characteristics, this will indicate the validity of delineated 
hydrologically homogenous regions. This procedure is referred to as external 
validation of cluster analysis (Punj and Stewart, 1983; Everitt, 1993; Legendre 
and Legendre, 1998). Everitt (1993) recommends the use of an Rg index to 
establish the level of agreement between clusters based on catchment 
characteristics and those derived from flow characteristics. Rg is the ratio of the 
total number of pairs of catchments that are grouped in the two clustering 
procedures (i.e. one based on catchment characteristics, and the other on flow 
characteristics), and those which occur in different groups, to the total number 
of possible pairs. 
 

  





















+−−=

nngg
gg /

VU
TR

2222
   (5.4) 

 

  nmT
g

i

g

j
ijg −= ∑∑

= =1 1

2      (5.5) 

 

  nmU
g

i
.jg −= ∑

=1

2      (5.6) 

 



 75

  nmV
g

i
j.g −= ∑

=1

2      (5.7) 

 
where g is the number of cluster, mij the number of catchments in common between 
the ith cluster based on catchment characteristics, and jth cluster based on flow 
characteristics. These form a matrix M. m.j equals the marginal column total of M, 
and mj. equals the marginal row total of  M. Rg has values ranging from 0 to 1. 
Values close to 1 show agreement between two clustering methods, whereas values 
close to 0 show disagreement. 
 
Another approach for validating clustering results is to undertake a canonical 
variate analysis (CVA) which is the same as Fisher’s linear discriminant analysis 
(Ter Braak and Smilauer, 1998). Flow characteristics are assumed to be the 
discriminating variables for clusters derived using catchment characteristics. If flow 
characteristics can discriminate between these clusters, this indicates that clusters 
derived from catchment characteristics are homogenous with respect to flow 
characteristics.  
 
5.3 Results and Discussion 
 
5.3.1 Classification using catchment characteristics 
 
Table 5.1 shows the cluster membership for 2 to 10 clusters identified using Ward’s 
clustering technique. The above results show that the increase in the number of 
clusters from 5 to 7 does not cause significant changes to the compositions of 
clusters. Catchments for which cluster membership is affected by the increase in the 
number of clusters are E29, E127, and E144. 
 
When the number of clusters increased from 5 to 8, this resulted in the subdivision 
of Cluster 1. There are no major changes in cluster membership for the other 
clusters. Further increases in the number of clusters resulted in minor changes in 
cluster membership. 
 
5.3.2 Classification using flow characteristics 
 
Table 5.2 shows cluster membership obtained using flow characteristics; mean 
annual runoff ( yrQ ), coefficient of variation of annual runoff  (CV), base flow 
index (BFI), and percentile flows of the flow duration curve; q90, q70, and q50 for 
clustering. 
 
No major changes occur in cluster membership when the number of clusters 
increases from 6 to 10. Catchments which belong to Clusters 1, 2, and 3 when the 
total number of clusters is set to 6, have very stable cluster membership as they 
remain in the same clusters when the number of clusters increases. 
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Table 5.1: Cluster membership for 2 to 10 clusters based on cluster analysis of 
catchment characteristics.  
 Number of Clusters 
Catchments 10  9  8  7  6  5  4  3  2  
C13 1 1 1 1 1 1 1 1 1 
C6 1 1 1 1 1 1 1 1 1 
D24 1 1 1 1 1 1 1 1 1 
E107 1 1 1 1 1 1 1 1 1 
E108 1 1 1 1 1 1 1 1 1 
E125 1 1 1 1 1 1 1 1 1 
E42 1 1 1 1 1 1 1 1 1 
C14 2 2 2 1 1 1 1 1 1 
C23 2 2 2 1 1 1 1 1 1 
C33 2 2 2 1 1 1 1 1 1 
C70 2 2 2 1 1 1 1 1 1 
D42 2 2 2 1 1 1 1 1 1 
D44 2 2 2 1 1 1 1 1 1 
D70 2 2 2 1 1 1 1 1 1 
E1 2 2 2 1 1 1 1 1 1 
E114 2 2 2 1 1 1 1 1 1 
E136 2 2 2 1 1 1 1 1 1 
E30 2 2 2 1 1 1 1 1 1 
E40 2 2 2 1 1 1 1 1 1 
E44 2 2 2 1 1 1 1 1 1 
C18 3 3 3 2 2 2 2 1 1 
C41 3 3 3 2 2 2 2 1 1 
C47 3 3 3 2 2 2 2 1 1 
E112 3 3 3 2 2 2 2 1 1 
E23 3 3 3 2 2 2 2 1 1 
E24 3 3 3 2 2 2 2 1 1 
E28 3 3 3 2 2 2 2 1 1 
E33 3 3 3 2 2 2 2 1 1 
E45 3 3 3 2 2 2 2 1 1 
E49 3 3 3 2 2 2 2 1 1 
C25 4 4 4 3 3 3 1 1 1 
D45 4 4 4 3 3 3 1 1 1 
D48 4 4 4 3 3 3 1 1 1 
D50 4 4 4 3 3 3 1 1 1 
E115 4 4 4 3 3 3 1 1 1 
C43 5 4 4 3 3 3 1 1 1 
D27 5 4 4 3 3 3 1 1 1 
D28 5 4 4 3 3 3 1 1 1 
D6 5 4 4 3 3 3 1 1 1 
E123 5 4 4 3 3 3 1 1 1 
E132 5 4 4 3 3 3 1 1 1 
E152 5 4 4 3 3 3 1 1 1 
E106 6 5 5 4 4 4 3 2 2 
E129 6 5 5 4 4 4 3 2 2 
E121 7 6 6 5 5 4 3 2 2 
E16 7 6 6 5 5 4 3 2 2 
E37 7 6 6 5 5 4 3 2 2 
E127 8 7 7 6 3 3 1 1 1 
E144 8 7 7 6 3 3 1 1 1 
E29 8 7 7 6 3 3 1 1 1 
E35 9 8 3 2 2 2 2 1 1 
E72 10 9 8 7 6 5 4 3 2 
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Table 5.2: Cluster membership based on cluster analysis of flow characteristics  
 Number of Clusters 
Catchments 10  9  8  7  6  5  4  3  2  
C13 1 1 1 1 1 1 1 1 1 
C18 1 1 1 1 1 1 1 1 1 
C23 1 1 1 1 1 1 1 1 1 
C33 1 1 1 1 1 1 1 1 1 
C70 1 1 1 1 1 1 1 1 1 
D42 1 1 1 1 1 1 1 1 1 
D70 1 1 1 1 1 1 1 1 1 
E108 1 1 1 1 1 1 1 1 1 
E112 1 1 1 1 1 1 1 1 1 
E123 1 1 1 1 1 1 1 1 1 
E40 1 1 1 1 1 1 1 1 1 
E42 1 1 1 1 1 1 1 1 1 
E44 1 1 1 1 1 1 1 1 1 
E45 1 1 1 1 1 1 1 1 1 
E49 1 1 1 1 1 1 1 1 1 
C14 2 2 2 2 2 2 2 1 1 
C43 2 2 2 2 2 2 2 1 1 
E33 2 2 2 2 2 2 2 1 1 
C25 3 3 3 3 1 1 1 1 1 
D44 3 3 3 3 1 1 1 1 1 
D45 3 3 3 3 1 1 1 1 1 
D48 3 3 3 3 1 1 1 1 1 
D50 3 3 3 3 1 1 1 1 1 
E144 3 3 3 3 1 1 1 1 1 
C41 4 4 2 2 2 2 2 1 1 
C47 4 4 2 2 2 2 2 1 1 
C6 4 4 2 2 2 2 2 1 1 
E23 4 4 2 2 2 2 2 1 1 
E24 4 4 2 2 2 2 2 1 1 
E28 4 4 2 2 2 2 2 1 1 
E30 4 4 2 2 2 2 2 1 1 
E35 4 4 2 2 2 2 2 1 1 
D24 5 5 4 4 3 3 3 2 2 
D27 5 5 4 4 3 3 3 2 2 
D28 5 5 4 4 3 3 3 2 2 
D6 5 5 4 4 3 3 3 2 2 
E114 5 5 4 4 3 3 3 2 2 
E115 5 5 4 4 3 3 3 2 2 
E132 5 5 4 4 3 3 3 2 2 
E136 5 5 4 4 3 3 3 2 2 
E152 5 5 4 4 3 3 3 2 2 
E16 5 5 4 4 3 3 3 2 2 
E29 5 5 4 4 3 3 3 2 2 
E1 6 6 5 4 3 3 3 2 2 
E121 6 6 5 4 3 3 3 2 2 
E125 6 6 5 4 3 3 3 2 2 
E37 6 6 5 4 3 3 3 2 2 
E106 7 7 6 5 4 4 4 3 2 
E127 7 7 6 5 4 4 4 3 2 
E107 8 8 7 6 5 5 2 1 1 
E129 9 7 6 5 4 4 4 3 2 
E72 10 9 8 7 6 4 4 3 2 
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5.3.3 Number of clusters  
 
Figure 5.1 presents the Rg statistic which measures the level of agreement in 
cluster membership between clusters formed using a) catchment descriptors, 
and b) flow characteristics.  
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Figure 5.1: Variation of Rg statistic with number of clusters 

 
Increasing the number of clusters from 2 to 5 causes Rg to increase from 0.62 to 
0.65. No significant changes of Rg occur when the number of clusters increases 
from 8 to 10. If Rg is used as the only criterion for determining the number of 
clusters, then there should be 8 clusters.  
 
A canonical variate analysis was undertaken to determine whether flow 
characteristics are discriminatory variables for clusters derived from catchment 
descriptors. Since the Rg statistic suggests 5 or 8 as the desirable number of 
clusters, canonical variate analysis was undertaken for 5 and 8 clusters. Flow 
characteristics explain 29.1% of the variance of clusters when the number of 
clusters based on catchment descriptors is 8, and with 5 clusters 43.2%. An 
increase in the explained variance of clusters is likely to result in an  
improvement in the identification of catchments with similar hydrological 
responses. Therefore, 5 clusters are used in subsequent analysis. Andrew’s 
curves for these clusters are plotted in Figure 5.2. 
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-10
-8
-6
-4
-2
0
2
4
6
8

-4 -3 -2 -1 0 1 2 3 4 

E106 E121 E129
E16 E37 

 
 
Figure 5.2: Andrew’s curves constructed from catchment characteristics which explain 
flow characteristics 
 
 
E107 and E125 have Andrew’s curves different from other members of Cluster 
1 (Figure 5.2). E125 is an Eastern Highland catchment underlain by the 
Umkondo (GLLM) assemblage and was clustered with catchments that represent 
physiographic conditions occurring on the central part of the country. The 
median slope on this catchment is 13%, whereas it is less than 5% for most of 
the members of this cluster.  yrpotE ,  of E125 is 1611 mm yr-1, while the other 

catchments have yrpotE ,  greater than 1800 mm yr-1. E107 lies in a drier region 
in comparison to the other members of this cluster. These catchments were 
removed from this cluster. Misclassification could be a result of the Euclidean 
distance measure not discriminating adequately between some catchments. 
 
Within Cluster 2, E24 has a curve that has some differences with the rest of the 
group (Figure 5.2). Although this catchment has a similar yrP  to the other 
members of this cluster, it has a high median slope (4%) in comparison to the 
rest of the group (< 2.5%). This catchment has the largest proportion of the area 
with woodlands, 45%, while this is less than 33% for the other catchments. 
Consequently this catchment was removed from Cluster 2.  
 
C43, E127 and E132 have curves that differ from other members of Cluster 3 
(Figure 5.2). C43 has a median slope of 1.7% while other members of this 
cluster have median slopes greater than 4%. This is the smallest catchment of 
the study area (3.5km km-2).  E127 and E132 are Eastern Highlands catchments 
that have been clustered with catchments occurring on the highveld. Both 
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catchments have yrpotE ,  in the 1400 – 1700 mm yr-1 range, while other 

members have yrpotE ,  greater than 1800 mm yr-1. The median slopes of both 
catchments are in the 9-12% range, while this is 4 – 5% for the other 
catchments. These three catchments were therefore removed from Cluster 3. 
 
The Andrews’ curves for Cluster 4 show that E121, and E37 have curves 
differing from the rest of the group (Figure 5.2). The underlying lithology on 
both catchments is the Umkondo assemblage which has hydrogeological 
properties that differ from granite and gneiss occurring on the other catchments. 
These two catchments were therefore removed from Cluster 4. Andrews’ curves 
were not constructed fro Cluster 5 that has only a single catchment. 
 
5.3.4 Catchment characteristics of clusters 
 
Catchments belonging to Clusters 1 and 3 do not occur in specific geographical 
regions (Figure 5.3). Cluster 2 catchments tend to occur on the central and 
southern parts of the study area. E16, E106 and E129 belong to Cluster 4 and 
are located on the Eastern Highlands. Cluster 5 has only one catchment, E72, 
and this is also located on the Eastern Highlands.  

Figure 5.3: Cluster membership of catchments derived using weighted 
catchment characteristics 

0 100 km 
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Table 5.3 presents for each cluster the average values of catchment 
characteristics used for classification. The most distinguishing feature of the 
clusters is yrP (Table 5.3 and Figure 5.4). yrP increases from Cluster 1, 3 to 5 
while Cluster 2 has the lowest value. There are almost no overlaps in the range 
of values of yrP  between clusters (Figure 5.4). Clusters 1 and 2 have similar 

yrpotE ,  values (Table 5.3 and Figure 5.4), and this decreases from Cluster 3 to 
5.  
 
Table 5.3: Average values of catchment characteristics for clusters  
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

yrP  (mm yr-1) 

 yrpotE ,  (mm yr-1)  
S50 (%) 
LCWD (%) 
LCGR (%) 
LCCU (%) 

800.7 
 

1848.2 
4.02 

39.83 
4.98 

33.65 

660.0 
 

876.3 
2.05 

22.07 
25.3 

22.45 

899.9 
 

1768. 
5.43 

42.35 
5.17 

39.92 

1207.9 
 

1564.3 
10.98 
28.12 
0.13 
4.88 

1796.8 
 

1388.0 
17.61 
0.29 
0.00 
0.00 

 
Catchments belonging to Clusters 1 and 2 have gentle slopes, but slopes 
increase from Cluster 3 to 5 (Figure 5.4). Cluster 5 has the steepest slopes with 
a median slope of 17.6%. No major differences occur between Cluster 1 and 3 
in the proportion of the area under woodlands (Figure 5.4). Cluster 5 has no 
woodlands and is all under plantations. With regards to the area with grasslands, 
Cluster 2 is the only cluster with substantial areas with grasslands (Figure 5.4). 
Clusters 1 to 3 do not differ in the proportion of the area cultivated (Figure 5.4). 
The area cultivated is not very significant in Cluster 4, while this is absent in 
Cluster 5. In general land cover type is not a distinguishing characteristic for 
Clusters 1 to 3. 
 
5.3.5 Flow characteristics 
 
An analysis of flow characteristics of clusters based on catchment descriptors is 
presented below. This analysis will enable an assessment of whether each of the 
identified clusters can be considered to have homogenous hydrological 
responses. Table 5.4 summarises the flow characteristics of these clusters.  
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Figure 5.4: Catchment characteristics of clusters. 
 
Table 5.4: Average values of flow characteristics for clusters derived using 
catchment characteristics 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

yrQ  (mm yr-1) 
 BFI  

DZN  
q70 
 

108.3 
0.30 
4.02 
77.2 
0.042 

75.0 
0.15 
2.05 
140.9 
0.001 

164.1 
0.44 
5.43 
40.3 
0.105 

286.8 
0.62 
10.98 
5.3 

0.305 

778.0 
0.70 

17.61 
3.0 

0.419 

 

yrQ  increases from Cluster 1 to Clusters 3, 4 and 5 (Figure 5.5), and Cluster 2 

has the lowest yrQ . The CV has a similar pattern across these clusters. The are 
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no major differences in the CV between Cluster 1 and 2, and this decreases from 
Cluster 3 to 5. 
 
Figure 5.5 shows that Cluster 2 has the lowest BFI indicating that rivers in this 
cluster will dry up for prolonged periods. This is confirmed by the average 
number of days per year without flow for Cluster 2, 140 days/yr. BFI increases 
from Cluster 1, 3 to 5. Similarly DZN  decreases from Cluster 1, 3 to 5. The 
high BFI and small DZN  for Clusters 4 and 5 show that rivers in these clusters 
are perennial. 
 
Figure 5.6 shows flow duration curves for the four clusters, and for most of the 
rivers in Cluster 1 the flow with a 0.6 – 0.70 exceedance probability is the zero 
flow. Cluster 2 has very steep flow duration curves indicating that rivers in this 
cluster run dry soon after the wet season. The zero flow has a 0.5 exceedance 
probability for this cluster. E45 and E49 have curves that differ in their slopes 
from all the other catchments. Flow duration curves for Cluster 3 are rather flat 
for flows with over 0.1 exceedance probability. This indicates that flow 
depletion is gradual for all other flows except peak flows. Rivers in Cluster 4 
have perennial flow as is evident from their flow duration curves. Even for the 
0.9 exceedance probability, the flows are still greater than zero 
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Figure 5.5: Flow characteristics of clusters derived using weighted catchment 
characteristics. 
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Figure 5.6: Flow duration curves of clusters derived from weighted catchment 
characteristics 
 
The Kruskal-Wallis test was used to test the hypothesis that there were no 
significant differences of flow characteristics (i.e. yrQ , CV, BFI, DZN , q70 and 
q50) between catchments belonging to different clusters. This hypothesis was 
rejected at the 5% significance level for each of these flow characteristics. 
Another hypothesis tested using the same test was that there were no significant 
differences in percentile flows of the flow duration curves between catchments 
belonging to different clusters.  Percentile flows tested are q90, q80, q70, q60, q50, 
q40, q30, q20, q10 and q5. This hypothesis was rejected for all percentile flows 
except q5 which are flood flows. The results of these two tests indicate that each 
of the clusters has unique flow characteristics. Each cluster can be regarded as 
being hydrologically homogenous with respect to these flow characteristics.  
 
