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Abstract

Particle gels are systems of colloidal particles that form weakly bonded
percolating networks interpenetrated by a suspending fluid. They are
characterized as soft, deformable, elastic solids. Examples in the food domain
are yogurt and cheese, in which the particles are casein micelles. In this thesis
rheological properties of model particle gels are investigated using Brownian
Dynamics (BD) simulations with different approximations.

Aggregation kinetics is discussed for a range of volume fractions. The
model is set up to mimic aspects of aggregation of casein micelles in renneted
milk. Smoluchowski classical theory is tested by comparing predictions with the
BD simulation model. At low volume fractions aggregation rates were found
close to the Smoluchowski rates, but they increase sharply at higher
concentrations. Only when a large fraction of the particles has already clustered
the quasi-stationary solution as used in Smoluchowski theory is attained.

Oscillatory shear tests have been used to study small deformation
characteristics of model particle gels. Continuous shear and tensile deformation
tests have been used to study large deformation and fracture properties. Two
different techniques of shear deformation were employed, namely affine and
non-affine deformation, the second being novel in simulation studies of gels. In
the affine method strain is applied with a homogenous profile. In the non-affine
method strain is applied on the surface of the gel structure and can be
transmitted through the network to the bulk. Also two different dynamic
descriptions of the model are discussed, one with high energy dissipation, the
high damping limit, and one with low energy dissipation, the inertia model.

The small oscillatory shear study showed that the affine technique is
insufficient for studying particle gels. The resulting rheology does not depend
on details of the network while in real experiments it does. In the non-affine
mode, deformation of the network is inhomogeneous depending on network
structure and time scale of strain propagation. Moreover a frequency dependent
transition can be observed from bulk loading to surface loading. Under
continuous shear deformation, regardless of the model used, the particle gels
were observed to fracture into lumps that compactified due to local
reorganization. Fractal properties of the gels were irreversibly lost at large
deformation. Under tensile deformation, within the parameter ranges used, the
particle gels were found to be notch insensitive. They exhibit ductile fracture
behavior, which was due to global material failure rather than crack
propagation.
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Chapter 1

There is always much confusion about the definition of a gel. From the
viewpoint of phenomenological rheology a gel can be defined as a material
which when observed at short times, or high frequencies, behaves as a solid, and
at long time scales, or low frequencies as a fluid. Unless this definition is
accompanied by a quantification of the terms short, long, high and low, one
might conclude that “gel” is just synonymous with “material”. It helps when the
“human” time scale is given as reference, but that by definition introduces a
large amount of subjectivity. To avoid all such discussion, we use the term gel
here to describe a material consisting of a more or less randomly cross-
connected network of mechanical elements, with connections that can easily be
formed or destroyed, usually in a suspending fluid. Thus we take a more
structural viewpoint, assuming that we have knowledge about the microscopic
and/or mesoscopic structure and mechanics of the material. In practice of course
it will often be the objective of the observations on a material to determine just
that structure, but as we are considering theoretical model materials here, we
have this luxury. The purpose of such model studies is exactly to investigate
how the macroscopic material properties, as observed in phenomenology,
depend on that underlying structure. Computer simulations, large scale
numerical model calculations, can provide the insight that is needed to make the
connection between structure and material properties.

Essentially there are two main types of gels. Polymer gels consist of
long chain molecules, with physical or weak chemical interactions responsible
for the cross connections between the chains. Particle gels consist of a network
of globular objects, called particles, also linked to each other by physical or
weak chemical interactions. Essential in both cases is that the individual links
can be relatively easily severed, while new links are easily established. We will
focus on models for particle gels, especially particles consisting of protein
material. Examples of proteins or protein particles capable of forming particle
gels are casein micelles, β-lactoglobulin [1,2] and soy glicinin. Also stabilized
emulsion droplets can under some circumstances form particle gels. Though the
macroscopic rheological behavior of the two types of gels is very similar, the
underlying microscopic mechanisms appear to be very distinct. Various model
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studies, both experimental and by simulation, have been performed to
distinguish these mechanisms for particle gels. Here we will discuss mainly
simulation studies, and we will refer to the experiments as the “real” systems, to
which the simulations must be validated. Actual protein particle systems usually
are too complex to be accessible for direct modeling, but simplified colloidal
particle suspensions provide good model systems. Next to colloidal particle gels
we will also describe the modeling of destabilized suspensions forming the
aggregates that can lead to gelation of the system.

There is a large body of published material about the simulated
rheological behavior of colloidal particle suspensions. Early reviews on the
subject are by Heyes [3,4], a very recent one is by Frenkel [5]. A recent review
milk protein stabilized oil in water emulsions is by Dickinson [6]. Much less is
available about the behavior of particle gels, on both the gelation process itself
and the gel properties. One important reason is that particle gels are essentially
non-equilibrium systems, while most of the standard statistical physical theories
apply to systems in thermodynamic equilibrium. An important application of
the model gel systems is that they can be used as test systems for non-
equilibrium statistical mechanics theories. Our interest here is in the gel
properties themselves, and numerical simulation models are quite useful for that
purpose too. As there is much research on particle suspensions, many type of
models have been developed to capture the essential features of such systems.
The main two categories are continuum models, and discrete (particle) models.
In the continuum models, such as the finite element or difference schemes used
in computational fluid dynamics, the flow of material in the system is described
in terms of densities defined on a discrete grid of points in space [7-11]. Also
the Lattice Boltzmann [12-14] and Dissipative Particle Dynamics [15,16]
techniques belong to this category. Though this doesn’t seem to be the most
obvious way to describe discrete particles, some interesting results have been
obtained with these techniques [17]. Still, because both the particles and the
suspended fluid are modeled at the same level of detail in this approach, a
substantial amount of computational resources is used for the fluid motion,
which in general is of less interest. In the category of discrete models the main
techniques are Molecular Dynamics (MD) and Brownian Dynamics (BD) [3,4],
and more recent Stokesian Dynamics (SD) [18-23]. In all cases the numerical
equations solved apply to the dynamic variables that describe the colloidal
particles themselves, interacting with and through a continuous suspending
fluid. In the MD approach the fluid is essentially absent, and the dynamical
equations are just the Newtonian equations of motion for a set of interacting
particles, where an effective potential can be used to incorporate solvent effects.
In the BD approach the effect of the solvent is a drag force on the moving
particles, and a random Brownian force mimicking the many collisions of the
solvent molecules with the colloidal particles. In general only single body
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interactions are considered to fall within the scope of this technique, but several
authors also incorporate two body hydrodynamic effects, such as lubrication,
into BD. Incorporation of many body hydrodynamic interactions, also the long
range interaction, is pursued in SD.

It is clear that hydrodynamic interactions are important in models for
flow in colloidal suspensions. An important excuse that they have been
neglected in the earlier simulations [24-32] is that no efficient models were
available at that time, and computers simply were not fast enough to treat
sufficiently large systems. Several approaches have been developed to make SD
more efficient [33-35], and consequently there is an increasing interest in the
application of the more sophisticated models [36-39]. The simpler BD models,
without many body hydrodynamics, could at least be used to investigate trends,
and develop further insight into the systems. These BD models are not suited as
more or less ab-initio models to predict the behavior of real suspensions from
model calculations, as is presently possible for molecular systems and even
small proteins or parts of proteins, by using validated MD models. For
aggregation BD models may be more appropriate, provided the aggregation
takes place in a system sufficiently at rest, for instance for calculating phase
diagrams for colloidal systems [40,41]. In real experiments that latter
requirement will not often be satisfied, for somewhat larger colloidal particles
the rate at which collisions, possibly leading to aggregation, occur can easily be
low compared to the mixing effect because of small thermal disturbances to the
sample. That implies that even for small colloidal particles, once they have
formed larger clusters, aggregation is likely to be orthokinetic rather than
perikinetic. Even for perikinetic aggregation, when the flow pattern in the
suspending fluid can be neglected, and diffusion of the particles is the main
mechanism, lubrication forces at close range during collision influence the
aggregation possibility. As particles approach one another, this lubrication
produces an effective repulsion. On the other hand, when they move apart
again, the flow of fluid into the widening gap produces an effective attraction.
Also Vanderwaals attraction between the surfaces of the particles will
compensate the repulsion due to the fluid flow from the gap between the
particles. In practice these effects may well cancel, and the overall result from
including lubrication effects into a detailed model will be just a slowing down
of the actual binding process. For an aggregation process that is diffusion
dominated, that will only influence the formation of the smaller clusters, which
will become somewhat more compact. Once larger clusters are formed,
diffusion slows down anyhow and always is the limiting process. Later
reorganization of aggregates will also lead to more compact structures, and it
remains to be seen whether inclusion of hydrodynamics will lead to
substantially different gel structures in model calculations.
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For simulations that investigate the rheological properties of the gels
themselves, after they have formed, it is an open question whether the gel
kinetics is strongly influenced by that of the suspending fluid. Particle gels are
enthalpic, rather than entropic, as are polymer gels. That means that the kinetics
of the gel is dominated by that of the bonds between the particles, while in a
polymer gels the dynamics of the polymer strands is the dominant feature. For
local structure evolution in relatively dense gels simple models may be well
suited [42-45]. Only in very dilute gels, with relatively long strands, will the
kinetics of the strands in the suspending fluid be important, but otherwise the
kinetics of the gel is the kinetics of the connected network. A second question is
how the external forcing of the gel is transferred to the bulk. At low volume
fractions the flow patterns in the suspending fluid will provide the dominating
mechanism through which stresses are mediated. At higher volume fraction it
will be the network itself that is responsible. In the latter case the hydrodynamic
effects will probably not be very important. More relevant is that in medium and
high volume fraction particle gel networks, when the network is mediating the
external stresses, the motion of the bulk material will not be affine. For instance
an external shear deformation imposed on a sample will not lead to a linear
deformation profile of all particles of the gel, as if it is behaving as a Newtonian
fluid. Only the stress-carrying network strands can be expected to follow the
external forcing, and any inhomogeneities in that network will result in non-
affine deformation. Hydrodynamic interactions between the individual particles
in the gel will of course be present, and they may even be important for the
actual dynamics, but it is unclear if they can be separated from the direct
chemical and physical interactions that describe the bonds between the particles.
In reality external stresses will be mediated both by the network and the
suspending fluid, and only a full hydrodynamic model can adequately describe
that coupled motion. In large deformation rheology, when macroscopic fracture
occurs, the fluid flow inside the cracks needs hydrodynamic modeling,
simplified models can only be expected to give a more or less reliable
description of the earlier stages of fracture.

In this thesis we will restrict ourselves to the simplified Brownian
Dynamics models neglecting all but single particle hydrodynamics, the
Stokesian drag force of a particle moving through the suspending fluid. As
explained the rheological properties of a colloidal suspension should be
modeled using the available more extended models, for the gel properties,
especially for higher volume fraction as we consider here, they probably can be
neglected more easily. Using a simpler model still allows for studying larger
systems on relatively simple computers. For a proper investigation of large-
scale system failure samples with a large number of particles are necessary. In
our calculations we have used samples of up to 10,000 particles. In practice the
large deformation behavior of gels is often much more important than the small



Introduction 5

deformation behavior, which often is studied more extensively [46]. We have
earlier developed a model in which colloidal particles can form flexible but
irreversible bonds between their surfaces, and form a network capable of
reorganization [44,45]. With this model we have studied the reorganization
within particle gels, and discovered that contrary to expectation, the generic
fractal structure of the networks is not due to the generic nature of the fractal
aggregation model itself, but to the reorganization. Freshly formed gels at
different volume fractions have different fractal dimensionalities, and only upon
aging of these gels do the dimensionalities converge [47-51]. Some of these
results and a large overview of more recent literature is reviewed in [52]. Here
we use this same model to study the kinetics of the aggregation process and the
dynamics of the gels formed under external forcing, both for small amplitude
periodic shear deformation, as large deformation rheology in shear and tensile
mode. The main new aspect is that we explicitly consider non-affine
deformation, in which the network itself is mediating the external stresses. As
indicated above the overall neglect of many-body hydrodynamics in our
calculations renders the results useless as a prediction for actual quantitative gel
properties of materials with the given specifications. The main value of these
model calculations is in shedding light on the details of the mechanism
underlying the macroscopic rheological behavior of the model materials
investigated. Also trends can be obtained from the results, on what the effect on
the model system behavior of changing of parameters such as fluid viscosity.

In chapter 2 we discuss the aggregation kinetics of the destabilized
model suspension within the context of our model. In the earlier simulations
performed with this model we never tested whether the aggregation rates in the
model are consistent with the simple model predictions of the Schmoluchowski
model. It turns they are not. We present an explanation of the observed
discrepancies in a Schmoluchowski model including a description of the
transient effects associated with the initial particle distribution.

In chapter 3 we investigate the response of a simulated gel sample to
small amplitude external sinusoidal shear deformation. In this chapter we
introduce the non-affine simulation model, where the deformation is exerted at
the external surface of the sample only, and mediated into the bulk by the gel
structure itself. This approach is able to distinguish between different types of
global gel structure. The more usual affine deformation, in which the gel
deformation is assumed to be fluid mediated, mainly shows the local properties.
Moreover the non-affine method can simulate surface load experiments. The
non-affine model is also used in the large deformation simulations.

In chapter 4 we use our model to investigate large deformation shear
rheology, the break-up of the gel due to continued shearing. Polymer gels can
show a probably reversible transition from an elastic material to a viscous
material under prolonged shear deformation. Due to the shear the gel network
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breaks, but it reforms at the same rate. We do not observe that behavior for our
particle gel model. Increasing local stresses do lead to breaking of bonds, and
rupture of the network, but instead of reforming a similar global network,
reorganization increases, leading to local compactification. Eventually the
network is destroyed, and a dense suspension of large clusters remains. At that
point our simple description of hydrodynamics is no longer valid.

