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CHAPTER 1

INTRODUCTION

Hydrophobic surfaces in contact with an aqueous solution often carry a charge. This
charge, generally located at the surface, is compensated by an equivalent ionic countercharge
diffusely distributed in the adjacent medium. The interfacial region encompassing the surface
charge and the diffuse countercharge is called electric double layer or double layer, in short. The
charging mechanisms underlying the spontaneous formation of ionic double layers at surfaces are
chemical in nature, the double layer being the result of preferential adsorption of ions on the
surface. Equilibrium double layers at insulated interfaces are said to be relaxed or reversible, their
Gibbs energy of formation being negative. Knowledge of the double layer charging mechanisms
is a mandatory prerequisite in understanding the interface and colloid science involved in such
subjects as electrokinetics, ionic and macromolecular adsorption at phase boundaries, colloid
stability, etc.

If the substrate material is an electronic conductor, the double layer may be controlled by
an externally applied potential. As long as the medium does not contain electroactive species, i.e.
species that may undergo (faradaic) electron transfer reactions, the interface is said to be
polarizable. The classical representative of this category is the interface between liquid mercury
and an aqueous solution of a so-called background (that is, electroinactive) electrolyte. If the ions
present in the solution have no chemical affinity for the surface, that is, if they do not specifically
interact with the surface, then the driving force for the double layer formation is of purely
electrostatic nature. In the more general case, the double layer arises from the interplay between
electronic and ionic charging processes. If the medium contains electroactive species, a faradaic
current may flow. This current generally depends on the magnitude of the potential difference
applied across the interface and the thermodynamic/kinetic characteristics of the electron transfer
reaction.' The interface then undergoes faradaic depolarization. The external source provides the
initial Gibbs energy required to create an excess or deficit of electrons on the surface, that is, to
generate a potential difference between the substrate and the solution. The understanding of these
systems has been and is still an important research area in interfacial electrochemistry. Much
attention is being devoted to the generation of physical insight into the charge/potential
relationships obtained under conditions leading or not to faradaic double layer depolarization in

the presence or absence of specific adsorption of ions. Within the framework of electrochemistry,
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knowledge of the structure of the interfacial double layer is crucial in relation to its implications
for electrode kinetics and electrochemical measurements.’

The parallel between interfacial double layers as considered in electrochemistry and
colloid chemistry underlines the different primary interests of the two chemical disciplines.
Colloid chemists tend to concentrate on non-conducting materials or rather, on double layers
without electronic charge components, whereas electrochemists focus on controllable electronic
charge at the surface of conducting electrodes. Some substrates, however, combine polarizable
and reversible double layer features. Partially oxidized metals and semiconducting oxides are
illustrative examples. Within the scope of fundamental research, the topic is challenging because
it necessarily integrates the ‘reversible’ (colloid chemical) and ‘polarizable’ (electrochemical)
features of an interfacial double layer. On a more practical level, such double layer knowledge
opens the perspective of optimizing industrial processes that apply these amphifunctional
interfacial systems. Electrophoretic deposition of colloidal particles onto conducting substrates is

an illustrative example of such a process.>®

Context of this study

In the electrophoretic deposition process (EPD), an electric field is applied across a
suspension containing charged colloidal particles. These particles migrate towards a deposition
electrode, at the surface of which a deposit of the particle material is formed. EPD comprises two
basic steps: the migration of charged particles in the applied electric field (electrophoresis) and
the settling of the particles to form an adherent layer on the electrode (deposition). The main
objective is the generation of well structured patterns of deposited particle layers, that could be
manipulated at will by variation of the external electric variable. Practical rates of migration of
the particles require a sufficiently strong electric field, which can only be maintained if there is an
ongoing interfacial current, i.e. if electrochemical reactions occur. Mostly, reduction/oxidation of
water will ensure the passage of this faradaic current. Unfortunately, under certain deposition
conditions, the resulting gas formation at the surface may strongly influence the ability of the
particles to adhere at the electrode and thus may give rise to heterogeneous deposits.’

An alternative solution to the above problem would be the addition of a suitable
reversible redox couple to the aqueous suspension. The choice of an appropriate couple requires
careful consideration: its standard potential should be located at such a position with respect to
the p.z.c. of the electrode that (while the faradaic current is flowing) the actual electrodic charge
has the appropriate sign and magnitude to warrant the right level of interaction with the incoming
particles. In the absence of an externally applied field (no faradaic current flows), the redox

couple fixes the potential difference across the interfacial region at a value Df oq0x given by the
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Nernst relation. Generally, this potential differs from the total potential drop Df pzc established

across the interface in the absence of electroactive species in the dispersion. When applying an
external field Df ., the reversibility of the ensuing faradaic processes taking place prevents
electrolysis of water from interfering with the particle adhesion process. The difference

DJ redox = O pyc fixes the electronic charge at the electrode under open circuit conditions.

Variation of Df oyt = Df redox (in sign as well as in magnitude) allows control of the strength of
the electric field in the solution and the magnitude of the interfacial faradaic current. Supposing
that the particle does not influence the surface properties of the deposition electrode (which is
true only if the particle is sufficiently far from the electrode surface), the
polarization/depolarization state of the electrode then depends on its chemical surface properties,

on the respective magnitudes of the potential differences Df reqox> Of pre> OF exy and on the

characteristics of the redox couple (standard potential, reversibility of the electron transfer
reaction at the surface of interest, diffusive transport properties, etc). The combination of all these
variables determines the double layer structure at the electrode|suspension interface and fixes the
Z-potential, i.e. the potential at the electrokinetic slip plane. In the bulk solution, outside the
interfacial double layer region, the propensity for the particle to migrate is determined by the
charge it carries and the strength of the electric field. In the vicinity of the electrode, that is,
within the spatial range corresponding to significant overlap of the particle and electrode double
layers, migration and subsequent adhesion of the particle are governed by (i) the surface
properties of the particle as well as the strength of the local electric fields experienced by the
particle (these fields are the strongest at the electrode surface), (ii) the Zz-potential at the
deposition electrode, and (iii) the possibility of regulation mechanisms of the electric properties
of the interacting surfaces upon overlap of the double layers. These latter mechanisms may be
electrical, chemical and/or faradaic in nature. Realizing that these considerations are far from
exhaustive (e.g. induced hydrodynamic fields, particle-particle interactions at the electrode

surface®!°

were not mentioned), it is clear that EPD results from a subtle combination of
electrochemical and colloidal phenomena, both of which play a determining role in the two basic
steps of the deposition process.

Though much attention is rightly paid to the colloidal properties of the particles to be
deposited (surface charge, electrophoretic mobility), those of the deposition electrode together
with the electrochemical characteristics of the ongoing faradaic reactions, are generally given less
attention. The work reported in this thesis therefore focuses on the double layer charging

mechanisms at the conducting substratelaqueous solution interface under conditions leading to

polarization, whether or not followed by faradaic depolarization. Double layer properties of
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insulating surfaces are classically studied by electrokinetics and atomic force microscopy (AFM).
These two techniques will be considered under the conditions underlined above, from both

theoretical and experimental points of view.

Electrokinetics
Electrokinetic phenomena are characterized by the tangential motion of liquid with
respect to an adjacent charged surface. The measured electrokinetic quantities reflect the double

layer properties of the surface|solution interface, in particular the z-potential.'' Streaming

potential is by far the most widely used experimental quantity to probe double layer properties of
flat surfaces. It is the steady state potential difference generated by the flow of liquid along the
charged surface in a capillary or thin-layer cell. Other techniques such as potentiometric and
conductometric titration commonly adopted for electrical characterization of dispersed colloidal
systems are useless since the surface area for macroscopic substrates is too low. The streaming
potential technique has gained a prominent position in probing double layer properties of
dielectric solid surfaces. The feasibility of the technique for conducting surfaces like metals has
been questioned because the strong electronic conduction in the bulk substrate is often believed to
annihilate the generation of any measurable streaming potential. As early as in the 1930’s, work
from the Overbeek school of colloid chemistry already highlighted the necessity of electron
transfer between substrate and medium before any impact of such conduction needs to be
considered.'*"* Streaming potential data for metals can be found in the literature.'> Conversion of
these into Zz-potentials is performed following the route usually employed for dielectric

substrates, !

implying that the electronic conduction of the metals is believed to be
insignificant, or simply ignored. Nowadays, with the current insight into surface conduction
effects on electrokinetic parameters'' and a well-developed state of electrodic chemistry of
faradaic processes,' it seems timely to get back to the subject and aim for a rigorous analysis. It is
pertinent to add here that at the onset of the current age of micro- and nanochemistry, the kinetics
of surface reactions in small channels with flowing reaction mixtures call for a comprehensive
physicochemical analysis. Thus, the electrokinetic field of research as emerging from the context

of electrophoretic deposition may well also provide the general basis for such new fields.

Atomic Force Microscopy (AFM)

Atomic Force Microscopy constitutes a young and powerful tool for measuring
interaction forces between charged colloids.' A particle with known double layer properties, the
so-called colloidal probe, is attached to a cantilever and made to approach the target surface with

unknown double layer features.'””® The deviations of the cantilever due to the interactions
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between the surfaces are converted into a force/separation curve by means of Hooke’s law. The
origin of this force may be multiple. At short separation (typically in the nm scale), Van der
Waals forces prevail whereas in the range of larger separation, electrical forces dominate. The
total force is subjected to theoretical analysis so as to derive the surface properties of the substrate
studied. As far as the electrostatic contribution is concerned, typically, trial and error is used to
determine which model provides the best fit of the experimental data: i.e., either a surface charge
that does not adjust during interaction (interaction at constant charge), or a surface charge that is
completely relaxed during encounter (interaction at constant potential). In practice, however,
chemical ion adsorption equilibria at the interfaces may lead to regulation of the double layers
upon encounter.”’ This thesis presents a new approach to electrostatic interactions between two
charged colloids, allowing inclusion of surface roughness and/or chemical heterogeneity. The
importance of considering the exact surface topology and/or nonuniformity of the charges at the
surface is justified by a plethora of experimental evidence revealing huge discrepancies between

23-25

predicted and observed behaviour in coagulation analysis,”* interaction forces, particle

depositions,26 etc.

Outline of the thesis

The structure of the thesis is as follows. A first part treats the basic characteristics of
double layers at conductor|solution interfaces responding to electronic and ionic surface charging
processes (chapters 2-4). A second part deals with the electrokinetics of such interfacial systems
(chapters 5-9) and a third part is devoted to regulation and surface roughness aspects in double
layers interaction (chapters 10-11).

In chapter 2, a theoretical analysis is given for the double layer properties at the
conductor|solution interface where electronic and ionic charges simultaneously govern the double
layer features. We have termed such interfaces as amphifunctional since they are controlled by
solution properties (pH, ionic composition, etc) as well as by an external electrical source. In
chapter 3, the amphifunctional model is applied to the interpretation of diffuse double layer
potentials as derived from atomic force data on a gold electrode using a silica colloidal probe. In
chapter 4, the model is extended to the case where background ions contribute to the charging
processes at the amphifunctional electrode surface. The case of semi-conducting electrodes is also
tackled. On the basis of the modelling of the interfacial region, both adsorption properties of ions
as a function of pH and externally applied potential and atomic force data on the titanium oxide
surface are re-examined and interpreted. Chapter 5 qualitatively describes the electrodic
behaviour of the aluminium surface in a thin-layer cell usually employed for electrokinetic

measurements. In the analysis, the electrokinetics is mimicked by a lateral electric field applied in
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the solution so as to highlight the possibility of interfering faradaic electron transfer between the
substrate and the solution. A first-order theory based on the assumption of a linear potential
distribution in the electrolyte solution exploits the monopolar electrochemical properties of the
metallic substrate for interpreting the measured polarization curves. In chapter 6, the
electrokinetics is examined for gold and aluminium surfaces in the absence or presence of a redox
couple in the electrolyte solution. It is shown that electrokinetic experiments on conducting
substrates are indeed feasible provided that the occurrence of faradaic depolarization is properly
taken into account. Chapter 7 proposes a theory for quantifying transversal faradaic
depolarization processes induced by a lateral field applied in the thin-layer chamber of an
electrokinetic cell. The analysis is carried out for the two limiting cases of irreversible and
reversible electron transfer and quantifies the deviation of the potential distribution from linearity,
as assumed earlier in chapter 5. Chapter 8 analyzes the reversible faradaic processes occurring at
metallic surfaces as generated by hydrodynamic tangential flow applied through a thin-layer cell.
Rigorous theoretical analysis, taking into account the coupled diffusion, convection and
conduction processes, results in a comprehensive description including full-scale concentration

profiles of the relevant species. On the basis of this theory, streaming potentials for gold surfaces
in the presence of the redox couple Fe(CN)z_ / Fe(CN)g_ are analyzed in chapter 9. A

procedure is developed for converting the measured streaming potentials into the underlying z-
potentials. The peculiar nature of the computed Zz-potentials is discussed in terms of the
chemical/electrochemical properties of the redox compounds. Chapter 10 deals with regulation
mechanisms that are effective upon approach of two interacting interfaces. The corresponding
double layers are systematically described on the Gouy-Stern level, which allows transparent
consideration of ionic specificity. The ensuing Gibbs energy of interaction deviates significantly
from that predicted on the basis of the DLVO theory, even at relatively large separation
corresponding to weak overlap of the double layers. Chapter 11 treats interactions between
heterogeneous surfaces. Using a two-gradient mean-field lattice theory, it is shown how the
topology of the surfaces may be critical in determining the anisotropic electrostatics and the
chemical regulation of the double layers, which together govern both the amplitude and the sign
of the net interaction force. Finally, chapter 12 summarizes the main overall conclusions from
the foregoing chapters and suggests promising lines of future expansion of the field of research

covered by this thesis.

In line with the importance of EPD in industrial processes, this work was part of a joint

project with Philips Research Laboratories, Eindhoven, The Netherlands.
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Solid/liquid interfaces can acquire a charge by two principally different processes, i.e., by charging the
interface via an external electric source or by specific adsorption/desorption of ionic species from/to the
liquid. Here, we analyze the properties of electric double layers (DL) that are governed by the simultaneous
functioning and coupling of these two charging mechanisms. For such interfaces, which we will denote
as amphifunctional, the quantitative dependencies of the DL parameters on the electric variables and bulk
composition are computed. The interface between a partially oxidized metal and an electrolyte solution
is an example of an amphifunctional interface. Particular situations occur at the point of zero charge (pzc)
and at the isoelectric point, which refer to specific values of the electrode potential and the pH of the
solution. Limiting cases of the amphifunctional model correspond to the familiar DL behavior of either
fully polarized metal/electrolyte interfaces or fully relaxed oxide/electrolyte interfaces. Our analysis can
successfully be applied in the interpretation of recent atomic force microscopy force measurements on the
gold/solution interface. It also allows a new approach in the understanding of the dependence on pH of
the potential of zero charge of metals and the dependence on the potential of pzc (pH value) of oxide

surfaces.

Introduction

For solid/solution interfaces, generally, two principally
different charging processes can be distinguished.

(i) A double layer (DL) can be imposed externally. Over
the range of potentials applied across the interface where
no faradaic current flows, the interface is called “polariz-
able”. The classical representative is the mercury/aqueous
solution interface. The interfacial tension or the dif-
ferential DL capacitance can be measured as a function
of an externally applied potential. Electrocapillary curves
are obtained, which upon differentiation yield the surface
charge density.*? It is characteristic for such interfaces
that the externally supplied electric energy gives rise to
an independent term in the Gibbs adsorption equation.®

(i) A DL can form spontaneously by preferential
adsorption/desorption of certain types of ions. Such DLs,
denoted as electrically “relaxed” or “reversible”, involve
ion exchange equilibria between the surface and the
medium. Typical examples are insoluble oxides, which
exchange protons with the aqueous medium.*~¢ For these
interfaces, the ion excess and the electric components of
charge are coupled in the Gibbs equation.”

The difference in behavior between electrically relaxed
and electrically polarized interfaces is not absolute.
Mercury electrodes can become reversible at potentials
where a faradaic current flows: that is, when a “depo-
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larizer” is present. On the other hand, relaxed interfaces
such as at Agl electrodes can be polarized by working at
sufficiently high frequencies.® The present paper is
concerned with interfaces at zero frequency where the
two operative processes described in (i) and (ii) jointly
determine DL formation. In this case, the surface charge
depends on both the pH and the external potential. Our
attention will be focused on systems allowing for the
coupling of (i) and (ii), the interface between an oxidized
metal and an aqueous electrolyte being one of them. This
latter interface is often encountered in electrochemistry
in fields as disparate as electrocatalysis,® 12 electrodepo-
sition, 31 corrosion,'>1¢ and kinetic studies of electroactive
species.t”1® Colloid scientists encounter the full range of
metal to metal oxide surfaces in contact with electrolytes.
Arigorous analysis of the DL under conditions where both
the metallic character and the ion exchange function are
included is most timely. Recent atomic force microscopy
(AFM) force measurements on such interfaces'®2? are
calling for quantitative interpretation of the DL properties.
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2. Double Layer Properties of Amphifunctional
Interfaces

2.1. Description of the Amphifunctionality of the
Systems Considered. The oxidized metal/electrolyte
interface combines features of both relaxed and polarized
interfaces, for which we shall now summarize the func-
tional properties. Studies of relaxed oxide/electrolyte
interfaces have been carried out in great detail by many
authors (e.g., see refs 23—27). The charging processes for
such interfaces take place via uptake or release of protons.
The substrate exhibits a surface hydration leading to the
formation of amphoteric hydroxyl surface groups (—MOH).
The resulting surface charge (¢°), which we shall call the
protonic surface charge, derives from the acid—base
interactions of the solution components with these surface
groups. The relevant protolytic reactions of the —MOH
groups are

—MOH; =@ —MOH + H; (K,) (1a)

—MOH < -MO™ + H; (K,) (1b)

for which the constants K,, and K,, (Ks, > Ka,) are the
measures of their acidity and alkalinity. H: denotes a
proton close to the surface. If we write the surface
concentrations of the various species as [-MOH], [-MOT],
and [—MOH;] in terms of molecules per unit area, o° is
given by

o’ =¢([-MOH;]-[-MO]) Cm™®) (2
with e as the elementary charge.

We can define Ng, the total number of sites per unit
surface area, as

N, = [~-MOH] 4+ [-MOH}]+ [-MO] (m™?) (3)

The ensuing formulation of the variation of ¢® with pH is
known as the site-binding model.?2° Protons (H*) and
hydroxyl ions (OH™) may be considered as “charge-
determining”. Consequently, the pH of the solution is the
primary externally adjustable variable, which together
with the electrolyte concentration determines the sign
and the magnitude of ¢°. Important characteristics of the
amphoteric surface are the isoelectric point (iep) and the
point of zero charge (pzc). In the absence of specific
adsorption of ions, the iep and the pzc are equal and this
pzc is sometimes called the “pristine point of zero charge”
(ppzc). For that point, we have
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J.; Cohen, S. Manuscript in preparation.
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16700.

(21) Déppenschmidt, A.; Butt, H. J. Colloids Surf., A 1999, 149, 145.

(22) Hu, K,; Fan, F. R. F.; Bard, A. J.; Hillier, A. C. J. Phys. Chem.
B 1997, 101, 8298.

(23) Yates, D. E.; Levine, S.; Healy, T. W. J. Chem. Soc., Faraday
Trans. 1974, 1 (70), 8361.

(24) Healy, T. W.; White, L. R. Adv. Colloid Interface Sci. 1978, 9,
303.

(25) Bousse, L.; Bergveld, P. J. Electroanal. Chem. 1983, 152, 25.

(26) Hunter, R. J. Foundations of Colloid Science; Clarandon Press:
Oxford, 1987; Vol. 1.

(27) Trasatti, S. Electrodes of Conductive Metallic Oxides; Trasatti,
S., Ed.; Elsevier: Amsterdam, 1981; Vol. 11, part B.

(28) Yates, D. E.; Levine, S.; Healy, T. W. J. Chem. Soc., Faraday
Trans. 1974, 1 (70), 1807.

(29) Davids, J. A.; James, R. O.; Leckie, J. O. J. Colloid Interface Sci.
1978, 63, 180.
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In practice, the DL at the oxide/solution interface is
commonly studied by titration and electrokinetics. From
these data, one can estimate the parameters K,, and K,
as well as Ns by using some extrapolation procedure
mentioned in the literature.3%3!

For the nonoxidized parts of the metal surface, the
surface potential does not depend on pH and is only
externally applied. The surface charge depends on this
potential and on the presence of specifically adsorbing
ions. In practice, potentials are always given with respect
to a reference state; therefore, a point of zero potential
(pzp) cannot be defined. As for a relaxed interface, one
speaks in terms of pzc as a reference state for the electrode
surface. This common terminology used for both types of
interfaces might induce some confusion since the pzc for
a polarized interface refers to a potential, whereas the
pzc for a relaxed oxide/solution interface is a pH value.
The numerous data reported in the literature and related
to the DL at the mercury electrode®? are mostly derived
from the surface tension (y) as a function of the applied
potential (Ag). The y(Ag) plots are called electrocapillary
curves, which upon differentiation yield the excess charge
on the metal o®. Electrocapillary curves have a pseudopa-
rabolic shape with a maximum, known as the electro-
capillary maximum. At this maximum, ¢® = 0, so that
automatically the pzc is obtained.

For amphifunctional interfaces, we allow the solution
side of the DL to be determined by the combination of
both charge-determining processes mentioned previously.
This combination of electric and electrolytic surface-
charging elements generates the amphifunctionality.
Experimentally, investigation of the amphifunctionality
can be achieved either by applying a given potential across
the interface (potentiostatic experiments)'® or by supplying
to the conducting phase a known electronic charge
(galvanostatic experiment) at constant bulk composition.
Once equilibrium is reached, the relationships between
electric and electrolytic parameters remain independent
of the type of experiments used to build up the DL; that
is, the state is independent of the history. The interface
acquires amphifunctional behavior provided certain con-
ditions related to the solid substrate are satisfied. These
conditions are explicitly outlined below.

2.2. Nature of the Systems under Modeling. Only
one of the charging processes directly depends on pH and
indirectly depends on the applied potential. The protolytic
sites are formed by the localized amphoteric groups
(—=MOH). The second type of charging is of an electronic
nature, the electrons being withdrawn (or supplied) from
(to) the conducting surface by an external source. This
process is only indirectly dependent on pH. Therefore, for
an interface to behave amphifunctionally, the solid side
should either consist of (i) a metallic conductor or
semiconductor partially covered with a layer of binding
sites, e.g., an oxidized metal'® or an oxidized semiconduc-
tor3334 (type 1), or (ii) aconductive or semiconductive phase
with intrinsic surface ion binding sites, e.g., an oxide with

(30) Sprycha, R.; Szczypa, J. J. Colloid Interface Sci. 1984, 102, 288.

(31) Sprycha, R.; Szczypa, J. J. Colloid Interface Sci. 1987, 115, 590.

(32) Lyklema, J.; Parsons, R. Electrical Properties of Interfaces:
Compilations of Data on the Electrical Double Layer on Mercury
Electrodes; Office of Standard, Reference Data, National Bureau of
Standards, U.S. Department of Commerce: Washington, DC, 1983.

(33) Gerischer, H. Electrochim. Acta 1989, 34 (8), 1005.

(34) Memmimg, R. Semiconductor Electrochemistry; Wiley-VCH:
Weinheim, 2001; Chapter 5.3.
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Figure 1. Schematic representation of the DL model used to
describe an amphifunctional interface between a partially
oxidized metal and an aqueous electrolyte. The situation is
depicted for an external potential Ap > 0.

metallic conductivity or a semiconductive oxide3® (type 2).
In the frame of this paper and for the sake of illustration,
the amphifunctionality potential/pH will be accounted for
on the basis of a model describing the simplest situation
where the amphifunctional analysis is not becoming more
complex because of the occurrence of other phenomena
made explicit later. Our model can be extended by taking
into account the equations accounting for these phenom-
ena.

2.3. DL Model for an Amphifunctional Interface.
Figure 1 depicts a schematic representation of the
structure of the DL at an amphifunctionally electrified
interface between an oxidized metal and an electrolyte
solution (type 1) in the case where no other ionic species
than protons specifically interact with the amphifunctional
surface. This latter situation will be explicitly reported in
more detail subsequently®® in connection with papers from
the Russian school, which so far have been the first to
point out the issue of a double mechanism of charging,
albeit in the restricted context of specific adsorption of
anions.®’*! The total charge at the interface consists of
the protonic charge (¢°) and the electronic charge (o), the
latter supplied by the external electric source. Considering
the oxidic groups as part of the substrate, in accordance
with the GCS model,*2=44 the solution side of the DL is
subdivided into two parts: (i) an inner part, the Stern
layer, including the amphoteric sites and (ii) a diffuse
layer extending from the plane of closest approach for
indifferent ions (outer Helmholtz plane, oHp) into bulk
solution. To avoid any confusion with the traditional
meaning of the inner Helmholtz plane in the Grahame or
triple layer model*® accounting for the occurrence of specific

(35) Ardizzone, S.; Trasatti, S. Adv. Colloid Interface Sci. 1996, 64,
173

(36) Duval, J.; Kleijn, J. M.; Lyklema, J.; van Leeuwen, H. P.
Manuscript in preparation.

(37) Kazarinov, V. E.; Andreev, V. N. Elektrokhimiya 1977, 13, 685;
Elektrokhimiya 1978, 14, 577.

(38) Safonova, T. Ya.; Petrii, O. A.; Gudkova, E. A. Elektrokhimiya
1980, 16, 1607.

(39) Andreev, V. N.; Kazarinov, V. E.; Kokoulina, D. V.; Krishtalik,
L. I. Elektrokhimiya 1978, 14, 1271.

(40) Kokarev, G. A.; Kolesnikov, V. A.; Gubin, A. F.; Korobanov, A.
A. Elektrokhimiya 1981, 18, 407.

(41) Kazarinov, V. E.; Andreev, V. N.; Mayorov, A. P. J. Electroanal.
Chem. 1981, 130, 277.

(42) Gouy, G. Compt. Rend. 1909, 149, 654; J. Phys. 1910, 4 (9), 457;
Ann. Phys. 1917, 7 (9), 129.

(43) Chapman, D. L. Philos. Mag. 1913, 6 (25), 475.

(44) Stern, O. Z. Elektrochem. 1924, 30, 508.
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adsorption of ions on a relaxed oxide surface, here we
shall call the plane where the oxidic groups reside the
oxide plane (op).

A necessary, but still not sufficient, condition for
amphifunctionality is the presence of a spatial separation
between the bare surface of the conducting material and
the op. For interfaces of type 1, the capacitance of the
layer situated between ¢° and o® should be sufficiently
high (thin layer of oxide) so that a significant fraction of
the potential applied is operational at the solution side of
the interface to allow for amphifunctionality. Thus, in
that case, the amphifunctional character of the interface
is defined by a submonolayer of oxide. For interfaces of
type 2, one would rather speak of a metallic or semicon-
ductive oxide layer. A further surface characteristic
relevant for amphifunctionally electrified interfaces is the
way in which the chemical sites are distributed over the
surface. We shall assume the surface to be flat and
homogeneous with the functional groups randomly dis-
tributed. Diffuse DL calculations on the basis of smeared-
out charges are allowed if the potential profile is essentially
independent of the position on the surface. This is the
case for systems that obey

h<1 (5)
where /is the average separation between chemical sites
and « is the reciprocal screening Debye length defined by

K = (2Fl/ege, RT)Y? (6)
where ¢ is the dielectric permittivity of vacuum, ¢, is the
relative permittivity of water, | is the ionic strength of the
solution, F is the Faraday constant, R is the gas constant,
and T is the temperature. For 4 = 1, the relevance of an
equipotential op, defined by the loci of the oxygen atoms,
becomes disputable and so does the monodimensionality
of the DL. We shall not consider this situation.

In the following, it will be assumed that no charge
transfer phenomena take place in the range of potentials
investigated and that only charging/discharging of the
DL occurs. Consequently, neither formation nor disap-
pearance of oxide sites is taken into account and the
parameter Ns is supposed to remain constant. This
assumption is reasonable for interfaces of type 2 since the
coverage rate of oxide surface is relatively high and the
range of potentials where the DL is studied narrow. Some
authors have summarized measured values for the surface
density of protolytic sites (N;) of surfaces densely covered
by oxide groups and reported values between 2 x 10** and
9 x 10 sites cm~2.46 On the contrary, the lower number
of oxidic sites found for interfaces of type 1'° renders the
assumption in that case more pragmatic than realistic.
Indeed, one expects the surface oxidation and, hence, the
oxide coverage to be in that case very sensitive to pH and
to the applied potential. The interface becomes therefore
reversible and polarizable with a ratio depending on the
two charging parameters. The function Ns(pH, Ag), A
being the total potential difference applied across the
metal/solution interphase, can be inferred from the
experimental investigation of the electrochemical proper-
ties of the substrate immersed in the medium of given pH
and salt concentration. We shall not discuss this com-
plication.

(45) Grahame, D. C. Chem. Rev. 1947, 41, 441.

(46) James, R. O.; Parks, G. A. Characterization of Aqueous Colloids
by Their Electrical Double-Layer and Intrinsic Surface Chemical
Properties. In Surface and Colloid Science; Matijevic, E., Ed.; Plenum:
New York, 1982; Vol. 12, p 119.
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For amphifunctional substrates exhibiting semicon-
ducting properties, a potential drop occurs in the bulk of
the material so that there are potential and charge
distributions within the space charge region. We shall
neglect this solid diffuse layer in the following.

In usual DL analyses, it is assumed that ions remain
fully charged during the adsorption process, that is, the
full ionic charges are supposed to be localized at the op.
In reality, however, because of covalency involved in O—H
and M—0 bonds,*” the spatial electronic density distribu-
tion is altered, which effectively means that some charge
separation is generated. This notion of partial charge
transfer was first suggested by Lorentz*® in the context
of specifically adsorbed halide ions at the mercury surface
and further developed by Vetter and Schultze.*® As
suggested by these authors, the partial charge transfer
generally depends on the externally applied potential. As
a first approach, we will here construct the modeling of
the DL on the basis of full ionic charges of —MO~ and
—MOH;. Details of the real spatial distribution are then
subsumed into the formal inner layer capacitance (Co),
which models the decay of the potential between the bare
surface of the substrate and the op and also accounts for
the interfacial potential jump (). For the sake of simplicity,
we will exclusively focus on an ideally flat surface for which
the potential decay is one-dimensional and where Cy is
estimated by

@)

Here ¢, is the relative permittivity of the layer between
the bare surface of the conducting substrate and the op,
and d is the length of the chemical bond M—0O. Equation
7 should be seen within the frame of the above modeling
features. Cy is of the order 5—-10 uF cm™2, roughly
corresponding to a molecular condenser with a relative
dielectric permittivity close to unity and a distance
between the parallel planes delimiting the charge-free
space of O (0.5 nm).

The total potential drop across the interface (A¢p = RTAy/
F) is given by the relation

Co=épe/d (Fm™?)

Ap =y —y~ (8)

where ¥~ is the potential of the bulk solution that is taken
as the reference potential. y¢ is the potential inside the
bulk of the conducting phase. It is identical to the potential
at the first layer of metallic atoms located in the close
vicinity of the first layer of water molecules. Any deviations
caused by orientation of water dipoles on the metal as
well as on the solution side of the interface or induced by
solid phase polarization of electronic or ionic origin are
neglected. The contributions to the interfacial potentials
() are subsumed in Cy taken constant, and its probable
dependencies on pH and potential are therefore not taken
into account.

2.4. Equations Describing the Potential and
Charge Distributions at the Amphifunctional In-
terface. It is assumed that the capacitance (Cy) and the
density of chemical sites (N;) do not vary with the position
on the surface and that eq 5 is satisfied. Then, we may
consider that the electric charge and potentials are
smeared-out and write the equation of electroneutrality
of the complete interphase as

(47) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell
University Press: Ithaca, NY, 1960; Chapter 3, p 64.

(48) Lorenz, W. Z. Phys. Chem. 1962, 219, 421.

(49) Vetter, K. J.; Schultze, J. W. Ber. Bunsen-Ges. Phys. Chem. 1972,
76, 920.
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where ¢4 is the diffuse ionic charge as derived from the
Gouy—Chapman theory for a 1:1 electrolyte*?43

o° = —(8lege, RT)Y?sinh(y"/2) (10)

with y? the normalized dimensionless potential defined
as
d_ - d

y' = Fy /RT (12)
and y9 the potential at the oHp (generally approximated
to the electrokinetic potential (¢) at low ionic strength).
For convenience, we shall use y° for Fy%RT and y* for
Fy®/RT, with y° being the potential at the op.

The charge-free Stern layer acts as a molecular con-
denser represented by a capacitance (C;). Vorotyntsev®®
summarized results obtained by different authors con-
cerning DL properties of “uniform” gold metal/electrolyte
interfaces. For Cy, also called the Helmholtz capacitance,
values between 15 and 50 uF cm~2 are reported, depending
on the surface roughness, the degree of polycrystallinity,
and the crystallographic nature of the surface considered.
C,isgenerally obtained as a fit parameter of the so-called
Parsons—Zobel plots derived from capacity measurements
performed for different electrolyte concentrations at a
given electrode charge density.5! For an amphifunctional
interface of type 1, C; should therefore be written as a
function of pH and the applied potential, these two
variables determining ¢®. Taking into account such a
dependence does not affect the general conclusions
presented here, and consequently, as a first approximation,
C1 will be considered as a constant parameter later. For
interfaces of type 2, C; is generally found to be substan-
tially higher (100—140 uF cm~2).52 In this latter case, C;
is commonly also supposed constant.

The activity coefficients of the bound ionic species and
protons are assumed to be independent of ¢°.53 Designating
x as the distance counted from the bare surface of the
metal, the concentration of unbound protons beyond the
oHp noted cy+ is, according to the Boltzmann law, given

by

X = XoHp+ CH+ = CDI—GH exp(—y(x)) (12)
with ¢, the concentration of protons in the bulk. Equa-
tion 12 is valid for the diffuse part of the DL where the
work required to bring a proton from the bulk to the
position x is of a purely electrostatic nature. To adapt eq
12 to the situation of chemisorption of protons at the op,
one should realize that the driving force in such a case
has two contributions: an electric component that brings
the proton from the bulk to the oHp and a chemical
component that binds the proton at the op. The chemical
work is actually expressed by the corresponding constants
(K4, and Ky,), which do not contain the electric contribution.
Therefore, we can describe the chemisorption process via
the two pertaining dissociation constants (K, and Kj,) by
considering eq 12 for y(x) = y° as follows

(50) Vorotyntsev, M. A. In Modern Aspects of Electrochemistry;
Bockris, J. O'M., Conway, B. E., White, R. E., Eds.; Plenum Press: New
York, 1986; Vol. 17, Chapter 2, p 177.

(51) Hamelin, A.; Foresti, M. L.; Guidelli, R. J. Electroanal. Chem.
1993, 346, 251.

(52) Yates, D. E.; Healy, T. W. J. Chem. Soc., Faraday. Trans. 1
1980, 76, 9.

(53) Chan, D.; Perram, J. W.; White, L. B.; Healey, T. W. J. Chem.
Soc., Faraday Trans. 1 1975, 71 (6), 1046.



K,, = [-MOHIc;;. exp(—y°)/[-MOH;]  (13)

K,, = [-MOIcy;. exp(—y°)[-MOH]  (14)
The potentials ¢, ¥°, and y° and the surface charges ¢¢
and oY are related via the capacitances® by

Co = do®/d(y* — 4°) (15)

C, = — do%d(y° — ) (16)
The complete set of equations (2, 3, 9, 10, and 13—16) for
the potential and charge distributions at the amphifunc-
tionally electrified interface can be rewritten in terms of
one independent variable, ¢, for example. In the following,
the notation X(Y) means “X function of Y”, with X acharge
orapotential and Y the parameter y9or Ag. With constant
capacitances C, and C;, the transformed system of

equations is
Yoy =y + ((Blege, RT)Y?IC,) sinh(y*/2) (17)
o°(y) =
N (€K, exp(=Y°(1%) — (Ky/ch.) exp(y° ()
"1+ (61/Ky,) exp(=y°(1®) + (K, fci) exp(y° ()

(18)
"% = —C,(w° %) — v (19)
o*(¥°, Ag) = Co(Ag — oy (20)

from which ¢ is found as the solution of the following
transcendental equation

o*(y°, Ap) + o°(*) + o’y =0 (21)
Once the relation y9Ag) is known, all of the other
parameters describing the DL can be computed as a
function of Ag.

At this stage of the discussion, it has to be stressed that
the equations established above are written in forms
suitable to analyze cases where Ag is the independent
electric parameter that can be fixed via an external
potentiostatic source. The mathematical treatment of the
galvanostatic situation would require rewriting of the
equations describing the potential and charge distribu-
tions so as to obtain the relationship y9(c®).

For potentiostatic experiments, starting from the situ-
ation where the interface is relaxed (no external potential
applied), one could conceive the influence of the applied
potential on the DL formation in the following way:
development of a potential difference across the interface,
charging of the metallic phase by flow of electrons in the
external circuit, accumulation of charge at the two sides
of the interface, displacement of the adsorption equilibria,
and redistribution of ions at the electrolyte side of the
interface. In reality, these processes occur almost simul-
taneously. There is a functional relationship between the
charges ¢, 0° and o9 (or the potential difference across
the interface) and the structure of the interfacial region.
The difficulty is to unravel this functional relationship.
In the following, we shall discuss the case of a DL resulting

(54) Lyklema J. Fundamentals of Interface and Colloid Science;
Academic Press: London, 1995; Vol. 2, Chapter 3, p 3.61.
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Figure 2. (a) DL potential as a function of the externally
applied potential for various concentrations of indifferent
electrolyte at a given pH = ppzc = 4.5. Parameters used for
calculations: pKs, =1, pKa, =8, Co =5 uF cm™2, C; = 30 uF
cm~2, Ns = 3 x 10 sites cm~2. (b) Dependence on the external
applied potential for various pH values at a given electrolyte
concentration 1072 M; ppzc = 4.5. Parameters used for calcula-
tions: same as in panel a.

from an externally applied potential difference, keeping
in mind that the description of charging of the DL in
separate steps is only relevant for explanatory purposes.

2.5. Dependencies of the DL Properties on Ag and
pH. Figure 2a represents y¢ as a function of Ag for
different electrolyte concentrations and at pH = ppzc. All
curves are symmetrical with respect to the origin. This is
so because the equations derived in section 2.4 are
invariant with respect to the signs of potentials and
charges when replacing the ratio c;./Ky, by Ka/c;, the
latter condition resulting from our setting pH = ppzc. At
a given Ag, y9 decreases with increasing ionic strength.
This is a consequence of screening of the surface charge
by counterions accumulating close to the surface. For a
given concentration of electrolyte, starting from the
situation at =0, an increase of A renders the potentials
w9 and y° positive. By externally bringing the potential
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Figure 3. Dependence of the protolytic charge ¢° (—), the
electronic charge o® (— —), and the diffuse charge ¢ (- - *) on
the external applied potential for three pH values at 1072 M;
ppzc = 4.5. Parameters: same as in Figure 2.

of the metallic phase at positive values, one withdraws
electrons from the conducting phase. The electronic charge
therefore increases. The protolytic equilibria (a and b),
which depend on Ag via the potential y°, are displaced
toward the formation of —MO~ sites, and consequently,
o®decreases. In accordance with eq 10 and the dependence
of ¥ on Ag, the diffuse charge ¢ becomes negative.
Throughout, the electroneutrality condition (eq 21) applies.
A similar reasoning can be given for A < 0. Figures 2b
and 3 show the dependencies of 9 and of the charges ¢,
0%, and ¢® on the applied potential (A¢) at given interfacial
adsorption conditions, electrolyte concentration, and vari-
ous values of pH. As expected, the curves for pH = ppzc
are not symmetrical with respect to the origin. The more
negative the difference (pH — ppzc) is, the more the y94(A¢)
curves are shifted toward positive values. Indeed, by
adding charge-determining H* ions while maintaining a
certain potential difference across the interface, the
potential (y° and the protonic charge (¢°) increase, ¢
becomes more positive, and ¢ becomes more negative. At
the given Ag, the total charge o9 + ¢° is positive (if Ap <
0) or negative (if Ag > 0) since the inducing protonic charge
(0% is always larger than the resulting diffuse charge (¢9).
As a consequence, to compensate the charge o9 + ¢°, the
higher the pH of the solution is, the more positive the
electronic charge (0°) is rendered. The trends of the zero-
charge and zero-y 9 points as a function of pH are analyzed
in the next section.

2.6. Relationships between Ag and pH at the iep
and pzc Values. For an amphifunctional interface, the
situations encountered at the iep (y® = 0) and pzc values
(o®=0and ¢*=0) are not described by one sole parameter
such as the pH for a relaxed oxide/electrolyte interface*®
or the metallic potential for a mercury/electrolyte inter-
face*®% but typically by the two charge-determining
variables, viz., Ap and pH.

2.6.1. Situation at the iep. Given the approximation ¢
=, the condition of the iep, and the absence of specific
adsorption of background electrolyte ions, it follows from
eqs 18—21 that

(55) Baradas, R. G.; Conway, B. E. Electrochim. Acta 1961, 5, 349.
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Figure 4 shows a plot of Agiep(pH) for selected values of
pKa, and pK,,. If the pH of the solution is brought to the
value of the ppzc, the potential to apply across the interface
to fulfill the condition y?= 0 is zero. For pH < ppzc, Agiep
< 0; for pH > ppzc, Agiep > 0. Let us define the pair (Ag
= 0, pH = ppzc) as the pristine starting condition for
further discussion. Starting from this condition (situation
Ain Figure 5), when charge-determining anions are added
(pH > ppzc), o as well as y* become negative and the
resulting o® becomes positive, compensating the total
countercharge o° + ¢9. In this case, one can say that ¢® is
protonically induced. This is situation B given in Figure
5, where the condition ¢ = 0 is no longer met. To
reestablish the isoelectric situation, Ag has to be brought
to positive values (situation C). At the newly reached iep,
the charge at the metallic layer is more positive than in
situation B since some electrons had to be withdrawn to
increase y°. To retain electroneutrality, o® is more negative
than in situation B. Similar interpretations can be given
for pH < ppzc and for the situations that consist in
changing A¢ while keeping the pH constant. For amphi-
functional surfaces characterized by K,, and K, values of
the same order of magnitude (but still obeying pK,, <
pKy,), the pattern of the Agiep(pH) plot is somewhat
different from the one presented in Figure 4: the plateau
region situated around the ppzc disappears and the
potential Agie, changes drastically around the ppzc to
reach the values —eNJ/Cy and eN¢/C, for pH < ppzc and
pH > ppzc, respectively. Further comments related to the
DL at such surfaces will be given in section 2.7.1 when
examining the conditions giving rise to asymptotic be-
havior of amphifunctional interfaces.

2.6.2. Situation at the pzc;. The pzc; is defined as the
condition where ¢° is zero. In this particular situation,
resolution of the equations presented in section 2.5 allows
us to obtain the dependence Agp.,(pH). On the basis of
the reasoning used in the previous section, the trend of
the curve Ag@p.,(pH) (Figure 4) can be qualitatively
explained. For pH = ppzc, the situations at the iep and
pzc, are similar. These correspond to the pristine condition.
Situation D in Figure 5 illustrates that because of the
adsorption of H* the dependence of pzc; on pH is opposite
to that of the iep. Such a difference of behavior between
pzcand iep is also encountered for relaxed oxide/electrolyte
interfaces in the presence of specific adsorption.®® In the
terminology used by electrochemists, Ag,,, is also called
the “open-circuit potential”’. When the conducting sub-
strate exhibits a substantial surface oxidation (Ns > 104
cm™2), Agpyc, tends to a Nernstian behavior with pH. The
bulk properties of the material are then more oxidic than
metallic, and consequently, the coupling pH/external
potential is lost (see section 2.7). Most of the potential
applied to the substrate decays in the insulating oxide
layer so that only a small fraction of this potential remains
at the op. One consequence of such a behavior is the
independence of the parameter pHie,, on Ag. This was
observed for a number of “metals” such as Pt.57:58 On the
contrary, metals such as gold, for which Ns is experi-
mentally found to be lower, show a coupling pH/external

(56) Lyklema J. Fundamentals of Interface and Colloid Science;
Academic Press: London, 1995; Vol. 2, Chapter 3, p 3.107.

(57) Gileadi, E.; Argade, S. D.; Bockris J. O'M. J. Phys. Chem. 1966,
70, 2044.

(58) Kallay, N.; Torbic, Z.; Golic, M.; Matijevic, E. J. Phys. Chem.
1991, 95, 7028.
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interface to reach the iep, pzci, and pzc; as a function of pH at
1072 M; ppzc = 4.5. Model parameters: same as in Figure 2.
The points A—F refer to the schemes presented in Figure 5.
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Situation at the p.z.c.,

Figure5. Sketchesrepresenting the potential and charge dis-
tributions at the iep, pzc,, and pzc, configurations. The potential
profile drawn with a dashed line represents the pzc, situation.

potential, as manifest in a nonlinear behavior of A@pyc,-
(pH) and in a dependence y9(Ag, pH).1°

2.6.3. Situation at the pzc,. The relationship Agp,c,(pH)
corresponding to pzc, is given by resolution of the equations
describing the potential and charge distributions with o°
= 0. As expected, the curve Agp.,(pH) (Figure 4) has a
common intersection point with Agp,c,(pH) and Agiep(pH)
for pH = ppzc (pristine condition). The trend of the curve
A@pze,(pH) is similar to that for Agp,.,(pH). Ata given pH,
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the inequality |A@pzc,| = [Agp.c,| always applies. Indeed,
starting from scheme D in Figure 5 and representing the
situation occurring at the pzc, for pH > ppzc, it turns out
that pzc, can only be reached by decreasing Agp,,. This
requires a decrease of ¢°, which renders ¥ more negative
and o9 more positive. In response to the change of ¢¢, the
countercharge located at the op (protonic charge ¢°)
becomes more positive, as can be seen in situation E. At
some point, the metallic potential ¥°¢ is such that ¢° = 0:
at that potential, the condition defining the pzc, is fulfilled
(situation F). Similar reasoning can be given for pH <
ppzc. The trend of the relationship Agp,.,(pH) predicted
by the model is experimentally confirmed in ref 59 for the
IrO,/Tilelectrolyte interface.

2.7. Limiting Behavior of the Amphifunctionally
Electrified DL: Loss of the Amphifunctional Char-
acter. For conducting substrates fully covered by a layer
of anonconducting oxide, the thicker the layer is, the more
Ag@ will be dominated by the potential drop across the
oxide layer. In the limit, the potential at the op is no longer
affected by Ag and the coupling between the electronic-
charging and the ionic-charging mechanismsis lost.®° This
situation is generated for Co—0. For a purely metallic
conductor, which constitutes the other known limit of the
amphifunctional model (Co—<), the electronic surface
charge, controlled by an external source, prevails over
any ionic charge-determining processes as long as no
depolarizers are present. The purpose of this section is to
examine these two limiting conditions where the surface
is basically amphifunctional (section 2.2) but approaches
monofunctionality.

2.7.1. Influence of the Acidic/Basic Character of the
Surface on the Dependence y9Ag, pH). The surface has
a relatively strong potential-buffering propensity when
the two pK values defining the proton binding reactions
are close together. This can be inferred from the influence
of the pK values on the shape of the titration curves ¢°-
(pH, Ag). In the case of an amphifunctional interface,
titration of the protolytic surface groups can be performed
in two ways. One may vary the pH of the solution while
maintaining a constant Ag. This option constitutes the
pendant of the titration curve ¢°(pH) obtained for the
relaxed case. It is also possible to keep the pH constant
while varying Ag. We will consider this latter situation
for further reasoning. For a chosen set of two different pK
values, the computed ¢°(Ag) plots exhibit two waves
corresponding to the successive titrations of the —MOHI
and —MOH surface speciesat A¢ < Agp;c,and Ag > A@psc,,
respectively. The range of the external potential corre-
sponding to the plateau situated between these two waves
is the more extended when the difference (ApK = pK,, —
pKa,) is larger. In the plateau regime, o° is practically
insensitive to variations of the external potential. Then,
the countercharge required to compensate the potential-
induced o° is mainly located in the diffuse layer. In this
plateau region, y® (or o9 is mainly affected by Ag. In
other words, the DL potential is badly buffered. Outside
the plateau region, the large variations of ¢° indicate that
a substantial fraction of the countercharge is situated at
the op. Then, variation of Ag generates only moderate
change of y® (or o9: the DL potential is buffered.
Therefore, for the case where ApK is low and within the
situation where the protonic charge is not saturated (see
next section), the protolytic surface groups play the role
of potential buffer: the pH attheopis practically constant

(59) Petrii, O. A,; Vitins, A. U. Elektrokhimiya 1991, 27, 461.
(60) Ghowsi, K.; Naghshineh, S.; Houlne, M. P. Russ. J. Electrochem.
1995, 31 (12), 1259.
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Figure 6. Dependence of the DL potential on Ag at given pH
=4.5and saltconcentration (1072 M) for surfaces characterized
by different ppzc. lllustration of monofunctional behavior
(dashed lines) of the interface of which the DL, under certain
conditions (pKa,, pKa,), is only governed by the ionic-charging
process. The plain lines refer to an amphifunctional behavior
of the DL. Co =5 uF cm™2, C; = 30 uF cm™2, Ns = 3 x 10 sites
cm~2. (a) pKa, = 7, pKa, = 8. (b) pKa, = 5, pKa, = 8. (¢) pKa, =
3! pKaz =8. (d) pKa1 = 5! pKaz =5. (e) pKal = 1! pKaz =8. (f) pKa:L
=1, pKa, = 5. (9) pKa; = 1, pKa, = 4. () pKa, = 1, pKa, = 2.

and independent of the potential applied. The S shape of
the curves y9(Ag), which is characteristic of amphifunc-
tional behavior (Figure 2b), then tends to a horizontal
line, which by changing the pH (or ppzc) at constant ppzc
(pH) is shifted as explained in section 2.5 (Figure 6). For
these cases where the interface loses its amphifunctional
character, the absolute value of the potential-induced
charge (0°) is practically equal to the induced protonic
charge (0°). One may speak of image-inducing and/or
induced charges since

do®/dAg = — do®/dAg ~ C, (23)

2.7.2. Relationship y%Ag, pH) at Saturated Surface
Protonic Charge. ¢° cannot exceed the saturation values
agat = +eNs whatever the conditions (A¢, pH). Saturation
of ¢° can occur (i) at a given pH, when |Ag| > |Agp,,| and
(ii) at a given potential Ag, when pH > pHp,, or pH <
pHp.c,. Let us, for example, examine situation (i).

DL parameters become independent of pH at extreme
Ag. This is illustrated by Figure 7a,b. In practice, for
surfaces with relatively high Ns, the saturation can only
be reached for Ag values that are so high that faradaic
processes such as electrolysis of water and dissolution of
the metal already depolarize the interface. However, for
surfaces with relatively low Ng, saturation of the protonic
charge occurs for potentials (or pH values) that do not
generate per se such extreme electrochemical reactions
and that therefore can be encountered experimentally.
Then, A@p remains the only charge-determining parameter
and for all practical purposes the interface behaves
monofunctionally. The saturation values of ¢° can be
written o2, = feNs, with 8 = 1 referring to Agp < A@p,
(pH) and = —1 referring to Ag > A@p,(PH). Assuming
that wgat(Aqo) > ngat(Aga), a simple explicit expression for
y& (A) can be derived:

p o i1 ¥C1 CoAg + feNg
YsatlA@) ~ 2 sinh T C,+C,

4F1 ) (24)
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Figure 7. Representation of the potential regimes where the
profile of the interface is determined by both types of charging
processes (amphifunctional behavior) and where the DL isonly
controlled by the electric parameter (saturation regimes,
monofunctional behavior). ppzc =5.5, 107! M. (a) DL potential
as a function of Ag. (b) Charges as a function of Ag (same
symbols as for Figure 3). Model parameters: pKay, = 3, pKa, =
8,Co=12uFcm2,C;=30uF cm=2, Ns=5 x 10%3 sites cm™2.

The curves corresponding to eq 24 (5 = +1) are plotted in
Figure 7a. For the types of surfaces described in section
2.7.1 and for pH > ppzc or pH < ppzc, the iep situation
is reached within the saturation regime of the protonic
charge. Equation 24 provides Agiepsat = —feNg/Cq: this
value is in accordance with eq 22. The potentials Agsat (8
= +1) required to reach the saturations of the protonic
charge are equal in absolute value only for pH = ppzc and
do not depend on the ionic strength.

In the domains of charge saturation, ¢, and o2, vary
linearly with Ag (see Figure 7b). One can show that

do®,/dAg = — do? JdAp ~ C,C,/(C, + C,) (25)

In parallel to the situation reported in section 2.7.1 (eq
23), one then may use for ¢, and o2, the terms image-
induced and/or inducing charges.



3. Conclusions

A model is proposed for a quantitative description of
the DL at interfaces of which the electric properties are
governed by the coupling between ionic-charging and
electronic-charging mechanisms. The dependencies of the
DL properties on the electric and chemical state variables
(externally applied potential, pH, and salt concentration)
are analyzed. Particular attention is paid to situations
occurring at the iep and pzc. Under certain limiting
experimental potential/pH conditions, the coupling be-
tween the two charging processes is lost. In one of these
limits, the electrostatic interactions resulting from the
externally applied potential outweigh the ionic-charging
function. On the other hand, the latter mechanism becomes
predominant when the amphifunctional surface contains
protolytic surface groups that bind protons and release
protons in not too different pH (and potential) ranges.
From the model presented in this paper, the DL profiles
at a polarized metal electrode and at relaxed oxide/
electrolyte interfaces are derived as limiting cases.

The theoretical formalism described in this paper
successfully interprets AFM data on the DL at a gold/
solution interface examined at various externally applied
potentials and various pH values.*® Furthermore, it allows
interpretation of data relating to the dependencies on pH
and potential of pzc of metals and oxide surfaces,
respectively. A paper currently in preparation®® focuses
on the situation of an amphifunctional interface that
specifically interacts with electrolyte ions or polyions.

Glossary of Symbols

/ Average separation between the chemical sites

Capacitance of the layer between the bare surface
of the metal and the op

C: Capacitance of the Stern layer (between the op
and the oHp)

e Concentration of protons in the bulk solution

CH+ Concentration of protons in the diffuse DL

B Constant equal to +1

€o Dielectric permittivity of vacuum

o9 Diffuse charge density

X Distance counted from the bare surface of the
metal

c Electrokinetic potential

o® Electronic charge density

e Elementary charge

F Faraday

R Gas constant
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% Interfacial potential jump
| lonic strength
d Length of the chemical bond M—0O

pKa, Logarithm of the first dissociation constant K,
pK,, Logarithm of the second dissociation constant K,,
yd Normalized oHp potential

y0 Normalized op potential

Ay Normalized potential difference

ye Normalized potential of the metallic phase

yd Potential at the oHp

O Potential at the op

Agp Potential difference between the bulk solid sub-
strate and the bulk solution

Pe Potential in the bulk metallic phase

P Potential of the bulk solution taken as areference

o° Protonic charge density

€r, Relative permittivity of the layer modeled by Cy

€r, Relative permittivity of water

K Screening Debye parameter

y Surface tension

T Temperature

Ns Total number of surface oxidic sites

Abbreviations

iep Isoelectric point

pzc Point of zero charge

pzp Point of zero potential

ppzc Pristine point of zero charge

Subscripts

sat Pertaining to the regimes where the saturation
of o0 is reached

iep Pertaining to the situation 9 =0

pzcy Pertaining to the situation ¢°* =0

pzc; Pertaining to the situation ¢® = 0
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Colloidal probe atomic force microscopy was used to determine the electric double layer interactions
between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution
interface were varied through the pH and salt concentration of the electrolyte, as well as by externally
applying an electric potential. The double layer potentials 4 of the gold surface were obtained by fitting
the force—distance curves according to the DLVO (Derjaguin—Landau—Verwey—OQOverbeek) theory, using
earlier obtained values for the double layer potential of the silica probe as input parameter. It was found
that the gold electrode combines the features of reversible and polarizable interfaces; i.e., its charge and
potential are determined by both the solution pH and the external potential. The pH dependence is attributed
to proton adsorption and desorption from oxidic groups on the gold surface. In the potential range studied,
w9 varies linearly with the applied potential; the variation in y9 is roughly 10% of that in the applied
potential. The potential of zero force (the external potential at which 9 = 0) varies with pH. The various
features of the gold/electrolyte interface are described well by an amphifunctional double layer model. The
results of this study form the basis of the interpretation of adsorption studies on gold as a function of pH

and externally applied potential.

Introduction

The adsorption from aqueous solution of charged
molecules such as ionic surfactants, polyelectrolytes, and
proteins iscommonly found to be influenced by the solution
pH and background electrolyte concentration.r™* This is
generally explained by the effect of the solution properties
on the potential of the sorbent surface on one hand and,
for (weak) polyelectrolytes and proteins, by changes in
the charge, structure, and structure stability of the
adsorbing molecules on the other hand. To discriminate
between these effects, Bos et al.® have studied the
adsorption of several proteins on indium tin oxide (ITO)
as a function of an externally applied potential at the
adsorbing interface, while keeping the solution properties
constant. It was found that variation of the external
potential has little or no effect on protein adsorption at
ITO, in contrast to the pronounced influence of the pH.

This observation can be explained in two different
ways: (1) the large effect of the solution pH on the
adsorption behavior of the studied proteins stems mainly
from conformational changes within the protein or changes
in the protein charge as a result of the solution pH and
not so much from changes in the potential of the sorbent
surface, or (2) the major part of the externally applied
potential difference over the electrode/solution interface
is not felt by molecules in solution. Indeed, Hu et al.®
showed that for TiO,, like ITO a semiconducting oxide,

* Correspondimg author. Telephone: +31-317-482189. Fax:
+31-317-483777. E-mail: desiree.barten@fenk.wag-ur.nl.

(1) Haynes, C. A.; Norde, W. Colloids Surf., B 1994, 2, 517.

(2) Kleijn, J. M.; Norde, W. Heterogeneous Chem. Rev. 1995, 2, 157.

(3) Burns, N. L.; Holmberg, K.; Brink, C. J. Colloid Interface Sci.
1996, 178, 116.

(4) Giacomelli, C. E.; Avena, M. J.; Depauli, C. P. J. Colloid Interface
Sci. 1997, 188, 387.

(5) Bos, M. A.; Shervani, Z.; Anusiem, A. C. I.; Norde, W.; Kleijn, J.
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the influence of an applied potential on the diffuse double
layer potential is very limited, typically less than 10% of
the applied potential. It is clear that for interpretation of
the adsorption as a function of externally applied potential
additional information on the double layer in solution as
a function of applied potential is required.

For further adsorption studies we have chosen gold as
the sorbent because it is a metallic conductor and over a
relatively large potential range no electrochemical surface
reactions occur in contact with an aqueous solution. Earlier
studies”® have shown that the double layer potential of
gold is dependent on the pH of the electrolyte solution.
For a pristine metal surface, one would not expect this.
In the case of gold it is probably due to adsorption and
partial discharge of hydroxyl ions upon contact with
aqueous solution, resulting in oxidic surface sites on the
gold.8® The protolytic activity of these sites is responsible
for the pH dependency of the double layer potential.

In this paper we present results concerning the double
layer properties of the gold/electrolyte interface as a
function of both solution properties and externally applied
potentials. Our goal is to elucidate the mechanism that
determines the double layer charge and potential when
a potential is externally imposed as compared to the
situation in which the double layer is reversibly built up
by spontaneous exchange of ions with the solution. This
allows a better understanding of the role of electrostatics
in adsorption phenomena and the possibilities for ma-
nipulating the adsorption of charged macromolecules by
applying an external potential to the interface.

A way of studying the effect of externally applied
potentials on the solution part of the double layer is to

(7) Giesbers, M.; Kleijn, J. M.; Cohen Stuart, M. A. J. Colloid Interface
Sci. 2002, 248, 88.

(8) Thompson, D. W.; Collins, I.R. J. Colloid Interface Sci. 1992, 152,
197.