5.3.6 Comparison of weighted and unweighted clustering 
 
Flow characteristics discussed above are for clusters derived using weighted 
catchment characteristics. Clustering was also undertaken without weighting 
these catchment characteristics, so as to determine whether weighting of 
catchment characteristics improves the identification of clusters with 
homogenous hydrological responses. The Rg statistic was estimated by 
comparing the resemblance between clusters derived using catchment 
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characteristics and those based on flow characteristics. Figure 5.7 shows that 
weighted catchment characteristics give a better resemblance to clusters derived 
using flow characteristics, than clusters based on unweighted catchment 
characteristics. A canonical variate analysis was also undertaken to determine if 
flow characteristics can explain the variance of clusters derived using 
unweighted catchment characteristics. This was done for 5 clusters. Flow 
characteristics explain 31.0% of the variance of these clusters. But when 
weighted catchment characteristics were used to derive clusters, the explained 
variance was 43.2% as discussed in 5.3.3. Thus both the Rg statistic and 
canonical variate analysis indicate that weighted catchment characteristics are 
superior in terms of discriminating catchments with different hydrological 
responses. 
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Figure 5.7: Comparison of Rg statistics for cluster analysis using weighted and 
unweighted catchment characteristics. 
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Figure 5.8: Flow characteristics of clusters derived from unweighted catchment 
characteristics 
 
Figure 5.8 shows yrQ  for clusters derived from unweighted catchment 

characteristics. Clusters 2, 4 and 5 have all yrQ  within the range of yrQ  for 
Cluster 1. But with clusters based on weighted catchment characteristics, the 
upper limit of one cluster overlapped with the lower limit of the next cluster 
(Figure 5.5), and not for the whole range to be contained in the range of another 
cluster. Figure 5.8 shows again that the range of values of the CV of all other 
clusters derived from unweighted catchment characteristics were contained 
within the range of Cluster 1. But this was not the case when weighted 
catchment characteristics were used (Figure 5.5). Figure 5.8 shows that Cluster 
1, 2 and 5, do not differ in their BFI, and the same is true for Cluster 3 and 4. 
Clusters derived from unweighted catchment characteristics do not differ 
greatly in their DZN .  
 
Thus weighting of catchment characteristics before clustering improves the 
identification of clusters with similar hydrological responses. Flow 
characteristics of catchments clustered in this manner can be easily discerned.  
 
5.3.7 Prediction of flow characteristics of clusters 
 
Chapter 3 identified catchment characteristics that can be used for estimating 
flow characteristics at ungauged sites. The relevant predictive equations were 
developed using data for all the 52 catchments. One of the hypotheses of this 
study is that the prediction of flow characteristics at ungauged sites can be 
improved by grouping catchments into clusters that have each similar 
hydrological responses. The validity of this hypothesis is examined below. 
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Prediction of yrQ , CV and BFI 
 
It was established in Chapter 3 that yrQ  can be predicted using yrP , granite, 
and slope indices. Figure 5.9 shows that there is no significant relationship 
between yrQ  and yrP  for catchments in Cluster 1 to 4. Cluster 5 has one 
catchment and it was therefore not possible to determine any relationships 
between catchment descriptors and flow characteristics. Both yrQ  and CV were 
also not related to any other catchment descriptors within Clusters 1, 2, and 3. 
Thus clustering of catchments does not seem to improve the prediction of yrQ  
and CV for ungauged sites. Clustering has subdivided catchments into subsets 
with narrow ranges of physiographic conditions. The relationships between yrQ  
and CV, and other flow characteristics are no longer discernible within these 
narrow ranges of physiographic conditions. This observation suggests that 
classification of catchments into hydrologically homogenous regions, and the 
subsequent use of these regions as the basis for developing methods for 
estimating flow characteristics of ungauged catchments, is only applicable to 
regions with wide ranges of physiographic conditions.  
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Figure 5.9: Relationship between mean annual runoff and mean annual rainfall for 
clusters derived using weighted catchment characteristics 
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BFI was found to be related to yrP  in Chapter 3, but this relationship does not 
exist for each of the clusters. Slope indices from S25 to S90 were found to be 
correlated to the BFI in Clusters 1 to 3. The correlation coefficients obtained 
when BFI was correlated with S50 are 
Cluster 1  r = 0.63 
Cluster 2  r = 0.82 
Cluster 3  r = 0.63 
 
When S50 was correlated with BFI for all the catchments without clustering in 
Chapter 3, the correlation coefficient was 0.76. Therefore, clustering of 
catchments has not improved the relationship between BFI and slope for all 
clusters except Cluster 2. 
 
Flow duration curves 
 
Percentile flows q90, q70, q50 and q20 were found to be correlated to yrP   in 
Chapter 3. But these relationships were absent in each cluster. Clustering 
produced sub-sets of catchment with narrow ranges in the values of 
physiographic characteristics, and therefore the lack of relationship between 
percentile flows and  yrP . 
 
Chapter 3 established that the following exponential model is suitable for 
describing the relationship between flows, qp, and their exceedance 
probabilities, p  
 
 )pbexp(bqp 10 −=       (5.8) 

 
It was established that b0 and b1 can be estimated using BFI, and the coefficient 
of determination of the predictive equations was 0.74 and 0.92 respectively. 
Predictive equations for estimating these parameters using BFI for Cluster 1, 2 
and 3 tend to have lower coefficient of determination, and in some cases it was 
not possible to derive such equations as shown below 
 
Cluster 1 
 BFI..b 4488119806110 −=   r2 = 0.49  (5.9) 
 
 )BFI.exp(.b 95812322701 −=  r2 = 0.85  (5.10) 
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Cluster 2 
 
b0 no significant relationship with BFI 
 
 ).exp(.b 19323324101 −=   r2 = 0.79  (5.11) 
 
Cluster 3 
 BFIb 9389.126595.120 −=   r2 = 0.61  (5.12) 
 
 )BFI.exp(.b 61882281601 −=  r2 = 0.75  (5.13) 
 
Clustering of catchments has therefore not improved the prediction of 
parameters of the exponential model for flow duration curves. 
 
The Kruskal-Wallis test was used to test the hypothesis that the values of each 
of the parameters of the exponential model do not differ between clusters. This 
hypothesis was rejected for each of the parameters. Each cluster has unique 
hydrological responses, but it is problematic to relate these responses to 
catchment characteristics.  
 
5.4 Conclusion 
 
This chapter has demonstrated that redundancy analysis provides a basis for 
selecting catchment characteristics for use during clustering. Although Everitt 
(1993) argued against weighting variables used for clustering since the 
importance of these variables were not known a priori, this study has shown that 
the results of a redundancy analysis provide a basis for deriving weights to be 
applied to the selected variables. The use of both the Rg statistic and canonical 
variate analysis enables the determination of the desirable number of clusters. 
Andrews’ curves enable identification of catchments that are outliers within 
clusters. RDA results are useful in determining the order with which variables 
are used to construct Andrews’ curves. 
 

The most distinguishing features of clusters identified are yrP  and S50. Land 
cover types do not differ greatly between clusters. Clusters have flow 
characteristics that are significantly different between them. Therefore, 
catchments forming each cluster can be regarded as having similar hydrological 
responses. However, when clustering is done using unweighted catchment 
characteristics, the clusters do not have distinct flow characteristics. This 
proved that weighting of catchment characteristics using the amount of variance 
of the flow characteristics that each catchment characteristic explains, leads to 
the delimitation of clusters with distinct hydrological responses. Clusters will 
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however overlap in their characteristics at their margins since clustering 
subdivides continuous variables into distinct subsets. 
 
Each of the clusters identified using weighted catchment characteristics has 
narrow ranges in the variation of their physiographic attributes, and 
consequently there are no discernible relationships between catchment 
descriptors and flow characteristics. Therefore clustering did not provide a basis 
for developing equations for predicting flow characteristics at ungauged sites. It 
is however possible to estimate flow characteristics of an ungauged site using 
the range or mean values for each cluster. The cluster membership of an 
ungauged site can be determined by comparing the Andrews’ curve of such a 
site with those of clusters identified for gauged sites.  
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6 REGIONALISATION OF SELECTED RAINFALL-RUNOFF 
MODELS 

 
6.1 Introduction 
 
So far the study has considered estimation of flow statistics such as mean 
annual flow, flow duration curves, and mean monthly flows of ungauged 
catchments. These statistics are relevant for most water resources planning and 
management problems. Other water resources planning problems however 
require time series of flows, e.g. estimation of yields of reservoirs (McMahon 
and Mein, 1978). A common approach for estimating time series of flows at 
ungauged sites is the extrapolation of flow records from gauged sites. 
Catchments for which flow time series are to be estimated may not have 
comparable gauged catchments hence prohibiting extrapolation. For such cases 
the use of a rainfall-runoff model with regionalised parameters may be a 
feasible option. 
 
Rainfall-runoff models fall into 2 main classes; a) lumped conceptual models, 
and b) distributed physically based models (Refsgaard and Knudsen, 1996; 
Beven and O’Connell, 1982). Lumped conceptual models describe 
mathematically processes within a hydrological system such as interception, 
surface runoff, and groundwater. Spatial variations of these processes are not 
accounted for, but rather spatially averaged values are used (Blackie and Eeles, 
1985; Wood, 1995). Physically based models use continuum equations to 
describe temporal and spatial variations of hydrological processes (Beven and 
O’Connell, 1982). 
 
Estimation of parameter values of physically based models for ungauged 
catchments should theoretically be feasible because these parameters are 
supposedly measurable. There has been limited success in the use of these 
models on ungauged catchments, because the data required for estimating 
model parameter values are not available at both spatial and temporal scales to 
enable a truly physically based modelling. A physically based model, SHE, was 
applied on six catchments in India, but the physiographic data required for 
estimation of model parameters were only available at a coarse spatial 
resolution. Therefore, values of model parameters were derived as spatially 
averaged values, and their physical interpretation was questionable (Refsgaard, 
et al. 1992; Jain, et al. 1992; Lohani, et al. 1993). Pilgrim (1983) noted that 
hydrological processes are highly irregular in both space and time, and thus 
derivation of measurable model parameters is problematic. Refsgaard and 
Knudsen (1996) compared the ability of a) NAM, a lumped conceptual model, 
b) WATBAL, a semi-distributed model, and c) MIKE SHE  a physically based 
model, to model flows at ungauged catchments in Zimbabwe. The NAM model 
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performed as well as the other two models.  These studies concluded that when 
the objective is to derive time series of runoff only, a lumped conceptual model 
performs better than a physically based model. This study is therefore directed 
towards regionalisation of lumped conceptual models. 
 
Regionalisation of lumped conceptual models has been done by either 
extrapolating parameters from gauged sites, or by relating model parameters to 
catchment characteristics. Pitman (1973) used the knowledge of physiographic 
conditions in various parts of South Africa to produce maps for regionalising 
his model, but the validity of suggested parameter values was never ascertained. 
Wolski (1999) noted that calibrated model parameter values reflected a specific 
combination of physiographic conditions of a particular catchment, and caution 
must be exercised when extrapolating these parameters. 
 
An increasing interest exists in predicting parameter values of conceptual 
models from catchment characteristics. A limitation of this approach in some of 
the studies has been that while some of the parameters can be predicted, a few 
require calibration, which is not possible on ungauged catchments (Manley, 
1978; Ibrahim and Cordery, 1995). There is increasing evidence that prediction 
of parameter values for some models is feasible (Post and Jakeman, 1996, 1999; 
Post et al., 1998; Soften and Howarth, 1998; Fernardez et al., 2000; Berger and 
Entekhabi, 2001, Yokoo et al., 2001). Most of the previous studies have used 
multiple regression to predict model parameter values. However, some of the 
parameters are non-linearly related to and/or have complex relationships with 
catchment characteristics which cannot be described by multiple regression. For 
such non-linear and complex relationships, neural networks may be suitable for 
predicting model parameter values from catchment characteristics. The aim of 
this chapter is to investigate the possibility of predicting parameter values of 
conceptual models from catchment characteristics using multiple regression and 
neural networks. 
 
6.2 Methodology 
  
This study derived catchment descriptors like morphometric properties, 
proportions of catchments with different lithologies and land cover, and climatic 
properties. The feasibility of establishing relationships between these catchment 
descriptors and parameters of selected lumped conceptual models is 
investigated. Models with a monthly time interval are used which is the time 
interval appropriate for most water resources planning and management in 
southern Africa. In addition, the rain gauge network within the study area is 
sparse and therefore catchment rainfall cannot be estimated accurately at time 
intervals less than a month for example weekly or daily intervals.  
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Catchments in the study area have already been classified into clusters using 
catchment descriptors. An assessment of whether model parameters can be 
regionalised on the basis of these clusters is made. Regionalisation is possible if 
each cluster has model parameter values that significantly differ from those of 
other clusters. A non-parametric test is used to ascertain the validity of the null 
hypothesis that there are no significant differences in the values of model 
parameters between clusters, and any differences are due to chance.  
 
6.2.1 Selection of rainfall-runoff models 
 
Several lumped models exist and the selection of models for use in this study is 
guided by the following points: 
 
• The model addresses the problem, i.e. simulation of monthly flows. 

(Klemes, 1986; Simmers, 1984; Hendriks, 1990. 
• Applicability of the model to the hydroclimatic region of the study area. 
• Using the simplest model if possible. Perrin et al. (2001) noted that simple 

conceptual rainfall-runoff models had fewer problems arising from 
parameter uncertainty than complex models. Uncertainty in the values of 
model parameters will limit the potential for regionalising model 
parameters. 

 
Lumped conceptual models selected for use in this study are a) abcd model 
(Fernandez et al., 2000; Alley, 1984), and b) Pitman (1973) model. Fernandez 
et al. (2000) related parameters of the abcd model to catchment descriptors, 
while  Vandewiele et al. (1992) demonstrated that models similar in structure to 
the abcd model can be regionalised. This model is very simple and has four 
parameters. The Pitman model has been widely used in southern Africa (Pitman 
and Middleton, 1994; Hughes, 1995; Hughes and Metzler, 1998). This model 
has four to six parameters that require calibration. Hughes (1985) found that 
some parameters of this model can be estimated from catchment descriptors. 
The potential for regionalising this model in Zimbabwe was highlighted by 
Hughes (1997).  
 
6.2.2 Model calibration 
 
Calibration of model parameters is done in this study by combining manual 
trial-and-error and automatic optimisation methods (Green and Stephenson, 
1986; Refsgaard and Storm, 1996). The use of these two approaches is meant to 
minimise their limitations. Manual calibration of model parameters has the 
advantage that parameter values can be selected so that there are hydrologically 
meaningful. But this method does not always result in optimal parameter values. 
Automatic optimisation will be used to fine tune parameter values. If automatic 
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optimisation is used only without manual calibration, values of parameters may 
not have any physically relevance. In addition, optimisation routines do not 
always identify the global optimum, and parameters values may be based on 
local optima. Ndiritu and Daniel (1999) did caution that parameters at the global 
optimum do not necessarily give superior simulations. Problems with the model 
structure, and data errors can be more important than locating the global 
optimum. Equifinality of model parameters which means that different sets of 
model parameter values produce similar simulations on the same catchment is 
also a major constraint when attempting to identify optimal parameters values 
(Gupta and Sorooshian, 1983; Liden and Harlin, 2000). This affects the 
feasibility of relating model parameters to catchment characteristics. Those sets 
of model parameter values that result in some of the state variables assuming 
values that are hydrologically not meaningful will be eliminated.  
 
This study considers a simulation to be acceptable if simulated monthly flows 
satisfy the following conditions (Lorup et al., 1998; Schulze and Smithers, 
1995): 
i. The difference between the mean of observed and that of simulated monthly 

flows is within the +/-10% range. 
ii. The difference between the standard deviation of observed flows and that of 

simulated flows is within the +/-15%. 
iii. Coefficient of efficiency > 0.70 
iv. An acceptable agreement between the flow duration curves of observed and 

simulated flows based on visual inspection. 
 
The coefficient of efficiency, CI, was defined by Nash and Sutcliffe (1970) as:  
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 Qobs,t =  observed or measured monthly flow 
 Qsim,t = simulated monthly flow 

tQ    = average of observed monthly flows 
 t       = month interval 
 ns      = total number of months simulated. 
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Values of CI close to 1 indicate close agreement between observed and 
simulated flows.  
 
The abcd model is calibrated using optimisation routines that are part of the 
Microsoft Excel Solver since this model is written on a spreadsheet. Microsoft 
Excel Solver has quasi-Newton and conjugate gradient optimisation routines 
(Fylstra, et al., 1998). The version of the Pitman model used in this study is one 
produced by Hughes and Forsyth (2002), and incorporates a genetic 
optimisation routine (Ndiritu; 1998).  The objective function used for automatic 
optimisation is the maximisation of CI. Optimised model parameters are also 
adjusted to satisfy goodness-of-fit criteria relating to the mean, and standard 
deviation. 
 
6.2.3 Model validation 
 
Calibrated model parameters can result in simulations that satisfy goodness-of-
fit criteria, but parameter values may not have any hydrological meaning. 
Values of model parameters will be a result of curve fitting. This is also 
reflected in having different sets of parameters values producing simulations 
which satisfy these criteria. It is necessary to test if parameter values reflect the 
underlying hydrological processes, and are not a result of curve fitting. This is 
called model validation (Klemes, 1986, Refsgaard and Storm, 1996). Use is 
made of the split-sample test and proxy-basin test in this study. The split-sample 
test involves splitting the available time series into two parts. One part is used to 
calibrate the model, and the second part is used for testing if calibrated 
parameters can produce simulations which satisfy goodness-of-fit tests. The 
spilt sample test is suitable for catchments with long time series, and it is 
applied in this study to catchments with over 20 years of data. For such 
catchments the available record is split into two equal parts. With regards to the 
proxy-basin test, calibration is done on one catchment, and the parameters are 
tested on a similar catchment.  
 