In chapter 5 the same model system is considered in the context of large
deformation tensile behavior. The effect of different notches is investigated and
in all cases we find that within the parameter range investigated ductile fracture
behavior is observed. That means that if at any point of the simulation the
extension of the sample is stopped, the process of rupture also stops
immediately. This is the case even for samples close to total rupture. We argue
that with simulation models in general it will be difficult to study brittle
fracture, because of the large difference in time scale between the process of the
breaking of an individual bond, at atomic or molecular level, and that of the
whole gel, at mesoscopic level.
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Chapter 2

¹

Brownian Dynamics simulations have been performed on the aggregation dynamics of
colloidal particles within the context of a ball-and-string model. Particles are treated as
hard spheres that can bind irreversibly through a string attached to their surface. The
model is set up to mimic some aspects of the aggregation of casein micelles in renneted
milk. In this study we test the model of Smoluchowski by comparing it with our BD
simulation model. Aggregation kinetics was studied by models in a range of volume
fractions from ϕ = 4×10−6 to 0.20. We found aggregation rates close the Smoluchowski
rates at the low volume fractions, increasing sharply at higher concentrations.
Simulations for simpler models also give rates slightly above theoretical values, but only
at very high dilution. We show that only when a large fraction of the particles have
already clustered is the quasi-stationary solution used in Smoluchowski theory attained.
This partially explains the increase of the rate with volume fraction. The steep increase
in the rate with volume fraction also explains why fractal aggregation, in which the
effective volume fraction of the clusters increases with cluster size, leads to gelation.

2.1 Introduction
Aggregating colloidal systems consist of two phases. One is the

suspending fluid, the other is the colloidal particles, which on aggregation may
form a percolating network. Its structure largely determines the mechanical
properties of the sample. The aggregation of an initially stable system can be
induced by a number of different factors, such as heating and enzyme action.
Conditions used during aggregation strongly affect kinetics and the mechanism
of aggregation and so the texture, porosity, and rheology of resulting gel. An
example from the food domain is yogurt, in which the particles forming the
network are casein micelles [1, 2].

                                                          
¹ A.A. Rzepiela, J.H.J van Opheusden and T. van Vliet, J.Coll.Interf.Sci. 244 (2001) 43-50.
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In recent years, several Brownian Dynamics simulation studies have
been published on the formation and properties of particle gels [3 - 5]. The
resulting structure of the gels is analyzed through fractal models [6, 7] which
have stimulated understanding of aggregation processes [8].

Analytical models on particle aggregation attempt to describe the
process in a strongly simplified form [9, 10]. Differences between the size and
shape of particles and their geometrical distributions are neglected to be able to
derive analytical results. In simulations approximations still have to be made,
but fewer ones. One important advantage of simulations is that the positions
and, if relevant, the orientations of all particles can be included in the model.
The effect of particle distributions is especially important when the aggregates
become space filling. Then a crossover occurs between models for aggregation
in very dilute systems and percolation models for gel formation.

In earlier work, some of us [2, 3, 5] studied the gelation process within
the context of a simple Brownian Dynamics (BD) simulation model of hard
spheres that bind irreversibly through flexible strings. The model includes both
translational and rotational diffusion of the particles involved. Because of the
simplicity of the model the dynamics can be followed over large time intervals,
also allowing the study of gel aging phenomena in reasonable CPU times. We
use the same model to study aggregation kinetics in the early stages. We
compare the simulation results with predictions from Smoluchowski theory.

A theoretical framework to classify the wide variety of growth
processes in coalescing systems was introduced in 1917 by Smoluchowski [11]
and has been used extensively since. It uses a mean field approach to the
kinetics of aggregation. It has received great attention in earlier studies and has
been explicitly solved numerically for some forms of coagulation kernels [12],
especially for a constant coagulation kernel [13, 14], where the aggregation rate
is independent of cluster size or mass. Meakin [9, 10] has extensively discussed
calculations of coagulation kernels through different existing theories. The
theory with a constant coagulation kernel cannot describe gelation; only when
the rate increases substantially fast with cluster size, may gelation occur.

The theory of Smoluchowski with a size scaled coagulation kernel may
adequately describe the early aggregation stages in a dilute system, but still fails
to take into account the effects of various cluster shapes, which are formed
during the coagulation process. A second shortcoming is that the model uses a
mean field approximation, implying that the system must be within limitations
of ideal mixing, geometrical correlations are largely ignored. A third
approximation is that the sol must be so dilute that collision between more than
two clusters can be neglected. Finally it assumes that the process is in its
asymptotic quasi-stationary state, where effects of the initial configuration have
relaxed. It has been shown before [12] that the model of Smoluchowski
nevertheless can describe aggregation processes taking place in some specific
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aggregating systems with quite good agreement. Very good agreement was
found by Puertas [15] between constant coagulation kernel from theory and BD
simulation. However, very little detail is given about the simulation method
used. Diffusion-limited aggregation of an initially monodisperse suspension is
well modeled by a constant kernel during the early stages of the reaction [14,
16, 17]. In experiments one usually finds lower rates, by a factor of about 2, that
could be attributed to short range hydrodynamic repulsion. The reasonable
agreement between model and experiment might however, be due to a fortuitous
cancellation of effects that are neglected in the model.

2.2 Brownian Dynamics Model
The model we are considering contains N hard spheres of radius a,

placed in a three-dimensional cubic box. The particles move through the solvent
due to random displacements. When two particle surfaces come within a
bonding distance Rbond, a flexible bond or string is formed. The bond once
formed is permanent. The attachment points are fixed on the surface, and rotate
with the particle. The bond is completely flexible but can not be stretched
beyond Rbond. Relative particle motion due to rotational and translational
diffusion is possible as long as it does not result in bond stretching or particle
overlap. Hence the model allows for cluster and gel reorganization.

A BD simulation model is based on the Langevin equation, the
dynamical equation of motion for a system of diffusing particles. The total force
here is the sum of the net force of interaction between particles, the random
Brownian force and hydrodynamic interactions. The solvent is regarded as
continuous and the Brownian force mimics thermal collisions between the
solvent and the dispersed particles. In the case of hard spheres (no direct
interaction), the force on particle i is given by the equation

,
d

d
2

2

ii
i HR

t

r
mF +== (1)

where Ri is the random (Brownian) force and Hi is the force modeling
hydrodynamic interactions, ri is the position of particle i, and t is the time. We
approximate Hi by simple Stokesian friction, neglecting hydrodynamic
interactions between particles. The liquid drag force on a single particle, Hi, is
proportional to the particle velocity,

,
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i γ= (2)
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where γ = 6πηa is the Stokes drag, η is the solvent shear viscosity, and a the
particle radius. Furthermore the model uses constraint forces for the stretching
of the bonds and the hard core repulsion of the spheres.

The size of the simulation box determines the volume fraction of the
particles. Periodic boundary conditions are used to avoid edge effects. All
parameters corresponding to sizes or distances are normalized to the radius of a
particle (a = 1) and all parameters corresponding to energies are normalized to
units of kBT (kBT = 1).

Equation (1) is solved numerically, enabling us to follow the
movements of each particle through the system in consecutive constant time
steps. By choosing the time step much larger than the relaxation time of the
particle velocities we can neglect the second order term in (1), so
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This is called the large damping limit. To solve the remaining first-order
differential equation of motion we use the Euler forward method, which gives
us

).(
6

)( tR
a

t
ttr ii πη

∆=∆+∆ (4)

The effect of the random force Ri is a translational displacement that, on
average, obeys Einstein’s law for an isolated particle. For instance in the x
direction this gives us

,6)( T tDNttx s
R
i ∆=∆+∆ (5)

where DT = 1 / 6πηa (kBT = 1) is the translational diffusion coefficient, which is
normalized to unity. The parameter Ns is a random number, which has a uniform
distribution on the interval (-1,1), and its average square is given by
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The dimensionless root-mean-square displacement in the x direction, in the

absence of interactions is equal to tD ∆T2 . At each time step three

independent uniform random numbers are drawn to calculate the stochastic
displacement vector for each particle. This implies that in the absence of
interactions, the displacement vectors for different particles at each time step are
uncorrelated. The number of steps that the simulation has passed, is given by
the parameter N∆t. It is a direct measure of time.
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Apart from the translational diffusion the individual particles also
undergo rotational diffusion. The rotational motion is governed by the diffusion
coefficient DR (note that a = 1):

.
4

3 T
R

D
D = (7)

The implementation of rotational diffusion in the model is similar to that of
translational diffusion. Rotational diffusion of clusters results from combined
translations and rotations of the individual particles.

The hard core repulsion and the finite length strings lead to constraints,
which when violated are being removed iteratively by moving and rotating the
involved particles using the SHAKE procedure [18]. The motion of a particle
within a cluster results from combined translational and rotational diffusion and
removal of the constraints.

2.3 Aggregation Kinetics
The theory of Smoluchowski, originally designed for coagulation of

spherical droplets, can also be used to describe particle cluster formation. It
assumes that aggregating particles and clusters behave in a similar fashion. The
theory is given in the form of a set of differential equations describing the rate
at which the concentration, zn, of clusters of size n changes with time, t, during
an aggregation process:
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The first term gives the rate of creation of clusters of size n by aggregation of
two smaller clusters, and the second term gives the rate at which clusters of size
n are eliminated by further aggregation. The coagulation kernel Kij gives the rate
constants for these processes. Eq. (8) does not include bond-breaking processes.
Furthermore, for (8) to apply, the solution must be so dilute that collisions
between more than two clusters can be neglected.

The kinetics of the model is largely contained in the coagulation kernel.
It determines the number of collisions per time unit between an i-mer and a j-
mer that result in bonding. The original Smoluchowski approach uses a single
constant kinetic kernel, which is assumed to be independent of the form or size
of the aggregates that are coagulating. A more general description incorporates
a power law scaling of the kinetics kernel with volume fraction [19].

The standard coagulation kernel for rapid coagulation Eq. (8) is
calculated as:
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],[4 13 −= smDRK ijijij π (9)

where Rij is radius of a sphere of action and Dij is the relative diffusion
coefficient. For monomers with Rij = ai + aj and Dij = 2DT, this results in the
standard Smoluchowski rate constant:

aDk cπ8S = . (10)

In the case of Stokes friction the diffusion constant, Dc, will scale inversely with
cluster size, leading to almost constant kernels. In the free draining limit we
apply, the diffusion constant scales with cluster mass N as 1/√N, while fractal
scaling gives N ∝ RD, with D the fractal dimensionality. For fractal clusters with
D = 1.45, the value we find for translational and rotational diffusion-limited
cluster aggregation without reorganization, results in kS ∝ N −0.2; for D = 2.2,
with much reorganization, one finds kS ∝ N −0.05. In view of these coefficients no
large effect of the cluster size on kS can be expected.

Equation (8) with constant coagulation kernel can be analytically solved
to give equations for the change of the total number of clusters, single particles,
doublets, and n-mers [20]:
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Here z0 is the initial number of primary particles per unit volume.
To describe the aggregation process, we calculated different

coagulation kernels, kS, by fitting simulation results for the total number of
clusters, and for clusters of size up to six particles, to the equations above (see
Table 1). Thus, we compare the evolution of the aggregating systems obtained
from our BD model with that predicted by the theory of Smoluchowski. Curves
representing the number of clusters as a function of time obtained from the
model and the theory will be compared for various values of particle volume
fraction ϕ.
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2.4 Results
Our Brownian Dynamics simulations start by placing primary particles

in the simulation box in random fashion but avoiding particle overlap. The
particles diffuse through the box due to the random Brownian force, and form
clusters through strings between fixed points on their surfaces. A string is
formed when a particle surface comes within the specified bonding range of
Rbond = 0.1, one-tenth of the particle radius. That value is also the maximal
length of the string. Up to 12 bonds can be attached to one particle, fixed on its
surface. In practice for these short string lengths that number is rarely obtained.

The BD simulation model has two parameters that may be optimized to
quickly give results without affecting the accuracy. To obtain fast results one
would like to consider a system with a small number of particles and simulate it
with large time steps. We tested our BD simulation model in a range of particle
numbers from 100 to 10,000, to check whether the size of the system was
influencing calculated results, the kernel kS, and its precision, ∆kS. We observed
(Fig. 1) that curves for the number of clusters of given size as a function of
time, have less statistical noise for big systems. We chose to use a system size
of 1000, which allows relatively fast calculations and gives statistically smooth
results. Earlier results from gelation simulations, moreover, have shown that
such a system size is needed to have clusters grow to their appropriate
dimensions, and become space spanning. For the lower densities we had to use
larger systems because of the large statistical error due to the low collision rate.

