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Foreword

This book is a small contribution to pedometric methodology, specifically to map-
ping methods. It could serve as a handbook or a user’s guide for anyone seeking
to collate soil geoinformation. Pedometrics is an emerging field of science that is
bound to attract more and more attention from the soil scientists in the near fu-
ture. It could also have an impact on other sciences dealing with natural resources
and on biometrics in general. For example, vegetation mappers work with similar
datasets and face similar problems when modelling the spatial variation of vegeta-
tion or when seeking the best classification system. For pedometricians, the true
acknowledgement of their work will come when we read about continuous vegeta-
tion, geomorphological, geological or civil engineering maps, developed according to
the concepts of continuous soil mapping.
Those readers who would require more technical details about specific methods or
would even like to use some of my datasets, should note that there is a supplemen-
tary CD-ROM at the back of the book1. There you will find additional documents
such as technical and lecture notes2 (e.g. ”Comparison of kriging with external drift
and regression-kriging” and ”Digital terrain analysis in ILWIS”), animations and full
colour graphics that could not be fitted into this book. My homepage web address3

can also be used to access these supplementary materials.

Before presenting the thesis, it might be of interest to outline the genesis of each
chapter and how I found my collaborators. This is a small curriculum of major
activities:
We first began discussing the usability of soil maps in Croatia in 1999 during field-
work in Baranja. At that time, Dr. Rossiter (my supervisor) was introduced to
Dr. Stjepan Husnjak and Prof. Bogunović from the Department of Soil Science in
Zagreb. We have described two full profiles together and ad hoc discussed about

1The CD-ROM is only available in a limited number of copies. Part of this material is also
available on-line.

2Caution — most of these materials are unpublish and contain possible errors and misstatements.
3See the full address in Curriculum Vitae, at the end of the book.



the differences and difficulties in existing local soil classification systems and soil
maps. The Baranja dataset was used to test the applicability of terrain parameters
for aerial photo-interpretation (chapter 4). In March 2000, I began my PhD study
with the same supervisor. My predecessor on the Division of Soil Science, Dr. van
Groenigen, just defended a thesis on spatial sampling optimisation. Hence, the most
logical promotor was Prof. Stein who has been teaching geostatistics at ITC and
with whom I latter on wrote two chapters of my thesis. In June of 2001, Dr. Rossiter
came to Croatia for a second time, during which we produced additional eight full
profile descriptions. This time the observations were drawn from the whole country.
In Split, we visited the Institute for Adriatic crops and Karst reclamation, where
we were introduced to the work of Dr. Miloš. In September 2001, I participated in
my first Pedometrics conference with an oral presentation, in which I proposed a
sampling methodology that considers point allocation in the feature space (chapter
2).
In February 2002, Stjepan came to ITC as a visiting scientist and we began work
on the quality of soil data in Croatia (chapter 8). The major part of the data used
in this report was collected and processed during June 2002, when we produced soil
maps of control areas. In March of the same year, I went to the GSTAT meeting
in Reading with some raw ideas for the generic framework for spatial prediction.
The presentation was very useful as Dr. Papritz and Dr. Gerard Heuvelink offered
important suggestions that helped me develop the generic framework (chapter 5).
Subsequently, Gerard suggested that I also take over the web-administration of the
pedometrics website, which I gladly accepted. Gerard also introduced me to the the-
ory of universal kriging and generalized least square estimation, which then helped
me to develop equations for sampling optimization in feature space and for generic
framework based on regression-kriging. In July and August, I went for a long trip
to Melbourne, Sydney and Bangkok (Accuracy conference and World Congress of
Soil Science). At the Accuracy conference in Melbourne, I received interesting com-
ments on my work on continuous maps from the Accuracy participants (chapter 6),
which helped me to improve the paper. Prof. Fisher specifically suggested that I
replace the saturation with brightness in coding the uncertainty in the colour mix-
ture algorithm. Following my acquaintance with Dr. Odeh and Dr. Budiman from
the Pedometrics 2001 conference in Ghent, I then moved to University of Sydney,
Agricultural Chemistry and Soil Science Department. I followed the path of Dennis
Walvoort, a former (regular) visiting scientist at this Department and my collabo-
rator. The visit to Sydney was especially inspiring for my future work. In Bangkok,
I had the privilege of presenting a paper on the use of auxiliary maps to improve
the mapping of soil variables from existing datasets4. At that time, pedometrics has

4My final suggestion of how to achieve this is given in chapter 7



been promoted to a provisional commission under IUSS, which was a good sign for
all of us.
During the last year of my study I was mostly in Enschede working on my pub-
lications. In February 2003, I went to Zürich, where I was collaborating with my
fellow college Stephan Gruber (PhD student at the Department of Geography) on
methodology for reduction of errors in terrain parameters (chapter 3). From this col-
laboration we also developed a lecture note — “Digital Terrain Analysis in ILWIS”,
which is available in the supplementary materials.

A PhD thesis is rarely a product of pure individual work. Therefore, I feel obliged to
express acknowledgements to the following people and organizations. I would first
like to thank my sponsor — the Croatian Ministry of Science and Technology for
awarding me the scholarship and investing in the croatian ‘brain-resource’. Like-
wise, I would like to thank ITC for giving me additional funds and hosting me in
Enschede for all these years. Being a member of such international community was
a unique experience, which I will never forget (“Once an ITC student, always an
ITC student!”).
Secondly, I would like to thank my ITC supervisor David G. Rossiter for teaching me
how to “Publish” and not “Vanish”, how to achieve objectivity and be self-critical.
His dedication to work and science has been a major inspiration for me in the last
few years. David, in spite all the style-conflicts we had, I am sure that this thesis
will make you fell proud in the coming years. Many thanks to Alfred Stein also for
his instructions and suggestions on the diplomacy in academia.
Although I have spent last five years primarily at ITC, there are also a (large) num-
ber of people in Croatia that I need to thank to. None of this would have been
possible without the full dedication and support from my employer, University in
Osijek. I am especially grateful to Gordana Kralik, the Rector, and Dragica Steindl,
the secretary, for their support over these years. I would also like to thank my dear
college Mladen Jurǐsić, who helped me arrange facilities in Osijek. Many thanks
also to Stjepan Husnjak and Matko Bogunović, from the Department of Soil Science
in Zagreb, for supervising my work and participating in the field works and data
analysis; to Boško Miloš, from Split, who passionately supported my work and as-
sisted during the fieldwork and to Nikola Pernar, from the Faculty of Forestry in
Zagreb, who provided us with the Croatian digital soil database. I must not forget
our helping personnel, students and graduates (our slaves): Dario Mihin, Tomislav
Krema and Božidar Žanko who helped during the fieldwork. Navigating to the points
through dense vegetation during the field work was a heavy task in some terrains.
Not to mention large spiders in karstic hills, countless mosquitoes and unfriendly
bushes and grasslands. This environment has almost cost David a bone fracture,
Stjepan an eye and Boško a head. Happily, we are still all in one peace!



At ITC, I need to acknowledge the expertise and cordiality from the following col-
leges. I am grateful to Wouther Siderius for the vertaling of the summary and
Dhruba Shrestha and Alfred Zinck for suggestions on specific topics. Thanks to my
dear college Arta Dilo I was able to grasp some of the ‘undigestible’ mathematical
algebra. I owe to Rolf de By (the future rector of ITC) for teaching me first ‘steps’
in LATEX (and first steps in salsa). I will miss my colleges, PhD students Martin
Yemefack and Ivan Bacic and their wise advices on life and work. A big thanks
to Jose Santos who also helped with LATEX and taught me how to mix capirin̄a
(“The sweetest drink in the World”). Hartelijk bedankt to Benno and Job for all
the posters/notes/maps you printed for me, Marion Pierik for solving my financial
problems, Jaap De Ruijter for organizing social activities and Hans and Roelof for
making sure that I leave the building on time (“Ladies and gentleman, it is al-
most closing time. . . you have 2 minutes to leave the building before I lock you in
the dark”). I am grateful to the research managers Loes Colenbrander and Mar-
tin Hale for their protective policy towards the PhD students. The ITC’s facilities
and these extensive professional personnel truly make a difference for a success of a
PhD research. I was never in doubt that this is the best institute5 for my PhD study.

About four years ago, I was first time introduced to the term pedometrics. From then
on, I have evolved from a passive sympathizer to an active member, pedometric.org
web-administrator and contributor to the new methods (I hope). I would like to
thank the Pedometrics society for accepting me and giving me inspiration for this
work. Special thanks to Alex McBratney, Inakwu Odeh and Gerard Heuvelink
for supporting my ‘brave but unpolished’ ideas and for investing so much of their
precious time. My next spiritus movens will be to organize a Pedometrics-related
conference in Croatia (the ‘angry young pedometrician’ is still angry!).
Finally, I am grateful to my girlfriend Monija for supporting me in ‘good and bad’
(especially for being with me in the bad times). A big thanks to my family, rela-
tives (from Australia and Europe), my friends in Enschede (Maura, Blanca, Lyande,
Zoki, Darja, Dragče) and in the rest of the World (Stephan, Tommy, Lassie, Martina,
Bojana).

by Tomislav Hengl

In Enschede, September 2003

5I was choosing between six international institutes/universities: University of Florida, Arizona,
Cranfield, Reading, Wageningen and ITC.



To my mother and father,
Mirjana and Ivan Hengl

Eto, jel to bilo teško?



Definition of terms and abbreviations

A common problem in new scientific fields such as pedometrics is that the researchers
use different terms for the same things and the same terms for (completely) differ-
ent ones. Two good examples of this are: (1) the confusion between the universal
kriging, regression-kriging and kriging with external drift and (2) confusion between
the CLORPT techniques and environmental correlation. In fact, these terminological
confusion inspired me to write a technical note with a detailed comparison (involving
both mathematics and practical issues) of regression-kriging and kriging with exter-
nal drift. To avoid similar confusion, I will first give (my) definition of the concepts
and terms and their synonyms. These are then used consistently throughout the
thesis.

Accuracy, precision, quality Accuracy is the degree of conformity with the reality and
needs to be estimated using cross-checking, i.e. validation set. Precision is the measure
of model uncertainty. In spatial prediction precision is expressed with prediction error,
which is the measure of goodness of fit. Accuracy and precision in GIS are related
with the concept of data quality — accuracy is the predictive power and precision is
the efficiency of data fitting.

Auxiliary variables/maps In the case of soil mapping, these are non-soil data sources
that are used to improve mapping efficiency. Also referred to as secondary data,
ancillary maps or non-soil layers. Typical examples are terrain parameters, remote
sensing and airborne images, geological, geomorphological and hydrological maps.

Choropleth map Thematic map showing number of classes using a set of colors, shading
levels or hatching patterns. It commonly presents crisp transitions, which corresponds
to a polygon map in a GIS. An example of the double-crisp soil map can be seen in
chapter 7, page 158.

CLORPT or CLORPAN approach to spatial prediction This term was coined by McBrat-
ney et al. (2000, 2003) using an abbreviation of Jenny’s soil-forming factors: climate,
organisms, relief, parent material and time. It means that the spatial prediction is
achieved by employing the correlation with auxiliary environmental information (and
not some conventional geostatistical technique). A synonym, suggested by McKen-
zie & Austin (1993), is environmental correlation although environmental correlation
does not imply that the method is used to map soil variables only.

Continuous soil map A map showing distribution of soil types as spatially and/or the-
matically continuous features. This term was first time used by Burrough et al. (1997)
and de Gruijter et al. (1997). An example of the continuous soil map can be seen in
chapter 7, page 158.



Conventional approach to soil mapping Conventional approach to soil mapping or con-
ventional soil survey is a collection of the methods and systems applied by most of the
soil survey teams in the World. It typically implies that aerial photo-interpretation
is used to draw boundaries, double-crisp maps are used to present soil maps and key
focus of the soil inventory are the soil classes.

Digital Elevation Model Map of elevations representing the Earth’s surface (elevation
is known at all locations of the study area). In this thesis, I only deal with gridded
DEMs, i.e. raster maps.

Feature space Feature space also called state space, character space, property space or
attribute space is a virtual space bounded by the range of a set of variables. Position
of point measurements in feature space is related to the estimation of the prediction
uncertainty and can be used to design sampling. A comparison between the feature
and geographical space is available on page 16.

Mixed model of spatial variation A model that assumes both continuous and discrete
changes (jumps or breaks) in the attribute values; it integrates both the continuous
and discrete model of spatial variation.

Pedometric approach to soil mapping This is the new, (geo)statistical approach to the
mapping of soils. Sort of a contradiction to soil taxonomies and conventional methods.
For an overview of methods see McBratney et al. (2000, 2003).

Prediction error Prediction error is the estimate of the uncertainty of the prediction
model. It is commonly expressed as the variance of the prediction error or the stan-
dard deviation of the prediction error, also referred to as the prediction error variance
or prediction variance.

Regression-kriging Regression kriging is practically equivalent to Universal kriging (UK)
or Kriging with External Drift (KED). All three methods should give the same pre-
dictions and prediction error. They differ, however, in the methodological steps used.
See (Hengl et al., 2003a) for a detailed comparison between the regression-kriging and
kriging with external drift.

Soil Information System A thematic type of a GIS, specifically built to provide infor-
mation on soils. A SIS includes: digital soil maps, soil databases with interpretations
and manuals.

Soil variable This term is used as a generic name for all quantitative (measurable) and
qualitative (descriptive) soil properties or characteristics. According to the WRB
terminology (FAO, 1998, p. 13), one should make a clear distinction between the
measured soil variables (soil characteristics) and inferred or compound soil properties.

Soil-landscape modeling A synonym for the use of terrain parameters to improve mod-
elling (spatial prediction) of soil variables. Soil-landscape modelling is by some used
as a synonym for the pedometric approach to soil mapping.



Spatial prediction or interpolation Spatial prediction is the process of estimating the
target quantity (z) at a new, unvisited location (s0), given its coordinates and inter-
polation data set. In GIS, we make predictions at all raster nodes or pixels in a new
map. Hence, spatial prediction or interpolation is in fact a mapping process (Stein,
1991).

Terrain analysis or parameterization Terrain parameterization is a set of techniques
used to derive terrain parameters from a DEM, i.e. a process of quantifying the
morphology of a terrain. Terrain analysis is used as a general term for derivation of
terrain parameters and their application (Hengl et al., 2003b).

Terrain parameters Maps (or images) derived using some terrain analysis algorithm. Ter-
rain parameters are commonly classified as geomorphological (e.g. curvature of ter-
rain), hydrological (e.g. wetness index) or climatic (e.g. insolation).
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Chapter 1

Pedometric mapping

“I am a pedomagician!!”

[by A. McBratney in Pedometron #14 “Pedometrics in a sentence”, available via
www.pedometrics.org]



2 Introduction

1.1 Soil mapping

Soil mapping or soil survey is a process of determining the spatial distribution of
physical, chemical and descriptive soil properties and presenting it in an under-
standable and interpretable form to various users (Beckett, 1976; Dent & Young,
1981). In general, it consists of the following steps:

1. Project planning;

2. Preparation for fieldwork;

3. Photo-interpretation and pre-processing of auxiliary data;

4. Field data collection and laboratory analysis;

5. Data input and organization;

6. Presentation and distribution of soil survey products.

Project planning is an especially important step for the success of a soil survey
project as it includes the selection of sampling plan, inspection density, classifica-
tion system and data organization system. The preparation for fieldwork typically
includes literature study and reconnaissance surveys. The end product of a soil
mapping project is a soil resource inventory, i.e. a map showing distribution of soils
and its properties accompanied by a soil survey report (Avery, 1987; Rossiter, 2001).

In the age of information technologies, the soil resource inventory data is orga-
nized into a thematic type of a geoinformation system (GIS) called a Soil Informa-
tion System (SIS), the major part of which is a Soil Geographical Database
(SGDB) (Burrough, 1991). This is, in most cases, a combination of polygon and
point map linked with attribute tables for profile observations, soil mapping units
and soil classes. Often the soil mappers extend their expertise to land use planning
and decision-making activities, so that a SIS not only offers information on soils
but also on their potential (and actual) use, the environmental risks involved (e.g.
erosion risk) and offers predictions of soil behavior on intended management.

Soil mapping projects differ in the inspection intensity levels, purpose and type
of conceptual models used. Considering the intensity level, soil mapping projects
typically range from small scale (1:100 K to 1:1 M) surveys to medium (1:50 K) and
large scale surveys (1:25 K to 1:5 K or larger). With regards to the intended purpose,
a soil mapping project can be classified as special purpose (commonly referred to
as thematic) or general purpose. The first is completely demand-driven and focuses
on a limited set of soil variables or a single soil variable, often ignoring soil bound-
aries and soil horizons. General purpose mapping is more holistic, but also more
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1.2 What is Pedometrics? 3

complex, hence more expensive and often not affordable at large scales. The concep-
tual models of soils reflect the purpose of the mapping project: (i) special purpose
mapping projects commonly follow the continuous model of spatial variation, thus
geostatistical techniques are used to make predictions; (ii) general purpose mapping
projects commonly rely on photo-interpretation and profile descriptions, following
the discrete model of spatial variation.

Coping with soil variation has never been an easy task for soil surveyors. Soil
variables vary not only horizontally but also with depth, not only continuously but
also abruptly. In comparison with vegetation or land use mapping, soil mapping
requires much denser field inspections. Moreover, soil horizons and soil types are
fuzzy entities, often hard to distinguish or measure. The polygenetic nature of soils,
in particular, has always been a main problem in description and classification of soils
(White, 1997). In fact, many pioneer soil geographers have wondered whether we will
ever be able to fully describe the patterns of soil cover (Jenny, 1941). The quality
and usefulness of the polygon-type soil maps (area partitions) has for decades been
subject of argument (Webster & Beckett, 1968). The technological and theoretical
advances in the last 20 years, however, have lead to a number of new methodological
improvements in the field of soil mapping. Most of these belong to the domain of
the new emerging discipline — pedometrics.

1.2 What is Pedometrics?

Pedometrics, a term coined by Alex B. McBratney, is a neologism, derived from
the Greek words πεδoς [soil] and µετ%oν [measurement]. It is formed and used
analogously to other applied statistical fields such as biometrics, psychometrics or
econometrics (Webster, 1994). The most recent definition of pedometrics, available
via the website of the Pedometric society (www.pedometrics.org), is:

“the application of mathematical and statistical methods for
the quantitative modelling of soils, with the purpose of analysing
its distribution, properties and behaviors”

Pedometrics gathers together many different scientific fields, ranging from geo-
statistics to soil microbiology. The domain of pedometrics has changed somewhat
since its foundation. At the moment, it is best defined as an interdisciplinary field
involving soil science, applied statistics/mathematics and geo-information science
(Fig. 1.1). The domain of pedometrics, however, is not limited to only these three
general sciences, as McBratney stated in his first communication: “It can include
numerical approaches to classification — ways of dealing with a supposed determin-
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4 Introduction

istic variation. . . the definition is certainly incomplete but as the subject grows its
core will become well defined” (preface of Geoderma, 1994: 62).

PEDOMETRICS

GEO-
INFORMATION

SCIENCE

SOIL
SCIENCE

STATISTICS

SOIL
CARTOGRAPHY

QUANTITATIVE
METHODS

SPATIAL
STATISTICS

Figure 1.1: Pedometrics can be considered an interdisciplinary science where soil science,
applied statistics and geoinformation science intersect.

1970’s 2000

GEOSTATISTICS Co-kriging,  Universal kriging

REMOTE SENSING Airborne radar

FUZZY LOGIC, FRACTALS

ENVIRONMENTAL CORR. (CLORPT)

Figure 1.2: Some new emerging scientific fields that can be related to the development of
pedometrics in the last decades.

Another way of looking at pedometrics is to see it as the implementation of
newly emerging scientific theories, such as wavelets analysis and fuzzy set theory, in
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1.3 Pedometric mapping 5

soil data modelling applications (Fig. 1.2). The development of pedometrics is also
a result of new technological discoveries and improvements, remote and close-range
sensing techniques, GPS positioning and computers in general (Burrough et al.,
1994; McBratney et al., 2003). The expansion of new applications in the early
90’s has made pedometrics one of the leading sub-disciplines in the area of soil
research (Hartemink et al., 2002). Pedometrics is promoted and communicated
via publications, conferences and workshops organized by the Pedometrics society, a
working group under the International Union of Soil Sciences (IUSS). After a decade
of existence and numerous conferences and workshops, this Working Group has been
promoted, at the 17th World Congress of Soil Sciences, to become a Commission
under the IUSS.

Recent topics covered by pedometrics include: multiscale data integration; the
use of wavelets transforms to analyse complex variation; soil-landscape modelling
using digital terrain analysis; quantification of uncertainty and fuzziness of infor-
mation and evaluation criteria; soil genesis simulation; soil pattern analysis; design
and evaluation of sampling schemes; incorporation of exhaustively sampled infor-
mation (remote sensing) in spatial interpolation; precision agriculture applications
and others. A major topic of pedometric research is the development of models
and tools capable of dealing with the spatio-temporal variation of soils (McBratney
et al., 2000, 2003). These tools and methods can then be implemented to improve
or replace conventional1 soil mapping.

1.3 Pedometric mapping

Pedometric mapping is generally characterised as a quantitative, (geo)statistical pro-
duction of soil geoinformation, also referred to as the predictive soil mapping (Scull
et al., 2003) or digital soil mapping (McBratney et al., 2003), as it depends heavily
on the use of information technologies. Pedometric mapping, however, specifically
means that quantitative methods are used in the production of soil geoinformation.

In recent years, digital soil mapping had to encompass the rapid development of
new and economic methods, mainly due to the increasing sources of auxiliary maps.
Here, two main groups have played a key role: terrain parameters and remote sensing
images (Dobos et al., 2000). The terrain parameters are DEM-derived products that
can be used to quantify the (geo)morphology of the terrain, i.e. accumulation and
deposition potential, or to adjust the influence of climatic factors on the local terrain,
while the remote sensing images reflect surface roughness, colour, moisture content
and other surface characteristics of soils.

1See the definition of terms at the beginning of the book used consistently throughout the thesis.
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6 Introduction

Although it was originally expected that remote sensing would revolutionize
soil mapping, as it had done for vegetation mapping, the direct derivation of soil
properties from remote sensing data is still limited to areas of low vegetation cover,
such as grasslands, semi-deserts or agricultural plots in fallow. Apart from some
specific cases, such as using radar images to map soil moisture content (Hu et al.,
1997), it has not yet proved possible to use images of visible and infrared part
of spectra directly to map soils in all parts of the study area. This is due to the
complex illumination structure caused by terrain, cloud interference and atmospheric
attenuation, or reflectance of vegetation (Skidmore et al., 1997; Moran et al., 2002).
However, compound indices such as NDVI, which generally reflects biomass status,
have been shown to correlate well with the distribution of the organic matter or
epipedon thickness (McKenzie & Ryan, 1999). Even the coarse (1×1 km) AVHRR
data have shown to be useful for mapping the clay content, CEC, EC or pH (Odeh
& McBratney, 2000). A logical further development was to combine DEM-derived
and remote sensing data to improve prediction models (Dobos et al., 2000). The
use of terrain data and remote sensing imagery has been especially interesting for
medium scale-surveys (grid resolutions from 20–200 m), although there have also
been an increasing number of field-site (precision agriculture) studies (Fig. 1.3).

PEDON POLYPEDON REGIONLANDSCAPE

1:10K 1:50K1:25K 1:100K 1:500K

GRID

SIZE

SOIL UNIT

 LEVEL

5 x 5 m 12.5 x 12.5 m 25 x 25 m 50 x 50 m 100 x 100 m

SCALE

SOIL SERIES SUB-GROUPSFAMILIES GREAT GROUPS ORDERS

SUB-GROUPS SOIL GROUPS

KST LEVELS

WRB LEVELS

HAND-HELD RADIOMETRIC

MEASUREMENTS

TERRAIN PARAMETERS

AIRBORNE IMAGERY

SATELLITE IMAGERY

VEGETATION INDICES

LAND USE

GENERAL AUXILIARY DATA

CLIMATIC DATA, GEOLOGY 

AUXILIARY

DATA

SLOPE-FACET

Figure 1.3: Relationship between the level of soil objects, scale, grid resolution and auxiliary
maps used. Corresponding classification levels for Keys to Soil Taxonomy (KST) and World
Reference Base (WRB) are also given.

There is a significant difference between the conventional and pedometric ap-
proaches to soil mapping. For a long time, the term pedometrics has been used as
a challenge or contradiction of soil taxonomies, i.e. traditional systems. The key
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1.4 Motives for the research 7

differences between the two approaches are summarized in Table 1.1. The conven-
tional soil survey relies on photo-interpretation and prediction of soil types, while
pedometric techniques are (still) primarily focused on mapping individual soil vari-
ables at larger scales. The conventional survey typically leads to a polygon-based
soil map whereas the products of pedometric techniques are fine-grained maps of
soil properties.

Table 1.1: Comparison of pedometric and (analogue) conventional approach to soil survey.

PEDOMETRIC APPROACH CONVENTIONAL APPROACH

Preparation and
project planning

Identification of key soil environ-
mental variables (predictors)

Identification of key soil-forming
factors (e.g. Catena concept)

Production of
auxiliary data
(pre-processing)

Remote sensing images; terrain pa-
rameters derived from a DEM; ge-
ological data etc.

Photo-interpretation; reconnais-
sance survey

Sampling design

Design-based (random sample,
stratified random sample) or
model-based (equal area stratifica-
tion) sampling

Free survey

Field data collec-
tion and laboratory
analysis

Navigation to points using a
mobile-GIS (GPS receiver at-
tached to a palm PC)

Navigation to points using aerial
photos

Data input and or-
ganization

Data analysis and interpolation us-
ing some (geo)statistical technique

Designation of soil mapping units
and theirs composition

Presentation and
distribution of soil
survey products

Fine-grained maps of soil variables
with estimate of uncertainty (the-
matic mapping)

Polygon map with attributed soil
properties (averaged)

1.4 Motives for the research

In recent years, there have been strong moves towards quantifying soil data: “there
has been corresponding increase in the demand for quantitative information at finer
and finer resolutions” (McBratney et al., 2000). Even in the USA, surveyors an-
ticipate a full transition to a quantitative (pedometric) survey in the 21st century
(Indorante et al., 1996). However, despite many appeals to abandon the conventional
approach to mapping with mapping units, this approach remains more popular with
most soil survey agencies. There are two probable reasons why pedometric tech-
niques are still in the testing phase throughout most of the World. First, is the lack of
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8 Introduction

systematic knowledge about soil variability, as emphasized by Burrough (1993a): “In
spite of a huge research literature, knowledge about soil variability is still dispersed
and not well organized. There is a need to organize and systematize our knowledge
on soil variability in such a way that users of soil information unskilled in geo-
statistics and chaos theory can make the best possible decisions under conditions of
uncertainty.” Secondly, pedometric techniques are still inappropriate to model such
specific soil features as irregular soil stratigraphy, buried horizons, abrupt transitions
between soils, fossil or karstic soils. These soil features and processes are still much
easier to map (and generalize) using a mental model and photo-interpretation rather
than geostatistics or auxiliary variables. Conventional soil mapping and classifica-
tion have proven to be successful and popular, especially in the U.S. and Canada,
where even the local farmers recognize different soil series. Experienced surveyors
also find no need to change these systems. What is clearly needed is a compromise
between the new methods (pedometric approach) and experienced soil survey teams
(the conventional approach) that will satisfy both groups.

The integration of pedometric and conventional methods for operational sur-
veys has not yet received widespread consideration. De Bruin (2000) emphasized
the importance of combining different mapping techniques, noting that there are
“disciplinary gaps between the different techniques.” Even within the pedometric
approach, there are rather isolated techniques that need to be combined. A good ex-
ample is the gap that still exists between the CLORPT techniques and geostatistics. As
de Gruijter stated in the preface of the Pedometrics ’97 — International Conference
held in Wisconsin, USA: “. . . the second major theme of the Conference focused on
spatial prediction methods. It was clear that there were two (somewhat) distinct ap-
proaches. . .The first is the geostatistical. . . the second is what Alex McBratny called
‘clorp(t) approach, named from Jenny’s equation or environmental regression. . .The
synthesis of these two approaches was not really discussed. This will be an area for
much further research in Pedometrics”. Both CLORPT and plain geostatistics have
their advantages and disadvantages (Table 1.2). A disadvantage of ordinary kriging,
for example, is that it ignores spatial variation of environmental factors, e.g. relief.
Moreover, conventional geostatistical techniques have been shown to be inefficient at
smaller scales (Yost et al., 1982). A drawback of the plain CLORPT techniques, on the
other hand, is that they ignore spatial location of points and spatial autocorrelation
of residuals.

Another conceptual gap in soil mapping is that between the human perception of
soil types and true nature of soils. One solution to the hidden and ‘fuzzy’ nature of
soils is to use conceptual models that are more general: “In order to bridge the gap,
soil distribution modelling should be based on a new classification paradigm: that of
a fuzzy set theory” (de Gruijter et al., 1997). How can such a system be operational-

8



1.4 Motives for the research 9

Table 1.2: Comparison of some aspects of the conventional geostatistical and plain
regression-based spatial prediction approaches.

GEOSTATISTICAL APPROACH CLORPT APPROACH

Requires spatial dependence
Requires correlation with the auxiliary
data

Higher sampling density desirable Lower sampling density desirable

Data-driven Knowledge-driven

Stratification desirable One model over entire area

Deals with geographical space Deals with feature space

Aims at spatially correlated random
part of variation

Aims at structural part of variation
(drift or trend)

Requires stationarity Requires non-stationarity

Kriging variance reflects a geometry of
the point locations while ignoring envi-
ronmental patterns

Prediction error reflects the ’distance’ of
the point locations in the feature space
while ignoring theirs spatial location

Numerous input parameters such as lag
spacing, variogram function model, lim-
iting distance, interpolation method,
anisotropy model etc. are required; the
predictions are non-unique for the same
data set

For linear regression, in general, no in-
put parameters are required; predic-
tions are unique for the same data
set; however, functional relationship be-
tween the auxiliary maps and soil vari-
ables is unknown and might differ for
similar datasets

ized for routine survey? Indeed, is a universal method that can handle any type of
soil data possible? McKenzie & Ryan (1999) think that “the development of models
for spatial prediction that are quantitative, mechanistic and mathematical is almost
an impossible task in routine survey.”, considering the natural complexity of soils
and soil properties. At this level of technology and knowledge, the development of
hybrid or semi-automated, semi-subjective expert systems that integrate the empir-
ical surveyor’s knowledge of soils with GIS tools is the only feasible solution. This
thesis is an attempt to bridge the gaps between the empirical and automated meth-
ods and improve the practice of soil mapping by designing an integrative pedometric
methodology.

There are also practical motives for developing a flexible mapping methodol-
ogy that can incorporate existing data sets. In Croatia, some 10 K profiles were
described, analysed and classified during the 70’s, 80’s and 90’s (National soil in-
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ventory). These data are still not used spatially for soil prediction. In recent years,
there has been considerable efforts to improve the effective scale of the Basic Soil
Map of Croatia to a regional level, in this case the county level. There are 20 coun-
ties in Croatia and if the methodology proves successful, soil geoinformation could
be improved in detail and brought to the 1:100 K effective scale or even less (i.e.
a field resolution of 20–50 m). Similarly, there is a large amount of high quality
soil field data worldwide that could be improved if the methodology proves to be
successful.

1.5 Objectives

The main objective of this research was to develop a methodology for pedometric
mapping that can be used to bridge the gaps between the pedometric and conven-
tional techniques and that can be used for operational soil mapping at various scales.
Specific objectives, addressed more closely in each chapter, are:

� To develop a methodology for optimal point allocation in both feature and geo-
graphical space and to recommend sampling strategies for the general purpose
survey;

� To develop a systematic methodology to remove artefacts and inaccuracies in
the terrain parameters used for soil-landscape modelling;

� To enhance the use of terrain analysis for photo-interpretation in soil survey;

� To develop and test generic interpolation algorithms that optimally employ
both correlation with auxiliary maps and spatial dependence;

� To provide a basis for the integration of soil expertise (soil classification, photo-
interpretation) and pedometric methods (regression-kriging, terrain analyis,
pedo-transfer functions);

� To suggest methods to derive suitable grid resolution and investigate issues of
combining multi-scale data sources;

� To develop a methodology to visualise fuzziness and uncertainty of soil infor-
mation and enhance production of the continuous soil maps;

� To develop a methodology to assess the adequacy of soil maps and investigate
the problems related to the usability of soil maps;

10



1.6 Outline of the thesis 11

1.6 Outline of the thesis

The thesis was produced as a compilation of seven research papers, all written by
myself as the principal author. These papers have been submitted to international
peer-reviewed journals and have either been accepted for publication or are in the
review process. Although the content of the thesis chapters and submitted papers
does not differ in essence, I have made some minor changes in the thesis for the sake
of coherence and textual harmony. I have also reduced some sections in the original
papers to avoid a thematic overlap and repetition of phrases and statements. The
list of the seven research topics can be seen in Fig. 1.4. It should be noted that
these are all primarily methodological and do not depend on a specific study or
scale. The research chapters are preceded by a definition of terms and concepts
used and general introduction to soil mapping and pedometric techniques. To avoid
terminological confusion, readers should first refer to the definition of terms at the
beginning of the book.

a c

b

?
a c

b

1.00

0.00

SAMPLING PRE-PROCESSING

PHOTO-
INTERPRETATION

INTERPOLATION

VISUALISATION

ORGANIZATION

QUALITY
CONTROL

Figure 1.4: Schematic outline of the topics discussed in the thesis.

CHAPTER 2: SAMPLING This chapter gives a comparison of possible sam-
pling strategies for the purpose of spatial prediction by correlation with aux-
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12 Introduction

iliary maps. This extends the existing sampling optimisation methodology to
the issue of spreading in the feature space. The chapter demonstrates how
allocation of points in the feature space influences the efficiency of prediction
(overall prediction error). It suggests how to represent spatial multivariate
soil forming environment; how to optimise sampling design for environmental
correlation and which sampling strategies should be used for a general soil
survey purposes. The concepts are illustrated using a 50×50 km study area in
Central Croatia, four predictors (elevation, temperature, NDVI and CTI) and
one target variable (organic matter in the top-soil).

CHAPTER 3: PRE-PROCESSING Because the pedometric mapping relies
heavily on auxiliary maps, their quality plays an important role for the suc-
cess of mapping. How do the inaccuracies and artefacts in auxiliary variables
affect the prediction process and can these problems be reduced? In this
chapter, systematic methods for reduction of errors (artefacts and outliers) in
digital terrain parameters are suggested. These methods ensure more natu-
ral and more complete representation of the terrain morphology, which then
also reflects on the success of spatial prediction. The Baranja Hill study area
(3.8×3.8 km square) is used to demonstrate the effects of errors in the terrain
parameters on mapping landform facets and predicting the thickness of the
solum.

CHAPTER 4: PHOTO-INTERPRETATION Delineation of landform facets
through the photo-interpretation is the key step in a conventional soil sur-
vey. It relies on subjective impressions of the terrain morphology and the
mapper’s experience of the specific study area. Can the subjective delineation
of landform facets be improved with the help of terrain analysis? Moreover,
should we aim at replacing photo-interpretation or search for a compromise
solution? This chapter suggests a semi-automated method for extrapolating
photo-interpretation from a limited number of study sub-areas to the whole
area. The intention was to enhance and not to replace the mapper’s knowledge
and expertise. The map of landform facets was produced using nine terrain
parameters for Baranja region (1062 km2) in Eastern Croatia.

CHAPTER 5: INTERPOLATION This chapter considers the development of
a flexible statistical framework for spatial prediction, that should be able to
adopt both continuous and categorical soil variables. It suggests methods for
dealing with non-normality of input data and multicollinearity of predictors.
The logit transformation is suggested as a step to prevent predictions outside
the physical limits. How well does this framework performs in real case studies
and does it really improve the efficiency of prediction? The framework was
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evaluated using the 135 profile observations of organic matter, pH and topsoil
thickness from a 50×50 km study area in Central Croatia.

CHAPTER 6: VISUALISATION In conventional soil mapping, colours in the
choropleth maps are typically selected following the human perception of soils.
Continuous classification of soil classes, e.g. by using the fuzzy k-means, has
been shown to have numerous advantages for mapping soil bodies. The re-
sult of continuous classification, however, is a set of membership maps that
can be hard to visualise and manipulate at the same time. In this chapter,
an algorithm is suggested to visualize multiple memberships and to analyse
geographical and thematic confusion. Multiple memberships are visualized
using the Hue-Saturation-Intensity model and GIS calculations on colours.
This colour mixing was demonstrated using the landform classification of nine
landform facets in the Baranja hill study area (3.8×3.8 km square).

CHAPTER 7: ORGANIZATION This chapter collates methods from chapters
2, 5 and 6. It answers the question of how to select a suitable grid size, how to
aggregate and disaggregate soil information and what are the advantages and
disadvantages of a grid-based SIS. Concepts, operations and organizational
structure of a hybrid grid-based soil information system (SIS) are first de-
scribed. The prediction maps are then made using both photo-interpretation
and auxiliary maps, which ensures both continuous and crisp transitions. The
grid-based SIS was produced using a soil survey data (59 profile observations)
of Baranja hill and compared with a SIS produced using the conventional
methodology.

CHAPTER 8: QUALITY CONTROL In this chapter, systematic steps are
suggested to assess the effective scale, accuracy of soil boundaries, accuracy
of map legends, thematic purity of mapped entities and overlap among the
adjacent entities. This assessment was based on a number of control surveys
including control profile observations and photo-interpretations. The adequacy
and usability of soil resource inventories was assessed for the extensive National
soil inventory in Croatia. This was done by:

� examining the average delineation area of six map sheets;
� comparing soil data from ten control profile observations with the original

profile observations;
� examining the thematic overlap between the adjacent mapping units using

the data from 2198 profile observations;
� evaluating the accuracy of soil boundaries and map legends using the

three control survey sub-areas.
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CHAPTER 9: CONCLUSIONS AND DISCUSSION In the last chapter gen-
eral conclusions are given related to the questions posed above. This extends
to a discussion on the limitations of this research, unexpected and conflicting
findings. Finally, recommendations are offered for further research, emphasiz-
ing research problems in the area of pedometric mapping that still need to be
tackled.
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Chapter 2

Spatial prediction and feature
space∗

“I wish the surface of this soil wasn’t so bloody rough... those
fractals are a bit sore on the old legs... fat chance (probability) of
these seeds being spread out evenly... I wonder what we could do

about it... nothing, we’re too interventionist anyway!”

[from a comical drawing in Pedometron #1, edited by A. McBratney, available via
www.pedometrics.org]

∗based on: Hengl, T., Rossiter, D.G. and Stein, A., 2003. Soil sampling strategies for spatial
prediction by correlation with auxiliary maps. Australian Journal of Soil Research, Vol. 41(7), in
press.



16 Sampling

2.1 Introduction

A sampling design in soil survey specifies which points, transects, or areas will be
visited for field measurements or observations. Sampling incorporates concepts of
survey intensity, spatial variability and mapping scale, and is usually the most costly
aspect of a survey (Webster & Olivier, 1990). Ideally, sampling should be as cheap
as possible while consistent with the required level of accuracy and precision. In a
conventional soil survey, sampling sites are selected subjectively by surveyors to sup-
port their mental predictive model of soil occurrence, a so-called free survey (White,
1997). Such designs are purposive and non-random, and do not provide statistical
estimates. By contrast, a pedometric soil survey (McBratney et al., 2000) aims at
statistical modelling of the soil cover, including uncertainty about the predictions,
using objective techniques.

In geostatistical applications, much attention has been given to optimisation
techniques for sampling designs (Warrick & Myers, 1987; Odeh et al., 1990; Brus &
de Gruijter, 1997; van Groenigen et al., 1999). This has not been the case for spatial
prediction by environmental correlation. Here, several authors (Moore et al., 1993;
Bell et al., 1994) have commonly applied the intuitively-appealing idea of placing
samples at regular intervals along the steepest environmental gradients. An exam-
ple is a toposequence with transects along the steepest slope, based on the concept
of a hillside catena. Gessler et al. (1995) were among first to apply feature space
stratification to sample evenly along the range of CTI (Compound Topographic
Index). This principle can be extended to any environmental gradient, i.e. to multi-
variate gradients. McKenzie & Ryan (1999) used terrain parameters and geological
and vegetation data to stratify an area and then randomly select samples inside
the resulting patches. Lesch et al. (1995) developed an algorithm that combines
model-based design with survey site spreading.

2.1.1 Feature and geographical spaces

Feature space (Lillesand & Kiefer, 2000) also called state space, character space,
property space or attribute space, is not ‘space’ in the geographic sense, but rather
a virtual space bounded by the range of a set of variables. For multiple regression,
the axes of the feature space are the soil-environmental variables or their transforms,
which in the multivariate case form a hypercube. An important difference between
the geographical and feature space is that the dimension of the feature space are
on different scales. Points that are close in the geographical space can be far from
each other in the feature space (and vice versa). Similarly, a study area has a
different geometry when visualised in geographical and feature space. For example,
a large but environmentally homogenous study area will occupy a small ‘niche’ in
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2.1 Introduction 17

the feature space. If the predictors show normal distribution, the study area in the
multivariate feature space forms a hypersphere.

2.1.2 Optimal point allocation for regression analysis

Let a set of observations of a soil variable z be denoted as z(s1), z(s2),..., z(sn), where
si = (xi, yi) is a location and xi and yi are the coordinates (primary locations) in
geographical space and n is the number of observations. A discretized study area A,
for example as represented in a grid-based (‘raster’) GIS, consists of m cells, which
can be represented as nodes by their centres, such that si ∈ A. Let also the sampled
auxiliary variables at primary locations be denoted as q(s) and Q(s) if considered at
all nodes, with q̄, sq and Q̄ and sQ as the mean and standard deviation at primary
locations and at all raster nodes respectively.

In the case of multiple regression, prediction at new, unvisited location (s0) is
made by the linear regression model (Odeh et al., 1994):

ẑ(s0) =
p∑

k=0

βk · qk(s0) q0(s0) = 1 (2.1)

where ẑ(s0) is the predicted or response variable, the βk are model coefficients, the
qk’s are auxiliary variables or predictors, i.e. their values at raster nodes or pixels of
the map, and p is the number of predictors. The model coefficients are commonly
solved using the ordinary least squares (OLS):

β̂ =
(
qT · q

)−1 · qT · z (2.2)

where q is the matrix of predictors (n × p + 1) and z is the vector of sampled
observations. Prediction efficiency is quantified using the variance of the prediction
error at s0 is then (Neter et al., 1996, p. 210):

σ2(s0) = σ2 {ẑ(s0)−z(s0)} = MSE ·
[
1 + qT

0 ·
(
qT · q

)−1 · q0

]
(2.3)

where MSE is the mean square (residual) error around the regression line:

MSE =

n∑
i=1

[z(si)− ẑ(si)]
2

n− 2
(2.4)

and q0 is the vector of predictors at new, unvisited location. In the univariate case,
the variance of the prediction error can also be derived using:
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18 Sampling

σ2(s0) = MSE ·

1 +
1
n

+
[q(s0)− q̄]2

n∑
i=1

[q(si)− q̄]2

 = MSE · [1 + v(s0)] (2.5)

where v is the curvature of the confidence band around the regression line. This
reflects the amount of extrapolation in the feature space (Ott & Longnecker, 2001,
p. 570). It can be seen from Eq. (2.5) that the prediction error, for a given n
(sampling intensity), depends on three factors:

1. Mean square residual error (MSE);

2. Spreading of points in the feature space
∑

[q(si)− q̄]2;

3. ‘Distance’ of the new observation from the centre of the feature space [q(s0)− q̄].

A common target of the sampling optimisation for spatial prediction is allocation
of observations to minimise the prediction error (Lesch et al., 1995; van Groenigen
et al., 1999). In this case, we are not only interested in minimising the prediction
error at some new location, but in minimising the mean or overall prediction error,
calculated at all raster nodes:

σ̄2 =

m∑
j=1

σ2
j

m
= MSE ·

1 +
1
n

+

m∑
j=1

(qj − q̄)2

m ·
n∑

i=1
(qi − q̄)2

 = MSE [1 + v̄] (2.6)

where v̄ is the overall curvature and m is the total number of nodes. From Eq. (2.6),
it can easily be shown that the overall curvature reduces to:

v̄ =
1
n

+

m∑
j=1

q2
j−2 ·

m∑
j=1

qj · q̄ +
m∑

j=1
q̄2

m ·
n∑

i=1
(qi − q̄)2

=
1
n

+

m∑
j=1

q2
j

m − 2 · q̄ · Q̄ + q̄2

n∑
i=1

(qi − q̄)2

=
1
n

+
s2
Q + Q̄2 − 2 · q̄ · Q̄ + q̄2

n∑
i=1

(qi − q̄)2
=

1
n

+
s2
Q +

(
Q̄− q̄

)2
n · s2

q

(2.7)
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2.1 Introduction 19

where q̄ and sq are the sampled mean and standard deviation of predictor and Q̄
and sQ are the mean and standard deviation of predictor at all raster nodes:

Q̄ =

m∑
j=1

Qj

m

s2
Q =

m∑
j=1

(
Qj − Q̄

)2
m

(2.8)

Finally, it can be seen from Eq. (2.7) that, for a given data set (i.e. given n, m,
Q̄ and sQ), the overall prediction error is minimised for MSE → min, sq → max
and Q̄ − q̄ = 0. In other words, the prediction efficiency is controlled by success of
fitting, the difference between the sample and population mean and between their
variances as illustrated in Fig. 2.1a and b.

If the range of the feature space is [−1, 1], Eq. (2.7) is minimised if half of the
observations are taken at q = −1 and the other half at q = 1. This is the so-called
‘minmax’ D-optimal design (Gaylor & Sweeny, 1978), here referred to as D1. It
belongs to a group of experimental designs also known as response surface designs
(Cochran & Cox, 1992, p. 335). If extended to a number of predictors (Fig. 2.1c
shows a case with two predictors), it is also referred to as the first order central
composite design. The D1 design is especially attractive for field surveys, as it will
most likely reduce the number of samples and the spacing in-between them and
therefore minimise the survey costs. However, it is optimal only if the model is
linear. It is the worst possible design if the relation is quadratic. This is because it
will give the worst estimates of the regression coefficients and therefore the lowest
prediction accuracy at the validation points, as illustrated in Fig. 2.1d.

If the relationship is quadratic, the optimal response surface design is to allocate
25% of the observations each to the minimum and maximum and the remaining 50%
to the central value, here called the D2 design (Atkinson & Donev, 1992). However,
in the usual case when the functional relation between the predictor and target
variable is unknown, designs such as D1 and D2 may perform poorly. Sampling is
then designed to be resistant to the effects of an unknown model, even at the cost
of inefficient estimation of model parameters. In the case the model is unknown,
the most prudent design is sampling regularly along the feature space. This is often
achieved by stratifying the area proportionally to the histogram of the predictor
variable, also called equal area stratification (EA) design (Gessler et al., 1995).
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Figure 2.1: Sampling problems related to the feature space: (a) biased sample; (b) under-
sampling of total range causes extrapolation in most of the map; (c) D1 design in two-
dimensional feature space and (d) D1 design can have a poor prediction for the whole map
if the true model is actually non-linear.