6.2.4 Structure of models selected 
 
6.2.4.1 The abcd Model 
 
The abcd model is a nonlinear watershed model introduced by Thomas (1981). 
In this model the available water, Wt, is defined as 
 

1−+∆= ttt StPW       (6.4) 
 

where 
Pt = monthly precipitation during month t (mm month-1), 
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St-1 = soil moisture at the beginning of month t (mm), 
∆t = time unit equal to one month included to ensure consistency of 

measurement units. 
 
Thomas (1981) defined Yt referred to as the evaporation opportunity as 
 
 ttt StEY +∆=        (6.5) 
where 
Et = actual evaporation during month t (mm month-1), 
St  = soil moisture at the end of month t (mm). 
 
Since there are no measurements of actual evaporation rates, Et, the evaporation 
opportunity, Yt  is modelled as a nonlinear function of the available water.  
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Parameters a and b in Eqn (6.6) have to be calibrated. The function expressed in 
Eqn (6.6) ensures that Yt ≤ Wt because 0 ≤  a ≤  1, and that the upper limit of Yt 
= b. It is assumed that the rate of actual evaporation is proportional to the soil 
moisture storage, and the change in soil moisture storage due to evaporation can 
be expressed as 
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where Epot, t = monthly potential evaporation. 
 
If it is assumed that soil moisture storage at the beginning of the month is equal 
to Yt, then 
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The difference between Wt  and Yt, gives the total volume of water that forms 
direct runoff, Qs,t, and recharges groundwater, Rchg,t  
 
 tYWcR tttchg ∆−= /)(,       (6.9) 
 
 ( )( ) tYWcQ ttts ∆−−= /1,      (6.10) 
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where c is a model parameter. Discharge of groundwater to streams, Qg,t, is 
assumed to be a function of groundwater storage, Sg,t-1, and modelled by a 
parameter d. Thus 
 
 1−= t,gt,g dSQ .       (6.11) 
  
The changes in groundwater storage are described by the continuity equation 
 
 tgtttgtg tQYWcSS ,1,, )( ∆−−+= −     (6.12) 
 
Streamflow, Qt, is given by 
 
 ( )( ) tgttt QtYWcQ ,/1 +∆−−=     (6.13) 
 
The model has four parameters. Parameter a describes the tendency for runoff 
to occur before saturation of the soil. Most studies have found values of 0.95 ≤  
a ≤  0.98 (Alley, 1984; Vandewiele et al., 1992; Fernandez et al., 2000) related 
this parameter to permeability of the soil. Model parameter c is the proportion 
of groundwater contribution to streamflow, and therefore should approximate 
the baseflow index. If streamflow comprises groundwater flow only,  
 
 tgt QQ ,=        (6.14) 
 
and Kb is defined as the monthly recession constant, then 
 
 1−= tbt QKQ .       (6.15) 
 
When streamflow comprises groundwater flows only, then (Vogel and Kroll, 
1996; Savenije, 2001) 
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Dry season flows are described by the recession equation written as 
 
 )t(QQ mt α−= exp0 .      (6.17) 
 
Linsley et al. (1982) pointed out that the volume of groundwater discharged 
during time dt is equal to the change in storage d Sg,t. Therefore 
 
 t)texp(QtQS mtt,g ddd 0 α−==  .    (6.18) 
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The integration of Eqn (6.18) gives 
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Equations (6.11), (6.16) and (6.19) show that parameter d of the abcd model is 
related to the recession constant in the following manner 
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In Eqn (6.20) ∆ t has been included in order to have consistency in the units, 
since Kb is dimensionless while mα  has the dimension of month -1. The 
reciprocal of parameter d as defined in Eqn (6.20) is the residence time of 
groundwater (Alley, 1984; Tallaksen, 1995). 
 
 
6.2.4.2 Pitman model 
 
The Pitman model treats a catchment as having two storages, which are the 
interception storage, and subsurface storage (Figure 6.1). Pitman originally 
referred to the subsurface storage as soil moisture storage which combined soil 
moisture and groundwater. The term subsurface storage is regarded as the most 
appropriate (Hughes, 2002). The model simulates four processes which are; 
interception, surface runoff, evaporation from the subsurface storage, and runoff 
from the subsurface storage. 
 



 101

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Structure of the Pitman monthly rainfall-runoff model 
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Interception  
 
The model assumes that all the rainfall that is intercepted on a particular day 
evaporates on the same day. The interception loss is a function of interception 
capacity, Icap, and the amount of daily rainfall. The following equation for 
estimating interception loss, It, was derived empirically in South Africa and has 
been assumed to be valid in southern Africa  
 

( ){ }[ ]110000990exp10813 7501441 .I.PI.I .
capt

.
capt −−=  mm month-1   (6.21) 

 
Measurements made in South Africa showed that Icap varies from 0 – 8 mm/day 
(Schulze, 1995). An Icap = 1.5 mm/day for most land cover types and Icap = 4 
mm/day for forests were recommended by Pitman (1973). The original model 
allowed a single value of Icap to be used for the whole catchment, but the version 
used in this study allows for subdivision into two sub-catchments with different 
Icap values. The proportion of the catchment to which each of the Icap values is 
applicable has to be specified. 
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Figure 6.2: Comparison of interception rates estimated by the De Groen and Pitman 
interception models. Icap = 1.5 mm for the left graph, and Icap = 5.0 mm for the right 
graph. 
 
The Pitman interception model assumes that the rate of increase of interception 
gradually decreases as the rainfall increases, while De Groen (2002) assumed 
that interception continues to increase with increasing rainfall (Figure 6.2). 
According to De Groen (2002) monthly interception is a function of the amount 
of rainfall in a particular month, Pt, number of rainy days, nr, and the mean 
interception capacity of the area, Icap, and is given by 
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De Groen (2002) developed predictive equations for nr, the number of rainy 
days in any month.  
 
This study will investigate whether there are any significant differences in 
values of Pitman model parameters, and the simulation of runoff when either 
Eqn (6.21) or (6.22) is used.  
 
Surface runoff 
 
The model assumes that surface runoff can be formed in two ways. Firstly, all 
the rainfall on impervious portions of the catchment will form surface runoff. 
These impervious areas can only contribute to stream flows if they discharge 
directly into streams, otherwise runoff generated on these parts of the catchment 
will be absorbed by the surrounding soils. The model requires that the 
proportion of impervious areas, AI, be specified if these areas are to contribute 
to stream flows. 
  
Secondly, surface runoff can be formed as a result of rainfall which does not 
infiltrate on pervious parts of the catchment. The absorption rate of rainfall into 
the subsurface storage is considered to vary spatially because of variations in 
vegetation, soils and geology. It is assumed that as the rainfall increases, it will 
increasingly exceed absorption rates of increasing proportions of the catchment 
and therefore contribute to surface runoff. Absorption rates within a catchment 
are assumed to vary from a minimum of Zmin mm month-1 to a maximum of Zmax 
mm month-1. The proportions of the catchment area that have absorption rates 
varying from Zmin to Zmax are assumed to follow a triangular distribution. Thus if 
the rainfall is less than Zmin, no surface runoff will be formed, and all the rainfall 
is absorbed. As the rainfall increases above Zmin, the proportion of the catchment 
that will form runoff will increase. The model assumes that the average 
absorption rate, Zave, is given by 
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= .       (6.23) 

   
Using the properties of a triangular frequency distribution of the absorption 
rates the following equation holds for determining the proportion of the 
catchment, aabs, with a specified absorption rate, Z mm month-1 
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−=   for Z ≥  Zave.  (6.25) 

 
When Z = Zmin, aabs = 0, and with Z=Zmax, aabs =1.  These equations are used to 
estimate monthly surface runoff, Qs,t (mm month-1) for any given rate of 
effective rainfall, Pefft.= Pt - It: 
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avett,s ZPeffQ −=    for  Pefft ≥  Zmax.  (6.30) 

 
As the amount of rainfall increases from Zmin to Zmax, an increasing proportion of 
rainfall will form surface runoff. Any rainfall in excess of Zmax will not be 
absorbed and will form surface runoff. 
 
Evaporation from the subsurface store 
 
When the subsurface storage has the maximum amount of water (Scap), the 
actual evaporation rate (Et) equals the potential evaporation rate (Epot,t). But 
when the subsurface storage declines below this maximum amount, the actual 
evaporation rate declines from the potential rate. The model assumes two 
possible relationships exist between actual evaporation rates and the amount of 
subsurface storage. The first is the linear relationship 
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Eqn (6.31) assumes that evaporation from the subsurface storage will continue 
until St = 0. Such conditions are likely to be approximated in areas with deep 
rooting plants. Parameter Scap in Eqn (6.31) is similar to parameter b in Eqn 
(6.7) of the abcd model, and these two parameters are expected to be correlated. 
 
Alternatively the rate of decline of actual evaporation rate from the potential 
rate (Epot,t - Et) is linearly related to the moisture deficit in the subsurface store 
(Scap–St). It is assumed that evaporation will cease when St = S0. If  0 < S0 <  
Scap, then  
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In this particular case when the subsurface storage, St, decreases below a 
specified S0, then evaporation ceases. Pitman introduced parameter R which 
varies from 0.0 – 1.0 and controls the relationship between ratio of actual 
evaporation to potential evaporation and subsurface storage. If  R = 0.0 
evaporation ceases when St = 0.0 ,and therefore Eqn (6.31) is applicable. 
Increasing the value of R means that evaporation will cease at high moisture 
content (S0), which is applicable in areas with shallow rooting plants. 
 
Subsurface runoff 
 
The following power curve was assumed to describe the rate at which water 
drains from subsurface storage to streams. Subsurface runoff, Qg,t, is given by 
 
 POW

lttg SSQ )(, −Λ=       (6.33) 
and 

 POW
lcap SS

FT
)( −

=Λ       (6.34)

  
where 
 Sl = subsurface moisture content below which subsurface runoff ceases 
FT = rate of drainage when subsurface storage is at its maximum, Scap. 
POW = power of the curve. 
 
It is assumed that when Qg,t ≤  Gw, then all the water is coming from the lower 
zone of the subsurface storage. Water coming from the lower zone of the 
subsurface storage ( ≤  Gw) will take longer time to reach the catchment outlet 
than (Qg,t – Gw) originating from the upper zone. Two parameters, TL and GL, 
are introduced in order to incorporate the different time lags that are applicable 
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to (Qg,t – Gw) and (≤ Gw) respectively. The Muskingum routing procedure is 
used to effect this lagging. 
 
The Pitman model has 12 model parameters and these are presented in Table 
6.1 below. The most important parameters are Scap, FT, Zmin, Zmax, and POW. Scap 
and FT in particular have a major effect on the water balance. Scap varies from 
100 to 500 mm in South Africa, and geology has a strong influence on its 
values. An increase in Scap decreases yrQ . FT was found to have values in the 0 
to 30 range. A value of Sl = 0.0 was found to be applicable for most catchments 
in South Africa. Zmin varied from 0 – 110 mm month-1 in South Africa and 
reduces yrQ , and increases  the standard deviation of flows. Zmax varied from 
280 – 1100 mm, and was not significant in humid catchments in South Africa. 
This parameter reduces yrQ . 
 
Table 6.1: Parameters of the Pitman model. Calibrate means a parameter 
requiring calibration, while Estimate means the value for this parameter is 
estimated from available data of a catchment. 
PARAMETER Value Description 
POW Calibrate Power of the soil moisture-runoff relationship 
Sl 
 

0.0 Subsurface moisture content at which subsurface 
runoff ceases (mm) 

Scap Calibrate Maximum water content of the subsurface store 
(mm) 

FT Calibrate Rate of subsurface runoff drained when the 
subsurface storage is at its maximum capacity 
(mm month-1) 

Gw Estimate Maximum rate of groundwater flow (mm month-1) 
AI Estimate Proportion of the catchment which is impervious 
Zmin Calibrate Minimum catchment absorption rate (mm month-

1) 
Zmax Calibrate Maximum catchment absorption rate (mm month-

1) 
Icap Estimate Interception storage capacity (mm/day) 
TL 0.25 Time lag of Qg,t - Gw (months) 
GL Estimate Time lag of subsurface runoff from the lower zone 

( ≤GW) (months) 
R 0.5 Defines the relationship between evaporation and 

soil moisture content 
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POW affects both the seasonal distribution of flows and yrQ . Catchments with 
perennial rivers have low values of POW ≈ 2.0, while high POW ≈ 3.0 on those 
catchments which tend to dry up during the dry season. Parameters Gw, GL, and 
TL only affect the seasonal distribution of monthly flows. Gw and GL can 
initially be set to zero, and TL = 0.25. Parameter R has values in the 0 ≤  R ≤  
1.0 range, and determines the rate at which actual evaporation decreases as the 
soil moisture storage declines below Scap. An R = 0.5 was found to be 
appropriate for the summer region of South Africa, and this value is assumed to 
be valid for  catchments considered in this study. 
 
6.3 Results and discussion 
 
There are 30 catchments that fulfilled the criteria for selection for the purposes 
of rainfall-runoff modelling (Figure 6.3).  

Figure 6.3: Catchment selected for rainfall-runoff modelling 

0 100 km 
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6.3.1 Comparison of simulated and observed monthly flows 
 
The abcd and Pitman models preserved the seasonal and inter-annual variations 
of flows (Figure 6.4). There are few peak flows that are not correctly simulated 
for some years by both models. Most of the rainfall in Zimbabwe occurs in the 
form of thunderstorms, and as a result the total monthly rainfall can be due to a 
few storms within a month that are not captured by sparse rain gauge networks. 
Hence, peak flows are not always modelled correctly due to inaccurate 
estimation of catchment rainfall. Both models simulated accurately relatively 
high dry season flows during the generally wet 1973-81, but low dry season 
flows for the 1983-91 period were overestimated on some of the catchments 
(Figure 6.4). It was observed during calibration of both models on some 
catchments, that if calibrated parameters simulated accurately dry season flows 
during the 1983-91 period, then the 1973-81 dry season flows are under-
estimated. Both models seem not to adequately represent the rise and decline in 
groundwater storage over several years with its subsequent effects on dry 
season flows. 
 
Figure 6.5 shows close agreement between the means and standard deviations 
of simulated flows, and with those of observed flows. The goodness-of-fit 
criteria on the mean and standard deviation were satisfied on 76.7% and 86.7% 
of the catchments by the abcd and Pitman models respectively (Table 6.2). 
When the De Groen (2002) interception model (Eqn 6.22) is used in the Pitman 
model, instead of of Eqn (6.21), both the mean and standard deviation were 
preserved on 63.3% of the catchments. Thus, there were no differences between 
using Eqn (6.21) or Eqn (6.22) in preservation of flow statistics by simulated 
monthly flows. 
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Figure 6.4: Comparison of observed monthly flows and those simulated 
using the Pitman and abcd models 
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Figure 6.5: Comparison of means  and standard deviations of simulated monthly flows 
with those of observed monthly flows (Std dev = standard deviation,     = abcd model, 
    = Pitman model 
 
 
Table 6.2: Preservation of mean and standard deviation of the monthly flows by 
the abcd and Pitman models – number (percentage) of catchments  

abcd model 
 Differences in the Standard Deviation 
Differences 
in the 
Mean 

≤ 5% 5 – 10% 10 – 15% >15% Total 

<5% 
5 – 10% 
>10% 

4 (13.3%) 
1 (3.3%) 

 

7 (23.3%) 
3 (10.0%) 

 

7 (23.3%) 
1 (3.3%) 

 

6 (20.0%) 
 

1 (3.3%) 

24 (80.0%) 
5 (16.7%) 
1 (3.3%) 

Total 5 (16.7%) 10 (33.3%) 8 (26.7%) 7 (23.3%) 30 (100.0%) 
 Pitman model 

<5% 
5 – 10% 
>10% 

9 (30.0%) 
2 (6.7%) 
1 (3.3%) 

13 (43.3%) 1 (3.3%) 
1 (3.3%) 

3 (10.0%) 26 (86.7%) 
3(10.0%) 
1 (3.3%) 

Total 12 (40.0%) 13 (43.3%) 2 (6.7%)  30 (100.0%) 
 
 
Each of the models satisfied the three goodness-of-fit criteria including the 
criterion that CI ≥ 0.70 on 70% of the catchments (Table 6.3). If the criteria 
relating to the mean and standard deviation are relaxed by +/-2%, then these are 
satisfied by 80% and 90% of the catchments by the abcd model and Pitman 
model respectively. Transformed flows in Table 6.3 means the given statistics 
were estimated from logarithms of simulated and observed monthly flows, 
while untransformed means the statistics were estimated from monthly flows 
that have not been transformed in this manner.  
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Table 6.3: Coefficient of efficiency for untransformed and transformed 
monthly flows 
Catchment Period Untransformed Flows 

     abcd            Pitman 
Transformed Flows 
  abcd           Pitman 

C6 1948-73 0.62 0.40 0.92 0.60 
C18 1962-84 0.84 0.81 0.60 0.80 
C23 1956-88 0.80 0.72 0.56 0.68 
C25 1954-82 0.82 0.81 0.65 0.86 
C33 1956-65 0.82 0.70 0.66 0.76 
C41  1956-88 0.79 0.65 0.91 0.69 
C43 1959-85 0.60 0.60 0.60 0.60 
C47 1956-78 0.55 0.52 0.87 0.70 
C70 1969-83 0.88 0.85 0.98 0.73 
D6 1949-70 0.77 0.75 0.98 0.77 
D24 1958-70 0.77 0.75 0.69 0.72 
D27 1962-95 0.75 0.78 0.57 0.50 
D28 1962-95 0.74 0.69 0.24 0.56 
E1  1925-45 0.52 0.60 0.40 0.57 
E24 1955-95 0.86 0.85 0.23 0.32 
E30 1957-97 0.73 0.69 0.83 0.50 
E35 1958-75 0.81 0.72 -10.56 0.52 
E37 1958-87 0.75 0.61 0.44 0.72 
E40 1958-76 0.93 0.88 0.68 0.76 
E42 1961-93 0.83 0.69 0.40 0.52 
E45 1960-91 0.81 0.70 -4.75 0.61 
E49 1960-95 0.89 0.75 0.48 0.54 
E72 1961-87 0.75 0.74 0.99 0.75 
E106  1966-95 0.77 0.82 0.07 0.07 
E108  1966-90 0.86 0.80 0.53 0.43 
E112  1966-86 0.76 0.67 0.62 0.66 
E114  1967-86 0.73 0.61 0.61 0.53 
E115  1967-85 0.84 0.76 0.72 0.68 
E125 1970-80 0.83 0.74 0.81 0.52 
E129 1970-98 0.69 0.70 0.65 0.67 
This transformation makes dry season flows much more prominent, which 
enables an assessment of how well these have been simulated. 
 