The BD model was also tested to find an optimal time step. The random
numbers for the translational and rotational displacements generated at each
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Fig. 1. Percentage of particles in n-mers (n = 1, 2, 4, 6) as a function of simulation time for two
system sizes. Full symbols: system of 10,000 particles, empty symbols: system of 100 particles.
Volume fraction is 3% simulation time step, ∆t = 0.001.
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Fig. 2. Computer CPU time of a simulation run as a function of time step. The number of steps,
N∆t, times the time step, ∆t, is constant for all the runs. Maximal number of SHAKE iterations is
set to 5000. System of 3% volume fraction, 1000 particles, and on average one bond per particle.

time step for all the particles are relatively unimportant, as they are all
uncorrelated. Their number scales simply with the inverse time step and the
number of particles. More important are the model constraints, bond stretches
and particle overlaps. Those constraint violations are detected by checking all
(relevant) pairs, and are removed iteratively. Increasing the simulation time step
results in larger, or even more constraint violations per step, while too large a
step may produce unphysical results. For larger time steps the pair list
mechanism we used is less efficient, and in general, larger time steps result in
more iterations. Fig. 2 shows that above ∆t = 0.1 simulation times increase due
to the many SHAKE iterations necessary. In this study we chose to use a time
step of 0.001, well below the point where constraint removal becomes a
problem. We set the maximal number of SHAKE iterations to 100, leaving the
remaining constraint violations, if present, to be removed by the Brownian
motion in the next step. For systems that have not formed gels, as we study
here, this limit is rarely reached. With this time step and system size even the
longest of the simulation runs can be ran overnight on a simple PC (500MHz
Pentium).

The BD model was used to study aggregation kinetics as a function of
volume fraction, ϕ, in the range of 4×10−6 to 0.20. Figure 3 shows three stages
of aggregation of a 3% system generated by the BD model. The evolution of the
number of clusters during simulation time for the same system is presented in
Fig. 4. The drawn curves represent the fitted values according to Smoluchowski
theory. The constant coagulation kernels, kS, were calculated for each curve
separately, through nonlinear regression, to fit the theory. A dynamic scaling of
kernels was found in earlier studies e.g. [21]; here since differences between
obtained kernels were not systematic and within statistical error we took their
weight average. Table 1 gives the kernels for the total number of clusters, for
the clusters of size up to six particles and their weight average. The analysis
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Fig. 3. Two-dimensional representation of 3D aggregating system in three stages as simulated
with BD model. Shading indicates the depth of the picture; for clarity particle size is reduced to
half of its actual size, so bonds are much longer than in reality. System of ϕ = 3vol% at simulation
stages: a) N∆t = 1750 Nagg = 468; b) N∆t = 9250, Nagg = 159; c) N∆t = 65500, Nagg = 21; (∆t = 0.001,
Nagg = number of all aggregates).

included only an intermediate time range of the curves. Data points at early
times, with high statistical noise, which we took to be the points where the
number of clusters of given size was less then 4 were omitted. Moreover, for
late times, gelation occurs. The gel-point was defined somewhat arbitrarily as
the moment at which 50% of all particles build the largest aggregate. Data
points beyond “gelation” were omitted as well. We also checked this by plotting
1/z and 1/√z1, with z and z1 the cluster density and monomer density, as a
function of time. According to Eqs. (11) and (12) these produce linear curves if
Smoluchowski theory applies. The linear parts of these curves indeed roughly
corresponded with the intervals we used, be it with a too steep slope at higher ϕ.
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Fig. 4. Number of clusters, n-mers, as a function of simulation time. ϕ = 3vol%, N = 1000,
∆t = 0.001. Points represent BD simulation results; lines represent theory results with
<kS> = 88.14. (N = number of particles).

For the system of ϕ = 0.03 the calculated value of kS is 88. That is
considerably above the value predicted by theory: kS = 4πRDT, where R = 2a is
the radius of action and DT is the diffusion coefficient for a single particle. As
we use reduced units of DT = 1, and a = 1 in our simulations, we expect to find a
value of 8π ≈ 25. For dilute systems of 0.01% we find values slightly above this
result, but with quite a large statistical error. For systems of higher volume
fraction the values of kS rapidly go up. The calculated kernels are plotted as a
function of ϕ in Fig. 5 with the ��������

Theoretical fits to simulation results are presented for three volume
fractions: ϕ = 3% (Fig. 4), ϕ = 16% (Fig. 6), and ϕ = 0.1% (Fig. 7). For the 3%
system the early stage of aggregation in the BD model was even faster than
reported above. This is due to the homogenous random initial configuration,

0.01 vol% 0.1 vol% 1 vol% 3 vol% 10 vol% 16 vol% 20 vol%

kS for Σz 26.9 30.4 50.6   81.0 314.1 635.6 1124.7
kS for z1 29.2 33.5 55.9 107.4 366.7 717.4 1121.8
kS for z2 26.2 30.4 58.6 123.4 494.7 740.3 1220.8
kS for z3 27.1 28.1 39.5   93.6 406.1 705.2 1593.1
kS for z4 27.5 28.1 59.2   87.2 312.6 577.7 1909.8
kS for z5 22.1 27.8 45.9   85.4 384.6 765.9 1794.6
kS for z6 19.2 22.6 38.8   91.6 293.0 874.9 1250.2

<kS> 25.2 31.3 49.0   88.1 342.4 691.9 1409.9

Table. 1. kS value for the total number of clusters,
for clusters of size up to six particles and their weight average.



Aggregation kinetics of hard spheres with flexible bonds 19

10

100

1000

10000

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
volume fraction

ra
te

 c
on

st
an

t
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constant from coalescence model ( 	�∆) as a function of volume fraction. 	�������������������
and-string model for volume fractions below 0.01%; ∆, results from coalescence model for fixed
measurement point at 50% particle disappearance.

with constant pair correlation function. Before the quasi-stationary pair
correlation function profile is formed many particles have clustered. We discuss
this point in detail later, as it may be a partial explanation for the increasing
effective rate constant.

In the 16% system (Fig. 6) the aggregate growth is so fast that the early
regime, where we still see the effects of the random initial distribution, and the
late regime, where a gel has formed, could have overlapped. We were still able
to derive some results from the center parts of the curves, giving very high
effective rates.

2.5 Discussion
Before we discuss the results in more detail we take a somewhat closer

look to Smoluchowski theory. The rate constant kS = 4πRDT is calculated for the
stationary state situation, where the density around a center of aggregation is a
solution of the diffusion equation with boundary conditions zero at the radius of
action and the homogeneous density at infinity. As all particles are centers of
aggregation that applies to the pair correlation function rather than the density.
One point to note is that we start our simulations with a uniform pair correlation
function, which according to Fick’s first law gives a large flux for a short period
before the asymptotic state is reached. According to e.g. Overbeek [22] the time
needed to reach steady state is of the order t = 8ϕTf, where the flocculation time
Tf is the time needed for the number of clusters to decrease half the original
number. For ϕ = 3% that implies about 30% of the original particles are joined
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Fig. 6. Number of clusters, n-mers, as a function of simulation time. ϕ = 16%, N = 1000,
∆t = 0.001. Points represent BD simulation results, lines represent theory results with
<kS> = 691.86.
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Fig. 7. Number of clusters, n-mers, as a function of simulation time. ϕ = 0.1%, N = 1000,
∆t = 0.001. Points represent BD simulation results, lines represent theory results with
<kS> = 31.60.

into larger clusters before we should expect our curves to level off, and for
higher densities the situation could become even worse. We will come back to
this point below.

For one of the lower volume fractions we have investigated, ϕ = 10−4,
our result is still slightly above the theoretical value. This may be due to the fact
that the radius of interaction for the BD model (at least for monomer-monomer
bonds) should be taken R = Rbond = 2.1, bringing the theoretical prediction to



Aggregation kinetics of hard spheres with flexible bonds 21

approximately 26, where we find 27, a fair agreement. Simulations at still lower
volume fractions become increasingly troubled by statistical noise, due to the
low absolute rate of aggregation. In model calculations down to ϕ = 4.10-6 we
have found values for kS around 20 (see Fig. 5, symbol 
	� ���� ��� ����� ��
trustful estimate for the statistical error. Lower values for kS are commonly
found in experiments [16, 17, 23, 24], and are normally addressed to a
remaining short-range (effective) repulsion between the aggregating particles,
because of incomplete destabilization (e.g., remaining charges) or
hydrodynamic pair interaction (lubrication). As we have neither effect in our
model, these cannot be the cause of the discrepancy found.

To investigate the discrepancy at higher volume fraction, we have
performed calculations for both the reaction rate and for the pair correlation
function in a modified BD model. In this second model the freely diffusing
particles do not form bonds, but join to form a single particle of unit radius
upon first contact (at R = 2a). This second simulation model hence remains as
close as possible to the original rapid coagulation model of Smoluchowski. A
similar particle coalescence model and its kinetics were studied before e.g. [25].
The difficulty in calculating the pair correlation function in the original model
was that clustered particles make a large contribution at short distances. In
the second model we always have only monomers. For this model we only
investigated the development of total number of particles. Plotting 1/z(t) against
t according to Eq. (11) gives a linear relation, which can be fitted to give kS. The
results are gathered in Fig. 5 (see symbol ). At low volume fractions we
obtain the Smoluchowski value, and a rapid increase at higher concentrations,
similar to what we found in the ball-and-string model.

The model as used by Smoluchowski is somewhat too simple, but it
turns out that can be repaired relatively easily. We consider the density of
particles around a single fixed sphere. This density is not described by the
diffusion equation alone, but there is a sink term due to mutual collisions
between the surrounding particles. Let the density of primary particles be z0;
then the density around a single primary particle satisfies

zt = DT ∆z – k(t) z z0, (15)

where ∆ is the Laplace operator, and the sink term describes the rate at which
the surrounding particles are removed by collisions with other centers of
attraction. At infinity the density is z0, at the interaction radius, the diameter d of
the central particle, there is a (nonstationary) flux

j = 4 π d2DT zr(d), (16)

that describes their disappearance. As this is true for each particle, their overall
disappearance is given by
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z0’ = − z0 j = − 4 π d2DT z0 zr(d), (17)

so the density at infinity around the central sphere is dropping. When we define
z(t) = z0 g(t), substitute this in (15) and use (17), we find for the pair correlation
function g:

gt = DT ∆g – g z0 [ k(t) − 4 π d2DT gr(d) ]. (18)

Now this system can be made consistent by considering the terms in square
brackets to cancel. The function g(r, t) then satisfies the diffusion equation
without sink term, and the solution with g(r, 0) = 1 for r > d, g(r, t) = 0 for r ≤ d,
and g(r, t) = 1 for r → ∞ becomes the standard result

k(t) = 4 π d2DT gr(d) = 4 π d DT ( 1 + d / tDTπ  ). (19)

Note that this rate constant is singular due to the second term, the initial
transient, at t = 0, but the number of particles that disappears remains finite.

Using (17) and (19) we find z0' = − 4 π dDT z0
2 ( 1 + d / tDTπ  ), which can be

solved analytically to give

.
)/21()0(41

)0(
)(

T0T

0
0

tDdtzdD

z
tz

++
= (20)

This suggests that for all volume fractions, we eventually arrive at Eq. (11), but
it may take quite some time, during which a large fraction of the particles has
clustered. From the above we can distinguish two time scales:
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the time scale of the transient effect of the initial situation, and
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the time scale of the aggregation process itself also called the aggregation time.
Without the correction term for the transient, the number of particles decreases
to half its original value over the aggregation time. The relation between the
time scales is

aa0
3

i
24

)0(4 ttzdt ϕ==
π

, (23)

with ϕ the initial volume fraction (note that 24/π ≈ 8, giving the estimate of
Overbeek [22]). This means that for higher volume fractions the transient effect
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is larger. Because of the correction term the number density at the aggregation
time actually decreases with volume fraction according to

))24(1(2

)0(
)( 0

0 ϕ+
= z

tz a (24)

For a volume fraction of 3% this implies that at the aggregation time the
number density of the clusters is reduced to one-third the original density, rather
than one half.

As the transient, especially for the higher volume fractions, after an
initial rapid singular effect dies out so slowly (as t −1/2), it is not correct to fit the
observations to equation (11); rather, (20) should be used. The theoretical curve
as given by (20), with kS = 8π, fits simulation data points very well and better
then a parameterized fit according to (11). An example plot for a dilute system
ϕ = 0.1% is given in Fig. 8. Just using visual inspection of the graphs of 1/z
against time, as we have done in our analysis of the modified BD model,
systematically gives too high values for the observed rate constant

keff(t) = 4 π d DT ( 1 + 2d / tDT  ). If we for instance fix the measurement point

to where approximately 50% of the particles has disappeared, we find =effk 30,

43, 63, 120 and 170 for ϕ = 0.001, 0.01, 0.03, 0.10 and 0.16 respectively. These
values are larger than those reported above for the simplified model, but

Fig. 8. Fit of equation (11) to simulation data points for total sum of clusters, and theory curve
given by (20). Simulation data points for dilute system, ϕ = 0.1%.
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generally smaller than those reported for the ball-and-string model see (Fig. 5,
symbol ∆). Note that for the lower volume fractions, 50% is quite outside of our
range; 10% aggregation is already a large fraction, for which at ϕ = 0.001 an
effective rate constant around 40 is calculated according to the modified model
above. It appears the initial transient could be responsible for a large part of the
effect of ϕ on kS we observed, but for the more realistic system other aspects,
such as cluster structure and many body collisions, probably are important too,
especially at the higher volume fractions. For the lower volume fractions the
transient correction as determined by the modified BD model above seems to
overestimate the effect. The effect of the initial configuration on the observed
kernel is discussed in more detail in a forth-coming paper [26].