2.1.3 Sampling optimisation and geographical space

The previous section showed that an optimal point allocation targets at increasing
the spreading (variance) in the feature space and minimizing the difference between
the sampled and population means. In the case of spatial prediction, however, the
residuals may in addition show a strong spatial autocorrelation. Thus, estimation
of regression parameters is over-optimistic and needs to be adjusted (Lark, 2000).
General spatial prediction theory (Cressie, 1993, p. 166) states that trend model
coefficients are optimally estimated using generalized least squares (GLS), i.e. by
including the spatial correlation of residuals in estimation of coefficients (weighted
regression):

β̂gls =
(
qT ·C−1 · q

)−1 · qT ·C−1 · z (2.9)
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2.1 Introduction 21

where C is the covariance matrix of the residuals:

C =

 C(s1, s1) · · · C(s1, sn)
...

. . .
...

C(sn, s1) · · · C(sn, sn)

 (2.10)

C(s1, sn) is the covariance between the ij’th point pair, estimated by modelling
the variogram of regression residuals calculated by OLS estimation. Note that the
variogram is first modelled using a semivariance function and then, for the reasons
of computational efficiency, covariances are used. A flexible covariance function is,
for example, the exponential:

C(h) =

{
C0 + C1 if |h| = 0

C1 · e
−

(
|h|
R

)
if |h| > 0

(2.11)

where |h| is the geographical distance between the point pairs and C0, C1, R are
the covariance function parameters (Isaaks & Srivastava, 1989). The variance of the
GLS prediction error is then:

σ2
gls(s0) = MSE + qT

0 ·
(
qT ·C−1 · q

)−1 · q0

= MSE + vgls(s0) (2.12)

and should be used instead of Eq. (2.3) to derive the mean prediction error. In
the absence of spatial correlation, the covariance matrix (C) reduces to the identity
matrix:

C =

 C0 + C1 · · · 0
... C0 + C1 0
0 0 C0 + C1

 = (C0 + C1) · I (2.13)

and Eq. (2.12) reduces to Eq. (2.3):

σ2
gls(s0) = MSE + qT

0 ·
(
qT · 1

(C0 + C1)
· q
)−1

· q0

= MSE ·
[
1 + qT

0 ·
(
qT · q

)−1 · q0

] (2.14)

where (C0+C1) = C(0) = MSE. C reduces to the identity matrix if the sampled are
placed so that no pair is within the range of spatial dependence, in which case, OLS

21



22 Sampling

estimation can be used instead of the GLS. McGwire et al. (1993) demonstrated that
enforcing a minimum allowed distance between samples improves empirical models.
Gessler et al. (1995) postulated that, in the absence of a priori information about soil
attributes, the spatial dependence structure of the predictors can be used to derive
the minimum distance at which the samples are spatially independent. However,
this also assumes that the spatial dependence structure of a predictor is similar to
the spatial dependence structure of the target variable, i.e. its residuals.

From Eq. (2.12), it follows that the D1 design might not give the minimum
mean prediction error, even if the true regression model is linear, unless the sample
points are spread outside the range of spatial dependence. This is difficult with a
design that places all points at the extremes of the feature space range, since this
will probably occupy a small portion of geographical space as well. If the covariance
function of the residuals is unknown, the influence of C on the GLS prediction error
is minimised if the samples are placed with a maximum geographical spreading,
which leads to a grid sampling.

To evaluate the geographical spreading of the points, Mean of Shortest Distances
(MSD) between point pairs can be used:

MSD =

n∑
i=1

min
j

(hij)

n
(2.15)

where (hij) is the distance between two nearest point pairs. Note that in the geosta-
tistical optimisation, the MSD to the equilateral triangular grid is more commonly
used (van Groenigen et al., 1999). Geographical spreading is then optimized if the
MSD to the grid is minimized. The difference is that the maximisation of MSD to
nearest point pairs will lead to outer points being pushed towards the borders of the
region, while the minimisation of MSD to equilateral grid ensures that all points are
spread equally within the study area. In this study we decided to use the MSD to
the closest point pairs to emphasize the importance of spreading in the geographical
space.

Finally, maximisation of MSD and feature space spreading may ask for adverse
allocations, which means that the feature and geographical space criteria cannot
be combined easily. In the absence of prior information on the spatial dependence
structure of the residuals or knowledge of the nature of relationships, a sampling
design that allows uniform spreading in both feature and geographical spaces is the
safest strategy.
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2.2 Methods

2.2.1 Study area and selected variables

A 50×50 km square in central Croatia (centred on 45°03’50” N, 15°17’39” E) was
used as a case study. This is a relatively mountainous landscape, covered with
coniferous and beech forests at the transition from the continental to Mediterranean
Croatia (Fig. 2.2). The area is environmentally heterogeneous, which makes it espe-
cially attractive for spatial prediction by environmental correlation. The elevations
range from 200 to 1400 m and the annual temperatures from 4 to 10° C. Four pre-
dictor variables following Jenny’s (1980) conceptual equation of soil formation were
selected: mean annual land surface temperature (LST), mean annual Normalised
Difference Vegetation Index (NDVI), elevation (DEM) and Compound Topographic
or wetness index (CTI), all at 1×1 km resolution. The LST map was calculated
from the isotherm lines digitised from the climatic atlas of Croatia and adjusted up
to ±1° C based on the aspect map. Mean annual NDVI was calculated for the year
1995 from a series of 36 NOAA AVHRR 1×1 km decadal images (USGS - NASA
Distributed Active Archive Centre, 2001). The wetness index (CTI) was calculated
based on the method of Quinn et al. (1991) using 60 iterations on a small-scale
1×1 km Digital Elevation Model (DEM). We used 100 measurements of topsoil or-
ganic matter expressed in % (OM), collected during the Croatian national soil survey
in the 1980’s (Bogunović et al., 1998), as a target variable in regression modelling.
The size of the dataset and variables used are typical for other similar environmental
correlation applications (Moore et al., 1993; Gessler et al., 1995).

2.2.2 Uniform spreading in feature space - Equal range design

To achieve uniform spreading in feature space, stratification limits need to be set at
equal distances in the feature space The weighting can be now done according to the
histogram of predictor as in the EA design. We named this design Equal range
(ER). The range of the predictor variable is divided into a number of equal-width
clusters (also termed strata or histogram slices). The points are then randomly
selected within each cluster following the given weights. For a normal distribution
and five clusters, the stratification limits and weights can be calculated by dividing
the standard statistical range of the normal distribution (−3sQ to 3sQ), which gives:
3.6%, 27.4%, 72.6%, 96.4% and 100% and the weights are: 0.036, 0.238, 0.452, 0.238
and 0.036 (Fig. 2.3a). The limits can be adjusted to any number of strata by
calculating the percentage thresholds of the cumulative normal distribution.

Note that the ER design is in fact equivalent to the EA design in the sense that
anywhere on the distribution a point has the same probability of being selected for
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Figure 2.2: The 50×50 km study area: (a) location in Croatia and (b) selected predictors.
LST - land surface temperature, NDVI - mean annual Normalised Difference Vegetation
Index, DEM — elevation and CTI — Compound Topographic or wetness index. White
patches in the NDVI map are lakes, i.e. water surfaces.

sampling. However, there is a key difference between the ER and EA designs (as
proposed by Gessler et al. (1995)): the ER has different stratification limits and
different weights. In particular, the tails of the distribution form strata, ensuring
that some points are always selected from them, as in a D1 design. If the predictor
shows a skewed distribution, the EA limits will largely shift towards one end of
distribution and may by accident miss the tail. For the large number of sample
points, however, the two designs will produce very similar results. If the predictors
show a uniform distribution, the ER stratification limits are the same as in EA (e.g.
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2.2 Methods 25

20%, 40%, 60%, 80% and 100%), i.e. the ER and EA designs are equivalent. We will
hold to the term equal range, in further text, as it emphasizes the uniform spreading
in the feature space.

An accurate method to determine stratification limits and weights, also used in
this study, is to divide the range of predictor by the number of strata and then take
the portion of the cumulative distribution between the limits as the weight. The
ER design in the bivariate case (two predictors), in the case that all combinations of
predictors are available (ideal conditions), is similar to grid sampling in geographical
space (Fig. 2.3b).
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Figure 2.3: Equal range design (ER) with five strata: (a) histogram stratification with
cumulative percentage limits and (b) 25 points allocated using two predictors (ideal case).

2.2.3 Comparison and evaluation of sampling schemes

We compared the ER and alternative designs by sub-sampling an existing set of
100 point observations from the original survey (ORIG). There were five set-ups in
total: induced bias (here called Dx1), minimised spreading in the feature space (here
called Dx2), D1, D2 and ER. We selected 25-point sub-samples of the 100 observation
according to each design. For the Dx1 design we selected points at lower elevations
only, and for the Dx2 design, around the mean elevation only. Because of the small
sample size, some sub-samples did not correspond exactly to the theoretical designs.
For example, in the case of D1 and D2, there were not enough points in the 5% tails
or at the median. We then had to use the 25 points from the lowest and highest
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elevations (approximation to D1), or around the median (approximation of D2),
even though these occupy parts of the feature space outside the theoretical design.
Therefore, this comparison of designs must be viewed as an approximation, with the
advantage that it deals with a real dataset.

The mean overall GLS prediction error was calculated at all raster nodes (m=2500)
for all designs (Eq. (2.12)). In this case, instead of using MSE for each subset, the
residual error at the original 100 points (z∗i ) can be used to evaluate the true pre-
diction error:

MSE ∗ =

n∑
i=1

(z∗i − ẑi)2

n− 2
(2.16)

This means that the key evaluation issue is how close each design of a 25-point
sample can come to estimating the original set. We used OM for response and
DEM for predictor, as the reference model against which the various designs were
evaluated.

The spatial dependence structure of the point data sets (soil properties and
residuals) was modelled in VESPER using automated variogram fitting (Minasny
et al., 2002), in all cases with a lag spacing of 1 km, an exponential model, and a
limiting distance of 25 km. Matrix calculations and regression analysis were done in
the S-PLUS statistical package (MathSoft Inc., 1999).

2.2.4 Additional considerations

Since stratification of the feature space results in a large number of possible points
in each cluster, there is an opportunity to run several randomisations and compare
them for geographical spreading. We compared 10 simulations of the ER design with
several alternative sampling strategies (random sampling, grid sampling, D1 and D2
designs) showing both the spreading in the feature space and geographical spreading
(MSD) in a two-dimensional plot. In addition, we produced a transect ER design by
allocating all points according to the ER feature space stratification on a single line
in the direction of maximum contrast. The azimuth angle of maximum anisotropy
was derived using the variogram surface function in ILWIS. The transect design has
fairly small MSD and therefore is the most attractive realisation of the ER design
considering the survey costs. Note that we did not make observations for the 10
simulations of the ER design, the transect design or the grid design. These were
produced only to visualise the differences between the different sampling strategies
in the context of feature and geographical space.
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2.2.5 Multivariate case: Soil Predictive Components

When there are several predictors (the multivariate case), any of the stratifications
proposed above must be adapted to multidimensional clusters. This is a highly
relevant objective, since most realistic environmental correlations involve multiple
predictors. This presents two problems. First, predictors are often significantly
correlated, i.e. redundant in content, so that the dimensionality of the feature space
is not as high as it first appears. Second, the final number of clusters obtained
by crossing the several one-dimensional stratifications can easily be more than the
intended number of sample points. We suggest the following sampling procedure for
the multivariate case. To address multicollinearity, a principal component analysis
can be used to produce uncorrelated Principal Components (PCs) (Neter et al., 1996,
p. 410). These are orthogonal and can be used instead of the original predictors to
design sampling (Lesch et al., 1995). In our case study, we first linearly stretched
maps of continuous predictors in ILWIS to a dynamic range of 0–255 (8 bits). This
set of maps was then transformed to PCs, yielding new synthetic ‘bands’ (Lillesand
& Kiefer, 2000, p. 518), here named Soil Predictive Components (SPC). The SPCs
were then stratified separately using the ER design as for the univariate case.

In addition, we partitioned the total number of sample points among the SPCs
according to their proportion of the total variance calculated in the factor analysis.
For example, since there were 100 new points to allocate, and SPC1 accounts for 64%
of the variance, 64 points were assigned to SPC1. In each case, points were selected
randomly within the each strata to ensure independence of sample measurements
(Brus & de Gruijter, 1997). The randomly selected points for a single cluster may fall
anywhere in the distribution of the other SPC. Because the SPCs are uncorrelated,
the chance of overlap is minimised. We could not test this design for its predictive
power, since we did not carry out actual soil observations and lab analysis. Thus we
introduce these considerations to demonstrate how the ER design can be extended
to the multivariate case.

2.3 Results

2.3.1 Regression models and spatial dependence structure

A plot of the relation between predictors and the target variable for all 100 obser-
vations showed the diffuse clouds of points, typical for soil-environmental relations
(Fig. 2.4). OM showed a clear correlation with the selected predictors LST, DEM
and CTI. All correlations, except those with NDVI as a predictor, are highly signifi-
cant (p=0.01). Elevation (DEM) proved to be the most significant predictor of OM.
Although we can infer a likely curve shape from the scatter plots, the true nature
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of relationship between the predictors and soil variables is unknown. These noisy
plots are typical for environmental data, where parsimonious models are suggested
to avoid over-fitting the sample (Gauch & Hugh, 1993). As noted above, the corre-
lation plot between OM and CTI shows a distinct curvature, which means that the
prediction efficiency will be more sensitive to the sampling design (as illustrated in
Fig. 2.1d).
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Figure 2.4: Observed ordinary least squares regression models for organic matter (OM)
and their significance (R2). DEM – elevation, CTI – Compound Topographic or wetness
index, LST – land surface temperature and NDVI – mean annual Normalised Difference
Vegetation Index.

In the case of predicting OM from DEM, OLS estimation gave:

OM = 2.96 + 9.10 · 10−3 ·DEM (R2 = 0.61) (2.17)

while GLS estimation gave a markedly higher intercept, lower slope, and a more
realistic R2:

OM = 4.96 + 5.89 · 10−3 ·DEM (R2 = 0.53) (2.18)

Automated variogram fitting for the DEM (used in the GLS estimation above)
gave an unbounded variogram with a nearly linear shape in the radius of interest
(Fig. 2.5a). The LST variable had a similar structure, while the variograms for
NDVI and CTI showed much shorter range of spatial autocorrelation. The variogram
surface of the DEM showed that the azimuth of highest anisotropy (shortest range)
is 48.6°, i.e. northeast direction (Fig. 2.5b). Variograms of target variable (Fig. 2.5c)
and residuals (Fig. 2.5d) from the reference model in Eq. (2.18) were both fitted by
the exponential model, with a fivefold shorter range and threefold lower sill for the
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2.3 Results 29

residuals. The residuals showed spatial dependence to a distance of about 12.9 km
(R=4.3 km), which implies that almost all points used in the regression modelling
are spatially dependent. This confirms that geographical spreading has an effect
on regression analysis and so is an important criterion for selection of the sampling
design. Note also that the variogram model of a predictor might be quite different
from the variogram model of the residuals, which means that the assumption made
by Gessler et al. (1995) (see theoretical introduction) should be taken with care.
The exponential variogram model (C0=0, C1=3.12, R=4.3 km) for the residuals
from OLS was used as the reference model to calculate the overall prediction error
for all sampling designs.
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Figure 2.5: Geostatistical analysis: (a) variogram and (b) variogram surface of elevation
map (DEM); (c) variogram of the target variable (organic matter, OM) and (d) regression
residuals.
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2.3.2 Comparison for prediction efficiency

A summary comparison of the designs is given in Table 2.1, and a visual comparison
in Fig. 2.6. The Dx2 design, where the samples covered only the mean elevations
gave, by far, the poorest overall prediction due to high spatial grouping and extrapo-
lation in feature space. Similarly, the design with induced bias (Dx1) overestimated
the β1 coefficient and therefore the values in the areas of higher elevation (Fig. 2.6a).
In general, maps of prediction error for D1, D2 and ER look fairly similar (Fig. 2.6b),
although there are some differences. D1, the design with the highest spreading in
the feature space, did not produce also the lowest overall GLS curvature of the con-
fidence band: v̄gls=0.460 compared to 0.407 for ER design. This is due to the lowest
MSD and the strong spatial correlation of residuals. Although the relationship is
almost linear, which implies that the D1 design should be the optimal response
surface design, the ER design gave a smaller overall curvature than the D1 design
(Table 2.1). This agrees with our empirical assumption that ER is a good compro-
mise between model estimation and geographical spreading. Also note (Fig. 2.6a)
that ER came closest to estimating the reference model.

Table 2.1: Statistical comparison of internal properties and mapping efficiency for different
sub-set designs and OM = b0 + b1 ·DEM regression model.

Designsa n MSD q −Q sq b0 b1 R2 vgls RMSE∗ σgls

(km) (m) - (10−3) - - (%)

ORIG 100 2.52 24.8 266.8 4.96 5.89 0.53 0.196 1.95 2.18

Dx1 25 4.78 -191.7 113.5 2.78 10.1 0.33 1.42 2.02 2.35

Dx2 25 4.16 -13.2 52.0 8.98 -0.28 0.01 2.23 3.19 3.52

D1 25 3.41 84.6 447.6 3.01 8.85 0.90 0.460 1.96 2.07

D2 25 3.96 57.8 373.9 3.65 7.92 0.77 0.391 1.98 2.08

ER 25 5.43 -21.1 213.4 3.99 7.67 0.39 0.407 2.00 2.10

an – number of observations; MSD – mean of shortest distances between the point pairs; q−Q –
bias between the sampled mean and mean for DEM calculated at all raster nodes; sq – sampled stan-
dard deviation for DEM; b0 and b1 – GLS regression coefficients R2 – coefficient of determination;
vgls – overall curvature of the confidence bands; RMSE∗ – root mean square error (for estimating
OM) between the predicted values and values at original locations; σgls – overall prediction error
at all raster nodes; the summary statistics for DEM: Q=599.3 and sQ=232.8 m.

Because the D1 and D2 sub-sampled sets did not completely match the theo-
retical designs (Fig. 2.6a), differences between performances are less marked than
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Figure 2.6: Comparison of different subsets based on different sampling designs - induced
bias (Dx1), minimised spreading in feature space (Dx2), minmax design (D1), equal area
stratification (EA), equal range (ER) and D2 design: (a) correlation plots showing fitted
model of OM vs DEM with confidence limits and reference model estimated using all 100
points and GLS estimation; (b) standard deviation of the prediction error mapped at all
raster nodes with geographical location of points.
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expected by theory; in fact the D1 and D2 designs are quite close in performance
to the ER design. Nevertheless, these sub-samples show some fundamental char-
acteristics of the compared designs. For example, the D1 design achieves the best
fit (R2=0.90), but its points are clustered geographically (Fig. 2.6b), which finally
raises the overall GLS prediction error so that it is somewhat inferior to the ER
design.

2.3.3 Feature space and geographical space spreading

Summary comparison of different sampling strategies is shown in Fig. 2.7. We used
a two dimensional plot with the feature space spreading (sq) and the geographical
spreading (MSD) as axes. As expected, designs D1, D2 and ER, show the highest
spreading in feature space. Different realisations of the ER design will have different
MSD values, although there is a limiting maximum spreading achievable within the
ER strata. After few randomisations, an ER design with a higher spreading in both
feature and geographical space than the existing soil survey was produced (Fig. 2.7a).
An opposite strategy is a transect sampling along the steepest gradient, i.e. in the
direction of the azimuth of highest anisotropy (Fig. 2.7b). On the other hand,
the transect design, in this case (predicting organic matter from elevation), would
give only sub-optimal estimation of model because of strong spatial autocorrelation
between residuals.

2.3.4 Multivariate case

The predictor variables (LST, NDVI, DEM, CTI) were highly correlated, as shown
by the large proportion of variance explained by first two SPCs (Table 2.2). The
first component (SPC1) had approximately equal contributions from DEM, LST and
CTI. The second component (SPC2) represented variation of biomass as estimated
by NDVI. The third component (SPC3) reflected variation of CTI uncorrelated with
DEM, whereas the fourth component (SPC4) reflected variation in DEM and LST.
These SPCs form a orthogonal multivariate feature space of the study area. Fig. 2.8
shows the result of stratification of SPCs and the new points selected using the ER
design according to the sampling plan (Table 2.3). Note that in some cases the
number of points is not divisible by number of strata. For example, SPC4 receives
four points, which need to be assigned to five strata. In such case we manually
adjusted the number of points at the central class by adding or removing single
observations to preserve the planned numbers (Table 2.3).

The points from the ER design with maximum spreading and the points from the
existing survey are displayed in geographical and orthogonal feature space in Fig. 2.9.
Both the new sample and the points from the existing survey had a similar spreading
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Figure 2.7: Comparison of different sampling strategies considering the spreading of the
points in feature space (sq) and geographical space (MSD): grid sample, free survey, D1,
D2 and 10 simulations of the equal range (ER) design (left). Shaded area indicates assumed
range of all possible realisations of ER design. Two different realisation of the ER design
(25 points): (a) maximised spreading of points within strata and (b) minimised spreading
by transect sampling consistent with ER feature space stratification (right).

in geographical space (Fig. 2.9a), with a MSD of 2.74 km and 2.52 km respectively,
suggesting that the surveyors consciously spread their points to represent the whole
area. Also when compared in the feature space using SPC1 and SPC2 as axes, ER
and free survey (ORIG) show a higher spread towards the centre of the feature space
cloud (Fig. 2.9b). Note that the total possible feature space, i.e. study area, spanned
by SPC1 and SPC2, is limited due to a limited number of combinations between the
predictors (Fig. 2.9b), which causes higher groupings in some areas. Consequently,
the ER design does not look as similar to grid-sampling as we had expected.
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Table 2.2: Loadings of the principal component analysis for four environmental bands and
variance percentage explained.

LST NDVI DEM CTI
Variance
explained per
band (%)

SPC1 0.567 -0.115 -0.637 0.509 64.1 64.1

SPC2 0.284 0.861 -0.199 -0.371 20.5 84.6

SPC3 -0.526 0.478 0.008 0.704 10.8 95.4

SPC4 -0.567 -0.127 -0.744 -0.329 4.6 100.0

Table 2.3: Allocation of points per strata: the distribution is based on the amount of
variance explained by the factor analysis.

Points per strata

Stratification limits (%)
Variance
explained

n L1 L2 L3 L4 L5

SPC1 64.1% 64 2 11 25 14 12

SPC2 20.5% 21 0 2 8 9 2

SPC3 10.8% 11 0 1 8 2 0

SPC4 4.6% 4 0 1 0 1 0

Total 100% 100 2 15 43 26 14

2.4 Discussion

2.4.1 The optimal design

In this chapter some theoretical concepts related to sampling optimisation by alloca-
tion in feature space were introduced and tested using a real data set. Our primary
objective was to develop experimental sampling schemes that can be used prior to
any data collection and extend the spatial prediction to the general case (GLS). We
first used the model-based D-designs or response surface designs, which allow exclu-
sion of most of the survey area. This may seem contradictory to field experience.
For example, for the D1 design, it is not appealing to an experienced surveyor to
put half of the points at the bottom of a slope and the remaining at the summit
to determine the relation of organic matter to elevation. One reason is that we
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Figure 2.8: Soil Predictive Components (SPCs) from the principal component analysis,
proportion of variance explained and most correlated environmental variables (left). Strat-
ified SPCs based on the equal range design and 100 randomised point allocations spread
along the four SPCs (right).

often expect that some other soil-forming factor, not correlated with the predictor
variable, may vary between summit and footslope or that the relationship between
the predictor and soil variable might be non-linear (as illustrated in Fig. 2.1d). This
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Figure 2.9: Profile locations from the existing survey (squares) and new simulated points
using the equal range design (dots) displayed in geographical space (left) and in feature
space spanned by SPC1 and SPC2 (right). The grey background indicates the study area.

means that even if a linear model is fit, the D1 design may result in a worse overall
prediction.

Comparison of predictive power of designs for a univariate regression model in
this study showed that D1 and D2 are indeed sub-optimal designs a strong spatial
correlation between the residuals exists. This is because the points close to each
other in feature space are often close in geographical space, since these narrow (in
feature space) strata are also geographically small. On the contrary, the ER and EA
designs achieved lower overall GLS curvature of the confidence band due to higher
MSD between the points. In this case study, ER showed somewhat lower spreading
in the feature space but the widest spreading in the geographical space.

This study also highlighted the importance of sampling optimisation in feature
space, since serious bias or under-sampling of total variation (Dx1, Dx2) will result in
poorer estimates of model coefficients, or higher overall curvature of the confidence
band. Although one might argue that the Dx1 and Dx2 are obviously deficient
designs, note that the Dx1 and Dx2 sub-samples did not have a poor geographical
spreading at all (Fig. 2.6b). They could have be drawn out by simple random
sampling for example.

Finally, the following four sampling principles, common for all compared designs,
can be emphasized:

� Representation of feature space prior to sampling is important for overall pre-
diction efficiency. Undersampling of the feature space may lead to poor esti-
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mation of the model and high extrapolation in feature space (Dx1 example). A
sample should cover the whole range of the feature space, so the extrapolation
in feature space is minimised.

� Internal properties of predictors, histogram, range of spatial dependence and
azimuth of maximum anisotropy can be used to design sampling prior to any
knowledge on spatial variation of soil variables.

� The optimally placed sample is symmetrical around the central value of the
feature space, i.e. shows a minimum bias between the sampled and the popu-
lation mean of the predictors (Q̄ = q̄).

� Maximisation of geographical spreading is important to represent areas (pre-
dictors) that are by accident overlooked and minimize spatial dependence be-
tween the observations. If the structure (range) of spatial dependence of resid-
uals is known, we can be less strict. For example, if the residuals are spatially
dependent at short ranges only, the samples can be placed at shorter distances
and vice versa. In the case there is no prior information on soil variables and
on functional relationship with predictors, one should aim at allocating the
points in such way that they show both uniform spreading in (orthogonal)
feature space and geographical space at the same time.

2.4.2 Equal range (area) or D-type designs?

Comparison of the ER (EA) and D-type designs showed that the ER design, when
used for GLS estimation, is somewhat more appropriate for the spatial prediction
of soil properties due to a more satisfactory spreading of points in geographical
space and better estimate of the model coefficients. On the other hand, a drawback
of ER design is that it gives more emphasis on the central values so even if the
relation is close to linear, many points are not placed optimally in the feature space.
Moreover, it appears that the EA or ER designs when used with a higher number of
samples, does not have to necessarily differ much from a free survey or random design
considering the spreading in the feature space. If the study area is stratified into
equal areas and if equal weights are used, then the probability to select a location in
the feature space is equal for the whole area (as with random sampling). It appears
that the EA design, as used by Gessler et al. (1995, p. 426) and McKenzie & Ryan
(1999, p. 78) could have been replaced with a simple random sampling.

When compared for the overall prediction error, however, the ER design proved
to be justifiable. If the residuals are spatially correlated at shorter distances or if
the plots do not show clear linear relationships, the safest design is to proportionally
represent the feature space and allow higher geographical spreading. Open questions

37



38 Sampling

are the relative performance of the ER designs with strongly non-normal predictors,
and if higher-order polynomials are more parsimonious than the first-order linear
models used in this paper.

The D-type designs seem to be attractive for cases where the relationship is
linear or quadratic and where the geographical spreading can be satisfactory (e.g.
in gilgai-type landscape samples can be placed at edges of the feature space but
with satisfactory geographical spreading). A possible compromise between ER and
D1 designs is to use a modification of the ER design with equal weights in all parts
of range. Consequently, the sampled standard deviation (sq) will be approximately
40% larger than the standard deviation of the whole map (sQ), which is a desired
property for minimisation of the prediction error (as explained in Eq. (2.7)).

2.4.3 Sampling along the multivariate gradient

In the multivariate case, we advocate a sampling procedure inspired by the intuitive
idea of sampling in orthogonal multivariate feature space of predictors expected to
represent soil-forming processes. The first step is the definition of key processes
and variables according to concepts of soil formation in the study region. The
second is data integration and stratification, which corresponds to the aerial photo-
interpretation in a conventional soil survey. Here, we advocate the uniform spreading
in feature space (ER design) and transformation of the predictive soil environmental
maps to independent Soil Predictive Components (SPC). The samples can then be
distributed using the proportion of variance explained by different SPC. The last step
is the randomisation of points inside the clusters and selection of the randomisation
with the maximum geographical spreading. In this case study we produced 10
randomisations and yielded a satisfying design with, simultaneously, a reasonable
coverage of both feature and geographical space.

The development of a sampling scheme in multivariate feature space was more
complex than in the univariate case, since the sampling points have to be selected
simultaneously, i.e. represent a set of different predictors at the same time. Because
of the large number of points in the initial set, there was no problem with randomly
selecting points from 20 strata at the same time. Due to the high number of grid
cells, the probability that the same point will be selected from the stratifications of
two SPC at the same time was small. An alternative would be to make all possible
combinations of clusters and then randomly select points inside these. The principle,
used by McKenzie & Ryan (1999), was impractical in this case, since the number of
combinations (54 = 625) would greatly exceed the total number of samples planned
(100). This methodology can be adjusted for the general case where also the discrete
predictors such as parent material are used. These, however, form strata a priori
and cannot be processed together with continuous predictors.
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Simultaneous analysis of feature and geographical space provides a basis for the
development of sampling designs for hybrid interpolation techniques, such as kriging
with external trend or regression-kriging (McBratney et al., 2000). Moreover, it
would be interesting to incorporate the proposed feature space criteria within the
geostatistical optimisation algorithms such as simulated annealing.
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Chapter 3

Reduction of errors in terrain
parameters∗

“Garbage in, garbage out!”

[a famous computer axiom meaning that if invalid data is entered into a system,
the resulting output will also be invalid, available via www.webopedia.com]

∗based on:

� Hengl, T., Gruber, S., and Shrestha, D.P., 2003. Reduction of errors in digital terrain param-
eters used in soil-landscape modelling. International Journal of Applied Earth Observation
and Geoinformation (JAG), in review.

� Hengl, T. and Shrestha, D.P., 2003. Digital terrain analysis in ILWIS. Lecture notes, Inter-
national Institute for Geo-Information Science & Earth Observation, pp. 56. available via:
www.itc.nl/personal/shrestha/DTA/
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3.1 Introduction

Digital terrain parameters, also known as topographic attributes (Wilson et al.,
2000) or morphometric variables (Shary et al., 2002) are commonly derived from the
digital elevation model (DEM) using some digital terrain analysis method. There has
been an increasing interest in the use of relief data in the last decade accompanied
by a growing availability of DEMs. The quality of terrain parameters is important as
it directly affects the quality of spatial modeling. Several factors play an important
role for the quality of DEM-derived products (Thompson et al., 2001):

� terrain roughness and complexity;

� sampling density and DEM collection and interpolation method;

� grid spacing or pixel size;

� vertical resolution or precision and

� type and nature of algorithms used to derive terrain parameters.

Under slightly different input factors, e.g. coarser grid resolutions, vertical reso-
lution or different filter algorithms, the terrain analysis can result in fundamentally
different features (Wilson et al., 2000). The importance of each factor, however, is
usually driven by application-specific rules (Martinoni, 2002).

Terrain parameters are commonly used as auxiliary variables to improve spatial
prediction of vegetation (Bolstad & Lillesand, 1992) or depositional/erosional pro-
cesses (Mitasova et al., 1996). A large group of terrain analysis applications is related
to mapping and modelling of soil data. Terrain parameters are most commonly used
as extensively mapped secondary or auxiliary variables to improve spatial prediction
of soil-scapes and soil properties, such as thicknesses of horizons and other chem-
ical (e.g. pH, organic matter) and physical (e.g. particle size fractions) properties
(Moore et al., 1993; Gessler et al., 1995; McKenzie & Ryan, 1999). The application
of statistical techniques for analysis of spatial distribution of soils using terrain and
other environmental parameters is commonly referred to as soil-lansdcape modelling.
McKenzie et al. (2000) gives an overview of applications for soil mapping. Dobos
(2002) lists the most recent applications for regional scale soil mapping. In many
of these applications, the errors in terrain parameters or terrain analysis algorithms
are not considered as a quality control factor for successful soil-landscape modelling.

3.1.1 Errors in terrain parameters

For digital terrain analysis it is more important how well a DEM resembles actual
terrain shapes and flow/deposition processes than what is the absolute accuracy of
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the elevation values. This resemblance is often referred to as the relative accuracy of
DEMs (Wise, 2000). Whereas absolute accuracy denotes the fit between the DEM
and the real world, relative accuracy is a measure of the quality of DEM-derived
products. The accuracy of terrain parameters is “less a function of absolute accu-
racy of elevation values than of how well and how smoothly the landscape features
are modeled” (MacMillan et al., 2000). Schneider (1998) introduced the term “ge-
omorphological plausibility” to denote a compromise between the geomorphologic
knowledge, sampled elevation data and interpolation techniques. In practice, field
validation of accuracy of terrain parameters (e.g. hand measurements of slope,
aspect and curvatures) has proven to be difficult due to the fractal nature of topog-
raphy and abstract definition of many terrain parameters (Florinsky, 1998). The
process of detecting and reducing errors is therefore somewhat different from detec-
tion of errors in remote sensing or other GIS data sources.

The errors in DEM and DEM-derived products can be roughly grouped in three
types: (i) artefacts, blunders or gross errors, (ii) systematic errors and (iii) random
errors or noise (Wise, 2000). Artefacts in terrain parameters are usually harder to
detect than in the DEM, but they will certainly be visible in DEM-derived products.
For example, interpolation of digitised contour lines using the linear interpolator will
typically show artefacts in the slope and aspect maps (Burrough & McDonnell, 1998,
Fig. 5.16). The most typical artefacts are so the called ‘padi’ or ‘rice’ terraces or
cut-offs, which are absolutely flat. Although these are not visible in the DEM, the
calculation of aspect or CTI fails due to division by zero, which finally results in
part of the area being undefined. The padi terraces are somewhat similar to clouded
pixels in remote sensing images, which suggests that similar geostatistical procedures
(kriging or co-kriging) can be applied to remove them (Addink & Stein, 1999). Other
common artefacts are ‘ghost’ lines or ‘tiger stripes’, which are obviously erratic
features (Burrough & McDonnell, 1998). Systematic errors reflect the limitations of
an algorithm and can be detected as local, unrealistic features or outliers.

Errors are especially common for terrain parameters derived using the higher or-
der derivatives (curvatures), aspect map and hydrological parameters (CTI). Wise
(2000) gives a comparison of different interpolation techniques and terrain analysis
algorithms when applied in calculation of hydrological parameters. Thompson et al.
(2001) evaluated the effect of the change in resolution on soil-landscape modelling
and showed that with the increase of pixel size, spatial prediction of soil variables
will be less discernible, while decreased vertical precision will typically show more
erratic values. Wilson et al. (2000) emphasized the importance of the finer grid
resolutions and flexible algorithms using a set of studies. Tang et al. (2002), showed
that accuracy of DEM-derived hydrological data is directly related to DEM verti-
cal resolution and terrain roughness. In the areas where the slope was less than
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four degrees, the hydrological parameters were usually unreliable. Florinsky (1998)
investigated the influence of different algorithms used to derive terrain parameters
on the overall precision. Holmes et al. (2000) showed that local inaccuracies in the
USGS 30 m DEM can be large and that the highest impact of the errors on terrain
parameters is in valley bottoms.

In many cases, even simple smoothing of DEMs has proven to be beneficial in
improving the quality of terrain parameters (Wise, 2000). Brown & Bara (1994)
used low-pass filters in combination with analysis of spatial dependence to reduce
outliers in elevation, slope and curvatures. MacMillan (2000) described a set fil-
tering procedures to account for local noise and optimise terrain surfacing. Several
other statistical image processing methods for reduction of errors have been proposed
(Felicisimo, 1994; Lopez, 2000). In hydrological applications, quality of terrain pa-
rameters is usually improved by adjusting the interpolation to the existing network
of streams and ridges or by removing the sinks. The automatic adjustment of DEMs
has been implemented, for example, in the ANUDEM program (Hutchinson, 1989).
However, ANUDEM and similar algorithms do not necessarily guarantee reduction
of padi terraces, local outliers and other artefacts. There is still a need for flexible
methods to improve plausibility of DEMs derived from contour lines. In addition,
systematic methodology to quantify and reduce errors in number of morphometric
and hydrological terrain parameters is lacking.

3.2 Methods

Let the elevation map be denoted as z or DEM , terrain parameters denoted as τ or
TP and errors denoted as e, where zi is the elevation value at ith grid location (z1,
z2,...,zn) and n is the number of pixels in a map. A realisation of elevation map is
then denoted z∗ and z∗j is the jth realisation of elevation map and filtered map is
denoted z+. Let also the derivation of terrain parameter from elevation be denoted
as τ(z) or TP (DEM ) and local neighbourhood be denoted as zNB. In a kÖk window
environment, zNB× is the value of the central cell and zNBc is the value at the cth
neighbour of its k2 neighbours. Commonly used window sizes are 3×3 and 5×5.

3.2.1 Detection and quantification of errors

Prior to the calculation of terrain parameters, it is important to first detect and
reduce errors in the DEM (Wise, 2000). Padi terraces are areas where all surrounding
pixels show the same value and can be defined as:

e←
[
∀c zNBc = zNB×

]
(3.1)
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Padi terraces are typical for closed contour lines and linear interpolators but can
also appear when smoother interpolators are used. This happens because the hill
tops, small ridges and valley bottoms are typically not recorded in the topo-map
or no elevation value is attached to them. In a GIS, padi terraces can be detected
using a neighbourhood operation.

The outliers can be defined as small, very unprobable features, which could
have happen due to the gross error in the data collection method (very common for
remote-sensing based instruments) or interpolation algorithm. They can be detected
and quantified by using the statistical approach suggested by Felicisimo (1994).
The probability to find a certain value within the neighbourhood is calculated by
comparing the original elevation with the value estimated from the neighbours:

δi = ẑNB
i − zi (3.2)

where δi is the difference between the original and estimated value and ẑNB
i is the el-

evation (or terrain parameter) estimated from the neighbours. A statistically sound
method to estimate the central value from the neighbouring pixels is to use the
spatial dependence structure, i.e. predict the central value by kriging (Felicisimo,
1994). In a 3×3 window environment, there are only two types of distances (as-
suming the isotropic variation): in the cardinal (2,4,6,8) and diagonal directions
(1,3,7,9) (Fig. 3.1a). An alternative is to use the 5×5 window size. Then there are
24 neighbours and five types of weights (Fig. 3.1b).
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Figure 3.1: Schematic examples of filtering environments assuming isotropic model: (a)
3×3 window environment with common designation of neighbours and (b) 5×5 window
environment with weights. The weights are used to predict the central pixel.

In a 3×3 window, the predictions are made by:
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ẑNB = wB · [zNB1 + zNB3 + zNB7 + zNB9]
+ wA · [zNB2 + zNB4 + zNB6 + zNB8] (3.3)

where wA is the weight in cardinal direction and wB is the weight in diagonal direc-
tion. In general case (k × k window), the predictions are made by:

ẑNB =
k2∑

c=1

wc · zNBc

k2∑
c=1

wc = 1

(3.4)

where wc is the weight at cth neighbour and w× is the weight at the central pixel, so
that w× = 0 and × = k2+1

2 . Note that in the case of anisotropy, different weights can
be used in different directions. The (kriging) weights are solved using the covariance
function and relative distances between all pixels. Note that because we are only
interested in the local spatial dependence, only first 10–15 surrounding pixels are
considered for variogram modelling.

The difference between estimated and true value is calculated for each pixel to
derive overall average and standard deviation (δ̄ and sδ). Assuming a Gaussian
distribution, Student’s t test is used to standardise the differences by:

ti =
δi − δ̄

sδ
; i = 1, ..., n (3.5)

where n is the total number of pixels. Note that the overall average of differences
should equal zero. The outliers (e) are then detected as:

ei ←
[
|ti| ≥ tα/2,n−2

]
(3.6)

For the two-tail 99.9% probability (a=0.01) t has value of 3.219.

3.2.2 Reduction of errors

Improving the plausibility of DEMs

Prior to actual filtering of terrain parameters, it is advisable to improving the plausi-
bility of the DEM. First step in improving the DEMs derived from the contour data
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is to account for features not shown by the contours such as break-lines indicating
ridges or valley bottoms. This can be achieved by digitizing supplementary contour
lines and spot heights indicating small channels, hilltops and ridges that are not
indicated on the original topographic maps but can be inferred. The proportion of
artefacts can be fairly high, especially in flat terrains, which means that the man-
ual digitization can be a time consuming process. An alternative is the automated
detection of medial axes between the closed contour lines. These are hypothetical
ridges or valley bottoms, also called ‘skeleton-lines’ (Fig. 3.2a). First, the padi ter-
races need to be detected using Eq. (3.1). Then the medial axes can be detected
using a distance operation from the bulk contour data (Pilouk, 1992). The new
elevation is assigned to the medial axes between the closed contours by adding or
subtracting some threshold elevation value, e.g. standard deviation of the elevation
values (Hengl et al., 2003b):

z+
i =


zi + RMSE (z) if e = terrace and τ= convex
zi − RMSE (z) if e = terrace and τ= concave

zi otherwise
(3.7)

where RMSE (z) is the estimated accuracy of elevation measurements. For DEMs
derived from the contour data, RMSE (z) can be estimated from the contour interval
h and local slope (Li, 1994):

RMSE (z) = B · h + RMSE (xy) · tanβ (3.8)

where B is empirical number (commonly used is 0.16–0.33 range), RMSE (xy) is the
planimetric error and β is the local slope. In the case of padi terraces, the slope
equals zero so the RMSE (z) can be estimated directly from the contour interval.
For example, if the contour interval is 10 m and B=0.25 then the RMSE (z) is 2.5 m.
Note that the adjustment of elevation is only done for hypothetical ridges (convex
terrain) and valley bottoms (concave terrain). These additional lines are then added
to the original contour data to re-interpolate the DEM.

The next step in improving the quality of the DEM is to reduce the outliers
(Fig. 3.2b). These can be filtered using the parametric statistical method as ex-
plained in Eqs. (3.3) and (3.5). From the t value (Eq. (3.5)), we can derive the
normal probability p(t), which can be used as a weight function. The smoothed DEM
can then be derived as a weighted average from the original DEM and estimated
elevations:

z+
i = p(ti) · zi + [1− p(ti)] · ẑNB

i ; p(t) ∈ [0, 1] (3.9)
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Figure 3.2: Schematic examples of DEM fitlering using cross-sections: (a) reduction of padi
terrace fields; (b) reduction of outliers and (c) adjustment of the elevation using drainage
lines. Black-coloured strips indicate the change in elevation values.

where z+ is the filtered elevation map and p(t) is the probability of exceeding a value
estimated from the neighbours using the spatial dependence structure. The averaged
elevation will be somewhat smoothed after the filtering for outliers. However, weak
smoothing of elevation prior to terrain analysis is often recommended (Evens & Cox,
1999).

The last step in improving the geomorphic plausibility of a DEM is adjustment
of elevations by incorporating the additional information, e.g. map of streams, water
bodies and small channels. The streams (lines) and water bodies are first rasterized.
A distance map (buffer) can then be used to calculate the DEM adjustment. We
recommend the following formula:

∆zi =
(

p

p + di

)ϕ

·H

∆zi ∈ [0,H]
z+
i = zi −∆zi

(3.10)

where ∆zi is the adjustment of elevation, p is the pixel size, H is the maximum
elevation difference, di is the distance from streams map and ϕ is the adjustment
factor. This means that the original DEM will ‘sink’ proportionally to the distance
from the streams (Fig. 3.2c). At the exact location of the streams or water bodies,
the DEM will sink for the full value of H. The adjustment factor can be selected
to reflect the field knowledge of relative local elevation differences. The maximum
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elevation difference can be estimated from the field knowledge or an arbitrary small
number can be used, e.g. half the contour interval h. This means that for h = 10 m
the adjustment of elevation for < 5 m does not affect the original position of contours.

The suitable grid resolution can be estimated from the bulk contour data by
using the total length of contours. As a rule of thumb, grid resolution (p) should be
at least half the average spacing between the contours (Hengl et al., 2003b):

p =
A

2 ·
∑

L
(3.11)

where A is the total size of the study area and
∑

L is the total cumulative length
of digitised contours. Alternatively, the grid resolution can be estimated using car-
tographic standards. According to Tempfli (1999), the grid resolution should be
optimally the maximum graphic resolution of lines shown on the maps, i.e. 0.4 mm
at map scale. In the case of both estimating the pixel size and vertical resolution
of the DEM, it is advisable to round down the numbers (the finer the grid size the
better).

One can argue that the stream adjustment formula (Eq. (3.10)) can also modify
elevations that are fairly far away from the streams. However, it can be shown that
the adjustment of elevation affects only the local pixels. For example, for ϕ=1.5,
p=25 m, H=5 m and vertical precision of 0.2 m, the stream-adjusted DEM differs
for only first six neighbouring pixels from the streams (150 m in this case). The
others pixels will stay practically unchanged (Fig. 3.3).

Finally, from the filtering steps explained above, four levels of DEM data can be
distinguished:

1. (DEM L0) the unfiltered DEM - derived from the contour data only;

2. (DEM L1) terrace-free DEM - padi terraces are replaced by digitising ridges,
peaks and sinks or by using automated extraction of medial axes;

3. (DEM L2) smoothed DEM - filtered for the outliers and

4. (DEM L3) streams-adjusted DEM - elevation adjusted for the streams and water
bodies;

Note that these filtering steps can be applied regardless of the source, scale and
quality of the input elevation data.

Reducing errors in terrain parameters

Even after the plausibility of the DEM has been improved, there can still be some
remaining problematic features. Hence, filtering of errors in terrain parameters will

49



50 Pre-processing

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0 100 200 300 400

Distance from a stream/ridge (m)

A
d

ju
s

tm
e

n
t 

o
f 

e
le

v
a

ti
o

n
 (

m
)

1.0

1.5

2.0

vertical
precision

adjustment
factor

Figure 3.3: Elevation adjustment using different adjustment factors (ϕ).

also be necessary. The undefined pixels in terrain parameters can be filtered by iter-
atively replacing them using the predominant or average value from the neighbours:

τ+
i =

{
τ̂NB
i if τi = ?
τi otherwise

(3.12)

where τ̂ is the terrain parameter estimated from the neighbours, e.g. using the kriging
weights. A simpler solution is to take the average or the predominant value from the
neighbours. For example, although CTI cannot be calculated in flat terrains due to
division by zero, it can be estimated from surrounding pixels using filtering operation
(extrapolation). One possibility is to approximate CTI by iteratively replacing the
slope in the areas where it equals zero by averaging the neighbouring cells. This is
done until all zero values are replaced with small values, which will have the effect
of creating realistic pools of high CTI in the plain. The second possibility is to
replace all small slopes with the threshold value, e.g. the smallest feasible slope.
After all undefined pixels have been filled, terrain parameters can be filtered for
outliers using the statistical approach as described in Eqs. (3.2) and (3.9). Note
that each terrain parameter might show different structure of spatial variation from
the elevation data, so that the modelling of a variogram is prerequisite.

