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Chapter 1

Polyelectrolytes in solution and
at interfaces



1.1 Introduction

1.1 Introduction

Motive This thesis is about polyelectrolytes in solution and at interfaces.
This work was inspired by possible analogies with humic acids in solution
and at the interface of mineral particles. Humic acids and mineral particles
are two mayor components present in soil systems. In this introduction we
therefore first mention some general properties of soils. Then we proceed with a
more fundamental introduction of polyelectrolytes in solution and at interfaces.
Next, the numerical model that was used in this study is introduced. Lastly,
an outline of the thesis is given.

Polyelectrolytes in soils A soil is a complex mixture of different com-
ponents. These components can be subdivided into five different categories.
Firstly, living organisms such as bacteria, earthworms, and plant roots. Sec-
ondly, the minerals like sand (SiO2), metal oxides and clay. Thirdly, organic
matter, which results from the degradation of dead plants and other organisms.
The before mentioned humic acids are part of this organic matter. The fourth
category of soil components is the soil solution, which consists of water, ions,
and dissolved organic molecules. Most transport of molecules takes place in
the soil solution, it can be viewed upon as the transport highway of a soil.
Lastly, there is also a gas phase.

From a fundamental point of view, a soil is a very complex mixture. No-
one has found a general way to describe this mixture of different components.
However, many attempts were made to describe the interaction between the
soil solution and the other soil components. The organic matter present in soil
is one of these components that can be present in the soil solution, be attached
to the soil minerals or even be part of the soil particles. The soil organic matter
is divided in three fractions: material that is insoluble at all natural conditions
is called humins, materials that is soluble in solution with a pH higher than
2, is called humic acids, and material that is even soluble at very low pH, is
called fulvic acids. The mechanisms which lead to the formation of the various
types of organic matter are highly dependent on the local situation within the
soil. This means that the exact environment determines the characteristics of
organic matter in a soil to a large extent.

Nevertheless each of the three classes of soil organic matter shows generic
characteristics. Especially the fulvic and humic acids are often considered as
ogliomeric and polymeric materials. In literature, there is some debate whether
the high molecular mass is due to aggregation of small units, as in micelles,
or due to covalently bound units, as in polymers.1–4 However, under most
circumstances the organic matter does not fall apart into units, as small as
water molecules so the polymer approach has enough appeal to be often used
to gain a better understanding of humic and fulvic acid behaviour.

Another generic aspect of both humic and fulvic acids is their charge. The
building units contain acidic groups that can ionize depending on the pH of the
soil solution. Hence, if one approximates humic and fulvic acids as polymers, it
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Polyelectrolytes in solution and at interfaces

is appropriate to consider them as polyelectrolytes. If one accepts this approach
further insight in the behaviour of humic and fulvic acids can be gained by
studying the behaviour of more simple polyelectrolytes. In order to approach
the complex structure of the humic and fulvic acids polyelectrolytes of different
architectures can be studied.

As humic and fulvic acids can be present both in the soil solution and
adsorbed to the soil mineral particles, the study of the more simple polyelec-
trolytes should concentrate on their behaviour in solution and at interfaces.

1.2 Polyelectrolytes in solution

1.2.1 Polyelectrolyte architecture

Polymers are chain-like molecules, which consist of monomers. In a polymer
several monomers are linked together to form a chain, comparable to a necklace.
These chains can be linear or branched. Two types of branching are relevant for
this thesis: stars and dendrimers. Star polymers consist of several linear chains
(arms) which are all linked to each other at one end, see fig 1.1b. Dendrimers
(also called: starbursts) are stars where at the end of each arm several new
arms are attached, see fig 1.1c.

a) linear

c) dendrimer

b) star

Figure 1.1: Molecules with different architecture.

1.2.2 Monomeric electrolytes

Before turning to the physical behaviour of polyelectrolytes in solution it is
convenient to highlight some of the behaviour of monomeric electrolytes. It
is common knowledge that table salt (NaCl) dissolves in water. The aqueous
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1.2 Polyelectrolytes in solution

solution contains Na+ and Cl− ions. However, it was already in the 1920’s
recognised that these ions do not distribute themselves evenly over the solution.
The sodium Na+ and cloride Cl− ions have a tendency to attract each other
through Coulombic interactions. This leads to a certain ordering: around a
cation there is on the average more negative charge than in the solution as a
whole and the converse applies to an anion.5 The famous Debye-Hückel theory
takes this effect into account for dilute solutions of ions. It should be noted
that the Debye-Hückel theory is not exact and several other approaches have
been proposed.5

Additionally, the monomers may have acidic or basic properties. A mono-
valent acid HA may dissociate as

HA¿ H+ +A− (1.1)

where all three forms (the acid HA, the proton H+, and the base A−) are
present in solution. An dissociation constant K is associated with the given
equilibrium. The concentration of protons cH+ influences the fraction of acid
HA that is dissociated. The proton concentration is usually expressed as pH,
which equals − log(cH+). The case of dissociating monomers contrasts with
strong electrolytes like the table salt, where all NaCl is dissociated into ions.

1.2.3 Polyelectrolytes

When a polyelectrolyte is dissolved in water, it may acquire a certain amount
of charge. Like strong electrolytes, the monomers may be fully dissociated so
that the charge on the polyelectrolyte is permanent. If all ionizable groups
are fully dissociated we speak of a quenched polyelectrolyte. The ions that are
released into the solution are called counterions. The ionizable groups may
also be weak acids or bases. This results in a partially ionized polyelectrolyte.
The fraction of ionized groups then depends on (among other aspects) the pH.
This case is called an annealed polyelectrolyte. Of course, mixtures of different
types of monomers may be present in polyelectrolytes. This is for example the
case for humic and fulvic acids present in soils.

The theoretical description of polyelectrolytes in a dilute solution turns out
to be non-trivial. This is due to the long range character of the charge in-
teractions. Most interactions between two molecules are only noticeable when
the two molecules touch each other. For electrostatic interaction the distance
can be much larger, this means that a lot of molecules interact and not just
two molecules. For a polyelectrolyte this means that the charges on the chain
interact with each other, which causes a swelling, but due to the fact that they
are linked together there is a finite extension of the chain. The counterions also
interact with this chain and partly screen the repulsion between the charges
on the polymer. A large number of molecules have therefore to be taken into
account to describe the polyelectrolyte behaviour. Only fairly recently, suc-
cessful theories in this area have been proposed. One such theory is known as
the worm model.
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Polyelectrolytes in solution and at interfaces

The worm model assumes a polymer consisting of stiff segments. For these
stiff segments the polymer configuration is taken to be fixed, which simplifies
the description of the distribution of the counterions and the effective electro-
static potential. Because the main question is how the polyelectrolyte units
distribute spatially, the stiff chains are used as building blocks of a larger
polymer with a probability distribution between the angles of the different
segments.6–9

Instead of looking at just one polyelectrolyte one can also approach the
question how polyelectrolytes behave in solution using knowledge gained about
the behaviour of a polyelectrolyte brush. In a polyelectrolyte brush, polyelec-
trolytes are attached to a surface. The polyelectrolytes influence each other
in a way varying with the number of charges and of the grafting density: the
amount of polyelectrolytes that are fixed to a surface.10,11 What does this
have to do with polyelectrolytes in solution? For star-shaped or dendrimeric
molecules the interactions between the branches of those molecules is compa-
rable to those between the polyelectrolytes in a brush. The main difference is
that the ‘grafting density’ for such polyelectrolytes is not constant but varies
within the molecule.

1.3 Polyelectrolytes at interfaces

1.3.1 Solid interfaces

The interfaces that are discussed in this thesis are all solid-liquid interfaces.
The boundary between a clay particle and the soil solution is an example of
such a solid-liquid interface. Due to charges on the surface an environment is
created that may attract or expel small ions and polyelectrolytes.

Two types of charged surfaces may be distinguished. Firstly, surfaces with
a constant surface charge, which are also called quenched surfaces. Like the
table salt, these surfaces carry groups which fully dissociate. An example of
such a surface is the plate surface of a clay particle which has a charge due to
isomorphic substitution. Secondly, there are surfaces with a variable surface
charge. Like the annealed polyelectrolytes these surfaces carry groups that
ionize depending on the pH, and they are called annealed surfaces. Examples of
such surfaces are metal oxide surfaces. Variably charged mineral surfaces of iron
and aluminum oxides can also be approximated as constant-potential surfaces.
This is due to the high surface density of chargeable groups in combination
with the ionization relation. In this thesis, we will also use the term constant-
potential surface for such mineral oxide surfaces.

1.3.2 Adsorption theories

The theories for describing the adsorption of polyelectrolytes can be split up in
two classes, namely for the adsorption of one single polyelectrolyte chain and
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1.4 Self-consistent-field (SCF) theory

for the adsorption of many chains.
For describing of the adsorption of a single polyelectrolyte to a surface, the

attraction between the surface and the polyelectrolyte is a basic parameter.
This attraction is counteracted by the loss of entropy of the chain due to
adsorption. This means that stiff, rodlike chains will adsorb more easily than
flexible coiled chains. The stiffness of a polyelectrolyte is not only governed by
the molecular architecture but also by the degree of ionization.

The adsorption of many polyelectrolytes to a surface is mostly described
using a mean-field theory. In a mean-field approximation the interactions of a
given monomer with neighbouring units are not calculated explicitly. Instead,
each monomer is supposed to experience a mean-field interaction potential
that represents an average of the neighbour interactions. In the case of dense
adsorbed layers the direct relation between the stiffness of a chain and the
amount adsorbed is not so easily obtained as for the isolated chain. This is
related to the fact that in a dense layer it is difficult for a stiff molecule to fit
in. More details about these aspects can be found in a recent review by Netz
and Andelman12 about the adsorption of neutral and charged polyelectrolytes.

1.4 Self-consistent-field (SCF) theory

This thesis makes extensive use of a self-consistent-field (SCF) model to predict
the behaviour of polyelectrolytes in solution and at interfaces. The SCF model
as formulated by Scheutjens and Fleer is used (SF–SCF).13 The foundation of
this model was laid independently by Edwards14 and Helfand.15 The SF–SCF
theory has been used successfully to describe the adsorption of homopolymers
from solution, polymer and polyelectrolyte brushes, and the wetting behaviour
of polymers.16

1.4.1 SCF versus Flory–Huggins theory

The SF–SCF model is a generalization of the classical Flory-Huggins theory.
The Flory–Huggins theory is able to predict the phase behaviour of mixtures
of (uncharged) polymers. This means that it is able to predict whether a given
mixture of polymers (with or without solvent) remains fully mixed or separates
in different phases. For example, oil and water do not mix but form two
different phases: one water phase and an oil phase. These phases are not pure
substances: a tiny fraction of oil is present in the water phase. Likewise, some
water is present in the oil phase. Using relatively simple molecular parameters,
the Flory-Huggins theory gives a prediction of the amount of water in oil and
oil in water.

Whereas Flory–Huggins theory deals with homogeneous phases, the SF–
SCF model deals with inhomogeneous systems. To illustrate the difference
between a homogeneous and an inhomogeneous phase, we can again use the oil
and water phases as an example. To the naked eye, the interface between oil
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and water may seem infinitely sharp. In reality, there is a smooth transition
between oil and water. Within the interface the concentration of water changes
gradually from very low (in the oil phase) to very high (in the water phase).
This occurs over distances comparable to molecular sizes. Flory-Huggins theory
is able to predict the concentration of water in oil and oil in water (homogeneous
phases). In addition, the SF–SCF model is also able to predict the transition in
concentration within the interface (an inhomogeneous system). The SF–SCF
theory gives detailed information on the chain conformations of polymers in
these interfaces and in the bulk solution.

Using relatively simple molecular parameters like the chain length, the sol-
vent strength, and the adsorption energy, the SF–SCF theory leads to the vol-
ume fraction profiles of adsorbed polymers or the surface tension of interfaces.
The equations of the SF–SCF theory cannot be solved analytically, therefore
a dedicated software package has been used: sfbox.17

1.4.2 Approximations in the SCF theory

As explained in the previous paragraph, the SF–SCF model can be viewed
as a generalization of the classical Flory-Huggins theory. As such, in both
theories the same approximations are made. The main approximation is the
use of a mean field. The same approximation is, for instance, present in the
above mentioned adsorption theories and in the Debye–Hückel and Poisson–
Boltzmann theories. Indeed, when applied to classical electric double layers,
the SF–SCF theory recovers the Poisson–Boltzmann results.

Another approximation is the use of random walk chain statistics. One
may look upon the conformation of an individual chain in solution as a walk
through space. When walking from one end of the chain to the other, one
never passes the same position twice. This reflects the fact that the monomers
of a given polymer may not occupy the same position in space, which seems
obvious. However, in calculations this restriction complicates calculations con-
siderably. Therefore, the chains are described as random walks: when walking
from one end of the chain to the other, we do not remember where we have
been before. This approximation works rather well for very concentrated so-
lutions of polymers or dilute solutions of uncharged polymers, but not so well
for dilute solutions of polyelectrolytes.

1.4.3 Polyelectrolytes in the SF–SCF theory

The swelling behaviour of polyelectrolytes in solution can be calculated within
the SF–SCF theory by considering one individual chain. Space is divided into
spherical shells and within each shell the mean-field approximation is applied.
One segment of the chain is fixed in the centre of the spherical geometry. Mean-
field theories are not suitable to describe the behaviour of linear polyelectro-
lytes. However, for more dense polyelectrolyte architectures, the mean-field
approximation does yield satisfactory results.

7



1.5 Outline of this thesis

The description of the adsorption of polyelectrolytes is rather problematic
in the standard SF–SCF theory. The main problem is again the mean-field
approximation, which not only breaks down for linear polyelectrolytes, but
even, and severely, for dense polyelectrolyte architectures. The main reason
for this break-down is the treatment of chains in solution. Only one molecular
field is employed for both adsorbing and bulk chains. This molecular field
is taken to be homogeneous in the bulk phase. Effectively, this means that
the swelling of bulk chains is completely neglected: they are treated as random
walks. This leads to a large overestimation of the conformational entropy of the
bulk chains. In contrast, a varying molecular field is present near the surface,
which leads to swelling of the adsorbed chains. As a result, the adsorbed
amount is underestimated in the standard SF–SCF theory.

A rather nice aspect of the standard SF–SCF theory is that it can de-
scribe charged surfaces rather well. The full Poisson–Boltzmann equation is
solved numerically. This means that neither a constant-potential surface nor a
constant-charge surface have to be assumed. For instance, mineral oxide sur-
faces are surfaces which can be either an almost constant-charge surface or a
constant-potential surface depending on the solution conditions and the type of
mineral oxide. With the SF–SCF model it is possible to treat also intermediate
cases, in between these two extreme situations.

1.5 Outline of this thesis

Chapters 2 and 3 deal with polyelectrolyte stars in solution. In chapter 2 the
properties of quenched (a fixed charge per monomer) polyelectrolyte stars are
investigated using the SF–SCF theory. The results are compared to an existing
analytical theory. In chapter 3 the same is done for annealed (monomers with
a pH-dependent charge) polyelectrolyte stars. The existing analytical theory
describes the swelling of polyelectrolyte stars as a function of the molecular
architecture (the amount of charges on the arms, the length, and the number
of arms). Depending on these conditions, one may distinguish different regimes
of behaviour, where one force, responsible for swelling, dominates over the
others. This contrasts with the SF–SCF theory that uses the same fundamental
approximations but all swelling forces are treated simultaneously. Therefore,
it is of interest to compare the scaling predictions for the swelling behaviour
from the analytical theory with the results obtained from the numerical SCF
results. This is done in chapters 2 and 3.

In chapter 4 the adsorption of quenched polyelectrolytes on charged surfaces
is theoretically investigated using the SF–SCF theory. Two types of surfaces
are considered: quenched and annealed surfaces. In the latter case, the surface
charge depends on both the pH and the amount of adsorbed polyelectrolyte.
As explained in section 1.4.3, polyelectrolytes adsorbing onto the surface feel
a mean-field potential in the standard SF–SCF theory. In contrast, the bulk
chains experience no field at all and are treated as random walks. In chapters 2
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and 3, it is shown that this approximation does not hold at all for bulk chains.
Therefore, also a new variant of the SF–SCF theory is introduced in which the
equilibrium adsorption is calculated from two separate calculations. The first
calculation considers the bulk solution, where an individual chain swells due to
its own charges. The second calculation is at the surface, where the adsorbed
chains swell due to the accumulation of charges at the surface. The equilibrium
adsorbed amount is then calculated by equating the chemical potentials of the
polyelectrolyte resulting from both separate calculations. The results for this
new method are compared to the results obtained from the standard SF–SCF
calculations for polyelectrolytes with the molecular architectures depicted in
fig 1.1.

Now that several theoretical approaches to polyelectrolyte adsorption have
been discussed, it is time to turn to experiments. Chapter 5 shows results
obtained from proton titration experiments done on hematite in the presence
of adsorbing poly(styrene sulfonate). Hematite is an iron oxide mineral with
a pH-dependent surface charge. At pH’s lower than 9, the surface charge is
positive. Poly(styrene sulfonate) is a linear polymer with a constant negative
charge. Special attention is given to the surface charge behaviour of hematite
upon adsorption of poly(styrene sulfonate). The measured adsorption and
surface charge behaviour are compared to SF–SCF calculations.

Finally in chapter 6, the numerical SCF calculations are used to determine
the pH-dependent charging of stars and dendrimers in solution. The results
obtained, are analysed with two simple electrostatic models, to see whether
such a simple approximation can lead to a reasonable description of the intrinsic
charging behaviour. The two simple models are (i) a Donnan and (ii) a hard-
sphere model. A crucial parameter in these models is the assumed radius of
the particles. In the analysis the results of different choices for the radius are
compared. A main incentive for this investigation is that such simple models
are frequently used to describe the electrostatic interactions of humic and fulvic
acids.

9



Chapter 2

Screening in Solutions of
Star-Branched Polyelectrolytes∗

Abstract

Equilibrium conformations of star-branched polyelectrolytes in dilute solutions
are studied on the basis of a numerical Self–Consistent–Field (SCF) approach
and analytical theories. It is shown that even in a dilute salt-free solution the
intramolecular Coulombic repulsion in many-armed stars is strongly screened
by counterions which are localised preferentially in the intra-star space. As
a result the dependence of the star size on the number of branches levels off
for many-armed stars. Addition of salt results in additional screening and in
contraction of the stars. The scaling prediction R ∼ c

−1/5
s for the star size as a

function of the salt concentration cs is well confirmed by SCF-calculations. A
decrease in the star size can also be induced by an increase in the concentration
of the polyelectrolyte in the solution. We have observed significant contraction
of the stars with increasing concentration below the overlap threshold, i.e. in
dilute solutions. The latter effect is more pronounced for stars with a small
number of branches. The screening of the intramolecular Coulombic repul-
sion due to added salt is compared with that occurring upon increasing the
concentration of the polyelectrolyte.

∗published in Macromolecules, 1999, 32; 2365–2377



Quenched star

2.1 Introduction

Even though the properties of solutions of linear chain polyelectrolytes are
not completely understood,8,18 charged polymers of more complex architecture,
such as randomly or regularly branched polyelectrolytes or polyelectrolyte gels,
attract strong attention.

Partially this is because of their relevance for practical applications, such
as colloid stabilization.19 Polyelectrolyte stars can be considered as models
of micelles formed by hydrophobically modified polyelectrolytes in aqueous
solutions,20–24 and for more complex practical systems like humic acids.25

The behaviour of charged polymers in the solution is determined by the in-
terplay of long-range Coulombic interactions and effects of chain connectivity.
From a theoretical point of view, the most important feature that makes poly-
electrolyte solutions differ from those of ordinary low-molecular-weight elec-
trolytes is essentially the non-linear character of the screening of the Coulombic
interactions. In other words, the linear Debye–Hückel (DH) approximation fails
to describe the equilibrium properties of polyelectrolyte solutions, especially at
low polyelectrolyte concentration and at low ionic strength of the solution.

The importance of non-linear screening effects in polyelectrolyte solutions
has been understood early. The Manning counterion condensation concept is
the first example in this direction.26 We note that this type of condensation
occurs only for strongly charged and stiff chains which retain local cylindrical
symmetry on a large scale, exceeding the electrostatic screening length. In
addition, non-linear screening effects are also important for flexible polyelec-
trolytes in dilute solutions, even when they are only weakly charged. (In this
paper we discuss only quenched polyelectrolytes; the term weak refers to a
small fraction of charged monomers).

Several approaches have been used to describe screening in dilute and semi-
dilute solutions of weakly charged linear polyelectrolytes. 27–30 They all are
based on certain heuristic ideas which can not be proved rigorously. Most
of these theories predict that screening of intra- and inter-chain Coulombic
interactions in dilute polyelectrolyte solutions is stronger than follows from the
linear DH approximation.28–30 Clearly, the most important question is what
happens in the dilute solution. When the cross-over concentration is defined,
the properties in the semi-dilute regime can then be obtained from scaling
arguments.

The essential feature of dilute solutions is the inhomogeneous distribution
of counterions. Counterions are preferentially localised in the proximity of the
polyions. The inhomogeneous distribution of counterions is also confirmed by
simulations.31–33 Therefore, for weakly charged linear chains a scaling analysis,
which can deal only with power law dependencies, is hardly feasible, even when
the chains are very long.

The origin of the inhomogeneous distribution of counterions in dilute so-
lutions is, of course, the strong Coulombic attraction between the counterions
and the polyion, which carries a large net charge. The equilibrium distribution

11
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is determined by the competition between this attraction and the translational
entropy of the counterions.

One can expect that this inhomogeneity is even stronger for branched poly-
ions, where a comparatively large charge is immobilised in a small volume.
This charge concentration must result in stronger attraction and less freedom
for the counterions than in a solution of linear polyelectrolytes.

For strongly branched polyelectrolytes the effect of the localization of coun-
terions in the intramolecular volume appears to be strong enough to be treated
on the level of a scaling approximation.34–36 It was shown that even in a very
dilute solution the high concentration of counterions inside the branched poly-
electrolyte provides strong screening of Coulombic repulsion between charged
monomers.

There are two important consequences from this trapping of counterions
by strongly branched polyelectrolytes. First, the conformations of branched
chains are less sensitive to the addition of salt, because intramolecular repul-
sion is already screened. An increase in the salt concentration leads to ad-
ditional screening and contraction of the branched polyelectrolyte only when
this concentration exceeds the intrinsic concentration of counterions in the in-
tramolecular space. Second, the effect of an increasing polymer concentration
(in the dilute range) is expected to be weak in comparison to that in linear
or weakly branched polyelectrolytes. This is because branched polyions re-
lease only a small fraction of their counterions into the intermolecular space.
Hence, in a wide range the intramolecular concentration of counterions (and the
intramolecular screening) depends only weakly on the overall polyelectrolyte
concentration.

Up to now these effects in branched polyelectrolytes have been considered
only on the basis of the scaling approximation.34,35 From these predictions
the main power law dependencies for the structural properties of branched
polyions are known. But this approximation can not account for weaker non-
power dependencies. The latter are expected to be rather important especially
when the number of charges per branch is relatively low.

The aim of the present paper is to go beyond the scaling approximation and
to analyse the screening effects in branched polyelectrolytes in dilute solution
on the basis of a Self–Consistent–Field (SCF) numerical approach, which on the
mean-field level gives exact results, in combination with a strongly simplified
analytical mean-field model. The results of the SCF-calculations are compared
to earlier scaling predictions, which serve as a guide-line for a more elaborated
analysis. We show that scaling gives a qualitatively correct description of the
main trends in the behaviour of branched polyelectrolytes in solution. For our
analysis we have chosen the simplest, but most instructive type of branched
polyelectrolytes, the star-branched polyelectrolyte. The degree of branching in
this case is simply determined by the number of branches joined in one junction
point.

After the description of our model in section 2.2, we consider the intramolec-
ular screening by counterions in the dilute limit as manifested in the depen-
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dence of the star size on the number of branches (section 2.3). The screening
by added salt and the dependence of the star conformation on the salt concen-
tration is analysed in section 2.4. In section 2.5 we consider the concentration
effects in a salt-free solution of stars and we discuss the overlap threshold. Our
conclusions are summarized in section 2.6.

2.2 Cell model for a solution of polyelectrolyte

stars

We envisage a dilute solution of star-branched polyelectrolytes as an ensemble
of spherical cells (analogous to Wigner–Seitz cell) each containing one poly-
electrolyte star molecule localised at the center, fig 2.1. 37 The cell radius D

D

R

Figure 2.1: Polyelectrolyte star in a spherical cell. The star has f branches of
N monomer units each. The cell radius is D, and the star occupies the central
region within radius R.

equals half the average distance between the centers of neighbouring stars, i.e.
D ∼ c

−1/3
P . Here and below the polyelectrolyte concentration cP is assumed

to be below the overlap concentration. The star-shaped polyion (with a bare
charge eQ) occupies the central region, r < R, of each cell. Here, r is the
distance from the centre of the cell and R is the average extension of branches.
The periphery of the cell, R < r < D, corresponds to the inter-star space in
the solution.

The strength of the electrostatic field (and as a result the derivatives of the
concentration profiles of all types of small ions) vanishes at the edge of the cell,
at r = D. Polymer concentration effects in the dilute range are modelled by
varying D.

The main molecular parameters of the polyelectrolyte star are the number
of branches f , the number of monomers per branch N , and the fraction of
charged monomers m−1. Here, m − 1 is the number of uncharged monomers

13



2.2 Cell model for a solution of polyelectrolyte stars

between two neighbouring charges along the chain. The overall charge eQ of
the star is then equal to eQ = efN/m, where e is the elementary charge.

The fraction m−1 of charged monomer units in the chain is assumed to be
small. The Bjerrum length lB = e2/kBTε is of the order of a monomer size
which is taken as the unit length. Here, ε is the permittivity of the solvent, T
is the temperature, and kB is the Boltzmann constant. The star branches are
intrinsically flexible, i.e. the Kuhn segment length is also of order unity.

Because of the electroneutrality of the solution as a whole, the cell contains
Q monovalent counterions. When salt is added, co- and counterions of the salt
are also added in equal amounts.

2.2.1 Analytical model

In the following, we will use a mean-field Flory-type approach for the analysis
of the large-scale properties of a dilute salt-free solution of polyelectrolyte stars.
The free energy can be split up into various contributions

F = FCoulombic + Fions + Fconf + Fconc (2.1)

describing the Coulombic interactions between all charges (charged monomers
and counterions), the translational entropy of counterions, the conformational
entropy of the extended branches of the star, and the concentrational (osmotic)
part describing short-range interactions between uncharged monomers, respec-
tively. We remark that within the accuracy of excluded volume terms this
mean-field model is equivalent to that used earlier.34 A similar mean-field cell
model has also been applied for ionic microgels by Kramarenko et al.. 38

The free energy given by eq 2.1 is a functional of the monomer and coun-
terion density distributions. However, in order to analyse the dependence of
the average star size R on parameters such as the number of branches f , the
length of the branches N , the fraction of charged monomers m−1, and the cell
radius D, we neglect spatial variations of these densities within the central
region r < R and in the peripheric region R < r < D. In other words we
define the free energy eq 2.1 as a function of two variables: the radius of the
star R and the actual (uncompensated) charge in this central region Q∗. Hence
we assume that Q − Q∗ counterions are retained by Coulombic attractions in
this central region r ≤ R, whereas the remainder of the counterions Q∗ are
distributed evenly in the region R < r < D.

As we assume the density of counterions (and the electrostatic potential) to
have constant (but different) values inside and outside the star, the Coulombic
term equals†

†The Coulombic contribution to the free energy of the cell can be obtained as FCoulombic =

(ε/2)
∫ D

0
(dψ(r)/dr)2r2dr where the strength of the electrostatic field is given by−dψ(r)/dr =

(4π/εr2)
∫ r

0
r′2q(r′)dr′ and the local charge density (in the frame of our uniform approxima-

tion) is equal to q(r) = 3Q∗/4πR3 at r ≤ R and q(r) = −3Q∗/4π(D3 − R3) at R ≤ r ≤ D,
respectively.
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FCoulombic/kBT = lB
Q∗2

R
ϑ(
R

D
) (2.2)

where the function ϑ(x) is given by

ϑ(x) =
1

10
[1 +

5− 9x+ 5x3 − x6

(1− x3)2
]

The translational entropy term, giving the contributions of the translational
entropy of ions inside and outside the star equals

Fions/kBT = (Q−Q∗) ln
Q−Q∗

V (R)
+Q∗ ln

Q∗

V (D)− V (R)
(2.3)

where V (r) = (4π/3)r3.
The conformational entropy of the extended branches of the star can, in

the Gaussian approximation, be written as

Fconf/kBT =
3fR2

2N
(2.4)

For the non-electrostatic osmotic contribution we use the virial expansion

Fconc/kBT =
1

2
vfNϕP +

1

6
wfNϕ2P (2.5)

where ϕP = 3fN/4πR3, which is the volume fraction of polymer segments
within the star volume and v and w are the dimensionless second and third
virial coefficients, respectively. The former is related to the Flory–Huggins χ
parameter as v = 1 − 2χ. In a θ-solvent the binary attraction of monomers
compensates their excluded volume so that v = 0. Whereas linear polymers
under θ-conditions exhibit Gaussian statistics, in strongly branched polymers
the ternary repulsive interactions appear to be strong enough to induce swelling
of the star even when v = 0.39–42

The values of Q∗ and R are found from minimization of the free energy:
(

∂F (Q∗, R)

∂Q∗

)

R

= 0 (2.6)

(

∂F (Q∗, R)

∂R

)

Q∗

= 0 (2.7)

The result is:

Q∗ =
R

lB

1

2ϑ(R/D)
ln[(

Q

Q∗
− 1)(

D3

R3
− 1)] (2.8)

R3 =
N

3f

{

lBQ
∗2[ϑ(R/D)−

R

D
ϑ′(R/D)] +

3R[Q−
Q∗

1− (R/D)3
]−

9f 2N2

8πR2
(v +

fN

2πR3
w)

}

(2.9)
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2.2 Cell model for a solution of polyelectrolyte stars

where ϑ′(x) ≡ dϑ/dx.
These two equations describe both the star size R and the uncompensated

charge Q∗ inside R as a function of the bare charge Q, the number of branches
f , the branch length N , and the cell size D.

2.2.2 Numerical SCF model

The numerical SCF-approach is based on the Scheutjens–Fleer (SF) algorithm
proposed earlier for neutral polymers at interfaces13,16 and extended to account
for the electrostatics on a Poisson–Boltzmann level.43 Some information on the
method is given below, for full details one should consult the original literature.

The SF–SCF approach uses a lattice which facilitates to account for the
volume of all molecular components. A lattice cell with the size of the Bjer-
rum length can be occupied either by a solvent molecule S, a polymer seg-
ment P or by a mobile ion. We assume that there are two types of ions
in the system: co-ions, Cl−, and counterions, Na+ (polymer segments are
assumed to be negatively charged). The lattice cells are arranged in an ar-
ray of concentric spherical shells (or “layers”) numbered as z = 1, ...,M ;
the outer surface of the z-th layer is at the distance r = zlB from the cen-
ter. The total cell radius is given by D = MlB. The volume of the system
within the shell number z is given by V (z) = 4πz3l3B/3 and a layer at co-
ordinate z contains L(z) = (V (z)− V (z − 1))/l3B = 4π(z2 − z + 1/3) lattice
sites. The dimensionless inner area ai and outer area a0 of a lattice site in
layer z are given by ai(z) = 4π(z − 1)2/L(z) and a0(z) = 4πz2/L(z), respec-
tively. These quantities determine the so-called a priori step probabilities,
λ(z, z′), for steps from layer z to z′, where z′ takes the values z − 1 (to the
inner layer), z + 1 (to the outer layer), or z (within the same layer). The
step probabilities are given by λ(z, z − 1) = ai(z)/6, λ(z, z + 1) = a0(z)/6 and
λ(z, z) = 1− λ(z, z + 1)− λ(z, z − 1), respectively.

The SCF formalism features the particle potentials ux(z) which are conju-
gated to the volume fractions ϕx(z). These volume fractions are related to the
local concentrations as ϕx(z) = cx(z)l

3
B. Subscript x is used to refer to the var-

ious types of particles x = S, P,Na+, Cl−. The functionals ux(z) and ϕx(z) are
mutually dependent and are, for a given particle type, only functions of the z
co-ordinate. Hence all the local properties of the system are pre-averaged over
the angular co-ordinates (the spherical approximation). The total potential of
a particle of type x comprises three terms:

ux(z) = u′(z) + kBT
∑

y

χxy(〈ϕy(z)〉 − ϕ
b
y) + νxeψ(z) (2.10)

The first term is coupled to the incompressibility constraint
∑

x ϕx(z) = 1.
The second term gives the short-range interactions, parameterized by Flory-
Huggins interaction parameters χxy between particle types x and y; this in-
teraction term depends on the volume fraction of the components. The term
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〈ϕy(z)〉 is the site average volume fraction, which is equal to λ(z, z − 1)ϕy(z−
1) + λ(z, z)ϕy(z) + λ(z, z + 1)ϕy(z + 1) (note that the site fraction causes the
potential to be non-local and geometry dependent). The quantity ϕby in eq 2.10
is the concentration of monomers of type y in the bulk. The third term ac-
counts for the electrostatic contributions. The local charge q(z) per lattice
layer is given by q(z) = e

∑

x

νxϕx(z), where e is the elementary charge and νx

the valence of the particle of type x. The local electrostatic potential, ψ(z), is
related to the local charge density, q(z), via the Poisson equation.

In order to obtain the density profiles ϕx(z) from the segment poten-
tials ux(z) one has to evaluate all possible and allowed conformations of the
molecules in the potential field. In the special case of a polymeric star one
has to consider the grafting constraint present on the first segments of each
arm. In a first-order Markov approximation, one can compare the chain con-
formations of one arm of the star with segments s = 1, ..., N with the path
of a diffusing particle in an external field that starts in (or near) the center
of the co-ordinate system and ends up somewhere in the system at a time t
(= N). The corresponding diffusion equation features end-point distribution
functions GP (z, s|z

∗, 1) for the statistical weight of finding a chain fragment
that starts with segment s = 1 at z∗ (grafting point) and ends in layer z with
segment s, and correspondingly GP (z, s|N) for the statistical weights of all
possible and allowed conformations, with the specification that segment s = N
can be anywhere in the system and again segment s is at co-ordinate z. Hence,
GP (z, s|N) is the sum of GP (z, s|z

′, N) over all z′. The end point distribution
functions obey, as already mentioned, the diffusion equation which, in discrete
notation, can be written as:

GP (z, s|z
∗, 1) = GP (z)〈GP (z, s− 1|z∗, 1)〉

GP (z, s|N) = GP (z)〈GP (z, s+ 1|N)〉 (2.11)

These propagator relations are started by the condition that a “walk” of one
segment long should be weighted by the free segment distribution function:
GP (z,N |N) = GP (z) for all z and GP (z

∗, 1|z∗, 1) = GP (z
∗) (grafting condi-

tion). The segmental weighting factor GP (z) is defined as exp(−uP (z)/kBT ).
The segment densities follow from the composition law:

ϕP (z, s) = CP
GP (z, s|z

∗, 1)GP (z, s|N)

GP (z)
(2.12)

Here, the factor GP (z) in the denominator corrects for the double counting
of the Boltzmann weight for segment s in the nominator. The normalization
factor CP is fixed by the number of arms f in the system:

CP =
f ·N

M
∑

z=1

L(z)GP (z,N |z∗, 1)

(2.13)
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The grafting co-ordinate of the arms of the star, z∗, is chosen such that
L(z∗ − 1) < f < L(z∗). The density distributions of all monomeric compo-
nents x ∈ {S,Na+, Cl−} follow directly from the above formalism; eq 2.12
now reduces to ϕx(z) = ϕbxGx(z). Note that ϕbNa+ = ϕbCl− as the electrostatic
potential vanishes in the bulk of the solution.

The set of equations as presented in this section is closed, but should be
complemented by boundary conditions. As the cell is electroneutral as a whole,
we set the “reflecting” boundary conditions at z = M which guarantees that
there are no gradients present in the z direction between z =M and z =M+1:
i.e., ψ(M + 1) = ψ(M), ux(M + 1) = ux(M), etc.

The above set of equations are solved iteratively by a Newton-like method.
This results in radial distributions of overall monomer densities, P , S, Na+,
Cl− as well as, e.g., the densities of end segments and all the interior segments,
the segment potentials, and the electrostatic potential. It is also easy to obtain
measures for the size of the star, such as the first moment of the distribution
of end segments:

R =

M
∑

z=z∗
L(z) · (z − z∗) · ϕP (z,N)

M
∑

z=z∗
L(z)ϕP (z,N)

(2.14)

Parameters are taken as simple as possible: χxy = 0 when both x and y are not
P , in a good solvent χPy = 0 and under θ-conditions χPy = 0.5. The valences
are defined as follows νS = 0, νNa+ = 1, νCl− = −1, and νP = m−1. The last
statement means that every monomer has the same charge, which is between
0 and −1.

2.3 Dilute salt-free solution: charge renormal-

ization and intrinsic screening

We start with the analysis of the conformation of a polyelectrolyte star in a
dilute, salt-free solution. The value of R and Q∗ follow from solving the two
implicit eqs 2.8 and 2.9 simultaneously. Previously, scaling relations for the star
size as a function of the number of branches, the fraction of charged monomers,
and the branch length have been derived.34 In this section we compare these
scaling predictions to the analytical model as described in the previous section
and to the numerical SCF-results.

As follows from eq 2.8, in the dilute limit D À R, the distribution of
counterions in the solution strongly depends on the ratio between the bare star
charge eQ and the star radius R.

At Q ¿ R/lB the Coulombic attraction of counterions to the star is rel-
atively weak and the translational entropy favours a uniform distribution in
the whole available space of the solution. This means that at D À R (dilute
limit) the average fraction of counterions localised in the volume occupied by
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the star is small and charged branches interact by unscreened Coulombic repul-
sion. This is the case for stars with a small number of branches, f ¿ f ∗, where
f ∗ corresponds to the crossover between the unscreened and the intrinsically
screened stars (see below). As has been shown in literature f ∗ ∼= m1/2l−1B .34,35

The stars with f ¿ f ∗ shall be referred to as “unscreened stars”. The asymp-
totic expression for the dimensions of the unscreened star can be obtained from
eqs 2.8 and 2.9 if the last two terms in eq 2.9 describing the contribution of
the excluded volume interactions are negligibly small compared to the other
terms and f ¿ f ∗. Balancing then the unscreened Coulombic repulsion, so
Q∗ = Q, with the conformational entropy losses in extended branches, gives
that the star size grows with increasing number of branches as 34

R ∼= Nm−2/3l
1/3
B f 1/3 (2.15)

As soon as the excluded volume interactions play an important role, the ef-
fective exponent for the f -dependence of the star size is somewhat smaller. We
remark that the size of a neutral star grows due to intra-branch steric repulsion
with increasing number of branches as R ∼ f 1/5 or R ∼ f 1/4 under good or
θ-solvent conditions, respectively, instead of R ∼ f 1/3 as for polyelectrolyte
stars.39–42

In the opposite limit, QÀ R/lB (corresponding to the screened stars), the
Coulombic attraction becomes strong enough to win the competition with the
translational entropy so that the distribution of counterions in the solution
becomes strongly non-uniform. Most of the counterions remain in the volume
occupied by the star, their concentration is much larger there than the average
concentration in the solution, while the concentration of ”free” counterions in
the inter-star volume is much smaller than this average value.