(9) Angerstein-Kozlowska, H.; Conway, B. E.; Hamelin, A.; Stoicovi-
ciu, L. J. Electroanal. Chem. 1987, 228, 429.
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perform force measurements between the electrode and
areference surface in aqueous solution. Hieda et al.’® used
an atomic force microscope (AFM) to measure the inter-
actions between a gold-coated microsphere tip and an
oxidized silicon sample with their interfacial potentials
independently controlled using a bipotentiostat. Bard and
co-workers®!112 characterized the double layer properties
of gold and TiO; electrodes in agueous electrolyte by using
a spherical silica particle attached to an AFM cantilever
to probe the electric double layer interactions. Recently,
Fréchette and Vanderlick!® designed a gold electrode for
use in the surface force apparatus (SFA) and studied the
forces between mica and gold under potentiostatic control.
Here, we have applied the same method as Bard and co-
workers: the interaction between a gold substrate and a
silica probe has been measured using an AFM, and from
the force—distance curves the double layer potential of
the gold surface was obtained by fitting these according
to DLVO theory (Derjaguin and Landau'43—¢ and Verwey
and Overbeek!4d). The double layer potential of the silica
probe was used as an input parameter, for which we used
values determined by Giesbers et al.”15> from silica—silica
interactions as a function of pH. For practical reasons in
the present study the gold substrate is a gold wire. In our
adsorption studies, measurements are performed on a
reflectometer in which gold-coated silicon wafers are used
as the substrate.

As an extension to the work of Hillier et al.,* which
focused on specific adsorption of halide ions on gold as a
function of applied potential, we have measured the
interactions as a function of both the applied potential
and the pH of the solution. As background electrolyte we
used KNOs, which is considered to be indifferent in this
system. The double layer potentials determined from
fitting the force curves are quantitatively interpreted in
terms of an amphifunctional double layer model developed
in our group.*® This model considers the simultaneous
effects of the electronic charge and the protolytic charge,
and has recently been extended to also account for specific
adsorption.'” Earlier, Hu et al.® have measured the pH
dependence of double layer interactions between a TiO,
electrode and a silica probe, but this was only done at the
open circuit potential. Here we provide a two-dimensional
data set, i.e., plots of the double layer potential as a
function of applied potential over a wide range of pH
values. Finally, it is shown that the roughness of the gold
surface (on the dimensional scale of the diffuse double
layer thickness) is an important factor in the experimental
determination of the double layer potential.

In aforthcoming paper we will report on the adsorption
of a cationic polyelectrolyte (polyvinylpyridinium, PVP*)
on gold as a function of pH and applied potential, using
the results obtained here concerning the variations in
double layer potential to interpret the changes in adsorp-
tion kinetics and adsorbed amounts.

(10) Hieda, H.; Ishino, T.; Tanaka, K.; Gemma, N. Jpn. J. Appl. Phys.
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Figure 1. Schematicrepresentation of the experimental setup.
c.e. = counter electrode; r.e. = reference electrode; w.e. =
working electrode.

Experimental Section

Materials and Methods. The force—distance measurements
in this study were performed using a DI (Digital Instruments
Inc., Santa Barbara, CA) Nanoscope |11 atomic force microscope
equipped with a standard fluid cell and a piezo scanner “E” (X,
y range 12.5 um x 12.5 um).

Silica spheres of 6 um diameter, which were a gift from Philips
Research Laboratories (Eindhoven, The Netherlands), were glued
to the “wide-legged” 200 um long standard contact mode
cantilevers with integrated tip (Digital Instruments Inc., Santa
Barbara, CA). The glue used for this purpose was an epoxy resin,
Epikote 1004 (Shell Amsterdam, The Netherlands) which has a
melting point of about 100 °C and is highly insoluble in water.
The method used to glue the particles to the cantilever tips has
been described by Hillier'! and Giesbers.'> Just prior to the
experiments the cantilevers with attached silica spheres were
cleaned in a plasma cleaner (Model pdc 32G, Harrick Scientific,
New York) for 30 s.

After each series of measurements the cantilever spring
constant was determined. Calibration of the cantilevers was
performed following the Cleveland method.'8 According to this
procedure, particles of known size and density are attached to
the free end of the cantilever and the spring constant k is
determined from the resulting shift of the cantilever’s resonance
frequency.

Flat gold electrode surfaces were obtained by polishing one
end of a gold wire with a cross section of 2 mm2, held in a Teflon
sample holder, with a slurry of 40 nm silica particles in water
(OP-U suspension, Struers bv, Denmark). After polishing, the
surface was ultrasonically cleaned in ultrapure water (EASYpure
UV (Richard van Seenus Technologies bv, Almere, The Neth-
erlands), specific resistance 18.3 MQ cm) to remove the silica
particles left by the polishing treatment. This resulted in
relatively flat gold surfaces containing areas with a peak-to-
valley distance of less than 5 nm over an area of 0.1 um?, as
determined by AFM imaging in the contact mode with a standard
nitride tip. Force measurements were performed at selected
positions where the gold surface was relatively flat. To select
such positions, the gold surface was scanned with the silica probe.

The other end of the gold wire was connected to a potentiostat
(Model 2059, AMEL s.r.l., Milan, Italy). A platinum counter
electrode and a Ag/AgCI (in 3 M KCI) reference microelectrode
were put into the inlet and outlet of the AFM fluid cell and
connected to the potentiostat. A schematic representation of the
experimental setup is shown in Figure 1.

Aqueous electrolyte solutions were prepared from analytical
grade KNOgs in ultrapure water. Prior to each experiment nitrogen
was bubbled through the solution for at least 30 min to deaerate
the solution and to remove dissolved CO, which would decrease
the pH. Approximately 10 mL of the solution was rinsed through
the AFM cell, after which the inlet and outlet of the cell were
closed. Three types of measurements were performed: double
layer interactions between the silica probe and the gold substrate
(1) as a function of salt concentration, (2) as a function of the

(18) Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci.
Instrum. 1993, 403.



solution pH [(1) and (2) were under open circuit conditions]; and
(3) as a function of the applied potential, for several fixed pH
values.

In the first series of measurements, the potential of the gold
surface is determined by its equilibrium with the solution (open
circuit potential). The pH was not adjusted; after deaeration for
at least 30 min with nitrogen the pH was between 6.1 and 6.4.
The series were started at the lowest salt concentration. After
percolating the KNO; solution through the AFM cell and
equilibration for 15 min, continuous force measurements with
a measuring frequency of 1 Hz were started.

In the second series of measurements the sample and electrodes
were connected to a voltmeter to measure the open circuit
potential (OCP) as a function of the pH. In these measurements
the pH was adjusted by adding aliquots of aqueous solutions of
KOH or HNOg3. The experiments were performed as described
above. At low pH, the system did not reach equilibrium until
after about 1 h; the OCP of the gold slowly changed from +100
mV to a value of +220 mV (vs Ag/AgCl reference electrode). We
waited until it shifted by less than 1 mV in 15 min.

Several series of measurements of the double layer interaction
as a function of the applied potential were performed in 1 mM
KNOg3 solution, each at a fixed pH. After rinsing the cell with the
solution, and closing it, the sample, reference electrode, and
counter electrode were connected to the potentiostat. A volta-
mmogram of the system was recorded to check the electric circuit
and the functionality of the gold electrode. Subsequently an
external potential was applied, and after 10—15 min continuous
force curves were measured with a measuring frequency of 1 Hz.

Determination of the Double Layer Potential of the Gold
Surface from the Force Curves. During the acquisition of a
force curve, the measured experimental parameters are the
output signal of the photodiode (in volts) which is directly related
to the tip deflection. This can be calibrated by comparing the
detector signal to the piezo displacement in the constant
compliance region and the substrate displacement in nanometers.
These data are converted into a normalized force (F/R) vs
separation curve by use of the cantilever spring constant and the
probe radius R. The onset of the constant compliance region is
taken as the point of first contact and the point of zero separation
(r =0) in the DLVO fits.

According to DLVO theory the Gibbs interaction energy
between two surfaces is given by the sum of the van der Waals
and electrostatic interaction Gibbs energies. In the present work
the electrostatic interaction between two parallel dissimilar
surfaces is calculated using the nonlinear Poisson—Boltzmann
equation for the diffuse double layer in a symmetrical (z:z)
electrolyte solution (see, e.g., refs 11, 19, and 20). Since this
equation isone-dimensional, itapplies to flat surfaces or relatively
large colloidal particles only (kR > 1, «~* being the Debye length
and R the radius of the particle). In our system «R varies from
about 100 to 1000 for electrolyte concentrations between 1 x
10~4and 1 x 1072 M, so this condition is satisfied. The nonretarded
equation according to Hamaker has been used to calculate the
van der Waals interaction. For a detailed treatment of van der
Waals forces between two macrobodies, see, e.g., ref 21.

Interaction curves were solved numerically for the boundary
conditions of both surfaces at constant potential as well as for
both surfaces at constant charge, using a computing program of
Hillier.!* From the total Gibbs energy Gt as a function of the
separation distance r between two flat plates, the normalized
interaction force F(r)/R was obtained for a sphere of radius R
and a flat plate using Derjaguin’s approximation:22

@ = 271G (1)

= @

(19) Hiemenz, P. C. In Principles of Colloid and Surface Chemistry;
Lagowski, J. J., Ed.; Marcel Dekker: New York and Basel, 1986; Vol.
4, Chapter 12.

(20) Hunter, R. J. In Foundations of Colloid Science; Oxford
University Press: Oxford, 1987.

(21) Lyklema, J. In Fundamentals of Interface and Colloid Science;
Academic Press: London, 1991; Vol. I, sections 4.6 and 4.7.

(22) Derjaguin, B. V. Kolloid-Z. 1934, 69, 155.
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Figure 2. Force—distance curves for a silica sphere (6 um
diameter) interacting with a gold electrode in KNO3 solutions
of concentrations as indicated at room temperature and pH
~6.4, at the open circuit potential. Data points correspond to
the measurements. The dotted lines denote the numerical
solutions of the nonlinear Poisson—Boltzmann equation under
the condition of both surfaces at constant surface potential.
The solid lines are the fits for both surfaces at constant surface
charge.

The calculated force curves were fitted to the experimental
ones choosing the double layer potential (y9) of the gold substrate
and the Debye length («~1) as the fit parameters. Generally, the
resulting Debye length agreed with the value calculated from
the bulk electrolyte concentration. The double layer potential of
the silica probe at various salt concentrations and pH values
was taken from Giesbers et al.”1> and used as an input parameter
in the fitting of the double layer potential of the gold.

From previous measurements in our laboratory on symmetric
systems (silica—silica and gold—gold), itis known that both silica
and gold surfaces exhibit a certain degree of charge regulation;
i.e., interaction curves are between the two limiting cases of
constant diffuse charge and constant diffuse potential surfaces.
Here, the measured double layer potential 2., .. Was taken as
an average value of the two double layer potentials calculated
for these two limiting cases, which never differ more than 5 mV.

Generally, fits were performed using a Hamaker constant for
the gold—water—silica system of 5.7 x 10720 J.?1 However, van
der Waals forces may be obscured by hydration forces and surface
roughness as discussed by Giesbers et al.” It should be noted
that the surface roughness was not necessarily constant, because
the gold sample was polished anew before every series of
measurements. van der Waals forces are most pronounced at a
distance of a few nanometers from the surface. At a salt
concentration of 1073 M, the fitting of the force curve on the basis
of DLVO theory mostly refers to the region at 10—40 nm from
the surface, where the contribution of van der Waals forces is
very small. At the higher salt concentrations, however, the Debye
length is so small that a large part of the potential drop takes
place in the first 10 nm where the van der Waals forces do count.
Especially here it is evident that van der Waals forces are
considerably less than expected on the basis of the Hamaker
constant for the ideally planar gold/water/silica system. There-
fore, those force curves were fitted without the van der Waals
contribution to the total Gibbs energy. At the lower salt
concentrations, fitting with or without van der Waals forces was
found not to be crucial for the resulting value of the double layer
potential, the differences being on the order of a few millivolts.

Results and Discussion

Double layer interactions of the gold electrode with the
silica probe were measured at various salt concentrations.
Figure 2 gives representative examples of the force/
distance curves obtained at two KNOj3 concentrations, at
neutral pH and without external potential. Only the
approach curves are shown, since upon retraction the
double layer interactions are somewhat obscured due to
adhesion, which makes the corresponding force curves
less suitable for fitting with double layer theory. The
double layer potential at zero separation (1% ..c.req) cal-
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Figure 3. (A) Double layer potentials (w&easured) of the gold/
electrolyte interface in 1 mM KNO; with respect to the solution
as calculated from DLVO theory and the measured AFM force—
distance curves. The isoelectric point is at pH 4.95 + 0.15. v
= Y2 .cureq Measured in a series from pH 10 to pH 4. A =
Y8 e Measured from pH 3.5 to pH 10. B = data of Giesbers
et al. for a gold-coated silicon wafer in 1 mM KCL.” The solid
curve gives the best fit of the amphifunctional model with Ng
= 0.8 x 10*? sites/cm?. (B) Open circuit potential (OCP) with
respect to a Ag/AgCI reference electrode as a function of pH in
1 mM KNOjs. v = OCP measured in a series started at pH 10;
<& = OCP when started with a fresh surface for each pH.

culated from these fits is —16 mV at 103 M KNO; and
—12 mV at 102 M KNOs. The decrease in double layer
potential with increasing salt concentration is due to
screening effects. The fitted values for the Debye length
(«Y)were 9.2 and 3.6 nm, respectively. The Debye lengths
calculated from the electrolyte concentrations are 9.6 and
3.0 nm, respectively.

Double Layer Potential of Gold as a Function of
pH. For pH values in the range of 3.5—10.5 gold/silica
interaction curves and the OCP values of the gold electrode
(with respect to a Ag/AgCl reference electrode) were
measured simultaneously. The higher salt concentration
of the solution due to the adding of HNO3; or KOH was
accounted for in the DLVO fits. The results of the fits are
plotted as a function of pH in Figure 3A. This diagram
illustrates that ¥ shows a steep change (30 mV/pH) in
the range of pH 3—5. The isoelectric point of the gold
surface, i.e., the pH for which y¢ =0, is at pH 4.95 4+ 0.15.
At higher pH, ¥ levels off to a value of —17 mV.

We used solutions of KNOg3, which is generally consid-
ered to be an indifferent electrolyte on gold, as supporting
electrolyte. Giesbers et al.” used solutions of potassium
chloride (chloride ions are known to form complexes on
the gold surface) to perform similar measurements. The
ydvalues obtained by Giesbers are slightly more negative
than those presented in this work. However, the differ-
ences between the two data sets (Figure 3A) are so small
as to be nearly within experimental error.

The OCP, measured simultaneously with the double
layer potential, is given in Figure 3B. Going from high to
low pH, the OCP values were approximately the same as
those obtained when measurements were started with a
fresh surface for every pH. In one case hysteresis was
observed, in that upon going from low to high pH OCP
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Figure 4. Forcecurvesobtained at different externally applied
potentials of gold in 1 mM KNOj3 at pH 4.7. The inset shows
the corresponding ¢ _....q Values calculated from AFM mea-
surements using DLVO theory. A® changed in steps of 100
mV.

values were found to be different from those given in Figure
3B. This observation could not be reproduced in measure-
ments outside the AFM cell and was not considered any
further. The trends of Figures 3A and 3B are similar, but
guantitatively the variation in the measured ¥ is much
lower than in the OCP. This is because by AFM measure-
ments only a (diffuse) part of the double layer is seen.

Double Layer Potential of Gold at Externally
Applied Potential. At various pH values the potential
(A®) applied to the gold/solution interface was varied,
keeping the salt concentration and pH constant. Figure
4 shows a typical set of force curves measured at pH 4.7.
The inset shows ¢, obtained from fitting the force data
to double layer theory. An overview of the y9 values
obtained as a function of A® at all pH values studied is
giveninFigure 5A. The lines in this picture are only meant
to guide the eye. It can be seen from this picture that ¢
is determined by both the solution pH and the externally
applied potential.

The variations in double layer potential found by either
changing the solution pH or applying an external potential
are in the same order of magnitude. Both effects are rather
small—achange of several tens of millivolts in the potential
and pH range studied. This is in line with the results of
Hillier et al.*! and Wang and Bard.*? Fréchette and
Vanderlick,'® however, have found a larger spread in
double layer potential of ca. 150 mV over an external
potential range of 400 mV.

With respect to adsorption studies, it should be noted
that molecules adsorbing on the surface experience the
double layer potential on a much smaller length scale
than the radius of the colloidal probe. Since the gold
substrate is polycrystalline and has a certain degree of
surface roughness, the local potential can differ substan-
tially from the smeared-out diffuse double layer potential
as experienced by the colloidal probe. The various low
index faces of gold crystals exhibit different potentials of
zero charge (see, e.g., ref 23 and references therein). The
effect of surface roughness is outlined below.

Analysis in Terms of an Amphifunctional Double
Layer Model. The dependency of 19 on both the pH and

(23) Hamelin, A.; Vitanov, T.; Sevastyanov, E. S.; Popov, A. J.
Electroanal. Chem. 1983, 138, 225.
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Figure 5. (A) Double layer potential (1...,.q) @s a function
of applied potential (A®) at different pH values: O, pH 3.5; &,
pH 3.9; &, pH 4.7; ¢, pH 5.1; A, pH 6.4; A, pH 6.8. The lines
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data are adjusted as described in the text and the curves are
fits according to the amphifunctional double layer model.
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Figure 6. Schematic representation of the potentials and
charge distribution at the gold/electrolyte interface used in the
amphifunctional double layer model.

the external potential was analyzed using the model
developed by Duval et al.*® This model combines the two
charging mechanisms of the electrode/solution interface,
i.e.,, charging by an external electric source and by
adsorption/desorption of protons from/to the liquid. A
somewhat similar model has been proposed by Smith and
White?* to describe the voltammogram of an electrode
covered by a complete monolayer of molecules containing
an acid group.

In the model the distribution of charge is assumed to
be smeared out over the gold surface. Here, we do not
consider specific adsorption of ions from the electrolyte
solution onto the gold. Briefly, the electric double layer is
modeled to consist of four elements, as schematically
represented in Figure 6. The first corresponds to the bulk
of the gold substrate. The second is a layer with oxidic
binding sites for protons on the gold (referred to as the
oxide layer). The third element is the Stern layer, and the

(24) Smith, C. P.; White, H. S. Langmuir 1993, 9, 1.
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fourth is the diffuse part of the double layer. The solution
side of the double layer (the Stern layer and the diffuse
double layer) is described by classical GCS (Gouy—
Chapman—Stern) theory. The pH dependence of the
surface charge is described by a two pK site-binding model.
Since gold is a metallic conductor, the potential of the
gold is constant throughout the entire bulk of the gold, up
to the oxide layer. To calculate the potential drop over the
oxide layer due to an externally applied potential, this
layer is modeled as being a charge-free dielectricum.

We used this so-called amphifunctional model to
calculate ¥ as a function of the solution properties and
the externally applied potential. For more details on the
model and calculations demonstrating the coupling be-
tween the two charging mechanisms and limiting cases,
the reader is referred to the original paper of Duval et
al.1¢

To fit a series of measurements at different pH values
in the absence of a polarizing potential according to the
amphifunctional double layer model, the only parameter
to be chosen is the capacitance of the Stern layer C.. In
areviewon the gold/solution interface, Vorontynsev?® gives
values between 15 and 50 uF/cm? for Cs, from which we
have chosen 30 uF/cm? as an average value. The number
of proton binding sites (Ns), which determines the maxi-
mum charge density on the surface, and the pK values for
the reactions

K
—MOH," == —MOH + H* (22)
K, N .
—MOH == -MO™ + H (2b)

which determine the shape of the yd(pH) plot, were
obtained by fitting the model to the data of the double
layer potential as a function of pH. The solid curve in
Figure 3A gives the calculated curve with a value of 4.95
for both pK values (so ApK = 0) and Ns = 0.8 x 10*? sites/
cm?. This number of binding sites would correspond to a
coverage of the gold surface with oxidic groups of ap-
proximately 0.1%, based upon a density of 1.4 x 10*® gold
atoms per cm? at the Auji; surface. Although the effect of
surface roughness has not yet been taken into account in
the calculation, the oxide layer seems to be well below full
monolayer coverage. Such an observation has been made
before'® and would deserve further study.

In the low pH range, the model does not entirely fit the
measured data. To get a better match between experi-
mental data and model calculations, itwould be necessary
toincrease the number of proton binding sites in the model.
However, this number is generally believed to decrease
with decreasing pH,%° which is at variance with Figure
3A. Hence, it is likely that another double layer property
is responsible for the different behavior at low pH.

To fit a series of measurements with an externally
imposed potential at the gold surface at a certain pH, we
additionally need an estimate for the capacitance of the
oxide layer C,. In contrast to the open circuit situation,
there is a potential drop over the oxide layer. C, is given
by the relation

_ €ofy

Co= 4 3)

inwhich d is the thickness of the oxide layer. This thickness
is determined by the Au—0O bond, which is approximately
0.5 nm.

(25) Vorotynsev, M. A. In Modern Aspects of Electrochemistry; Bockris,
J. O'M., White, R. E., Conway, B. E., Eds.; Plenum Press: New York,
1986; Chapter 2, p 177.
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Figure 7. Potential of zero force of gold in 1 mM KNO3 as a
function of pH. The data are taken from Figure 5. @, pzf
determined from Figure 5A; O, pzf determined from the model
curves in Figure 5B. The solid curve gives the fit of the model

Ns = 0.8 x 10%sites/cm?.

In the model A®—like y%—is defined with respect to the
potential of the bulk solution (A®ay solution). OF course, in
the experiments A® is not applied with respect to the
solution but with respect to the Ag/AgCl reference electrode
(ADay ref)- By adding the potential difference between the
reference electrode and the solution {(A®ay rer) + (ADyet-
solution) = (A®aysolution) = AP}, the applied potential is
expressed with respect to the solution. The value of
(ADref solution) Can be extracted from comparison of the
measured potential of zero force (pzf) with the pzf
calculated from the model. The pzf, defined as the applied
potential for which the double layer potential equals zero,
is a function of the pH and is given in Figure 7. In the
pointof zero charge, at pH 4.95, the double layer potential
equals zero. The measured pzf at this pH is 150 mV (vs
Ag/AgCl), which is close to the value of the open circuit
potential (135 mV vs Ag/AgCl), as can be seen in Figure
3B. Thus, all potentials applied with respect to the Ag/
AgCl reference electrode are shifted by —150 mV to express
these with respect to the potential of the bulk solution.

In comparing the measured data with the model,
another problem arises. The gold electrode is polycrys-
talline, and because of surface asperities the probe does
not touch the gold surface at every position. The effective
double layer potential “felt” by the probe is really an
ensemble of different potentials for different separations
over an area of about 0.1 um? (the electric interaction
area of the probe and the surface). A first-order ap-
proximation for the relation between the actual (local)
double layer potential 3¢ ., and the measured effective
double layer potential 1S ....req: Which is a smeared-out,
average value at the distance of closest approach, is given
by

d 1, d w0
Ymeasured — Kflplocale dA (4)

in which A is the interaction area. Since the distance
between the surfaces (9) varies in this interaction area
(only the larger surface asperities are touching the opposite
surface), the weigh factor exp(—«d) is in the integral.
Equation 4 still assumes a locally undisturbed one-
dimensional behavior of the double layer, which is a good
approximation provided that there is no significant double
layer overlap between the asperities at the gold surface.
That is, if the characteristic length A between the peaks
(or valleys) of the surface asperities is much larger than
the double layer thickness (characterized by the Debye
length «71), kA > 1. From topographic images of the gold
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Table 1. Values of A for the Series of Measurements in
Which the Applied Potential Was Varied at a Range of
pH Values, at an Electrolyte Concentration of 1 mM

KNO3

pH A (nm) Ns (x1012 cm™1)
3.5 2 3

3.9 8 1.5

4.7 7 1.2

5.1 2 0.7

6.4 4 1.0

6.8 11 1.0

surface taken by AFM in the contact mode, it was observed
that 1 is about 100 nm, so for «~* = 10 nm this condition
is fairly well satisfied. Unfortunately, eq 4 can only be
applied to find the real double layer potential if the
roughness profile and characteristics concerning the
polycrystallinity of the surface in the interaction area are
known. Since such information is not available for our Au
surface, we use an even more simplified method, which
involves a shift of the plane of charge (i.e., the point of
zero separation in the force—distance curves) over a
distance A. In other words, we consider the distance of
closest approach between the probe and gold surface to
be A, which implies that our 93 .....q Values are related
to the average potential at the onset of the diffuse double
layer, y9, by

©)

The significance of A is that it replaces the ensemble
of all potentials for different separations (summed over
A) by a constant potential w?neasured at a mean separation
A. The value of A is obtained by comparing y¢ calculated
with the amphifunctional model and the experimental
value for W?neasured- For one series of measurements A
should be a constant because the whole series is taken at
the same location at the gold surface. For different series,
A may vary because the measurements refer to another
area of interaction at the gold surface. It may be added
that any error in determining the spring constant of the
cantilever has a proportional effect on the slope of the
yd—A® curves, which has an (exponential) impact on the
value of A. The inaccuracy in the spring constant may be
as much as 30% (as a result of inaccuracies in the
determination of the radii of the particles used in the
Cleveland method of calibration), which adds to the
possible error in the estimation of A. Each series of
measurements was performed with one cantilever.

Figure 5B gives the 9 values corrected for roughness
as indicated above as well as the curves calculated with
the amphifunctional model. It shows that, when the
surface roughness is taken into account, the ¥ values
and their pH and A® dependence are fairly well described
by the model. In Table 1 the values obtained for A are
listed. In the third column of Table 1 the fitted values for
N, are shown. Since in the model N determines the point
of zero force of the curves, whereas A determines the slope
of the curves, the two parameters are independently
obtained from the experimental data.

As can be inferred from Table 1, the value of A varies
between 2 and 11 nm. Taking into account the large error
in this value due to the inaccuracy in determining the
spring constant, this agrees fairly well with the observed
surface roughness of 5 nm (peak-to-valley distance).

Wang and Bard?*? recently reported a large discrepancy
between the electrically induced charge of a gold electrode
and its surface charge density calculated from y values
determined with colloidal probe AFM (the latter is in fact

d — o d—KkA
wmeasured - 1/) e



the diffuse double layer charge). This discrepancy was
mainly attributed to ion correlation and ion condensation
effects. However, there is no evidence for counterion
condensation from the force curves at different salt
concentrations (Figure 2). The analysis presented here
shows that the difference between electronic charge and
diffuse double layer charge has to be explained in terms
of surface roughness, the buffering effect of proton binding
sites, and the presence of a very thin dielectric layer at
the surface (in our model a very incomplete oxide layer).

Conclusions

The double layer potential of gold can be varied through
the solution pH as well as by an externally applied
potential. Classical GCS theory alone is inadequate to
describe the double layer phenomena of the gold surface.
The different fits of the data in Figures 3, 5B, and 7 show
that the amphifunctional model proposed by Duval et al.*®
describes very well the charging behavior of the gold/
solution interface. This is true in both the presence and
absence of a polarizing potential, provided surface rough-
ness is taken into account. It appears that a very low
density of proton binding sites at the gold surface causes
the pH to have an effect on the double layer potential in
a fairly narrow pH range. The total variation in double
layer potential is also relatively small due to this small
number of oxide sites. The pH dependence correlates with
a two-pK proton exchange reaction scheme with the same
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pK value of 4.95. The changes in ¢ as a result of an
externally applied potential are small (AyY/A(A®) ~ 0.1)
due to large potential drops over the oxide layer and the
Stern layer. Moreover, due to surface roughness the
potential determined with colloidal probe atomic force
microscopy is generally lower than the local diffuse double
layer potential.

Of course, adsorbing molecules near the gold surface
experience the local potential. Therefore, heterogeneity
in surface potential due to polycrystallinity of the gold
and partial coverage with oxide sites also play a role in
adsorption phenomena. As far as electrostatics is impor-
tant in adsorption, however, we expect to be able to
interpret at least the trends in kinetics and adsorbed
amounts with pH and applied potential on the basis of the
amphifunctional charging mechanism of the gold/solution
interface.
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Abstract

Amphifunctional double layers are defined by the coupling of electronic and ionic surface charging processes. They may be
present at interfaces of the type metal | oxide layer | solution or semiconducting oxide | solution. In the present paper, the
simultaneous effects of charge-determining ions H*/OH ™~ and specifically adsorbing ions from the background electrolyte are
analyzed on the basis of the amphifunctional double layer model we developed earlier. Depending on the nature of the substrate the
interactions are either or both of the type (i) ions-ionized functional surface groups (ii) ions-metallic surface atoms. For each
category, the dependences of the points of zero-charge and the isoelectric point, as defined by potential-pH relationships, on the
background electrolyte concentration and the individual ion binding constants are obtained. The analysis of cases (i) and (ii) allows
the prediction of the shifts of iep and pzc for relaxed oxide | electrolyte interfaces and the familiar polarized mercury | electrolyte
interface in the presence of specifically interacting ions. Attention is paid to the dependences of the ion adsorption isotherms on pH
and externally applied potential. The specific adsorption of anions on TiO, is treated in some detail: the computations presented
here successfully explain experimental data. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Amphifunctional interface; Electric double layer; Specific adsorption; Point of zero charge; Isoelectric point; Metal oxides

1. Introduction sorbed ions is, for a given concentration and affinity of
these ions, determined by the solution parameter pH.
The charge on a solid oxide electrode in aqueous For a completely polarizable interface such as be-
electrolyte solution generally results from the surface tween mercury and an electrolyte solution, the double
excess of charge-determining ions H*/OH ~, which is layer parameters depend primarily on the potential
governed by the chemical affinity between ion and externally imposed to the substrate [3]. The occurrence
surface. Ions of the background electrolyte, which are of specific interactions between ions and the bare surface
not primarily charge-determining for a particular type of of the electrode is manifested in a modification of the
surface, may be specifically adsorbed on the surface charge density/potential characteristic [4]. The adsorp-
oxidic sites [1]. The non-electrostatic forces involved in tion isotherms of the ions are then dependent on the
this process result in shifts of the point of zero charge externally applied potential.
(pzc) and the isoelectric point (iep) [2], defined as the pH For amphifunctional interfaces [5], the double layer
values where the protonic surface charge and the (dl) arises from the combination between these two
electrokinetic potential are zero, respectively. For such charging processes. By way of example, we found that
a reversible interface, the amount of specifically ad- at gold electrodes, the amphifunctionality of the double

layer results from the electron-conducting properties of
the metal Au and the presence of a submonolayer of
oxide at the surface [6]. For conducting (metallic) oxide
such as RuO, and IrO,, that the proton mechanism is

* Corresponding author. Tel.: +33-317-484-960; fax: +33-317-483-
777
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operating is evident from the measurable pzc. On the
other hand, these electrodes behave according to the
laws of electrochemical kinetics for metallic conductors.
For semiconducting rutile TiO, electrodes, clear depen-
dences of the surface potential (as measured by AFM)
on the applied potential and pH have been reported in
Ref. [7]. However, adsorption of sulfate and phosphate
anions on TiO, electrodes have been found to be only
pH-dependent, their adsorption at constant pH being
insensitive to the applied potential [8]. A priori, these
last mentioned results are in contradiction with the
amphifunctionality expected for TiO, on the basis of the
study quoted above. To our knowledge, no quantitative
work has been reported so far to explain such behaviour.
More generally, the way in which the simultaneous
functioning of two disparate dl charging mechanisms
affects specific adsorption has not yet been addressed.
The present paper proposes models to account for the
double layer profiles at such amphifunctional interfaces.
These models describe in particular situations where the
ions either exclusively interact with the oxidic groups
(relevant for semiconducting or metallic oxides) or
interact with both metallic surface and oxidized groups
(relevant for substrates such as partly oxidized metal
surfaces). The ionic specific adsorption on the reversible
and polarizable parts of the amphifunctional surface will
be treated separately. Understanding the relevant char-
ging mechanisms provides a new route in describing ion
adsorption as a function of applied potential and pH.
We stress that essentially two types of specific adsorp-
tion are involved. The first is that for adsorption of
protons and hydroxyls on the reversible sites. This type
involves a very high affinity and is responsible for the
fact that a surface charge forms at all. The second part is
the much weaker specific adsorption of ions other than
protons and hydroxyls at the iHp. This second part acts
both on the reversible (relaxed) and polarized parts.

2. Specificity of the amphifunctional interfaces under
investigation

We consider an amphifunctional interface between a
partially oxidized metal, a semiconducting or metallic
oxide and an electrolyte solution. In this section, we
shall briefly review the main characteristics of such
interfaces, of which the double layer properties were
analyzed theoretically in Ref. [5]. For such systems,
amphifunctionality is warranted by the fulfilment of the
following two main conditions.

(1) The presence of amphoteric surface hydroxyl
groups —MOH allowing for the release or uptake of
protons H™ to/from the solution via the ionization
reactions

~MOH; « -MOH + H* (1a)
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“MOH = MO~ +H* (1b)

(ii) Spatial separation of the electric charge density ¢°
(brought about via an external source) from the proto-
nic charge ¢° (resulting from the excess of protons). The
charge density ¢° in the substrate may be made up of
electrons (in the case of an electronic conductor), of
ionic excesses (in the case of doped semiconductors) or
of ionic deficits (for example, in the case of oxides
submitted to a treatment at high temperature). The
layers containing the charges ¢° and ¢° are separated by
a charge-free layer of capacitance C,. This capacitance
must be sufficiently high that a significant fraction of the
potential difference applied resides at the electrolyte side
of the interface.

In the double layer model developed for such inter-
faces [5], neither partial charge transfer aspects nor
polarization due to, for instance, water dipole orienta-
tion were explicitly taken into account. Furthermore, it
was assumed that potential and charges are smeared out
over a flat interface and specific adsorption was ignored.
Electroneutrality for the complete interphase requires

(1)

where ¢ is the diffuse double layer charge, given, for a
1:1 electrolyte, by [9,10]

0% = —(81¢RT)"* sinh(y/2)

c+ad’+a4=0

2)

with R the gas constant, 7 the temperature, / the total
ionic strength, & the dielectric permittivity of the
solution. y is the reduced potential defined as

y=Fy/RT (3)

Later we shall use y®=Fy%YRT, y°=Fy°RT, ¥ =
FyY?IRT if ¢ is the potential at the outer Helmholtz
plane (oHp), ¥/° the potential at the plane where the loci
of the oxidic surface groups are assumed to reside (‘op’
plane) and /” the potential at the inner Helmholtz plane
(iHp). F is the Faraday constant. As argued in [5], the
possible dependences of the extent of surface oxidation
and capacitance Cy on potential and pH were ignored.
In the frame of the present study, which focuses on the
occurrence of specific adsorption of ions other than
protons, we shall also adopt these assumptions.

3. Specific interactions electrolyte ions—oxidic sites
3.1. Potential and charge distributions at the interface

In Fig. 1, specific interactions of ions from the
background electrolyte with the functional amphoteric
surface groups are accounted for. The plane where these
specifically adsorbed ions reside is the iHp. It is assumed
that the ions bind to the surface oxidic sites and, for
simplicity, that they bind only to sites with opposite
charge sign, which is energetically the most favourable



option. So, in the case of a 1:1 XY~ electrolyte, the
binding of the ions can be expressed as

~-MOH; + Y~ « -MOH,Y
~MO™ +X* < -MOX

(2a)
(2b)
At equilibrium, the (electro)chemical potential of the
surface bound ions is equal to that of the corresponding
free ions in the bulk of the solution, i.e. for the cations
)(+

ﬁX*bound = lu())(ﬂbound +RT ll’1(1—‘MOX/[‘MO’) + FWﬁ
U sol = ,u())(ﬁsol + RT In ¢”

4)
(®)

with I' 4 the surface concentration of A and ¢ the bulk
concentration of XY . The term RT In(I"'mvox/T'mo-)
stems from the configurational entropy of the bound
X ions distributed over the ~-MO ™~ binding sites [11].
The above equations can be rearranged into

r
K= () expo!
¢ Iyo -

in which Kx(=exp{—(tx+bound —tx+ o)/ RT}) is the
intrinsic (‘chemical’) affinity constant of the X * ions for
the oxidic sites. In the same way, for anions of type Y —,

(©)

MOH, Y

r
o= (0 s
¢ Iyion;

By the same token, the intrinsic acidity constants can be
expressed as

()

Protome charge a7
Specifically ndsorbed iong charge o’
Criffuse ionic charge o
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®)
©)

where ¢+ is the bulk concentration of protons. It is
stressed that we have assumed a smeared out potential
in the various planes, but of course in the vicinity of
charged surface groups, the potential can be much
higher (positive or negative) than ° or ”. However,
if the ionized groups are not too close to each other, it is
reasonable to consider the difference between the
smeared out potential and the local potential as a
constant. This local potential difference is then sub-
sumed in the intrinsic binding constants containing a
potential contribution apart from the chemical affinity.

The protonic surface charge density ¢° and the ionic
surface charge density ¢’ are

K, = ¢iir Tyion exp(—")/ Tyions
K, =i I'vo- exp(—")/I'yon

o’ = F(FMOHZ+ —'vio- + I'yvon,y — I\iox) (10)
and
o = F(I'yox — FMOHZY) (11)

respectively. The electroneutrality condition for the
interface as a whole is now written

o+’ +6+59=0 (12)
The total number of surface hydroxyl surface groups is

(13)

The potential of the metallic phase /° (reduced potential

N = yion + I'viony + vo + Dvion,y + I 'vox

Elecironic charge o
I o
| |

4

* M— l.'ln'I'H . i
¥e | H |

-__J__-__|.__.i.__._.-._-._--_--_-.--.-...-...-.-.. = m

iHp aHp

op

Dirgnee x from fe serallic sugface

Fig. 1. Double layer model describing an amphifunctional interface between a partially oxidized metal and an aqueous electrolyte in the presence of
anions specifically adsorbed on the oxide layer. The situation is depicted for an external potential Ap > 0.
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1°) is identified to the externally applied potential Ag
(reduced potential Ay) since the potential of the solution
is taken as the reference. The potentials ¥, y°, y*, y¢
are related to the surface charges o°, a°, ¢% via the
capacitance Cy, the inner Helmholtz layer capacitance
C; and the outer Helmholtz layer capacitance C, by

Co=do*/d(y* —y") (14)
C, =d(c* +¢°)/d° — v/ (15)
C, =—do?/d(y’ —y) (16)

The diffuse layer capacitance CY is found directly from
differentiation of (2) with respect to ¢

C? = —dgd/dy? (17)

Eq. (14), relating the electric charge to the applied
potential = Aq, is valid when considering an elec-
trode for which the number of charge carriers is very
high (such as for metals), i.e. when the potential drop
inside the substrate is negligible. In that situation, the
electric charge is located in the close vicinity of the
surface. For a semiconductor the number of charge
carriers is usually much smaller so that the electric
charge ¢° can be distributed over a considerable distance
behind the interface, i.e. a space charge is formed. To
account for this latter situation, the reader is referred to
the treatment given in Appendix A, which is similar to
the one given for the case of a metallic electrode.

In the case of specific adsorption of anions (cations),
Ky >0 and Kx =0 (Kx >0 and Ky =0), which renders
the surface charge ¢ negative (positive). Egs. (2), (6)—
(16) describing the situation in the interface enable the
calculation of the potential and charge distributions at
given pH and ionic strength. The model parameters are
the three capacitances Cy, C;, C, supposed constant as
discussed in Ref. [5], the binding equilibrium constants
Kx and Ky, the acidity constants Kal, K, and the total
number of sites per unit area Ni.

3.2. Estimation of the model parameters

Determination of N is possible on the basis of
experimental data on ¥ as a function of pH without
an externally applied potential. These are obtained from
electrokinetic experiments or AFM surface force mea-
surements [6,12—14]. Proton titration experiments yield
information on the protonic surface charge and hence
the surface oxidation. Given the value of N, the
constants Kdl and K.(12 can be derived from extrapolation
procedures used to fit the electrokinetic, AFM or
titration data [15,16]. Kx and Ky can be inferred from
the titration data by means of a double extrapolation
technique as first introduced by James and Parks [17]. A
probable range of values for the capacitance Cy is 1-10
uF cm ~ 2 [5]. The capacitance of the inner layer C; can
be deduced from two kinds of data sets, of which the
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availability depends on the total surface area of the
system studied. If this area is high (dispersed particles),
potentiometric titration data can be obtained and used
[18]. Otherwise (metal electrodes), electrochemical ex-
periments can be performed to construct Parsons—Zobel
plots [19,20]. Knowing the values of C, and assuming no
specific adsorption of ions, C; may then be estimated
with use of the intercept of these plots (straight lines).
For oxides, values between 100 and 140 pF cm 2 are
usually found and generally lower values (15-50 pF
cm ~2) are reported for metals though values higher than
50 pF cm ~ 2 are sometimes reported (C; > 120 pF cm 2
in case of a hydrophilic metal such as Ga). For C,, a
value of 20 pF cm 2 has gained some consensus [21].

3.3. Effect of specific ion adsorption on the potential-pH
relationships defining the iep and pzcs: limiting case of the
relaxed oxide | electrolyte interface

In connection with understanding the electronic and
protonic charges in the presence of specific adsorption
of ions, it is useful to first consider the conditions where
these charges are zero. For amphifunctional interfaces
of the type examined here, these conditions are given by
the potential-pH relationships (A, pH)p,. for which
0°=0and (A, pH)y,c for which a®=0[5]. At a given
pH, the potential A(ppZCl at the pzc; condition is some-
times called the open circuit potential and, for a
semiconducting substrate, the flat-band potential. The
potential of an isolated phase (metal or semiconductor)
immersed into a solution corresponds theoretically to
the potential of zero charge. The iep (Ap, pH);ep W'=
0) also deserves attention. Here, we shall examine how
the characteristic Ag values are modified by specific
adsorption of ions.

For the sake of simplicity, let us focus on the
particular case of specific adsorption of anions at the
iHp. Taking into account the relationships defining the
pzci, pzc, and iep, the set of equations presented in
Section 3.1 was solved for the selected set of parameters
(Section 3.2) with specifically adsorbing anions and for
different electrolyte concentrations ¢*. The correspond-
ing plOtS A(szcl(pH)a A‘szc2(pH) and A(piep(pH) are
given in Fig. 2. For low ¢* (¢ «<Kvy'), specific
adsorption is negligible (¢ ~0) and we have

A@,(ppze) =A@, (ppzc) = A@,,. (ppzc) =0 (18)

where the pristine point of zero charge (ppzc) is the pH
value given by

ppzc = 0.5(pK, +pK,) (19)

Eq. (18) refers to the pristine condition. The trends of
the potentials Aqopzcl, A(ppzc2 and Ag;, as a function of
pH at low ¢® are explained in detail in Ref. [5]. At a
given pH, the potentials A<szc], A(ppZCZ and A@iep
increase upon specific adsorption of anions. Starting
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Fig. 2. Combinations of applied potential and pH at which the system
is at the iep (¢ = 0) (— — -), pze; (6°=0) (—) or pzc, (6°=0) (- -+ -
-) for different electrolyte concentrations ¢™. Electrolyte concentra-
tions ¢*=10"* M (a), 1072 M (b), 10! M (c), 1 M (d). The
intersection points of Agic,(pH) and Ag,,. (pH) with Ag,,. (pH) are

marked for each ¢* by the symbols (O) and (0), respectivel‘y. Model
parameters: pKal =2, pK, =8, Co=5pF cm 2 C; =100 pF cm 2,
C, =20 uF cm™ 2, N,= 10" sites cm 2. Ky=10*mol~ ' 1, Kx=0

mol ' 1.

from the pristine condition, ¥ decreases. The specific
anion adsorption leads to a positive induced charge ¢°+
o°, which is less than the specifically adsorbed charge.
To reestablish the iep, A@ must be increased. This is
achieved by increasing ¢° since some electrons are
withdrawn from the conducting side of the interface,
which, in turn, decreases the potential-induced counter-
charge ¢°+¢” . Similar reasoning applies to the pzc, and
pzc, situations and to specific adsorption of cations, for
which one obtains a figure (not shown here) which is the
mirror image of Fig. 2. Effectively, starting from Eq.
(18), the direction of the shift of Agj (A(ppZCl and
A(ppzcz) caused by addition of specifically adsorbing
anions is the same (opposite) as that induced by adding
charge-determining OH™ ions, ie. for pH > ppzc.
Similar trends are obtained by varying the binding
constant Ky at constant electrolyte concentration ¢™.
In the absence of an applied potential, Ap = y° =y is
the reversible potential, which depends on pH and on
the concentration and nature of the electrolyte via Kx
and Ky. The iep (® =0) and the pzc (¢° = 0) are then
defined by pH values denoted as pHi, and pHp,,
respectively. These iep and pzc are indicated in Fig. 2 as
the intersection points between the A@p,. —pH and
A@i.,—pH curves, and the A(szcpr and A<szc2*pH
curves, respectively. pHie, and pHy,. are known to be
shifted in opposite directions upon specific adsorption
of ions [2], as found by extrapolation of the amphifunc-
tional analysis.
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3.4. Characteristics of the ion adsorption isotherms:
dependences on pHlpotential

In the particular case of specific adsorption of anions
Y, the surface concentration of anions is given by
Pyon,y =1'= _Uﬁ/F (20)
To understand the dependences I'(A¢@, pH) properly,
the composition of the charge ¢’+¢” has to be
analyzed. Fig. 3 shows anion adsorption isotherms
computed for given Ky (Kx =0) and ¢™ as a function
of the applied potential for different values of pH. The
characteristic pattern of the isotherm at constant applied
potential versus pH is given in the inset. When increas-
ing the pH at constant Ag, the adsorbed amount I”
decreases since the protonic charge decreases. The
negative charges required to counterbalance the shift
in ¢°, induced upon increasing the pH, are then
preferentially located at the op. At a given pH, I
reaches a maximum for a potential denoted as A@,ax.
The existence of this maximum is due to the coupling of
the proton association process and the specific adsorp-
tion of anions (which bind only to -MOHS,' sites). At
extreme positive values of A¢g, all oxidic sites at the
surface are in the —MO~ form and anions cannot
adsorb. When Ag is extremely negative, all sites are in
the -MOH," form, but the potential at the interface is
too unfavourable for anion adsorption. The electrostatic
interactions resulting from the externally applied poten-
tial dominate the ion—ion interactions leading to the
formation of surface complexes of which the number is
in the limit zero. In these extreme potential ranges, the
basically amphifunctional interface tends to a mono-
functional behaviour [5], the ionic-charging function
being ‘blocked’ (saturation situation). This is also the
case when the anions adsorb on all the N, oxidic sites
available (AQ = AQpax.sat)- Compensation of the poten-
tial-induced charge ¢ must then take place by a shift in
the diffuse double layer charge ¢°, since the electroneu-
trality condition (12) always applies. In the intermediate
potential range, the interface behaves amphifunction-
ally. When in this range Ag@ is increased, the total
surface charge ¢°+0¢” decreases to compensate for the
positive shift in ¢°. This is achieved according to the two
following mechanisms: (i) dissociation of the surface
groups ~-MOH,;" to ~-MOH (and further to ~-MO ™), (ii)
complexation of the -MOH;" groups. The effect of the
proton dissociation constant Pk, is illustrated in Fig. 4.
If, for a given type of interface, PKa is high (at constant
pK,). the potential range where ~MOHS;" sites are
available for anions is relatively large and compensation
for the increasing value of ¢ is primarily achieved by
mechanism (ii); the increase in countercharge is then
primarily located at the iHp and A@,.x corresponds to
the potential where the complexes preferably dissociate
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into —-MO~ forms. For lower values of PK,, (and
constant pK, , so larger values of ApK), both dissocia-
tion of surface groups (i) and anion adsorption (ii)
contribute to the compensation of the potential-induced
change in ¢°. The relative contribution of these mechan-
isms is governed by the concentrations of protons and
anions in solution and their affinity for the -MOH and
~MOHS;" sites, respectively. In that case, A@yay is the
potential for which the complexes dissociate into —
MOH forms. As upon decreasing the pH of the solution,
I' is higher for higher values of PK,, (keeping pK,, and
pH constant) and A,y is shifted to the right since one
renders the surface more acidic (Fig. 4). I'nax increases
when increasing the concentration of anions in solution
(Fig. 5). The additional adsorption of anions induces an
increase in ¢° (equilibrium (1a) shifts to the left) and a
slight decrease in ¢° (at constant A¢@). The potential
A@nax required to reach the new maximum [, is
therefore shifted slightly towards the negative direction
so as to add electrons to the metallic side of the interface
and hence make ¢° more negative (Fig. 5). A plot of the
adsorption isotherm at given pH and potential as a
function of the bulk concentration ¢* is shown in the

inset of Fig. 5. Comparable results are obtained when
increasing the binding constant Ky, keeping the other
parameters constant.

Similar reasoning accounts for specific adsorption of
cations. For an insulating substrate, all the applied
potential difference resides in the oxide layer (Cy— 0):
the adsorption process is then controlled only by the pH
of the solution and ¢* (monofunctional surface).

4. Specific interactions between background electrolyte
ions and the electronically conducting surface

4.1. Potential and charge distributions at the interface

We now consider adsorption of ions from the back-
ground electrolyte on the electronically conducting
surface (semiconductor or metallic) of which the proper-
ties are compatible with an amphifunctional charging of
the dl. For this purpose, we assume that the adsorption
of the ions takes place at the op, i.e. the plane where the
oxidic groups are located (Fig. 6). To avoid confusion
with the previous case, we denote the potential at the op
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Fig. 3. Adsorption isotherms as a function of potential and pH at constant electrolyte concentration 3 x 10~2 M for anions specifically adsorbed on
the oxide layer of the amphifunctional substrate. Model parameters: pK&ll =2, pK.(lz =8, Co=5puF cm~2 C, =100 pF cm ™2 C, =20 pF cm 2,
N, =5 x 10" sites cm 2. Ky = 10* mol~ ! 1. The dashed line sketches the shift of A@max With pH. The potentials A@g,«(f = +1), depending on pH

and ¢®, induce saturations of ¢° which then equals fFNj.
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Fig. 4. Adsorption isotherms as a function of potential for surfaces characterized by different pKﬂl values at 3 x 1072 M and pH 4 (adsorption of
anions on the oxide layer). pK, = 8. Other parameters: as in Fig. 3. The dashed line sketches the shift of A@p,y with pKa‘.

plane as y® Contrary to the previous situation, we
cannot a priori identify localized ‘electronic sites’ with
which the electrolyte ions interact since the electric
charge ¢° is smeared out over the surface with a short
(metal) or somewhat longer (semiconductor) depth.
Nevertheless, the affinity of the ion for the conducting
surface finally results in a binding of the ion with an
atom surrounded by a sea of electrons assuring the
conductivity of the material. Therefore, the interactions
of interest can be summarized by the following equili-
bria now replacing reactions (2a) and (2b)

“M+Y <-MY~ (K{)
~M +X* =—MX" (K%)

(3a)
(3b)

where Ky and Kx are the binding constants describing
the magnitude of the metal—ion interactions. The total
adsorbed charge ¢ at the op is given by

@n

where ¢° is the protonic charge as defined by relation
(10) after suppressing the charge contributions of the
complexes —-MOX and —-MOH,Y and replacing the
potential ¥° (4°) by ¥* (b*). ¢' is the charge resulting
from the specific adsorption of electrolyte ions other
than H*/OH ™~ and can be formulated as

i =d+d

' =F(Ny—NJ)O, —0_) (22)

with N, the total amount of atomic sites per unit area
(No=N;) and 0, =TIy /(Ng—Ny), 0_=Tyy /
(N, — N,). The fractions ¢ . and 6 _ obey
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(23)
24

0,/(1=0,)=c"Kg exp(—y*)
0_/(1—0_)=c"K{ exp()*)
The electronic charge and the diffuse charge are now
related to the potentials by

o = Cy* —¥") (25)
and
ol =—C\(* —y*) (26)

4.2. Adsorption isotherms; potential of zero charge and
isoelectric point

Fig. 7A and B show Agi,(pH) and A, (¢™) for
different values of ¢ and pH, respectively, in the case of
specific adsorption of anions. When increasing ¢™ at
given pH and constant A¢ (or increasing the pH at
given ¢* and A@), the electronic charge and the diffuse
charge become more positive. Since the double layer
potential becomes negative, one has to increase A to
come back to the isoelectric conditions. To reach ¢° =0,
the applied potential Ap has to be lowered so as to push
electrons to the conducting side of the interface. Con-
trary to the situation treated in Section 3, upon ionic
adsorption Ag;e, and AQpse, shift in opposite directions.
This trend was observed experimentally in the case of
TiO, interacting with the oligomeric anion hexameta-
phosphate (HMP) [7]. In the limit N;—0 where the
interface is monofunctional again, the model describes
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the dl at the mercury | electrolyte interface in the
presence of specifically adsorbing ions [4,22—-24] (Fig.
8). Assuming Ny > Ngand 0 _ « 1/2 (Henry region of the
Langmuir isotherm), Eq. (22) can then be simplified, for
the case of adsorption of anions, into
o' = —Fc” NyK' exp(y*) (27)
As shown in Fig. 9A and B representing I'(A¢, pH) and
I'(Ap, ¢™) respectively, the more negative the applied
potential, the lower is the adsorption of anions. Upon
increasing A, the electronic charge becomes increas-
ingly positive so that the quantity I’ increases till
saturation, ie. 0_ —1. At a given Ap and ¢*, I'
decreases with increasing pH due to the shift of the
equilibria at the oxidic sites, resulting in a decrease in
protonic charge. Above a certain value of the pH, the
curve Agopzcl(coo) shows a maximum. Indeed, there is a
certain concentration regime where the negative charge
o' resulting from the increase in anion adsorption when
increasing ¢ is lower in absolute value than the change
in the positive diffuse charge. Consequently, to maintain

electroneutrality, the electronic charge decreases. The
potential Aqopzc] necessary to recover ¢° =0 therefore
increases, as can be seen in Fig. 7B. For higher
concentrations, the extra specifically adsorbed charge
o' is larger than the increase in ¢ (in absolute value) so
that the induced charge ¢° increases and the correspond-
ing A(ppZCl decreases. The maximum in the qupzcl—c‘”
curves would not be observed when an additional
supporting electrolyte (which is really indifferent) is
present in excess over the adsorbing anions. The
dependence of I' and the other dl parameters on the
binding constant Ky is of the same kind as the
dependence on ¢™. Comparable reasoning holds for
the case where cations adsorb specifically at the bare
surface of the conducting material (Kx >0, Ky =0).

5. Specific adsorption at both oxidic and metallic sites

We consider in this part situations where ions from
the background electrolyte can be adsorbed at the
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Fig. 5. Adsorption isotherms as a function of potential and electrolyte concentration ¢* at pH 4 (adsorption of anions on the oxide layer). ¢* =
107" M (a),3x 10 2M(b), 1072 M (c), 5 x 10 > M (d), 2 x 107> M (e), 5 x 10~ * M (f). Parameters: as in Fig. 3. The dashed line sketches the shift
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Fig. 6. Double layer model describing an amphifunctional interface between a partially oxidized metal and an aqueous electrolyte in the presence of
anions specifically adsorbed on the electron-conducting surface. The situation is depicted for an external potential Ap > 0.

polarizable and at the reversible parts of the amphifunc-
tional substrate. The equations derived in Sections 3 and
4 remain valid. Attention is again focused on the case
where only anions specifically interact with the amphi-
functional substrate. The adsorption isotherm equation
is now given by
I'= _(01 + Jﬂ)/F = Fpolarizable + Freversible (28)
In the situation where Ny > 2N, (gold electrode [6])
and K+ >» Kv, the interactions described in Section 4
overrule those considered in Section 3 ([ reversible <
I'polarizable). The other limiting case is defined by N/
NO ~1 and K\/{ < KY (Freversible > Fpolarizable)- The de-
pendences of I' on the parameters Ky, K+, pH, ¢™ and
ApK have already been discussed in detail in Sections 3
and 4. Depending on the values of these parameters and
of the oxide coverage f= NyJ/Ny, numerous situations
(number of adsorption maxima, limiting behaviour at
high potentials...) can be considered. For illustration,
samples of calculations are shown for a given set of
conditions in Fig. 10. These results are relevant when the
distribution of the oxidic groups with respect to the
metallic surface (or the other way round) allows the
occurrence of specific adsorption at two different planes
(op and iHp). This is the case when one kind of surface
(polarizable or reversible) is organized according to an
‘island’ structure (still compatible with the assumption
of smeared out potentials). If the non-protolytic surface
parts are homogeneously ‘mixed’ with the parts where
protons can bind, one may describe specific adsorption
using the different adsorption sites previously intro-
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duced (metallic -M, -MOH, ~-MO~ and -MOH;") but
placed all in the same plane.

6. Application to a real system: adsorption of anions on
TiO, electrode

The literature provides numerous experimental data
showing that the adsorption isotherms of a number of
oxide electrodes such as titanium oxide are not or only
slightly affected by an applied potential [8,25-29].
Nevertheless, a more recent study points at amphifunc-
tional behaviour of TiO, by showing experimentally a
clear dependence of the dl potential ¥ on Ag [7]. On
the basis of the results presented so far, we propose a
quantitative account for these apparently contradictory
features.

As already mentioned in Section 3.2, AFM experi-
ments performed on a solid TiO, substrate and electro-
phoresis  experiments performed with colloidal
dispersion of TiO, [13,14] can be used to determine
the adsorption characteristics (g, pKa , pKa2) ofthe H
ions at the oxide layer (Fig. 11). The available y%(pH)
data refer to different KNO;s concentrations. No sig-
nificant shifts of pH;., with electrolyte concentration
were observed so that specific adsorption of K* and
NOj3 ions does not occur. Depending on the electrolyte
concentration, the data are fitted with the following set
of parameters Ny =1-1.9 x 10" cm 2, pKell =ch12 =
5.6-5.7 and pHie, & 5.6-5.7. The value of N, obtained
is low compared to the ones commonly reported in the
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literature for oxide surfaces. When using a more realistic
N, (5x10™ em~? for rutile TiO, [17]), the fitting
procedure described in Refs. [15,16] is in agreement
with the experimental data only for pH <7. This
indicates that, probably due to surface roughness,
electrokinetic experiments and colloidal probe AFM
measurements give zeta-potentials and ¥ values that
are too low. In fact, only a fraction of the surface charge
is probed and therefore a low value for N; is obtained
from a model fit in which the surface is assumed to be
flat. By way of illustration, the porous double layer
model in which part of the surface charge is distributed
in the solid phase (comparable to the effect of surface
roughness) adequately describes how, under open circuit

25 T T T T T T T T T T T T

<100 [/ 7

1 20 . L L I L n L 1 n L L 1 " L L 1
0 210? 4102 610% 8102
Electrolyte Concentration / mol I

110"

Fig. 7. Potential to be applied across the interface to reach the iep and
pzc; as a function of pH (A) and ¢™ (B), respectively. Parameters:
pKal =2, pKa =8, Co=5 pF em~2, C; =100 pF cm™2 Ny =10"
atoms cm 2 Ny=5x 10" sites em 2. K¢ =10 mol ™' I, Kx=0
mol ™' 1 (A) K¢ =10>mol ' I, K% =0 mol~! I (B). The calculations
refer to adsorption of anions on the electron-conducting surface.
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Fig. 8. Shifts of the pzc (potential value) for a mercury electrode upon
specific adsorption of anions. Full curves: theory. Points: experiments
(taken from Ref. [4]). Parameters: Ny=0, C; =30 puF cm 2 (pzc
independent of Cp). Fit parameter: KyNo=0 (F~), 2 x 10" (C17),
1.5 x 10" (Br™), 1.75 x 102 (I7) mol ~ ! cm.

conditions, high surface charges can be built up while
keeping the electrokinetic double layer potential rela-
tively low [30]. In Ref. [7], TiO; is treated as an n-type
semiconductor of known charge carrier density Ny. In
the space-charge layer located inside the substrate, the
potential and the charge density vary with distance to
the surface as shown in Appendix A. The amphifunc-
tionality of the dl at the semiconductor | electrolyte
interface, described in Appendix A, is essentially the
same as the one discussed in Ref. [5]. The calculated
characteristic applied potential/electric charge for TiO,
is reported in Fig. 12A. The diffuse double layer
potentials were determined experimentally for different
applied potentials at pH 5.5 by AFM using KCI as the
electrolyte [7]. Measurements in the absence of an
applied potential reveal that for the surface probed,
pHicp 5.7, which is in agreement with the iep mentioned
in Refs. [13,14]. Neglecting specific adsorption of K or
Cl™ ions [31] at the pH of the experiments, the double
layer potentials were computed as a function of the
applied potential using the pK parameters obtained
from the open circuit measurements and with Ny =4 x
10'? cm ~2 The results are collected in Fig. 12B. The
applied potentials in the experimental study are given
with respect to the SCE reference electrode and the
theoretical potentials are given versus the bulk of the
solution: merging of the curves was attained by shifting
the calculated @2 by 220 mV. The magnitude and the
trend of the double layer potential as a function of the
applied potential show good overall agreement between
experimental data and theory except for high surface
potentials. At such potentials corresponding to attrac-
tive interactions between the probe (a silica particle



negatively charged) and the surface, the accuracy of the
force measurements is questionable because of the
instability of the cantilever, which exhibits a character-
istic snap-in behaviour. The N, value used for the fit,
which value is in agreement with that derived from the
open circuit measurements, remains very low. So, a
more detailed analysis would also require inclusion of
surface roughness and its consequences for the inter-
pretation of AFM measurements [32].Figs. 11 and 12B
show the amphifunctional features of the n-type semi-
conductor TiO,. The adsorption of anions of the type

FT = Ny N, © =1

0.8

max,sat
pH=2

0.6

04

r*10" / mol cm?