In some cases, terrain parameters might not be undefined, but rather unrealis-
tic. For example, aspect is extremely noise-sensitive in areas of very low relief. It
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appears that it should be adjusted for the local slope. We recommend the following
procedure. First, the aspect map needs to be converted to a linear scale (Beers
et al., 1966), e.g. the ‘northness’ map:

NORTH = |180−ASPECT | (3.13)

where NORTH is the north-south aspect map where 0° means full northern ori-
entation, 180° means full southern orientation and 90° means no orientation. The
NORTH map can now be adjusted for the slope using:

NORTH + = 90− (90−NORTH ) ·
[
1− e

− SLOPE
RMSE0(SLOPE)

]
(3.14)

where NORTH + is the slope-adjusted northness map, SLOPE is the slope map and
RMSE 0(SLOPE ) is the estimated slope error in flat terrain. This is the precision
of measuring slope in flat terrains. Note from the Eq. (3.14), in areas where slope
tends to zero, the aspect exponentially tends to value of 90° (no-aspect). The slope
error can be approximated from the RMSE (z) and pixel size. For example, for the
Evans and Young method (Florinsky, 1998):

RMSE (SLOPE ) =
0.41 · RMSE (z)

p · (1 + G2 + H2)
(3.15)

for G2 → 0 and H2 → 0, we get:

RMSE 0(SLOPE ) =
0.41 · RMSE (z)

p
(3.16)

where G is the first derivative in x direction δz
δx and H is the first derivative in y

direction δz
δy . This means that, if RMSE (z)=2.5 m and p=25 m, the precision of

measuring slope in flat terrains is 5% (3°).

Reducing errors by error propagation

Due to a high sensitivity of terrain analysis algorithms to local conditions, any sin-
gle realisation represents only one view on terrain morphology. This is especially
important for the calculation of hydrological parameters where we are more inter-
ested in the general picture of the processes. Even for the perfectly adjusted DEM,
the location of the stream network can differ up to 3–4 cells from the true loca-
tion (Burrough & McDonnell, 1998). A statistically robust approach to reduce the
errors in terrain parameters is to average a set of possible realisations given the
uncertainty in elevation values (Burrough et al., 2000; Raaflaub & Collins, 2002).
This is also referred to as the Monte Carlo method of error propagation (Heuvelink,
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1998). The elevation values can be simulated using the inverse normal probability
function (Banks, 1998):

z∗i = zi + RMSE (z) ·
√
−2 · ln(1−A) · cos(2 · π ·B); i = 1, ..., n

A,B ∈ [0, 1)
(3.17)

where A and B are the independent random numbers within the 0− 0.99. . . range,
zi is the original value at ith location, is the simulated elevation with induced error
and RMSE (z) is the standard deviation of elevation values. The Eq. 3.17, however,
will only induce noise in the original DEM and the spatial dependence structure of
the simulated DEM will not be the same as the original.

In order to produce a realisation of DEM with similar spatial dependence struc-
ture (i.e. similar smoothness), point simulation needs to be used (Holmes et al.,
2000). It will produce a set of equiprobable realistic DEMs, each showing a similar
histogram and variogram. Assuming gaussian spatial distribution of errors and for
given RMSE (z) and covariance function (C0, C1 and R), the realisation with same
internal properties as the original DEM can be produced by simulating a point sam-
ple, inducing the error at point locations and then re-interpolating it over the whole
area (Amstrong & Dowd, 1993). We suggest the following procedure for ILWIS:

(1) Randomly locate a set of points at locations α in the study area, so that
the density of points corresponds to the original sampling density. In the case of
contour data, average spacing between the contours can be used to estimate the
original sampling density:

υ =
[ p

L

]2
; υ ∈ [0, 1] (3.18)

where p is the pixel size, and L is the average distance between the sampled points
(contour data). Note that the sampling density is the key factor determining the
smoothness of terrain. If the density of sampled points is high, it means that the
terrain is more complex; if the density is low, the terrain is rather simple or smooth.

(2) At these locations, assign a random error using the inverse normal probability
function and given RSME (z) (Fig. 3.4a and b):

∆zα = RMSE (z) ·
√
−2 · ln(1−A) · cos(2 · π ·B); A,B ∈ [0, 1) (3.19)

(3) Interpolate the error at all grid nodes using the same variogram function as
for the original DEM (Fig. 3.4c and d):

∆z∗i =
∑

wα
i ·∆zα (3.20)
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(4) Add the error surface (Fig. 3.4e) to the original DEM:

z∗i = zi + ∆z∗i ; i = 1, ..., n (3.21)

(a)

(b) (d)

(c)

(e)

0 distance

 
+ RMSE

+ RMSE

- RMSE

- RMSE

Figure 3.4: Simulation of an error surface: simulated error (a) is assigned to random
locations (b) and then interpolated using the same variogram model (c,d) to produce a
smooth error surface (e).

For each of the m simulated DEMs, terrain parameters are derived m times and
then averaged per pixel:

τ̄ =

m∑
j=1

τ(z∗j)

m
(3.22)

where τ̄ is the averaged map of a terrain parameter and τ(z∗j) is the jth realisation
of terrain parameter calculated from the simulated elevation map (z∗). The RMSE
error of several simulations gives an estimate of the propagated uncertainty:

RMSE (τ) =

√√√√√ m∑
j=1

[τ(z∗j)− τ̄ ]2

m
(3.23)

Note that the map of propagated uncertainty can be used to depict problematic
areas and digitize additional contours.
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3.2.3 Study area

We used a small part of the Baranja hill located in Eastern Croatia (45°47’40” N,
18°41’27” E) to develop and test our methodology. This area is specifically suitable
as it presents two contrasting landscapes: plains with terraces in the northwest
direction and dissected hilland with small valleys. Contour lines were extracted
from the 1:50 K topo-map, with the contour interval of 10 m and supplementary
5 m contours in areas of low relief. The total area is 13.69 km2 and elevations
range from 80 to 240 m. We digitised 127.6 km of contour lines (Fig. 3.5b), which
means that the average spacing between the contours is 107 m and the pixel size
should be at least 50 meters to present all mapped changes in relief. Considering the
cartographic rule (the smallest distance of 0.4 m on the map), a grid spacing should
be at least 20 m to satisfy this scale. Because the spacing between the contours is
much narrower in the hill than in the plain, we finally decided to use a grid resolution
of 25 m.

The contour lines were interpolated using the linear interpolator in ILWIS. The
algorithm is described in more detail by Gorte & Koolhoven (1990). The contour
interval was 10 m in hill and 5 m in the plain, hence we used the RMSE (z) of 2.5 m.
The precision has been setup to 0.2 m. From the interpolated DEM, we derived five
terrain parameters: slope in % (SLOPE), profile curvature in rad/m (PROFC), plan
curvature in rad/m (PLANC), Compound Topographic Index (CTI), and aspect,
i.e. northness in degrees (NORTH). SLOPE, PROFC, PLANC and NORTH were
calculated using the formulas by Shary et al. (2002), while the CTI was calculated
based on the method of Quinn et al. (1991) using 20 iterations.

3.2.4 Evaluation and validation

We used two statistical measures to evaluate reduction of errors. The errors in DEM
or DEM-derived data were quantified using the proportion (percentage) of errors in
the total area:

Ae(%) =
Ae

A
· 100 (3.24)

where A is the total area. This percentage was calculated for both padi terraces and
outliers. In this case the outliers were detected as t-values exceeding the threshold
value of 3.219 (Eq. (3.6)).

To validate the effect of reduction of errors on soil-landscape modelling, we used
two applications. We first compared accuracy of classifying the landforms for unfil-
tered and filtered data. This was done by comparing an aerial photo-interpretation
map with the results of supervised classifications (see chapter 4). Second, we used
a data set of 59 soil observations of thickness of the solum (SOLUM). This is the

54



3.3 Results 55

2 km0

2 km0

N

N

0 250 500 750 1000 1250
0

200

400

600

800

1000

1200

S
e

m
iv

a
ri
a

n
ce

 (
co

n
to

u
r 

d
a

ta
)

Distance (m)

R = 675 m
C0+C1 = 1350

Nugget = 0.0
exponential model

(a)

(c)

(b)

(d)

0 40 80 120
0

100

Figure 3.5: Study area: (a) part of Baranja hill, located in Eastern part of Croatia; (b) the
contours lines; (c) variogram modelling of elevation with zoom on the local neighbourhood
and (d) perspective view on interpolated DEM.

depth to parent material, in this case alluvial deposits and layers of loess. SOLUM
was correlated with terrain parameters and mapped in the entire area. We observed
the change in goodness of fit (R2) for the unfiltered and filtered data.

3.3 Results

3.3.1 The plausibility of the DEM

First interpolation of bulk contour data resulted in 17.3% of the total area being
represented with padi terraces (Fig. 3.6c), most of them located in the plain region
(northwest corner). The automated extraction of medial axes detected hypothetical
ridges and valley bottoms in 2.2% of the total area (Fig. 3.6a). After the second
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interpolation using added medial axes, the proportion of padi terraces was reduced
to 4.5% (Fig. 3.6c, DEM L1 - DEM L0). The biggest adjustment of elevation was in the
plain region. The reduction of outliers (DEM L2 - DEM L1) did not contribute to the
reduction of padi terraces. Finally, the proportion of the padi terraces was reduced
to 2.2% (Fig. 3.6c).

DEM1 - DEM

DEM 17.3% 4.5%DEM1 2.2%4.4% DEM3DEM2

DEM2 - DEM1 DEM3 - DEM2
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Figure 3.6: Semi-automated DEM filtering: (a) automated detection of medial axes; (b)
normal probability of finding the elevation value within the given neighbourhood and (c)
change in elevation values (above) and reduction of padi terraces in percentage (bellow).
See text for more explanation.

The variogram analysis of the contour lines gave an isotropic exponential model
with no nugget and fairly strong spatial dependence (Fig. 3.5c and Table 3.1). In
the case of the 3×3 window environment, we calculated weights wA=0.253 and
wB=-0.003. This means that this algorithm will give much higher importance to
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the neighbours in the cardinal directions. For a comparison, the inverse distance
interpolation would give weights wA=0.146 and wB=-0.104. For the 5×5 window
environment, the prediction of elevation is still done mainly from the closest neigh-
bours. The remaining weights (wC, wD, wE) accounted for only 16.3% of the total
cumulative weights (Table 3.1). This means that, although the elevation values are
correlated at long distances, there is not a large difference between using the 3×3
and 5×5 filters. Comparison of the predicted and unfiltered values, showed that
the difference is unbiased (δ̄=0), while the standard deviation (sδ=1.28) was lower
than the RMSE (z). The values with the lowest probability occurred at locations
where the density of contour lines was highest, e.g. at steep slopes (Fig. 3.6b). This
confirms that the filtering of outliers has a smoothing effect. Note that the final
change in elevation values, calculated as a difference between the old and adjusted
elevation values does not exceed RMSE (z) (Fig. 3.6c).

The changes in the DEM are in general relatively small. The finally adjusted
(DEM L3) does not differ significantly from the original DEM in the central tendency
measures (z̄=157.2, sz=43.8 versus z̄=156.4, sz=43.1). The histogram compari-
son, however, showed smoother distribution of values for DEM L3, while the unfil-
tered DEM L0 was characterized by the typical grouping around the contour values
(z=90,100,. . .). This corresponds to the results of Brown & Bara (1994).

3.3.2 Errors in terrain parameters

The derivation of terrain parameters from unfiltered data (DEM L0) resulted in large
parts of area being undefined (Fig. 3.8a). The proportion of undefined pixels equals
the proportion of padi terraces (17.3%), except for the CTI (22.6%). After the
filtering of DEM, the number of undefined pixels was also reduced, although there
are still some patches of undefined pixels (Fig. 3.7a,c and Fig. 3.8b). The proportion
of undefined patches in the CTI is somewhat higher than the total proportion of
padi terraces in the filtered DEM (5.3% compared to 1.9%). This is because the
calculation of CTI is only possible if all neighbours are defined. Otherwise the error
might propagate to other pixels.

The variogram analysis of each terrain parameter showed important differences
between them (Table 3.1). The distinctly contiguous parameters were DEM and
NORTH, while the curvatures proved to be locally variable features having bounded
variograms and being correlated at relatively short distances. Also note that the
estimated variogram models differently control the calculation of weights (Table 3.2).
It appears that the key factors that determine the importance of neighbours are the
nugget variation and distance at which covariance reaches 10% of the sill value. In
the 3×3 window environment, the differences between the weights in cardinal and
diagonal directions are mainly controlled by the nugget value. If the nugget value
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Table 3.1: Variogram modelling of terrain parameters.

Terrain parametera Variogram modellingb

unit AVG STD Model Anisotropy C0 C0 + C1 R R(10%)

DEM m 156.4 43.1 exponential No 0 1350 675 1554

SLOPE % 13.6 11.6 exponential No 0 88 115 265

PROFC rad m−1 0.00 0.17 spherical Yes 0.006 0.0235 156 104

PLANC rad m−1 -0.03 1.26 spherical Yes 0.68 1.82 183 112

CTI - 6.84 1.31 exponential Yes 0.45 1.78 85 171

NORTH - 90.0 47.0 exponential Yes 0 2450 232 534

aAVG – mean value; STD – standard deviation
bC0 – Nugget; C0 + C1 – Sill; R – range parameter; R(10%) – distance at which covariance

reaches 10% of the sill.

is high, the weights are more or less equal and vice versa. In the 5×5 window
environment, the importance of the outer neighbours (wC,D,E) is controlled by the
distance at which covariance reaches 10% of the sill. For DEM, NORTH and SLOPE,
the outer neighbours participate in approximately 15% of the total weights, while for
the PLANC and CTI, this number is two times smaller. For prediction of PROFC
the outer neighbours accounted for only 5% of the total weights. This confirms
that the curvatures are more locally variable features. Note that the proportion of
outliers in the study area was the highest for the PLANC and DEM and lowest for
the CTI (Table 3.2). In all cases, the proportion of outliers did not exceed 2% of
the total area.

After the filtering of undefined pixels and outliers, the terrain parameters appear
more reliable (Fig. 3.7d and Fig. 3.8c). The same can be concluded for the results
of error propagation (Fig. 3.7b and Fig. 3.8d). The latter technique showed to be
especially suitable for reduction of errors in the aspect map and curvatures. On
the other hand, it showed some difficulties in the areas of low relief. For example,
in the case of calculating CTI, the previously induced adjustments in the elevation
(streams, reduced pits and peaks) loose its importance in the error propagation.
In the case of the lower number of iterations, it introduces a noisy pattern in the
final derivative, which does not necessarily reflect the real case. There is certainly
a difference in mapping CTI in plain using error propagation and filtering of slopes
(Fig. 3.7c and Fig. 3.8d). The key reason for this difference is estimation of slope
in the plain area. Error propagation in general increases slopes in the plain region

58



3.3 Results 59

Table 3.2: Proportion of undefined pixels in terrain parameters derived from the unfiltered
DEM and calculated weights for the 3×3 and 5×5 window environments.

Kriging weightsa Outliers

3×3 window 5×5 window

wA wB wA wB wC wD wE wC,D,E sδ Ae(t > ta)

DEM 0.253 -0.003 0.260 0.050 -0.025 -0.015 -0.006 16.3% 1.28 0.74%

SLOPE 0.249 0.001 0.258 0.050 -0.024 -0.014 -0.005 15.7% 2.19 0.41%

PROFC 0.183 0.067 0.183 0.070 0.006 -0.001 -0.007 5.2% 0.06 0.35%

PLANC 0.173 0.077 0.168 0.071 0.011 0.003 -0.006 8.9% 0.62 1.05%

CTI 0.176 0.074 0.174 0.073 0.010 0.001 -0.009 8.0% 0.95 0.12%

NORTH 0.251 -0.001 0.260 0.050 -0.025 -0.015 -0.006 16.2% 13.10 0.42%

awA – weights in cardinal direction; wB – weights in diagonal directions; wC,D,E(%) – percentage
of outer neighbours in the total cumulative weights.

(under-estimation of CTI). The filtering of slope map, on the other hand, maintains
fairly small values (over-estimation of CTI). In this case, the over-estimation of CTI
appears to be more realistic as it portrays the watershed as being connected.

In other examples, error propagation seems to be the most robust way of pro-
ducing smoother terrain parameters, with much less artefacts and more natural
appearance. The Fig. 3.9 shows, for example, difference between PLANC calculated
using a single, 20 and 50 realisations. The improvement is visible even after few
realisations. After higher number of iterations, PLANC shows connected, smoother
features; also note that the artefacts in the plain region disappeared from the map.

3.3.3 Effects on Soil-landscape modelling

Comparison of landform classification using unfiltered and filtered terrain parame-
ters showed distinctive differences. The problem of artefacts and outliers propagates
to the supervised classification of landform. This brings some new problems also:
the classifier found valley bottoms on the hilltops, high terrace and floodplain could
not be distinguished (Fig. 3.10b). After the filtering of DEM and terrain param-
eters, the overall classification accuracy increased from 51.3% to 72.0%. After the
filtering of terrain parameters, the classified landform map (Fig. 3.10c) shows higher
agreement with the reference aerial photo-interpretation map (Fig. 3.10a). This is
because a mapper often tends to generalize and create smoother transitions during
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Figure 3.7: Aspect map (0-360°) derived from filtered DEM (a) and by using the error
propagation (b). Northness map (0-180°) derived from filtered DEM (c) and slope-adjusted
northness map (d).

the photo-interpretation, which is also a property of filtering. Hence, the two maps
appear to be more similar visually.

The SOLUM was significantly correlated with DEM (r=-0.45), CTI (r=0.47),
SLOPE (r=-0.32) and PLANC (r=-0.29). In soil survey terms, this means that the
observed soils in the study area are in general shallower at higher elevations, steeper
slopes and convex positions. On the other hand, deeper soil can be found in the areas
of high potential accumulation. The step-wise regression analysis extracted DEM
and CTI as the best predictors of the SOLUM with R2=0.27. After the filtering of
terrain parameters, the model improved to R2=0.40, the best predictor being CTI.
Comparison of the prediction maps is given in Fig. 3.11.

3.4 Discussion and conclusions

The objective of this work was to review and systematise methods to improve geo-
morphic plausibility of DEMs and minimise artefacts and outliers in terrain param-
eters. Three main approaches to the reduction of errors in DEM and DEM-derived
products have been considered. The first is the empirical approach where the knowl-
edge on features is used to reduce errors, primarily to improve the plausibility of the
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Figure 3.8: Compound Topographic Index (CTI): (a) derived from the original DEM; (b)
from filtered DEM; (c) filtered for outliers and (d) averaged from 20 realisations. White
patches in (a) and (b) are the undefined pixels.

1 x 20 x 50 x

-3.80

-2.11

-0.34

1.52

3.36

PLANC

Figure 3.9: Comparison of PLANC calculated using a single, 20 and 50 realisations.

DEM. The examples are adjustment of the elevation using medial axes or stream
network and modification of the northness map using the slope-adjustment formula.
Limitation of the empirical approach is that it needs a good knowledge about ter-
rain features. The automated methods, e.g. the automated extraction of medial
axes, need to be taken with a care since the created ridges and valley bottoms might

61



62 Pre-processing

Summit

Shoulder

Scarp

Colluvium

Eroded slope

Swale bottom

Glacis

High terrace

Floodplain area

(a)

(b) (c)

Figure 3.10: Landform classification: (a) the reference aerial photo-interpretation map
with the legend; (b) results of classification using unfiltered terrain parameters and (c) after
the filtering of terrain parameters. Black patches in (b) are the undefined pixels.

not reflect the reality. On the other hand, filtering of DEM does not guarantee
that 100% of artefacts will be removed. It is advisable to check the percentage of
artefacts and, if needed, digitise extra contours or use extra auxiliary information.

The second approach to reduction of errors is the filtering of values using the
spatial dependence structure and probability of exceeding a value estimated from
the neighbours. This approach is useful for filtering of outliers and, in general, gives
somewhat smoother picture of the terrain. However, in rugged topography, this
approach might smooth-out real features such as steep cliffs or sinkholes. Note that
we could have simply applied median filter to reduce outliers. On the other hand,
median filter does not take into account range of spatial dependence and can have
unwanted effects. For example, if the elevation is strongly correlated spatially and
at longer distances, then the confidence limits need to be much narrower. Similarly,
if the elevations vary at small distances, than the definition of an outlier is not as
strict. These aspects cannot be incorporated into a simple medial filtering. The
problem with the geostatistical analysis is that the variogram models for terrain
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Figure 3.11: Depth to the parent material (SOLUM) predicted using: unfiltered terrain
parameters (left) and filtered terrain parameters (right). White patches are the undefined
pixels.

parameters and threshold distances are assumed correct, although they can differ
greatly for different parts of the area as well as for different grid sizes. It may
therefore be more reasonable to use empirical or field-validated models of spatial
variation and threshold limits. For example, instead of calculating the standard
deviation of the differences between the estimated and given elevation, we can use
an empirical value (e.g. half RMSE (z)). An alternative is to estimate the true
values of terrain parameters using transect studies, estimate variogram parameters
and threshold values allowed and then use these for filtering. Another problem with
this approach is the selection of the filtering window size. It appears that the 3×3
window environment is large enough for filtering of curvatures and CTI (i.e. locally
varying features). Larger window sizes are computationally more demanding, but
more accurate.

The third approach to the reduction of errors is the error propagation and is fully
data-driven. The errors are reduced by calculating the average value of multiple
realisations. This in general creates more natural and more contiguous picture of
the geomorphology. The advantage of error propagation is that it does not need
calculation of filtering weights or selection of the window size. The reduction of
errors by error propagation is especially interesting as it can be fully automated.
It is also attractive because it offers a (propagated) measure of the uncertainty of
deriving a terrain parameter. The possible problems with error propagation, is that
it can be time-consuming, as it often needs many realisations. It also needs a good
estimate of the error in input values (RMSE (z)). For our sample area we have
evaluated that the used input for the error propagation was too high in the plain
region. This had an effect of increasing the slope (and CTI) in the plain.

One should keep in mind that elevation, i.e. topography is a non-stationary and
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non-periodic feature. This means that it is probably more advisable to estimate
its spatial variation model at local scales. Especially in karst and heavily dissected
areas, it will be hard to estimate the global model of spatial variation, which typically
means that filtering might over-smooth some untypical but important geomorphic
features such as cockpits, cliffs, embankments or real padi terraces. It cannot be
excluded, that even in our sample area we have incidentally corrected away some
small number of real features such as real terraces and depressions that can occur
naturally. One solution to this problem is to cut or mask out areas that make no
sense for the terrain analysis, e.g. real rice terraces or escarpments.

The results of this case study have shown that the proportion of artefacts in
the unfiltered DEM can be fairly high. In this case, the high proportion of padi
terraces and spurious sinks and peaks (17.3%) was due to the limited interpolation
technique and under-sampled features in the plain terrain. After the reduction of
errors using filtering of DEM and terrain parameters, these were more successful for
mapping of landform facets and prediction of solum thickness. Thus, the reduction
of errors in DEM and DEM-derived data plays an important role for the success of
soil-landscape analysis. Note that we did not evaluate effects of the grid size and
vertical resolution, as it seems that these are not the real factors controlling the
quality of terrain parameters but should be inferred from the scale of research and
given data quality (RMSE (z) or contour interval).
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Chapter 4

Supervised landform
classification∗

“Is the replacement of experienced surveyors really what this
paper is about?. . . the authors seem to criticize the field mappers

for using excessive subjective methods and praise the computer
programs. . . it appears that there would have been savings of total
work: this work is being shifted to computer experts in the office

rather than by mappers in the field.”

[comments from an anonymous reviewer, referred to as experienced soil surveyor,
on the paper referred to down-bellow]

∗based on: Hengl T. and Rossiter D.G., 2003. Supervised landform classification to enhance and
replace photo-interpretation in semi-detailed soil survey. Soil Science Society Journal of America,
Vol. 67(5), in press.
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4.1 Introduction

A product of the semi-detailed soil survey is an entity-class or polygon map of soil
types at a typical scale of 1:50 K, with minimum legible delineations of 10 ha and
optimal delineations of 40 ha (Forbes et al., 1982). This corresponds to “Order 3” to
“Order 4” (Soil survey Division staff, 1993), semi-detailed or medium intensity soil
surveys (Avery, 1987). These soil maps are intended for extensive land-use planning
and to give a reasonably accurate picture of the distribution of soil types in an
area at relatively low cost. The standard method of semi-detailed survey is to draw
preliminary boundaries on aerial photos by means of stereoscopic landscape analysis,
and then determine the soil types that occur in each map unit by field inspection
of the soil at representative sites. A common inspection density is one observation
per one to four map cm2 (Western, 1978), which at this scale represents 25 to
100 ha. Often, the surveyors make sure that there is also at least one observation
per each polygon. The observations are used to characterize the composition of
photo-interpretation units, rather than to find or adjust every boundary.

One approach to semi-detailed survey is to study representative sample areas,
typically covering about 10% of the survey area, more intensively in order to arrive
at a better understanding of the soil-landscape relations and map unit composition.
Field sampling is thus concentrated in comparison to the densities mentioned above,
to an observation density of one per 2.5 to 10 ha in the sample area. This is at the
cost of samples over the rest of the area, which is then mapped purely by photo-
interpretation, extrapolating from the detailed understanding of the soil landscape
built up in the sample areas. Because of the low inspection density, the only way that
such maps can be reasonably accurate is if the surveyor is able to correctly under-
stand the soil-landscape relations in the survey area, and then map these by surface
features visible on the aerial photo (e.g. the landform as seen stereoscopically).

In many cases, however, including standard mapping procedures in the USA,
surveyor’s experience on soil-landscape relations is used without formalization (Soil
survey Division staff, 1993, p. 219-231). Jenny’s conceptual equation , i.e. soil prop-
erty or class = f {climate, organism, relief, parent material, time} is thus used sub-
jectively (and sometimes subconsciously) as a concept to guide photo-interpretation.
Depending on the survey area, some aspects of the equation may be more impor-
tant than others; for example, on a typical hillside, the catena or topo-sequence
concept may be uppermost in the surveyor’s mind, whereas in areas of recent depo-
sition, parent material and time may be more important. In many areas, landform
classification or segmentation, usually by photo-interpretation, is an important step
in building up the soil map, since the landform delineations are often associated
directly with natural soil bodies (Buringh, 1960).

For some time, there has been interest in replacing or supplementing the expert
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judgment of the surveyor with reproducible procedures, particularly by the use of
digital terrain analysis to predict the distribution of soil properties (Moore et al.,
1993; Gessler et al., 1995; Bell et al., 2000) and model depositional and erosional
processes (Mitasova et al., 1996). Irvin et al. (1997) were among first to use ter-
rain parameters to derive soil-landscape elements and provide more objective basis
for production of soil maps. They compared automated classification of landforms
with the manual delineations by API using a small study area. Other authors have
attempted to directly derive soil classes from terrain parameters (Thompson et al.,
1997; Thomas et al., 1999). Recent developments include use of automated meth-
ods to detect landform facets using unsupervised fuzzy-set classifications (Burrough
et al., 2000). These are then applied even in the areas of lower relief to enhance crop
production using site-specific management (MacMillan, 2000). A related effort by
Zhu and collaborators 1996; 2001 attempts to infer soil classes identified by expert
soil surveyors as being typical for each class directly from the terrain parameters,
geological and remote sensing data.

4.2 Methods

4.2.1 Study area

The study area of 1062 km2 corresponds to the Croatian portion of the historic
region of Baranya. It is located in north-eastern Croatia, in the triangle formed by
the Danube River to the east, the Drava River to the southwest, and the Hungarian
border to the north (centered at N 45°42’14”, E 18°40’35”). It is the half of Osijek-
Baranja County lying between the Drava and Hungary, and is part of the large
Panonian plain, which stretches through all of Hungary and ends in the northeastern
part of Croatia and in the Vojvodina region of Yugoslavia. Soils are mostly formed
in Pleistocene and Holocene sediments (Bognar, 1984). The major relief types can
be seen in Fig. 4.1. The study area consists of number of different landforms and
therefore was interesting how will the classification work for different types. The
principal soil-forming factors differ between the essentially erosional hill land and
depositional plain. The most extensive landscape is the fluvial plains of the Danube
and Drava rivers, with temporary and permanent swamps and a series of terraces.
The higher terraces are covered with 20–50 meters of Pleistocene loess overlying
older fluvial sediments. The plains are fairly level, and cover about 85% of the total
area. Elevations range from 80 to 250 m above sea level, and local relief is flat to
gently undulating. About 20% of the area is in a separate landscape, Baranja hill.
This is a dissected asymmetrical horst ridge of basalt and andesite, mostly blanketed
by Pleistocene loess, from a few meters on the summit to 30 m at the bottom of
the glacis. In some vales and on the glacis, there is gravely colluvium eroded from
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Figure 4.1: Location of the study area in Europe (upper left), main relief types as seen
from DEM (upper right), and a cross section sketch indicated by line (bellow). Note that
the DEM is stretched to the 80–100 m range to emphasize the main relief types.

The average monthly temperatures vary from 0° C in January to 21° C in August
and with an overall annual average of 11° C. Annual precipitation varies from 630–
750 mm. The ground water depth varies from above the surface in flooded swamps
to more then 10 m on the higher terraces and is mainly determined by the two
rivers and thus varies annually and seasonally. Water tables reach their maximum
in April and minimum in October. During spring, the active floodplain and the
lower terraces are occasionally flooded.
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4.2.2 Data input and photo-interpretation

Topographic maps at 1:50 K covering the study area were scanned, imported to the
GIS, geo-referenced to an accuracy of 2 to 8 m using overprinted grid intersections,
and resampled to a 10 m cell size, all in ILWIS GIS (Unit Geo Software Develop-
ment, 2001). The contour interval was 10 m, with supplementary 5 m contours and
spot heights in areas of low relief. On-screen digitizing was used to create vector
layers of contours and spot heights. We used the ANUDEM interpolation method
with drainage enforcement (Hutchinson, 1989), as implemented in the TOPOGRID
command of the ArcInfo 8 GIS (Environmental Systems Research Institute, 2001) to
produce a digital elevation model (DEM). This algorithm required about 20 itera-
tions in areas of low relief and 100 iterations elsewhere, to reach a steady state, i.e.
when DEM does not change visually any more. Upon inspection of the results of
the first efforts, artifacts such as slope breaks, cut-offs or spurious sinks, were still
clearly visible, especially in areas of low relief and on hilltops. Thus, we decided
to digitize supplementary contour lines and spot heights indicating small channels,
hilltops and ridges that were not indicated on the original topographic maps. Their
elevation (±2 m) was estimated from nearby contours and field knowledge of relative
local elevation differences2.

From total of 167 aerial photos covering the whole study area, we selected six
training photos of 2116 ha (4.6×4.6 km) each, totaling 11,079 ha. These were
selected subjectively to provide a representative sample of major soil landscapes.
Training areas “A” and “F” covered sections of Baranja hill, the abandoned course
of the Drava, and the edge of the low terrace, while the others (“B”, “C”, “D” and
“E”) covered the terraces and the floodplain (see Fig. 4.6). The middle photos from
triplets of photogrammetric vertical 23×23 cm aerial photos at approximately 1:20 K
scale were interpreted according to the geo-pedological method of Zinck (1988) and
cross-checked in the field, resulting in a four-level hierarchical legend (Table 4.1).
The minimum delineation size was 10 ha (0.4 cm2 on the map), and the minimum
delineation width was 150 m (3 mm on the map), since the objective was to make a
1:50 K soil map. Twenty-one soil-landscape units (seven in the hill land, fourteen in
the plain) were identified, of which thirteen (six in the hill land, seven in the plain)
accounted for 95% of the training area. Both the photos and the interpretation
overlays were scanned, imported into ILWIS, geo-referenced with an ortho-correction
to a horizontal precision of 3 to 15 m, using five to eight tie-points per photo (Rossiter
& Hengl, 2002).

2See chapter 3 for more details about the reduction of errors in terrain parameters.
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Table 4.1: Geo-pedologic legend showing hierarchical classification of landforms for
Baranja region. Classes removed in reduced legend (3.5% of total area of training photo-
interpretation) are set bold.

Landscape Relief Lithology Landform Code (%)

Hill land

Dissected
ridge(horst)

aeolian loess over basalt-
andesite bedrock

Summit Hi111 5.7%

aeolian and deluvial loess over
basalt-andesite bedrock

Shoulder/backslope Hi112 3.4%

Escarpment
aeolian and deluvial loess Scarp Hi211 1.4%

over basalt-andesite bedrock Colluvium Hi212 2.6%

Vales
deluvial loess Slope Hi311 7.2%

deluvial loess Bottom Hi312 0.9%

Glacis deluvial loess Slope Hi411 3.5%

Alluvial
Plain

Recent
floodplain

medium-textured fluvial
sediments

Floodplain Pl111 22.9%

Levee Pl112 1.3%

Abandoned point bar
complex

Pl113 3.5%

Cut off channel Pl115 0.8%

coarse-textured fluvial
sediments (sand, gravel)

Point bar complex Pl121 0.8%

Active channel banks Pl122 0.2%

Low terrace

medium textured fluvial
sediments

Tread Pl211 12.9%

Overflow channel Pl212 1.4%

Elevations Pl213 0.4%

coarse fluvial sediments
Abandoned point bar
complex

Pl221 0.1%

High terrace loess over fluvial sediments

Tread Pl311 21.9%

Abandoned channel Pl312 1.1%

Elevations Pl313 0.5%

Older flood-
plain

fluvial sediments Floodplain area Pl411 7.8%

4.2.3 Extraction of terrain parameters

The DEM was used, directly or as a component, in calculating eight terrain parame-
ters (maps): ground water depth (GWD), slope gradient (SLOPE), profile curvature
(PROFC), plan curvature (TANGC), viewshed reflectance (VSHED), accumulation
flow (FLOW), Compound Topographic Index or wetness index (CTI), and sediment
transport index (STI), each at 30 m grid resolution (Fig. 4.2). SLOPE, PROFC,
TANGC, and VSHED were calculated directly from the DEM with 5×5-pixel filters
in ILWIS, which implements the Zevenbergen & Thorne (1987) formulas. Indepen-
dently, the distance to nearest watercourse (DISTW) was computed from a map of
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the drainage network.
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Figure 4.2: Terrain parameters of the study area derived from the DEM and related data.

GWD was calculated by using the additional information from the topographic
map and hydrological stations. The base elevation of the water table was estimated
from four benchmarks at Danube and Drava river level on the edges of the study area.
The water table surface for the whole area was calculated using the mean annual
water table height measurements and second-order trend function. The GWD was
then calculated as the difference between the DEM and this surface. Thus, the GWD
represents a slight adjustment of the DEM or relative elevation for the regional slope
to the southeast. The CTI reflects the tendency of water to accumulate at any point
in the landscape, while STI reflects the erosive power of the overland flow:

CTI = ln
(

Af

tanβ

)
(4.1)

STI =
(

Af

22.13

)0.6

·
(

sinβ

0.0896

)1.3

(4.2)
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where Af is the specific catchment or contributing area, which is the cumulative
number of grid cells draining through the target cell (FLOW) and β is the local
slope angle related to that cell (Burrough & McDonnell, 1998). Both CTI and STI
were calculated in ILWIS using the multiple flow direction method of Quinn et al.
(1991). Since the algorithm was developed using the neighborhood operation in
GIS, it needs a number of iterations as an input. Here, we used 50 iterations, i.e.
neighboring pixels to derive flow accumulation. This small number of iterations
was sufficient, because remaining changes with further iteration were only in stream
bottoms, which already had a high CTI relative to other landscape positions. A
problem with the algorithm was that in pixels with zero slope, the CTI calculation
fails due to division by zero. Also a zero accumulation flow is unrealistic and will
produce an undefined pixel. In these positions, we approximated CTI by iteratively
averaging the slope (β) and accumulation flow maps (Af ) from surrounding pixels
until all zero values were replaced with small values. This has the effect of creating
pools of high CTI in the plain, which in the study area is realistic due to lowest
position of these areas3.

The viewshed reflectance (VSHED) is a relative estimate of direct incoming
radiation, i.e. an estimate of the solar energy reaching the surface. It was computed
using the formula estimated by Horn (1981) and described in Burrough & McDonnell
(1998). Here we assumed the sun to be at an elevation of 45° and azimuth of due
South. This variable was selected to present different expositions and environmental
conditions.

During the creation of the predictors, it became clear that there were major dif-
ferences in central values and spread of terrain parameters (as seen on histograms).
Some predictors (SLOPE, VSHED, CTI) showed asymmetrical, log-normal, while
others (GWD, STI and DISTW) inverse distributions. This asymmetry in his-
tograms reflects with a low contrast in images due to the domination of the plain
landforms. In addition, there was a significant inter-predictor correlation between
the two major landscapes (hill land and plain) (Table 4.2). Especially PROFC and
TANGC are inversely related, as are CTI and SLOPE, while the strongest correla-
tion show STI and SLOPE. Similarly, higher elevations are associated with steeper
slopes and lower CTI. Because of these correlations and the difference in spread
among predictors, the data reduction by factor analysis in a GIS (Eastman & Fulk,
1993) is interesting as an effective transformation to reduce multicollinearity and
improve the contrast in predictors.

The principal component analysis (Table 4.3) shows that the first five com-
ponents account for more than 80% of total variance. The most significant data
reduction is in hill land, where first three components accounted for almost 75% of

3See explanation in chapter 3.
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Table 4.2: Correlation between predictive variables for whole-area, hill land and plain only.
The most significant values (> 0.5) are set bold.

Whole

Hill FLOW CTI DISTW GWD PROFC SLOPE STI TANGC VSHED

Plain

1.00 0.21 0.02 -0.02 0.25 0.00 -0.01 -0.27 0.00

FLOWa 1.00 0.25 0.01 -0.18 0.46 0.01 -0.05 -0.66 0.00

1.00 0.27 0.02 -0.05 0.34 0.00 -0.09 -0.36 0.01

1.00 -0.09 -0.52 0.13 -0.59 -0.52 -0.15 0.05

CTIb 1.00 0.50 -0.51 0.19 -0.85 -0.83 -0.24 0.22

1.00 -0.08 -0.31 0.20 -0.72 -0.64 -0.18 -0.02

1.00 0.17 -0.01 -0.01 -0.02 -0.01 0.08

DISTWc 1.00 -0.17 -0.01 -0.41 -0.38 -0.05 0.21

1.00 0.49 -0.01 -0.02 -0.05 0.00 0.08

1.00 -0.13 0.70 0.67 0.11 0.00

GWDd 1.00 -0.24 0.37 0.39 0.13 0.02

1.00 -0.05 0.20 0.17 0.04 0.11

1.00 -0.02 -0.12 -0.55 0.00

PROFCe 1.00 -0.03 -0.15 -0.58 0.01

1.00 0.00 -0.19 -0.47 -0.03

1.00 0.98 0.09 -0.25

SLOPEf 1.00 0.98 0.07 -0.34

1.00 0.89 0.05 -0.04

1.00 0.15 -0.28

STIg 1.00 0.16 -0.35

1.00 0.17 -0.04

1.00 -0.04

TANGCh 1.00 -0.04

1.00 -0.00

1.00

VSHEDi 1.00

1.00

aFLOW - accumulation flow;
bCTI – Compound Topographic Index;
cDISTW – distance to nearest watercourse;
dGWD – ground water depth;
ePROFC – profile curvature;
fSLOPE – slope gradient;
gSTI – Sediment Transport Index;
hTANGC – plan curvature;
iVSHED – viewshed reflectance;
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total variance. Still, the high proportion in higher components in whole area shows
that the predictors had a fair degree of independence, which is often not the case
with remote sensing images.

Table 4.3: Variance proportions explained by the principal component analysis for stretched
principal components (PC1 to PC9).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Whole area 35.86 18.37 12.81 9.79 9.22 5.36 4.98 3.49 0.11

Hill land only 39.25 22.65 11.36 8.48 6.90 6.20 3.64 1.45 0.08

Plain only 29.15 21.99 15.05 9.58 8.26 6.04 4.83 4.46 0.63

Since the predictors are expressed in different units with widely different ranges
and distributions, all the maps of terrain parameters were rescaled to a dynamic
range of 0–255, which is the one byte per pixel structure typical for satellite images.
In this case, we decided to use a linear stretch with 0.5% truncation in each tail. The
principal components were normalized to the same range but without truncation.
The landform maps were then ready to be used in an image processing software
(ILWIS) as synthetic bands, i.e. to classify the whole area as in the case of classification
of remote sensing images (Janssen & Huurneman, 2001).

4.2.4 Training and classification stage

Two methods for selecting training samples were compared. In the first, the entire
area of the interpreted photographs, i.e. API maps (in further text whole-API train-
ing set). In the second, training samples were created by manual selection on-screen
of about 100 pixels within each photo-interpretation unit in the sample areas (in fur-
ther text point-sample training set). Here by central concept we consider locations,
which were in our mental model typical representatives of landform classes when
observed stereoscopically. In addition, the photo-interpretation units were displayed
as boundaries over false-color composites of synthetic bands and then point-samples
checked to ensure that they fall in relatively homogenous facets (Fig. 4.5). The
selection of variables for the three colors and their contrast was adjusted repeat-
edly to highlight the differences between API units. Thus the second method allows
more precision, as the photo-interpretation units typically have inclusions within
their minimum legible delineation that may confuse the classifier. This subjective
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process is an extension of subjective photo-interpretation: the analyst is asked to
find locations within each landform class where representative soils should be found,
according to landform. In photo-interpretation, a 3D model is constructed in the
analyst’s visual perception by comparing adjacent photos of a stereo-pair, whereas
in on-screen interpretation, a color composite is adjusted by the analyst until key
geomorphic differences are evident by color alone.

In order to investigate whether different major landscapes should be classified
separately, we also divided the two landscapes (hill land and plain) by a clearly visible
master line. This line was manually delineated on-screen by visually interpreting a
color composite of elevation and slope map. The two major landscapes were then
classified separately and then merged to a single map.

The training samples were then used as input to maximum likelihood classifiers
(Lillesand & Kiefer, 2000, § 7.9), with no distance thresholds, so that all pixels were
classified. Automated (classification) and manual (photo) API maps were compared
over the entire training area with a confusion matrix, with two test criteria: (1) the
proportion of agreement between the two classifications, and (2) the kappa coeffi-
cient, which accounts for chance agreement (Congalton & Green, 1999). In addition,
the nature and seriousness of the errors was evaluated subjectively, both from the
confusion matrix and by a visual comparison of the maps. For the inclusive training
set, the same samples were used for classification and accuracy assessment. Thus
in this context accuracy is more properly termed reproducibility, i.e. the degree to
which the automated classifier could reproduce the subjective photo-interpretation
and sample point selection.

4.3 Results

Different terrain parameters, when examined visually, have shown stronger relation-
ship with the delineations in hill land and in plain. In hill land, the CTI, GWD,
SLOPE and PROFC showed strongest correspondence with the manual delineations
(Fig. 4.3). When evaluated in the feature space (scatter plots), landform classes
in the hill land area showed different clustering, while in the case of landforms in
plain, the clouds of points were narrow and adjacent to each other (Fig. 4.4). For
example, to distinguish between a channel (Pl312) and terrace (Pl311), a small dif-
ference in GWD matters. Mapping these classes is therefore much more dependent
of how well are the training pixels selected. The overlay of the photo-interpretation
boundaries on a false-color composites (Fig 4.5) clearly showed deficiencies in the
photo-interpretation. First, some areas had not been correctly identified by photo-
interpretation. For example, sharp bands of bright yellow indicate steep slopes at
high elevations; these are either transitions (boundaries) between higher and lower
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soil-landscape units (e.g. summit Hi111 and shoulder/backslope Hi112) or, if wide
enough (>150 m at this scale), units of the scarp (Hi211). Second, some areas,
while correctly identified, should have their boundaries adjusted in order to increase
their homogeneity. These adjustments are easily achieved with on-screen digitiz-
ing. In this sense, the color composite provides an objective visualization of the
geomorphology to supplement the stereovision of the photo-interpreter.
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Figure 4.3: Visualization of relationship between terrain parameters and landform classes
(training area A): (a) API delineations and main landforms and (b) boundaries overlaid over
terrain parameters.

Classification with principal components showed that the first three components
were sufficient in the hill land (47.5% of overall accuracy), but that in the plain, sub-
stantial improvement in the classification continued through the eighth component
(Table 4.4). This means that information in higher level components is still useful
for the classification of the landform classes and should not be discarded. Finally,
because of the low data redundancy in this data set, there is little advantage in work-
ing further with principal components, so we concentrated on the original terrain
parameters instead. In addition, the principal components are harder to interpret
and therefore unpractical for visualization using false-colors or scatter plots.

Each class in the training set needed a non-zero estimate of the variance. Other-
wise poorly conditioned or singular matrices will give unreliable results on inversion,
and probability classifiers such as maximum likelihood will fail. This has happened
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Figure 4.4: Scatter-plot of feature space formed using terrain parameters stretched to 0-255
range. CTI and SLOPE were shown to be good predictors in the hill land area (left), while
DISTW and GWD show separation between the landform units in the plain (right).

Table 4.4: Overall accuracy of classification (%) for different number of principal compo-
nents (PC).

Number of principal components

1 2 3 4 5 6 7 8 9

Whole area (%) 16.0 20.5 27.5 31.8 32.2 32.6 33.9 40.7 41.5

Hill land only (%) 27.9 38.9 47.5 49.9 51.9 53.3 53.7 52.0 51.9

Plain only (%) 9.1 16.0 36.4 32.2 32.8 34.2 44.6 49.6 50.1

several times with our classification when we selected points from terraces where
all pixels either had the same SLOPE or GWD. So it is not possible to only select
central concepts, some variability must be also included. This can be achieved by it-
eratively inspecting the scatter-plots of all band combinations to ensure separability
and variability of point clusters (training set).

4.3.1 Reproducibility

Initial attempts to classify the entire landscape, never achieved better than about
50% overall accuracy. The classifications using nine predictors, either as original
predictors or their principal components, and all API legend classes showed clear
differences between methods but similar overall results. The maximum-likelihood
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Figure 4.5: False color composite made from GWD, SLOPE and CTI (left) and VSHED,
DISTW and GWD (right). Different band combinations are suitable for classification of
landform elements in hill land and different in plain.

classification gave 45.3% (Kappa=42.6%) with whole-API training set and 36.8%
with point-sample training set overall reproducibility. The corresponding figures for
the classification of separate landscapes were 58.1% and 51.6% (hill land), and 39.1%
and 34.4% (plain). The whole-API set was consistently superior to the point-sample
set, and classification of separate landscapes was superior to a single classification,
but in no case was the classification accuracy satisfactory (>80%).

Considering the major classification errors in the plain, both whole-API and
point-samples gave similar results. When compared in the whole area, classes Pl115
(cut-off channels) and Pl121 (point bar complex in the floodplain) were grossly
over-classified, mostly at the expense of class Pl111 (floodplain). Class Pl221 (aban-
doned point-bar complexes) was also grossly over-classified, at the expense of five
other classes (Pl111, Pl113, Pl211, Pl311, and Pl411). This shows that the complex
landform facets can not be easily distinguished by using the terrain parameters. The
overall poor results can be attributed to poor separation in feature space, especially
in plain region. Since these classes occupied a small proportion of the training ar-
eas, they were eliminated from the legend. Similar considerations applied to Pl112
(levee), Pl122 (active channel banks), and Pl213 (small elevations on the low ter-
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race). Together these classes occupied only 3.5% of the training API in the study
area (4.7% of the plain).