A comparison of the means of simulated and observed flows that have been 
transformed shows that the abcd model tended to overestimate low flows, while 
there is reasonable agreement for the Pitman model (Figure 6.6). This lack of fit 
for low flows by the abcd model seems to reflect that the structure of the model 
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does not adequately describe processes relevant to dry season flows. The 
variance of low flows was poorly preserved on very few catchments (Figure 
6.6). The coefficient of efficiency for the transformed flows was greater than 
0.70 on 30.0% and 33.% catchment for the abcd and Pitman models 
respectively. This again shows that both models have some weaknesses in 
describing dry season flows. The three outliers on the graph comparing standard 
deviations of logarithms of simulated monthly flows are E35, E45, and E106. 
The coefficient of efficiency for transformed flows in Table 6.3 was less than 
0.07 for all these three catchments indicating inaccurate simulation of dry 
season flows. E35 has a sharp decline to zero flows while the model has a rather 
gradual decline to zero flows. Dry season flows for E45 were over-estimated 
during the 1964-74 and 1982-95 periods, while this was the case for the 1984-
96 period on E106. In general the differences between transformed observed 
and simulated flows should not be over-emphasized since the logarithmic 
transformation exaggerates small differences.  
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Figure 6.6: Comparison of means of logarithms of simulated monthly flows with those 
of logarithms of observed monthly flows. Diamond = abcd model, shaded triangle = 
Pitman model 
 
When the untransformed simulated monthly flows are considered, the abcd 
model satisfied the three goodness-of-fit criteria (mean, standard deviation, CI) 
on 70% of the catchments while this is 57% for the Pitman model.  
 
Model validation 
 
The ability of calibrated model parameters to preserve flow statistics of a data 
set different from that used during calibration for the same catchment is 
presented in Table 6.4 and 6.5 for the abcd and Pitman models respectively. 
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Table 6.4: Split-sample test for the abcd model – comparison of observed and 
simulated monthly flows using differences between the mean and standard 
deviation, and coefficient of efficiency. 
 Calibration Validation 
 Percentage Difference  Percentage Difference  
Catchment Mean Standard Deviation CI Mean Standard Deviation CI 
C25 -3.8 -9.7 0.79 1.4 6.8 0.85 
C18 -0.2 -2.1 0.80 8.0 10.3 0.81 
C23 -5.1 3.8 0.73 -58.3 -24.4 0.74 
C41 -9.2 2.9 0.92 -17.3 4.4 0.66 
D6 -13.0 -1.4 0.85 7.1 20.7 0.70 
D27 -2.7 27.0 0.75 -54.6 -9.8 0.74 
D28 5.0 11.0 0.64 -100.5 -56.6 -1.40 
E24 -4.6 5.7 0.87 -27.6 6.0 0.84 
E30 -4.9 24.1 0.78 -7.0 14.8 0.51 
E42 -5.1 5.6 0.88 0.5 70.2 0.66 
E45 -5.0 3.3 0.94 35.2 62.9 0.67 
E49 -4.9 11.1 0.90 -0.3 33.8 0.84 
E72 0.3 11.1 0.77 27.7 45.7 0.61 
E106 -3.6 -1.5 0.90 -26.6 -2.6 0.70 
E112 -5.1 9.9 0.88 32.3 47.5 0.53 
E129 -5.0 3.2 0.67 -24.9 17.5 0.72 
 
For both models calibrated model parameters failed to satisfy goodness-of-fit 
criteria on the validation data sets on almost all catchments. Similar results were 
obtained when a proxy-basin test was done. Model parameters which were used 
to simulate monthly flows of catchments different from those used during 
calibration, were only able to satisfy goodness-of-fit criteria on 3 out of 15 
catchments for the abcd model, and 5 out 15 catchments for the Pitman model. 
Catchments whose monthly flows could be simulated with model parameters 
calibrated at another catchment are shown below: 
 
abcd model Pitman model 
C47 with C41 parameters 
D6 with D24 parameters 
E129 with E106 parameters 

C23 with C70 parameters,    E49 with E45 
parameters 
E106 with E129 parameters, E112 with E49 
parameters 
E129 with E106 parameters 
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Table 6.5: Spilt sample test for the Pitman model with model parameters 
calibrated on the first half of the data, and validation on the second half 
 Calibration Validation 
 Percentage Difference  Percentage Difference  
Catchment Mean Standard Deviation CI Mean Standard Deviation CI 
C18 10.3 5.7 0.74 16.8 12.4 0.84 
C23 -4.1 -24.4 0.51 -45.2 -48.4 0.50 
C25 3.8 10.3 0.77 6.3 -4.0 0.84 
C41 15.4 8.9 0.80 23.4 11.5 0.59 
D27 4.9 0.2 0.78 -19.6 -9.9 0.73 
D28 17.0 -12.2 0.70 2.3 9.2 0.63 
D6 5.2 -10.9 0.70 18.7 19.4 0.55 
E106 7.6 5.1 0.89 -26.6 -0.9 0.72 
E112 -0.8 12.6 0.84 22.4 27.5 0.49 
E129 3.8 -1.0 0.82 -7.5 5.3 0.62 
E24 5.1 -14.8 0.82 15.5 14.0 0.89 
E30 -8.9 5.8 0.68 -9.7 -0.4 0.69 
E42 9.0 -7.9 0.77 25.9 49.0 0.51 
E45 2.0 10.1 0.83 29.6 31.3 0.62 
E49 15.0 9.0 0.84 12.8 9.5 0.76 
E72 -16.6 -0.6 0.67 15.1 19.0 0.80 
 
It is of interest to note that while model parameters of say catchment A can 
simulate monthly flows of catchment B, but parameters of catchment B are 
generally not valid for catchment A. This is only possible for E106 and E129 
with the Pitman model parameter. This reinforces a conclusion made by Wolski 
(1999) that calibrated model parameters reflect a specific combination of 
physiographic conditions on a catchment.  Thus extrapolating model parameters 
for purposes of simulating flows of ungauged catchments appears not possible 
for both models. This casts doubts on the feasibility of predicting values of 
model parameters from catchment characteristics. 
 
6.3.2 Prediction of model parameters 
 
6.3.2.1 abcd model 
 
Table 6.6 gives the values of calibrated parameters of the abcd model. The 
derivation of relationships between model parameters and catchment descriptors 
can be affected by equifinality of model parameters. Equifinality of model 
parameters means that different sets of model parameter values give similar 
results. Table 6.7 illustrates on E49 Popotekwe that four different sets of values 
of model parameters can result in similar outputs.  
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Table 6.6: Estimated values of parameters of the abcd model 
Catchment a b c d 

C18 
C23 
C25 
C33 
C41 
C43 
C47 
C6 
C70 
D24 
D27 
D28 
D6 
E1 
E106 
E108 
E112 
E114 
E115 
E125 
E129 
E24 
E30 
E35 
E37 
E40 
E42 
E45 
E49 
E72 

0.9869 
0.9883 
0.9941 
0.9798 
0.9891 
0.9915 
0.9908 
0.9869 
0.9911 
0.9798 
0.9945 
0.9941 
0.9668 
0.9518 
0.9929 
0.9445 
0.9720 
0.9638 
0.8814 
0.9738 
0.9983 
0.9887 
0.9914 
0.9867 
0.9962 
0.9864 
0.9902 
0.9674 
0.9799 
0.9810 

403.2 
599.9 
402.2 
456.8 
534.0 
728.3 
530.7 
810.9 
475.4 
487.3 
560.3 
777.8 
599.9 
589.6 

1708.9 
394.7 
358.2 
504.7 
297.7 
450.3 
682.6 
510.8 
564.2 
366.6 

1198.1 
561.7 
697.5 
508.7 
504.5 

2371.9 

0.1208 
0.2727 
0.3545 
0.2934 
0.1100 
0.1778 
0.1516 
0.1816 
0.2126 
0.5178 
0.5255 
0.5203 
0.5029 
0.2747 
0.2700 
0.2788 
0.3593 
0.3996 
0.4969 
0.5453 
0.7816 
0.1345 
0.0834 
0.1939 
0.5148 
0.1605 
0.2446 
0.2950 
0.2807 
0.0800 

0.8904 
0.7024 
0.5998 
0.7840 
0.0011 
0.0900 
0.0900 
0.0001 
0.5445 
0.5544 
0.1492 
0.0944 
0.9932 
0.2000 
0.2000 
0.6671 
0.9755 
0.1638 
0.4327 
0.3032 
0.0910 
0.2439 
0.0161 
0.6277 
0.0401 
0.0900 
0.0336 
0.9999 
0.8163 
0.1376 

Mean 
CV (%) 

0.9793 
2.3 

654.6 
64.6 

0.3112 
55.5 

0.3844 
89.2 
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Table 6.7: Illustration of equifinality of model parameters on E49 with four sets 
of parameters resulting in simulated monthly flows with similar statistics. 
Parameter Set 1 Set 2 Set 3 Set 4 
a 
b 
c 
d 

0.9799 
504.5 
0.2807 
0.8163 

0.9852 
571.4 
0.2807 
0.0000 

0.9780 
558.3 
0.1566 
1.0000 

0.9766 
618.1 
0.0000 
1.0000 

Mean (106m3) 
Std Dev (106m3) 
Coef Eff 

7.55 
14.20 
0.89 

7.55 
12.66 
0.87 

7.55 
13.82 
0.89 

7.55 
13.32 
0.89 

 
In both Sets 1 and 2 parameter c was fixed equal to BFI, while in Set 3 this 
parameter was also calibrated. Alley (1984) noted that parameters c and d could 
have fixed values of c = 0.000 and d =1.000, while the other parameters are 
calibrated. This was done on E49 and the optimized values of parameters a and 
b are given under Set 4 (Table 6.7). A value of d = 0.0000 in Set 2 results in no 
groundwater discharge to streams or base flows, but since groundwater recharge 
takes place, groundwater storage continuously increases. This is not feasible 
and therefore Set 2 is not appropriate. With d = 1.0000 in Set 3, groundwater 
storage will always be none existent since all the water recharging groundwater 
will be discharged within the same month. This is rarely possible, and therefore 
Set 3 is inappropriate. A value of c = 0.000 in Set 4 implies that there is no 
groundwater recharge, and therefore no base flow. If c = 0.000, then parameter 
d is no longer necessary as they will be no groundwater storage. Catchments 
without groundwater recharge and discharge are rare, and therefore Set 4 is 
inappropriate. Set 1 allows for recharge and storage of groundwater and 
depletion of part of the storage within a particular month, and therefore is 
appropriate. The results show that equifinality of model parameters exists in 
conceptual models (Liden and Harlin, 2000). Elimination of parameter values 
that result in state variables assuming unrealistic values is likely to lead to 
parameter values that can be related to catchment descriptors. 
 
Multiple regression 
 
The range of values of parameter a is similar to that obtained in other studies 
(Alley, 1984; Vandewiele et al., 1992; Fernandez et al., 2000). This parameter 
is not highly variable among the 30 catchments and has a low CV of 2.3%. 
Catchments on the central and eastern parts of the country have a = 0.9800 – 
0.9983 (Figure 6.7).  
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The only catchment with a < 0.9400 is E115 with a = 0.8814. This parameter 
has a significant effect on yrQ , and a 5% increase in this parameter resulted in 

50-70% decrease in yrQ , and a 10% decrease in the standard deviation. 
Parameter a is not related to flow statistics, and catchment characteristics. 
Fernandez et al. (2000) related parameter a to permeability which is influenced 
by lithology. However, in this study parameter a is not related to the proportions 
of a catchment with various lithologies. It is likely that this parameter is 
affected by several factors with none being dominant, since climatological 
effects (evaporation) and those effects due to soil-water relationships on runoff 
formation are reflected in this parameter. 
 
Parameter b has no relationship with flow statistics, and no distinguishable 
spatial distribution (Figure 6.7). There is a tendency for catchments on the 

Figure 6.7: Spatial variation of the values of parameters of the abcd model 

0 100 km 
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Eastern Highlands to have high values of parameter b. This parameter has a 

linear relationship with yrP  (Figure 6.8).  
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Figure 6.8: Relationship between parameter b of the abcd model and mean annual 
precipitation 
 
The following predictive equation for b was derived for all the catchments 
where the coefficient of efficiency ≥  0.70 
 
 2448267441 .P.b yr −=      (6.35) 
 
with r2 = 0.86. The positive relationship between b and yrP  reflects that 

catchments with high rainfall have also high actual evaporation ( yrE ). 

Parameter b was also found to have a positive linear relationship with yrE , and 
can be predicted using the following equation 
 
 20094048311163914 yryr E.E..b +−=  r2 = 0.92 (6.36) 
Parameter c was set equal to BFI, and this has a range of values of 0.0800 – 
0.7816. It has no effect on the mean of simulated monthly flows, but affects the 
seasonal distribution flows. It has already been established in Chapter 3 that BFI 
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is related to yrQ , recession constant, and flows with specified exceedance 
probabilities and can be estimated by the following equation 
 
 CGKLyr LCGLSPc 001.0003.0072.00003.0 10 −−+=  (6.37) 
 
with r2 = 0.92. Parameter d has no relationship with flow statistics. There is 
some grouping of catchments when this parameter is plotted against yrQ  
(Figure 6.9).  
 
These patterns suggest that catchments with high yrQ  have small values of 
parameter d.  Small values of parameter d indicate that groundwater storage on 
catchments with high yrQ  is depleted gradually. Catchments with low yrQ  dry 
up soon after the rainy season, and therefore have high d values showing the 
rapid depletion of groundwater storage. This parameter has no clear spatial 
distribution, although there is some tendency for catchments on the Eastern 
Highlands to have low values (Figure 6.7).  
 
Parameter d was found to have a weak negative relationship with drainage 
density, Dd, (Figure 6.10). Thus catchments with high Dd and therefore low 
permeability have low values of parameter d indicating slow rates of 
groundwater discharge.  
 

C18

C25
D24

D6

E106

E112

E115

E129

E35

E37

0 50 100 150 200 250 300 350 400

Mean annual runoff (mm/year)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

m
et

er
 d

 
 
Figure 6.9: Relationship between parameter d of the abcd model with mean annual 
runoff 
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Figure 6.10: Relationship between parameter d of the abcd model with drainage density 
 
The following equation relating parameter d to Dd was derived 
 

 Dd..d 2379004931 −=   r2 = 0.53  (6.38) 
 
Although some of Eqns 6.35 to 6.38 show weak relationships, they demonstrate 
that there is some potential for regionalising three out of the four model 
parameters. 
 
Neural networks 
 
The potential of predicting parameters of the abcd model using neural networks 
was investigated. Neural networks were configured with the four parameters as 
outputs. The best prediction was produced by an MLP6-7-4 neural network that 
has S34, yrP , S10, yrE , GLGG, and LCCU as inputs. The coefficient of 
determination between the calibrated parameters and those predicted by the 
neural network are given in Table 6.8 below. 
 
Table 6.8: Coefficient of determination for the prediction of abcd model 
parameters using multiple regression and an MLP6-7-4 neural network 
Parameter Linear Regression MLP 6-7-4 
a 
b 
c 
d 

0.00 
0.92 
0.92 
0.53 

0.62 
0.86 
0.74 
0.66 
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When this neural network is used to predict parameters of the abcd model, all 
the other parameters except parameter a are estimated with acceptable accuracy 
(Figure 6.11). Several calibrations (training) of this neural network were done 
with random selection of catchments constituting test or validation sub-samples. 
When training of the neural network was completed, the predicted values of 
model parameters for catchments comprising the validation set, were noted. 
This was repeated with different sets of catchments comprising the validation 
set. Monthly flows were simulated using values of model parameters predicted 
by the neural network on 14 catchments that constituted validation sub-samples 
during these calibrations. The goodness-of-fit criteria were satisfied by only one 
catchment (E108) out of the 14 catchments. The differences between means and 
standard deviations of simulated flow and those of observed flows were in the 
+/- 20 to 50%. The coefficient of efficiency was greater than 0.70 on two 
catchments only. The abcd model is very sensitive to values of its parameters, 
and hence there is very limited potential to successfully simulate monthly flows 
using parameter values predicted from catchment characteristics. Alternatively, 
a large sample is required for training neural networks. 
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Figure 6.11: Comparison of values of abcd model parameters predicted from catchment 
characteristics by an MLP 6-7-4 neural network, with those values estimated from 
model calibration. 
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Cluster analysis 
 
An assessment of whether parameter values of the abcd model differed between 
clusters based on catchment descriptors identified in Chapter 5 was undertaken. 
Table 6.9 below shows the average values of the parameters within each of the 
clusters.  
 