0.2

' *10" / mol em™

PO S S T S S SN S GO S T EN S S S G N SH S S S B

-3 -2 - 0 1 2
AGIV

Fig. 9. Adsorption isotherms as a function of potential and pH (¢* =
5% 1072 M) (A) and as a function of potential and ¢* (pH 6) (B) in
the case of anions adsorbed at the electron-conducting surface of the
amphifunctional substrate. Model parameters: pK, =2, pK, =38,
Co=5 pF cmfz, Cy =100 pF cmfz, No= 10" atoms cm 2, ?\Q:
5x 108 sites em % Ky =10"mol "' I, Kx=0mol ' L.
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Fig. 10. Adsorption isotherms as a function of potential and oxide
coverage f= NyJ/N, in the case of anions interacting with both the
polarizable and reversible parts of the amphifunctional electrode.
¢® =10"2M, pH 4. Model parameters: pK, =6, pK, =8, Cy =5 pF
cm 2, C; =50 na em~ 2, C,=20 uF cmLz, Ny =6 x 10" atoms
em % Ky=10"mol ' 1, Ky =10"mol ' I, Kx=Kx=0mol ' L.

wd /mv

Fig. 11. Diffuse double layer potentials at a TiO, electrode as a
function of pH (absence of an applied potential) for two (indifferent)
electrolyte concentrations of 10~ (circles) and 10 ~* (squares) KNOs.
The full symbols refer to electrophoresis data performed on colloidal
TiO, and the open symbols to AFM data [13,14]. The full lines are the
computed y4(pH) curves. Model parameters: (10> M) pK, =pK, =
iep=5.6, C; =120 pF em ™2, N,=1.9 x 10" sites cm 2, '(10~* M)

2

pK, =pK, =iep=>5.7, C; =120 pF cm 2, Ny=1 x 10'* sites cm ~2.
1 2

SO3~ or H,PO; /HPOZ ™ (resulting from the ionization
of H,SO,4 and H3POy initially introduced in the solution
in concentration ¢*) on such a TiO, surface were
studied by the radio-isotope method [8]. These anions
are known to interact specifically with the oxide surface
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[25]. The surface used (treated at high temperature) is
reported to essentially consist of anatase for which the
iep and N, are somewhat higher than for the rutile
structure [33,17]. In contrast to colloidal probe AFM, all
oxidic sites of the surface are probed with the radio-
isotope method. To fit the data, values of 6.2 for the iep
and 6 x 10" cm~? for N, were used. The isotherms
I'(Ap) were computed on the basis of the model
presented in Section 3 by replacing the expressions of
I' (Eq. (20)), ¢’ (Eq. (11)) and ¢° (Eq. (2)) by the more
general expressions accounting for the presence of the
different ionized forms of the adsorbing species [34]

Ao (x=0)/V

-0.2

Double layer potential \ud I mV

-0.2 0
‘1’5: /V vs. SCE

0.2

04 0.6

Fig. 12. (A) Potential drop (in the space charge layer)—electric charge
relationship for TiO, semiconductor (n-type). Model parameters:
Nie = 10" ecm ™3, & = 14. (B) Amphifunctional behaviour of TiO,.
Full line: theory. Points: experiments (redrawn from Ref. [7]). Model
parameters: pK, =pK, =iep=5.6, Co=1 uF em 2, C; =120 pF

cm ™2 Ny=4x 102 sites cm 2.
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where the index i refers to the anion Y7 of bulk
concentration ¢;°, valency z; and binding constant Ky .
As was observed experimentally in Ref. [§], the compul-
tations reveal an apparent absence of effect of the
applied potential over a very large potential region
because an adsorption plateau is established which does
not correspond to saturation (Fig. 13A). The electric
charge primarily resulting from the applied potential is
totally compensated by the protonic charge ¢°. The
oxidic sites present in large numbers at the surface and
seen completely by the experiments performed, buffer
the double layer potential as well as the adsorption of
the anions. The potentials necessary to reach the
saturations of the protonic charge, noted A@g(f = +
1) in Figs. 3—5, are very high (100 V). The parameters
Ky, used as fitting parameters for the experimental data
r (‘A(p), tend to show the following adsorbability
sequence ClO; ~ HSO; « SO;~ «H,PO; . Using the
values of Ky derived from the curves I'(A¢), the
adsorption isotherms I’ (¢™), obtained at constant pH
and potential, and the adsorption isotherms I"(pH),
obtained at constant electrolyte concentration and
potential, were computed. The experimental patterns
of the pH and concentration dependences of I are
reproduced well by the model (Fig. 13B and C). These
latter data allow the following extension of the adsorb-
ability sequence at TiO, as ClO; ~HSO,; « SO; ™ «
H,PO, «H,PO3 . Hence, amphifunctional properties
of a substrate are compatible with the observations
according to which, over certain ranges of conditions, I’
is not affected by Ap. The common explanation in terms
of the ‘insulating’ properties of TiO, is therefore
premature and not generally correct. Other studies [25]
report that for a substrate consisting of 30% RuO, and
70% TiO,, an adsorption plateau is found for anions
over a relatively narrow potential region. The decrease
of I', expected at positive potentials (see Section 3),
occurs at 0.6—0.8 V. The introduction of ruthenium
indeed generates a better conductivity of the substrate
and hence a higher electric charge. The buffering
propensity of the oxidic sites is therefore not as efficient
as for TiO,. Part of the countercharge induced by the
potential is present at the iHp, thus leading to the
experimentally measurable potential dependence of the
anionic adsorption. This reasoning is supported by
examining experimental results concerning anion
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Fig. 13. Computed (dashed lines and/or full symbols) and experimental adsorption isotherms (taken from Ref. [8]) of sulfuric and phosphoric anions
on TiO, as a function of the applied potential (A), pH (B) and electrolyte concentration (C). In (B) and (C) (applied potential 0.5 V versus SHE), the
experimental data are the open symbols and in (A) the full curves. Model parameters: pK, =pK, =iep=6.2, Co=1pF cm ™2 C; =120 uF cm 2,
C, =20 uF em ™2 N, =6 x 10" sites cm ™2 Ky =5 x 1073 (SO37), 12 (H,PO; ), 11.22 x 10¥(HPO3 ") mol ' 1. The mole fractions a; of the
different absorbed species Y7 (a; = ¢f°/c™) are given as a function of pH and the concentration ¢* of H;PO, or H,SO, in insets.

adsorption on platinum [35], for which the polarizable
part dominates the reversible component. The forma-
tion of the surface oxide on platinum accounts for the
observed Nernstian dependence of the potential of zero
charge with pH [36,37]. Two maxima in the adsorption
isotherm I"(Ag@) are observed; they correspond to peaks
and not to plateaux (no complete buffering by the ‘oxide
(sub)monolayer’). The presence of these two maxima
indicates that for sulfate ions on platinum the adsorp-
tion takes place at sites of different nature (metallic and
chemical, Section 5).
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7. Conclusions

In a previous paper [5], the double layer potential
profiles at amphifunctionally electrified interfaces were
examined theoretically. The coupling between electronic
and ionic charging processes was considered for the case
of charge-determining ions (protons) for the oxidic
surface under investigation. The present study describes
the situation where in addition the electrolyte ions
specifically interact with the amphifunctional surface.
The model systems chosen are the interfaces between an
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electrolyte solution and a partially oxidized metal or
semiconducting oxide. The cases where the ions are
preferentially adsorbed on the oxide (submono)layer
(reversible part of the dl) and on the unoxidized part of
the surface (polarizable component of the dI) are
examined in detail. The corresponding ion adsorption
isotherms as a function of the applied potential, pH, the
electrolyte concentration and the parameters describing
the adsorption of H* ions (pK values and number of
oxidic sites) are given. The analysis is extended to the
case where the electrolyte ions exhibit affinities for both
parts of the amphifunctional electrode surface. The
models are consistent with the known limiting dl
situations at fully polarizable (mercury) and reversible
(oxide) interfaces. The case of specific adsorption of
anions on the TiO, semiconductor electrode is explicitly
analyzed. It is shown how the amphifunctional nature of
the dl is compatible, within a certain potential regime,
with an apparent independence of I on the externally
applied potential. The results of the present model
computations are in promising agreement with experi-
mental studies. Further refinement of the modelling calls
for the inclusion of effects such as roughness of the
oxide surface. A paper currently in preparation [32]
accounts for the roughness effects in dl measurements
(2- or 3-dimensional surface models). This is of parti-
cular importance to dl studies by AFM and electro-
kinetics since these techniques probe only the double
layer beyond the surface asperities.
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Appendix A: The semiconducting oxide | solution
interface

A.1. The potential and charge distributions in the space
charge layer

Due to the limited charge carrier density, the charge in
a semiconductor electrode is distributed over a space
charge layer. The potential and the charge distributions
within this layer are described by the Poisson equation:

AP (x)/dx® = —p(x) /eyt (A1)

where & is the relative permittivity of the semiconduc-
tor material, x the distance from the surface and Agg,
the potential drop in the space charge region defined by
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Ao (x) = 93— 9(x) (A2)

@3c is the potential (externally applied) of the bulk of
the semiconductor and ¢(x) the potential at a distance
x from the surface, both with respect to the bulk of the
electrolyte solution. In the case of an n-type semicon-
ductor (such as titanium oxide), most of the charge
carriers result either from a doping consisting in the
injection of electron-donor atoms or from a treatment at
high temperature (generating defects in the crystal).
Designating the fixed ionized donor density as resulting
from one of these operations by N, and the electron
density at a given distance x from the surface by n(x),
one can show that n(x) and p(x) are given by [38]

H(X) = Nsc eXp(—Aysc(X)) (A3)
p(x) = eNy (1 —exp(—Ay(x))) (A4)
where Ay, (x) is the dimensionless potential

(e/kgT)A¢p . (x), e the elementary charge, kg the Boltz-
mann constant and 7 the temperature. After integration
of (Al) and application of the boundary condition
©(x),,.. = L, the electric field E; at the surface is
found to be

Es = (dA(:bsc(x)/dx)x—rO
_ (kyT /e)

—1
sc

[Aysc(x = 0) + exp(_Aysc(x = 0))

— 172 (AS)

where k! is the so-called Debye length (characteristic
space charge layer thickness) of the semiconductor
defined by

k' = (kyTeye,./2¢*N,)"? (A6)
sC B 0sc sc

Denoting the charge in the space charge region as oy,
the charge—potential relationship is

Os = 5£OSSCES =f(A¢sc(x = 0)) (A7)
with 6=—-1 for A¢ (x=0)>0 and J6=+1 for
A¢p (x =0) <0. At the flat band potential (equivalent
to the potential of zero charge), we have @(x=0)=
¢° =@ (Ap (x=0)=0) and o, = 0. The differential
capacity of the space charge layer is

CSC = dO-SC/dA¢SC (Ag)

Around the flat band potential, the dependence of the
interfacial capacitance C.y, measured experimentally (1/
Cexp= I/Csc—i—1/C0+1/C1+1/C2+1/Cd) is governed by
the space charge capacitance.

A.2. Amphifunctional charging of the dl at a
semiconducting oxide | solution interface

In this section, on the basis of the metallic case
examined in some detail in Ref. [5], we briefly describe
the amphifunctional character of an interface between a
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semiconductor, of which the bulk properties are oxide-
like, and an electrolyte solution. Figs. Al, A2 and A3
sketch the situations where the potential @b is kept
constant and the pH varied. Figs. A4, A5 and A6 picture
the dependence of 4, on the potential qofc at constant
pH. Specific adsorption of ions from the background
electrolyte can be taken into account by introducing into
the double layer model an iHp, as for the metallic case.
Effectively, the magnitude of the electric charge neces-
sary to counterbalance the ionic charge is the same in
the metallic and semiconductor cases (¢°= o). The
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only difference resides in the distribution of this electric
countercharge and in the magnitude of the potential to
be applied to the bulk of the substrate to generate it. For
a given situation (A¢@, pH) with charge ¢°, the corre-
sponding potential ¢%, for the semiconductor case would
be

@b =f"Yo, =0 (Ap, pH)) +Ap (A9)

where f~ ! is the reciprocal function of f introduced in
Eq. (A7).
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Abstract

This paper reports on the electrochemical processes at the surface of conducting materials such as aluminium in a thin-layer cell
usually employed for electrokinetic measurements. The cell contains one or more planar Al wafers in contact with an electrolyte
solution, which is subjected to an external electric field parallel to the surfaces of the wafers. Beyond a certain threshold value of
the magnitude of the field, the current through the cell increases more than proportionally with the field strength. This is due to
faradaic processes occurring at the two ends of the conducting substrates, i.e. reduction at the positive side of the electric field in
the solution and oxidation at the negative side. In the case of Al wafers, anodic dissolution of the metal takes place and the
progression of the ‘corroding’ edge can be followed visually. The overall electrolytic process, corresponding with the distributed
current along the surface of the wafer, could be explained and modeled on the basis of the conventionally measured
Butler—Volmer characteristics of the monopolar Al electrode. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Bipolar electrode; Electrodissolution; Butler—Volmer equation; Mixed potential; Solution polarization

1. Introduction haviour is observed for macroscopic planar geometry at
aluminium surfaces. At sufficiently high electric fields,

Bipolar electrode behaviour of conducting bodies is a the two electrochemical reactions, reduction of water at
phenomenon widely exploited in industrial applications. one side and metallic dissolution at the other, can be
Examples can be found in such fields as organic elec- observed visually. The theoretical interpretation of the
trosynthesis [1,2], elaboration of micro-conductive observed faradaic effects is based upon the current—
paths [3—6] and supported catalyst metal particle tech- voltage characteristics of the aluminium | solution inter-
nology [2]. The phenomenon has been studied exten- face. The anodic and cathodic branches in the
sively for dispersions of conducting particles in voltammogram can be described by exponential But-
so-called bipolar fluidized bed electrodes [2,7—14]. Be- ler—Volmer type relationships, which serve as the basis
yond a critical extent of polarization of such an elec- of further modeling of the overall bipolar current. The
trode, i.e. in a sufficiently strong lateral electric field, analysis explains satisfactorily the variation of the cur-
the overpotentials become sufficiently high to induce rent with the field strength as well as the rate of
noticeable electrolysis: the spatial variation of the parti- progression of the corroding edge. This study thus links
cle/solution potential provokes oxidation on one side of bipolar electrodic features as reported for conducting
the particles, coupled with reduction at the other. Many particles with macroscopically observable corrosion
studies deal with the electrochemical behaviour of such usually encountered in stray-current situations [15-17].

bipolar electrodic particles in a medium with added
redox couples [11,12]. The present communication de-
scribes a set-up in which the bipolar electrode be- 2. Experimental

* Corresponding author. Tel.: + 33-317-484960; Fax: + 33-317- The cell is of a type originally designed for electroki-
483777, netic measurements [18,19]. It has a well defined geome-

try and employs two auxiliary electrodes to generate a
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dc field in the electrolyte solution parallel to the two
wafers to be investigated. Fig. 1 shows a diagram of the
parallelepipedic cell with two platinum electrodes
placed in the compartments outside the thin-layer
chamber. The field effectively experienced by the sub-
strate was estimated by correcting for the potential
drop in the auxiliary electrode chambers. The two
electrodes used to build up the field across the solution
are practically non-polarizable. The measurement of the
‘conductivity curve’ (i.e. the current—field dependence
of the laterally polarized thin-layer cell) was usually
performed via a three-electrode arrangement which
yielded the most stable current readings. To avoid
confusion, the term ‘voltammogram’ will be used exclu-
sively to designate the current—potential relationship of
a defined conducting material, measured by voltamme-
try. The voltammetric experiments were carried out in a
conventional three-electrode cell with Pt as the counter
electrode and Ag|Ag|KCl(sat) as the reference elec-
trode (+ 0.222 V vs SHE). Before each experiment,
the solution was flushed with oxygen-free nitrogen for
15 min. Measurements were carried out at 25°C.

The experiments were performed on supported Al
layers with thicknesses of 200 nm or 500 nm. To
warrant proper adhesion, the glass support was first
covered with a 10 nm Cr layer. The layers were pre-
pared via vapour evaporation from heated Cr and Al
sources directly onto the glass support. Prior to any
measurement, the samples were subjected to 15/20 min
UV/ozone treatment and extensive cleaning with dem-
ineralized water. The solutions were prepared with
KNO, background electrolyte and demineralized water
as the solvent. Monitoring of the applied potential and
measurement of the response of the cell were performed
with a PGSTATI10 potentiostat controlled by Autolab
software (Eco Chemie). Before each measurement, the

electrokinetic cell was rinsed extensively with deminer-
alized water by applying a pressure difference of 30 cm
Hg.

3. Model for bipolar electrolysis in planar geometry
controlled by two redox couples

3.1. Relation between current and applied lateral field

We consider bipolar electrolysis for planar substrates
in the case that two different redox couples, Ox,/R, and
Ox./R,, control the anodic and cathodic processes via
two irreversible reactions denoted as (a) and (c),
respectively:

R,—-Ox,+n.e (a)
Ox.+ne =R, (c)

with n, and n, the number of electrons transferred per
molecule for reactions (a) and (c). For the present
geometry, the use of cartesian coordinates (x,y) is the
most appropriate. We define arbitrarily the origin of
the x-axis at the non-corroding cathodic end of the
wafer. The position of the boundary between the an-
odic and cathodic reactions occurring at the two ends
of the surface will be designated by x, (the analogue of
the angle 4 in the case of spherical symmetry [2]).
Unlike the common situation for electrochemical reac-
tions, the anodic process occurs at the negative side of
the field set up in the solution and the cathodic reduc-
tion at the positive one. This is a characteristic feature
of bipolar electrodes. Contrary to the usual situation in
electrochemistry, interfacial potentials are here varied
via the solution potential which is the externally con-
trolled variable. The present set-up allows a direct

1 AP elnaming proe ealnee |

Criitmine 2 Container | L |
B
Hoctrul yio
Silicos rubbars
P alecirode r".Tl'El.".'ll cell
| {5 mmm x 35 mm) | |
. \ Y .
| T Flew n
| _i—_l
-
-~ | 'l"-.

Fleitrale | A Elacrnds 2

.I'a—'.'b mes Walers invesSipaind

d= &
IOONSHY e~

¥ = s
:-:‘:;-E-i 5.5 mm

Fig. 1. Cell detail. The cell gap a was 0.15, 0.20 and 2.3 mm (see text). During experiments, no flow was applied.
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Fig. 2. Reconstruction of the electrolytic processes with varying A¢, (or V) from the traditional Butler—Volmer characteristics. Length of the
substrate is constant and equal to L, (Section 3.1). The subscripts 1 and 2 denote the situations pertaining to ¥, and V5, respectively (V, < V>).

observation of the individual redox reactions occurring
at the ends of the conductive substrate in response to
the applied field across the solution (see next section).

In analogy with Fleischmann et al.’s treatment for
dispersed spherical particles [2], we assume mass trans-
fer polarization to be unimportant. For the electro-
chemical reactions taking place in our experiments
(H,O —H,, Al—-AI*") this is justified, as will be ex-
plained later, on the basis of the current—potential
relationships of the substrate. Therefore, the depen-
dence of the anodic and cathodic current densities, j,
and j, respectively, on the potential E at the sub-
strate \ solution interface is given by the Tafel expres-
sions for the two redox couples

Ju(E) = jo explr, f(E — E9)] (1)
JAE) = —joexpl — r f(E — EJ)] 2
with f, r, and r, defined by

F
fmam (3)
Iy = nd(]‘ - aa) (4)
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where o, and «, stand for the transfer coefficients for
the oxidation reaction (a) and the cathodic reduction
(c), respectively. j, is the apparent exchange current
density, E? and E? the standard potentials of Ox,/R,
and Ox./R, respectively. F is the Faraday constant, R
the gas constant and 7 the temperature.

The bulk concentrations of the reaction products H,
and AIP* are zero and the two irreversible processes
can be pictured in the polarization curve for the sub-
strate material as outlined in Fig. 2. In the absence of
any externally applied electric field, the substrate
adopts a mixed potential E, [20,21] for which the
overall current is zero. E,, is defined as the potential for
which

ja(Em) = _]L(Em) (6)

and the exponential relationships Eqs. (1) and (2) give

immediately

_ ln(jOC/jOa) +ﬂrcE8 + raEg]
Slre+ 1]

Fo = N0l

E

m

(7
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In the absence of mass transfer polarization [14], the
surface of the metallic wafer experiences the applied
field so that the overpotential at a position x can be
generally written as

E—E,=V(x—x) ®)

where x, defines the position at which £ = E,.,. V is the
magnitude of the electric field which is related to the
potential difference across the solution in the thin-layer
compartment A¢, and to the total length of the Al
substrate L, via the simple relation

)

Since there is no accumulation of charge in the
bipolar electrode, the total anodic and cathodic cur-
rents (I, and 1) must generally obey

lLi=—1.=1 (10)

For the present case of two irreversible reactions, we
may neglect the local anodic and cathodic currents for
E<E, and E> E,_, respectively, so that the total cur-
rents are given by the integrals of j, and j, over the
relevant surface areas

(Lo
L= | h(Ex)dx
U(;I(‘)O
= | Ui xplr f(En + Vix — xp) — EDldx (11
.
L= | G(EE)dx
JO
- - f ljo exPl — rof(Ew + V(x —x0) — EDldx  (12)
0

where / is the width of the substrate. After integration,
Eqgs. (11) and (12) yield

)
o= T explr, f(En — EQNexplr, [V (Lo — o) — 1)
r SV
(13
L= 0 expl 1By~ EDNL — explrofVx]) (14

Referring to Eq. (6), which defines E,, and using
Egs. (13) and (14), it follows from Eq. (10) that at
E=E,

1 1
Aexplra fV (Lo — xo)] — ) =-explrefVx] = 1) (15)

This equation defines the position x, on the bipolar
electrode for which the net faradaic current is zero.
Assuming that V> [r, f(Ly— xo)] ~' and V> (r.fx,) ~ ',
which holds for sufficiently strong fields, x, is essen-
tially given by

1 1
Xy = <fV ln<r°> + raL0>
ra + rC ra

(16)
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For r,=r, xy= Ly/2, the anodic and cathodic sur-
face areas do not depend on V. If r, <r, dx,/dV <0
and x, < Ly/2, while for r,>r. x, is shifted in the
positive direction with increasing electric field (dx,/
dV>0).

In the case r, #r,, the position x,, which defines the
border between the anodic and cathodic reactions, is
dependent on the field parameter V. For each V, the
distribution of the current along the plate will change
as pictured in Fig. 2. For low tangential fields, a
Taylor-development of the exponential terms in Eq.
(15) shows that x, approaches L,/2.

The total current I through the thin-layer cell is the
sum of the faradaic current /. and the ohmic current /I:
the latter is obtained from

Io =gAd, (17)
with g the conductance of the cell. Generally, g is linked
to the specific conductivity of the bulk electrolyte K™
and a possible surface conductance 2K°//L, via
_K 2K
S C L,

(18)

where K¢ is the specific surface conductivity (in Q~1).
C is the cell constant defined by

C=
al

(19)

with a the distance between the two parallel substrates.
Using Eq. (13) and Egs. (17)—(19), the relation be-

tween the total current /= I+ I, and the electric field

Vis

I=(aK" + 2K°)IV

,
/ XDl (B — ENXplr [V (Ly = 3] = 1)

(20a)

+
7

a.

A similar expression for 7 is obtained by considering
the cathodic current 7, (Eq. (14))

I=(aK" + 2K°)IV

o,

IV exp — ref(Em — EQN1 — explre [Vxo))

(20b)

3.2. The anodic dissolution process

Let us now consider in more detail the electrolytic
dissolution of the metal at the anodic side as a function
of time ¢z. Our purpose is to give a theoretical expres-
sion for L(¢), the remaining length of the bipolar
electrode, in terms of the evolution of the current
during the dissolution process. The fundamental pro-
cess is the anodic dissolution of the metal and instead
of the more general reaction (a), we now write:



Mo>M=" 4+ e

As expressed by Eq. (8), the interfacial potential E
varies linearly with x on the substrate. Consequently,
the voltammogram can be projected directly on the
length axis of the metal plate (Fig. 3). With decreasing
L(¢) and constant field strength, the overpotential span
along the plate decreases. Therefore, the increase of
AL(t) = Ly,— L(t) is accompanied by a lowering of the
faradaic current whereas the ohmic contribution is es-
sentially constant. The decrease of the electroactive
bipolar area corresponds with a decrease of the current
in the anodic and cathodic branches of the voltam-
mogram. During dissolution, the position of x, moves
towards the cathodic area in order to maintain the
balance between anodic and cathodic currents.

The dependence of E on position (Eq. (8)) now
becomes time dependent:
E(t)— E, = V(x—x,1)) (21)

Following the derivation in the previous section (Egs.
(13) and (14)), the total dissolution current I depends
on L(t) via the expressions

CHAPTER 5

b,

) =2 explr S — EDN@Xplr V(L) = X))~ )
iy (22a)

) = = 2% expl = ref(Ep = EDI(1 = explrefVso(1))
‘ (22b)

Providing that the conditions required for the valid-
ity of Eq. (16) are fulfilled at each time ¢, we have

()= Jlr r(/; ln<:> + raL(t)> (23)

and If(z)( can be rewritten as

10 = explr, (B, E9)
(o)) o

Assuming that the front of the corrosion edge corre-
sponds with a step-function of amplitude J,, (the thick-
ness of the metallic layer), the dissolved mass can be
expressed via the density p,, of the metal and the total
dissolved volume ALJ,./. This is related to the total
faradaic charge Q; transferred (Faraday’s law):

4V (1+=0)
) V)
; ) ALt =0)=0
ALls) I,
i i AL(1,) | i
i ) tl) L(z I= 0)= L,

NSO

~

Fig. 3. Reconstruction of the anodic dissolution process with time when applying a constant high potential difference A¢, across the solution
(Section 3.2). AV(¢) stands for the remaining potential over the plate at ¢. Three situations at =0, ¢, and ¢, (¢, <1?,) are considered. On the
potential axis, the subscripts 0, 1 and 2 denote the initial situation and the situations at z, and ¢,, respectively.
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Fig. 4. Conductivity curves for aluminium (plain curves) and silica
substrates (dashed curves) for different electrolyte concentrations c.
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I(t) = @ = — naFl<

(25)

PmOn \AL(?)
dt

My dt

with M\, the molar mass of the metal. In the analysis of
the experimental results, the faradaic current resulting
from the dissolution of chromium will be considered
negligible compared to that of aluminium since the
term pc 0/ Mc, 1s about 15 times lower than p,0,,/
M,,. The assumption of an infinitely sharp edge is
approximate considering the starting point of an expo-
nential j—F relationship (implying a more gradual dis-
solution profile), but is justified by experimental
findings (see Section 4).
Combination of Egs. (24) and (25) yields

My jo,

a naFprMaMra
dL(z)
Iy

B exp|: <rcﬂ/L(t) + ln<r‘l>>:| —1
Tyt 1. T

Eq. (26) can be solved by integrating over time from
t=0 to ¢t and over the spatial variable L from L(¢=
0) =L, to L(¢). After some rearrangement, the result is

rarc _ rarc
o] ]
o

exp[raf(Em - Eg)]d[

(26)

dL

a t) < C>:| |: ( a | Q>W :|
r + I T r + T
(2
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with 7 defined by
<ra + rc\nanMé
T= N
rc / MM/O

The solution of Eq. (27) can be rearranged to give an
explicit expression for L(z):

1 T 1 r,+r. t
v ()=l el )

x [1 - exp|: —- ZF - <rc VLo + ln<:>>:|]} (29)

The short-time limit of Eq. (29) is L(0) > L,. The
long-time limit is not provided by Eq. (29) because it is
based on the approximate Eq. (23) valid only for
sufficiently high potentials VL(¢) and hence sufficiently
short times.

For ¢t « 7, a Taylor-development of the first order in
t simplifies Eq. (29) to

1 r,+r t
Lt)=L,——>—"Ins1+-| —1
(1) 0 Vo n{ +T|:

+ exp|:r' :‘_‘ . <rCfVL0 + ln<:‘>>}]}

which provides the initial change of the length AL(¢)
with time.

The expression of the total net current with time 7(z)
can be derived from Egs. (17)-(19), (25) and (29):

1 ry+ronFlpyom
I(t) = (aK* + 2KV + — +—= > =
(#) = (aK™+ ) +fV Fal'e Myt

oof sl [l )
B e = )|

4. Results and discussion

M expl — 1o f(Em — E9)] (28)

a

(30)

4.1. Conductivity curves

Fig. 4 represents the conductivity curves measured in
the field strength range 0-0.5 V cm ~! for ¢ = 0.20 mm
and different electrolyte concentrations. The measure-
ments were made using one bare silica plate and one
aluminium wafer in the cell. The curves clearly exhibit
two regimes. For clectric fields lower than approxi-
mately 0.2 Vem ™' (Ag, ~ 1.5 V), current and potential
are linked via the linear relationship given by Eq. (17).
In this range of potential differences, the current essen-
tially corresponds to the ohmic contribution /,. For
each electrolyte concentration, the conductance g was
determined from the slope. According to Eq. (18), the
plot of g versus K" allows derivation of the cell con-
stant identified as the inverse of the slope. This yields



C~ 135 cm !, a value in reasonable agreement with the
value following from the geometrical parameters of the
cell (150 cm — 1), the difference being attributable to stray
effects. A similar analysis with ¢ =0.15 mm also pro-
vided good correlation between the experimental and ge-
ometrical cell constant. The intercept of the linear plot of
g as a function of K" is ascribed to surface conductance
and is used in the computation of the electrokinetic po-
tential.

For potentials higher than 1.5V, the interfacial poten-
tial difference (solution potential with respect to the con-
ductive substrate) is large enough to cause the cathodic
reaction at one side of the plate and the anodic reaction
at the other one. The substrate then provides a metallic
path for the current, which shunts the electrolyte resis-
tance. Obviously, the simultaneous occurrence of both a
cathodic and anodic reaction is required for maintaining
the bipolar current.

Under the same experimental conditions as for alu-
minium (same cell constant and same electrolytic con-
ductivity), the measured conductivity curves for
non-conductive substrates such as the silica plate are
fully determined by Ohm’s law (Eq. (17)) over the whole
range of A¢, experienced. As expected, the curves for
conductive and non-conductive substrates are identical
up to the particular value A¢, ~ 1.5 V (Fig. 4) where for
the conductive substrate the contribution from the
faradaic current becomes significant. Some experiments
were also performed with gold wafers (thickness 50 nm).
The same type of conductivity curve was obtained: the
threshold value from which the curves deviate signifi-
cantly from the straight lines calculated via Ohm’s law
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Fig. 5. Voltammogram for monopolar Al wafer in 102 M KNO;.
Potentials are given with respect to the Ag|Ag|KCl(sat) reference
electrode. Scan rate: 0.03 V s—!. The dashed curve shows the
influence of the oxide layer formation on the dissolution process (see
text).
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was found to be substantially lower than for aluminium,
i.e. about 1 V. When using two conductive plates in the
electrokinetic cell instead of one together with a silica
wafer, measurements provide similar conductivity
curves. For the two situations, the ohmic current is iden-
tical and the faradaic current for two conductive sub-
strates is about twice as high as when one is used, which
implies that the processes occurring at the two interfaces
are largely independent.

4.2. The faradaic processes at the aluminium substrate

In order to characterize the electrochemical reactions
occurring at the aluminium bipolar surface, voltam-
mograms were recorded in 10 ~2 M KNO; solution using
the substrate as the working electrode. Results are re-
ported in Fig. 5. At potentials below — 1.6 V, reduction
of water sets in. The resulting onsets of hydrogen forma-
tion damaged the surface state of the electrode. For po-
tentials between — 0.2 and + 1.3V, an oxide layer forms
on the aluminium surface [22]. For ¢=2 x 10 =410 !
M, the current for this process was found not to exceed
0.2 mA cm ~ 2. In the second and subsequent scans, with
a sufficiently high scan rate (100 mV s~ '), no current is
observed in this potential range, indicating that the oxide
layer remains intact. For higher potentials ( > + 1.3 V),
anodic dissolution of aluminium sets in, resulting in rela-
tively high current densities, e.g. for ¢ = 10~ ! M, the dis-
solution current reaches 10 mA cm ~2 at + 2.5 V. In the
anodic range, the shape of the voltammograms was de-
pendent on the scan direction since the initial states of
the electrode surface such as the thickness of the oxide
layer are different. This hysteresis is the more pro-
nounced the higher the electrolyte concentration. In or-
der to avoid the effects of passivation, voltammograms
were obtained by applying potentials from —1to —2.5V
to a clean aluminium surface, and potentials from + 2.5
to —1 V to a second clean Al electrode. The resulting
Tafel plots for reduction of water and dissolution of alu-
minium then allowed determination of the parameters r,,
r. and jj , jo ; values are reported in Table 1. The evalua-
tion of the zfpparent exchange current densities j, and j,
requires knowledge of the standard potentialsd. E? =
— 1.82 Vvs Ag | Ag | KCl(sat) was taken for the reaction
Al AP+ +3e~ atpH~5.5[23]and E2= —0.55V vs
Ag|Ag|KCl(sat) for 2H,0 +2¢~ - H, +20H". The
quality of the fits of the voltammetric data to Butler—
Volmer expressions justifies the assumption that mass
transfer is not limiting the rate of the electrodissolution
process at all.

4.3. Comparison with the theoretical model
According to the previous conclusions, reduction of

water and dissolution of aluminium occur in the elec-
trokinetic cell at sufficiently high field strengths. As
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Table 1

Kinetic parameters r,, jo , I, jo, determined from the voltammetric data and calculated mixed potentials E,, (Eq. (7)) for different electrolyte
concentrations

KNO; concentration ¢/mmol 17! Jo /WA em™? r, x 102 Jo/uA em™? . x 10? E,/V vs Ag| Ag | KCl(sat)

100 0.08 7 2.12 10.7 —0.58

50 0.10 6.5 1.57 10.3 —0.62

10 0.13 5.6 1.16 9.3 —0.65

0.2 5.32 1.6 0.21 6.9 —1.76

expected, the potential range where the aluminium sub-
strate is ideally polarized (— 1.6/ — 0.2 V) corresponds
approximately to the potential difference A¢p,~1.5 V
required for the occurrence of the bipolar regime (Fig.
4). From the slopes and the intercepts of the Tafel plots
related to these two processes (Section 4.2), the parame-
ter x, was calculated as a function of the electric field V'
by solving Eq. (15). The mixed potentials E,, for the
combination H,O —H, and Al - AI** were determined
from Eq. (7) and are reported in Table 1. Theoretical
I(V)) curves were then computed for each ¢ (Egs. (20a)
and (20b)) and the resulting values for the bipolar
current I(V) are presented in Fig. 6. To be directly
comparable to the voltammetric data and to minimize
the influence of the passivation region, the experimental
conductivity curves were obtained for each ¢ by sweep-
ing A¢, from high to low values (4.5 to 0 V). The
calculated curves are in satisfactory agreement with the
experimental data and correctly predict the two experi-
mentally observed regimes of dominant 7 (high V) or
dominant I, (low V). The small increase of the bipolar
current for 0.2 <V <0.4 V cm~! corresponds to the
lower part of the j—F exponential relationship where
the amplitude is strongly dependent on the electrolyte
concentration. From Vx~04 V cm™!, I increases
rapidly with increasing V: the corresponding A¢, of
about 3 V can be recognized in the voltammogram as
the potential difference between the feet of the two
exponential functions. This correspondence between
conductivity curve and voltammogram was also verified
with gold wafers. At low electrolyte concentration (2 x

10~* M), analysis of the voltammetric data is ham-
pered by the relatively large contribution of the current
resulting from the oxide layer formation. This is
reflected in the value of the calculated mixed potential
(—1.74 V vs Ag|Ag|KCl(sat)) which is high com-
pared to those determined for higher c.

4.4. Dissolution experiments

Two experiments at constant high A¢, values of 9
and 6 V, respectively, and high conductance (a =2.3
mm, ¢= 10" M) were performed in such a way that
the electrochemical reactions could be observed di-
rectly: evolution of hydrogen at one side of the sub-
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strate and progressive dissolution of aluminium at the
other. By reversing the polarity of the applied field, the
expected change in the polarization of the substrate and
the location of the anodic and cathodic reactions oc-
curs. The position of the dissolution edge could be
followed with time (Fig. 7A). The dissolution rate
dL/dt decreases with time, corresponding to a decrease
of the span potential along the substrate. For very long
time, dL/d¢ tends to zero.

Integration over time of the measured current I(z)
(Fig. 7B) allows calculation of the total charge Q(¢)
passed through the thin-layer cell. This charge can also
be evaluated from the experimental data AL(¢) and the
ohmic current: excellent agreement was obtained (Fig.
7C), confirming that dissolution current and position
are satisfactorily correlated via Eq. (25). Kinetic
parameters were determined in the previous section for
c=10"!' M (Table 1). From Eq. (28), we estimated
72 3.9 x 10° s. The calculated curves AL(?) (Eq. (29))
and I(¢) (Eq. (31)) were compared to the experimental
data in Fig. 7A and B, respectively. Evolution of x,(¢)

Bipolar current /; / mA

0 0.1

0.2 03 04
Electric fieldV /V cm™

Fig. 6. Comparison between experimental (full curves) and calculated
(points) conductivity plots for bipolar Al electrode in different elec-
trolyte concentrations. Only the faradaic contribution /; is repre-
sented. Scan rate (decreasing potential): 0.03 V s='. ¢=10"" (a),
5% 1072 (b), 1072 (c), 2 x 10~* M (d).



Dissolved length AL / mm

0 y‘ 1 1 L 1 L
0 500 1000 1500 2000 2500
t/s

3000

CHAPTER 5

Total current / /mA

0 . . ) I :
1500 2000 2500

t/s

3000

30 T

25

20

10

0 500 1000

1500

2000 2500 3000

tls

Fig. 7. Evolution of the variables AL, I and Q as a function of the dissolution time ¢ for dissolution experiments with A¢ = 6 (circles) and 9 V
(squares). (A) Decrease of length AL. Open symbols: experimental data. Filled symbols: calculated points. (B) Decrease of the total current /
during the dissolution process. Symbols as for (A). (C) Estimation of the total charge Q passed through the cell from AL(¢) (open symbols) and

from I(¢) (solid curves).

was computed from Eq. (23). The conditions under
which Eq. (23) is valid are satisfied in both experiments
even at relatively high dissolution times: for the two
applied potentials, at ¢=3000 s, the terms
exp[r.fV(L(t) — xo(t))] and exp[r.fVx,(t)] are approxi-
mately equal to e°®. Within experimental error, the
agreement between experiment and theory was good.
For A¢,=9 V, reasonable correlation was found for
dissolution times longer than about 400 s. For shorter
times, the theory overestimates AL(¢) due to overesti-
mation of the dissolution current. When calculating a
posteriori the potential distributions at different disso-
lution times, it appears that at short times the overpo-
tential along the substrate for A¢p,=9 V is far away
from the potential window for which the parameters of
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the model r,, r. and j, , j, were determined. It is possible
that at this particular ¢ and for such high potentials, the
ohmic drop over the three-electrode cell has to be taken
into account, as suggested by the tendency of the j—F
curve (voltammogram) to become more linear at high
potentials: inclusion of a finite ohmic drop term in the
current—potential relation would indeed provide a bet-
ter estimation of the bipolar current at short dissolution
times.

5. Conclusions

The electrochemical behaviour of planar conductive
substrates in an electrokinetic cell was investigated.



Bipolar electrode kinetics

When applying an electric field across the solution, the
bipolar electrodic situation occurring in such a cell is
similar to that encountered in fluidized beds of conduc-
tive particles. A simple theoretical model based on the
concept of mixed potential and Butler—Volmer kinetics
was developed to explain quantitatively the bipolar
properties of the conductive substrates. The distribution
of the current along the substrate was examined for two
different situations: (i) the potential across the solution
was varied at constant length of the substrate, and (ii)
the decrease of the substrate length brought about by
anodic dissolution was observed as a function of time
at constant solution potential difference. In both cases,
the model underlined the narrow link between the
conductivity curves of the thin layer cell and the inte-
grated data from the voltammograms for the substrate
material. For aluminium wafers, the agreement between
theory and experiment was satisfactory. Visual observa-
tion of the ongoing bipolar electrolysis process is possi-
ble for sufficiently high fields.

Up to now, bipolar faradaic phenomena at flat sur-
faces subjected to a lateral electric field have been
totally ignored in the field of electrokinetic measure-
ments on conductive surfaces. The results presented in
this paper provide a way to define properly the electro-
chemical limitations of zeta-potential measurements on
such surfaces.
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Appendix A. Glossary of symbols

X Oxidized species of a redox couple
Reduced species of a redox couple
Gas constant (J K= mol~!)
Temperature (K)
Faraday’s constant (C mol~1)
F/RT (V7
Number of electrons transferred per
molecule
Transfer coefficient
no
Distance between the wafers (cm)
Width of the wafer (cm)

0 Length of the substrate (cm)

Cell constant (cm™!)

c Concentration of the electrolyte (mol

1=

TIHMN® RO

N~ % R
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Bulk conductivity (Q~' ecm~1)

’ Specific surface conductivity (Q~")
Conductance of the cell (Q1)
Thickness of the metallic layer (cm)
Density (g cm™?)

Molar mass (g mol~"')

Dissolution time (s)

Axial position (cm)

Potential at the metal | electrolyte in-
terface (V)

Mixed potential (V)

Position (cm) of the substrate for
which E=E,,

Potential difference (V)

Standard potential (V)

L Remaining length of the bipolar elec-
trode (cm)

Dissolved length (cm)

Current density (A cm™2)

Current (A)

Charge (C)

Electric field (V cm™1)

Time characteristic of the electrodisso-
lution process (s)

~

M D W

&

Ap, AV

Q ~ >
< -

Subscripts

Anodic

Cathodic

Denoting the bipolar current
Denoting the current of conduction
Pertaining to the solution

Pertaining to the remaining length of
the substrate

Pertaining to the metal

Denoting the exchange current

= v Ko

=
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Abstract

Streaming potentialsHstr) have been measured in a flat thin-layer cell with gold and aluminum surfaces. The conventional relation
betweenE st and the; -potential is shown to be applicable only as long as charge transfer reactions at the metal—electrolyte solution interface
are insignificant in terms of the ensuing contribution to the overall cell conductivity. Owing to the irreversibility of the reduction/oxidation
of water at most metal surfaces, streaming potentials can be obtainea ey broad range of pressure gradients for metallic substrates in
electrolytes such as KN§ The situation changes drastically in the presence of a reversible redox couple(M)gé/Fe(CN)e_. Even
small streaming potentials are then greatly diminished due to the extensive conduction that results from the bipolar electrolysis at the metal
surface. For gold and aluminum in the presence of various electroinactive and electroactive electrolytes, the measured Bgpae for
shown to be consistent with their conventional voltammetric characteristics.
© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Streaming potential; Thin-layer cell; Bipolar current; Faradaic depolarization

1. Introduction tentative explanation correctly referred to the need for con-
trolling the discharge of protons and hydroxyl ions as essen-
It is often presumed that conducting substrates such astial elements in the materiaktion of substrate conduction.
metals are not accessible to electrokinetic measurements. We have recently investigated the bipolar electrodic
The reasoning is that the large overall conductivity would behavior of aluminum wafers in KN§solution, exposed to
suppress the generation of a measurable streaming potena lateral dc electric field [5]. For sufficiently strong fields the
tial. However, for the bulk conductivity of the substrate to aluminum is anodically dissolved at the negative side of the
be operative, charge transfer across the interface betweerfield and water is reduced at the positive side, thus giving rise
substrate and solution must take place. This mandatory pre+o a flow of electrons through the Al substrate. The effective
requisite was already recognized by the Kruyt school [1] bipolar faradaic current s derived from the spatial integral of
for metallic flat electrodes and later discussed by Over- eijther the local cathodic or the local anodic current density,
beek for metallic conducting particles [2,3], well before the anodic and cathodic current integrals being necessarily
electrochemists invented the principles of polarography andidentical. The distribution of the current densities at the
voltammetry of electroactive (that is, redox active) com- anodic and cathodic sides of the Al surface is related to
pounds [4]. The exploratory electrokinetic studies by Ooster- the pattern of the local potéial difference between metal
man [1] involved metal capillaries which were shown to pro- and solution, as dictated bthe applied field. This has
duce streaming potentials very different from those for glass peen underscored by the successful modeling of the bipolar
capillaries. Although the experimental observations for sil- ¢rrent/field strength dependenf aluminum electrode

ver and platinum were found to be rather irreproducible (the o the basis of the conventionally measured Butler—Volmer
potential for Pt was said to make “the weirdest jJumps”), the g|ectron transfer kinetics [6].

Here we extend our investigations in two directions:
* Corresponding author. (i) the results for aluminum are compared with those for
E-mail address: jerome.duval@wur.nl (J.F.L. Duval). gold, a metal which does not undergo anodic dissolution at
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moderate potentials, and (ii) the effects of the electrochem- |
ically reversible redox couple FEN)S/F&(CN)Z~ on the Comtniner 2 Comaier |
streaming potential of gold are set against the voltammet- Y G Y

ric properties of the couple at a monopolar gold electrode. L : k

The study of streaming potentials in the presence of a re- 3 & i o v

dox couple is especially interesting because a well-defined Po clectrode Perspey call

Nernstian potential difference [7] between metal and solu-
tion is dictated, while the reversible redox couple gives rise
to relatively strong bipolar currents. Already at small devi-

5 |||||.| 'I."- mimj ll'|l.\"-. I H J

ations from the equilibrium potentials (weak lateral fields), = ol
the faradaic depolarization of the interface leads to strongly - ; R :
reduced streaming potentials. Such streaming potentials car Fleetrede | (P / “‘k\'ﬁ ~Fluctresde 7 (P1]
be properly interpreted only if the Smoluchowski equation is > Ly=Thmm o W afi investigmal
extended with a substrate conductance term which is limited - —
by the faradaic charge transfer reaction at the interface. = = I 020 mm

il Y

B 1= 245 mm

2. Materialsand methods Fig. 1. Cell detail.
2.1. Materials of the streaming potential as a function of the pressure

] ) . ) difference applied acros$e¢ capillary. The electrokinetic
The metallic surfaces subjected to streaming potential €x- ce|| was placed in a thermostatted cabinet to maintain the
periments were supported polycrystalline Al layers (200 nm) temperature at 25C within 0.1°C

and Au layers (100 nm). To warrant proper adhesion, the
glass support was first covered with a 10-nm Cr layer. The 2 3 E|ectrochemical experiments
layers were prepared via evaporation from heated Cr, Al,
or Au sources directly onto the glass support. The sub-  \pltammetric experiments were performed at room tem-
strates were extenSiVE|y cleaned with demineralized water. perature in a conventiondhree-electrode cell with a Pt
In contrast to Au surfaces, known to be very sensitive to p|ate as the counterelectrode (2 Zsurface area) and an
surface oxidation (high energy surface), the Al wafers were Ag—AgCI-3 M KCI reference electrode. Single sweep and
subjected to 15/20 min Udzone treatment prior to mea-  cyclic voltammetric curves were measured. Before each ex-
surement. Aqueous electrolytelstions were prepared from  periment, the solution was flushed with nitrogen for about
analytical grade potassium nitrate in ultrapure water as the 20 min. During the measurements Mas passed over the
solvent (specific resistance 18Mm™1). Analytical grade  solution. Monitoring the applied potential and measuring the
KOH and HNG; were used without further purification. The  current were performed with a PGSTAT10 potentiostat con-
redox couple used (FEN)g /F&(CN)g™) was 99% pure.  trolled by Autolab softwar¢Eco Chemie). In the electroki-
Prior to each measurement (electrochemical or electroki- netic cell, the propensity of the metal—electrolyte interface
netic), nitrogen was bubbled for 20 min to remove dissolved for depolarization was analyzed by externally applying a tan-
oxygen which could interfere with the faradaic reactions.  gential potential difference between two platinum electrodes
placed outside the thin liquid channel located in between
2.2. Streaming potential measurements the two flat surfaces [5]. For the investigation of the elec-
trochemical characteristics ofi¢ redox couple on gold, a

The flat plate streaming potential apparatus is based onrotating disc electrode (RDE, Metrohm) was also used.
the design of Van Wagenen and Andrade [8]. In this setup, a

Teflon gasket separates two flat plates to form a flat capillary

through which the electrolyte solution is pumped (Fig. 1). 3. Electrokinetics of gold and aluminum in

A similar type of cell is used by, e.g., Scales et al. [9]. electroinactiveelectrolyte

The thickness of the gasket determines the thickness of the

gap between the flat plateBor the experiments reported 3.1. Regime of faradaic depolarization

here, the gap was approximately 0.20 mm. The pressure

difference was controlled by adjusting the fluid levels inthe  The possibility of charge transfer between an Al substrate
reservoirs, using nitrogen as the gas. The sensing electrodeand an aqueous electrolyte stbn upon application of a
were connected to a voltmeter or a conductivity meter, lateral electric field in a thin-layer cell was investigated
enabling the measurement of the potential difference acrossin a previous study [5]. The overall conductivity of the
the capillary and the conductivity of the cell. The apparatus, system is characterized by two regimes. For not too strong
fully automated, was connected to a PC, allowing acquisition fields, with potential differences lower than approximately
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410* |

210"

Total currentl/ A
j/Acm?
(=]

210"

Potential difference A¢ /V
s -1 -0.5 0 0.5 1

E /V (vs. Ag/AgCI reference electrode)

Fig. 2. Experimental (plain curves) and calculated (points) conductivity

plots for *bipolar *9°|d elelctrodes at*differefzt KN@IGCEEOMQ cogncen- Fig. 3. Measured voltammograms (symbols) of monopolar gold electrode
tratlcins ¢ ._ga) ¢ =100 M; (b) ¢ = 1072 M; () ¢* =107 M; in different KNO3 electrolyte concentrations®. The curves are calculated
(d) ¢* = 10~% M. The potential was linearly scanned (0.03 V3. by means of the Butler—Volmer expression, the kinetic parameters of which

are given in Table 1. (af* = 101 M; (b) ¢* = 1072 M; (c) ¢* =103 M;
(d) ¢* = 1074 M. The potential was linearly varied with time (scan rate
1.5V, the conductance of the cell is the sum of the bulk of0.03vs™).

conductance, as determined bg electrolye concentration,

and any surface conductance, depending on the nature oberformed using the model developed in [5]. This model
the electrolyte used. Fomiger fields, the current through exploits the correlation between the kinetic characteristics
the cell increases more than proportionally with the field of the two faradaic reactiorend the bipolar current carried
strength. The Al substrate then provides a metallic path for by these reactions in the thin-layer cell. Values of the
the electrons, generated by anodissolution of aluminum  kinetic parameters, as obtained from the voltammograms,
at one side and consumed by reduction of water at the otherare reported in Table 1. As for Al, the analysis on the
side. A similar analysis was performed with gold substrates basis of the Bulter—Volmer characteristics of the monopolar
in the thin-layer cell. The results are shown in Fig. 2. gold electrode and the concept mixed potentials [10]
The pattern of the conductivity curves is essentially the successfully accounts for the dependence of the bipolar
same as that for Al. The potential difference beyond which current on the lateral electric field for the different KBO
charge transfer takes place is somewhat lower (about 1 V).electrolyte concentrations investigated (Fig. 2). For more
Voltammograms for a gold plate electrode (Fig. 3) enable detail, the reader is referred to [5]. The potential difference
the identification of the electrochemical reactions occurring of 1 V, beyond which the faradaic bipolar current becomes
at the two sides of a gold substrate when it operates assignificant (implying the simultaneous occurrence of the
a bipolar electrode. Reductioof water at the monopolar  two electrochemical reactions), corresponds very well to the
gold electrode sets in at potentials belowd.6 V and overpotential as determined from Fig. 3.

oxidation of water occurs at potentials beyep@d.5 V (with In a conventional streaming potential experiment, the
respect to an Ag—AgCIl-3 M KCI reference electrode). The electrolyte solution is flushed through the capillary between
analysis of the experimental curves plotted in Fig. 2 was the two charged walls under the influence of an applied

Table 1
Kinetic parameters,, jo,.rc. jo, and calculated mixed potentials,, (see Ref. [5]) estimated for gold from the voltammetric data obtained for different
electrolyte concentrations

KNO3 concentratiorc™ JOu ra Jjoe re Em/V
(mol I (MAcm™2) x 107 (MAcm2) x 102 vs Ag—AgCI-KCl

1071 1.26 33.4 0.72 28.2 .095

102 3.05 18.4 1.36 17.7 021

103 1.85 15.4 0.24 17.5 -0.133

1074 0.89 10.8 0.07 14.4 —0.286

Note. The voltammograms were fit with the Butler—\Volmer expression of the figrrexpir, f (E — ES)] (anodic side) and- jo. expl—rc f (E — E?)] (cathodic
side) with £ the potential and = F/RT (Eq. (8)). ES (0.68 V vs Ag—AgCI-KClI) andE?(—0.55 V vs Ag—AgCI-KClI) are the standard potentials for the
oxidation and reduction reactions, respectively (pH 5.5).

57



Bipolar faradaic depolarization in electrokinetics

pressureA P. Due to transport of the mobile part of the L e — ‘

. . . . . o0 K e M g e
countercharge in the interfacial double layer, a potential dif- \ N ~
ferenceEsy, the streaming potential, is built up, which in " Aluminum
turn leads to a counter conduction current inside the capil- pH=4.7 Gold

lary. This current is generally composed of bulk and surface
conduction contributions. Thus, by externally applying a po-
tential differenceAgs, one actually mimics the situation %
encountered in a standard electroidic experiment. Usu- ™
ally, Esy does not exceedt100 mV, which is well below the
Ags at which bipolar currentsra generated at gold and alu-
minum in KNGs solution. Hence, within the framework of

an electrokinetic experimerthe gold and aluminum—-KNg&
interfaces are completely polarized and streaming potential | A
experiments are free from faradaic depolarization effects, as 0
explained in the next section.

@

0 5 10 15 20 25 30

3.2. Streaming potential measurements AP/cemHg

Within the range of potentials typically encountered in
streaming potential experiments, the basic principles of
the electrokinetic analysis for dielectric substrates remain
valid for the metallic substrates gold and aluminum in
electroinactive electrolyte such as KNOThe streaming
potential Egyy is thus expected to depend linearly on the
applied pressuré\ P as formulated by the Smoluchowski
equation [11]

E /mv

goerC AP
n(KL+2K° /a)’

wheregg is the dielectric permittivity of vacuung, is the
relative dielectric permittivity of the solution; is the vis-
cosity of the solutiong is the distance between the two flat
surfaces K - is the specific bulk conductivitySg—1m—1),
andK° is the specific surface conductivit@2(1). ¢ is the
electrokinetic potential, which is usually evaluated from the
slope of a plot ofEs versusA P. Some experimental data  Fig. 4. (A) Streaming potentials obtained with aluminum, gold, and
were obtained for gold, aluminum, and microscopic glass glass wafers placed in the thin-layer cell using Kj@s the electrolyte
supports at different KN concentrations™* and differ- (<" =10"% M). (B) Streaming potentials obtained for gold:at=10-% M
ent pH. Linear reltionships betweerEsy and AP were and various pH. The pH of the KN{>solution is indicated.

found for all three types of surfaces. Typical plots are shown L ) )
in Fig. 4. Hence, the slope qf plotted versuk'* providesC, which

was always found to be in good agreement with the value
derived from the cell dimensions (Eg. (3)). The intercept
yields the surface conductivit§ ? ; here we do not consider
K°? in further detail but focus on the analysis of faradaic
"depolarization effects.

Once the cell conductance and the slopkg/AP are

Estr= (1)

AP/em Hg

For every experiment, the conduction term written in
brackets in the denominator of Eqg. (1) was estimated by
plotting the conductancg 1), as determined from the
slopes of the measured conductivity curves at low potentials
as a function ofk ©. For the thin-layer cell geometry, is

iven b . . .
given by known for a given pH and*, the ¢-potential can be esti-
KL K°l mated by means of Eq. (1). In Figs. 5A, 5B, and 5C, results
§=7¢ + Lo’ ) are reported for glass, gold, aalliminum, respectively. The

] observed dependenciesobn pH suggest that Hand OH-
where Lo and/ are the total IengEhl and the width of the  are charge-determining ions for all of these three surfaces.
substrate surface, respectively(m™) is the cell constant  Tnhough this is not unexpected for oxides [12—14], it may

defined by appear less likely for gold. However, recent studies have
Lo shown that the double layer of the gold—solution interface is
= ) of amphifunctional nature due to the presence of oxidic sur-
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Fig. 5. Measured -potentials (symbols) of glass (A), gold (B), and aluminum (C) wafers in the presence of the indicated concentrationg.oftk&NfDrves
were calculated as explained in the text (Section 3.2) with the model parameters reported in Table-@ot@iials obtained for aluminum in the presence
of 2 x 103 solutions of the electrolytes indicated. The curves are only guides for the eye.

face groups that exchange protons with the medium [15-17]. Merging of the experimental anitheoretical electrokinetic

An analysis of the electrokinetic data presented in Fig. 5 curves was obtained with the model parameters as reported
was carried out using a 2-pK model [18,19] and the Gouy- in Table 2 for the three surfaces investigated. In view of these
Chapman-Stern double layer representation [20-22]. Thedata, several comments can be made.

two pK’s used, K,, and pK,,, refer, in this order, to the The order of magnitude ofV, is, even for aluminum
following surface equilibria: and glass, well below the values reported in the literature
concerning oxide surfaces [23]. A possible interpretation
is that the electrokinetic analysis only probes a fraction of
—MOH & —MO™ +H™. (4b) the total surface charge due to binding of counterions in

The number of oxidic sites per unit surface area is subsumede Stérn layer and/or inclusion of counterions in surface

in a parameter called,. This quantity primarily controls ~ asperities. The latter option is supported by the systematic
the magnitude of . The differenceApK = pK,, — pKq, change ofN; with varying ¢*. Indeed, the higher the ratio

is a measure of the width of the pH region where the between the Debye length and the characteristic length of
surface groups —-MOH are predominant. For a givénit the surface roughness, the more efficiently the (real) surface
gives information on the relative slope ¢{pH) around charge is masked. Saturation of the protonic surface charge
the isoelectric point (iep). The quantitySipK,, + pKa,) at high and low pH is observed for gold. This is in agreement

is equal to the iep (pHy) experimentally determined. with data recently obtained by atomic force microscopy

—MOH; < —MOH +H*, (42)
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Table 2
Model parameters K, , PKa4,, and Ny used to fit the electrokinetic curves of Fig. 5
Nature of the surface KNgconcentration Ka; PKa, Ny x 1013 iep
¢* (moll~1) (log(mol I~ 1)) (log(mol I=1)) (sites cnT2)
Gold 1072 3.95+0.15 425+0.15 036 4134 0.08
1073 0.27
1074 0.28
Glass 102 1 37540.25 061 238+0.12
1073 0.43
5x1074 0.41
Aluminum 102 38+02 6.9+0.7 11 535+ 0.3
2x 1073 1.0
1073 1.0
2x 1074 1.0

v=3x10%Vs"

measurements [15]. The iep, situated between 4 and 4.2, 1610 ©
as well as the symmetric character of the curyésH),
agrees with the data of reference [15]. As expected, no ]
saturation is seen for aluminum, which presents a higher g4 |
degree of surface hydroxylation compared to gold. The iep,
located at pH~ 5.4, is surprisingly low compared to the 410°
one obtained from elexakinetic measurements performed 1
on «-alumina powder (iep of approximately pH 9 [24]).
This was already mentioned and discussed in [13]. For glass
substrates, electrokinetic @aéxtrapolated to low pH show i
an iep of pH 2.3-2.5, which is typical for silica [25]. The 810° |
effect of hydrolysable divalent and trivalent metal ions on i
the electrokinetic data for aluminum was also investigated -1210* -
(Fig. 5D). The patterns of the(pH) curves and especially ’

1210% p i
. v=10"Vs"

v=5x10°Vs'
v =10°vs' |

< o -

15107 F

P
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410° =

0

5107 |

Maximum currentj /A
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] / PUSIVS g .
the different charge reversals can be nicely correlated to the ™© "% Foibobib D C
hydrolysis at the aluminum surface of the metal ions chosen, 04 02 0 02 0.4 06 0.8 1
as extensively discussed in [26] for Si@nd TiG colloids. E/V (vs. Ag/AgCl reference electrode)

When using an electroinactive electrolyte, the electroki- Fig. 6. Cyclic voltammograms of a gold electrode in & #M/10~2 M
netic analysis performed on metals yields reliable results pe(CN)g—/pe(CN)g— solution of pH 5.5 (supporting electrolyte 18 M
in good agreement with their surface chemistry and double KNO3). The scan rates are indicated. Electrode area is 0.18%riihe
layer properties. The conversion of the streaming potential linear depen_dence of the f‘naximum currents witf is shown in the inset.
data into¢ -potentials can be carried out following the route " &0Ws indicate the direction of scan.
usually taken when studyirgjelectric substrates.