The average number of ”free” counterions, given by the uncompensated
charge Q∗ in the volume occupied by the star, is determined by eq 2.8 and
presented in fig 2.2 as a function of the bare charge Q.

As follows from the fig 2.2, Q∗ equals Q for small values of Q, whereas at
large values of the bare charge the effective uncompensated charge Q∗ grows
only logarithmically with increasing Q, so that the dependence of Q∗ on Q
levels off. In the range of large bare charges, Q À R/lB, the uncompensated
charge within the volume of the star remains proportional to R/lB (i.e., it
is much smaller than the bare charge Q). This means, in turn, that most
of counterions remain effectively trapped in the interior of the star by the
Coulombic attraction and only a small fraction of them is released into the
bulk of the solution. This concept is known as charge renormalization and
has been first proposed by Alexander et al.44 for salt-free solutions of charged
colloidal particles, and later by Pincus45,46 for polyelectrolyte brushes.

The physical meaning of the charge renormalization threshold, Q∗ ∼= R/lB,
is transparent: the counterions are pulled inside the star by the Coulombic
force and compensate the charge of the star unless the energy of the Coulombic
attraction e2Q∗/εR is smaller than the thermal energy kBT .
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Figure 2.2: Charge renormalisation effect: an effective (uncompensated) charge
Q∗ within the radius R as a function of the bare (immobilised) charge Q cal-
culated from eq 2.8 for different values of the cell size: D/R = 102, 103, 104,
and R = 100.

With increasing number of branches, f , the Coulombic interactions get
stronger, because the size of the star in the unscreened regime grows as ∼ f 1/3,
according to eq 2.15, whereas the bare charge of the star grows as ∼ f . For
stars with a large number of branches, f À f ∗, Q is no longer much smaller
than R/lB, and most of the counterions are retained in the interior of the star.
These counterions ensure partial screening of the Coulombic repulsion between
charged branches. In the limit f À f ∗ the terms ∼ Q∗ in the right-hand
side of eq 2.9 are negligibly small. If we ignore the non-electrostatic (excluded
volume) interactions, we derive from eq 2.9 the dependence of the size of the
star as a function of the number of arms in the screened regime:

R(f) ∼= Nm−1/2 (2.16)

which indicates that the size of the many-armed star becomes independent of
the number of branches. Eq 2.16 does not take into account the incomplete
compensation of the star charge by counterions trapped in the intra-star space,
i.e. the presence of small fraction of counterions in the inter-star space of the
solution. If the latter is taken into account, a weak (logarithmical) growth
instead of a plateau in the R(f) curve is expected. This regime for QÀ R/lB
is called the osmotic regime. The reason is that eq 2.16 can be obtained
also on the basis of ”osmotic” arguments:34,45,46 the extensional Coulombic
force applied to the branches of the star is proportional to the excess osmotic
pressure due to counterions trapped inside the star by the attractive Coulombic
force. The balance between this osmotic pressure and the conformational free
energy penalty for the extension of branches, eq 2.4, results in eq 2.16.

The alternative set of arguments leading to eq 2.16 is based on the concept
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of intrinsic screening length. We introduce the Debye screening length, κ−1 as

κ−1 ∼= (lBc)
−1/2, (2.17)

where c is the concentration of mobile ions. In this paper we use two different
Debye screening lengths, the intrinsic screening length, κ−1i , and the screening
length caused by added salt, κ−1s . κ−1i is defined as (lBci)

−1/2, where ci is the
concentration of counterions in the intra-star space. It is easy to prove, that
κ−1i ¿ R, i.e. Coulombic interactions inside the star are screened on a scale
much smaller than the star radius if the condition f À f ∗ applies. This is the
basis of the local electroneutrality approximation, according to which there is
a local compensation of the immobilised charge on the branches by counterions
on the scales larger than κ−1i .

The effect of the screened Coulombic repulsion of the charged monomers on
the large scale conformational properties of the star polymer is equivalent to
that of the short-range binary repulsion (excluded volume interactions) and can
be formally described using the effective (electrostatic) second virial coefficient‡

veff ∼= lBκ
−2m−2, (2.18)

The factor m−2 reflects the fact, that only a fraction m−1 of monomers is
charged. The size of the star, which is dominated by short-range binary re-
pulsive interaction between monomers (good solvent conditions), is given by
39–42

R ∼= N3/5f 1/5v1/5 (2.19)

Taking into account the definition of κ−1i , and the local electroneutrality con-
dition ci ∼= cP/m we arrive to the known result eq 2.16.

According to eq 2.16 the star size is expected to be virtually independent
of the number of branches in a certain range of f . Therefore with increasing
number of branches the monomer concentration and, as a result, the rela-
tive importance of the non-electrostatic interactions between uncharged mo-
nomers increases. At very large number of branches, f À (N/m)2, these
non-electrostatic interactions become dominant.34 Obviously, this regime is at-
tainable only for very weakly charged, mÀ 1, stars.

If the concentrational contribution described by the last term in eq 2.9 is
neglected, then eqs 2.8 and 2.9 interpolate between two asymptotic limits given
by eq 2.15 and 2.16 which give the radius R for a star with small and large
number of arms, respectively.

The dependencies of the star size R on the number of branches f have been
calculated with the numerical SCF-model at low ionic strength of the solution,
ϕbNa+ = ϕbCl− = 10−7, and by simultaneous solution of eqs 2.8 and 2.9 of the
analytical model. The results are shown in fig 2.3.

‡The second virial coefficient of two elementary charged monomers interacting via DH-
potential uDH(r)/kBT = lB exp(−κr)/r is proportional to

∫

(1− exp(−uDH(r)/kBT ))r
2dr.

The latter integral is dominated by large r that results in eq 2.18.
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Figure 2.3: The star sizeR as a function of the number of branches f (in double-
log co-ordinates) in a salt-free solution under θ-(a) and good (b) solvent con-
ditions for N = 200 and for m = 5(diamonds), 10(circels), and 15(triangles).
The curves with the filled symbols correspond to the solution of eqs 2.8, 2.9,
while the lines with the open symbols correspond to results of SCF-calculation
at φbs = 10−7 and D = 150. The bold lines show the slopes predicted by scaling.
34
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As expected from eqs 2.15 and 2.16, lnR, increases linearly with ln f for
the star with small number of branches and levels off for the many-armed stars.
The remaining growth is mainly due to the increasingly importance of the non-
electrostatic interactions of uncharged monomers and is more pronounced in a
good solvent (fig 2.3b) than in a θ solvent (fig 2.3a).

The initial slope of lnR vs. ln f curves is close to 1/3 (eq 2.15) in a θ solvent
(m = 5, 10, 15) and is close to 2/7 in a good solvent, as predicted earlier. 34 For
m = 2 (not shown in fig 2.3) the initial slope is significantly smaller because
the fraction of charged monomers is large enough to induce intrinsic screening
by counterions even at small values of f (f ∗ ∼ m1/2 ∼ 1 in this case).

The two methods of calculation give the same trends, although the analyti-
cal approach gives systematically a larger star radius than the SCF-calculations.
This difference is not surprising in view of the uniform charge density ap-
proximation used in our analytical model. The latter approximation becomes
especially poor in the inter-star region where the actual distribution of coun-
terions is strongly non-uniform. This non-uniform distribution is fully taken
into account in the SCF-calculations.
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Figure 2.4: The star size R as a function of m (in double-log co-ordinates) for
f = 3(crosses), 10(dots), 20(triangles), and 100(diamonds), under θ- (a) and
good (b) solvent conditions. N = 200, D = 150, and φbs = 10−7. The bold
lines show the slopes predicted by scaling.34

It is instructive to analyse them-dependence of the size of stars for different
values of f . Fig 2.4 shows a double-logarithmic plot of R as a function of m.
We see that with increasing f the absolute value of the slope of lnR vs. lnm
curves systematically decreases from ∼= 0.66 to ∼= 0.5 in a θ solvent and from
∼= 0.57 to ∼= 0.4 in a good solvent, which is in accordance with the prediction
of eqs 2.15, 2.16 and the results of the scaling analysis.34 This gives thus an
indication that the (asymptotic) unscreened and osmotic regimes at small and
large f , respectively, really exists.

The SCF-method allows us to get a better insight in the intrinsic structure
of the star through the analysis of radial distribution of the monomer and
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2.3 Dilute salt-free solution

counterions densities. Fig 2.5 shows the radial decay of the monomer density
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Figure 2.5: The monomer density profile ϕP (r) (in double-log co-ordinates)
for stars with a different number of branches f (θ-solvent conditions, N =
200, m = 5, D = 150, and φbs = 10−7). The bold line indicates the slope -2
corresponding to a uniform extension of the branches.

in log-log co-ordinates for stars with a different number of branches (f =
3, 20, 100). We see that in a wide range of r, corresponding to the internal
region r < R, the slope is close to -2, which indicates a uniform extension of
the branches. This is expected because R ∼ N , according to eqs 2.15 and 2.16,
both for unscreened and osmotic stars.35

The extension vanishes (i.e. the local tension vanishes) at the free ends
of branches. Fig 2.6 presents the radial distribution of the free chain ends,
normalised for one branch, in stars with a different number of branches.§ The
free ends are localised in a relatively narrow range near the edge of the star.
The fluctuations in the overall extension of branches are nearly Gaussian in
stars with a relatively small number of branches (f ≤ 50, see fig 2.6). With
increasing number of branches the position of the maximum of the distribution
shifts to larger r, which reflects an increase in the overall extension. However,
as we have discussed above, for many-armed stars the average star size (i.e.
the position of the maximum in the ϕe(r) curve) is virtually independent of
the number of branches. This feature is clearly demonstrated in fig 2.6. It is
important to note that the distribution of the free ends is wide for large f ; its
shape becomes asymmetric and is reminiscent of the distribution of free chain
ends in a planar polyelectrolyte brush.11,47 In other words, near the edge of
a many-armed star the effect of curvature is weak and the structure of the
peripheric region of the star resembles with that of a planar polyelectrolyte

§The normalised to one branch end segment distribution has been calculated as ϕe(z) =
L(z)ϕ(z|N)/f .
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Figure 2.6: The radial distribution ϕe(r) of the end monomers of the star
(normalised for one branch) for stars with a different number of branches f
(θ-solvent conditions, N = 200, m = 5, D = 150, and φbs = 10−7).

brush. As a rough estimate for the onset of the developing of the asymmetry
of the ϕe(r) distribution, we can use the condition κ−1i ≤ N1/2, which implies
that the electrostatic field gets screened on the lengths smaller than the range
of the Gaussian fluctuations of extended branches of the star. This condition
results in f ≥ f ∗N/m. For the set of parameters used in fig 2.6 we calculate
that the number of arms should be larger than 40, which agrees with the
observation noted earlier. At larger f the intrinsic screening length κ−1i at
the edge of the star is smaller than the range of Gaussian fluctuations of the
extension of branches and we expect quasi-planar behaviour of the periphery
of the star. We mention the direct analogy between this observation and that
in the literature,48 where the intrinsic structure of neutral polymer stars was
studied by the numerical SCF-method.

Fig 2.7 gives an illustration of the distribution of counterions inside the
star and in the bulk of the solution around the star. In order to illustrate
the degree of localisation of counterions in many-armed stars, we present both
the counterion and the polymer densities (the latter is devided by m). Both
densities are normalised for one branch. As follows from fig 2.7, at small f the
counterions spread fairly uniformly over the cell volume. With increasing f the
counterions become more and more localised inside the star. At large f the
radial profile of counterions and charged monomers inside the star approach
each other, which illustrates the local electroneutrality in the many-armed
stars. The deviation from local electroneutrality becomes significant in the
peripheric regions close to the edge of the star, see insert in fig 2.7. The local
concentration of monomers (and of counterions) there is such that the local
screening length becomes comparable to the total star size.35

Fig 2.8 presents the fraction of “trapped” counterions (localised at r ≤ R,
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Figure 2.7: The radial distribution of charged monomers and counterions (nor-
malised for one branch) in stars with a different number of branches f . The
curves with the filled marks correspond to the distribution of counterions ϕi,
those with the open symbols give the monomer distribution ϕP/m. (θ-solvent
conditions, N = 200, m = 5, D = 150, and φbs = 10−7).

where R is the average end position) as a function of f . With increasing f
the fraction of trapped counterions systematically increases and it tends to 1
for large f . This constitutes a direct proof of the localisation of counterions in
many-armed stars, i.e. the existence of the osmotic regime.

2.4 Dilute solution: screening by added salt

The addition of low-molecular-weight salt to a solution of branched polyelectro-
lytes results in additional screening of the Coulombic repulsion between charged
branches of the stars and in a de-swelling with increasing salt concentration.

As we have demonstrated in the previous section, the intramolecular Cou-
lombic repulsion in many-armed stars is already partially screened in the salt-
free solution by counterions localised preferentially in the intra-star space. The
degree of localisation of counterions and the effect of intrinsic screening depends
strongly on the number of branches. Hence the effect of additional screening
by salt is expected also to be strongly dependent on the number of branches
in the star.

As was discussed earlier,35 the larger the number of branches, the higher
is the salt concentration required to affect the conformation of the star. In
other words, the salt concentration in the bulk of the solution cbs must exceed
significantly the intrinsic concentration of counterions ci ∼= cP/m in order to
affect the star conformation (i.e., to induce de-swelling of branches). So at
small salt concentration, cbs ¿ ci, the intramolecular screening is dominated by
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Figure 2.8: The fraction of counterions localised inside the star (at r < R) as
a function of the number of branches f (θ-solvent, N = 200, m = 5, D = 150,
and φbs = 10−7).

counterions, while in the limit of high salt, cbs À ci, both co- and counterions
contribute significantly to the screening of the intra-star Coulombic repulsion.

The size of the star in the salt-dominance regime can be derived using
the same mean-field arguments as used for the star screened by counterions
only. The effective (electrostatic) second virial coefficient, veff ∼= lBκ

−2m−2,
is determined by the bulk screening length, κ−1s

∼= (lBc
b
s)

−1/2 and substitution
into eq 2.19 gives

R ∼= N3/5f 1/5m−2/5(cbs)
−1/5 (2.20)

The same result has been obtained in the literature on the basis of osmotic
arguments by balancing elasticity of the branches with the differential (excess)
osmotic pressure of all types of mobile ions inside and outside the star. 35

Fig 2.9 presents the results of SCF-calculations for the star size R as a
function of the bulk volume fraction of salt ϕbs ≡ ϕbNa+ ≡ ϕbCl− in the range
of ϕbs from 10−7 to 10−1 corresponding to the variation of the Debye screening
length (measured in the monomer lengths) from approximately 200 to unity.
The number of monomers per branch is equal to N = 200, the fraction of
charged monomers is set equal to 0.2 (i.e. m = 5). Different curves correspond
to a different number of branches f , which number is varied over a wide range,
3 < f < 200.

All the curves in fig 2.9a are normalised to the value at “low” salt (at
ϕbs = 10−7 in our calculations). At large f there is a well-developed plateau at
small salt concentration where R = Rlow, corresponding to a predominance of
counterions in the intramolecular screening. With increasing salt concentration
the salt starts to contribute to the screening and gradual de-swelling of stars
occurs. The larger the number of branches f in the star, the higher is the salt
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Figure 2.9: The star size R as a function of the volume fraction of salt in
the bulk φbs (in double-log co-ordinates) for stars with a different number of
branches f under θ-solvent conditions; N = 200, m = 5. In fig 2.9a the star
size R is normalised to its value at φbs = 10−7,Rlow, while in fig 2.9b it is
normalised to its value at φbs = 10−1, Rhigh. The bold line shows the slope
predicted by scaling.35

concentration where the onset of this de-swelling is found.

In the limit of large salt concentration (the salt-dominance regime) lnR
decreases almost linearly with lnϕbs, as demonstrated in fig 2.9b, where the
size of the stars is normalised to their values at “high” salt concentration
ϕbs = 10−1. The slope is found to be close to −1/5 as predicted by eq 2.20.

Fig 2.10 presents the evolution of the monomer density profile (in log-log
co-ordinates) for a star with f = 20 at several ionic strengths. The slope of
lnϕP (r) vs. ln r curves in central part of the star progressively decreases from
around -2 in the salt-free regime to around -4/3 at high salt concentration.
The power law ϕP ∼ r−4/3 for the radial decay of the monomer density is
typical for a star swollen by short-range binary repulsive interaction between
the monomers¶ and has been predicted for the salt-dominance regime.35

Fig 2.11 shows the relative volume fractions of co- and counterions inside
the star as a function of ϕbs for different values of f . For a star with a small
number of arms and low ϕbs the concentration of ions inside the star is relatively
close to the bulk value. For large f the concentration of counterions inside the
star is much bigger than the bulk volume fraction ϕbs but the difference becomes
smaller as ϕbs increases and the salt dominance regime is approached.

¶The exponent -4/3 for the density profile directly follows from the exponent 3/5 for the
molecular weight dependence of the overall star size, see eq 2.20.
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Figure 2.10: The monomer density profile (in double-log co-ordinates) of a star
with f = 20 branches under θ-solvent conditions at different salt concentrations
(shown in the figure); N = 200, m = 5, D = 150. The bold lines show the
slopes predicted by scaling.35

2.5 Concentrational effects in dilute solution:

the star contraction and the overlap thresh-

old

The behaviour of charged macromolecules with increasing concentration in
the solution is qualitatively different from that of neutral ones, because of the
long-range character of intramolecular Coulombic interaction and the screening
effect of counterions. This difference is most pronounced in a salt-free case. In
the high-salt-concentration regime strongly screened Coulombic interactions
are equivalent to short-range excluded volume interactions. In the latter case,
charged polymers behave like neutral ones under good solvent conditions (see
previous section).

In dilute solutions (and in a good solvent) neutral polymers are swollen
due to short-range intramolecular exclude volume repulsion of monomers. This
swelling is the same (with the accuracy of weak concentrational effects) in the
whole range of dilute solutions, i.e. at all concentrations below the overlap-
ping threshold c∗. At concentrations above c∗ the intramolecular excluded
volume repulsion gets partially screened due to other polymers. This screening
becomes stronger and, correspondingly, the polymer de-swells, as the concen-
tration of the solution increases. The chains approach their Gaussian (ideal)
dimensions as the volume fraction (the concentration of polymer in the so-
lution) approaches unity. For neutral polymers screening of intramolecular
interactions occurs only above c∗, i.e. in the semi-dilute regime. The overlap
threshold is thus determined by the polymer size R in the dilute solution as
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Figure 2.11: The ratios of the average concentrations of co- and counterions
inside the star to the bulk value as a function of the volume fraction of salt in
the bulk φbs (in double-log co-ordinates), for stars with a different number of
branches f under θ-solvent conditions; N = 200, m = 5, and D = 150.

c∗ ∼= N/R3.49 Concentrational effects in solution of neutral polymer stars have
already been extensively discussed.39,41,42

The swelling of charged polymers in dilute solution is determined by the
intramolecular Coulombic repulsion. Due to the presence of counterions, which
are spread all over the volume of the solution because of entropic reasons, this
intramolecular repulsive interaction gets progressively screened with increas-
ing solution concentration even below the geometrical overlapping threshold
for polyions. With increasing concentration of polyelectrolytes (and of the
counterions) in the solution the corresponding screening length becomes pro-
gressively smaller. The intra-chain repulsion becomes weaker and, as a result,
de-swelling of polyelectrolytes occurs.

As discussed in Section 2.3, the distribution of counterions in dilute solu-
tions of branched polyelectrolytes is strongly inhomogeneous: the local density
of counterions in the intramolecular space is larger than the average in the
solution. This inhomogeneity gets more pronounced with increasing degree of
branching and becomes extreme (trapping of most of counterions) in solution
of many-armed stars. Hence, one can expect that

i. Polyelectrolyte molecules in a salt-free solution exhibit considerable de-
swelling with increasing concentration of polyelectrolytes below the over-
lapping threshold.

ii. The overlapping threshold is determined not by the polyelectrolyte size
in the highly dilute limit, but by the actual (much smaller) size which
polyelectrolytes attain at the crossover between dilute and semi-dilute
regimes.
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iii. The de-swelling induced by an increase of the solution concentration in
the dilute regime is more pronounced for weakly branched polyelectro-
lytes; strongly branched ones are less sensitive to the solution concentra-
tion below the overlap threshold.

The last statement is the most important for us and is based on the fact
that the concentration of counterions in the intermolecular space in a dilute
solution of strongly branched polyelectrolytes is low in comparison to their
intramolecular concentration.

In order to check these predictions we have performed SCF-calculations for
the stars with different numbers of branches in a cell with a variable radius D.

The polymer density and the free-end distributions as well as the counter-
ions distributions were calculated in order to get insight in the conformational
changes which occur in a polyelectrolyte star with increasing concentration of
the solution in the dilute regime (below the overlap threshold).
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Figure 2.12: The star size R as a function of the cell radius D for different
number of branches f (θ-solvent conditions, N = 200, m = 5, φbs = 10−7). The
”confinement” line R = D is shown for comparison.

Fig 2.12 presents the average star size as a function of the cell radius D
for different values of f = 3, 20, 50, 100 and N = 200,m = 5. The bold line
R = D indicates the regime of ”geometrical confinement” of the star in a cell
corresponding to the close packing of stars in the solution. All the stars exhibit
a significant decrease in size with decreasing D (increasing concentration) in
the range R ≤ D, i.e. D ≥ D∗. Here we define the cell size D∗ in analogy to
the overlapping concentration of the solution c∗, this means that for D∗ the
star size R is the same as the shell size D∗, R(D∗) ∼= D∗. In order to get
a better estimate for D∗, we have to analyse the evolution of the star intrin-
sic conformational structure with increasing solution concentration (decreasing
D). From fig 2.13, presenting the radial distribution of the free ends of a star,
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Figure 2.13: An example of the radial distribution of the end monomers ϕe(r)
for a star with f = 20, N = 200, m = 5, φbs = 10−7, and θ-solvent conditions,
at different cell sizes D. The dots denote the end of the cell.

it follows that roughly three stages of the star contraction with decreasing D
can be distinguished.

The first stage, D À R, the star size decreases due to enhanced screening
of intra-star repulsion by counterions which are progressively pushed into the
intra-star volume as the overall available volume of the cell decreases. The
maximum of the end-segments density distribution gets progressively displaced
to smaller r, but retains its symmetrical (Gaussian) shape. In fig 2.13 this is
the case for D ≥ 70.

However, the star size decreases with decreasing D not as rapidly as the
cell radius and at sufficiently small D the right wing of the end-monomers
distribution becomes truncated at the cell edge, r = D, and the distribution
loses its symmetry. In fact, this marks the beginning of overlapping of stars in
the solution and corresponds to the crossover between dilute and semi-dilute
regimes. With decreasing D the right wing of the distribution becomes more
and more narrow and the maximum of the distribution becomes higher and
approaches the cell edge.

Finally, upon decreasing D even further the maximum (and the right wing)
in the distribution disappears and the density of end segments becomes a mono-
tonically increasing function from the centre of the cell to the periphery (this
is the case for D ≤ 48 in fig 2.13). This last regime corresponds obviously to
the geometrical confinement of the star in the cell.

It is natural to associate the second stage of contraction, when the symme-
try of the free ends distribution is already perturbed by the presence of the cell
wall at r = D, but the maximum of the distribution is still localised at r < D,
with the crossover region between dilute and semi-dilute solution. For the con-
ditions of fig 2.13, this is the case for 50 ≤ D ≤ 60. Hence we can estimate D∗
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from above using the condition D∗ −R(D∗) ∼= ∆, where ∆ is the width of the
free ends distribution. The lower estimate for D∗ is given by the condition of
the disappearance of the maximum in the free ends distribution. The upper
estimate for D∗ is given by the condition that the volume fraction of the end
segments at D is half the value of the maximum, i.e. ϕe,max = 2ϕe(D) The
upper and the lower estimates for D∗ are referred as D∗

U and D∗
L, respectively,

both are indicated in fig 2.13.

Of course this difference is only important for finite N . For sufficiently long
branches the width, D∗

U − D
∗
L, of this crossover regime is relatively small (in

comparison to the overall star size or to D∗) and the difference between lower
and upper estimates for D∗ becomes irrelevant.
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Figure 2.14: The relative magnitude of the maximal star contraction in the
dilute regime, Rdilute/D

∗ as a function of the number of branches f for different
m, which are indicated in the graph (θ solvent, N = 200, and symbols refer to
D∗
U and the filled symbols to D∗

L.

Fig 2.14 presents the ratio Rdilute/D
∗, where Rdilute is the star size at infinite

dilution, so for D =∞. Rdilute/D
∗ characterises the magnitude of contraction

of the star in the dilute regime as a function of the number of branches in the
star f . In the calculations, it is not possible to take D infinitely high so D is
taken 200. In accordance to our expectations for many-armed stars, the larger
the number of branches in the star, the less sensitive is the polyelectrolyte star
size to the concentration increase in the dilute regime. For a many-armed star
the magnitude of this contraction is not large. We expect that in the limit
f = ∞ the D∗ tends to the star size in a highly dilute solution. An opposite
trend, i.e. an increase of the ratio Rdilute/D

∗ for the stars with small number
of branches is remarkable.

In order to analyse the dependence of D∗ on the star parameters, we can use
the following arguments. Near the overlap threshold, R ∼= D, the concentration
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of counterions is almost uniform throughout the solution, i.e. Q∗/Q ≤ (1 −
(R/D)3). Under these conditions the second, osmotic, term in the right-hand-
side of eq 2.9 predominates over other terms. Expanding the right-hand-side
of eq 2.8 in powers of (1 − (R/D)3) and substituting the result in eq 2.9 we
obtain (neglecting the excluded volume interactions)

D∗ ∼= R∗ ∼= (lBN
3)1/4∆1/4(f/m2)1/4 (2.21)

We expect that the above equation is valid in a wide range of f including
f ≥ f ∗ provided ∆ is larger than the intrinsic screening length near the edge of
the star. In fig 2.15 calculated values of D∗ are plotted vs. f/m2 on a double
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Figure 2.15: The parameter D∗ as a function of f/m2 for different f and m.
The open symbols refer to D∗

U and the filled symbols to D∗
L.

logarithmic scale. The observed dependence is close to a linear one that is
expected from the scaling arguments presented above. The slope is smaller
than it follows from eq 2.21 under the assumption of Gaussian fluctuations of
the extension of branches, i.e. ∆ ∼ N 1/2. This difference can be explained by
non-negligible contribution of other interaction terms in eq 2.9.

Comparing eq 2.21 to eqs 2.15 and 2.16 we find, that the ratio Rdilute/D
∗

is expected to vary non-monotonically with increases in f , i.e. weakly increase
for small f ≤ f ∗ and decrease for large f . This conclusion is in qualitative
agreement with fig 2.14.

It is instructive to compare the conformational changes in the star induced
by an increase of the salt concentration (at small and constant concentration
of polyelectrolytes in the solution) or by an increase of the polyelectrolyte
concentration at low and constant concentration of salt. In the latter case the
screening of intramolecular Coulombic repulsion is provided by counterions,
while in the former case both co- and counterions contribute to screening.
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Figure 2.16: The star size R as a function of the average volume fraction of
mobile ions φ̄ions in the cell (in double-log co-ordinates); f = 3 and 20; (θ
solvent, N = 100, m = 5). The open symbols refer to the case where the salt
concentration is varied and D = const = 200. The filled symbols correspond
to the calculations where φbs = const = 10−7 and D is varied.

In fig 2.16 the star size is plotted as a function of average volume fraction
of the mobile ions ϕ̄ions in the cell. Open points correspond to a salt-induced
de-swelling of the star, whereas filled points show the decrease in the star size
with decreasing cell size (equivalent to the increase in the concentration of stars
in the solution). The ”initial” points of both curves correspond to the star in
the cell of radius D = 200 and bulk value of the salt concentration ϕbs = 10−7

and, obviously, coincide.

At high salt concentration the star size R decreases as R ∼ (ϕbs)
−1/5, which

corresponds to linear the part of the curve describing screening by salt; the
slope is close to predicted value of −1/5. For the salt-free case large values of
ϕ̄ions correspond to a small cell size D when geometrical confinement of the
star in a cell occurs, D < D∗. Therefore, the lnR vs. ln ϕ̄ions curve tends to
become linear with a slope −1/3,‖ thus going below the curve of screening by
added salt.

The relative strength of intra-star screening (manifested in the star size)
due to added salt or due to increased polyelectrolyte concentration in the in-
termediate range depends on the degree of branching.

For f = 3 the distribution of counterions between inter- and intra-star
space is in a salt-free case almost uniform even in dilute solution (see fig 2.7)
and becomes more uniform with increasing concentration of the solution. As a
result, the enhanced screening effect of polyelectrolyte concentration appears

‖The slope -1/3 follows directly from the condition that the ϕ̄ions ∼ D−3 and in the
confinement regime R ∼ D.
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to be almost the same as that of the salt concentration in a wide range of
concentrations below c∗ (corresponding to the overlap of the stars in a salt-free
solution).

The situation is different in the solution of many-armed stars, f = 20,
where the distribution of counterions (in the absence of salt) at small con-
centrations of polyelectrolytes is strongly non-uniform (see again fig 2.7). At
concentrations far below the overlap threshold c∗ a decrease of inter-star dis-
tance (decrease in D) does not affect significantly the intra-star screening and
star conformation, because intra-star space contains only a small fraction of
all counterions. As a result, the star remains more swollen than in the salt-
added solution with the same average concentration of mobile ions. The star
size starts to decrease rapidly (as R ∼ c−1/3) as the overlap threshold is ap-
proached and the confinement of the stars comes into play. This behaviour
is consistent with earlier scaling prediction for the many-armed polyelectro-
lyte stars.34 We remark that for many-armed stars the regime of close packing
without considerable interpenetration is expected to occur in a wide range of
concentrations above the overlap threshold, c > c∗, i.e. in a semi-dilute solu-
tion. Therefore we expect that our cell model provides a correct description
of the cross-over between dilute and semi-dilute regimes, although it loses its
applicability above the overlap threshold c∗.

The concentrational effects in the regime of dilute solution become less
pronounced as salt is added to the solution of star polyelectrolytes. The salt
concentration imposes the bulk screening length, κ−1s

∼= lB(ϕ
b
s)

−1/2. We expect
that the concentrational effects are negligible unless the inter-star distance, D,
is smaller than κ−1s . On the other hand, the intramolecular screening turns
to be dominated by salt when the bulk screening length κ−1s becomes smaller
than the intrinsic screening length κ−1i , which, for many-armed stars is much
smaller than the overall star size R.

In figs 2.17 and 2.18 we give some additional information on the behaviour
of D∗ as a function of the bulk volume fraction of salt ϕbs. Fig 2.17 shows
that for high salt concentration D∗ becomes close to Rdilute. In this regime the
charge is almost completely screened and the polyelectrolyte star behaves like
a neutral one. In fig 2.18, it is shown that D∗ depends in the same way as R
on ϕbs, see also eq 2.19.

2.6 Discussion and conclusions

On the basis of the numerical SCF-approach we have analysed the conforma-
tional structure of star-branched polyelectrolytes in dilute solution. The effect
of the degree of branching and the salt and polyelectrolyte concentrations on
the screening of intramolecular Coulombic repulsion was studied systematically.
The SCF-results confirm the general trends predicted earlier on the basis of
scaling approach and give a better insight in the behaviour in the cross-over
regions, where non-power dependencies of large-scale and local conformational
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Figure 2.17: The relative magnitude of the maximal star contraction in the
dilute regime, Rdilute/D

∗ as a function of the volume fraction of salt in the
bulk φbs (in double log scale). The solid curve corresponds to D∗

U and the
dotted curve to D∗

L (θ-solvent conditions, N = 200, m = 5, f = 20).

properties on the molecular and solution parameters play an important role.
It is shown, that in dilute salt-free solutions the distribution of counter-

ions is strongly inhomogeneous: their local concentration is much higher in the
intra-star space and rapidly decreases in the bulk of the solution. The effect
of localisation of the counterions in the intra-star space becomes stronger with
an increasing number of branches f in the star. As a result, the intramolec-
ular Coulombic repulsion in many-armed stars is strongly screened. This is
manifested in a levelling off of the f -dependence on the star size at large f .

We remark that the mean-field approach used in the present paper does not
allow to take into account the fluctuation-induced attractive electrostatic forces
between the star branches. These forces arise due to strong local fluctuations
of the concentration of counterions near strongly charges polyions and become
important at sufficiently large values of the Bjerrum length. One can expect
that this effect is stronger for highly branched polyions in comparison to that
for linear ones because of larger concentration of counterions in the intra-star
space. However, the analysis of this phenomenon leads beyond the Poisson–
Boltzmann approximation used in the present paper.

With increasing concentration of polyelectrolytes, the decrease in the trans-
lational entropy of counterions results in their progressive re-distribution from
the bulk of the solution to the intra-star space and in additional screening of
the Coulombic repulsion between charged monomers. Therefore the star size
decreases. Significant star contraction is observed with increasing concentra-
tion of polyelectrolytes in the regime of dilute solution, i.e. below the overlap
threshold for branched polyions. The effect is less pronounced in a solution of
many-armed stars which retain most of the counterions in the intra-star space
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Figure 2.18: The parameter D∗ as a function of the volume fraction of salt in
the bulk φbs (in double log scale). The solid curve corresponds to D∗

U and the
dotted curve to D∗

L (θ solvent, N = 200, m = 5, f = 20).

even in the dilute regime. In this case an increase in the average solution con-
centration does not affect the local (intramolecular) counterion concentration
and, as a result, the intramolecular screening is not changed. Hence, screening
of intramolecular Coulombic repulsion is determined not only by the average
solution concentration, but depends strongly on the molecular architecture.

We have analysed the structural changes in the polyelectrolyte star in-
duced by increasing the concentration of the solution and identified the cross-
over concentration c∗. This concentration corresponds to close packing of
stars which are already partially de-swollen in the dilute regime due to en-
hanced intramolecular screening. At concentrations above c∗ our cell model
describes the geometrical confinement of the star. If this model is mapped to
a (star)polyelectrolyte solution, then c∗ corresponds to the cross-over to the
semi-dilute regime. With increasing concentration above c∗ overlapping and
partial interpenetration of the stars in solution occurs. However, in analogy
to semi-dilute solutions of neutral stars we expect that for many-armed stars
there is a wide concentration range where star contraction occurs with increas-
ing concentration according to the power law R ∼ c−1/3, i.e. without significant
interpenetration. The reason is, obviously, the remaining extension of the star
branches with respect to the dimension of an individual polymer chain in the
semi-dilute solution of the same concentration. Only at concentrations con-
siderably above the overlap threshold, c À c∗, such interpenetration becomes
significant and the structure of the solution becomes the same as that of the
solution of individual linear chains of length N .

Our analysis of the effect of added salt on the polyelectrolyte star conforma-
tion in the dilute regime shows that the star size is virtually independent of the
salt concentration over a wide range because of intrinsic screening by counter-

38



Quenched star

ions. The onset of salt-induced star contraction corresponding to a cross-over
to the dominance of salt in the intramolecular screening is shifted to higher salt
concentration as the number of branches in the star increases. This prediction
is in a good agreement with experimental results demonstrating low sensitivity
of polyelectrolyte stars to added salt in comparison to their linear analogues. 50

In the salt-dominance regime the star size decreases as R ∼ (ϕbs)
−1/5 according

to earlier scaling predictions.35

The comparison of the effect of added salt and that of increasing polyelec-
trolyte concentration on the star conformation shows that in the dilute regime
the star size is less sensitive to increase of polyelectrolyte concentration than to
addition of salt. This effect is due to the strongly inhomogeneous distribution
of counterions in a salt-free dilute solution of many-armed stars. The difference
between the two mechanisms of screening becomes less significant as the num-
ber of arms in the stars decreases: for stars with a small number of branches
it is the average concentration of mobile ions that determines intramolecular
screening.
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Chapter 3

Annealed Star-Branched
Polyelectrolytes in Solution∗

Abstract

Equilibrium conformations of annealed star-branched polyelectrolytes (poly-
acids) are calculated with a numerical Self-Consistent-Field (SCF) model. From
the calculations we obtain also the size and charge of annealed polyelectrolyte
stars as a function of the number of arms, pH, and the ionic strength. The
results are compared with predictions from analytical theory.

Upon varying the number of branches or the ionic strength of the solution,
the star-size changes non-monotonically, which is in agreement with the ana-
lytical predictions. The salt concentration at this maximum is directly related
to the charge density of the star. The internal structural properties of the
star corona (the polymer density, the ionisation profiles, and the distribution
of the end points) are analysed. The shape of the density profiles indicates
increasing local stretching of the branches as a function of the distance from
the star centre. Analytical theory predicts a decrease of the polymer density
with distance as a power law an exponent of − 8

3
. This exponent can only be

found for a narrow range of pH values and number of arms.
Furthermore a bimodal end-point distribution is found and interpreted in

analogy to that predicted earlier by analytical SCF-theory for planar polyelec-
trolyte brushes.

Results of recent experiments with annealed star-shaped micelles are dis-
cussed on the basis of our numerical model calculations.

∗published in Macromolecules, 2002, 35; 9176–9190
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3.1 Introduction

Weakly dissociating polyelectrolytes play an important role in stabilizing col-
loids and in buffering environments.51 An example is the buffer capacity of
soils: weak acidic polyelectrolytes, i.e. humic acids, regulate a change in the
pH and/or the (heavy) metal ion concentration. Micelles with a polyelectro-
lyte corona have practical relevance in drug- and pesticide delivery systems.
52

Solutions of polyelectrolytes, in general, still remain one of the under-
explored fields in polymer science since the conventional linear Debye–Hückel
approximation usually fails to describe structural properties of the solutions
of highly charged polyions. Even though the properties of solutions of lin-
ear chain polyelectrolytes are not completely understood, charged polymers of
more complex architecture, such as randomly36 or regularly34,35,53–55 branched
polyelectrolytes have attracted considerable attention.

Polyelectrolyte stars, comprising a relatively small core region and an ex-
tended charged corona, resemble polymeric micelles23,24,56–62 or small colloidal
particles stabilised by grafted polyelectrolytes. Furthermore, a star-like ar-
chitecture provides the simplest model of branching and is useful for getting
an insight in the behaviour of branched polyelectrolytes with more complex
architecture.