Table 6.9: Range of values of abcd model parameters in clusters  
Cluster a b c d 
1 
2 
3 
4 
5 

0.978 
0.982 
0.978 
0.996 
0.981 

558.4 
458.0 
511.7 
1195.8 
2371.9 

0.265 
0.216 
0.480 
0.526 
0.080 

0.784 
1.000 
0.993 
0.200 
0.138 

 
Clusters 4 and 5 had less than five catchments with calibrated model 
parameters. The test of the null hypothesis that there are no differences between 
clusters in the values of model parameters was therefore restricted to Cluster 1 
to 3. This hypothesis was not rejected at the 5% significance level by the 
Kruskal-Wallis test for parameters a, b and d except for parameter c which is 
the BFI. It was established in Chapter 5 that flow characteristics differed 
significantly between clusters, and therefore this hypothesis was rejected for 
parameter c. The clusters do not have unique values for parameters of the abcd 
model, and cannot be used to regionalise this model. 
 
6.3.2.2 Pitman model 
 
Calibrated Pitman model parameters are presented in Table 6.10 below. The 
most important parameters for this model as has already been discussed are 
POW, Scap, FT, Zmin, and Zmax. Icap was assumed to be equal to 1.5 mm for all 
those parts of the catchments that are under woodland, bushland, wooded 
grasslands, grasslands, and cultivation. An Icap=4.0 mm was assumed for parts 
of the catchments that are under forest plantations. Gw and GL were all set to 
zero. 
 
The relationships between model parameters, and a) flow statistics, and b) 
catchment descriptors are likely to be affected by equifinality. For example, 
POW  and FT are closely related in their effects on simulated flows. If other 
parameters are held constant an increase in POW will cause an increased rate of 
subsurface runoff during the wet season. This will rapidly deplete this storage 
resulting in reduced dry season flows. The same effect can be achieved by 
decreasing FT. Table 6.11 shows that two different sets of values of model 
parameters can produce the same outputs on C25.  
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Table 6.10: Calibrated Parameters for the Pitman model 
NAME PERIOD POW Scap FT ZMIN ZMAX 

C18 
C23 
C25 
C33 
C41 
C43 
C47 
C6 
C70 
D24 
D27 
D28 
D6 
E1 
E106 
E108 
E112 
E114 
E115 
E125 
E129 
E24 
E30 
E35 
E37 
E40 
E42 
E45 
E49 
E72 

1963 - 83 
1956 - 88 
1954 - 79 
1954 - 65 
1956 - 93 
1959 - 84 
1956 - 93 
1948 - 73 
1969 - 82 
1958 - 69 
1962 - 95 
1962 - 95 
1949 - 69 
1925 - 45 
1966 - 95 
1966 - 89 
1966 - 85 
1967 - 85 
1968 - 84 
1970 - 81 
1970 - 97 
1955 - 95 
1956 - 95 
1958 - 74 
1958 - 86 
1958 - 75 
1961 - 93 
1960 - 87 
1960 - 93 
1961 - 85 

3.6 
3.3 
2.1 
3.3 
3.3 
2.0 
3.5 
2.8 
3.2 
3.4 
3.0 
2.8 
3.1 
1.5 
2.4 
2.6 
3.0 
1.5 
1.4 
1.4 
2.7 
3.1 
3.1 
3.0 
3.5 
1.9 
2.8 
3.3 
3.3 
1.0 

217.6 
465.0 
346.6 
261.5 
217.0 
567.2 
290.0 
500.0 
380.0 
498.0 
689.9 
770.0 
355.0 
240.0 

1121.8 
268.4 
210.0 
260.0 
146.4 
268.7 

1061.2 
350.0 
394.9 
220.0 
850.0 
384.3 
559.5 
250.0 
220.0 
697.0 

9.2 
8.9 

21.4 
20.4 
8.0 
5.6 
9.0 
6.3 
6.4 

47.2 
23.3 
7.4 

74.0 
24.1 
77.1 
44.9 
17.7 
20.0 
87.1 
37.4 
96.3 
3.8 
5.2 
8.0 

42.0 
6.7 

10.6 
64.0 
38.8 
98.0 

60.9 
31.3 
22.9 
16.1 
41.3 
29.1 
46.6 
10.7 
79.3 
21.6 
43.7 
46.6 
24.0 
20.0 
41.2 
21.3 
40.2 
31.3 
24.9 
57.6 
32.1 
39.7 
26.1 
62.2 
17.8 
68.1 
45.9 
69.5 
88.0 
37.3 

1025.5 
800.0 

1151.0 
1225.2 
913.2 
970.9 
933.9 

1099.7 
1156.3 
1024.2 
990.8 

1300.9 
1128.3 
900.0 

1174.0 
786.2 
766.4 
918.1 

1044.5 
921.0 

1107.1 
908.9 

1114.0 
877.6 

1804.0 
981.2 

1280.3 
928.0 
949.0 

1163.7 
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Table 6.11: Illustration of equifinality of Pitman model parameters on C25 with 
two sets of parameter values producing monthly flows with similar flow 
statistics 
 Set 1 Set 2 
POW 
Scap 
FT 
ZMIN 
ZMAX 

2.1 
346.6 
21.4 
22.9 
1151.0 

2.7 
343.3 
35.0 
25.9 
1205.6 

UNTRANSFORMED MONTHLY FLOWS 
% Difference in the mean 
% Difference in the standard deviation 
Coefficient of efficiency 

-3.3% 
-5.6% 
0.81 

2.5% 
-3.6% 
0.81 

TRANSFORMED MONTHLY FLOWS 
% Difference in the mean 
% Difference in the standard deviation 
Coefficient of efficiency 

+13.7% 
-4.5% 
0.86 

+4.3% 
+7.5% 
0.82 

 
The “% Difference” given above are those between the statistics of observed 
and those of simulated monthly flows. In Set 2 POW was increased which 
necessitated an increase in FT, and the two sets of parameters produce almost 
identical flows. The value of Scap can also be affected by the estimated monthly 
potential evaporation. If potential evaporation has been underestimated, the 
value of Scap will increase and thus reducing yrQ . These interactions of model 
parameters will affect relationships between these parameters, and flow 
statistics and catchment descriptors.  
 
Multiple regression 
 
Table 6.12 presents correlation coefficients that are significant at the 5% level 
between model parameters, flow statistics, and catchment characteristics.  
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Table 6.12: Correlation coefficients between Pitman model parameters and, 
flow statistics and catchment characteristics 
FLOW STATISTIC POW Scap FT 

yrQ  -0.52 0.40 0.74 

BFI -0.40 0.60 0.77 

One day recession coefficient  0.40 0.76 

Runoff coefficient -0.56  0.80 

DZN    -0.58 

q90 -0.38 0.61 0.73 

q20  0.54 0.71 

yrP  -0.48 0.66 0.64 

yrE   0.86  

yr,potE   -0.58 -0.40 

S50 -0.66 0.39 0.58 

LCCG   -0.40 

LCCU  -0.41  

 
 
Most catchments have POW values close to 3.0 which is similar to the results of 
Hughes (1997) and Santa Clara (1980). Use of the De Groen (2002) interception 
model instead of the Pitman interception model did not cause systematic 
changes to this parameter (Figure 6.12). POW has a negative relationship with 

yrQ  and therefore catchments on the Eastern Highlands with large yrQ , have 
low values of POW, 1.0 – 2.0  (Figure 6.13). It was established in Chapter 2 that 
BFI and the runoff coefficient are both positively related to yrQ , and hence 
both have a negative relationship with POW. 
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Figure 6.12: Comparison of values of Pitman model parameters calibrated when the De 
Groen (2002) interception equation is used and those obtained when the Pitman 
interception equation is used 
 
 
High POW values cause the distribution of monthly flows to be peaky, while 
low values result in well distributed flows throughout the year. Thus catchments 
in areas with low rainfall have high values of POW since flows dry out during 
the dry season. Catchments with high rainfall that is well distributed throughout 
the year, and with perennial flow have low POW values. POW has a negative 
linear relationship with S50 (Table 6.12). Within the study area, catchments with 
perennial flows tend to be located in highland regions with relatively high S50. 
The following predictive equation for POW was developed using the stepwise 
multiple regression technique. 
 
 POW = 3.419 – 0.139 S50  r2 = 0.58  (6.39) 
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Figure 6.13: Spatial variation of calibrated Pitman model parameters 
 
Most catchments particularly on the central part of the country have Scap values 
in the 200 - 300 mm range (Figure 6.13). Scap was found to be the most 
important parameter in determining the catchment water balance. Use of the De 
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Groen (2002) interception model tends to decrease Scap by 20% for those 
catchment with Scap greater than 300 mm (Fig 6.11). The Pitman interception 
equation, Eqn (6.21), assumes that interception losses do not increase when 
rainfall increases beyond a certain value. In contrast the De Groen (2002) model 
assumes interception losses continue to increase with increasing rainfall, 
although the rate of increase declines gradually. This is likely to explain 
decrease in Scap values when this model is used. Catchments on the Eastern 
Highlands tend to have high Scap values indicating large subsurface storage of 
water. C6 has also a high Scap value. This catchment has predominantly 
sandstone, Kalahari sands, and alluvial deposits that give rise to deep soils with 
high infiltration rates. Consequently the subsurface storage is large and hence 
large Scap values. E115 has the lowest Scap value of 146.4 mm. This catchment is 
underlain by granitic formations and in a hilly area with slopes varying from 2 – 
16%. The low Scap value is likely due to shallow soils occurring on steep slopes. 
The relationship between Scap and BFI is rather unclear (Figure 6.14).  
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Figure 6.14: Relationship between base flow index and Pitman model parameter Scap 
 
There seems to be a group of catchments (D6, D24, D27, D28, E1, E37, E72, 
E106, E115 and E129) which seem to have a positive relationship between BFI 
and Scap. The most common feature of these catchments is that they have parts 
with moderate to steep slopes. Their median slopes vary from 4 – 20%. The rest 
of the catchments do not have a clear relationship between Scap and BFI. 
 
Scap is linearly related to average annual actual evaporation, yrE . Catchments 

with considerable subsurface store have high yrE , which is the dependent 
variable. The amount of water stored in subsurface storage will also depend on 
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the amount of rainfall received on a particular catchment. If yrE  can be 
predicted from other variables then Scap is given by 
 
 Scap = 2.069 yrE  – 993.11  r2 = 0.85  (6.40) 
 
It has to be emphasized that yrE  is the dependent variable, and the above 

equation is useful for regionalisation purposes if yrE  is predicted from other 

variables, or by remote sensing (Menenti, 2000). yrE  used to develop Eqn 

(6.40) was derived from yrP - yrQ , and on ungauged catchment yrQ  is 
unknown. 
 
The maximum rate at which water is drained from saturated soils, FT, has a 
strong relationship with yrQ , BFI, runoff coefficient, q90 and q20. Very high FT 
values, 65.0 – 98.0 mm month-1, occur on catchments on the Eastern Highlands 
that are perennial and with high yrQ  (Figure 6.13). These catchments have 
generally relatively steep slopes which result in high hydraulic gradients, and 
therefore high rates of drainage of subsurface water. The central part of the 
country with gentle slopes has low FT values, 4.0 – 10.0 mm month-1, e.g. C23, 
C70, C18. Gentle slopes result in rather low hydraulic gradients and therefore 
low rates of maximum drainage of subsurface water, i.e. low FT values. 
Catchments in the southern part of the study area such as E49, E45 and E108 
have moderately high FT values, 30.0 – 65.0 mm month-1. For those catchments 
with high FT values, application of the De Groen (2002) interception models 
tends to decrease values of this parameter (Figure 6.12). There is a weak 
relationship between FT and catchment descriptors (Table 6.10). Figure 6.15 
suggests that rainfall does to some degree affect the maximum rate of drainage 
from saturated soils. FT increases with annual rainfall, but this tends to a 
constant of about 80 – 100 mm month-1 where mean annual rainfall is greater 
than 1000 mm yr-1.  
 
Zmin has values in the 10.0 – 88.0 mm month-1 range and has no relationship 
with flow statistics.  Monthly flow simulations were not very sensitive to this 
parameter. Catchments located on the central part with S50 ≈ 1.70% have Zmin 
values of 40 – 88 mm month-1 (Figure 6.13). Catchments with S50 = 4 – 10% 
have low Zmin values, 20 – 40 mm month-1, for example D6, D24, E108, E114, 
E115, E106 and E129. With such slopes and shallow soils, very low amounts of 
rainfall are required to initiate surface runoff, and therefore low Zmin values. Zmin 
is not related to any catchment descriptor within the study area. Pitman (1973) 
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suggested that Zmin increased with yrP , but there was no discernible relationship 
between these two variables on catchments used in this study.  
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Figure 6.15: Relationship between Pitman model parameter FT with a) mean annual 
runoff, and b) mean annual precipitation 
 
Zmax has values in the 766.0 – 1804.0 mm month-1 range and has no relationship 
with flow statistics. Most of the catchments in the southern part of the study 
area have Zmax of 766 – 1000.0, while those in the northern part have values of 
1000.0 – 1250.0 mm month-1 (Figure 6.13). 
 
Neural networks 
 
Neural networks were trained to predict all the five parameters, POW, Scap, FT, 
Zmin, and Zmax. The best prediction was made by an MLP 5-7-5 neural network 
that had S34, yrP , S10, potE , GLGG and LCCU as inputs. The coefficients of 
determination for predicted parameters are given in Table 6.13. 
 
The most important explanatory variables for these parameters are slope, 
precipitation and evaporation. Lithology and land cover type are the least 
important explanatory variables. This neural network has potential to estimate 
POW and Scap with fair accuracy, but this is rather limited for FT and Zmax 
(Figure 6.16). However, neural networks offer a better potential for estimating 
Pitman model parameters from catchment descriptors than linear regression.  
 
Cluster analysis 
 
The Kruskal-Wallis test was used to determine if the values of POW, Scap, FT, 
Zmin and Zmax differed between clusters derived using catchment descriptors in 
Chapter 5. Values of POW, Scap and FT differ significantly between clusters, but 
not those of Zmin and Zmax. These results indicate that clusters derived in Chapter 
5 have values of POW, Scap and FT that are unique to each cluster. Cluster 2 
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which is relatively dry has high POW values. POW tends to decrease as the yrQ  

increases from Cluster 1, 3 to 5. Scap increases with high yrQ , from Cluster 3 to 
5. FT generally decreases from Cluster 1 to 5. 
 
Table 6.13: Coefficient of determination for the prediction of Pitman model 
parameters using multiple regression and an MLP 6-7-4 neural network 
Parameter Linear Regression MLP 6-7-4 
POW 
Scap 
FT 
Zmin 
Zmax 

0.58 
0.85 
none 
none 
none 

0.62 
0.64 
0.46 
0.00 
0.55 
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Figure 6.16: Comparison of parameters of the Pitman model predicted from catchment 
characteristics by an MLP 5-7-5 neural network, and those obtained through calibration 
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6.4 Conclusion 
 
Monthly flows simulated with the abcd model and Pitman model satisfied all 
the three goodness-of-fit criteria on 70% and 57% of the catchments 
respectively. Lack of fit on some catchments was due to some peak flows that 
were not correctly simulated. Such flows are likely to have been caused by 
thunderstorms occurring on locations not covered by rain gauges, and therefore 
not reflected in the estimated catchment monthly rainfall. Another reason was 
that both models could not simultaneously simulate accurately relatively high 
dry season flows, arising from an increase in groundwater storage during a 
prolonged period of wet years, such as the 1973-1980 period, and low dry 
season flows due to reduced groundwater storage during a subsequent dry 
period such as the 1982 – 1989. This suggests a need for improving the 
representation of groundwater storage in both models. Equifinality of model 
parameters exists in both models, and this can affect the possibility of relating 
model parameters to catchment characteristics.   
 
The proxy-basin test showed that extrapolation of parameters of both model was 
only possible on 3 out 15 catchments for the abcd model, and 5 out of 15 
catchments for the Pitman model. Thus use of parameters of any of these two 
models calibrated on one catchment to simulate flows of another ungauged 
catchment is generally not possible. Calibrated model parameters reflect a 
unique combination of physiographic characteristics on a particular catchment 
which are not likely to exist in a similar manner on another catchment. 
 
Parameters b, c, and d of the abcd model have linear relationships with 
catchment characteristics, and can therefore be predicted by multiple regression. 
The coefficient of determination for derived multiple regression equations are 
0.9 for both parameter b and c, while this is 0.5 for parameter d. An MLP 6-7-4 
neural network can predict all the four parameters of the abcd model from 
catchment descriptors, and the coefficients of determination are in the 0.6 – 0.9 
range. The abcd model is sensitive to parameters values, hence monthly flows 
simulated from parameters predicted by this neural network do not satisfy the 
goodness-of-fit criteria.  
 
Parameter POW of the Pitman model can be predicted from median slope using 
a linear regression equation, and the coefficient of determination is 0.6. The 
subsurface storage capacity, Scap, is related to mean annual actual evaporation, 
and the coefficient of determination for the predictive equation is 0.9. However, 
the relationship between Scap and mean annual actual evaporation cannot be 
used to estimated Scap for an ungauged catchment, since mean annual actual 
evaporation is unknown. Other important model parameters, FT, ZMIN, and ZMAX 
did not have linear relationships with catchment characteristics.  An MLP 6-7-4 
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can predict POW, Scap, FT, and ZMAX with coefficients of determination of 0.5 – 
0.6, but ZMIN cannot be predicted.  
 