2.6 Conclusion
We have found for a simple ball-and-string model for aggregation that the rate
of aggregation for binding upon reaching the interaction distance in simulation
exceeds the value as predicted by the Smoluchowski theory for fast aggregation.
For volume fractions below about 0.1% the discrepancy is small, and might
well be due to statistical error. There is a good agreement for cluster growth
rates at several small cluster sizes. Calculations for a simplified model, where
particles unite at collision, show a less pronounced increase in the effective rate
constant with volume fraction. Analysis of the Smoluchowski theory shows that
the increase in the observed aggregation rate may well be attributed to an initial
transient from a fully random configuration to one with a pair correlation profile
satisfying Fick’s law for diffusion. For low volume fraction the transient
correction seems to be too large. For the ball-and-string model the transient is
only a partial explanation; other factors such as cluster shape and multiparticle
collisions or (equivalently) multiparticle correlation functions are of
importance.
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Chapter 3

¹

We have studied the effect of small periodic shear deformation on a simulated sample of
a model gel. The gel consisted of a network of spherical particles, irreversibly bound
through non-central bonds at their surfaces. Brownian Dynamics simulations were
performed at zero temperature, including only the Stokesian friction of the spheres in the
suspending fluid. Many particle hydrodynamic effects were ignored. The shear
deformation was imposed by moving the surfaces only, applying Lees-Edwards
boundary conditions without the usual accompanying linear bulk fluid flow field. This
led to a non-affine deformation of the sample, where the stresses were transferred to the
bulk by the particle network instead of the fluid. This approach ensured that non stress
carrying parts of the network did not contribute to calculated rheological parameters at
all frequencies. Moreover we were able to observe a transition from a bulk load
experiment at low frequencies, to a surface load setup at high frequencies. The
associated theoretical response for a visco-elastic solid was derived, and used as an
approximating method to calculate the loss and storage moduli from the observed
stresses. It appeared that for high frequencies these approximations failed. The
parameter choice for the simulations was such that the resonance frequency of the gel
was at low frequencies. A more realistic parameter choice would have lead to
prohibitively long simulations. The theoretical response derived can in principle be used
as a basis to develop a better analysis method.

3.1 Introduction
Particle gels are colloidal, solvent rich materials that have become

flocculated into a continuous three dimensional network structure. Aggregation
kinetics and reorganization of the system determines strongly the structure of
those gels [1, 2], which can often be characterized using fractal analysis.
Particle gels are widespread in the food domain, examples are yogurt and
cheese, in which the particles are casein micelles [3]. Most functional properties

                                                          
¹ A.A. Rzepiela, J.H.J van Opheusden and T. van Vliet, in preparation.
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of particle gels, such as shaping, handling, slicing and eating characteristics are
related to their large deformation and fracture characteristics and only partly to
their small deformation characteristics. Large deformation properties depend
much more on the detailed structure of the gels than small deformation
properties [4]. A previous study of particle gels under large shear deformation
showed that those structures are not stable to shearing, they fracture into lumps
that compactify due to local reorganization, resulting in a loss of their fractal
character [5]. In these studies we have introduced non-affine simulation
techniques, where the stresses are transferred from the surface to the bulk
through the gel network, rather than the suspending fluid. It was found that at
the slow deformation rates used in fracture simulations the distinction was not
actually relevant.

Small deformation mechanical properties can account for some aspects
of the undisturbed structure of the gel inaccessible by most other methods. They
account for both the spatial distribution of the structural elements of the
network, as well as the interaction forces between them. Small deformation is
defined as such a small relative deformation that applying it does not affect the
structure of the material studied. Mechanical properties of particle gels, as
determined at small deformations, vary depending on the time scale considered.
They behave as rather soft and deformable solids over short times, but as
viscous liquids over long times. At intermediate time scales, their reaction to an
applied strain will be partly elastic and partly viscous.

Application of homogeneous (affine) shear has been widely used in
model studies. It has been used to study aggregating colloidal suspensions under
a flow field [6, 7, 8] and model particle gels under both small [9] and large

Fig. 1. Stress response in the layers 1 to 10 (see scheme fig 6) to affine strain oscillation. High
damping model, f = 10,000. (− −) layer 1 & 10; (− −) layer 2 & 9; () layer 3 & 8; (--) layer 4
& 7; (···) layer 5 & 6.
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shear deformations [10]. In the affine model the interpenetrating fluid is moving
with a linear velocity profile, and the stress is due to fluid movement rather then
due to the network. By applying homogenous sinusoidal shear strain the system
reacts with a homogenous sinusoidal stress. The resulting stress profile through
the system is time independent and scales simply with the number of bonds in a
slice (fig. 1). As expected at high shear oscillation frequency, short deformation
time scale, the system response is mainly elastic (the stress is in phase with
strain, see figure 1) and at lower shear oscillation frequency, longer deformation
time scale, the response is viscoelastic. The storage and loss moduli for an
affinely deformed particle gel are plotted in figure 2. The thus obtained
rheological parameters of the material reflect only its local structure and do not
describe the global character of it. Simple relationships between the rheology
and number density of bonds for affine deformation have been previously
reported by others [9]. The affine technique may be a correct approach to study
shear deformation in some systems but is ineffective for particle gel systems as
will be shown later.

Real systems are actually sheared by moving boundaries, and the
resulting strain profile through the system may be both time-dependent and non-
linear. In this non-affine shear application the evolution of the stress profile
depends on the structure and the time scale of shear wave propagation. Non-
uniform materials may shear in an inhomogeneous way, reflecting the global
character of the material.

In real experiments stress in a deformed test piece is measured at the
surface and it is assumed that the stress is homogenous over the material. To
ensure that, thin test pieces are used for materials where inertia effects play a

Fig. 2. Storage modulus G’ (�
����������������G" ( 
����������������������������������������f.
Affine deformation, strain amplitude, γ0 = 0.1.
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role [11]. In those experiments too, the measured rheological properties account
for the local character of the material, but the structural information is lost. For
some materials omitting the structural term in calculations of the modulus from
particle-particle interactions may give large errors and unrealistic results.
Scaling relations for particle gels have been developed to account for the
structural information of some geometry of structural elements [12, 13].

Experimentally it is difficult to measure the stress in different layers of
a material under deformation and so techniques ensuring homogenous stress
response have to be used. In simulations detailed data on stress distribution
through a test piece are available and no such restrictions are necessary.

The scope of this paper is to study particle gels under small sinusoidal
shear deformation, applied by moving the boundaries and discharging the flow
profile of the incorporated fluid. This non-affine gel-mediated deformation is
hence the opposite of the affine deformation, which is fully fluid-mediated. In
real systems both components will be instrumental in the stress transport.

3.2 Simulation Details
The model contains N elastic spheres of radius a placed in a cubic box.

All simulations are fully three-dimensional. Prior to gel formation the particles
move through the solvent due to random displacements, and they form a bond
when two particle surfaces come within a bonding distance Rbond. The
attachment points are fixed on the surface, and rotate with the particle. The
bond is completely flexible for lengths below Rbond and it is Hookean beyond
this value.

3.2.1 Particle interactions

The particles interact through potentials which consist of the core
potential VC, equation 1, and the bonding interaction VB, equation 2, both
represented by a harmonic force,
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where rij = |ri - rj| is the distance between particle positions ri and rj, and
bij = |bi – bj| is the distance between bond attach points bi and bj on the particle



Small non-affine shear deformation of particle gels 31

Fig. 3. Particle interactions: central core repulsion and non-central bonding attraction.

surfaces. Further b0 is the maximum unstretched bond length, in fact b0 = Rbond,
and K is the force constant. This can be represented graphically as in figure 3.
The force on particle i due to j, Fij, is then simply:

)).()(( ijBijCiij bVrVF +−∇= (3)

The total potential force on a particle is the sum of the pair forces.

3.2.2 Brownian Dynamics

The Brownian Dynamics (BD) simulation model used in gel formation,
and in a modified form in oscillatory shear, is based on the Langevin equation
of motion for a system of diffusing particles. The total force here is the sum of
the net force of interaction between particles, the random Brownian force and
hydrodynamic interactions. The solvent is regarded as continuous and the
Brownian force mimics thermal collisions between the solvent and the
dispersed particles. The force on particle i is given by the equation:
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with Fij given by equation (3), Ri the random (Brownian) force and Hi the force
modeling hydrodynamic interactions. We approximate Hi by simple Stokesian
friction, neglecting hydrodynamic interactions between particles. The liquid
drag force on a single particle, Hi, is proportional to the particle velocity,
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where ζ = 6πηa is the Stokes drag, with η the solvent shear viscosity, and a is
the particle radius. The size of the simulation box determines the volume
fraction of the particles. Periodic boundary conditions are used to avoid edge
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effects. All parameters corresponding to sizes or distances are normalized to the
radius of a particle (a = 1) and all parameters corresponding to energies are
normalized to units of kBT (kBT = 1).

3.2.3 Numeric models

In our calculations we will consider two limits of the model, one in which the
time step in the simulation is shorter than or comparable to the relaxation time
of the particles (inertia model), and one in which it is much longer (high
damping limit). Taking particle velocities and positions as variables the second
order differential equation (4) is written in the form of two, coupled first order
equations:
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which system is solved numerically as follows:
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where m is particle mass and vi is particle velocity. The effect of the random
force Ri gives uncorrelated particle displacements <∆si

2> = 2DT∆t with s = x,y,z,
with DT = kBT /6πηa the translational diffusion coefficient. The particles
similarly undergo rotational motion and diffusion, with a rotational diffusion
coefficient DR = 3DT/4a2. This description applies to systems with low damping
(ζ). In the limit of high damping the time step is much larger than the relaxation

time of the particle velocities, so )/( 22 dtrdm  is zero in equation 4. This is true
in a highly viscous system:
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This leads to a model, in which only particle positions have to be solved, which
is done with the Euler forward method:
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A more detailed description of the high damping limit model is given in an
earlier paper [1]. The high damping limit was used in gel formation, where the
simulation time was large. Both the high damping and inertia model will be
used in the oscillatory shear calculations reported in this paper.

3.2.4 Rheology

A convenient way to study the viscoelastic properties of gels is by using
dynamic tests, in which the structure is subjected to a sinusoidal varying strain,
and the resulting stress is measured or vice versa. To simulate such a test, it is
customary to include affine shear flow into the equations of motion (7) or (9),
and an extra term is added to the particle positions:

,)( ttyS xyi ∆=∆ γ� (10)

where xyγ� is shear rate. In the high damping limit calculations a = 1, DT = 1, and

kBT = 1, so the shear rate equals the Péclet number in the units used
(Pe = γ� a2 / DT). In the inertia model DT depends on the viscosity, so

Pe = γ� a3 6πη (a = 1 and kBT = 1). Lees-Edwards boundary conditions [14] are
used to get a continuous shear profile in the periodic system.

Affine deformation involves a linear flow profile obtained by the
addition of position dependent gains. Shear is applied by imposing flow in the
x-direction, with the shear gradient in the y-direction. This model description
assumes that the interpenetrating fluid flows due to the applied shear with a
linear profile, and the gel network is in fact deformed by the fluid movement.
To model shear in a stagnant solution we omit the bulk flow field (∆S), and
apply shear deformation to the particle network. The deformation of the
network will then be non-affine below a certain length scale, while affine
deformation above this length scale is the result of the homogeneity of the
network at larger length scales, instead of being externally forced. Application
of the shear deformation leads to shear forces acting on the two parallel surfaces
of the material. They are applied by using the Lees-Edwards boundary
conditions, and are transported further in the system through displacement of
the particles in the network. Both models, affine and non-affine deformation can
be represented graphically as in figure 4.
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Fig. 4. Affine and non-affine deformation for a gel structure.

The interparticle stress tensor σαβ is determined from the virial:
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where V is the investigated volume (in our case volume of a layer).
Using equation (10) and the Lees-Edwards boundary conditions, the

system and its images will be subjected to a time-dependent strain γ(t). The
resulting stress response will be analyzed to reveal rheological characteristics.
The technique bears a deliberately close relationship to experimental oscillatory
shear rheometry, and the applied strain should be small enough not to disrupt
the structure if we are to examine the linear response. A small sinusoidal strain
input experiment preserves the overall structure, particularly if no further bonds
are formed or broken. The resulting stress response is sinusoidal and phase
shifted with respect to the input strain. A sine input of the strain at frequency
f = ω / 2π,

),sin()( 0 tt ωγγ = (12)

produces a stress response:

).sin()( 0 δωσσ += tt (13)

The phase lag δ and the strain to stress amplitude ratio 00 σγ  depend on the
material and, under linear conditions, can be regarded as material properties
although both will vary with frequency. For an elastic material the response will
be proportional to the strain (stress and strain in phase) and for a viscous one to
the strain-rate (stress and strain 90° out of phase). By measuring the stress and
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strain amplitude and the phase difference, both storage, G’, and loss, G”,
moduli can be determined:
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so that:

)).cos()(")sin()(’()( 0 tGtGt ωωωωγσ += (15)

The time scale of the measurement can be adjusted by varying the oscillating
frequency ω. The storage modulus is a measure of the energy stored during a
periodic application of a strain, and the loss modulus a measure of the energy
dissipated in the material. The tangent of the phase angle between stress and
strain is:

).(’/)(")(tan ωωωδ GG= (16)

Above equations are derived with the assumption that the test block of
the material is sufficiently thin and we may neglect the inertia of the material.
Implicitly this assumes that the stress is the same at all points in the material, at
least at the scale over which averages are taken in eq. (11). More specifically,
the test piece thickness should be small compared with the wavelength of shear
waves at the test frequency.

The general description of a shear experiment considers two parallel
boundary surfaces moving in the x direction, as shown in figure 5 with a

displacement x. Sinusoidal strain means tietLx ωγ 0),( ±=± , and for purely
sinusoidal deformation the complex wave equation reduces to [11]:
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Γ=−= ρω
, (17)

where ρ is the material density and G* is the complex modulus,

GiGG ′′+′=* . (18)

The parameter Γ is called the propagation constant.
The general solution of equation 17 is

tiyy eekektyx ω)(),( 21
Γ−Γ += , (19)

where k1 and k2 are constants with values chosen to fit particular boundary
conditions.
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Fig. 5. Propagation of an attenuated wave of wavelength λ and penetration depth y0 from two
parallel oscillating surfaces at distance L and −L from the center of the box. Propagating () and
critically over-damped (-·-) wave.