Two types of polyelectrolytes can be distinguished: quenched (or strong)
and annealed (or weak). The dissociation constant for a monomer of a quenched
polyelectrolyte is so high, that the actual degree of ionisation is constant, ir-
respective of the local electrostatic potential. Poly(styrene sulphonate), PSS,
serves as a typical example of a quenched polyelectrolyte. On the other hand,
the degree of ionisation of an annealed polyelectrolyte depends strongly on the
local electrostatic potential because the ionisation constant of the monomer is
low. Poly(acrylic acid) is a well known example of an annealed polyelectrolyte.

In our present study we focus on the conformational properties of a weak
star-branched poly-acid. Making the choice of pK = 5 for the acidic monomer
and assuming a given fraction of acidic monomers in the branches, we thus
mimic, e.g., a star-shaped partially hydrolysed poly(acryl amide) or a star-
shaped poly(acrylic acid).

The poly-acid stars do not only respond on the variation in salt concentra-
tion, as in case of quenched polyelectrolytes, but also to the pH of the solution.
The reaction with hydrogen ions is specific and therefore more sensitive to small
changes in the concentration of these ions than to the change in concentration
of indifferent salt ions.

The most spectacular trends in the large-scale behaviour of annealed star-
branched poly-acids, (e.g. the non-monotonic dependence of the gyration ra-
dius upon the number of branches or ionic strength of the solution), were
treated earlier on the basis of a scaling approach.35 In this scaling analysis
the Local–Electroneutrality–Approximation (LEA) is utilised. LEA assumes
accumulation of the majority of counterions in the interior of the many-arm
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polyelectrolyte stars. However, for real polyelectrolyte stars, both simple theo-
retical estimates and numerical solution of the Poisson–Boltzmann (PB) equa-
tion for the distribution of counterions show that a non-negligible fraction of
counterions is released from the corona of the polyelectrolyte. Therefore, in
order to find out whether LEA is justified, a more accurate approach based on
the numerical solution of the PB equation is required.

We analyse in a systematic way the effects of branching (number of arms in
the star), ionic strength, and pH of the solution on the conformational proper-
ties of the annealed star-branched polyelectrolyte. The numerical SCF theory
that will be applied here is based on the Scheutjens–Fleer (SF–SCF) algorithm.
13 It is a powerful method for getting an insight into the radial distributions
of the polymer and the counterion density in stars or micellar coronae. No
a priori assumptions, other than the mean-field approximation and Gaussian
chain statistics, are made about the conformations of the polyelectrolyte stars
or about the distribution of counterions. Also, a quantitative prediction con-
cerning their scattering behaviour can be made. The latter will be compared
to recent SANS experiments, which probed the internal structure of the corona
of star-like polyelectrolyte micelles.61

The paper is organised as follows: In section 3.2 we present an overview
of the results of the analytical theory concerning the behaviour of annealed
star-branched polyelectrolytes in dilute solutions.35 This work is extended for
the case of arbitrary pH of the solution. In section 3.3 we give the most
important features of the numerical SCF model. Results and discussion are
given in section 3.4. We end up with the comparison of our calculations with
a recent experiment (section 3.5) and with the conclusions in section 3.6.

3.2 Analytical model

The analytical model considers a star-branched polyelectrolyte comprising f
branches (arms), attached with one end onto an impermeable core of size Rcore

(fig 3.1). The size of the core is assumed to be small with respect to that of
the arms and it will be neglected in the analytical model. Each arm is a linear,
intrinsically flexible polymer chain comprising N monomers. The star consists
of fN monomers. Each mth monomer (m=1,2,...) is capable of ionisation via
dissociation of a hydrogen ion H+. The fraction of ionised acidic monomers
at place r is denoted as α(r) and depends on the local proton volume fraction
ϕH+(r) as63

α(r)

1− α(r)
=

K

ϕH+(r)
(3.1)

whereK is the dissociation constant. By using the local proton volume fraction
we assume in eq 3.1 that the activity coefficient is 1. The overall charge Q of
the star-branched poly ion is given by Q = αfNe/m, where e is the elementary
charge.
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Rcore

Figure 3.1: Schematic picture of a star-shaped polyelectrolyte with an impen-
etrable core.

In experimentally relevant situations water is a marginally good solvent
for the uncharged monomers. In our analysis we therefore assume θ-solvent
conditions for the uncharged monomers.

The properties of polyelectrolyte stars in a dilute salt-free solution depend
on the number of branches. Three regimes can be distinguished:34,35

The polyelectrolyte regime occurs for stars with a small number of bran-
ches. In this case most of the counterions are released into the bulk of the
solution. The star size is determined by the interplay between electro-
static repulsion and a conformational entropy penalty for the extension
of the branches (conformational elasticity).

The osmotic regime occurs for stars with a larger number of branches, which
retain most of the counterions in the intra-star space. The size is de-
termined by the interplay between osmotic pressure of counterions and
conformational elasticity of the branches.

The quasi-neutral regime appears if the number of branches is further in-
creased. This regime is not dominated by the charge of the polyelectrolyte
but by the steric interactions. The size is determined by the interplay
between steric repulsion between the monomers and conformational elas-
ticity of the branches.

3.2.1 Polyelectrolyte regime

For stars with a small number of arms, counterions spread uniformly over the
solution. The dissociation of a monomer, which is part of the polyelectrolyte
star, is then approximately equal to the dissociation of a monomer in the bulk:
α ≈ αb. The degree of ionisation αb at zero electrostatic potential obeys the
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equation
αb

1− αb
=

K

ϕbH+

(3.2)

where ϕbH+ is the concentration of hydrogen ions in the bulk of the solution.
Eq 3.2 is a limiting value of eq 3.1. This means that in the polyelectrolyte
regime annealed polyelectrolytes at a given pH and quenched polyelectrolytes
behave identically. At low salt concentration the star conformation is governed
by non-screened Coulomb repulsion between the arms. The size R of the stars
in this regime is given by:35

R ∼= Nf 1/3
(αb
m

)2/3
(

lB
a

)1/3

a (3.3)

where lB = e2

εkBT
is the Bjerrum length (ε is the permittivity of the solvent, kB

is the Boltzmann constant and T the temperature). The size of the monomer
is denoted by a. Because R ∼ N , the extension of the branches is uniform. In a
spherical geometry, this means that the radial distribution of polymer density
ϕ(r) in the star is given by

ϕ(r) ∼ r−2 (3.4)

where r is the distance from the centre of the star. These relations hold for
the case of low or no added salt.

For high salt concentration, i.e. κR < 1 where κ−1 = (lBIb)
−1/2 is the Debye

screening length and Ib is the ionic strength in the bulk and defined as:

Ib =
1

2

∑

i

ν2i ϕbi (3.5)

where νi is the valence, and ϕbi is the volume fraction of mobile ions of type
i in the bulk. The screened Coulomb interactions inside the polyelectrolyte
star can be taken into account via an effective second viral coefficient of mo-
nomer/monomer interactions, veff ∼

(

αb

m

)2
I−1b .

The star size and the polymer density distribution are now given by 35

R ∼= N3/5f 1/5
(αb
m

)2/5

I
−1/5
b a (3.6)

ϕ(r) ∼ r−4/3 (3.7)

These expressions for the properties of the polyelectrolyte star in solution with
added salt are similar to those for a neutral star polymer in a good solvent.
39–41

3.2.2 Osmotic regime

As the number of arms in the star increases, more and more counterions are
attracted to the vicinity of the star. With increasing number of arms the
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fraction of free counterions becomes asymptotically small. 34,35 For these stars
the Local–Electroneutrality–Approximation (LEA) is applicable even when the
solution contains no salt.34 The LEA assumes local compensation of the im-
mobilised charge on the branches by that of the counterions. In the general
case, when in addition to H+ and OH− ions, the solution contains also salt
(e.g. NaCl) the local electroneutrality condition assumes the form

∑

i−

ϕi−(r) + α(r)ϕ(r)/m =
∑

i+

ϕi+(r) (3.8)

where ϕ(r) and α(r) are the local volume fraction of the monomers and the
local degree of ionisation inside the star corona (Rcore ≤ r ≤ R); the summation
in the r.h.s. is running over all the cationic species (i.e. salt ions ϕNa+(r) and
hydrogen ions ϕH+(r)) while the summation in the l.h.s. is running over all the
anionic species (i.e. salt ions ϕCl−(r) and hydroxide ions ϕOH−(r)). In order
to find the local degree of ionisation α(r) inside the star, eq 3.8 has to be
combined with eq 3.1 and to the Donnan rule, which reflects the Boltzmann
distribution of co- and counterions between the interior of the star and the
bulk of the solution;

ϕi−(r)/ϕbi− = ϕbi+/ϕi+(r) (3.9)

As a result, one gets an equation which couples the local degree of ionisation
α(r) to the local polymer concentration ϕ(r):

α(r)

1− α(r)
·
1− αb
αb

=

√

(

α(r)ϕ(r)

mΦb

)2

+ 1−
α(r)ϕ(r)

mΦb

(3.10)

where Φb =
∑

i ϕbi, the total volume fraction of all mobile ions in the bulk of
the solution; in the case when only monovalent ions are present in the system,
Φb = 2Ib. In the osmotic regime, the polymer density profile ϕ(r) can be
determined by balancing the local osmotic force, 4πr2∆Π(r), with the elastic
force. The elastic force is given by

Felas
kBT

=
3f 2

4πr2ϕ(r)
(3.11)

This force is arising in the extended branches.35 Eq 3.11 assumes Gaussian
elasticity and equal stretching of all the branches. The excess osmotic pressure
inside the star is given by

∆Π(r)/kBT =
∑

i

ϕi(r)− Φb +∆Πθ(r)/kBT (3.12a)

=

√

(α(r)ϕ(r)/m)2 + Φ2
b − Φb +∆Πθ(r)/kBT (3.12b)

where ∆Πθ(r) ∼ ϕ3(r) is the contribution due to non-electrostatic (steric)
repulsion between the monomers. The latter contribution dominates for the
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stars with a sufficiently large number of arms and/or close to the centre of
the star, i.e. when ϕ(r) is sufficiently large while α(r) is small. For the stars
that do not have a very large number of arms, the contribution of ∆Πθ(r) can
be neglected, except for the central region of the star. The behaviour of the
central part of the star is the same as for a star in the quasi-neutral regime,
this will be addressed in section 3.2.3.

Asymptotic expressions for the size and the polymer density profiles can
be obtained in two opposite limits: α(r)ϕ(r)

mΦb
À 1 (osmotic annealing regime)

and α(r)ϕ(r)
mΦb

¿ 1 (salt dominance regime), i.e. the ratio between the local
concentration of counterions and the total concentration of mobile ions in the
bulk of the solution serves as a natural parameter for expansion of eqs 3.10 and
3.12. We remind the reader that Φb does depend not only on the concentration
of added salt, but also on the pH of the solution, which in turn determines αb.

Osmotic annealing regime, α(r)ϕ(r)/m À Φb. This regime occurs when
the concentration of added salt is low and while the pH is sufficiently high to
induce appreciable ionisation of the star arms. Then eq 3.10 assumes the form

α(r)2

1− α(r)
≈

αb
1− αb

mΦb

2ϕ(r)
(3.13)

As one can see from eq 3.13 the degree of ionisation of monomers in the branches
α(r) is at low salt concentration much smaller than that in the bulk of the
solution αb, unless αb → 1, i.e. unless the pH À pK.

For this low salt regime, the excess osmotic pressure reduces to

∆Π(r)/kBT ≈ α(r)ϕ(r)/m (3.14)

i.e. it is dominated by the osmotic pressure of counterions, which are accumu-
lated inside the star volume. From eqs 3.11 and 3.14 we obtain the relation
between the radial profiles of the polymer density and the degree of ionisation.

ϕ(r) ≈ fr−2
√

m/α(r) (3.15)

For α¿ 1, the combination of eqs 3.13 and 3.15 gives the radial profile of the
degree of dissociation and of the polymer density:

α(r) ≈

(

αb
1− αb

m1/2Φb

f

)2/3

r4/3 (3.16)

ϕ(r) ≈ f 4/3r−8/3
(

1− αb
αb

m

Φb

)1/3

(3.17)

For the case of pH À pK, α(r)→ 1, eq 3.15 reduces to

ϕ(r) ≈
fm1/2

r2
(3.18)
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Subsequent integration of the density profile, 4π
∫ R

Rcore
ϕ(r)r2dr = fN pro-

vides an equation for the overall star size R as a function of structural param-
eters (f,N), salt concentration and pH of the solution. The size R is given
by:

R ≈

{

αb

1−αb
N3f−1m−1Φba for αb/(1− αb) ∼ 1

Nm−1/2a for αb → 1
(3.19)

where we have neglected the size of the core, Rcore. The remarkable consequence
of eq 3.19 is that the size decreases as a function of the number of arms and
increases as a function of Φb for pH values around the pK. This is analogous
to the behaviour of the weak planar polyelectrolyte brush upon increasing the
grafting density and/or the salt concentration in the osmotic regime. 10,64–66

The physical explanations of these effects are that:

• upon an increase in the number of arms the number of charged monomers
is decreased because more and more counterions, i.e. protons, are retained
within the star volume, thus reducing the degree of dissociation and the
concomitant swelling.
• upon an increase in the salt concentration hydrogen ions inside the star

corona are substituted by sodium ions. The decrease of the local proton
concentration promotes ionisation.

Salt dominance regime, α(r)ϕ(r)/m¿ Φb. This regime applies when the
salt concentration in the bulk becomes larger than the concentration of mobile
ions in the interior of the star. The asymptotics of eq 3.10 and of eq 3.12 for
high salt concentrations are given by

α(r)

1− α(r)
·
1− αb
αb

≈ 1−
α(r)ϕ(r)

mΦb

(3.20)

∆Π(r)/kBT ≈ α2(r)ϕ2(r)/2m2Φb (3.21)

For high salt concentrations the degree of dissociation of the monomers in the
star branches is the same as in the bulk. The polymer density distribution is
found by using eqs 3.21 and 3.11:

ϕ(r) ≈ f 2/3r−4/3
(

m

αb

)2/3

Φ
1/3
b (3.22)

The size of the star is therefore given by

R ≈ N 3/5f 1/5
(αb
m

)2/5

Φ
−1/5
b a (3.23)

As follows from eq 3.19 and eq 3.23, the size of a star at low pH passes through
a maximum as a function of the ionic strength. The ionic strength Φ∗

b at which
this maximum occurs, is found by equating eqs 3.23 and 3.19 and is given by

Φ∗
b ≈ m1/2α

−1/2
b (1− αb)

5/6fN−2a−3 (3.24)
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3.2.3 Quasi-neutral regime

The quasi-neutral regime occurs when steric (non-electrostatic) interactions
between the arms dominate over the electrostatic ones, i.e. ∆Πθ(r) is the dom-
inant term in eq 3.12. Close to the centre of the star, this is for all regimes the
case. On the scale of the star as a whole, the quasi-neutral regime occurs either
at low pH (when ionisation of arms is small) or at sufficiently large number
of arms. (Upon an increase in the number of arms, the ionisation of the arms
is progressively suppressed, while the steric interactions get stronger.) In the
quasi-neutral regime, the size of the star depends not on its charge but on the
solvent quality. The size of the star scales therefore in the same way as for a
neutral star. For a θ-solvent it is given by:39–41

R ∼ N 1/2f 1/4a (3.25)

and the monomer density profile decays as

ϕ ∼ r−1 (3.26)

3.3 Numerical Self-Consistent-Field model

The numerical SCF-approach is based on the Scheutjens–Fleer (SF) algorithm.
This algorithm was first proposed for neutral polymers at interfaces 13,16 and
extended to account for electrostatics on a Poisson–Boltzmann level 43 and later
generalised by Van Male67 for spherical geometry and for calculating chemical
reactions. All the calculations were done with the software package sfbox. 17

Some information on the SF–SCF model is given below, for full details the
reader should consult the literature references quoted above.

The SF–SCF model is a self-consistent-field model, this means that from
a given distribution ϕx(r) of all the particles in the system, a potential field
ux(r), is calculated. From this field, which acts on the particles x, a new
distribution is recalculated and this is repeated until ux(r) and ϕx(r) of all the
particles are consistent. The subscript x is used to refer to the various types
of particles. First we explain the way to calculate the field, ux(r), from the
distribution, ϕx(r), after which we proceed to calculate ϕx(r) from ux(r).

The SF–SCF approach uses layers which are characterised by the (smeared
out) volume fractions of the particles and by the total charge, i.e. a mean field
approximation. The thickness a of a layer is 0.6 nm. Every layer is totally
filled. In the calculations the following particles x are used: solvent molecules
(H2O), salt ions (Na+ and Cl−), a non-ionizable polymer segment (Pu), and a
polymer segment with a pH-dependent charge (PpK). The last type of segment
can either be neutral or negatively charged depending on the pH. There are
two types of salt ions in the system: co-ions Cl− and counterions Na+. The
solvent molecule, water, can dissociate according to the following reaction:

2H2O ¿ H3O
+ +OH− Kw = 2.12 ∗ 10−16
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. A solvent molecule may take on 3 different states k, i.e. H2O
0, H3O

+, and
OH−. The value of the equilibrium constantKw is the dimensionless equivalent
of the familiar water dissociation constant of 10−14 mol2/L2. The value of Kw

depends on the thickness of the layer,67 see also the appendix A. The reaction
of the polymer segment PpK with water is

P 0
pK +H2O ¿ P−

pK +H3O
+ K = 1.45 ∗ 10−6 (3.27)

This means that at a local concentration of H3O
+ of 10−5 mol/L half of the

PpK segments is dissociated. The polyelectrolyte stars are composed of three
types of segments, Pu, P

−
pK (the charged form) and P 0

pK (the non-charged form).
The lattice layers are arranged in an array of concentric spherical shells

numbered as z = 1, 2, . . . ,M ; the outer surface of the z-th layer is at the
distance r = Rcore + z ∗ 0.6, in nm, from the centre, where Rcore is the size
of the core (see fig 3.1). In the article we will use r for continuesly changing
sizes and distances, as e.g. are used in the analytical theory and z for discrete
steps in sizes or distances, e.g. in the numerical calculations. The dimensionless
volume of layer z is L(z) which is given by 4/3π(z3 − (z − 1)3).

The SCF formalism features the particle potentials of state k ux,k(z) which
are conjugated to the volume fractions ϕx,k(z). The functions ux,k(z) and
ϕx,k(z) for a given particle type in state k are only functions of the z co-
ordinate. Hence, all the local properties of the system are pre-averaged over
the angular co-ordinates (the spherical approximation). The total potential of
a particle of type x in state k comprises three terms:

ux,k(z) = u′(z) + kBT
∑

y,l

χx,k−y,l(〈ϕy,l(z)〉 − ϕb,y,l) + νx,keψ(z) (3.28)

The first term is coupled to the incompressibility constraint
∑

x,k ϕx,k(z) = 1.
The second term gives the short-range interactions, parameterized by Flory-
Huggins interaction parameters χx,k−y,l between particle types x with state k
and y in state l. This interaction of particle of type x with state k in layer
z with a particle of type y in state l depends on the volume fraction of a
particle of type y in state l positioned in layers z − 1, z, and z + 1. The site
average volume fraction, denoted as 〈ϕy,l(z)〉, depends on ϕy,l(z − 1), ϕy,l(z),
and ϕy,l(z+1) and is weighted by the geometry of the system.48 The quantity
ϕb,y,l in eq 3.28 is the volume fraction of particles of type y in state l in the
bulk. The third term accounts for the electrostatic contributions. The local
charge density per layer q(z) is given by q(z) = e

∑

x,k νx,kϕx,k(z), where e is
the elementary charge and νx,k the valence of the particle of type x in state k.
The local electrostatic potential ψ(z) is related to the local charge density q(z)
via the Poisson equation.

The way to find ux,k(z) from the volume fractions of all particles is given
by eq 3.28. To calculate ϕ(z) of a polymer from ux,k(z) one has to evaluate all
possible and allowed conformations of the polymer in the potential field. The
monomers in a polymer have a ranking number s which is ranging from 1 to
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3.3 Numerical Self-Consistent-Field model

N . In the case of a polymeric star one has to take into account the grafting
constraint on the first segment. The chain statistics are treated in a first order
Markov approximation. Using this, we calculate the end-point distribution
function G(z, s|z∗, 1) for the statistical weight of finding a chain fragment that
starts with segment s = 1 at z∗ (grafting point) and ends in layer z with
segment s. Correspondingly, G(z, s|N) is the statistical weight of all possible
and allowed conformations, with the specification that segment s = N can
be anywhere in the system and segment s is again at co-ordinate z. Hence,
G(z, s|N) is the sum of G(z, s|z ′, N) over all z′. The end-point distribution
functions, in the approximation of first order Markov chain statistics, obey the
diffusion equation which, in discrete notation, can be written as:

G(z, s|z∗, 1) = G(z, s)〈G(z, s− 1|z∗, 1)〉 (3.29a)

G(z, s|N) = G(z, s)〈G(z, s+ 1|N)〉 (3.29b)

whereG(z, s) is the segmental weighting function and defined as
∑

k αb,kGk(z, s)
with αb,k the fraction of the segment at ranking number s in state k in the bulk
and Gk(z, s) = eux,k(z)/kBT , where x is the particle type at ranking number s.
〈G(z, s− 1|z∗, 1)〉 and 〈G(z, s+ 1|N)〉 denote the site average endpoint distri-
bution of segment s− 1 and s+1, respectively. The starting conditions for the
propagators are G(z,N |N) = G(z,N) for all z and G(z∗, 1|z∗, 1) = G(z∗, 1)
(grafting condition). The density of a monomer with ranking number s follows
from the composition law:

ϕ(z, s) = C
G(z, s|z∗, 1)G(z, s|N)

G(z, s)
(3.30)

Here, the factor G(z, s) in the denominator corrects for the double counting of
the Boltzmann weight for segment s in the nominator. By summing eq 3.30
over s we get the polymer density profile

ϕ(z) =
N
∑

s=1

ϕ(z, s) (3.31)

The normalization factor C is fixed by the number of monomers belonging to
the star molecule:

C =
fN

M
∑

z=1

L(z)G(z,N |z∗, 1)

(3.32)

The grafting co-ordinate of the arms of the star z∗ is chosen as close to the
centre as possible, i.e. L(z∗ − 1) < f 6 L(z∗). Hence for f = 5 we take z∗ = 2
and for f = 100 we choose z∗ = 4.

The set of equations as presented in this section is closed, but should be
complemented by boundary conditions. As the cell is electroneutral as a whole,
we set the “reflecting” boundary conditions at z = M , which guarantees that
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there are no gradients present in the z direction between z =M and z =M+1:
i.e. ψ(M + 1) = ψ(M), ux(M + 1) = ux(M), etc.

The above set of equations are solved iteratively by a Newton-like method.
This results in the electrostatic potential profile and a distribution of number
of charges per layer. Furthermore, the radial distributions of the salt ions, the
polymer segments and also, for instance, the end points of the branches are
calculated.

The solvent is chosen to be a θ-solvent for the polymer, i.e. χ = 0.5 between
the solvent molecules and the polymer monomers, see eq 3.28. Each polymer
arm of the star has N monomers, every m-th monomer can dissociate. The
average degree of dissociation per dissociating monomer ᾱ is defined as:

ᾱ =

∑

z

ϕP−

pK
(z)L(z)

∑

z

ϕPpK
(z)L(z)

(3.33)

P−
pK denotes the charged form of the dissociating polymer segment and PpK

the total number of dissociable monomers, i.e. PpK = P 0
pK + P−

pK . The volume
fraction of the charged form of the PpK monomer in a layer is coupled to the
electrostatic potential in layer z through

ϕP−

pK
(z)

ϕPpK
(z)

= α(z) = αbe
eψ(z)/kT (3.34)

where ψ(z) is the electrostatic potential in layer z.
As a measure for the size, the following definition of R is used

R =

M
∑

z=z∗
(z − z∗)ϕ(z,N)L(z)

M
∑

z=z∗
ϕ(z,N)L(z)

, (3.35)

i.e., the first moment of the radial distribution of the end segments ϕ(z,N),
starting from the grafting point. Because we want to compare star with differ-
ent f , we have to use a size which is comparable for all the stars. Due to the
fact that stars with large number of arms have a small core, we have chosen to
neglect the inner-part and look upon the stretching from z∗ on. The values of
z∗ are chosen to satisfy the volume requirements of a star.

To make a comparison with SANS experiments feasible, we need to calculate
the scattering form factor from the radial distribution of the polymer segments.
This is done through a Debye Transformation. The form factor P (q) for an
object with a spherically symmetric density distribution is given by: 61,68

P (q) =
1

(Nf)2
F (q)2 (3.36)

were Nf is the number of scattering units and F (q) is form factor amplitude
i.e. F (q) =

∫

ϕ(z)e−iqzdz, the Fourier transform of the volume fraction profiles
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of the scattering units. Eq 3.36 is not only valid for star-shaped objects but
also for polymeric micelles and small spherical particles with polymeric chains
grafted to a surface. In the latter two cases however, this validity applies
only when the core is negligibly small or matched in scattering density with
the solvent,68 i.e. when the scattering is only due to the coronal chains. The
scattering amplitude F (q) (in discrete notation) is given by

F (q) =
z=M+Zcore
∑

z=1+Zcore

ϕ(z)

z
∫

z−1

4πz2
sin(qz)

qz
dz

=
4π

q2

z=M+Zcore
∑

z=1+Zcore

ϕ(z) ((z − 1)cos(q(z − 1))− zcos(qz)) (3.37)

+ϕ(z)

(

sin(qz)

q
−

sin(q(z − 1))

q

)

In this equation only the monomers of the polyelectrolyte scatter, z is the
distance from the centre, Zcore is the number of layers which form the core to
which the polyelectrolytes are grafted. In the second equation of eq 3.37 the
integration over one layer has been performed. The scattering wave vector q is
limited by the number of layers used: π

M
≤ q ≤ π, because distances smaller

than one layer or larger than M layers have no meaning. The factor π stems
from 2π in the Fourier argument of the sin-function, multiplied by the Nyquist
critical frequency, 1

2
.69 The step in q is π

M
.

3.4 Results and Discussion

We will first show some overall features of the star molecule. Most calculations
are done for N = 200, but in order to investigate finite size effects, some calcu-
lations were performed for N = 1600. The stars, calculated in this section, do
not have a core, so if z∗ > 1 then the inner part is penetrable for the polyelec-
trolyte. The number of the segments which will indeed go into the inner-part
is negligible small. This means that in practice the core is impenetrable. In
section 3.4.1 the behaviour at a low salt concentration is given. In the section
3.4.2 the effects, induced by changing the salt concentration, are investigated.

3.4.1 Annealed polyelectrolyte stars in a solution with
low ionic strength

First the size and the average degree of ionisation of a polyelectrolyte star on the
pH will be shown. This will be followed by the evolution of the radial density
profiles of the monomers and the radial profile of the degree of dissociation.

Changing the pH in experiments or in numerical calculations to obtain
a desired dissociation, automatically affects the ionic strength I. The ionic
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strength is defined as

I = A
1

2

∑

i

ν2i ϕbi = AIb (3.38)

Here, i denotes all small, mobile, ionic molecules, H3O
+, Na+, OH−, and

Cl−, νi is the valence and ϕbi the volume fraction of molecule i in the bulk,
A is a conversion factor needed to express the ionic strength in mol/L, see
appendix A.

0

0.5

1

4 6 8 10

f = 3
f = 20
f = 100

α

pH

Figure 3.2: The average degree of dissociation as a function of the pH for
different numbers of arms. Triangles denote f = 3, cubes f = 20, and circles
f = 100. The filled symbols are the calculations without added salt and the
open symbols the ionic strength is kept constant at 10−4 mol/L, the curves
through the points are a guide to the eye. The curve without symbols denotes
an individual monomer in the bulk.

Fig 3.2 shows the titration curves (ᾱ vs pH) for the stars with different
number of branches (for comparison the titration curve on an individual mo-
nomer in the bulk of the solution is plotted as well). The shift of the titration
curve to higher pH with increasing number of branches is clearly observed.
There is a remarkable difference between a titration curve calculated with a
constant ionic strength and one calculated with no added salt, for stars with
different number of branches f . For the titration curves with constant ionic
strength salt is added to keep the ionic strength constant while for the case,
when no salt is added, the pH is also a measure for the ionic strength. The
titration of monomers in a polyelectrolyte star is influenced by their surround-
ing, for increasing number of branches the increase of the charge on the star
is slower with increasing pH see fig 3.2. For f = 100, ᾱ = 0.5, pH = 7, and
I = 10−4 mol/L, we see a shift of the apparent pK from 5 to 7. For the case of
no added salt the shift is even larger. Furthermore, it can be seen from fig 3.2
that for the system with no added salt the dissociation does not increase with
increasing pH from pH = 4 untill pH = 7. From pH = 4 to pH = 7 the
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ionic strength decreases by a factor of 1000 and the low ionic strength prevents
dissociation. Upon further increasing the pH the ionic strength increases again
and the dissociation becomes possible. This rather special behaviour can only
be measured if one starts with a salt-free solution at pH = 7 and then goes to
either pH = 4 or pH = 10.

Further on in this section the ionic strength I is kept constant and low.
For the highest acid or base concentration, i.e. pH = 4 or pH = 10 the ionic
strength is 10−4 mol/L, even if no extra salt is added. In order to keep the
ionic strength in the bulk constant and equal to 10−4 mol/L while varying pH,
extra salt is added in the range of pH’s between 4 and 10.
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4.5

pH = 4
pH = 5

pH = 6
pH = 7

pH = 8
pH = 10

ln R

N =200
a

1/4

1/3

4.5

5.5

0 2 4 6

pH = 5.5 pH = 6 pH = 6.5

ln f

ln R

N =1600
b

-1

Figure 3.3: The size as a function of the number of arms f for I = 10−4 mol/L,
m = 5, pH as denoted in the graphs and N = 200 (a) or N = 1600 (b). Both
graphs are in double logarithmic scale. The curves are a guide to the eye. The
straight lines show the predicted scaling behaviour.

In fig 3.3 the size of a star is shown as a function of the number of arms
f , for different values of pH, with m = 5 and N = 200 (fig 3.3a) or 1600
(fig 3.3b). It can be seen that for constant f the size increases with the pH;
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this is due to an increasing ionisation of the branches. At low pH, i.e. small
ᾱ, in fig 3.3a the size increases monotonically with the number of arms due to
an enhanchment of the steric interactions. At pH = 4 the slope of lnR vs lnf
is close to 1/4 which is predicted for a neutral star in θ-solvent, see eq 3.25.
For high pH (i.e. pH > 8) the star size grows for increasing f at small f and
flattens off at larger f , just as for quenched polyelectrolyte stars. 34,35,55 The
small increase with f means that the star is in the polyelectrolyte regime, see
eq 3.3. The most interesting behaviour is found for intermediate pH i.e. pH
' pK. The size exhibits a maximum as a function of f for 5.5 ≤ pH < 8.
The weak increase, because the star is still in the polyelectrolyte regime, is
followed by a sharp decrease in size with increasing number of branches. This
maximum is seen for pH 6 and 7. As discussed in section 3.2.2, the decrease
in the star size as a function of the number of branches is due to suppressed
ionisation. In the osmotic annealing regime a power law exponent of −1 is
expected, see eq 3.19, the slopes found in fig 3.3 are smaller. This is due
to increasing steric repulsion between the branches, which is not taken into
account in eq 3.19. This decrease in size is more clearly seen in fig 3.3b, due to
the less pronounced steric interactions for the star with longer branches. By
comparing the stars with N = 200 and N = 1600, it can be concluded that
the finite size effects are small and the main features, which are analytically
predicted, are already seen for N = 200.

In fig 3.4 the segment density is plotted as a function of the distance from
the centre in double logarithmic co-ordinates, for a range of pH values, 3 dif-
ferent values of f , and N = 200. The volume fraction of the polymer segments
decreases with distance from the centre. The decrease becomes steeper with
increasing pH, due to the increasing number of charges on the chain. With
increasing number of arms the susceptibility for changes to the pH decreases,
compare the degree of dissociation for f = 3 and f = 100 in fig 3.2, the dif-
ference in R between pH 4 and 6 for f is 3 and 100 in fig 3.3a. This is due to
increasing importance of steric interactions. For low pH the slope of the lnϕ
vs lnz curve is close to −1, which is expected for uncharged stars, see eq 3.26.
35 For high pH, the situation is similar to that of quenched stars, the observed
slope is close to −2, as expected for the case of uniformly extended branches
according to eq 3.18. For intermediate pH a decrease faster than z−2, is seen
for f = 100 at the periphery of the star. The extra extension is due to a
gradient in the ionisation of the branches. The predicted decrease of −8/3, see
eq 3.17, is not confirmed, however. This may be due to the limited size of the
arms; therefore we turn to the results for N = 1600.

In fig 3.5 the volume fraction profiles of a star with 20 and 100 branches
is shown, each branch has 1600 monomers. In fig 3.5a, where f = 20, a steep
slope is observed at the periphery of the star. In fig 3.5b, for f = 100, this
steep decrease of the volume fraction profiles with z is even better seen. In
the region of this steep slope of lnϕ vs lnz, the local tension of the arms is an
increasing function of z due to increasing ionisation. The effect of increasing
number of branches can be clearly seen: for f = 20 at the periphery, a small
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Figure 3.4: A double logarithmic plot of the volume fraction of the polyelec-
trolyte as a function of the distance from the centre z for I = 10−4 mol/L,
m = 5, pH as denoted in the graphs and N = 200 for f = 3 (a), f = 20 (b),
and f = 100 (c).
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Figure 3.5: A double logarithmic plot of the volume fraction of the polyelec-
trolyte as a function of the distance from the centre z for I = 10−5.5 mol/L,
m = 5, N = 1600, and pH as denoted in the graphs. In fig (a) f = 20 and (b)
f = 100..
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region ϕ(z) ∼ zp, with p < −2 can be observed, and for f = 100 this region
occurs over a larger z-range. The power law exponent for f = 100 is even more
negative than the predicted −8/3, see eq 3.17.

The volume fraction decay of z−2 for f = 20 in fig 3.5a, is larger than
expected which is based on the charge of the star, see fig 3.6a. A z−2-decay of
the volume fraction is expected for a fully charged star. The expected decay for
a non-charged star is ϕ(z) ∼ z−1. This fast decay is probably due to the pulling
of the ends of the star branches, which like to stretch due to their charge.
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Figure 3.6: The degree of dissociation as a function of the distance from the
centre z for I = 10−5.5 mol/L, m = 5, and N = 1600. In fig (a) f = 20, pH as
denoted in the graph and in fig (b) the pH is 6 and f as denoted in the graph,
both plots are in double logarithmic scale.

The decay of the volume fraction profiles faster than z−2, indicates an
increase in the ionisation of the arms, this is shown in fig 3.6. This figure
shows clearly the large increase in ionisation of the branches with distance
from the centre. The fraction of charged monomers increases towards the
periphery of the star, α → αb. However, the expected power law dependence
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for α(r) ∼ r4/3, see eq 3.16, is observed at smaller z-values than the fast decay
of the volume fraction profiles plotted in fig 3.5. The faster than predicted z4/3

increase of the ionisation at the periphery of the star is in agreement with the
faster than predicted z−8/3 decrease of the volume fraction profiles in fig 3.5b.
In fig 3.6b, the radial increase of the degree of dissociation from the centre to
the periphery for f = 100 is most pronounced, the dissociation is negligible in
the inner region of the star, where the power law dependence of ϕ(z) ∼ r−1

occurs, and it increases to αb at the end of the arms.
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Figure 3.7: Log
(
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)

as a function of z2 for I = 10−5.5 mol/L, m = 5, and

N = 1600, and pH 6 for different number of arms.

The profiles of the degree of dissociation are represented in fig 3.7 and
clearly demonstrate a linear dependence of log(1-α) vs z2 in the periphery of
the star. This linear dependence was predicted by analytical SCF theory for
annealed planar brushes.65 Hence we find the structure of the annealed star at
the outer edge is not depending on the curved geometry anymore and resembles
that of a planar polyelectrolyte brush.

The distribution of end points is an interesting property which is easily
obtained in the SCF-calculations but not from analytical theory. In fig 3.8 the
volume fraction (fig (a)) and total number (fig (b)) of the end segments of the
polyelectrolyte star per layer are shown. In order to facilitate a comparison
between stars with different number of arms, the volume fraction and the total
number are normalised with respect to the number of arms. (The total number
of segments gives extra information especially because the lattice is spherical
and the size R, defined in eq 3.35, is determined by the number of segments in
a layer and not by the volume fraction.)

For stars with a small number of branches (the polyelectrolyte regime), e.g.
f = 3 in fig 3.8a we observe a “Gaussian” shape of the free end distribution
function. It peaks close to the periphery of the corona and we find a wide zone,
where no free ends occur, in the central region of the star (a dead zone). For
f = 20 the free ends distribution is much broader and skewed, see fig 3.8a.
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Figure 3.8: The volume fraction and the total number of the end segments as
function of z in fig (a) and (b), respectively. Both the volume fraction profiles
and the profiles of the total amount of end segments are normalised by f . The
other parameters are m = 5, pH = 6, N = 1600, I = 10−5.5 mol/L, and f as
denoted in the graphs.

One maximum of the curve is shifted to lower z value, as compared to the ends
distribution for the star with f = 3 branches. This shift of the maximum is
related to the suppressed ionisation upon an increase in the number of branches.
The maximum at higher z-value is due to some star arms which are more
charged and therefore more stretched. For f = 100 the distribution exhibits
a maximum and a long tail. The position of the maximum is shifted to even
smaller z, as compared to the distribution of the ends in a star with f = 20
branches. Due to the high local polymer density, the chains having ends close
to the maximum of the distribution are weakly charged, while more strongly
charged (and therefore stronger extended) chains contribute to the tail of the
distribution.

Fig 3.8b, where the total amount of the end points per layer is given for N =
1600, shows for f = 100 two maxima and for f = 20 a very broad distribution
with a shoulder. (For N = 200 the end-point distribution is unimodal, but
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exhibits a weak shoulder (not shown)). One can think that these two maxima
indicate two populations of chains which stem a choice a chain can make: it
can either dissociate weakly and remain weakly extended or it can dissociate
substantially, resulting in strong electric repulsion and significant stretching.
Fig 3.9a demonstrates the evolution of the end profiles as a function of the pH.
With an increase in the pH, the two populations remain but the maxima of
the distribution are shifted to higher z-value. Fig 3.9b shows the probability
distribution of the number of charges on an arm. On the x-axis the number
of dissociated segments on an arm is plotted, irrespective of the position of
these dissociated segments on the arm. The way to calculate the probability of
finding a branch with a certain amount of charges is described in appendix B.
Fig 3.9b shows that there are two populations of arms with respect to their
charge for pH 5.5 and 6 but not for pH ≥ 6.5 even though at this pH the
endpoint distribution is also bimodal.