4, Electrokineticsof gold in electroactive electrolyte
9 y Fe(CN)Z~ and FECN)g~ to/from the surface of the elec-

trode. The Nernstian character of the system is confirmed by
the current—potential relationship (see Section 4.3.1) mea-
sured at a gold RDE for different redox concentrations and
different rotation speeds (Fig. 7). The limiting anodic and

gold electrode are shown in Fi§. A well-defined faradaic ~ cathodic currents, denoted g, and .., respectively, were
response is observed, centered arour@i23 V (versus  indeed found to obey the Levich equation [28], which pre-
Ag-AgCl-3 M KCI). The peak potential is practically in- dicts a linear dependence of the diffusion-controlled limiting
dependent of the scan rate The anodic and cathodic peak current on the concentration and the square root of the ro-
currents,j, , and,, ., respectively, are proportional td/2 tation speed (inset Fig. 7). For pH 4, the open circuit
(see inset of Fig. 6). These features demonstrate that thepotential varies with the REN)3~/Fe(CN)g™~ concentration
charge transfer occurring at the gold surface is electrochem-ratio in accordance with Nernst's law. For lower pH, the ba-
ically reversible [27], implying that the overall rate of the sic character of R@N)g‘ leads to deviations. Thus we shall
electrode reactions is detemeid by diffusive transport of  confine ourselves to the range of pH.

4.1. Reversible character of the Fe(CN)3~/Fe(CN)a~
couple at gold

Cyclic voltammograms for F{éZN)g_/Fe(CN)G_ at a
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Fig. 7. Current—potential curves measured at a rotating disc electrode F19- 8- Coglductivi_t% curves for Eipolar _ggld electrodeg in th(_eSpresence
for different rotation speeds using a 102 M/10~2 M Fe(CN)g_/ of (a) 107° M/10™ M, (b) 107 M/10~" M, (c) 107> M/107> M,

6 —6 4 -3 3 —4
Fe(CN)é’ solution of pH 5.5 (supporting electrolyte 1 M KNO3). (@ 103,M/10 4“,/" ©) _1CF M/107* M, and (f) 10° .M/10 M
@ w=324s1 (b) =256 51 (C) 0 =196 5°%; (d) 0 = 144 5°1; Fe(CN)Z~ /Fe(CN)g~ solution. In (a), (e), and (f) supporting electrolyte
(6) w =100 s1; (f) w = 64 s~1. Electrode area is 0.18 @nThe linear KNOg3 concentration™ = 107 M. In (b), (o), and (dx* =1 M. Only the
dependence of the limiting currents wigt/2 is shown in the inset. Scan faradaic contribution/ s is represented. The plain (dashed) lines refer to a

rate used is 0.03 VL. symmetric (asymmetric) redox system. Scan rate is 0.03%'s
4.2. Conductivity curves for gold in the presence projected on the length axis of the bipolar substrate [5]. The
of Fe(CN)g /Fe(CN)g ™ measured bipolar current results from the spatial integration

of the local anodic or cathodic current densities over the

Figure 8 shows the bipolar curreft as a function of ~ complete surface areas of oxidation and reduction. Since in
the potential difference\g, externally applied across the the stationary state there is no accumulation of charge in the
electrokinetic cell.7; was calculated by subtracting the substrate, these two integrals must be equal. With increasing
ohmic contributionl, from the total signal,l simply concentrations of the redox components, the local faradaic
being the product of the conductange as given by currents along the substrate increase and consequently the
Eqg. (2), andAg,. The electrolyte solution contains the ensuing bipolar current increases, as shown in Fig. 8. When
components of the redox Couple(Eie\l)g‘/Fe(CN)g‘, the gradually increasingAgy, the local current densities and
concentrations of which are varied at such low levels that hence!; increase strongly. Frora certain value ofAgj,
the bulk conductivity of the solution remains dominated by the increase of s levels off till /¢ reaches a constant value
the electroinactive carrier KN§& or even decreases. This leveling off is related to the tran-

In contrast to the situation examined in Section 3.1, a sig- sient decrease of the local anodic or cathodic currents (see
nificant bipolar current is already measured at very weak Fig. 6). Qualitatively, the pattern of the curvés(Ag;) is
fields (lowAgy). The bipolar current is carried by the reduc- very well predicted by the characteristic Nernstian behavior
tion of FQCN)3~ at one side of the bipolar gold electrode of the redox couple. However, a more quantitative analy-
and the oxidation of F(éZN)g‘ at the other side. Polarization sis based on the first-order approximation of a linear field
of the metallic surface with respect to the solution occurs and on the corresponding integration of the voltammograms
in the same way as for the irreversible bipolar processesappears to systematically overestimate the bipolar current.
examined for Al and Au in KN@ solution. Regarding the  Several reasons may account for the imperfection of such a
voltammograms shown in Fig. 6, it is obvious that the elec- quantitative approach. In standard voltammetric experiments
trode processes necessary to carry the bipolar current requirdeading to the voltammograms, one can speak of a bulk con-
only small overpotentials. As soon as the potential differ- centration for each of the components of the redox couple.
ence between the solution atie gold surface deviates from  In the thin-layer cell, it is likely that depletion/accumulation
its equilibrium value, a faradaic current starts to flow. The of the redox components occurs, especially for high,
course of the field across the flow cell determines the spatialbecause the thickness of the diffusion layer becomes compa-
distribution of the potential of the solution with respect to the rable to the thicknessof the thin-layer cell. This possibility
gold surface and hence the magnitude of the local faradaicis supported by the experimentally observed decrease of
currents. Assuming a linear field, the characteristic pattern for 10-6/10-6 M—10-4/10-4 M redox concentrations and
of the voltammograms as shown in Fig. 6 can be directly Ag; > 150—-200 mV (Fig. 8). Hence, the semi-infinite dif-
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fusion conditions (as met in the voltammetric experiments)
are not exactly applicable in quantifying the local faradaic

current densities and the corresponding overall bipolar cur-

rent in the thin-layer cell. Moreover, it appears that even

electrode, as

Iy

f— gl =
g/ =K'= ,
Estr

(5)

with an excess of electroinactive electrolyte (as is the casewhere K/ is the specific bipolar faradaic conductivity per

in the reported experimentshe bipolar current maintained

unit width (2~1m~1). K/ represents the integral of the lo-

contribution to the total current. Consequently, it is highly

Estr, the pressure P, and the bulk concentrations of the

probable that even for relatively low concentrations of the OXidized species RQN)S_ and re.duced species @N)g_'
redox components, the equipotential planes, perpendiculaldenoted ascg, and ¢y, respectively. For two gold sur-
to the surfaces when assuming a constant field, are confaces, each with bipolar conductangé the Smoluchowski
siderably perturbed by the electrochemical reactions, thusEd- (1) is then expanded to

invalidating the assumption of a linear potential drop across

the cell. A rigorous theoretical treatment of the problem
would require the simultaneous resolution of diffusion equa-
tions and potential distribution in a self-consistent way. Such
analysis is currently in preparation [29] and the first results
confirm the arguments presented here.

4.3. Streaming potential analysis

4.3.1. Extension of the Smoluchowski relation

In the previous section, it was the externally applied
tangential field that induceséhbipolar current. In stream-
ing potential experiments, the driving force for the bipolar
redox process is the flow of the electrolyte due to an ap-
plied pressureA P, which creates a potentidlsy across
the thin-layer cell (Fig. 9). Let us consider an experiment
where an electrolyte solution, containing the redox couple
Fe(CN)G‘/Fe(CN)g‘, is flushed between two gold surfaces
in a thin-layer cell under the influence of a pressure gra-
dient AP. In the stationary state, the streaming current is
balanced by a conductive coentcurrent, which now may
contain a contribution from the bulk of the gold phase, as
limited by the interfacial electrotransfer reaction with the
redox couple. This contribution is quantified by the bipo-
lar conductanceg/ (©21), which we define, for one bipolar

FalrME"™ +4™ — FeiCH ALN[™ — FrilHE 4

Fig. 9. Schematic representation of the situation typically encountered

in a streaming potential experiment in the presence of an electroactive

redox couple like F@N)g*/Fe(CN)é* in the solution flushed between the
two substrates. The streaming curréptis counterbalanced by the ohmic
current/q, the surface current”, and the bipolar current;.
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g0 C AP

=—7 = - (6)

n(KL +2K°/a+ 2K 1)
In contrast to the situation of Fig. 8, bulk depletion of the
electroactive species does not occur in the case of suffi-
ciently high AP. A steady-state convective—diffusion situ-
ation is developed, and a parallel with the RDE experiments
(Section 4.1), which also refer to conditions of steady-state
convective diffusion, can be drawn. This may be used for an
estimation off ; and hencek /.

The current density—potential relationshjiE) describ-
ing the curves in Fig. 7 is given by [30]

_ et jraeXpnf(E — E1)2)]
1+exdnf(E — E1/2)]
wheren is the number of electrons transferred per molecule

(n =1 in our case),;, and j; . are the limiting anodic and
cathodic current densities, respectively, and

Esyr

(7)

~.

f=F/RT, (8)

with F the Faraday constank the gas constant, arid the
temperature. The half-wave potentigy, is defined by [30]

Dg

2/3
E12=E°+ (nf)—lln(—> , 9)

Do
whereE? is the standard potential of the redox couple and
Dgr and Do are the diffusion constants &s1) of the
reduced and oxidized species, respectively. For a symmetric
redox systemey = ¢, = Crogox ASSUMINGDg = Do = D
(as is the case for the E(éN)G‘/Fe(CN)g‘ system), we can
write ji., = —ji.c = ji (> 0) and E1/2 = E°. Equation (7)
then becomes

i=i tanr{%(E - EO)]

In the steady-state diffusion situatiof, can be formally
written as

(10)

(11)

. D ,
J1=nF—Craqox

)
wheres is the thickness of the diffusion layer.
For a flow confined in a flat thin-layer channel, the
Reynolds numbeRe is defined by

Re = vpa/2v, (12)
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_— - . The potentialE introduced in Eq. (7) stands for the poten-

tial difference between the metal and the solution. In the thin
0k =0 HZ=sm layer cell, E depends on the position The potential profile

i : : E(x) is determined by the course of the electric field in the
- e o= capillary. Within the approximation of a linear field, we have

oEF*R H -I - A s 0] E(x)—EOZ(X—XO)Estr/LO, (17)

= with xq defined as the position at the bipolar electrode where
i there is no net faradaic current or, equivalently, where the
b e R local potential equals the equilibrium potenti&f. For an

i = asymmetric redox systemg may depend oiEgy, as exam-
//'_\ ined in [5] in the particular case of an irreversible bipolar
T2 = - faradaic process. As for the experiments reported in Sec-
/' tion 3, there is a coupling between the local current density
Jj (x), resulting from the diffusion of the electroactive species
to/from the electrode surfaces, and tbeal potential. This
Fig. 10. Schematic representation of the reversible bipolar process occurringcoupling induced deviations to Eq. (17) which will be ana-
in the electrokinetic cell under flow conditions. Diffusion of the redox |yzed in detail in a separate study [29]. Considering the usual

componentsO (oxidized species) an® (reduced species) to/from the magnitudes of the streaming potentl&]tr, the argument of

surfaces takes place, which in turn generates, along the electrodes, aspatiatlh tanh f fi in E 10 . Il f
distribution of the local currenf (x), the integration of which provides the e tanh 1unction in £q. ( ) remains small Tor every po-

bipolar currentl ; (see Section 4.3.1). The areas striped in dashed and plain sition on the surface. Combinations of Egs. (10), (13), and

Lavowhic arva

lines are equal. (15)—(17) then provides an expression for the local faradaic
current density,

wherev (m?s™1) is the kinematic viscosity of the medium nfp Vs 13

(the viscosityn divided by the density) andp is the bulk j) = Zoc;kedokmp) PEstn™(x — x0), (18)

velocity of the fluid expressed by [31] with 8 given by

_a? AP
N 8y Lo~
For the geometrical characteristics of our cell and the typical
range of pressures appligRk is less than 2500, thus validat-

ing the hypothesis of a laminar flow. Under such conditions,
the component, of the velocity vector in the direction per-

p2\1/3
B= O.42nF<—a ) . (19)
nLo
For a given streaming potentidlsy, the bipolar current
Iy then follows from the integration of over either the
anodic or the cathodic side (Fig. 10),

vo (13)

pendicular to the electrodes is zero and the componentin the X0 Lo
axial direction (Fig. 10) follows a parabolic profile given by Iy = —l/j(x) dx =1 / () dx. (20)
2y 2 0 X0
L =10 (1 B (7) ) (14) From the equality of the two integrals written in Eq. (20),

one then obtainsg = 2Lo/5. Deviation of xg from the
Assuming that the diffusion occurs over small distances yjqgle positionLo/2 stems from the asymmetric contour
from the walls, that is, the concentration profile extends to of the diffusion layer with the position. Using Egs. (18)
less thana/2, v, can be linearized and resolution of the gpq (20), the bipolar conductivit) / can be derived from
resulting convective—diffusion equation provides an expres- rg|ation (5). The Smoluchowski Eq. (6) can then be written

sion for the diffusion lengthd (see Ref. [31] for further {5 explicitly include faradaic depolarization as calculated
detail). It depends on the positianat the bipolar electrodic  \ithin the linear field assumption:

surface as
1/3 E goerC AP

Dax sr= ” 5/3 2/3 :

5(x) = 1.49( 2 ) . (15) n(KE+ 25+ 5 (3 nfBLE ool APV
”° (21)

Therefore, starting from the well-established transport sit- As discussed in Section 4.1, the validity of the homogeneous
U'atlor.] en.CO.Untered in the RDE expe.rlments, the local field approach and hence of Eq (21) depends on the mag-
diffusion-limited current density; in the thin-layer cell can  nitude of the ratiol/Iq [29]. Even at low field strength

be estimated via and low concentrations of redox components, this approach
. D may lead to inappropriate results, as will be discussed in the
Jix)=nF S0 (x)credox (16) next section. Nevertheless, provides a simple analytical
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Fig. 11. Streaming potentials measured for gold at different pH in (A1@ KNO3 and 10> M/10~5 M, (B) 10~4 M/10~4 M, and (C) 103 M/10~3 M
F&(CN)3~/Fe(CN)g~ concentrations. In (D) and (E), 18 M KNOg is used with 104 M/10~4 M and 10-3 M/10~3 M Fe(CN)3~/Fe(CN)g~, respectively.
The curves are only guides for the eye.
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expression of the bipolar current and the conductakiée ties of conducting materials like gold and aluminum on the
exhibiting a dependence im P)Y/3, the origin of which is basis of an analysis of thefmlar faradaic depolarization ef-
to be found in the nonlinear profile of the diffusion layer fects occurring in a thin-layarell. The explanation includes

thickness (Eq. (15)). a comparison between electroktic and electrode kinetic
features, which correspond tgailar and monopolar behav-
4.3.2. Experimental results ior, respectively.
Figure 11 presents a set of experimental daia(A P) For electroinactive electrolytes, bipolar faradaic depolar-

obtained for flat gold layers under different conditions of pH ization occurs in a potential regime which is irrelevant for
and concentrations of KN§£and redox species. As predicted standard electrokinetic experimeniThe metal—electrolyte
by the theoretical treatment set forth in Section 4.3.1, the interface can then be considered as completely polarized
curves significantly deviate from linearity at hig}j, c; and and, from an electrode kinetic point of view, irreversible.
relatively high pressure gragfits. Under such conditions, Hence, no effective conduction takes place through the bulk
the magnitude of the pblar conductance term becomes metal. The linear dependence ofetlstreaming potential
significant or even dominant over the bulk solution and on the applied pressure, as predicted by the Smoluchowski
surface conductance contributions. The deviation from lin- equation for dielectric substrates, has indeed been observed
earity is particularly pronounced for high pH. Indeed, the for Au and Al.
driving force for the bipolacurrent is the streaming poten- In the presence of a redox couple with a reversible
tial, which increases with increasing pH above the iep, as electrochemical behavior on the given metal, a significant
illustrated by Fig. 4. It was verified that streaming potential bipolar current is already detected at very low potential dif-
measurements performed on glass (a dielectric substrate) irfferences in the solution. A first analysis of the dependence
the presence of the redox couple lead to the same results asf the bipolar current on the pressure indeed shows a non-
the ones presented in Section 3.2, thus ruling out any effectslinear variation of the streaming potential with the applied
of depolarization at the sengjrPt electrodes. The analysis pressure. Thisis in accordance with experimental results, the
performed in the previous section (Eq. (21)) explains the ex- rigorous interpretation of whicrequires a theoretical analy-
perimentally observed nonlinearity of the cuniés (A P), sis which accounts for the coupling of the bipolar conduction
as generated by the reversible bipolar process. processes with the nonkar field in solution [29].

An attempt was made to evaluate the electrokinetic
potential¢ using Eq. (21). The fractional contribution from
K/ to the total conductance, noted (= 2K/ /(KL + Acknowledgment
2K 1Y), reflects the relative magnde of the bipolar current.
Even at low redox concentrations (f0M) compared to Dr. J. Mieke Kleijn is acknowledged for her advice and
the indifferent electrolyte concentration (1dDM) and low useful remarks concerning the elaboration of the paper.
applied pressures (5 cm Hg), situations a priori favorable for
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ERRATUM

Equations (5) and (21) should be read

gf = Kfa_l = —]f
LO Estr
_ eoerZDP
and Egy = ; S r5/3 ; ;
L 2K 9 éZLO 6 * 1/3 %
heK™ + + - g — DP 0
% a 10% 579 d a Credox( ) 0

, respectively.
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A quantitative theory is presented for the bipolar behavior of conducting planar surfaces in a thin-layer cell
of a type commonly used in electrokinetic studies. The lateral current density distribution in the cell, as
dictated by the externally applied field in the solution, is formulated for the situation in which depolarization
of the interface arises from transversal electron-transfer processes that occur at the two sides of the conducting
surface. The treatment explicitly analyses the two limiting cases of bipolar electrodic behavior, i.e., totally
irreversible electron transfer and Nernstian (mass-transfer-limited) electrodics. The spatial distribution of the
electric field is calculated by means of Poisson’s equation under conditions of a finite current. The results
allow for a rigorous estimation of the overall bipolar faradaic current. Analytical expressions are given for
the electric parameters (potential, field, local current, and bipolar faradaic current) in the case of irreversible
electron transfer, and numerical analysis is performed for the reversible, Nernstian case. Deviations of the
conductivity curves from the trend expected on the basis of a linear potential profile are discussed in terms
of the local ohmic and faradaic contributions to the total current. The theory is supported and illustrated by
experimental data for gold and aluminum surfaces in KNOlution, in the absence and presence of the
electroactive species Fe(Gi)/Fe(CN}* .

1. Introduction generated by metals in electroinactive and electroactive elec-
) . . ) . trolytes” We demonstrated that, in certain circumstances,
The bipolar behavior of electroconductive objects isolated macroscopic bodies of planar geometry placed in a lateral
between two current feeders and subjected to an external electricyectric field can behave as bipolar electrodfé$.The propen-
field has bgen discussed extensively in many areas, mcludlngsity of the metallic surface to depolarization under the influence
the dissolution of ngclear fuéicontrol of oxide film thickness, 47 |ateral electric field in the solution explains the feasibility
organic synthesi$,® corrosion, etc. The bipolar behavior has ¢ ejectrokinetic measurements for the investigation of double-
also been investigated in the specific context of electrochemlstrykleer properties of conducting materials. Measurements of the
at dispersed microelectrodeS.The geometry of microsphere pyinoiar current have been performi@é for irreversible and

electrodes, which allows for the development of spherical g\ ggiple systems for which the electron-transfer kinetics and
diffusion fields in the bulk of the surrounding solution, presents it sive mass transfer respectively, govern the faradaic

multiple advantages with respect to the electrochemical reamionprocesses A theoretical treatment based on the first-order
kinetic$~11 and the insignificance of the transient electrodic approximation of a linear distribution of the potential or
respons@.Th% Fjlsbper?edﬂsyds_tergsb pg”?'t agazgtenﬁlon of the o4y ivalently, on the assumption of a homogeneous field along
c?nc_eptsluse dm ||_o|_cr)]ar ul ';F ? electr olt ear(ra]a . the bipolar electrode is also availaBlé&This treatment, though
of microelectrodes. The possibility of carrying out electrochemi- | gq ) for 5 qualitative understanding of the electrochemical and
cal reactions at considerable rates in _poorly_ conducting mQd"’lelectrokinetic implications of the bipolar phenomenon, is
by means of b|_po|ar elec_trol_yS|s with dispersions of conducting oversimplified because of the intrinsic coupling between the
plartltclets ErO\Indes rpo(;[vatlon ;or thte devle:Iopment Olf thtf] potential distribution and the position-dependent faradaic current.
electrolechno’ogy 0 |spﬁzrse systems. or e>§a’r’np & € this paper, we rigorously tackle the pertinent fieldirrent
md_ustrl_al application of the SF‘Perff?‘S‘ electroph(_JreS|s eﬁéCt’. interrelation that is of importance for both irreversible and re-
Whr'ghl I;sb??e: c;(n hthﬁ spr)emrgz lglépitlnllartrb(taha;/r:orrolf \r/n?]talllc versible electrode processes. We present analytical and numer-
p? ﬁg rct) n%ir;e iha %? Fl)ar Cr ’ ﬂf aefs the eeng ctein ical approaches to account for the nonlinear potential distribution
gubitra? SI:ctroIgte seolut?oonaintpe?fgge e;e%entle Cv?/e L;];Veg and for the corresponding bipolar current. The theoretical results
.fE y . : s . _for planar symmetry successfully interpret experimental data
emphaslzeq the_ fu_ndamental importance of b|polar fara_da|c for gold and aluminum surfaces in the presence and absence of
depolarization within the new context of streaming potentials a reversible redox couple. The analysis also provides a rigorous
theoretical basis for the quantitative understanding of faradaic

:\I\?awgr?i? gﬁrber?ieg?sdifnce should be addressed. depolarization as an interfering element in the study of elec-
E N|Z% Regeamh Institu>tlé. trokinetic properties of conducting bodies. In these studies, the
8 Universitat de Lleida. bipolar electrodic process arises from enhanced tangential flow
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T - Frrpe ool VXY  aV(Xyt
— By =~ TN
e . h:-ﬁfm:‘ﬁ..:’iam*fd | 4 -““ '“ _“;:
I In the following, we shall neglect the change of potential (and
—+ m o — field) and the corresponding ionic charge distribution associated
s T with the interfacial electric double layex direction). This
/ ; " Flatinern assumption is justified provided that the conditi‘mr2< ais
Al s Cltadcting dmtatnits T fulfilled, where 1 is the Debye length characterizing the

extension of the interfacial double layer. The correctness of this
neglect for the systems modeled in this paper is in agreement
A Comducting mafbcer with the choice made for the electrolyte concentraiigriFor
illustration, in the rangecs = (100%)—1 M, 2 Ya ~ (3 x
104—(3 x 1079 (a = 0.2 mm). Therefore one can legiti-
L+1 v b ro Byt tddopnd for s il lpolw procen) mately write the potential and the field as functionsyandt
v=0 Pl ko o i bl pecas only (the derivative ofV with respect tax in eq 2 is not taken
Figure 1. (Top) Schematic representation of the thin-layer cell. INto account). To fincE(y,t), let us consider an infinitesimally
(Bottom) Geometric sketch of the coordinate system chosen for the Small volume element of the cell as pictured in Figure 2. This
formalism describing the bipolar behavior of the planar surfaces. volume contains the electrolyte located between the positions
y andy + dy. An ohmic current enters the considered volume
of the electrolyte solution along the conducting surface. The element aty and leaves it ay + dy. A faradaic current with
implications for the electrophoretic mobility of metallic particles  densityj (A m~2), which results from charge transfer between
and the collapse of the streaming potential of metallic surfaces the solution and the conducting surfaces, enters the volume as
in the presence of electroactive species will be discussed in detaila transversal current through tlye plane. In contrast to the

elsewhere. common electrochemical situation, the flow of electrons as-
sociated with this faradaic current is perpendicular to the
2. Definition of the Coordinate System, Notation direction of the externally applied electric field. For an irrevers-

ible process under conditions of relatively weak faradaic

The coordinate system is defined in Figure 1. The distance depolarization, the chemical composition of the solution between
between the two metallic electrodes in the flat capillary cell is the plates remains essentially constant (section 4). This is also
a, the length of the metallic surface lis, and its width id. A true for the reversible case (section 5), provided that there is an
potential difference, denoted Agps, is applied across the long  excess of supporting electrolyte over the electroactive com-
side of the thin-layer cell y( axis) between two auxiliary  pounds. The field is considered to be established instantaneously.
electrodes placed just outside the thin-layer chamber. In a The electroneutrality condition for the elementary slice of
scanning experiment, the value & is systematically varied ~ volumea x | x dy is
with time t according to the relation

dE(y,t) .

L —

Ag )y =v x t 1) —aK Ty +2j(yt) =0 3)
wherev is the scan rate (V8). The bipolar faradaic curremt Equation 3 defines thiantrinsic relation between the faradaic

at the metgbolution interface is carried by two redox couples current and the electric field at any positipmlong the surface
denoted as Q¥R, and Ox/R., where the subscripts a and ¢ and any time. In the situation wherg= 0 (no depolarization),
pertain to the anodic and cathodic processes, respectivelyeq 3, combined with eq 2, reduces to the common one-
(section 4). In the case where the current is carried by the samedimensional Poisson equation for an electroneutral medium
redox couple (section 5), the oxidized and reduced forms are

denoted as Ox and R, respectively. The solution contains an dZV(y,t)
electrolyte of given concentrationy assumed to be in excess 7 =0 (4)
over the redox species. The solution conductivity in the thin-

layer cell is denoted ak' (27! m™1) and is assumed to be _ _ _ o
constant with time. So-called conductivity curves refer to plots  S0lution of eq 4 leads to a linear profile of the potential, i.e., a
of the overall current, composed of the conduction currept constant electric field. Once the dependencpaf the position
and the bipolar faradaic curreht as a function ofAgs. is known, the electric field distribution, and hence the potential

profile along the capillary cell, can be calculated with eq 3.

We shall analyze the cases in which (i) the electron-transfer

reaction at the bipolar metalectrolyte interface is very slow

compared to mass transport (the totally irreversible case) and
Considering the symmetry of the problem, the electric field (1)) the bipolar electrolytic processes are purely mass-transport-

and the faradaic current can be considered to be independentimited, i.e., electrochemically reversible.

of the variablez, i.e., edge effects can be neglected. The explicit

expression for the local potenti®(x,y,t), which denotes the

potential of the solution at the positiomsy and given timet 4.1, Expressions of the Field Distribution and the Bipolar

with respect to the (equipotential) metallic surface, is related Current. The spatial variation of the solution potenti(y,t)

to the magnitude of the local field, denoted E(,y,t) (not to gives rise to an oxidation reaction at one side of the surface

be confused with the common potential notation in electro- and a concomitant reduction reaction at the other side, as given

chemistry) by

3. Expression of the Coupling between Electric Field and
Faradaic Current

4. Irreversible Bipolar Redox Process

68



CHAPTER 7

, raterriag vty differentiation of eq 3 with respect §pand combination of the
' results with eqs 6 and 7 allows explicit expression of the field
P 7 distribution for the anodic and cathodic areas by the following
nonlinear differential equations of second order

EYY . E(Y
> yo(h): ———r,f——Eyt)=0 (13
Y > Yolt) o af =5y EO (13)
. K| re g i iy [ P—— 82E(y,t) IE(Y,1)
— - . < y,(b): +r . f——EWyt)=0 (14
. O VAL CRlCD
l/’ which we write in concise form as
2
Figure2. Schematic picture illustrating the coupling (eq 3 in the text) I E(y.t) oE(y.t) _
between the electric fiel& and the transversal faradaic current flpw 3 y2 ted a,cf ay E(y)=0 (15)

at a given timet (or given potentialAgs) and positiony.

wheree, = —1 fory > yg(t) (anodic area) ane. = +1 fory <

yo(t) (cathodic area). Solving eq 15 requires two boundary
_ conditions for the field, or equivalently for the potential (see

Ox.tne —R, (5b) eq 2). Because the surface of the metallic conductor is an

. ) . . equipotential plane, the total applied potential drop must comply
with ny and n; denoting the numbers of electrons involved in with the condition

egs 5a and 5b, respectively. The anodic and cathodic current

densities are denoted lpyandj, respectively (A m?). In the V(=Ly/2t) — V(Ly/2,) = Apg(t) (16)
irreversible case with the interfacial charge-transfer kinetics

controlling the rates of the reactiong, and j. are usually As a consequence of eq 11, the positig(t) is defined by
expressed by the so-called Butlérolmer expressiori8

R,— Ox,+ nge" (5a)

yolt) Ly2 .
, , —J iyt dy = Jay:t) dy 17)
JoYD) = o, eXpl-raf(V(y.t) — VO] (6) L2 Juo 1
_ ) which stands for the condition of no charge accumulation in
Jy:) = —o, Pl F(V(y.t) — V) (1) the overall bipolar conducting substrate. Each integral of eq 17
can be expressed as a function of the field by integration of the
with f, ro, andr. defined by differential eq 3 so that the second searched boundary condition
F can be simply rewritten as
=rr ®) E(—Ly/21) = E(Ly21) (18)
r,=n(l-a, ()] Equation 15 can be easily integrated to give
r.=nao. (10) oE(yt) 1
= oyt afadad B0 =CO (19)

wherea, anda,. denote the transfer coefficients for the oxidation
and the reduction reactions, respectively; and jo, are the whereC(t) is a constant (independent of positio@)t) can be

corresponding apparent exchange current denskigandV? calculated at the particular positign= yo(t)
are the standard potentials of R, and Ox/R., respectively, 1
with opposite sign (because here we consider the potential of C(t) = ka,c+ Eea' Ja,cfE(yO(t)'t)z (20)

the solution with respect to the metal surfade)s the Faraday
constant;R is the gas constant; antlis the temperature. By

. ; . ; .. Where the consta is defined b
analogy with electrochemical convention, the mixed potential o y

Vin222lis the potential at which the net local currept+ j) is 2¢, 4o
Zero ka,c: - aKt = exp[ea,cra,cf(vm - Vg,()] (21)
JolVim) = —i(Vi) (11) _ _ _ .
The differential eq 19 can be solved by integrating over the
It follows from eqs 6 and 7 that field from E(yo(t),t) to E(y,t), i.e., over the space froiy(t) to
) y. After simple manipulation, it gives
Jo,
In o + f(r V2 + r V) Elyvt) dE(y,t) __L A dy
V. = _v% 12 EOo0) E(y )2 — [E(yo() )2 — A 2 acacJy
m o) (12) (y.)" — [E(yo(t).1) ad 22)

The position at which/ equalsVy, is indicated as/. For the where A, (positive) is given by
case of two totally irreversible reactions, we can neglect the K
local anodic and cathodic currents fagr> Vy andV < Vp, A= 2 (23)

respectively. Using the properties of the exponential function, 2ergf
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Interplay between lateral electric field and transversal faradaic processes

andk = |k, d. Let us consider the case whe/o(t),1)2 > Aao
which typically holds for relatively high electrolyte concentra-
tions (highK') and/or relatively lowjo, . Then, the inequality
E(y,t)? > [E(Yo(t),t)> — Aad is always verified, and the solution
of eq 22 can be written as

E) = [EQ60)7 — Aqd Y cothfye, ) +

1

Fadaol [ER®D7 = A d*Hy = yo®)] (24)
with the dimensionless quantity, (t) defined by

E(yo(t).t)
[E(yo(t),t)2 — A, 1/2} (25)

The potential is then determined by spatial integration of the
field from yo(t) to y (eq 2). The result is

o D) = coth‘l{

EaC
V() = Vi == %
- 1 2 12,
Sintua ) + 5o ol [Eo®07 = Aqd Ay = yo)]
In sinhi, (1)

(26)

The expression of,dY.t) follows directly from relation 26
because egs 6 and 7 can be rearranged in the form

L
a,

2

k
Jady) =— explea &a F(VY1) — Vi)l (27)

The bipolar current; equals the integral of the local anodic or
cathodic current over the relevant surface arédso that the
analytical expression of the conductivity curve is given by

I

(28)

(t)
I{(Agdt) = IkaK'e, o x (77
sinh{u, {1))

sinhfis 40 + ea L HEGROD” ~ Aad" 4y — yol0)

To explicitly calculate the potential, field and local current
profiles as well as the overall faradaic current, the two
parametersE(yp,t) and yp(t) remain to be determined as a
function of the known input variables. The two additional

equations required are provided by the boundary conditions on

Ags(t) and onyq(t), i.e., eqs 16 and 17/18, respectively.
Equation 26 can be combined with eq 16 to yield

Ap =2
sinh{u(t))
In +
L
sinh{uc(t) — 5 fEORO.07 ~ Ad 1’2(5‘) + yo(t))}
2, sinh{u(t)
af (. L
sl — dratEG6007 - 232 - yi00)}
(29)

and using eq 18, eq 24 can be formulated as
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cothu(t))
cothfu,(t))

coth{uca) — 1T E@0.07 — Ad ’2(% + yo<t))}

(30)
1 2 120
coth (1) = St f[EGe®H” — AJY15 = Yold)
Numeric resolution of the nonlinear system composed of eqs
29 and 30 provides, for different timeésand hence different
Agg(t), the parameterE(yo(t),t) andyo(t).

For the cases where, even at hitylas, E(Yo(t),t)? < Aao the
potential and field distributions are given by

E(y.t) = [Aa,c - E(yo(t),t)z] v tan{ﬂa,c(t) - %ea,cra,cf[/\a,c -

E0o(®.074y = o)} (3D)

Vi) =V, = — r:z]f
. | secfi, (1)
{ser{ua,c(t) LT~ OO0y — yo(t))}}
(32)
with

(33)

)= tan { EQo().0) }

[Aa,c_ E(yo(t),t)z] vz
The secant function is defined as sg@cf 1/cosk), wherex is

any number. The expression for the bipolar curreribllows
as

l(Ag) = IkaK'e, . x f_”‘iL "

sedta d) ~ eadacllAae— EQROD77 ~ Yo} |
se0fis () v

(34)

Equations 29 and 30, enabling the determinatiofe@h(t),t)
andyp(t), become

gy =2
L
se{uc(t) + 5o — E(.7 1’2(30 + yo(t))}
In +
secf (1))
L
2. Se({#a(t) + 2. fTA.— Eo(0.077 3 - yo(t))}
Faf sec(ty(D)
(35)

tangu(t) _
tanfe,(0)

tan ) + A1~ 60772 + )|

(36)
L
tar{ua(t) + JraflAa— EGGO.) ”2(50 - yo(t))}



CHAPTER 7

A A S ‘ ‘ P superfast effect is generated for a total potential difference of
,-" { about 10 V along a single microsphere electr&d€o ensure
Y the balance between the total anodic and cathodic currents, the
o8 | ] positionyy(t) at which there is no net current shifts to the anodic
. (cathodic) side fore < ra (ra < r¢). One easily infers from eqs
- 30 and 36 that, for a kinetically symmetric system= ra), Yo
06 - P b remains independent of the applied potential and equal to O.
g Figure 4A and B shows the spatial distributions of the potential
] and the faradaic current, respectively, along the bipolar electrode
04 1 surface for a given set of kinetic parameters and for different
] Ags. The corresponding conductivity curvé«(Ags) plot]
d calculated by means of the equations derived in the previous
section is shown in Figure 4C. The results are also compared
with those obtained assuming a linear potential distribution, as
, detailed in ref 18. The field and potential profile deviate from
0 ; 2 s . 5 5 ; 5 those obtained using the linear approximation when the bipolar
49 /V current becomes significant compared to the ohmic current. This
is realized by enlarging the kinetic parameters at constant
conductivityK- and/or gradually increasinygs (Figures 3 and
4). The linear approximation leads to overestimation of the
potentialsV(y,t) and, hence, to overestimation of the overall
bipolar currentls. As expected, both analyses correctly show
the minimum overpotential (here about 1.5 V) thermodynami-
cally required for the simultaneous occurrence of the anodic
and cathodic reactions at the two sides of the surface. Owing
to the exponential nature of the bipolar faradaic processes, the
magnitudes of the local faradaic curreptandj. grow strongly
toward the extremities of the surface. The field (potential)
current correlation, as expressed by eq 3, is therefore the most
pronounced at these positions, which results in the typical
nonlinear patterns for the field and potential. The inaccuracy
of the linear approximation for describing the distribution of
the electric parameters at positions situated aroymds
o 1 2 3 4 5 6 7 8 explained by the deviations of the computed values of
a0,V E(yo(t),t) from those estimated on the basis of a linear potential

Figure3. (A) Electric field E(yo(t),t) and (B) positionyg(t) as a function pl‘OfI|?. . . . .

of the total potential\gs applied across the thin-layer cell for different Using the analytical expressions developed in the previous
sets of kinetic parameters. The dashed lines result from the calculationssection, the bipolar current was also calculated for the
of these quantities assuming a linear potential distribution (eq 4). Model gold/KNOj3 solution interface at different electrolyte concentra-
parametersK" = 107t Q" cm™, a = 0.17 mmV2=182V,V)= tions, ¢s for which the condition 2 ~ 1 < a is always fulfilled.

0.55 V,jo, = 10" Acm™? jo, = 3 x 10°°A cm™2 Panel A:rc = 1.1 For the range of applied values afps, the bipolar process at

1 = 2 = 2 = . ; . . .
f(rlz(y(d;"p dz(ai)rf % f:lxp%,ge" g) EZN:s'i; ;S(Tin’ ég)n;al A ;Osr ;;1 o  9old is carried by the reduction and oxidation of wéteThe

E(y /v cm’

¥, (t)/cm

other curvesre = 5 x 102 and (€)fa= 7.5 x 102 (f) ra= 1.2 x conductivity curves are reported in Figure 5. The results are

10, (g)ra=1.7x 101 essentially the same as those obtained for aluminum bipolar
electrodes. The higher the conductivity @}, the lower the

For the intermediate situations whekg < E(yo(t),t)2 < Aa (or faradaic contribution to the total current, and the better the

Aa < E(Yo(t),0)2 < A) relevant for bipolar electrodic processes Mmerging between the analysis as presented in section 4.1. and
with a strong asymmetry between anodic and cathodic chargethe linear approximation based on eq 4. Equations 28 and 34
transfer, the calculation of the electric parameters is possibletend to underestimate the overall measured current aKlgw
by a cross use of the analytical expressions derived in this whereas the experimental results can still be fitted by the linear
section for the field and potential position dependences. analysis. This can be understood by considering that, for
4.2. Results and Discussion. Depending on the sign of the ~ moderate potentials, the local currents due to oxidation of the
quantity E(yo(t),t)2 — Aae E(yo(t),t) andyo(t) were consistently ~ gold surfacé are not taken into account, even though they
computed using egs 29 and 30, 35 and 36 (or intermediate) forprobably play a role in the overall bipolar process, especially
a few sets of kinetic parameters r¢, jo, andjo, at constant when the bulk conductivity is low. This is manifested in the
electrolyte conductivityk-. Some results are given in Figure difficulty in accurately determining the kinetic parameters at
3. The order of magnitude chosen for the kinetic parameters is low electrolyte concentration from the measured voltammograms
in agreement with values typical for the bipolar process (deviations from the theoretical Tafel plots). Despite this
occurring at aluminum, i.e., reduction of water at the cathodic complication, the two types of analysis give an acceptable
side and anodic dissolution of the metallic phase at the éther. picture of the conductivity curves. Similar conclusions hold for
The calculations are shown féxgs up to 8 V. The choice of  theirreversible bipolar process observed at aluminum surfaces.
such high potentials is motivated by the typical range of electric The inadequacy of the linear approach is the more apparent
fields encountered in the context of superfast electrophoresisat higher Ags. In the particular case where the electrode
at conducting particles: for particles of diameter 400, the processes exhibit quasi-reversible behavior, we recognize that
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Figure 5. Experimentalpointy and theoreticafsolid lines) polariza-
tion plots for bipolar gold electrodes at different Kh®lectrolyte
concentrationsgs. (a) ¢s = 10t M (K- = 11 nQ~* cm™), (b) ¢s =
102M (K- =15 mtcem?), (c)cs =103 M (K- = 160 uQ27?

% cm?), (d)cs=10*M (K- =20 uQ* cm™). a ~ 0.20 mm. The
S potential was linearly scanned (0.03 V:p The dashed lines refer to
E the theoretical treatment based on eq 4.
5
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25102 1 Figure 6. Schematic representation of the reversible bipolar process
: occurring in the thin-layer cell upon application of a potential drop
< et Ags across the capillary. Diffusion of the redox components Ox
E (oxidized species) and R (reduced species) to/from the surfaces governs
g the faradaic processes.
3 1s10® - .
. b ﬁ . .
. 5. Reversible Bipolar Redox Process
110% | ;
i 5.1. Expressions for the Local Faradaic Current and the
510° - Concentration Profile. If the bipolar current is carried via an
¢ electrochemically reversible reaction (fast electron transfer), the
0 S S G U S S B -

local currents along the bipolar surfacg dimension) are

0 1 2 3 4 5 controlled by diffusion to/from the surfacex limension) of
0,7V the two electroactive species, now denoted as Ox for the

Figure 4. Spatial distributions of the (A) potential and (B) faradaic oxidized form and R for the reduced form. The electrolyte

current at differeniAgs, as specified in the figures. (C) Representation solution is still assumed to contain an indifferent electrolyte in

of the total current (ohmie- faradaic contributions) (a) assuming eq  gyfficient excess over the electroactive species. This ensures
4 and (b) calculated on the basis of eq 3. Curve ¢ shows only the ohmic

contribution to the total current. Model parameters: as in Figure 3 with that Filffuswe. mass translport prevails (mlgratlon of the redox
re=1.1x 10t andr,= 7.5 x 102 species and its contribution to the ohmic current can therefore

be neglected). In contrast to section 4, only one redox couple
the net current involves appreciable limitation from the finite now generates the bipolar depolarization process. Figure 6
rates of the forward and reverse charge-transfer processesschematically depicts the situation typically encountered in the
meaning that egs 6 and 7 should be extended with the (smaller)reversible case. Using the same definition for the electric
cathodic and anodic terms, respectively. The results related topotential as in the previous section (i.e., potentials in solution

the potential and field profiles remain qualitatively the same as with respect to the metallic phase), the potertigit) is given
for the irreversible case. by the Nernst relation
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_ 1 COx(X:01y1t) _
V(y,t) = V° — = |n[—CR ooy |~
1 COx( vyrt)
V- nf [cR(x—ayt)] 37)

wherecox(X,y,t) andcg(x,y,t) stand for the concentrations of the
oxidant Ox and reductant R at a given titn@nd position X,y)
andn is the number of electrons in the reaction ®xne ~ <

CHAPTER 7

The symmetry of the problem requires an extremum in the

concentration profile of Ox at = a/2. The ensuing condition
9Co (XY, D)Xy =0 (44)

can be used in combination with eq 42 &t 0 or atx = a)

and eq 40 in solving eq 39. The mathematical treatment of the

set of eqs 39, 40, 42 and 43 substantially differs from that

commonly applied within the semi-infinite planar diffusion

R.\Vis the negative of the standard potential of the redox couple approximation. In the present case, the notion of bulk concentra-

Ox/R. The potentiaV*, identified as the potential drop at the
interface at = O (before application oA¢s) does not depend
ony and is related to the bulk concentratiagig, ¢, and\V° by

COx

Cr
Calculation of the local current density,t) along they axis at
time t requires determination of the concentration profiles of
the redox species within the capillary cell. Let us examine, e.g.,
the cathodic reaction and the profile @fx(x,y,t). Considering
that, typically,Lo > a andl > a, the concentration polarization
of Ox in they andz directions can be neglected. Consequently,
the faradaic current is limited by the diffusion of the species in

the x direction, andcox(X,y,t) can be obtained by solving the
diffusion equation

vi=\"—1p

= (38)

FCo(6yit)
B

whereDoy (M? s71) is the diffusion coefficient of Ox. Resolution

of eq 39 requires two spatial boundary conditions relatex! to
(the system is spatially confined by the magnitude of the gap
a) and one boundary condition related to the time. The latter is
simply the initial condition

9Co,(X.y,1) _
ot

Ox (39)

Cox(*,¥,0) = Cox (40)

which merely expresses the homogeneity of the solution at the

start of the experiment. To define the spatial boundary condi-

tions, we exploit the characteristic feature of reversible electrode
reactions, that is, Nernstian equilibrium between the surface

concentrations of the redox species and the poteigat).
Assuming equal diffusion coefficients of Ox and R, iBgx =
Dr = D, the conservation of matter at the electrode surface
= 0 can be written as

Cox(x=0y,t) + cx(x=0y,t) = c5, + Cx (41)
and a similar expression holds at= a. We note in passing
that eq 41 is actually valid for every because the total

concentration of Ox and R at the boundaries is assumed to

tion for the redox couple might vanish because of the small
volume between the flat plates, and significant depletion might
already occur (at = a/2) for relatively short time. The finite
dimension of the capillary is taken into account in eq 42, which
depends on one of the variables to be integrated (tim&o
solve the problem, we use the Laplace transform with respect
to the variabld. Using initial condition (40), eq 39 then becomes

a2(:O><(X*y!s)

Dax2

CoxXY:S) — Cox= (45)

where the super bar denotes the transformed variable. A solution
of eq 45 is

= C—ZX + A(Y,9) exp@«/ﬁ) +
B(y.s) exp(—xv/s/D) (46)

(_:Ox(x!y1s)

whereA(y,s) andB(y,s) are functions that are independentxof
Combination of eq 46, applied to the positianss 0 andx =
a, and the Laplace transform of eq 43 provid€g,s) andB(y,s)

B(y,9) exp(—ax/%) =
(Coxt R fouysd) —
1+ exp@y/s/D)

Aly.s) =
(S

(47)

Equations 46 and 47 enable the explicit calculation of the local
concentration gradients. For the two surfaces=(0 andx =
a), we obtain

BEOX(X,y,s)
ox

aéOx(x Ys S)
X

— (et o x(y,S)]\[ tanr( [ ) (48)

Dividing by s yields a form for which the inverse Laplace
transform is known. Use of the convolution integfahnd
tabulated functior?$ then leads to, e.g., for the surfacexat

lx=0 =

remain constant (protonation reactions of the redox species at

the surfaces and/or in the bulk or other mechanisms likely to
modify ¢, + ck are not considered here). Combination of eqs
37 and 41 yields the two spatial boundary conditions

COx(o!yit) = COx(alyit) = (ng+ CE)fOx(yit) (42)
where the functiorioy is defined by
exp[-nf(V(y.t) — VO]
fOx(y1t) = (43)

1+ expl-nf(V(yt) — V)]
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taCOX(X’y'T) 4 t % "
0o . Ix= dr = ;LfO[COx - (COX+
c;)fox(y,r)]{i exp[—(Zn = 1)%292@ - r)]} dr (49)
n=1 a

wheret is a dummy integration variable. Using the Leibniz
theoren®® the concentration gradient at the surface= 0
follows as
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dCoxy) af - Ny, _ VY, (54)
|x=0 == [COX - (COX + CR)fOx(yaO)] 2 ay ly=0 3y y=Lq
oX a n=1
, oD . . tafOx(y!t — 1) The equivalent of the mixed potentisl, for the irreversible
exp—(2n—1) L T (Cox T CR)L— case (see eq 12) is the Nernst potent#l at which, by
a ot definition, j = 0 (eq 38). The potentialcurrent coupling is

> D
{2 exp[—(Zn - 1)27t2—‘L' species Ox and R immediately adjust to the potential as dictated
n=1 a’ by the Nernst equation. For reversible reactions, neglect of
double-layer effects is justified for cases where the thickness
Because we have assuniggk = Dr, an expression comparable  of the diffusion layer is large compared to the typical Debye
to eq 50 is obtained for the surface concentration gradient of lengthx ~ 1, a condition that is always met in our experiments
species R. (sufficiently high salt concentrations).
The current density(y,t) for one bipolar electrode is related 5.3. Characteristic Features of the Conductivity Curves.
to the fluxes of Ox and R to/from the capillary surfaces by  Figure 7A and B shows typical curves for the spatial distribu-
tions of the faradaic current and potential, respectively, as
ac(Xy:t) calculated for different values ckgs and for a given set of
T]x=o (51) redox concentrations satisfyingf,, = ¢, = c*. For such a
symmetric system, the positign is independent of the applied

where the sign convention of a negative reduction current is field and s haltway a'°”§ the surfaceo(= Lo/2). *For
followed. Analytical expressions for the complete profiles of Symmetric systemseg, 7 Cg), we havey < Lo/2 for ¢ <
Ccox(%y.t) andcr(xy,t) can be obtained by following the route Cox @nd Yo > Lo/2 for ¢o, < cg (Figure 8). This is the
employed for solving analogous problems encountered within counterpart of the asymmetry illustrated for the irreversible

subsumed in the functiofvy, indicating that, at the surface,
dr; (50)

00 = -oeo 52 <reo]

the context of heat conduction in solif2” A more straight-  Pipolar process when = r, (see Figure 3B). In contrast to the
forward procedure uses Laplace transformation of the concen-Situation examined in section 4, deviation of the potential
tration, egs 46 and 47, in the form distribution from a linear profile is apparent even for very weak
applied lateral fields. This is a consequence of the absence of
" « « an activation barrier for electron transfer at the interface. As
o (XY, = Cox + 1 [S(C* +)F (v, — Cox T Cr _ soon as afield is z_applied, the local pot_en\if&y,t) deviates from
R s s[ox RO 2 the Nernst potentia¥* so that a faradaic current starts to flow.
Cox — CE]COSh[Q( — al2)v/s/D] To qualitatively explain the dependence of the local current
> | a (52) densityj on Ags, let us cons@er a particular positigp > Lo/2
Cosl{z@l along the electrode (see Figure 7). As the field is gradually

increased, the currerj(yy,t) first increases because of the
increase of the local potential droffy,,t) across the interface
and the ensuing increase of the flux to the surfaces of the
electrodes (Figure 9). This is related to the decrease in the
surface concentration of the reduced species (as fixed by eq
37) with respect to the “bulk” value. Simultaneously, depletion

By means of tabulated functioftsand convolution integrat
the inverse transform of eq 52, and hence the concentration
profile, is written as

. oyt —17)  Co— Cr of the electroactive species starts (Figure 9), and a diffusion
CodX.Y,t) = Cox T+ ﬁ) (Cox T CR) - layer (thicknessd) develops for the ongoing reactions at the
at 2 two surfaces. Bulk depletion typically becomes significant for
a4z (-1 D O(Yp,t) =a/2. From a given timé, the concomitant development
ot —1)| x {1 + _Z ex;{—(Zn — 1)2312_7] of the diffuse layers at the two surfaces and the continuous
T=12n—1 a2 decrease of the surface concentration results in a decrease of

< 1 the concentration gradient gt= Yy, or stated otherwise, the
_ A s currentj(yp,t) passes through a maximum and then decreases
cos{(Zn 1)n(a )]}} dr (53) to reach 0 in the limit — e [Cr(X=a/2,yp,22) = O].
The transient nature of the diffusion process that develops
whereo(t) is the Dirac function. A similar expression can be during a linear sweep voltammetry experiment performed at a
obtained forcr(x,y,t). monopolar electrode leads to a characteristic peak-shaped
5.2. Determination of the Field and Potential Distributions. current-potential curve’® The projection of this peak along the
Substitution of the currenfy,t) as defined by eq 51 and eqs 43 bipolar electrode surface, as dictated by tloalinear spatial
and 50 into the differential eq 3 gives an (integro-)differential distribution of the potential/field in the solution, results in the
equation that must be solved to determine the profile of the characteristic patterns shown in Figures 7A and 8. For relatively
field/potential across the capillary. In contrast to the irreversible long timest, the potential distribution increasingly tends to
case, which allowed analytical derivation, eq 3 now requires linearity owing to the decrease of the faradaic current, as caused
numerical treatment. In the following, we consider the inte- by substantial depletion of the electroactive species. The increase
grodifferential equation written in terms of the potenigy,t). of Ags (or time) at a given scan rate is accompanied by an
The methods employed for the discretization and resolution of accelerated compression of the projected voltammograms toward
the current problem are presented in the Appendix. The the positionyp, and by a decrease of the local peak currents
boundary equations are provided by egs 16 and 18. With theresulting from depletion. The overall conductivity curves
coordinate system adopted within this section (Figure 1), the represent thentegration of the anodic or cathodic current-space
latter can also be written as waves at varied\gs. As a result of this operation, the curves
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to the potentials where (substantial) depletion of the electroactive speciesPotentials for which substantial depletion of (A) the reduced species R

does not occur at any position along the electrode.

and (B) the oxidized species Ox does not occur at any position along
the electrode dox(a/2,y.t) ~ c(,J. The two systems lead to identical

exhibit a maximum provided that sufficiently strong lateral fields ~Polarization plots. The arrows indicate the direction of shift of the
are applied so as to induce noticeable transversal depletion ofP0Sitionyo with time.
the redox species (Figure 10A). The higher the redox concentra-

tions, the more delayed this phenomenon. This differs from
monopolar voltammetry characteristics, which show depletion

effects scaling with the bulk concentrations of Ox ané?Rhe

fundamental difference between mono- and bipolar voltammetry

becomes clear if the expression of the local curijént) as
predicted from monopolar voltammetry theory is written
explicitly with reversible specie®.For a symmetric system
() = nFe*(aDv) (V(y.t) — V*) (55)
where y is a function of position. For monopolar electrode
polarization (the driving potential is perpendicular to the
electrode surface), determination pfwas carried out both

numerically and analyticall§¢-33 Using eq 55 and the relation
defining It, one obtains

I, = 2nFIc*(Dv) f:jz (V) — V9 dy  (56)

Equation 56 indicates a linear relationship betwé&eand c*.
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The absence of linearity in our case (Figure 10B) is explained
by the dependence of the potential distribution on the bulk
concentration as formulated by eqgs 3, 50, and 51. The higher
the value ofc*, the more significant the bipolar faradaic current

I+ with respect to the ohmic current, and the stronger the
nonlinear coupling between the potential profile, as subsumed
in the functiony, and the local current or, equivalently, the redox
concentrations. Consequently, the error in the results expected
on the basis of eq 56 together with a linear potential profile
increases adgs is increased at constant concentration and/or
as the concentrations are increased at fiAed, as illustrated

in Figure 10B K' is kept constant). Similar reasoning holds
for the dependence on the paramef@randv (Figures 11 and

12, respectively). For sufficiently highy semi-infinite diffusion
applies because the length of the diffusion layer decreases with
increasingy, as the ratio @/a becomes very small in that case.
No depletion ak = a/2 occurs before the concentration at the
conducting surfaces has dropped to 0. Hence, one should
complete eq 56 by making the dependence @ixplicit in y,

c*, D, v, Kb, anda. At everyy, thisy function must satisfy the
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Figure 9. Concentration profile of the reduced species at the position

y = 3L¢/4 and different applied potentialsgs (as mentioned in the
figure). Model parameters as in Figure 7.
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Figure 10. (A) Conductivity curves for different concentrations of
the electroactive specie$ (symmetric redox systemy* is specified
in the figure. The other model parameters are the same as in Figure 7
(B) Deviation from the linear predictions (dashed lines) as yielded by
eqgs 4-56 at three different values df¢s. The solid lines are only
guides to the eye.

conditiony(V(y,t) — V*) < x((Yo — Y)Ag@dLo) because the linear
field assumption systematically overestimates the local current
and l;. The extent of depletion depends on the thicknass
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Figure1l. (A) Conductivity curves for different diffusion coefficients

D (symmetric redox system). (8 = 10°m?s™, (b)D =7 x 10710

m?s L (c)D=5x 10°"m?’s, D=3 x 10°m?’s %, (e)D=1

x 1071°m? s7%, The other model parameters are the same as in Figure
7. (B) Deviation from the linear predictions (dashed lines) as yielded
by eqgs 4-56 at three different values &¢s. The solid curves are
only guides to the eye.

between the electrodes. The higherat given Ox and R
concentrations, the higher the bipolar currén{because of
higher local concentration gradients at the surface), and the
higher the potential at which depletion appears, as illustrated
in Figure 13 (a similar comment holds for Figure 12). For
sufficiently higha and/or sufficiently lowAgs, the semi-infinite
condition (which ascertains that regions sufficiently far from
the electrode surfaces remain quasi-unperturbed by the ongoing
experiment) is met, antj becomes independent af

In a previous study’ we demonstrated by (monopolar) cyclic
voltammetry and electrochemical analysis performed on a gold
rotating disk electrode (RDE) that the redox couple Fe(EM)
Fe(CN)* presents Nernstian behavior on gold, that is, the
electron transfer is limited purely by diffusion to/from the
surface. As such, this system enables validation of the theory
presented in section 5. In Figure 14, we present a set of
‘conductivity curves obtained for different redox concentrations
and excess KN@electrolyte. The results are in reasonable
agreement with theoretical expectation. The difference between
the experimental curves obtained for-2ae(I11)/10~* Fe(ll)
and 10“ Fe(ll1)/10°2 Fe(ll) is accounted for by a slight increase
in the measured conductivity of the solutiétr (due to the
difference in valency between the oxidized and reduced species).
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s1, (e)v = 10 mV sL. The other model parameters are the same as
in Figure 7. (B) Deviation from the linear predictions (dashed lines) as
yielded by eqgs 456 at three different values #gs. The solid curves
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Figure 13. Conductivity curves at differerd. (a)a = 600um (semi-
infinite diffusion situation reached), (l&)= 300um, (c)a = 200um,

(d) a= 100um, (e)a = 50 um. The other model parameters are the
same as in Figure 7.

This results in a decrease of the coupling field/current and
therefore in an increase &ffor the system of highek‘. The
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Figure 14. Comparison between experimental (points) and theoretical
(curves) conductivity plots for different sets of electroactive concentra-
tions.\V® = —233 mV,n=1,D = 1.85x 107 1°m?s! [values derived
from the rotating disk electrode (RDE) restiffsa ~ 0.20 mm,v =

30 mV st Meanings of the symbols (1 M KN§p () c* = 10°M
(K-=77mQtcm™), @) c* =105M (K-t =78 mQ~1 cm™), (O)

¢t =104M (K- =79 mQtcm); (0.1 M KNOs) (A) ¢t =103 M
(K-=129mtcm?), (@) c5,=10°Mandcy=10*M (K- =

123 M2t cm™), (¢) ¢, = 104 M andcy = 103 M (K- = 125
mQ~1 cm2). The theoretical dashed lines refer to the asymmetric redox
systems.

concentrations (see Figure 12) are also confirmed by experi-
mental findings.