In the hill land, no single class contributed disproportionally to the poor repro-
ducibility. Results are sensitive to sampling method. For the whole-API set, Hi112
(shoulder/backslope) was over-classified, mostly at the expense of Hi311 (vale slopes)
and Hi212 (colluvial footslopes of escarpments). The latter may be due to uncertain
placement of the photo-interpretation boundary between these two adjacent units.
For point-sampling, Hi312 (vale bottoms) was over-classified, mostly at the expense
of Hi212 and Hi411 (glacis). In both cases there was substantial confusion between
most classes, resulting in moderate overall accuracy. In the case of whole-API set,
this is attributed to the heterogeneous nature of the landform predictors, even in
‘homogeneous’ photo-interpretation units. This can not be corrected, so the 58.1%
reproducibility in the hill land is the best possible with this set of predictors.

4.3.2 Improving reproducibility

In order to improve reproducibility, the original legend was reduced according to the
results of the first classifications. This corresponded to a priori ideas about what
differences might be difficult to detect by landform analysis alone. For example,
recognition of the channel classes that are of high curvature and close to the water
table is feasible. Distance to streams does not help, because some abandoned chan-
nels are quite close to active ones. A second group of features that were grouped in
the reduced legend were morphologically-compound classes such as point bar com-
plexes that consist of an array of smaller channels, levees and smaller elevations.
These are inherently hard to classify, which is similar to the problem of automatic
classification of urban areas (land cover classes), often consisting of mixed features.

For the whole-API training set, we assigned the photo-interpretation areas for
the eliminated classes to the geomorphologically most similar class of the reduced
legend, which turned out to always be adjacent to the merged class in geographical
space. We did not consider the confusion in the first classification, but rather reduced
the legend on these geomorphological criteria. The reclassifications were:

� Pl112 (levee) to Pl113 (abandoned point bar complex on floodplain);

� Pl115 (cut-off channels), Pl121 (point bar complex on floodplain), and Pl122
(active channel banks) to Pl111 (floodplain);

� Pl213 (elevations on low terrace) to Pl211 (tread of low terrace) and

� Pl221 (abandoned point bar complex on low terrace) to Pl211.
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Thus, Pl113 in the reduced legend groups those units in the floodplain that have
less active flooding than Pl111. Thus we gave up the attempt to map some details
of the floodplain, namely levees, cut-off channels, active channel banks, and coarse-
textured point bar complexes; and also for the low terrace, namely abandoned point
bar complexes and small elevations. Some classes had to be merged with others of
different lithology (here, dominant sediment size).

We then repeated the classification with the whole-API training set, resulting
in overall accuracies relative to the API of 63.4% (whole area), 65.8% (plain), and
58.2% (hill land), i.e. an improvement of 26.7% in the plain and 18.1% overall; the
results for the hill land were not affected. These results show that whole-API set is
unlikely to produce satisfactory results, due to the unavoidable heterogeneity within
an API unit and consequent overlap in feature space. However, they provide the
basis for manual improvement. The maximum-likelihood classifier with the point-
sampling method was quite sensitive to the training set, so that the classification
could be improved considerably by iterative selection, classification, and evaluation
of results. This effect was most pronounced in the plain, because of the clustering
of classes in feature space, as illustrated by Fig. 4.4.

In both landscapes, the best results were achieved when the training sets were
selected using the central concept and the landform classes used were defined as
morphologically more or less homogenous units. After three iterations we were able
to achieve high reproducibility for the point sample itself: 90.2% (Kappa=89.3%)
(Table 4.5). Thus we were able to reproduce the classification of the central con-
cept of each landform class. However, agreement with the whole-API set was only
improved to 55.8% (hill land), 55.4% (plain), and 53.6% (entire area) using this
iteratively-selected point sample. This shows that the API polygons are indeed het-
erogeneous, and their internal variability is best represented by all pixels in the map
unit. On the other hand, to identify fine detail in the landscape, point-samples are
preferred. The overclassification of some classes (e.g. Pl313) was probably because
of under-interpretation in the original API. These are well-defined elevations but
difficult to see stereoscopically, because of the low relative elevation difference. In
this sense, the automatic classification is more in accordance with reality than the
reference API.

An interesting question with a hierarchical legend is to what degree are the
higher levels operational. In this case, to what degree are the misclassifications
at detailed level within the same higher-level category. At the highest level (land-
scape), the automatic classifier using selected points and a reduced legend was quite
good. Almost all pixels of the training sample (98.6%) were classified in the correct
landscape. The only significant errors were areas of Pl311 (tread of high terrace)
and Pl411 (old floodplain) misclassified as Hi312 (vale bottom). At the second
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level (relief type), overall accuracy was 72.5%, which can be compared to 53.6% at
the landform (detailed) level, as explained above. This shows that the hierarchical
legend of landforms (Table 4.1) provides useful information as classes are grouped.

Table 4.5: Reproducibility of point training samples by the maximum-likelihood classifica-
tion for the whole area, after legend simplification.

Class User’s
Accuracy

Sample
(pixels)

Proportion
of sample

Proportion
of API

Hi111 0.98 97 6.9% 5.8%

Hi112 0.97 67 4.8% 3.5%

Hi211 0.88 89 6.4% 1.4%

Hi212 0.95 38 2.7% 2.6%

Hi311 0.94 95 6.8% 7.3%

Hi312 1.00 59 4.2% 0.9%

Hi411 1.00 191 13.7% 3.6%

Pl111 0.85 126 9.0% 23.6%

Pl113 0.85 28 2.0% 4.8%

Pl121 0.95 165 11.8% 13.5%

Pl211 0.83 61 4.4% 1.5%

Pl212 0.71 138 9.9% 22.1%

Pl311 1.00 73 5.2% 1.2%

Pl312 0.94 90 6.4% 0.5%

Pl411 0.81 79 5.7% 7.8%

Overall accuracy 90.2%

Kappa 89.3%

4.3.3 Extrapolation to the entire study area

The final classification map produced by iteratively-selected point samples, reduced
legend and maximum-likelihood classification is shown in Fig. 4.6. This gives a more
mosaic-like pattern than the units produced manually through API, since these are
already generalized and smooth because of cartographic considerations of scale and
consequent minimum delineation size and width. Incongruous boundaries can be
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explained by the lack of detailed contours both in areas of low relief and in areas
with complex relief over a short distance in the hill land, both of which can be
recognized on the aerial photos. In the plain, the automatic classification found
details in small channels and ridges that the photo-interpreter had generalized or
missed due to the low impression of relief.

In general, the visual agreement with a conventional soil-landscape map is strong.
Especially for relatively homogeneous landforms that cover relatively large areas,
such as terrace treads, channels, vale slope and hill summit, the correspondence is
high. In some areas, features recognized through the API were not detected. The
separate classification of the hill land was markedly superior to the separate classi-
fication of the plain and to the whole-area classification. This is because landscape
elements derived from a DEM are more striking and easier to both photo-interpret
and automatically classify when there is strong relief.

4.4 Conclusions and discussion

The results show that the supervised classification is an objective method to sup-
plement photo-interpretation, especially in surveys where the funds are limited and
only a few soil observations are made outside the training areas. To survey all of
Baranja with the conventional method of semi-detailed soil survey based on land-
scape analysis would have required the manual interpretation of the center photos
of 84 photo-triplets. In the present study, we used only 6 photos (6.25% of the
total) to map the whole area and therefore largely decreased cost and effort. Over-
all accuracy of the supervised classification of landforms improved to 63.4% of the
training API and 90.2% of the point-sample, once the legend was simplified to elimi-
nate small classes that caused large relative misclassifications. A further step would
be to do field sampling of the soils in these units to determine if they are distinct
soil-landscape units.

Supervised classification can be applied over entire survey areas, or separately in
major landscapes through easily-identified master lines which tend to follow slope
breaks or abrupt changes of landscape type. In the current study, the results im-
proved only slightly. However, stratification has the conceptual advantage that the
predictive equations correspond better to conventional understanding of soil forma-
tion in different environments. Stratification of the area also enables selection of
different predictor sets for each landscape. On the other hand, it is more practical
to develop a single data-set and predictive map of the entire area at once.
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Figure 4.6: Location of the training areas and all aerial photos (indicated with crosses)
taken to cover the whole area (above); final map produced through supervised classification
of landforms (bellow). The legend was reduced to 15 classes.
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4.4.1 Limitations and ways to overcome them

Some photo-interpretation classes were poorly identified by the supervised classifi-
cation, especially in areas of low relief. The likely reasons for poor performance in
the plain are:

� The limited vertical resolution of the DEM relative to the relief;

� Large distances between known elevations (contour lines), both of these leading
to artifacts in the landform parameterization;

� The absence of predictor variables specifically adapted to the plain, other than
relative elevation, such as distance to local drainage, and

� The presence of landform complexes which occupy too much of feature space.

We also discovered that many features in the plain differ on the topo-map (data
collected in 1985) and aerial photo (1998). This is due to the fact that the fluvial
processes such as flooding and building of dams and canals change the detailed
geomorphology of the area much faster than in the hill land.

Considering the classification accuracy, the supervised landform classification
provides, in general, poorer results than the typical accuracy of land-cover classifi-
cation. The use of the whole-API training set was only moderately successful, even
with a reduced legend; however, it does not require a further step of point-sample
selection. On the other hand, point-samples can be reselected iteratively and accu-
racy improved. The following three steps refinements may be applied, by preference
in the order given:

� refine the training set for classes that are misclassified, using scatter diagrams
in feature space;

� simplify the legend or eliminate or merge classes;

� adjust the number of sample points for misclassified classes and

� consider addition of different predictors or improvement of the quality of ex-
isting ones.

This procedure is thus seen as a tool for the experienced soil mapper, not a
replacement that could be applied by non-specialists. This is in contrarily to the
unsupervised classification of landforms as described by Burrough et al. (2000),
where the only input needed is the number of classes and fuzzy exponent. In the
case of supervised classification, the analyst must still have a good knowledge of
soil-landform relations, whether working with traditional or GIS-assisted methods.
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The analyst must indeed intervene after the initial attempts to classify, in order to
discover which landform units cannot reliably be identified. This causes a new col-
laboration between the geographers, GIS experts and mappers that seems beneficial
to all.

Reproducibility could be further improved with the addition of extra and more
detailed information directly related to soil-forming factors, e.g. on variation of the
ground water table, satellite images showing flooding areas, vegetation indices, and
soil moisture as estimated from radar data. For example, to differentiate between
abandoned and actively-flooded channels, remote sensing images at times of flooding,
or images which can be correlated to soil moisture should be used. Also the use of
fuzzy classification algorithms will offer better insight into the spatial confusion
among classes, i.e. uncertainty of classification.

4.4.2 Applicability of landform classification for Soil Survey

The supervised landform classification and visualization of terrain parameters as
color-composites has two major advantages that can be used to enhance API for Soil
Survey. First, the use of terrain parameters provides an objective and cost-effective
basis for clustering of landscape facets. The classification results as shown in Fig. 4.6,
prove that the procedure described can be used to extrapolate (generalized) photo-
interpretation maps, with the only requirement, in addition to the aerial photos,
being a good topographic map to show the contours, map of a drainage networks
and geological survey map if possible. The classification also identified soil-landscape
units smaller than the minimum legible delineation. If these are not just artifacts
of the landform classification, this implies that semi-detailed survey could result in
maps detailed enough for site-specific management. Second potential application
of the proposed methods is to edit the soil boundaries of existing soil maps and
improve their spatial accuracy within an existing GIS. This can be done by simply
overlying the given boundaries over the false color-composites of terrain parameters
or the results of a supervised classification and then modifying the boundaries to
match changes in the terrain parameters.

In both cases, the mapper must take into account the usual considerations of
legibility and delineation size, and also check the soil-landscape relations discovered
by the classifier. This is faster than stereo-interpretation, since the automated clas-
sifier has already found the general location of the boundaries. The mapping project
is thus the result of collaboration between an expert mapper and the GIS, able to
find patterns with correct training. Far from eliminating soil surveyors, this process
allows them to concentrate their efforts on their area of expertise, e.g. identification
of soil-landscape relations, and map large areas as efficiently as possible.
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Chapter 5

A generic interpolation based
on regression-kriging∗

“The soil is neither random nor stationary, but our models of it
may be one or other or both. We should therefore ask whether our
models are reasonable in the circumstances and whether they are

profitable in leading to accurate predictions.”

[R. Webster in ”Is soil variation random?” Geoderma, vol. 97: 147-163]

∗based on: Hengl, T., Heuvelink, G.B.M. and Stein, A., 2004. A generic framework for spatial
prediction of soil variables based on regression-kriging. Geoderma, Vol. 123, in press.



88 Interpolation

5.1 Introduction

Spatial prediction is the process of estimating the values of a target quantity at
unvisited locations. When applied to a whole study area, it is also referred to as
spatial interpolation or mapping. Development of generic and robust spatial predic-
tion techniques has been of interest for quite some time (Mitas & Mitasova, 1999).
In land resource inventories, kriging and its variants have been widely recognised
as primary spatial interpolation techniques from the 1970s. In the 1990s, with the
emerging of GIS and remote sensing technologies, soil surveyors became interested to
use exhaustively mapped secondary variables to directly map soil variables. The first
applications were based on the use of simple linear regression models between terrain
attribute maps and soil parameters (Gessler et al., 1995; Moore et al., 1993). In the
next phase, the predictors were extended to a set of environmental variables and
remote sensing images. This approach was termed “environmental correlation” by
McKenzie & Ryan (1999), or spatial prediction by multiple regression with auxiliary
variables (Odeh et al., 1994, 1995). McBratney et al. (2000) coined the term CLORPT
techniques. Geostatistics and the CLORPT techniques are two somewhat distinct ap-
proaches to spatial prediction and can both give satisfactory results independently
one from another.

In the last decade, a number of ‘hybrid’ interpolation techniques, which com-
bine kriging and use of auxiliary information, has been developed and tested. Here,
two main paths can be recognised: co-kriging and kriging combined with regression
(McBratney et al., 2000). The latter path was shown to be more attractive for
combination of kriging and CLORPT techniques, among others because fewer model
parameters need to be estimated (Knotters et al., 1995). In many cases, kriging com-
bined with regression has proven to be superior to the plain geostatistical techniques
yielding more detailed results and higher accuracy of prediction. Hudson & Wack-
ernagel (1994) showed that kriging with use of elevation data improves mapping of
temperature. Knotters et al. (1995) compared ordinary kriging with co-kriging and
regression-kriging for soil mapping purposes, favouring the latter. Bourennane et al.
(1996, 2000) showed that prediction of horizon thickness is more accurate with the
use of a slope map as external drift. In several other studies (Odeh et al., 1994,
1995; Goovaerts, 1999b; Bishop & McBratney, 2001), combination of kriging and
correlation with auxiliary data outperformed ordinary kriging, co-kriging and plain
regression. Although the hybrid interpolation techniques are becoming increasingly
popular, there is still a need for a generic methodology that combines theory of
generalized linear models (GLM) with universal kriging. Gotway & Stroup (1997)
and Opsomer et al. (1999) give good starting points.

An (ideal) requirement for both linear regression analysis and ordinary kriging
is that the target variable is normally distributed (Draper & Smith, 1998). In many
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soil studies, however, the variables show skewed non-normal distributions, which
then reflects on residuals also. To account for the normality requirement, transfor-
mations such as logarithmic and square root are often applied prior to the regression
analysis (Gobin, 2000; Gobin et al., 2001). Similarly, the log-transformation is often
applied prior to kriging to account for positively skewed data. Here, the difficulties
are the choice of transformation model and extreme sensitivity of errors for back-
transformation (Isaaks & Srivastava, 1989). In the case of kriging combined with
regression, a common problem is that the method might yield values outside the
physical range (e.g. negative values) and these areas need to be manually masked
or replaced (Goovaerts, 1997, p. 200). Another issue, in the case of large number
of predictor maps, is the problem of multicollinearity (Neter et al., 1996, p. 285).
Moreover, it is not clear whether to use all available secondary variables in predic-
tion or only the most correlated ones (Bourennane & King, 2003). These difficulties
with data emphasize a need for a generic methodology that can be used with both
continuous and categorical, both normal and non-normal data.

The objective of this study was to develop a methodological framework for spa-
tial prediction based on the theory of universal kriging. This framework can then
be used with most soil profile databases in a semi-automated or automated man-
ner. We concentrate on the integration of different data processing steps, rather
than on the development of new statistical techniques. In addition, we propose an
image processing technique to simultaneously visualise predictions and uncertainty
associated with prediction.

5.2 Methods

5.2.1 The generic framework

By a generic framework we consider a set of robust techniques that are used jointly
to transform, fit, interpolate and visualise the data. Here, we primarily focus on the
following aspects:

� reduction of multicollinearity among predictors;

� ensuring the normality of residuals;

� exploiting the ’best’ of the data, i.e. correlation with auxiliary maps and
spatial dependence at the same time and

� avoiding predictions outside the physical range.

A schematic diagram showing the generic framework is given in Fig. 5.1. The
input variables are first transformed using logit transformation for target variables
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and factor analysis for continuous predictor maps. The categorical predictors are
transformed to indicator maps. The target variables are then fitted using step-wise
regression and residuals interpolated using kriging. The final predictions are eval-
uated at control points. A generic visualisation method is used to simultaneously
display both prediction and uncertainty of the prediction model. Technically speak-
ing, the developed generic framework can be termed step-wise principal component
logistic regression-kriging. For practical reasons, we simply refer to it as generic
framework based on regression-kriging. The development of such a framework has
been announced by McBratney & Walvoort (2001). We will now first introduce the
theory of universal kriging and then extend its algebra using the above-described
framework.

5.2.2 The spatial prediction technique: Regression-kriging

A spatial prediction technique, which jointly employs correlation with auxiliary maps
and spatial correlation is universal kriging (UK), originally described by Matheron
(1969). Many authors (Deutsch & Journel, 1992; Wackernagel, 1998), however,
agree that the term “Universal kriging” should be reserved for the case where the
drift (or trend) is modelled as a function of the coordinates only. The term “Krig-
ing with external drift” (further referred to as KED) is more commonly used when
the drift is defined ‘externally’ through some auxiliary variables (Chiles & Delfiner,
1999; Wackernagel, 1998). The drift and residuals can also be fitted separately and
then summed afterwards. This was originally suggested by Odeh et al. (1994, 1995),
who named it “Regression-kriging” (further referred to as RK), whereas Goovaerts
(1999b) uses the term “Kriging after detrending”. UK, KED and RK are, in fact,
equivalent methods and should, under the same assumptions, yield the same predic-
tions (for more details, see Hengl et al. (2003a)). The advantage of KED is that the
equations are solved at once, while the advantage of RK is that there is no danger
of instability as with the KED system (Goovaerts, 1997, p. 195). Moreover, RK
can be more easily combined with stratification, general additive modelling (GAM)
and regression trees (McBratney et al., 2000). Note that, although KED technique
seems to be computationally more straightforward, it needs variogram parameters
of the GLS regression residuals (which is often ignored), and therefore the GLS re-
gression coefficients as with RK. Some authors make different assumptions and skip
some computational step so that products of RK and KED might differ at the end.
For example, Hudson & Wackernagel (1994); Bourennane & King (2003) make an
assumption that the variogram of residuals (e) is equal to the variogram of target
variable (z), which is a simplification. In this case, the KED prediction map will
look more similar to the OK map. Other authors (Odeh et al., 1994, 1995), use only
ordinary least squares estimate of the drift, which is also sub-optimal but shorter
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Figure 5.1: Flow diagram: generic framework for regression-kriging (in a GIS).

solution. These short-cuts might be more attractive for practical applications, but
are sub-optimal statistically. In further text, we will hold to the term regression-
kriging instead of kriging with external drift, as it specifically implies that regression
is combined with kriging.

Let the observations of soil variables be denoted as z(s1), z(s2), ..., z(sn), where
si = (xi, yi) is a location and xi and yi are the coordinates and n is the number of
observations. In the case of RK, a soil property at a new, unvisited location (s0) is
predicted by summing the predicted drift and residuals (Odeh et al., 1994):
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ẑ(s0) = m̂(s0) + ê(s0) (5.1)

where the drift m̂ is commonly fitted using linear regression analysis, and the resid-
uals ê are interpolated using ordinary kriging:

ẑ(s0) =
p∑

k=0

β̂k · qk(s0) +
n∑

i=1

wi(s0)·e(si); q0(s0) = 1; (5.2)

where β̂k are the estimated drift model coefficients, qk(s0) is the kth external ex-
planatory variable or predictor at location s0, p is the number of predictors, wi(s0)
are weights determined by the covariance function and e(si) are the regression resid-
uals. In matrix notation, the RK model is:

z = qT · β + ε (5.3)

where ε is the zero-mean regression residual. The predictions are made by:

ẑ(s0) = qT
0 · β̂ + λT

0 · e (5.4)

where q0 is vector of p+1 predictors at s0, β̂ is vector of p+1 estimated drift model
coefficients, λ0 is vector of n kriging weights and e is vector of n residuals. The drift
model coefficients are preferably solved using the generalized least squares (GLS)
estimation to account for spatial correlation of residuals (Cressie, 1993, p. 166):

β̂gls =
(
qT ·C−1 · q

)−1 · qT ·C−1 · z (5.5)

where q is the matrix of predictors at all observed locations (n × p + 1), z is the
vector of sampled observations and C is the n× n covariance matrix of residuals:

C =

 C(s1, s1) · · · C(s1, sn)
...

. . .
...

C(sn, s1) · · · C(sn, sn)

 (5.6)

The covariances between point pairs C(si, sj), under stationarity assumptions
also written as C(h), are typically estimated by modelling a variogram (Isaaks &
Srivastava, 1989). A common variogram model is the exponential:

γ (h) =

{
0 if |h| = 0

C0 + C1 ·
[
1− e−( h

R)
]

if |h| > 0
(5.7)

where γ(h) is the semivariance function, which is related with the covariance function
through γ(h) = C0 − C(h). C0, C1 and R are variogram parameters and |h| is
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the Euclidean distance between the point pairs. Thus, RK in matrix notation is
(Christensen, 1990):

ẑ(s0) = qT
0 · β̂gls + λT

0 · (z− q · β̂gls) (5.8)

Note that estimation of GLS residuals is an iterative process: first the drift model
coefficients are estimated using ordinary least squares (OLS), then the covariance
function of the residuals is estimated and used to obtain the GLS coefficients. These
can be used to re-compute residuals and so on. This is the major disadvantage of
using KED or RK because both the regression model parameters and variogram
parameters need to be estimated simultaneously. To estimate coefficients we need
the covariance function of residuals, which can only be estimated after the coeffi-
cients. In practice, a single iteration can be used as a satisfactory solution (Kitanidis,
1994), although the optimal approach is to fit these components until convergence
(Opsomer et al., 1999).

The variance of the prediction error of RK is the UK variance (Cressie, 1993, p.
155):

σ2
E(s0) = (C0 + C1)− cT

0 ·C−1 · c0

+
(
q0 − qT ·C−1 · c0

)T · (qT ·C−1 · q
)−1 ·

(
q0 − qT ·C−1 · c0

)
(5.9)

where c0 is the vector of covariances between residuals at the unvisited and observa-
tion locations. The first part of Eq. (5.9) presents the kriging variance of residuals
and the second part is associated with the error of estimating the drift. The latter,
in statistical terms, is equivalent to the curvature of the confidence band around the
regression line (Neter et al., 1996, p. 210). Hence, the composite variance reflects
the relative distance in geographical and feature space: the prediction uncertainty
increases as the new predicted observation gets further away from observation points
spatially and further away from the centre of the attribute or feature space.

5.2.3 Transformations of soil variables

In the case of CLORPT techniques, the functional relationship between environmental
and soil variables is unknown and often very noisy (e.g. see the correlation plots
by Moore et al. (1993, p. 448) and Gessler et al. (1995, p. 428)). Thus, simple
linear regression modelling is most commonly used to model the data. It seems,
however, that a general relationship between the soil and auxiliary variables is not
necessarily linear. From empirical plots drawn by Buol & Hole (1980), Jenny (1980)
and Birkeland (1999, p. 142), it can bee seen that a general relationship between soil
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variables and the CLORPT factors is sigmoidal. This is often simply because many
soil variables reach some physical minimum or maximum after a certain change of a
CLORPT factor. In this situation, it is more advisable to adjust the model to the data
by using some GLM transformation, rather than to adjust the data to the model
(Lane, 2002). To approximate such a sigmoidal shape, we used a simple logistic
response function (Neter et al., 1996, p. 570):

z+ =
[
1 + exp(−βT · q)

]−1
(5.10)

The key property of the logit transformation is that it can be easily linearized
by transforming the target variable to a logit variable:

z++ = ln
(

z+

1− z+

)
; 0 < z+ < 1 (5.11)

where z+ is the target variable standardised to the 0 to 1 range:

z+ =
z − zmin

zmax − zmin
; zmin < z < zmax (5.12)

and zmin and zmax are the physical minimum and maximum of z. This means that
all new predicted values are constrained in-between these two limits.
Finally, we obtain the same RK linear equation (Eq. 5.8):

ẑ++(s0) = qT
0 · β̂gls + λT

0 ·
(
z++ − q · β̂gls

)
(5.13)

For ratio-type or percentage-type variables (e.g. clay content, organic matter
content etc.), zmin and zmax are given by definition. In other cases, the limits need
to be defined using empirical or arbitrary numbers, such as expected or sampled
minimum and maximum. For example, we know that a pH of soil, measured in
water, in some area will never be below 4 or above 9. Therefore, including these
limits will prevent predictions outside the given range. Note that all z values need
to be different from the zmin and zmax to avoid ln(0) situations.

Another advantage of logit transformation is that it can adopt also the categorical
data, which first needs to be converted to indicator variable (see later Eq. 5.18).
The logit transformation has already been used prior to interpolation of soil data by
Triantafilis et al. (2001). Gotway & Stroup (1997) used it as a link function prior
to universal kriging of a binary target variable.

The predictions are back-transformed to original scale by:

ẑ(s0) =
eẑ++(s0)

1 + eẑ++(s0)
· (zmax − zmin) + zmin (5.14)

94



5.2 Methods 95

The variance of the prediction error calculated using Eq. (5.9), however, cannot
be simply back-transformed as the error is not symmetrical around the regression
plane. It can be used, though, to derive confidence limits:

ẑ±t(s0) =
e[ẑ

++(s0)±t·σ++
E (s0)]

1 + e[ẑ
++(s0)±t·σ++

E (s0)]
· (zmax − zmin) + zmin (5.15)

where t is the threshold value of standard normal error and σ++
E (s0) is the standard

deviation of the prediction error of transformed variable. From confidence limits,
the probability density can be reconstructed to get an unbiased estimate of the mean
and variance.

A simpler solution is to divide the prediction error of the transformed variable
by the total standard deviation of observed samples. This is the normalized mean
square error or relative prediction error (Park & Vlek, 2002):

σE,r(s0) =
σ++
E (s0)
sz++

(5.16)

where sz++ is the standard deviation of the transformed observations:

sz++ =

√√√√√ n∑
i=1

(
z++
i − z̄++

)2
n− 1

(5.17)

This estimate of the model uncertainty is scale-free and dimensionless. Hence,
it will be further on used for visualisation purposes.

5.2.4 Transformation of predictors

To account for multicollinearity, we used a factor analysis prior to regression analysis
to produce composite indices or standardised Principal Components (PCs). These
are uncorrelated and standardised transforms, and can be then used instead of the
original predictors in the regression analysis (Neter et al., 1996, p. 410). Gobin
(2000), for example, showed that use of standardized principal components instead
of the original predictors improves the prediction for soil-landscape modelling. In
addition, a stepwise regression is used as an automatic procedure to derive the ‘best’
subset of predictors and economize computational effort. Finally, a categorical map
(soil map) was incorporated in the regression analysis by using indicator variables.
Here, each class (c) in the categorical map resulted in an additional indicator vari-
able:
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qc(s) =
{

1 if qc(s) = class(c)
0 otherwise

(5.18)

5.2.5 Evaluation

The performance of interpolation methods can be evaluated using interpolation and
validation sets. The interpolation set is used to derive the sum of squares of residuals
(SSE ) and adjusted coefficient of multiple determination (R2

a), which describe the
goodness of fit:

R2
a = 1−

(
n− 1
n− p

)
· SSE
SSTO

= 1−
(

n− 1
n− p

)
·
(
1−R2

)
(5.19)

where SSTO is the total sum of squares (Neter et al., 1996), R2 indicates amount
of variance explained by model, whereas R2

a adjusts for the number of variables (p)
used. In many cases, a R2

a ≥0.85 is already a very stratificatory solution and higher
values will typically only mean over-fitting of the data (Park & Vlek, 2002). Note
that this number corresponds to the relative prediction error (Eq. 5.16) of ≥40%.

The true prediction accuracy can be evaluated by comparing estimated values
(ẑ(sj)) with actual observations at validation points (z∗(sj)) in order to assess sys-
tematic error, calculated as mean prediction error (MPE ):

MPE =
1
l
·

l∑
j=1

[ẑ(sj)− z∗(sj)] (5.20)

and accuracy of prediction, calculated as root mean square prediction error (RMSPE ):

RMSPE =

√√√√1
l
·

l∑
j=1

[ẑ(sj)− z∗(sj)]
2 (5.21)

where l is the number of validation points. In order to compare accuracy of prediction
between variables of different type, the RMSPE can be normalized by the total
variation, as in Eq. (5.16),:

RMSPE r =
RMSPE

sz
(5.22)

As a rule of thumb, we can consider that a value of RMSPE r close to 40% means
a fairly satisfactory accuracy of prediction. Otherwise, if the values get >71%, this
means that the model accounted for less than 50% of variability at the validation
points and the prediction is unsatisfactory.

96



5.2 Methods 97

5.2.6 Visualisation

A typical result of (geo)statistical interpolation is a map of predictions and prediction
error, which is an estimate of prediction uncertainty. These two are commonly not
visualised simultaneously. This can be achieved by using the pseudo colour scale and
image calculations on colours, following the Hue-Saturation-Intensity (HSI) colour
model (Hengl et al., 2002). We suggest the following procedure. First the prediction
values need to be transformed to the hue angle by:

ϕ1 = −90 + zr · 300 (5.23)

ϕ2 =
{

ϕ1 + 360 if ϕ1 ≤ −360
ϕ1 if ϕ1 > −360

}
(5.24)

where ϕ is the hue angle in degrees measured clockwise and zr are the predictions
(zr ∈ [0, 1]). The predictions and uncertainty (relative error) are then coded to HSI
image by:

H = (ϕ2 + 360) · 240
360

(5.25)

S = (1− ur) · 240 (5.26)
I = (1 + ur) · 120 (5.27)

where ϕ is the hue angle in degrees measured clockwise, zr are the predictions and
ur is the prediction uncertainty (ur ∈ [0, 1]). Note that these values have to be
stretched before coding by using:

zr =
ẑ − z1

z2 − z1
(5.28)

ur =
σE,r − u1

u2 − u1
(5.29)

where ẑ is the prediction map derived using Eq. (5.13) and back-transformed using
Eq. (5.14), σE,r is the relative prediction error map derived using Eq. (5.9) and
standardised using Eq. (5.16), z1 and z2, and u1 and u2 are the lower and upper
inspection range limits for the predicted values and relative prediction error. From
the HSI images, the RGB composite image can be derived in ILWIS using (Unit Geo
Software Development, 2001):

zRGB = colorhsi (H,S, I) (5.30)
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Note that, from Eqs (5.23) to (5.27), the lower values are coded bluish (hue
angle from -90° to -150°) and highest values are coded reddish (hue angle from
-330° to -30°). Consequently, the intermediate values are coded with cyan, green
and yellowish (Fig. 5.2b). This model corresponds to the pseudo-colour scale used
in many GIS packages for visualising continuous variables. Also note that a part
of the hue circle representing magenta (-30° to -90°) is omitted to avoid confusion
between high and low values. The second property of the HSI-coded image is that
uncertainty is coded with whiteness. This has often proven to be the most suitable
colour variable for visualisation of uncertainty (Jiang et al., 1995). In this case,
fully saturated colour indicates lowest uncertainty and white colour indicates full
uncertainty within the given thresholds.
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Figure 5.2: Hue-Saturation-Intensity colour model in Red-Green-Blue colour cube (a), main
hue types used for the visualisation (b) and the same shown using a two-dimensional legend
(c). ϕ is the hue angle in degrees measured clockwise. See text for explanation.

In addition to the colour map, we developed a special two-dimensional legend
(see Fig. 5.2c and Fig. 5.8e) to accompany the HSI-coded image. The vertical direc-
tion indicates change of prediction values (from -90° to -30°), while the horizontal
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direction indicates uncertainty and is coded with a linear increase of both intensity
and saturation, i.e. whiteness. This visualisation algorithm can be applied in any
image processing or general GIS package, which allows calculations on colours.

5.2.7 Case study

A set of 135 profile observations from the Croatian national Soil Geographical
Database (Martinović & Vranković, 1997) was used as a case study. It was ran-
domly divided into a interpolation (100 points) and validation set (35 points). The
study area is a 50×50 km square located in the central part of Croatia. As target
variables, the organic matter in the topsoil (OM), measured using a colorimetric wet
oxidation method and expressed in %, the topsoil pH measured in H2O (PH) and
thickness of topsoil horizon expressed in cm (DEPTH) were used.

As predictors (auxiliary maps), we used five relief parameters derived from the
100×100 m resolution elevation data: elevation (DEM), slope (SLOPE), mean cur-
vature (MEANC), Compound Topographic Index (CTI), Stream Power Index (SPI)
and viewshed (VSHED) (Fig. 5.3), all derived in ILWIS (Hengl et al., 2003b). These
were first linearly stretched in an image processing software to a range of 0–255 to
give each map equal contrast and then transformed to standardised principal com-
ponents (further referred to as the Soil Predictive Components SPCs) using factor
analysis in ILWIS. The 1:300 K soil map of Croatia was used as the categorical layer
(Bogunović et al., 1998). There were 28 soil mapping units (further referred to as
SMU) in the study area. Due to a low number of points in the interpolation set, we
first reduced the number of units to nine by merging some taxonomically adjacent
units. Finally, there were six SPCs and nine SMUs making 15 predictors in total.

5.2.8 Data analysis

The OM , DEPTH and PH were first transformed using Eq. (5.11):

OM ++ = ln
(

OM +

1−OM +

)
PH ++ = ln

(
PH +

1− PH +

)
DEPTH ++ = ln

(
DEPTH +

1−DEPTH +

) (5.31)

where the OM +, PH + and DEPTH + are values standardised to 0 to 1 scale:
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Figure 5.3: Location of the study area (upper-left), profiles used for interpolation (•) and
validation (+) (lower-left) and maps of predictors (right).

OM + =
OM − 0
100− 0

PH + =
PH − 4.1
8.8− 4.1

DEPTH + =
DEPTH − 0

150− 0

(5.32)
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In the case of OM and DEPTH we used the minimum and maximum values
measured in the whole of Croatia. Also note that zero measurements need to be
replaced with an arbitrary small number, e.g. the precision of measuring a variable
in the laboratory or in the field.

First, prediction maps of OM , PH and DEPTH were made from the soil map by
averaging profiles per SMU (Burrough, 1993a). Second, the variables were interpo-
lated using ordinary kriging (OK) and OLS multiple regression (MR). These three
prediction methods were then compared with the RK within the generic framework.

The spatial dependence structure of soil variables and residuals was modelled
in VESPER using automated variogram fitting (Minasny et al., 2002). We used
an exponential model and a limiting distance of 25 km in all cases. In addition,
the variogram modelling in VESPER gave the Akaike Information Criterion (AIC),
which was used to compare different models for the goodness of fit (McBratney &
Webster, 1986). The GLS coefficients were used to derive the drift maps using the
map calculation in ILWIS. The re-estimated residuals were then interpolated and
added to the fitted drift. The final estimates were then back-transformed to their
original scale using the Eq. (5.14). Matrix calculations and fitting of the target
variables using the stepwise regression was done in the S-PLUS statistical package
(MathSoft Inc., 1999). Although most of the processing steps are feasible with a
standard PC, the calculation of the variance of the prediction error (Eq. (5.9)) can
be time-consuming, even for smaller size data sets.

5.3 Results

5.3.1 Regression modelling

Inspection of the distributions of target variables at primary locations showed that
both OM and DEPTH have positively skewed distributions (Table 5.1). Also the
predictors, especially SPI, CTI and MEANC show distinct asymmetry in their dis-
tributions. Similarly, the first univariate linear regression models showed that the
residuals are skewed around the regression line and therefore do not satisfy the nor-
mality requirement for both regression analysis and kriging (Fig. 5.4b). In this case,
the correlation test of normality for residuals (Neter et al., 1996, p. 111) gave coef-
ficient of correlation of 0.912 (OM ) and 0.983 (DEPTH ) between ordered residuals.
Note that the critical value of coefficient of correlation between ordered residuals
for n = 100 and 0.05 level of significance is 0.987 (Looney & Gulledge, 1985), which
means that both variables significantly depart from the normal distribution. After
the logit transformation of the target variables (OM ++, PH ++, DEPTH ++), the
models became symmetrical around the fitted linear models, and the coefficients
of correlation between ordered residuals were higher for OM ++ (0.982) and simi-
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lar for DEPTH ++ (0.981). This was also reflected in an increased R2 (Fig. 5.4c).
Note that for DEPTH under simple linear modelling, the predictions in areas of high
slope (SLOPE> 60%) would yield negative estimates. The residuals for DEPTH ++,
however, show skewness even after the transformation. In this case, this was a reflec-
tion of the log-normal distribution of SLOPE. Note that the observed relationships
(Fig. 5.4d) correspond to the hypothetical plots described by Buol & Hole (1980)
(Fig. 5.4a). This phenomenological correspondence is an extra guarantee to apply
these models in spatial prediction.
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Figure 5.4: Comparison of empirical relationships (a), observed relationship (b), observed
after the logit transformation (c) and back-transformed models (d).

The results of the factor analysis showed that there is an overlap in information
and that the data can be reduced. The first four SPCs accounted for more than 90%
of the total variation in the bands (42.6%, 21.3%, 14.5% and 12.0%). SPC1 as the
main component was explained by variation in SLOPE, SPI, CTI and DEM. SPC2
accounted mainly for the variation in MEANC and SPI, while the third and fourth
component accounted for DEM and VSHED. The fifth and sixth components showed
some features already seen in the first four components and probably represent noise
and artefacts in the relief parameters. Note that the SPCs show much lower skewness
and kurtosis than the original predictors (Table 5.1).

The step-wise regression substantially reduced the number of predictors. In
the case of OM ++, it selected SPC1, SPC4 and SMU8 as the optimal sub-set for
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Table 5.1: Descriptive statistics for target variables, predictors and their transforms:
MEAN – mean, STDEV – standard deviation, MED – median, MIN – minimum, MAX
– maximum, SKEW – skewness, KURT – kurtosis.

Target variables Predictors

OM PH DEPTH DEM SLOPE MEANC CTI SPI VSHED

% - cm m % m−1 - - -

MEAN 9.7 6.25 19.8 634 15.1 -1.19 9.1 90.3 0.63

STD 6.8 0.88 9.6 267 12.9 6.86 2.5 97.8 12.17

MED 7.3 6.20 18.5 604 12.3 0.23 8.5 56.8 1.00

MIN 2.1 4.50 4.0 207 0.9 -27.47 5.4 0.0 -30.60

MAX 33.4 7.70 45.0 1298 51.1 14.14 17.7 482.8 33.00

SKEW 1.51 -0.18 0.57 0.41 0.85 -1.12 1.14 1.60 0.01

KURT 2.00 -0.99 -0.01 -0.53 -0.23 1.97 1.01 2.71 0.98

Transforms

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6

MEAN 103 -48 86 79 -184 56

STD 105 55 55 53 31 28

MED 104 -38 95 74 -185 48

MIN -84 -192 -61 -47 -244 -36

MAX 362 54 207 217 -96 138

SKEW 0.12 -0.55 -0.56 0.04 0.21 0.10

KURT -0.99 -0.32 0.16 0.28 -0.28 0.78

prediction, while in the case of DEPTH ++, the algorithm selected SPC1, SPC3
and SPC4. In both cases the correlation was significant (R2

a = 0.33 for OM ++

and R2
a = 0.40 for DEPTH ++). In the case of PH ++, the coefficient of multiple

determination was small (R2
a = 0.14), but still significant at the 0.05 level, indicating

weak correlation with the predictors. Here, the only significant predictors were
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SMU5 and SMU6. The normality test for residuals showed that in all cases the
residuals did not depart significantly from a normal distribution with coefficient of
correlation between ordered residuals of 0.986 for OM ++, 0.981 for PH ++ and 0.989
for DEPTH ++ (see also density histograms in Fig. 5.6b).

5.3.2 Geostatistical analysis

Both OM ++ and DEPTH ++ showed a clear spatial dependence, whereas the vari-
ogram of PH ++ was dominated by a pure nugget effect (Fig. 5.5a). For OM ++ auto-
mated variogram modelling gave a small nugget and shorter range parameter (3 km)
(Fig. 5.5b), whereas for DEPTH ++, the range parameter was fairly large (11.2 km).
Analysis of spatial correlation of residuals reflected the success of regression fitting:
the range of spatial dependence was much shorter and the sill was proportionally
smaller to the variation accounted by regression modelling. Moreover, variograms
of residuals tend to show a shorter range and bounded sill, which indicates that
the drift has indeed been removed. This is especially distinct for DEPTH ++ where
the target variable showed almost an unbounded variogram, whereas the residuals
showed an almost five times shorter range of spatial dependence and 43% smaller
sill (Fig. 5.5c). The AIC confirms that the variograms of residuals are somewhat
easier to fit. Here, the best fit, i.e. the smallest AIC, was obtained for the residuals
of DEPTH ++.

Regression coefficients using OLS and GLS estimation are given in Table 5.2. The
differences between coefficients were in all cases relatively small, which indicates that
there is no significant spatial clustering between the points.

5.3.3 Bias and accuracy of prediction

A problem with the logit transformation is that the back-transformation gives only
an unbiased estimate of the median, as for example in the case of log-normal krig-
ing. This is usually reflected in somewhat lower predictions, especially if values are
grouped around zero. In this case, the mean of the interpolation set (z(si)) was
somewhat higher than the mean of fitted values (ẑ(si)): 9.7% as compared to 9.1%
for OM (or 6.7% lower in relative measures) and 19.8 cm compared to 19.5 cm
for DEPTH (or 1.5% lower). Comparison of histograms of the prediction maps for
the same properties, also gave somewhat lower means of 8.9% for OM (or 8.2%
lower in relative measures) and 18.8 cm for DEPTH (or 5.1% lower) (Fig. 5.6c).
The medians in the prediction maps, however, are somewhat higher than the medi-
ans at primary locations: 8.0% compared to 7.3% for OM and 19.0 cm compared
to 18.5 cm (Fig. 5.6c). It seems, therefore, that there is no need for an unbiased
back-transformation as the histograms, before and after the back-transformation, in
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Figure 5.5: Semivariograms of target variables (left graphs and dotted line) and their
residuals (right graphs): OM ++ (a), PH ++ (b) and DEPTH ++ (c). All fitted in VESPER
using an exponential model.

general match. Note that the ranges in the prediction maps are somewhat narrower
due to the smoothing effect of RK.

The summary comparison of prediction methods at the validation points is pre-
sented in Table 5.3. Note that the GLS coefficients result in somewhat higher SSE .
For example, in the case of OM ++, the SSTO is 51.4; after the regression analysis
the SSE has decreased to 34.7, meaning that 33% of the variation has been explained
by the model. The GLS estimation, however, resulted in a somewhat higher SSE
(36.7). Finally, the SSE after kriging the residuals has decreased to 5.3, indicating
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Table 5.2: Summary results of the step-wise regression analysis for OM ++, PH ++ and
DEPTH ++ and improved coefficient estimates (n=100).

Target
variable

Selected
Predictors

Regression
coefficients
(OLSa)

Regression
coefficients
(GLSb)

OM ++

intercept -3.124 -3.161

SPC1 0.003228 0.003143

SPC4 0.004843 0.005468

SMU8 -0.7712 -0.4844

PH ++

intercept -0.4258 -0.4194

SMU5 0.6598 0.7010

SMU6 0.9183 0.7008

DEPTH ++

intercept -1.667 -1.664

SPC1 -0.003212 -0.003131

SPC3 0.002264 0.002189

SPC4 -0.002726 -0.002823

aOLS - Ordinary least square estimation;
bGLS - General least square estimation based on the spatial covariance matrix of residuals.

that the RK model accounted for almost 90% of the total variation at the primary
location grids (100×100 m). In the case of OM , RK achieved slightly better relative
prediction accuracy than OK (53.3% versus 66.5%). In both cases the bias was small.
Similarly, RK achieved a higher accuracy of prediction (66.5% versus 83.3%) and a
smaller bias (0.15 versus 0.69 cm) for predicting DEPTH , when compared with OK.
In general, the soil map was shown to be an inefficient predictor in all cases except
for prediction of OM in topsoil. Relatively low bias for RK in all cases indicates
that the logit transformation and use of SPCs served their purpose. The prediction
of PH has proven to be difficult with a relative prediction error greater than 100%.
This means that all compared methods can show almost any value within the given
range and there is no justification for production of a PH map.

Comparison of different prediction methods for mapping DEPTH is shown in
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Figure 5.6: Density histograms and summary statistics for: target variables (OM and
DEPTH ) at primary locations (a), GLS residuals (b) and prediction maps (c). MEAN –
mean, STDEV – standard deviation, MED – median and RANGE – range.

Fig. 5.7. The soil map in general over-smoothed the values, except for two SMUs
(Fig. 5.7b). On the contrary, OK map (Fig. 5.7c) shows rather gradual transitions
with fairly low level of detail, whereas the RK map (Fig. 5.7d) reflects change in
elevation, slope and exposition. Finally the RK map (Fig. 5.7e) yields more detail
than the OK map, at the same time showing the hot-spots not visible in the MR
map.

Visualisation of the predicted DEPTH map together with the prediction er-
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Table 5.3: Comparison of interpolation methods for goodness of fit (R2
a), bias (MPE ) and

accuracy of the prediction at validation points (RMSPE ).

Interpolation set Validation set

Methoda SSE b R2
a MPE RMSPE RMSPE r

c

OM (%)

SOIL - - -1.28 5.3 68.2%

OK 3.2 - 0.01 5.2 66.5%

MR 34.7 0.31 -0.10 3.4 44.1%

RK 5.3 - -0.04 4.2 53.3%

PH (-)

SOIL - - 0.11 1.024 128.1%

OK 49.7 - 0.00 0.932 116.6%

MR 64.5 0.13 0.06 0.892 111.5%

RK 50.4 - 0.01 0.885 110.7%

DEPTH
(cm)

SOIL - - 1.41 9.1 88.7%

OK 10.4 - 0.69 8.5 83.3%

MR 23.4 0.40 1.69 8.8 85.4%

RK 0.7 - 0.15 6.8 66.5%

aSOIL – prediction from the soil map only; OK – ordinary kriging; MR – multiple regression;
RK – regression kriging.

bValues for transformed variables (OM++, PH++ and DEPTH++).
cRMSPE r – relative prediction error (%).

ror is given in Fig. 5.8. The composite variance of RK reflects both the arrange-
ment of points in geographical space (the kriging variance of residuals) and areas
of extrapolation in attribute space. Note that the areas of higher slopes have been
under-sampled (diagonal strips), which is also reflected in the prediction error map
(Fig. 5.8b). This corresponds to previous results by Papritz & Stein (1999, p. 112),
for example.