Even though we see two populations of end points and at some pH’s also two
populations of charged chains, we do not expect a “phase”-transition between
branches which are hardly charged and ones which are more ionised. Because
not in all cases where a bimodal distributions in end points is seen give a
bimodal distribution in the fraction of charges per chain and a second reason
is that the amount of charges varies gradually when changing the pH. Other
reasons not to expect a phase-transition due to the amount of charges on a
branch, is because the two maxima in the distribution of end points have also
been found by SCF-calculations for quenched polyelectrolyte stars, although
the second peak is very small. Furthermore analytical SCF-theory predicts this
kind of bimodal planar quenched brushes as well.11,70

In the last part of this section, we discuss some special features of the
segment density, which follow from the numerical calculations. In fig 3.10a the
polymer density profiles of an annealed star with 3 arms, N = 200, and m = 1
are presented. The difference between fig 3.4a and fig 3.10a is that the total
number of charged monomers in the latter case can be higher, because every
monomer is capable for ionisation, i.e. m = 1 instead of m = 5. In this case
the volume fraction of polymer segments exhibits a weak maximum at the edge
of the star corona. This maximum is observed only for strongly charged stars,
pHÀ pK, m ≈ 1, and small number of branches. (The maximum is not found
for f = 20 and 100, not shown.)

For comparison, also the polymer density profiles of a quenched polyelectro-
lyte star are shown in fig 3.10b; here an increase in ϕ(z) near the periphery of
the star can be seen at low f as well. Hence, the appearance of the maximum
in the polymer density profile is not related to the ionisation/recombination
balance in the star branches.

We remind the reader, that polyelectrolyte stars with small number of bran-
ches release most of counterions in the outer space. In the interior of the star
the branches are extended fairly uniformly and the polymer density decreases
∼ r−2 due to geometric reasons. On the contrary, near the periphery of the
corona the effect of curvature becomes irrelevant and it behaves as a planar
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Figure 3.9: The end-point radial distribution profiles for differen pH are shown
in fig (a). In fig (b), the fraction of chains with a specific number of charges on
the arm as a function of the number of dissociated groups on one arm is given.
Other parameters of the star are N = 1600, f = 20, m = 5 and I = 10−5.5

mol/L.

brush. For a planar brush, polymer density slightly increases before vanishing
at the edge of the corona (cf. Borisov et al.71). This increase in the polymer
density at the edge of the corona has been predicted by assuming both pure
unscreened Coulomb repulsion and equal stretching of the branches.

As to why it is only visible for stars with small number of arms, those
stars exhibit a narrow distribution of the end segments. Upon an increase in
the number of arms, the end-segment distribution becomes broader. Due to
this broad distribution of the end segments the edge maximum in the polymer
density in many-arm stars is smeared out, see also fig 3.8a, and therefore not
visible anymore.

On the other hand, the mean-field assumption becomes questionable for
stars with long arms and low density because the volume fraction and the
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Figure 3.10: The volume fraction as function of the distance from the centre z
in fig (a) an annealed polyelectrolyte star with I = 10−4 mol/L, m = 1, f = 3,
N = 200, and pH as denoted in the graphs. Fig (b), a quenched star with
ϕs = 10−8 mol/L, m = 3, N = 134 and, f as denoted in the figure is shown.
Both graphs are in double logarithmic scale

charge within one layer are smeared-out over the huge volume of one layer.

3.4.2 Behaviour of annealed polyelectrolyte stars upon
changing the ionic strength

Increasing the salt concentration has two competing effects on the radius R
of the star. The most common effect is the screening of the charges: with
an increase in the salt concentration the electrostatic repulsion between the
arms gets weaker. Therefore the size of the star decreases with increasing
salt concentration namely (according to eq 3.23) as R ∼ Φ

−1/5
b , provided the

salt concentration outside the star volume is larger than the concentration of
counterions inside the star volume. The other effect is due to the fact that H+

and OH− do not only contribute to the ionic strength but also participate in the
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dissociation equilibrium, thereby determining the charge of the polyelectrolyte.
At not too high pH, addition of salt in the bulk of the solution results in
progressive substitution of H+ ions inside the star volume by Na+ ions and,
hence, in an additional ionisation followed by an extension of the star arms. As
long as the (simultaneously increasing) screening of the Coulomb interactions
can be neglected, the scaling theory predicts a linear increase of the star size
with increasing salt concentration: R ∼ Φb according to eq 3.19. The latter
effect is only seen for low ionic strength. Altogether, the increase in the ionic
strength will at first lead to an increase in the size, and when the ionic strength
in the bulk solution becomes larger than that inside the star volume it causes a
decrease in size, i.e. a maximum of the size as a function of salt concentration
is expected.

2.6

3.4

4.2

-14 -7 0

pH = 5,  f = 20
pH = 6,  f = 20
pH = 7,  f = 20
pH = 6,  f = 5
pH = 6,  f = 100ln R

-1/5

1

ln I

Figure 3.11: The size of an annealed star as a function of the ionic strength,
for N = 200, m = 5, pH and number of arms f as denoted in the graph.

The size of the stars as a function of the ionic strength is shown in fig 3.11, a
clear maximum is indeed observed in all cases. We observe, after the maximum,
a slope slightly smaller than −1/5, due to the increasing importance of steric
repulsion at large I. However, the power law dependence of R on Φb in the
annealed osmotic regime (low salt) is much weaker than R ∼ Φb, due to the
fact that an increase in the salt concentration results simultaneously in stronger
screening of the repulsion between ionised monomers. The maximum in size
for an annealed star or curved brush is also found experimentally for some
systems.72,73

The salt concentration Φ∗
b at which the maximum in the star size is observed

depends on f and αb, see eq 3.24. In fig 3.12 we see a linear increase of Φ∗
b

with the number of arms (fig 3.12a), and a maximum in Φ∗
b with increasing

bulk degree of dissociation αb (fig 3.12b and c). The proportionality between
Φ∗
b and f , predicted by eq 3.24, is nicely confirmed.
In fig 3.12b the dependence of Φ∗

b on αb is shown. The exponent of the
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Figure 3.12: The dependence of the salt concentration Φ∗
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and (c) f = 20.
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powerlaw dependence, predicted as α
−1/2
b (see eq 3.24), is not observed. To

explain this, we have to make a distinction between the low degree of ioni-
sation and the high degree of ionisation in the bulk. For the small αb, not
only the electrostatic interactions determine the star conformation, but also
steric interactions. Furthermore, the star size does not change dramaticly with
increasing ionic strength.

The reason, why for large αb the theoretical dependence of Φ∗
b on αb is

not observed, may be related to the underestimation of the screening of the
electrostatic repulsion for Φs < Φ∗

s. This was also noted when we discussed
fig 3.11. The dependence of R on the ionic strength is much weaker than the
predicted linear dependence.

The dependence of Φ∗
b on 1−αb is shown in fig 3.12c. The exponent of the

power law dependence, 5
6
, is found.

The last part of this section, is adressed to the volume fraction profiles.
For a star with 20 arms, m = 5 or 1, at pH 5 or 6, and N = 200, the volume
fraction profiles decay at low ionic strength as z−1, as for neutral stars. An
increase in the ionic strength induces ionisation and the polymer density profile
decays as z−2, a further increase in the ionic strength leeds to screening of the
charges on the arms. In this last regime the volume fraction profiles show a
ϕ(z) ∼ z−4/3 decay, see eq 3.22. Any new information is not gained from these
volume fraction profiles and therefore they are not shown.

3.4.3 Form factors of star shaped polyelectrolytes

A good technique to measure the internal structure and the size of a small
object is SANS. The measurements give the scattering intensity as a function
of the wave vector q. From the intensity the form factor P (q) can be obtained at
sufficiently low concentration.† The form factor P (q) is directly related to the
shape of the concentration profile by eq 3.36. So we explicitly calculate form
factors from our volume fraction profiles. For comparison we also calculate
P (q) for a single-power-law density profile, ϕ(z) ∼ zp. In figs 3.13 and 3.14,
we present the form factors of a quenched and of an annealed polyelectrolyte
star, respectively.

In fig 3.13a we see that upon increasing the charge on the branches the
initial decay of P (q) gets faster, that indicates an increasing size of the star,
as expected for quenched stars.55 Simultanously the first minimum in P (q)
shifts to smaller q-value. The low q region for the non-charged star is nicely
described by the form factor obtained with a volume fraction profile, decaying
as z−1, although volume fraction profiles with ϕ(z) ∼ zp in which p < −1 fit
the calculated form factor even better. The P (q) for the star with αq = 0.986
is mimicked fairly well by a form factor resulting from ϕ(z) ∼ z−2. The P (q)

†At the high q range not only the form factor contributes to the overall scattering intensity.
An additional contribution is due to local fluctuations, and can therefore not be taken into
account in our mean field model.
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Table 3.1: Parameters used for fitting of the form factors of quenched and
annealed stars, with a single-power-law decay.∗

System I in mol/L ϕ(z) ∼ zp Rstar Rcore

neutral p = −1 28 1
quenched, αq = 0.014 10−4 p = −1 28 1
quenched, αq = 0.339 10−4 p = −2 109 1

p = −2 180 1
quenched, αq = 0.986 10−4 p = −2 180 1
quenched, αq = 0.339 10−4 p = −2 109 1

p = −2 180 1
quenched, αq = 0.339 10−2 p = −4/3 58 0
quenched, αq = 0.339 1 p = −4/3 31 1
annealed, pH= 6 10−6 †
annealed, pH= 6 10−5 †
annealed, pH= 6 10−3 p = −2 180 1
annealed, pH= 6 10−2 p = −4/3 81 0
annealed, pH= 6 1 p = −4/3 36 1
annealed, pH= 4 10−4 p = −1 21 1
annealed, pH= 5.5 10−4 p = −8/3 100 1.5

p = −2 60 1.5
annealed, pH= 6 10−4 p = −2 100 1.5
annealed, pH= 9 10−4 p = −2 195 1

∗The core size for a star is (z∗ − 1) layers large, where z∗ is the layer where
the arms are grafted. For a star with 20 arms, the grafting layer is 2 and

therefore the core is 1 layer thick.
† can not be fitted with one exponent
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Figure 3.13: The form factor P (q) for a quenched star with N = 200, m = 1,
and f = 20 in a θ-solution. The dotted lines show the form factor for calculated
volume fraction profiles with a single-power-law decay. In fig (a) the ionic
strength is 10−4mol/L for a star with different number of charge per monomer
αq (as indicated in the graph), in fig (b) a quenched star with αq = 0.339 per
monomer at different ionic strengths (concentrations are shown in the graph) is
shown. The different calculations are shifted by multiplication factor of 1000.
The parameters for the single exponential decay are denoted in table 3.1.

for the star with αq = 0.339 can not be fitted using a single power law decay
of the density profile; the low q region can be fitted with a P (q) obtained with
a profile of ϕ(z) ∼ z−2, but P (q) at the high q range has the same shape as
that of that of the star with a charge of αq = 0.986.

fig 3.13b shows the effect of varing the ionic strength. With decreasing
ionic strength the star size grows. The star passes from the salt dominance
regime, ϕ(z) ∼ z−4/3, to the osmotic regime, ϕ(z) ∼ z−2. The P (q) curves for
the lowest salt concentrations (10−4, 10−5, and 10−6 mol/L) have an identical
shape (therefore the latter two are not shown).

The effect of different ionic strengths for an annealed polyelectrolyte is
shown in fig 3.14a. The high salt concentrations give the same trends for an-
nealed and quenched stars, i.e. the same exponent p = −4/3 for the power law
polymer density decay and a decreasing size with increasing the salt concen-
tration. The salt ions only screen the charge but do not affect the degree of
dissociation. In contrary for the low salt concentrations, i.e. 10−5 and 10−6
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Figure 3.14: The form factor P (q) for an annealed star with N = 200, m = 1,
and f = 20 in a θ-solution. The dotted lines show the form factor calculated
for volume fraction profiles with one-power-law decay. In fig (a) the pH=
6 and the ionic strength is varied, in fig (b) the ionic strength is constant,
I = 10−4mol/L, and the pH is changed. The different calculations are shifted
by multiplication factor of 1000. The parameters for the one exponential decay
are denoted in table 3.1.

mol/L, the shape of the form facters is totally different from those of the
quenched star. The P (q) for these salt concentrations is smooth and can not
be fitted with a single power law density decay. By changing the salt concen-
tration from 10−3 to 10−6 mol/L, the initial decay of P (q) becomes smaller, and
the oscilations disappear. The former indicates a decrease in size of star due to
surpressed ionisation. This is expected because in fig 3.11 the star with f = 20
and at pH 6 has its maximum in size at lnI = −7, i.e. at ≈ I = 10−3mol/L.
By comparing figs 3.13b and 3.14a the qualitative difference in the behaviour
of the form factors of an annealed and a quenched star with changing the salt
concentration is clearly seen. The P (q) of the annealed star looses most of its
structure with decreasing the salt concentration while that for the quenched
star exhibits pronounced oscillations in the whole range of salt concentrations.

In fig 3.14b the effect of increasing the pH, i.e. the amount of charges
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on the branches, at a constant ionic strength is shown. The form factors
decrease faster as a function of q with increasing pH, that is an indication for
an increasing size of the star. In fig 3.14b we see at pH 4 and 9 the form factor
has pronounced oscillations in contrast to pH 5.5 and 6. The P (q) curve at
pH 4 resembles that for a neutral star and can be fitted with a density profile
of ϕ(z) ∼ z−1. The P (q) at pH 9 can be fitted by the ϕ(z) ∼ z−2 decay just as
for a fully charged star, compare fig 3.14a. At intermediate pH values, where
the number of charges on the star branches is gradually increasing, the form
factors can not be fitted by those calculated with one power law density decay.
From the analytical theory one expects for these intermediate values of pH the
combination of a ϕ(z) ∼ z−1 and a ϕ(z) ∼ z−8/3 density profile (in the central
and in the peripherical region of the star corona, respectively). Therefore, the
form factor calculated with the volume fraction profile with a single-power-law
volume fraction profile of ϕ(z) ∼ z−8/3 does not provide a good fit for the P (q)
curves.

At the high q region, the P (q) is very sensitive to the size of the core,
especially for the profiles with a strong decay, i.e. ϕ(z) ∼ z−2 or z−8/3.

3.5 Comparison with experiment

The calculated P (q) curves (figs 3.13 and 3.14) give the general trends for the
expected behaviour of the form factors for star-shaped polyelectrolytes. Now
we want to compare our calculations directly to a recent SANS-experiment with
polymeric micelles with annealed polyelectrolytes as the coronal chains. Groe-
newegen et al.61 used a diblock copolymer of polystyrene/poly(acrylic acid)
(PS/PAA), which associate in aqueous solutions to form micelles. The core is
formed by the PS-block and has an average size of 4.5 nm. The number of
polymers associated in one micelle was about 100. This number was calculated
from the core size, using the density of poly styrene and by normalizing the
partial form factor of PS-PS. Groenewegen et al.61 have fitted the measured
form factors with those obtained from volume fraction profiles with a one power
law decay, and found that ϕ(z) ∼ zp with p < −2 provides the best fit for their
experimental data at low degree of ionisation.

To compare the measured data, we use the parameters listed in table 3.2.
For the polymeric micelles studied by Groenewegen et al.61 it was shown that
the variation of pH and/or salt concentration does not affect the aggrega-
tion number and therefore also not the core size. Therefore these micelles can
be modeled like star polymers with fixed number of arms grafted to an im-
permeable core of a given size. The parameters used, are partially given by
Groenewegen et al..61,62

Fig 3.15 shows the volume fraction profiles calculated for the above men-
tioned system. It is seen that for pH 4 and 5 the volume fraction of the
polymer segments decreases as z−1 and for pH 8 and 9 as z−2. Analytical the-
ory predicts these decays for non-charged and fully charged stars, respectively.
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Figure 3.15: The volume fraction of the polyelectrolyte micelle as a function of
the distance from the centre z in double logarthmic scale. The pH is denoted
in the graphs. The parameters of the polyelectrolyte micelle are denoted in
table 3.2.

At pH 6.5 a transition between the fully charged and the non-charged state
is seen. The volume fraction profiles show a wide range with a radial density
decay, which is faster than z−2.

The volume fraction profile for a smaller cell size is just shown for com-
parison. The size of the cell is related to the micellar concentration, D = 62
is obtained from the given concentration of 0.093 mol PAA/l, the degree of
polymerization (120) and the aggregation number of the micelle (100).‡ Only
at high pH, where the micelle is fully charged there is a difference between
D = 62 and D = 206. Further on we will use the data collected for a cell with
206 layers.

To be able to compare directly with the measured data of Groenewegen
et al.61, we calculate the scattering form factor from the volume fraction profiles
using eq 3.36. In fig 3.16 the calculated form factors are shown. With
increasing pH the P (q) curves decrease faster, which indicates a larger size
for the micelles. The first minimum in P (q) for pH 4 and pH 5 is at q =
0.37 nm−1, which is in good agreement with the experiment, see also fig 3.17.
This minimum shifts to larger q with increasing pH. This shift of the minimum
to higher q indicates a change in the shape of the density profile.

We have fitted our calculated form factors with form factors for a single-
power-law decay. For pH 4, 5, 8, and 9 this leads to good fits. As was already

‡The average distance between two polyelectrolyte micelles can be calculated from the
concentration of hydrophobic PAA x, the aggregation number f , and the degree of polymer-
ization N . Every polymer has a volume of N

xNAv
liter available, in which NAv is Avagadros

number. The volume occupied by one micelle is then Nf
xNAv

, from this volume one can easily
calculated the average distance between two micelles and the dimensionless radius of the cell
D.
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Table 3.2: Parameters∗ used for the calculation of the polymeric micelles that
can be compared with the experimental results of Groenewegen et al. 61

Parameter value

Number of monomers, N 120
Number of arms, f 100
m 1
Solvent quality θ
Ionic strength 10−4 mol/L
pK 5
Permittivity of the core 2ε0
Radius of the core Rcore 6 ∗ 0.6 nm
Radius of the cell D 206 ∗ 0.6 nm

∗The polystyrene core is known to be hydrophobic. In the numerical
calculations it is possible to take this into account but it hardly effects the
volume fraction profiles and even less the form factors. Therefore the results

of these calculations are not shown.

Table 3.3: Parameters for the single-power-law decay of the volume fraction
profiles used for the fit the calculated form factors in fig 3.16.

pH ϕ(z) ∼ zp Rstar Rcore

4 p = −1 18 6 dashed line
5 p = −1 18 6 dashed line
5 p = −1 19 6 dashed line
5 p = −8/3 35 10 dotted line
6.5 p = −8/3 50 8 dotted line
6.5 p = −2 40 6 dashed line
6.5 p = −2 40 6.5 dashed line
8 p = −2 95 6 dashed line
9 p = −2 100 6 dashed line
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Figure 3.16: The calculated form factors of a polyelectrolyte micelle, I = 10−4
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dotted lines are the calculated form factors for a single-power-law decay, the
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mentioned for these pH’s the volume fraction profiles show just one regime
with a clear power law behaviour (ϕ(z) ∼ z−1 for pH 4 and 5 and ϕ(z) ∼ z−2

for pH 8 and 9). At pH 6.5 a good fit to the calculated form factors is hardly
found, a volume fraction with a density decay as ϕ(z) ∼ z−2 gives a form
factor with a minimum at too high q. The density decay of z−8/3, gives a the
minimum at the right q-value but only if the size of the core is set larger than
it was. Furthermore at low q this form factor of this single-power-law decay
gives a lower value for P (q).
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Figure 3.17: The data of Groenewegen et al.61 (symbols) for different degree of
neutralization (DN) compared with the calculated form factors of a polyelec-
trolyte micelle, I = 10−4 mol/L, D = 200 (lines). The degree of neutralization
is the ratio of added moles of base per monomers of acrylic acid present in the
solution. The form factors for the different degrees of neutralization are shifted
along the y-axis by a multiplication factor of 1000.

In fig 3.17 the numerical form factor is directly compared with the data
given in fig 6 of Groenewegen et al..61 The degree of neutralization is an easy
experimental accessible parameter, which gives an indication of the change in
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the degree of dissociation α. The actual degree of dissociation depends for the
same degree of neutralization on the concentration of the polyelectrolyte, we
therefore used the pH which is directly related to the degree of dissociation,
via eq 3.1.

From fig 3.17 it can be seen that the data of the DN of 0, 0.04 and 1 can
be reasonably well be described by the calculated form factors of respectively
pH 4, 5 and 6.5. The form factors of the degree of neutralization in between
0.04 and 1 change gradually, the minimum shifts to larger q and the slope of
P (q) gets steeper. These features are obtained also from the calculated form
factors. The surprising part is that the high degree of neutralizations are not
well described by the form factors of pH 9 but by the form factor of pH 6.5.
Furthermore we conclude from the experimental and the numerical results that
with increasing pH:

• Both calculated and measured formfactors exhibit faster initial decay.
• The first minimum in P (q) is shifted in the calculated curves to larger q

while in the measured curves the minimum gets broader and also shifts
to larger q.

3.6 Conclusion

We have investigated the conformational structure of annealed polyelectrolyte
stars in dilute solutions as a function of the number of arms, the ionic strength,
and the pH of the solution. This has be done by means of detailed numeri-
cal SCF-calculations, which complement the analytical scaling theory. 35 The
calculations confirm the specific behaviour of annealed stars vs quenched stars
and enable us also to

• study the intrinsic structure of an annealed star
• calculate measurable properties of an annealed star
• indicate the parameter range where the specific effects of annealed stars

are expected in experiments

The decay of the polymer denstiy profiles in the osmotic annealing regime
is predicted as ϕ(r) ∼ r−8/3. In the numerical results the exponent p of − 8

3
can

only be found for a small range of pH’s and number of arms. Although a fast
(p < −2) decrease of the polymer density and a huge increase of the charge
on the star with distance from the centre are seen, there does not seem to
be a single scaling exponent for the osmotic annealing regime. There remains
another small question with respect to the volume fraction profiles; in some
calculations this fast decay of the volume fraction profile at the end of the star
is preceded by a decay of z−2. This decay is expected for fully charged stars,
but this is not the case. This extra stretching of the inner part of the star can
be due to pulling of the ends of the star branches, which are charged.

Furthermore our calculations show that at the periphery of the star corona,
the effect of curvature on the conformations of the star branches is less im-
portant, i.e. the outermost regions of the star corona behaves similarly as a
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planar annealed polyelectrolyte brush. This conclusion is supported by (i) a
bimodal distribution of the end-segments and (ii) a quasi-linear dependence of
log(1− α) on z2.

Where the star is not fully charged, the end-point distribution shows two
maxima. This bimodal distribution is only clearly seen for stars with long
branches and low salt concentration.

The analytical prediction of the maximum in the size with increasing num-
ber of arms or with increasing salt concentration is confirmed. The salt con-
centration at this maximum is directly related to the internal charge density,
Φ∗
b = αbfN/m

4/3πR3 . This means that by just measuring the size of a micelle or
branched polyelectrolyte as a function of the ionic strength, an estimate of a
charge density of the particle can be obtained. The maximum in size for a
annealed star or curved brush is also found experimentally for some systems.
72,73

The evolution of the form factor of a star as a function of the salt concentra-
tion is totally different for a quenched and an annealed star. With decreasing
the salt concentration the quenched star shows always oscillations, pronounced
minima, and an increase in the slope of the initial decay of the form factor. In
contrast, for annealed stars the oscillations and the minima dissappear with
decreasing the salt concentrations and the slope of the initial decay gets weaker.

The form factors calculated from numerical volume fraction profiles can be
well-mapped to the experimental form factors measured by Groenewegen et
al..61 for annealing star-shaped polyelectrolyte micelles. The fit of the form
factors with volume fractions with a single expontential decay is feasible in the
extreme states of the star, i.e. fully charged or neutral. In the intermediate
range of pH’s both ϕ(z) ∼ z−1 and ϕ(z) ∼ z−8/3 decay play a role in the
volume fraction profiles and therefore a fit of the form factor decay with a one
exponential decay is not feasible.

From this study, we got a detailed and consistent picture of the behaviour
of annealed and quenched polyelectrolyte stars. Furthermore, we have demon-
strated that the numerical method we used is flexible and can mimic well
experimental systems.
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Chapter 4

Adsorption of a quenched
polyelectrolyte: SF–SCF model
calculations

Abstract

The adsorption of polyelectrolytes on a charged surface is calculated with a
numerical self-consistent-mean-field model. Only electrostatic interactions be-
tween the polyelectrolyte and the surface are taken into account, specific or
chemical interactions are neglected. The adsorbed amount is calculated with-
out and with taking into account the swelling in the bulk due to electrostatic
repulsion. The latter is done by adsorbing the polyelectrolyte until it has the
same chemical potential as a polyelectrolyte with excluded volume interaction
in the bulk.

The adsorption is higher when the swelling in the bulk is taken into ac-
count. Furthermore, due to the fact that in the new way of calculating the
polyelectrolyte in solution is surrounded by an electric field, adsorption of the
polyelectrolyte can overcompensate the charge on the surface, even though
there is no specific interaction with the surface.

The difference between a surface with quenched (fixed) charges and a sur-
face with annealed (regulating) charges is studied. The annealed surface has
almost a constant surface potential. The amount of adsorbed polyelectrolytes
on a quenched surface is lower than that on an annealed surface, if the initial
surface charge is the same. On an annealed surface, the adsorption of a poly-
electrolyte induces extra charges and this increases the adsorption. For the
same reason, it is harder to overcompensate the charge on an annealed surface
than on a quenched surface.

To study the influence of the molecular architecture of a polyelectrolyte
on the adsorption, we compare a linear chain, a star-shaped polymer, and a
dendrimer. The more densely branched polyelectrolytes have a higher adsorbed
amount than linear polyelectrolytes.



4.1 Introduction

4.1 Introduction

A lot of work has been done on the adsorption of polyelectrolytes onto charged
and uncharged surfaces. Most theoretical work has been devoted to the adsorp-
tion on neutral surfaces or to surfaces with a quenched charge. 74–79 Muthuku-
mar dealt with the question at which salt concentration or temperature the
adsorption starts, and he calculated the layer thicknesses and the stretching
of the adsorbed polyelectrolyte in Monte Carlo simulations. Andelman and
Joanny,80 and Borukov et al.81 studied the adsorption of a polyelectrolyte on
a surface with a constant potential. A surface with annealed charges can in
practice be seen as a surface with a constant potential.

Annealed charged surfaces, i.e. oxide surfaces, have a large relevance for
catalysis,82 soil chemistry,83–85 and paint chemistry.86 This is due to their high
reactivity and large abundance. These surfaces adjust their charge to the local
concentration of, e.g., hydrogen ions and are called variably charged, annealed,
or constant-potential surfaces.

Adsorption of small ions on annealed surfaces has been studied extensively.
The experiments are normally interpreted by site binding models. 87,88 The
MUSIC model presents a detailed description of the surface and its charge,
together with an electrostatic model for the solution side of the interface. 88

The conformational entropy of the adsorbed species is not taken into account
because for small molecules this is not important. The surface charge density
is affected by both the adsorption of protons and of salt ions. The electrostatic
interaction is mostly done on a mean-field base. Borkovec has shown that in
practice this approximation suffices.89

In this article we study theoretically the adsorption of polyelectrolytes onto
surfaces with either quenched or annealed charges with a self-consistent-mean-
field model (SF–SCF model). The basis of this theory has been developed by
Scheutjens and Fleer13,16 for the adsorption of neutral polymers on a surface.
The effect of charge has been incorporated by Van der Schee.74 Böhmer et al.90

have made a start with incorporating charges which depend on the pH. Israëls
et al.43 have improved the description of annealed charges. The reaction of
segments with protons was extended to the reaction with different molecules
by Van Male.67 Vermeer et al.91 were the first who calculated polyelectrolyte
adsorption on an annealed surface with this model.

In comparison to other theoretical calculations,80,81 the SF–SCF calcula-
tions do not assume that the surface has a constant potential, but the poten-
tial follows self-consistently from the surface reaction with protons and can be
influenced by adsorption of salt ions and polymers.

Yet, the standard SF–SCF model is not well suited to describe the adsorp-
tion of polyelectrolytes. The main reason is the neglect of swelling of poly-
electrolytes in the bulk solution. In the standard SF–SCF model the chains in
the bulk are described as ideal random walks, irrespective of solvent strength,
bulk volume fraction or charge on the chains. This results in a systematic
over-estimation of the entropy of polyelectrolytes in solution. In contrast, the
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chains at the surface do experience swelling due to the accumulation of mass
and charge. This means that in classical mean-field models the adsorption of
polyelectrolytes is always under-estimated. In this article a novel way is used
to calculate the adsorption of polyelectrolytes.67,92 In the new method, the
chemical potential of a polyelectrolyte in solution is calculated separately; the
calculation is done in such a way that the polyelectrolyte feels its own charge.
When the adsorption of this polyelectrolyte is calculated we use this chemical
potential together with the standard equilibrium criterion of equal chemical
potential. While we do not claim that this trick overcomes all well-known de-
ficiencies of mean-field models for polyelectrolyte adsorption, we do expect a
significant improvement over the classical SF–SCF method

The adsorption of polyelectrolytes is studied for the case in which only
electrostatic interactions are present. Other interactions like Van der Waals
forces may play a role in the adsorption too but in most cases the electrostatic
interactions will be dominant. Two types of surfaces will be distinguished.
Firstly, surface with a fixed charge density (a quenched surface) representing,
for instance, a latex particle with sulfonate groups at the surface. Secondly, a
surface which adjusts its charge by proton exchange as polyelectrolytes adsorb
onto it (an annealed surface) representing, for example, a metal-oxide surface.
Additionally, the effect of different chain architectures of the polyelectrolyte is
studied. To this end we have chosen to study linear, star-shaped, and starburst
(dendrimeric) polyelectrolytes.

First, we will explain the new theory for polyelectrolyte adsorption in a
mean-field model. This is followed by the results of the adsorption of quenched
polyelectrolytes of different shapes on a quenched surface, and on an annealed
surface. The results of the new model are compared with the classical model.
The extent of the charge adjustment of the annealed surface and the volume
fraction profiles of adsorbed polyelectrolytes are presented and discussed in the
context of current theoretical treatments.

4.2 SCF model by Scheutjens and Fleer (SF–

SCF model)

The numerical SCF-approach used is based on the Scheutjens–Fleer (SF) algo-
rithm. All the calculations in this article were done with the software package
sfbox.17 Some information on the SF–SCF model is given below, for full details
the reader should consult the references quoted in the previous section.

The SF–SCF model is a self-consistent-field model. The distribution of
molecules in the system, i.e. the volume fraction profiles ϕ(z), are generated
using spacially varying fields u(z). In turn, these fields are a function of the
volume fractions. The fields contain various specific interactions as well as an
excluded volume parameter, which results from an incompressibility constraint.
At the start of the calculation, initial fields are assumed and the resulting
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volume fractions are calculated. Then the incompressibility constraint is tested
and the fields are adjusted until fields and volume fraction profiles are mutually
self-consistent.

To facilitate the calculation of the distribution of molecules, space is divided
into layers (flat geometry) or shells (spherical or cylindrical space). Within each
layer or shell, local differences are smeared out, i.e. a mean-field model in one
dimension results. The maximum number of layers or shells is denoted as M .

Electrostatic interactions are taken into account by a multi-Stern-layer
model, the charge planes are placed in the middle of each layer. The ca-
pacity of the layer is determined by the permittivities of the segments and the
solvent in that layer and the thickness of the layer a. This thickness is in this
article chosen to be 0.3 nm, which is about equal to the edge of a cube with
the volume of one water molecule. This ensures that in a liter 55 moles of
monomers are present, see also appendix A.

In earlier calculations91,93,94 the polyelectrolyte molecules in bulk solution
behaved as if they were neutral, i.e. they did not feel their own charge or
potential. As a consequence they did not swell. Therefore, their entropy was
over-estimated and their chemical potential was too low compared to that of
a real polyelectrolyte. At the same time, it was assumed that the chains, at
the surface the chains do swell to some extent due to the accumulation of
charge. As a result the adsorbed amount was too small, in the earlier SF–SCF
calculations.

In the present paper, we try to overcome this deficiency of the standard
method by performing two separate calculations: one in the bulk solution and
one at the surface. In the bulk calculation, one polyelectrolyte molecule is
pinned in space and surrounded by the electrolyte solution, which contains
salt and other (freely translating) polyelectrolyte molecules. The restricted
polyelectrolyte is forced to have at least one segment in the centre of a spherical
calculation box, i.e. the polyelectrolyte is “pinned”. The chemical potential
µp, c of the pinned polyelectrolyte can now be defined as67

µp, c = F −
∑

i6=p, c

niµ
FH
i + kBT lnϕb (4.1)

where F is the Helmholtz energy of the system, ni is the total number of
molecules of component i, and µFHi is the Flory–Huggins expression for the
chemical potential of component i. In the second term on the right hand side,
kB is the Boltzmann constant, T the temperature, and ϕb the volume fraction of
the polyelectrolyte in solution. The sum runs over all molecules in the system,
except for the pinned molecule. Since the position of the restricted molecule
is fixed, the translational entropy should be added separately; this justifies the
last term.

Now that we have an expression for the chemical potential of a swollen
chain in the bulk phase (eq 4.1), we turn our attention to the surface. Here,
the adsorbed amount is a priori unknown. We vary the adsorbed amount until
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the chemical potential is equal to that resulting from the bulk calculation. Just
as the pinned polymer in the bulk calculation, also the adsorbed polymer is not
in equilibrium with its bulk (which is a neutral, non-swollen, gaussian chain
in the mean-field calculations). The chemical potential µp, ads of the adsorbed
polymer is given as67

µp, ads =

∂

(

F −
∑

i6=p, ads

niµ
FH
i

)

∂np, ads
(4.2)

where the sum runs over all molecules, except those that are adsorbed to the
surface. The differentiation is performed using a constant surface area, volume,
temperature, and chemical potential of all components included in the sum.
Eq 4.2 reproduces the standard SF–SCF result for the chemical potential when
the adsorbed amount is taken equal to that resulting from a standard SF–SCF
calculation. ∗

4.3 System definition

Surface In the calculations we use two kinds of surfaces namely with a
quenched and with an annealed surface charge density.

The annealed surface is chosen as a model for an oxide surface.95–97 For
describing the pH-effect on the surface charge density, the so called 1-pK model
is used.98 In this model the surface consists of monomers which can dissociate
according to the following reaction:

SH+0.5 +H2O ¿ S−0.5 +H3O
+ K = 1.82 · 10−11 (4.3)

The point of zero charge (pzc) of the surface is fixed by the proton dissociation
constant K. K is the dimensionless value of a dissociation constant, i.e. the
concentrations of both H2O and H3O

+ are used in the definition of K. The
pzc is taken to be at pH 9, this corresponds with the K-value in eq 4.3. The
permittivity of the surface segment is 40ε0 in which ε0 is the permittivity of
vacuum. Every site is (0.3 nm)2 small, i.e. ≈ 11 sites per nm2, therefore the
maximal surface charge is 0.5e/(0.3 nm)2 = 0.889 C/m2.

In fig 4.1a the surface potential of the annealed surface is shown. There is
hardly any difference between the different salt concentrations. The solid line
denotes the surface potential if the surface behaved as a Nernstian surface, for
which the potential is directly proportional to (pHpzc−pH). It follows from
fig 4.1a that the surface is pseudo–Nernstian.

In fig 4.1b the surface charge density σs of the annealed surface is shown,
the point of zero charge (pzc) is at pH 9. The surface charge density decreases

∗Eq 4.2 represents a numerical differentiation to obtain µp, ads. An explicit expression is
available
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Figure 4.1: Characteristics of the calculated annealed surface as a function of
the pH for different ionic strengths I, (a) the surface potential ψs and (b) the
surface charge density σs.

with increasing pH and decreasing salt concentration. Typically, this behaviour
corresponds to iron oxides such as goethite and hematite.95,96,99

The quenched surface is chosen to have a charge density σs = 1.7 10−2

C/m2, which is the same as that of an annealed surface at pH 7 and at an
ionic strength of 0.001 mol/L.

Polyelectrolytes The polyelectrolytes are homopolymers, i.e. every mono-
mer has the same charge and chemistry. The Flory–Huggins parameter χFH =
0, which indicates that the solvent quality is good. All the molecules have 201
monomers and every monomer has a fractional charge of 1

m
.

Three polyelectrolyte molecules with different architecture are studied in
this article: a linear chain, a star-shaped molecule, and a dendrimer, see also
fig 4.2.
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a) linear

c) dendrimer

b) star

Figure 4.2: Molecules with different architecture.

Adsorbed amount The adsorbed amount θexc of the polymer is calculated
as the excess amount, i.e.

θexc =
M
∑

1

(ϕ(z)− ϕb) (4.4)

In eq 4.4 ϕ(z) is the volume fraction of the polymer in layer z and ϕb is the
volume fraction of the polymer in the bulk solution. Negative values of θexc are
also possible, namely when the polymer is depleted from the surface. A θexc of
1 means that one lattice layer is totally filled. The definition of the adsorbed
amount as given in eq 4.4 loses its relevance if the bulk volume fraction of
the polymer is high (ϕb ≥ 10−2), or if the polymer adsorbs with most of its
segments protruding into the solution.

The adsorbed amount is calculated as a function of the volume fraction
of the polymer ϕb, the ionic strength I, and for the annealed surface also
as a function of the pH. Both the polymer concentration and the pH can
influence the ionic strength. Therefore the amount of added salt is different
for different pH’s and volume fractions of the polyelectrolyte. Furthermore,
the ionic strength determines the upper limit of the the polymer concentration
in the bulk. The ionic strength of 0.001 mol/L means a volume fraction of
10−3/55, to have approximately a constant ionic strength the counterions of the
polymer should not add more than 10% to the ionic strength I, i.e. ϕb

m
< 0.1 I

55
.

For a polyelectrolyte with m = 10 the maximal volume fraction is 10−5 at
I = 0.001 mol/L.

Overcompensation of the surface charge In this article the term over-
compensation will be used when the number of charges on the adsorbed poly-
electrolyte per unit area is larger than the surface charge density. This is
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somewhat arbitratry, different choices can be made, such as that overcompen-
sation occurs if the electrostatic potential has a minimum, if the surface charge
is positive, or a maximum, when the surface charge density is negative, see for
instance Andelman and Joanny.80 In the latter definition the counterions of
the surface also are included in the number of charges which contribute to the
compensation of the surface charge and therefore overcompensation is reached
at lower ϕb of the adsorbing polymer.

In experiments the two different definitions are used, too. In depletion
experiments, the amount of charges can be calculated and therefore the for-
mer definition of overcompensation will be used. When the ζ-potentials are
measured, the latter definition of overcompensation is the logical one to be
used.

4.4 Results and Discussion

In this section, the adsorption isotherms of the polyelectrolytes will first be
presented. This is followed by the description of the response of the annealed
surface charge to adsorption. Then the volume fraction profiles of the poly-
electrolytes will be shown. In the last part of this section the results of the
numerical SCF model will be compared to scaling results.

4.4.1 Adsorption isotherms

We begin by considering the effect of the new calculation method on the ad-
sorption. For this we consider the simple situation of a linear quenched poly-
electrolyte adsorbing on a quenched surface.