6. Conclusions

We have presented a theoretical study for describing the
faradaic depolarization effects that occur in a thin-layer cell of
the type employed for electrokinetic analysis. A set of analytical
equations governing the field distribution and the dependence
of the bipolar current on the applied lateral potential difference
is developed for the case where the current is carried by slow
cathodic and anodic reactions (irreversible case). The case of a
reversible bipolar process is also treated in detail. Mass transfer
by diffusion of the electroactive species to/from the electrode
surfaces is taken into account. Estimation of the ensuing bipolar
current requires numerical computation of the intrinsic coupling
between the profile of the field, as externally applied in the
solution, and the spatial distribution of the faradaic current, in
turn related to the local concentration profile of the redox
species. The typical characteristics of the overall conductivity
curves are described. Theoretical predictions are confirmed by
experiments performed on gold electrodes with the electroactive
couple Fe(CN$~/Fe(CN}*~ . In particular, transient effects due
to development of diffusion layers, depletion of the electroactive
species, and nonlinearity between the bipolar current and redox
concentrations are well predicted.

The merging between experimental and theoretical results in
the framework of the situation where the bipolar current is
induced by an externally applied lateral field is promising for
the interpretation of streaming potential data obtained on gold
in the presence of electroactive compouh@she quantitative
interpretation of these electrokinetic results requires a rigorous
analysis of the faradaic conduction phenomenon resulting from
the interplay between the diffusion process, the field/current
coupling, and the convection situation, as determined by
hydrodynamic flow applied tangentially to the conducting

trends expected from variation of the scan rate for given redox surfaces. It allows for an appreciation of the dependence of the
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electrokinetic potential on the total potential drop across the
metalsolution interface, which can be electrochemically ma-

nipulated by the redox species in the solution. Although this
type of investigation has become common in interfacial studies
by atomic force microscopy, where the potential of the metallic

phase is varied via an external electric ciréditt” it has not

yet been envisaged in the field of electrokinetics. The concepts
elaborated in this paper are also useful for the quantitative
interpretation of faradaic depolarization processes occurring in
electrophoretic experiments performed on metallic particles.

Rigorous analysis of the so-called superfast electrophoresis of

such colloidal particles at low electrolyte concentration is

needed. For these systems, the mass-transport-controlled space-

charge formation (which is at the origin of the effect) resulting
from the bipolar electrolysis requires theoretical analysis.
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Appendix

Descretization of the Reversible Charge-Transfer Problem
(Egs 3, 50, and 51 in the Text). The local faradaic current
density (eqs 50 and 51) is written for two bipolar electrodes as

FD{
ex;{ (2n — 1¥°x

[Cox — (Cox T CR)fOx(yvo)]z

n=1

afOx(y t ) e
S

) 8n
2(yt)=—

— (Cox T CR) f(‘)

exp —(2n — 1)’z —r]} dt} (A1)

a

Discretization of the local current density with respect to time
was performed by linear piecewise interpolation of the function
fox. Using the uniform convergence of the integral expression
in eq Al, we obtain

) 8nFD Y N N =
2yt =~ —— [0~ (e + Cfox(Y.01D
n=1
- (Céx +
I
= -1

exp —(2n — 1)z —r] ‘L’} (A2)

a

D
exp[—(Zn — 1¥m*—ty
aZ

N fou(Yitn— k+1)

CRZ

Ox(yvtN—k)

wherety = kh, kis an integer satisfying € [1, N], andh is the
time step. After some rearrangement, one obtains

Ox(y!o) + [COx

N—-1

(Cox + CRTox (V. OIB(NR) + = <c0x +cp) D [a(N—j,h) —

=1

_ 8nFD a(N,h)
2(yty) = — T{ (Coxt R —

o(N=j+Lh)]foy.t) — H(C*OX + Cﬁ)a(l,h)fOX(yJN)} (A3)
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whereo. and$ are the functions defined by

a(kh) = i j;:klexp{—
n=1

(2n — 1¥n —‘L’] dr  (A4)
a

Blkh) = exp[ (2n — 1¥°x —tN] (A5)
n=1
Performing the integration in eq A4, is rewritten as
p:
a(kh) = — [y(k=1.h) = y(kh)] (A6)
Dx
with y given by
o 1 ,
y(kh) = > ———exp[-(2n— 10(kh)] (A7)
n=1(2n — 1)
and
o(k,h) = 2 (A8)
a

For the estimations af(k,h) [and hencex(k,h)] and 5(k,h), we
use the following inequalities as conditions for convergence

L

1
Iy(kh) = > ———

n=1(2n — 1)
exp[—(2L — 1)%0(k,h)]

exp[—(2n — 1)?0(k,h)]| <

exp[—8LA(k,h)]
1 — exp[—8LA(k,h)]

(2L — 1)?

P
Bh) = Y exp[=(2n — 1)°0(kh)]| <
n=1

exp[—8PO(k,h)]
1 — exp[-8PO(k,)]

whereL andP are integers satisfying A9 and A10, respectively,
and up to which the summations in eqs A7 and A5 are carried
out. At this point of the analysis, the discretization in the space
dimension remains to be done. For that purpose, we write

iIAy (yi € [0,Lg]), with i € [1, M] and Ay the space step. For
convenience, we define the following quantities

8nFD

exp[—(2P — 1)?0(k,h)]

term@,N) = a(N h,i)Ay? (A11)

a(N,h)

O’(N,h,i) = (ng + CE)— fOx(yiyO) + [ng - (C:'i)x +

N-1

o OIB(N ) + = (cc,x + cR>2[a(N j.h) —
=

a(N— J+1,h)] foxYinty) (A12)

8nFD

R= a(1h)Ay?

(A13)

Discretization of eq 3 (see text) in space leads to the following
system ofM nonlinear equations valid at every tiewith the
potentials at; as unknown variables

V(ypty) — V(ywtn) — Apgty) =0 (A14)



ie[2,M—1] V(Yinty) — 2V(Yty) + VYot +

S(Cox T Ro¥ity) + termEN) =0 (A15)

V(ypty) — V(¥aty) — Vu-oty) + Viywty) =0 (A16)

with the relation givingfox(yi,tn) @as a function of the potential
V(yi,tn) (eq 43 in the text)

expl=nf(V(yt) — V)l

1+ exp[-nf(V(y,ty) — VO] -
(AL7)

€2, M]: fo,(yity) —

Equations Al14 and A16 are derived from the boundary
conditions associated with eq 3, that is, eqs-18 and 54. From
the definition of the potential/* (eq 38), one can write the
particular relationV(y;,0) = V*, so that fox(y;,0) is known.
Subsequently, by iteratintyl from 1 to a chosen valudlyax

(depending on the potential range desired), resolution of the

system Al4-Al7 enables determination of the potentials
V(i tN)icL M Ne[LNmsd  @ND  consequently of the currents
J (Vi tNier M Ne[LNmad (€9 A3). The ensuing bipolar current at a
givenN [or Ag4(tn)] was then calculated by integrating the local
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Another derivation of the expression for the y-profile of the concentration gradient (section 5.1)

The solution Cy (x, »,t ) of the differential eq 39 coupled with the boundary conditions as given by eqs 40,

42-43 can be expressed as the sum of two functions C(y (x, y, t)] and Cox (x, 1)2

cOx(x’ylt)=COx(xfyrt)1 +COX(x’t)2 (SD
2
SV, sV,
, defined by Heox (x.3.1), - pHox (2x »t), )
e Hox
cOx(x’y’O)l =0 (83 COX(O’y:l)1 = cOx(a’y’l)l = (CSX +C’I({)f0x(y’t) (84)
2
)t ,t
ond UCOX(X )2 :DU COx(x )2 (55)
[ u’x
cox(1.0), =cox 86 : cox(0.1), =cox(at), =0 (s7)
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Interplay between lateral electric field and transversal faradaic processes

, respectively. Resolution of eqs S5-S7 in the Laplace domain provides a simple way to obtain C(yy (x, t ) 5

deog 22 1 2 2D
COx (x,t)2 = %na:lzn - sm[(2n - 1)%}exp[—(2n -1) p? a—zt} (S8)

To solve S2-S4, we may use Duhamel’s theorem?’” where the solution COx (x,y,t ) 1 is derived from that of boundary
conditions: zero-initial concentration and unit-surface concentration. Calling this latter function CQy (x N ) 3

COx (x,y,t)l is then given by
UCOX(X’I - t)3
pe

* * t
cox (x.3.1), =(cOx * ek ) Fou (1) dt (s9)

with £ a dummy integration variable over time I |’[0,t[ and X T]O,a[, ranges for which
Heox (x,t - t)3 /Ut O (see below), or equivalently oy (x, y,t )1 . 0 conforming to the condition dictated by

eq S4. An expression for cy (x, t ) 3 is provided by a treatment similar to the one leading to eq S8

o 2n-1
con(e); =1-+ & 2n1_ 1311{( - W}exp{-(%-l)zpz %f} (510)

le:1 a a

Combination of eqs S8-S10 yields

o | o 2n-1
COX(ny’t):4COX a 1 Sin{( . )px}GXp[-Qn—l)szEt} +

p n:12n-1 a a?
4Dp ; *\ ! o 1 (2n-1 D
—2’0(00X +cR )Jofox (»,£)s &(2n- 1)sm[%}exp[—(2n - 1)2,02 —2(1 - t)} dt (S11)
a n=1 a

* *
The expression for cR (x, »,t ) is readily obtained from eq S11 after replacing Cox and fOX ( y,t ) by cr and

fR ( y,t ) , respectively. Starting from eq S11, the concentration gradient for the oxidized species at the surface is

written
UCOX(X,y,I) 406}( gexp[—(Zn—l)z,DzEl} +
2
a x—0 n=1 a
ADp* [« x\f ~ 2 2 2 D
3 (COX+CR)'[0fOX(y,t) al(2n-1) exp{—(?_’n—l) p a—z(t—t)} dt (S12)
n=1

The second part of the r.h.s. in eq S12 can be rearranged by partial integration. The resulting expression for the surface

concentration gradient is

M :i[c(*)x —(c(*)x +c;{)fox(y,0)] aexp|:—(2n—1)2p222t} -
i a _ a
x—=0 n=1
4% =yt t-t)| D =
“eox *er)| | Wosl 12 0)) o exl-an 1202 2 |l - & o (3.1) (S13)
a 0 Wt n=1 a2 n=1

Expression S13 is the same as the one provided by the analysis performed by means of the Laplace transformation (eq
o
50 in the text) except for the divergent term a fOx ( Pt ) . This latter must not be taken into account in the general
n=1
expression of the current (or concentration) since it concerns the time £ = ¢, where Duhamel’s expression S9 is not

defined. The same analysis holds for the concentration gradient at the surface of the reduced form R.
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Abstract.

The bipolar faradaic depolarization of the interface metal|solution is examined for the
situation in which the transversal electron transfer is limited by mass transfer of the components
of a reversible redox couple. Transversal diffusion of the electroactive species to and from the
surface and lateral convective mass transport, resulting from a pressure gradient applied along the
surface, are taken into account. The analysis first focuses on the case where the lateral electric
field required for bipolar behavior is externally applied through the solution. Numerical analysis
of the intrinsic non-linear coupling between the convective-diffusion equation and the Poisson
equation for finite currents allows derivation of the spatial distribution of the potential and the
concentration profiles of the electroactive species. The corresponding distribution of the local
faradaic current density along the metallic surface and the ensuing overall bipolar current are
obtained. Characteristics of the conductivity curves, bipolar current versus applied field, are given
for different sets of electric and hydrodynamic parameters. Then, on the basis of these results, the
analysis of bipolar faradaic depolarization process is extended to electrokinetic phenomena, in

particular streaming potential.

* Published in Journal of Physical Chemistry B 2003, 107 (28), 6782.
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1. Introduction

Electrokinetic phenomena are characterized by tangential motion of liquid with respect
to an adjacent charged surface. In electrophoresis, the relative motion between fluid and charged
particles is caused by an externally applied electric field."” In streaming potential experiments,
displacement of the mobile part of the diffuse charge, as induced by a lateral applied pressure
gradient, generates a potential difference across the cell, the streaming potential.’ These are
examples of so-called electrokinetic phenomena of the first kind. The relationship between the
driving force (electric field and pressure) and the resulting measured quantity (velocity and
streaming potential, respectively) is linear and at low driving force described by the classical

Helmholtz-Smoluchowski (H-S) equation,** valid for kay, >>1, k being the reciprocal Debye
length and aj, the particle radius. Theoretical expressions applicable to the case kap <<1 also

point out linearity.®” Regardless of the complications brought about by possible surface
conduction,® use of the H-S equation leads to a straightforward estimation of the electrokinetic
potential.”

In electrokinetic phenomena of the second kind,'® the linearity between the applied
driving force and the measured electrokinetic quantity is lost. For instance, in very strong electric
fields (10%-10° V cm™), the electrophoretic velocities of metallic particles in aqueous electrolyte
are reported to be one or two orders of magnitude higher than those predicted by the H-S
equation.'’ On the other hand, streaming potentials for metals in the presence of electroactive (i.e.
redox active) electrolyte are Jower than the ones expected on the basis of the classical linear H-S
equation.'?

The common basis for the ‘superfast’ electrophoresis and the collapse of streaming
potential for conducting materials is the occurrence of bipolar faradaic depolarization. When
metallic particles dispersed in an aqueous medium are subjected to sufficiently strong electric
fields, the spatial distribution of the potential difference between metal and solution allows
bipolar electrolysis of water: at one side of the particle, water reduction generates an anionic
cloud, and at the other, water oxidation yields a cationic cloud. As a result, different ionic
concentration polarization zones (space charge regions) are electrochemically generated at the
two sides of the particle. An additional process that may contribute to the formation of these
space charge regions is the behavior of the counterions of the double layer under condition of
high applied fields. As observed by means of preliminary Monte Carlo simulations (Lyklema, De
Coninck, unpublished results), these ions have the tendency at high electric fields to leave the
surface and its vicinity. The modification of the local field due to the induced space charges
results in superfast electroosmosis and electrophoresis. Streaming potentials generated by

metallic surfaces in electroactive electrolyte are diminished because of the extensive electronic
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conduction inherent with the bipolar electrolysis process taking place at the metal surface. If these
faradaic processes are carried by an electrochemically reversible redox couple, even low
streaming potentials (or low pressure gradients) suffice to induce significant bipolar
depolarization.

To our knowledge, rigorous analysis of bipolar faradaic depolarization processes
interfering with the electrokinetics of the metal|solution interface has not been tackled yet. Baran
et al.'' give a theoretical expression for the velocity of metallic particles in strong electric fields
on the basis of the velocity estimated for ion exchanger particles, which may show superfast
electrophoresis.”” The analysis provided'' basically relies on the assumption of a linear
distribution for the potential tangential to the particle surface. The electrophoretic velocity, ver, is
then obtained after replacing the zeta-potential in the classical H-S equation by the local potential

drop across the region where the space charge exists. The result is of the form
2
ver ~ (2Ega, - D_[d) (29 -1) (1)

where E is the undisturbed externally applied field, Dj 4 the overpotential required for water
electrolysis, and g a coefficient characterizing the fraction of the total potential drop that occurs

on either side of the particle. Though eq 1 is reported to satisfactorily explain experimental data,
it is based on the approximation of a linear potential distribution around the particle, which is
inconsistent with the magnitude of the overall bipolar faradaic current for the typical range of

12,14

fields applied through the particle. As demonstrated for bipolar planar surfaces and bipolar

1316 there is an intrinsic non-linear coupling between the distribution of the

spherical particles,
current at the particle surface and the spatial course of the electric field. The more significant the
electronic bipolar conduction as compared to the bulk solution conduction is, the more the
potential distribution deviates from linearity. Besides, no analysis of the mass transport (coupled
convective diffusion and conduction) of the induced space charges is explicitly mentioned in ref.
11 and no connection is made with the bipolar electrochemical behavior of dispersions of
spherical metallic particles.'”"® A quantitative understanding of the electrokinetic properties of
the metal|electrolyte solution interface under conditions leading to phenomena of the second kind
necessarily requires a more advanced investigation of the corresponding bipolar faradaic
processes.

In this paper, we propose a theoretical analysis for faradaic depolarization processes
occurring at metallic surfaces in an electroactive electrolyte solution. Mass transport of the
electroactive species, including transversal diffusion to/from the surface and lateral convection
due to the tangential pressure gradient, is considered for the typical streaming potential conditions

in which the lateral field is coupled to the applied pressure gradient. Estimation of the substrate
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bipolar conductance term for given lateral field and mass-transfer conditions allows (i) a
quantitative interpretation of the experimentally observed non-linear relationship between
streaming potential and applied pressure gradient, and (ii) an estimation of the zeta-potential of

the metallelectroactive solution interface. Corresponding interpretation of experimental data for
gold in the presence of the Fe(CN)%_/ Fe(CN)g_ redox couple illustrates the applicability of the

streaming potential technique for probing double layer properties of metals in the presence of

reversible redox systems. "

2. Mass-transfer limited bipolar faradaic process induced by an externally applied electric
field
2.1. Description of the problem

Let us consider two parallel planar conducting surfaces placed in a thin-layer cell as
depicted in Figure 1. The distance between the two metallic electrodes in the flat capillary cell is

a, the length of the metallic surface L and its width /. The electrolyte solution of bulk

conductivity K L, relative dielectric permittivity €, and (dynamic) viscosity £, contains a redox
couple denoted as Ox/ R which exhibits electrochemically reversible behavior for the particular
conducting substrates considered. This means that no appreciable activation barrier is observed

for the electron-transfer reaction at the metallic surfaces
Ox+ne” UR 2)

where n is the number of electrons e” involved. A potential difference, Df, is applied to the
solution in the thin-layer cell across its long side. As shown in Figure 1, the cell is connected to
two reservoirs containing the electrolyte solution.® A pressure gradient, LP, is applied, which
forces the solution to flow from left to right through the thin-layer chamber between the two
surfaces. For convenience, the Cartesian coordinate system (x, y,z) is defined such that the origin
coincides with the position halfway the conducting surface placed at the bottom of the cell. In a
previous analysis,'> we demonstrated that, because of the absence of activation energy for the
electron-transfer reactions (eq 2), anodic and cathodic electrochemical reactions concomitantly
occur at the extremities of the two surfaces as soon as a finite Df is effective. The two surfaces
behave as bipolar electrodes. We arbitrarily locate the positive side of the field applied in the left
part of the thin-layer chamber, where consequently the cathodic reaction takes place. In the

following, it will be convenient to use the dimensionless spatial variables X,Y,Z defined as

_2( . _a N S B i) _2( 1
X'a(’c 2) ’ Lo(y+2) ? l(z 2) ®
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Figure 1. Schematic representation of the thin flat-layer cell. Notations.
Typical dimensions of the cell: Lo =7.6 cm, / =2.6 cm, a = 0.20 mm.

The solution is supposed to contain an excess of supporting electrolyte so that conductive
transport of the electroactive compounds is not taken into account. Electron-transfer (eq 2) is then
rate-limited by the diffusion to/from the surfaces of the electroactive species Ox and R and by
the convective flow due to the imposed LP. To derive the overall bipolar current, denoted I,
analysis of the hydrodynamic situation is first required. Then, the set of equations for the
calculation of the concentration profile of Ox/R, the spatial distributions of the potential, and the

local faradaic current density along the surfaces can be formulated.

2.2. Velocity profile
The direction of the bulk stream of flow is parallel to the surfaces (y-direction), and the

steady-state velocity profile is represented by vy (X ,Z) , as formulated by the pertaining Navier-

Stokes equation

e uz? 4h Ly

2 2 2
H VY(X’Z) + fZ H VY(X’Z) _a_DP 4)
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with f=a /1. For the pressure domain considered in this paper, the steady state assumption is
always valid since the time ¢ required for the fluid to pass the distance Ly (£ =Ly /vg) is
typically one or two orders of magnitude lower than the measurement time Z,; of streaming
potential (Zp; ©20-30 s). At the walls of the parallelepipedic cell, we have the boundary
conditions
vy(X=°LZ)=vy(X,Z=°1)=0 (5)

Considering the typical range of applied pressures, the flow is assumed laminar as in agreement
with Re <2500, where Re is the Reynolds number. The general solution vY(X ,Z) of eqs 4-5 is

written?!

w(x2)= (1= 0)+ % a ﬂc08[(2111-U%X}cosh{@m-D%ﬂsech[(zm_1)21}}

p> m=1(2m-1)? 2f
(6)
where v is the characteristic velocity given by
2
a” DP
0= — (M
8h L

The first term within brackets in eq 6 represents the classical parabolic Poiseuille profile. The
second term accounts for the contribution of the walls positioned at - — 1 (edge effects). As
expected, the magnitude of this latter contribution is correlated to the geometrical factor ». For
intermediate to high ¢, the summation term in eq 6 cannot be neglected with respect to the
parabolic profile term, whereas for low ¢, it is negligible. At a given Y, the velocity indeed
virtually remains constant over most of the range of Z values: only within a short distance from
the walls at Z = °1, the velocity drops to zero. For the type of thin-layer cell discussed here
(Figure 1), 1 is not more than 0.01. Hence, in the following, we shall only consider the Poiseuille

profile for an infinitely wide channel (¢ — 0).

2.3. Coupling between the convective-diffusion equation and the Poisson equation
The concentration profiles of the electroactive species, denoted as coy(X,Y) and
cR(X , Y) for the Ox and R species, respectively, are determined by the field and the

characteristics of the diffusive and convective mass-transport processes. Symmetry of the
problem with respect to the Z-dimension follows from the previous discussion and justifies that

cox and cg are not functions of Z. Considering that typically Ly >>a and [/ >>a (f<<1), the
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concentration polarization of Ox and R in the Y- and the Z-directions may also be neglected.

Transient effects will not be considered here, which is in agreement with ¢ = (0’2 / pD) <<ty,

tp being the typical time required for building-up a diffusion layer of thickness ¢ and D the

diffusion coefficient. Consequently, the local faradaic currents along the surfaces are limited by
diffusion of the species in the X-direction and by convection in the Y-direction. By way of

example, we examine the cathodic reaction and the profile for cox(X,Y). We define the
dimensionless concentration difference with respect to the bulk

COX(X’ Y) B ng

COox

Cox(X.Y)=

®)

where cax is the bulk concentration of species Ox, that is, the initial homogeneous concentration
of Ox. Under the conditions outlined above and with the velocity profile as derived in the
previous section, the Nernst-Planck equation reduces to the convective-diffusion equation,
Cox (X.Y) _ 4Dgy Ly W2Coy(X.Y)
VO(I_Xz)H ox\ 4. 1) _ 4DoxLg K Cox (A,

where Dg, 1s the diffusion coefficient of Ox. Resolution of eq 9 requires two boundary

©)

conditions with respect to X and one related to the Y-direction. This latter is simply written
Cox(X,Y=0)=0 (10)

which expresses that, at the left side of the channel, electroactive species are injected from the

reservoir with bulk concentrations c(*)x and c’f{. The remaining conditions derive from the

coupling of the equations expressing the mass balances for Ox and R and the reversible property

of the redox couple. If we assume equal diffusion coefficients (Dpy = Dg = D),

* + *
COX(X:OLY):COX*—CR.]{OX(Y)_I (11)
Cox

which is complementary to the profile Cg(X,Y ) fox 1s a function defined by the Nernst-type

relationship

exp

_ —nf(V(Y) - VO)]
1+ exp[—nf(V(Y) - VO)]

(12)

fOx(

V(Y ) is the potential of the solution at the position Y with respect to the (equipotential) metallic

surfaces, 7% is minus the standard potential of the redox couple Ox/ R and f'is the constant

- F
I=27 (13)

87



Reversible bipolar faradaic depolarization processes: theory

with F the Faraday, R the gas constant, and 7 the absolute temperature. Relation (12) expresses
the equilibrium between the concentrations of the redox species at the surface and the potential
V(Y). For further detail, the reader is referred to ref. 14.

To find the profiles of Ox, the spatial course of the potential V(Y) must be known. There
is an intrinsic non-linear coupling between Cqy (X,Y) and V'(Y), as subsumed in eqs 11-12. The
equation defining V(Y ) is provided by the electroneutrality condition written for every X-Z slice
along the surfaces. In the geometry considered here, the resulting Poisson equation for finite
currents is written

ak™ d?v ()
Ly? dy?

+2j(Y)=0 (14)

where j ( Y ) is the local faradaic current density at the position Y defined by

v 2nFDcoy | HCox (X,Y) _ 2nFDcgy | WCox (X, Y)
j(¥)= =-
a W X=+1 a W X=-1

The derivation of eq 14 is given in detail in ref. 14. Here, we shall only recall the approximations

(15)

made and the conditions for which these are valid: that is, (i) the potential distribution related to

the double layer formation at the two interfaces metal|solution is neglected, which is justified
provided that the Debye length, k_l, is much smaller than the position-dependent diffusion layer
thickness d(Y ) and the gap a between the two parallel surfaces; (ii) the electric field across the

solution is assumed to be time-independent, and the hydrodynamic and the diffusion processes

have reached steady-state conditions; (iii) the chemical composition of the solution remains
essentially constant during the experiment (constant K L ), which is the case for indifferent ions in
sufficient excess over the electroactive species (this also ensures the validity of k7' << a’(Y )).

The two boundary conditions related to eq 14 are provided by the potential balance in solution

and the condition of no-charge accumulation in the conducting substrates'*

V(Y=0)-v(Y=1)=Dj (16)
drv(y) _ arv(y) a7
v |, dY |,

Determination of Coy(X,Y), j(Y), and V(Y) requires numerical resolution of the system

of coupled eqs 9-12 and 14-17. Details of the computational procedure are reported in the

Appendix. Once j(Y ) is known for given Df ¢ and LP, the corresponding overall bipolar current

It is obtained by integration of the local current density ji(¥)'>'**
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Yo 1
I = =2IL (Y)dY =2IL (Y)dY 18
0= =2k [ V)Y =201 (Y) (18)
where Y, is the position for which j(Y = YO) = 0. The corresponding potential difference between

solution and metallic phase, V(Y = YO), corresponds to the local equilibrium potential, v
Combining eqs 14 and 18, Iy may also be expressed as a function of the electric field at the

position Y = ¥, compared to the front or back edge of the cell (Y =0 or ¥ =1),

; _alk*™ | dr(Y)
F7 | ar

dv(Y)

dY

_ak | dr(v)  ar(y)

Ly (A7 |, AV |,

(19)

Y=Yy Y=0

2.4. Results and Discussion

Typical plots of the bipolar current / as a function of the lateral field Of are shown in
Figure 2 for different values of the applied pressure LP. For low to intermediate DOf, I¢
increases steeply before leveling off. For low LP (¢ 50 Pa), I; asymptotically approaches a
constant value with increasing Df ;. For larger LP, this limit is reached for larger fields (Of ; > 1

V, not shown). These characteristic features of the conductivity curves can be interpreted after
examination of the concentration profiles upon variation of the hydrodynamic and electric

parameters.

2.4.1. Analysis at given pressure gradient LP and different lateral fields Dj

The profiles coy(X,Y) are given in Figure 3 for LP = 0.5 kPa and various Dj;. The
corresponding spatial distributions of the current density j(¥) and of the potential V'(Y) are given

in Figure 4. At Df =0, the potential drop V(Y ) at the interface metal|solution is, for every

position Y along the surface, the Nernst potential VN as defined by

pN=p0_ Lyl Cox (20)
nf CE

In this case, the local surface concentrations equal their bulk values (Figure 3A), and

consequently, j(Y ) and /¢ are zero. As soon as Djf ¢ is finite, bipolar conduction takes place in
accordance with the slope d/¢ / d(Dj S) at Df ; = 0 (which is finite for a reversible redox couple).

The equilibrium values of the local surface concentrations are dictated by the potential

distribution V' (Y) (eqs 11-12). When gradually increasing Djf s, one increases the local ¥ (Y), so
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that the concentration differences, Cp, and Cy, and the rates of the local mass transfer for Ox

and R become larger in magnitude. Consequently, the surface concentration, i.e. coy (X = °1,Y),

08 [ | |
0.7 } /
: DP (kPa) = 120 :
06 - o 7
: 60/
05 - ) 7
<
E } j 1(/
s 25 ]
:If,Djs /
: ; 0.5 1
0.2 @ i
4 0.1— :
g 0.05 -
0.1 / A
L , | If_lf ----- lw_\ ----- j
” oo Frer—0.02 :
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0 0.2 q\ 04 0.6 0.8 1

Dj,(05kPa) DJ_/V
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I / mA

DP / kPa

Figure 2. (Top) Bipolar current as a function of the applied lateral field (conductivity curves) at
different LP (indicated in kPa). The ohmic current /\y is mentioned for comparison purposes.
Model parameters are as follows: ¢=0.2 mm, Ly =76 cm, /=26 cm, D=10"" m’ s,
y0=-233 mV, Kl=1w! m’, Cé)x =c£ =01 mM (see section 2.4.1). (Bottom) [ is set
against LP for various Df (points). The results are fitted with an expression of the form
(DP)I/b with £©5 (solid curves). The dashed curves represent linear fits for high LP (see

section 2.4.2).
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Figure 3. Concentration profiles of the oxidized form of the redox couple at varied applied fields
Dj ¢ (indicated) and at the pressure LP = 0.5 kPa (section 2.4.1). Same parameters as in Figure 2.

The profiles at the injection position ¥ = 0 (left extremity of the cell) are not drawn (cgy = cax).
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Figure 4. Spatial distributions of (A) the local faradaic current density j(Y ) and (B) the local
potential V(Y ) along the conducting surface at different applied fields Of ¢ (indicated) and at the

pressure LP = 0.5 kPa. In the inset of panel A, the limiting current jA(Y ) pertaining to the

cathodic area is plotted (solid line) and compared to the current density calculated with eq 22
(circles). Same parameters as in Figure 2.
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progressively decreases (increases) for the left (right) part of the cell (Figures 3A-3C). Changing

the sign of Df ¢ generates the expected permutation of the cathodic and anodic areas. The bulk

concentration (at X = 0) drops due to depletion except for positions Y close to the injection point
(Y = 0) where the bulk value is maintained. Steeper transversal depletion occurs when increasing

the lateral field. As a result of the decrease of ¢, at the surfaces with increasing the potential
Dj (Figure 5), the concentration gradients at the surfaces, and hence the local faradaic current
densities j(Y) , increase in size. The overall current /¢, resulting from the spatial integration over

the relevant surface areas of the current density j(Y), follows the same trend. From a given value

1
0.9

0.8

lc
Ox

0.7

Ox

0.6

0.5

0.4

Position X+1

Figure 5. Cross sections of the concentration profiles cgy / c(*)X represented in Figure 3 at the

position Y =0.221 providing an illustration of the depletion of the electroactive compounds upon
increase of Of ¢ (indicated in V). For the position Y chosen, the diffusion-limited flux is reached

for Df 212 V.

of DJ, denoted as Df /s\ (the superscript * pertains to the diffusion-limiting current condition),

the faradaic processes at the extremities of the surfaces (Y =0 and 1) are occurring at limiting
rate. Ox species are reduced (and R oxidized) as fast as they can be brought to the electrode

surfaces. Locally, the diffusive limiting-current is reached, and the conductivity curve starts to

develop a bend. Because the largest overpotentials (V(Y ) - V*) are located at ¥ =0 and Y =1, the

current densities at these positions are the first to be affected by the limiting-current condition
(Figure 3D). For Dj, 2 Dj;\, the limiting-current is reached for larger fractions of the total

cathodic and anodic areas (Figures 3D-3I). In the extreme situation where Df ; >> Dj ;\, we have,
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for practically every Y, j(¥)=j (¥). The concentration profile then presents a particular shape,

as illustrated in Figure 3I. Applying the Leibnitz rule® to the second integral of eq 18, one can
show that

doyj

_ vy 4%
Djs { YO—dY j (Y—YO) } (21)

Since, under the limiting current conditions, the applied pressure maintains cOX(X =0,Y ) at a
constant value, j A(Y ) remains independent of ¥(Y) or, equivalently, Of. Using the definition
adopted for Y, one concludes that for Df  >> Dj ;\, I is approximately constant with respect to
the applied Of; and equals [t/‘\ , as given by eq 18 after replacing j(Y ) and Y by jA(Y ) and Y(;\ ,
respectively. In the analysis, no other electron-transfer reactions than eq 2 are considered.
However, in the limit of strong fields, reduction and oxidation of water also come into play,” and
this would obviously change the whole bipolar process. In the strong field limit (2f >> Df ;\),
the potential distribution V(Y ) as formulated by eqs 14-17 asymptotically approaches linearity

because Iy / I? >>1, Iy being the overall ohmic current. With this assumption, the limiting

current density j " is expected to depend on the position according to the expression'***

i)y vV 3tanh[ nf DJS(Y Y )}1/2 Z/Jz_ :/ii/fyl/fly/i%_ _y 13 (22)
This is in very good agreement with the numerical results obtained, as illustrated in the inset of
Figure 4A. A similar analysis cannot be straightforwardly performed for the positions YOA <Y¢l1
(anodic area) because there are no direct monopolar pendants for the corresponding concentration
profiles (see below). Sections of various lateral positions Y of three-dimensional concentration
profiles corresponding to Df < Df ;\ and Df ;> DJ ;\ are represented in panels A and B of Figure
6, respectively. Scanning the bipolar electrodes from their left sides to the position ¥, (cathodic
area), it is clear that the characteristic diffusion length ¢ increases to reach the value a /2 and
that subsequently depletion of the oxidized species in the center of the cell occurs. Qualitatively,
the observed dependence of ¢ on Y is in accordance with the trend predicted by Levich®* in the
Leveque approximation® for the simple case of a limiting diffusive flux in a laminar flow inside a
monopolar circular tube. The dependence of @ on Y justifies that the limiting current density j "
though independent of the potential distribution, remains a function of the lateral position Y (eq
22). The situation for Y(;\ ¢ Y ¢1 is slightly more complicated. For sufficiently high Dj, the

current distribution in this Y-range exhibits a peak with an amplitude that grows with the applied
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potential (Figure 4). The appearance of this peak is linked to the presence of a local minimum
(the reasoning is made for -1 ¢ X ¢ 0) in the concentration profile of Ox (Figure 6), as resulting
from the oxidation of R at the surfaces and the overshoot of R (as produced in the cathodic area

and introduced by the flow for Y > ¥,) with respect to the position X = 0. The larger DJ is, the

larger the overshoot in R and the Ox concentration at the surfaces becomes, and therefore the
larger is the amplitude of the peak. Disappearance of the local minimum coincides with positions

Y for which j(Y) decreases. Upon increase of Dj, the peaks are located at positions running

from Y =1 to YOA. This is in agreement with the direction according to which the spatial extension
of the limiting-current condition takes place in the cathodic and anodic areas with increasing
Dj,.

For the particular pressure considered, the current and potential distributions present a
certain asymmetry with respect to the position halfway the electrode (¥ = 0.5). This is directly
related to the asymmetrical spatial distribution of the diffusion layer thickness, d(Y), which, in
turn, gives rise to huge variations of ¥, with changing LP (see next section). The amplitude of
these variations depends to a minor extent on the electric field (Figure 7). To ensure the balance
between the total anodic and cathodic currents, upon increase of Jf ¢, the position ¥, moves first
slightly to lower values and then to higher ones to tend to YOA. The initial decrease corresponds to

the potential regime in which the growth of the local cathodic currents with the applied field is

stronger than that for the local anodic currents. The increase appears at Df ¢ values for which the
cathodic process is critically limited by diffusion in the sense that ¥, shifts to the anodic area to
counterbalance the ongoing increase of the overall oxidation current, as predominantly due to the
increasing overshoot of R (current-peak). The values of the potential Ve corresponding to the
different positions ¥, are also indicated. Contrary to the bipolar processes analyzed in ref. 14, s
is not simply given by the Nernst potential (eq 20) of the original solution with the concentrations
C:)x and cE but by an increasing function of the electric potential in solution which, as we shall

see in the next paragraph, also depends on the mass-transfer conditions.
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Figure 6. Cross sections at different positions Y of the concentration profiles cqoy /ch as

pictured in (A) Figure 3C and (B) Figure 3G. Letters a-k refer to the positions ¥ = 107, 0.056,
0.111, 0.221, 0.331, 0.441, 0.551, 0.661, 0.771, 0.881 and 0.991. The dashed lines pertain to the

positions Y where oxidation reaction takes place.
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Figure 7. Asymmetry of the bipolar process as induced by the applied field Dj at constant
pressure (LP = 0.5 kPa). The other parameters are as in Figure 2.

2.4.2. Analysis at given lateral field Df ; and various pressures CP

Let us analyze more specifically the influence of the applied pressure on the bipolar
process. For this purpose, snapshots of the concentration profile for the Ox species are given for
different LP and constant Df ; (Figure 8). The spatial distributions of the local faradaic current
and the potential, as well as the characteristic values of ¥, and V*, are shown in Figure 9. For

every X, the velocity at which the electroactive species are transported along the surface is scaled

with LP (eqs 6-7). For very low LP, the lateral convection is so weak that the bulk concentration
ch is only maintained close to the injection point (¥ = 0) and within a certain range of X, which
also depends on the applied potential (see Figure 5). The cathodic process is confined to the

extreme left side of the electrodes (1 © 0 and y*o Dy, + yN ), so that oxidation reaction takes

place over practically the whole range of Y values (V(Y) < V*) with a gradual change of cpy

(Figure 8A). The local currents and the corresponding overall bipolar current are so low that the

potential distribution is practically linear (/; << Iy). With increasing LP, the magnitude of the

cathodic area increases (dY /dLP > 0), and the fraction of the total applied potential span along
the anodic side of the electrode decreases (dV* /dLP <0). This corresponds to a translation of

the spatial distribution of (V(Y )- V*) toward more positive values, which is combined with a de-
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XY
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Figure 8. Concentration profiles of the oxidized form of the redox couple at varied applied
pressures LP (indicated) and constant applied field Of =100 mV (section 2.4.2). Same
parameters as in Figure 2. The profiles at the injection position ¥ = 0 (left extremity of the cell)

*
are not drawn (cgy = cox)-

formation of the profile with respect to linearity (see Figure 9C). Indeed, at both extremities of
the cell, the electric field strength increases (eq 17), as can be inferred from the corresponding
slopes dV(Y)/dY. This is due to the increase of the current j(Y) for ¥ =0 and Y =1, as resulting
from the decreasing @ (Figures 8B-8F) with LP. In the previous section, the conductivity curve
could be interpreted by considering, for a fixed position Y along the electrode and a given LP, the

change of j(Y) upon the effect of V(Y) as induced by variation of Df . In the current analysis,
J(Y) is affected not only by the pressure but also by the corresponding significant local variations
of the potential V(Y ), as resulting from the enhanced spatial asymmetry of the bipolar process.

Upon increase of LP, the thickness of the diffusion layer ¢ for every Y decreases. This means

that for any Y, the window of X values where lateral convection prevails becomes wider, with the
concentration approaching the value CSX (Figure 10A). The effect of the pressure on d(Y )
enlarges the concentration gradient at the surface, and hence, the current density j(Y) at the
positions where the electric field strength E is the largest, that is, at the left and right sides of the
cell. It results in a steep increase of the bipolar current (eq 19), as illustrated in Figure 2. One can

verify that, for the (very low) LP and Dj ¢ ranges corresponding to potential distributions that do

1/3

not significantly deviate from linearity, /¢ varies according to the power law LP'’~, as found in
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ref. 12. As a result of the concomitant shift of (V(Y ) - V*) and the increase of E at the extremities

of the surfaces, the potential gradient flattens in the midrange of Y. The corresponding local £ and
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Figure 9. Spatial distributions of the local faradaic current density j(Y ) (panel A, reduction

current; panel B, oxidation current) and the local potential V(Y ) (panel C) along the conducting
surface at varied LP (indicated) and constant Of =100 mV. In panel D, the corresponding

parameters ¥, and V" are given. Same model parameters as in Figure 2.

the current density j(Y ) are lowered. The spatial range involved with the suppression of the field

increases with the pressure. Quantitatively, the increase of E at the extremities is large enough to

compensate for the decreasing j(Y ) in the midrange so that the overall bipolar current /; keeps

on growing but to a lesser extent than that for low LP. I then varies according to the power law

LPY? with pos (see Figure 2), which is in agreement with the deviation expected on the basis
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of the assumption of a linear potential distribution (for which & =3). The simultaneous
dependencies of (Y ) on the hydrodynamic and electric parameters explain the existence of
extrema reached by j and by the local E for certain positions Y along the electrode, as shown in

Figure 10B. Referring to this figure, in the LP-region (1), j(Y ) increases even though the driving
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Figure 10. (A) Cross sections of the concentration profiles cqy / c(*)x represented in Figure 8 at
the position ¥ =0.221 providing an illustration of the decrease of the diffusion length ¢ and of
the increase of the concentration cOX(X =0,Y ) with increasing LP (indicated in kPa). (B)

Faradaic current density j(Y = 0.221) and local electric field strength E(Y = 0.221) as a function
of the pressure (see text). For panel B, the same parameters as for panel A are used.
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field decreases (in absolute value): this is mainly attributed to the decrease of d(Y ); in region (1),
the pressure is such that cathodic reaction now takes place (Y <Y)): the increasing field and

decreasing d(Y ) are both responsible for the increase of the current (in absolute value); in region

(III), the decrease of V - V™ results in the decrease of j(Y). In the limit of very high pressure,

the anodic reaction is in turn spatially confined at the extreme right side of the electrode (¥ — 1
and V' — VN), and the cathodic reaction spans over the entire Y-range. The effective

overpotential (V(Y )— V*) and the current j(Y) tend to small values over the whole Y-range

except at the very edges, where there is a drastic increase of £ and j. The concentration profiles

present sharp peaks at the position ¥ = 0, 1 and X = -1, 1 (Figures 8G, 8H).

2.4.3. Dependence of the bipolar current Iy on ch/c;;, Kt anda

Figure 11A illustrates the effect of the bulk redox concentrations on the conductivity
curves. As expected, /¢ increases with increasing c(*)X and/or c’f{ and is limited by the lower of
the two concentrations. Because of the non-linear coupling between local current and potential,
I¢ does not depend linearly on the bulk concentrations.'* A ratio ch / c;{ . 1 induces a spatial

asymmetry for the bipolar process and hence a shift of the position ¥,. The potential distribution

tends to linearity for low ch and/or c;;, corresponding to low [y with respect to the ohmic

current /\y (Figure 11B). A comparable picture can be given when varying the bulk conductivity

of the solution K or the cell dimension a (Figures 12 and 13). With increasing K L or a, the

local potential |V(Y )| and hence the overall current /¢ increase. In the meantime, the ratio 1y / I¢

grows and the potential distribution approaches linearity.

2.4.4. Application to the electrokinetics of the metal [ (electroactive) solution interface

In the frame of streaming potential experiments, a potential difference is built up across
the cell upon application of a pressure drop LP along the surface. This results from the lateral
displacement of the mobile part of the counter charge at the interface substrate|solution. When the
solution contains electroactive species and the surfaces are conducting, this potential, called the
streaming potential Of ., induces a bipolar electrodic behavior of the surfaces in the same way
as described in section 2.1. In steady-state, the net-current flow in the channel is zero; the
streaming current /g, caused by the forced convection of solution stripping charge along the

double layer is then counterbalanced by the total current / flowing in the cell (I, +/ = 0 with
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Figure 11. (A) Bipolar current as a function of the applied field for different sets of redox
concentrations at constant pressure DP = 0.5kPa. The ohmic current /yy is indicated for

comparison purposes. (B) Corresponding spatial distributions of the potential at Of i =100 mV.
Plain lines: coy = 10*M / cg =102 M (a), 10° M (b), 10* M (c), 10° M (d), 10° M (e). Dashed
lines: cg =10* M / ¢, = 102 M (f), 10° M (g), 10° M/ (h), 10° M (i). Other parameters as in
Figure 2.
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Figure 12. (A) Bipolar current as a function of the applied field for different K L (indicated) at
constant pressure DP = 0.5kPa. The corresponding ohmic currents /\y (dashed curves a-e for low

to high K L) are given. (B) Corresponding spatial distributions of the potential at Of, =100 mV.
g g P gsp s

Other parameters as in Figure 2.
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Figure 13. (A) Bipolar current as a function of the applied field for different a (indicated) at
constant pressure DP = 0.5kPa. (B) Corresponding spatial distributions of the potential at
Dj, =100 mV. Other parameters as in Figure 2.
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I, and ] algebraic currents). / contains a surface conduction contribution and a bulk contribution
depending on the electric field as determined by the coupling between conduction and faradaic

currents (see eq 14). For the geometry considered in this paper, / is written

1=(aK" +2K° )1M 23)
Wiy=ry/2
with K° the surface conductivity. Using eq 19, eq 23 can be rearranged as follows:
21¢(Df &, DP
I1=-1p(Df . 0P)+alk ™Y | 4 kS _25(2 e OP) s ) o (24)
KWy =10 ak Ky Y=y

¢ is the bipolar current depending on the electric and hydrodynamic variables, Df i, and LP.
The streaming current is yielded by*

_ T _ aleye,.zDP
I =21 [ r(x)v(x)dx = = (25)
al2

with Z the electrokinetic potential (zeta-potential), € the dielectric permittivity of vacuum, and
r(x) the local ionic charge density coupled to the potential distribution at the interface, as

expressed by the Poisson-Boltzmann equation. Within the framework of the current study, it is
assumed that the surface conduction contribution is either absent or negligible with respect to the

other conduction terms so that the condition /g, + 7/ = 0 becomes

e0€:20P _ LKL W (, D g, OP)|

h 4 |y=y0

L -
+a_(l)1f(D.lstr’DP) (26)

One verifies that in the absence of faradaic depolarization (i.e., /=0 and

v/ uy| =-Df g/ Ly), eq 26 reduces to the classical Helmholtz-Smoluchowski equation.

Y=X0
The potential Df ¢ span along the surfaces is now the potential, as generated by the flow, and
related to the double layer properties of the interfaces. For given concentrations of the
electroactive species, once steady-state is reached, we have
I¢(DF s LP) * 1¢(DF s = Df gtr, CP) 27)

meaning that, basically, the bipolar current generated by the streaming potential D J . resulting
from the pressure LP is the same as the one that would be obtained by externally applying the
same pressure and a potential difference D = Df ;.

Given some characteristics of the electrolyte solution (K, ch, C;; ), the bipolar current
Iy was first computed for a given LP in a potential range Df ; compatible with electrokinetic

experiments (0 - 70 mV). The resulting conductivity curve / f(Dj . DP) was fitted by polynomial
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regression and use of the least-squares method. Assuming a given Z-potential, the streaming
potential Df , corresponding to the pressure LP considered was calculated by solving eqs 26-27

assuming a priori that gy / uy|y=y0 = 0. It was a posteriori verified that taking into account the

first term in the r.h.s. of eq 26 does not change the solution obtained. To reconstruct the D J -

LP plot, this procedure was repeated for various pressures LP. A graphical illustration is given in

Figure 14 (panel B), which also shows typical D, -LP plots obtained (panel A). The bipolar
faradaic current strongly curbs the generation of the streaming potential, and this is reflected by
considerable deviations (also for low pressures) from the results expected on the basis of the
linear H-S equation. As a result of the non-linear pressure dependence of /¢ for the entire LP-

range examined, the Of Str([JP) curves develop a bend (in the example given, at DP © 40 kPa).

For higher LP (> 40 kPa), the Df y, - LP plots progressively reach a linear regime. Indeed, for

given (K L, ch, c;;), the magnitude of the lateral field met in electrokinetic experiments is so
low that /; depends linearly on Df; * Df i, (see Figure 2). Besides, in the high-pressure range,

the bipolar current weakly increases when increasing LP, and the corresponding dependence

Iy~ (op)'?

can be legitimately approximated to a straight line (see Figure 2). As a result, the
bipolar conductivity remains practically constant in the high-pressure and low-potential ranges.
This feature may be particularly useful for the treatment of experimental data.'® To illustrate the
necessity of considering a non-linear spatial distribution for the potential in the determination of
I¢, D .- LP plots were calculated in the condition of Figure 14A with the expression for /¢
based on the assumption of constant field along the surfaces.'> As expected, this assumption leads
to overestimation of /¢ and underestimated values for Dj g, as compared with those obtained
from the rigorous numerical analysis.

A detailed analysis of experimental data for the gold|(Fe(CN)%_/ Fe(CN)g_, KNOs3)

interface in conjunction with an outline of the nature of the zeta-potential in the presence of a

. . 19
redox couple, is given elsewhere.
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Figure 14. (A) Reconstruction of the ODf i - LP plots (points) for z=150 mV (a), 100 mV (b),
50 mV (c) and 8 mV (d). The corresponding curves calculated on the basis of the linear H-S
equation (no faradaic depolarization taken into account) and of the assumption of a uniform
field'? are indicated in dashed and plain lines, respectively. (B) Graphical interpretation of the
computational procedure followed for the determination of the Df i - LP plots (the example is

given for Z =100 mV). (C) The points refer to the ([f,Djstr) of curves (a), (b), (c) of panel A

and computed with the non-uniform field theory. The lines are linear fits in the high-pressure
regime (see text). Parameters (common to panels A, B and C): a =1 mm, L; =7.6 cm, / =2.6

*

em, D=5310"1"m?s", ¥ =233 mV, KL =01 W' m", 5y =cg =10° M.
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3. Conclusions

The bipolar behavior of metallic surfaces in a thin-layer cell of the type used for
electrokinetic experiments is described in the situation in which the faradaic depolarization of the
interface is induced by convective diffusion-controlled electron-transfer reactions. The typical
pattern of the conductivity curves is interpreted in terms of the corresponding spatial distribution
of the concentration polarization of the electroactive species along the conducting surface, the
local faradaic current density and the electric field. These were calculated by numerical analysis
of the intrinsically coupled Nernst-Planck equation and Poisson equation for finite currents. The
bipolar current /¢ levels off and asymptotically reaches a constant value at strong lateral fields, as
resulting from diffusion-limitation of the local electron transfer. /; weakly increases at high
applied pressure gradients because of the enhanced spatial asymmetry of the bipolar process. The
bulk substrate faradaic conduction is more significant with respect to the bulk solution conduction
at low applied potential differences and low applied pressure gradients across the cell because
these correspond to the steepest variations in /¢. The subtle combination between electric and
hydrodynamic variables in the determination of the overall bipolar current yields characteristic
non-linear distribution for the local potential along the surface (even at low applied fields). In
view of the complexity of the problem, full description of the phenomenon cannot be reduced to a
simple analysis based on the assumption of a linear field, which at most provides only a rough
estimate of the bipolar current. The steady-state theory developed for the computation of the
bipolar faradaic conductivity under given applied field and pressure may be used in the
quantitative interpretation of electrokinetic measurements performed on metals in electroactive
solution. In such measurements, the electric driving field for faradaic depolarization of the
interface is coupled to the pressure, as imposed by the non-linear Helmholtz-Smoluchowski
equation. Assuming a given Z-potential, a computational procedure is proposed to reconstruct the
non-linear streaming potential/pressure plots.

This paper shows that it is possible to electrokinetically probe double layer properties of
metals in the presence of a reversible redox couple, provided any accompanying bipolar
depolarization is well understood and taken into proper account. More specifically, it is shown
that electrokinetic experiments may allow assessment of the dependence of the z-potential on the
total potential drop across the metaljsolution interface, which can be -electrochemically
manipulated via the concentrations of the redox species in the solution. Such type of investigation
has not yet been envisaged in the field of electrokinetics, neither experimentally nor theoretically.

Examination of bipolar faradaic depolarization inherent to the electrokinetics of spherical

metallic particles submitted to high electric fields will be reported later. It will be shown that a

110



CHAPTER 8

judicious choice of the electrolyte may allow occurrence of superfast electrophoresis at fields

commonly applied in standard electrophoresis experiments.

Acknowledgment
This work was carried out within the frame of the project Electrophoretic Particle

Deposition with financial support from SENTER (Dutch ministry of Economic Affairs).

Appendix

Computation of the concentration profiles COX(X Y ), the spatial distributions of the potential

V(Y ) and the local faradaic current density j( Y )

Contrary to the study made of the transient characteristics for diffusion-limited bipolar
processes,"* decoupling of the transport equation (eq 9) and the Poisson equation (eq 14) in the
current problem cannot be simply performed by analytical means. Therefore, a consistent

numerical solution of the complete set of eqs 9-12 and 14-17 must be found.

Discretization of the convective diffusion equation. The problem is symmetrical with respect to
X =0, so in the following, the analysis will be restricted to the interval 0¢ X ¢ 1. The

corresponding boundary conditions, as associated to eq 9 in the text, are

Cox (X =+1Y)=0Q(Y) (A1)
, with (Y ) given by eq 11, and
S P
The spatial variables X and Y are written
i I[LM]: X;=(i-1)Lx (A3)
k I[LN] : Y =(k-1)LY (A4)

where M,N are integers and £X and LY are the spatial steps for the X and Y directions,
respectively. For the sake of simplicity, we write Cox(XjY)=Cix and O(¥)= Q. To
optimize the convergence of the solution and reduce the computation time, the inverse-Euler

method”” was chosen for discretizing eqs 9, Al and A2. For a given position Y., this comes to

if2M-1]: -1Ci1 k-1 T (1+21)Ci 41 = 1Ciog k41 = Cik (AS)
Cx+1-Cx+1 =0 (A6)
Cvk+1~Gk+1 =0 (A7)
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with 7; the quantity defined by
_4DL,, LY

if2M-1]: r = (A8)
v0a? [1 - (i-1)? DXZ]DXZ
Equations A5-A8 can be written for every k in the matricial form
k T[LN] : T.Coi = Cp (A9)
5k+1 and ék being the column vectors
Ck+1 0
G+ G
d Cyper | 4 Gk
Con=| ¢ | Gz (A10)
0
@ CM-1k
CM k+1 Ox+1
and 7 the trigonal matrix of dimension M3M
1 -1 0 0
) 1+ 27‘2 )
O —I"3 1+ 21"3 —I"3 0
T= (A11)
0
-1 1+2nvor mive
0 0 0 1

To solve eq A9 for every k, values of the components (Qk)k f[1.N] of the column vector é are
required. O depends on the potential distribution (V(Yk))k iN] = ("), N @ formulated by

eqs 14-17. The potentials (Vk) ] are coupled to the local concentration profiles via the local

kI[LN
faradaic current density ( J(Y )) K[1,N] = (Jk )k f[.N] defined by
_ 2nFDcoy

alX
For every k, the Cjy are linear with respect to the Q). Physically, this means that the

k I[LN] : Jk (Cvk - CM-1x) (A12)

concentration profile scales with the surface concentration for every position along the surface
(i.e., the shape of the profile does not depend on the actual values of ch and cl*{ ). Because the

local current density is linearly related to the gradient of the concentration at the surface (eq

A12), one infers the existence of a linear relationship between the j,. and the Q) . Denoting ; the
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column vector of components ( jk)ki[l N we conclude that there is a matrix 4 of dimension

N3N such that

j=4.0 (A13)
Since the components of the matrix 7 only depend on the index i, the constitutive elements of 4
are independent of k. Because of this property, relation A13 allows decoupling of eqs 9-12 (A9)

and eqs 14-17, as we shall demonstrate in the following.

Calculation of the matrix A. Let A be a numerical solver that enables the calculation of the

searched Cu'k from a known solution ék-l and a given vector é
k T[1,N] : C = N Ci1, 0) (Al4)

Iterating k from 1 to N, with 50 =0 as starting solution, we can obtain the (Ci,k)i LMLk 1N]

and hence the (j) I The numerical method as subsumed in A for solving the linear

kLN

algebraic trigonal system (A9) is based on a simple form taken by the classical Gaussian

d.
elimination technique with partial pivoting.”® Let us consider N sets of solutions (C E(n)j
n i[l,N]
verifying
_ u(n) _ ( du(n) d
n I[1,N] : et = A{c in_)l,enj (A15)
where e, are the vectors of the canonical base of dimension N
0
6
d 1 nth position
&=, <— M (A16)
6
0
. . Gu(n) . . .
The asterix denotes that the solutions | C' considered at this stage are not physically
n i[l,N]

relevant: they are only used for the algebraic determination of the matrix 4. For every n, the
U *\ N
column vectors j, , of which the components j 5( ) are defined by

+(n) _ 2nFDcgy #(n) x(n)
J x ‘TXX Cmk =€ Mok (A17)

are calculated. Using A13, we have the matricial relations
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Us _ 0

n I[LN] : Jn = Ay (A18)
u U .
Because of the choice made for the e, , the vector j,, actually represents the nth column of matrix
U
A. One can show that the components of the vector j,, are simply shifted with respect to those of

Uy
the vector j,_; so that computation of (A15) for n =1 suffices to generate all of the elements of

A. Consequently, A has the particular following trigonal form:

(1)
J

| 0 0o 2 0
j*(zl) j*gl) 0 0
A= «1)  «(1) () (A19)
J3 Jos Jj1 B 0
0 0 0 B 0
A1) A1) A1) ()
! J1

JN J N1 J N2

Discretization of the Poisson equation: computation of the potential distribution. Discretization

of eqs 14-17 leads to

k I[2,N-1] : Viee1 =2V #Vies1 + i =0 (A20)
AV VN N =0 (A21)
M-Vn-0Js=0 (A22)
with 7 the constant given by
m= % (A23)
ak
Using eq A13, we write the currents j
N
Jx = Aa,pp (A24)
p=1

ith the components of matrix 4 as determined in the previous section (e
W (ak’l’)k i[LN]p I[1.N] P x previou (eq

A19) and Qy the functions of V' defined by

0
* oy xoexp|l-nf(Vy -V ]
0, = SOx TR ( ) -1 (A25)

C(*)x 1+ exp[-nf(Vk - VO)]

The non-linear system consisting of the N equations A20-A25 has the potentials V} as the only
unknown variables. This system was solved using a Newton-Raphson type method.”® Once the
V. are known, the O, and jj follow from eqs A25 and A24, respectively. The ék and the local
concentration profiles are then calculated using eq Al4. The ensuing bipolar current /; was

obtained by integrating the local faradaic currents by means of the trapezoid method.
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Errors inherent to the discrete analysis of the problem

The error made using the inverse Euler method applied to the convective diffusion

equation (eqs A5-A7) is of the order O(DY + DX 2) and the one made in the finite difference
scheme applied to the local electroneutrality equation (eqs A20-A25) is O(DY 2 ).27’29 The

computations were made with M = 10* iterations for the X direction and N = 500 - 10° iterations

for the Y direction, which yields convergence of the results within a satisfactory computation

time.

Glossary of Symbols

a Gap of the thin-layer chamber
a, Particle radius

cox  Local concentration of the Ox species

*

cox  Bulk concentration of the Ox species

CR Local concentration of the R species

CR Bulk concentration of the R species

Cox  Dimensionless concentration difference for the Ox species
Cr Dimensionless concentration difference for the R species
Dgy  Diffusion coefficient for the Ox species

Dgr  Diffusion coefficient for the R species

D Diffusion coefficient D = Dy = Dy

E Local electric field strength
Ey Applied field in the solution

f Defined by F'/ RT

fox  Function of the position ¥
F Faraday number

I¢ Overall bipolar current

Ly Overall ohmic current

j Local current density

K" Conductivity of the electrolyte solution
/ Width of the metallic substrates
Superscript #  Pertaining to the diffusion limiting-current condition

Ly Length of the metallic substrates
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n Number of electrons

Ox Oxidized species

R Reduced species
Gas constant

T Temperature

Vef Electrophoretic velocity of a particle

vy Velocity flow according to the Y-axis in the thin-layer channel
w0 Characteristic velocity of the solution in the thin-layer channel
V Local potential of the solution with respect to the equipotential metallic phase

yN Nernst potential

yO Standard potential for the redox couple Ox/R
vV Potential at ¥ =

X, y, z Cartesian coordinates

X, Y, Z Dimensionless Cartesian coordinates

Y Position for which j(Y =Y,)=0

Dj,  Lateral applied potential difference

Dj d Overpotential required for water electrolysis
Dj  Streaming potential

LP Tangential applied pressure drop

b Coefficient in the power law (DP)I/b

g Fraction of the total overpotential that occurs on either side of a bipolar metallic particle

a Thickness of the diffusion layer

o Dielectric permittivity of vacuum

é; Relative dielectric permittivity of water

§ Ratio a /1

K Inverse of the Debye length

h Dynamic viscosity

tc Characteristic convection time

tp Characteristic diffusion time

ty Characteristic time at which the streaming potential measurements are performed
z Electrokinetic potential (zeta-potential)
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CHAPTER 9

Electrokinetics of the Amphifunctional Metal|Electrolyte Solution Interface in the Presence

of a Redox Couple”

Jérome F. L. Duval
Department of Physical Chemistry and Colloid Science, Wageningen University,
Dreijenplein 6, 6703 HB Wageningen, The Netherlands.