All the parameters of the abcd model except parameter c do not have values that 
differed significantly between clusters derived using catchment characteristics. 
Thus clusters identified do not offer a basis for regionalising parameters of this 
model. With regard to the Pitman model, POW, Scap, and FT have values that 
differ significantly between clusters. However, it is not possible to develop 
predictive equations for these parameters for each of the clusters. 
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7 CONCLUSIONS AND RECOMMENDATIONS 
 
7.1 Introduction 
 
The goal of this study was to identify and assess the suitability of statistical 
methods and conceptual rainfall-runoff models to estimate flow characteristics 
of ungauged catchments. A case study approach was adopted using 52 
catchments in Zimbabwe. Flow characteristics that were of interest are yrQ , 
CV, BFI, flow duration curve, mean monthly flows, and monthly flow time 
series. A central issue in this study was that methods developed in this study 
should be based on data that are readily available to practising hydrologists. 
Catchment characteristics that were considered for purposes of predicting the 
selected flow characteristics for ungauged catchments are yrP , yr,potE , 
elevation, slope, drainage density, lithology, land cover, and NDVI. 
 
7.2 Prediction of flow characteristics using univariate methods 
 
Mean annual flows are mainly dependent and positively related to mean annual 
precipitation and catchment slope. The proportion of a catchment underlain by 
granite and gneiss has a weak positive relationship with mean annual flows. 
Areas with granites tend to have impervious rock outcrops and thin soils that 
promote runoff formation, and hence the positive relationship. Kalahari sands 
and alluvial deposits have negative effects on mean annual flows due to deep 
percolation within these formations. Grasslands also have negative effects on 
mean annual flows. Most areas with grasslands have dambos which have higher 
evaporation rates than interfluves, resulting in a decrease in mean annual flows. 
Mean annual flows within the study area can be predicted from mean annual 
rainfall, slope, and the proportion of the catchment underlain by granite and 
gneiss using a linear regression equation. These variables particularly mean 
annual rainfall and slope are likely to be applicable to other parts of Zimbabwe. 
Use of neural networks does not improve prediction of mean annual flows.  
 
Mean annual precipitation and slope are positively related to BFI, while 
evaporation has a negative effect. Kalahari sands, alluvial deposits, and 
grasslands have also negative effects on BFI. Areas with Kalahari sands and 
alluvial deposits tend to have deep water tables below river beds. Thus 
groundwater contribution to streams is reduced, and hence the negative 
relationship with BFI. BFI can be predicted using a linear regression equation 
from slope, and proportion of a catchment with wooded grasslands and 
grasslands. A neural network with mean annual precipitation and slope as inputs 
predicts BFI with comparable accuracy. Thus prediction of BFI using neural 
networks is recommended. 
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An exponential model describes flow duration curves of the study area. 
Parameters of this model can be predicted from BFI. Neural networks give the 
best prediction for flow duration curves. Inputs to this neural network are slope, 
mean annual potential evaporation, slope, mean annual rainfall, and drainage 
density.  
 
A neural network with BFI, proportion of the catchment with wooded 
grasslands and grasslands, and slope as inputs can predict the hydrograph 
describing the proportion of mean annual flow occurring in each of the twelve 
months of the year. However, the onset of the rise and inflection point of this 
hydrograph are not accurately predicted. Mean monthly flows of an ungauged 
catchment can be predicted by distributing the predicted mean annual flow into 
mean monthly flows using this hydrograph. 
 
One of the interesting findings of this study is that if the BFI of a catchment is 
known, then several flow characteristics of a catchment can be estimated, for 
example, recession constant, flow duration curve, and the distribution of mean 
annual flow into monthly flows. The study area is located in a region where 
rainfall occurs during one distinct season of approximately four months. During 
the rest of the year, river flows are sustained by contribution from subsurface 
storage. Flow characteristics during these eight months are therefore dependent 
on the hydrogeological properties of subsurface storages. BFI is a representative 
measure of these hydrogeological properties. At the beginning of the rainy 
season, the rate of recharge to subsurface storage partly affects the amount 
rainfall which will form runoff and causing the rise in the hydrograph. 
Hydrogeological properties of a catchment of which BFI seems to reflect affect 
the recharge rate. Further the rate of depletion of subsurface storage and its 
contribution to stream flows depends again on the properties of subsurface 
which BFI reflects. This study has therefore shown that the key to 
understanding flow regimes of regions with a distinct rainy season followed by 
a dry season is to understand factors influencing base flows.  
 
This study has managed to identify catchment characteristics that explain 
variations of individual flow characteristics. The study has also developed 
methods for predicting these flow characteristics using catchment 
characteristics. Therefore, the first objective of the study has been fulfilled.  
 
7.3 Identification of clusters of catchments with similar hydrological 

responses 
 
Redundancy analysis identified a set of catchment characteristics that explain 
variations of flow characteristics between catchments. These factors are mean 
annual precipitation, proportion of a catchment with the Umkondo rocks 
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(quartzite, shale, limestone and dolerite intrusion), proportion of a catchment 
with grasslands, and median slope. Redundancy analysis estimated the relative 
importance of these factors in explaining all the flow characteristics, and mean 
annual precipitation explains 59% of the variance of flow characteristics. The 
study area is located in a semi-arid to sub-humid area in which the occurrence 
of river flows greatly depends on the availability of precipitation. Hence mean 
annual precipitation alone explains such a high proportion of the variance of all 
flow characteristics. Redundancy analysis provided a basis for selecting those 
catchment characteristics, which explain flow characteristics, for use in 
classifying catchments into clusters with similar hydrological responses. In 
addition, estimation of the relative importance of these catchment 
characteristics enabled their weighting before cluster analysis. 
 
Use of the Rg index and canonical variate analysis jointly provided an objective 
procedure for selecting the number of clusters. This procedure is recommended. 
Cluster analysis using weighted catchment characteristics and application of 
Andrews’ curves to identify catchments that are outliers within clusters, resulted 
in delimitation of clusters that had distinct flow characteristics. In contrast, use 
of unweighted catchment characteristics resulted in clusters without distinct 
hydrological responses. 
 
This study has shown that it is feasible to classify catchments using catchment 
characteristics into clusters with each cluster having similar hydrological 
responses. Catchments constituting a cluster do not necessarily form a 
contiguous region. A hydrologically homogenous region is therefore not 
necessarily continuous in space, but is made up of catchments with similar 
hydrological responses, and these catchments can be in different locations. 
Therefore, the second objective of the study has been fulfilled. 
 
7.4 Prediction of flow characteristics based on hydrological 

homogenous regions 
 
There are no identifiable relationships between catchment characteristics and 
flow characteristics for each of the derived clusters. Clustering partitioned 
catchments into sub-sets with narrow ranges in both their catchment and flow 
characteristics. Within these narrow ranges, it is possible that variations of flow 
characteristics cannot be explained at the catchment scale. A spatial resolution 
smaller than a catchment may be appropriate. Alternatively, catchment 
characteristics not included in this study may be appropriate. There is also the 
possibility that these unexplained variations are due to random behaviour of 
flow characteristics. 
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The third objective of this study has therefore been fulfilled as it was 
demonstrated that hydrologically homogenous clusters do not in all cases enable 
prediction of flow characteristics from catchment characteristics. However, if 
catchments clustered have wide ranges of both flow and catchment 
characteristics, there seems to be a possibility of predicting flow characteristics 
from catchment characteristics for clusters delimited. 
 
7.5 Prediction of model parameters of conceptual models 
 
The abcd model and Pitman model were able to simulate accurately monthly 
flows of 77% and 87% of the catchments respectively. Accuracy of simulated 
flows was not affected by the size of the catchment for both models. Dry season 
flows for some years were not simulated accurately by both models. This 
indicates that components of both models describing the interactions between 
subsurface water and surface runoff require improvement. Parameters of both 
models that are related to subsurface moisture content can be predicted from 
catchment characteristics. The best prediction of parameters of the abcd model 
from catchment characteristics is made by a neural network with slope, mean 
annual precipitation, mean annual evaporation, proportion of the catchment with 
granites and gneiss, and that under cultivation as inputs. The predicted 
parameter values failed to simulate accurately monthly flows due to the high 
sensitivity of this model to parameter values.  There is limited potential to 
predict all parameters of the Pitman model from catchment characteristics, 
except for POW and Scap. The lack of relationships between some parameters of 
both models and catchment characteristics likely reflects that these parameters 
do not describe hydrological processes. This conclusion is valid for parameter a 
of the abcd model. Model parameters may describe hydrological processes, but 
errors in data used to calibrate these parameters can inhibit estimation of 
parameter values with physical relevance. Simulated monthly flows will agree 
with observed flows, but values of model parameters will have been estimated 
so as to fit errors in data. There is also a possibility that while model parameters 
are related to catchment characteristics used in this study, but values of these 
catchment characteristics were derived at scales at which their effects cannot be 
identified. 
 
Values of the parameters of the abcd model did not differ significantly between 
clusters derived using catchment characteristics. Therefore, identification of 
hydrologically homogenous regions does not provide a basis for estimating 
parameters of this model for ungauged catchments. The most important three 
parameters of the Pitman model, POW, Scap and FT, differed significantly 
between clusters, which indicates that there is a potential to estimate these 
parameters using such clusters. However, values of these parameters for each of 
the clusters could not be related to catchment characteristics. The conclusion to 
be made with regards to the fourth objective is that while some parameters of 
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lumped rainfall-runoff models used in this study can be estimated from 
catchment characteristics, it is not possible to simulate flows of ungauged 
catchments because other parameters still require to be estimated through 
calibration. Thus the fourth objective of the study has been fulfilled. 
 
7.6 Comparison of performances of neural networks and multiple 

regression 
 
Neural networks could predict BFI, flow duration curves, and the distribution of 
mean annual flow into mean monthly flows. Multiple regression could only 
predict mean annual runoff and BFI. The majority of flow characteristics are 
non-linearly related to catchment characteristics, and therefore neural networks 
perform better than multiple regression in predicting flow characteristics.   
 
Three out four parameters of the abcd model could be predicted from catchment 
characteristics using multiple regression, while a neural network was able to 
predict all the four parameters. With regards to the Pitman model, two out of 
five parameters could be predicted by multiple regression. A neural network 
managed to predict three parameters of this model. These results show that 
some model parameters are non-linearly related to catchment characteristics, 
and therefore neural networks perform better than multiple regression. The fifth 
objective of this study was therefore addressed, however further research on the 
use of neural networks to predict parameters of rainfall-runoff models from 
catchment characteristics is recommended.  
 
7.7 Recommendations 
 
The use of methods developed in this study for estimating yrQ , BFI, and flow 
duration curves of ungauged catchments is recommended. Mean monthly flows 
of ungauged catchment can be estimated after predicting the hydrograph 
describing the distribution of mean annual flow into monthly flows. Use of this 
method is recommended. 
 
Further studies aimed at improving some of the methods developed are 
recommended. In particular, the extension of this study to other parts of the 
country in order to identify if there are any additional factors that may improve 
the prediction of BFI as this is important in predicting other flow characteristics. 
 
This study has demonstrated the feasibility of predicting a hydrograph 
describing the distribution of the mean annual flow into monthly flows at 
ungauged sites. However, the inflection point of this hydrograph was not 
accurately estimated. Further studies aimed at improving predicting this 
hydrograph from catchment characteristics are recommended.  
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River flows during the dry season which is about eight months greatly depend 
on hydrogeological properties of the subsurface storage. Prediction of these 
flows will improve if quantitative measures representing these hydrogeological 
properties at the catchment scale are available. Thus studies aimed at 
developing these measures are recommended. 
 
Clusters with similar hydrological responses identified in this study had narrow 
ranges in the values of their catchment characteristics. Relationships between 
catchment and flow characteristics could not be determined. Further studies 
clustering catchments with wide ranges in the values of both catchment and 
flow characteristics are recommended in order to determine whether this 
approach will improve the prediction of flows of ungauged catchments. 
 
Rainfall-runoff modelling was undertaken in this study using catchment rainfall 
estimated from point rainfall measurements. The study noted the possibility of 
errors in estimating catchment rainfall, which affect values of calibrated model 
parameters, and hence lack of relationship between these parameters and 
catchment characteristics. Further studies using rainfall and evaporation 
estimated from satellite imagery are recommended in order to explore if these 
data improve the relationship between model parameters and catchment 
characteristics. 
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ENGLISH SUMMARY 
 
Sustainable water resources planning and management require hydrological 
data. These data are needed for example when assessing available water 
resources, planning, design and management of reservoirs, allocation of water 
for abstraction and impoundment, and estimating instream environmental water 
requirements. Most parts of sub-Saharan Africa have inadequate hydrological 
data, which introduces uncertainty in water resources planning and 
management. Poorly developed hydrological networks, inaccessibility of some 
sites, and the decline in technical and financial capacities for hydrological 
monitoring are the main reasons for inadequate hydrological data. The 
development of methods for estimating hydrological characteristics of areas 
with inadequate data is therefore necessary, since planning and management of 
water resources has to be done for these areas. Thus the main objective of this 
study is to identify and assess the suitability of statistical methods and 
conceptual rainfall-runoff models to estimate flow characteristics of ungauged 
catchments. 
 
A case study approach based on 52 selected catchments in Zimbabwe is used. 
Zimbabwe experiences a tropical climate characterised by the occurrence of 
rainfall in one distinct season, mid-November to mid-March, while the rest of 
the year is dry. This study investigates the feasibility of predicting the following 
flow characteristics; mean annual runoff, coefficient of variation of annual 
runoff, base flow index, average number of days per year with no flow,  a 
dimensionless flow duration curve, mean monthly flows, and monthly flow time 
series. These flow statistics are required for planning, design, and management 
of various types of water resources projects. Mean annual runoff of selected 
cathments varies from 38 to 778 mm yr-1, and the coefficient of variation of 
annual runoff is from 55 to 160%. Peak flows occur during the December to 
March period, and most rivers run dry from August to November. 
 
Catchment characteristics that are investigated for predicting the selected flow 
statistics are mean annual precipitation, monthly precipitation, average number 
of rainy days per year, mean annual potential evaporation, elevation, catchment 
area, drainage density, slope, proportions of a catchment covered by different 
lithologies, and proportions of a catchment with various land cover types. Mean 
annual precipitation of the selected catchments varies from 604 to 1770 mmmm 
yr-1, and mean annual potential evaporation from 1300 to 2000 mmmm yr-1. 
Crystalline basement complex rocks comprising granite, gneiss, and 
greenstones are the dominant lithological types. Aquifers only occur where 
these formations have been weathered, in fractures and fissures. Woodlands are 
the dominant land cover type, followed by cultivation, and then grasslands. 
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Chapter 3 investigates prediction of flow statistics using multiple regression 
methods and neural networks. Mean annual flows are best predicted using 
multiple regression methods from mean annual precipitation, slope, and 
proportion of a catchment underlain by granite and gneiss. A neural network 
with slope, the combined proportion of a catchment with wooded grasslands 
and grasslands, and proportion of the catchment with Kalahari sands as inputs 
gives the best prediction for the base flow index. An exponential model 
describes flow duration curves of the study area. Coefficients of this model can 
be predicted from the base flow index. However, best predictions of flow 
duration curves are done with a neural network with slope, mean annual 
potential evaporation, mean annual rainfall, and drainage density as inputs. A 
hydrograph of mean monthly flow can be predicted by a neural network with 
base flow index, proportion of a catchment with both wooded grasslands and 
grasslands, and slope. 
 
A direct gradient analysis method, redundancy analysis, is used in Chapter 4 to 
identify catchment characteristics that explain the variation of all flow 
characteristics. Variations of all flow characteristics are explained by the first 
and second ordination axes of catchment characteristics. Mean annual 
precipitation is identified as the most important catchment characteristic, and 
this accounts for 59% of the explained variance of flow characteristics. Other 
catchment characteristics identified are proportion of a catchment underlain by 
rocks belonging to the Umkondo assemblage (quartzite, shale, limestone, and 
dolerite intrusions), proportion of a catchment with grasslands, and slope.  
 
The selected catchments are classified into clusters with homogenous 
hydrological responses in Chapter 5. Catchment characteristics identified in 
Chapter 4 as explaining variations of flow characteristics are used for this 
classification. A hierarchical clustering method is used. The most appropriate 
number of clusters was found to be five. Mean annual precipitation is the most 
distinguishing characteristic of these clusters. Flow characteristics differ 
significantly between clusters. Therefore, each of the clusters derived is 
regarded as having homogenous hydrological responses. No significant 
relationships exist between flow characteristics and catchment characteristics 
for each of the clusters. Clustering partitioned catchments into sub-sets with 
narrow ranges in the values of both flow and catchment characteristics. Within 
these narrow ranges, relationships between flow and catchment characteristics 
are not identifiable. Therefore clustering does not improve the prediction of 
flow characteristics from catchment characteristics of the study area. Flow 
duration curves for each of the clusters can however be used to estimate a flow 
duration curve of an ungauged catchment provided the cluster to which such a 
catchment belongs to is established.  
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Chapter 6 examines the possibility of predicting parameter values of conceptual 
rainfall-runoff models from catchment characteristics. The models investigated 
are a) the abcd model with four parameters, and b) Pitman model with five 
parameter requiring calibration. Both models are used on monthly interval, and 
values of model parameters are calibrated by using manual and automatic 
optimisation methods. Equifinality affects values of model parameters. Monthly 
flows simulated by the abcd model and Pitman model satisfied goodness-of-fit 
criteria on 77% and 87% of the catchments respectively. Two of the parameters 
of the abcd model are linearly related to catchment characteristics. However, a 
neural network has the potential to predict all the four parameters from 
catchment characteristics. But this model is highly sensitive to minor changes in 
parameter values and simulations done with parameters predicted by a neural 
network do not satisfy the goodness-of-fit criteria. Four out of the five 
parameters of the Pitman model requiring calibration can be predicted from 
catchment characteristics using a neural network, but the coefficient of 
determination for the predictions are rather modest (0.5 - 0.6).  
 