The solution with the shear boundary condition is
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The initial deformation inside the sample will of course not satisfy this relation.
The discrepancy will lead to an initial transient, due to the internal friction in
the material. Equation (20) describes the quasi-stationary solution of the
deformation in the sample once the initial transient has relaxed. The strain is:
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and the observed stress defines as above the complex modulus G*
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Equation (22) for the observed stress can be interpreted as a damped stress wave
moving through the sample material, with penetration depth y0 (distance over
which the wave is damped to 1/e) and wavelength λ (fig. 5). If these parameters
can be determined from the data, G’ and G" can be calculated as [11]:
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If the thickness of the sample is very large compared to the penetration
depth, the simulation describes a surface load experiment on both sides of the
sample. As the waves have attenuated before they reach the opposite end of the
sample, there are essentially two independent simulations. If the thickness of the
sample is not much larger, or smaller than the penetration depth the full
description is needed. If the wavelength is large compared to the sample
thickness, the simulation portrays a bulk load experiment.

3.3 Results
The BD simulations start with the preparation of percolating particle

configurations. These were formed by randomly placing 1000 particles in a 3D
periodic cubic box with volume fraction φ = 0.1, and simulating aggregation at
rest. This was done by using the described, high damping model and a
simplified ball and string model, which resulted in aggregation and gel aging in
short computing time [15]. This simple model does not incorporate explicit
potentials, so it has no stresses. We used a gel configuration from the simple
model, slightly aged, as a starting configuration for the model with potentials.
This configuration was equilibrated by running it for a short period without
external forcing, thus minimizing external stresses.

The prepared gels were subjected to oscillatory shear deformation. We
have performed simulations using the non-affine deformation model for both
the high damping and inertia model. For the inertia model simulations were
performed with and without particle rotations included. During dynamical
deformation tests, the structure of the gel sample should not change. Therefore
in the simulations particle - particle bonds were not allowed to break and no
new bonds could be formed during deformation. The lengths of the runs were
chosen long enough for the initial transient to relax. For small input strains or
high frequencies the stress response was buried in thermal noise. The random
Brownian forces on the individual particles produced high amplitude stress
waves through the network, which relaxed slowly. With thermal noise many
cycles had to be recorded before good averages for the stationary conditions
were reached and a harmonic stress signal was obtained. Thermal diffusion of
the particles was found to be the main contribution to this noise, because it
disappeared at zero temperature and hence that was applied in all simulations to
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avoid lengthy runs. With zero temperature we indicate that the random thermal
force Ri in eq. 4 is taken zero.

Run parameters that were varied were strain amplitude (γ0 = 0.05 to 0.5)
and frequency (f = 0.001 to 10,000). At those amplitudes, 10 cycles were
generally sufficient at low frequencies and 20 at high frequencies to achieve
satisfactory statistics. The higher order frequencies were filtered out from the
rough data through Fourier transform analysis. For all simulations we took as
the characteristic unstretched bond length, b0 = 0.1. The harmonic force
constant, K, was taken 1000 in all the simulation runs. The harmonic constant
controls the rate of relaxation of particle overlaps and bond stretches, the fastest
motions in the system. The value used in the simulations was the largest one not
leading to numerical problems for the given time step.

The reduced time step for the high damping model, at frequencies less
than or equal to 100, was ∆t = 10-4, small enough to result in particle
movements small with respect to particle radius and bond length. At higher
frequencies of 1000 and 10,000 the time steps were ∆t = 10-5 and 10-6

respectively, small enough to obtain a sufficient number of data points for
further analysis. For the inertia model, at frequencies less than or equal to 10,
we took a time step ∆t = 10-4 and varied the viscosity, η = 0.001 to 2 and
particle mass, m = 0.0001 to 1. At higher frequencies, up to 1000, the time step
was ∆t = 10-9. In both models the time step has to be related to the external
shear force, which is system independent. In the high damping model the
viscosity enters the equation through ∆t/6πη only, so there is little point in
varying this parameter. Varying the shear frequency has the same effect.

For data analysis the results on detailed particle positions, bonds and
stresses were used. Stress wave propagation through the gel structures was
determined by calculating stress in layers parallel to the top and bottom layers,
to which the strain was applied. For non-homogenous stress response the wave
propagation theory was used to calculate the G’ and G" using equations 23 and
24. Instead of performing a full two real parameter fit of a complex valued Γ to
the observed time dependent stress profile, we tried to approximate penetration
depth and wavelength from those data, and use eqs. (23) and (24) to calculate
the moduli. The penetration depth, y0, was estimated by fitting a function

0

cosh
y

y
q + , where q is a constant, to a data set of stress amplitudes at adjacent

layers. The wavelength, λ, was estimated from the wave speed 
π

λω
2

=c  as

observed in the phase shift of the maxima between the adjacent layers. For
homogenous stress response across the layers of the sample, G’ and G" can not
be calculated from the wave propagation theory, and eq. (15) was used instead,
with the observed stress simply averaged over the full system. At very high
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frequencies the stress response was restricted to the outer layers of the sample
and not enough data were available to reliably calculate the wavelength and
penetration depth. The observed behavior as seen in several representative
results selected from all the available data will be discussed. In the results
section we will report on the high damping model, the inertia model without
particle rotations and the inertia model with particle rotations.

For the calculations the simulation box was divided into layers parallel
to the xz plane as shown on figure 6, and within each of these the stress and
average bond length were calculated. The layers count from 1 to 10 from top to
bottom of the box so layers 1 and 10 are the outer layers of the simulation box,
where the deformation is applied. Bonds crossing from one layer to the other
were included in the calculations for both layers. Bonds crossing the image
boundary were excluded from most calculations, as we interpreted them as the
points where the stress was imposed to the medium. It is not clear whether this
interpretation and the ensuing omission is actually justified for all conditions
studied, but because it was done before the data were written, we could not
investigate this in detail without having to perform all simulations again. For
some conditions studied, we investigated the effect of including the cross-
boundary bonds and found it to be small (see below).

Fig. 6. Layer scheme. 2D projection of a 3D gel structure divided into layers across the xy
plane. Gray scale is used as depth cue.
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3.3.1 High damping model

In figure  7a the stress distribution over the layers is plotted for the high
damping model. It shows a single, first strain oscillation from rest at low
frequency, f = 0.05, with strain amplitude, γ0 = 0.3. The first oscillation starts at
zero strain and average zero stress in the whole system. The stress in the layer 1
and 10 (the outer layers of the box) increases upon deformation and reaches its
maximum before t = 5, the strain maximum. The stress response in the lower
layers has a lower amplitude and layers 5 and 6 (the most middle layers) show
only a very small response upon deformation of the structure. In the high
damping model the strain wave propagation through the structure is quickly
damped out and we see surface loading occur even at this low frequency. Note
that the stresses in the mirror layers at the same distances from the image
boundary, from the top and the bottom, are not exactly the same. This is related

Fig. 7. Stress response in the layers 1 to 10 (see scheme fig 6) to strain oscillation for the high
damping model. Strain amplitude, γ0 = 0.3; oscillation frequency, f = a) 0.05, b) 50. (− −) layer 1
& 10; (− −) layer 2 & 9; () layer 3 & 8; (--) layer 4 & 7; (···) layer 5 & 6.
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to the small system size, 1000 particles, and the relatively large inhomogeneities
in the structure.

In figure 7b the stress distribution is plotted for one strain oscillation at
high frequency, f = 50, and strain amplitude, γ0 = 0.3. The stress in the two outer
layers of the box behaves similar to that at lower frequencies. There is a small
stress response in the layers 2 & 9 but in the rest of the structure no measurable
stress was observed. The penetration depth, of the order of one layer thickness,
is too small to be determined from the simulation for this case.

In figure 8 the calculated storage modulus, G’, and loss modulus, G",
are plotted as a function of oscillation frequency, f, for the high damping model.

Fig. 8. Storage modulus G’ (�
����������������G" ( 
����������������������������������������f
for the high damping model. Calculations excluding the cross-boundary layer of the sample.
Strain amplitude γ0 = 0.3.

Fig. 9. Storage modulus G’ (�
����������������G" ( 
����������������������������������������f
for the high damping model. Calculations including the cross-boundary layer of the sample. Strain
amplitude γ0 = 0.3
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Both G’ and G" increase about linearly with frequency, f, on a log-log plot. The
curves do not differ much and their slope is approximately 2. The G’ and G"
were calculated based on the wave propagation theory from equations 23 and
24. They could be calculated only for those frequencies where a stress wave was
observed penetrating some distance in the sample. At higher frequencies only
the outer layers of the material show a stress response and thus there is not
enough information to calculate λ and y0. Results obtained from a rerun of these
simulations, in which we included the boundary crossing bonds, are shown in
fig. 9. All those bonds were added to layers 1 and 10. So values plotted in
figure 9 are based on a stress response including the thin cross-boundary layer,
while figure 8 presents the same calculations, but only based on the stress
response in the simulation box, so excluding the cross-boundary layer. The
results are very similar, only at low frequencies G’ and G" are slightly higher in
figure 9. In this case the added stress from layer zero is small compared to that
of the other bonds in the outer layers, and within the accuracy of our
determination the resulting moduli are identical. We expect that will be the case
for all our simulations. Only for rapid external changes, the stress wave does not
penetrate the sample very much, and a large part of the stress in the outer layers
comes from those boundary-crossing bonds. However, for those cases we can
not reliably calculate the moduli and therefore, they are not presented.

3.3.2 Inertia model (without particle rotations)

In developing the computer code for the inertia model, a small
programming error was made, with the effect that particle rotations were
excluded. Before we corrected this error, we had already gathered all the
necessary data, some of them we present below followed by data from
calculations in which particle rotations was included. The model without
rotations may physically not be very relevant, from the modeling viewpoint it is
a valid model, with different properties from the model with rotations. In fact
data obtained shows the same trends if rotation was included or not (see below).
Moreover, comparison allowed us to discuss the effect of particle rotation.

In figure 10 the stresses as a function of time are plotted for the inertia
model without particle rotations for the different layers (see fig. 6). For a
frequency of 0.01 (fig. 10a) there is a very homogenous distribution of stress
across the layers of the structure. At this relatively low viscosity the average
stress response is the same in all the layers. There is no significant transient, all
layers react in phase and at the same amplitude, and there is no sign of any
damping towards the center of the sample. Note that the sample does not react
sinusoidally. This is due to the fact that bonds in our model only carry stress
when extended beyond b0 = 0.1, putting an essential non-linearity at very small
deformation. Only the bonds already stretched, that is extended beyond b0, at



Small non-affine shear deformation of particle gels 43

Fig. 10. Stress response in layers 1 to 10 (see scheme fig 6) to one (a and b), and two (c) strain
oscillations for the inertia model. Viscosity, η = 0.1, particle mass, m = 1, strain amplitude,
γ0 = 0.1, oscillation frequency, f = a) 0.01, b) 1, c) 10. (− −) layer 1 & 10; (− −) layer 2 & 9;
() layer 3 & 8; (--) layer 4 & 7; (···) layer 5 & 6.
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zero deformation contribute to the stress at very small deformation, but as
deformation increases more bonds become stretched and the slope increases.
The freedom of the bonds to stretch to a certain length without leading to a
restoring force was introduced in the model to allow undisturbed gels to locally
reorganize due to small thermal motion of the particles. With a finite value for
the parameter b0 we have implicitly incorporated some mild strain hardening in
deformation of these gels. Once all the bonds in the backbone of the gel are
actually stress carrying the system becomes linear, and strain hardening is the
result of bond reorientation, as observed in large deformation rheology. In a test
we set b0 to zero, and found the normal sinusoidal response, see fig. 11.

Fig. 11. Stress response in layers 1 to 10 (see scheme fig 6) to one strain oscillation for the
inertia model. Unstretched bond length, b0 = 0, viscosity, η = 0.1, particle mass, m = 1, strain
amplitude, γ0 = 0.1, oscillation frequency, f = 0.01 (− −) layer 1 & 10; (− −) layer 2 & 9;
() layer 3 & 8; (--) layer 4 & 7; (···) layer 5 & 6.

Fig. 12. Storage modulus G’ (�
����������������G" ( 
����������������������������������������f.
Empty symbols from eq. 23 and 24, full symbols from eq. 14. Strain amplitude γ0 = 0.1, viscosity
η = 0.1, particle mass m = 1.
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The stress distribution over the layers at a strain frequency of 1 is
plotted in fig. 10b. Distinct strain wave propagation can be observed in the
layered stress response here. The layers 1 & 10 show an immediate stress
response to the applied strain and the neighboring inner layers follow in time.
Layers 5 & 6, the central ones, are the last to react and they oscillate about 150°
out of phase with the strain input at the surface. At a frequency of 10 (fig. 10c)
the stress response is mainly in the outer layers, while layers 2 & 9 oscillate
about 180° out of phase. In the other layers no measurable stress response was
observed.