Abstract.

Double layers (DL) at amphifunctionally electrified interfaces, such as that of an oxidized
metal in aqueous electrolyte solution, arise from the coupling between ionic and electronic
surface charging processes. The electronic component enters the double layer formation in the
well-known situation where a potential is externally applied. In that case, the DL is fully or partly
polarized depending on the possibility of interfacial electron transfer, that is, a faradaic process.
This paper reports on the conjunction of the chemical/electrochemical processes at the interface
in the case where the solution contains a redox active couple. This allows to polarize/depolarize a

DL without the necessity of invoking any external circuit. Streaming potential data obtained for
the goldl(Fe(CN)g_/ Fe(CN)g_, KNO;) electrolyte interface are analyzed in terms of a recently

developed theory which takes into account reversible bipolar faradaic depolarization, the inherent
non-linearity of the lateral field and the effects of flow on the rate of the faradaic reactions. It
appears that the theory largely overestimates the bipolar currents leading to physically irrealistic
Z-potentials. A careful analysis of monopolar voltammetric data reveals quasi-reversible
behavior of the redox couple under the typical convective conditions and electrolyte compositions
as met in the electrokinetic experiments. Inclusion of reduced reversibility (the extent of which is
position-dependent under the streaming-potential measurement conditions) leads to a consistent

set of z-potentials which compare well to the values for the background electrolyte.

Keywords: Faradaic depolarization, redox couple, streaming potential, amphifunctional interface

" In press, Journal of Colloid and Interface Science
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Electrokinetics of gold in the presence of a redox couple

1. Introduction

Recent studies [1-4] have extended the classical Gouy-Chapman-Stern double layer
model [5-7] to account for the double layer (DL) structure at amphifunctional interfaces between
an aqueous electrolyte solution and a partially oxidized conducting phase. The DL at such
interfaces results from two mechanisms: (i) protons are adsorbed/desorbed at the surface and/or
ions are specifically adsorbed from the background electrolyte onto the surface, and (ii) electrons
are injected/withdrawn to/from the conducting phase so as to reach a fixed electrostatic potential
or charge imposed via an external circuit (potentiostatic or galvanostatic experiment,
respectively). The coupling between the protonic charge (ionic charging process (i)) and the
electrostatic charge (electronic charging process (ii)) is non-linear due to the acid/base equilibria
taking place at the conducting surface. In the electric modeling of the interface, this was
accounted for by introducing a Stern layer type capacitance C; between the bare surface of the
metal and the plane where ionic charges are localized. Some of the earlier studies focused on the

colloidal aspects [3], namely the effects of the electrode polarization on the diffuse double layer

potential yd, commonly identified to the electrokinetic potential z [8], and others analyzed
electrochemical features, e.g. the voltammetric responses of amphifunctional electrodes [1] or the
ion adsorption isotherms as a function of the applied potential and pH of solution [4].

The electrostatic potential of a conducting metallic substrate can be fixed without any
external circuit. Indeed, with an electrochemically reversible redox couple Ox/R present in the

solution (with Ox and R standing for the oxidized and reduced forms, respectively), the potential
of the metallic phase is fixed at a defined value, the Nernst redox potential £ N , given by [9]
=0
EN :EO +£1n cOx(y ) (1)
nkF cr(y=0)
with R the gas constant, 7 the temperature and F the Faraday. ¢ (» = 0) and cg (v = 0) denote

the surface concentrations (y is the dimension perpendicular to the electrode surface), n the

number of electrons e~ involved in the electron transfer reaction
Ox+ne” UR )

E" is the standard potential for the redox couple and £ N the potential of the metallic phase set
against some reference. Electrochemistry has founded the bases to account for the well-defined
voltammetric response generated by redox systems [9]. In [10], the occurrence of faradaic
processes in the frame of electrokinetic streaming potential measurements was discussed.

The studies reported in the literature [11-16] which aimed at probing double layer
properties of conducting substrates upon electric polarization did not consider the possibility of

controlling the potential by means of a redox couple in the medium. Introducing this phenomenon
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is the incentive of this paper, where DL models as presented in [3,4] are discussed in correlation
with the electrochemical characteristics of the redox couple considered.

Recently, we reported electrokinetic measurements on gold surfaces in the presence of
the couple Fe(CN)g_/ Fe(CN)g_ [10]. Using newly developed, rigorous theory accounting for
the non-linearity of the lateral electric field as generated in streaming potential measurements
[17], determination of the Z-potentials corresponding to the data in [10] is carried out. Discussion
of the results is made in connection with the validity of the hypothesis of electrochemical
reversibility for the redox active species under the convective conditions encountered in the

electrokinetic experiments.

2. DL model for the partially oxidized metallelectroactive electrolyte interface: charging
mechanisms
2.1. Situation at the Nernst potential

We consider an amphifunctional interface of the type described in [3] with double layer
properties that depend simultaneously on the potential of the metallic phase, denoted as y¢, and

the pH of the solution. In Figure 1, a schematic representation of such an interface is given. The
ions from the background electrolyte, present at concentration ¢, are supposed not to specifically

interact with the amphifuntional surface. Panel A depicts the situation under conditions of “open-

circuit potential”, i.e. when the electronic charge S° is zero. To follow the symbols of [3], all
electric potentials and charges pertaining to this situation are written with the subscript pzc;.

There is no potential decay across the first Stern layer represented by the capacitance Cy, so that

the potential yo at the plane where the oxide groups reside (denoted as op) is y0

pzcq = D_lpzcl >

where Df pzcy 18 the total potential drop across the interface. Dy pzc; depends on the pH or, for
that matter, on the surface charge s? [3]. In the example given, pH < ppzc (ppzc is the pristine

point of zero charge) so that the ionic charge s at the op is positive and Of pze; > 0. In panel B,

a redox couple Ox/R is present in the solution with bulk concentrations cax and cE . For the sake
of simplicity, we shall assume that the indifferent ions are in excess with respect to the
electroactive species and that Ox and R do not undergo any protonation and/or complexation

reactions in the bulk and/or at the amphifunctional surface. Taking the bulk solution as the

reference for the potentials, the redox couple Ox/R imposes that y© = E N as given by Eq. (1).

The corresponding required electronic charge S° is given by

¢ =GoEN -y°) ©
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0

c (]
A S =0 s d B s>0 s d
VI . st VA s
@ Ox Qx
M—OH ® | tho O F
CNC Y I S,
M—OH,* © MN\QH ©
- = 0
Ygzcl YO N\, T Ygzcl N Y @ @ EN
M—OHN“! yd D M0 SN y!
pzcy ' pzcy N
+ SO
M—OH," ~—— M—OH ——— ==
G G _ B y
Distance y from the metallic surface ¢ ¢
D Current st>0 sY
i=0

io(1)= ~ip " exp(-1/L,)

if(z 0) {‘{. — B B>~C jNatural convection

\ |

L, to Tirne ¢

Figure 1. Schematic representation of the potential and charge distributions at a partially oxidized
metal|electrolyte solution interface. Panel A: absence of a redox couple Ox/R in the solution;
Panel B: Ox/R are added in the solution and no external potential is applied across the interface;
Panel C: as in B, except that an external potential Of is now applied. For panels B and C, the

concentration profiles of Ox and R are sketched. Panel D: capacitive and faradaic currents as a
function of time when switching from situation A to B, and from situation B to C. Further
information in the text.

We note that in the absence of coupling between the ionic and the electronic charge [2,3]

(Cp — 0), the potential y0 in Eq. (3) would be replaced by Dj pzey - For Cp >0, variation in ¢

induces changes in s and hence in the potential y0 at the op, as detailed in [3].

If no redox species are present, the deficit or accumulation of electrons required to charge
the DL has to take place externally, usually via an electric circuit. In the situation considered
here, the interface is isolated so that the total current i flowing across the interface is zero

i=i,+ig=0 @)
where i, is the charging (capacitive) current of the double layer and i the faradaic current as
corresponding to the net rate of electron transfer according to reaction (2). So, in the absence of

an external circuit, the faradaic processes are responsible for the DL charging (i, = -if).

. . . . . . * *
Considering unstirred solutions and an excess of electroinactive electrolyte (¢ >>coy,CR),
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transport of the electroactive species Ox and R is controlled by diffusion only. The electron
transfer reaction (2) is shifted to the left or to the right when E N >y0 and EN <y0,
respectively. For sufficiently long times after adding the redox couple at 7 =0, i.e. for >>
with . the characteristic time RCpp (R is the charge transfer resistance and Cpp the total
capacitance of the DL), the DL charging is completed and i = -i, = 0. Then, the concentration
distributions of Ox and R in the double layer simply follow the Poisson-Boltzmann equation, and
diffusion layers vanish. The time scale pertinent to DL charging is in the /s range [18]. The
equation of electroneutrality for the complete interphase is then written

0

s®+s%+sd =0 (5)

with the diffuse charge sd given by [8]
)1/2

s = -(81ege, RT) *sinh(y* /2) = Gi(y* - y°) (6)

where Cj is the capacitance of the outer Helmholtz layer, / the ionic strength, ¢, and e, have
their usual meaning and yd is the (dimensionless) diffuse double layer potential defined by
y4=Fyd/RT (7)

s is related to the surface potential yo (dimensionless form noted yO defined similarly as in

Eq. (7)) by the isotherm

So(yo) =eN,

with e the elementary charge, N the number of oxide groups per unit area, c;+ the bulk

(C;’f /Ky )eXp("yO)"(Kaz /C;‘f )eXp(yO)

s 1+(c:+ /Ka1 )e)(p(_yo)+(Ka2 /C;+ )exp(yO)

®)

concentration of protons and K Ka, the constants of the protolytic reactions taking place at

ap»
the op
-MOH; U -MOH+H;  (K,,) (9a)
-MOHU -MO~ +H  (K,,) (9b)
Equations (1,3,5-9) suffice to describe the potential and charge distributions in the interfacial
region. The mechanism according to which the potential y/¢ is achieved is different from that

described in [3] but once the DL is charged, the equations accounting for the double layer
properties remain the same. For the sake of illustration, yd(pH) curves are shown in Figure 2 for
different ratios g = ch / cE. With increasing q, E N increases and the DL potentials are shifted
upwards. The electronic charge S© increases, which induces a shift of the equilibria (9a,b) to the

right and hence lowers the surface and diffuse charges s% and s¢ [3]. At given (q,pH), charge-
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determining anions (OH ™) have to be added to reach the new isoelectric point (iep) (yd =0).
The arrow in Figure 2 illustrates this. The trends for the surface potential y0 are similar to those

for yd (not shown).

20
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Figure 2. Double layer potential as a function of the pH solution and the ratio g = Cé)x / cl*{
calculated according to the DL model represented in Figure 1B. Model parameters are as follows:
pK,, =4, pK,, =8, Cp=5mF cm”, C; =30MF em®, c¢=01 M, Ny=2310" sites em?,

E® =100 mVv (versus the bulk solution), n =1.

2.2. Faradaic depolarization
In this section, we consider the situation where the metallic phase is connected to an

external circuit and a potential step of amplitude Df is applied with respect to a reference

electrode (Figure 1C). Before this application, the potential of the metallic phase, £ N , was fixed
by the redox couple Ox/R, as discussed in 2.1. Now the total current i is not zero: the charging
current i, of the DL decays exponentially with time (time constant £) and the faradaic current i¢

-1/2

varies according to the power law ¢ [9]. Beyond a certain time 7, >> £, corresponding to a

significant thickness d, of the built diffusion layer (d, =(tho)1/2), natural convection

maintains a given surface concentration gradient for Ox and R, as corresponding to the finite

current if(t 2 to) (Figure 1D). The interface is then depolarized by the ongoing faradaic process
(oxidation of R in the example given in Figure 1C). Within the assumptions made in section 2.1,
the DL properties still follow Egs. (1,3,5-9) after replacing EN by Djf. Provided the usual

condition d, >> k! (k_1 is the Debye length) is satisfied, the surface concentrations of Ox and
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R are effectively those beyond the DL and are determined by Eq. (1) and the mass balance
equation

dCOX
dy

dCR
R dy

Dox - (10)

y=0 y=0
where Dy and Dy are the diffusion coefficients for Ox and R, respectively. If convection is
imposed, as in the frame of some electrokinetic experiments [10] or voltammetric analyses at

rotating disc electrodes [9], the steady-state diffusion profiles of Ox and R are established for
shorter 7, although d, >> k7! is maintained. The situation where Ox/R may interact with the
amphifunctional surface will be discussed in section 4, for the particular case of the interface

between gold and an electrolyte solution containing the redox couple Fe(CN)g /Fe(CN)g ™.

3. Streaming potential/pressure dependencies for metallelectrochemically reversible
electrolyte solution interfaces
3.1. Reversible faradaic depolarization in electrokinetics: non-linearity of the streaming-
potential/pressure plots
The role of faradaic depolarization processes under conditions of electrokinetic
experiments performed on conducting surfaces in a thin-layer cell [19] has recently been
discussed [10]. For (electrochemically) irreversible interfaces, linearity between streaming
potential and applied pressure is found over a limited range of potential differences. Calculation
of the corresponding zeta-potential may be performed using the classical linear Helmholtz-
Smoluchowski (H-S) equation [20-21]. If the solution between the two conducting surfaces
contains a redox couple, and a lateral potential is either externally applied in the solution across
the cell [22] or generated by tangential hydrodynamic flow [10,17], faradaic depolarization takes
place. The potential distribution in the thin solution layer adjacent to the surfaces leads to
reduction of Ox at one side of the surface and oxidation of R at the other. The conducting
substrate then behaves as a bipolar electrode [23] and a net faradaic current /; flows, as
determined by the interfacial electron transfer reaction (2) of the redox components. The steady
state streaming current, generated upon application of a pressure gradient LP, is balanced by the
countercurrent, which now contains an electronic contribution. The resulting streaming potential
Dj  is defined by the H-S equation, extended with a bipolar conductance term [17]
eoé,Zz0P - LOKL uDj(x, DjsterP)|
h r

L _
+a_(l)]f(D.lstr’DP) (11)

|x=x0
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Electrokinetics of gold in the presence of a redox couple

where we have ignored any surface conduction. x is the dimension parallel to the surfaces of
length L, and width /. x, is the position at which Dj(x=x0,0jstr,DP)=EN, with
Dj(x, Djstr,DP) the potential of the conducting surface with respect to the solution at the

position x in the electric and hydrodynamic conditions (Dj Str,EP). The distance between the two

metallic electrodes in the flat capillary cell is ¢ and K L is the specific bulk conductivity. For a
fully reversible redox system, a first order analysis based on the assumption of a linear potential
profile along the cell provides an approximate but generally oversimplified analytical expression
for Iy as a function of Dfy, and LP [10]. Rigorous estimation of /; requires numerical
treatment of the coupled Nernst-Planck equation, describing the lateral convective and transversal
diffusive transports of the Ox/R species, and the Poisson equation, which relates the potential and
local faradaic current distributions in the solution. The theory reported in [17] is valid for steady
state situations under the assumption that there is a sufficiently large excess of indifferent ions

over the reversible redox species (as assumed in section 2) to render the latter insignificant for the
DL composition. /¢ is a function of a, K L and the redox concentrations cax, c;{. Figure 3 shows
typical Df .- LP plots obtained by combining Eq. (11) with the analysis given in [17] for the

. . . * * *
computation of /¢. The results are shown for different redox concentrations ¢ = cgy = cg assu-

10 ) :

I mV
str
o
T
|

Dj

0 ) ‘ —0— —— OO/

0 20 40 60 80 100 120 140
DP / kPa
Figure 3. Reconstruction of DOf.-LP plots (points) for different redox concentrations

* *

c =cox = c; (indicated) (K* =01 W' m™, 2=150 mV). The corresponding curve calculated
on the basis of the H-S equation (dashed line) is indicated. Other model parameters used for the
computation of Iy [17]: a=1 mm, Ly =76 cm, [=2.6 cm, Doy =Dy =5310710 m? g,
E% =70 mv (with respect to bulk solution).
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ming a certain value for the Z-potential. For a given LP, the increase in ¢ results in an increase
of the current /¢, which lowers Dj,. Consequently, important deviations from the streaming
potential behavior predicted by the linear H-S equation (denoted Df gr_s) in which no faradaic
depolarization is taken into account, are observed over the complete pressure range. The two
limiting cases are provided by Ip<<ILy (Dfg(OP)— DFLS(0P)) and Iy >> Iy

(Df ¢:(LP) — 0), where Iy is the ohmic conduction current. Similar conclusions hold when

. . L .
increasing K ~ at constant redox concentrations.

3.2. Procedure for the calculation of Z -potentials from experimental Df .- LP data

In [17], we demonstrated from the rigorous analysis of the potential and pressure

dependence of /¢ the existence of two distinct pressure regimes for the behavior of the streaming
potential Df .. For low pressures DP ¢ DF, (a typical order of magnitude for DF, is a few
hundreds of Pa), Iy increases steeply upon increase of LP and obeys the power law

Iy~ oP'3 (12)
The potential in the solution then drops linearly along the cell. The inadequacy of Eq. (12) for the
pressure-regime LP 2 LF, is explained by the reversible nature of the bipolar process which
renders the assumption of a constant electric field in the solution invalid. For LP 2 LF,, the
dependence of /¢ on LP becomes

I~ oPV® (13)
with £ > 3. Under the conditions of the numerical simulations presented in [17], £© 5 to 6. There
is a pressure range [EPl, EPZ], where LA, LP, > LF, and for which, Eq. (13) can be appropriately
approximated by a linear function of LP

Iy = LP (14)

The LP range commonly applied in streaming potential experiments complies with the condition
LP > LF,. Therefore, in the low potential and high-pressure regimes, the bipolar current depends
linearly on the streaming potential or, for that matter, on the applied pressure gradient. Hence, the

bipolar conductance term and the slope Df i, / LP tend to a constant value (see Figure 3). In
passing we note that under certain experimental conditions (K L,ch,c;) leading to faradaic

depolarization, the corresponding Df Str(ZJP) plot may be fitted to a straight line for the complete

pressure regime (Figure 3). In this situation, which could incorrectly lead to using the linear H-S
equation, the pressure LF is so low that the bipolar conductance term, significant with respect to

the ohmic and/or surface conductance contributions, appears as constant for the all pressures
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Electrokinetics of gold in the presence of a redox couple

experimentally considered. Practically, faradaic depolarization is detectable by checking if a
linear fit of the measured Of g, (EP) curve rigorously yields a non-zero intercept at LP = 0.

As a result of the pressure dependencies of I; on LP (Egs. (12-14)), the Df gy (LP)
curves develop a bend for LRy < LP < LP,. Considering the peculiarities of the (Df g, LP) plots
outlined above, calculation of the Zz-potential can simply be carried out in the high pressure-
regime (LP 2 LR) using the relation

AL KL uDj(x)| +i
eoér| OP  |x | al

X=x(

Z=

(15)

where the constant g = Iy / LP is determined after computation of the current /¢ for the different
(Df g, LP) measured. For LP 2 LB, the bipolar current carried by the reversible redox system is
that high that the first term into brackets in Eq. (15) can be neglected (see Figure 4, next section).
We emphasize that ¢ does depend on K L the higher K L, the higher the local potentials Dj(x)

along the surfaces and the higher /; or g.

3.3. Spatial distribution of z along the surface

In a thin-layer cell, the local potential Df of the conducting phase with respect to the
solution varies along the metallic surface and is therefore a function of the lateral position x
(Figure 4). The distribution Df(x) is dictated by the spatial course of the electric field as
governed by the local faradaic current density [17], and thus by convective-diffusive mass
transport of Ox and R. At given bulk solution composition, the potential distribution is a function

of LP and the total potential span along the electrode, i.e. Df,. One can therefore write the

spatial distribution of the potential explicitly as Dj(x, Dj Str,DP) (see Eq. (11)). As discussed in

section 2, the potential at the outer Helmholtz plane yd 1 Fz/ RT depends on the total potential

drop Dj applied across the interface. This would suggest that, at given (Of str,EP), there is a

spatial distribution of yd and s¢ (see Eq. (6)) along the surface and that the electrokinetic

d

potential and electrokinetic charge s% o gd 4 yielded by the experiments are averaged over the

ensemble of local double layer situations. Starting from the diffusive charge (extensive

parameter),

_ 1 ¢Lo/2 - _
<5%(0f 1. OP) >= L—Of_fo 5% (04 (x, 0F v, DP)Yix (16)
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Figure 4. Typical potential distribution calculated from the experimental data of Ref. [10]. Ionic
strength /=12 mM, coy =cg =0.01 mM (K= 0.015 W' m™), pH=5.6, LP =30 cm Hg,
Djf 4 = -58.7 mV. Other parameters for computing /¢: a =0.2 mm, Do, = D = 1853 10710 m?
s (value determined in [10]), otherwise as in Figure 3.

In Figure 3, reconstruction of the Of y.-LP plots was carried out by assuming that the z-
potential remains constant for the all potential and pressure ranges considered. A priori, this
assumption is in contradiction with Eq. (16). However, a closer look at the spatial potential
distribution calculated for the LP-range typically met in electrokinetic experiments (Figure 4)
shows that over practically the whole x-range the potential Dj(x) remains constant and barely
deviates from the potential at which there is no (local) faradaic current, denoted E *. The
corresponding position is x. £ * depends on the hydrodynamic and electric conditions and may
differ from E™ . Nevertheless, for the pressures and streaming potentials considered, we have

here £- © EN (see [17] for further detail). Only at the extremities, deviations, as caused by
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Electrokinetics of gold in the presence of a redox couple

significant local faradaic currents, are encountered and the amplitudes of these are predominantly

determined by the magnitude of D J . Using relation (6), the integral of Eq. (16) can therefore

be split up as follows

sinh
-Lo/2 2

d({ N d _ }
Vo\E Dj(x.Dj .. DP
<Z(DjstraDP) >= iRT sinh ™! (XZ - xl)Sinh L +J-XI Y ( J(x  str ))

0

sinh 17
. 5 (17)

+JL0 2 | v (0(x. Df 4. DP))

where the positions x; and x, are indicated in Figure 4. The (constant) electrokinetic potential

yd(E N) for x I'[xl,xz] depends on E N according to a DL model as presented in section 2.1 (no

faradaic depolarization). The functionality yd(Dj) at the extremities of the surfaces is

determined by a DL model of the type given in section 2.2 (faradaic depolarization). The two

integrals of Eq. (17) are insignificant as compared to the first term in the brackets because
xy —x1 @ Lg. Depending on the magnitude of the quantity pH - pH;e,, and/or the potential £ N we

may additionally have
|24(x T[-Lo/2,x,])

which further legitimates the neglection of the two integral terms in Eq. (17).

B

o= . N
Dj(x T[xy.Lo /2])|<|Dh | << ‘E ‘ (18)
The presumption of a constant Z for different (Dj stro DP) is therefore justified and one may write
<2(DJ 4. DP)>° 2(EN) (19)

3.4. Validity of the theory for gold | (Fe(CN)g~/ Fe(CN)g =, KNO;) interface

The potential £ N as fixed by the redox species, was measured for given sets of redox
concentrations c(*)X / c;{ (Figure 5) and various pH, and was found to be in good agreement with
Eq. (1), with E 00190°10 mV with respect to a (Hg,Clp| Hg, KCl) reference electrode and

n=1. Within experimental error, this value is also in line with potentiometric measurements

performed on a rotating gold disc electrode (not shown). Several other redox couples were
investigated but Fe(CN)g_/ Fe(CN)g_ came closest in fulfilling the criterion of reversibility with
respect to gold in the time-window of cyclic voltammetric experiments [10]. Figure 5 highlights
that protonation of the redox species in the bulk solution is not significant in the range pH > 4-

4.2. The open circuit values Df pzey (pH) for gold in the absence of redox compounds are also re-
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Figure 5. Open circuit potentials for gold in the absence of redox couple (plain curve) and in the
presence of redox couple (points).
ported for illustration in Figure 5. These values were calculated as discussed in section 2

(Co — 0) on the basis of the parameters (N s:PKy, . PK az) determined from electrokinetic data

obtained in the absence of a redox couple for the same gold surfaces. Experimental evidence for
the amphifunctional nature of gold has recently been put forward by atomic force measurements
(AFM) [16]. The ensuing double layer potentials as a function of pH solution (and externally
applied potentials) are consistent with the data of [10] even though slightly different

(N s:PKa, . PKy, ) parameters and isoelectric point were found. The different cleaning procedures

adopted for the surfaces may account for such discrepancies. Particularly, the potentials

DjpzCl (pH), as measured by AFM, could be well described, using the corresponding

(NS, PKa, .pK,, ) values, with the amphifunctional DL model discussed in detail in [3]. For DL

calculations, the bulk solution is taken as the reference for the potential. In Ref. [16], the potential
of the (Ag|AgCl, KCI) reference electrode with respect to the “bulk (10~ M) KNO; solution”

DJ Ag/AgCI-bulk Was indirectly determined and estimated Df Ag/Agc1-buik © 150 mV. Assuming

DJ Ag/AgCI-bulk s not significantly perturbed by the presence of the redox species and the

concentration of indifferent ions, one concludes that £ O(Fe(CN)6_/ Fe(CN)g_at gold) ©70°10

mV with respect to the bulk solution.

131



Electrokinetics of gold in the presence of a redox couple

From the raw electrokinetic data reported in [10] for the gold|(Fe(CN)%_/ Fe(CN)g_,
KNO:s) interface, z-potentials were calculated using Eq. (15). Assuming reversible electron
transfer, the pressure above which linearity of the Df o (LP) curves is observed is LF ©10 cm

Hg (Figure 6). The insignificance of the surface conduction term in the non-linear H-S equation is
justified by the low surface area of the gold wafers (7.6 32.6 cm™) and the relatively high ionic
strength of the electrolyte used. The computed z-potentials are of the order of several hundreds
of mV and values above 1V were found for the higher redox concentrations (c* =107 M).
Although the Dj i (LP) plots present two distinct regimes (low and high pressures) as predicted
by the theory, the calculated zeta-potentials are obviously unrealistic, meaning that the bipolar
current must have been largely overestimated. The discrepancy between theoretical expectation
and experimental observation was found after careful examination of the typical faradaic current
density distribution along the surface in terms of the corresponding electrodic reaction rates under

the convective conditions in the electrokinetic cell.

4. Impact of Fe(CN)‘;’_/ Fe(CN)g_ on electrokinetics at gold

4.1. Reversibility features of the system Fe(CN)g / Fe(CN)g " on gold under electrokinetic
conditions

In Figure 7, the spatial distribution of the current density j(x) along the laterally
polarized gold surface is given for different pressures. The resulting bipolar current /¢ is given by
the integrals of j(x) over the cathodic (x > xg) or anodic area (x < x). So as to comply with the

condition of no charge accumulation in the cell, these two integrals must be equal. Roughly
speaking, when increasing the pressure drop LP, the thickness of the diffusion layer of the redox
species at the position x, denoted as d(x), decreases and the ensuing local current density j(x)
increases. As detailed in [17], one finds the largest ; at the entrance of the capillary
(x ==L /2). This position corresponds to the strongest electric field strengths and the lowest d.
Due to the power dependence of @ on x, the distribution of j(x) is strongly asymmetric with
respect to the position half-way the surface (x =0). In the context of monopolar cyclic
voltammetry, it is well established that systems may yield a reversible response at small scan rate
n, i.e. when the time window of the experiment is large (see Ref. [10]) while at larger scan rates

(short times), the finite rate of interfacial electron transfer becomes more and more limiting.
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Figure 6. (A) Experimental Df .- LP plots measured for gold in the presence of Fe(CN)%_/
Fe(CN)g_ redox couple at three different pH [10]. The dashed curves are only guide for the eyes.
Ionic strength /=12 mM, ch =c§ =0.1 mM (KL = 0.15 W' m™). (B) Calculated bipolar
current /¢ (corresponding to the experimental data and conditions of panel A) as a function of the
applied pressure LP. (C) Iy as a function of the measured streaming potential Of .. Other
model parameters for calculating /¢ [17]: as in Figure 4. In (A), (B) and (C), the solid lines
represent linear regressions of the data for LP 2 10 cm Hg (1cm Hg = 1333.22 Pa).
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Figure 7. Spatial distribution of the current density j(x) at different pressures LP as computed

within the assumption that the redox system is nernstian. Same parameters as in Figure 6 with
pH = 8. Panel A: oxidation current. Panel B: reduction current.
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Electrokinetics of gold in the presence of a redox couple

Under the extreme convective conditions in the pressure range P = 5-50 cm Hg, the reversibility

criterion is rather severe and we checked whether it is fulfilled by the system Fe(CN)%_/
Fe(CN)g_ on gold. For that purpose, cyclic voltammograms were recorded for different sets of

concentrations ¢ and ¢~ at different /7. Typical results are reported in Figure 8. The difference
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Figure 8. Cyclic voltamogramms (panels A-C) and calculated kinetic parameters k% as a
function of the ionic strength 7 (panel D). Electrolyte composition: ¢ =10°Mandc=1M (A),
c=10"'M (B) and ¢ = 1072 M (C). The potential Djf is applied with respect to the Ag/AgCl,
KCl reference electrode. Electrode surface Area © 3.1 cm” (A and B), 2.3 cm? (C).

between the anodic and cathodic peak potentials, denoted as Df p, and Dy p. Tespectively, is a

useful diagnostic test to verify if a reaction is nernstian or not. For a reversible system with n =1,

we have Djp =DJ pa ” Djpc ©58 mV [9]. For very large excess of background electrolyte

(Figure 8A), the voltammetric response is nernstian. When decreasing the ionic strength and
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increasing 77 (Figures 8B-8C), substantial deviations from nernstian behavior are observed. The
voltammograms clearly show kinetic effects in the evolution of the faradaic current.
Quantitatively, the electron-transfer reaction may be characterized by its standard rate constant,
denoted as k° and expressed in m s, For very large kO, the reaction is mass-transfer limited
(nernstian) and for very small ko, the rate of electron-transfer is controlled by kinetics
(irreversible limit). For quasi-reversible systems (intermediate ko) verifying Do, = Dg = D, we
have
kO

Dy, )= 20
Aof,) (oD RT) (20)

where f(Dj p) is a tabulated function [24]. A plot of f(Djp) as a function of 77/2 yields a

straight line of which the slope allows determination of k°. In Figure 8D, the resulting values of
k° are set against the ionic strength / of the corresponding electrolytic system KNOs, Fe(CN)%_/
Fe(CN)g . For dilute systems (/ between 1 and 30 mM), which is the range of interest for the
electrokinetic analysis (section 4.3), it is found that k°223107® - 231077 m s'. The

dependence of k° on I is the result of the influence of the potential distribution at the interface on
the kinetic characteristics of the electron transfer at the electrode. This point will be briefly

commented in section 4.3. At this stage of the analysis, it is important to realize that the redox
couple Fe(CN)g_/ Fe(CN)g_ exhibits reversible properties on gold in the presence of a fairly

large excess of background electrolyte (¢ © 10™'-1M) and at moderate time scales. However, at the

entrance of the electrokinetic cell, the diffusion layer is very thin (corresponding to extremely
short time scale) and the reversibility criterion is very demanding. The values obtained for i©
lead to kinetically controlled current densities ( Jkin = anoc*) that are well below the diffusion-
controlled j ;s (= D[c* -cr(y= 0)] / a’). Therefore, we consider the effects of finite rates of the

electron transfer on /¢ in the next section.

4.2. Spatial distribution of the potential, expressions for Iy and z
The current density-potential relationship for a quasi-reversible system with n=1 is

given by the general relation [9]
j(Df) = —Fko{cox( v = 0)exp(-aF(Df - E°)/ RT) - cg (v = 0)exp((1- &) F( 04 - EO) / RT)}

e2))
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Electrokinetics of gold in the presence of a redox couple

and reduction currents are counted negative. & is the transfer coefficient. For the system
Fe(CN)%_/ Fe(CN)g_, for which Dy = Dy, it is assumed that & ©1/2. One can check that for

Dj=E N J = 0. In the frame of bipolar depolarization in a thin layer cell, the potential Of and
the current density j are functions of x. The thickness of the diffusion layer ¢ also varies along
the surface so that, typically, one may have irreversibility at the entrance of the cell (small @)
whereas reversibility still holds at the exit (high ¢). To account for the resulting mixed
reversibility for the complete electrokinetic cell, a rigorous analysis would require a numerical
treatment taking into account the quasi-reversible characteristics of the interfacial electron
transfer (Eq. (21)) and the non-linear coupling between the Poisson equation and the convective-
diffusion equation.” As emphasized above, the reversible properties of the interfacial electron
transfer are function of the position x and are strongly influenced by the magnitude of the applied
pressure LP. Reversibility for the whole spatial range x is asymptotically met in the limit of very
low LP (high d(x)) whereas kinetic effects prevail in the limit of very high LP (small d(x)). In
section 3.2, we considered the case of a purely diffusion-controlled bipolar current. For the redox

system Fe(CN)%_/ Fe(CN)g_ on gold, this analysis is valid for very low LP. In the following, we

focus on the regime of high LP so that the surface concentrations coy (¥ = 0) and cg (¥ = 0) may

be identified to the bulk concentrations, i.e. c(*)X and cl*{, respectively. The potential distribution

D (x) is defined by the differential equation expressing electroneutrality [22]

d?Dj
ak™ # -2j(x)=0 (22)

dx

The boundary conditions associated to Eq. (22) are given by the relations

DJ(Lo/2) - DJ(-Lo/2)= Dfgu (23)

Lo/2
(x)dx =0 24
-[ -Lo/2 ](X) ( )

Within the assumption of small overpotenials Of (x) -F 0, which is consistent with the measured

Dj ., expression (21) can be linearized and Eq. (22) then becomes

d? Dj(x -E° * %
| ) )—wz(Dj(x)—EO)=2RTW2"’5 “ox (3)
dx F cox T Ccr
with
F2 s
w? = —(cox +er) (26)
RTaK

“ Paper currently in preparation
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Using the conditions (23) and (24), the solution of Eq. (25) is written

) Dj .
Dji(x)- EN = —str i 27
4 () Zsinh(wig 2) () @)

For k° — 0, Eq. (27) reduces to a linear distribution for the potential. After integration of j(x)

over the relevant surface area, one finds the following expression for the bipolar current

_ aK"“Iwfcosh(nLy /2)-1)

1 28
f 2sinh(n, /2) s (25)
Using Egs. (11), (27) and (28), the electrokinetic potential can be written in the explicit form
hLyK " Dj
=202 W ooth(ny 1 2) st (29)
2e(6; opP

For k% — 0, coth(nig /2) — (g / 2)_1, and Eq. (29) reduces to the classical H-S equation.

4.3. Computation of zZ for the gold [ (Fe(CN);~/ Fe(CN)s~, KNO3) interface
For high LP, the experimental plots Djstr(EP) are linear (see Figure 6), which is in

agreement with Eq. (29). The bend observed at low LP is attributed to the significant mass-

transport contribution in the determination of Iy (see section 3.1). We emphasize that the

theoretical approaches of sections 3 and 4 both predict two distinct pressure-regimes in the

Djf & / LP curves but for entirely different reasons.

The computation of z (Eq. (29)) requires knowledge of the slope Df, / LP and the
kinetic parameter k° of which the magnitude was previously determined. The calculated Z are
reported in Figure 9. Small variations of k° induce significant deviations of Z for systems of high

redox concentration ¢ =107 M. As such, the corresponding results have to be considered with

caution for quantitative interpretation. For redox concentrations corresponding to values of /¢
which does not overrule Iy (c* =107*-107 ), the Z-potentials are more reliable since the

dependence on k° is not that strong. The isoelectric point for gold in the only presence of the

electroinactive electrolyte KNO; is pHjg, © 4.2. Addition of redox species shifts pH;e,, towards

acidic values, suggesting that Fe(CN)%_ and Fe(CN)g_ adsorb onto the bare gold surface to form
negatively charged complexes, as found earlier in the literature [25]. When increasing the pH, the
surface potential yO becomes more negative rendering the adsorption of the redox species very

unfavorable. This is confirmed by merging at high pH of the electrokinetic data corresponding to
relatively low redox concentrations with those obtained in the only presence of the background

electrolyte. The specific interaction between these complexes and gold is strong since it overrules
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the effect expected on the basis of the sign of the quantity £ N -y

to a shift of pH;

pzcq

0 .. (>0), which would lead

iep towards higher values (see Figure 2). The specific adsorption of F e(CN)é_ and

Fe(CN)g_ is all the more pronounced when the coverage of gold by oxide sites is low, that is

when there is no significant competition between surface protonation and complexation reactions.

This is the case for the gold layers used in the present experiments [10].
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Figure 9. Experimental z-potentials for gold|(KNOs// Fe(CN)%_/ Fe(CN)¢ ) electrolyte interface

as a function of the pH solution (points) and calculated with Eq. (29). The lines accompanying the
legends /=1 mM and /=10 mM refer to the z-potentials obtained for gold in the absence of

redox species (no faradaic depolarization). The other lines refer to the curves calculated with the
DL model presented in section 4.3. The concentrations of the background electrolyte and redox
species are indicated.

Based on the aforementioned qualitative observations, a simple DL model is proposed, as
pictured in Figure 1B, with the exception that negatively charged species are allowed to adsorb at
the bare surface of the metal. Considering the complexity of the adsorption mechanism (charge
distribution, complex conformation at the surface, competition between adsorption of Ox and R),
the analysis below is only meant to catch the very basic trends of the electrokinetic curves and
particularly show the importance of specific adsorption for low pH values. As such, it must be

considered as semi-quantitative only. For the sake of simplicity, the adsorbed complexes are
supposed to be localized at the op and experience the smeared out potential yO. The molar Gibbs

adsorption energy L,4sG is assumed to be identical for the two species Ox and R. The

corresponding charge stis given by
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exp(s”)

1+ K(fOxC(*)x + ch; )CXp(yO)

s' = -eK( foxcox + Jrer )(No = N) (30)

where N is the total number of atomic sites per unit area, fox g the activity coefficients of Ox
and R as calculated with the Debye-Hiickel relation and K is the adsorption constant

K =exp(-L,4sG / RT) (31)
Considering the low oxide coverage for the Au surfaces (N >> N, [10,16]) and assuming that

we are in the Henry region of the isotherm, Eq. (30) simplifies into

si= —eﬂ?exp(yo) (32)

with m= (fOXC(*)X + frer )KNO (33)
Within the assumptions made, the different potentials and charges can be obtained for every pH
by consistently solving Egs. (1,3,5-9,32) with the charge balance Eq. (5) replaced by

s®+s%+si+sd =0 (34)
The parameters (NS,pKal , pKaz) are known [10] so that 7 is the only ‘fitting’ parameter. The
capacitance C;y ©1.8 uF cm™ corresponds to a Stern layer of thickness 0.5 nm (length of the Au-
O bond) and a relative dielectric permittivity close to unity. The value C; © 30 pF cm’ is inferred
from [26]. The ‘fitting’ curves are shown in Figure 9 and the corresponding values of /7 are given
for illustration in Figure 10. For low concentrations of Ox and R, 7 conforms well to Eq. (33)
with KNy ©6.4310'* mol! cm, yielding £,4,G © -5 kJ mol” with Ny ©10'* c¢m™. For high
concentrations, /i deviates from Eq. (33). The reason is that adsorption takes place beyond the
(linear) Henry regime. The calculated distribution of the charges involved in Eq. (34) reveals that
s' decreases in size upon increasing the pH, as expected, and reaches a small but finite constant
value for pH > 6, as promoted by the positive electronic charge S°. This latter remains quasi-
constant over the whole pH-range, which is explained by the buffering propensity exerted by the
adsorption of Ox and R.

No evidence of specific adsorption of the redox species could be found from the
monopolar cyclic voltammograms. This is a priori in contradiction with the trends of the Z(pH)
curves. Nevertheless, from the model outlined above, the calculated amount of redox species,
denoted as G, is roughly 10" — 10" mol ecm? in the conditions of pH and ¢ of the
electrokinetic experiments. The corresponding current that would be observed in a cyclic

voltammogram is in the mA m™ range [9] that is 10*-10° times lower than the typical current
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densities measured. In other words, specific adsorption is not detectable from voltammetric

analysis but still comes into play for the determination of the zeta-potential.
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Figure 10. Parameter /7 (Eq. (33)) (points) used for the computations of the curves presented in
Figure 9. DL model parameters: pK,, =395 / PKa, =425 (determined in [10]), Cy =1.8mF

cm?, Cy =30mF cm?, Ng = 283102 sites cm? (determined in [10]), £ =70 mv (versus the
bulk solution), #»=1. The plain line is a linear fit of the points corresponding to low redox
concentrations, the dashed curve is only a guide for the eyes.

Now that the potential distribution at the interface has been captured, one can give a
qualitative explanation for the strong dependence of k% on the electrolyte composition. The
potential driving the electrode reaction is not Of - E % but instead Dj-E 0 —yi where yi is the
potential of the plane of closet approach for the redox species. For simplicity, we considered in
the DL model yi 1y0. Taking into account the actual concentrations of Ox and R at the surface
as corrected by the appropriate Boltzmann factor, the true rate constants kg and k{{ for the

oxidation and reduction reactions are defined by
0 0
ko = kgexp(%(a - Z0x )] ko = kﬁexp[%((l - a) - ZR )J (353,]3)

with zgy R the valency of Ox and R. The correction for DL effects on kinetic parameters is called
Frumkin correction [27]. For the redox system we examine, the arguments of the exponentials in

relations (35) are negative since zpy = -3, zg = -4 and y0 <0. When decreasing /, y0

decreases strongly and therefore k° is also expected to do so. In the limit of very high /, we have
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y0 — 0 so that k* — k(o) or equivalently K0 — klg. These trends are in agreement with the
experimental results of Figure 8D. To achieve a rigorous quantitative analysis of the dependence

ko(l ) , a more advanced DL model than the one proposed is required.

5. Conclusions
In a previous paper [10], the role of bipolar faradaic depolarization in the electrokinetics

of the metal|electroactive electrolyte solution interface was qualitatively discussed and illustrated
with streaming potential data for gold surfaces in the presence of the redox couple Fe(CN)%_/

Fe(CN)g_. The latter shows nernstian behavior in the typical conditions met in voltammetric
experiments, i.e. large excess of background electrolyte and relatively small potential scan rates.
A quantitative theory has recently been developed which allows numerical computation of the
bipolar conductance term, originating from the faradaic current in the bulk conducting substrate
as limited by convective-diffusion transport of the electroactive species in the thin-layer cell. The
magnitude of this current depends on the hydrodynamic (applied pressure) and electric (streaming
potential) parameters. The ensuing electronic conduction curbs the building up of a streaming
potential and requires a correction term in the classical Helmholtz-Smoluchowski equation. The
theory however is shown to be inadequate for quantitatively describing the streaming potential
curves of the gold|(Fe(CN)2_/ Fe(CN)g_, KNO;) electrolyte interface over a wide range of
pressures. This is so because the extreme convection conditions in the electrokinetic cell makes
extremely high demands on the interfacial electron transfer rates, that is, requires extreme degree
of reversibility. The Fe(CN)g_/ Fe(CN)g_ system is shown to be unable to meet these demands.
We therefore propose an analysis in which kinetic limitation of the local current density along the
metallic surface is considered. The resulting calculated zeta-potentials agree well with a first-
order DL model taking into account adsorption of the redox pair at the surface. The latter feature
hampers the investigation of the amphifunctional character of gold and particularly the influence
of the Nernst potential £ N, as dictated by the redox couple, on the interfacial properties. A
suitable redox couple for this purpose should comply with the conditions that £ N largely differs
from the open circuit potential of the system in the absence of the redox species and that there is
no significant interactions with the surface. With these conditions fulfilled, the streaming
potential technique will offer an elegant way to probe interfacial features, and as such,

complement studies by Atomic Force Microscopy.
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CHAPTER 10

Interaction Between Electric Double layers: Regulation.

Its Chemical and Electrostatic Aspects

Johannes Lyklema, Jérdme F. L. Duval,
Laboratory of Physical Chemistry and Colloid Science, Wageningen University,
Dreijenplein 6, 6703 HB Wageningen, The Netherlands.

Abstract. The issue of the adjustment of charges and potentials upon interaction of charged
colloids (regulation) is revisited and generalized. Distinction is made between purely electrostatic
and chemical phenomena, which allows a more explicit consideration of ionic specificity. To
account for the latter, double layers are treated on the Gouy-Stern level. Chemical contributions
to the Gibbs energy of interaction occur on the solid surface and/or at the inner Helmholtz plane
(iHp). These contributions are determined by the molar Gibbs energies of adsorption of charge-
determining ions on the surface and/or of specifically adsorbed ions at the iHp. Purely
electrostatic contributions are governed by three capacitances, viz. those of the inner Helmholtz
layer, the outer Helmholtz layer and the diffuse part of the double layer. Together with the surface
charge, these chemical and electrostatic factors determine the extent of regulation of a double
layer. A set of equations is proposed for the treatment of interactions between identical and
dissimilar surfaces (homo- and hetero-interactions, respectively). For this latter kind of
interactions, a numerical mean-field lattice analysis is performed on the basis of the non-
linearized Poisson-Boltzmann equation. The regulation conditions where interaction between two
surfaces of the same charge sign leads to attraction (by induction) are elaborated without invoking
London-van der Waals forces. The models presented in the paper may be used for interpreting

direct force measurements between identical and dissimilar double layers.

" Part of this chapter will be submitted for publication in Journal of Colloid and Interface Science and part
for publication in Langmuir
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1. Introduction

Upon overlap of electric double layers, redistribution of charges takes place. This process
is known as charge regulation. It is always coupled to pofential regulation. Regulation has
chemical and electrical aspects. It is appropriate to distinguish between these two because of the
following argument: in sols, double layers form spontaneously by adsorption of charge-
determining ions on the particle surface and/or by specific adsorption of ions, i.e. for chemical
reasons. When charge regulation upon double layer overlap calls for desorption of such
chemically bound ions, the Gibbs energy becomes necessarily less negative meaning that
repulsion ensues, basically for chemical reasons. Isothermal reversible work has to be done
against the chemical affinity of ions for the surface. When upon overlap all chemically bound
ions remain fixed, the potentials shoot up; in this case repulsion also ensues, but now for purely
electrostatic reasons. This latter situation refers to the case of interaction at constant surface
charge. Ad- or de-sorption maintaining equilibrium takes us to the case of interaction at constant
chemical potential. More generally, in-between situations will occur and this is the theme of the
present work.

We shall analyse interaction between two charged hard flat surfaces on the Gouy-Stern
level, which is the most transparent model to account for specific adsorption and for the presence

of a stagnant layer. In the frame of this model, three charges have to be considered for each
surface: a surface charge S°, an inner Helmholtz plane charge s' and a diffusely distributed

charge sY. These charges are counted per unit area, i.e. they are surface charge densities.

Electroneutrality of a pair of two colloids 1 and 2 as a whole requires
sP(h)+si(n)+ s (h)+s3(h)+sh(h)+sS(h)=0 (1)

where / is the distance between the outer Helmholtz planes of the two interacting surfaces. It is
realized that for strong overlap it is sometimes difficult to distinguish charges belonging to
particle 1 from those pertaining to 2. The accompanying potentials are written as dimensionless
quantities y * Fy /RT, where F is the Faraday, R the gas constant and 7 the absolute
temperature. Between surface and iHp, the potential drops linearly from y° to yi, similarly so
between the iHp and the outer Helmholtz plane (oHp) from yi to yd. We equate the oHp with
the electrokinetic slip plane, for reasons to set forth in section 2. Hence yd ©Fz/RT= yek,
where Z is the electrokinetic potential. The position of the slip plane is of a hydrodynamic origin
and therefore fixed (i.e. independent of the presence and strength of a double layer). Our task is to
determine s°, Si, sd, y°, yi and yd as a function of %, the accompanying Gibbs energy of

interaction G(h) and/or the disjoining pressure P(h). We shall only treat flat surfaces at
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equilibrium, but do include hetero-interaction (section 4). Transient excesses that may occur
under dynamic conditions will not be considered here. We note that for isolated particles (2 — @)

we can determine S° by potentiometric and/or conductometric titration (or otherwise). Strictly

d d

speaking, S~ is not measurable but there are good reasons for identifying s- with the

electrokinetically measured charge sk which, in turn, can be derived from the electrokinetic
potential z, using diffuse double layer theory. Once S° and sY are known, s' follows from the

charge balance for an isolated particle. If Nernst’s law applies y° may also be determined. For

yi, a model is needed. Upon overlap, all these parameters are in principle unknown and no

unambiguous procedures are available for measuring them. Theories for the various double layer
parts (Gouy-Chapman theory, based upon the Poisson-Boltzmann distribution, for the diffuse
part,'? and Stern theory’ or variants of it* for the inner layer) remain valid upon overlap, though
with changed parameter values. In summary, the new element of the present paper is the
systematic introduction of Stern layers to

(i) identify chemical contributions to the interaction Gibbs energy, stemming from ad- and de-
sorption of charge-determining ions, say H* and OH~ for oxidic surfaces. Desorption of, say,

H* ions from a poly(styrene sulfate) latex also belongs to this category.

(i1) identify chemical contributions caused by specific ion ad- and de-sorption at the iHp. The

ions may be small (like Na™ or C1~ ions) or big (like surfactant ions). This contribution underlies
lyotropic phenomena, both in stability and surface charge.

(iii) identify electric contributions, determined by the two capacitances of the inner layer and the
diffuse layer.

(iv) locate the oHp, beyond which the distribution is diffuse.

(v) for hetero-interaction, quantify the chemical and electric contributions to regulation, which

determines the extent of induction of one double layer on the other.

2. Earlier work
In the literature several illustrations of regulation can be found, some of them ‘avant la
lettre’, but none of these considers the phenomenon systematically along the lines to set forth in

this paper. Perhaps the oldest concrete illustration of regulation can be found in Verwey and

Overbeek’s book.” These authors assumed a simple Stern layer and kept y° constant upon

overlap. The required reduction of S° was thought to result from desorption of charge-
determining ions. Transport of charges from the surface to the diffuse part of the double layer

(spatial regulation) was considered for maintaining electroneutrality. Melville and Smith®
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elaborated this in more detail. Below we shall integrate and refine their approach. There are
plenty of illustrations for regulation of the surface charge S° (planar regulation) in the literature.
One of them is that by Bierman,” devoted to hetero-interactions. In that work, y° is not a constant
but it changes with the distance / separating the two flat surfaces. The occupancy of the surface
by charge-determining ions varies upon overlap (S° becomes s°(h)), obeying a kind of

Langmuir adsorption isotherm. Stern layers are ignored and charge regulation inside the diffuse
part is tacitly taken into account, as it is for all other surface regulation models. Interaction
between biological surfaces, for which the surface charge is pH-dependent because of its effect
on the dissociation of weak surface groups, was the incentive for a paper by Ninham and

Parsegian.® Stern layers are not considered but the influence of the valency of the counter-cation

was emphasized, in view of the important role of Ca’" in biological systems. Several other

publications deal with extensions and/or reviews,”2” where further references can be found. These

papers have in common that they treat S° regulation in terms of a site-binding model.
Differences between them refer to the definition of the surface charge-forming mechanism (one -
or two - pK model(s) to describe the acidity/basicity and, for the two-pK models, the way in
which these pK’s are defined), in the accounting for specific adsorption (triple layer or other ways
of positioning the charges) and in the mathematical sophistication (linearization or not of the
Poisson-Boltzmann equation, using or not using charge density functionals). Explicit
consideration of Stern layers is absent or only present in a rudimentary form. For instance, Healy
and White" did include specific adsorption but considered a zeroth order Stern layer. Behrens

and Borkovec'® included an embryonic Stern layer of zero thickness whereas Usui'* used an

approach more primitive than ours because he did not discriminate between yi and yd. Other
recent elaborations also ignore Stern layers.”' >* Perhaps the most concrete incorporation of a
Stern layer in a planar charge regulation model is in the appendix of the Reiner-Radke review.'®
The absence of a concrete Stern layer in several of the site-binding models is often partly
compensated by considering specific adsorption and/or a triple layer model, but the spatial
distribution is not always clear. In some models, the Stern layer has a non-zero thickness. In
others, distinction is made between y° and a Nernst potential, yN, thought to be located at

different positions. Generally, surface site binding models are very suitable to account for

experimental SO(pH) curves but it is more difficult to predict electrokinetic potentials because

sk osd s computed as a small difference between two larger quantities (S° and Si) and
because the model does not include any view concerning the slip process. However, recently this

process became much clearer, thanks to molecular dynamics simulations.”?® For all fluids in
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contact with hard surfaces the molecular density distribution r(x) (where x is the direction

perpendicular to the surface) shows one big and a few minor oscillations. This ordering is caused
by the repulsive part of the molecular pair interaction energy. The viscosity of the fluid in this
adjacent layer is obtainable from the time-correlation of the pertaining pressure tensors
components; it is anisotropic and much higher than the bulk viscosity. Hence, macroscopically
this layer behaves as if it were stagnant. There is no way of telling whether the layer beyond this
first density maximum is fully mobile (i.e. having bulk fluidity) or whether the viscosity also
drops in an oscillating mode. However, the pragmatic presumption is to account for this
stagnancy in terms of a step function. In practice this is carried out by introducing a slip plane,
separating the fully mobile and fully stagnant parts of the fluid. In this way, the notion of a ‘slip
plane’ gets a physical meaning even though we cannot locate it exactly because in fact this plane
has a certain width. However, the accompanying inference is that the slip plane is most likely
very close (or identical, by practical means) to the oHp, because all ions inside the stagnant layer
find themselves in a liquid with a structure deviating from that in the bulk fluid, which gives rise
to a non-zero non-electrical contribution to the Gibbs energy of adsorption. In passing, it may be
noted that the notion of a sharp oHp and, for that matter, all other planes that may be identified in

the compact part of the double layer, also are abstractions from reality. The conclusion of all of

this motivates our choice to equate s9 and s and use this information to derive S'. A further
consequence is that the position of the slip plane, being determined by the fluid structure, is fixed.
For fitting z-potentials some site-binding models require the position of the slip plane to depend
on the electrolyte concentration; apparently such models are inadequate.

Below we shall often use the term regulation capacity (RC). Qualitatively, a high
regulation capacity means that charges easily adjust to new situations i.e. without substantial
potential changes, and conversely for low regulation capacity. High capacities imply low
potentials. Quantitatively, for the spatial part (transport from the diffuse to the Stern layer and
from the Stern layer to the surface) the regulation (capacity) is entirely determined by the three
electrical capacitances Cd, Cli and Cé, denoting the capacitance of the diffuse part of the double
layer, the inner and outer Helmholtz layer capacitances, respectively. On the other hand, for the
surface charge regulation and for regulation of si, if any, the regulation (capacity) is partly of an
electric, partly of a chemical nature. Therefore, regulation capacities have generally a chemical
and an electric contribution. The former is determined by the parameters characterizing the
specific adsorption propensity of ions, such as Gibbs energy of adsorption, numbers of sites
available and the magnitude of the charge carried at the surface. Taken over double layers as a

whole, the extremes of infinitely high and infinitely low regulation capacity correspond to the
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cases of interaction at constant (surface) potential and constant (surface) charge, respectively.
Some of the older theories distinguishing between ‘constant charge’ and ‘constant potential’
interaction were elaborated for the diffuse part of the double layer only. Although these theories
7728 have played their roles in the progress of our understanding they are useless for practice
because conditions where, upon interaction, s or yd remain constant are virtually absent, as we
shall see later.

Application of regulation models is in the first place found in the domain of particle
interaction and its variants. This will be done in the present paper, where in section 4 we shall
also elaborate the case of two particles with different double layers and/or regulation capacities
(hetero-interaction). Applications include double layer polarization in electrokinetics of which a
recent elaboration was given by Keh and Ding.*” They considered regulation in terms of the

Carnie-Chan model" for interacting polarized particles. We shall not consider this here.

3. Homo-interaction
3.1. Summary of the basic equations

For homo-interaction, the electrical contribution P(h) to the disjoining pressure can

generally be written as®
P(h)= 2csRT[cosh(zym ())- 1] @)

where ¢ is the concentration of the (z, z) electrolyte and y™ is the mid-way potential. As for

isothermal reversible interaction the forces are conservative, eq 2 may be integrated to give the

corresponding Gibbs energy

G(h) = -jh P(n')ar’ 3)

jol

where /' is the distance varying from infinity to /4. As an aside, for a purely diffuse double layer,

it is also possible to derive the Gibbs energy G(h = C!) using Verwey and Overbeek’s equation
o ,
G(a)= _jo s%dy° (4)

where s° and yo' are the surface charge and surface potential during the charging process.

Equation 4 contains an electrical and a chemical contribution, the latter resulting from the binding
of charge-determining ions on the surface. In the more general case considered here there is also a

chemical contribution originating from specific ion binding at the iHp. In that case,’

Gr)= - [ sTayd ®
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In the present analysis, we choose the disjoining pressure route to find the Gibbs energy

of interaction. Equation 2 requires the functionality ym( yd ) For a flat and purely diffuse double

layer the relation between y™ and ydl is rigorously known and described in terms of elliptic

integrals. As we want analytical expressions, we shall use

d
m y
= 6
4 cosh(kh / 2) ©)
where K is the reciprocal Debye length. Verwey and Overbeek’' already showed that eq 6 is an

excellent approximation given the values of yd o yek

under conditions of incipient coagulation.
The charge in the diffuse part of the double layer changes with /4 according to the rigorous

expression

Sd(h) = sign(—yd) 2F;SZ \/2{

which immediately follows from integration of the non-linear Poisson-Boltzmann equation over

cosh(zyd (h)) - cosh(zym (h))‘} (7)

the half space, using Gauss’ law to convert field strengths (dy / dx|x:0) into surface charge
densities. From now on, x is the direction perpendicular to the surface and counted from the oHp
of surface 1, as indicated in Figure 1. The spatial derivative of the potential (dy / dx) changes sign

after passing the minimum located at x =/ /2. The charge balance (eq 1) can, in this

symmetrical case, be subdivided into two contributions
sP(h)+si(h)+si(n)=0 (8a)
sS(h)+sh(h)+sS(h)=0 (8b)
Generally, all three charges depend on /# but we may of course consider special cases, like

interaction at fixed surface charge, in which S° is a constant. For the left particle the potential

drop over the inner double layer part obeys

)

Its counterpart for particle 2 is readily formulated. As the inner layer is charge-free and since we
consider its dielectric constant independent of the potential, the differential and integral
capacitances are equal. Similarly, for the outer Helmholtz layer

=i L0

d
L Fs (h)
RTC)

=y'(h) (10)

RTC)
In Figure 1, a schematic picture of the left particle of the interacting pair is given indicating the

different charged planes involved in the regulation mechanisms. Although the two capacitances
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Figure 1. Identification of the various planes and potentials for (homo-) interaction between
Gouy-Stern layers at constant surface charge at infinite = — . and finite separation distance

h, which stands for the distance between the two oHp’s. Constancy of S° implies that the slope
dy /dx in the inner Helmholtz layer is independent of 4. Only the left particle (1) is drawn; the

situation for particle (2) is symmetrical.

Cli and Cé are constant (independent of /), the total capacitance of the Stern layer is variable

since this capacitance also depends on st , which is function of 4.*?
For the specific adsorption isotherm of ions of type i at the iHp, we choose the Frumkin-

Fowler-Guggenheim (FFG) equation in the form
_ zieNsixiKieXp(—ziyi(h))

s'(h) = 1+xiKiexp(‘Ziyi(h))

(11)

We consider only one type of ion (valency z;) at that plane. N sl is the number of adsorption sites

per unit area, x; is their mole fraction and
K; = exp(-DygsGp,i / RT) (12)

or, equivalently

pKi = 0'43EadsGm,i / RT (13)

where Ly4,Gpy ; 1s the molar Gibbs energy of specific adsorption for the ion i. In eq 11, the non-

specific electrical part is accounted for by the factor exp(—zi yi (h))
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For systems of constant surface charge (latices with strong surface groups, ionic micelles,

clay, etc) s° is a fixed parameter and eqs 1-3, 6-13 suffice to describe regulation. Relaxing this
condition implies the need to include surface charge regulation. At the surface, we do not have to

include specific ion contributions because these phenomena are already accounted for by specific

adsorption at the iHp. Taking H" and OH™ as the charge-determining ions, which can react at a

hydroxyl surface with adsorption sites denoted as ROH, we have the following equilibria

o]
ROHURO™ +H" K, = x5 (14a)
[ROH] H
) _ [ROH} [y
ROH+ H,0 U ROH; + OH Ky=-—""— (14b)
[ROH]x® |
H

where xls_I+ is the mole fraction of H™ at the surface, and the square brackets indicate surface

concentrations as number of moles or functional groups per unit area. The surface charge is

defined by
s°1 F([ROHQ] _ [RO‘]) (15)

We note that in eqs 14 all K’s are dimensionless. Some authors prefer other conventions, in some
of which the K’s are not dimensionless. The relation to the pH can be found from

S

xH+ =xH+eXp(—y°) (16)

X+ = Vmexp(-2303pH) (17)
where V,, is the molar volume of water, needed to correct for the dimensional problem incurred
in the usual definition of pH as —lochJr , requiring the logarithm of a quantity having a
dimension.