The combined visualization gives insight into the relationship between uncer-
tainty and input data for the given thresholds. In this case, we visualised prediction
of DEPTH using the following thresholds: z1=5 and z2=30 cm for the predictions
and u1=0.40 and u2=0.80 and 1.00 for the errors (Fig. 5.8). The corrected bright-
ness values are then: (a) equal to the original RGB for a relative uncertainty equal
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Figure 5.7: Topsoil thickness (DEPTH ) measured at 135 locations (a), comparison of
predictions made by using: soil map only (b), ordinary kriging (c), plain regression (d) and
regression-kriging (e). Note that the hot spots re-appear in the RK prediction map.

or less than 0.40, and (b) completely white for relative uncertainty equal or higher
than 0.80 or 1.00. In the first case (Fig. 5.8c), the visualisation resulted in most of
the map distant from the points being pale, while in the case of a maximum feasible
threshold (1.00), the HSI-coded image shows that prediction was efficient in most
of the study area (Fig. 5.8d). A visual comparison between the HSI-coded RK and
OK (Fig. 5.8f) maps shows that the OK predictions are somewhat less certain and,
consequently, the colours are less distinct2.

2See the supplementary materials for full-colour animation of prediction uncertainty.
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Figure 5.8: Generic visualisation of the RK prediction map for DEPTH in cm (a) and rela-
tive error (b), the HSI colour images with two inspection ranges (c and d), two-dimensional
legend (e) and referent OK prediction map visualised using the same thresholds (f).

5.4 Conclusions and discussion

In this study we integrated several methodological steps to provide a framework
for generic spatial prediction and visualisation of soil data. The key principle was
to employ most of the available regression and kriging methods and let the system
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exploit ‘the best’ of the data. The results show that the proposed methodology
improves prediction efficiency, while ensuring a relative normality of residuals and
predictors. Especially the logit transformation proved to be a useful step to model
non-linear relationships and force prediction values to be within the physical limits.
It is also attractive for a general case because it can be used to model both linear
and curvilinear relationships with one or two inflection points and both quantitative
and categorical target variables. The factor analysis on map sets was efficiently used
to remove multicollinearity and reduce asymmetry in distributions. This helped the
step-wise regression algorithm to come to an optimal subset of uncorrelated predic-
tors. When the SPCs are at the same scale, then also the regression coefficients
can be directly compared. Finally, visualisation of both predictions and prediction
uncertainty offers a possibility to enhance visual exploration of the data uncertainty
and make comparisons between different prediction methods. In several aspects of
the developed framework, we advocate use of flexible statistical methods, such as
factor analysis, step-wise selection of an optimal subset of predictors, logit transfor-
mation and automated variogram fitting. These flexible methods open a possibility
to develop a user-friendly bundle algorithm that can be implemented in a GIS. Even-
tually, a user will be able to select a point map and maps of predictors, define some
minimum needed criteria and then run the spatial prediction at once.

Recently, sources of auxiliary data are increasingly available from digital terrain
modelling parameters to various air- and space-born remote sensing images. There
is much auxiliary information at hand nowadays, even at farm level, i.e. for pre-
cision agriculture (McBratney et al., 2003). The auxiliary variables in this study
were cheaply obtained by digital terrain analysis, which makes the method inex-
pensive. Hence, the plain geostatistical methods are likely to be replaced with the
regression-kriging techniques. One should keep in mind that both ordinary kriging
and regression analysis are only special cases of one universal method of spatial
prediction. In some cases, however, there will be no help from auxiliary maps and
in other cases there will be no need to apply kriging (e.g. in the case of the pure
nugget effect). Here, the key measures to decide on which method to use can be,
for example, the correlation strength with auxiliary variables and distance at which
semivariance reaches 90% of the sill (Fig. 5.9).

The limitations of RK are that it is more complex technique and, if misused, can
give even worse estimates than straightforward ordinary kriging (Goovaerts, 1999a).
Therefore, development of a fully automated generic method is still unrealistic. For
example, we experienced problems with automatic fitting of the variogram functions
in VESPER. Automatically fitted variogram parameters for PH did not show any
physical meaning and needed to be adjusted by hand. This asks for a set of additional
remedial measures. Similarly, we cannot guarantee that the sigmoidal shape is truly
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Figure 5.9: Regression-kriging, plain geostatistical and regression techniques in relation
to the correlation coefficient (R2) and distance at which semivariance reaches 90% of sill
(spatial auto-correlation of residuals). Spatial prediction of pH was inefficient.

generic for all cases. There will be cases with more inflection points in the correlation
plots, which will be more difficult for this framework to handle. Nevertheless, logit
transformation has proven to be more beneficial for prediction than a simple linear
regression.

Another constraint of RK is the number of point samples required to fit the
regression model. Usually a large number of samples is needed to fit some 10–20
environmental variables. As a rule, Draper & Smith (1998) suggest at least 10
complete sets of observations for each potential variable to be included, while Ott
& Longnecker (2001) show that the real minimum is 2p+20, where p is the number
of predictors. In this case, due to the use of indicator variables, the size of the
interpolation set was fairly close to the minimum required number (15 predictors
to fit 100 points). It should be also emphasized that a point data set with a fairly
equal spreading of points is more appropriate for regression-kriging, which is not a
requirement for the plain CLORPT techniques.

In this study we have only dealt with the spatial (2D) aspect of soil variabil-
ity. Note that there are three more aspects of soil variability that also play a role:
temporal variability, depth (3D) and support size (Florinsky et al., 2002). Spatial
prediction of PH was probably limited due to measurement errors, high local vari-
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ation and overseen factors. From the database description, we could not conclude
at which part of the season the data were collected and what was the measurement
error. If measurement errors are large and if data were collected during different
seasons, not even the most optimal interpolator would make usable predictions. In
such cases, a larger number and better quality of soil environmental variables should
be used to improve predictions. Eventually, if not even these measures are useful,
more intensive sampling strategies at fixed conditions (same season, same depths,
same blocks of land) are required.

The next steps will be to integrate this statistical framework into a GIS package
and provide a user-friendly procedure, which can be used to interpolate existing
profile datasets. The methodology can then be extended so that it includes the tem-
poral and internal (depth) variability of soil variables as well. Finally, the following
three topics seems to be especially challenging for the future research:

� Development of soil genesis simulation models rather than just data fitting
techniques (Heuvelink & Webster, 2001). Some rudimentary applications al-
ready exist (Minasny & McBratney, 2001).

� Development of robust automated variogram modelling algorithms that will
account for serious outliers and over-parameterisation or over-fitting of the
data.

� Further integration of geostatistical modules within GIS packages. Here, a
promising development is the integration of geostatistical packages such as
GSTAT with open-source statistical packages such as R or GIS packages like
GRASS (Pebesma, 2003).
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Chapter 6

Continuous categorical map∗

“Traditional pedologists who use tacit knowledge and field
morphological properties still have reservations towards such
computerized quantitative applications. One major question

emerges: can we reconcile these two different paradigms:
quantitative/mathematical versus classification?”

[by S. Grunwald in the Pedometron #13, ”The Dilemma of Pedometrics in the
U.S.”, available via www.pedometrics.org]

∗based on: Hengl T., Walvoort D.J.J., Brown A. and Rossiter D.G., 2004. A double continuous
approach to visualisation and analysis of categorical maps. International Journal of Geoinformation
Science, accepted for publication, Vol. 18(1/2), in press.



116 Visualisation

6.1 Introduction

A GIS representation of a natural resource traditionally conforms to the discrete
model of spatial variation, which is commonly modelled using object-based or polygon-
based GIS (Goodchild et al., 1993). In such system, the natural resource is divided
into a set of discrete and mutually-exclusive classes, whose spatial distribution are
traditionally presented using a sets of different colours in the so called “choropleth”,
or more precisely “chorochromatic” map (Burrough & McDonnell, 1998). In GIS
terms, this is a polygon map with fully defined adjacency, while the properties are
recorded in attribute tables keyed to the polygon identifier. Since the geographical
units are modelled as discrete objects and the taxonomic entities as discrete classes,
this approach is referred to as the double crisp approach (Burrough et al., 1997).
For example, a soil surveyor uses sharp boundaries to delineate soil bodies (polype-
dons) on the landscape, and crisp classes of soil types to classify the typical soil
individual found in the body. Variation of soil types within the crisp boundary may
be mentioned in the linked database, however an impression of having crisp objects
remains. Similar approaches are followed for other natural resources, including for-
est vegetation types, geomorphic classes, land cover classes, and geological units.
In all these cases, the mapped objects are, in fact, usually not so crisp as the map
indicates. On the contrary, these are often continuous in both their properties and
distribution. In particular, soil units have always been considered to be poorly iden-
tifiable in both respects, being “arbitrarily defined classes of mostly hidden objects”
(Burrough, 1993b). Similarly, classes of geoforms or landforms are hard to separate,
as the geographers often emphasize (Fisher & Wood, 1998).

The alternative, continuous model of spatial variation and related field approach
to GIS modelling (Heuvelink, 1998) was first utilised in geostatistical interpolations
to produce maps of single continuous ratio or interval-scale variables (Burrough &
McDonnell, 1998). With the emergence of the theory of fuzzy logic (Zadeh, 1965), it
become interesting to model categorical variables, such as soil and landform classes.
Here each class first has to be mapped separately as single class map, usually as
the membership grade or membership value (µ), ranging from 0 (no membership in
the class) to 1 (full membership). Consequently, a variable with n classes will result
in several (n) single maps, i.e. multiple memberships maps. These are continuous
categorical or fuzzy maps, with main difference from the conventional maps is that
they can be analysed for ambiguity or indistinctness of a specific class and the overall
confusion among all classes (Hootsmans, 1996).

In the past decade, a number of methods have been proposed to deal with fuzzily-
defined natural objects. Lagacherie et al. (1996) drew the fundamental distinc-
tion between categorical and geographical fuzziness, and proposed a classification
of boundaries between soil map units on this basis. Irvin et al. (1997) used five
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landform parameters to produce membership maps of landform classes using fuzzy
k-means classification. The classification of landforms was then further on discussed
and improved by Burrough et al. (2000), who suggested an automated procedure to
select the number of classes based on the classification entropy. Similar applications
where continuous categorical maps are used instead of double-crisp maps can be
found for vegetation (Brown, 1998), land cover (Hansen & Reed, 2000) and land
evaluation studies (Hall et al., 1992; de Gruijter & Boogaard, 2001). Woodcock &
Gopal (2000) examined accuracy assessment for fuzzy maps, and concluded that
they can give better estimates of areas covered by crisply-defined classes then the
conventional double-crisp maps.

Single membership maps are easily visualised by grey or pseudo-colour scales
that are related to strength of membership. However, each map is separate, which
does not allow the user to visualise the membership maps as a whole and understand
properties of the whole set of classes, e.g. overall fuzziness and relations between
multiple classes. Visualisation of fuzziness and uncertainty is important as it allows
users to explore it and investigate the effects of different decisions in the classification
process (MacEachren & Kraak, 1997). This is not an easy task for maps of natural
resources having tens of classes and resulting membership maps.

The simplest cartographic procedure commonly used to display the membership
maps is defuzzification (Burrough et al., 1997). Here a crisp colour map is produced
by assigning the class with the highest membership in an individual pixel. Since
defuzzification applies to individual pixels, it provides no means to visualise the
nature of boundaries or the uncertainty of classification, although there have been
some investigations in this direction (Fisher, 1993; Hootsmans, 1996, 7). de Gruijter
et al. (1997) were among first to develop a cartographic technique called “Pixel
Mixture” (PM) to visualise membership maps by including all membership values in
the representation. This technique randomly assigns pixels to a sub-pixel grid, with
a probability proportional to the membership grade in the class, thereby giving a
visual impression of both the possible classes and their confusion (de Gruijter et al.,
1997). Similar concept of setting up a sub-pixel grid to visualise the transition zones
between land cover classes was given by Atkinson (1997). de Bruin & Stein (1998)
visualised multiple membership grades together with the uncertainty of classification,
where the class map was displayed together with the confusion index (in further
text CI), by combining hatching to visualise the classes and grey scale intensity
to visualise the CI. Although in principle the latter method would work with any
number of classes, more than about five classes leads to visual ambiguity between
the grey-scale intensity and density of the hatching pattern.

Till now, a per-pixel colour-mixing approach was not pursued, assuming that
digital technology was limited to three colours. Colour mixing is in fact possible,
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using for example the standard red green and blue bands (RGB), but only if the
number of classes is three. There is still a need for GIS methods to visually explore
results of fuzzy classification and at the same time quantify abruptness of transitions
(Goodchild et al., 1994; Burrough & McDonnell, 1998, p. 284).

In this paper we extend the work of de Gruijter et al. (1997) and Burrough et al.
(1997) by developing a new static visualisation technique based on calculations with
colours. We propose a technique to simultaneously explore both the spatial and
taxonomic confusion of our mapping system. For this purpose, we developed a so-
called “fuzzy-metric” circular colour legend, suitable for quantified categorical data,
and a method to analyse the abruptness of the derived boundaries.

6.2 Methods

6.2.1 Supervised fuzzy k-means classification

Membership maps can be derived by different algorithms. Most commonly, the
membership maps are derived using a continuous classification algorithm such as
fuzzy k-means (de Gruijter & McBratney, 1988). From the general theory of nu-
merical taxonomy, a membership is calculated from the standardised distance in the
attribute space (Sokal & Sneath, 1976):

µc(i) =

[
d2

c(i)
]− 1

(q−1)

k∑
c=1

[d2
c(i)]

− 1
(q−1)

c = 1, 2, ...k i = 1, 2, ...n (6.1)

µc(i) ∈ [0, 1] (6.2)

where µc(i) is a fuzzy membership value of the ith object in the cth cluster, d is
the similarity distance, k is the number of clusters and q is the fuzzy exponent
determining the amount of fuzziness. A commonly-suggested value for q, also used
in this work, is 1.5 (Burrough et al., 1997). The simplest similarity distance is the
Euclidian distance, defined as the sum of squared differences from a given ith object
to the class centres in attribute space (Gordon, 1981):

dc(i) =

√√√√ l∑
j=1

[xj(i)− xc,j ]
2 c = 1, 2, ...k i = 1, 2, ...n (6.3)

where xc,j ’s are the class centres of the jth attribute variable and k is the total num-
ber of classes. The fuzzy k-means classification was used to develop an unsupervised
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classification algorithm where the memberships are calculated based on an objective
function for the entire set of k classes (de Gruijter & McBratney, 1988). In this
case, the only input is the number of classes and fuzzy exponent, while the algo-
rithm finds the optimum class centres iteratively. The alternative to this approach
is to predefine the class centres, so that the optimisation function is not necessary.
This is a supervised fuzzy k-means classification or allocation, which is attractive
for those cases where the surveyor has prior knowledge of the central concepts of
the several classes (Hartigan, 1975).

In the case of supervised classification, the cluster centres for each attribute of
each class are established prior to the classification by sampling. The similarity
distances are first standardised using the sampled variance for each class and then
used to derive the multiple memberships:

dc(i) =

√√√√ l∑
j=1

(
xj(i)− xc,j

sxc,j

)2

(6.4)

where sxc,j is the sampled variance around the xc,j ’s and dc(i) is the diagonal distance
(Hartigan, 1975).

6.2.2 The Colour mixture (CM)

Instead of mingling fixed-colour sub-pixels, as in case of PM, an impression of con-
fusion can be achieved by mixing colours in each pixel (i) as an averaged intensity of
RGB bands. The new derived Ri, Gi, Bi raster maps are first calculated separately
for each of the three primary colours and then combined as a colour composite in
an image processing software:

Ri =

k∑
c=1

(µi,c ·Rc)

n∑
i=1

µi,c

(6.5)

Gi =

k∑
c=1

(µi,c ·Gc)

n∑
i=1

µi,c

(6.6)

Bi =

k∑
c=1

(µi,c ·Bc)

n∑
i=1

µi,c

(6.7)
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where the Ri, Gi, Bi are the new derived mixed colours, Rc, Gc, Bc are the digital
values (0-255) for selected class colours and k is the number of classes. We refer to
this algorithm as the Colour Mixture (CM). For standardised fuzzy sets, the sum of
memberships equals unity and the denominator in Eqs. (6.5), (6.6) and (6.7) can
be discarded. A simplified example of how CM works, can be seen in Fig. 6.1.
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B C D
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blue green-cyan red green-yellow cyanish-blue

35
70

255

R
G
B

255
52
52

120
240
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119
182
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120
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Figure 6.1: Schematic example of Colour mixture technique: the new RGB’s are calculated
as the weighted averages of class representations.

In the example above (Fig. 6.1), a new colour (cyanish-blue) is derived as a
weighted average of four colours and reflects the highest memberships: blue and
green-cyan colour. However, the CM technique is more complex than it appears on
the first sight: how to interpret the new colours and how to create a legend showing
all possible colours for all combinations of memberships? Moreover, if the legend
class colours for each individual class are selected freely, a new-derived colour will
not necessarily appear in the originally selected legend (accidental colour).

A more serious problem can be illustrated by the case of three classes (say A,
B, C), where the representation of class B lies midway along the line connecting A
and C in the RGB colour cube. A pixel that appears the same as the colour of
class B in the legend could indeed indicate class B. However, it could also result
from the maximum confusion between the A and C classes (i.e. µA = µC = 0.5). The
possibility of such situations increases with the addition of more class colours, i.e.
a higher density of points in the colour cube. To minimise such confusion, classes
that are close together taxonomically should also be close in the colour cube.

To account for the above-listed problems, we decided to construct the legend
following three principles:
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� All legend colours should lie in the same plane in the RGB colour cube, in
order to be able to produce a two-dimensional representation.

� It should not be possible to derive an exact colour in the legend from any
combinations of colours representing other classes.

� A mixture in colour space should be the visual equivalent to a mixture in
taxonomic space.

Following these three principles we designed a special legend for the purpose of
CM. We named it “fuzzy-metric colour legend”.

6.2.3 Fuzzy-metric colour legend

To keep all colours on one plane, we selected the cross-section (plane) of the RGB
cube perpendicular to the diagonal, which connects black (0, 0, 0) and white (255,
255, 255). This is the Hue, Saturation, Intensity (HSI) colour model (Brown &
Feringa, 1999). There are an infinite number of such planes along the diagonal,
each corresponding to one intensity, also called the brightness. At any brightness
we can produce a wheel-shaped palette, called a “HSI colourwheel”, which has the
same brightness value and different hue and saturation values (Niblack, 1986, p.
61). Here, the hue (H) represents the visual sensation of the colour type, and is
calculated as the number of degrees around the axis. The saturation (S) represents
the degree to which the colour expresses its hue, and is calculated as the radial
distance from the diagonal axis. The intensity (I) represents the visual sensation of
brightness. The HSI colour model has already been recognised as promising for the
visualisation of uncertainty by Jiang et al. (1995); Jiang (1996).

The formulas for RGB to HSI transformations often differ between software. In
ILWIS, transformation is made using:

H =
360
2π
· arctan

(√
3

2
· [G−B] , R− [G + B]

2

)
· 240
360

(6.8)

S =
√

R2 + G2 + B2 −R ·G−R ·B −G ·B · 240
255

(6.9)

I =
R + G + B

3
· 240
255

(6.10)

where the input R, G and B are coded from 0–255 while H, S and I are coded to
from 0–240 to comply with the colour scheme used in Microsoft Windows. The I is
constant also for all new derived colours since:
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Ii =
Ri + Gi + Bi

3
=

k∑
c=1

(µi,c ·Rc) +
k∑

c=1
(µi,c ·Gc) +

k∑
c=1

(µi,c ·Bc)

3 ·
n∑

i=1
µi,c

=

k∑
c=1

µi,c · (Rc + Gc + Bc)

3 ·
n∑

i=1
µi,c

=
Rc + Gc + Bc

3

(6.11)

This way none of the mixed colours will appear too dominant visually. The class
colour representations were located on the perimeter of the HSI colourwheel at a
given brightness (here, arbitrarily set to 120 or half of the full brightness). In this
way the class or taxonomic value is coded only with the hue, while the saturation is
maximised (240) and brightness is kept constant.

We imagined that the relation between class centres in attribute space can be
used to place them closer or further apart on the circumference of the HSI wheel.
The class centres can be analysed in multivariate attribute space also referred to as
taxonomic space. However, the centres rarely fall along a two-dimensional subspace
(plane) within this space. Yet, we only have two dimensions that can be represented.
Therefore, the dimensionality of the taxonomic space can be reduced to factor load-
ings by factor analysis (Tucker & MacCallum, 1997). The first (F1) and the second
(F2) factor loading can then be used as the axes of a reduced attribute space2. The
angular distances of the class centres can be then used to derive representation hues
for each class. Fig. 6.2 shows an example of colour derivation for four classes, in
which the angular distance between any two classes is proportional to the distance
in taxonomic space spanned by the factor scores F1 and F2. Note that we lose in-
formation by using only first and second factor loadings, which is unavoidable, since
we need to produce a two-dimensional legend. The Hue of each class is derived as
the angular distance around the gravity centre, which, in the case of factor loadings,
is the centre of the coordinate system:

Hc =
360
2π
· arctan (F1c, F2c) ·

240
360

(6.12)

where Hc is the new derived class Hue and F1c and Fc2 are the factor loadings in
the cth class. To display the class colours in the GIS, the Hc, Sc, Ic values (where
Sc=240 and Ic=120) need to be transformed to RGB. In ILWIS, this is done by using
the inverse HSI to RGB transformation. Towards the centre of the circle the colours

2This is the the so-called biplot display (Gabriel, 1971).
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approach grey, that is, the hues become less distinct. This visualises the situation
where we are less sure about the components of any mixture.
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Figure 6.2: Schematic example of the fuzzy-metric colour legend construction for the CM
technique: biplot display of factor scores for class centres in the reduced attribute space and
angular coordinates (left), same transferred to the circumference of HSI colourwheel and the
derived colour classes (right).

However, first maps produced showed that the coding of uncertainty of classifi-
cation with saturation does not offer enough visual impression. This corresponds to
results of perception tests conducted by cartographers, which clearly showed that
brightness is the best variable to visualise uncertainty (Jiang, 1996, pp. 118-120).
Therefore, we finally decided to visualise confusion using the whiteness, i.e. amount
of white colour by replacing the constant brightness with the derived saturation:

[Ri∗, Gi∗, Bi∗] = colorhsi [Hi, Si, (120 + 0.5 · Si)] (6.13)

where Hi, Si are the hue and saturation maps derived from the CM, colorhsi is
the ILWIS command to derive a RGB map from HSI maps and Ri∗, Gi∗ and Bi∗
are the corrected RGB. Now, both saturation and brightness changes radially, i.e.
brightness changes from 120 (circumference) to maximum brightness (255 or the
centre of colourwheel).

From equation (6.12) we can back-transform the RGB map to estimate the input
memberships. We first have to derive angular coordinates of each colour in the HSI
colourwheel:
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f1c = S · cos(ϕ) (6.14)
f2c = S · sin(ϕ) (6.15)

ϕ = H · 360
240

(6.16)

where the f1,2c are the angular coordinates of ith pixel, ϕ is the Hue angle in degrees
and Si is the derived saturation map. A membership µ∗ of class c can be back-derived
by calculating the distances on the colourwheel:

d∗c(i) =
√

[f1c(i)− f1c]
2 + [f2c(i)− f2c]

2 i = 1, 2, ...n (6.17)

where d∗c(i) is the distance in the two-dimensional attribute space. This can then
be used to derive µ∗ as in the Eq. (6.1).

6.2.4 Confusion index based on the CM saturation

The fuzziness of the derived multiple memberships are analysed by calculating the
confusion index (CI), which is commonly defined as the difference, or sometimes the
ratio, between the first and second highest membership class per pixel:

CI1 = 1− (µmax − µ2nd max) (6.18)

CI2 =
µ2nd max

µmax
(6.19)

where µmax is the highest membership and the µ2nd max is the second highest mem-
bership (Burrough et al., 1997). The CI map calculated from one of these equations
will show higher values in the areas of transition between different classes in at-
tribute space. The CI1,2 are the highest at the transition zones, and thus can be
used for their automatic delineatation. However, the CI1,2 do not consider how
similar are the µmax and µ2nd max classes taxonomically. It can show high confusion
although the classes might be taxonomically very similar and vice versa. To asses
which classes are more similar, we can calculate the distances between the class
centres using formula in equation (6.4) and pooled standard deviation:

dc,c′ =

√√√√√ l∑
j=1

 xc,j − xc′,j√
s2
xc,j

+ s2
xc′,j

2

(6.20)
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where dc,c′ is the distance between the cth and c′th class centre. From the distances
between the class centres, a membership can be derived as:

µc,c′ =

(
d2

c,c′

)− 1
(q−1)

k∑
c=1

(
d2

c,c′

)− 1
(q−1)

(6.21)

It appears that the between-class memberships should be used to adjust the CI
for similarities between the classes. However, the calculation of adjusted CI can
be complex as there are many combinations of class centres. On the other hand,
the design of fuzzy-metric colourwheel can be regarded as a way of adjusting the
confusion. The classes that are closer on the colourwheel, will give a lower distance
when used to derive a new colour, which give us similar impression of the confusion.
In ILWIS, the colour separation operation can be used to derive the saturation Si of
each pixel from its (Ri, Gi, Bi) values. The saturation can now be expressed as the
relative saturation or radial distance on the colourwheel (CICM) by transforming S
to the 0-1 range:

CICM = 1− S

210
(6.22)

In this case, the maximum back-transformed saturation value produced by ILWIS
was 210, not 240 as would be expected from the forward transformation. However,
due to the truncation of the values used in the HSI to RGB transformation, which
is non-linear, we decided to use the lower value for saturation as the more realistic.

6.2.5 Deriving primary boundaries

The geographic transition zones, i.e. pixels were first extracted by calculating a
crisp map of most possible classes (defuzzification). This map was then converted
to a vector format using raster to vector transformation in GIS, i.e. to a segment
map showing the transition zones. The CICM can be used to quantify different
boundaries. In this case, the boundary pixels with high CICM (> 0.7) were classified
as first-level or primary boundaries, otherwise as second-level, secondary boundaries
or soft lines, which correspond to the boundary types typically used in the photo-
interpretation (Buringh, 1960). Areas of high CICM outside the transition zones
were considered to represent possible intra/extra-grade classes, as they show higher
distance from more than two classes at the same time.
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6.2.6 Case study

The methodology was tested using the Baranja Hill data set, a 3.5×3.5 km square.
This is the central photo from the aerial photo-triplet that had been interpreted
for landform classes using a conventional aerial photointerpretation technique (API)
— the geo-pedological approach to soil mapping (Zinck & Valenzuela, 1990). Two
main landscapes were recognised: a dissected elongated hill with numerous vales
and a plain with two terrace levels. To classify the landform classes, we used six
attribute maps: relative elevation to groundwater (GWD), slope gradient (SLOPE),
wetness index (CTI), profile and tangent curvature (PROFC and TANGC) and
viewshed (VSHED) at grid resolution of 25 m. We selected about 30 pixels in each
mapping unit to estimate the central values in the attribute space (Table 6.1). This
corresponds to the selection of the training set in the supervised classification of
remote sensing images.

The memberships of the fuzzy k-means were calculated in ILWIS from the set
of six maps. Factor analysis of the attribute space was carried out using the max-
imum likelihood estimation model of S-PLUS (MathSoft Inc., 1999). The derived
memberships are shown in Fig. 6.3.

6.3 Results

6.3.1 Attribute space and selection of colours

The derived Hc based on the class centres from Table 6.1 and factor analysis is
shown in Table 6.2. The first factor (F1c) accounted for 37%, and the second (F2c)
for 32%, of the total variance. The biplot display in the Fig. 6.4 shows the results of
the factor analysis graphically, where arrows represent the proportion of the original
variance explained by the two principal components. The direction of the arrows
indicates the relative loadings on the first and second principal components. The
most correlated landform parameters were SLOPE and CTI, TANGC and PROFC,
and GWD and CTI. The closest classes on the circumference of the colourwheel were
Pl311 and Pl411, i.e. the low and high terraces of the plain. These classes are also
very close in taxonomic space, both being towards the centre of the two-dimensional
attribute space formed by the factors. By contrast, the summit and shoulder of
the hill (Hi111 and Hi112) are close on the colourwheel (similar angle), but not in
the taxonomic space, i.e. Hi111 was much further from the centre. This problem is
further discussed in the Conclusions and discussion.

The allocation of classes on the colourwheel can be compared to the similarity
distances calculated between the class centres (Table 6.3) and their derived between-
class memberships (Table 6.4). The most similar class pairs are: Hi112 and Hi311;
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Table 6.1: Landform classes, attribute class centres and sampled variation (σ) around the
central values.

Landform classes SLOPE PROFC TANGC CTI VSHED GWD
(σ) (σ) (σ) (σ) (σ) (σ)

Code Description % 100 m−1 100 m−1 - - m

Hi111 Hill
(summit)

6.3 -0.54 0.45 5.9 0.89 125.4

(3.29) (0.41) (0.37) (0.55) (1.08) (18.53)

Hi112 Hill
(shoulder)

14.2 -0.12 0.28 5.5 1.50 80.1

(5.13) (0.44) (0.40) (0.47) (3.39) (24.26)

Hi211 Escarpment
(scarp)

29.4 -0.17 0.24 4.7 -3.71 56.3

(3.83) (0.28) (0.26) (0.13) (2.16) (20.46)

Hi212 Escarpment
(colluvium)

25.4 0.38 0.11 4.9 -3.46 31.0

(2.79) (0.55) (0.17) (0.17) (2.58) (11.10)

Hi311 Vale
(slope)

23.8 0.24 -0.18 5.2 -0.50 85.3

(7.94) (0.58) (0.75) (0.76) (3.46) (14.50)

Hi312 Vale
(bottom)

4.3 0.70 -0.25 7.9 0.00 40.7

(2.58) (0.55) (0.24) (1.13) (0.72) (21.75)

Hi411 Glacis
(slope)

7.1 -0.04 0.23 6.1 2.31 60.2

(1.57) (0.15) (0.08) (0.23) (0.35) (2.75)

Pl311 High
terrace

0.8 -0.03 -0.04 8.3 0.54 7.8

(0.29) (0.04) (0.05) (0.30) (0.21) (1.52)

Pl411 Low
terrace

2.6 0.13 -0.03 8.0 0.04 1.8

(2.70) (0.15) (0.12) (1.22) (0.89) (3.84)

Hi112 and Hi111; and Pl311 and Pl411. The sum of distances gives an idea on the
closeness of class centres in the multivariate attribute space. In this case, the most
distant class centres are Pl311 and Hi411, while Hi112 and Hi311 proved to be the
closest having the lowest total sum of distances. These relations correspond to the
one seen in the biplot display.

6.3.2 Comparisons — defuzzification, PM and CM

Fig. 6.5 shows a comparison between the mixed-colour map and alternative tech-
niques: defuzzification and PM. In the case of defuzzified map and PM, the colours
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Figure 6.3: Derived membership maps — landform facets.

were selected subjectively to represent a psychological impression of the landform
facets: bluer colours were used to represent wetter, lower soils such as the terraces
and vales, green to represent steeper slopes, yellow for hilltops, whereas, in the case
of the mixed-colour map, colours reflect distances between classes in the attribute
space. The defuzzified map in Fig. 6.5a, does not provide any information about
confusion or original memberships. The PM allows the viewer to infer about the
overall confusion of each class. For example, the vale bottom (Hi311) seems to be the
purest delineation (Fig. 6.5b). The mixed-colour map (Fig. 6.5c) shows intermediate
colours between similar classes (i.e. along the circumference), which represent inter-
grades in taxonomic space and therefore are assigned intermediate colour. On the
other hand, intergrades between strongly-contrasting classes finished having colours
towards the centre of the circle, i.e. being whitish. For example, intermediate pixels
between escarpment (Hi211) and the two terrace levels (Pl311 and Pl411) show al-

128



6.3 Results 129

Table 6.2: Deriving the class Hues (Hc): factor scores (F1c and F2c), Hue angle (ϕ) and
the angular coordinates (f1c and f2c).

Classes F1c F2c ϕ Hc Sc Ic f1c f2c

Hi111 0.88 1.53 60.1 40 240 120 207.8 120.0

Hi112 0.06 0.69 85.0 57 240 120 239.3 18.8

Hi211 -2.03 0.86 157.0 105 240 120 91.8 -221.7

Hi212 -1.23 -0.07 -176.7 122 240 120 -12.6 -239.7

Hi311 -0.62 -1.78 -109.2 167 240 120 -226.2 -80.1

Hi312 0.75 -1.44 -62.5 198 240 120 -213.8 109.0

Hi411 0.92 0.41 24.0 16 240 120 97.6 219.3

Pl311 0.69 -0.08 -6.6 236 240 120 -25.1 238.7

Pl411 0.59 -0.14 -13.3 231 240 120 -56.0 233.4
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Figure 6.4: The biplot display with factor scorings (left) and the derived Hcs on the fuzzy-
metric HSI colourwheel legend (right). The landform attributes are presented with the eigen
vectors.

most white colour. This is psychologically appealing: pure white colour represents a
mixture of strong contrasts or an undefined class, where a mixture of similar classes
results in a transitional colour.

The inverse process of back-deriving the memberships from the mixed-colour
map showed that the estimation of the memberships, based on the angular coordi-
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Table 6.3: Diagonal distances dc,c′ between the class centres in multivariate feature space.
Smaller distances indicate more similar classes, while the total sum gives idea how distant
is a class from the overall feature space.

Hi111 Hi112 Hi211 Hi212 Hi311 Hi312 Hi411 Pl311 Pl411

Hi111 0

Hi112 2.2 0

Hi211 6.0 3.2 0

Hi212 6.8 3.2 2.0 0

Hi311 3.1 1.4 1.8 3.1 0

Hi312 4.2 3.3 6.7 6.4 3.6 0

Hi411 3.9 2.0 8.0 7.8 3.1 4.2 0

Pl311 7.8 6.5 13.7 13.4 7.2 2.7 18.8 0

Pl411 7.1 4.4 7.2 7.0 6.4 2.2 12.9 2.0 0

Total 41.1 26.2 48.6 49.8 29.7 33.2 60.8 72.0 49.2

Table 6.4: Membership values between-class centres based on the similarity distances.

Hi111 Hi112 Hi211 Hi212 Hi311 Hi312 Hi411 Pl311 Pl411

Hi111 1.000

Hi112 0.927 1.000

Hi211 0.000 0.001 1.000

Hi212 0.000 0.001 0.317 1.000

Hi311 0.059 0.928 0.675 0.032 1.000

Hi312 0.005 0.001 0.000 0.000 0.000 1.000

Hi411 0.008 0.046 0.000 0.000 0.001 0.005 1.000

Pl311 0.000 0.000 0.000 0.000 0.000 0.171 0.000 1.000

Pl411 0.000 0.000 0.000 0.000 0.000 0.770 0.000 0.925 1.000

nates of the reduced feature space3 (f1, f2), can make inaccurate estimates of the

3See Eq. 6.17 on page 124.
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Figure 6.5: Comparison of different cartographic techniques: (a) defuzzification; (b) pixel
mixture and (c) colour mixture with the circular fuzzy-metric legend.

original membership in areas of high confusion. This is not the case with the PM
technique, where the original memberships can be fairly well estimated by counting
the proportion of pixels. In the case of CM, once we projected the class centres onto
the circumference of colourwheel, we have irrecoverably lost a part of the informa-
tion. We compared original and back-derived memberships for all classes and got
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strong correspondence with correlation coefficients between the classes ranging from
R2=0.43 (Pl311) to R2=0.94 (Hi312, Pl411). However, the back-derivation showed
systematic discrepancy, as the areas of higher original memberships will usually be
overestimated, while the areas of high confusion can give rather different estimates
of the original values.

6.3.3 Confusion and boundary index

Differences between CICM and the commonly used confusion indices CI1,2 can be
seen in Fig. 6.6. The CI1 map shows all transition zones, while the CICM map shows
only the transition zones between classes that have sufficient angular separation on
the colourwheel. In this case some classes were basically merged, and no confusion
is shown. For example, the transition zone between the hill summit and shoulder
(Hi111 and Hi112) disappeared in the mixed-colour and the CICM map. Also the
transitions between the high and low terraces and the sloping part and colluvium of
the escarpment were ignored. On the other hand, the transitions between the Hi111
and Hi311 and Hi312 were shown as being more abrupt.

The histogram of the CICM map showed a small grouping around the higher
CICM and a clear breakpoint at CICM=0.7. We selected this as the threshold to
separate the primary and secondary boundaries. The derived primary boundaries
(transitions between the more contrasting classes) can be seen in Fig. 6.7. The CM
technique shows the clear advantage of diminishing the boundaries of fairly similar
classes, which can not be achieved by using the common confusion indices (CI12).

The remaining areas of high CICM (>0.7), i.e. which were not areas of tran-
sition were considered to be inter/extra-grades, again adjusted for the taxonomic
similarities. Comparing these patches with the input maps, we found that they are
mainly correlated with profile curvature and slope (PROFC and SLOPE). Indeed,
both profile and tangent curvature (PROFC and TANGC) did not show correspon-
dence with the delineated geomorphic units in a visual overlay. These are thus areas
inside some API units, which differ in from the surrounding unit in their convexity,
and should perhaps be considered as different geomorphic classes in a revised API
legend.

6.4 Conclusions and discussion

Comparison of the CM and the alternative approaches to visualisation of multiple
memberships showed that the there are two major applications that should be em-
phasized in this work: (1) CM visualises uncertainty of our classification by giving
an insight into both taxonomic and geographical confusion and (2) it serves as a
method to generalise similar classes. In the case of visualisation of uncertainty we
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Figure 6.6: Confusion indices calculated using memberships (CI1 and CI2) and based on
the saturation of mixed-colours map (CICM). CICM in general shows lower values than
CI2 but similar pattern.

used whiteness, which showed better impression of uncertainty than the saturation.
This was also confirmed after we printed the mixed-colour map. The confusion in-
dex derived from the mixed-colour map allows extraction of primary transition zones
between fairly contrasting classes. Moreover, the CICM can be used to locate areas
of high taxonomic confusion (inter/extra-grades) and therefore be used to redesign
the map legend or make additional sampling on the field. The commonly used CI1,2

do not account for confusion in taxonomic space. In the case of CM, the selection of
colours to represent a class was not based on the mapper’s connotation (e.g. yellow
for sand, purple for peat), but were assigned by the algorithm and limited to seven
colour types. This is a relatively small number considering that there are 627 colour
names in the qualitative Colour Notation System (Berk et al., 1982), which will be
discouraging for an experienced cartographer. However, taking the rule of thumb
that the optimal number of classes that can be perceived and memorised by user is
seven (Kraak & Ormeling, 1996), the double continuous approach ensures limited
number of colours regardless of the total number of classes.

Although the input number of classes is high, the system will always limit the
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Figure 6.7: Extraction of primary boundaries pixels and possible inter/extra-grade areas
derived from relative distance in the colourwheel . Notice the grouping of higher CICM

values in the upper part of the histogram.

number of colours to seven generic hues: red, yellowish, green, cyan, blue, ma-
genta and white. In that sense, the mixed-colour map can be compared with the
pseudo-colour scale used in many GIS packages for visualising continuous variables.
The derived saturation of the mixed-colour map calculated using the CM technique
visualises both objects and their taxonomic location as fuzzy sets, whereas the de-
fuzzification or PM present classes as crisp definitions. Therefore we address it as a
double continuous or double fuzzy approach and the resulting map as a mixed-colour
map with a fuzzy-metric legend (Fig. 6.8). In this case the legend indicates not only
the category, but also ‘amount’ of a category, e.g. “terraceness” or “summitness” in
different parts of the map. Although one may argue that the concept of relatively
homogeneous delineations, occupying relatively compact geographical areas is not
so far from reality, the advantage of the continuous categorical maps is that they are
universal. If there is indeed no confusion between the class clusters, a map becomes
double-crisp.
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Figure 6.8: Different cartographic techniques for visualisation of multiple memberships:
comparison in the relation how are the geographic transition and taxonomic definition mod-
elled.

The limitations of the described CM method are as follows. First, in the case
of CM, the colours can still be derived from different combinations of memberships,
i.e. the class centres are considered to be as relative as the definition of classes. If
the classes from which a new colour is derived are fairly distant on the colourwheel,
the CM will produce an ambiguous (whitish) colour. The original memberships
can not be accurately back-derived as we do not know from which combination
of membership was it derived. The system quantifies the taxonomic space, which
means that even if a membership of some class is low, if two closely neighbouring
classes show equally high memberships, the derived colour will correspond to an
intermediate class colour.

The second limitation of CM is that we were forced to reduce the attribute space
to only the first and second components. Thus we have discarded information in
this reduced attribute space, as only 67% of total variation was explained with first
two components. Also note that for factor analysis, number of classes needs to be
larger than the number of attributes. An alternative would be to develop a method
to use distances between the class centres (from Table 6.3) to allocate them on the
circumference of the colourwheel. In both cases we will have to approximate or
average input values, as the number of classes is much lower than the number of
possible combinations. In this case a 9×9 matrix gives 36 combinations in total
or k2−k

2 . Second, in the case that the class centres are maximally spread over the
feature space, the biplot display method is fast and gives a good picture about the
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relation between them (Fig. 6.9a). A problem will appear if a class is very close
to the centre of gravity (Fig. 6.9b). Two classes could have similar angles but one
could be much closer to the centre than the other (class C in this case). In fact,
this class can easily finish being any colour, which is an unwanted effect. It will
appear closer to some class although it’s almost equally distant from all classes. We
can also imagine a case where a single class, fairly distant from other classes, will
distract the centre of gravity (Fig. 6.9c). In this case it is clear that there are more
taxonomic clusters, but the produced map will show only few colours.
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Figure 6.9: Some special cases that may appear in the design of the colourwheel using the
biplot display method.

Finally, a limitation of the proposed CM algorithm is that the definition of the
HSI colourwheel is not completely perceptually scaled (equal distances measured
throughout colour spaces represent equally perceived colour differences). In this
case, we were forced to use a geometrical colour space to enable linear calculations
with colours. It is possible that some other colour models could provide better
solutions for colour mixing and design of the legend.

“There is no longer any need to cling the double-crisp model... we can do much
better now” stated Burrough et al. (1997, p. 133) half a decade ago. At that time,
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the algorithms for fuzzy classifications were applied in experimental studies only,
while today they can be can found in many statistical and GIS packages, some free
e.g. FuzME (Minasny & McBratney, 1999). In this paper we presented a method
to visualise and analyse the multiple memberships by doing GIS calculations on
colours. Its development has forced us to think about taxonomic space and how to
construct a metric legend for categorical variables. We finally selected the circular
form of the legend — categorical classes are not sorted one above each other as they
are in the traditional concepts. A circle has no beginning and therefore indicates
that the classes are not ordinal. On the other hand, some classes can be located
closer and some farther apart.

Operational tools for production and use of continuous categorical maps in large
projects are yet to be developed. The example shown here is based on nine classes
in a small area. Real county-level soil surveys typically have 20 to 40 map units,
which requires a bigger computational effort. The next step will be to test this
methodology on data sets developed as a part of large inventory projects. Some
parts of the CM principles could be also used in a more interactive way to offer
better insight into the classification uncertainty of discrete data. For example, by
linking resulting mixed-colour map to the sample set points, so that an mapper
could inspect class definition interactively. This could, for example, help optimise
definition and number of class centres.
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Chapter 7

Grid-based Soil Information
System∗

“It is now quite possible to combine information derived from
DEMs and satellite observation with profile data and numerical

models of soil processes to produce a rich, predictive models of the
soil to meet both the purposes of research in soil formation and

landscape development and practical considerations of land
suitability assessment, decision making or the review of

development scenarios.”

[P.A. Burrough, announcing future research in “Continuous classification in soil
survey: spatial correlation, confusion and boundaries”, Geoderma, vol. 77(2-4):

115-135]

∗based on: Hengl, T., 2004? A hybrid grid-based soil information system based on the mixed
model of spatial variation. Geoderma, in review.
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7.1 Introduction

A Soil Information System (SIS), also referred to as a Soil Geographical Database
(SGDB), is a commonly used term for a thematic GIS specifically designed to provide
(geo)information on soils (Burrough, 1991). This is a structured digital version of
soil maps and soil survey reports associated with data from laboratory analysis. A
Conventional SIS consists of:

1. a polygon map, representing the soil bodies;

2. a point map, representing profile observations, and

3. attribute tables representing sampled descriptive and physical or chemical soil
properties.

The polygon map is a class-type map, the classes are soil mapping units (further
referred to as SMUs) and the profiles are organized into a relational database and
linked to the SMUs via their coordinates or soil types (Zinck & Valenzuela, 1990).
This system follows the Discrete Model of Spatial Variation (Heuvelink, 1998). The
key function of a SIS is to serve the users for data retrieval, spatial queries, statistical
analysis and visualisation of results. The profile data is used to make attribute or
thematic maps and statistical representations by averaging the values per SMU
type or soil type (Burrough, 1993a). Similarly, the SMU’s can be directly linked
to interpretation tables e.g. soil suitability classes. The above-described system is
also referred to as the “conventional approach” to the soil mapping and has been
adopted and used in most of the World today, especially at regional and national
scales.

For many GIS professionals, working on data integration, a critical layer in a
multi-thematic GIS, particularly when utilized in land management decisions, is soil
survey information (Maclean et al., 1993). For other SIS external users, such as
agronomists, land use planners or civil engineers, the concepts of soil classes and soil
mapping units are often harder to grasp and interpret than the land use types or
vegetation types. Instead of the map of soil types, the external users are often more
interested into the maps of soil interpretations (e.g. suitability for vine production)
or limiting land characteristics (e.g. depth to gleying) or technical properties of the
soils (e.g. texture fractions, depth to the cemented layers etc.) (Dent & Young,
1981). Moreover, modern users require soil geoinformation at increasingly finer level
of detail and increasingly higher accuracy.

There are several likely reasons that conventional soil maps are unpopular among
the external users. First, the concept of soil types is probably the fuzziest from all
environmental sciences, as the soil bodies are hidden, often irregular or random in
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distribution (Burrough et al., 1997). Second, classification systems have been an
object of dispute and it was not until the end of the last century that an official
international classification system (FAO, 1998) was accepted. Even today, there is
still a high chance that two soil surveyors, working independently in the same pit,
will identify two different types of soils. Third, analytical procedures are missing
in some phases of soil mapping or are not fully documented. For example, the soil
boundaries are drawn by following the mental model in surveyor’s head rather than
by an objective procedure (Cook et al., 1996). Hence, soil survey is still considered
by some to be more of an art than a science (Hudson, 1992). The fourth cause of the
general low confidence in the soil maps is that their operational quality, i.e. accuracy,
lineage and completeness, has often been proved to be lower than expected (Mars-
man & de Gruijter, 1987; Burrough, 1993a). Finally, the concept of SMUs and re-
lated polygon-based organisation of SIS is not immediately suitable for multi-source
data integration and quantitative environmental modelling (Ventura et al., 1996).
Some more recent conceptual designs of SGDBs, e.g. by Fernandez & Rusinkiewicz
(1993), are often unnecessary too complex and therefore user-unfriendly for external
users. This is most probably because: (a) the soil surveyors often produce multiple-
component mapping units, which are harder (sometimes impossible) to organize and
query and (b) SGDB use several entities at the same time (mapping units, pedons,
horizons), which can be connected in several ways, thus confusing the external users.