The following conclusions are made from this study. 
 
• Most of the flow statistics required for water resources planning can be 

predicted from catchment characteristics. Neural networks give better 
predictions than multiple regression methods for most of these statistics. 

• The base flow index is an important characteristic of a catchment from 
which several other flow statistics can be predicted from. 

• Mean annual precipitation is the most important catchment characteristics in 
terms of explaining variations of flow characteristics within the study area. 

• Cluster analysis using catchment characteristics enables the identification of 
catchments with similar hydrological responses, provided this classification 
uses and weights catchment characteristics that explain the relevant flow 
characteristics. 

• Classification of catchments into clusters with similar hydrological 
responses does not improve relationships between flow characteristics and 
catchment characteristics, if clusters derived have narrow ranges in the 
values of both the flow and catchment characteristics.  

• Prediction of parameter values of some conceptual rainfall-runoff models 
from catchment characteristics may be possible, but the usefulness of these 
predictions can be affected by the sensitivity of a model to changes in 
parameter values. Each of the models has some parameters which cannot be 
related to catchment characteristics, and have to be calibrated. Hence use of 
these models on an ungauged catchment is not possible because not all 
parameters can be predicted from catchment characteristics. 
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SAMENVATTING 
 
Hydrologische gegevens zijn noodzakelijk voor duurzaam waterbeheer en -
planning. Deze gegevens zijn nodig voor het bepalen van de hoeveelheid water 
dat beschikbaar is, voor het plannen, ontwerpen en beheren van stuwmeren, het 
vastleggen van water voor direct gebruik en opslag, en voor het schatten van de 
waterbehoefte van de natuurlijke omgeving. Duurzaam waterbeheer wordt in 
grote delen van Afrika ten zuiden van de Sahara bemoeilijkt door een gebrek 
aan hydrologische gegevens. Dit komt door gebrekkige hydrologische 
meetnetwerken, de ontoegankelijkheid van sommige gebieden, en de 
verminderende technische en financiële capaciteit om hydrologische processen 
te monitoren. Omdat ook hier planning en waterbeheer noodzakelijk zijn, zijn er 
methoden nodig om in gebieden met onvoldoende gegevens hydrologische 
karakteristieken te kunnen schatten. Het doel van deze studie is om statistische 
en conceptuele modellen voor de afvoer van regenval te identificeren en te 
evalueren of deze modellen geschikt zijn om afvoerkarakteristieken van 
"ongemeten" stroomgebieden te schatten. 
 
De studie is gebaseerd op 52 geselecteerde stroomgebieden in Zimbabwe. 
Zimbabwe kent een tropisch klimaat: het regenseizoen begint half november en 
eindigt half maart; gedurende de rest van het jaar is het droog. Deze studie 
onderzoekt de haalbaarheid om de volgende afvoer kenmerken te voorspellen: 
gemiddelde jaarlijkse afvoer, variatie coëfficiënt, basis afvoer index, gemiddeld 
aantal dagen zonder afvoer, een dimensieloze duurlijn voor afvoer, gemiddelde 
maandelijkse afvoer, en reeksen van maandelijkse afvoer. Deze 
afvoerstatistieken zijn nodig voor planning, ontwerp en beheer van 
verschillende soorten waterprojecten. De gemiddelde afvoer van de 
geselecteerde stroomgebieden varieert tussen 38 en 778 mm per jaar, met een 
variatie coëfficiënt van de jaarlijkse afvoer tussen 55 en 160%. Van december 
tot maart treedt afvoer als gevolg van storm op, terwijl de meeste rivieren vanaf 
augustus tot november droogvallen. 
 
Om de geïdentificeerde afvoerstatistieken te voorspellen zijn de volgende 
kenmerken van stroomgebieden onderzocht: gemiddelde jaarlijkse regenval, 
maandelijkse regenval, gemiddeld aantal regendagen per jaar, gemiddelde 
jaarlijkse potentiële verdamping, hoogte, oppervlakte van het stroomgebied, 
dichtheid van drainage, helling, de verhouding van verschillende lithologieën in 
een stroomgebied en de verhouding van verschillende typen landgebruik in een 
stroomgebied. De gemiddelde jaarlijkse regenval varieert tussen 604 en 1.770 
mm jaar-1 in de geselecteerde stroomgebieden, terwijl de gemiddelde jaarlijkse 
potentiële verdamping varieert tussen 1.300 en 2.000 mm jaar-1. Gesteenten 
samengesteld uit een kristallijnen fundering bestaande uit graniet, gneis en 
groensteen zijn dominante lithologische typen. Aquifers komen alleen voor 
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waar deze formaties verweerd zijn, dus in breuken en scheuren. Bosgebied is 
het dominante type landbedekking, gevolgd door akkerbouw en grasland. 
 
Hoofdstuk 3 onderzoekt het voorspellen van afvoerstatistieken met behulp van 
meervoudige regressie methoden en neurale netwerken. Meervoudige regressie 
modellen op basis van de gemiddelde jaarlijkse regenval, helling, en de 
verhouding van graniet en gneis gesteente in een stroomgebied voorspellen de 
gemiddelde jaarlijkse afvoer het best,. Een neuraal netwerk met als afhankelijke 
variabelen helling, de gecombineerde fractie van een stroomgebied dat bestaat 
uit bebost grasland en grasland, en de fractie van een stroomgebied dat bestaat 
uit Kalahari zand, geeft de beste beschrijving van de basis afvoer index. Een 
exponentieel model kan de duurlijnen voor afvoer van de bestudeerde 
stroomgebieden beschrijven. Model coëfficiënten kunnen worden afgeleid van 
de basis afvoer index. De beste beschrijving van duurlijnen voor afvoer wordt 
daarentegen behaald met een neuraal netwerk dat de volgende invoer gegevens 
gebruikt: helling, gemiddelde jaarlijkse potentiële verdamping, gemiddelde 
jaarlijkse regenval, en de drainage dichtheid. Een verlooplijn voor de afvoer van 
de gemiddelde maandelijkse neerslag kan worden afgeleid van een neuraal 
netwerk model, op basis van de basis afvoer index, de verhouding van zowel 
bebost grasland en grasland in een stroomgebied, en de helling. 
 
Hoofdstuk 4 gebruikt een directe methode om het overschot binnen de 
stroomgebiedkenmerken te identificeren die de variatie van alle 
afvoerkarakteristieken kunnen beschrijven. Variatie van alle 
afvoerkarakteristieken wordt beschreven door de eerste en tweede coördinaat 
assen van kenmerken binnen een stroomgebied. De gemiddelde jaarlijkse 
regenval blijkt het belangrijkste kenmerk van een stroomgebied te zijn, omdat 
het 59% van de variatie in afvoerkarakteristieken kan verklaren. Andere 
belangrijke stroomgebiedkenmerken zijn de fractie van een stroomgebied met 
gesteente behorende tot de Umkondo assemblage (kwarts, schalie, kalksteen, en 
doleriet intrusie gesteente), het deel van een stroomgebied met grasland, en de 
helling. 
 
Hoofdstuk 5 classificeert de bestudeerde stroomgebieden in clusters met 
homogene hydrologische response volgens de hiërarchische clustering methode. 
Hierbij is gebruik gemaakt van de stroomgebiedkenmerken die de variatie in 
afvoer karakteristieken kunnen beschrijven, zoals geïdentificeerd in hoofdstuk 
4. Het beste aantal clusters bleek vijf te zijn. De gemiddelde jaarlijkse regenval 
is het meest onderscheidende kenmerk van deze clusters. Er is een significant 
verschil in afvoerkarakteristieken tussen de clusters. Daarom mag verondersteld 
worden dat ieder cluster een homogene hydrologische response heeft. Er bestaat 
geen significante relatie tussen afvoerkarakteristieken en de kenmerken van een 
stroomgebied voor welk cluster dan ook. Clustering verdeelde de 
stroomgebieden in groepen waarbij de waarden van zowel de 
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afvoerkarakteristieken als van de kenmerken van het stroomgebied weinig 
verschilden. Binnen deze nauwe marges zijn er geen relaties identificeerbaar 
tussen kenmerken van de afvoer en die van het stroomgebied. Clustering geeft 
daarom geen betere voorspelling van de afvoerkarakteristieken op basis van 
stroomgebiedkenmerken in de onderzochte stroomgebieden. Wel kunnen de 
duurlijn van de afvoer voor ieder van de clusters gebruikt worden om de 
duurlijn van de afvoer van een ongemeten stroomgebied te schatten, maar dan 
moet eerst de cluster waartoe dit stroomgebied behoort vastgesteld zijn. 
 
Hoofdstuk 6 bestudeert de mogelijkheid om parameters van conceptuele 
modellen voor de afvoer van regenval af te leiden uit de kenmerken van een 
stroomgebied. De bestudeerde modellen zijn: a) het abcd model met vier 
parameters, en b) het Pitman model met vijf parameters. Beide modellen zijn 
gebaseerd op een maandelijkse tijdstap. De waarden van de model parameters 
worden gekalibreerd waarbij gebruik gemaakt wordt van zowel handmatige als 
automatische optimalisatie methoden. Equifinaliteit kan de waarden van deze 
parameters beïnvloeden. Maandelijkse afvoer gesimuleerd door het abcd en het 
Pitman model beantwoordde aan geschiktheids criteria voor respectievelijk 77% 
en 87% van de stroomgebieden. Twee parameters van het abcd model zijn 
lineair gerelateerd aan kenmerken van het stroomgebied. Een neuraal netwerk, 
daarentegen, heeft in principe de mogelijkheid om alle parameters te schatten op 
basis van de kenmerken van het stroomgebied. Dit model is echter erg gevoelig 
voor kleine veranderingen in de waarden van parameters. Simulaties met 
parameters die door een neuraal netwerk werden gegenereerd voldeden niet aan 
de criteria voor geschiktheid. Vier van de vijf parameters van het Pitman model 
die gekalibreerd moeten worden kunnen geschat worden op basis van de 
kenmerken van een stroomgebied met een neuraal netwerk, maar de 
determinatie coëfficiënten voor de schattingen waren nogal laag (0.5-0.6). 
 
De volgende conclusies kunnen uit deze studie worden getrokken: 
 
• De meeste afvoerkarakteristieken die nodig zijn voor waterbeheer en 

planning kunnen voorspeld worden op basis van kenmerken van het 
stroomgebied. De meeste van deze karakteristieken worden beter door 
neurale netwerken voorspeld dan door meervoudige regressie methoden. 

• De basis afvoer index is een belangrijk kenmerk van een stroomgebied, met 
behulp waarvan verscheidene andere afvoerstatistieken kunnen worden 
afgeleid. 

• De gemiddelde jaarlijkse regenval is het belangrijkste kenmerk van een 
stroomgebied, in die zin dat het de variaties van afvoerkarakteristieken in de 
bestudeerde stroomgebieden goed kan verklaren. 

• Met behulp van een cluster analyse gebaseerd op kenmerken van het 
stroomgebied kunnen stroomgebieden met een vergelijkbare hydrologisch 
gedrag geïdentificeerd worden. Dan moet deze classificatie wel gebruik 
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maken van, en gewichten toekennen aan, die stroomgebiedkenmerken die de 
relevante afvoerkarakteristieken kunnen beschrijven. 

• De classificatie van stroomgebieden in clusters met een vergelijkbaar 
hydrologisch gedrag verbetert de relatie tussen afvoerkarakteristieken en 
stroomgebiedkenmerken niet als binnen deze clusters de waarden van zowel 
de afvoerkarakteristieken als de kenmerken van het stroomgebied weinig 
verschillen. 

• De voorspelling van parameters van sommige conceptuele regenvalafvoer 
modellen op basis van kenmerken van een stroomgebied is mogelijk, maar 
de bruikbaarheid van deze voorspellingen kan beïnvloed worden door de 
gevoeligheid van een model voor veranderingen in parameterwaarden. Elk 
van de modellen heeft parameters die niet gerelateerd kunnen worden aan 
stroomgebiedkenmerken, en die wel moeten worden gekalibreerd. Deze 
modellen kunnen niet in ongemeten stroomgebieden worden gebruikt omdat 
niet alle parameters afgeleid kunnen worden van de kenmerken van dat 
stroomgebied. 

 



 165

CURRICULUM VITAE 
 
Dominic Mazvimavi was born on 17 May 1957 at Mvuma in Zimbabwe. He 
attended Kutama Secondary School (1972-75) and Gokomere High School 
(1976-77). He was admitted in 1978 to read for the BSc General Degree at the 
then University of Rhodesia, and obtained a BSc Honours in Geography in 
1980. In 1981 he joined the Department of Water Resources Development, 
Zimbabwe as a Hydrologist. He was awarded a Belgian Fellowship to read for 
the Post-graduate Diploma in Hydrology from 1983 to 1984 at the Free 
University of Brussels, and proceeded to do an MSc in Hydrology, (1984-85), at 
the same university. Upon his return to the Department of Water Resources 
Development in Zimbabwe in 1985, he was responsible at the national level for 
undertaking various hydrological analysis for water resources planning, and 
estimation of flow characteristics of ungauged catchments was a recurring 
problem. 
 
Dominic Mazvimavi was appointed in 1988 as a Lecturer in the Department of 
Geography and Environmental Science at the University of Zimbabwe, teaching 
hydrology, environmental impact assessment, and water resources management. 
In addition to teaching at this university, he has undertaken several water 
resources planning and management projects within east and southern Africa, 
and again estimation of flow characteristics of ungauged catchments is a major 
problem within this region. He started his PhD studies at the International 
Institute for Geo-Information and Earth Sciences (ITC), in the Netherlands in 
2000, while registered at Wageningen University, the Netherlands. He is 
currently employed as a Senior Lecturer at the University of Zimbabwe.  
 
 



 166



 167

APPENDIX 1: LIST OF SELECTED CATCHMENTS 
 
Code 
 

Station Name 
 

River 
 

Latitude 
(°) 

Longitude 
 (°E) 

Area 
(km2) 

Opened 
 

C13 Whitewaters Dam U/S Kwekwe -19.367 30.017 150.0 10/26/1950 

C14 Whitewaters Dam U/S Kanuka -19.400 30.050 101.0 10/27/1950 

C18 Dyke G/W Munyati -18.817 30.317 2630.0 9/28/1952 

C23 Edinburgh Nyatsime -18.067 31.067 50.0 9/10/1953 

C25 Ayre's Poort Mukwadzi -17.433 30.617 282.0 11/3/1953 

C33 Chivhu Sebakwe -19.083 30.90 194.0 9/9/1954 

C41 Sebakwe Dam U/S Umvumi -19.067 31.350 855.0 8/15/1955 

C43 Grasslands Manyame Trib -18.167 31.483 3.50 9/14/1955 

C47 Sebakwe Dam U/S Sebakwe -19.067 30.350 1550.0 9/26/1956 

C6 Ngezi Dam U/S Ngezi -18.667 30.517 1040.0 1/1/1948 

C70 Beatrice Mupfure -18.250 30.767 1210.0 2/20/1969 

D24 Arcadia U/S Pote -17.367 31.433 1060.0 2/15/1958 

D27 Mazowe Dam U/S Dassura -17.567 31.00 70.0 11/9/1961 

D28 Mazowe Dam U/S Mazowe -17.583 31.017 223.0 10/1/1962 

D42 Mufurudzi Dam U/S Mufurudzi -17.167 31.50 163.0 1/1/1968 

D44 Myross Pote -17.267 31.550 1220.0 9/30/1968 

D6 Mutoko Road Bridge Shawanhowe -17.633 31.60 1170.0 10/3/1949 

D45 Bally Vaughan Munenga -17.67 31.38 137.0 31/10/1968 

D48 Mwenje Dam U/S Wengi -17.25 30.57 399.0 22/8/1969 

D50 Mwenje Dam U/S Nyamasanga -17.22 30.98 13.0 31/7/1970 

D70 Foothills Sambi -17.250 31.283 316.0 12/14/1974 

E106 Drennan Nyambwa -18.750 32.717 77.70 1/1/1966 

E107 Gadziguru Flumes Musokwesi -20.57 30.78 249.0 24/9/1966 

E108 Manjirenj Chiredzi -20.483 31.533 1041.0 9/26/1966 

E114 Roswa Tur Roswa -20.167 31.60 197.0 1/10/1967 

E115 U/S Roswa Turgwe -20.167 31.60 223.0 2/15/1967 

E120 Nyanyadzi Dam U/S Piriviri -19.767 32.667 150.0 9/25/1968 

E121 Nyanyadzi Dam U/S Nyanyadzi -19.750 32.683 186.0 11/15/1938 
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E123 Condo Dam U/S Mare -19.00 31.917 492.0 7/18/1969 