For two surfaces in interaction, from eqs 14-16, writing explicitly the dependence of y°

on %, one obtains

Kpx, + exp(—yo(h)) i Kaexp(yo(h))

K X
w ut

s°(h) = F[ROH] (18)

At the point of zero charge (p.z.c.), s° =0, X+ =x°+ , pH=pH® and »°=0 (ie. the
H

reference for the potential as it occurs in eq 16). Hence,

1/2
K. K
X0, =| Falw (19)
H Kb
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It is convenient to introduce the (dimensionless) Nernst potential yN through
yN = -2303(pH - pH°) (20)

so that

- .0
X - X €X
H+ H+ p

~2303(pH - pHO)] = xl‘){+ exp(y™) Q1)

We note that eq 20 does not specify the position (on the x-axis) where the potential is yN.
Substituting eqs 19-21 in eq 18 leads to
s°(h) = 2F[ROH](MJI/Zsinh[ N -0 ()] (22)
KW
This equation can be extended in several ways. In the following, we will consider the situation
where the number of surface sites per unit area is finite and equal to N (Ng 2 N, Si) in which case

eq 22 changes into'* > >

1/2
KaKp sinh[yN - yo(h)]
0 (0] KW
5°(h)=2FNj 5
1+2 KaKb) cosh[yN - yo(h)]

(23)

w
It is noted that the factor (K,Kj )1/2 acts as chemical capacity factor. In the limit where
(KaKb)l/2 is not too high, the larger this product is, the higher the surface charge at a given

potential or, for that matter, the less sensitive the potentials are to changes in the charge. High
values of this factor imply a high regulation capacity.

Given regulation parameters (pH or surface charge, pK’s, number of adsorption sites,
capacitances, c), consistent solution of the system of non-linear equations 2, 3, 6-13, 23 was

found for every separation distance / using numerical Newton-Raphson procedure.

3.2. Homo-interactions: illustrations
The literature contains many experimental data on the electric contribution to the

disjoining pressure P(h). Over the past decades such experiments mostly involve Atomic Force
Microscopy (AFM) or force apparatus. From the accessible part of the total P(h) curve the

Lifshits-van der Waals part and short-distance liquid structure-mediated forces can be subtracted.

What is remaining is often identified as P (/) which is often analyzed in terms of familiar
equations from diffuse double layer theory. Mostly it is investigated what fits better: interaction

‘at constant potential’ or ‘at constant charge’. Obviously, such a procedure only yields yd and
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Sd, but not y° or s°. For lack of better, some authors talk of ‘effective potentials’. In reality,
regulation of the two double layers determines how yd and s9 depend on 4, which dictates the
conditions under which these parameters may be independent of 4. However, on closer
inspection, it is not at all likely that upon overlap yd or s¢ remain independent of 4. To analyze

that, let us first consider situations in which the real surface charge is fixed (mica plates,
poly(styrene sulfonate) latices, NaDS micelles, etc). Figure 2a shows how Sd(h) becomes less
negative when k% decreases. Eventually, for # — 0, sd(h) — 0. The difference between s° (as
indicated on the figure) and sd(h) comes on the account of Si(h), which, in the case of chemical
regulation by adsorption of anions, becomes more negative upon decreasing the distance 4. For
h—0, Si(h) — -5°. In Figure 2b, the corresponding changes in the four potentials are given
for a given S°. All increase with decreasing A#. It is noted that, upon reduction of A%, first y™

increases towards yd and later the two approach yi, which is growing as well. The extents of all
these changes depend on the regulation capacity of the Stern layer, which we have fixed in this

figure by keeping Cli , Cé and pK; constant. To illustrate the influence of this capacity, similar

1

()}

10

80 mC cm*—

a

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
kh kh

Figure 2. Potential regulation across a Gouy-Stern layer. Constant surface charge s° (indicated).
Parameters: C{ = 120 mF ¢cm™, Cy = 20 mF cm™, N} = 5310" sites cm?, K; = 2, electrolyte
concentration 10" M, monovalent symmetrical electrolyte (k_1 = 0.96 nm). Specific adsorption

of anions is considered. Panel a: distance dependency of the diffuse charge for various S° (as
specified). Panel b: the same for the four potentials at s° =1 mC cm™.
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graphs are given in Figure 3 for a much higher Stern layer regulating capacity, which is varied via
the capacitance Cé. The higher the latter, the more charges are allowed to specifically adsorb at

the iHp at a given potential drop over the Stern layer, and hence the earlier regulation sets in upon
overlap. This results in potential and charge changes (with respect to the situation at # — & (no

overlap)) which already occur at higher k4. In the currently analyzed case, no influence of the

capacitance Cli on the regulation capacity is noted since the surface charge is maintained
constant. Under none of the selected conditions constancy of s or yd is observed. Closest to

constancy is Sd(h) in Figure 3a at low Cé, but this is trivial because in this case the Stern-layer

carries almost no additional charge upon decrease of 4.

i ] L e e e e R M I e e e e e e e
1 [ """"" """""""""""""" Y NN
i 6 y" ]
I b
10

L i 5 i

- 20 3 ,
4 N

a
| [ |

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 3. Potential regulation across a Gouy-Stern layer. Constant surface charge s° =10 mC
cm™. Same parameters as in Figure 2 except for Cj (as specified). Panel a: distance dependency

of the diffuse charge for various Cé. Panel b: the same for the four potentials at Cé =1 mF cm™
Ci =20mF em? _ _,, C} =100 mF cm

— ) —-—— ) T YRR aammmem®

In Figure 4a, Gibbs energies of interaction are drawn for the conditions of Figure 2a. The
trends are as intuitively expected. The repulsion between the double layers increases with

increasing surface charge. Figure 4b illustrates the influence of the regulating capacity of the

inner layer as controlled by Cé. According to eq 10, a higher Cé results in a smaller difference

between the potentials yi(h) and yd(h) (see Figure 3), which implies that a larger potential

change is left for the diffuse part, provided the other parameters remain constant. Consequently,
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the repulsion becomes stronger. The features of the disjoining pressure (not shown) are similar to

those of G(h).

Figure 4. Gibbs energies of interaction, corresponding to Figure 2a (panel a) and Figure 3a (panel
b).

The regulation capacity of the Stern layer can also be modified through variation of the
specific adsorption of counterions (anions in our example). Figure 5 illustrates this. Here we keep
s° and Nsi constant but vary the specific adsorption energy via K, see eq 12. With increasing

K;, G(h) first decreases (because an increased fraction of the surface charge is compensated in

the Stern layer) to pass through a minimum at K; ©100 (where s° = —Si), beyond which G(h)
increases again because now superequivalent adsorption takes place. What we encounter here is
the well-known phenomenon which is often called ‘charge-reversal’. To be more exact, it is a
sign reversal of the net charge surface charge plus adsorbed charge, or otherwise stated, a reversal

of the (diffuse) potential, and hence of z, at constant surface charge. This reversal also occurs for

the potential y™ (not shown).

The following features refer to interaction at constant surface potential. It is not certain
whether this condition is ever met in real systems. The classical argument is that for fully
reversible interfaces the chemical potentials of charge-determining ions remain constant because
they are identical to those in the solution, which are fixed.” Agl sols are the traditional

paradigms, but for many oxides the same reasoning may be given. The underlying process
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requires desorption of charge-determining ions from the particle surfaces in order to reduce S°

upon approach of the particles. However, it is much more likely that this desorption, plus the

1

G/ mJ m?

Figure 5. Charge and potential regulation across a Gouy-Stern layer. Given is the interaction
Gibbs energy as a function of the specific adsorption Gibbs energy at various K; = (Kapion ). The

surface charge s° is constant (10 mC cm™). The other parameters are the same as in Figure 2.
K;= 02 (a), 0.5 (b), 5 (c), 10 (d), 20 (e), 100 (f), 500 (g), 10° (h), 3310° (i), 5310° (j). The
dashed curves correspond to the situation of superequivalent adsorption.

required lateral diffusion out of the narrow gap between the particles is much slower than

reduction of |s°+s'| by counterion enrichment in the inner part of the Stern layer.**

Nevertheless, because such a type of interaction condition is often presumed-if only for the
diffuse part- we give in Figures 6 and 7 the counterparts of Figures 2 and 4. Upon overlap the

diffuse charge goes to zero, but the specifically adsorbed counterions remain in place and for
kh — 0, mostly s'is responsible for the compensation of S°. The extent to which this happens

depends on Cli and K;. Under no conditions are constant s®sor yd ’s observed. Between yi(h),
ym(h) and yd(h) in Figures 2b and 6b, there are quantitative differences. The dependence of
G(h) on y° (Figure 7a) is according to expectation, also with respect to the influence of the
regulation capacity (Figure 7b). We see that G(h) increases with Cli. The reason for this trend is

that high Cli ’s keep yi(h) high, which, at given Cé, keeps yd(h) high. The Gibbs energy for
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Figure 6. Charge and potential regulation across a Gouy-Stern layer at fixed surface potential.
Parameters as in Figure 2. Panel a: dependence of the various charges on the separation distance

at yy° =20mV___ and y° = 60 mV _ _, . Panel b: the same for the four potentials (y/° = 60

mV).

(=]
(=]
[5,]
-
-
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25 3

G/ mJ m?

2 25 3

Figure 7. Gibbs energy of interaction at fixed surface potential for Gouy-Stern layers. Panel a:
influence of the surface potential, all other parameters fixed as in Figure 2. y° = 140 mV (a), 120
mV (b), 100 mV (c), 80 mV (d), 60 mV (e), 40 mV (f) and 0 mV (g). Panel b: influence of the

capacitance Cli (indicated) at y° =80 mV.
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interaction at constant y° may be compared with that at constant S°. Although the differences
depend on the Stern layer regulation capacity, the trend is that interaction at fixed S° is stronger.
For purely diffuse double layers, this was also found,*® but for other reasons. For instance, for
oxides in 10" M (1-1) electrolyte a surface charge of 10 mC cm™ (Figure 4a) corresponds to
surface potentials of about 120 mV (Figure 7a).

As a final illustration of this category, Figure 8 gives an example of G(/) curves for
surface charge regulation as given by eqs 14 at a fixed Stern layer regulation capacity. The choice

of K, and K}, fixes pH®. The interaction Gibbs energy is zero at pH® and increases with

‘pH - pH®|. By introducing specific ion adsorption at the iHp, these curves become asymmetric

with respect to pH® owing to a shift of the pH at which the net charge s° + s'at h — o is zero
(Figure 9).

One of the conclusions of this section is that interaction ‘at constant potential’ or ‘at
constant charge’ does not apply to diffuse double layers. The frequently reported agreement with
one of these limits generally means that the experimental data were not sufficiently sensitive to
assess the underlying subtleties of the regulation processes. Detailed interpretations on the basis

of such observations must therefore be considered with some suspicion.

2

1.5

G/ mJm?

0.5

Figure 8. Influence of surface charge regulation at given Stern layer regulation values. Given is
the Gibbs energy interaction. Parameter values: Cf =120 mF cm?, N2 =53 10" cm?,

K, = 10_1, Ky = 10763 (pH® =4.26), ¢, = 107" M (absence of ions specific adsorption). The pH
is indicated.
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Figure 9. Combination of surface- and iHp- charge regulation. Parameter values: Cli =120 mF
cm?, C} =20 mF cm?, N0 = NI =5310" cm?, kK, =107, K, =107 (pH® =726),K, = 70.
Panel a: specific adsorption of anions (z; = -1). Panel b: specific adsorption of cations (z; = +1).
The pH is indicated.
4. Hetero-interaction

By ‘hetero-interaction” we shall understand all those cases where the two overlapping
double layers are different in any respect, i.e. including the situation where the two surface
charges and -potentials are identical but the two regulation capacities are different. As compared
with homo-interaction, the physically new feature is that upon close approach under certain
conditions one of the two double layers (the ‘stronger’ one, ‘stronger’ having the meaning of
‘higher surface charge’, ‘higher surface potential’ or lower regulation capacity) may cause
surface charge (and/or potential) reversal in the other (the ‘weaker’ one), leading to attraction
even if at large separations the two surfaces repel each other. Qualitatively, this phenomenon is
not new: it can for instance be found in publications by Derjaguin® and Hogg et al.*® The extent
to which this induction takes place depends again on the two regulation capacities: the lower the
regulation capacity of the ‘stronger’ double layer, the better it can induce a reverse charge
(potential) in the second particle. Figure 10 shows possible potential-distance trends and at the

same time defines our nomenclature.

4.1. Theory
Mathematically, the starting equation 2 has to be generalized to
2 2
_ eoéy (RT Y ( dv(h)
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Figure 10. Hetero-interaction between flat plates. Schematic picture of potential- and charge
distributions. (a) Overlap at high regulation capacity with a potential distribution exhibiting a
minimum positioned at x = x,, and (b) without a minimum. In the latter situation, the potential is

zero at a certain value of x, called x, (which depends on /). The picture is not to scale; in

practice, mostly 4 >> d, where d is the Stern layer thickness.
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where the first and second term on the r.h.s. are the osmotic part and the Maxwell stress, which
both contribute to the disjoining pressure. For homo-interactions, we applied eq 24 to the

minimum in the y(x) curve, where the Maxwell stress vanishes so that eq 24 reduces to eq 2.

This stress can be evaluated from Poisson-Boltzmann theory except for an integration constant C

2
[%} = Z%[cosh(zy(h))] +C (25)
Consequently,
P(h) = -2¢RT[C(h) +1] (26)

This equation is deceptively simple but general. It applies to potential distributions with or
without a minimum, but theory is required to obtain C(h). Several literature examples are known

7,10, 15, 37-39

where this is elaborated for purely diffuse double layers under various conditions. Now

we generalize the analysis to interaction between Gouy-Stern layers.

A way to find C(h) is by relating the field strengths at x =0 and x=#4 to the

corresponding diffuse charges S?(h) and Sg(h) using Gauss’ law and by combining the results
with eq 25. The calculation leads to
2 2
2 d 2 d
Fsi(h Fs;(h
C(h)= Z ﬁ - cosh(zy{i(h)) =Z_ A - cosh(zyg(h)) (27a,b)
2k* | eoe RT 2k*\ €06 RT
In the limit of low potentials, the cosh functions in eqs 24 and 27 may be replaced by their first
order Taylor expansions. In the following, for the sake of illustration, the analytical relations
between the charges/potentials S?, 5(21, yld and yg are given for the linearized Poisson-

Boltzmann equation, which applies for low till moderate yd potentials, a condition which is often

met experimentally, especially under conditions of coagulation. The potential distribution can be
computed by taking either the diffuse charges or the potentials at the oHp’s as boundary

conditions. These two quantities both depend on /4 in a way dictated by the type of regulation

mechanism (see section 4.2). In terms of yld and yg , the results are

SIOREC=L () (28)
sd(n) = —@[A(y )(h)sinh(kn) + BY) (h)cosh(kh)} (29)

with
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AW ()= v () (30)
d d
(V) = V2 () = yi (h)eosh(kh)
B (h) sinh(kh) 3D
If the boundary conditions are written in terms of the diffuse charges, the analysis yields
wi(n)= 4 () (32)
3 (k) = 4') (h)cosh(kn) + B') (h)sinh(kh) (33)
with
A)(h) = - %er%[sg (h)cosech(kh) + s ()coth(4)| (34)
and
d
()~ Fsi(h)
B (h) eoe.RTk ©33)

Rearranging eqs 28-31 and 32-35, one may write the diffuse charges S?’z(h) and the potentials
yﬂz(h) as
[st2(h) - sta(m)]/ st (=) = coth(kn) - [ 48,1 (k) vy () |cosech(in) - 1 (36)

[ (1) - ya(2)]/ () = coth(n) +[ s 1 () 115 (k) |cosech(r) - 1 (37),
respectively. This pair of equations accounts for the propensity of the interacting Gouy-Stern
layers for charge and/or potential reversals with respect to the situations at infinite separation
(isolated double layers). In eqs 36-37, the term coth(k#k) dominates at large / (weak interaction).
The coefficients of the cosech terms account for the extents of induction and they are determined
by the regulation capacities of the two double layers. Similar expressions can also be derived for
mixed boundary conditions (constant potential yld and constant charge 3(21, etc). On the basis of
mere diffuse double layer theory, it is impossible to discriminate between the various options of

repulsion and attraction because the sign of P (eq 26) is sensitive to the extent of constancy of

sfl, 5(21, yld and yg, which is determined by the two primary capacities. The next step consists

then in finding expressions for the various yd ’s and $9°s in terms of the Stern layers. Otherwise

stated, we need to extend eqs 9-11 and 23 to the case of two different Stern layers. The results are

¥i() = v (1) - 25K g0 ) (38)
2.1
vh(h)= yS(h)+ M[A(y ) (h)sinh(kh) + BY )(h)cosh(kh)} (39)
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RTC] . .
si(h)= Fz’l[yd( )- i(h)] sy(h)=—2> [yil(h)-yi(h)] (40a,b)
Fs?{(h FsS(h
i (h)= yi(#) RTIC(I) v3(h)=y3(h) RTé(i) (41a,b)
11 1,2
1/2
K, K
(aléblz} sinh[yll,\lz - yﬁz(h)]
W
Sta(h)=2FN 7 (42)
i Ka2 Kb 5 N o
g — COSh[yl,z -yl,z(h)]
W
zieN'  xi K, exp —z-yli,z(h)
sio(h)=—12 12 12 = ) (43)

1+xi1’2Kil,zeXp(‘ZiJ’ll,z(h))
A(y )(h) and B(y )(h) remain given by eqs 30 and 31, respectively. The definitions of the

parameters ylltI 9, Kll,z, NSO1 5 Nsl1 x x; ,and PH?,Z are similar to those for homo-interaction.

The main difference with homo-interaction is that splitting of the general electroneutrality

condition (1) into its two constituents (8a) and (8b) is no longer allowed. With hetero-interaction,

situations may occur where, say s7(h)+ si(h) + Sil(h) <0 provided the sum of all charges on

double layer 2 is equal in size but positive in sign. Models for hetero-interactions which include
the electroneutrality condition as written in (8a,b) are necessarily valid only for weak double
layers overlap, which corresponds to separation distances /# where charge regulation is not critical

in determining the interaction Gibbs energy. One can show that the set of egs 3, 26, 27a, 30, 31,
38-43 can be rewritten in terms of the two unknowns y{ (h) and ys (%), only. Consistent solution

therefore requires two linearly independent equations. One of them is provided by the

electroneutrality condition (1) and the other by the relation (27b).

The essential elements for the description of hetero-interaction are, as explicitly described
in section 4.1, the concomitant occurrence of electrical and chemical regulations for the two
interacting Gouy-Stern double layers. These were numerically implemented in a mean field
lattice theory which was developed in our department by Scheutjens and Fleer and which has
shown to be valuable for adsorbed polymers and polyelectrolytes.*”* In our modification, the
space between the two surfaces is divided into a number of plan parallel thin layers of thickness
d. The number of layers @ can be chosen at will; ¢ is of the order 0.3 nm. In each layer the
embedded water molecules and ions are laterally distributed; the nature of this distribution was

shown not to be crucial. Each layer consists of cells interacting with all neighboring cells through
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chemical and electric forces. The mean field principle enters in that in each layer charges and
potentials are smeared-out. The mean field analysis is performed in the more general context of
the non-linearized Poisson Boltzmann equation. The three contributions to the total interaction
Gibbs energy are (i) the electric energy, (ii) the Gibbs free energy change due to chemical ad- and
de-sorption of ions at the surface and at the iHp and (iii) the effect of entropy loss or gain.'® The
total interaction Gibbs energy was iteratively computed for every separation distance 4. One can

show by means of the Euler-Lagrange equation®**

that this energy, if calculated from the self
consistent potential and charge distributions as governed by the Poisson Boltzmann equation,
actually corresponds to the minimum energy searched. In the model, charge and permittivities
have to be assigned to each layer. The charges are assumed to sit half-way each layer (Figure 11).
Permittivities can jump discretely from one layer to the next. When the potentials are known in
each layer, the charge distribution follows from Gauss’ law and the potentials are updated till self
consistency is reached. This model is not entirely identical to the classical picture of a Stern layer
depicted in Figure 10 because there the jumps in permittivity are assumed to coincide with the
charged planes (iHp and oHp). This classical picture is physically not necessarily more realistic
because the value of the dielectric permittivity is to a large extent determined by the structure of

the water-water and water-surface interactions, and only to a lesser extent by the presence of ions.

In our analysis, we represent the Stern layer for each interface by two lattice layers, one

containing the surface charge S°, the other the specifically adsorbed charge s'. To each of these,
a different (smeared-out) permittivity is assigned. Starting from the third layer, no specific
adsorption occurs and €, becomes 78, as in pure water. This part corresponds to the diffuse
double layer.

Numerical results were first obtained for the limiting cases of interactions at constant
potentials®® and constant charges* and were successfully compared, within the Debye-Hiickel
(DH) regime, with the corresponding available analytical expressions. Results for homo- and
hetero- interactions (and compatible with the DH approximation in the diffuse part of the double
layer) also well match those expected on the basis of the analytical models of section 3 and 4 (not

shown).
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Figure 11. Schematic view of the lattice used for the computations based on a mean-field theory.
Numbering of the adjacent layers of thickness & is done for the situation where the surface

charges Sf’z are regulated (i.e., pH-dependent). For the case of constant 5?,2a the variable x as

mentioned in the figure becomes x + 1. This figure is a discrete pendant of the continuous model
as pictured in Figure 10. By choice, surface 2 approaches surface 1 (decreasing #), the latter
remains at the position x =1 (or 0) upon interaction.

4.2. Hetero-interactions: illustrations. 1- No Stern layers

In order to remain close to physical reality, we mimick the interaction between two
different oxides. We first ignore specific adsorption. For double layer 1 (left), pK,; =6, pKy, =
10 (pHY =5); for double layer 2 (right), PK,, =8, PKyp, =6 (pHj =8). At large distances
repulsion ensues for pH <5 and pH >8, whereas in the window 5<pH <8, the long distance
interaction is attractive. The surface charge densities Sf’z are determined by the fraction of
surface sites that is dissociated (negatively and/or positively), as in eq 15. The maximum surface

charges attainable eNSO1 5 (max) are in the lattice model determined by the cross section of each

cell and corresponds to about 170 mC cm™, which is about tenfold higher than met in practice.

Later, we shall consider surfaces for which only a fraction qcl’ 5 of N ;’1 5 (max) is available, with

o
q 12 defined as

g7, = Ns"l’2 /NS"L2 (max) (44)
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so that 5?,2 (max) = eqﬂzN 501 5 (max). These maxima require extreme pH’s to be reached; in fact,

for oxides, 5?,2 are always lower than sf,z(max). The charge plays a dual role, viz. not only as a

source for the potential, but also as a parameter determining the regulation capacities of the
surface charge layer. Figures 12-14 gives first results for the charge and potential distributions for
different separations at different pH’s. At pH = 3, for long distance, S9 is more positive than S7

because for surface 2 the pH is more to the left of the pzc than for surface 1. Both surface charges
are largely compensated by the diffuse charge in the layer adjacent to the surface layer (see the
hatched areas, Figure 12a). Half-way the two surfaces, there is almost no excess charge; there the

potential is near-zero (panel b), implying that the largest distance covered is essentially infinite
(h>> k_l). Upon approach, S9 remains virtually constant except for a slight decrease for x < 3d.

At the same time, S7 decreases: it even becomes slightly negative for short separations. This

induced charge reversal has two causes: partly it originates from the strong electric field of the
proximate surface 2, partly it has an entropic origin; since double layer 1 carries fewer charges, it

has a larger regulation capacity. Similar observations can be made for the potentials. Because of
the large regulation capacity of double layer 1, y;’ hardly changes but yld does, as a consequence

of the charge accumulation at x = 2d, when the two ‘diffuse’ parts coincide. Figure 13 gives

similar pictures for pH =5, which corresponds to particle 1 being uncharged. At large
separations, S7 =0, but it becomes negative upon approach of particle 2. This is caused by
induction from particle 2. At the same time, S9 starts from a positive value which is less positive
than at pH =3 because we are now closer to pHS. The potential profile has no minimum. At
large x, it starts horizontally from surface 1, becoming steeper upon approach. Upon this, y;
remains almost constant at zero, but yld increases, to coincide eventually with yg at the closest
distance attainable. The notable observation is that in this situation S5 increases somewhat.

Phenomenologically, this means that the nearby particle 1 with its now negative Sy acts as a
capacitance booster for particle 2. Similar observations for a pH somewhat lower than 5 (not
shown) can be made. The only difference is that the potential profile presents at large separations
a minimum, which upon approach gradually disappears in tandem with the sign reversal of S7.

The boosting effect, as mentioned for pH = 5, is for these pH ’s not so pronounced since surface 1

carries at large separations a charge of the same sign as surface 2. At pH = 6 (Figure 14), particle
1 is now originally negatively charged, particle 2 (less) positively charged. A certain asymmetry

is now observed: upon approach, S becomes more negative, S5 more positive. Each surface
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Figure 12. Hetero-interactions between two flat oxide layers, of which the surface charges are
regulated across purely diffuse counterlayers. Left, surface 1, pzc; =5; Right, surface 2,

pzc, = 8; dielectric permittivities of the surface charge carrying layers e} = eiz =40, in all others

78. pH =3, Qi),z =1, ¢g =0.056 M. Panel a: Charge distribution; panel b: potential distribution.
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Figure 13. Situation as in Figure 12, but at pH = pzc;.
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pH, > pzc, . Other model parameters: as in Figure 12.
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CHAPTER 10

acquires a higher capacitance caused by the closeness of the other. The surface potentials do not

change markedly, but the diffuse potentials do: yg becomes less positive, yld less negative and

even changes sign (pH = 6 is closer to pH} than to pHY) till in the final situation yld = yg, of

course. Similar figures can be drawn for other pH’s with the situations at pH 8 and 10 being
symmetrical to those at pH 5 and 3, respectively. In Figure 15, we give the Gibbs energy-
separation curves for the situations commented above. The transition between overall repulsion
and attraction upon increase of pH is in line with the characteristic charge-potential distributions

of Figures 12-14.

The surface charge is not only determined by pH (Figures 12-15) but also by (](1’ , as

given by eq 44. The availability of sites also contributes to the regulation capacity. For
g7 =¢g5 =0.05, charges and potentials become, as expected, lower than for g7 = ¢5 =1 and the

qualitative trends do not change (not shown). Figure 16 illustrates the effects of q(l) ,on the Gibbs

energy of interaction; it may be compared with the curves for g7 = g5 =1. No qualitatively new

features emerge. In all cases, lowering of q(l’zreduces both attraction and repulsion. For

s

pH =4.5, where G is partly negative and partly positive the transition takes place at a separation

(panel b) which becomes shorter at lower q‘l’ 5 At this point, G is a maximum and P =0. The

s

maximum disappears for low q(l’ 5 i.e. low regulation capacities. The Gibbs energies G(S) and

H

G(y ), corresponding to the limiting interactions ‘at constant charge’ and ‘at constant potential’

respectively were computed for q‘l’z =0.05. For G(S) and G(y ), we have the well-known

>

analytical expressions derived by Hogg et al. (HHF)*® and Usui* in the Debye-Hiickel

approximation
2 -
G = eoei# {( yld(c:))2 + yg(n))z}(l - coth(kh)) + 2y} (22) p§ (=)cosech(kh) (45)

{(yld (c))2 + (yg (D))z }(coth(kh) -1)+ 2y (f;'c)yé1 (=)cosech(kh) (46),

o(s) eoe,k(RT)* [
S

respectively. In these equations, ‘) constant’ and ‘S constant’ mean in reality yd constant’ and

‘s4 constant’ because this pair was derived for purely diffuse double layers. However, it now
transpires that the constancy of yd and Sd, underlying the applicability of (45) and (46), is an

unlikely phenomenon, merging with the rigorous numerical results being met for weak overlap of
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Figure 16. Influence of the number of surface sites g{ = @5 (indicated). The pH is also given.
Otherwise, as in Figure 12. In dashed lines, the electrostatic parts of the DLVO curves calculated

at constant (diffuse) potentials and constant (diffuse) charges for g7 = g5 = 0.05 are given for
comparison purposes.

the double layers. Only under special circumstances is this limit approached in reality. Thereby, it
is noted that, although S} (or S9) remains more or less constant, the distribution of the

countercharge changes substantially.

In Figure 17 we give the first illustrations of interaction between two oxidic surfaces for

which not only the pzc’s but also the total number of surface sites (expressed in terms of q‘l’ 2) is

>

different. This pair of figures may be compared with Figures 12a,b (pH =3). The first
quantitative difference is that for the charges (Figure 17a) and potentials (Figure 17b) the absolute

values are less than for g7 = @5 =1. Qualitatively, surface 2 is now unable to change the sign of

double layer 1; in fact, upon approach S5 reduces more strongly than for g5 =1. The physical
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reason is that RC; is higher than that for g5 =1 (surface 2 has now less adsorption sites available
and therefore double layer 2 is weaker). This is essentially an entropic feature. It is also reflected

in the potentials: y5 and yg increase more upon reduction of 4 than for g{ = g5 =1. These

trends become more pronounced for very low sites coverage (¢5 = 1%, not shown).
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Figure 17. As for Figure 12 (pH = 3), but with ¢5 =010 (g} =1).

The regulation of the surface charges at pH =85, g{ =1 and g5 = 0.1 are presented in

Figure 18a. The pendant for the potentials is shown in Figure 18b. At this pH, surface 1 is

strongly negative, surface 2 very weakly so, the latter surface has fewer sites available. Upon
approach, S9 reverses sign at 4 ©104d and then becomes increasingly positive by induction from
surface 1. At the same time, S| does not change much (lower regulation capacity) but on closer

inspection it passes through a shallow maximum. First, S{ becomes slightly less negative

because of the repulsion of particle 2, but when the particles come very close, the increase of the

capacitance allows surface 1 to adsorb (a few) more (negative) charges. The potential

distributions y{(h) and y{ (k) illustrate the same. The trends of Figure 18 are even more marked

when g9 =0.01 (not shown). Then surface 2 behaves as if it is virtually uncharged, so that a

situation arises that is almost symmetrical of Figure 13.
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Figure 18. Similar situation as in Figure 17, but at pH = 8.5. For the sake of readability, the
distributions of the characteristic charges (in elementary charges per unit cell) and potentials (in
mV) as a function of 4 are given. The curves are only guide to the eyes.

The profile changes at different pH’s and ¢°’s make themselves felt in the Gibbs energy
of interaction, of which we now give some illustrations. Generally speaking, G(h) reflects the
two surface charges S7(4) and s5(k) and the distribution of the countercharge between the

surfaces which, in turn, are governed by the two regulation capacities, and which have electrical
and chemical components (via the pK’s). Because of the multiparameter dependence, it is not

always easy to relate G(h) in a simple way to these parameters. Figure 19 collects some results.

Panel a (pH =3, 10) shows repulsion over the entire range between surfaces that are positively or
negatively charged. For g3 =1, the curves for pH =3 and 10 coincide, but for g5 = 0.1 or 0.01 the

symmetry is essentially lost because pH and g5 determine S9 in a different way. Panel b

represents the situation where one of the surfaces is so close to its pzc that reversal of charge can

occur, leading to attraction at short distance although far apart the two particles have the same
charge sign. As in panel a, for g7 =¢5 =1 G(h) is symmetrical between pH =4.5 and 8.5. The
change of sign is in this case only determined by the pH influence on S} and S%. For the
asymmetrical case (¢} ., g9) the influence of the available sites comes on top of it. When

g5 =0.01, the stronger double layer 1 prevails, rendering G(h) repulsive over the entire range.
Panel c gives curves for interactions for which one of the pair is uncharged. Attraction prevails.

Deviations from symmetry are again observed; G(h) becoming low, or even slightly positive,

174



G/ kT

G kT

CHAPTER 10

only when g9 is very low. Panel d is similar but by choice of pH between the two pzc’s attraction

is much stronger than in panel c.
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Figure 19. Gibbs energy interaction at various values of pH and g5 for the oxides defined in

Figure 12. Throughout, g7 =1.

The influence of the indifferent electrolyte concentration ¢, can be studied via its effect
on the absolute value of S{(4#=%) and s3(h=mr) at given pH and via its influence on the
potential distribution. In Figure 20 we compare the profiles at = 1072 and F=107* (7 is the
volume fraction defined as #=c¢y / V). For f= 10'4, less charge can built up as compared to the
situation at £= 10_2; this difference is also reflected in the sign of ds$ / dh for low separations.

The potential minimum, clearly visible for = 1072 , disappears at = 1074, ¢s not only tunes the
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range of electrostatic interaction but also the regulation capacities of the approaching surfaces, via
the influence of indifferent electrolyte on the surface charges. The effect on the Gibbs energy of

interaction is visible in Figure 21. These trends more or less conform with intuition.
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Figure 20. Charge and potential profiles for the double layer of Figure 12 at ¢ = 0.56 M (. )
and ¢g =556 MM ( seeeeeeees ), pH =4.5. The profiles are shown for /4 ¢ 204, distance which

approximately corresponds to the sign reversal of S} for = 1074,

We also investigated the effect of the dielectric permittivities in the two non-diffuse parts,
e{ and eiz. Results are not shown, but the general trend is that lowering of ei and eiz implies
lowering of the corresponding first layer capacitances and, hence, of the regulation capacities. For
instance, for e} =40, reduction of eiz from 40 to 10 at pH =4.5 or 8.5 and g7 =¢5 =1 has no
effect on G for 4 > 64 but makes G less attractive at shorter distances. The parameters e} and ei2

tune the sizes of the surface charges and accordingly the amplitude of the charges/potentials

regulations and of the corresponding interaction(s).
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Figure 21. Electrolyte concentration influence on the interaction Gibbs energy. In this figure, ¢
is indicated in terms of the volume fraction 7 = ¢y /55.55. Panel b refers to the profiles of Figure
20, panels a, ¢ and d reflect the same double layers but at different pH’s (indicated).

4.2. Hetero-interactions: illustrations. 2- Presence of Stern layers
The introduction of Stern layer takes us closer to reality but it also leads to a plethora of

new situations, of which we shall select some illustrative cases. In the following, we define the

fraction of sites available for specific adsorption as

gip = NS‘1 ) /NS‘1 ) (max) (47)
which is the equivalent of eq 44.

In Figure 22, the two surface charges are kept fixed in order to highlight the

consequences of specific adsorption. The model is representative for two latex surfaces with
different number (chemically identical) charged sites. In panel a, S7 and S9 remain fixed at the

indicated values. The hatched area gives the countercharge of double layers 1 and 2. The parts of
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Figure 22. Charge and potential profiles for the interaction between two model surfaces;
influence of specific adsorption on hetero-interactions. S{ = 0.04, 5 =0.02 elementary charges

per unit cell (fixed). L,4,G =-kT (anion adsorption), =103, eh:e{’z =20,

myi; o =

&5 =65,=50,qi,=1.
the two countercharges that are in the two Stern layers, Si and siz, are indicated. Upon approach
of the two surfaces, Siz becomes more negative; anion adsorption in the Stern layer of surface 2 is
promoted by the presence of the strong double layer 1. By the same token, S% also becomes more
negative but to a lesser extent than Si2 does because double layer 2 has the larger RC. The
ensuing potential profiles (panel b) all increase but y{ and yli do so also to a lesser extent than
9 and yb.

Figure 23 gives profiles for the interaction between a stronger positive and a weaker

negative surfaces. As surface 2 is negatively charged, the anions now become co-ions; they are

negatively adsorbed. However, upon sufficiently close approach of surface 1, this negative

adsorption becomes positive. At the same time, S} becomes slightly less negative because of the
attraction exerted by surface 2. The trends in the respective potentials (panel b) are similar: upon

approach, all y;’s decrease and y,’s become less negative to change sign at sufficiently low A.

Hereby yg is the first to change, followed by yé and 3, in this order, as intuitively expected. As

before, the changes in the y,’s are stronger than in the y;’s.
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Figure 23. Similar to Figure 22, but with s{ =0.04, S5 = -0.02 elementary charges per unit
cell.

In situations where one of the surface charge is zero, as in Figure 24, there may still be a
low but finite 512 because the nature of L,qGy,; includes the preference of the ion for the
surface over that of the solvent (water). Approach of surface 2 to surface 1 increases this excess

adsorption. The strong countercharge s} becomes a bit more negative; eventually, the
countercharge Si = 512 is sandwiched between the two solid surfaces and equals -S7. The
corresponding changes in the characteristics potentials is given in panel b. The choice of S =0

imposes that y3 = yi (see eq 41b). The systematic increase of the potentials is consistent with the
trends of panel a. Particularly, as in Figures 22 and 23, regulation of the surface potentials and of

the potentials at the iHp occur in the same way so as to satisfy the imposed conditions
dsf’z /dh=0.
Figure 25 gives the Gibbs energy of interaction in the presence of specific anion

adsorption for fixed Sy and various values of S9 (constant with respect to /). The gradual

transition from attraction to repulsion with increasing S9 is as expected: the charges on the two
surfaces are the primary sources for interaction, of which the strength is modulated by the
(positive or negative) adsorption of anions. In this figure, no extrema appear, but they are

predicted at intermediate values of L,4,G see Figure 26. Referring to this latter figure,

m,il,z >
strong specific adsorption promotes attraction, mainly because S5 + S5 becomes very negative.

In panels a and b, weak specific adsorption leads to overall repulsion. In the middle range, there

are EadsGm,iz values for which attraction (repulsion) at larger distance is outweighed by
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repulsion (attraction) at short distances. In panel c, specific adsorption takes place on surface 2,

which is negatively charged. It enhances the attraction but from a certain value of L,45Gyy i, , the
interaction Gibbs energy becomes independent of L,4,Gpy, ) since the surface potential is in that

case too negative to allow any further anions adsorption (the electrostatics is unfavorable).
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Figure 24. As in Figure 22, but with 7 = 0.04, S5 = 0 elementary charges per unit cell.
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Figure 25. Gibbs energy of interaction corresponding to the profiles of Figures 22-24 and a few
others. Throughout, S = 0.04 elementary charges per unit cell (7.11 mC ¢cm™). The value for the
surface charge S9 is indicated in mC cm™.
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Figure 26. Interaction Gibbs energy for various values of L,4sGp, i, , as indicated in kT units,
and at fixed surface charges. Throughout, L,4sGp,;, = -kT. Panel a: s =711 mC cm” and

59 =356 mC cm™; panel b: s =7.11 mC ecm™ and $9 =0 mC cm; panel c: s{ =711 mC cm™
and S9 = -3.56 mC cm™. Other parameters as in Figure 22.

Figure 27 illustrates the influence of the indifferent electrolyte concentration. In panel b,
surface 2 is uncharged but because of the relatively strong specific anion adsorption it behaves
effectively as negative. Zeta-potential measurements would confirm that. Anionic surfactant
adsorption on uncharged (say polymeric) surfaces would be representative. At long distance and
low ¢, attraction between the surfaces prevails (surface 1, including its Stern layer, carries a
positive charge) but at shorter distance the interaction becomes repulsive because of the strong

anion adsorption on both surfaces. With increasing ¢y, the minimum deepens and is displaced to

lower distances, to disappear for 2 2531072, When both surfaces carry a charge of the same
sign (Figure 27a), the long-distance interaction is repulsive. At short distance, attraction sets in,
resulting from the ‘sticking’ influence of the anions captured between the two proximate positive

surfaces. The maximum in the curve is suppressed by electrolyte addition. In Figure 27c,
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interaction curves are given for the case where the surface charges are of opposite sign. The

results conform to intuition (tuning of the range where electrostatics plays a role). In Figure 27,
the curves pertaining to = 107" are repulsive. The Debye length is, in that particular case, so
low (k_1 ©0.430) that the interaction is not governed by the spatially confined regulation of the
charges and potentials but primarily determined by the repulsion between the dielectrics formed
by the two Stern layers. It is noted from Figure 27 that for purely electrostatic reasons interaction

curves can be obtained that traditionally are interpreted as the sum of the effect of double layer

repulsion and Van der Waals attraction, albeit with far too simple double layer models. By va-
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Figure 27. Interaction Gibbs energy for different electrolyte concentrations, expressed in terms of
f=c,/5555. Panel a: sP =711 mC cm®, s9=356 mC cm”, L,4G
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rying the parameters the model can be extended ad infinitum, which we shall not do here. For
instance, changing of the variable qi,z, which determines the number of sites available for
specific adsorption, would qualitatively yield interaction curves comparable to the ones obtained

when tuning L,45Gy i, , (see eq43). Rather we shall give some illustrations for which St are

not fixed but depend on pH, ¢, and L,4,G

m,il’z .
In Figure 28, the potential and charge distributions are given for pH =3 and different

adsorption parameters L,qsGp, j; and L,45Gp, i, for surfaces I and 2, respectively. Because of

1T o s o e L L B S Y

—1121.3 r
] r ))2

L 1142

I
~N

L \ow
LW2 U/ (X)s

Ll b 11142

1213

I
~
BN

P -
o
W2 U/ (x)s

P
v
~

1
N
»
IN)

5 10 15 20 25 30
x/d

Figure 28. Hetero-interactions between two flat oxide layers, of which the surface charges are
regulated across diffuse and Stern counterlayers. Left, surface 1, pzc; =5; Right, surface 2,

pzc, =8&; dielectric permittivities ei,l = 5’{,2 =20, eiz,l = eiz’z =50, in all others 78. pH =3,
Qi),z = ‘7%,2 =1, £=107>. Panels a and b: LagsOm,iy = =2 kT, LG i, = 017 kT. Panels c
and d: DadsGm,il =-0.17 kT, EadsGm,iz = -2 kT.
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the choice for pHY and pH3, S7(2)<S5(8). For LaqsGin iy << LadgsGmj, (in size) (panels a

and b), regulation predominantly takes place at the interface 1. The charges and potentials for
surface 2 remain constant and even at low % hardly vary. As a result of the respective magnitudes

of the two surface charges and the adsorption Gibbs energies, the regulation capacity for surface 1
is higher than that for surface 2. Si(h) decreases with 4 because of the increasing anion
adsorption as favored by the proximity of the strong double layer 2 (increase of the potential

yli(h)). The potential y{’(4) remains constant, which is possible only upon decrease of the

surface charge s7(h). For LaasGm,iy >> LadsGm,i; (panels ¢ and d), regulation of interface 1

still occurs but to a lesser extent than in the previous situation and is mainly enhanced by the
proximity of the strong double layer 2. The new feature is that interface 2, though stronger than
interface 1 in terms of the magnitude of the surface charge (or surface potential), is now regulated
to an extend determined by the choices made for L, Gm,iy - Owing to the repulsion exerted by
surface 1, $(h) decreases as well as Sb(h). These trends are also reflected in the potential
distributions. In Figure 29, similar situations are examined for pH = pzc;. The surface charges are

lower in magnitude with respect to the situation at pH =3. For L4 Gm,iy << L aqs Gm,i (panels

a and b), S7(h) decreases as in Figure 28a and now changes sign upon approach of surface 2.
This concomitantly magnifies the regulation capacity of interface 2 of which the surface charge
Sg(h) now increases. The vicinity of the strongly positively charged surface 2 (high electric
fields) induces adsorption of anions on surface 1 even if the latter is negatively charged. We are

in the typical situation of induction, which leads to attraction. The surface potentials yﬂ 5 do not

markedly change, contrary to the diffuse potentials and the potentials at the iHp: yld ( yg) and yli
( yé) increase (decrease) till yli - yé and y{i - yg in the limit # — 0 (Figure 29b). For
LadsGm,iy >> LadsGm,i; (panels ¢ and d), the same trends are observed but since specific
adsorption now occurs to a lesser extent on surface 1, the boosting effect for the regulation
capacities of the two surfaces is less pronounced. Similar comments hold for the case pH =6
(Sf(n) <0) (not shown). Interaction Gibbs energies are given in Figure 30 for the three pH’s
discussed before. The results are consistent with the potential and charge regulations of Figures

28-29 (cases L,4sG La4sGm,ip )- When both surface charges are negative (pH > pHS, not

m,lz >
shown), upon increase of L,qsGpj; and/or L,43Gy i, , adsorption of anions is at some point
limited by the unfavorable electrostatics, as already discussed before. This is reflected by

repulsive interaction curves, which become independent of the Gibbs adsorption energies.
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Finally, the effect of the dielectric permittivities of the Stern layers on the regulation

behavior for both surfaces is analyzed. In Figure 31, the potential and charge distributions are

given for pH =3 at two different e{,l = 6{72, the other parameters are kept constant. When

increasing €] ; = €] 5, one increases the magnitude of the surface charges, the regulation

capacities and subsequently, the charges at the iHp’s. The diffuse potentials and Stern potentials

follow the same trend. The interaction becomes more repulsive (not shown) over the whole 4

range. Similar effect occurs upon variation of 812’1 = 61292 (not shown). The same kind of analysis

can be carried out for other pH’s. The corresponding interaction Gibbs energies are tuned as

according to the changing in surface charges and in RC’s caused by the dielectric permittivities.

For instance, at pH =6, attraction would be enhanced by increasing eiz,l = ei272 and/or

i i
e1,1= 61,2
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5. Conclusions

m,il’z -

-2 KT, €, = €5, =50 (in the

The main purpose of this paper is to give a comprehensive elaboration of regulation upon

double layer interaction. A model is used which is sufficiently complete to quantify all physical

phenomena with a restricted number of parameters. To achieve this, electric double layers are

treated on the Gouy-Stern level, which has the following features (i) specific adsorption is

accounted for at the inner Helmholtz plane, (ii) surface charge regulation is allowed at the solid

surface, (iii) a fixed slip plane separates the Stern layer from the diffuse part. In this way the

positions of ions which contribute to the chemical part of the regulation are fixed. The

187



Regulation

concomitant electrical contributions are accounted for in terms of three capacitances, viz. those of
the inner and outer Helmholtz layer and that of the diffuse double layer part.

The combined action of the chemical and electrical contributions to regulation defines the
regulation capacity (RC) of a double layer. Other conditions being equal, the higher this capacity,
the more charge it can adsorb without significant increase of the potential. The electrical part of
the RC is determined by the three mentioned capacities, the chemical part by the number of
adsorption sites available and the molar Gibbs energies of ions adsorbing on the surface (charge-
determining ions) and/or at the inner Helmholtz plane (specifically adsorbing ions).

Our approach offers an improvement of existing models. For instance, models containing
besides the layer with surface charge (S°) only diffuse layers are inadequate since most of the
regulation takes place in Stern layer and systems for which s or yd remain constant are
virtually absent. Site-binding models of surface groups all suffer from the deficiency that they do
not specify the slip process, and hence, do not predict Zz. Moreover, in many advanced site-
binding models specific adsorption is accounted for without offering a clear picture of the

potential decay in the inner layer. For the diffuse part the linearized Poisson-Boltzmann equation

is used (in the frame of homo-interactions), which is often allowed because s¢ and ydl are
generally sufficiently low, as judged by electrokinetic measurements. There is no need for
applying more advanced models for this part. Neither do we feel the need for invoking more
detailed pictures of the inner-layer because in real systems features like surface roughness on a
molecular scale render this practically useless. Our model is restricted to hard surfaces and to
equilibrium, i.e. the assumption is made that during particle encounter all regulation processes
can relax. Another restriction is that of flat surfaces only, but extension to, say, spherical surfaces
is trivial: the Stern part remains essentially unchanged (kd <<1, if d is the thickness of the Stern
layer) and for the diffuse part the linearized Poisson-Boltzmann equation can be used, for
instance in the Derjaguin approximation. A special feature is that hetero-interaction is discussed
in detail. For a number of situations, we could analyze the distance dependence of various
charges and potentials and the ensuing effect on the Gibbs energy of interaction and disjoining
pressure. In this way reversal of the sign of the interaction with decreasing distance by induction
was quantified. It follows that in hetero-interaction, the sometimes observed transition from long-
range repulsion to short-range attraction can be explained without considering Van der Waals

46,47

forces. For instance, AFM studies sometimes reveal unexpected signs (and sign reversals) in

the interactions occurring between dissimilar or presumably identical interfaces which cannot be
understood using DLVO theory with fixed s or yd only. In principle our analysis offers the

elements to account for such observations. Besides pair interaction in AFM or force apparatus
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measuring conditions, elaboration of our model to heterocoagulation in sols is a prospective
application.

We are aware of the fact that the generality of our theory at the same time creates a
psychological quandary: experience has shown that many interaction problems can be (fairly)
well described with the oversimplified model of fixed yd or fixed Sd, with yd © 7z and a fixed
Hamaker constant. Given the simplicity of such models, there is often no need to subject the data
to more advanced analyses, although we have shown that there is ample reason to do so. The
caveat is that the Hamaker constants obtained from such simple models must be considered with
reservation,” both because of the occurrence of regulation and the difference of range between
the repulsive electric and attractive Van der Waals forces (twice the Stern layer thickness). These
phenomena tend to overestimate the Hamaker constant. This matter deserves elaboration.

One of the greatest problems ahead is accounting for the non-ideality of the surfaces. In
particular, recent 1D-modellings of AFM,*-" jon adsorption®" and electrokinetic>* data and recent
adhesion force measurements*® underscore the necessity of taking into account the rugosity of the
surfaces in order to explain the low value of the calculated apparent (effective) number of sites
compared to that expected on the basis of full coverage of the surface. Hence, improvement of the
model presented in this paper would be incorporation of rugosity, or, for that matter, the exact
surface geometry of the interacting systems. Such an approach, especially relevant for the
analysis of AFM measurements, requires investigation of local double layer overlap, replacing the
assumption of smeared-out double layers. This analysis is under study.”

- . . . 49,50
For conducting amphifunctional interfaces,””

with double layer properties that are
governed by the coupling of electronic and ionic surface-charging processes, regulation may also
involve the electronic charge. Such electronic regulation depends on the (regulation) capacity of
the charge-free layer located between the bare surface of the conducting material and the plane of
the ionic countercharge and on the standard potentials and reversibility of the redox reactions

involved. This would be another extension of our model.
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Glossary of Symbols
Some recurring symbols

C(h) Parameter as defined in eq 25

Cli Capacitance of the inner Helmholtz layer (section 3)
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C} Capacitance of the outer Helmholtz layer (section 3)

cd Capacitance of the diffuse layer

¢s  Electrolyte concentration

G(h) Gibbs energy of interaction

h Distance between the oHp’s (sections 3 and 4.1) or number of layers used for the numerical
computations (section 4.2)

iHp Inner Helmholtz plane

K, , K}, Equilibrium constants of (14a) and (14b), respectively

Constant describing the specific adsorption of ion i at the iHp
N¢  Number of adsorption sites (per unit area) for charge-determining ions

N ; Number of adsorption sites (per unit area) for specifically adsorbing ions

oHp Outer Helmholtz plane

RC Regulation capacity

X Position in the diffuse layer counted from the left oHp (sections 3 and 4.1) or from the
surface (section 4.2)

x;  Mole fraction of ion i
y Dimensionless surface potential (= Fy° / RT)
y Dimensionless iHp potential (= Fyi / RT)

v~ Dimensionless diffuse layer potential (= Fyd / RT)
z;  Valency of'ion i

d  Thickness of a layer (section 4.2)

L44sGm,i Adsorption energy of ion i at the iHp

e Dielectric constant

f  Volume fraction of electrolyte (7 = ¢ /55.55)

S°  Surface charge density

S Surface charge density at the iHp

S Charge density of the diffuse layer (° sek)

P(h) Disjoining pressure

i

g Fraction of the total number of sites available for specific adsorption (section 4.2)

g°  Fraction of the total number of sites available for adsorption of charge determining ions

(section 4.2)
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Superscripts and subscripts

(V) superscript at ‘constant potential’
(5) superscript at ‘constant charge’

1,2 subscript refers to double layers 1 (left) and 2 (right), respectively. In the combination of two

subscripts (sections 3 and 4) in the writing of capacitances and dielectric constants (section 4), the
first refers to the type of layer, the second to the particle: for instance C1i,2 is inner layer

capacitance of double layer 2.
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CHAPTER 11

Electrostatic Interactions between Double Layers:

Influence of Surface Roughness, Regulation and Chemical Heterogeneities”

J.F. L. Duval, F. A. M. Leermakers, H. P. van Leeuwen
Department of Physical Chemistry and Colloid Science, Wageningen University,
Dreijenplein 6, 6703 HB Wageningen, The Netherlands.

Abstract. Electrostatic interactions between two surfaces as measured by Atomic Force
Microscopy (AFM) are usually analyzed in terms of DLVO theory. The discrepancies often
observed between the experimental and theoretical behavior are usually ascribed to the
occurrence of chemical regulation processes and/or to the presence of surface chemical or
morphological heterogeneities (roughness). In this paper, a two-gradient mean-field lattice
analysis is elaborated to quantifying double layer interactions between non-planar surfaces. It
allows for the implementation of the aforementioned sources of deviation from DLVO
predictions. Two types of ion-surface interaction ensure the adjustment of charges and potentials
upon double layer overlap, i.e. specific ionic adsorption at the surfaces and/or the presence of
charge-determining ions for the surfaces considered. Upon double layer overlap, charges and
potentials are adjusted via re-equilibrium of the different ion adsorption processes. Roughness is
modelled by grafting asperities on supporting planar surfaces, with their respective positions,
shapes and chemical properties being assigned at will. Local potential and charge distributions are
derived by numerically solving the non-linear Poisson-Boltzmann equation under the boundary
conditions imposed by the surface profiles and regulation mechanism chosen. A number of
characteristic situations are briefly discussed. It is shown how the surface irregularities are

reflected in the Gibbs energy of interaction.

* Submitted for publication in Langmuir
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1. Introduction

Accurate knowledge of the interactions between two surfaces is a mandatory prerequisite
for understanding a variety of colloidal and interfacial phenomena, such as heterocoagulation,
particle deposition, electrosorption or rheological behavior. Classically, the Gibbs energy of
interaction between two charged colloidal particles is described by means of the DLVO theory.'”
This theory is widely regarded as a cornerstone for understanding colloidal systems and forces on
the molecular scale and for predicting macroscopic properties of colloidal dispersions. It
reconciles long-range electrostatic double layer interaction®* and short-range Lifshitz-Van der
Waals interaction.”® The classical DLVO theory is based on the assumption that the Lifshitz-Van
der Waals component can be superimposed on the electrostatic contribution to the pair interaction
(superposition approximation). Furthermore it is taken that the interacting surfaces are perfectly
smooth and that their surface charge densities are uniform, that is, independent of position.
Within these assumptions, the double layer properties are smeared-out along the surface: the
potential and charge distributions develop according to one spatial variable, i.e. the dimension
perpendicular to the surfaces. As such, the electrostatic part of the DLVO theory can be
considered as a self-consistent field approach. However, real colloidal systems generally contain
some degree of nonuniformity, in the form of surface roughness and/or chemical heterogeneities.
The applicability of the DLVO theory for such systems is questionable, as indicated by various
experimental data, which fail to match theoretical prediction. Representative illustrations of the

inadequacy of the DLVO theory are provided by surface force/atomic force microscopy

10-13 14,15

measurements, " particle deposition experiments'®"* and coagulation kinetics analyses.

In an effort to account for the discrepancies between theory and experiment, many
attempts were made to modify the existing theory so as to include roughness effects or chemical
heterogeneities and to evaluate the corresponding van der Waals and electrostatic interactions.
The current paper focuses on the importance of surface nonuniformities in determining
interaction forces between two surfaces. In the framework of this context, we shall be interested
in the computation of the electrostatic contribution of the total interaction curve. This latter
component is sensitive to both surface roughness and chemical heterogeneities. Till now, these
two types of nonuniformities have been studied independently. Stankovich ef al.'® analyzed the
interactions between ideally spherical particles with periodic or random non-uniform surface
potentials. The use of the linear Poisson-Boltzmann equation allowed the decoupling of the
interactions between uniform and non-uniform components of the surface potential and the
(analytical) calculation of the torque and force that particles in a doublet exert on one another.

Other types of surface potential/charge distributions were investigated and the reader is referred

to the paper of Stankovich et al. where further references are given. These studies, particularly
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relevant in the field of heterocoagulation, focus on nonuniform surface potential and/or charge
distributions for which experimental evidence is absent. In the past decade, studies of interactions
between rough surfaces have become numerous. They may be classified according to the realistic
character of the roughness considered. Common approaches consist in generating geometrically

e 13,1721
regular asperities,

either conic, hemispheric, spherical, cylindrical or sinusoidal, on one or
both surfaces. To compute the corresponding electric double layer interaction energy, solution of
the Poisson-Boltzmann (PB) equation is required. It is obtained for the geometries chosen
following procedures differing by their degree of mathematical sophistication. Linearization of

the PB equation, application of the linear superposition theorem,” employment of rigorous

24,25 26,27

numerical schemes such as boundary element,” finite element or finite differences
illustrate the variety of tools commonly adopted. A simple alternative is the use of the Derjaguin
approximation (DA).*** It relates the interaction per unit area between two flat parallel planes to
the corresponding interaction between curved surfaces. This technique is known to be valid only
when the principal radius of curvature of the asperities is well above the separation distance and
the range of the interactions. Recent extension of the DA has been proposed by Bhattacharjee et
al., under the name of surface element integration technique (SEI).***' This technique involves
the integration of the corresponding interaction between two flat plates over the exact geometry
of the rough surfaces. Contrary to the DA, it is capable of treating both concave and convex
asperities and can be applied to very small asperities. Newly developed methods for the
generation of roughness have led to a considerable breakthrough in the effort to mimick the real

32,33
h,””

topology of colloids. The use of the fractal approac the possibility of generating asperities

- 13,17-21,34
randomly distributed on a surface™ "

or matching the shape of a colloid by means of a
combination of flat and triangular surface elements” illustrate the development towards
approaching the actual form of surface roughness.

However, despite this variety of techniques and their various degrees of rigor with respect
to roughness integration, all these analyses have in common that the boundary conditions adopted
for solving the PB equation refer to the very restrictive constant potential or constant charge
conditions. In reality, intermediate situations are more likely to occur and this has recently been
underlined for the interaction between one-dimensional double layers.”® Besides, as already
mentioned, methods that allow for the concomitant effects of chemical heterogeneities and
surface roughness have not been reported so far. Of course, real surfaces will likely contain both
of these nonuniformities, as the surface charge on a protrusion could be different from that of the
surrounding surface. As mentioned by Walz in a review on the effects of surface heterogeneities

on colloid forces,"> models accounting for both factors are still needed. To come closer to reality,

we here propose a two-gradient mean-field lattice analysis to evaluate electrostatic interactions
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between regulating electric double layers at rough surfaces containing chemical heterogeneities.
Though the numerical scheme we use here has become popular in many research fields dealing
with wetting phenomena, adsorption of polymers, surfactants or polyelectrolytes at interfaces, its
applicability for the colloid stability issue and for understanding electrostatic interactions between

heterogeneous surfaces is new.