The above-listed problems with the conventional approach have been a major
inspiration for researchers in the last decade or two. In early 90’s, McSweeney et al.
(1994) laid the foundation for a new four-stage framework for modelling the dis-
tribution of soils. From then, the following two developments have shown to be
especially promising: use of auxiliary or secondary data, such as terrain parame-
ters and remote sensing images (Dobos et al., 2000; McKenzie et al., 2000), and
use of new concepts and methods, such as continuous classification to model the
soils more successfully (McBratney et al., 1997). The use of auxiliary data to im-
prove mapping of soil variables has been especially prominent in Australia (Carlile
et al., 2001). Also in the Netherlands, there has been a significant shift towards the
quantitative methods for inventarization and utilization of soil data (Buurman &
Sevink, 1995). Even in the USA, where the soil mapping is fully dominated by the
U.S. Soil Taxonomy and the Soil Survey Manual, there are more and more alter-
native systems being developed (Zhu et al., 2001). This, however, does not mean
that the photo-interpretation or empirical knowledge on soils should be cast out
from operational soil survey. On the contrary, case studies have shown that the
purely geostatistical methods do not always give prediction maps better than those
obtained by subjective photo-interpretation (van Kuilenburg et al., 1982; Boucneau
et al., 1998).
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In this chapter a grid-based SIS, which integrates the use of photo-interpretation,
auxiliary terrain and remote sensing data, hybrid pedometric techniques, continuous
classification and advanced visualisation techniques is described. This connects the
methods from the previous chapters into a real soil survey application.

7.2 Methods

Three main aspects determine the design of a SIS: (a) concepts and elements used
(entities); (b) organizational structure and operations and (c) format and presenta-
tion of products. In the following sections, the key concepts and elements used are
listed. First, the relation between the grid size and cartographic scale is explained,
then a schematic flow of the methodological steps and explanation of algorithms for
interpolation, classification, inference, visualisation and (dis)aggregation of data is
given. Note that I refer to the proposed SIS as the hybrid grid-based SIS in the
further text — the adjective ‘hybrid’ determines both the use of the mixed model
of spatial variation and hybrid interpolation technique.

7.2.1 Key concepts

Two key concepts specifically distinguish the SIS proposed in this paper from other
similar grid-based SIS applications: use of quantitative methods in all parts of map-
ping process and combination of different mapping techniques (including photo-
interpretation, kriging and correlation with auxiliary maps). The latter ensures a
combination of the abrupt and continous transitions in space, which is referred to
as the Mixed Model of Spatial Variation (Mowrer & Congalton, 2000). This is a
combination of the discrete and continuous models of spatial variation, although
one might argue that the continuous model already can adopt both continuous and
less-continuous (discrete) transitions. The following concepts define the hybrid grid-
based SIS more closely:

� The fundamental spatial entity is a grid cell. All GIS layers are brought
to same grid resolution in order to make calculations and data integration
possible. The grid size (resolution) determines the effective scale.

� The focus is production of maps of key land characteristics. This means that
the soil mappers need to interview their users prior to the actual sampling and
select the most important land characteristics, level of detail (grid size) and
required accuracy. These wishes are then adjusted to the available funds.

� The SIS includes not only maps of soil variables and tables of soil attributes
but also auxiliary (non-soil) variables used to assist soil mapping, as well as
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derived classifications and interpretations. This means that a SIS user can get
a better insight into the original data and extend it with an additional survey
or investigate eventual problems with the data.

� Three types of operations are used to produce soil geoinformation from input
layers: interpolation, classification and inference. All these are achieved using
the GIS operations on grid maps, rather than table calculations.

� Quantitative methods are used to interpolate soil variables (universal kriging),
classify (fuzzy k-means) and retrieve them.

� Soil properties, classes, and interpretations are modelled using the mixed
model of spatial variation, so that both discrete and continuous transitions
are possible.

� The original soil description and measurements are linked to the spatial pre-
dictions and interpretations, so that the latter can be updated if the former is
augmented or corrected. This linkage is kept in tables built for this purpose.
For example, the interpolation table records the number of regression co-
efficients and kriging parameters derived from the regression and geostatistical
analysis. Consequently, each prediction or interpretation map can be updated
by updating the input maps or adding the new soil samples.

7.2.2 Selection of a suitable grid size

The grid size, i.e. the length of one side of a grid cell, is linearly related to the
cartographic scale. However, there are different ideas about the suitable grid size
for a given scale. In conventional soil cartography, the scale is commonly assessed by
using either the Maximum Location Accuracy (MLA) or Average Size Area (ASA)
of the polygons on the ground. For example, MLA on the ground when divided
with MLA on the map (e.g. 0.25 mm for maps produced according to common map
accuracy standards) gives the scale denominator (Rossiter, 2001). To assess the
scale denominator via the ASA, the square root of the nominator should be used.
These cartographic definitions can also be used to estimate the suitable grid size
for a given mapping scale. As a rule of thumb, Rossiter (2001) suggest that four
grid cells should be considered equivalent the Minimum Legible Delineation (MLD).
According to the definition of Vink (1975) the MLD is 0.25 cm2 on the map. The
suitable grid size is then:

p =

√
MLD

4
=

√
SN2 · 0.000025

2
= SN · 0.0025 (7.1)
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where p is the grid (pixel) size, MLD is the Minimum Legible Delineation area
on the ground and SN is the scale denominator. This means that for a 1:50 K scale,
MLD is 6.25 ha and suitable grid size is 125 m, which seems fairly coarse. Larger
grid sizes (0.5 mm to 3 mm on the map) have also been recommended by Valenzuela
& Baumgardner (1990). In remote sensing, the relation of the ground resolution
and the cartographic scale is somewhat stricter. For example, the Landsat images
of 30 m ground resolution are commonly related to the 1:50 K or 1:100 K scale
(Lillesand & Kiefer, 2000). Hence, the ground resolution can be defined as two
times the MLA on the ground:

p = SN ·MLA · 2 = SN · 0.0005 (7.2)

so for 1:50 K scale, a suitable grid size is 25 m.
The third criterion for the selection of the suitable grid size is empirical knowledge

of spatial variation. Ideally, the grid size should equal the minimum size of a pedon
(1 m2), especially if the soils are varying at short distances (e.g. cockpits in the Karst
area). If the soils are homogeneous spatially and show smoother transitions, much
larger grid sizes will be adequate for spatial modelling (Thompson et al., 2001). This
means that the selection of the suitable grid size should be adjusted to the spatial
variability of soils to avoid over-sampling. Florinsky & Kuryakova (2000) suggested
that, for soil-terrain modelling, adequate grid size is the one that offers the highest
predictive power, i.e. correlation coefficient in their case. The spatial variation of
soils can be estimated from the terrain data i.e. contour data. Hengl et al. (2003b)
suggest that the grid spacing should be at least half the average spacing between
the contours to represent the most changes in a terrain.

Although these three criteria give a range of possible values, a rule of thumb the
finer the grid size the better is suggested in the most cases. The importance of the
finer grid size has been proven to play an important role especially if the terrain
data is used for spatial modelling of soils (Dietrich et al., 1995; Thompson et al.,
2001). With increasingly powerful computers and cheap storage, fine grid sizes are
feasible for most study areas.

7.2.3 Interpolation, classification and inference methods

Three operations play key roles in the production of geoinformation in the hybrid
grid-based SIS: interpolation, classification and inference. Each is explained in more
detail down bellow. A flow diagram of the computational procedures is given in
Fig. 7.1. The profile data is first combined with a set of predictors to produce con-
tinuous field maps of measured soil variables. These are then classified to member-
ship maps using continuous classification and the predefined class centres. Finally,
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the interpolated soil variables, auxiliary predictors and derived memberships can be
used to derive soil interpretations, i.e. inferred soil geoinformation.

DESCRIBED AND
MEASURED SOIL

VARIABLES
(profile data)

PREDICTORS:
API, ENVIRONMENTAL
VARIABLES, REMOTE

SENSING IMAGES
(raster maps)

INTERPOLATE
SOIL VARIABLES

ON FINE GRID

SOIL
GEOINFORMATION

(soil types, land
qualities, spatial

queries)

CLASSIFY USING
CONTINUOUS

CLASSIFICATION

INTERPOLATED
SOIL VARIABLES

(raster maps)

KNOWLEDGE BANK
(pedo-transfer functions,
classification systems -
soil types or suitability

classes)

INTERPOLATION PARAMETERS

- regression coefficients
- semivariogram parameters

INFERENCE PARAMETERS

- attribute tables
- parameters of the pedo-transfer
 functions
- suitability factor thresholds

CLASSIFICATION PARAMETERS

- class definitions (centers)

SOIL CATEGORIES
(membership maps)

RETRIEVE
CLASIFFY

QUERY
TRANSFORM

Figure 7.1: Schematic flow of methodological steps.

Interpolation

The generic framework based on the step-wise principal component logistic regression-
kriging model, was used to interpolate the soil variables. This algorithm can use in-
formation from the photo-interpretation, auxiliary data and spatial auto-correlation
at the same time. The algorithm is explained in more detail in chapter 5.

Classification

After all selected soil variables have been interpolated they can be classified using
the point observations and the class centres for each category (e.g. soil classes). A
flexible classification algorithm is the fuzzy k-means classification, which gives a
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membership map for each class. This is the concept of continuous soil mapping,
first introduced by ? and then further on developed by de Gruijter et al. (1997).
The limitation of their approach, however, is that it employs only geostatistical
interpolation while the auxiliary variables are ignored. This approach is somewhat
different since first the soil properties are mapped over the whole area and then
classified per each grid. This generally means that the produced memberships will
follow the pattern of the relief and other predictors, thus giving a more realistic
picture. The classification of maps and resulting continuous soil map is explained2

in more detail in chapter 6.

Inference

The derived memberships, also referred to as similarity values (Zhu et al., 1997),
can now be linked to the attribute tables, pedo-transfer functions or suitability
ranks (knowledge bank). The key columns can be the soil categories, which is a
common way of organizing the SGDB (Zinck & Valenzuela, 1990). The inferred
soil attribute is then mapped directly from the membership maps using the linear
additive weighting function (Zhu et al., 2001):

Ŝ(i) =
k∑

c=1

µc(i) · Sc

k∑
c=1

µc(i) = 1 i = 1, .., N (7.3)

where Ŝ(i) is the inferred soil attribute at ith grid position and Sc is the modal
value of the inferred soil attribute of the cth category. For example, imagine four
membership maps of soil type A, B, C and D. The knowledge bank shows that soil
type A has 10%, B 10%, C 30% and D 40% of clay and the membership values at
a grid position are 0.6, 0.2, 0.1 and 0.1, so the Eq. (7.3) will estimate the average
clay content of 15%. Note that although the method assumes that a linear weighted
average best represents the overall value, the technique can be extended to any
aggregation method.

The membership maps can also be used for land suitability assessment. One
option is to use the limitation scoring system described by Triantafilis et al. (2001).
Here, the key issue is to derive limitation scores (or negative points) based on the
definition of land qualities and threshold limits. In the case of the hybrid grid-
based SIS, the limitation score can be calculated per each pixel by cumulatively
using membership maps, interpolated soil variables (e.g. gleying properties) and/or
auxiliary variables (e.g. slope):

2See also supplementary materials for ILWIS commands.
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l(i) =
k∑

c=1

µc(i) · lc +
t∑

r=1

Sr(i) · lr
k∑

c=1
µc(i) = 1 i = 1, .., N (7.4)

where l is the accumulated limitation score, lc is the limitation score of the cth soil
type, Sr is the classified auxiliary or soil variable and lr is the limitation score of
the rth class. For example, the same grid position as above (A, B, C, D) and the
limitations scores 5, 0, 0, 20, give the average limitation score 5. The slope at the
same grid position is 10%, which gives 3 more points (9–16%) so that the total
accumulative score is 8. The accumulated limitation score, ranging from 0 to ∞ is
transformed to continuous land suitability by:

Ls = e−0.1·l Ls ∈ [0, 1] (7.5)

where Ls is the continuous land suitability and l is the accumulated limitation score.

7.2.4 Aggregation and disaggregation

Aggregation or down-scaling is a process of reducing the scale of map and disaggre-
gation is the opposite process. In the grid-based SIS, aggregation means changing to-
wards a coarser resolutions and disagreggation towards finer resolutions, i.e. smaller
grid sizes. A schematic example of aggregation and disaggregation in the hybrid
grid-based SIS is shown in Fig. 7.2. This models follows the conceptual model of
scaling described by McBratney (1998). One advantage of the hybrid grid-based SIS
is that the aggregation is easier than with the conventional system where both the
soil boundaries and the legend need to be adjusted. In the grid-based SIS, each in-
terpolated continuous soil variable can be resampled to a coarser grid using standard
image processing algorithms such as bilinear resampling (Lillesand & Kiefer, 2000).
The scaling of the continuous variables is much less problematic than the scaling of
categorical variables, such as soil types. The resampling of soil types to a coarser
resolution implies that the small local patches will be merged with the dominant
types and disappear from the map. Because we deal with maps of soil memberships,
we can first resample these to a coarser resolution and then re-standardize them by:

µS−
c (i) =

µ+
c (i)

k∑
c=1

µ+
c (i)

c = 1, 2, ...k i = 1, 2, ...N (7.6)
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where µS−
c is the down-scaled membership value and µ+

c is the resampled member-
ship. A longer alternative is to re-calculate soil variables and re-classify soil types
from the input maps at finer resolutions.

The hybrid grid-based SIS is also attractive for the purpose of up-scaling, which
is in the conventional SIS almost impossible. Because the accuracy of interpolation
depends on the quality and detail of auxiliary variables (terrain data, remote sens-
ing images), one can imagine that improving the spatial detail of the predictors will
also reflect on the interpolation results. A caution should be made not to ‘blow-up’
the scale outside the realistic limits defined by the standards. For example, if the
inspection density is four observations per km2 the largest scale that the existing
dataset can be disaggregated to is 1:25 K. Additional observations are recommended
to achieve larger scales.

INPUT VARIABLES
(PREDICTORS)

scale S

MODEL

scale S

OUTPUT
(SOIL MAPS)

scale S

INPUT VARIABLES
(PREDICTORS)

scale S+
FINER GRID

Disaggregation

MODEL

scale S+

OUTPUT
(SOIL MAPS)

scale S+

INPUT VARIABLES
(PREDICTORS)

scale S-

COARSER GRID

Aggregation

MODEL

scale S-

OUTPUT
(SOIL MAPS)

scale S-

NO

YES

Figure 7.2: Schematic example of aggregation and disaggregation process in the hybrid
grid-based SIS. Note that although direct disaggregation of soil maps is possible, it is not
recommended. S indicates scale: S− are smaller scales and S+ are larger scales.

7.2.5 Case study and data analysis

The methodology was developed and tested using a data set from Baranja hill and
a portion of the adjacent Danube terraces in Eastern Croatia. The study area is
3.8Ö3.8 km square (centred on 45°47’40” N, 18°41’27” E) and corresponds to the
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size of a single 1:20 K aerial photo (Fig. 7.3). The main geomorphic facets are hill
summits and shoulders, eroded slopes of small vales, vale bottoms and high and
low river terraces. The elevations range from 80 to 240 m. I first produced an
API map using the geopedological approach of Zinck & Valenzuela (1990). I then
made 59 profile observations using a random design (40) and two transect studies
(19) (Fig. 7.3c). The boundaries were finally cross-checked on the field to produce
a conventional soil map with the legend.

The observed soil types ranged from Calcaric Regosols, Cambisols to Kastanozems
(FAO, 1998). The Calcaric Cambisols are the dominant soil type in the hilland, while
in the vale bottoms and in the lower floodplain, I observed gleyic properties. At some
locations on the hill summits, I observed occurrence of a hypocalcic horizon (> 15%
calcium carbonate equivalent). This layer is neither cemented nor close to the sur-
face so it does not present a limitation for agriculture. I observed the following
land use types: vineyards, orchards, natural grasslands, meadows (for animal pro-
duction), natural forest and woodland (hunting resorts), residential use, fish pond,
water control (channels), animal farming and crop fields. The most common crops
were maize and wheat, vegetables (manual farming), sugar beet and sunflower.

The most controlling factors for agricultural management in the area are: slope,
solum thickness, soil alkalinity and water-saturation conditions. Finally, I selected
the following six soil variables as the most important diagnostic land characteristics:

1. Depth to the parent material , i.e. thickness of solum (SOLUM) measured in
cm.

2. Occurrence of the gleying properties (GLEY P) — coded with “0” for not ob-
served, “1” for gleying properties within 50 cm and “0.5” for gleying properties
within 50 cm.

3. Occurrence of the Mollic horizon (MOL H) — coded with “0” for not observed
and “1” for observed Mollic horizon.

4. Occurrence of the Calcic horizon (CALC H) — coded with “0” for not observed
and “1” for observed Calcic horizon.

5. Thickness of the topsoil (A DEPTH) measured in cm.

6. Silt fraction (0.002–0.05 mm) content in topsoil (A SILT) estimated using the
centroids of the textural classes and expressed in percentage. The texture
classes ranged from sandy-loam, loam, silt loam to silty clay loam.

Note that the indicator variables GLEY P, MOL H and CALC H have either
0 and 1 value which can not be transformed (see chapter 5, page 94). To avoid
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division by zero or ln(0) problems, I introduced a small adjustment of 0.01, so that
0 becomes 0.01 and 1 becomes 0.99. A more optimal approach would be to estimate
these threshold iteratively in a statistical package.

The working scale of the project was 1:50 K, hence, a grid size of 25 m, which
corresponds to 0.5 mm on the map was selected. For the predictors, I used six terrain
parameters (Hengl et al., 2003b): elevation (DEM), slope gradient in % (SLOPE),
profile curvature (PROFC), plan curvature (PLANC), wetness index (CTI) and
slope insolation (SINS); all derived in ILWIS3. As remote sensing-based predictors,
I used the intensity (value on the grey scale) of the aerial photo (AP), the standard
deviation image filter of the AP map (AP STD) and NDVI map derived from the
Landsat 7 image. The aerial photo was taken in May 1998 and the satellite image
in August of 1999. I assumed that these remote sensing-based variables would help
explain the occurrence of horizons and depths. The nine maps were first trans-
formed to nine predictive components (SPCs) using factor analysis in ILWIS. This
was done to reduce the multicollinearity and optimize the selection of the best subset
of predictors4.

In addition to the SPCs, nine soil mapping units (SMUs) were transformed
to nine indicator variables: colluvial footslopes (SMU1), eroded slope (SMU2),
floodplain (SMU3), glacis (SMU4), high terrace (SMU5), scarp (SMU6), shoulder
(SMU7), summit (SMU8) and vale bottom (SMU9). We also added three land use
indicator variables: agricultural land (LU1), natural forest (LU2) and pastures and
orchards (LU3). The total number of predictors was 21 (Fig. 7.3a and b). The
target soil variables and the predictors were imported to a regression table consist-
ing of 59 observations, 9 target variables and 21 predictors. The ‘best’ subset of
predictors (SPCs, SMUs and LUs) was selected using the stepwise regression in the
S-PLUS statistical package (MathSoft Inc., 1999). The regression coefficients and
interpolated the residuals were then calculated over the whole study area using the
regression-kriging (see chapter 5).

The set of nine interpolated soil maps was further used to classify the whole area.
The membership maps were calculated using the supervised fuzzy k-means classifi-
cation. First the class centres were calculated by averaging the nine soil variables
per soil type. For the indicator soil variables the sampled standard deviation was
zero, which is unsolvable. The indicator variables follow a binomial distribution, so
that the standard deviation can be estimated using:

ŝz =

√
p · (1− p)

k
(7.7)

3See lecture note “Digital Terrain Analysis in ILWIS”, available with supplementary materials.
4See chapter 5 for more details.
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Figure 7.3: Multi-source predictors: (a) auxiliary predictors terrain parameters and remote
sensing data; (b) aerial photo-interpretation map (API) and land use map and (c) location
of the 59 soil profile observations. DEM – elevation; SLOPE – slope gradient in %; PROFC
– profile curvature; PLANC – plan curvature; CTI – wetness index; SINS – slope insolation;
AP – intensity of the aerial photo; AP STD – standard deviation of the AP map and NDVI
map derived from the Landsat 7 image.

where p is the threshold probability (e.g. 95%) and k is the number of classes. In
the case of MOL H and CALC H, the number of classes is two and the standard
deviation is 0.15, while in the case of GLEY P the standard deviation is 0.13.

Membership maps for the six observed soil types were derived: Siltic, Cal-
cisols (CL s), Calcari-Eutric Cambisols (CM ce), Gleyi-Calcaric Cambisols (CM gc),
Calcari-Eutric Gleysols (GL ce), Calci-Siltic Kastanozems (KS cs) and Calcari-Eutric
Regosols (RG ce). The memberships were then used to derive the limitation score
for the land utilisation type (wheat) using the soil types and slope classes as input
(Eq. 7.4)). In addition, the membership values were resampled to the 100 m grid
using the Eq. (7.6) to demonstrate disaggregation aspects.

151



152 Organization

7.2.6 Comparison of conventional and hybrid grid-based SIS

The hybrid grid-based SIS was compared with the conventional polygon-based SIS
of the same area. I first compared the predictability of SMUs and SPCs, which
gives an idea which predictors explain the measured soil variables better. This
was done by comparing the correlation coefficient and coefficient of determination
between all target variables and predictors. The two systems were also compared
for their mapping efficiency using: amount of variation explained and thematic
confusion. Amount of variation explained was assessed by calculating the sum of
squared residuals, i.e. RMSE for each of the six interpolated variables. The lower
the RMSE , the better is the fitting of the data. The thematic confusion was assessed
by calculating the confusion index among each spatial entity:

CI = 1− (µmax − µ2nd max) (7.8)

where µmax is the highest membership and the µ2nd max is the second highest mem-
bership at the same location (Burrough et al., 1997). The lower the CI, the higher
the certainty of the classification system. Note that the CI for SMUs is calculated
by first calculating composition of soil types in percentage. The CI value is then
attributed to each SMU to derive the overall or average confusion index. In addi-
tion to the statistical measures, a summary comparison of the two systems for their
cost-effectiveness, flexibility and technical properties was made.

7.3 Results

7.3.1 Mapping soil variables

The factor analysis on the continuous predictors showed that the information overlap
is low. The first three SPCs accounted for about 65% of the total variation and it ap-
pears that all SPCs need to be taken into account. A first comparison of correlation
coefficients between the all combination of SPCs and SMUs with target variables
showed that the auxiliary predictors are slightly more correlated with the target soil
variables than the SMUs (Fig. 7.4a). However, the amount of variation explained
in the multivariate models (adjusted R2) showed that the SMUs are in general bet-
ter predictors than the SPCs, except for SOLUM and CALC H (Fig. 7.4b). In all
cases, except for CALC H, the regression models explained about 40% of variation
and were statistically significant (p <0.001). Note that the discrepancy between
the univariate correlation coefficients (r) and coefficients of multiple determination
(R2) in Fig. 7.4 is because there is still some thematic overlap in the SPCs. The
SMUs (indicator variables) have no overlap by definition so that lower univariate
correlations will accumulate more effectively in the multivariate model.
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In all cases the step-wise regression selected from 3 to 6 predictors from the 21
possible, or 25% in average (Table 7.1). The best predictors were:

� for SOLUM – SPC1 (CTI, SLOPE), SPC3 (AP STD) and SMU5 (high ter-
race);

� for GLEY P – SMU3 (floodplain area), SMU9 (vale bottom) and SPC9 (CTI)

� for MOL H – SMU4 (glacis), SMU5 (high terrace) and SPC9 (CTI);

� for CALC H – LU2 (natural forests) and SMU2 (eroded slope);

� for A DEPTH – LU1 (agricultural land) and SMU5 (high terrace) and

� for A SILT – SMU9 (vale bottom), SPC9 (CTI) and SMU3 (floodplain area).

Many predictors, on the other hand, have been ignored by the system, such as
SPCs 2,6,7,8, SMUs 1,6,7,8 and LU3. The models in general reflect our empirical
idea of the distribution of soils. For example, I observed the gleyic properties in only
two mapping units and assumed that these are closely related with the potential of
water accumulation, which was also confirmed by the model (SMU3, SMU9 and
CTI). In the case of CALC H, the current predictors are of little help. It seems that
this variable is controlled by the parent material and not geomorphology or land use.
Note that the adjusted R2’s (Table 7.1) are somewhat higher than the ones in the
Fig. 7.4. This is because a lower number of predictors is used for final prediction,
which typically means a lower adjusted R2.

The geostastical analysis of the residuals showed the pure nugget variation for
the SOLUM and GLEY P, fairly long-range spatial dependence for MOL H and
CALC H and somewhat shorter-range spatial dependence for A DEPTH and A SILT
(Table 7.1). The pure nugget effect for residuals is reasonable for GLEY P because
most of the variation (70%) has been accounted for by the model. For SOLUM,
the pure nugget effect is somewhat more surprising since the residuals are still sig-
nificant. In this case, only 37% of the total variation has been explained by the
regression analysis. This means that SOLUM is much noisier variable and much
harder to map, which is probably due to the fuzzy character of the boundary be-
tween the solum and parent material. The ordinary kriging of residuals practically
‘saved’ the prediction of CALC H, despite the poor regression model. The residuals,
however, showed strong spatial dependence, which was sufficient to map it using
ordinary kriging.

A visual comparison of the interpolated maps produced using the conventional
approach (Fig. 7.5, left) and hybrid interpolation (Fig. 7.5, right) suggests that the
hybrid system in general offers more detail and higher contrast. In the case of the
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Table 7.1: Soil variables (logit-transforms), selected sub-sample of predictors, adjusted R2

and estimated variogram parameters.
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Table 7.1: Soil variables (logit-transforms), selected sub-sample of predictors, adjusted R2

and estimated variogram parameters.

Soil variables (logit-transforms)

SOLUM++ GLEY P++ MOL H++ CALC H++ A DEPTH++ A SILT++

R
eg

re
ss

io
n

co
effi

ci
en

ts
(p

re
d
ic

to
rs

)

Intercept -0.72 -1.953 -2.848 -3.888 -2.014 -0.624

SPC1 0.0114 -0.002 0.0284 0 -0.002 0.0026

SPC2 0 0 0 0 0 0

SPC3 0.0178 0 0 0 -0.008 0

SPC4 0 -0.004 0 0 0 0.0029

SPC5 0.013 0 0 0 0 0

SPC6 0 0 0 0 0 0

SPC7 0 0 0 0 0 0

SPC8 0 0 0 0 0 0

SPC9 -0.013 -0.043 -0.058 -0.018 -0.01 0.0111

SMU1 0 0 0 0 0 0

SMU2 -0.18 0 0 1.0332 0 0

SMU3 0 4.965 0 0 0 -0.622

SMU4 0 0 8.7559 0 0 0

SMU5 0.3211 0 8.8444 0 0.7607 0

SMU6 0 0 0 0 0 0

SMU7 0 0 0 0 0 0

SMU8 0 0 0 0 0 0

SMU9 0 5.9859 0 0 0 -0.777

LU1 0 0 0 0 0.4484 0

LU2 0 0 0 1.4065 -0.066 0

LU3 0 0 0 0 0 0

R2
a 0.37 0.70 0.59 0.13 0.41 0.61

V
a
ri

o
g
ra

m

Variogram
model

nugget
effect

nugget
effect

exponential exponential exponential exponential

C0 0.156 3.78 0.27 0 0 0

C0+C1 0.156 3.78 26.2 8.28 0.192 0.122

R (m) 0 0 10 km 759 194 69
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hybrid systems, not only discrete and continuous transitions can be seen, but also
the pattern of relief or land use is reflected via the auxiliary maps. This hybrid
pattern is especially distinct in the map of A SILT: the highest values follow the
steeper slopes, discrete transitions are visible in the floodplain area but also the
kriging pattern with hot spots (Fig. 7.5c, right).

The conventional system is more sensitive to the fairly contrasting inclusions
in the mapping unit. For example, the prediction map of the GLEY P for the
conventional system shows a value of 0.1 even at locations where no gleying could
have occurred (Fig. 7.5b, left). This is because there was a single profile (inclusion)
in this mapping unit, which somehow finished in the neighbouring polygon (probably
boundary misplaced during API). This affected then the whole attribute map giving
an unrealistic prediction of occurrence of gleying properties.

Comparison of the RMSE at observation points for these six variables showed no
large difference for SOLUM (17.4 cm vs. 17.8 cm) and GLEY P (0.18 vs. 0.13), but
in all other case was the data better fitted with the hybrid interpolation technique
(0.21 vs. 0.02 for MOL H, 0.26 vs. 0.01 for CALC H, 8.6 cm vs. 0.7 cm for
A DEPTH and 7.8% vs. 1.1 for A SILT).
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Figure 7.4: Comparison of relationships between the soil variables and soil mapping units
and auxiliary predictors: (a) density histograms of the correlation coefficients for univariate
models and (b) coefficients of multiple determination for fitted soil variables. SOLUM -
depth to the parent material in cm; GLEY P - occurrence of the gleying properties; MOL H
- occurrence of the Mollic horizon; CALC H - occurrence of the Calcic horizon; A DEPTH
- thickness of the topsoil in cm; A SILT - silt fraction content in topsoil.
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7.3.2 Classification, down-scaling and inference

The classified map of soil types (Fig. 7.6b) reflects empirical ideas, following the
fieldwork experience, about the distribution of the soils. The CM ce is the dominant
soil type covering 61% of the study area, CM gc and GL ce occur as expected at
lowest convex positions, while the RG ce occurs more locally (slopes). The CL s
was depicted as the highest membership in only 0.6% of the study area and as the
mapping of Calcic horizon was difficult.

From the sampled class centres for the six soil types (Table 7.2), it can be seen
that some classes can be distinguished in the attribute space more easily then others.
For example, KS cs is clearly a distinct soil type: deep soil, with occurrence of
Mollic horizon and no gleying properties. The factor analysis of class centres also
showed that especially CM ce and RG ce; and CM gc and GL c are similar soil
types. This information about the similarity of soils was then used to produce a
fuzz-metric legend and then visualise soil taxa and problematic areas as a continuous
soil map (Fig. 7.6c). This mixed-colour map indeed shows highest classification
uncertainty between the CL s and KS cs (note the white patches in Fig. 7.6c). This
information can now be used to collect additional samples or cross-check accuracy of
our classification system. Also note that the continuous soil map shows three major
groups of soil types indicated as bluish (CM ce, RG ce and CL s), greenish (GL ce,
CM gc) and reddish (KS cs).

The average confusion index for the conventional SIS, calculated using Eq. (7.8),
was 51% (±28%) for the whole map. The confusion index for the hybrid grid-based
SIS was 17% (±14%) in average (see the legend in Fig. 7.6a). This means that
the spatial confusion between the membership maps is significantly lower (p < 0.05)
than the confusion within the SMUs for the conventional SIS. After the down-scaling
(100 m grid), the less frequent classes did not disappear from the map as we would
have expected. For example CL s occupies about 9 ha in the 100 m scale map,
while it occupied 7.9 ha in the 25 m scale map (Fig. 7.6d). This means that the
proposed aggregation algorithm retains smaller-size features if their membership is
more distinct.

From the membership maps and classified slope map the accumulated limitation
score and the resulting continuous land suitability for wheat were derived. The
schematic example of the calculation is shown in Fig. 7.7. I used the following
limitation scores: 3 (CL s), 1 (CM ce), 1 (CM gc), 9 (GL ce), 0 (KS cs) and 9
(RG ce) for soil types and 0 (0-2%), 1 (2-8%), 3 (9-16%), 9 (17-25%) and 27 (> 25%)
for the slope classes.
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Figure 7.5: Comparison of (a) depth to the parent material (SOLUM); (b) occurrence of the
gleying properties (GLEY P) and (c) silt fraction content in topsoil (A SILT), interpolated
using the mapping units only (left) and the hybrid interpolation algorithm (right).

7.4 Conclusions and discussion

In this chapter I have presented some key concepts, operations and organizational
issues of a grid-based SIS as an alternative to the conventional polygon-based SIS
and plain geostatistical techniques. The proposed hybrid grid-based SIS was not
developed for purpose of replacing conventional techniques and concepts, replac-
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Figure 7.6: Comparison of (a) the conventional soil map with compound composition of
mapping units, (b) defuzzified (highest) membership map from the supervised fuzzy k-means
classification with freely selected colours; (c) the continuous soil map with a circular legend
and (d) down-scaled map to 100 m grid. CL s - Siltic, Calcisols; CM ce - Calcari-Eutric
Cambisols; CM gc - Gleyi-Calcaric Cambisols; GL ce - Calcari-Eutric Gleysols; KS cs -
Calci-Siltic Kastanozems and RG ce - Calcari-Eutric Regosols.
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Table 7.2: Class centres used to classify the six soil types from six attributes.

Sampled class centres and variation around the central values

SOLUM GLEY P MOL H CALC H A DEPTH A SILT

(σ) (σ) (σ) (σ) (σ) (σ)

cm - - - cm %

CL s
37.4 0 0 1 17 63

(11.4) (0.13) (0.15) (0.15) (12) (5.1)

CM ce
60.16 0 0 0 22.48 61

(16.3) (0.13) (0.15) (0.15) (6.9) (8.6)

CM gc
77.75 0.5 0 0 32.5 37.3

(14.5) (0.13) (0.15) (0.15) (14.5) (3.2)

GL ce
63.75 1 0 0 23.25 29.5

(25) (0.13) (0.15) (0.15) (4.6) (7.1)

KS cs
92.88 0 1 0 47.13 51

(14.2) (0.13) (0.15) (0.15) (5.5) (12.8)

RG ce
36.67 0 0 0 17.22 61.6

(15.2) (0.13) (0.15) (0.15) (6.5) (4.3)

ing existing soil databases or devaluating the importance of photo-interpretation
or existing classification systems, but to employ these in a more objective manner.
Moreover, the proposed hybrid grid-based SIS is a generalization of the conventional
approach. One can imagine that if the within-unit variability is infinitively small
and if there is no overlap between class definitions, than the hybrid SIS will show
the same, so-called, “double-crisp” form (crips objects and crisp classes) as a con-
ventional map. In fact, in our case study the API units played an important role
and the transition of soils was, consequently, more discrete in many parts of the
area.

The summary comparison of the two systems can be seen in Table 7.3. The
important advantages of the hybrid grid-based SIS that need to be emphasized are:

� It directly offers a map of soil types rather than a map of the soil-mapping
units.

� All variables, including the soil types and land suitability are mapped in a
continuous manner and on fine grain of detail. In this case study, the average
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Table 7.3: Summary comparison between the conventional polygon-based and grid-based
SIS. The technical details apply to the study area.
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Table 7.3: Summary comparison between the conventional polygon-based and grid-based
SIS. The technical details apply to the study area.

Aspect Polygon-based Grid-based

Entity Polygon Grid

Detail (average size
area)

33.8 ha (581 m) 0.0625 ha (25 m)

Content
Polygon class-type map
linked with attribute tables
(profile observations)

Set of grid maps linked with
attribute tables (regression
coefficients, variogram pa-
rameters, central values, limi-
tation scores)

Interpolation
method

Averaging per SMU or soil
type

Regression-kriging

Products

Distribution of soil mapping
units with composition; soil
profile database; crisp land
suitability

Distribution of soil variables
(land characteristics), soil
types and land suitability
with estimated uncertainty

Purity of entities
(confusion index)

low (51% in average) high (17% in average)

Level of detail and
reliability of predic-
tions

Only average or modal values;
contrasting inclusions may be
listed separately

Higher level of detail; the pre-
dictions follow the pattern in
relief, vegetation or land use,
according to factors included
in the model

Data input and
analysis

API by surveyors conceptual
knowledge; lines are digi-
tized; topology is created in
GIS ; soil profile observations
are organized in a relational
database

Auxiliary maps are obtained
from secondary sources; com-
putations can be demanding
and the end product depends
on the quality of the input
data and algorithms used for
interpolation

Memory use
Single vector map and set of
tables (very low); 10 KB per
km2 at 1:50 K

About 21 map of predictors,
9 maps of transformed predic-
tors (SPCs), 6 maps of soil
variables, 6 maps of soil types
etc. (very high); 400 KB per
km2 at 25 m resolution

units.

� All variables, including the soil types and land suitability are mapped in a
continuous manner and on fine grain of detail. In this case study, the average
size of detail was about 25 times smaller for the grid-based SIS.
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Figure 7.7: Mapping continuous land suitability for wheat: (a) memberships for soil types
and slope classes; (b) accumulated limitation score and (c) continuous land suitability. CL s
- Siltic, Calcisols; CM ce - Calcari-Eutric Cambisols; CM gc - Gleyi-Calcaric Cambisols;
GL ce - Calcari-Eutric Gleysols; KS cs - Calci-Siltic Kastanozems; RG ce - Calcari-Eutric
Regosols and SLOPE - slope gradient in %.

size of detail was about 25 times smaller for the grid-based SIS.

� The products of mapping are not only maps of soil variables but also the
respective prediction uncertainty (i.e. prediction error or confusion index).

� Maps are more suitable for integration with other geo-data.

� It in general provides more reliable soil geoinformation with lower thematic
confusion and higher level of detail than the conventional survey.

� The original soil observations and interpolation/classification parameters are
linked to the GIS calculations via the special tables and can be updated.

On the other hand, the disadvantages of the hybrid grid-based SIS are:
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� It is computationally demanding as it requires number of GIS, statistical op-
erations with each variable. It also consumes a lot of memory: I estimated
that for this case study the memory consumption per km2 is about 40 times
bigger for grid-based SIS.

� It requires number of auxiliary variables, which also means somewhat higher
investments.

� Because it is data-driven, it fully depends on the quality of the input data.
The prediction maps, however, can always be saved with a good API map and
manual correction of problematic features.

The number of observations also plays an important role. In this case study I have
dealt with a small case study and relatively small number of profile observations.
This caused some problems for the fitting of the data, variogram modelling and
factor analysis of the thematic similarity. A much larger number of observations,
predictors and soil variables will probably be more satisfactory to the real users. I
also experienced problems with interpolation of some variables. In this case study
this was occurrence of the calcic horizon, which seems to be difficult with this set of
predictors. This feature could have been probably explained better with the use of
parent material as auxiliary map.

Also note that some of the applied algorithms, such as the continuous land suit-
ability, are not completely satisfactory. Although this method objectively combines
limitations, it depends entirely on the subjective assignment of limitation scores to
classes, and also on the concept that a linear combination best expresses suitability.

A more flexible system will be to keep all original data in original cell size (or as
sample points) and up or downscale as necessary depending on the algorithm. The
input data often comes at different resolutions (multi-source data), for example,
terrain data may be available at finer resolution (10 m), satellite data at coarser
resolutions (30 m) or very coarse resolutions (1 km). Calculations with raster maps
of different resolutions without resampling, however, are still not possible in many
GIS packages. Another improvement would be to use the kriging by moving window
and not the global estimation of the regression residuals. This would, however,
require even more input points and computational power.
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Chapter 8

Adequacy of soil resource
inventories∗

“What is wrong with soil maps? The problem is that the soil
scientists make the soil maps for them selves. . . they spend more

time on fighting about the soil classification in the pit, than
talking with the farmers!”

[by Boško Miloš, Institute for Adriatic crops in Split, discussion during the
fieldwork in Croatia]

∗based: on Hengl T., Husnjak S. and Rossiter D.G., 2004? Assessing adequacy and usability of
soil resource inventories: The National soil inventory in Croatia. to be submitted.
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8.1 Introduction

The USA National Committee for Digital Cartographic Standards defines quality
as the “suitability of the data for the intended use” (Moellering, 1987). Five main
elements determine the overall quality of a map: lineage, positional and attribute
accuracy, logical consistency and completeness. These correspond to the quality
measures and standards, agreed to by the International Cartography Association
and applicable to any GIS (Guptill & Morrison, 1995). Soil surveyors have developed
a concept of adequacy of a soil resource inventory, which was first introduced by a
group at Cornell University and then further on developed in collaboration with
workers from many survey organizations (Soil Resource Inventory Study Group,
1977, 1978; Forbes et al., 1982). This group proposed that adequacy, also called
“fitness for use”, should be evaluated by using four aspects:

� map scale and texture;

� map legend;

� base map quality, and

� ground truth, also called thematic accuracy.

The last aspect has received attention from Dutch mappers (de Gruijter & Marsman,
1984; Marsman & de Gruijter, 1986).

Recently, the concept of usability has been introduced of which the data quality
is considered to be just one element (Wachowicz et al., 2002). The difference between
quality, adequacy and usability is that quality is a constant measure, the adequacy
changes within the problem-solving context, while usability reflects all these elements
in relation to the end-users satisfaction (Fig. 8.1). Adequacy is usually related to the
concept of effective scale: a lower quality GIS will show higher adequacy if we use
it at smaller scales. Usability goes beyond these concepts and does not necessarily
show direct relation to the overall quality, i.e. a dataset of high quality does not
have to be usable and vice versa. For example, a high quality soil map can finish
being unusable if:

� It requires professional knowledge on how to interpret it, which is not available;

� It is hard to integrate the soil map within an existing GIS;

� It requires specific hardware/software in addition; or

� The price is too high for the given project. A simpler product of lower quality
may be preferred by the users and therefore more usable.
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Figure 8.1: Relation between the quality elements, adequacy, usability and users of a SIS.

Several studies in the past thirty years have shown that the technical quality of
the soil maps, especially the ones produced through national soil surveys, has often
been overestimated. For example in the Netherlands, although the taxonomic purity
of the soil delineations was intended to be >70% (Bie & Ulph, 1972), Marsman
& de Gruijter (1986) showed that the actual purity is usually considerably lower.
Similarly, it has often been emphasized that very few soil profiles inside a well-defined
soil mapping unit (further referred to as SMU) actually meet all specifications of the
mapping unit (Burrough, 1991). The second serious problem is that the technical
aspects of the data quality of soil inventories have often been neglected. Groot
(1993) estimated that 80% of the soil information in the world is unusable due to
incompleteness, unknown reliability or inconstant spatial referencing.

This chapter gives methodological framework to assess the spatial accuracy of
soil boundaries and effectiveness of soil maps. This methodology was used to assess
quality elements of the National Soil inventory in Croatia at scale 1:50 K, also called
“Basic Soil Map of Croatia” (BSMC), which lasted almost 25 years and took about
10 800 profile observations.
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8.2 Methods

We selected six map sheets (from the total of 185), performed three control surveys
(“Gustirna”, “Kalinovac” and “Popovac”, each approximate size 4×4 km) and re-
described ten profiles of the BSMC in the main landscape regions of Croatia. This
was done to estimate the effective map scale, accuracy of map legends, spatial ac-
curacy of soil boundaries, and thematic accuracy of profile observations (Table 8.1
and Fig. 8.2). The control surveys were compared to the original soil map sheets
and generalised digital 1:300 K soil map of Croatia (Bogunović et al., 1998). We
also used the Croatian soil profile database (Martinović & Vranković, 1997) con-
sisting of 2198 observations to assess the sampling density and thematic contrast
of SMU. Considering the spatial accuracy of soil boundaries, we measured about
24 km of soil boundaries or 0.2% from the total length of the boundaries, estimated
to be 12 K km. The control surveys are small compared to the original data sets.
However, they were well spread over the main geographical regions (Fig. 8.2).

Aerial photos (3)

Map sheets  (6)

Control profiles  (10)

Osijek 2

S. Brod 2

Samobor 3

Gospiæ 1

Šibenik 4
Split 3

(12)

(18)

(442)

(15)

(76)(13)

(159)

(190)

(38)

(61)

“Kalinovac”

“Popovac”

“Gustirna”

Figure 8.2: Location of map sheets, control survey areas and profile observations (in brack-
ets) used to assess the adequacy elements of the National soil inventory in Croatia.
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Table 8.1: Adequacy aspects and data sources and measures used to evaluate them.

Aspect Data sources (control) Criteria

Effective map scale 6 map sheets at scale 1:50 K
Average size delineation;
Shape complexity index;
Inspection density

Accuracy of map leg-
ends

3 control survey areas with
20 augerings and 20 mini-
pits per survey area (120 in
total)

Chi-square test statistics

Spatial accuracy of soil
boundaries

2 master lines (between the
most contrasting polygons)
in each of the 3 control sur-
vey areas (6 in total)

Area of disagreement and
mean error

Thematic accuracy of
profile observations 10 profile observations Mean root square error

Thematic contrast of
SMUs

2198 soil observations from
the soil database together
with the 1:300 K digital soil
map

Coefficient of variation in-
side the SMUs and in-
terclass correlation; Aver-
age probability of thematic
overlap

All data was processed in the ILWIS 3.1 (Unit Geo Software Development, 2001)
and ArcView 3.2 GIS packages, while the statistical analysis was done in S-PLUS
(MathSoft Inc., 1999). ArcPad 5 and 6 (Environmental Systems Research Institute,
2000) were used for field navigation and initial data processing. This software was
running on the iPAQ Compaq pocket PC, to which a GPS receiver (CRUX II GPS
PCMCIA card) was attached, which made all together a light, compact and reliable
navigation system (further referred to as the mobile GIS).

Profiles were described using the standard national soil survey methodology
(Kovačević & Jakšić, 1964) and classification system (Classification of Yugoslav Soils,
further referred to as CYS) used in the BSMC and still used in all republics of former
Yugoslavia (Škorić et al., 1985). Laboratory analysis was done at the Soil Science
Department in Zagreb using the same methods as in the original survey. All this
allowed us to expect to describe and measure similar soil properties.
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8.2.1 Map scale

The effective map scale was evaluated for six map sheets from different regions in
Croatia. We first excluded the non-soil areas, such as urban areas and water bodies.
We then used only full polygons, i.e. those completely within the map sheets, in the
calculations. From these, the average size delineation (ASD) was calculated as:

ASD =

m∑
j=1

Aj

m
(8.1)

where Aj is the area of jth polygon and m is the total number of polygons (Forbes
et al., 1982). We then calculated the index of maximum reduction (IMR), i.e. factor
by which the scale of the map could be reduced before the ASD would be equal to
the minimum legible delineation (MLD), which is as a rule of thumb taken to be 0.4
cm2 on the map:

IMR =

√
ASD
MLD

(8.2)

From this, the effective scale number (ESN) is computed as:

ESN = NSN · IMR
2

(8.3)

where NSN is the nominal scale number. The factor of two in the denominator
ensures that the ASD is four times the size of the MLD, i.e. the arbitrarily-defined
optimum legible delineation (OLD) (Forbes et al., 1982). To describe the gen-
eral geometry of soil polygons, we used a shape complexity index S, which is the
perimeter-to-boundary ratio:

S =
P

2rπ
r =

√
A
π (8.4)

where P is the perimeter of polygon, A is the area of polygon and r is the radius of
circle with the same surface area (Hole, 1978). A value of S close to 1 means that a
polygon is rather compact and simple, while higher values describe narrow and long
polygons. A higher complexity index usually relates to a more detailed delineation,
which often means higher positional accuracy and larger effective scale (D’Avelo &
McLeese, 1998).
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8.2.2 Map legends

Accuracy of map legend was assessed using 114 independent sample observations
distributed in ten SMU in three control survey areas with two tests: a binomial test
for any of the named soils and a multinomial test for the composition of compound
map units, which is based on the confusion matrix. These tests were applied at
three levels of detail: strict (exact correspondence between named soil and field
observation), similar (grouping similar soils based on surveyor opinion), and higher
taxonomic (at the level of soil type). The binomial test simply scores a success if
any of the named soils is encountered in the field; the estimate of success is the
proportion of successes p, with variance for n samples of p·(1−p)

n (Steel & Torrie,
1980, 3.3). The multinomial test is the Pearson’s χ2 statistic, calculated for each
SMU over the cells with non-zero expectation:

χ2 =
∑
i,j

(yij − rij · yi+)2

rij · yi+
rij > 0 df = k (8.5)

where yij is the number of observations in row i, column j, i.e. mapped in
legend category i and observed in validation class j, yi+ is the total number of
observations for legend category i, rij is the proportion of legend category i that
should be in validation class j and df are degrees of freedom based on k comparisons.
Note that since observations may not correspond to any named class, the degrees
of freedom are equal to the number of classes. The probability of the observed χ2

shows the statistical significance of the difference between the mapped and observed
composition of units, and also can be used to assess the relative accuracy of SMUs.
The sum of χ2 for all tested SMU gives the overall accuracy of compound map units.