Fig 4.3 shows several adsorption isotherms on a semi-log scale. The adsorp-
tion isotherms at 0.001 and 0.01 mol/L are high affinity isotherms. Although
high-affinity adsorption isotherms are also observed for uncharged polymers,
there is an important difference. With adsorbed polyelectrolytes the high affin-
ity is mainly due to the increase of the entropy of the small ions released from
the polyelectrolyte and from the double layer of the surface, whereas for un-
charged polymers it is due to the segment-surface attraction. As a result, the
adsorption isotherm at I = 0.1 mol/L is no longer of the high affinity type:
at low polyelectrolyte concentrations the adsorption is zero or small. In the
range of the volume fractions shown the adsorption does not overcompensate
the surface charge.

The fact that the adsorption decreases with increasing salt concentration is
due competition between the small salt ions and the polyelectrolyte. The small
ions gain less entropy in a solution with a higher salt concentration. For 0.1
mol/L, this competition is so efficient that a polymer volume fraction above
10−3 is required to replace the small ions.

The adsorbed amount θexc for the polyelectrolyte calculated with the new
method (the filled symbols in fig 4.3) is higher then the adsorption calculated
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Figure 4.3: The adsorption isotherm of a linear polyelectrolyte on a quenched
surface for different ionic strengths as denoted in the graph. The open symbols
are the calculations with the old method and the filled symbols those with the
new method. σs = +0.017 C/m2, and every monomer has a charge of −0.1e,
i.e. m = 10. The dashed line denotes surface charge compensation by the
adsorbed polyelectrolyte.

with the old method (the open symbols in fig 4.3). This is due to the fact that
in the new method the polyelectrolytes in the bulk have a higher free energy
than a neutral polymer and must have this higher free energy in the adsorbed
state. The increase in adsorbed amount due to the new calculation method is
huge.

If one compares θexc at a given volume fraction in the bulk of the polymer
ϕb, the difference between the old en new method increases with increasing salt
concentration. The difference for the polyelectrolyte in a solution with high
ionic strength is larger than that for the polyelectrolyte in a solution with a
low ionic strength. This is due to the fact that the adsorption at higher salt
concentrations is lower and can therefore more easily increase than at a higher
adsorbed amount. At high salt concentrations the adsorbed amount increases
with a factor of 3 to 4 between the old en new method of calculation. For the
low ionic strength the difference is small.

If one compares at constant excess amount, the difference in volume fraction
is a measure of the extra driving force for adsorption. At I = 0.01 mol/L,
the adsorbed amount reached at ϕb = 10−4 for the old method, is with the
new method already reached at ϕb = 10−9. This is a shift of five decades.
For 0.1 mol/L, the θexc of 0.01 corresponds to a ϕb of 10−4 and 10−6 for the
old calculation method and the new one, respectively. The difference is two
decades. For 0.001 mol/L the difference is larger than five decades. This means
that the new calculation method has more influence if the salt concentration is
low, which is due to less screening in the bulk at low ionic strength. The effects
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at high salt concentration seem more spectacular, just because the polymer
starts to adsorb.

Another important difference is the overcompensation of the surface charge,
see fig 4.3. Overcompensation could not occur with the old calculation method.
Furthermore, as the charge of the surface is overcompensated by the charge of
the adsorbed polyelectrolyte, the effect of the salt concentration is inverted,
i.e. the adsorption increases with increasing salt concentration. The adsorbed
amount curves at the 0.01 mol/L and the 0.001 mol/L in fig 4.3 crosses at a
volume fraction of polyelectrolyte in the bulk ϕb of 10

−5. This is due to the fact
that as soon as the charge of the polyelectrolyte overcompensates the surface
charge then the adsorption is halted because the monomers repel each other.
This repulsion is better screened by a higher salt concentration than by a lower
salt concentration.

0

0.3

0.6

0.9

1.2

10-9 10-8 10-7 10-6 10-5

pH = 4
pH = 7
pH = 9

θexc

ϕb

a

0

0.2

0.4

0.6

0.8

10-9 10-8 10-7 10-6 10-5 10-4 10-3

pH = 4
pH = 7
pH = 9

θexc

ϕb

b

Figure 4.4: The adsorption isotherm of a linear polyelectrolyte (m = 10) on
an annealed surface for different pH’s as denoted in the figure. In fig (a) the
ionic strength is 0.001 mol/L and in (b) 0.1 mol/L. The open symbols are the
results from the old method and the filled symbols from the new method.
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Let us now consider the adsorption of a linear polyelectrolyte on an an-
nealed surface. In fig 4.4 the adsorption isotherms for different pH’s and salt
concentrations are shown. The adsorption increases with decreasing pH, as
expected, because the surface charge becomes more positive and the adsorbing
polyelectrolyte has a constant negative charge. Furthermore, with increasing
salt concentration the adsorption decreases, compare fig 4.4a and b. This was
also seen for the adsorption on a surface with quenched charges.

The adsorption at low salt concentration is almost independent of the vol-
ume fraction of polymer, i.e. the adsorption plateau is reached (see fig 4.4a).
In fig 4.4b the adsorption isotherms at 0.1 mol/L salt is shown. It is clearly
seen that at pH 4 and 7 the adsorption is increasing with increasing volume
fraction of polymer and the adsorption is not zero for small ϕb as was the case
for the adsorption on a quenched surface. However, the small ions still compete
effectively with the polymer, just as was seen for the adsorption on a surface
with quenched charges.

At pH 9 the bare surface charge is zero: therefore the polyelectrolyte does
not adsorb with the old calculation method for any ionic strength. Yet, for the
new method we see some adsorption. Also for the pH 4 and 7 the adsorbed
amount increases, when the new method of calculations is used, i.e. compare
the filled symbols with the open symbols.

The excess amount of adsorbed polyelectrolyte on the annealed surface is
considerably larger than on a quenched surface, compare the results shown in
fig 4.3 at 0.001 mol/L with those at pH 7 in fig 4.4a. The surface charge used
for the quenched surface is the same as the bare surface charge of the annealed
surface at pH 7 and the ionic strength of 0.001 mol/L, see also fig 4.1. The large
increase in the adsorbed amount is due to the increase in the surface charge
due to adsorption. This increase in σs will be further discussed in section 4.4.2.

The effects of salt concentration and pH on the adsorption have been dis-
cussed, now we turn to the effect of the molecular architecture of the polymer.
First the results for the adsorption on a quenched surface are shown, followed
by those on an annealed surface.

In fig 4.5 adsorption isotherms of polyelectrolytes with different architec-
tures on a surface with quenched charges at I = 0.01 mol/L are shown, for
the two calculation methods. Again, the adsorption calculated with the new
method is higher than that with the old method. Furthermore, the adsorbed
charges found with the new method overcompensates the surface charge at
high volume fractions of the polymer in solution.

With the old method the adsorption isotherms for the different architectures
are found to be the same, because the molecules behave as uncharged objects
in the bulk, and the only reason for adsorption is the charge of the molecules.
Furthermore, the equality of the excess amount means that the polymer density
in the adsorbed layer is low. If this was not the case, there would be a difference
in adsorption of the different molecules just due to their shape.

For the new method of calculation the most densely packed molecule, i.e.
the dendrimer, has the highest adsorbed amount. This molecule has the highest
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Figure 4.5: The adsorption isotherm of polyelectrolytes with different architec-
ture on a quenched surface for the two different methods of calculation at an
ionic strength of 0.01 mol/L. Other parameters are the same as in fig 4.3.

bulk free energy, due to the more densely packed charges. As a result, it can
adsorb until the free energy of the adsorbed molecule is higher.

Leermakers et al.92 also found overcompensation of the surface charge by an
adsorbing star-shaped polyelectrolyte. These authors used the same method,
but with gradients in two dimensions. Their result is comparable to what we
find here.

In fig 4.6 the adsorption isotherms of molecules with different architecture
on an annealed surface, at pH 7 and for two ionic strengths, are shown. The
lines without symbols denote the old calculation method. It can be seen that
with the new calculation method the adsorbed amount of polyelectrolytes in-
creases considerably. Furthermore, the adsorbed amount of the dendrimer is
the highest. Both effects were also seen for the adsorption on a quenched
surface.

With increasing salt concentration the difference in adsorbed amount be-
tween polyelectrolytes of different architecture becomes smaller, because salt
ions screen the effect of electrostatic repulsion in the bulk. This can be seen
by comparing the volume fraction of polymer in the bulk which leads to the
same adsorbed amount for the old and the new method of calculation. For
I = 0.1 mol/L and a linear polymer the same adsorbed amount is reached at
a bulk volume fraction one to two decades higher than that of the dendrimer,
and for 0.001 mol/L the bulk volume fraction differ by four decades.

There will be differences between calculations done before with SF–SCF
models93,94,100,101 but if a non-electrostatic adsorption energy for the surface
had been introduced smaller differences between the old and new calcula-
tion method would have been found. The older calculations would have given
smaller adsorbed amounts.
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Figure 4.6: The adsorption isotherm of polyelectrolytes with different archi-
tecture on an annealed surface at pH 7 for two different ionic strengths. The
filled symbols denote the calculations at a ionic strength of 0.1 mol/L and the
open symbols at 0.001 mol/L. The dotted lines without symbols denote the
results of the calculations with the old method at 0.1 and 0.001 mol/L.

4.4.2 Surface charge adaptation upon adsorption

The effect of the adaptation of the surface charge density of the annealed sur-
face upon polyelectrolyte adsorption will be discussed in this paragraph. First
the surface charge adaptation will be shown and then the effect of overcom-
pensation of the surface charge by the adsorbed polyelectrolyte.

In fig 4.7 the surface charge of the annealed surface for different volume
fractions of polymer in the bulk, pH’s, and ionic strength is shown. The
surface charge increases with a decreasing pH, just as for the bare surface, see
fig 4.1. Due to the adsorption the surface charge increases further, the increase
is larger for systems with a low ionic strength, compare fig 4.7a and b.

In fig 4.7a the surface charge density is larger for the new method as com-
pared to the old method, see the filled symbols and the open symbols respec-
tively. This was also the case for the adsorbed amount, see fig 4.4a. For the
calculations with the new method, the surface is slightly charged in the pres-
ence of polyelectrolyte at pH 9, the pzc of the bare surface. The absolute
increase of the surface charge due to the new method of calculation is from
these three pH’s the largest for pH 7. However, the absolute increase in the
adsorbed amount due to the new method increased with decreasing pH(see
fig 4.4a), this means that the adsorbed polyelectrolytes at pH 7 has a larger
influence on the surface charge than at pH 4 and 9. This is probably caused
by the fact that at pH 4 the surface charge is higher and therefore less easy to
increase.

At high salt concentration, fig 4.7b, the surface charge is for the old and
new calculation method almost the same, even though the adsorption is larger
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Figure 4.7: The surface charge density σs a function of the volume fraction ϕb
of the linear polymer (m = 10) in the bulk for different pH. The asterixes on
the Y-axis denote the bare surface charge. In fig (a) the ionic strength is 0.001
mol/L and in fig (b) 0.1 mol/L. The parameters and the symbols are the same
as for fig 4.4 and explained there.
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in the new calculation method, see fig 4.4b. Apparently, the higher adsorbed
amount can not induce extra charges on the surface. We will come back to this
issue later.

In the remaining part of this article, the new method for calculating the
adsorbed amount will be used. We will now discuss the charging up of the sur-
face and overcompensation of the surface charge by the charge of the adsorbed
polyelectrolyte. To be able to compare easily we introduce the charge density
of the adsorbed polymer σp, it is given by

σp = −θexce/(ma
2)

in which e is the elementry charge, m−1 the fraction of charged monomers on
the polymer and a the thickness of a lattice layer. The minus sign is due to
the negative charge on the polyelectrolyte.

0

0.1

0.2

0.3

0 0.05 0.1 0.15 0.2 0.25

σ s
C

m2






− [ ]σ p C/m2

pH = 10
pH = 9
pH = 7
pH = 4

Figure 4.8: The surface charge density σs as a function of the charge of the
adsorbed polyelectrolyte σp. The adsorbed polymer is a linear chain and m =
10. Results are shown for four different pH-values as denoted in the graph
and for two ionic strengths. The open symbols are 0.001 mol/L salt and the
filled ones are 0.1 mol/L. The dashed line denotes compensation of the surface
charge by the charge of the adsorbed polyelectrolyte. The thin dotted lines are
merely guides to the eye.

In fig 4.8 the surface charge density σs is shown as a function of the adsorbed
charge density σp. This representation immediatly reveials to what extent the
surface charge of an annealed surface is (over)compensated by the charge of
the adsorbed polyelectrolytes.

From fig 4.8 it can be seen that with increasing pH, the amount adsorbed
decreases as does the surface charge. At pH 10, nothing is adsorbed so that
also the surface charge is unchanged. The points for pH 9 cluster around zero
charge and zero adsorption, the surface charge is for both ionic strength just
overcompensated and this prohibits the adsorption to increase much further.

91



4.4 Results and Discussion

For pH 4 and 7, and low ionic strength the surface charge follows the diagonal
line of charge compensation (open symbols). For the same pH’s at high ionic
strength (filled symbols) the surface charge is larger than a bare surface, i.e.
at −σp = 0, and increases slowly with increasing adsorption.
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Figure 4.9: The surface charge density σs as a function of the charge of the ad-
sorbed linear polyelectrolyte σp for three differentm as denoted in the graph, at
pH 7, and for two different ionic strengths. The open symbols are 0.001 mol/L
salt and the filled ones are 0.1 mol/L. The dashed line denotes charge compen-
sation of the surface charge by the charge of the adsorbed polyelectrolyte. The
thin dotted lines are merely guides to the eye.

The effect of the amount of charges on the chain on the surface charge at
pH 7 is indicated in fig 4.9. With increasing the charges on the polyelectrolye,
i.e. decreasingm, the adsorbed charge density is increasing and also the surface
charge density is increasing.

In fig 4.9 a similar difference between the two ionic strength values is ob-
served as in fig 4.8, i.e. the low ionic strength gives a slight overcompensation of
the surface charge and the surface charge increases strongly with the adsorbed
charges.

Table 4.1: Increase of the surface charge due to adsorption
system Slope − ∂σs

∂σp

I= 0.1 mol/L I= 0.001 mol/L
pH 4, m = 10 0.04 0.64
pH 7, m = 10 0.17 0.88
pH 7, m = 5 0.26 0.96
pH 7, m = 2 0.19 0.84
pH 9, m = 10 0.16 0.82
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In table 4.1 the average slopes of figs 4.8 and 4.9 are summarized. The large
difference between the two ionic strengths is immediately seen. A slope of 1
would mean that only the polyelectrolytes are screening the surface charge. If
the surface charge density would have been plotted versus all the excess charges
in the solution, the slope resulting from that plot is always 1. The surface-
charge increase for 0.001 mol/L almost follows the charge of the adsorbed
polymer. This means that the surface charge is almost solely screened by the
polyelectrolyte, due to the fact that the polyelectrolytes in 0.001 mol/L salt are
more effective in screening the surface charge than the small ions. The surface
charge screening is done by the small salt ions which are located at a distance
smaller than the Debye length from the surface. The polyelectrolyte is has
more charged segments closer to the surface and can therfore compensate the
surface charge better. We will illustrate the layer structure in section 4.4.3.

The effect of the number of charges on the chain is not straightforward.
With increasing number of charges on a polyelectrolyte (i.e. with decreasing
m), the screening of the surface is better, so an increase in the slope would be
expected. However, going from m = 5 to m = 2 a decrease is seen in table 4.1.
This is due to surface charge overcompensation by the polyelectrolyte with
m = 2 and also due to the fact that the charge of the surface is higher and
therefor less suseptible to adapt his surface charge to a new situation, see also
the very low slope for pH 4.

Dobrynin102 derives the adsorption of polyelectrolytes for various solvent
qualities on a surface with a constant charge. His results show that there is
always overcompensation of the surface charge for a good or a θ solvent. The
calculations presented here were all done in good solvent and the results show
that overcompensation of the surface charge depends on the salt concentration,
the concentration of the polymer in the bulk, the surface charge, and the charge
of the monomers.

4.4.3 Distribution of adsorbed polymer segments

The volume fraction profiles of the adsorbed polyelectrolytes are easily obtained
in SF–SCF calculations. They give information on the conformations of the
adsorbed molecules.

In fig 4.10 the volume fraction profiles of linear polyelectrolytes near a
quenched surface at 0.01 mol/L salt are shown. In fig 4.3 it was shown that
the adsorbed amount with the new calculation method was higher than with
the classical method. The volume fraction profiles in fig 4.10 show that not
only the amount per layer is higher, but also the adsorbed layer is thicker. The
small inset, (semi-log scale), shows that up to z = 30 the amount per layer
with the new method is higher. At z > 30 the volume fraction profile goes
through a minimum, this is due to the fact that the charge of the adsorbed
polymer overcompensates the surface charge (see fig 4.3), so that free chains
are repelled.

In comparison to volume fraction profiles of neutral polymers on a neutral
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Figure 4.10: The volume fraction profiles of linear polyelectrolytes (m = 10)
on a quenched surface, ϕb = 10−6 and the ionic strength is 0.01 mol/L.

surface, the maximum in the volume fraction profiles is not located immedi-
ately at the wall (see Fleer et al.16). The adsorbing polyelectrolyte feels the
attraction of the charged surface also at some distance from the surface.

From this point on the volume fraction profiles obtained by the new calcu-
lation method will be shown. First, the differences due to different molecular
architectures of the polyelectrolytes will be considered. Then the effect of
different charge densities on the polyelectrolyte chain will be discussed.

In fig 4.11 the volume fraction profiles of polyelectrolytes with different
architectures, adsorbed on a quenched surface, are shown in a solution with
an ionic strength of 0.01 mol/L. The differences between the volume fraction
profiles for the different architectures are small. The dendrimer adsorbs to
somewhat higher density and slightly more closely to the surface than the
linear polyelectrolyte does. This is expected because of the smaller entropy
loss incurred by a linear chain which can adsorb with long tails.

The minimum in the volume fraction profile, which is shown in fig 4.11b, is
due to electrostatic repulsion. The charge of the surface is overcompensated by
the charge of the adsorbed dendrimer and of the adsorbed star-shaped poly-
electrolyte, see fig 4.5. Therefore, the electrostatic potential becomes negative
inside the adsorbed layer and the free polyelectrolytes are expelled from the
surface.

In fig 4.12 the volume fraction profiles of polyelectrolytes that do not touch
the surface are shown. The volume fraction of the polymers in the bulk is 10−9

and the salt concentration is the same (0.01 mol/L) as in fig 4.11. Although
these molecules do not touch the surface, they do accumulate near the surface
because the electrostatic potential is positive, which is the case for the low
ϕb. However, the dendrimer is depleted from the surface allthough the surface
charge is not yet overcompensated, see fig 4.5. The electrostatic potential in
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Figure 4.11: The volume fraction profile of polyelectrolytes (m = 10) with dif-
ferent architecture on a quenched surface, ϕb = 10−6, and at the ionic strength
of 0.01 mol/L. Fig (a) is in semi-log scale, and (b) in double-log scale.

the adsorbed layer is negative, this is not the case for the linear and star-shaped
polyelectrolyte.

The depletion of dendrimer can also be due to its own dense structure.
However, this is highly unlikely because the amount adsorbed is low, less than
10% of one layer is filled. The linear and star shaped molecule can penetrate
into the adsorbed layer, but the amounts are small and only visible for small
concentrations of polyelectrolyte.

In fig 4.13 the volume fraction profiles of linear polyelectrolytes adsorbed
at pH 7 on an annealed surface are shown for different ionic strengths. The
corresponding adsorption isotherm of the polyelectrolyte with m = 10 was
shown in fig 4.4 and the surface charge as a function of the adsorbed charges
of both polyelectrolytes was shown in fig 4.9.

The shapes of the volume fraction profiles of the polyelectrolytes, which
have the same amount of charge, are rather similar. The volume fraction pro-
files of the polyelectrolyte withm = 2 start at the wall with a higher concentra-
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Figure 4.12: The volume fraction profiles of “loose” polyelectrolytes (m = 10)
with different architecture on a quenched surface in double-logarithmic scale.
The ionic strength is 0.01 mol/L and ϕb = 10−9.
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Figure 4.13: The volume fraction profiles of linear polyelectrolytes with dif-
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tion than those of the polyelectrolyte with m = 10. The polyelectrolyte with a
high charge density, i.e. m = 2, adsorbs flat on the surface in comparison with
the polyelectrolyte with less charges. In log-scale another feature of the ad-
sorbed layer can be seen, fig 4.13b. After a steep decrease the volume fraction
shows a “plateau”, which is not present for the curves of the polyelectrolyte
with m = 10.

The horizontal lines in fig 4.13 indicate the Debye lengths κ−1 0.001 mol/L
salt concentration, respectively. As can be clearly seen, all segments of the
polyelectrolyte lie within κ−1 from the surface implying that the polyelectrolyte
screens the surface charge more effectively than the small salt ions at 0.001
mol/L salt so that it will easily induce new surface charges due to adsorption.

The curves for the low salt concentration have a clear minimum in the
profile as also seen in the previous figures. This is due to a negative (i.e.
repulsive for the polyelectrolytes) electrostatic potential. This can be expected
because the surface charge was overcompensated by the adsorbed charges, see
fig 4.9. However, this is not the whole story, because for the case of high
ionic strength, the surface charge is also overcompensated by the charge of
the adsorbed polyelectrolyte with m = 2, but in the corresponding volume
fraction profile in fig 4.13 we do not see a minimum in the volume fraction
profiles. Clearly, the electrostatic potential is effectively screened by the salt
concentration.

The minima in the volume fraction profiles in figs 4.11 and 4.13 may also
be an artifact because the adsorbed polyelectrolytes are allowed to have a
higher free energy (because of the new method of calculating polyelectrolyte
adsorption). The polyelectrolytes in the bulk of the adsorption-calculation
still feel a zero electrostatic field and have therefore a lower free energy. This
could mean that the density minimum in the depleted zone is too deep and
perhaps even not always real. On the other hand, Monte Carlo simulations of
adsorbing polyampholytes by Broukhno et al.103 also show a minimum in the
volume fraction profiles for an adsorbing polyampholyte on a quenched surface.

Another distinct feature in fig 4.13 is the strong stretching of the poly-
electrolytes with a high charge. This strong stretching results in a ”plateau
value” for the volume fraction profile between layers 6 and 30, for the low ionic
strength even a bit further into the solution. The large amount of charges on
the polyelectrolyte chain results in a strong repulsion between the charges.

This “plateau” value in the volume fraction profile is also seen in the elec-
trostatic potential; the increase in the electrostatic potential to zero, after the
minimum (due to overcompensation) is for polymer with m = 10 best de-
scribed with a exponential increase to zero with κ−1 as the critical distance.
This means that the polyelectrolyte with m = 10 acts like a small salt ion.
However, for the polyelectrolyte with m = 2 the electrostatic potential in-
creases very slowly to zero. On a semi-log scale, i.e. lnψ as a function of z, the
potential is approximately constant (Figures not shown). The charges on the
adsorbed polyelectrolyte chain keep the electrostatic potential low.
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4.4.4 Comparison to scaling laws

Andelman and Joanny80 put forward relations between the layer thickness
D and the adsorbed amount θexc as a function of the fractional charge of a
polyelectrolytem, for a surface with a constant potential ψs. Our model surface
acts as a surface with a roughly constant potential, see fig 4.1a. The relations
for low salt concentration, i.e. D ¿ κ−1, are D ∼ m1/2ψ

−1/2
s and θexc ∼

m1/2ψ
3/2
s ∼ σsm, the last term denotes charge compensation. The relations for

high ionic strength are D ∼ κmψ−1
s ∼ κ2mσ−1s and θexc ∼ κmψs ∼ σsm.

In fig 4.14 the adsorbed amount of a linear polyelectrolyte on an annealed
surface is shown as a function of the charge on the polyelectrolyte. The ad-
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Figure 4.14: The adsorbed amount θexc as a function of the charge of a monomer
m in double-log plot. The linear polymer is adsorbed on an annealed surface,
the pH = 7, ϕb = 10−6, and the ionic strength as denoted in the graph. The
open symbols denote the old calculation method and the filled symbols the new
calculation method. The lines are guides for the eye.

sorption increases with increasing m for low ionic strength and has a maximum
for the high ionic strength. The decrease in adsorbed amount after the maxi-
mum is due to competition with salt ions. The curves for the new calculation
method have approximately the same shape (in a double-logarithmic figure) as
those for the old calculation method. Only the adsorbed amount is higher for
the new calculation method.

For I = 0.001 mol/L the Debye length is about 10 nm, which is 10/0.3
lattice layers, z = 33, for 0.1 mol/L, κ−1 = 1 nm i.e. z = 3.3. As can be seen
in fig 4.13a, most of the adsorbed amount is located within distances smaller
than z = 15. The polymer with a high charge density even resides within
three lattice layers. This means that for the 0.001 mol/L salt, the low salt
approximation, i.e. θexc ∼ m1/2m should hold and for m = 10 at 0.1 mol/L
the high salt approximation (θexc ∼ m). For the polymer with m = 2 at 0.1

99



4.4 Results and Discussion

mol/L, the Debye length and the layer thickness are approximately equal so it
does not fall easily in one of the regimes as denoted by Andelman and Joanny.
According to fig 4.14, none of the regimes is found, the increase of θexc with m
has an exponent larger than 1/2 but smaller than 1.

Furthermore, the relation which they derive for higher salt concentrations,
predicts only an increase in adsorbed amount with increasing m. However, in
fig 4.14 we clearly find a maximum for high salt concentration.
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Figure 4.15: The adsorbed amount θexc of a linear polyelectrolyte (m = 10)
adsorbed to an annealed surface at different surface potentials ψs, i.e. at dif-
ferent pH-values, in double-log plot. The salt concentration is denoted in the
graph. The ϕb of the polymer in the bulk is 10−6. The open symbols denote
calculations with the old method and the filled symbols the calculation with
the new method.

The effect of the surface potential on the adsorbed amount is shown in
fig 4.15. With increasing surface potential the adsorbed amount increases,
due to the increase in electrostatic attraction. First we see (for both the old
calculation method and the new calculation method) at I = 0.1 mol/L a
large increase in the adsorption with increasing surface potential followed by a
smaller increase. For the low salt concentration, a steadily increasing adsorp-
tion is seen in fig 4.15. According to Andelman and Joanny,80 this increase in
the adsorbed amount should scale as ψ3/2 for low ionic strength and as ψ for
the high ionic strength. We see in fig 4.15 that the slope is increasing with
decreasing salt concentration. The slope at I = 0.001 mol/L and for the new
calculation method it is closer to 1 than to 3/2.

The critical salt concentration, below which the polyelectrolyte adsorbs,
has been studied by Muthukumar.77 He has evaluated this critical salt concen-
tration for adsorption on a surface with a constant charge:

(

κ3l1T
)

c
=

48π|σs/m|

2.4048εlkB
(4.5)
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in which κ is the inverse Debye length, l1 an “electrostatic Kuhn” length (which
depends on m), T the temperature, σs the surface charge density, ε the per-
mittivity of the solution, l the Kuhn length, and kB the Boltzmann constant.
The 2.4048 is the numerical value of the first positive zero of a Bessel function
of the first kind. For a quenched surface with σs = 1.7 10−2 C/m2 and a poly-
electrolyte with m = 10 the critical salt concentration is calculated to be 0.9
mol/L. In our SF–SCF calculations, we find critical salt concentrations for the
new method is around 2 mol/L and for the old method 0.3 mol/L. Both values
are of the same order as that predicted by eq 4.5. Eq 4.5 does not contain the
polymer concentration, as can be seen in fig 4.3, a different critical salt con-
centration can be assigned for different concentrations of polyelectrolyte where
the polymer starts to adsorb, but this is a small difference which is ignored in
the scaling analysis.

Muthukumar77 also analyzes the layer thickness De, which is defined as the
maximum in the endpoint distribution, as function of the salt concentration
and derives the following relation: De ∼ κ−1. This relation should be valid
according to Muthukumar77 if the system is far from the critical adsorption
temperature or salt concentration. In our calculations a maximum in the end-
point distribution function is only found for polyelectrolytes with high amount
of charges, i.e. m = 2 and not for m = 10.

For these comparisons with scaling laws it can be concluded that if the
scaling laws fit the data of the new method, in most cases also the data from
the old method will have the same scaling exponents, see as an example the
open and filled symbols in fig 4.14. This means that the new method, although
different, it does not show on a logarithmic scale.

4.5 Conclusions

A new way to calculate polyelectrolyte adsorption has been explored. The
effect of the new calculation method was compared to the old method and only
electrostatic interactions were taken into account. Due to the new calculation
method

• The adsorbed amount found is higher
• Polyelectrolyte adsorption occurs at the pzc of a surface with annealed

charges
• The surface charge can be overcompensated by the polyelectrolyte charge
• The volume fraction profiles of the new method are wider and higher
• The volume fraction profiles show minima

The differences between the old and the new method of calculating the equi-
librium adsorption of polyelectrolytes seem small but are remarkable.

In the new method the amount adsorbed for a branched polyelectrolyte (a
higher charge density in the bulk) is larger than for a linear polyelectrolyte.
Calculations with the old method showed no differences in adsorbed amount
between these cases.
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With increasing salt concentration the adsorbed amount of polyelectrolyte
decreases as long as the surface charge is not overcompensated by the charge
of the adsorbed polyelectrolyte.

More charges on the chain (decreasing m) will increase the adsorbed charge
density σp. The competition with salt ions is smaller for polyelectrolytes with
higher charge density. Furthermore, overcompensation of the surface charge
is easier for the more highly charged polymer, especially in a solution with a
high ionic strength. As a last feature, more strongly charged molecules adsorb
flatter on the surface, but they can have in considerable thickness due to a
“plateau”, see fig 4.13b.

The adsorbed amount on a surface with annealed surface groups is relatively
large compared to θexc on a quenched surface. This is due to induction of extra
charges on the surface by the adsorbing polyelectrolyte. On an annealed surface
it is more difficult to overcompensate the surface charge than on a quenched
surface. The reason is that the surface charge of an annealed surface will
increase with the adsorbed amount. These annealed surfaces will “follow” the
adsorbed charges, in a way that the surface charge is just overcompensated.
Only for high salt and high fractional charges on the polyelectrolyte, a large
overcompensation can be expected.
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Chapter 5

Charge adaptation of a hematite
surface upon poly(styrene
sulfonate) adsorption
Theoretical calculations and experimental

results

Abstract

The charge regulation of the iron oxide hematite upon adsorption of the strong
polyelectrolyte poly(styrene sulfonate) (PSS) is studied both theoretically and
experimentally.

Self-Consistent-Field calculations were done to evaluate the charge char-
acteristics of a model hematite, i.e. the point of zero charge and the surface
charge at different ionic strength, in the absence and presence of a linear strong
polyelectrolyte. The calculations show high affinity adsorption isotherms. The
adsorption is increasing with decreasing pH and at its plateau the surface
charge is overcompensated by the charge of the adsorbed polyelectrolyte. The
charge adaptation of the model surface is large, it can become of similar mag-
nitude as the surface charge of a bare hematite at a pH which is lower by three
units.

In contrast with the calculated results, the measured adsorption isotherm
of PSS on hematite does not show a high affinity character. However, the
adsorption of PSS does increase the surface charge and bringing it to a level
which is comparable to the surface charge of a bare hematite in a solution
in which the pH is three pH-units smaller, similarly as in the calculations.
The total increase of the surface charge depends only on the amount of PSS
present but not on the pH. At the adsorption plateau the surface charge is
overcompensated by the adsorbed charge. Before the adsorption plateau is
reached the surface charge increases linearly with the adsorbed amount.



5.1 Introduction

5.1 Introduction

In soil chemistry mineral oxides are regarded as highly reactive for the adsorp-
tion of oxy-anions and natural organic matter. In general the adsorption is
determined by specific and electrostatic interactions.104–106 In this article, we
will mainly focus on the charge regulation upon adsorption, which has not been
studied a lot. Using measurements and model calculations,107,108 it has been
shown that due to the adsorption of charged species the primary charge of the
oxide surface adapts to the new situation by taking up or releasing protons.
This has been well established for inorganic ions.96,109 In the adsorption models
of metal ions or oxyanions it is taken into account that the adsorbing ions com-
pete with the ions that determine the primary charge on the oxide, i.e. H+ and
OH−. In that case charge adaptation is obvious. However, Fokkink et al. 110

have shown that also in the absence of competition strong charge adaptation
may occur due to only electrostatic interactions.

In the study on the adsorption of small organic acids by Barja et al. 111 the
emphasis was not on the quantitative assessment of the charge adaptation of the
surface, but on binding mechanisms. Filius et al.112 measured and modelled the
adsorption of small organic acid to goethite (an iron-oxide surface). They took
the competition for surface sites with H+ and OH−, and with that the surface
charge adaptation, into account in the modelling the adsorption. However, to
be able to model the pH-dependency of the adsorption, charge distribution
of the adsorbed molecules over the surface was also needed.113 For surfactant
adsorption the prime charge of the oxide surface is affected too, as is clearly
demonstrated both experimentally and theoretically by Koopal et al.. 114,115

For even larger molecules, such as polymers and polyelectrolytes, the ad-
sorption and surface charge adaptation have been studied less systematically.
The early work on surface charge regulation concerned colloidal AgI particles
upon adsorption of poly(vinyl alcohol)116,117 and of polylysines.118 Bonekamp
et al.119,120 studied the adsorption of polylysines on different substrates among
which mineral oxides. More work on the adsorption on silica has been done by
Siderova et al.,121 they found that poly(ethylene imine) induces extra charge
on a silicon-oxide surface. The adsorption of different polyelectrolytes on ox-
ides surfaces has also been studied by Vermöhlen et al.122 and by Gebhardt
and Fuerstenau.123 Furthermore, the influence of proteins on the charge ad-
justment has been studied by Fukuzaki et al.124 and the charge regulation of
goethiet upon adsorption of sulfate by Rietra et al.125 and of fulvic acids by
Filius et al.126 The adsorption of polyelectrolytes with a pH-dependent charge
and their influence on the surface charge has been invested theoretically by
Vermeer et al..91,127 In this case the calculations were used to gain insight in
the adsorption of a natural organic material to mineral particles. The adsorp-
tion of a polyelectrolyte with a pH-dependent charge on a surface, which has
also a pH-dependent charge, has also been studied by Shin et al..128,129

In order to examine the surface charge adaptation upon polyelectrolyte
adsorption more systematically, the system metal oxide and a strong polyelec-
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trolyte is chosen. Such a system has the advantage that only the surface can
adjust its charge. The calculations are based on the well known self-consistent-
field theory originally developed by Scheutjens and Fleer13,16 for homopolymer
adsorption and later extended to polyelectrolyte adsorption. 43,67,90 Experimen-
tally, the strong polyelectrolyte poly(styrene sulfonate) is used to adsorb on the
mineral oxide hematite; the change in the pH in the solution upon adsorption
reflects only the change of the surface charge.

The article is organized as follow. In section 5.2 we will present results
from numerical calculations. We do this to model our experimental system
and obtain insight in what may happen when a strong polyelectrolyte adsorbs
to a surface with a pH-dependent charge. In section 5.3 the materials and
methods are denoted and in section 5.4 the experimental results. Finally, a
comparison is made between the numerical calculations and the experimental
results and a further discussion is given of the latter.

5.2 Theoretical model and results

5.2.1 SF–SCF model and choice of the parameters

The self-consistent-mean-field model of Scheutjens and Fleer13 (SF–SCF), ex-
tended to adsorption of polyelectrolytes,43,67 is used for the calculations. For
the theoretical background of the model we refer to the cited articles; below
the choice of parameters is briefly discussed. The calculations were done with
the software package sfbox.17

The SF–SCF model for the adsorption of charged adsorbates is a mean-field
multi-Stern-layer model, see fig 5.1. In the model the thickness of each layer is
taken to be 0.3 nm. This corresponds to the edge of cube with the volume of a
water molecule. Furthermore, we use a cubic lattice, i.e. in a flat geometry the
interactions of a monomer in layer z with its surroundings is for 1/6 determined
by layer z − 1, for 4/6 by layer z, and also 1/6 by layer z + 1.

The hematite surface is mimicked in a crude way by grafting one type of
monomers, S, to a surface. The grafting density of 99.9% is taken to avoid
free spaces between the sites. i.e. the site density is 0.999/(0.3 nm)2 =11.1
sites/nm2. This value is too high compared to literature available. Venema et
al..130 consider two different faces, with 5 sites/nm2 and 10 sites/nm2, respec-
tively, to describe the measured titration curves of hematite. Hiemstra and
van Riemsdijk131 show that on hematite large amount of surface groups do not
contribute to the surface charge.

The simple one-pK model98,132 is used in our calculations to describe the
reaction of the model surface sites S with protons, according to the reaction:

SH+0.5 +H2O ¿ S−0.5 +H3O
+ Kdiss = 2.88 · 10−12 (5.1)

SH is a surface site which dissociates, Kdiss is the dimensionless value for the
dissociation constant, i.e. the concentrations of H2O and H3O

+ are denoted as
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Figure 5.1: The layers, the placing of the charges and the distances in the
numerical model

volume or mole fractions. The value of Kdiss given here corresponds to a point
of zero charge (pzc) at pH 9.8. This value equals the measured value. A further
simplification is made with respect to the interaction of the surface with salt
ions. Although chemical interaction of salt ions with oxide surfaces is in general
needed to fit experimental data, we have taken the interaction of the salt ions
with the surface to be zero.133,134 The relative permittivity εr,S of the surface
site S was taken to be 40. This value was chosen to ensure that the calculated
titration curves of the bare hematite at different salt concentrations resembled
the measured curves. Choosing a value for εr,S is equivalent to introducing a
Stern-layer capacitance in the usual site binding models.

The poly(styrene sulfonate) is mimicked in the calculations by a linear
flexible polyelectrolyte with 681 monomers, in which every other monomer
has a negative charge. The number of monomers is about twice as large as
the experimental value because the size of a monomer in the model is small.
This implies that the model polyelectrolyte will overestimate the flexibility
of poly(styrene sulfonate). The segmental interactions between the different
components are characterized by the Flory-Huggins χ-parameters. 135 Every
polyelectrolyte segment P , charged or uncharged, has a strong attraction to
the surface. The χ value is put equal to−8. The χ for water–surface interaction
is set equal to 0. This means that if water is replaced from the surface by a
polymer segment, 8/6 kBT of energy is gained by the system. These χ-values
are chosen in order to give a good agreement between the measured and the
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calculated surface charges at pH 10, in the presence of 1.62 10−5 mol PSS−/L
in the bulk solution with an ionic strength of 10−2 mol/L.

The interaction of the polymer segments P with water molecules and salt
ions is the same as for a θ-solvent, i.e. χP–solvent = 0.5. The relative permittivity
of a polymer segment P is in most cases taken as εr,P = 80, the same as that of
the water molecules and the salt ions. In some calculations εr,P = 10, because
a polymer with a benzene entity may have a low permittivity. The χ-value
between salt ions and water molecules is put to zero.