In figure 12 the storage modulus, G’, and loss modulus, G", are plotted
as a function of oscillation frequency, f, for the inertia model without rotations.
For lower frequencies a homogenous stress response was found and G’ and G"
were calculated using equation 14, while at higher frequencies they were
calculated by using eqs. 23 and 24. At a frequency of 0.1 both methods for
calculating G’ and G" were used and at this point the results differ by a factor
1.5 for G’ and 1.2 for G". Both G’ and G", increase roughly linearly with f on a
log-log scale for f ≥ 0.1. The slope is approximately 1 for f > 10−1, so also on a
linear scale the relation is linear. Beyond a frequency of 5 the stress response
was only in the outer layer and G’ and G" could therefore not be calculated.

3.3.3 Inertia model (with particle rotations)

In figure 13 stress as a function of time is plotted for the layers 1 to 10
(see scheme fig. 6) for the inertia model including particle rotations. For
frequency 0.01 (fig 13a) a quite homogenous stress distribution through the
layers is observed, although less homogenous than in the inertia model without
particle rotations, compare fig. 10a. There also is some transient behavior.

At frequency 1 (fig. 13b) layers farther from the outer face show
consequently decreasing stress amplitudes. The middle layers show hardly any
stress response at all upon deformation. The curves bear less noise than in the
corresponding plot for the inertia model without rotations, compare fig. 10b,
also less then in fig. 13a. This is still the case if we wait until the transients die
out.

At frequency 50 (fig. 13c) the stress response is again mainly in the
outer layers and layers 2 & 9 oscillate at about 90° out of phase. At this
viscosity and particle mass and at this high frequency the time scale of the
applied strain oscillation is high compared to the internal time scales of the
system.

The resonance frequency of this system was found at frequency of
about 0.001 (figure 14). The stress in the system oscillates with increasing
amplitude with consecutive periods of strain application. The average bond
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Fig. 13. Stress response in layers 1 to 10 (see scheme fig 6) to one (a and b) and two (c) strain
oscillations for the inertia model including particle rotations. Viscosity, η = 0.053, particle mass,
m = 0.01, strain amplitude, γ0 = 0.5, oscillation frequency, f = a) 0.01, b) 1, c) 50. (− −) layer 1 &
10; (− −) layer 2 & 9; () layer 3 & 8; (--) layer 4 & 7; (···) layer 5 & 6.
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length shows also an increasing trend regarding the oscillation amplitude. The
overall natural frequency of the gel structure is lower than the frequency of the
external sinusoidal oscillation that we used in all our other simulations.

In figure 15 the storage and loss modulus are plotted as a function of
frequency, for the inertia model with particle rotations. In a log-log plot, G"
increases about linearly with f with a slope of approximately 2 for the plotted
range of f, while G’ does not depend on frequency beyond f = 0.1.

Fig. 14. Stress and average bond length during eight strain oscillations, both plotted in layers
(see scheme fig 6). Viscosity, η = 0.053, particle mass, m = 0.01, strain amplitude, γ0 = 0.5,
oscillation frequency, f = 0.001. (− −) layer 1 & 10; (− −) layer 2 & 9; () layer 3 & 8;
(--) layer 4 & 7; (···) layer 5 & 6.
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Fig. 15. Storage modulus G’ (�
����������������G" ( 
����������������������������������������f.
Strain amplitude γ0 = 0.5, viscosity η = 0.053, particle mass m = 0.01.

3.4 Discussion
If an affine deformation is applied in a simulation, the deformation of

the gel sample will be due to interpenetrating fluid movement rather then due to
straining of the network. The entire network is strained, both parts building the
structures’ backbone and dangling ends. The stress profile through the sample is
homogeneous, the strain is by bulk loading. Differences in stress between layers
in the gel will be due to specific aspects of local structure, such as the number
of bonds or bond orientation. These differences are most clearly observed at low
frequencies. Although the affine technique has been used before to study shear
deformation of particle gels it has been proven to be ineffective to determine the
global character of those systems [10].

In the non-affine technique the strain deformation is applied at the
surface of the structure and propagates through the network to the middle
layers. Only the structural elements of the network carry stress, the strain
application is by surface loading. The stress profile depends on the structure at
all length scales, it reflects the global character of the material. Experimentally
it is difficult to measure stress in different layers of a test material during
deformation and so techniques ensuring homogenous stress response have been
used. In simulations detailed data on stress distribution through a test piece are
available and no such restriction is necessary. With the approximate models
available, the reverse of this observation is more important; simulations of the
type we used, with simplified hydrodynamics, should preferably use surface
loading in a non-affine shear mode. If affine deformation is applied, it should be
tested at least whether it is justified.
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In this paper we report on simulating oscillatory shear deformation
tests. We determine the stress response in adjacent layers through a test piece
and use these data to calculate the storage and loss modulus from the wave
propagation theory. In most of our calculations we disregarded the stress from
the cross-boundary layer, where the strain was applied. Within the accuracy of
our calculations likely that does not significantly influence the results.

In the high damping model the stress response in the outer layer is
always greater than in the rest of the box, regardless the strain amplitude or
frequency, within the domain investigated. The stress propagates into the bulk
of the box and is quickly damped out. For the lowest oscillation frequencies
there is a just noticeable effect of the applied strain in the inner layers, see
fig. 7a, but at higher frequencies the only measurable stress response is in the
outer layers. Essentially for a macroscopic system the stress response will
always be a surface effect only for this parameter regime. This is in agreement
with what one would expect for the high damping limit, which implies high
viscosity systems.

Inertia effects must be included to have a proper strain wave
propagation through a gel structure. The time scale of strain wave propagation
in the inertia model depends on the viscosity of the sample, mass of the particles
and the strength of the bonds (harmonic constant). A parameter regime exists,
for which at low frequency a homogenous stress profile is observed in response
to the surface strain loading, fig. 10a. The time scale of wave propagation, the
time needed for a wave to cross the sample, is much shorter than the time scale
of deformation. The inertia model without particle rotations showed a more
homogenous stress response of the structure for higher damping conditions then
the model including particle rotations. Neglecting rotations appears to lead to a
somewhat stiffer gel. This can be understood by noting that the bonds are fixed
at the particle surfaces and are small relative to particle size. If the particles can
rotate that will diminish the amount a bond will be stretched upon deformation
of the structure.

In the inertia model there is a viscosity dependent frequency, at which
the system starts to resonate. This is a peculiar effect of the choice of the
parameters, especially the low value of the harmonic constant. The natural
frequency of the structure in experiments is usually higher than that of the
external oscillations. In our simulation model it is the opposite, a more realistic,
higher value for the harmonic constant would have lead to a smaller time step,
and inhibitively long simulations. Similarly simulations below the resonance
frequency would have needed to be extremely long because of the low
frequency and the long transient.

For the high frequencies, regardless of the model used, only the outer
layers give a stress response due to the strain. The response of the first layer
from the surface is mainly elastic, meaning that bonds stretch due to applied
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force, but the adjacent layer of particles does not move at all. For the high
damping model this is already the case at lower frequencies than in the inertia
systems. Most differences between the models are observed at low frequencies,
where the time scale of the wave propagation is sensitive to the detailed model
and inertia parameters.

The estimated values of the wavelength λ and penetration depth y0, c.f.
those of G’ and G" calculated from these, from our approximated analysis of the
stress wave model may not be very accurate. More data points, i.e. more layers,
larger samples, longer runs, would obviously help in increasing the accuracy,
but the main thing that is needed is a better fitting procedure of the available
data to the theoretical two parameter stress profile. We are currently developing
such a procedure. At high frequencies only the outer layer is moving so there is
no wave propagation from which we can estimate λ and y0. Thinner samples
could be used with thinner layers to have data about wave propagation in those
systems. On the other hand for very narrow samples, thinner than the fractal
length measured, these properties would no longer be the material properties of
a real sample.

3.5 Conclusions
We have shown that the standard procedure of simulating oscillatory

shear strain or stress experiments, by using an affine deformation of the sample,
is probably an incorrect method to determine the rheological properties of the
gel structure. Not only does this method apply stresses to parts of the gel that
are not stress carrying, but it also ignores effects of shear wave propagation
through the sample. Especially at higher frequencies of the externally applied
deformation these shortcomings become manifest. The non-affine method that
we propose is equally simple to use as the affine method. The explicit
determination of the time dependent stress profile in the gradient direction
immediately shows whether the simulation should be identified as a bulk load
or a surface load experiment. The approximate method we have used to analyze
the surface load experiments is imperfect, and should be further developed.
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Chapter 4

¹

Brownian Dynamics (BD) simulations have been performed to study structure and
rheology of particle gels under large shear deformation. The model incorporates soft
spherical particles, and reversible flexible bond formation. Two different methods of
shear deformation are discussed, namely affine and non-affine deformation, the second
being novel in simulation studies of gels. Also two dynamic descriptions of the model
are presented, with and without inertia effects. Non-affine deformation resulted in a
slower increase of the stress at small deformation than affine deformation. At large
deformation both models gave similar stress responses, although the inertia model
resulted in lower stresses. The particle gels, regardless of the model used, were observed
to fracture into lumps that compactified due to local reorganization. A reversible
yielding transition, as observed in polymer gels, was not found. Fractal properties of the
gels were irreversibly lost at large deformation.

4.1 Introduction
Particle gels are systems of colloidal particles that form weakly bonded

percolating networks interpenetrated by a suspending fluid. They are
characterized as soft, deformable, elastic solids. A wide range of particles may
form this type of system. In many food gels the particles may themselves be
complex and deformable. However, the unifying feature is that the entities
forming the particle gel are roughly globular in shape and have relatively short-
ranged bonding interactions with near neighbors. The structure of those gels is
strongly determined by the aggregation kinetics and reorganization of the
system [1] and can often be characterized using fractal analysis [2]. The
concentration of particles in those systems can be quite low, but in spite of that,
the mechanical properties are dominated by the network rather than by the
interpenetrating fluid. An example of a particle gel from the food domain is
                                                          
¹ A.A. Rzepiela, J.H.J. van Opheusden and T. van Vliet, in revision for J. Rheol.
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yogurt in which the particles are casein micelles [3]. Particle gels should be
distinguished from polymer gels, such as gelatin. Polymer gels consist of cross-
linked long molecules with considerable conformational flexibility between the
cross-links. The two types of gels strongly differ in their large deformation
rheological behavior as a result of their different microstructures.

Most functional properties of gels are related to their large-deformation
and fracture characteristics rather then small-deformation characteristics. Large
deformation properties depend much more on the detailed structure of the gel
then small deformation properties do [4]. When a colloidal gel is put under
stress, its structure is first deformed and finally destroyed. Often gels do not
exhibit clear macroscopic fracture, but show a transition from an elastic to a
viscous regime.

Many models were previously developed to describe shear deformation
and flow of aggregating viscous, colloidal suspensions over a wide range of
volume fractions and shear rates. Whittle and Dickinson [5, 6] studied large
strain rheology of gels whereby the bonding interactions were varied. Shear
thinning and flow properties of concentrated colloid suspensions with depletion
interactions were studied by Silbert et al. [7]. Potanin [8] studied deformation
and breakup of colloidal aggregates due to shear flow as a function of the
particle interactions.

In the studies quoted above and numerous other simulation studies an
affine model for shear deformation of particle gels was used. In the affine model
the interpenetrating fluid is moving with a linear velocity profile. The response
of the particle network to this flow determines the rheology. We have developed
a non-affine deformation model in which the network is subjected to shear in a
stagnant bulk fluid. The shear forces now act only on the two opposite parallel
surfaces of the material. A real system will be an intermediate of the two
models. The non-affine model has, to our knowledge, not been used before for
studying gel deformation in shear.

If the time scale of relaxation of the particle velocities is much smaller
than the time steps used in the simulations the so called high damping limit can
be used. This model only keeps track of particle positions, velocities are
ignored. That means also the kinetic energy is ignored. To study crack
propagation and brittle fracture we here have extended our model with
calculations of the particle velocities, thus including the inertia effects. Models
were previously developed to describe brittle versus ductile fracture behavior
for crystal solids under strain [9]. In this paper we will try to identify yielding,
ductile fracture and brittle fracture in particle gels. The main question we want
to answer is whether we microscopically can distinguish macroscopic fracture
from macroscopic yielding.
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4.2 Simulation details
The model describes elastic spheres of a radius a, with a harmonic

central repulsion, placed in a 3D cubic box. Before a gel is formed the particles
move through the solvent due to random displacements. When two particle
surfaces come within a bonding distance Rbond, an elastic string is formed. The
attachment points of the strings are fixed on the surface, and rotate with the
particle. The string is completely flexible for lengths below Rbond, it is Hookean
beyond this value and breaks when stretched above a specified length for bond
breaking, Rsplit. Relative particle motion is possible due to rotational and
translational diffusion, which allows cluster reorganization.

4.2.1 Particle interactions

The particles interact through potentials which consist of the core
potential VC, equation 1, and the bonding interaction VB, equation 2, both
represented by a harmonic force,
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where rij = |ri - rj| is the distance between particle positions ri and rj, and
bij = |bi – bj| is the distance between bond attach points bi and bj on the particle
surfaces. Further b0 is the maximum unstretched bond length and K is the force
constant. This can be presented graphically as in figure 1.

Fig. 1. Particle interactions: central core repulsion and non-central bonding attraction.
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The force on particle i due to j, Fij, is then simply:

)).()(( ijBijCiij bVrVF +−∇= (3)

The total potential force on a particle is the sum of the pair forces.