In each of the three control areas, we first made 20 mini-pits at randomly selected
locations to determine soil types and train our mental model of the soil catenas. We
then made two transect studies by taking 20 augerings at approximately equal dis-
tances (200 m) in the direction of the most contrasting relief change. The navigation
to selected points (mini-pits) and transect studies were operationalized with the help
of the mobile GIS system with an ortho-photo in the background. Finally, the set of
120 point observations was used to calculate a confusion matrix and asses the the-
matic accuracy of map legends. There were in total 18 SMUs in the control survey
areas, from which five units (covering 8.5% of the total survey area) had fewer than
five observations and were excluded from further calculations. An additional three
SMUs were not covered by the random sampling and were also excluded. Finally, 10
SMUs, covering 85% of the total survey area, were evaluated using 114 observations
and 39 soil taxa in total (Table 8.2). In addition, the same test was done with the
generalized taxa, i.e. at the level of sub-type. In this case, there were 18 soil taxa.
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Table 8.2: Mapping units inspected for the accuracy of legend, their composition, size and
number of observed points per SMU.

CODE Map sheet no.
Original mapping unit composi-
tion

Type
Area
(ha)

Area
(%)

Observed
points

SMU1 Osijek 2 7
Cambisols, eutric, typical - Viti-
sols - Regosols - Chernozems on
loess (40:30:20:10)

Association 1036 23.3 29

SMU2 Osijek 2 16
Amphigleys and Hypogleys,
mineral, partly hydromeliorated
(60:40)

Association 153 3.4 5

SMU3 Samobor 3 9
Dystric Cambisols, illuviated,
deep - Luvisols (50:50)

Association 231 5.2 11

SMU4 Samobor 3 20
Alluvial soils, calcareous, gleyic
- Humofluvisols, gleyic, non-
carbonatic (60:40)

Association 235 5.3 8

SMU5 Samobor 3 23 Pseudogleys, on sloping terrains Consociation 158 3.5 5

SMU6 Samobor 3 22
Pseudogleys on level terrains -
Pseudogley-gley soils (90:10)

Consociation 282 6.3 7

SMU7 Samobor 3 26
Amphigleys, mineral, non-
calcareous - Pseudogleys (80:20)

Consociation 344 7.7 8

SMU8 Sibenik 4 8

Terra rossa, typical, shallow,
clayey - Calcocambisols, typi-
cal, shallow, clayey - Rendzinas,
on calcitic dolomite - Calcocam-
bisols, colluvial (20:40:30:10)

Complex 190 4.3 6

SMU9 Sibenik 4 9

Vitosols (on terra rosa and cam-
bisol) - Terra rosa, typical, shal-
low and colluvial - Calcocam-
bisols, typical, shallow and col-
luvial (60:20:20)

Complex 850 19.1 20

SMU10 Sibenik 4 16
Vitosols, from terra rossa - Terra
rosa, luvic, deep - Terra rosa,
colluvial (60:20:20)

Complex 305 6.9 15

Urban areas 108 2.4

Water bodies 86 1.9

Total 3977 89.5 114

8.2.3 Soil boundaries

In the case of BSMC, the soil boundaries were delineated manually following the
concept of free survey (White, 1997), i.e. by using an irreproducible method. The
boundaries were not explicitly drawn using physiographic or geomorphic principles,
so that it is not strictly an error if a boundary does not correspond with topography.
However, by careful study of the legend and comparison of the definitions of adjacent
units, it is possible to infer what topographic features should have been followed.
A simple example is where two polygons with contrasting soil types significantly
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differ in slope class and there is clear topographic break. These boundaries are often
referred to as the primary boundaries or master lines (Buringh, 1960). Although
the soil boundaries are traditionally placed subjectively and will always differ, the
primary boundaries, drawn independently by several surveyors, should usually match
within the soil survey standards (Bie & Beckett, 1973).

To compare the primary soil boundaries we selected six adjacent SMU pairs in
three control areas. The procedure can be summarized as follows:

1. make control survey map using stereoscopic photo-interpretation and validate
the boundaries on the field;

2. digitise the boundaries from the control and original surveys;

3. identify the most contrasting adjacent units based on topographic or geomor-
phic features, e.g. slope breaks, change of general landscape; and

4. calculate the deviation between the two lines.

This is done by estimating the area of disagreement (AD), which is the area of
polygon produced as the intersection between the original and control survey. The
lower is the AD, the better is the positional accuracy of the inspected boundaries.
The positional accuracy or the mean absolute error (ME) is then half of the AD
width:

ME =
AD

2 · l+l′

2

=
AD

l + l′
(8.6)

where l is the boundary length of the mapped delineations, and l′ is the boundary
length of the control delineation.

8.2.4 Profile observations

Ten profiles from the original soil survey with positions shown on the soil maps were
selected to assess how well the profile data corresponds to the control. We navigated
to these points using the mobile GIS with the georeferenced original soil map in the
background. It was always possible to be clearly within the square representing
the original observation, as the profiles were shown by a 4 mm2 square on the
soil map, representing 100×100 m on the ground, although the surveyors actually
could locate the profile within a 2 mm2 and used the larger square for legibility
only. The GPS reported estimated position errors (on the order of ±15 m) and
the estimated geo-referencing error when digitising the topo sheets were an order of
magnitude smaller. The location of the control observation within the 1 ha square
was determined in the field by experienced surveyors, who were looking for the same
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type of site as described in the original survey report. We then compared seven
physical and chemical soil properties: sand, silt and clay content (%), pH (H2O),
pH (MKCl), organic matter (%) and carbonates (%) in all horizons, by calculating
the root mean square error (RMSE ) and relative error:

RMSE =

√∑
(x− x′)2

n

RMSE r =
RMSE

R
R ≈ 4 · σx

(8.7)

where x is the given value of the soil attribute and x′ is the soil attribute measured
in the control survey, n is the number of control measurements, R is the range of
variation and σx is the standard deviation of population. In the case of normally-
distributed variables, R can be approximated by four times σx (Ott & Longnecker,
2001, p. 92). The range can also be approximated by empirical estimates of the
extremes likely to be found in a survey area. For example, in the study area we
know from previous experience that clay content can range from 0 to 80%, therefore
the range is 80%. The dimensionless RMSE r allows a comparison of accuracy for
variables of different types and with different ranges of variation. Note that the soil
samples were not taken at the same depths as in the case of the original survey,
so that we needed to first estimate the values at the same depths as the original
observations, by estimating values from a depth-vs-property graph.

8.2.5 Soil mapping units (SMUs)

A soil surveyor aims at delineating soil bodies in such a way that contrast between
the adjacent SMUs is maximised, which reflects the idea of the maximum amount
of information in a system (Finn, 1993). In the case of categorical data, separability
of attribute values between the mapping units is the key measure of thematic map
quality (Lilburne, 2001). In soil resource inventories, a standard method to assess
efficiency of classification is to compare the within-class variances with the between-
class and total variances (Webster & Olivier, 1990, pp. 63-70). In this study we
used this method to evaluate two aspects of thematic quality of SMUs: (1) thematic
purity or homogeneity of SMU composition and attribute values within the SMUs
and (2) thematic separability of geographically-adjacent SMUs. These are different
issues as the SMUs can show imprecise distributions of attributes, while at the same
time the thematic contrast between the adjacent units can still be fairly high, and
vice versa; this is related to the nature of boundaries (Lagacherie et al., 1996).

These were assessed using the 2198 profile observations and the 1:300 K digital
soil map of Croatia consisting of 65 SMUs. We first assessed the mapped homo-
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geneity of the SMUs by calculating the proportion of the average dominant and
associated soil types. This was done for both the 1:300 K Soil map and the three
control survey areas. We then calculated mean value and standard deviations for
each of the 65 SMUs of the 1:300 K digital Soil map and three soil parameters: clay
content (%), pH (measured in H2O) and organic matter (OM) in topsoil (%). The
homogeneity within the SMUs was expressed by the relative standard deviation:

sr (x, j) =
sx,j

R
R ≈ 4 · σx j = 1, .., k (8.8)

where sx,j is the standard deviation of a xth property inside the jth SMU, k is total
number of units, and σx is the population variance. This is equivalent to the relative
variance, commonly used in land resource inventories (Webster & Olivier, 1990, p.
67). A relative standard deviation higher than 25% means that we can measure
almost any value of the property inside the tested SMU. In addition, we calculated
the interclass correlations as:

ri (x) =
B − s2

W

B + (m− 1) · s2
W

(8.9)

where B is the mean square error between the classes, s2
W is the mean square error

within the classes and m is the number of classes (Webster & Olivier, 1990, p. 67).
A value close to 1 means that thematic purity of SMUs is maximum, while a fairly
low value of ri indicates that the variation within the SMUs is close to the total
variation.

The thematic separability of adjacent SMUs was assessed using the thematic
overlap. This was calculated as the average probability of thematic overlap between
thematically and geographically adjacent SMUs. The last aspect quantifies the
uncertainty in the attribute maps for site-specific decisions. The SMUs were first
sorted according to their average value of a property. The probability of thematic
overlap was calculated for each neighbouring SMUs as the average probability of
overlap. If properties within units are normally distributed, the overlap can be
calculated using a t-test to compare difference between two populations assuming
equal variances (Ott & Longnecker, 2001), with null hypothesis that the two samples
belong to the same population:

p (xj ∩ xj+1) = 2 ·

1− pn

 x̄j − x̄j+1√
s2
xj

+ s2
xj+1

 (8.10)
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where p (xj ∩ xj+1) are normal probabilities of thematic overlap, pn is the one-way
normal cumulative probability and x̄j is the average value of xth property in the
jth SMU. Finally, the average probability of overlap p∩(x) for all SMU for given
property is:

p∩(x) =

m−1∑
j=1

p (xj ∩ xj+1)

m− 1
p∩ (x) ∈ [0, 100%] (8.11)

where m is the total number of SMUs. The lower is the average probability of
overlap, the more SMUs differ among each other, i.e. the more contrasting are
the delineations and vice versa. If the p∩(x) > 95%, the attributes between the
adjacent SMUs do not differ significantly, i.e. we can measure similar properties
inside adjacent SMUs. This means that the SMUs are over-specified and should
be simplified. The neighbouring SMUs, i.e. geographically adjacent polygon pairs
were derived in ILWIS using the neighbour polygon operation (Unit Geo Software
Development, 2001). We then sorted the pairs of SMU polygons using the longest
length of the neighbourhood boundary between the SMUs and calculated overlap
using the same statistics as in Eq. (8.11).

8.2.6 Usage and usability

In a GIS, usability can be defined as a property of a given dataset that expresses
(1) how well it helps users to arrive at a correct decision within their problem-
solving context and (2) how easily can it be accessed and made ready for use. This
aspect is subjective and difficult to quantify. We decided to assess usability using
two measures: a) number of users compared to the potential number of users; b)
degree of their satisfaction; We first made a small inventory of all existing users and
then carried out unstructured interviews with several existing users in the land use
planning offices of Osijek, Karlovac and Split cities. In addition we discussed the
cartographic and GIS issues with cartographic departments in Osijek and Zagreb
and a private company in Split. Finally, we discussed the usability problems with
the original surveyors, to see the both sides of the story.

8.3 Results

8.3.1 Effective map scale

Table 8.3 shows various measures of map scale for six individual map sheets and
the soil suitability map at 1:300 K. The IMR for the 1:50 K sheets ranged from 4 to
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7, corresponding to an effective scale between 1:100 K and 1:175 K. Also the shape
complexity index shows that the soil polygons in these six sheets are moderately
simple, according to the classification of shape complexity suggested by Hole (1953).
The map sheets however, can not be simply denominated to a smaller scale, since
five of the six map sheets contains polygons smaller than the MLD (10 ha), ranging
from 1.4 to 2.4 ha. These polygons should have been integrated with the neighboring
SMUs.

Table 8.3: Assessing the effective scale: the average size delineation and inspection density
on the test sheets.

Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet5 Sheet 6 Whole

Statistical measure Osijek 2 S. Brod 2 Samobor 3 Gospic 1 Split 3 Sibenik 4 Croatia

Aj
Total area of land
(ha)

27 923 54 209 53 082 54 820 51 537 53 189 5 566 894

m
Total number of poly-
gons

71 133 264 361 108 112 4312

Minumum size delin-
eation (ha)

2.3 2.4 1.6 1.4 1.5 10.7 2.0

Maximum size delin-
eation (ha)

3713.9 8708.9 6334.9 5122.1 6402.8 6761.6 85 443.3

ASD
Average size delin-
eation (ha)

393.3 407.6 201.1 151.9 477.2 474.9 1291.0

Std. of delineation
size (ha)

190.5 215.1 288.7 286.5 178.0 188.6 305.2

NSN
Nominal scale num-
ber

50 K 50 K 50 K 50 K 50 K 50 K 300 K

IMR
Index of maximum
reduction

6.3 6.4 4.5 3.9 6.9 6.9 1.9

ESN
Effective scale num-
ber

156 750 159 606 112 101 97 422 172 698 172 282 284 055

S
Average shape com-
plexity index (±std.)

2.4±1.2 2.9±1.7 2.1±1.3 1.7±0.8 1.9±0.8 1.9±0.7 2.0±1.1

Number of profiles 37.0 76.0 53.0 41.0 114.0 46.0 10 686

Inspection density
(per 1000 ha)

1.3 1.4 1.0 0.7 2.2 0.9 1.9±2.2

The IMR for the 1:300 K digital map was 1.9, which is almost ideal, showing that
the effective scale corresponds to the given scale. However, polygons representing
1% of the total area were smaller than the MLD (360 ha). The shape complexity
index shows that the polygons are moderately simple, which is desirable for this
fairly small scale. The inspection density for the 1:50 K maps ranged from 0.7 to
2.2 profiles per 1000 ha, which is an order of magnitude smaller than the suggested
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minimum of 50 (Avery, 1987, Table 2) for this scale, and two orders of magnitude
smaller then the ideal inspection density of 4 observation per map cm2, i.e. 160
per 1000 ha (Avery, 1987, Table 1). According to the original surveyors, the total
inspection density is higher, as there were up to ten times more mini-pits that were
mapped but not recorded on the original map sheets. However, we decided not
to use this information, as there is no record on it. The inspection density of the
1:300 K digital map was 1.9 per 1000 ha, corresponding to 1.7 per map cm2 (900 ha
at this scale), about half the ideal. However, there was a very large variation among
the map sheets making up the national map, so that some areas are well beneath
the minimum density even at this scale.

8.3.2 Thematic accuracy of legends

The strict binomial test of the map legend showed that only half (57) of the 114
observations corresponded to one of the named components in their respective SMU;
this is 0.5 ±0.05 (see supplementary material for confusion matrix). Accuracy of
individual SMU range widely, from 0.09 to 0.97; the upper limit of the 90% confi-
dence interval showed that five of the ten SMU definitely failed the 80% purity test
(Marsman & de Gruijter, 1986). Grouping similar soils revealed a much better suc-
cess rate: 0.79 ±0.04, which is very close to published standards for map unit purity.
Here, only one of the ten SMU definitely failed the 80% purity test. At the soil type
level, success was even greater: 0.87 ±0.03. Soil types are defined pedogenetically
and ignore many soil properties important for interpretations, so this high purity is
not useful to most map users.

The binomial test does not measure whether the stated map unit composition
is correct; for that the multivariate test was used. The strict test gave a summary
χ2 of 50.14 with 25 d.f. (p <0.001), showing that the legend does not accurately
represent the composition of this set of compound map units. Most of the error was
concentrated in three map units. In one case many shallow Lithosols on limestone
were found in place of mapped shallow Calocambisols (according to CYS, see supple-
mentary material for more details on CYS). In another case deep Terra Rossa were
found instead of mapped moderately deep subtypes. In the third case, Luvisols were
expected in half the map unit, but not encountered; the process of illuviation was
not observed, as there was no significant textural change or visual evidence of clay
movement. These errors did not disappear when soils were grouped by taxonomic
type; χ2 of 41.8 (p <0.004). However, grouping similar soils by major interpreta-
tions resulted in a more favourable evaluation: χ2 of 23.26 (p <0.5), so that the
legend can not be rejected. Note that the test is not strictly valid, since in one cell
the expected frequency is less than one, and there are also a large proportion (15 of
25) of cells with fewer than five which means that the chi-square approximation is
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marginally valid, but still indicative (Agresti, 1990).

8.3.3 Spatial accuracy of soil boundaries

The comparison between the soil boundaries in the original and control survey can
be seen in Fig. 8.3. The original maps show in general less detail and follow the
master lines only approximately. Only in the case of Kalinovac area was the level
of detail more or less equal (Fig. 8.3c). The mean absolute error between the six
evaluated master lines (Table 8.4), showed that boundaries deviate approximately
±40 m from the reference boundaries delineated in control surveys. From this num-
ber we computed the maximum location accuracy of 0.77 mm on the map. The
observed accuracy is about three times worse then the typical map accuracy stan-
dard for this scale of 0.25 mm (Davies, 1981). Consequently, the effective map scale
is approximately three time smaller or 1:150 K. Other, secondary boundaries show
even higher discrepancy with the control surveys. Very often we could not conclude
on which basis did the surveyor draw the boundaries. Some neighboring SMUs in
the Gustirna and Popovac area, for example, had in legend the same soil types,
usually only with different composition. This makes the soil boundaries, other than
the master lines, even more relative.

Table 8.4: Spatial accuracy of the boundaries for six master lines.

Number 1 2 3 4 5 6 Average

Area of disagreement (ha) 67.4 25.8 29.9 15.4 44.5 12.7

Summary length (l + l′) 10.5 6.6 11.2 5.4 9.5 5.2

Mean error (± m) 64.2 39.1 26.7 28.5 46.8 24.4 38.3±15.3

8.3.4 Thematic accuracy of profile observations

The comparison of the ten detailed observations showed that the profile data gener-
ally corresponds to what was described on the field and measured in the laboratory.
The results can be summarized as follows: a) the descriptive data, such as exposition,
land cover, rock outcrops, coincided with what we found on the field in most cases;
b) the soil types did not match the one found on the field in four cases2. For ex-
ample, profile 442 was classified in the CYS as a Pseudogley, while the high ground
water table showed that this is obviously a hypogleyic Eugley (Fig. 8.4a and b).

2See profile description data sheets in the supplementary materials.
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Figure 8.3: Comparison of the original soil boundaries (left) and control survey areas
(right): Gustirna (a), Popovac (b) and Kalinovac (c). The master lines are bolded. Compare
with the results in table 8.4.

Similarly, profile 76 classified (CYS) as a Calcocambisol on dolomite was described
as a Luvisol on dolomite; profile 159 classified as typical (non-luvic) Terra rosa was
described as the illuviated sub-type. The biggest discrepancy, however, was profile
13, classified (CYS) as a Calcomelanosol (soils of high-rainfall mountain areas, with
a distinct dark epipedon). We were not able to find this type at the given location
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nor anywhere in SMU. Instead, the map unit was dominated by Calcocambisols.
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Figure 8.4: Comparison of the original (a) and control profile description using the same
methodology (b) and FAO (1998) methodology (c). While the horizon designations do not
coincide, the measured properties – clay content (%) and pH in H2O (depth-vs-property
graph) do.

Comparison of the lab data showed a general correspondence with what we
described in the field, e.g. texture class, clay content and clay increase (Fig. 8.4c)
with an average relative error of ±15.7% (Table 8.5). The highest accuracy of
measuring the same property was for the organic matter (±8.7%), while the most
inaccurate property was pH.

8.3.5 Homogeneity and thematic contrast between SMUs

The SMUs in the 1:300 K soil map consist of two or more soil types in most cases.
We calculated average mapped proportion of the dominant soil type of about 56%,
while in the control survey areas we calculated slightly higher composition purity of
the SMUs (65%). In the case of the 1:300 K soil map, many of the original SMUs
have been merged into bigger units, so that the average number of soil types per
SMU is from 2 to 5. When analysed for the categorical type of SMU, based on
the USDA Soil survey standards (Soil Survey Division Staff, 1993), we found that
some 32% of total area was classified as probable consociations with > 75% of the
dominant soil type, 36% as associations and 32% as complexes. All this indicates
that the SMUs have been described as compound and often heterogeneous.
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Table 8.5: Summary results on the thematic accuracy of point data with comparison to
the expected physical range of variables in Croatia.

Observed pa-
rameter

Estimated
range of
variation
(R)

RMSE es-
timated
at control
points

Number of
samples

Precision
RMSE/R

Sand % 0–80% 12.8% 21 ±16.0%

Fine silt % 0–80% 12.3% 21 ±15.4%

Clay content
(%) 0–80% 12.0% 21 ±15.0%

pH (H2O) 4.5–8.5 0.82 18 ±20.5%

pH (MKCl) 3.5–7.5 0.66 18 ±16.5%

Organic mat-
ter (%) 0–30 2.6% 14 ±8.7%

Carbonates
(%) 0–30 4.7% 9 ±13.8%

Overall ±15.7%

Analysis of the thematic contrast of soil mapping units for clay content (%), pH
and OM (%) in the topsoil showed that the SMUs from the 1:300 K Soil map are
fairly heterogeneous within the SMUs (Table 8.6). The SMU showed high relative
variation of 17% in average for these three variables. These properties also showed
fairly low interclass correlations ranging from 0.14 to 0.34. Nevertheless, analysis of
variance showed that there are highly significant (p > 0.01) differences between the
65 SMUs.

The average probability of thematic overlap showed that the adjacent SMUs af-
ter sorting in feature space did not show significant difference (p∩(x) > 95%). This
means that the overall contrast of the constructed map is low. The geographically-
adjacent SMUs showed an average 66% overlap of the variation between neighbour-
ing SMUs, which is more satisfactory. These three summary values show that the
effective contrast of the 1:300 K soil map is relatively low, which does not have to
be due to the poor delineations or legends, but is the effect of the relatively general
scale.

The derived attribute map for clay content and relative variation within the
units is shown in Fig. 8.5 a and b. In this case, the areas of higher relative variation
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Table 8.6: Summary results for the thematic contrast of SMUs for 1:300 K soil map based
on the clay content, pH and OM.

Range of variation
calculated from
2198 profiles

Average
relative
variation

Fisher’s
test
ratioa

Interclass
correla-
tion

Average probability
of thematic overlap

Property µ̄± σ(R) s̄r(x) F ri(x)
p∩(x)
(sorted
polygons)

p∩(x)
(neigh-
bouring
polygons)

Clay content
(%)

28.1 ±13.3(53.2) ±19.5% 14.9** 0.19 96.5% 67.4%

pH in H2O 6.4 ±1.19 (4.8) ±17.1% 31.2** 0.34 95.5% 65.0%

OM % 8.4 ±8.4 (33.6) ±13.8% 10.5** 0.14 96.3% 65.4%

Overall ±17% 96% 66%

a** – Significant at 0.01 level.

(e.g. > 25%), indicated as darker, should not be used to produce attribute maps.
Fig. 8.5d shows two examples of high and low thematic overlap for neighboring
polygons.

8.3.6 Usability issues

From our interviews we concluded that the most of the government departments
involved in physical planning, agricultural extension and environmental protection
are not using existing soil data to its fullest potential. The main usability problem
seems to be lack of interpreted information at an appropriate scale. Agricultural ex-
tensionists, who should use this data routinely, use it rarely and only qualitatively,
despite the large amount of analytical data associated with each soil subtype. For
use at detailed scales, the problem appears to be two-fold. First, most map units are
compound and map users (planners or extensionists) are rarely capable of finding
the components in the field by their landscape relations. In some reports the map
unit’s heterogeneity (degree of internal contrast) is given, so that for more homoge-
neous units the dominant component can be used for planning. Second, there are
no interpretations (land evaluations) of the predicted performance of various Land
Utilization Types, or even crops, on each map unit. Such tables can be used directly
in decision making. In the current situation, only those users who are trained in the
use of primary soils data can make any sense of the maps.
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Figure 8.5: Attribute map of clay content (%) (a), density histogram (b), map of relative
variation within SMUs (c) and two examples of high and low thematic overlap between the
neighbouring SMU pairs (d). P is the probability of thematic overlap (p∩(x))

At smaller scales, the principal users of soil data in Croatia are:

� Croatian waters, a government agency;

� County planning offices (eight of twenty-one in total); and

� Departments of the Ministry of Nature Protection and Physical Planning.

Together these are only about one quarter of all users that might benefit from the
soil geoinformation. Their satisfaction with current products depends mainly on
how well their professional background allows them to make their own interpreta-
tions from the supplied purely pedologic information and the level of detail needed.
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Preconceptions from the user’s own field of expertise colour their perceptions of the
soils data. For example, land surveyors and GIS professionals were put off by the
fact that boundaries in adjacent map sheets do not match. This certainly reduces
their confidence in the product.

8.4 Conclusions and discussion

8.4.1 Lineage

The analysis of adequacy and data quality was difficult as the data has not been
fully integrated and the detailed metadata is missing. In some cases we were able
to understand the exact methodological steps only from the conversation with the
surveyors involved. A good example is the problem of changing from the old to the
new coordinate system. The soil map of Croatia was produced using the military
1:50 K topo-maps, which were based on the field measurements from the 1930’s. This
map needed to be transformed to a new system of ground control points. Although
the coordinates differ by only a few hundreds of meters on average, transformation
from old to new co-ordinate system is rather complex (Radošević, 1979). This means
that without the help of land surveyors, the old soil maps can not be accurately
integrated into the GIS. We have first overlaid the digitised soil boundaries over the
georeferenced original maps and concluded that the discrepancy can be estimated
with a systematic shift. We then measured this shift in six points from different
parts of the country, which gave us a coordinate correction parameters (dX=135 m,
dY =-65 m). This example clearly shows how the lack of metadata can lead to
inaccuracies in the GIS that are significant but not easily solvable.

8.4.2 Effective scale

Although the soil maps and survey reports from the national inventory seem to be of
high quality and with lot of detail, it is clear that the aimed scale of 1:50 K was not
achieved in more than 95% of sampled map sheets. We have estimated the effective
scale to be about (Fig. 8.6):

� 1:150 K based on the ASD;

� 1:250 K according to the inspection density;

� 1:150 K according to the spatial accuracy of soil boundaries

Similarly, the shape complexity index showed rather simple geometries of delin-
eations. Thus, the National soil inventory in Croatia can be classified as the small
scale or medium intensity survey (Avery, 1987). This means that this is a national
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or regional land inventory, which is applicable for evaluation of extensive uses and
only general land use planning purposes and not for agricultural extension, civil
engineering projects or county level land use planning.

Logical consistency and completeness Considering the consistency and complete-
ness, the National soil inventory shows number of discrepancies. Fig. 8.7a shows
how the average density of profiles per 1000 ha varies per map sheet, which indi-
cates rather different sampling densities in two parts of the country. The right part
of the same figure shows the printed and not finished reports, i.e. reports that are
still kept only as working materials, such as sketches, drawings, handwritings etc.
(Fig. 8.7b). These two elements of data quality indicate that the project was not
finalised and it requires further comparison of different sub-projects.

Accuracy of map legends The validation of accuracy of legend and its compo-
sition showed that there is a significant difference between the original legend and
validation. Both for the lowest level (form) and higher level of taxa (subtype), the
χ2 test showed that the composition of the map units was not accurately repre-
sented. The BSMC even failed a strict binomial test of accuracy (not considering
composition), but was satisfactory when soils were grouped by higher taxa or by
similarity. The number of profile observations (114) was not large enough to ensure
reliable statistics for ten map units with around 40 taxonomic classes. We estimate
that it would take few hundreds random observations to accurately evaluate all 65
SMUs described in Croatia, therefore, these results should be taken with caution.
However, we can in general claim that the overall thematic accuracy of legend is
lower than mapped, except when soils are grouped by interpretive similarity. There
are probably several reasons for this:

� the percentage of soil taxa in the original legends has been subjectively ap-
proximated without field sampling such as transects;

� in some cases surveyors placed soil classes that did not appear in the actual
soilscape;

� this may be a gross error or perhaps a case where surveyors mapped the ex-
pected class without field confirmation;

� soil classes are not defined with exact criteria, which allows several interpre-
tations — these can be grouped by similarity, which is one reason why the
relaxed test gives better results.

The last reason makes it especially hard to produce an accurate legend or be
certain about the validation test. For example, we noticed in several locations
that profiles classified as Dystric Cambisols, illuviated, could have been equally well
classified as Luvisols and the legend test would have been less negative. In many
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Figure 8.6: Summary adequacy aspects displayed graphically. The normal distribution
curves indicate sampled average value and standard deviation of the adequacy measure,
while the sample measurements are indicated with boxes.
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Figure 8.7: Example of methodological inconsistency (a) and incompleteness (b) of the
National soil inventory in Croatia.

cases the CYS allows two or more interpretations, which can even be equally good
and in fact are grouped in interpretive classifications. For example, less-developed
soils on sloping terrains in Popovac area have been classified as Regosols on loess.
The same locations could have also been classified as Colluvial soils. All this leads to
a conclusion that a) estimated percentages of soil types can not be used for detailed
planning and b) the CYS should be either improved or replaced with an analytical
system such as the World Reference Base for soil classification (WRB) (FAO, 1998).

8.4.3 Thematic contrast and accuracy of profile observations

A statistical analysis for the 2198 profiles when compared in 65 SMUs using three
chemical/physical soil properties showed that the SMUs are rather heterogeneous
with small overall contrast of the attribute maps. It would be interesting for a future
study to apply these tests to a larger scale survey and compare how heterogeneous
will be the delineations between each other and eventually provide some standards.

Similarly, we concluded that precision of the soil attributes attached to soil pro-
files is not realistic. In this case, we estimated a relative error of ±15.7%, which was
fairly close to the lowest efficient limit (25%). A user of a soil map, not necessarily
introduced in the field of soil science, would expect to find the same soil types and
measure similar soil attributes at the given point locations where the original profile
observations were made. This is typically not the case in soil survey, where the
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local field variation is high. Moreover, a comparative work at ISRIC (van Reeuwijk,
1984), showed that, even the RMSE in laboratory results from the same soil sam-
ples could easily exceed ±11% for clay content, ±0.2 units for pH and ±20% for
CEC. All this leads to conclusion that one can not expect to measure the same soil
properties on the field as described in the database and therefore a relative error
of ±10% should always be expected. The problem remains of how to communicate
this to the survey user.

8.4.4 Usability problems

The reasons why the soil data in Croatia is poorly used and often only quantitatively
are more complex than an adequacy analysis can show. Moreover there are no
simple measures to quantify the usability, except the number of users and user’s
satisfaction. Finally, we have identified the three main causes, which inhibit the
growth of applications:

1. Missing legislative framework — the accessibility and distribution policy for
the soil data in Croatia is not clear neither transparent. Most often, the choice
of using or ignoring information on soils is left to the decision makers, i.e. local
government or land use planning office leaders. Professional soil scientists or
soil surveyors are usually not assigned to land-use planning teams, which are
in Croatia mainly guided by architects.

2. Legend and terminological concepts not understandable by end users — espe-
cially the soil classification system and the concept of soil types and soil bodies
used in Croatia are unknown to most of users and therefore unpopular. The
users in principle ask for interpretations, i.e. maps of soil attributes and land
characteristics, while the soil maps typically shows only the distribution of soil
types with accompanied legend.

3. Inventory products not adjusted to users — a common aphorism used for soil
maps ”the soil scientists make maps for them selves”, applies in Croatia also.
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Chapter 9

Conclusions and Discussion

“Scientific progress is like climbing a mountain — you climb and
you climb and eventually you have a better overview of the things

than the people at lower elevations.”

[by A. Stein, during a mid-term meeting]
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9.1 Conclusions

The general conclusion of this research is that combined pedometric techniques en-
hance the practice of soil mapping, making soil maps more objective, detailed and
more compatible for integration with other environmental geo-data. Examples from
this thesis show that we no longer, hic et nunc, need to use the concept of soil
mapping units or use double-crisp soil maps. On the other hand, instead of aban-
doning photo-interpretation, soil classification or empirical knowledge on soils, these
methods can be successfully integrated with pedometric techniques. Other specific
conclusions relate to the research questions posed in the Chapter 1:

SAMPLING: The allocation of points in both feature and geographical space plays
an important role for the efficiency of prediction. Information on feature space
and the spatial dependence structure of the predictors can be used prior to
the actual soil data collection to design the sampling. A sampling design
with equal spreading in both geographical and feature space should be used
to optimise the accuracy of prediction for general purpose surveys. If a higher
number of auxiliary maps is used for prediction, principal component analysis
can be used to reduce multicollinearity and to produce orthogonal variables.

PRE-PROCESSING: Inaccuracies and artefacts in auxiliary maps, especially in
terrain parameters, can greatly affect soil mapping. Although these can be
hard to detect in the final prediction maps, the quality of DEM-derived maps
will be low. Moreover, local errors will commonly propagate to their neigh-
bours and finally occupy larger area than in the original auxiliary maps. Arte-
facts and outliers in terrain parameters can be systematically reduced by im-
proving the plausibility of a DEM, filtering outliers and by averaging multiple
realisations.

PHOTO-INTERPRETATION: The terrain parameters derived from a DEM
show strong correspondence with the photo-interpretation units. Hence, su-
pervised classification of terrain parameters can be used to replace the photo-
interpretation. However, this correspondence is strong only if the changes in
the relief are distinct, which is often not the case in plain areas. This is be-
cause the quality of terrain parameters is typically lower in the areas of low
relief. The second problem is that some geomorphic features are shaped ei-
ther by irregular fluvial, geological or climatic processes such as over-flooding,
landslides, wind erosion, faulting etc. In this study, the problematic land-
forms were levees, overflow channels, scarps and point-bar complexes. Such
features can still be more accurately mapped by using photo-interpretation
(image contrast, texture and pattern), geological data and field checking.
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INTERPOLATION: Regression-kriging based on a mixed model of spatial vari-
ation is a suitable generic spatial prediction model that can replace plain en-
vironmental correlation or ordinary kriging and the use of a continuous or
discrete model of spatial variation. The logit transformation of the response
variable is a useful for the prediction, especially if the response variable has a
skewed distributions. This transformation prevents predictions outside physi-
cal limits and, in many cases, ensures the normality of residuals. In addition,
transformation of predictors to independent factors typically helps in selecting
a smaller (optimal) subset of predictors during the step-wise regression.

VISUALISATION: Multiple membership maps produced by continuous classifi-
cation can be displayed using the HSI colour model, colour mixing and cir-
cular legend. This tool is not only useful to visualise the membership maps
(soil types) at once but can also be used as a tool for generalization and vi-
sualisation of uncertainty. The circular HSI legend is limited to seven generic
colours, hence, the similar soil types will be given a similar colour. Whiteness
gives a better impression of classification uncertainty than if only saturation is
used. The derived uncertainty can be used to depict transitions and areas of
higher confusion. This visualisation tool is applicable to any natural resource
inventories where categorical data are used (vegetation types, geoforms etc.).

ORGANIZATION: The key advantages of a hybrid grid-based SIS compared with
the conventional double-crisp model are that it is in general more detailed
and more accurate. Moreover, it employs auxiliary information in a more
systematic manner, it is easier to both manipulate and to (dis)aggregate. It
can adopt existing conventional soil databases as it represents a generalization
of the conventional model. Selection of the suitable grid size can be related to
the cartographic scale, i.e. maximum location accuracy, to minimum legible
delineation area, or to the environmental heterogeneity of an area and size of
the management units. The described SIS is potentially more attractive to
external soil users because it is easier to manipulate and because it aims to
map soil types and soil variables at a high level of detail.

QUALITY CONTROL: The true quality of conventional soil resource invento-
ries can differ significantly from the prescribed soil survey standards. This
happens especially when subjective methods are used to locate soil samples,
delineate soil bodies, classify soils or make legends for mapping units. In
the case of the National Soil Inventory in Croatia, the effective scale and us-
ability of the soil data, especially for soil boundaries and legends, has been
over-optimistic. Assessment of the adequacy and quality measures has shown
that the Croatian data set is of little use for county level and regional level
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land use planning. The soil mapping units are of relatively low thematic pu-
rity and show high thematic overlap between the adjacent units. Moreover,
the concept of soil types and mapping units has remained un-popular among
non-specialists for the last 30 years, which also constrains its usage. For fu-
ture projects, the control of data quality and usability needs to be taken into
account as an important step in the production of soil geoinformation.

9.2 Reliable modelling of soil variation

The first step towards reliable modelling of soil variation is to understand the sources
and the types of errors inherent in them. The sources of error in (spatial) soil data
can be grouped into two main groups: measurement errors and natural spatial vari-
ation (Burrough & McDonnell, 1998). Measurement errors typically occur during
the positioning in the field, during sampling or the laboratory analysis. These errors
should ideally be minimized, because they are not of primary concern for pedome-
tricians. The second step towards reliable modelling is to account for all aspects
of natural variation. Although spatial prediction of soil variables is primarily con-
cerned with geographical variability, there are also other aspects of natural soil
variation that are often overlooked by many pedometricians. This problem is nicely
emphasized by Florinsky et al. (2002), for example. Also in this research, I have
(unintentionally) focused on the geographical aspect of soil variability only. . . to
discover finally that the mixing of lab data from different seasons, depths and with
different support sizes in general means lower predictive power and problems in fully
interpreting the results.

In some cases (see, for example, predicting pH in chapter 5), ignoring other
sources of soil variability means that no existing interpolation method or auxiliary
map can ‘save’ its mapping. Similarly, even if the data are fitted successfully, e.g.
by using large list of auxiliary maps, prediction is not necessarily accurate. This
is because a precise prediction does not have to be an accurate one. In fact, an
imprecise estimation can sometimes be more accurate than a very precise one (Foote
& Huebner, 1995). This thesis certainly does not offer complete instructions for a
reliable modelling of soil variation. Some of the problems listed above will still make
it difficult to produce accurate, reliable and detailed soil maps. In order to achieve
this, one needs to keep in mind the four aspects of natural variation: geographical,
depth, temporal and scale. Bellow is an overview of the main concepts and problems
associated with each of these, illustrated using some familiar examples (Fig. 9.1).

Geographical variation (2D) Geographical variation is modelled using either a
continuous, discrete or mixed model. The results of interpolation are either
visualized as 2D maps (Fig. 9.1a) or cross-sections. Some soil variables, such
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as thickness of horizons, the occurrence of diagnostic properties or soil types,
do not have a third dimension, i.e. they refer to the upper (two) meters of the
surface mantle.

Depth — internal or vertical variation (3D) Many soil variables also vary with
depth. In many cases, the measured difference between the values is higher
at a depth differing by a few centimetres than at geographical distance of few
meters (Webster, 2000). Transition between different soil horizons can also be
both gradual and abrupt (Fig. 9.1b), which requires a double-mixed model of
soil variation for 3D interpolation. Some authors suggest the use of cumulative
values on volume (areal) basis to simplify mapping of the 3D variables. For
example, McKenzie & Ryan (1999) produced maps of total phosphorus and
carbon estimated in the upper 1 m of soil and expressed in tons per hectare,
which then simplifies production and retrieval.

Temporal variation Chemical soil variables, such as pH, CEC, nutrients (Fig. 9.1c),
water-saturation levels and water content, measured at the same location, can
vary over a few years, within a single season or even over a few days (Heuvelink
& Webster, 2001). Temporal variability makes the prediction process especially
complex and expensive. Maps of soil variables produced for two different time
references can differ significantly. This means that a produced map is valid for
a certain period (or moment) of time only. However, in many case the seasonal
periodicity of soil variables is regular so that prediction does not necessarily
require new samples. Another solution is to predict the changes in soil prop-
erties by measuring controlling factors. For example, accurate multi-temporal
maps of groundwater depth can be used to account for the seasonal variation
of chemical soil properties.

Support size Support size is the discretisation level of a geographical surface and is
related to the concept of grid size in a grid-based GIS. In the case of regression-
kriging, there are two support sizes: the size of the blocks of land sampled, and
grid resolution of the auxiliary maps. Soil samples are typically collected as
point samples. The support size of the auxiliary maps is commonly much larger
than the actual blocks of land sampled, e.g. auxiliary variables are in general
averaged (smoothed), while the soil data can present local (micro) features.
As a result, the correlation between the auxiliary maps and soil measurements
is often low or insignificant. There are two solutions to this problem: a) to
up-scale the auxiliary maps or work with super-high resolution/detail data
(e.g. IKONOS images of 1 m resolution) or b) to average bulk or composite
samples within the regular blocks of land (Patil, 2002). The first approach
is more attractive for the efficiency of prediction, but at the cost of more
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processing power and storage. The second solution will only result in a better
fit, whereas the efficiency of prediction, validated using point observations,
may not change significantly.

From the discussion above, the following seven recommendations are taken as
essential to the reliable modelling of soil variation1:

1. Spatial soil variability is commonly a result of complex soil processes working
at the same time and over long periods of time, rather than an effect of a single
realization of a single soil-forming factor.

2. The mixed model of spatial variation is better suited than either continuous
or discrete models to deal with both the geographical and internal variability
of soils.

3. Functional relations between soil variables and predictors are in general un-
known and the correlation coefficients can differ for different study areas, dif-
ferent seasons and different scales. However, in many cases (see for example
models for organic matter in chapter 2 and solum thickness in chapter 3), re-
lations with the environmental predictors often reflect causal linkage: deeper
and more developed soils occur at places of higher potential accumulation and
lower slope; soils with more organic matter can be found where the climate is
cooler and wetter; textural fractions follow the type of parent material etc.

4. If the focus of prediction modelling is solely the geographical component (2D),
then the samples need to be taken under fixed conditions: same season, same
depths, same blocks of land. This also means that each 2D map of a soil
variable should always indicate a time reference, referred depth and the sample
(support) size.

5. The grid size in a grid-based SIS should ideally be a few metres (i.e. the size
of a pedon). The smaller support sizes mean more detailed terrain parameters
and remote sensing images, which will then also be reflected in the efficiency
of prediction.

6. For reliable prediction modelling, it is important to analyze the uncertainty
‘budget’ of the prediction model, i.e. explain the composition of the total
variability of the response variable. In the case of regression-kriging, this will
show how much of the error due to the measurement error, how much has been

1Note that some of these were not actually proven: these are empirical recommendations, which
will need to be refined and tested in the future real case studies.
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Figure 9.1: Some considerations related to the four aspects of soil variability: (a) Geo-
graphical variability — perception of soil variability as a realisation of stationary Gaussian
random process visualised as a 2D map — example from Heuvelink & Webster (2001); (b)
Stratigraphy or vertical variability — change between the soil horizons can be both continu-
ous and abrupt; (c) Temporal variability — change in Nitrogen content measured at a same
location in periods of three months — example from Stenger (1996); (d) Support (grid)
size — predictions of the same variable from fine and coarse grid data might give different
pictures — example from Thompson et al. (2001).
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accounted for by the predictors, how much by the kriging and how much is
uncorrelated noise. Systematic assessment of the uncertainty budget prevents
over-fitting and making biased or over-optimistic predictions.

7. True uncertainty of prediction can only be assessed using the spatially inde-
pendent but representative validation set.

9.3 Pedometric demand-driven soil mapping

It is not only the development of a reliable modelling of spatial distribution of
soils that can guarantee a high quality and popular product. Soil mappers will
increasingly need to find a balance between the availability of funds, models, tools
and users’ demands. In fact, the key challenge for future soil mapping projects will be
to identify and meet SIS customers’ needs (Indorante et al., 1996). This book can be
considered as an attempt to adjust pedometric techniques for operational surveys. It
can serve as a methodological guide for the production of grid-based SISs at various
resolutions. The suggested outline of a pedometric demand-driven grid-based SIS is
illustrated in Fig. 9.2. Five steps are common to all scales/intensities: the evaluation
of existing data and preparation, design, data organization, soil data collection and
the analysis and production of geoinformation. This means that intensive interaction
between the users and soil geo-data producers is especially important during the
evaluation of quality and usability of existing data, the selection of the key land
characteristics and the preparation of the predictors and sampling plan. Note that
the circular structure not only suggests re-cycling of the soil data, but also implies
a need to periodically update soil geo-information with new interviews, surveys,
auxiliary maps etc.

9.4 Further research

Several subjects that have not been studied in depth may be of significance for the
future research. In addition, there are number of remaining questions and problems
in the area of pedometric mapping that need to be tackled. I have tried to group
these to produce a list of the most challenging topics, each of which is probably
worth pursuing as a PhD research project.

Sampling optimisation in geo- and feature space Chapter 2 gives an exten-
sive introduction to sampling optimisation, however, many problems are left
unsolved. Moreover, it may strike a reader that the there is a significant dif-
ference between the theoretical design (Fig. 2.3) and what was really achieved
for the data set (Fig. 2.9). Also the number of points used (25) is probably
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Figure 9.2: Schematic flowchart of a demand-driven production of soil geoinforma-
tion.

too low to make some serious conclusions. Hence, more systematic research is
needed to clarify these differences and develop a flexible framework for sam-
pling optimisation. Is there any advantage of using the spatial decomposition
of principal components? How to integrate geostatistical optimisation tech-
niques and allocation in multivariate feature space? Which combined criteria
should be used for this purpose and how will this affect the efficiency of pre-
diction?

Integration of GIS and (geo)statistics As already introduced in chapters 1, 2
and 5, so called CLOPRT techniques and geostatistics are two separate paths
to spatial interpolation. Although the theory (universal kriging) for their com-
bination was described by Matheron (1969) some 30 years ago and although
there have been many case studies, the number of user-friendly packages for
‘universal interpolation’ is still low (Goovaerts, 1999b). One package that fully
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supports interpolation of point data by employing both the correlation with
auxiliary maps and spatial dependence is the GSTAT developed by Pebesma
& Wesseling (1998). GSTAT is a General Public License package that can
use different GIS extensions from Idrisi to ESRI and GRASS. However, even
in GSTAT, a combination of generalized models and kriging cannot be fully
employed nor automated. The generic framework for spatial prediction, as
described in chapter 5, is a further step towards a full integration of GIS and
kriging. The method has been described and tested, and now needs to be in-
tegrated within a GIS package. In the case of ILWIS, for example, this means
that algorithms normally not available in ILWIS, such as step-wise regression,
automated variogram modelling and others, need to be incorporated within
the GIS package in order to make the framework operational. The framework
can also be extended to the ML, REML or neural network systems. The re-
maining question is how will this bundle algorithm perform if used with large
number of predictors and response variables? What are the limitations and
can it be fully automated such that only minimum input is required from the
user?