The equilibrium adsorption of the linear polyelectrolyte to the model he-
matite surface is calculated. The condition for equilibrium is that the chemical
potential, according to Flory and Huggins,136 of the polyelectrolyte in bulk
solution is equal to that in the adsorbed layer (cf Van Male et al. 67).

5.2.2 Results of the SF–SCF calculations
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Figure 5.2: The surface charge density σs of the model hematite as a function
of the pH for different salt concentrations. The dotted lines are guides to the
eye.

Bare model surface In fig 5.2 we show the surface charge density σs of the
bare model surface as a function of the pH and salt concentration. We see that
with increasing the pH the surface charge decreases and that for pH’s smaller
than the point of zero charge (pzc), σs increases with increasing salt concen-
trations. The maximal charge of the model hematite, i.e. 0.5e0.999/(0.3 nm)2

= 0.888 C/m2, is not reached within the pH-window studied.
The surface potential does not depend on the salt concentration and behaves

pseudo-Nernstian from pH 4 up to 10, i.e. pH∼ ψs (results not shown).
From the value of the capacitance as a function of the salt concentration,

it can be derived whether the surface charge σs is compensated predominantly
by the ions very close to the surface or by the diffuse ions. If it is assumed
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that the double layer can be modelled as two plate capacitors in series, one
corresponding with a charge-free Stern layer and the other with the diffuse
double layer, it follows that the total capacitance Ct is related to the Stern
layer capacitance CS and the diffuse double layer capacitance Cd:

1

Ct
=

1

CS
+

1

Cd
=

(

dS
ε0εS

+
1

ε0εwaterκ

)∣

∣

∣

∣

pzc

(5.2)

where ε0 is the permittivity of vacuum, εS and εwater are the relative permit-
tivities of the Stern layer and the solvent, respectively and dS and κ−1(Debye
length) are the thicknesses of the Stern layer and the diffuse layer. The equality
of Cd = ε0εwaterκ only applies at low potentials, i.e. around the pzc.

The total capacitance Ct is related to the surface charge σs and the potential
ψs via

δσs
δψ0

= Ct (5.3)

Due to the Nerstian behaviour of the surface, eq 5.3 can be rewritten into

δσs
δpH

∼ Ct (5.4)

This means that the slope in fig 5.2 is directly proportional to the total elec-
trostatic capacitance Ct

From eqs 5.2 and 5.4 it follows that if the ratio of the slopes for two different
salt concentrations is inversely proportional to the ratio of the corresponding
Debye screening lengths then the σs is mostly compensated by the diffuse part
of the double layer, if this ratio between the slopes is close to one, then the
charge at the Stern plane mostly compensates the charge.

Table 5.1: The ratio of the slopes around the pzc for different salt concentra-
tions.

The two salt concentrations Ratio of the slope around the pzc
from the calculated

in mol/L model hematite

κlow salt
κhigh salt

10−2 : 10−1 0.40 0.316
10−3 : 10−2 0.35 0.316
10−3 : 10−1 0.14 0.100

The calculated ratios are shown in table 5.1. From the values presented in
table 5.1, it can be concluded that in our model the compensation of the charge
occurs in the diffuse layer. This is not surprising because we had assumed that
there were no chemical interactions between the surface and the salt ions,
therefore the salt ions spread and compensate the surface charge mostly in the
diffuse part of the double layer.
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Figure 5.3: Calculated charge of the adsorbed polyelectrolyte σp as a function
of the concentration of the polyelectrolyte in the bulk ceq at pH 4, 7, and 10
and 0.01 mol/L salt. At pH 7 the salt concentration was also varied, open
circles 0.1 mol/L salt, filled triangles 0.01 mol/L salt, and open squares 0.001
mol/L salt. The crosses are calculations for pH 7, 0.01 mol/L salt, and the
εr,monomer = 10.

Polyelectrolyte adsorption In fig 5.3 adsorption isotherms are shown for
three pH-values. The concentrations of the polymer are plotted on a log-
scale. The adsorbed amount of polymer is expressed as the number of ad-
sorbed charges of the polymer. The charge of the adsorbed polyelectrolyte
σp is calculated from the excess amount, σp = −0.5θexce/a

2 in which e is the
elementary charge, a the lattice size, the factor of 0.5 is due to the fact that
only half of the monomers of the polymer has a charge, and the minus sign is
needed because the polymer is negatively charged. θexc is the excess adsorbed
amount and defined as

∑

z(ϕ(z) − ϕb(z)). From fig 5.3 it is clear that the
adsorption isotherms are of the high affinity type. With increasing pH the
adsorbed amount in the plateau is decreased. This is due to less attraction
with decreasing surface charge (with increasing pH). The observed increase of
the adsorbed amount at ϕb of 10

−4 is due to an increase in the ionic strength
by the counterions of the polyelectrolyte.

The differences in adsorption at different salt concentrations are small, as
is shown for pH 7. The difference between 0.01 mol/L and 0.001 mol/L is
graphically not visible. The somewhat higher adsorbed amount at 0.1 mol/L
salt is due to screening of the electrostatic repulsion between the polyelectrolyte
monomers in the adsorbed layer.

The adsorption isotherm of a polyelectrolyte with a relative permittivity of
10 in stead of 80, has a substantially lower plateau value but the shape of the
isotherm is also high affinity, compare the filled triangles with the crosses in
fig 5.3.
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Figure 5.4: The surface charge σs as a function of charge of the adsorbed
polyelectrolyte σp. The pH is denoted in the graph and the salt concentration
is 0.01 mol/L. The dashed line denotes charge compensation.

To see the effect of adsorption on the surface charge of hematite, σs is
plotted as a function of charge of the adsorbed polyelectrolyte σp in fig 5.4, for
various pH’s and at a salt concentration of 0.01 mol/L. To obtain information
in the rising part of the adsorption isotherm, calculations are performed under
“starved” conditions, i.e. the amount of added polyelectrolyte in the system is
lower than the amount needed to reach the plateau value (the equilibrium bulk
concentration of polyelectrolyte is practically zero). The dashed line in fig 5.4
represents the equality of the surface charge and the charge of the adsorbed
polyelectrolyte.

We found that the surface charge initially increases with increasing polymer
adsorption. In the adsorption plateau the surface charge is overcompensated
by the charge of the adsorbed polyelectrolyte. At the salt concentration of 0.01
mol/L, the surface charge increases upon adsorption, from 0 to 0.1 C/m2 for
pH 10, from 0.1 to 0.35 C/m2 for pH 7, and from 0.3 to 0.6 C/m2 for pH 4.

In fig 5.5 the slope of fig 5.4 as a function of the overcompensation of the
surface charge by the charge of the adsorbed polyelectrolyte is shown, σp/σs =
1 denotes charge compensation. A slope of one, ∂σs

∂σp
= 1, means that the

surface charge increases with the same amount as the adsorbed charges of the
polyelectrolyte. In fig 5.5 it is seen that when reaching charge compensation the
slope is increasing, this means that with increasing amount of adsorbed polymer
the surface charge adopts its charge more than when hardly any polyelectrolyte
is adsorbed. The slope is lower at pH 4 than at pH 7, this means that the
surface charge at pH 7 adopts more easily to the adsorbed charges than at
pH 4. This is due to the fact that the surface charge at pH 4 is higher (see
fig 5.2) and can therefore not so easy adjust. For the different pH’s, the slope
comes to a maximum of 0.85 at the point were the polyectrolytes starts to
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Figure 5.5: The increase in the surface charge due to adsorption ∂σs/∂σp as a
function of fraction of overcompensation σp/σs. The parameters are the same
as in fig 5.4. The dashed line denotes charge compensation.

overcompensate the surface charge. At pH 10 the surface charge is in all cases
overcompensated by the charge of the adsorbed polyelectrolyte and the slope
is approximately constant at 0.85.

In fig 5.6 the slope of the surface-charge increase due to the adsorbed charges
as a function of the ratio of the adsorbed charges and the surface charge at
pH 7 is shown. As in fig 5.5 we find that the slope ∂σs/∂σp increases with
increasing fraction of overcompensation, and also the maximum is found when
the charge of the adsorbed polymer just overcompensates the surface charge.
This maximum decreases with increasing salt concentration. This is due to
the fact that at low salt concentration the polyelectrolyte is more effectively
in screening the surface charge. All polyelectrolyte segments within the Debye
screening length κ−1 screen the surface charge, at low salt concentration κ−1

is larger than at high salt concentration and therefore more polymer segments
help to screen the surface charge. The polymer with monomers with a low
permittivity, i.e. the crosses in fig 5.6, is less effective in screening of the
surface charge. Furthermore the initial slope is the lowest for the system with
the highest surface charge without adsorption σs,0, as was seen in fig 5.5. The
surface charge for the lower salt concentrations or higher pH is relatively low
and therefore it can increase more easily than at high salt concentration or
lower pH.

In figs 5.3 and 5.6 it is also shown that the maximum adsorbed amount and
the maximum induced surface charge are both influenced by a lower permit-
tivity of the adsorbing polyelectrolyte, see the crosses.

In calculations it is easy to obtain the slopes of the induced surface charge
as a function of the polymer charge, but in experiments this is more difficult
due to scatter of the measured points. As an alternative the co-adsorption of
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Figure 5.6: The increase in the surface charge due to adsorption ∂σs/∂σp as
a function of fraction of overcompensation σp/σs at pH 7, and three salt con-
centrations: open circles 0.001 mol/L, filled triangles 0.01 mol/L, and open
squares 0.1 mol/L. Results denoted by the crosses apply to pH 7, 0.01 mol/L
and the εr,monomer = 10. The dashed line denotes charge compensation.

protons with the adsorbed polymer is used, the co-adsorption is defined as

Co-ads H+ =
σs − σs,0

σp
(5.5)

In fig 5.7 the co-adsorption of the protons for the different calculated systems is
shown. The initial slope it the same as in figs 5.5 and 5.6 because the definition
is then the same. The trends are also the same, but it cannot be seen anymore
that the maximum in the slope is the same for one salt concentration, this is
due to the fact that also the initial slope plays a role in the calculation of the
co-adsorption of H+.

The conclusions from the calculations are as follows. The adsorption iso-
therm of the polyelectrolyte is high affinity. The effect of pH on the adsorbed
amount is large and the effect of the salt concentration small. The surface
charge changes strongly upon adsorption.

The slope of the surface charge increase with the adsorbed charges, ∂σs/∂σp
has a maximum where the surface charge is just overcompensated by the charge
of the adsorbing polyelectrolyte. This maximum does not depend on the pH
but it does depend on the salt concentration. The maximum decreases with
increasing salt concentration.

The co-adsorption of protons with the adsorption of the polyelectrolyte
depends on the pH and salt concentration. A higher initial surface charge
without adsorption σs,0 leads to a lower co-adsorption of protons, i.e. the surface
charge can not as easily adapt to the adsorbed polyelectrolytes as when σs,0 is
low. Just as for the slope ∂σs/∂σp, a maximum in the co-adsorption of protons
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Figure 5.7: The co-adsorption of H+ with the adsorption of polyelectrolyte as
a function of fraction of overcompensation of the surface charge by the charge
of the adsorbed polyelectrolyte. The symbols are explained in the legends of
figs 5.5 and 5.6.

with the adsorption of the polyelelectrolyte is reached when the charge of the
polyelectrolyte just overcompensates the surface charge.

5.3 Materials and Methods

5.3.1 Materials

The hematite used was prepared according to the method of Penners. 137 After
preparation it was washed with pure water to remove excess salt and attain
a stable solution. The pH was then around 3 and the conductivity of the
suspension was mainly determined by the pH. The washed suspension at pH
3 was autoclaved (aged) for 8 hours at 120◦C at a pressure of 1.2 atm, to
reduce surface asperities, irregularities, and to decrease the time required to
reach equilibrium in the proton titrations. The aged hematite suspension was
washed with pure water until the pH of the suspension was above pH 4 and
stored.

Sodium poly(styrene sulfonate) (NaPSS) salt, with a molecular mass M of
70 kg/mol, i.e. degree of polymerization N = 340, was obtained from Biochem
Inc.. The molecular mass of the polymer was checked by viscosimetry in a salt
solution of 0.5 mol/L NaCl. The Mark-Houwink coefficientsK and a for NaPSS
in this medium are 1.087 and 0.764,138 respectively, when the intrinsic viscosity
is denoted in g NaPSS per g solution and the molecular mass as kg/mol. A
stock solution of about 3 g NaPSS/L and a pH around 10 was made. To this
end the polymer was dissolved in water and KOH was added to reach a pH of
10. The high pH prevents degradation of the poly(styrene sulfonate).
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Ultrapure water from Branstead EASYpure UV (demineralization followed
by percolation through an activated carbon colum, UV-light treatment to pre-
vent bacterial contamination, and filtration over a 0.2 µm microfilter) was used
in all measurements, the conductivity was 18.3 MΩ/cm. All other chemicals
were analytical grade.

For the titration the Wallingford titrator in combination with “Titration
Program Version T047” was used.139 Potentiometric titrations were done under
N2 atmosphere with at least 30 ml of a suspension containing about 0.8 g of
hematite, a given concentration of KNO3 or KCl, and a fixed amount of NaPSS.
Acid (0.1 mol/L HNO3 or HCl) and base (0.1 mol/L KOH) titrants obtained
from Merck or Bernd Kraft GmbH were added with Metrohm Dosimat 665
burettes. The EMF measurements in the cell were made with two electrode
systems at the same time. One electrode set was a combined pH-electrode from
Methrohm and the other set was a a glass electrode from Ingold, combined with
a KCl-reference electrode from Mettler Toledo (InLab 301). In this case the
reference electrode was placed in a salt bridge of 0.01 mol/L KNO3. The
two electrode systems were used as two independent measurements of the pH.
The electrodes were standardized with buffers also from Merck or Bernd Kraft
GmbH.

A Hitachi U2010 UV/VIS spectrophotometer was used to measure the con-
centration of PSS− in solution.

5.3.2 Methods

Titration Titrations started after equilibrating the suspension at pH 4 for
half an hour. The next dose is given when the drift of both electrode sets is
smaller than 0.5 mV/min over a two-minute time interval. Titrations, that are
also used to measure the PSS− adsorption, were carried out with KCl and HCl
because NO−

3 interferes with the signal of PSS− in the UV/VIS spectropho-
tometer.

To measure the surface charge adjustment upon adsorption of PSS− a pH-
stat measurement is done. A pH-stat measurement means in this case that
first the hematite is titrated to a desired pH, then NaPSS−-solution is added.
Subsequently the amount of acid to restore the initial pH is recorded. KCl or
KNO3 is used to keep the salt concentration constant (in most cases at 0.01
mol/L). After this titration the last small pH adjustments are made by using
either an acid or a base titrant to keep the pH at the initial pH for 20 min.
From the total amount of acid and base added, the surface charge adjustment
upon adsorption of PSS− is obtained.

PSS−-adsorption Adsorption isotherms of PSS− onto hematite are mea-
sured by depletion experiments. HCl and KOH are used to bring the solution
to the desired pH. The ionic strength is 0.01 mol/L KCl. For each adsorp-
tion experiment about 0.5 gram hematite in 20 ml electrolyte solution with a
certain concentration of PSS−, contained in a closed test tube, is used. The
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adsorption is allowed to equilibrate for at least 20 hours, while shaking the tube
end over end in a rotating wheel. The concentration of PSS− left in solution
is measured by means of UV absorption after filtration (Aerodisc 0.2 µm from
GelmanSciences) of the suspension. The wavelength used is 263 nm. The mo-
lar extinction coefficient, measured by Papenhuijzen140 for a molecular weight
sample of 88,000, ε263 equals 427.7 L mol−1 monomers cm−1 in the absence of
salt. Using a concentration series of our PSS− with no added salt results in a
value of 368 L mol−1 monomers cm−1 for ε263. This low value shows that our
NaPSS sample contained hydratation water.

Determination of dissolved iron To be sure that our hematite is not dis-
solving upon adsorption, the concentration of iron in solution after adsorption
is, in some cases, measured. The method used, is the reaction of Fe(II) with
2,2’dipyridyl,141 which gives a colored product with an absorption peak at 522
nm. For the determination of iron, 2 mL of a sodium acetate/acetic acid buffer
solution of pH 5 and 1 mL of a reducing agent (1% by weight hydroxylamine
hydrochloride solution) were added to 6 mL supernatant of the adsorption
studies. Finally 1 mL of dipyridyl solution (0.1% by weight) is added. The
solution is then shaken and left standing for 10 min. The presence of PSS− in
solution presents no problem with this method, (in fact it rather enhances the
signal which becomes 5 times as strong as that without PSS− in solution, but
exploration of this phenomenon is beyond the scope of this study).

5.4 Results

Hematite surface The shape and size of the hematite particles was exam-
ened by AFM: the particles remained approximately spherical upon autoclaving
and had a radius of 30 ± 5 nm. Dynamic Light Scattering gave a radius of
25 nm for these particles. The specific surface area as determined by N2-BET
adsorption for the two hematite batches is denoted in table 5.2. The radius
calculated from the specific surface area∗ is also denoted in this table. The
result is comparable to the radii determined with the AFM and DLS, which
indicates that the particles are non-porous.

Table 5.2: The measured specific surface area of the two hematite batches used
in this study.

System Specific surface area Radius
in m2/g in nm

Hematite I 22.0 26
Hematite II 19.7 29

∗r = 3
Sρ

in which r is the radius of a spherical hematite particle, S the specific surface

area and ρ the density of hematite, i.e. 5.24 kg/l. 142
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Figure 5.8: The surface charge σs of hematite as a function of the pH and the
ionic strength.

In fig 5.8 the surface charge σs of hematite is shown as a function of the pH
and salt concentration. We see that with increasing the pH the surface charge
decreases. As expected, for pH’s smaller than the point of zero charge (pzc)
σs increases with increasing salt concentrations. The pzc of the hematite is 9.8
which is in good agreement with Penners.95 For the present sample the charge
density at pH 4 is lower than for the hematite prepared in the same way, but
not autoclaved.95 However, the charge density at pH 4 is still higher than that
of the hematite prepared by Breeuwsma and Lyklema143 which is heated after
preparation. The small kink in the 0.1 mol/L curve is a measurement artifact.

The time to reach equilibrium after a dose of acid or base is similar for the
whole pH-range and equals about 4 min. This is much shorter than the times
observed by Penners144 for similar hematite that was not aged.

The results for the slope around the pzc give information about the way
the surface charge is compensated, see eqs 5.2 and 5.4. The ratio of the slopes
determined from fig 5.8 are given in table 5.3.

Table 5.3: Ratio of the slopes for different salt concentrations around the pzc.
The two salt concentrations Ratio of the slope around the pzc

in mol/L measured (theoretical values)

10−2:10−1 0.67 (0.316)
10−3:10−2 0.66 (0.316)
10−3:10−1 0.45 (0.1)

By comparing table 5.3 with the values denoted in table 5.1, it follows that
the surface charge is partly compensated by the diffuse part of the double layer.
The difference between the salt concentrations is smaller than predicted on the
basis of screening by diffuse charges only. We conclude from this result that
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the surface charge is not only governed by the diffuse layer capacitance but
also by the Stern plane capacitance and/or specific adsorption. The fact that
the slope of the curves is not changing much with pH is also an indication that
Stern layer effects are important.
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Figure 5.9: The adsorption isotherm of PSS onto hematite at pH 7.1 ± 0.1
and 4.3 ± 0.3 at 0.01 mol/L KCl. The dashed and solid lines are guides to the
eye.

Adsorption of PSS In fig 5.9 the adsorption isotherms of PSS onto hematite
are shown at two different pH’s and 0.01 mol/L KCl. Two observations can
be made. Firstly, the equilibrium concentrations of PSS ceq in the rising part
of the isotherm are not very low, i.e. the isotherms are not of the high affinity
type. Secondly, for ceq < 0.1g/L there is hardly any difference between the
adsorption isotherms of pH 4 and 7. It seems that the surface charge is not
the dominating factor in the initial adsorption of PSS onto hematite. At pH
4 and ceq > 0.1g/L, experimental data are not available. We return to the
measured adsorption isotherms in the discussion section.

Surface charge and adsorption A typical result of a pH-stat titration
is shown in fig 5.10, where the pH during the measurements is plotted as a
function of the change in surface charge σs. The first big jump is due to the
PSS− addition. The subsequent points are due to acid addition. The total
amount of acid needed to restore the initial pH corresponds to the charge
adjustment of the surface.

The charge adaptation of the hematite surface as a function of the charge
of the adsorbed polyelectrolyte, gives information about the point of over-
compensation. This is shown in fig 5.11, the data is obtained from different
experiments: batch-experiments (open symbols), points on titrationcurves of
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Figure 5.10: The pH as a function of the change in the surface charge for a
typical pH-stat measurement.

hematite with PSS− (filled symbols), and pH-stat experiments (crosses), see
also appendix 5.A.

Let us first discuss the results at pH 7. The measurements indicate that
the surface charge increases linearly with the adsorbed PSS− charge (∼ the
amount of PSS− adsorbed) until the equivalence point is reached. Beyond the
equivalence point the surface charge is roughly constant. At pH 4 we only see
a linear increase of the charge, because the equivalence point is not reached.
At pH 10 only one point is available and therefore the course of the charge
adjustment can not be seen.

For the calculated results we saw that the co-adsorption of protons is dif-
ferent for different pH’s and a maximum was obtained around the equivalence
point of the surface charge and the charge of the adsorbed polymer. In fig 5.12
the co-adsorption of protons is shown as a function of the overcompensation of
the surface charge by the adsorbed polyelelctrolyte at 0.01 mol/L salt and for
pH 4 and 7. A large scatter of points below the overcompensation of the surface
charge is seen. Approximately 0.6 protons adsorb to the surface if one charged
group of the polyelectrolyte is adsorbing. There is no difference found between
high and low amount of adsorbed polyelectrolyte before the surface charge is
overcompensated. Furthermore there is no difference in the co-adsorption of
protons between the two different pH’s, i.e. pH 4 and 7. When the surface
charge is overcompensated, i.e. σp/σs > 1, the co-adsorption decreases, just as
in the calculated results in fig 5.7.

Titrations in the presence of PSS The hematite is titrated in the pres-
ence of a given amount of PSS (ctot = 0.60 g PSS−/m2). During the titration
both the amount PSS− adsorbed and the surface charge can change. At this
amount of total PSS− in solution, the amount adsorbed at pH 7 just overcom-

118



Adsorption of poly(styrene sulfonate) onto hematite

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

pH = 10

σ s
C

m2






pH = 7

pH = 4

− [ ]σ p C/m2

Figure 5.11: Charge density σs of hematite as a function of the adsorbed
amount Γ of PSS at pH 4.3, 7.1, and 10. The ionic strength is 10−2 mol/L.
The filled symbols give the results from the titration experiments where also the
ceq of PSS− is measured, the open symbols give the results from the depletion
experiment and the crosses at pH 7 give the results of titrations where the
adsorbed amount is calculated from the adsorption isotherm. The solid line
denotes charge compensation.

pensates the surface charge. In fig 5.13 the PSS-solution is added at pH 7 (see
the arrow) and the surface charge adjustment is calculated from a pH-stat
measurement. Subsequently the sample is titrated to pH 4, the titration is
continued with base to pH 10 and then back to pH 4 again. There is no hys-
teresis in the titrations. The fact that the curves in the absence and presence
of PSS− run about parallel indicates that the amount of extra surface charge
is approximately the same for all the pH’s. Furthermore, there is no sign of
flattening of the σs at low pH, so probably the maximum surface charge of
hematite is not reached. Extrapolation of the curve to σs = 0 C/m2 gives a
pzc in the presence of PSS− of about 12.

5.5 Discussion

Experimental adsorption isotherm The most unexpected feature of the
adsorption isotherm of PSS on hematite is that it is not a high affinity curve,
which is theoretically expected for an adsorption isotherm of a polymer or a
polyelectrolyte, see fig 5.3. In the following we discuss four possible reasons for
this unexpected behaviour:

• Blocking of part of the surface area due to fast flocculation

• Polydispersity of the PSS sample

• Incomplete equilibration of PSS adsorption
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Figure 5.12: The co-adsorption of H+ with the adsorption of polyelectrolyte as
a function of fraction of overcompensation of the surface charge by the charge
of the adsorbed polyelectrolyte. The symbols are explained in fig 5.11.

• Spreading of the polyelectrolyte is kineticly blocked

Flocculation of hematite is observed for samples as soon as PSS in low
concentration is added. While preparing samples for the depletion measure-
ments, a marked difference between the plateau values and the other points
can be observed by the eye: Upon adding PSS for the lower concentrations,
the hematite suspension flocculates immediately, whereas at the plateau values
the hematite is stable. Hence, in the initial part of th isotherm it is possible
that surface area is lost for PSS adsorption. In that case our reported initial
adsorbed amount per m2 is wrong because we use a too large surface area.
Because this flocculation is only seen at small amounts of added PSS, the first
guess is that this is flocculation due to bridging. But this way of flocculation
should only occur if there is enough surface area available for the polymer. In
this case, commonly, the polymer concentration tends to zero. Alternatively,
the flocculation is induced due to charge reduction and a loss of electrostatic
repulsion. Using electroacoustics it has been reported that flocculation of bare
hematite can already start at a pHof 7.145,146

For polydisperse polyelectrolyte samples the adsorption isotherm can give
also a non-high affinity part. But there are two reasons to think that the sample
is hardly polydisperse. PSS has a very narrow molecular mass distribution
and viscosimetric measurements show that the present sample gave the same
molecular weight as specified by the manufacturer. This rules out degradation
of the polymer. The second reason is that the titration curves did not show
any hysteris upon titrating from pH 4 to pH 10 and back. Some titrations,
carried out with a polydisperse sample of PSS adsorbed onto hematite, showed
large hysteresis in the titration curve. Furthermore, in literature high affinity
adsorption isotherms even for polydisperse samples have been reported. 147,148
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Figure 5.13: The surface charge σs of hematite as a function of the pH. The
amount of PSS is 0.60 mg PSS−/m2 hematite and the ionic strength is 0.01
mol/L KNO3. Open symbols denote the titration with acid and the filled
symbols the titration with base. The solid line is the reference titration of the
bare hematite surface, derived from fig 5.8.

Samples of natural organic matter, taken from soils, which are known to be
highly polydisperse, gave a high affinity isotherm on goethite. 149

The third possibility is that the equilibrium has not been reached despite
20 hours of shaking. Calculations done by Cohen Stuart et al. 107 indicate
that equilibrium for polyelectrolyte adsorption can take days. Adsorption of
poly(acrylic acid) on aluminum oxide showed a difference between the zeta
potential measured after one day or after 40 days.150 Furthermore, the cal-
culations are equilibrium calculations and they do not show adsorption lower
than the plateau value, even for very low concentrations in the bulk solution
of polymer.

Yet, in the titration experiments we did not find any time effects. The pH
stayed constant while waiting for over 14 hours at pH 7 and the response of the
pH upon adding acid or base happens for different samples in the same time
span. The solutions, that are compared, consisted of bare hematite, hematite
with PSS, that just is adsorbed, and hematite on which PSS is already adsorbed
for over 14 hours.

The fourth possible explanation is a kineticly frozen situation of the ad-
sorbed polyelectrolyte. The polyelectrolytes adsorbing from a dilute solution
have time to spread over the surface and adsorb as thin layers. However, when
the polyelectrolytes adsorb from a solution of higher concentration, next to
an adsorbed polymer, another polyelectrolyte is adsorbed. The possibility of
spreading is low because a neighbouring polyelectrolyte must be removed. This
means that the adsorbed amount for the low concentrations can be the equi-
librium value but for the high polyelectrolyte concentrations, the adsorption
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is too high. The kinetics to remove a polyelectrolyte is so slow that Γ stays
constant.

This last possibility would also explain another feature of the experimental
adsorption isotherm. The plateau value is relatively high for polyelectrolyte
adsorption. If a flat conformation of the adsorbed polyelectrolyte is assumed,
it follows that for every styrene sulfonate monomer an area of 0.44 nm2 is
available for Γ = 0.6 mg/m2. This value is rather small compared to the
estimated area of a monomer (≈ 1.5-2.4 nm2). This means that a part of the
polyelectrolyte should be adsorbed in loops and tails. The adsorption of PSS
on hematite measured by Papenhuijzen138 shows a lower adsorbed amount, i.e.
of 0.4 mg/m2 for pH 6 and at a salt concentration of 0.01 mol/L. Van der
Schee and Lyklema found a plateau in the adsorbed amount of 0.6–1 mg/m2

for neutral polymers but for adsorbed polyelectrolytes the lower value of 0.3
mg/m2 was measured.118 Yim et al.151,152 found adsorbed amounts of 1 mg/m2

but they used a higher salt concentration; for the lowest salt concentration
(0.12 mol/L) used an adsorbed amount of 0.8 mg/m2 was found.151 Dalhgren
et al.153 found for the adsorption of PCMA on mica an adsorbed amount of
0.7 mg/m2 at low salt concentrations, the surface charge of mica is at the
plateau value just overcompensated by the charge of the adsorbed PCMA.

Surface charge change due to PSS adsorption The surface charge den-
sity of hematite changes a lot due to the adsorption of PSS. The increase of the
surface charge density is approximately the same for different pH’s. A similar
trend is also found for surfactant adsorption.114,115,154

Before the charge of PSS overcompensates the surface charge of hematite,
the surface charge density increases with increasing adsorption. This increase
of the surface charge density with adsorption seems to be linear.

Comparison between the calculations and the measurements The
amount adsorbed in C/m2 in the adsorption plateau in the calculations is a
bit larger than that in the experiments and also the calculated surface charge
density is larger than the measured surface charge density. The ratio of over-
compensation, σp,max/σs,max, is comparable between the measurements and the
calculations. That the amount adsorbed and the surface charge density are
too high in the calculations is probably due to the fact that the surface charge
density in the calculations is more easily increased than on real hematite, as
was also the case for the bare hematite, compare figs 5.2 and 5.8. This discrep-
ancy can be reduced by choosing a low permittivity for the surface species, i.e.
εr,surface < 40.

Shubin and Linse94 compared the experimental adsorption of polyelec-
trolytes of acryl amide and ((3-methacrylamido)propyl)trimethylammonium
cloride on silica with self-consistent-field calculations. They found that if the
surface charge is fitted correctly by the theory, the calculated adsorbed amount
is lower than the experimentally observed amount. The predicted overcompen-
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sation of the surface charge density is a factor of 2 to 4 lower than the results
of the experiment. They used the same kind of calculation as we did, but in
this case the polyelectrolyte in the bulk behaves like an ideal coil, because the
electrostatic potential in the bulk is zero. In our calculations we took into
account the intramolecular interactions in the bulk, and this results in better
comparison of the numerical data with the experimental data.

Comparing the co-adsorption of the experiments and the calculated results
two main differences are seen. Firstly the maximum in the co-adsorption of
protons in the calculations is not found in the experiments. Secondly in the
model calculations the initial co-adsorption at pH 4 and 7 are different but in
the experiments they are the same.The maximum in the co-adsorption is seen
in all the systems calculated just when the surface charge is overcompensated.
In the measurements we find a “plateau” in the co-adsorption, this might mean
that the experimental system is in all cases at the point of overcompensation.
This in turn would mean that the amount of available surface area is lower
than the amount of surface which was put in. This can be due to flocculation
and would also be able to explain the non-high-affinity adsorption isotherms.

In general we see that, except for the shape of the adsorption isotherm,
the main features of the measurements are captured by the calculations with
a minimum of parameters.
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5.A Calculation of the surface charge from different experiments

5.A Calculation of the surface charge from dif-

ferent experiments

Depletion experiments The extra charge on the surface is calculated from
the amount of acid and base added to get the desired pH, corrected for the
initial amount needed for a solution without PSS− added (blank). These points
are denoted as open symbols in fig 5.11.

Titration experiments with KCl as salt From a pH-stat measurement
the surface charge increase is measured. After the pH-stat measurements a
sample was taken and the concentration of PSS− in solution was measured. The
charge densities obtained in this way are plotted in fig 5.11 as filled symbols.

Titration experiments with KNO3 as salt From a pH-stat measure-
ments the surface charge density in the presence of PSS− is measured. How-
ever, we can not measure the PSS− left in solution, due to interference of NO3

in the determination of PSS− with UV-adsorption. Therefore the adsorbed
amount is calculated from a linear extrapolation between two points from the
adsorption isotherm which have a ratio of PSS− added per m2 of hematite
closest to the titration experiment. These points have only been obtained at
pH 7 and are denoted by crosses in fig 5.11.
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Chapter 6

Evaluation of the mastercurve
procedure

Abstract

A self-consistent-field (SCF) model is used to calculated the dissociation of
acidic polyelectrolyte stars and dendrimers. The numerical results are trans-
formed into mastercurves using two simple electrostatic models: the Donnan
model and a hard-sphere model. For both models, it is checked whether the
calculated charge-pHcurves of a given molecular architecture result in a good
mastercurve. The dissociation constant K obtained from the mastercurve pro-
cedure is compared to the intrinsic dissociation constant Kint. Furthermore,
the Donnan potential and the hard-sphere potential are compared to the elec-
trostatic potential profile, which results from the SCF-model.

In the mastercurve procedure a size is assigned to the Donnan or hard
sphere volume. This size can be obtained from the SCF calculations for each
pH. However, it is also of interest to use sizes which do not depend on the
pH, so several estimates for the size based on the chain architecture and salt
concentration have been used.

For the case of a pH-dependent size, the Donnan model gives a good esti-
mate of the pKint-value. However, the mastercurve is in most cases diffuse: the
points of a charge-pH curve for different salt concentration do not merge com-
pletely. Only for large molecules and molecules with a large number of branches
a good mastercurve is found. In contrast, the hard-sphere model always results
in a good mastercurve. However, in this case the resulting pK-value deviates
more from the pKint-value. Upon increasing the number of branches in the
molecules this deviation increases.

When using estimates of the Donnan or hard sphere volume which do not
depend on pH, the resulting mastercurves are generally less good. We have
compared five different estimates. Surprisingly, the size resulting from a max-
imal stretching of the arms (without any ionic strength dependence) gives the
best mastercurves and estimates of pKint both for the Donnan and hard-sphere



model. The mastercurves become better when the monomer density in the
stars and dendrimers increases. However, the pK-values obtained from the
mastercurve procedure will always be overestimated.

These results may be useful as a guideline for obtaining mastercurves when
titrating humic substances.
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6.1 Introduction

Modelling of metal ion binding to humic acid is a difficult task. This is due
to their intrinsic heterogeneity and due to the competition for binding sites
between a given metal ion and protons or other metal ions. The idea is that
from adsorption isotherms of different metal ions to humics also the competition
between different metal ions can be predicted. Almost a decade ago several
models to describe the proton binding to humic substances came up.155–159

Two of these models, Model VI160 and the NICA–Donnan model,161 are most
promising. They have been tested extensively with data collected on purified
humic substances.160,161 With the parameters obtained in these studies the
behaviour of metal ions in natural systems can be predicted reasonably well.
162

In these models the metal ion adsorption to humics is determined by elec-
trostatic and chemical interactions. To be able to distinguish between these
two types of interaction, the so-called mastercurve procedure is developed as
part of the NICA model.163

The idea behind a mastercurve is that a set of charge-pH curves of a poly-
electrolyte or a humic substance at different salt concentrations can be trans-
formed into one single charge-pH site curve, the mastercurve, where pH site is
the pH in the solution in the direct vicinity of the dissociating sites.

In order to obtain the relation between the pH and the pH site the elec-
trostatic potentials at the location of the sites should be known. Under the
assumption that this potential is the same for all sites, it can be calculated
from the degree of dissociation using an electrostatic model that links the
charge density to the site potential. The pH site incorporates all electrostatic
effects and the resulting mastercurve reflects the intrinsic or chemical proper-
ties of the polyelectrolyte or humic substances, i.e. the intrinsic dissociation
constants.

With the NICA model mainly two approaches have been used to model the
electrostatics: the hard-sphere model (HS)159,164,165 and the Donnan model (D).
165,166 Both models require an extra parameter, for the HS-model this is the
particle area and for the Donnan model the Donnan volume of the particles.
The transformation of the measurable charge-pH curves into charge-pH site

curves can be done with both models. In order to achieve that the different
charge-pHsite curves really merge into one mastercurve, the common practice
has been to make either the area (HS) or the volume (D) in the electrostatic
models somewhat dependent on the salt concentration (and/or pH).

As humic substances are quite complex in nature, the assumption that the
electrostatics at a given pH and ionic strength can be described with just
one site potential clearly is a simplification. In order to asses the quality of
this type of approximation, we will apply the mastercurve procedure to the
calculated charge-pH curves of a series of simple polyelectrolytes with well
defined and different architectures. We have investigated how closely the true
intrinsic dissociation constants and true site potentials can be matched by
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the dissociation constants and the site potentials that are derived from the
mastercurve procedure.

The calculation of the charge-pH curves of the different polyelectrolytes
will be based on the SF–SCF theory described in the previous chapters. These
calculations also provide a measure of the size of the polyelectrolyte molecules
under the given conditions. This size depends on the salt concentration and
pH, in practice, the dependence of the size on the solution conditions is not
always known. Therefore, we will use five other sizes to investigate the effect
of the size on the results of the mastercurves.

This chapter is organized as follows, first the two electrostatic models, the
Donnan model and the hard-sphere model will be explained. This is followed by
a description of the polyelectrolyte molecules used in the SF–SCF calculations.
Then the results of the mastercurve procedure applied to the charge-pH curves
are given, followed by a discussion. At the end conclusions in relation to the
use of the mastercurve procedure for humic substances are drawn.

6.2 Electrostatic models

Donnan model In the Donnan model, the polyelectrolyte is envisioned as
a penetrable sphere. The charge of the polyelectrolyte is compensated within
the Donnan volume VD by co- and counterions. Within in the Donnan volume
the electrostatic potential ψD is constant and outside the Donnan volume the
potential is zero, as schematically shown in fig 6.1. In the presence of only a
simple ν–ν electrolyte the Donnan model leads to the following relation between
the charge density and the Donnan potential:167

Qim

VD
= cse

−νeψD/kBT (6.1)

in which Qim is the number of univalent immobile charges on the polyelectro-
lyte, VD the Donnan volume of the polyelectrolyte molecule, cs the concentra-
tion of salt ions in the bulk, ν the valency (with sign) of the counter ions, e the
elementary charge, ψD the Donnan potential, and kBT Boltzmann’s constant
times the temperature. In eq 6.1 only the counterions are taken into account,
as is usually done. In practice Qim is more conveniently expressed in eq/g, the
corresponding VD is then expressed in m3/g.

Hard-sphere model In the hard-sphere model the polyelectrolyte is seen as
a hard sphere, all the charges are located at the surface of a sphere and are
compensated outside the hard sphere in the diffuse double layer, see fig 6.2.