4.2.2 Brownian Dynamics algorithm

The Brownian Dynamics (BD) simulation model is based on the
Langevin equation, the dynamical equation of motion for a system of diffusing
particles. The total force here is the sum of the net force of interaction between
the particles, the random Brownian force and hydrodynamic interactions. The
solvent is regarded as continuous and the Brownian force mimics thermal
collisions between the solvent and the dispersed particles. The force on particle
i is given by the equation:
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with Fij given by equation (3), Ri the random (Brownian) force and Hi the force
modeling hydrodynamic interactions. We approximate Hi by simple Stokesian
friction, neglecting hydrodynamic interactions between particles. The liquid
drag force on a single particle, Hi, is proportional to the particle velocity,
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where ζ = 6πηa is the Stokes drag, with η the solvent shear viscosity, and a the
particle radius. The size of the simulation box determines the volume fraction of
the particles. Periodic boundary conditions are used to avoid edge effects. All
parameters corresponding to sizes or distances are normalized to the radius of a
particle (a = 1) and all parameters corresponding to energies are normalized to
units of kBT (kBT = 1).

The Langevin equation (4) can be solved numerically, enabling us to
follow the movements of each particle through the system in consecutive
constant time steps.

4.2.3 The inertia effects model

Taking particle velocities and positions as variables this second order
differential equation is written in form of two coupled first order equations:
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which can be solved numerically:
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where m is particle mass and vi is particle velocity. The effect of the random
force Ri gives particle uncorrelated displacements <∆si

2> = 2DT∆t with s = x,y,z,
and DT = kBT /6πηa the translational diffusion coefficient. The particles
similarly undergo rotational motion and diffusion, with a rotational diffusion
coefficient DR = 3DT/4a2. Algorithm (Eq. 7) is used if the simulation time step
is smaller than the relaxation time of the particle velocity autocorrelation
function. This relaxation time depends on the viscosity and is large for low
viscosity systems. That implies that the description applies to systems with low
damping (ζ).

4.2.4 The high damping model

In the limit of high damping the time step is much larger than the
relaxation time of the particle velocities. This is true in high viscosity systems.
To model this, we neglect the second order term in (4) to obtain:
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This first order differential equation for only particle positions, also is solved
with the Euler forward method:
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A more detailed description of the high damping limit model is given in an
earlier paper [1].
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4.2.5 Rheology

To probe the rheology of the system, shear flow is included into the
equations of motion (7) and (9). The widely used affine method involves a
linear flow profile by addition of position dependent increments (Fig. 2). Shear
is applied by imposing flow in the x-direction, and a shear gradient along the y-
direction. In the equation of motion an extra term is added to the particle
positions increment:

.)( ttyS xyi ∆=∆ γ� (10)

where xyγ� is the shear rate. In the high damping limit calculations a = 1, DT = 1,

and kBT = 1, so the shear rate equals the Péclet number in the units used
(Pe = γ� a2 / DT). In the inertia model DT depends on the viscosity, so

Pe = γ� a3 6πη (kBT = 1). Lees-Edwards boundary conditions [10] are used in
the affine model to have a continuous shear profile in the periodic system.

Note that the high damping limit and the inertia model refer to different
physical systems, rather than to different models that can be used for the same
system. Which model one has to use depends on the values of the physical
parameters, particle mass and size, viscosity and temperature.

In the non-affine model we omit the bulk flow field (∆S) but still apply
Lees-Edwards boundary conditions (Fig. 2). The shear forces act only on the
two parallel surfaces of the material and are transferred further through the
network. To allow this transfer and to avoid wall slip in the early stages of
deformation, bonds are not allowed to break in a small layer of two particle
diameters at both the top and the bottom of the box.

Fig. 2. Affine and non-affine deformation for a gel structure.
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The interparticle stress tensor σαβ is determined from the virial:

),,,,(,
1

1

zyxFr
V

N

i

N

ij
ijij =−= ∑∑

= >

βασ βααβ (11)

where V is the volume of the simulation box.
Every iteration step in all models consists of: formation of new bonds

between particles within the bonding range, moving of the particles due to the
Brownian, external shear and interparticle forces, and breaking of stretched
bonds.

4.3 Results
The BD shear simulations start from previously prepared percolating

particle configurations. These were formed by randomly placing 10,000
particles in a 3D periodic cubic box at a volume fraction φ = 0.1, and by
simulating aggregation at rest. We used the high damping model and a
simplified ball and string model for aggregation and gel formation [2]. The
formed gels have a fractal dimensionality of approximately 2.3.

The prepared gels were equilibrated and subjected to shear deformation.
Simulations were performed using affine and non-affine deformation for both
the high damping and inertia model. The model parameters were varied, the
shear rate (Pe = 0.05 to 0.5), and the bond breaking length (Rsplit = 0.4 and 0.7).
For all simulations we took the particle distance for bond formation, Rbond = 0.1
as well as the unstretched bond length b0 = 0.1. The harmonic force constant
was taken K = 1000. The harmonic constant controls the rate of relaxation of
particle overlaps and bond stretches, the value used in the simulations was the
largest one not leading to numerical problems for the given time step. The
reduced time step for the high damping model was ∆t = 10-4 in all the
calculations. This was small enough to give particle movement small with
respect to particle radius and bond length. For the inertia model we took a time
step ∆t = 10-4 and varied mass, m = 10-4 to 10-3, and viscosity, η = 0.053 to 0.1.
Note that different reduced units are used in the models, and the absolute values
of ∆t cannot be compared directly. In both cases the time step is to be combined
with the shear rate, giving the total shear, which is system independent. In data
analysis results on detailed particle positions, bonds and stresses were used. We
do not present here all available data but discuss the observed behavior for
several representative results.

In the results section the high damping results will be first presented for
affine and non-affine deformation. Next, we will compare results from the high
damping model with those from the inertia model.
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4.3.1 The high damping model

In figure 3 stress-strain relations are shown for affine and non-affine
deformation of a given gel for the high damping model. For affine deformation
the stress in the system steeply increases upon straining. Bonds carry stress, but
do not break initially. New bonds are formed due to the ongoing process of
local reorganization caused by Brownian motion and due to shear. About 70%
of the bonds formed are due to the applied shear. The increase in the average
bond length is for more than 90% strain driven. Thus the number of bonds per
particle increases and continues to do so during the further simulation. Also the
average bond length increases as a function of strain and only at the end of the
simulation it starts to level off, see figure 4. At a strain of approximately 1.3
bonds break and the structure gains additional freedom for reorganization and
relaxation. The stress reaches a plateau and does, for a certain strain range, not
depend on strain, as bonding, breaking, stretching, and relaxation average out.
From a macroscopic perspective, one would conclude that the system yields.
However, at a strain of around 3.3 a phenomenon more alike macroscopic
fracture was seen. Many bonds break, but many are formed as well, and the net
result is still an increase in bonds. Stress relaxation due to bond breaking is
apparently faster than stress increase caused by bond stretching, as the stress
goes down. The system as a whole does not rupture yet, however.
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Fig. 3. Stress response of a gel structure as a function of strain. High damping model. For both
systems Rsplit = 0.4 and Pe = 0.1. Gray curve: affine deformation, black curve: non-affine
deformation.
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Fig. 4. Number of bonds per particle and average bond length as a function of strain. High
damping model. For both systems Rsplit = 0.4 and Pe = 0.1. Gray curve: affine deformation, black
curve: non-affine deformation.

If we look just at the stress-strain curve information, which can also be
obtained in a macroscopic experiment, we could identify a yielding regime,
after a partial fracture, between γ = 4 and γ = 6, followed by an elastic response,
between γ = 6 and γ = 7.5, than yielding, fracture, yielding, etcetera. The
obtained structural information such as presented in fig. 4, which generally
cannot be obtained in a real experiment, shows no such regimes, but rather an
ongoing process of compactification. For instance the "elastic" regime is not
related to a significant increase in the average bond length and hence is
probably related to an increase in number of bonds and bond orientation.

The non-affine deformation curve shows roughly the same stress-strain
profile, with two differences. The initial slope of the curve is much smaller, and
the stress reaches a maximum at strain of approximately 1.6 before decreasing
to a yielding plateau. In the affine model all bonds are stretched, and the whole
network carries stress. In the non-affine deformation only the backbone of the
structure carries stress. Dangling side chains, or strands connected to the
backbone in loops, generally will be stressless. Hence the affine model
overestimates the actual initial stress. The stress overshoot in the non-affine
model can be explained similarly. The backbone elements are the first to give
way, leading to local fracture, and rapid stress relaxation, until the stress is
transformed to new or other backbone elements. In the affine model stress is
distributed much more homogeneously, inducing other elements than the
backbone to break. Thus fracture also occurs much more distributed, and the
effect is less singular.

The effect of the shear rate on the non-affine deformation stress-strain
profile is shown in fig. 5. Over this range, all stress-strain curves show the same
initial slope and similar behavior at larger strains. The stress overshoot seen in
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Fig. 5. Stress response of a gel structure as a function of strain. High damping model, non-
affine deformation. For all systems Rsplit = 0.4. () Pe = 0.1, (-⋅-) Pe = 0.05, (⋅⋅⋅) Pe = 0.2,
(--) Pe = 0.5.

fig. 3 is less clear or absent, and maybe is no generic feature of the non-affine
deformation. At Pe = 0.5 there is no overshoot at all, the initial increase in stress
directly levels of to a plateau value. However at this and higher Pe numbers
wall slip occurred during the non-affine deformation, implying that we could
not investigate rheological behavior at large deformation for high shear rates
with this simulation model. Note that the particle Pe number is rather low, but
the cluster Pe number is considerably larger.

Figure 6 shows snapshots of: a) a starting gel configuration, b) a
configuration of a non-affinely deformed gel, c) a stress distribution plot of the
deformed gel, and d) the stress concentration plot with low values filtered out.
In those plots the particle diameter is reduced to half of its real size and the
bonds are much longer. A plot of the stress distribution (fig. 6c) in the deformed
sample shows some stress concentration around the holes, in agreement with
what one would expect from fracture mechanics [11]. The filtered out plot with
only high stress values (fig. 6d) shows that stress carrying strands are aligned
with the direction of the acting force.
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Fig. 6. A gel system under non-affine deformation: a) starting configuration, b) configuration
plot at γ = 8.35 (gray scale is used as depth cue), c) stress distribution plot at γ = 8.35 (dark color
denotes high stress), d) the stress distribution plot, low values filtered out.
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Fig. 7. Stress response of a gel system under non-affine shear deformation. High damping
model. () Pe = 0.05 Rsplit = 0.4; (⋅⋅⋅) Pe = 0.1 continued from the configuration at γ = 12;
(--) bonding disabled, starting from the configuration at stress maximum.

Fig. 8. Number of bonds per particle as a function of strain. High damping model.
() Pe = 0.05 Rsplit = 0.4; (⋅⋅⋅) Pe = 0.1 continued from the configuration at γ = 12; (--) bonding
disabled, starting from the configuration at stress maximum.

To substantiate the observed apparent macroscopic yielding, parameters
were changed at certain points of the non-affine deformation run at Pe = 0.05
and Rsplit= 0.4, and the simulation was continued with the new parameter
settings. Figure 7 shows the stress-strain profiles obtained, and figure 8 the
number of bonds as a function of strain. At γ ≈ 12 we increased the shear rate to
Pe = 0.1. As expected the stress increases initially, but after repeated fractures,
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the finite system finally ruptures completely. As the shear rate is not very much
larger we can expect similar behavior if the simulation is continued at
Pe = 0.05. The next test starts at the configuration near the stress maximum at
γ ≈ 2. If we prevent new bonds from forming the sample ruptures, but the stress
does not decrease to zero monotonically, as weak spots still have to be loaded to
their breaking point before they will fracture.

4.3.2 The inertia model

Figure 9 shows the stress-strain profiles of a particle gel as simulated
using the two model approaches, the high damping limit and the inertia model.
The dashed curve gives the stress response of a gel simulated with the inertia
model but with parameters chosen such, to have the high damping limit apply.
The curve shows more similarities then differences with the previous high
damping result. The dotted curve of fig. 9 gives the stress-strain relation for the
inertia model for a system where inertia effects are important. The initial slope
of this curve is very similar to the former two. The stress increases as bonds
stretch, with the same rate, in the direction of the acting force but bonds do not
break yet. Meanwhile the pressure in the system is higher as in the relatively
lower viscous system the particles move more rapidly then in the high damping
system. Those rapid particle movements cause larger oscillations of the bond
lengths, which at relatively low strains give higher value of average bond length
(see fig. 10). The initial increase in average bond length up to the value of 0.123
is purely inertia effects driven. At a strain of about 0.4, many bonds break and
the breaking rate is higher than in the high damping model due to the
oscillations of the bond lengths. More bonds break, releasing more stress from
the structure. At the same time new bonds form and the rate of bond formation
is also higher then in the high damping model. Up to a strain of approximately 5
the resulting numbers of bonds per particle are very similar for both models. At
strain of around 0.6 the stress reaches a plateau and does, for a certain strain
range, not depend on strain. It seems the system simply yields. The yield stress
for the inertia model is about half of the one for the high damping model.

After subsequent deformation the inertia system fractures at strain of
about 3, yields, and fractures again at strain of about 6.8. From strain of
approximately 3 the number of bonds per particle for the inertia model is lower
then for the high damping system, the gap widens up from strain of about 5 and
narrows down in the end. Those curves are results of a single simulation runs
and were not tested for reproducibility. As the differences between the number
of bonds per particle for different models are minor, no universal observations
can be made. In general, one would expect that the lifetime of a bond is shorter
in the inertia model and some evidence of it exists in the bond length
distribution in the structure.
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Fig. 9. Stress response of a gel system as a function of strain applying affine deformation
K = 1000 and Rsplit = 0.4. () high damping, Pe = 0.1, ∆t = 10−4(gray curve from fig. 3); (--) 
inertia model, γ� = 0.1, ∆t = 10−4, η = 0.053, m = 10−4; (⋅⋅⋅) inertia model, γ� = 0.1, ∆t = 10−4,

η = 0.1, m = 10−3.