2. Method of calculation

All the results presented in this paper were obtained using a computer program, called
‘sfbox’, developed on the basis of the Scheutjens-Fleer theory’’ and recently extended and
generalized by Van Male.*® Considering the wide spectrum of problems that can be delt with,
complete description of the numerical scheme in the program is beyond the scope of the current
paper. Interested readers are referred to [38] for that purpose. Instead, we shall give a
comprehensive description of the problem by first writing the basic electrostatic equations and
boundary conditions in their continuous forms and then sketching the general discretization
procedure adopted and its useful character for generating topologic and chemical nonuniformities
at the surfaces. Transient effects will not be tackled here, only electric double layers at
equilibrium are considered.
2.1. Continuous description: potential and charge distributions, Gibbs energy of interaction

Two parallel, flat planes are separated by a distance /4, as specified in Figure 1. The
properties (either electrostatic or topological) of the left and right surfaces will be denoted with
the subscript j=1 and j=2, respectively. The asperities placed on top of the flat surfaces define
the roughness profiles, which can be described by the analytical expressions

y=yi(x) ¥ =htx(x)= ya(x) ey

for the coordinate system (x, y) as indicated in Figure 1. The surfaces are supposed to be uniform
in the z-direction so that the problem can be described by the two spatial dimensions x and y only.
The so-generated infinite ridges on surfaces 1 and 2 are parallel. At a given separation distance 4,

the electrostatic potential distribution y(x, y,h) between the surfaces is described by the PB
equation

eOD.[er (x,y)isy(x,y,h)] =- I’(x,y,h) 2)
where €, is the dielectric permittivity of vacuum, e, (x, y) the relative permittivity at the position
(x, y), and r(x, y,h) the charge (per unit volume) at the position (x, y) and separation /.
r(x,y,h) is given by

I(x,y,h) = Fazicfexp[—ziFy(x,y,h) / RT] 3)

1
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Figure 1. Hetero-interaction between rough surfaces. (A) Continuous description (section 2.1) for
the case where the regulation of the surface charges occurs across the diffuse part of the double
layers and the inner Helmholtz layer. (B) Discrete representation (section 2.2) within a two-
gradient mean-field lattice analysis. The inner and outer Helmholtz layers adjacent to the surface

located at (xn, ym) may be modeled by specifying the dielectric permittivities of the cells
(xn,ym) and (xn,ym + 1) , respectively.
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with R the gas constant, F' the Faraday and T the temperature. The index i refers to the ionic
species 1 of valency z; and bulk concentration cic (i.e. the concentration at infinite separation).

The surface charge, denoted as S§(x,/), at a separation distance / and position (x, yj(x)), is

related to the electric potential by the Gauss relation

s9(x.h) = -eoB[er(x. ¥y (x, y,h)].gj‘y:yj o @)

where ﬁj is the unit normal vector to the surface j of which the components My and ny, are

written
1 dyj(x) 1
nx.=—lj n, =, — %)
] 172 dy yji =] 172
1+dyj7(x) 1+dyj7(x)
dx dx

with /{ =+1 and /, = -1. We note that eq 4 tacitly implies that the electric field in the solid

phase corresponding to surface j is zero. There is a plethora of choices for expressing the

boundary conditions required to solve eq 2. These may exclusively concern the surface potentials
VS (x.h) :y(x, yj(x),h) or the surface charges S7(x,/). Mixed boundary conditions may be

more realistic for certain types of hetero-interactions. The surface potentials and/or charges may
be taken constant with respect to 4, uniform or actually depending on the position x. In that latter
case, the assignment of a spatial surface distribution allows for the presence of chemical
heterogeneities on top of surface roughness. In reality, there is no way of telling a priori if, upon
interaction, the conditions of constant surface potential/surface charge are satisfied.

A more general analysis therefore calls for the inclusion of regulation mechanisms
accounting for the adjustment of the potentials and/or charges upon double layer overlap. To that
purpose, the occurrence of adsorption equilibria at the surfaces must be notified. In a previous
analysis,’® the issue of regulation of electric double layers at uniform charged colloids was
revisited and generalized. To explicitly account for the ionic specificity, the double layers were
described on the Gouy-Stern level. Provided that the characteristic length of the asperities

introduced is larger than the distances from the surface dy; (k =1 refers to the inner Helmholtz

layer and k =2 to the outer Helmholtz layer, see Figure 1), the Stern layer is assumed to follow
the contour of the roughness profile. Relaxing the condition of fixed surface charge, we consider

surface charge regulation as it occurs between two interacting hydroxyl surfaces with adsorption

sites denoted as ROH. The charge determining ions H* and OH™ can react at the surfaces

following the equilibria
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ROHURO™ +H" K, (x)= —[RO_] 7 (62)
4 [ROH] "n*
_ [ROH3 |K,
- +
ROH + H,0 U ROH; +OH Ky (x) = — (6b)
7 [rotg’

where ¢° s the mole fraction of H™ at the surfaces, K, the dissociation constant of water and
H

the square brackets indicate surface concentrations given as moles of functional groups per unit
surface area. To represent the situation of nonuniform charge distribution at the surfaces, we

allow the reactions constants K aj and ij to depend on the position x. Following the notation

used in [36], all (local) K’s (including K\, ) written in eq 6 are dimensionless. S}’(x,h) is then

related to the surface potential y?(x,h) by an adsorption isotherm of the type

1/2
[ Kaj (3)Ko; () J sinh{lg[y?(ﬁ -y ?(x’h)]}
(x)

Ky

S§(x,h)=2FN_
]

Kaj (x)ij (x)

142 ——

Kw

1/2 (7)
] cosh{;T [y}\I (x)-y75(x, h)]}

N :, (x) are the local densities of adsorption sites per unit area for surface j and the potentials
J

y? (x) are defined by
¥ }¥(x) = =2303(pH - pHS (x)) (8)
with the local point of zero charge ij-’(x) for surface j given by
pHY (x) = pKa, (x) + pKw =Ko, () ©)
In case of specific adsorption of ions onto the surfaces, the resulting local adsorbed charges,

denoted as s}(x,h), are assumed to be related to the potentials yﬁ at the iHp by the Frumkin-

Fowler-Guggenheim (FFG) equation in the form

zieNslj (x)quij exp(— zTyﬁ(x,h))

si(x,h)= (10)

1+ quijeXP(- ZiFyﬁ'(x’h)j
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We consider only one type of ion (valency z;) at the iHp of which the mole fraction in the

solution is g;. N Sl _(x) is the local number of adsorption sites per unit area for ion i on surface j,
J

and

Kij = eXP(‘DadsGm,ij /RT) (11)
where DadsGm,ij is the molar Gibbs energy of specific adsorption for ion i at surface j. We
consider that for the different patches along the surfaces, EadsGm,ij is the same and thus is

independent of x. The local electrostatic contributions to the ionic adsorption are included in the
exponential function. The charge density #(x,y,h) in the diffuse part follows directly from the

potential distribution, as expressed by Gauss’ law. The pair of interfaces as a whole is

electroneutral so that for every # we have the relation

ny I(x,y,h)dxdy+é Jsg(x,yj(x),h)dx+ J-S}(x,yj(x)+d1j,h)dx =0 (12)
J | Surface j iHp;
where we have eliminated the distance of normalization in the z-direction. The set of non-linear
equations 1-12 must be solved consistently so as to derive the anisotropic potential and charge
distributions. Once that is done, the electrostatic interaction energy can be evaluated from the
charging energy for both surfaces. These are functions of 4 and position x. We shall denote them

as EGj(x,h), where the symbol L refers to the difference with respect to the reference state, i.e.
the uncharged surface. EGj(x,h), counted per unit area, contains a chemical contribution, as

resulting from the surface charge regulation and/or the specific adsorption of ions at the iHp, and

an electrostatic contribution. Rewriting the result for isolated double layers,” we have

(s9e.m) (sixh)

p(s (e v (x.m)

DGi(x,h)=- . - . - dh (13)
i) 2 20 J. Wi
where the diffuse charges S? are given by Gauss’ law
by a
s§(x.h) = -eoBle; (x, y)y(x.y.h)] 7 (14)

y=yj(x)+daj

Cli(j are the capacitances of the inner and outer Helmholtz layers as defined by the corresponding

d\; and the relative dielectric permittivities &, (x, y) taken constant in these layers. y? (x,h) in eq

13 refers to the potential at the oHp. The total electrostatic interaction energy G is then obtained
by integration of eq 13 over the exact surface geometries after subtracting the charging energy of

the isolated electric double layers (i.e., at # — &)
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G(h)= aA% [[[26(x.h) - 0G;(x,h — =)fdxdy (15)

with 4; the total area of surface j. At this point of the analysis, it is useful to emphasize that the

use of the DA*™* and the SEI technique®™’' for estimating G is mainly motivated by the existence
of analytical expressions for the interaction Gibbs energy at constant surface potential or constant
surface charge between flat parallel planes. However, in the more general situation of interaction
between regulating 1D-double layers, no (general) analytical equation has been formulated so far.
Therefore, to account for these cases, DA and SEI methods, putting aside the limitations they
necessarily imply, should be combined with numerical integration of eqs 1-12 in the flat
geometry. More specifically, as far as SEI is concerned, the authors emphasize its suitability for
the constant potential case but are more elusive about its feasibility for the other interaction
situations.” In that respect, the self-consistent-field theory we use allows a higher degree of
flexibility since it enables solving eqs 1-15 for any geometries and regulating boundary

conditions as expressed by eq 1 and eqs 7 and 10, respectively.

2.2. Self-consistent-field lattice theory

Electrostatics. In this section, we describe the problem previously sketched as it is tackled within
a self-consistent-field scheme based on the theory of Scheutjens and Fleer.”” In the numerical
evaluation of the theory, the space between the two surfaces is confined in a two-dimensional
lattice of size N3 M. N and M represent the number of plane-parallel thin layers of thickness ¢
(0.3 nm) in the x and y directions, respectively (Figure 1). The charges and potentials are
smeared-out in the z-direction. We describe here the situation of a flat lattice but cylindrical or
spherical geometries are also possible.”® The layers are filled with solvent molecules and
(hydrated) ions of which the spatial distribution is governed by the Boltzmann statistics. The

volume fraction of ion i at the position (x, ) is denoted as f;(x,). All sites have equal volume

?. Unlike the PB theory which considers point charges, the ions are given here a finite size. It is
done by describing the local potential as the sum of the potential as defined within the PB theory
and a potential, which can be seen as the isothermal work which must be performed (in the
incompressible limit) to carry a unit with volume @ from a position infinite to a position
corresponding to a cell (x,y). Each site interacts with all neighboring sites through chemical and
electric forces. The mean field principle enters in that an ion interacts with the local average of all
other ions, instead of interacting with other ions taken individually. The discretisation of the PB

1‘41

equation is done using a capacitor model.” Within this model, the charges are assumed to be
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located on the planes in the center thus forming a multiplate capacitor of the same geometry as
the lattice. The space can therefore be viewed as the succession of M Stern layers, with relative

dielectric permittivities e, (x, y) being assigned at will. The positions are then readily obtained

from the relations

n 1[0, N]: Xp = na’+% (16)
m I'[O,M]: Ym = ma’+% (17)

The discretised form taken by the PB equation is

_ Hx,,y
e ) =222y 41) g i 1)

+[er(xn’ym)+ er(xnrym _1)]y(xn’ym _1)+[er(xn +1’ym)+ er(xn’ym)]y(xn +1’ym)
+[er(xn,)’m)+er(xn 'l’ym)]y(xn 'l)ym) (18)
with the quantity €, (x,, ) defined by

Er(xnyym) = er(xnyym +1)+ er(xn:J’m _1)+ er(xn +1yym)+ er<xn _Lym)+4er(xn:ym) (19)

The local charge density #(x,,yy,) is related to the ion volume fractions by
1 .. .
,(xn»ym)zﬁaeziji(xn»ym) (20)
i
and the electrostatic interaction energy (in kg7 per unit area) by

G s m 1 n»>.m 21
ol = szmzaay("“y )azu (*n>¥m) 1)

where kg is the Boltzman constant.

Reaction equilibria at the surfaces and/or at the iHp’s. A possibility offered by the ‘sfbox’
program is the implementation of reaction equilibria at the surfaces, e.g. the specification of

protonation and complexation reactions. For a given position x,, along the surface j, we can write

such reactions in a concise form as follows

Quirisgmd =0 (22)
q

where § refers to both reactants and products. The index q denotes the species q involved in the

reaction and the uén’j are the stoichiometric coefficients. We follow the convention uén’j >0

for q product and conversely for the reactant. The associated thermodynamic constant K; (xn) is

related to the bulk volume fractions j (T of the species q by
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In(K;(xy)) = SLegn-In(g 44§ ) (23)
q

with g the activity coefficient of q. At constant temperature, the local adsorption Gibbs energy
at surface j, denoted as Gj(xn)chern (in kgT per unit area), and corresponding to the equilibrium

(22) is given by

1 .
G_](xn)chem = _kB_TaGé]l (xn)mq (24)
q

where GC{ (xn) is the amount (moles) per unit area of adsorbed species q at the position x,, on

surface j and Mg the chemical potential of q given by

Mg = kpTin(g 4§ ) (25)
Equation (24) can be rearranged using the relation valid at thermodynamic equilibrium
auinimg =0 (26)
q

and the mass balance relation (the total number of adsorption sites is constant). G({ (xn) is related

to the local charge density by

S?’i (xn)= Fazq GCJI. (xn) (27)
q

where the superscript o holds for (protonation) reactions taking place at the surface and the
superscript 1 for (complexation) reactions at the iHp. We note in passing that the adsorption
isotherms as written in eqs 7 and 10 may be obtained by writing the condition stating that, at
equilibrium, the electrochemical potential of the free ions in the bulk solution is equal to that of

the corresponding ions bound at the surface.

Using the appropriate boundary conditions (constant charge, constant potential or
boundary regulation conditions) for different separation distance 4, i.e. different M, the potential

distribution y(xn, ym), the charge density I‘(xn, ym) and volume fraction ji,q (*n, ym) are

computed in an iterative scheme where the potential is taken as variable and updated till a self-
consistent solution is obtained. Electrostatic mirrors placed at the layers 0 and M+1 ensure the

condition of zero-electric field at these coordinates and the condition of electroneutrality for the

pair of colloids, i.e. the relation aaI(xn ¥m)=0. Then the total interaction energy G at a
n m

given M is yielded by

J n
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which is the pendant of eq 15.

Generation of the surface roughness. The surface profile is assigned following what we call a
‘lego’ type procedure. More specifically, the positions (n,m) along the surface to be modeled are
‘frozen’, meaning that the corresponding sites will effectively act as solid substrate. These sites
are inaccessible for molecules (ions, water). The chemical and electrostatics characteristics of
these (pK values, adsorption energies, number of sites, surface charges and e, values) may differ
from the ones chosen for the flat surface on top of which the asperities are grafted. An example is
given in Figure 1. The asperities may be of the type ‘protusion’ or ‘depression’, i.e. convex or

concave, respectively. One or both surfaces may contain asperities.

3. Results and discussion

The ‘stbox’ program was first tested for a number of 1D-interaction situations where
analytical expressions, generally given in the Debye-Hiickel (DH) approximation,*® are available.
Good agreement was found in the three geometries (flat, cylindrical, spherical) for the separation
range effectively corresponding to the DH regime (not shown). Results including charge/potential
regulations in the conditions of constant surface potential/charge were also successfully compared
to those expected on the basis of the expressions given by Hogg et al** and Usui.*> Considering
the multi-parameter nature of the issue presented in the previous section, the variety of situations
that can be envisaged is virtually infinite. We shall here focus on a few characteristic examples,
which clearly highlight the paramount importance of roughness and chemical nonuniformities in

determining electrostatic interaction energy.

As a starting point, we analyze the interaction between a flat plate (j=2) and a flat

surface (j=1) on which a bar of height /4, and width ¢ is positioned. Figure 2 shows the results
for different 4, and different bulk volume fractions j ﬁ' of a 1:1 electrolyte. The surface charges

are kept constant upon interaction and the charge density carried by the asperity, denoted as Sgl ,

is the same as the one carried by its supporting plane, denoted as S;)l . In the following, all the

charge densities S of interest will be given in elementary charge per unit cell (0.01 elementary
charge per unit cell = 1.78 pC cm™). Variation in _j {.,J allows for tuning the range of electrostatic
double layer (EDL) interaction expressed in terms of the Debye length k~!. In the framework of

the Debye-Hiickel regime, k 1 is read from the slope of the plot log(G) versus log(h). For

kh, <<1 (low J {f ), the roughness of the left surface is ‘unseen’, or otherwise stated, screened by
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the range of EDL interaction. The resulting interaction curve is essentially the same as that
between two flat surfaces. For kh, ©1 or kh, >1 (high j ), the spatial detail of the surface
profile, that is, the characteristic size of the asperity, becomes comparable to or even overrules the
range of EDL interaction. Upon increasing j l? , this is materialized by a splitting of the
interaction curves calculated for different 4,. At given j s , the larger h,, the stronger the
repulsion (the surface charges sj? have the same sign). At given #,, the larger J {f the less the

repulsion because of the screening effect of the counterions. The numerical results may be
compared with those expected on the basis of the scaling technique proposed by Derjaguin
(Derjaguin approximation, DA). We mention however that this latter is not expected to fit the
results since the surface geometry considered here is not ‘smooth’. The comparison is only
relevant in the sense that it clearly highlights the origin of the descrepancies between the
numerical and DA approaches. For the simple geometry of surface roughness chosen, we have

N-1 1
N

G (7, M) = G(ﬂat)(M)+§G(ﬂat)(M - hy / d) (29)

where the superscript ‘(flat)’ is read as ‘the interaction energy between flat parallel plates
(without any asperity)’. For high k% corresponding to weak overlap of the EDL, the DA well
predicts the computed G but underestimates G for low A% and high kh, (Figure 2). In these regi-
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Figure 2. (A) Interaction Gibbs energy corresponding C s°=0m <S2=00m
. . . . | . 2 g
to the situation depicted in the scheme panel (C). In
panel (B), the numerical results (full lines) are compared h,
to the predictions based on the DA approximation (dashed
ines) for 42 =103 (A~ /00 — -
lines) for g, =107 (k™ /d ©4.3). No Stern layers are >
explicitly considered ( e(Stern) = e(diffuse part) = 78). Sy S04
h
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mes, the interactions between elements of the surfaces that do not face each other contribute for
an overall repulsion that is not taken into account by the DA scaling technique. Similar results are

obtained when increasing the width of the asperity at given A#,.

In the next case, the charge density carried by the asperity differs in size and sign from that
(positive) at the surface where it is grafted (Figure 3). Besides, we choose S9 > 0. As intuitively
expected, when increasing kh, the interaction then progressively changes from repulsion to
attraction. For high A#,, the sign and magnitude of the interaction are predominantly determined

by the chemical properties of the asperity and of course by those of the opposed surface j= 2.

5107
r B
2 |
M S0 =004 s3=001
3102 | h,
21072 } _/V[\d
7 5, =-003
1102 - h
(h/d=M)
O =
4102
2102 t ! ! \ \
5 10 15 20 25
h/d

Figure 3. (A) Interaction Gibbs energy corresponding to the situation depicted in the scheme
panel (B) for jﬁ =102, No  Stern layers are  explicitly  considered
(e(Stem) = e(diffuse part) =78).

In Figure 4, two protrusions of the same height 4, are placed on the left surface ( j= 1). For the

sake of convenience, we shall denote the surface charge densities of the asperities as s;’l 5 We

have arbitrarily chosen SZ = 2.5‘;)1 . The respective positions of the two asperities are changed

1,2
by varying their separation distance * in the x-direction. In order to highlight the eventual effects
of » on G, h, was chosen such that ki, >1. For the simplistic configuration chosen, the
dependence of G on " is not very pronounced but still the results are illustrative of the

electrostatic anisotropy developed in the x-direction. To qualitatively understand the results, one

may reason in terms of the quantity A*. We emphasize however that the scaling distance & -1
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along the x-direction is arbitrary since this latter primarily indicates the extent of the EDL in the
y-direction. The physically relevant Debye length, k=1 , is actually function of x. For the sake of
illustration, we present in the Appendix a way to derive the functionality k> (x) in the cases
where A, /" <1. Getting back to Figure 4 and keeping in mind the previous point, it is clear that

" does not affect G for large A%, as intuitively expected. At lower k%, provided that the double-

0.8 7

0.7

0.6

0.5

0.4

0.3

o o

h/d

Figure 4. (A) Interaction Gibbs energy corresponding to the situation depicted in the scheme
panel (B). The full and dashed lines stand for */d =1 and */d =30, respectively. The bulk
volume fraction of 1:1 electrolyte is indicated. In this picture, the dielectric permittivity €, in the
outer Helmholtz layers is set to 20, otherwise 78.

layers in between the two asperities (in the x-direction) do not overlap (A" >>1), G remains
independent of A (high # ). In the other case, weak overlap of the EDL along the rough surface

(k" >>1) leads to a slight additional repulsion in the overall interaction curve and strong overlap
(K" <<1) to an attractive contribution. In this latter situation, the local electrostatic repulsion
between the asperities is completely screened and therefore not reflected in G. If increasing the
absolute magnitude of the charge on the two asperities, these effects are magnified. The DA
approximation can not predict any dependence of G on ” since the corresponding scaling of the

interaction energy between flat plates is done according to the y-direction only.

In Figure 5, we analyse the situation where s° =-s5°_(>0) and A*>>1 (same /4, for the two
a1 an
asperities and kh, >1). The total charge carried by the rough surface is kept constant (in the

example given, S° +5° +5° =0). The results are given for different S° and j f; =53107.
aj az 1 a]
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Contrary to first intuition, the overall interaction actually depends on SZI , the interaction

becoming repulsive upon increase of Sgl . The results can be qualitatively understood by means

of the DA approximation, which is now written

Gpa (521’2 ,M) = %G(ﬂat)(M) + %G(ﬂat)(sgl M - h, /0’) +%G(ﬂat)(s§2 M - h, /0’) (30)

where the two last terms in the r.h.s. of eq 30 stand for the energy of interaction between a flat
plate carrying the charge Sgl (or ng) and a flat plate carrying the charge S5. The sign and
magnitude of the overall interaction results from the asymmetry of the interactions between the
asperities taken separately and the surface j=2. For the example given, the DA approximation
qualitatively yields the same results as those obtained by the numerical analysis and

quantitatively we have Gpa > G. For S§ =0, changing in the charge sgl = —ng carried by the

protrusions would affect the local distribution of the countercharge but not the total Gibbs energy

of interaction.
0.1
A B
0.08 521 =0 s5=0.02
h,/d=8
<>
L .
| N/ d=10
0.04 4 ng /v[\l
h/d=M
0.02 i
0 Q
9 10 1 12 13

hi/d

Figure 5. (A) Interaction Gibbs energy corresponding to the situation depicted in the scheme
panel (B). The charges carried by the asperities are indicated. In this picture, the dielectric

permittivity €, in the outer Helmholtz layers is set to 20 (otherwise 78). J f; =531072,

In Figure 6, specific interaction of anions with both surfaces is taken into account. The
characteristics of the inner and outer Helmholtz layers as well as the molar Gibbs energies of
adsorption are specified. Upon increase of the asperity size, the interaction gradually changes

from repulsion to attraction. The total adsorbed charge at the iHp, which comes into play for the
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determination of G is given by the summation of the local adsorbed charges along the contour of

surface 1. For low Ah,, this charge does not suffice to reverse the sign of the total charge carried

by surface 1, so that repulsion ensues (S5 >0). When increasing k#,, the electric and chemical
properties of the asperity prevail in the determination of G (see Figure 2) so that, roughly
speaking, the only charge distribution in the vicinity of the asperity, or otherwise stated, the local
regulation features at the asperity become of importance. The total effective (apparent) charge
carried by surface 1 decreases and now superequivalent adsorption occurs, thus leading to

attraction.

810"

B
610*
5‘;’1 =004 .S‘g =002
haDadSGmil,Z =-kT

410* ~ >

A

S5 =004

210° (h/d=M)

Figure 6. (A) Interaction Gibbs energy corresponding to the situation depicted in the scheme
panel (B). jy = 1072. For both surfaces, the dielectric permittivities €, in the inner and outer
Helmholtz layers are set to 20 and 50, respectively. In the diffuse part, ¢, =78. Specific
adsorption of anions on both surfaces is considered.

In Figure 7, interaction curves are given for different combinations of sgl , ssl s Lads Gm,il,z and

various values of A#,. The results, qualitatively in line with intuition, again illustrate the
possibility of sign reversal of the overall interaction as the result of the presence of

morphological/chemical heterogeneities.
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Figure 7. Interaction Gibbs energy computed for different topological/chemical heterogeneities
(indicated) located at surface 1. The schemes in panels B, D and F refer to the set of curves of
panels A, C and E, respectively. J ﬁ' =53107>. For both surfaces, the dielectric permittivities e,

in the inner and outer Helmholtz layers are set to 20 and 50, respectively. In the diffuse part,
e, = 78. Specific adsorption of anions on both surfaces is considered.
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Next, we analyze the situation where both surfaces contain an asperity, the sizes of these being

identical. The charge carried by the asperity positioned at surface j=2, denoted as S,

varied in magnitude as well as in sign compared to that of the asperity at surface j=1 (s

0.J%2 g

0,j=1
a

chosen positive). The spatial shift between the protrusions is denoted as x. For high 4, G is

independent of x for reasons already mentioned. At lower 4, for g~

lsg’Fz > (0, the results

presented in Figure 8 indicate that for a given separation distance, the energy of interaction

increases when decreasing X and increasing sgd:? The repulsive energy is maximum when the

0,j=1

two protrusions are in line (x=0). For s%/15%=2

<0, decrease of x alters G both in

amplitude and sign because of the increasing contribution of the attractive bar-bar interaction.

Upon increase of X, the interaction energy tends to a constant value as the result of the

diminishing of the extension of the double layers overlap in the direction given by the extremities

of the two asperities. The conclusions pertaining to the effect of x on G are in line with those

derived by Tsao™ for electrostatic interactions between two corrugated surfaces. In this paper, the

interaction energy is computed using a perturbation theory valid for smooth corrugation and only

the case of uniformly charged surfaces is examined.
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Figure 8. Interaction Gibbs energy (A and B) corresponding to
the situation depicted in scheme C. In panel A, the dashed and
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Interaction between heterogeneous surfaces

As a final example, we compute the interaction energy between two plates of which the surface
charges are determined by the charge determining ions H' present in the solution (equilibria

6a,b). Surface (j=2) is flat and surface (j = 1) contains a protusion of height 4, . Figure 9 shows
the results for different /4, and different pH’s. By choice of the pK’s, we have ij-’zl =45 and

ij-’zz =8.5. The results for 4, =0 have already been discussed in detail in ref. [36]. Upon

increase of h,, the repulsion (pH = 3,10) or the attraction (pH = 6, pHg’:l) increases at given /.

For the case where induction takes place (pH =4.4), the transition long-range repulsion/short-

range attraction occurs at longer separation distance. The 2D-morphology as introduced for the
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left surface generates a loss of the symmetry of G with respect to the pH’s, denoted pH; and
pH,, and verifying pH; - ij-)zl = ij?z 5 - pH, (see panel A). The trends constitute the pendant

of the results discussed in Figure 2 for the constant surface charge situation.

4. Conclusions

The electrostatic contribution to the Gibbs energy of interaction between heterogeneous
surfaces has been evaluated for simple geometrical models and various boundary conditions.
These are pertaining to the surface charges carried by the asperities and by the planar surfaces on
which they are grafted. The analysis presented is far from being exhaustive since multiple
combinations of asperity distributions and charge density distributions can be imagined and
computed. The few examples presented illustrate the variety of interaction situations that can be
handled by the theoretical formalism described. To our knowledge, the method of calculation
outlined in this paper is the first that offers the possibility to concomitantly account for the effects
of surface roughness and non-uniform surface charge density. On top of that, various regulation
mechanisms as originating from the presence of specific interactions of ions from the background
electrolyte with the surfaces can be introduced. The examples in this study clearly highlight the
dramatic effects of surface heterogeneities on the Gibbs energy of interaction, both in sign and
magnitude.

We recognize that the surface profile that is generated with the lego-procedure described
may be, for certain practical situations, restrictive since the ensuing anisotropy is two-
dimensional only. A challenge remains the development of a methodology which allows
mimicking of three-dimensional patterns and still accounts for the chemical and electrical
components of the regulation of the double layers at the same level as the 2D-analysis presented

in this paper.

Appendix

In this appendix, a general expression is given for the electrostatic potential distribution

y(x', y') in the diffuse part of the double layer at an isolated surface of which the profile is

described by the spatial functionality y' =) (x) (section Al). (x', y') are the spatial variables

and, for mathematical convenience, (x, y) are dimensionless variables (see below). For the sake

of simplicity, the constant (surface) potential condition is chosen but the analysis can also be
performed for the constant charge case and extended, in a very elegant way, to the situation of

interaction between two charged rough surfaces or between charged flat and rough surface
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(section A2).” The development proposed constitutes an extension of the work by Tsao* because
the Taylor expansion we derive here for y(x, y) is valid for smoothly as well as moderately

roughed surfaces (see below).

Al. Solution of the linearized Poisson-Boltzmann equation for a rough surface: use of the
perturbation theory and calculation of k> (x). For a two dimensional problem, the linearized

PB equation with homogeneous dielectric permittivity is written

20 (" o) wluls o
) I
e Hy

One can scale the y’-axis and the x -axis as followed
y=hky (A2) ; x=kch, /" (A3)
with h, the characteristic height of the asperities and ” the typical correlation length

characterizing the distribution of the protrusions along the surface (see Figure 4B). x and y are

from now on dimensionless quantities. Equation Al is then rewritten

2 2
PLEACE) L2 ) e (A%)
px Wy

with 1=(h /") (A3)
Provided that /<1, the potential }/(x, y) may be expanded as follows

o

V(%) =y¥o(x.»)+ &y (x.)1" (A6)

n=1

yo(x, y) is the first order term of the Taylor development and is simply given by

Yo(x,») = 4g(x)exp(-) (AT)
with Ap(x) =y %exp(y(x)) (A8)
y° is the surface potential defined by y/(x,y = y(x)) = ¥°, with y;(x) = kv| (x). One can easily

show that the terms of order O( I ) ,, are given by the recursive differential equation

n21
2ya(x,p) _ ()
> ~Ya(x.p)=- 2 (A9)
Ky px
The boundary condition associated with eq A9 is
n2l Va(x.y=»(x))=0 (A10)

" Detailed derivation of the results presented in this appendix will be provided in “supporting information”
of the forthcoming publication of chapter 11
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Selecting the solution verifying y(x, y— D) — 0, the terms )/, may be written in the form

n

n21 yn(x,y)= (An(x)+ aBkyn(x)ykJexp(—y) (A11)

k=1
Condition (A10) yields the general relationship which exists between the unknown spatial

functions 4, (x) and By, (x) to be determined

An(x) == éin,n(x)(yl ()" (A12)
k=1

After substitution of eq All in eq A9 and identification of the coefficients By ,(x) of the
polynome in y, one finds the recursion formulas allowing the calculation of the Bk,n(x) and,

subsequently of the A, (x) (eq A12). The mathematical analysis is straightforward but tedious.

2n
The results are: By na(x)= 1 ET () (A13)
’ 201 lezn
n-3 -y udp 2(n—2)B
By ()= 2B, (1) B i) B o (1) . S L)
’ 2" iz 2 (n-1) 22 (n-1)1 c0-2)
_n-1 4 (n-i-1)! p-ziBn-i-l,n—i (x) 1 Hz(n_3 By5(x)
Bn-Zn(x)_T n—ln(x) i+l 2i t 3 2(n-3)
i—inzs2 (n-2)! e 2" (n-2)0
(A15)
_n-jtl N2 (i )P By e (%)
B, _: =———B . + - - +
n-j.n (x) 2 n-j+Ln (x) i=1,§j+3 21+1(n—j)! ux21
1 p-z(n_j_l)Bl,jH (x) (A16)
yn-j-l1 (n—j)! ux2(n—j—l)
2
3 1 UW'By h-qlx
Byn(x) =2 Bynlx)* o, 1;21( ) (A17)
2
1 W4,

By n(x)= By a(x) +5““—2‘(x) (A18)

Lo

For a given [/, calculation of the A4, (x) and By , (x) is then iteratively performed up to the order
n, verifying

(%), Y, (2 ) v 1(x0) <<1 (A19)
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The potential distribution is then completely determined
n,21 k m\
V(%) =y exp(n(x)-7)+ & & Bny (X)(ym -gn () ) Fexp(-y)  (A20)
k=1 m=1
The dependence of k*! (written in its dimensionless form, see eq A2) on the position x is then

readily obtained from eq A20

n*l k By, M q _
v le=yexp(n(x)-k*")+ & aBm,k(x)%gk* 07 g (x)g" g Mexp(-k+7T) (A21)
k=1 m=1 B

A2. Application for the situation of interaction between two rough surfaces. We now consider the

interaction between two surfaces denoted 1 (left surface) and 2 (right surface) and defined by the

profiles y =y (x) and y =y, (x) , respectively. As in eq AS, we define /; and /, by
A 2
h,= (hau / 1,2) (A22)
with /, ~and ", the characteristic heights and correlation lengths of the asperities on surfaces

1 and 2. We treat the case £ =1, = /. Equations A3-A6 remain valid after replacing / by

J (< 1) . The first order term Y/, (x, y) is written
Yo (x,y) = Co(x)cosh(y)+D0 (x)sinh(y) (A23)

Co (x) and D, (x) are calculated from the boundary conditions Y/, (x, Y=02 (x)) =Y\, with
yﬁ , the potential at surface 1 and 2. One obtains

c (x) :yg sinh (yl) -7 sinh(yz)
0 Sinh(yl - yz)

_ V1 cosh (y2 ) -y5 cosh (yl )

(A24) ; Dy(x) sinh(y; - »,)

(A25)

The terms Y/, (x, y)|n verify eq A9 and may be written in the general form

2]

Vo (59) = Cy (x)cosh () + Dy (x)sinh () + B Ea ()7 cosh (3) + 8 Fin (x)* sinh () (A26)
k=1 k=1

The functions C, (x) and D, (x) are related to the unknown Ek’n(x) and £y, (x) via the
conditions Yy, (x, Y=02 (x)) =0, which yields

1 en

Cp(x)=—F—=¢eQ Exnl(x ykSinh ¥y )cosh(y —yksinh ¥ Jcosh (y
()= oy =y 4 B () sinn () oo (1) = Fsinh 3 eos 1)
o g
+sinh (y, )sinh (1) & Ficn (X){y%( -yg}g (A27)
k=1
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1 en k . k ..
D = F h h - h h
(% Sinh()’z—)ﬁ)gka:i kn (x){yl sinh ;) cosh(y;) - 3 sinh(y; ) cos (yl)}
- Kk Kk
+cosh (1, )cosh (1) & Eia (x){y1 -yz}g (A28)
k=1

To obtain the Ey (x) and Fy (x) , one can rewrite the expression A26 for the potential in

terms of exp( y) and exp(— y) so as to return to a treatment similar to the one presented in

section Al. One then easily shows that the recursion formulae (A13-A18) allow computation of

the Ey , (x) and fy , (x) via the simple transformations
1
Bk,n (x) * E(Ek,n (x) - Fk,n (x)) and 4, (x) Gy (x) - Dy (x) (A29a,b)

yioy Bk,n(x)1%(Ek,n(x)+Fk’n(x)) and 4, (x)2C,(x)+D,(x) (A30ab,c)

The potential distribution (eq A26) is found after solving the system of eqs (A24-A25, A27-A30)
up to the order n, verifying A19.
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CHAPTER 12

ConNcLUSIONS, PERSPECTIVES

The present study largely focuses on the equilibrium properties of electric double layers
in conducting colloidal systems. Their interfacial characteristics are generally determined by the
concomitant occurrence of electronic and ionic charging processes. As such, the resulting double
layers combine the reversible en polarizable features as met for purely insulating and conducting
colloids, respectively. The double layer can be polarized by means of a potential externally
applied across the interface. If no electron transfer occurs between the solid and liquid solution
phases, the double layer is said to be completely polarized; in the other case, faradaic
depolarization takes place. A fundamental parameter characterizing such amphifunctional
colloids is the potential at the slip plane located in the vicinity of the particle surface, the so-
called electrokinetic potential or zeta-potential (z-potential). This parameter is a useful indicator
of the charge carried by the surface and allows the prediction of a number of interfacial
phenomena, e.g. stability against coagulation, sedimentation kinetics, particle-particle or particle-
electrode interactions under various conditions (for instance under application of external electric
fields), to mention just a few of them. The z-potential of colloids may experimentally be
determined by electrokinetic methods. The movement of charged colloidal particles in an external
electric field is termed electrophoresis. When the charged solid surface is fixed, the electric field
causes a movement of the liquid called electroosmosis. Forcing a liquid through a capillary or
porous plug induces an electric potential difference called the streaming potential.

The work reported in this thesis combines theoretical and experimental investigations of
the double layer properties of model amphifunctional substrates, such as gold and aluminum. The
experimental analysis is essentially based on the streaming potential technique. The electrokinetic
response is studied for various bulk solution compositions in the absence or presence of faradaic
processes at the interface. Typically in electrochemistry, electron transfer between the solution
and the conducting solid phase is effected by external application of a potential difference across
the interface. In this work, the processes and circumstances under which such electron transfer
can occur without the need for any applied potential difference are investigated. The analysis
leads to the development of new concepts concerning bipolar electrochemistry and bipolar
electrode kinetics in the specific context of electrokinetics of conducting surfaces. The streaming
potential measurements are analyzed in terms of the electrochemical characteristics of the

electron transfer under the experimental conditions of interest. Accordingly, theories are
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elaborated for converting the electrokinetic data into z-potentials. The ensuing results are
compared with predictions based on double layer models developed for describing the interfacial
properties of oxidized metals polarized by an externally applied electric field and/or as the result
of the presence of an electroactive couple in the solution. These models are further used to
quantitatively interpret double layer potentials derived from atomic force microscopy
measurements performed on metallic and semiconducting substrates polarized via an external
source.

In chapter 2, a theoretical model is proposed to capture the basic double layer properties
of amphifunctional substrates, such as partly oxidized metallic surfaces. Emphasis is placed on
the dependencies of the z-potential, the isoelectric point, the open-circuit potential and the
potential of zero-surface charge on the solution pH and the potential difference applied across the
interface. In chapter 3, AFM results obtained for gold electrodes subjected to an external
potential are analyzed in terms of the amphifunctional model previously presented. This analysis
highlights the importance of including surface roughness for the interpretation of double layer
potentials as derived from measured force/separation distance curves. The possibility of specific
interaction of ions other than the charge determining ones with amphifunctional substrates is
considered in detail in chapter 4. Experimental data referring to the adsorption behavior of
sulfate and phosphate anions onto a TiO, surface as a function of pH and applied potential are re-
examined and interpreted after extending the amphifunctional model to the case of
semiconducting oxides. Chapter 5 describes the bipolar behavior of flat aluminum surfaces
placed in a thin-layer cell, subjected to an electric field applied in the solution parallel to the
surfaces. It is shown that above a certain value of the total potential drop across the cell, electron
transfer occurs at the metallic surfaces in a direction perpendicular to that of the electric field set
in solution. A first-order analytical model is proposed for computing the total faradaic current
flowing in the cell from monopolar voltammetric data. Assuming that the electric field remains
constant in the solution, use of those data indeed allows straightforward derivation of the spatial
distribution of the faradaic current density along the surfaces. The integration of the latter over
the relevant surface area yields the overall bipolar faradaic current, as reflected in the measured
conductivity curves. In chapter 6, the role of faradaic depolarization in the electrokinetics of
conducting surfaces is extensively discussed. It is demonstrated that electron transfer reactions
may be induced by applying a pressure drop along the cell thus forcing the electrolyte solution to
flow tangentially with respect to the electrodic surfaces. This mechanism is shown to be effective
providing that the interface exhibits reversible or quasi-reversible electrochemical characteristics.

The analysis is supported by experimental data obtained on gold and aluminum in the presence or

absence of the redox couple Fe(CN)é_ / Fe(CN)g_ . The classical Helmholtz-Smoluchowski (H-
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S) equation is inadequate for interpreting streaming potential measurements under conditions of
faradaic depolarization. Extension of the H-S equation requires computation of the bipolar
faradaic current as a function of bulk solution composition, applied pressure and the resulting
streaming potential. For the sake of illustration, this is done by analyzing the pressure dependence
of the bipolar current assuming that the potential decay in the solution is linear. In chapter 7, the
distribution of the lateral electric field in the thin-layer cell, as tightly coupled to that of the
transversal faradaic current density, is rigorously tackled for the two limiting cases of bipolar
electrodic behavior, i.e. totally irreversible electron transfer and Nernstian (diffusion limited)
electrodics. The analysis is carried out for the situation where the driving electric field for
faradaic depolarization is externally applied in the solution. For both cases investigated, the
theoretical calculations are successfully compared with experimental data. Deviation of the
potential distribution from linearity is shown to be substantial for reversible bipolar faradaic
processes, even at relatively low applied fields. In chapter 8, numerical evaluation of the bipolar
current, as resulting from the confined hydrodynamic flow of an electrolyte solution containing a
reversible redox couple, is carried out. As in chapter 7, the analysis integrates the interplay
between conduction and faradaic processes taking place in the bulk solution and the bulk solid
substrate. The electron transfer is now limited by convective diffusion of the electroactive
compounds to/from the conducting surfaces. Following this analysis, the characteristic features of
streaming potential/pressure plots under conditions of reversible faradaic depolarization are

derived. On the basis of the theory developed in chapter 8, an attempt is made in chapter 9 to
derive the z-potentials of the interfacial system goldl(Fe(CN)z_ / Fe(CN)g_ , KNO3) electrolyte

solution from the electrokinetic data reported in chapter 6. The inadequacy of the theory is
attributed to a subtle spatial distribution of the reversibility of the electron transfer reaction along
the bipolar surface. This is inferred by comparing cyclic voltammetric data under convective
conditions and electrolyte compositions approaching those met in electrokinetic experiments with
the current density distribution computed under the very demanding condition that the faradaic
processes are fully reversible, irrespective of the local convective diffusion situation. Semi-
quantitative analysis of the data is performed within the limit of high-applied pressures where the
electron transfer is predominantly limited by the electron transfer kinetics. The resulting z-
potentials compare well with those obtained for gold surfaces in the absence of faradaic
depolarization. In chapter 10, sets of analytical equations and a numerical method are proposed
to account for the regulation phenomena that occur during encounter of two charged surfaces
(homo- and hetero-interaction). The interacting double layers are described on the Gouy-Stern
level, which allows explicit consideration of the chemical and electric components of the

regulation processes. For a number of interaction situations considered, the analysis highlights the
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narrow link between the spatial potential/charge distributions and the resulting electrostatic
contribution of the total Gibbs energy of interaction. In chapter 11, it is shown how the
numerical approach adopted in the previous chapter allows simultaneous implementation of the
three sources of deviation from DLVO predictions for electrostatic interaction between two
colloids, namely (i) the occurrence of regulation phenomena, as examined in chapter 10 for one-
dimensional surfaces and the presence of (ii) chemical and (iii) topological surface

heterogeneities. Several illustrative examples are provided.

The theory for the potential and charge regulations upon interaction of two colloids, as
presented in chapters 10 and 11, may serve to achieve better interpretation of AFM force
measurements. Comparison with available experimental data is the incentive of a paper currently
in preparation. The possibility of using this theory for describing the influence of electrostatic
interactions on the adsorption behavior of immunoglobulin G at negatively charged silica and
positively charged amine-functionalised silica' is under study. Description of the secondary
electroviscous effect” integrating the possiblity of double layer regulation is also in preparation.
Chapters 2, 4 and 10 offer the theoretical elements required to account for electronic charge
regulation upon encounter of two colloids, one (or both) of them exhibiting conducting
properties. Experimentally, it would be interesting to analyse by AFM the force curves for such

systems in the presence of well controlled faradaic reactions (by means of redox-active species).

A novel and fundamental issue addressed in this thesis concerns the intimate coupling
between electrokinetic and electrode kinetic properties of interfacial systems of the type
conducting substratelaqueous electrolyte solution (chapters 2-9). A number of important aspects
are discussed and the underlying analyses open the way for further investigations and prospective
developments and applications. Some of those are outlined below.

In chapter 9, the streaming-potential data are analyzed after deriving the overall bipolar
current in the asymptotic limit of high-pressure where the electron transfer reaction is thought to
be mainly limited by electron transfer kinetics. A rigorous theoretical evaluation of the bipolar
faradaic current which integrates the spatial distribution of the kinetic and reversible (convective-
diffusion limited) components of the local faradaic current density (quasi-reversible bipolar
process) is still needed. This analysis, which should further take into account the interrelation

between conduction and electronic processes as underlined in chapter 7, is currently underway.

The common basis for the collapse of streaming potential of metals in electroactive electrolyte or,

for that matter, the enhancement of electrophoretic mobility of conducting particles (‘superfast
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electrophoresis’) is the occurrence of bipolar faradaic depolarization. The work discussed here
offers new perspectives to achieve better theoretical description of the superfast electrophoretic
effect, which so far has mainly been considered in connection with electrophoresis of ion-
exchanger particles submitted to high applied external fields. The parallel which exists between
superfast electrophoresis for conducting particles and ion-exchanger particles is of the same
nature as the one between the collapse of streaming-potential for conducting ‘hard’ surfaces and

‘soft” surfaces, like ionic-conducting gel phases.’

As an extension of the work reported in this thesis, one could conceive faradaic depolarization of
semi-conducting surfaces in the context of electrokinetics as driven by tangential hydrodynamics

and photoexcitation of the solid phase.

For the electrokinetic measurements reported, the typical size of the spacing between the bipolar
surfaces placed in the thin-layer cell allows the decoupling of the transversal potential distribution
inherent to double layer formation and the lateral potential distribution resulting from the
hydrodynamic flow for the determination of the overall bipolar faradaic current. In view of the
development of small-integrated devices such as micro- and nano- reactors, an exciting challenge
remains the experimental and theoretical investigations of the regime where such decoupling is
lost, i.e. the regime where cell dimension and double layer thickness are no longer extremely
different. To that purpose, one can think of using recently developed microslit electrokinetic set-
up,* which is currently tested in our laboratory. This set-up offers the possibility of measuring

streaming potential, streaming current and conductivity curves for a wide range of channel sizes.

The electrokinetic study presented deepens the insight into the interfacial properties of
conducting surfaces under various chemical and electrochemical conditions. As mentioned in
chapter 1, such knowledge is of importance for the understanding and optimization of
electrophoretic deposition processes in aqueous systems. In the longer term, other concrete
applications of this knowledge can be imagined, for instance in the field of micro- or even nano-
technology. Often regarded as components of ‘the new industrial revolution’, these technologies
deal with matter in its most elemental form, i.e. atoms and molecules, as computers break down
data into their most basic binary representation. These advanced technologies are
multidisciplinary in the sense that they integrate numerous fundamental aspects related to
scientific fields of different origins, such as optics, hydrodynamics, electrokinetics and
electrochemistry. Paradigms are the micro total analysis systems (m-TAS), also called lab-on-a-

chip,” or micro-reactors. For the sake of illustration, in the following, a short description is
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presented for the basic processes occurring in m-TAS systems, highlighting the fundamental
physicochemical features inherent to these micro/nano-sized devices and the relevancy of the
results in the current thesis for the comprehension of electrochemistry which is steadily integrated
in small areas and at higher speeds in conjunction with hydrodynamics.

The m-TAS was originally conceived as the miniaturization of chemical analysis systems
to act as sensors for automated sample measurement in research laboratory, factory or field
locations. A m-TAS usually looks like a planar device in which or on which chemical processes
are being performed to go from reactants to products or from sample to analysis. m-TAS are based
on either microfluidics or microarrays. The former is the equivalent of printed circuit board
(PCB) in microelectronics, routing fluid paths in a planar format and reducing the plumbing and
tubing demands of conventional auto-analyzer systems in the same way as the PCB reduces the
need for complex wiring. In the latter, the sample or reagent is immobilized in large arrays on a
plate and fluids are flushed over the surface. Roughly speaking, the processes taking place inside
m-TAS are (i) the injection of the fluid mixture to be analyzed (ii) the transport of the fluid in the
channel by electroosmosis/electrophoresis or by applying pressure drops (iii) the separation of the
fluid components by various methods such as electrophoresis, chromatography, etc (iv) the
reaction (chemical and/or electrochemical) and finally (v) the detection. The past decade has seen
the merging of electrochemical methods for detecting electroactive compounds in m-TAS. These
methods do not suffer from size limitations contrary to optical techniques. Furthermore, reducing
the size of spherical’hemispherical microelectrodes generates benefits in the sense that the
development of diffusion layers for such geometries is accomplished in very short time. A (very)
schematic representation of a m-TAS functioning with electrochemical detection is given in
Figure 1A. One of the great problems ahead related to the use of electrochemical detection for
analyzing electrophoretically or hydrodynamically driven species is the possible interference
between the electric field required for the detection (/) and the electric field applied or
electrokinetically generated for the transport process (77). A classical solution consists in the use
of high electrolyte concentration in the chamber so as to maintain a low resistance such
minimizing eventual cross-talk between the different fields involved. The price of such a solution
is that it diminishes the performance of the migration process (longer time scale).

In Figure 1B, an alternative detection principle for electrokinetically driven fluids is proposed.
This method offers the advantage that the imposed hydrodynamics induces electric fields, which
simultaneously serve for both transport and detection phases. The trick relies on the partial
coating of the channel wall(s) with metallic compounds. The ‘bipolar sensor’ thus generated may

be connected to a system of electrodes which allows measurement of the total electric field along
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the bipolar surface (this field is determined by the streaming potential of the metallic coating
considered) and the bipolar current. Detection is mostly considered from a purely analytical point
of view: a calibration line relating the measured quantity with the concentration of the compound
of interest is first established and then comparison with data collected for unknown samples is
performed. Rare are the physicochemical integrations of the detection data. With the method
proposed, reaction kinetics and/or mass transport properties of the reactants may be directly
derived from the analysis of 3-dimensional plots: induced field/applied pressure/bipolar current
(chapter 8). Performing successive metallic coatings of different sizes along the channel wall(s)
and at different separation distances (arrays of bipolar sensors) may also render possible spatial
electrochemical separation of the compounds. Use of a single bipolar sensor might also achieve
this providing that details of the spatial distribution of the faradaic current at the bipolar surface

are assessable.
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Figure 1. (A) Representation of a m-TAS device working according to the principle of capillary
electrophoresis or electrokinetically driven fluid (corresponding to imposed and induced field V7,
respectively) with (monopolar) electrochemical detection (imposed V3). In panel (B), a similar
device is sketched except that the electric fields V; and V, required for transport and detection are
both now electrokinetically generated.
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SAMENVATTING

In dit proefschrift worden de evenwichtseigenschapen van elektrische dubbellagen (EDL)
aan geleidende oppervlakken bestudeerd. Die zijn bepaald door de koppeling van elektronische
en ionische ladingsprocessen. Zulke amfifunctionele dubbellagen combineren de reversibele
eigenschappen van EDL zoals zij aan niet-geleidende oppervlakken ontstaan, met het
polariseerbare karakter van EDL aan pure metalen. De EDL kan gepolariseerd worden door een
aangelegd potentiaalverschil tussen de vastefase en de vloeistoffase aan het grensvlak, zoals
gebruikelijk in de elektrochemie. Als elektronuitwisseling tussen oplossing en oppervlak optreedt,
ontstaat een faradayse stroom die door het uitwendige circuit loopt: faradayse depolarizatie van
de EDL vindt plaats.

Een belangrijke EDL parameter is de potentiaal in het vlak waar de afschuifsnelheid nul
is, de zogenoemde zeta-potentiaal (Z-potentiaal). Deze potentiaal kan beschouwd worden als de
effectieve elektrische potentiaal van het kolloid, en is een maat voor de hoeveelheid lading aan
het oppervlak. Die lading speelt een belangrijke rol in de wisselwerking tussen kolloidale deeltjes
in een dispersie of tussen een elektrode en een deeltje. De Z-potentiaal kan worden gemeten met
behulp van elektrokinetische methoden. De beweging van geladen kolloidale deeltjes in een
aangelegd elektrisch veld wordt elektroforese genoemd. Als het geladen oppervlak gefixeerd is,
veroorzaakt het veld een beweging van de vloeistoffase, dit is elektro-osmose. Als de
vloeistoffase door een capillair wordt geperst, onstaat er een potentiaalverschil tussen de
uiteinden van het capillair, de stromingspotentiaal.

Het werk in dit proefschrift betreft theoretische en experimentele analyse van de
karakteristicken van EDL die aan amfifunctionele oppervlakken ontstaan. Goud en aluminium
zijn illustratieve voorbeelden. Het elektrokinetische gedrag van die systemen wordt geanalyseerd
voor verschillende oplossingssamenstellingen in de aanwezigheid of afwezigheid van faradayse
processen. Het is onderzocht hoe en onder welke omstandigheden elektronuitwisseling ontstaat
zonder dat een potentiaal aan het grensvlak hoeft aangelegd te worden. Die analyse leidt tot het
begrip van bipolaire elektrochemie en bipolaire elektrodekinetiek in de specifieke context van
electrokinetische verschijnselen aan amfifunctionele oppervlakken. De
stromingspotentiaalmetingen zijn geinterpreteerd rekening houdend met de bipolaire
elektrochemische karakteristieken van de elektron overdrachts reactie onder de hydrodynamische

omstandigheden van de experimenten. Theorieén zijn ontwikkeld om de gemeten
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stromingspotentiaal in de Zz-potentiaal om te rekenen. De experimentele resultaten worden
vergeleken met voorspellingen die gebaseerd zijn op dubbellaagmodellen ontwikkeld voor de
grensvlakstructuur aan gedeeltelijk geoxideerde metaaloppervlakken gepolariseerd door een
extern veld en/of als gevolg van de aanwezigheid van redoxactive stoffen in de oplossing. Die
modellen zijn verder gebruikt voor de interpretatie van dubbellaagpotentialen zoals bepaald met
AFM metingen aan metalen en halfgeleiders gepolariseerd door een externe bron. Een ander
aspect dat in dit proefschrift wordt bekeken heeft betrekking op heterointeractie, of, anders
gezegd, de wisselwerking tussen geladen oppervlakken waarvan de elektrische en chemische
eigenschappen verschillen. De daarvoor ontwikkelde theorie is een uitbreiding en aanvulling op
bestaande theoretische benaderingen. Zowel met regulatiefenomenen als met fysische en

chemische oppervlakteheterogeniteiten wordt rekening gehouden.
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DANKWOORD

Het proefschrift dat u net heeft gelezen (of gedeeltelijk of helemaal niet) is eindelijk af.
Als fransman, heb ik toch die vier jaar overleefd (nee, ik ga niet klagen over het eten, het weer en
de rare Nederlandse gewoontes die ik heb meegemaakt) ... Maar, zoals u al weet, zo erg was het
niet, maar juist het tegenovergestelde! Ik kan nu wel beweren dat er fransen zijn die helemaal
naar hun zin in Nederland kunnen hebben. Ik was, ben en zal altijd een van die zijn. Mijn verblijf
was een heel leerzame ervaring in allerlei aspecten, zowel personeerlijk als wetenschapelijk. Dit
was mede mogelijk gemaakt door de heel bijzondere sfeer in de groep en van sommige
bijzondere mensen die mij hebben gesteund, aangemoedigd en begeleid in goede zoals in slechte
tijden.

Ten eerste wil ik de mensen noemen, zonder wie dit proefschrift nooit tot stand was
gekomen.
Herman, er valt zoveel te zeggen over onze samenwerking dat ik eigenlijk niet weet waar ik
beginnen moet. Je was altijd (tijdens de werkuren, ‘s avonds laat en in de weekenden) bereid om
mijn vragen te beantwoorden en om duidelijke perspectieven aan mijn werk te geven. Jouw
expertise in elektrochemie en elektrode kinetiek heb ik heel veel benut en gewaardeerd. Jouw
filosofie van de wetenschap past heel goed bij mij en heel vaak heb ik de indruk gekregen dat
jouw rol niet beperkt was als die van supervisor. Als buitenlander, heb ik aan het begin zware
momenten gehad om alles op een rij te zetten. Ik was ver weg van huis voor lang en het viel niet
mee om eigen herkenningtekens te vinden. Je was (en bent nog steeds) een van de personen die
geholpen hebben om mijn verblijf in Wageningen gemakkelijk en aangenaam te maken. Ik kon
geen betere supervisor hebben. Bedankt voor alles Hermanus! (toch maar oefenen voor het
poolen).
Hans, tu as toujours montré beaucoup d’intérét pour mon travail de thése et le chapitre 10 n’en est
qu’une illustration. Tu es toujours prét a partager ton savoir et malgré 1’expérience et la
connaissance des colloides qui sont les tiennes, tu cherches toujours a apprendre de ceux qui a
priori ont encore tout a apprendre. Je regrette seulement que les régles concernant 1’obtention et la
soutenance d’une thése a Wageningen n’aient pas permis un caractere plus officiel au role
important que tu as joué dans le cadre de mon travail. “La modestie est au mérite ce que les
ombres sont aux tableaux. Elle lui donne de la force et du relief”, Jean de la Bruyére. Tu

comprendras certainement ce que je veux dire par la. Merci, Hans.
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Josep, Jaume, Joan, I want to thank you for our very productive cooperation (chapters 7 and 8). I
enjoyed a lot my two stays in Spain. Josep, many thanks for the medical (and moral) support you
provided during my ‘strawberry-face time’. Muchas gracias para el aal tem en Lleida!

Mieke, bedankt voor jouw commentaren en correcties van hoofdstukken 2, 4 en 5.

Een student heb ik mogen begeleiden in mijn AIO-schap, Geertje Huijs. Dit was een zeer
leerzame periode voor mij. Geertje, veel succes met jouw baan in Nizo.

Wim, dank je voor de elektrochemische and elektrokinetische experimenten dat je voor mij hebt
uitgevoerd. Marcel, dank je voor jouw bijdraag in hoofdstuk 7. Ab, dank je voor de goede
adviezen over het gebruik van de stromingspotentiaal apparatuur. Raewyn, thanks for the
language corrections you brought in chapters 1 and 12. Gert, dank je voor de omslag van het
proefschrift.

Naast de mensen die direct bij mijn onderzoek betrokken waren, waren ook anderen (of
dezelfden) van Fysko die hebben gezorgd voor een prettige tijd en voor oplossingen aan
dagelijkse problemen die ik ben tegengekomen. Die wil ik ook noemen.

Ben, Rhoda, Anneke, Arnold, bedankt voor de gezellige discussies tijdens de koffie-tijd. Ben,
Rhoda, de shag dat jullie roken is heerlijk. Sorry voor de aanstekers die ik van jullie onbewust
heb meegenomen. Over roken gesproken, ik ben jullie niet vergeten, Joanne (toch maar Frans
gaan leren ...) en Ab (hup, hup “les Bleus™!). Anneke, sorry voor de puinhoop in mijn kamer. Je
hebt het zwaar gehad, ik weet het ... Wim, Herman, Ben, jullie hebben mij flink geholpen zodat
ik wel van mijn auto legaal in Nederland kan genieten ... ik ben jullie daarvoor heel dankbaar.
Ronald, Rob, Peter, bedankt voor de computer zaken. Frans, Jos, bedankt voor het helpen met de
sfbox. Richard, de gezelligheid in ons kamer kende geen grenzen maar je bent wel van de
gestoorde fransman af. Succes met je eigen promotie. Jasper, Wouter, het was geen we day maar
wel their day. Volgende keer beter ... misschien. Ana, thanks for the spanish lessons en the tour
in Granada. Farid, merci pour le bon-temps qu’on a passé ensemble et les parties fanatiques de
billard de I’aprés-boulot. Yoann, pendant ton séjour a Wageningen, nombreuses ont été nos
escapades nocturnes et nos (ou plutdt tes) discussions sur I’existence et I’homme en générale. Je
garde de cette période un souvenir tres particulier et nostalgique. Tom, Lee, your imitation of the
frenchy-english is poor. You should really work on it. Luuk, ik ben af en toe naar jou gekomen
om wat dingen te vragen en punten te bespreken. Ik moet wel zeggen dat meestal aan het eind van
de discussie, had ik vergeten de vraag dat ik oorspronkelijk aan jou had gesteld. Paulo, many
thanks for the very nice tour in Faro and neighborhood.

Microsoft, I shall not thank you for the programs you provide (Frans, toch maar een Mac

gebruiken ...).
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Olechka, Lica, your smiles and optimism gave me the courage to overcome the difficulties of the

past two years. CtfacBS. The fisherman shall always find the way to get back to the harbor ...

Papa, maman, vous avez toujours été 1a pour m’aider quelles que soient les circonstances. Je sais
que vous avez eu du mal a accepter certaines de mes décisions professionnelles et pourtant vous
n’avez cessé de me soutenir dans mes choix. Sans vous, je n’aurais jamais pu atteindre ce que j’ai

atteint jusqu’a aujourd’hui. Merci.

Mijn laatste woorden zijn voor jou Wim en voor jou Marijke. Jullie hebben zoveel voor mij
gedaan en wij hebben samen zoveel dingen meegemaakt ... In de loop van de tijd, hebben wij een
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