E125 Old Cashel Road Bridge Umvumvumvu -19.517 32.617 433.0 3/25/1970 

E127 Selbourne Nyamazi -18.533 32.633 67.30 1/1/1970 

E128 Minnehaha Nyakupinga -18.467 32.70 46.60 1/1/1970 

E129 Minnehaha Odzi -18.467 32.683 75.10 1/1/1970 

E132 Lisnakea Umvumira -18.417 32.517 34.0 1/1/1970 

E136 Rusape Dam U/S Rusape -18.550 32.117 635.0 12/1/1971 

E152 Glenfarg Chimbi -18.433 32.183 146.0 2/8/1974 

E16 Mharapara Wengezi -19.433 32.70 47.0 7/7/1952 

E23 Gwenoro D Nyamadziw -19.683 29.850 85.50 8/12/1955 

E24 Condo U/S Tsungwesi -19.050 32.117 557.0 8/31/1955 

E28 Mberengwa Ngezi -20.367 29.90 1680.0 1/1/1956 

E29 Zimunya Mupudzi -19.133 32.667 75.10 6/29/1956 

E30 Gwenoro D Runde -19.683 29.867 254.0 8/26/1956 

E33 Standhope Dam Gwetshetshe -19.73 29.43 18.0 7/10/1957 

E35 Mberengwa Road Muchingwe -20.42 29.87 1630.0 27/11/1957 

E37 Buffels Drift Tanganda -20.10 32.517 246.0 1/29/1958 

E40 Mt. Bouga Littl.Mut -19.817 30.050 285.0 11/20/1958 

E42 Rietfonte Mutevekwe -19.883 29.950 648.0 2/11/1959 

E44 Mutirikwi Dam U/S Bevumi -20.17 31.13 114.0 21/7/1959 

E45 Mutirikwi Mutirikwi -20.083 31.067 847.0 9/15/1959 

E49 Mutirikwi Popotekwe -20.117 31.017 1010.0 12/11/1959 

E72 Odzani Dam U/S Nyakawunga -18.783 32.750 8.40 11/20/1961 
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APPENDIX 2: CODES USED TO REFER TO SELECTED 
CATCHMENTS 
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2. Pan He Ping, 1990, 90-9003757-8, Spatial structure theory in machine 

vision and applications to structural and textural analysis of remotely 
sensed images 

3. Bocco Verdinelli, G., 1990, Gully erosion analysis using remote sensing 
and geographic information systems: a case study in Central Mexico 

4. Sharif, M, 1991, Composite sampling optimization for DTM in the context 
of GIS 

5. Drummond, J., 1991, Determining and processing quality parameters in 
geographic information systems 

6. Groten, S., 1991, Satellite monitoring of agro-ecosystems in the Sahel 
7. Sharifi, A., 1991, 90-6164-074-1, Development of an appropriate resource 

information system to support agricultural management at farm enterprise 
level 

8. Zee, D. van der, 1991, 90-6164-075-X, Recreation studied from above: 
Air photo interpretation as input into land evaluation for recreation 

9. Mannaerts, C., 1991, 90-6164-085-7, Assessment of the transferability of 
laboratory rainfall-runoff and rainfall - soil loss relationships to field and 
catchment scales: a study in the Cape Verde Islands 

10. Ze Shen Wang, 1991: 90-393-0333-9, An expert system for cartographic 
symbol design 

11. Zhou Yunxian, 1991, 90-6164-081-4, Application of Radon transforms to 
the processing of airborne geophysical data 

12. Zuviria, M. de, 1992, 90-6164-077-6, Mapping agro-topoclimates by 
integrating topographic, meteorological and land ecological data in a 
geographic information system: a case study of the Lom Sak area, North 
Central Thailand 

13. Westen, C. van, 1993, 90-6164-078-4, Application of Geographic 
Information Systems to landslide hazard zonation 

14. Shi Wenzhong, 1994, 90-6164-099-7, Modelling positional and thematic 
uncertainties in integration of remote sensing and geographic information 
systems 

15. Javelosa, R., 1994, 90-6164-086-5, Active Quaternary environments in the 
Philippine mobile belt 

16. Lo King-Chang, 1994, 90-9006526-1, High Quality Automatic DEM, 
Digital Elevation Model Generation from Multiple Imagery 

17. Wokabi, S., 1994, 90-6164-102-0, Quantified land evaluation for maize 
yield gap analysis at three sites on the eastern slope of Mt. Kenya 

18. Rodriguez, O., 1995, Land Use conflicts and planning strategies in urban 
fringes: a case study of Western Caracas, Venezuela 



 172

19. Meer, F. van der, 1995, 90-5485-385-9, Imaging spectrometry & the 
Ronda peridotites 

20. Kufoniyi, O., 1995, 90-6164-105-5, Spatial coincidence: automated 
database updating and data consistency in vector GIS 

21. Zambezi, P., 1995, Geochemistry of the Nkombwa Hill carbonatite 
complex of Isoka District, north-east Zambia, with special emphasis on 
economic minerals 

22. Woldai, T., 1995, The application of remote sensing to the study of the 
geology and structure of the Carboniferous in the Calañas area, pyrite belt, 
SW Spain 

23. Verweij, P., 1995, 90-6164-109-8, Spatial and temporal modelling of 
vegetation patterns: burning and grazing in the Paramo of Los Nevados 
National Park, Colombia 

24. Pohl, C., 1996, 90-6164-121-7, Geometric Aspects of Multisensor Image 
Fusion for Topographic Map Updating in the Humid Tropics 

25. Jiang Bin, 1996, 90-6266-128-9, Fuzzy overlay analysis and visualization 
in GIS 

26. Metternicht, G., 1996, 90-6164-118-7, Detecting and monitoring land 
degradation features and processes in the Cochabamba Valleys, Bolivia. A 
synergistic approach 

27. Hoanh Chu Thai, 1996, 90-6164-120-9, Development of a Computerized 
Aid to Integrated Land Use Planning (CAILUP) at regional level in 
irrigated areas: a case study for the Quan Lo Phung Hiep region in the 
Mekong Delta, Vietnam 

28. Roshannejad, A., 1996, 90-9009284-6, The management of spatio-
temporal data in a national geographic information system 

29. Terlien, M., 1996, 90-6164-115-2, Modelling Spatial and Temporal 
Variations in Rainfall-Triggered Landslides: the integration of hydrologic 
models, slope stability models and GIS for the hazard zonation of rainfall-
triggered landslides with examples from Manizales, Colombia 

30. Mahavir, J., 1996, 90-6164-117-9, Modelling settlement patterns for 
metropolitan regions: inputs from remote sensing 

31. Al-Amir, S., 1996, 90-6164-116-0, Modern spatial planning practice as 
supported by the multi-applicable tools of remote sensing and GIS: the 
Syrian case 

32. Pilouk, M., 1996, 90-6164-122-5, Integrated modelling for 3D GIS 
33. Duan Zengshan, 1996, 90-6164-123-3, Optimization modelling of a river-

aquifer system with technical interventions: a case study for the Huangshui 
river and the coastal aquifer, Shandong, China 

34. Man, W.H. de, 1996, 90-9009-775-9, Surveys: informatie als norm: een 
verkenning van de institutionalisering van dorp - surveys in Thailand en op 
de Filippijnen 

35. Vekerdy, Z., 1996, 90-6164-119-5, GIS-based hydrological modelling of 
alluvial regions: using the example of the Kisaföld, Hungary 



 173

36. Pereira, Luisa, 1996, 90-407-1385-5, A Robust and Adaptive Matching 
Procedure for Automatic Modelling of Terrain Relief 

37. Fandino Lozano, M., 1996, 90-6164-129-2, A Framework of Ecological 
Evaluation oriented at the Establishment and Management of Protected 
Areas: a case study of the Santuario de Iguaque, Colombia 

38. Toxopeus, B., 1996, 90-6164-126-8, ISM: an Interactive Spatial and 
temporal Modelling system as a tool in ecosystem management: with two 
case studies: Cibodas biosphere reserve, West Java Indonesia: Amboseli 
biosphere reserve, Kajiado district, Central Southern Kenya 

39. Wang Yiman, 1997, 90-6164-131-4, Satellite SAR imagery for 
topographic mapping of tidal flat areas in the Dutch Wadden Sea 

40. Saldana-Lopez, Asunción, 1997, 90-6164-133-0, Complexity of soils and 
Soilscape patterns on the southern slopes of the Ayllon Range, central 
Spain: a GIS assisted modelling approach 

41. Ceccarelli, T., 1997, 90-6164-135-7, Towards a planning support system 
for communal areas in the Zambezi valley, Zimbabwe; a multi-criteria 
evaluation linking farm household analysis, land evaluation and geographic 
information systems 

42. Peng Wanning, 1997, 90-6164-134-9, Automated generalization in GIS 
43. Lawas, C., 1997, 90-6164-137-3, The Resource Users' Knowledge, the 

neglected input in Land resource management: the case of the Kankanaey 
farmers in Benguet, Philippines 

44. Bijker, W., 1997, 90-6164-139-X, Radar for rain forest: A monitoring 
system for land cover Change in the Colombian Amazon 

45. Farshad, A., 1997, 90-6164-142-X, Analysis of integrated land and water 
management practices within different agricultural systems under semi-arid 
conditions of Iran and evaluation of their sustainability 

46. Orlic, B., 1997, 90-6164-140-3, Predicting subsurface conditions for 
geotechnical modelling 

47. Bishr, Y., 1997, 90-6164-141-1, Semantic Aspects of Interoperable GIS 
48. Zhang Xiangmin, 1998, 90-6164-144-6, Coal fires in Northwest China: 

detection, monitoring and prediction using remote sensing data 
49. Gens, R., 1998, 90-6164-155-1, Quality assessment of SAR 

interferometric data 
50. Turkstra, J., 1998, 90-6164-147-0, Urban development and geographical 

information: spatial and temporal patterns of urban development and land 
values using integrated geo-data, Villaviciencia, Colombia 

51. Cassells, C., 1998, Thermal modelling of underground coal fires in 
northern China 

52. Naseri, M., 1998, 90-6164-195-0, Characterization of Salt-affected Soils 
for Modelling Sustainable Land Management in Semi-arid Environment: a 
case study in the Gorgan Region, Northeast, Iran 

53. Gorte B.G.H., 1998, 90-6164-157-8, Probabilistic Segmentation of 
Remotely Sensed Images 



 174

54. Tenalem Ayenew, 1998, 90-6164-158-6, The hydrological system of the 
lake district basin, central main Ethiopian rift 

55. Wang Donggen, 1998, 90-6864-551-7, Conjoint approaches to developing 
activity-based models 

56. Bastidas de Calderon, M., 1998, 90-6164-193-4, Environmental fragility 
and vulnerability of Amazonian landscapes and ecosystems in the middle 
Orinoco river basin, Venezuela  

57. Moameni, A., 1999, Soil quality changes under long-term wheat 
cultivation in the Marvdasht plain, South-Central Iran 

58. Groenigen, J.W. van, 1999, 90-6164-156-X, Constrained optimisation of 
spatial sampling: a geostatistical approach 

59. Cheng Tao, 1999, 90-6164-164-0, A process-oriented data model for 
fuzzy spatial objects 

60. Wolski, Piotr, 1999, 90-6164-165-9, Application of reservoir modelling to 
hydrotopes identified by remote sensing 

61. Acharya, B., 1999, 90-6164-168-3, Forest biodiversity assessment: A 
spatial analysis of tree species diversity in Nepal  

62. Akbar Abkar, Ali, 1999, 90-6164-169-1, Likelihood-based segmentation 
and classification of remotely sensed images 

63. Yanuariadi, T., 1999, 90-5808-082-X, Sustainable Land Allocation: GIS-
based decision support for industrial forest plantation development in 
Indonesia 

64. Abu Bakr, Mohamed, 1999, 90-6164-170-5, An Integrated Agro-
Economic and Agro-Ecological Framework for Land Use Planning and 
Policy Analysis 

65. Eleveld, M., 1999, 90-6461-166-7, Exploring coastal morphodynamics of 
Ameland (The Netherlands) with remote sensing monitoring techniques 
and dynamic modelling in GIS 

66. Yang Hong, 1999, 90-6164-172-1, Imaging Spectrometry for 
Hydrocarbon Microseepage 

67. Mainam, Félix, 1999, 90-6164-179-9, Modelling soil erodibility in the 
semiarid zone of Cameroon 

68. Bakr, Mahmoud, 2000, 90-6164-176-4, A Stochastic Inverse-
Management Approach to Groundwater Quality 

69. Zlatanova, Z., 2000, 90-6164-178-0, 3D GIS for Urban Development 
70. Ottichilo, Wilber K., 2000, 90-5808-197-4, Wildlife Dynamics: An 

Analysis of Change in the Masai Mara Ecosystem 
71. Kaymakci, Nuri, 2000, 90-6164-181-0, Tectono-stratigraphical Evolution 

of the Cankori Basin (Central Anatolia, Turkey) 
72. Gonzalez, Rhodora, 2000, 90-5808-246-6, Platforms and Terraces: 

Bridging participation and GIS in joint-learning for watershed management 
with the Ifugaos of the Philippines 



 175

73. Schetselaar, Ernst, 2000, 90-6164-180-2, Integrated analyses of granite-
gneiss terrain from field and multisource remotely sensed data. A case 
study from the Canadian Shield 

74. Mesgari, Saadi, 2000, 90-3651-511-4, Topological Cell-Tuple Structure 
for Three-Dimensional Spatial Data 

75. Bie, Cees A.J.M. de, 2000, 90-5808-253-9, Comparative Performance 
Analysis of Agro-Ecosystems 

76. Khaemba, Wilson M., 2000, 90-5808-280-6, Spatial Statistics for Natural 
Resource Management 

77. Shrestha, Dhruba, 2000, 90-6164-189-6, Aspects of erosion and 
sedimentation in the Nepalese Himalaya: highland-lowland relations 

78. Asadi Haroni, Hooshang, 2000, 90-6164-185-3, The Zarshuran Gold 
Deposit Model Applied in a Mineral Exploration GIS in Iran 

79. Raza, Ale, 2001, 90-3651-540-8, Object-oriented Temporal GIS for Urban 
Applications 

80. Farah, Hussein, 2001, 90-5808-331-4, Estimation of regional evaporation 
under different weather conditions from satellite and meteorological data. 
A case study in the Naivasha Basin, Kenya 

81. Zheng, Ding, 2001, 90-6164-190-X, A Neural - Fuzzy Approach to 
Linguistic Knowledge Acquisition and Assessment in Spatial Decision 
Making 

82. Sahu, B.K., 2001, Aeromagnetics of continental areas flanking the Indian 
Ocean; with implications for geological correlation and Gondwana 
reassembly 

83. Alfestawi, Y., 2001, 90-6164-198-5, The structural, paleogeographical and 
hydrocarbon systems analysis of the Ghadamis and Murzuq Basins, West 
Libya, with emphasis on their relation to the intervening Al Qarqaf Arch 

84. Liu, Xuehua, 2001, 90-5808-496-5, Mapping and Modelling the Habitat 
of Giant Pandas in Foping Nature Reserve, China 

85. Oindo, Boniface Oluoch, 2001, 90-5808-495-7, Spatial Patterns of 
Species Diversity in Kenya 

86. Carranza, Emmanuel John, 2002, 90-6164-203-5, Geologically-
constrained Mineral Potential Mapping 

87. Rugege, Denis, 2002, 90-5808-584-8, Regional Analysis of Maize-Based 
Land Use Systems for Early Warning Applications 

88. Liu, Yaolin, 2002, 90-5808-648-8, Categorical Database Generalization in 
GIS 

89. Ogao, Patrick, 2002, 90-6164-206-X, Exploratory Visualization of 
Temporal Geospatial Data using Animation 

90. Abadi, Abdulbaset M., 2002, 90-6164-205-1, Tectonics of the Sirt Basin 
– Inferences from tectonic subsidence analysis, stress inversion and gravity 
modelling 

91. Geneletti, Davide, 2002, 90-5383-831-7, Ecological Evaluation for 
Environmental Impact Assessment 



 176

92. Sedogo, Laurent G., 2002, 90-5808-751-4, Integration of Participatory 
Local and Regional Planning for Resources Management using Remote 
Sensing and GIS 

93. Montoya, Lorena, 2002, 90-6164-208-6, Urban Disaster Management: a 
case study of earthquake risk assessment in Carthago, Costa Rica 

94. Ahmad, Mobin-ud-Din, 2002, 90-5808-761-1, Estimation of Net 
Groundwater Use in Irrigated River Basins using Geo-information 
Techniques: A case study in Rechna Doab, Pakistan 

95. Said, Mohammed Yahya, 2003, 90-5808-794-8, Multiscale perspectives 
of species richness in East Africa 

96. Schmidt, Karin, 2003, 90-5808-830-8, Hyperspectral Remote Sensing of 
Vegetation Species Distribution in a Saltmarsh 

97. Lopez Binnquist, Citlalli, 2003, 90-3651-900-4, The Endurance of 
Mexican Amate Paper: Exploring Additional Dimensions to the 
Sustainable Development Concept 

98. Huang, Zhengdong, 2003, 90-6164-211-6, Data Integration for Urban 
Transport Planning 

99. Cheng, Jianquan, 2003, 90-6164-212-4, Modelling Spatial and Temporal 
Urban Growth 

100. Campos dos Santos, Jose Laurindo, 2003, 90-6164-214-0, A 
Biodiversity Information System in an Open Data/Metadatabase 
Architecture 

101. Hengl, Tomislav, 2003, 90-5808-896-0, PEDOMETRIC MAPPING, 
Bridging the gaps between conventional and pedometric approaches 

102. Barrera Bassols, Narciso, 2003, 90-6164-217-5, Symbolism, Knowledge 
and management of Soil and Land Resources in Indigenous Communities: 
Ethnopedology at Global, Regional and Local Scales 

103. Zhan, Qingming, 2003, 90-5808-917-7, A Hierarchical Object-Based 
Approach for Urban Land-Use Classification from Remote Sensing Data 

104. Daag, Arturo S., 2003, 90-6164-218-3, Modelling the Erosion of 
Pyroclastic Flow Deposits and the Occurrences of Lahars at Mt. Pinatubo, 
Philippines 

105. Bacic, Ivan, 2003, 90-5808-902-9, Demand-driven Land Evaluation with 
case studies in Santa Catarina, Brazil 

106. Murwira, Amon, 2003, 90-5808-951-7, Scale matters! A new approach to 
quantify spatial heterogeneity for predicting the distribution of wildlife 

 