In order to obtain the relation between the surface charge density σs and
the surface potential ψs the Poisson–Boltzmann equation can be used.168 For
spherical geometry the Poisson–Boltzmann equation cannot be solved analyt-
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Figure 6.1: Schematic representation of the Donnan model.
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Figure 6.2: Schematic representation of the hard-sphere model.
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ically, so we use an approximate expression for a symmetrical electrolyte 168

Qim

4πR2
=
−2Fcsν

κ

[

2 sinh

(

νeψs
2kBT

)

+
4 tanh(νeψs/4kBT )

κR

]

(6.2)

where Qim, cs, ν, e, and kBT have the same meaning as in eq 6.1. The radius
of the hard sphere is denoted by R, F is Faraday’s constant, ψs the electric
potential at the surface of the hard sphere, and κ the inverse Debye length.
For a symmetrical electrolyte the Debye length is given by κ2 = 2Fecsν2

kBTε0εr
, in

which ε0 is the permittivity of vacuum and εr the relative permittivity of the
solvent. In practice Qim will in this case be expressed in C/g and the particle
area, 4πR2, is replaced by the specific area in m2/g.

6.3 Method

The numerical self-consistent-field model (SCF), that is used to calculate the
charge-pH curves has been developed by Böhmer et al.,90 Israëls et al.,43 and
Van Male.67 It basically is an extension of the polymer adsorption model de-
veloped originally by Scheutjens and Fleer.13 An outline of the theory for cal-
culating annealed polyelectrolytes is partially presented in chapter 3.

In the present study polyelectrolytes with a pKint of 5, different architec-
tures, and different number of monomers (or molecular mass) are used. The
interaction with the solvent is chosen such that if the polyelectrolyte is un-
charged the solvent is a θ-solvent. The pH is varied between 3 and 11 and
three different salt concentrations are used, i.e. 0.55 mmol/L, 55 mmol/L, and
5.5 mol/L. From the calculations we obtain the average degree of dissociation
α, the electrostatic potential profiles ψ(z), and the size Re of the molecules as a
function of the salt concentration and the pH. The size Re is the first moment
over de endpoint profiles. This size is for star shaped molecules comparable
to a hydrodynamic radius. The equations for α, Re, and ψ(z) are given in
section 3.3 of chapter 3.

The different polyelectrolyte molecules used, can be grouped into five differ-
ent structures. Each structure consists of 5 or 6 different molecules, that differ
in the number of arms f the structure has. The five structures are explained in
fig 6.3. In this figure the minimal density is introduced as a way to represent
each of the different molecules by one number. The minimal density ϕmin is
the average density of the molecule when it is totally stretched and defined as

ϕmin =
N

4/3πR3
max

(6.3)

in which N is the total number of monomers per molecule and Rmax the length
of an arm when it is totally stretched.

In fig 6.3 only the architectures with four arms are drawn. For each of
these structures also architectures with different numbers of arms f are used,
as denoted in table 6.1. The number of chargeable groups in a molecule equals
N/3, where N is the total number of monomers.
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Figure 6.3: Shapes of the five different structures all with four arms. ϕmin de-
notes the minimal density, Rmax the length of an arm if this is totally stretched
and N the total number of segments per molecule.

6.4 Mastercurve procedure

The mastercurves are compared to the intrinsic charge-pH curves. To decide
if a mastercurve is good, two criteria are used

• The extent to which the data points of charge-pH curves for the different
salt concentrations merge into a mastercurve
• The agreement between the true intrinsic (chemical) dissociation con-

stant pKint and the dissociation constant obtained from the mastercurve
procedure

In order to work out these criteria in practice, it is convenient to use the
logarithm of the apparent dissociation constant as a parameter

pKp(Hp, α) = pHp − log
α

1− α
(6.4)

where α is the degree of dissociation and is pHp is the negative logarithm of
the proton concentration changed by the electrostatic potential of interest. For
p = 0, the potential is zero and pHp is the bulk pH. For p = D or HS the
pHp is the pHsite for Donnan model and the hard-sphere model, respectively.
To denote both the models, we will use p = model. Due to the electrostatic
interactions the values of pK0 differ from the intrinsic pK-value, pKint. The
values of pKmodel will also differ from pKint if the electrostatic model is in-
correct. However, pKint − pKmodel will be much smaller than pKint − pK0
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Table 6.1: Definition of the molecules used in the calculation
large star large open dense dendrimer small open small star

dendrimer dendrimer
Rmax 40.2 [nm] 27 [nm] 4.8 [nm] 4.5 [nm] 4.5 [nm]
f N ϕmin N ϕmin N ϕmin N ϕmin N ϕmin

2 268 8.8 10−5 268 1.6 10−2 46 3.1 10−3 30 2.1 10−3

4 536 5.3 10−5 536 1.8 10−4 536 3.1 10−2 92 6.2 10−3 60 4.2 10−3

8 1072 1.0 10−4 1072 3.4 10−4 1072 5.2 10−2 184 1.0 10−2 120 7.0 10−3

16 2144 2.1 10−4 2144 6.8 10−4 2144 0.10 368 2.1 10−2 240 1.3 10−2

32 4288 4.1 10−4 4288 1.3 10−3 4288 0.18 736 3.4 10−2 480 2.3 10−2

53 7102 6.7 10−4 7102 2.2 10−3 7102 0.29 1219 5.7 10−2 795 3.9 10−2

if the electrostatic model to calculate the mastercurves is a reasonably good
approximation.

Hence, in general the quality of the mastercurve procedure can be judged
by converting the (α, pH site)-data into a pKmodel-data. However, instead of
using the difference pKint − pKmodel to judge the mastercurve, we prefer to
separate this condition in two conditions that meet the two criteria formulated
above.

The first criterion can be investigated by using a variance σp, defined as

σ2p =

∑

cs

(pKp,cs − pKp,av)
2

n− 1
(6.5)

where the summation runs over all salt concentrations and n is the number of
salt concentrations. The pKp,cs is the average pK when using the (α, pHp)
points for one salt concentration cs and pKp,av is the average calculated using
all data points for one molecular structure. The quality of the mastercurve can
now be derived from the ratio Υ

Υ =
σmodel

σ0
(6.6)

denotes the ratio between the variance found for a mastercurve with an elec-
trostatic model σmodel and the variance found for the original data σ0. In the
ideal case that the electrostatic model used to calculated the mastercurve is
correct, then σmodel → 0 and Υ → 0. In practice this extreme will not be
reached, but Υ should at least be considerably smaller than unity, otherwise
no improvement is achieved with respect to the original “experimental” data.
In order to satisfy our first criterion, we will use the condition Υ < 0.3. This
criterion tells us that the merging of the (α, pH site) curves derived from the
(α, pH) curves at different salt concentrations is satisfactory.

Secondly, the quality of the obtained mastercurve is also depending on the
difference δpK .

δpK = pKint − pKmodel,av (6.7)
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The smaller this difference is the more closely the mastercurve represents the
true intrinsic (chemical) properties of the polyelectrolyte. If δpK < 0 the pKint

is overestimated and if δpK > 0 the pKint is underestimated. We will use for
the quantification of the second criterion the value of −1 < δpK < +1.

6.5 Results

In this section we will show how well the mastercurve procedure works for the
different molecular structures and investigate conditions that may allow us to
select the most appropriate model (Donnan or hard-sphere) if some information
on the molecular structure is available.

Re as the characteristic size In fig 6.4 the different molecules used in the
calculations are plotted in a ϕmin(f) plot. The solid lines connect the points
of a given architecture, ranging from large stars, with the lowest density, to
the dense dendrimer, with the highest density. In fig 6.4a the results with
the Donnan model are shown. As a criterion of a good mastercurve the value
of Υ < 0.3 is used. The dense dendrimer with f ≥ 16 and the large open
dendrimer and the large star both with f = 53 give good mastercurves. If the
criterion is extended to Υ ≤ 0.6 pH-units then 26 out of the 35 structures do
give mastercurves that qualify.

In fig 6.4b it can be seen that the hard-sphere model gives in almost all
cases a good mastercurve, only for the small number of arms the Υ is larger
than 0.3. The hard-sphere model gives either a good mastercurve or a bad
one, there are hardly any intermediate cases as for the Donnan model where
Υ changes more gradually.

The second criterion for a good mastercurve is that the chemical and elec-
trostatic interactions are correctly separated. For the present situation the
pKint of 5 should recover from the mastercurve, or δpK → 0. In fig 6.5 the cal-
culated pKmodel,av values for the two electrostatic models are shown. In fig 6.5a
the results with the Donnan model are given; for the large molecules, i.e. the
large star and the large open dendrimer, a pKD,av of 4.75 ±0.1 is found which
is quite reasonable in comparison with the true pKint-value of 5. The smaller
molecules give a lower pKD,av-value, i.e. 4.35 ± 0.15. In general, we may say
that the pKD,av-value is underestimated by the Donnan model but it is not far
from the true value of the pKint.

The results for the HS-model, as shown in fig 6.5b, agree less well with the
intrinsic pKint than the pKHS,av’s found with the Donnan model. The pKHS,av-
value is in most cases too low (shaded area). In fig 6.5b a clear trend in the
pKHS,av-value can be seen: with increasing density pKHS,av decreases. This
implies that for molecules with a high density, it is not reasonable to put all
the charges on the surface of that particle.
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Figure 6.4: Minimal density of the molecules as a function of the number of
arms, for different structures as denoted by the symbols in the graph. The size
used for the mastercurve is Re. The dashed line denotes the relative variance
Υ ≤ 0.3 and the grey area indicates which structures do not give a reasonable
mastercurve. In fig (a) the relative variance is denoted for the Donnan model,
the second dashed line denotes Υ ≤ 0.6 and in fig (b) for the hard-sphere
model.
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Figure 6.5: The average pKmodel,av found for a structure as a function of the
number of arms f , the size used for the mastercurve is Re. (a) with the Donnan
model and (b) with the hard sphere model. The grey area denotes a too small
pKmodel,av values.
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Effect of the size In the above calculations of the mastercurve we used the
first moment of the endpoint distribution function as a measure of the size of
the molecules. However, in view of the fact that the electrostatic potentials
used in the mastercurve procedure are just an approximation of reality, it is
possible that a different size parameter gives a better result. Furthermore, in
practical application of the mastercurve procedure to humic substances the size
is often taken to be indepent of the pH.160,166 In general this is an approxi-
mation also for humic substances: increasing the pH and therefore increasing
the number of charges will lead to swelling.165 Indeed the sizes evaluated in
the previous paragraph, were pH dependent. For instance, the size increase,
Re,high pH/Re,low pH at one salt concentration, varied from 1.12 for the dense
star with f = 53 and high salt concentration to 4.36 for the large star with
f = 16 at low salt concentration. For the dense dendrimer the increase in size
due to a decreasing salt concentration is 1.6 and this increase has the maximal
value of 3.6 for the the large star.

In view of the practice with humic substances where often a pH-independent
size is used, we will continue our investigation by neglecting the pH-effect on
the size. The crucial question is what an appropriate choice for this size is,
and how it is related to the molecular architecture. Five formulas for the size,
specified in table 6.2, will be studied.

Table 6.2: Definition of used sizes
Name Definition

Rsmall κ−1

Rmedium1 Rfilled sphere + κ−1

Rmedium2 Rfilled sphere ∗
[

cs
5.5

]−1/5

Rmax Rmax

Rext Rmax + κ−1

Rsmall is taken as independent of the molecular size/mass and it depends
solely on the salt concentration through the Debye–length κ−1. The Rmedium1

and Rmedium2 do depend on both the molecular mass and the salt concen-
tration. The molecular mass is incorporated through Rfilled sphere defined as

(3N/(4π))−1/3, i.e. a sphere totally filled with all the monomers. The salt con-
centration is taken into account in two different ways, for Rmedium1 with the
Debye length, for Rmedium2 a different way is used, justified as follows. In ana-
lytical theory the effect of the salt concentration on the size of a polyelectrolyte
is taken into account by en effective volume interaction v which depends on
the salt concentration v ∼ c−1s . This leads to a size which depends on the salt

concentration as R ∼ c
−1/5
s . For Rmedium2 we used the highest salt concentra-

tion, where cs = 5.5 mol/L as the starting point, with a size Rfilled sphere, and
calculated from there the sizes for the other salt concentrations. Rmax is the
maximal extension of the arms and given in table 6.1. We should point out
that Rmax is not always larger than Rsmall because the Debye length for 0.55
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mmol/L is quite large (13 nm) whereas Rmax for the small molecules is 4.5 nm,
but for the other salt concentrations Rsmall < Rmax. The final radius Rext is
obtained by extending Rmax with the Debye length κ−1.

The results of the mastercurves generated with each of these different sizes
as denoted in table 6.2 will now be discussed. The use of Rsmall has a devas-
tating effect: in all cases Υ > 1, i.e. a mastercurve on which the different salt
concentrations come together is not found. Moreover, the low salt concentra-
tion resulted in an approximately correct pK-value but for the two higher salt
concentrations much too low δpK-values are found.

The mastercurve procedure with Rmedium1 does not give a good master-
curve: Υ > 0.3. The HS-models are worse than the Donnan model. For the
small molecules the electrostatic interaction is underestimated for the lowest
salt concentration, i.e. δpK > 0. For the largest molecule, the large star, the
intermediate salt concentration leads to a negative δpK .

The mastercurves generated with Rmedium2 and the Donnan model are rea-
sonable for low number of arms and low densities. Values of Υ < 0.3 and the
pKD,av is between 4.5 and 5 were obtained. The calculated pKD,av is increasing
with increasing f and higher for the more dense molecules. The HS model does
not satisfy the criteria.

The mastercurves generated with Rmax, which is not only independent of
the pH but also of the salt concentration, appear satisfactory for the small star
and the dense dendrimer. Both criteria for a good mastercurve for both the
Donnan and the HS-model, see figs 6.6 and 6.7, are met. For small f or low
densities the mastercurves are not good, see fig 6.6.

The pK-values, calculated with Rmax are shown in fig 6.7. In most cases
the pK’s are larger than 5, i.e. the electrostatic interactions are underesti-
mated. However, they all satisfy the criterion of −1 < δpK < 1. In contrast to
fig 6.5 the Donnan model now gives positive values of δpK , and δpK increases
with the number of arms. For the HS-model the differences in a series of the
same structure but different number of arms are small, except for the dense
dendrimer. This latter molecule shows a considerable decay in the pK as a
function of f . Qualitatively, this behaviour is similar to that in fig 6.5, and
probably due to the fact that the pH- and salt dependency of the size for the
dense dendrimer is small. This is not the case for the small and the large star.

The mastercurves generated with Rlarge do not meet the criterion Υ ≤ 0.3.
As was the case for Rmedium1, the shift for the lowest salt concentration is too
small.

Electrostatic potential For some selected cases which gave a good master-
curve with a reasonable pK, the SCF-electrostatic potential profile ψ(z) will be
compared to the Donnan potential ψD and to the hard-sphere surface potential
ψs. The electrostatic decay from the HS-surface potential is taken as a simple
Debye-Hückel decay:

ψ(z) = ψs
Re−κ(z−R)

z
(6.8)
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Figure 6.6: Minimal density of the molecules as a function of the number of
arms, for different structures as denoted by the symbols in the graph. The size
used for the mastercurve is Rmax. The dashed line denotes the relative variance
Υ ≤ 0.3 as denoted eq 6.6 and the grey area indicates which structures do not
give a reasonable mastercurve. In fig (a) the relative variance is denoted for
the Donnan model an in fig (b) for the hard-sphere model. The dashed line
within the grey area denote Υ ≤ 0.6.
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Figure 6.7: The average pKmodel,av found for a structure with Rmax taken as
the size in the mastercurve procedure as a function of the number of arms f ,
(a) with the Donnan model and (b) with the hard sphere model.
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Figure 6.8: Electrostatic potential profile from the numerical calculations com-
pared with the simple electrostatic decay from the Donnan model and from
the hard-sphere model and R = Re. For the dense dendrimer with N = 4288
at 55 mmol/L and the pH as denoted in the graph.

First we will show some results obtained with R = Re, i.e. the size which
depends both on the pH and on the salt concentration. For the dense den-
drimer, see fig 6.8, the SCF-potential profile shows a plateau in the centre,
followed by a gradual decrease. Such a gradually decreasing potential is also
obtained with the HS-model, but the surface potential is higher than the SCF-
potentials. The Donnan model has a step profile, and the Donnan potential
is higher than the SCF-potential. Yet, the Donnan potential is lower than the
hard-sphere potential. The fact that the Donnan potential is higher than the
SCF- potential and lower than the HS-potential corresponds to the pK-values
in fig 6.5. i.e. pKHS,av < pKD,av < pKint. The Donnan potential is close to the
real potential if the pH is high.

The large star is a large molecule with a low density. This object can be
regarded to be the opposite of the dense dendrimer, yet the criteria to obtain
a good mastercurve are satisfied for both the Donnan and the hard-sphere
model. The potential profiles for the large star are presented in fig 6.9. The
SCF electrostatic potential profile for the large star is more complex than that
for the dense dendrimer. Close to the centre of the molecule a maximum
occurs in the profiles at pH 5 and 8, but most of the profile is characterized by
a gradual decrease. For pH 3 the Donnan potential and the surface potential
both equal the SCF-potential at the centre of the molecule. For pH 5 and 8
the Donnan model gives awkward results: for pH 8 ψD is lower than that for
pH 5. This is due to the larger size of the molecule at pH 8. The hard-sphere
potential behaves more reasonably and is allways an increasing function of the
pH. For most pH’s the ψs is smaller than the SCF-potential in the centre of
the molecule, and the potential decay faster than that of the SCF-potential.
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Figure 6.9: Electrostatic potential profile from the numerical calculations com-
pared with the simple electrostatic decay from the Donnan model and from
the hard-sphere model and R = Re. For the large star with N = 4288 at
55 mmol/L and the pH as denoted in the graph.

This is due to the fact that the surface potential is located at a large distance
from the centre.

Also with Rmax reasonable mastercurves have been obtained for the large
star. In fig 6.10 the SCF-potentials are compared to those of the two simple
electrostatic models when Rmax is used to describe the size of the molecules.
Due to the large size the potentials from the simple electrostatic models are
now much smaller than the SCF-potential.

Finally, the electrostatic potential profiles of a small star with small number
of arms are shown in fig 6.11. The size used for the Donnan and the HS-model
is Re. In this case, the HS-model gives a good mastercurve and the Donnan
model does not. This is obvious from fig 6.11: the Donnan model completely
fails to the describe the potential. The Donnan potential ψD is far too large
for pH 4 and 6, therefore the differences between the different pH’s are too
small. Moreover, we find ψD, pH=9 < ψD, pH=6. The HS-potentials give a much
better description. Due to the small size of this molecule the potential decay
starts at a reasonable distance from the centre. The correspondence between
the SCF- and HS-potential profiles indicates that the decay of the potential is
determined by the counterions and not by charges of the polyelectrolyte.

6.6 Discussion

For the molecular architectures considered in this work, the Donnan model
gives a reasonable mastercurve when the density is high or the size of the
molecule is large. Furthermore, it gives a good indication about the pKint-
value, especially for large molecules. The mastercurve from the HS-model
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is either good or very bad. However, even if the mastercurve is good, this
does not mean that the correct pKint-value is observed. For molecules with
large densities, the obtained pK-value deviates more from the pKint than for
molecules with a small density.

The electrostatic potential profile can of course not be fully described by the
simple Donnan potential or the HS-potential profile. At best, the models give
an indicative value. Dense structures with a high potential can be captured by
both the Donnan and the HS-model. Small structures with a low potential are
poorly described by the Donnan model but well by the HS-model. Large, open
structures give good mastercurves with both the Donnan and HS-model, but
the values of ψD or ψs depend much on what kind of measure for the size of
the molecules is used. Larger sizes lead to a small electrostatic potential and
in general to too large pK’s, compare figs 6.5 and 6.7.

The average endpoint size Re is defined as the first moment over de end-
point profiles, resulting from the SCF calculations. When using Re, which
depends on the pH and salt concentration, as a measure of the size of the
molecule reasonable mastercurves were obtained for all considered molecular
architectures. The other tested measures of the size were independent of pH
and are listed in tabel 6.2. For these size definitions, the mastercurves were
always worse. In particular, modelling the effect of salt concentration on the
size by using the Debye length κ−1 turned out to yield rather poor results.

If sizes are taken to be independent of the pH, it is better to use the large
sizes from table 6.2. A large size can give reasonable mastercurves, but the
actual electrostatic potential can be 4 to 10 times bigger than the calculated
potential from the hard-sphere or the Donnan model, respectively. The calcu-
lated pK from such an analysis is of course substantially larger than the true
pKint. The Donnan model gives a reasonable pK-value whenever the density
of the structure is high.

6.7 Humic substances

From the previous discussion it follows that one certainly may not assume
that the mastercurve procedure works well in all cases. The results depend
on the molecular architecture which is titrated. In this paragraph we discuss
the implications of this conclusion for titrations of humic substances. The
questions are whether one may expect the mastercurve procedure to work for
humic substances and how accurate the results will be. In order to be able
to answer these questions the density of the humic substances and their size
have to be analysed. Our above analysis has shown that the best chances for
success are obtained when a radius is chosen close to the hydrodynamic radius
and a dense structure can be assumed. Let us first discuss the density.

Density of humic substances The molecules in table 6.1 and the results
in figs 6.4 and 6.6 are shown as a function of ϕmin, the minimum volume
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fraction, as defined by eq 6.3. This volume fraction can be converted to a
density in kg/L by assigning a mass to a polymer volume. If it is assumed that
the model polyelectrolytes consist mainly of carbon and oxygen an estimate
can be made of the densities. The volume of an oxygen or of a CH2-group
is about (0.3 nm)3.142 Furthermore, if carbon and oxygen are equally avail-
able then the average density of such a dry polyelectrolyte is in the order of
1
2
(16 + 14)10−3/(NAv(0.3 10

−8)3) kg/L ≈ 1 kg/L. Hence, the densities denoted
as volume fraction in table 6.1 may also be interpreted as densities in kg/L.
This is only because the dry density of the polymer is ≈ 1 kg/L, but in general
the conversion from volume fractions to wet densities is given by

ρwet = ϕρdry

A dry density of 1 kg/L for the polyelectrolyte is small compared to the
range of 1.4–1.7 kg/L for dry humic acids which has been commonly used in
literature.165,166 Therefore, it may be better to multiply the volume fraction
as denoted in table 6.1 with 1.6 kg/L to be able to compare the calculated
results with wet densities of humic substances. The wet densities found for
humic substances in literature range between 0.013 and 1.16 for fulvic acids
and 0.11 to 1.16 kg/L for humic acids.165,166,169 From the model molecules, the
small star, the small open dendrimer and the dense dendrimer have comparable
densities, especially the dense dendrimer.

This means that if a size is used which depends on the pH and salt concen-
tration, the HS-model is expected to give a good mastercurve but the present
results suggest that for large densities the pK obtained from the HS-model
will be much too low. The Donnan model will give good results for very high
densities, with respect to both the mastercurve and the pK-value. For the less
dense (ϕmin < 0.07 or ρwet < 0.1 kg/L) and small molecules, it will be hard to
find a mastercurve that has physical reality.

On the other hand, if a size comparable to Rmax is used for the fulvic and
humic acids both the Donnan and the HS-model are appropriate. However,
the calculated pK’s will be larger than the intrinsic pK, i.e. δpK > 1.

Size of humic substances When trying to map the results of the master-
curves obtained from the calculations to humic acids not only the density is a
parameter but also the size, see for instance the results of the Donnan model
in fig 6.4a. A good mastercurve is consistently obtained for high densities and
sometimes for low densities, namely in the case of large sizes. Furthermore, we
have seen that the quality of the results of the mastercurve depends on the size
used. Therefore, we will analyse which sizes are found for humic substances in
literature, and what the effect of salt concentration and pH is on the size.

In humic acid literature, a lot of sizes can be found for humic acid molecules.
Partly, this may be due to the large polydispersity of humic substances. Due
to the polydispersity, different averages are measured with different techniques.
For instance, dynamic light scattering (DLS) is very sensitive to the presence
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of large particles (because te scattering intensity scales as ∼ R6). This means
that always large sizes for humic acids are found.170 Viscosimetry measures the
volume fraction, but is insensitive to the particle size.

In practice, we have to distinguish between the small sized humic acids (in
the order of 1 nm)171–173 and the larger ones (in the order of 300 nm).174 Most
probably, the larger ones are aggregates of the smaller ones. 175 The “primary
particles” are generaly 1-2 nm in radius, and the aggregates about 300 nm.
175 Different techniques have been used by Lead et al.171 to measure the size
of a fulvic acid. The radius, calculated from the diffusion coefficient with the
Stokes–Einstein relationship for spherical particles, was in the order of 0.7-1
nm. Using membranes, the diffusion coefficent was measured by Cornel et
al.172 and Wang et al..173 Cornel et al.172 first fractionated the samples and
found a diffusity of 1 10−9 m2/s for the sample with the lowest moleculair mass
and 2.5 10−10 m2/s for the sample with the highest moleculair mass. These
diffusities together with the (too simple) Stokes–Einstein relation for spheres
lead to radii of 0.75 nm and 2.2 nm, respectively. The diffusion constants found
by Wang et al.173 were between 2 and 5 10−10 m2/s, and gave radii between
0.4 and 1 nm. However, also intermediate sizes and extremly large sizes have
been measured. Pinhiero et al.176,177 measured sizes which were about 50 nm.
Ren et al.170 also measured sizes with DLS in the order of 40-95 nm. Senesi
and co-workers178,179 analysed the fractal dimension of humics as a function of
time, pH, and salt concentration. The average size they obtained was 3-80 µm,
which is very large compared to the values mentioned by other authors.

For comparison of the results derived from the SCF-model with humic sub-
stances, we should discuss only the primary humic acid particles, because these
primary particles do not disaggregate upon increasing the charge. This means
that the sizes are most likely in the order of 1-10 nm. The sizes Re result-
ing from the SCF calculations ranged from 3.6 to 18.4 nm for the large star,
from 1.0 to 2.0 nm for the small star, and from 1.4 to 3.0 nm for the dense
dendrimer. The Rmax is denoted in table 6.1. This means that the sizes of
the dense dendrimer and the small star can be compared with the sizes of the
primary humic acid particles.

Size and salt concentration The effect of the salt concentration on the
size of polyelectrolytes has been analysed using analytical theories in several
articles. For various different shapes of molecules, i.e. stars, 34,35,55,180 random
polyelectrolytes,36 and dendrimers181 the result is always that R ∼ I−1/5. On
the basis of these ideas some literature results about the size of humic acid as
function of the size and/or the pH will be analysed.

When the mastercurve procedure is applied assuming a Donnan model, a
Donnan volume at different salt concentrations is needed. Often the following
empirical relation is used161,166,182

log VD = b(1− log I)− 1 (6.9)
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in which VD is the Donnan volume, I the ionic strength, and b an adjustable
parameter. For the purpose of comparison with the scaling results discussed
above, this equation can be rewritten as R ∼ I−b/3. From the analytical
polyelectrolyte theory a value of −1/5 was predicted for this exponent, which
implies b = 3/5 for the b in eq 6.9.

The “standard” b-values used in the NICA-Donnan model to describe the
swelling of the humic acid and fulvic acid as a function of the salt concentration
are 0.49 and 0.57, respectively.161 These results are based on an investigation of
over 20 fulvic acids and 20 humic acids. Christl and Kretschmar 182 have anal-
ysed several fractions of a humic acid using eq 6.9. They found b-values ranging
from 0.3 till 0.6. The lower values are for the higher molecular mass molecules.
Both the results of Milne et al.161 and Christl and Kretschmar182 show that the
adjusted Donnan volumes of the larger molecular mass molecules depend less
on the salt concentration than the smaller molecular mass molecules. This may
be due to a hydrophobic core of the large molecules. This core does not have
charges and therefore does not respond to changes in the salt concentration.
Comparing these results with the scaling arguments it means that in general
the fulvic acids behave more like simple polyelectrolytes than the humic acids.

The before mentioned b-values can be compared reasonably well to the scal-
ing predictions. However also larger b-values have been reported. Christensen
et al.183 reported of b-values of 0.8 to 0.9 for four fulvic acids. Ren et al. 170

measured that with increasing salt concentration the size decreases as a power
law with an exponent of −0.23, i.e. a b-value of 3*0.23=0.7, which is large. The
exponent is based on only three points, the first decrease is smaller, but the
decrease from 0.05 to 0.1 mol/L is larger. A larger decrease can be due to the
effect that increasing salt concentration can also change the solvent quality, i.e.
salting-out effect.

A very systematic study of the size of humic acids as a function of the salt
concentration and pH was performed by Avena et al.165 who used viscosimetry.
For low pH (pH 3 or 4) the salt concentration has hardly any influence. This
may indicate that

• some humic acid molecules aggregate and form flocs
• the humic acids are hardly charged

For pH’s, 7 and 10 or 11, the decrease of the size with increasing salt
concentration is always lower than that the predicted by the analytical theory.
The experimental range of τ in the dependency of R ∼ I−τ is 0.03-0.15 and
the predicted decrease was 1/5, i.e. 0.2. For two out of the nine humic acid
samples∗ at pH 11 the decrease between 0.001 and 0.01 mol/L was lower than
the decrease between 0.01 and 0.1 mol/L, this can be due to an osmotic effect
in the humic acid.

The effect of pH measured by Avena et al.165 was always an increase in size
with increasing pH. For the salt dominance regime, i.e. where the relation R ∼

∗The two samples were the Kinhosan F humic acid and the Kinhosan OH humic acid.
These were obtained from Y.-H. Yang.184
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c
−1/5
s holds, the size scales as α

2/5
b , see eq 3.23. At smaller salt concentrations

the relations are more comples, around the pK-value R ∼ αb

1−αb
and when pH

À pK then R ∼ α
1/2
b , see eq 3.19. These relations seem simple but they can

not be straight forwardly compared to humic acid because the intrinsic pK
is not known, and therefore αb is not known. To be able to do this, intrinsic
pK’s and the amount of sites per group of pK’s have to be chosen. This is
too arbitrary and therefore it is concluded that the effect of pH on the size of
humics cannot be compared to the results of analytical theory.

147



Appendix A

Dependence of a reaction
constant on the discretisation

The reaction constant K used in the SCF-calculation is dimensionless. So in
principle it should not depend on the lattice, and in particular not on the
thickness of the layers. For systems with only uncharged species it is indeed
independent. For systems with charges, this is not the case because the thick-
ness of the layer is determining the electrical capacitance of a layer, and with
that the electrostatic potential decay.

Let us take the simple reaction of the dissociation of water:

2H2O ¿ H3O
+ +OH− (A.1)

The dissociation constant Kw, used in practice is 10−14 mol2L−2 at room tem-
perature and defined as

Kw ≡ [H3O
+][OH−] = 10−14mol2L−2 (A.2)

where the square brackets denote the concentration in solution. In order to
make Kw dimensionless, it has to be divided by the concentration of water
squared, [H2O]2. The concentration of water in water is 55 mol L−1, the value
of the dissociation constant then becomes 3.3 · 10−18. This value is correct if
one uses a lattice based on the size of water, i.e. for a cubical lattice with the
distance between two layers is 0.3 nm:

55mol/L = 55 ∗Nav ∗ 10
3molecules/m3

= 33molecules/nm3

a =
3

√

1

33
nm = 0.3 nm

The conversion factor A in eq 3.38 is in this case 55 mol/L.
But instead of taking the distance between two layers equal to 0.3 nm,

another value can be taken, for instance, the Bjerrum length or the Kuhn
length of the polymer studied. In this case the dissociation constant should
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be normalized differently. The general idea is that the number of charges per
volume should remain the same, because the Debye screening length should be
indifferent to the distance between two layers. But due to different distances
between the layers the number of solvent molecules in a liter changes and
therefore the Kw (actually any reaction constant which includes the solvent
molecules in the reaction).

As an example we calculate the dissociation constant of water if the lattice
size is take to be the Bjerrum length lB. The number of solvent molecules

per liter decreases with a factor of
(

lB
0.3 nm

)3
, with lB in nm, so instead of 55

mol/L, there are 55/
(

lB
0.3 nm

)3
mol solvent molecules per liter. The dissociation

constant for water becomes then:

Kw =
10−14

(

55/
(

lB
0.3 nm

)3
)2 (A.3a)

=
10−14

(

lB
0.3 nm

)6

552
(A.3b)

So the conversion factor A from volume fractions to mol/L is in this case

55/
(

lB
0.3 nm

)3
mol/L.
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Appendix B

The calculation of the charge
distribution fraction

The distribution function for the number n of dissociated segments in one
branch is calculated by employing a modified propagator to the field given by
the SCF solution. The end-segment weighting factor in eq 3.29 is split up
according to the number of dissociated segments in the chain

Gn(z, s|1) = αb,k=0(s)Gk=0(z, s)
〈

Gn(z, s+ 1|1)
〉

(B.1a)

Gn+1(z, s|1) = αb,k=−(s)Gk=−(z, s)
〈

Gn(z, s+ 1|1)
〉

(B.1b)

where the subscript k = 0 denotes the neutral state of the segment and k = −
the charged state. The starting conditions of the new propagator read

G0(z, 1|1) = αb,k=0(1)Gk=0(z, 1) (B.2a)

G1(z, 1|1) = αb,k=−(1)Gk=−(z, 1) (B.2b)

To check if the above given equations are calculated in the right way, the fol-
lowing equation must be true. The sum over all possible number of dissociated
segments yields the total end-segment weighting factor:

∑

n

Gn(z, s|1) = G(z, s|1) (B.3)

The distribution function J(n) for the number n of dissociated segments can
now be computed as:

J(n) =

∑

z Gn(z,N |1)
∑

z G(z,N |1)
(B.4)
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Summary

In chapter 1 the motivation and outline of the present study is presented. Apart
from trying to get a better qualitative insight in the behaviour of synthetic
polyelectrolytes, the study is also intended to get a better qualitative insight
in the behaviour of natural organic matter such as humic acids.

Polyelectrolytes in solution

Chapters 2 and 3 study the equilibrium conformations of star-branched poly-
electrolytes in dilute solution on the basis of a numerical Self-Consistent-Field
(SF–SCF) approach, originally developed by Scheutjens and Fleer. The re-
sults are compared to existing analytical theories. Two types of star-branched
polyelectrolytes are considered: quenched and annealed stars. Chapter 2 deals
with quenched stars, which have a constant charge per monomer. Chapter 3
deals with annealed stars, which have a pH-dependent charge.

The size of an individual star molecule results from a balance of forces. As
the arms stretch, their conformational entropy is reduced, which results in a
net contractive force. This contractive force is balanced by three forces which
cause swelling. Firstly, the charges on the monomers are of the same sign,
which results in a Coulombic repulsion. Secondly, the charges on the monomers
attract counterions and (if present) salt ions. Therefore, the concentration of
ions inside the stars may be higher than the concentration of ions outside the
star. This results in a net osmotic pressure difference, which also leads to
swelling. Finally, each monomer occupies a certain volume, which leads to
excluded volume swelling due to steric repulsion.

For quenched stars (chapter 2) the molecular parameters of the polyelectro-
lyte star are the amount of arms in a star f , the number of monomers in each
arm N , and the fraction of charged monomers m−1. Here, m−1 is the number
of uncharged monomers in between two neighbouring charges along the chain.
Depending on these three molecular parameters (f , m, and N) three regimes
are commonly distinguished in analytical theory. Furthermore, a distinction
is made between salt free solutions and solutions with added salt. In salt free
solutions of stars three regimes can be distinguished:

1. The polyelectrolyte regime occurs for a low number of arms. Most
counterions are released in the bulk solution, therefore the Coulombic
repulsion between the monomers of the star is dominant.



Summary

2. The osmotic regime occurs for a higher number of arms. Most counter-
ions are retained in the star so that the Coulombic repulsion is largely
screened by counterions and, consequently, the osmotic pressure is the
dominant contribution to the swelling.

3. The quasi-neutral regime occurs when the amount of arms becomes
very large. Here, the excluded volume interactions are dominant.

Addition of salt results in a better screening of the Coulombic repulsion, which
leads to a reduced star size R. This corresponds to a fourth regime:

4. The salt dominance regime occurs when the amount of salt becomes
high. The repulsion between the monomers is largely screened and the
star behaves as a neutral star with a monomer size which is determined
by the Debye screening length.

For stars in the polyelectrolyte regime the addition of salt results always in a
reduction of the size. In the osmotic regime, this reduction in R only becomes
significant if the concentration of added salt cs exceeds that of the counterions
in the star itself. For stars in the quasi-neutral regime, the addition of salt
has no consequences because the swelling was not due to Coulombic repulsion
between the charges on the polyelectrolyte chains.

For each of these regimes, the analytical theory predicts scaling relations
of the star size depending on the number of arms, the charge density on each
arm, and the length of the arms. The results from the numerical SCF theory
agree well with these scaling laws. For instance, in the salt dominance regime
the scaling prediction is R ∼ c

−1/5
s and this significant reduction is confirmed

by the SF–SCF calculations.
Furthermore, the SF–SCF calculations predict various internal details of

the star like the counterion distribution, the monomer volume fractions, and
the position of the end-points of the arms. At low salt concentration, the
volume fraction profiles ϕ(r) show a power law decay with an exponent of −2,
i.e. ϕ(r) ∼ r−2. At a high salt concentration the decay is slower, ϕ(r) ∼ r−4/3.

The SF–SCF theory also shows that the boundaries between the various
regimes are not sharp but diffuse. The internal molecular details of the star,
as calculated by the SF–SCF theory, illucidate one of the reasons behind the
diffuse boundaries between the different regimes. A star without added salt,
for example, may show all three regimes at the same time. Going from the
interior to the exterior of the star, the density drops significantly and one
may subsequently encounter a quasi-neutral region, an osmotic region, and a
polyelectrolyte region within the same star polyelectrolyte.

The results discussed so far dealt with an individual star in solution. This
is a good model for a very dilute solution of stars. As the concentration of
stars increases, the star size will eventually decrease due to overlap of the stars.
However, in the absence of salt a significant contraction of the stars is observed
well before the stars physically overlap. This effect is most pronounced for stars
in the polyelectrolyte regime, since most counterions are then outside the stars.
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Increasing the concentration of stars leads to an overlap of the counterion clouds
around the star. This forces more counterions inside the stars, which leads to
an enhanced screening of the monomer charges. This effect is largely absent in
the osmotic regime (stars with more arms) since then most counterions reside
inside the stars. In the dilute regime, the star size R is more sensitive to an
increase in salt concentration than to an increase in the concentration of stars.

Chapter 3 deals with annealed polyelectrolyte stars in solution, i.e. stars
with a pH-dependent monomer charge. The monomers of the stars are weak
acids, which may release a proton as a counterion, depending on the local elec-
trochemical environment of the star monomer. Therefore, the total charge of
the polyelectrolytes depends on the pH, the salt concentration cs, the number
of arms f , the length of the arms N , and the fraction of monomers with a
acidic group m−1. As in chapter 2, the results from the numerical SCF theory
are compared with analytical predictions.