Soil-landscape genesis modelling Instead of merely fitting the soil profile data
using some (geo) statistical technique, a more promising approach to the pre-
diction of soil properties and soil behaviours is to make physically-sound quan-
titative models of soil-landscape genesis (Hoosbeek & Bryant, 1992). With the
rapid development of GIS dynamic modelling, these virtual landscapes are of-
ten visualised as 3D animations (Mitasova et al., 1997; Burrough & McDonnell,
1998). Minasny & McBratney (2001) have developed a rudimentary model of
soil-landscape evolution. Königel (2002) has been working on the predictive
model of geo-ecological evolution. Both groups demonstrated the power (and
problems) of such systems at the World Congress of Soil Science in Bangkok.
The impressions were generally positive, although there were some reluctant
voices. The two soil genesis models mainly describe processes controlled by
relief. These are then used to make inference about the chemical weathering or
development of soil taxa. A future step will certainly be to include the other
‘letters’ from the CLORPT equation. One can imagine that the quantitative sim-
ulation of soil genesis might turn out to be as non-linear as with the long-term
weather forecast. In fact, quantitative predictive modelling of climatic features
was one of the first real-life proofs of chaos theory. It could also be the case
that the integrative modelling of soil genesis will finish in a similar dead-end:
although the modelling of deposition/accumulation processes may seem easy,
the influence of organisms and climate is often random or non-linear (Phillips,
1994). As emphasized by Webster (1994): “Solving the full system of multi-
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variate equations needed to describe the products of soil genesis in individual
regions, let alone globally, remains one of the biggest challenges for pedome-
tricians”. How can specific soil features/processes, such as buried horizons,
fossil soils or karstic features be modelled? Is it still the case that mapping
these by means of API and radar-based remote sensing is much easier than
predictive soil modelling? Will it ever be possible to reconstruct the observed
distribution of soils and their properties? How should the knowledge-based
algorithms be integrated with the spatial prediction models?

Continous soil-type maps The methodology for producing continuous categori-
cal maps explained in chapter 6 and its application to soil mapping described
in chapter 7, needs to be tested in operational mapping projects with tens of
soil types and larger areas. Moreover, it would be interesting to link this clas-
sification and visualisation tool directly with the selection of training sets and
the definition of classes. This would help in selecting the optimal number and
definition of classes. Furthermore, it would be interesting to compare the way
the double continuous approach with the fuzzy-metric legend behaves in those
special cases when the number of categories is very high or when categories
are fairly distinct and vice versa? What are the constraints of the continuous
soil maps and are they more user-friendly than the conventional double-crisp
maps? Do we still prefer the hard maps? How suitable is the visualisation of
uncertainty with whiteness and how well do users interpret the circular legend?
Does the taxonomic uncertainty reflect true extra-grade classes or is this an
error in the sampling procedure or in the definition of classes?

Advancing the grid-based SIS for land use planning The suggested hybrid
grid-based SIS (chapter 7) is the core of this book as it brings together theory
from different chapters and shows its application to soil mapping and evalu-
ation. However, many questions still remain. How universal is this SIS and
can it be used in operational survey? How much processing power and time
will it need for a large study area or if it is used at large scales? How does it
is affect applications? Is there an alternative GIS format that could incorpo-
rate mixed model of variation while saving digital storage? How to produce
a true 3D grid-based GIS of soilscapes? Ventura et al. (1996) suggested that
voxels might be used to achieve this goal. Grunwald & Barak (2003) recently
developed a number of Virtual Reality Modeling Language tools for the visu-
alisation of 3D soilscapes via the world wide web. How practical are voxels
and should we limit ourselves to 3D drapes of 2D surfaces and cross-sections?
Should these examples only be considered by scientists and teachers, or are
they also of interest to engineers and farmers?
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Assessing the usability of soil geographical databases In recent years, there
has been considerable attention aimed at the development of a methodology
for the assessment of the usability of geographical databases. The Centre for
Geoinformation at the Wageningen University has hosted several workshops
and seminars on this topic, in one of which I also participated. A report of this
workshop (Wachowicz et al., 2002) emphasized four aspects of usability: (1)
data quality (accuracy, completeness, logical consistency); (2) data form(at);
(3) data accessibility and price and (4) quality of the metadata. The impor-
tance of each of these aspects may differ from user to user. For example, for
environmental modellers the incompatibility, low thematic contrast and detail
of multi-source environmental geo-data will especially militate against their
full usage (Lilburne, 2001). Although more and more technical measures are
introduced to quantify the adequacy of soil geoinformation, a methodology
that could be used to quantify ‘usability’, i.e. objectively measure usability,
is still missing. Is this merely a question of the number of users and their
satisfaction? The assessment of usability is much more difficult since it needs
to take into account a number of technical, organisational and sociological as-
pects at the same time. How does the price and accessibility of the products
reflect on usability of SIS products and how could the usability of an existing
SIS be improved?
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Summary

Hengl, T. 2003. Pedometric mapping: bridging the gaps between the conven-
tional and pedometric approaches. PhD thesis, Wageningen University.

In recent years, digital soil mapping has faced rapid development of new and economic
methods, mainly due to the increasing sources of auxiliary maps. The main objective of
this research was to develop a methodology for pedometric mapping that can be used to
bridge gaps between the mechanistic pedometric and conventional techniques. The the-
sis covers seven methodological aspects of soil mapping: sampling, pre-processing, photo-
interpretation, interpolation, visualisation, organisation and quality control.

SAMPLING: This chapter evaluates spreading of observations in feature and geographi-
cal spaces as a key to sampling optimisation for spatial prediction by correlation with
auxiliary maps. Although auxiliary data are commonly used for mapping soil vari-
ables, problems associated with the design of sampling strategies are rarely examined.
When generalized least squares estimation is used, the overall prediction error depends
upon spreading of points in both feature and geographical space. Allocation of points
uniformly over the feature space range proportionally to the distribution of predictor
(equal range stratification or ER design) is suggested as a prudent sampling strategy
when the regression model between the soil and auxiliary variables is unknown. An
existing 100-observation sample from a 50×50 km soil survey in central Croatia was
used to illustrate these concepts. It was re-sampled to 25-point datasets using dif-
ferent experimental designs: ER and two response surface designs (minmax and D2).
The designs were compared for their performance in predicting soil organic matter
from elevation (univariate example) using the overall prediction error as an evalua-
tion criterion. The ER design gave similar overall prediction error as the minmax
design, suggesting that it is a good compromise between accurate model estimation
and minimisation of spatial autocorrelation of residuals. In addition, the ER design
was extended to the multivariate case. Four predictors (elevation, temperature, wet-
ness index and NDVI) were transformed to standardised principal components. The
sampling points were then assigned to the components in proportion to the variance
explained by a principal component analysis and following the ER design.

PRE-PROCESSING: Quality of DEMs and DEM-derived products directly affects the
quality of terrain analysis applications. Three approaches to the reduction of errors in



DEM and DEM-derived products have been described: (a) by using empirical knowl-
edge, e.g. to adjust elevations using medial axes or stream networks; (b) by applying
filtering operations and (c) by error propagation. Filtering operations are used to
replace erratic values or reduce outliers using the spatial dependence structure and
probability of exceeding a value estimated from the neighbours. In the case of error
propagation, the errors are reduced by calculating the average value of multiple re-
alisations. The methods were tested using a 3.8×3.8 km sample area covering two
distinct landscapes: hilland and plain with terraces. The contour data was interpo-
lated using the linear interpolation. The proportion of artefacts (padi terraces) in
the unfiltered DEM was 17.3%. After the addition of medial axes, filtering of outliers
and adjustment of elevation for streams, the proportion of padi terraces was reduced
to 2.2%. Remaining errors in terrain parameters such as undefined pixels and local
outliers were reduced using filtering with iterations and by error propagation. The
proportion of outliers in all terrain parameters did not exceed 2% of the total area.
Both the filtering approach and error propagation give somewhat smoother maps of
terrain parameters. The advantage of filtering of outliers is that it employs the struc-
ture of the spatial dependence. The advantage of error propagation is that it can be
easier automated. The reduction of errors improved the mapping of landform facets
(classification) and solum thickness (regression). The classification accuracy increased
from 51.3% to 72% and the R2 of the regression model for the prediction of the solum
thickness increased from 0.27 to 0.40.

PHOTO-INTERPRETATION: A method to enhance manual landform delineation us-
ing photo-interpretation to map a larger area is described. Conventional aerial photo-
interpretation (API) maps using a geo-pedological legend of 21 classes were prepared
for six sample areas totaling 111 km2 in Baranja region, eastern Croatia. Nine terrain
parameters extracted from a digital elevation model (ground water depth, slope, plan
curvature, profile curvature, viewshed, accumulation flow, wetness index, sediment
transport index and the distance to nearest watercourse) were used to extrapolate
photo-interpretation over the entire survey area (1062 km2). The classification ac-
curacy was assessed using the error matrix, calculated by comparing both the whole
API maps and point samples, with the results of classification. The first results, us-
ing a maximum-likelihood classifier, were 58.2% (hill land), 39.1% (plain), and 45.3%
(entire area) reproducibility of the training set. Six classes in the plain were respon-
sible for a large proportion of the misclassifications, due to an insufficiently detailed
digital elevation model and the complex nature of landforms (point bar complexes,
levees, active channel banks), which can not be explained with the terrain parame-
ters only. Reproducibility for a simplified legend of 15 classes over the study area
was improved to 65.8% (plain), 58.2% (hill land) and 63.4% (entire area) using the
whole-API training set. After the simplification of legend (15) and with the iterative
(3) selection of point-sample training set, classification was able to reproduce 97.6%
(hill land), 86.7% (plain), and 90.2% (entire area) of the training set. The supervised
classification showed fine details not achieved by photo-interpretation. The number
of manual photo-interpretations that had to be prepared was reduced from 84 to 6.

INTERPOLATION: A methodological framework for spatial prediction based on regression-



kriging is described and compared versus ordinary kriging and plain regression. The
data are first transformed using logit transformation for target variables and factor
analysis for continuous predictors (auxiliary maps). The target variables are then
fitted using step-wise regression and residuals interpolated using kriging. A generic
visualisation method is used to simultaneously display predictions and associated un-
certainty. The framework was tested using 135 profile observations from the national
survey in Croatia, divided into interpolation (100) and validation sets (35). Three tar-
get variables: organic matter, pH in topsoil and topsoil thickness were predicted from
six relief parameters and nine soil mapping units. Prediction efficiency was evaluated
using the mean error and root mean square error (RMSE) of prediction at validation
points. The results show that the proposed framework improves efficiency of predic-
tions. Moreover, it ensured normality of residuals and enforced prediction values to be
within the physical range of a variable. For organic matter, it achieved lower relative
RMSE than ordinary kriging (53.3% versus 66.5%). For topsoil thickness, it achieved
a lower relative RMSE (66.5% versus 83.3%) and a lower bias than ordinary kriging
(0.15 versus 0.69 cm). The prediction of pH in topsoil was difficult with all three
methods. This framework opens a possibility to develop a bundle algorithm that can
be implemented in a GIS to interpolate soil profile data from existing datasets.

VISUALISATION: A method to visualise multiple membership maps, called “Colour
mixture” (CM) is described and compared to alternative techniques: defuzzification
and Pixel mixture. Six landform parameters were used to derive the landform classes
using supervised fuzzy k-means classification. The continuous categorical map is de-
rived by GIS calculations with colours, where colour values are considered to represent
the taxonomic space spanned by the attribute variables. Coordinates of the 9 class
centres (landform facets) were first transformed from multivariate to two-dimensional
attribute space, and then projected on the Hue Saturation Intensity (HSI) colour-
wheel. The taxonomic value was coded with the Hue and confusion with Saturation.
To improve visual impression, saturation was replaced with whiteness. Classes that
were closer in attribute space were merged into similar generic colours. The CM tech-
nique limits the derived mixed-colour map to seven generic hues independently of the
total number of classes, which provides basis for automated generalisation. Satura-
tion derived from the mixed-colour map was used to derive primary boundaries and
to locate areas of higher taxonomic confusion.

ORGANIZATION: The key concepts, operations and organizational structure of a grid-
based Soil Information System (SIS) are compared to a conventional polygon-based
SIS and illustrated with a case study of a 3.8×3.8 km area in eastern Croatia. The key
spatial entity in this system is a grid cell and all GIS layers were brought to the same
grid resolution (25 m in this case). The soil variables were modelled using the mixed
model of spatial variation, so that both discrete and continuous transitions were pos-
sible. The SIS, in this case study, included 21 predictor maps (photo-interpretation
map, terrain parameters and remote sensing images), six maps of soil variables (solum
thickness, occurence of the mollic, calcic and gleyic horizon, toposil thickness and top-
soil silt content) and six derived maps of soil types. Each soil variable was interpolated
using a hybrid interpolation technique (regression-kriging). The interpolated maps



were then classified using a continuous classifier (fuzzy k-means) to produce member-
ship maps. These were then used to derive land suitability for wheat production on
a continuous scale (0–1), as an example of interpretation that can be derived from
the SIS. The photo-interpretation map was shown to be a somewhat better predictor
of the listed soil variables than the terrain and remote sensing maps. Comparison
of goodness of fit and thematic confusion showed that the grid-based SIS gives in
general better fit to the original data, higher level of detail and more reliable predic-
tions than the conventional (polygon-based) SIS. The advantages of the proposed SIS,
compared to a conventional survey, are: (1) it offers a map of soil types rather than
of the soil-mapping units; (2) all variables are mapped as continuous spatial fields at
fine grain of detail; (3) it offers a measure of uncertainty for both input and derived
maps; (4) both discrete and continuous transitions are possible and (5) the original
soil observations and interpolation/classification parameters are stored in tables as a
part of the SIS, so that derived maps can be updated. The disadvantages are: (1) it
is computationally demanding and requires a large amount of storage; (2) it is more
costly (collection and pre-processing of auxiliary variables) and (3) SIS is sensitive on
the quality of the input data.

QUALITY CONTROL: Methodology to assess the quality and adequacy of a national
soil resource inventory and to evaluate its usability is described. Six 1:50 K map
sheets (of 185 total), three control surveys (each of size 4×4 km) and ten full profile
descriptions in the main landscape regions of Croatia were used to estimate the effec-
tive map scale, accuracy of map legends and thematic accuracy of profile observations.
In addition, the existing digital data sets (soil map of Croatia at scale 1:300 K and
database with 2198 profiles) were evaluated for thematic purity and contrast for clay
content, pH and organic matter. New methods were developed and tested to assess
the spatial accuracy of soil boundaries and the thematic overlap among map units.
In the case study, the average polygon size and the positional accuracy of primary
soil boundaries (about ±40 m) correspond to the 1:150 K scale, while the inspection
density corresponds to the 1:250 K scale. Mapping units are heterogeneous with an
average relative variation of 17% within units and a mean thematic overlap of 66%
among geographically-adjacent units. There is a large difference between the original
legend and the validation sample when considered as taxonomic classes, but much less
so when classes are grouped by similarity. The inventory is adequate for small-scale
applications but not in general at detailed scales. The major usability problems are
compound map units, lack of specific interpretations corresponding to user needs, and
lack of legal clarity on ownership and use.

The general conclusion is that the proposed pedometric mapping methodology enhances
the practice of soil mapping making the soil maps more objective, detailed and more compat-
ible for integration with other environmental geo-data. There is no need to use the concept
of soil mapping units or use double-crisp soil maps anymore. On the other hand, instead
of abandoning photo-interpretation, soil classification or empirical knowledge on soils, these
methods can be successfully integrated with pedometric techniques.



Samenvatting

Hengl, T. 2003. Pedometrische kartering: overbrugging de kloof tussen de
traditionele- en pedometrische benaderingen. Doctoraal proefschrift, Univer-
siteit Wageningen.

Digitale bodemkartering heeft de afgelopen jaren een snelle ontwikkeling doorgemaakt
door nieuwe- en economische methoden, als gevolg van het beschikbaar komen van vele
soorten secondaire kaarten (terrein parameters, satellitbeelden etc.). Het hoofddoel van
dit onderzoek was om een methodogie te ontwikkelen voor pedometrische kartering die
gebruikt kan worden om de kloof te dichten tussen de mechanistische pedometrische- en
de traditionele benaderingen. De thesis beslaat zeven methodologische benaderingen van
bodemkartering: bemonstering, voorbewerking, foto-interpretatie, interpolatie, visualisatie,
organisatie en kwaliteitscontrole. Deze hoofdstukken zijn ingediend als wetenschappelijke
artikelen in internationale tijdschriften.

BEMONSTERING: Dit hoofdstuk behandelt de verspreiding van waarnemingen in de
data- en geografische ruimte als sleutel tot de optimalisatie van bemonstering voor
de ruimtelijke voorspelling tijdens de correlatie met secondaire kaarten. Ofschoon
deze kaarten veel gebruikt worden voor de kartering van bodemvariabelen worden
de problemen die te maken hebben met het ontwerp van een bemonsterings schema
zelden onderzocht. Wanneer de gegeneraliseerde kleinste kwadraten wordt toegepast
hangt de totale voorspellingsfout af van de verspreiding van de observatie punten over
de data- en de geografische ruimte. Het verdelen van bemonsteringspunten over de
dataruimte in proportie tot de verdeling van de voorspeller (equal range stratificatie of
ER ontwerp) wordt voorgesteld als een verstandige bemonsterings strategie wanneer
het regressie model tussen de bodem en de ondersteunende variabelen niet bekend is.
Om dit concept te illustreren werd een een gebied van 50×50 km in centraal Kroatië
met 100 waarnemingen gebruikt. Het gebied werd herbemonsterd tot 25 databe-
standen met verschillende experimentele ontwerpen: ER en twee responsie-oppervlak
ontwerpen (minmax en D2). Het ER gaf dezelfde voorspellingsfout als het minmax
ontwerp, wat aangeeft dat het een goed compromis is tussen nauwkeurige schatting
van het model en de minimalisatie van de ruimtelijke autocorrelatie van de restwaar-
den. Ook werd het ER ontwerp uitgebreid naar een multi-variatie studie. Vier voor-
spellers (hoogte, temperatuur, vochtigheidsindex en NDVI) werden getransformeerd
tot hoofdcomponenten. De bemonsteringspunten werden vervolgens toegewezen aan



de componenten in verhouding tot de variantie die bepaald werd door de Hoofdcom-
ponenten Analyse en volgens het ER ontwerp.

VOORBEWERKING: De kwaliteit van de toepassingen van de terrein analyse hangt di-
rect af van de kwaliteit van de digitale hoogte modellen (DEMs) en de hiervan afgeleide
data. Drie benaderingen voor reductie van fouten in DEMs en afgeleide data werden
beschreven: (a) het gebruik van empirische kennis, b.v. aanpassing van de hoogte
d.m.v. mediale assen en het drainage netwerk; (b) data filtreren en (c) foutenvoort-
planting. Data filtreren werd gebruikt om onregelmatige waarden te vervangen of om
uitschieters te reduceren door middel van de ruimtelijke correlatie struktuur en de
waarschijnlijkheid van het overschrijden van een waarde zoals geschat door naburige
waarden. Bij de foutenvoortplanting benadering worden de fouten teruggebracht door
berekening van de waarden van verschillende realisaties. Deze methode werd getest
in een proefgebied van 3.8×3.8 km waarin twee landschappen voorkomen: heuvel-
land en een vlakte met terrassen. Het gedeelte aan artefacten (padi-terrassen) in de
onbehandelde DEM was 17.3%. Na toevoeging van mediale assen, het filtreren van
uitschieters, en de aanpassing van de hoogten van het drainagepatroon, werd het aan-
deel van de padi-terrassen teruggebracht tot 2.2%. Uitschieters bestreken over het
gehele gebied niet meer dan 2%. Zowel filtreren als de foutenvoortplanting benader-
ing resulteerden in een wat gelijkmatiger kaartbeeld van de terrein parameters. Het
voordeel van filtering van uitschieters is dat het gebruik maakt van de structuur van
de ruimtelijke afhankelijkheid. Het voordeel van de foutenvoortplanting benadering is
dat het gemakkelijker geautomatiseerd kan worden.Vermindering van de fouten ver-
beterde de kartering van de landschap facetten (classificatie) en van de dikte van de
solum (regressie). De nauwkeurigheid van de classificatie nam toe van 51.3% tot 72%
en de R2 van het regressie model voor de voorspelling van de solumdikte verbeterde
van 0.27 tot 0.40.

FOTO-INTERPRETATIE: Een methode wordt beschreven die de handmatige omlijn-
ing van landvormen door middel van foto-interpretatie verhoogt voor het karteren
van een groter gebied. Traditionele API- kaarten met een geo-pedologische legenda
van 21 klassen werden vervaardigd voor zes testgebieden met een totale oppervlakte
van 11 sq.km in de Baranja regio van oost Kroatië. Negen terrein parameters werden
ontleend aan een digitaal hoogte model, (diepte tot het grondwater, terrein kromming,
karakter van de helling, viewshed, stroomgebied, vochtigheids index, sediment trans-
port index, en de afstand tot de dichtstbijzijnde waterloop). Deze werden gebruikt
om de luchtfoto-interpretatie to extrapoleren over het gehele gebied (1062 sq.km). De
nauwkeurigheid van de classificatie werd vastgesteld door de fouten matrix die berek-
end werd door de vergelijking van de hele API kaarten en bemonsteringspunten met de
resultaten van de classificatie. De eerste resultaten berekend door een hoogste aan-
nemelijkheid (maximum-likelyhood) classificatie waren een reproduceerbaarheid van
58.2% voor heuvelland, 39.1% voor vlakte en 45.3% voor het gehele gebied. Zes klassen
in de vlakte waren verantwoordelijk voor een groot aandeel foute classificaties. Dit
was het gevolg van een onvoldoende gedetailleerd digitaal hoogte-model en het com-
plexe karakter van de landvormen (kronkelwaarden en aktieve rivierlopen), die niet
verklaard kunnen worden door alleen gebruik te maken van de terrein parameters.



Door gebruik te maken van een vereenvoudigde legenda van 15 klassen voor het on-
derzoeksgebied verbeterde de reproduceerbaarheid tot 65.8% voor vlakte, 58.2% voor
heuvelland en tot 63.4% voor het gehele gebied. Na vereenvoudiging van de legenda
tot 15 klassen en door gebruik te maken van de iteratieve selectie (3 stappen) van het
oefenbestand van de bemonsteringspunten werd de classificatie verhoogd tot 97.6%
heuvelland, 86.7% vlakte en 90.2% voor het hele gebied. De afgeleide classificatie
was in staat om kleine details te laten zien die niet konden worden waargenomen
m.b.v. luchtfoto-interpretatie. Het aantal handmatige luchtfoto-interpretaties werd
teruggebracht van 84 naar 6. De methodologie kan worden toegepast door bodemkar-
teerders om bestaande kaarten te verfijnen en voor verbetering of vervanging van de
luchtfoto-interpretatie voor nieuwe kartering.

INTERPOLATIE: In dit hoofdstuk wordt een methodologische benadering beschreven
voor ruimtelijke voorspellling gebaseerd op regressie-kriging, en wordt deze vergeleken
met gewone kriging en normale regressie. De gegevens werden eerst omgezet door logit
transformatie voor doelvariabelen en factor analyse voor de continue voorspellers (sec-
ondaire kaarten). De doel variabelen werden vervolgens ingepast door middel van
stapsgewijze regressie en restwaarden werden gëınterpoleerd door middel van kriging.
Een generieke visualisatie methode wordt gebruikt om gelijktijdig de voorspellingen
en de hiermee geassocieerde onzekerheid te visualiseren. Deze benadering werd getest
voor 135 waarnemingspunten van de nationale gegevensbank van Kroatië en verdeeld
in 100 interpolatie- en 35 validatie punten. Drie doel variabelen (organische stof, pH
van de bovengrond en dikte van de bovengrond) werden voorspeld op basis van zes re-
lief parameters en negen bodemkarteringseenheden. De voorspellings efficientie werd
geevalueerd door gebruik te maken van de gemiddelde fout en de gemiddelde gek-
wadrateerde fout op de validatie punten. De resultaten tonen aan dat de voorgestelde
structuur de efficiëntie van de voorspellingen verbeterd. Bovendien garandeert het
de normaliteit van de restwaarden en dwong het de voorspelbare waarden binnen de
fysieke grenzen van de variabele te blijven. Voor organische stof werd een lagere wor-
tel van de gestandaardiseerde gemiddelde gekwadrateerde voorspelfout bereikt dan
met gewone kriging (53.3% versus 66.5%). Dit was ook het geval voor de dikte van
de bovengrond (66.5% versus 83.3%), waar ook een kleinere afwijking werd gevonden
dan met met gewone kriging (0.15 cm versus 0.69 cm). De voorspelbaarheid van de
pH was moeilijk met alle drie methoden. Deze benadering biedt de mogelijkheid om
een samengesteld algoritme te ontwikkelen dat kan worden toegepast in een GIS om
gegevens van bodemobservatie punten te interpoleren van bestaande databestanden.

VISUALISATIE: Een methode om meervoudige lidmaatschappen (multiple memberships)
kaarten te visualiseren, nl. kleuren meng (Colur Mixture of CM) methode, wordt
beschreven, en vergeleken met twee alternatieve technieken: defuzzifikatie en pixel
menging (Pixel Mixture). Zes landvorm parameters werden gebruikt om de de land-
vorm klassen te definieren met gebruik making van de fuzzy k-means classificatie. De
continue categorische kaart is gebaseerd op GIS berekeningen met kleuren, waarbij de
kleurwaarden (Hue) verondersteld worden om de taxonomische ruimte van de variabe-
len te representeren. Eerst werden de centrale punten van de negen landvormen ge-
transformeerd van de multivariate naar de twee-dimensionale data-ruimte door factor



analyse en vervolgens geprojecteerd op het nl. Kleurwaarde-Verzadiging-Intensiviteit
(Hue Saturation Intensity of HSI) kleurenschema. De taxonomische waarde werd
uitgedrukt met de kleurwaarde en de verwarring met verzadiging. De laatste waarde
werd vervangen door ‘witheid’ om de visualisatie te verbeteren. Klassen die dichter
bij elkaar lagen in de data ruimte werden samengevoegd in gelijkwaardige generieke
kleuren. De CM techniek beperkt de afgeleide gemengde kleurenkaart tot zeven gener-
ieke kleurwaarden, onafhankelijk van het totaal aantal klassen, en vormt de basis voor
de automatische generalisatie. De index voor verwarring (confusion index ) die werd
afgeleid van de gemengde kleurenkaart werd gebruikt om primaire grenzen te bepalen
en om gebieden met hogere taxonomische onnauwkeurigheid te lokaliseren.

ORGANISATIE: In dit hoofdstuk worden basis concepten, handelingen en de struktuur
van een raster gebaseerd bodem-informatie systeem vergeleken met een tradition-
eel polygon gebaseerd bodeminformatie systeem (Soil Information System of SIS).
Dit wordt gëıllustreerd door een studie van een gebied van 3.8×3.8 km in oostelijk
Kroatië. De ruimtelijke eenheid in dit systeem is een raster cel en alle GIS kaarten
werden teruggebracht tot dezelfde resolutie, namelijk 25 m. Bodem-variabelen wer-
den gemodelleerd met behulp van een gemengd model van ruimtelijke variatie zodat
zowel discrete als continue variatie mogelijk was. Het bodeminformatie systeem (SIS)
bevatte 21 bestaande kaarten (luchtfoto interpretatie, terrain parameters en satellite
beelden), alsmede zes kaarten van bodem variabelen (bodemdikte, aanwezigheid van
een mollic, calcic of gleyic horizon, dikte van de bovengrond en percentage silt van deze
laag), alsmede zes afgeleide kaarten van bodem typen. Iedere bodem-variabele werd
gëınterpoleerd door middel van regressie-kriging. De gëınterpoleerde kaarten werden
vervolgens geclassificeerd door gebruik te maken van een continue classificator (fuzzy
k-means) om lidmaatschapskaarten te vervaardigen. Deze kaarten werden vervolgens
gebruikt om de geschiktheid voor tarwe produktie te evalueren op een schaal van 0–1.
Het bleek dat de luchtfoto-interpretatie kaart beter in staat was om de aangegeven
bodemvariabelen te voorspellen dan de terrein parameters en satellietbeelden. Een
vergelijking gebaseerd op de aanpassingsmaat en de thematische verwarring toonde
aan dat het raster gebaseerde SIS over het algemeen beter overeenkomt, met meer de-
tail geeft en een hogere mate van betrouwbaarheid heeft dan het traditionele polygon-
gebaseerde SIS.

KWALITEITSCONTROLE: Een methodologie om de kwaliteit en de geschiktheid van
een nationale bodeminventarisatie te bepalen en om haar bruikbaarheid te evalueren,
worden beschreven in dit hoofdstuk. Daarvoor werden gebruikt: zes kaartbladen
schaal 1:50 K (uit een totaal van 180), drie proefopnamen (elk met een grootte
van 4×4 km) en tien complete profielbeschrijvingen van de hoofdlandschappelijke
regio’s van Kroatië. Deze gegevens werden gebruikt om de effectieve kaartschaal te
bepalen, de nauwkeurigheid van de kaartlegenda’s te controleren en de thematische
nauwkeurigheid van de bodemobservatie punten te evalueren. Ook werden bestaande
digitale bodeminformatie bestanden geevalueerd op hun thematische zuiverheid en
op kleigehalte, pH en organische stof getoetst. Nieuwe methoden werden ontwikkeld
en getest om de ruimtelijke nauwkeurigheid van de bodemgrenzen en de thematische
overlap tussen kaarteenheden te onderzoeken. In het proefgebied kwamen de gemid-



delde grootte van de polygon en de positie nauwkeurigheid van de bodemgrenzen
(ongeveer ±40 m) overeen met de 1:150 K kaartschaal, terwijl de correlatie dichtheid
correspondeerde met de 1:250 K kaartschaal. Kaarteenheden waren heterogeen met
een gemiddelde relatieve variatie van 17% binnen de eenheden en een gemiddelde
thematische overlap van 66% tussen geografisch aangrenzende eenheden. Er is een
groot verschil tussen de originele legenda en de proefbemonstering ter validatie als
het gaat om de taxonomische classificatie, maar dit is minder het geval als de klassen
worden gegroepeerd op basis van overeenkomstigheid. De voornaamste gebruiksprob-
lemen betroffen samengestelde kaarteenheden, gebrek aan specifieke interpretaties die
overeenkwamen met de behoeften van de gebruiker en het gebrek aan duidelijk legale
wetgeving op het gebied van landeigendom en het -gebruik.

De algemene conclusie is dat de voorgestelde pedometrische kaarterings methodologie
bodemkartering verbetert omdat het de bodemkaarten meer objectief, gedetailleerder en
meer vergelijkbaar maakt voor integratie met andere ruimtelijke geodata. Er is verder geen
noodzaak om nog gebruik te maken van het concept van kaarteenheden of de polygon-
gebaseerde bodemkaarten. Daar tegenover staat dat inplaats van het afschaffen van de
luchtfoto-interpretatie, de bodem classificatie en de empirische kennis aangaande de bodem,
deze methoden succesvol gëıntegreerd kunnen worden met pedometrische technieken.
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Hengl, T. 2003. Pedometrijsko kartiranje: prevladavanje razlika izmedju tradi-
cionalnog i pedometrijskog pristupa. Doktorska teza, Sveučilǐste u Wagenin-
genu.

Posljednjih godina, digitalno kartiranje tala doživjelo je ubrzani razvitak novih i ekono-
mičnih metoda, uglavnom zbog veće dostupnosti tzv. pomoćnih karata (parametri reljefa,
sateliski snimci itd.). Glavni cilj ovog istraživanja bio je razviti metodologiju za pedometri-
jsko kartiranje, koje se može koristiti za prevladavanje razlika izmedju tradicionalnih i pe-
dometrijskih tehnika. Teza pokriva sedam metodoloških područja kartiranja tala: uzorko-
vanje, predobradu, fotointerpretaciju, interpolaciju, vizualizaciju, organizaciju i kontrolu
kvalitete.

UZORKOVANJE: U ovom poglavlju razmatrana su načela razmještaja observacija u
tematskom i geografskom prostoru kao ključ za optimizaciju odabira uzorkovanja za
potrebe prostorne predikcije temeljene na korelaciji sa pomoćnim kartama. Iako je
uporaba pomoćnih karata u kartiranju tala uobičajena praksa, problemi vezani uz
dizajn uzorkovanja često se zanemaruju. Ukupna pogreška predikcije, u slučaju gen-
eralizirane metode najmanjih kvadrata, ovisi o položaju točaka u oba prostora —
tematskom i geografskom. Ujednačeni razmještaj točaka, proporcionalno distribuciji
prediktora (tzv. Equal range stratifikacija ili ER dizajn), predložen je kao ‘najsig-
urnija’ strategija uzorkovanja kada je regresijski model izmedju pedoloških i pomoćnih
varijabli nepoznat. Postojećih uzorak od 100 pedoloških obzervacija na 50×50 km ve-
likom području u sredǐsnjoj Hrvatskoj korǐsten je za ilustraciju ovih načela. Uzorak
je bio podijeljen u podskupove od 25 obzervacija koristeći različite eksperimentalne
dizajne: ER, te dva regresijska dizajna (minmax i D2). Dizajni su usporedjeni po
uspjehu u predikciji sadržaja organske tvari (univarijatni primjer) uz pomoć nad-
morske visine, koristeći ukupnu pogrešku predikcije kao kriterij procjene. ER dizajn
postigao je sličnu ukupnu pogrešku kao i minmax dizajn, pa se može zaključiti da
ER predstavlja dobar kompromis izmedju točne procjene modela i minimizacije pros-
torne autokorelacije reziduala. ER dizajn je takodjer proširen na multivarijatni slučaj.
Četiri prediktora (nadmorska visina, temperatura, indeks vlažnosti i NDVI) prvo su
transformirani u standardizirane komponente (principal components). Zatim su točke
uzorkovanja rasporedjene po komponentama i to proporcionalno varijanci objašnjenoj
u komponentnoj analizi, te propocionalno distribuciji prediktora.



PREDOBRADA: Kvaliteta digitalnih modela reljefa (DMR) i reljefnih parametara nepo-
sredno utječe na kvalitetu pripadajućih aplikacija. Opisana su tri pristupa redukciji
pogrešaka u DMR-ima i reljefnim parametrima: (a) rabeći empirijsko znanje, npr.
korekcija DMR-a korǐstenjem linija reljefnih lomova i karte tokova; (b) rabeći GIS
operacije filtriranja, te (c) rabeći metodologiju propagacije pogrešaka. Operacije fil-
triranja korǐstene su za uklanjanje grubih grešaka tj. redukciju outliers-a. Temelje
se na strukturi prostorne autokorelacije, te usporedbi promatranih vrijednosti i vri-
jednosti procijenjenih uz pomoć susjednih piksela. Metodom propagacije pogrešaka,
pogreške se smanjuju računanjem prosječnih vrijednosti iz nekoliko simulacija. Metode
su testirane na 3.8×3.8 km području istraživanja koje obuhvaća dva različita tipa
reljefa: brdo i ravan sa terasama. Digitalizirane konture su interpolirane koristeći
linearnu interpolaciju. Udio artefakata (tzv. padi terase) u nefiltriranom DMR-u bio
je 17.3%. Nakon dodatka linija loma, filtriranja outliersa, te korekcije DMR-a prema
karti tokova, udio padi terasa se smanjio na 2.2%. Preostale greške u parametrima
reljefa, kao što su nedefinirani pikseli te lokalni outliers-i, reducirani su uporabom
filtriranja sa iteracijama i propagacije pogrešaka. Udio outliers-a u parameterima rel-
jefa nije prelazio 2% ukupne površine. Oba pristupa redukciji pogrešaka — filtriranje
i propagacija pogrešaka, daju nešto generaliziranu sliku parametara reljefa. Prednost
filtriranja outliers-a je da metoda direktno rabi strukturu prostorne autokorelacije.
Prednost metode propagacije pogrešaka je da može biti lako automatizirana. Re-
dukcija pogrešaka pobolǰsala je kartiranje geomorfoloških jedinica (klasifikacija), te
dubine tla (regresija). Točnost klasifikacije povećala se sa 51.3% na 72%, dok je R2

regresijskog modela za predikciju dubine tla narastao sa 0.27 na 0.40.

FOTO-INTERPRETACIJA: Ovo poglavlje nudi opis metode koja pobolǰsava manu-
alnu foto-interpretaciju geomorfoloških jedinica pri kartiranju većih područja. Tradi-
cionalne aero foto-interpretacijske (AFI) karte pripremljene su korǐstenjem geope-
dološke legende (21 klasa) za šest test područja u Baranji, istočna Hrvatska, ukupne
površine 111 km2. Devet parametara reljefa izlučenih iz DMR-a (dubina podzemne
vode, nagib terena, horizontalna kurvatura, vertikalna kurvatura, sjenčanje, drenažna
površina, indeks vlažnosti, indeks transporta sedimenta i udaljenost do najbliže vo-
dene površine), korǐsteni su za ekstrapolaciju foto-interpretacije na cijelom području
istraživanja (1062 km2). Točnost klasifikacije procijenjena ili odredjena je uporabom
matrice grešaka (error matrix ), izračunate usporedbom svih AFI karata i točkastih
uzoraka sa rezultatima klasifikacije na svim test područjima. Prvi rezultati klasi-
fikacije, metodom maksimalne uvjetne vjerojatnosti (maximum-likelihood), dali su
58.2% (brdo), 39.1% (ravan), te 45.3% (cijelo područje) podudaranja sa test po-
dručjima. Šest klasa u ravnici prouzročile su velike pogreške u klasifikaciji, vjero-
jatno zbog nedovoljno detaljnog DMR-a te kompleksne naravi geomorfoloških klasa
(riječni obalni kompleksi, rubovi rijeka, aktivni kanali), koji ne mogu biti objašnjeni
samo uz pomoć parametara reljefa. Pomoću simplificirane legende sa 15 klasa, točnost
klasifikacije povećala se na 65.8% (ravan), 58.2% (brdo) i 63.4% (cijelo područje) za
sve AFI karte. Nakon simplifikacije legende (15), te sa iterativnom (3) selekcijom
točkastih uzoraka, klasifikacija je pokazala 97.6% (brdo), 86.7% (ravan), i 90.2% (ci-
jelo područje) podudaranja sa test područjima. Vodjena (supervised) klasifikacija



pokazala je detalje koje nije bilo moguće izlučiti uz pomoć aero foto-interpretacije.
Broj manualnih foto-interpretacija, koje je trebalo pripremiti, smanjen je sa 84 na 6.
Ova metodologija može koristiti pedo-kartografskim timovima za korekciju i nadopunu
postojećih karata te za pobolǰsanje ili zamjenu API-ja u novim pedo-kartografskim
projektima.

INTERPOLACIJA: Metodološka shema za prostornu predikciju temeljena na regresij-
skom-krigingu opisana je i usporedjena sa ordinarnim krigingom i čistom regresijom.
Podaci su prvo transformirani korǐstenjem logit transformacije za ciljne varijable te
faktor analize za kontinuirane prediktore (pomoćne karte). Ciljne varijable su zatim
modelirane korǐstenjem step-wise regresije, a reziduali su interpolirani ordinarnim
krigingom. Generična metoda vizualizacije razvijena je za simultani prikaz vrijednosti
predikcije i pripadajuće nepouzdanosti. Interpolacijski algoritam testiran je koristeći
135 pedoloških profila iz Baze tala Republike Hrvatske, podijeljenih u interpolacijske
(100) i kontrolne točke (35). Tri ciljne varijable: organska tvar, pH u oraničnom
horizontu i debljina oraničnog horizonta bile su interpolirane koristeći šest parametera
reljefa te devet pedo-kartografskih jedinica. Točnost predikcije procijenjena je uz
pomoć srednje pogreške (ME) i korijena srednjeg kvadratnog odstupanja (RMSE)
izračunatih na kontrolnim točkama. Rezultati su pokazali da predloženi interpolacijski
algoritam povećava uspješnost predikcije. Štovǐse, algoritam je osigurao normalnost
reziduala, te spriječio pojavu vrijednosti izvan fizičkog raspona varijabli. U slučaju
predikcije organske tvari, interpolacijski algoritam postigao je manji standardizirani
RMSE nego ordinarni kriging (53.3% versus 66.5%). U slučaju predikcije debljine
oraničnog horizonta, postigao je manji standardizirani RMSE (66.5% versus 83.3%),
te manji sistematski otklon (ME) nego ordinarni kriging (0.15 versus 0.69 cm). Sve tri
metode nisu bile uspješne u predikciji pH u tlu . Ovaj interpolacijski algoritam otvara
mogućnost razvitka integriranog algoritma, koji bi se mogao korisiti za GIS-temeljenu
poluautomatsku interpolaciju podataka iz postojećih baza tala.

VIZUALIZACIJA: Opisana je metoda za vizualizaciju vǐsestrukih pripadnosti (member-
ships), zvana “mješač boja” (Colour Mixture ili CM) i usporedjena sa alternativnim
tehnikama: defuzifikacijom i “mješačem piksela” (Pixel Mixture). Šest parametara
reljefa korǐsteno je za klasifikaciju geomorfoloških jedinica metodom vodjene fuzzy k-
means klasifikacije. Kontinuirana kategorička karta proizvedena je uporabom GIS
kalkulacija s bojama, gdje boja predstavlja taksonomski prostor odredjen predik-
torima. Koordinate 9 taksonomskih centara (geomorfološke jedinice) su prvo tran-
formirane iz multivarijantnog u dvodimenzionalni atributni prostor, i zatim projici-
rane na tzv. HSI (Hue Saturation Intensity) kružnu paletu boja (colourwheel). Tak-
sonomska dimenzija kodirana je tipom boje (Hue), a konfuzija klasifikacije zasićenošću
(Saturation). Kako bi pospješili vizualnu impresiju nepouzdanosti (uncertainty),
zasićenost je zamijenjena bijelom bojom, tj. ‘izbjeljivanjem’. Klase koje su bile bliže
u atributnom prostoru sjedinjene su u sličnu generičnu boju. CM tehnika ograničava
izračunatu miješanu boju, neovisno o ukupnom broju klasa, na sedam generičkih
boja, što konačno omogućuje automatsku generalizaciju klasa. Zasićenost izlučena iz
karte miješanih boja, rabljena je za detekciju primarnih granica te prostornu lokaciju
područja velike taksonomske konfuzije.



ORGANIZACIJA: Glavna načela, operacije i organizacijska struktura grid-temeljenog
Sustava Informacija o Tlu (Soil Information System -SIS) usporedjeni su sa tradi-
cionalnim poligonskim SIS-om. Ta usporedba ilustrirana je koristeći 3.8×3.8 km test
područje u istočnoj Hrvatskoj. Ključni prostorni element u grid-temeljenom SIS-u
je kvadrat (grid cell) i svi GIS slojevi bili su podešeni na istu terensku rezoluciju
(25 m u ovom slučaju). Pedološke varijable modelirane su koristeći tzv. “miješani
model prostorne varijabilnosti” (mixed model of spatial variation), koji omogućuje i
diskretne i kontinuirane prijelaze u prostoru. U ovom test području, SIS se sastojao
od 21 prediktora (foto-interpretacijska karta, parametri reljefa, te satelitski snimci),
šest karata pedoloških varijabli (debljina tla, učestalost moličnog, kalcičnog i glejičnog
horizonta, debljina oraničnog horizonta, te sadržaj praha), te šest karata pripadnosti
(memberships) za svaki tip tla. Svaka pedološka varijabla interpolirana je metodom
hibridne interpolacije (regresijski-kriging). Interpolirane karte su zatim klasificirane
pomoću kontinuirane klasifikacije (fuzzy k-means), kako bi se dobile karte pripad-
nosti. Karte pripadnosti su zatim poslužile za izračun kontinuirane pogodnosti (0–1)
za proizvodnju pšenice, kao primjer interpretacije koju ju moguće postići uz pomoć
opisanog SIS-a. Foto-interpretacijska karta se pokazala kao nešto bolji prediktor ciljnih
pedoloških varijabli nego parametri reljefa i satelitski snimci. Usporedba uspješnosti
modeliranja (goodness of fit), te tematske konfuzije, pokazali su da grid-temeljeni SIS,
u pravilu, postiže veću detaljnost i pouzdaniju predikciju nego tradicionalni (poligon-
ski) SIS. Prednosti dizajniranog SIS-a, u usporedbi sa tradicionalnim kartiranjem
tala, su: (1) završava kartom tipova tala, a ne kartom pedo-kartografskih jedinica;
(2) sve pedološke varijable su kartirane kao kontinuirana polja visokog detalja; (3)
pruža mjeru nepouzdanosti, kako za ulazne, tako za izlazne varijable; (4) i diskretni
i kontinuirani prijelazi u prostoru su mogući; (5) originalne pedološke observacije i
interpolacijski/klasifikacijski parametri pohranjeni su u posebnim tablicama, koje su
dio SIS-a, tako da je moguće obnoviti izračunate karte. Nedostaci su: (1) sustav je
računarski zahtjevan i traži puno memorije; (2) troškovi su veći (nabavka i obrada
podataka) i (3) sustav je osjetljiv na kvalitetu ulaznih podataka.

KONTROLA KVALITETE: Opisana je metodologija za procjenu kvalitete i pogod-
nosti, te uporabljivosti nacionalne inventarizacije tala. Šest 1:50 K listova karata
(od 185 ukupno), tri kontrolna kartiranja (svako veličine 4×4 km), te deset detaljnih
pedoloških profila u glavnim reljefnim regijama u Hrvatskoj, korǐsteni su za procjenu
efektivnog mjerila, točnosti legendi, te tematsku točnost točkastih opažanja. Takod-
jer je procijenjena tematska čistoća i kontrast postojeće Baze tala (2198 profila) i
osnovne pedološke karte Republike Hrvatske (u mjerilu 1:300 K), koristeći podatke o
sadržaju gline, pH i organskoj tvari. Razvijene su i testirane nove metode za proc-
jenu prostorne točnosti pedoloških granica i tematskog preklapanja izmedju susjednih
kartografskih jedinica. Razultati ove studije pokazali su da srednja veličina poligona,
te prostorna točnost pedoloških granica (oko ±40 m) odgovaraju efektivnom mjer-
ilu od 1:150 K, dok gustoća profila odgovara mjerilu od 1:250 K. Pedo-kartografske
jedinice su heterogene sa srednjom relativnom varijacijom od 17% unutar jedinica,
te sa srednjim preklapanjem od 66% izmedju susjednih poligona. Uočena je velika
razlika izmedju originalnih legendi i kontrolnih karata na nivou taksonomskih klasa,



te znatno manja razlika nakon grupiranja klasa prema sličnosti. Ova Nacionalna in-
ventarizacija pogodna je za nacionalna planiranja sitnog mjerila, ali ne i za detaljna
mjerila. Glavni problemi uporabljivosti su postojanje heterogenih kartografskih je-
dinica, nedostatak specifičnih interpretacija potrebnih korisnicima, te neriješena pi-
tanja vlasnǐstva i uporabe.

Osnovni zaključak je da predložena metodologija pedometrijskog kartiranja pospješuje
pedo-kartografsku praksu, čineći pedološke karte objektivnijima, detaljnijima, te kompati-
bilnijima za integraciju sa drugim okolǐsnim geo podacima. Štovǐse, vǐse nema potrebe za
korǐstenjem koncepta pedo-kartografskih jedinica ili tradicionalnih poligonskih karata. Sa
druge strane, umjesto napuštanja foto-interpretacije, klasifikacije tala ili empirijskog znanja
o tlima, ove se metode mogu uspješno integrirati sa pedometrijskih tehnikama.
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