The degree of dissociation α of the monomers need not be constant within
the star. Generally, the dissociation of monomers will be lower in centre of the
star, compared to the outer region of the star. The dissociating monomers gen-
erate a local electrostatic potential which will prevent neighbouring monomers
from dissociating. This effect is more pronounced in the centre of the star since
at the centre the density of monomers is higher. However, for three regimes,
the polyelectrolyte, the quasi-neutral and the salt dominance regime, discussed
in chapter 2, this difference in dissociation is small or unimportant. Obviously,
for the quasi-neutral regime, the repulsion of the chains is still governed by the
steric interactions. For the salt dominance regime, most electrostatic repulsion
is screened, and the dissociation is assumed constant within the star. In the
polyelectrolyte regime, the pH-dependent monomers on a polyelectrolyte are
assumed to dissociate in the same way as small molecules and so that the de-
gree of dissociation is uniform in the star. Therefore, the behaviour of the star
with quenched and annelead charges will be the same in this regime.

The most significant differences are found in the osmotic regime. For a pH
such that almost all monomers are dissociated, the osmotic regime of quenched
stars is recovered. Likewise, a pH such that almost no monomer is dissociated
leads to a neutral star. However, we can distinguish an additional regime:

5. The osmotic annealing regime occurs for polyelectrolytes with a num-
ber of branches which is high enough to have an osmotic regime in the
quenched case. For such annealed stars at a pH ≈ pK, the degree of
dissociation of monomers varies strongly within the star.

It is this regime which yields results which are significantly different from those
found for a quenched star. Two rather surprising maxima were predicted earlier
by analytical theory: upon increasing either the number of arms f or the salt
concentration cs, the size of the star shows a maximum. Both maxima are
confirmed by numerical SCF calculations. The volume fraction profiles of the
star-shaped polyelectrolyte ϕ(r) are expected to show a powerlaw decay with
an exponent of −8/3, i.e. the local stretching of a branch of a star increases
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when going further from the centre. In the numerical results the exponent of
−8

3
can only be found for a small range of pH’s and number of arms. Although

a fast decrease of the polymer density with a power law exponent, which is
more negative than -2, and a huge increase of the charge on the star with
distance from the centre are seen, there does not seem to be a single scaling
exponent for the osmotic annealing regime.

Furthermore, our calculations show that at the periphery of the star corona,
the effect of curvature on the conformations of the star branches is less impor-
tant, i.e. the outermost regions of the star corona behave just like a planar
annealed polyelectrolyte brush. This conclusion is supported by (i) a bimodal
distribution of the end-segments and (ii) a quasi-linear dependence of log(1−α)
on z2.

Polyelectrolytes adsorbing on a surface

The adsorption of polyelectrolytes on charged surfaces was studied both nu-
merically and experimentally. Chapter 4 comprises a theoretical study, and
in chapter 5 theoretical and experimental results are compared. In the calcu-
lations a new method of calculating the adsorbed amount is compared to an
older method. Furthermore, the effect of the type of surface charge (quenched
charges or annealed charges) is studied as wel as the influence of the molecu-
lar architecture of the polyelectrolyte, all for different salt concentrations and
pH’s. In the experiments a quenched linear polyelectrolyte (poly(styrene sul-
fonate)) on an annealed surface (hematite, αFe2O3) was measured.

The calculations were done with a numerical SCF model. In the calculations
presented in chapter 4 only electrostatic interactions between the polyelectro-
lyte and the surface are taken into account.

In the new way of calculating, the charging and swelling of the polyelectro-
lytes in bulk solution is explicitely taken into account. In the older SCF model
this effect has been neglected. Comparison with the classical method shows
that the adsorbed amount calculated with the new SCF model is higher, the
adsorbed layers are more extended, and the surface charge can be overcompen-
sated by the adsorbed charges. At low salt concentration the polyelectrolyte
profile shows a minimum when overcompensation of the surface charge occurs,
i.e. the polyelectrolyte is depleted from the surface by the adsorbed polyelec-
trolytes.

A surface with annealed charges is almost a constant-potential surface if
the total number of chargeable sizes is high. The amount of adsorbed poly-
electrolytes on a quenched surface is lower than on an annealed surface, if the
initial surface charge is the same. On an annealed surface, the adsorption of a
polyelectrolyte induces extra charges and this increases the adsorption. For the
same reason it is harder to overcompensate the charge on an annealed surface
than on a quenched surface.

The effect of molecular architecture on the adsorption was studied by com-
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paring the adsorption of a linear, a star-shaped and a dendrimeric polyelec-
trolyte. The adsorbed amount increases with increasing density of the poly-
electrolyte. However, the differences in adsorbed amount between the different
molecular architecture were small.

The adsorbed amount and the change in surface charge are studied as a
function of the salt concentration. The adsorbed amount decreases with in-
creasing salt concentration, as long as the surface charge is not overcompen-
sated by the charges of the adsorbed polyelectrolyte. The reason is that salt
ions compete with the polyelectrolyte for adsorption. At low salt concentra-
tion the surface charge is just overcompensated and the surface charge of an
annealed surface follows the adsorbed amount. This is due to the much better
screening of the surface charge by the charges on the polyelectrolyte than by
the salt ions at low salt concentration. At high salt concentration it is difficult
to overcompensate the surface charge, and the effect of the adsorbed charges on
the surface charge is relatively small, i.e. the surface charge does not increase
with the same amount as the adsorbed charges in contrast to what happens
for low salt concentration. At the high salt concentration not only the charges
on the polyelectrolyte screen the surface charge but also the salt ions screen
the surface charge.

The last result from the calculations is the influence of charge density on
the polyelectrolyte chain on the adsorption. Upon increasing the charge den-
sity of the chains the adsorbed amount, counted as the number of adsorbed
charges, is increasing. The salt ions can compete less well with a highly charged
polyelectrolyte than with one which has a lower charge density. The volume
fraction profiles of the highly charged polyelectrolytes show a plateau region
somewhat further away from the surface. The adsorbed polyelectrolytes are
extended due to an electrostatic repulsion between the adsorbed molecules.

In chapter 5 the adsorption of poly(styrene sulfonate) (PSS) on hematite
(αFe2O3) is studied both theoretically and experimentally. PSS is a linear
polyelectrolyte with a constant charge; hematite is an iron oxide surface, which
has annealed charges.

The experimental adsorption isotherm of PSS on hematite does not show
a high-affinity character at pH 4 and 7 and 0.01 mol/L salt. The adsorption
plateau at pH 7 is 0.6 mg/m2. At pH 4 the adsorbed amount is comparable to
that at pH 7, but the true plateau has not been measured. From the theoretical
calculations it was unexpected that the adsorption of PSS on hematite was not
high affinity. The adsorption of PSS increases the hematite surface charge,
bringing it to a level which is comparable to the surface charge of a bare
hematite in a solution in which the pH is three pH-units smaller than the actual
pH. The total increase of the surface charge depends only on the amount of
PSS present and not on the pH. At the adsorption plateau the surface charge
is overcompensated by the adsorbed charges. Before the adsorption plateau is
reached the surface charge increases linearly with the adsorbed amount.

Numerical calculations were done to mimic the PSS adsorption onto he-
matite. In these calculations not only electrostatic interactions but also a
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specific affinity of the polyelectrolyte for the model surface was taken into
account. The calculated adsorption isotherm was high affinity. The surface
charge adjustment upon the adsorption of the quenched polyelectrolyte was
large. This adjustment can also be expressed as the co-adsorption of protons,
which is experimentally measureable. The proton co-adsorption increases with
increasing amount of adsorbed polyelectrolyte, decreasing salt concentration,
and decreasing surface charge of the bare surface.

Polyelectrolytes and the mastercurve procedure

At the end of the thesis, we come back to annealed polyelectrolytes in solution.
One of the methods to characterize humic substances is to titrate them and to
analyse the results to obtain the distribution of dissociation constants. This is
done with a so-called mastercurve procedure. From a set of charge-pH curves
at different salt concentrations one single charge-pH site curve is obtained by
accounting for the electrostatic interactions in the pH site: the mastercurve.
The electrostatic interactions are calculated with an electrostatic model based
on the charge of the humics under the assumption that all chargeable groups
experience the same electrostatic potential. As a result, only the chemical
interactions of the protons with the polyelectrolyte are captured in the mas-
tercurve. In chapter 6 we test how well the mastercurve procedure works
for different molecular architectures. From the results we can estimate under
which conditions it may be assumed that the mastercurve procedure works
reasonably.

The SF–SCF model is used to calculate the dissociation of various star-
shaped and dendrimeric polyelectrolytes. The numerical results are trans-
formed into mastercurves using the Donnan model (fixed potential inside a
particle) and a hard-sphere model (fixed surface potential). For both models,
it is checked whether for a given molecular architecture the charge-pH curves
calculated at different salt concentrations merge in a mastercurve. The pK-
values obtained after the mastercurve procedure are compared to the true pKint

to judge the quality of the mastercurve.

In the mastercurve procedure a size is assigned to the Donnan or hard-
sphere volume. This size can be obtained from the SCF calculations for each
pH. However, it is also of interest to use a size which does not depend on the
pH. Therefore, several estimates for the size based on the chain architecture
and salt concentration have been used.

For the case of the size which is both pH and salt concentration depen-
dent, the Donnan model gives a good estimate of the pKint-value. However,
the mastercurve is in most cases “diffuse”: the points of the charge-pH sites

curves for different salt concentration do not merge. Only for large molecules
and molecules with a large number of branches a good mastercurve is found. In
contrast, the hard-sphere model results in general in a good mastercurve. How-
ever, in this case the resulting pK-value is considerably smaller than the true
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intrinsic pKint-value. Upon increasing the number of branches in the molecules
this deviation increases.

When using estimates of the Donnan or hard-sphere volume which do not
depend on pH, the resulting mastercurves are in general less good. We have
compared five of these estimates. Surprisingly, the size resulting from a maxi-
mal stretching of the arms (without any ionic strength dependence) gives the
best mastercurves and estimates of pKint both for the Donnan and hard-sphere
model. The mastercurves becomes better when the monomer density in the
stars and dendrimers is larger. However, the pK-values obtained from the
mastercurve procedure will always overestimate the intrinsic pK-value.
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Samenvatting

Dit proefschrift gaat over polyelektrolieten in de oplossing en in de nabijheid
van een oppervlak. Polyelektrolieten zijn grote geladen molekulen. Ze bestaan
uit segmenten (ook wel monomeren genoemd) die onderling verbonden zijn
zoals kralen in een ketting. Deze ketting kan ook vertakkingen bevatten. Door-
dat meerdere van de segmenten geladen zijn lossen polyelektrolieten over het
algemeen goed op in water, we spreken dan van een oplossing van polyelektro-
lieten. Verder kunnen polyelektrolieten zich ophopen aan oppervlakken, die in
contact staan met de polyelektrolietoplossing. Dit wordt adsorptie genoemd.

Dit onderzoek is gedaan om het gedrag van polyelektrolieten beter te be-
grijpen. Hierbij is ook gedacht aan natuurlijke polyelektrolieten zoals hu-
muszuren. Humuszuren komen voor in natuurelijke wateren en in de bodem.
Zij geven het water de bruine kleur en kunnen adsorberen (ophopen) aan de
zand- en kleideeltjes in de bodem. Humuszuren zijn oplosbare afbraakproduk-
ten van dode planten en dieren. Hun grootte en samenstelling hangen sterk
af van de lokale omstandigheden waarin ze gevormd zijn. Een gedetailleerde
beschrijving van humuszuren is daarom moeilijk te geven. Toch hebben ze
gemeen dat ze in oplossing geladen zijn en dat ze door het opladen zwellen. Een-
voudige polyelektrolieten vertonen dit gedrag ook. In dit proefschrift worden
alleen goed definiëerde polyelektrolieten bestudeerd om duidelijke conclusies te
kunnen trekken.

Polyelektrolyten kunnen verschillende vormen aannemen. Een voorbeeld
daarvan is in de eerste plaats lineaire ketens, vergelijkbaar met spaghetti, in
de tweede plaats een stervormig polyelektroliet, waarbij verschillende lineaire
ketens samenkomen in één knooppunt. Elk van deze lineaire ketens in een
stervormig polyelektroliet wordt een arm van de ster genoemd. Een laat-
ste voorbeeld is een dendrimeer, dit is een ster waarbij de eindpunten allen
weer splitsen in meerdere ketens. De drie genoemde vormen zijn afgebeeld in
figuur 1.1 op pagina 3. Een sterk vertakte ster of een dendrimeer is op te vatten
als een vereenvoudigd model van een humuszuur. Echter, humuszuren hebben
een veel onregelmatigere vertakkingsstruktuur.

Naast een indeling in vorm, kunnen polyelektrolieten in twee groepen wor-
den onderverdeeld naar de aard van de lading op de monomeren. In de eerste
groep hebben de monomeren een constante of vaste lading, in de tweede groep
hebben de monomeren een zwak zure of zwak basische groep. Beide groepen
worden in dit proefschrift behandeld.



De zwak zure monomeren kunnen een proton (H+) afstaan aan de omge-
ving, waardoor de monomeren negatief geladen worden. De zwakke basische
monomeren kunnen een proton opnemen en krijgen een positieve lading. In dit
proefschrift worden alleen polyelektrolieten met zure monomeren bestudeerd
en daar zal dan ook nu de aandacht op worden gericht. Basische polyelektro-
lieten gedaragen zich geheel analoog. Het gemak waarmee een monomeer een
proton kan afstaan wordt weergegeven door de dissociatieconstante K. Om-
dat er een groot gebied van dissociatieconstantes is, wordt de waarde meestal
uitgedrukt op een logaritmische schaal en spreken we van de pK = − logK.
Een kleine pK geeft aan dat een proton makkelijk wordt afgestaan, een grote
pK dat dat moeilijk is. De fractie monomeren, die een proton heeft afgestaan
(gedissocieerd is), wordt de dissociatiegraad genoemd. Of een H+ daadwerke-
lijk wordt afgesplitst hangt bij een gegeven pK af van de zuurgraad pH en van
de zoutconcentratie cs van de oplossing.

Een groot deel van dit onderzoek bestaat uit model-berekeningen aan po-
lyelektrolieten. De meeste berekeningen zijn gedaan met de gemiddeld-veld
theorie van Scheutjens en Fleer. Deze theorie gebruikt onder andere de vol-
gende vereenvoudigingen:

• De ketenmolekulen worden beschreven als gewogen ’dronkenmans wan-
delingen’. Dit betekent dat twee segmenten van het polyelektroliet in
principe op dezelfde plaats in de ruimte kunnen zijn, wat uiteraard in
het echt niet kan. Wel wordt er een maximum gesteld aan de totale
hoeveelheid monomeren die op een bepaalde plaats kan zijn.
• Er wordt gebruik gemaakt van de gemiddeld-veld benadering. Dit be-

tekent dat een gegeven molekuul niet alle afzonderlijke afstotende en
aantrekkende krachten van zijn buren voelt. Omdat die buren steeds be-
wegen veranderen die krachten steeds. In de gemiddeld-veld benadering
worden deze fluctuerende krachten vervangen door een gemiddelde.

De berekeningen met de gemiddeld-veld theorie zijn uitgevoerd met een
speciaal computer programma: sfbox. Deze berekeningen worden door de
computer opgelost en zullen hierna de numerieke berekeningen of numerieke
resultaten genoemd worden.

De numerieke resultaten voor polyelektrolieten in oplossing worden verge-
leken met reeds bestaande analytische theorieën. Deze theorieën gaan ook
uit van de bovenstaande vereenvoudigingen. Door nog verdere vereenvoudi-
gingen te gebruiken resulteren deze theorieën in vergelijkingen die aangeven
hoe verschillende grootheden samenhangen. In hoofdstuk 2 en 3 wordt getest
in hoeverre deze verdere vereenvoudigingen gerechtvaardigd zijn.

In hoofdstuk 4 wordt het adsorberen van polyelektrolieten vanuit de op-
lossing aan een vast oppervlak theoretisch bestudeerd. Het is bekend dat de
klassieke numerieke theorie van Scheutjens en Fleer hierin minder goede be-
naderingen maakt. Daarom worden de resultaten van deze theorie vergeleken
met die verkregen zijn met een nieuwe methode. Vervolgens wordt in hoofd-
stuk 5 de adsorptie van polyelektrolieten experimenteel bepaald, waarna een
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vergelijking met de theoretische resultaten volgt. In hoofdstuk 6, tenslotte,
wordt van een aantal simpele modellen getest of die de lading van zure poly-
elektrolieten als functie van de pH goed kunnen benaderen en in hoeverre dit
afhankelijk is van de structuur van het polyelektroliet.

Ster-polyelektrolieten in oplossing

In hoofdstuk 2 wordt de grootte van stervormige polyelektrolieten berekend
met behulp van de numerieke gemiddeld-veld theorie. De uitkomsten van de
numerieke theorie worden vergeleken met een bestaande analytische theorie.
De grootte van een gegeven ster hangt uiteraard af van de lengte van de armen
in de ster. Een gegeven arm is geen rechte staaf maar vormt een kluwen, zoals
bij een ontrolde bol wol op een losse hoop: de losse hoop is groter dan de bol
maar niet zo groot als de hele lengte van de draad. In dit hoofdstuk wordt de
grootte van de kluwen berekend. Die grootte is ook afhankelijk van het aantal
armen, omdat de armen allemaal een bepaalde ruimte innemen.

De sterren in hoofdstuk 2 bevatten een bepaald aantal geladen monome-
ren. De lading op die monomeren wordt verondersteld niet afhankelijk van de
zuurgraad te zijn, dit effect wordt in hoofdstuk 3 bestudeerd. De hoeveelheid
lading op de ster is van invloed op de grootte omdat gelijk geladen segmenten
in de keten elkaar afstoten, wat tot zwelling van de kluwen leidt. Verder heeft
de zout concentratie een invloed op de grootte van de ster.

De grootte van de stervormige polyelektrolieten wordt bepaald door ver-
schillende krachten die op het molekuul werken. De balans van deze krachten
bepaalt of de kluwen gezwollen of ineengekrompen is. Als een arm van een ster-
vormig polyelektroliet wordt uitgerekt dan gedraagt deze arm zich als een kleine
veer. De arm is een zogenaamde entropieveer, de analogie met het uitrekken
van een veer gaat goed op. Een tegengesteld effect komt van de ladingen op
de arm. Deze ladingen hebben hetzelfde teken en stoten elkaar daarom af,
wat leidt tot strekking van de armen en daarmee tot zwelling van de keten.
Dit heet Coulombse repulsie. De ladingen op de arm trekken tegenionen aan.
Tegenionen zijn kleine moleculen met een lading tegengesteld aan de lading op
het polyelektroliet. De aantrekking van tegenionen heeft twee effecten. Ener-
zijds wordt de onderlinge afstoting tussen de monomeren minder omdat de
tegengesteld geladen ionen in de kluwen fungeren als een soort lijm. Dit wordt
ook wel afscherming van lading genoemd. Anderzijds zorgt de ophoping van
tegenionen voor de aantrekking van watermolekulen, hierdoor zwelt de kluwen
om ruimte te maken voor het aangetrokken water. Dit wordt osmotische re-
pulsie genoemd. Tenslotte is er nog een kracht die voor zwelling zorgt: de
volume-repulsie. Twee monomeren kunnen simpelweg niet op dezelfde plaats
in de ruimte zitten. Dus, als het aantal armen toeneemt strekken ze zichzelf
om ruimte te maken.

De numerieke theorie neemt dit hele complex van zwel- en krimpkrachten
allemaal tegelijkertijd mee. In de analytische theorie wordt gebruik gemaakt
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van het feit dat deze krachten niet allemaal op ieder moment even belangrijk
zijn. Men onderscheidt aparte gevallen (regimes) waarin telkens slechts één
van de drie zwelkrachten in rekening wordt gebracht. Als aan de oplossing
geen zout is toegevoegd, dan onderscheidt de analytische theorie drie regimes:

1. Polyelektroliet regime Als een stervormig molekuul weinig armen heeft,
dan verspreiden de tegenionen zich over de gehele oplossing. Dit zorgt
ervoor dat de repulsieve Coulombse interactie dominant is.

2. Osmotisch regime Als de hoeveelheid armen groter is worden de tegen-
ionen sterker aangetrokken. Dit kan zo’n sterk effect zijn dat vrijwel
alle tegenionen in de kluwen worden vast gehouden. In dit geval is de
osmotische repulsie dominant.

3. Quasi-neutraal regime Dit komt voor als het stervormige polyelektroliet
heel veel armen heeft, waardoor ze dicht opeengepakt zijn. Dan heeft de
ster hetzelfde zwelgedrag als een ongeladen (neutrale) ster, de lading op
de ster doet er niet meer toe.

Als er wel zout is toegevoegd dan is de ster in het algemeen kleiner. Net zoals
hierboven beschreven voor de tegenionen heeft zout een soort ‘lijm’ functie in
de kluwen en leidt tot krimp. Als er voldoende zout is toegevoegd resulteert
dit in een vierde regime:

4. Zout gedomineerd regime Door het toevoegen van zout wordt de re-
pulsie verkleind en lijkt te bestaan uit een volume repulsie. Het is echter
niet het eigen volume van de monomeren die de repulsie bepaalt maar
een groter, effectief volume van de monomeren dat afhankelijk is van de
hoeveelheid toegevoegd zout.

Voor elk van deze regimes zijn in de analytische theorie relaties afgeleid die
de grootte van de kluwen voorspellen als functie van de lengte van de armen,
het aantal armen en de hoeveelheid lading op het polyelektroliet. Deze relaties
worden bevestigd door de numerieke berekeningen. Dit betekent dat de indeling
in regimes en de bijbehorende aannames in de analytische theorie bevestigd
worden.

De numerieke theorie laat zien dat de overgangen tussen de regimes niet
scherp zijn: er zijn duidelijk overgangssituaties waar de analytische theorie niet
goed mee uit de voeten kan. Verder geeft de numerieke theorie voorspellingen
over de interne structuur in de kluwen, zoals bijvoorbeeld de verdeling van de
tegenionen over de ruimte en de positie van de eindpunten van de armen.

Tot nu toe hebben we de resultaten besproken van individuele polyelektro-
lieten. Dit is een goed model voor verdunde oplossingen van deze polyelektrolie-
ten. Als de concentratie polyelektrolieten wordt verhoogd dan bëınvloeden de
polyelektrolietmoleculen ook elkaar. Ongeladen polymeren bëınvloeden elkaar
pas als de concentratie zo hoog is dat ze elkaar raken, de ketens krimpen dan
over het algemeen wat. Bij polyelectrolieten is dit beeld genuanceerder. In het
osmotische regime zitten alle tegenionen binnen in de kluwen, zodat de kluwen
als geheel neutraal is. Daardoor gedragen de sterren zich als ongeladen ketens:
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er is pas krimp van de kluwen als de ketens elkaar raken. In het polyelektroliet
regime zitten vrijwel alle tegenionen buiten de kluwen. De kluwens merken
elkaar nu veel eerder op en er onstaat veel eerder krimp. Dit effect is in dit
proefschrift voor het eerst berekend.

Hoofdstuk 3 gaat ook over stervormige polyelektrolieten maar nu hebben
de monomeren zwak zure groepen. Deze zure groepen kunnen een protonen
afstaan aan de omgeving, waardoor het monomeer negatief geladen wordt.
Zoals eerder opgemerkt hangt de mate waarin protonen worden afgestaan (dis-
sociëren) af van de dissociatieconstante pK. Als de zuurgraad pH veel groter
is dan de pK dan zijn alle monomeren gedissocieerd. Er is dan geen verschil
tussen de polyelektrolieten met constante lading en die met zwak zure groepen.
Als de pH veel kleiner is dan de pK, zal geen van de monomeren gedissocieerd
zijn. Dan gedraagt het stervormige polyelektroliet zich als een ongeladen ster.
De meest interessante waarden voor de pH liggen dus in de buurt van de pK.

Voor deels gedissocieerde polyelektrolieten is de fractie gedissocieerde mo-
nomeren binnen de kluwen niet overal hetzelfde. In het centrum van de kluwen
is de dissociatie kleiner dan aan de buitenkant. In de numerieke theorie wordt
dit effect altijd meegenomen. In de analytische theorie zorgt het voor een extra
complicatie, die alleen beschouwd wordt in het osmotische regime, dus voor een
redelijk aantal armen.

Polyelektrolieten met zwak zure groepen kunnen in alle regimes voorkomen
die beschreven zijn in hoofdstuk 2. Maar als de pH ongeveer gelijk is aan de
pK dan wordt in de analytische theorie nog een extra regime onderscheiden

5. Osmotisch regime voor zwak zure groepen In dit regime varieert de
dissociatie binnenin het polyelektroliet sterk. Dit komt voor als de hoe-
veelheid armen hoog genoeg is om in het osmotisch regime te zitten en
de pH in de buurt zit van de pK van de zure monomeren.

In dit regime worden resultaten gevonden voor polyelektrolieten met zure mo-
nomeren die duidelijk verschillen van die voor polyelektrolieten met een con-
stante lading. Het opmerkelijkste verschil is dat de grootte van de kluwen
door een maximum gaat met het toenemen van het aantal armen of van de
zoutconcentratie. Beide maxima werden in de analytische theorie voorspeld en
bevestigd door de numerieke berekeningen.

Een opmerkelijk resultaat van de numerieke berekeningen wordt gevonden
voor de positie van de eindpunten in de kluwen. De verdeling van de eindpunten
over de ruimte laat twee maxima zien, in tegenstelling tot één maximum, wat
meestal wordt gevonden.

Polyelektrolieten geadsorbeerd aan een wand

In hoofdstuk 4 wordt de adsorptie van polyelektrolieten aan een wand bere-
kend met de numerieke gemiddeld-veld theorie. De klassieke numerieke theorie
verwaarloost de zwelling van de ketens ver weg van de wand volledig. Aan de
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wand zijn de ketens echter wel gezwollen. Dit is een inconsistente benadering.
Daarom wordt een nieuwe variant van de theorie gebruikt waarbij de zwelling
ver weg van de wand wel wordt verrekend. De resultaten van de nieuwe me-
thode zijn beter in overeenstemming met experimenten dan de resultaten van
de oude methode.

Uit de berekeningen volgt dat de geadsorbeerde hoeveelheid met de nieuwe
berekeningsmethode hoger is, en de geadsorbeerde laag dikker. Een ander
effect dat uit experimenten bekend is, is overcompensatie. Dit wil zeggen dat
de lading op het geadsorbeerde polyelektroliet groter is dan de lading op de
wand. Dit effect kan met de klassieke theorie niet gevonden worden als alleen
ladingseffecten worden bekeken. De nieuwe methode vindt in dit geval wel
overcompensatie van de wandlading.

In dit hoofdstuk wordt ook het effect bekeken van het soort wand waaraan
de polyelektrolieten adsorberen. Een wand met een vaste lading wordt vergele-
ken met een wand met pH-afhankelijke, aanpasbare lading. Het polyelektroliet
heeft een vaste lading. Als er geen polyelektrolieten adsorberen dan is de la-
ding op beide wanden gelijk. De geadsorbeerde hoeveelheid polyelektroliet is
op de wand met vaste lading lager dan op de wand met de aanpasbare lading.
Dit komt doordat de dissociatie van de zwak zure groepen vergroot wordt door
de geadsorbeerde polymeren. De wandlading gaat dus omhoog, zodat meer
polyelektrolieten worden aangetrokken.

De adsorptie van verschillende polyelektroliet structuren heeft weinig effect
op de geadsorbeerde hoeveelheid. Er is een klein verschil: de geadsorbeerde
hoeveelheid neemt toe met toenemende vertakkingsgraad van het polyelek-
troliet, dus die is het laagst voor een lineare keten en het hoogst voor een
dendrimeer.

Ook de zoutconcentratie heeft twee effecten op de adsorptie van polyelektro-
lieten. Enerzijds kunnen de negatief geladen zoutionen ook adsorberen op het
oppervlak. Ze gaan een competitie aan met de polyelektrolieten, zodat de gead-
sorbeerde hoeveelheid daalt. Anderzijds schermen de zoutionen de ladingen op
de ketens af, waardoor de geadsorbeerde ketens elkaar minder afstoten. Dit ef-
fect zorgt voor een hogere adsorptie. De resultaten van de berekeningen laten
zien dat het netto effect van zout afhangt van de overcompensatie van de wand-
lading door de polyelektrolieten. Als er geen overcompensatie is dan zorgt zout
voor een daling van de adsorptie. Als er wel overcompensatie is dan stijgt de
geadsorbeerde hoeveelheid met toenemende zoutconcencentratie. Dit effect is
gevonden voor zowel een wand met constante lading als voor een wand met
zwak zure groepen.

In hoofdstuk 5 is de adsorptie van poly(styreen sulfonaat) (PSS−) aan
hematiet (αFe2O3), bestudeerd zowel experimenteel als met berekeningen. PSS−

is een lineare keten met een vaste negatieve lading, hematiet is een ijzeroxide
met op het oppervlak zwak zure groepen. Hematiet is positief geladen als de
pH van de oplossing kleiner is dan 9.

Er zijn twee soorten experimenten gedaan: adsorptie-experimenten en pro-
ton-titraties. Met behulp van de adsorptie-experimenten wordt de hoeveelheid
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PSS− aan het oppervlak gemeten. Omdat de hematiet deeltjes zo klein zijn, is
er geen nauwkeurige methode om de hoeveelheid geadsorbeerde ketens direct te
meten. Daarom wordt een indirecte methode gebruikt die als volgt werkt. Een
oplossing met een bekende hoeveelheid PSS− en met een bekende hoeveelheid
hematiet wordt een nacht geschud. Dan wordt de hematiet van de oplossing
gescheiden en wordt de hoeveelheid PSS− in de oplossing bepaald. De gead-
sorbeerde hoeveelheid PSS− is het verschil tussen de toegevoegde hoeveelheid
PSS− en de hoeveelheid PSS−, die in de oplossing gemeten is.

In titraties wordt de hoeveelheid protonen H+ in de oplossing gemeten. De
hoeveelheid protonen in de oplossing kan veranderen doordat ze door het op-
pervlak worden afgesplitst dan wel opgenomen. In titraties wordt een bekende
hoeveelheid H+ of OH− toegevoegd. Daarna wordt de nieuwe concentratie
H+ of OH− in de oplossing gemeten. Net als bij de adsorptie experimenten
is het verschil tussen wat is toegevoegd en wat in oplossing wordt gevonden,
opgenomen door het oppervlak. Ook PSS− is toegevoegd tijdens de titraties.
Een deel van het PSS− dat wordt toegevoegd, adsorbeert aan het hematiet.
Hierdoor worden extra protonen opgenomen door het oppervlak. Ook dit effect
is gemeten.

De titratie-experimenten geven de volgende resultaten. De wandlading van
het hematiet stijgt sterk door de adsorptie van PSS−. Bij pH 7 bijvoorbeeld
verdubbelt de wandlading als gevolg van adsorptie. De absolute hoeveelheid
extra lading op het hematiet als gevolg van adsorptie is niet gevoelig voor de
pH. Overcompensatie van de wandlading door geadsorbeerd PSS− wordt ook
gevonden. Zodra overcompensatie plaatsvindt neemt de adsorptie als functie
van de concentratie van polyelektrolieten in oplossing nauwlijks nog toe.

Een aantal resultaten uit de experimenten zijn nog niet volledig begrepen.
In de experimenten is de geadsorbeerde hoeveelheid bij pH 4 vergelijkbaar
met die bij pH 7. Dit is vreemd omdat de lading van het hematiet bij pH 4
twee keer zo groot is als die bij pH 7. Verder wordt al een vrij hoge concen-
tratie PSS− gemeten in de oplossing voordat de adsorptie maximaal is. Dit
is niet normaal, in vergelijking met andere experimenten hoewel met andere
stoffen wordt de maximale waarde van de adsorptie bereikt bij een hele lage
concentratie polyelektroliet.

Er zijn numerieke berekeningen gedaan om de gemeten resultaten verder te
analyseren. Net als in de experimenten neemt de wandlading in de berekingen
sterk toe als polyelektrolieten adsorberen. In de berekeningen wordt gevonden
dat de maximale adsorptie wordt bereikt terwijl de concentratie PSS− in de op-
lossing bijna nul is. Dit is dus in tegenspraak met de experimentele resultaten.
Het is niet duidelijk waar dit verschil tussen de metingen en de berekeningen
vandaan komt.

Zowel in de berekeningen als in de experimenten zijn voorts nog een aantal
andere effecten bekeken. De invloed van de zoutconcentratie op de adsorp-
tie is bijvoorbeeld klein, zowel in de experimenten als in de berekeningen.
Ook is preciezer gekeken naar de toename van de wandlading bij verschillende
geadsorbeerde hoeveelheden. Hier worden wel verschillen gevonden tussen de
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experimenten en de berekeningen.
De resultaten van de berekeningen en experimenten verschillen op een aan-

tal punten. Dit zou kunnen komen omdat in de experimenten nog geen even-
wicht is bereikt. In de berekeningen wordt altijd het evenwicht bereikt. Verder
is het niet zeker dat het gebruikte model adequaat is. De benaderingen in de
gemiddeld-veld theorie zouden ook een reden voor de verschillen kunnen zijn.

Polyelektrolieten en de mastercurve procedure

Aan het einde van het proefschrift komen we weer terug op het gedrag van
polyelektrolieten in oplossing. Als zwak zure polyelektrolieten in oplossing
worden getitreerd met H+, verandert hun lading en de pH van de oplossing.
De resultaten van titraties bij verschillende zoutconcentraties zijn over het
algemeen verschillend. De mastercurve procedure probeert de resultaten van
experimenten bij verschillende zoutsterkte samen te vatten in één curve: de
mastercurve.

Uit de mastercurve procedure wordt een zogenaamde intrisieke dissoci-
atieconstante van de zwak zure groepen berekend. Deze intrinsieke constante
zou identiek moeten zijn voor verschillende zoutconcentraties en idealiter gelijk
zijn aan de K-waarde van het polyelektroliet. Dit in tegenstelling tot de geme-
ten schijnbare dissociatieconstante die wel afhankelijk is van de zoutconcen-
tratie.

Om de intrinsieke dissociatieconstante uit te rekenen, moeten de resultaten
van de titraties worden doorgerekend met behulp van een model dat de invloed
van de zoutconcentratie beschrijft. Er zijn verschillende van deze modellen in
omloop. Het doel van dit hoofdstuk is om te kijken welk model het beste
voldoet voor stervormige polyelektrolieten en dendrimeren (zie figuur 1.1 op
pagina 3).

Over het algemeen worden twee simpele modellen gebruikt in de master-
curve procedure: het Donnan model en het harde bol model. In het Don-
nan model wordt het polyelektroliet beschouwd als een voor water en ionen
doordringbaar gel. Alle ladingen op het polyelektroliet worden in de kluwen
gecompenseerd: alle tegenionen zitten in het gel. Verder wordt aangenomen
dat de dichtheid in de kluwen overal gelijk is (zie figuur 6.1 op pagina 129).
Het harde bol model geeft een ander extreem geval weer. Hier wordt de kluwen
opgevat als een harde bol, ondoordringbaar voor ionen. Alle ladingen op het
polyelektroliet worden op het oppervlak van de bol geplaatst. De tegenionen
zitten nu juist allemaal buiten de bol (zie figuur 6.2 op pagina 129). Beide
modellen vatten het gedrag van een polyelektroliet samen in twee parameters.
Voor het Donnan model zijn dat de Donnan-potentiaal en het Donnan-volume.
Voor het harde bol model zijn dat de oppervlaktepotentiaal en de grootte van
het oppervlak.

Voor het toekennen van een volume (Donnan model) of een oppervlak
(harde bol model) is een maat voor de grootte van de polyelektrolietkluwen
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nodig. De grootte van de kluwen kan berekend worden met de numerieke
theorie of direct geschat uit de structuur van de sterren of dendrimeren. Er
zijn verschillende schattingen getest. De resultaten van deze schattingen zijn
vergeleken met de numerieke berekeningen.

Als de grootte van de kluwen numeriek wordt berekend worden de vol-
gende resultaten gevonden. Het Donnan-model geeft over het algemeen geen
mooie mastercurve: de resultaten voor verschillende zoutsterktes vallen niet
over elkaar heen. De voorspelling van de intrinsieke dissociatieconstante is
echter verrassend goed. Het harde bol model geeft juist wel een mooie master-
curve maar de voorspelling van de intrinsieke dissociatieconstante is een stuk
slechter.

Zoals gezegd is de grootte van de kluwen ook direct geschat uit de struc-
tuur van de polyelektrolieten. Verschillende van deze modellen zijn gebruikt,
waarbij ook de invloed van de zoutconcentratie op de grootte van de kluwen
is geschat. Een verrassend resultaat is dat het meenemen van dit effect van
de zoutconcentratie de mastercurves niet beter maar slechter maakt. Verder
is een overschatting van de grootte van de kluwen minder ernstig dan een on-
derschatting. Deze conclusies kunnen dienen als een ruwe richtlijn voor het
analyseren van titratie-experimenten aan humuszuren, zoals die in de bodem
voorkomen.
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René (bedankt dat ik mijn frustraties van het prakticum kon wegpraten en nu
zitten we beide op het trans).

Carla, thanks for all the coffee and sigarette breaks. Now that this thesis
is finished I can come to visit you in Argentina!

Naast de mensen op het werk, zijn er gelukkig ook nog anderen. Het studen-
tenpastoraat voor de broodnodige bezinning (??? zeilen, wandelen en kolonis-
ten spelen). De club van Geloof en Wetenschap voor het samen lezen van
boeken waar ik anders nooit aan zou beginnen maar die wel prettig zijn (Oke
niet alle!). De reisjes naar Erfurt omdat Europa niet alleen iets is van de
politiek maar ook van de mensen en omdat Erfurt een mooie stad is.

Voor de broodnodige ontspanning en het afblazen wil ik graag de volgende
mensen bedanken: dank je Berend, Renate, Kim, Marijn, de dijkgraafafdeling,
de dames van thuis-thuis en de hele Benedenclan.



Dankwoord

Geraldine en Judith, bedankt voor het af en toe opvoeden van mij en ik vind
het erg prettig dat jullie naast me staan op het podium. Pa en Ma, bedankt
voor de stimulatie maar ook voor het leren omzien naar anderen. Ik ben blij
dat jullie mijn ouders zijn. Jan, bedankt voor het helpen met de laatste, laatste
loodjes, je programma maar voornamelijk dat je er bent.

Dag Wageningen, tot ziens in Leiden!

Joanne

183



Levensloop

Joanne Klein Wolterink werd geboren op 16 december 1972 te Aalten. In
1991 behaalde zij het VWO diploma aan de Christelijke Scholengemeenschap
Aalten. In datzelfde jaar begon ze aan de studie Moleculaire Wetenschappen
aan de landbouwuniversiteit te Wageningen. In 1996 studeerde zij af met
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