Fig. 10. Number of bonds per particle and average bond length as a function of strain. For all
systems affine deformation K = 1000 and Rsplit = 0.4. () high damping, Pe = 0.1, ∆t = 10−4(gray
curves from fig. 4); (--)  inertia model, γ� = 0.1, ∆t = 10−4, η = 0.053, m = 10−4; (⋅⋅⋅) inertia model,

γ� = 0.1, ∆t = 10−4, η = 0.1, m = 10−3.
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Fig. 11. Stress response of a gel structure as a function of strain. For all systems non-affine
deformation K = 1000 and Rsplit = 0.4. () high damping, Pe = 0.1, ∆t = 10−4(black curve from
fig. 3); (--) inertia model, γ� = 0.1, ∆t = 10−4, η = 0.053, m = 10−4; (⋅⋅⋅) inertia model, γ� = 0.1,

∆t = 10−4, η = 0.1, m = 10−3.

Fig. 12. Number of bonds per particle and average bond length as a function of strain. For all
systems non-affine deformation K = 1000 and Rsplit = 0.4. () high damping, Pe = 0.1, ∆t = 10−4

(black curves from fig. 4); (--) inertia model, γ� = 0.1, ∆t = 10−4, η = 0.053, m = 10−4; (⋅⋅⋅) inertia

model, γ� = 0.1, ∆t = 10−4, η = 0.1, m = 10−3.
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Figure 11 shows the stress-strain profiles of a non-affinely deformed
particle gel as simulated, using both the high damping and the inertia model.
The dashed curve gives the stress response of a gel simulated with the inertia
model but with parameters chosen such, to have the high damping limit apply.
The curve rather closely follows the previous high damping result. The dotted
curve of fig. 11 gives the stress-strain relation for the inertia model for a system
where inertia effects are important. In general, the differences between the high
damping and inertia model, for the non-affine deformation, can be discussed in
similar lines as for the affine deformation. The stress maximum for the inertia
system is roughly half of the one for the high damping. There is a large increase
in the average bond length at relatively low strains, and the number of bonds is
lower at lower strains. The stress overshoot of the non-affine deformation is
present in the inertia model.

Figure 13 shows the end configurations of the deformed gels from the
simulation runs of which results are presented in figures 9 and 11. All the
pictures show structures with large holes surrounded by compact material. An
affinely deformed gel using the high damping model (fig. 13a) in general results
in a structure with a fracture in the xz plane in the bulk of the structure. A non-
affinely deformed gel (fig. 13b) usually reorganizes to a compact structure in
the center, which is connected through thick strands across the surface. In the
end, when the structure breaks off from the surface, the percolating structure is
lost. Fracture typically is initiated near the surface and continues into the bulk.
The close to surface voids have a typical tilted shape due to movement of
surrounding material. An affinely deformed gel using the inertia model
(fig. 13c) results in a structure of smaller and more compact material lumps.
Fracture occurs in the bulk of the structure rather then at the surfaces. It is often
initiated in multiple fracture planes, where the material shows kind of a laminar
flow in the early stages of deformation. A non-affinely deformed gel using the
inertia model (fig. 13d) similarly as in the high damping model reorganizes to a
compact structure in the center and voids by the surface. Again, in the inertia
model the voids are smaller.

Using both models, inertia and high damping, the non-affine
deformation often resulted in a wall slip. For high damping it happened mainly
at high shear rates, Pe ≥ 0.5 and bond length for splitting, Rsplit < 1. In the inertia
model most of the gels deformed non-affinely resulted in a wall slip. It could be
avoided only for a small range of parameters: viscosity, η = 0.1 to 0.053, mass,
m = 10-4 to 10-3, shear rate, Pe = 0.1, and bond length for splitting, Rsplit = 0.1.
To be able to simulate non-affine deformation at relative lower viscosities we
should probably go to much smaller time steps, this would make the
calculations much more CPU expensive. The wall slip might also be avoided by
taking a thicker layer at the top and the bottom of the box where bonds do not
break. This way fracture can only take place in smaller fraction of the whole
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Fig. 13. Configurations of deformed structures from different models. All structures at a strain
of approximately 10. a) high damping affine deformation, b) high damping non-affine
deformation, c) inertia model affine deformation, d) inertia model non-affine deformation.
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system and a larger absolute structure should be used to give satisfactory
statistics.

In the end of most of our simulations a percolating structure remains,
while most of the fractal characteristics have been lost. As we have shown in
fig. 7, for the accelerated shear deformation, we can expect that such structures
finally rupture completely, rather than showing a prolonged viscous regime.

The shear deformation used influence rotations of the lumps of the gel
material. Affinely deformed structures show cluster rotations regardless of the
position in the simulation box. Clusters in non-affinely deformed structures
rotate only if they are positioned across the yz boundary plane. Single particles
do not rotate in our model description, as it neglects most of the hydrodynamics.
Clusters in the shear flow field rotate in the gradient plane due to shear induced
bond stretches and subsequent bond relaxation. Any dimer in the shear field will
rotate until it is aligned in the flow plane. In the affine deformation model there
is a gradient profile in the whole box and clusters rotate regardless of their
position. In the non-affine model an infinitely narrow shear gradient profile
exists at the yz box boundary and only there clusters rotate.

4.4 Discussion
The underlying assumption behind our model is that we expect that the

stress response in a real system is by the network rather than by the suspending
fluid. For small strains the affine model overestimates the stress. This is because
in this model all chains in the system, also dangling ones, are stretched. The
non-affine model puts stress only at the structural part, the backbone of the gel.
At somewhat larger strains, the moduli, the slopes of the stress versus strain
curves, are more similar. This may be due to strain hardening, where bonds in
the backbone of the gel matrix are directed in the shear direction, while side
chains may still relax. Those stresses than primarily determine the resulting
stress in the gel network. The stress contributions from bonds in the dangling
ends become relatively small. The initial stress-strain curve did not depend on
shear rate over the range investigated. For a non-affine deformation a stress
overshoot could be seen. This overshoot was never observed in the affine
model. The homogeneous stress distribution in affine models can explain the
initial yielding behavior, where in non-affine models stress builds up around
weak elements of the structure, inducing fracture at those spots. In the high
damping model the transition of elastic deformation of the network to structural
breakdown occurred at stress of approximately 0.8 regardless of the strain,
strain rate, or deformation model used. This appears to be an intrinsic feature of
the particle gel we used in the simulation. At higher volume fractions, higher
yield stress was observed.
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In the inertia model the initial stress response of a gel to a strain was
very similar to the one found for the high damping model. The transition of
elastic deformation of the network to structure breakdown occurred at a stress
half of that obtained in the high damping model. The lower stress response in
the inertia model is due to much stronger particle oscillations, which lead to
bond stretching and increase in bond breaking. The particles move easier in the
low viscosity "fluid" in the inertia model where in the damping model the
viscosity was fixed by setting the diffusion constant and the particle radius at 1
giving η = 1 / 6π. In the inertia system, there are more short bonds and less
intermediate bonds than in the high damping system. The bond lifetime is
shorter. This leads to structures of smaller and more compact clusters. At large
deformations the profile of the stress-strain curve in the inertia model is similar
to the one in the high damping model.

In the investigated range of bond strengths, the stress maximum scales
simply with the harmonic constant. For slower deformation rates the stress
maximum is less pronounced, as to be expected, and for γ�  = 0.001 there was no
stress overshoot (data not included).

4.4.1 Yielding

Intuitively one would expect that during yielding the number of bonds
between the particles stays constant, and during fracture it should decrease.
However, in the simulations, the number of bonds always increased, and this
phenomenon was rather independent of model or model parameters. Apparently
external forces promote local reorganization, leading to compact regions
surrounding empty holes, cracks, where a higher length for bond breaking, Rsplit,
tends to give larger holes. It seems that the system does not break or yield but
rather phase separates. Likely this is due to the fact that particles may form
bonds at any position at their surface. In simulations allowing bond formation
and breaking, with a high number of active sites on each particle, we will
always get a compact, solid like structure in the end. This is a different behavior
than the one observed for standard polymer gels. In particle gels new bonds may
be formed with near neighbors while in some polymer gels an active site first
has to travel a large distance before a new connection can be formed. Thus,
particle gels may easily lose their fractal characteristics due to local
reorganization while polymer gels will do that much less or not at all.

To prevent formation of compact structures in particle gels we would
probably have to approach the limit of one bond per particle (two active sites
per particle). In this limit only long, one particle thick chains are possible. They
may form gels by physical cross looping or by incorporating a limited number
of particles with three active sites, but these gels are not fractal. The increase in
the number of bonds in the later stages of simulations was almost only due to
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Fig. 14. Stress response of a gel system applying affine shear deformation, high damping model,
Pe = 0.1 and Rsplit = 0.4. Gray curve: 12 active sites per particle (from fig. 3), black curve: 3 active
sites per particle.

Fig. 15. Number of bonds per particle and average bond length as a function of strain. Affine
shear deformation, high damping model, Pe = 0.1 and Rsplit = 0.4. Gray curve: 12 active sites per
particle (from fig. 4), black curve: 3 active sites per particle.

formation of new bonds on particles, which already had 6 or more bonds
attached to their surfaces. The possibility of formation of a large number of
bonds, where we set the limit to 12 of active sites on each particle, can be the
reason for formation of compact structures under strain. To test this a particle
gel with the limit of three active sites was formed and deformed affinely in the
high damping regime. Figure 14 shows the stress-strain profile of such a gel and
fig. 15 shows number of bonds per particle and average bond length as a
function of strain. In both figures, results are compared with the results shown
before in fig. 3 and 4 for a gel with 12 active sites per particle.
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Fig. 16. Configuration plot of deformed gel build of particles with three active sites. Strain of
around 5.

The stress in the three-active gel is lower during the whole deformation
than in the twelve-active gel. There are fewer bonds cross-connecting the
structure, thus also less stress carrying bonds. The structure fractures at strain of
approximately 1.4 and the stress and number of bonds decrease. Still, the
general slope of number of bonds per particle shows an increase, and in the end
approaches the value of 3, which is the maximum in this system. Despite the
limit of three bonds per particle, this gel also reorganizes to compact structures
and empty holes. The deformed gel is plotted in figure 16.

Particle network gels do not exhibit typical yielding or breaking as,
regardless of the model used, the number of bonds per particle increases under
deformation. Instead, the system under large deformation undergoes fracture in
many places of the network, which allows relaxation of the surrounding
material and formation of new bonds. Consequently lumps of material are
formed, which compactify due to local reorganization, rather then reforming the
network. The size of the lumps depends on bond reversibility. Particle systems
with truly reversible bonds can not form a stable fractal structure but will
always phase separate, although the time scale may be very long. Structures
with basically irreversible bonds, where bonds can brake but can not reform,
will fracture in the classical way that they fall apart. To have yielding, bonds
must be reversible, they must break and reform, but the structure may not
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compactify on deformation, which is the case for the particle network systems
investigated here.

A network of these compactified lumps will be formed, when the
external deformation stops, but the structure of the gel has been irreversibly
altered by the shearing. When such a gel is sheared again, it will probably break
at the links between the lumps, and become a very viscous fluid with little
further reorganization within the lumps. Upon re-gelling hence, little effect
would be observed of the external shear. The coarse lumped network will not be
fractal as the original gel, but have a structure as in percolation models. Still the
internal structure of the lumps can be fractal, but due to the reorganization with
a higher fractal dimensionality than originally. It can be expected that the gels
formed this way are similar to those formed under shear.

4.5 Conclusions
The stress response of the particle gels in affine and non-affine

deformation models showed differences at small strains. It was overestimated
by the affine model, but similar for larger deformations. The transition stress,
from the elastic to the viscous regime, in the inertia model was found to be half
of that in the high damping model, can be measured due to the lower viscosity
of the system.

Particle gel networks formed at rest, regardless the model, are not stable
to shearing. They do not yield, but fracture into lumps that compactify due to
local reorganization. The system is a highly viscous fluid instead of a
continuously deformable solid. External shear alters the system properties
irreversibly, though it may still form a different kind, non-fractal gel network at
rest, similar to gels formed during shear.
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Chapter 5

¹

Brownian Dynamics (BD) simulations have been performed to study structure and
rheology of particle gels subjected to tensile deformation. The model incorporates soft
spherical particles, and reversible flexible bond formation. Two different dynamic
descriptions of the model are discussed, one with high energy dissipation or high
viscosity, the high damping limit, and one with low energy dissipation, the inertia
model. Within both models the particle gels were found to be notch insensitive and
resulting fracture was due to global material failure rather than crack propagation. The
relation between fracture stress and notch size was found to be nearly linear regardless
of the model used. Within the parameter range used in this paper particle gels were
found to exhibit ductile fracture behavior under tensile deformation.

5.1 Introduction
Particle gels are colloidal, solvent rich materials that have become

flocculated into a continuous three dimensional network structure. They are
characterized as soft, deformable, visco-elastic solids. A wide range of particles
may form this type of system. Aggregation kinetics and reorganization of the
system determines strongly the structure of those gels [1], which can often be
characterized using fractal analysis [2]. The concentration of particles in those
systems can be quite low, while still the mechanical properties are dominated by
the network rather than by the interpenetrating fluid. Particle gels are
widespread in the food domain, examples are yogurt and cheese, in which the
particles are mainly casein micelles [3].

Different materials break in different ways, for instance a crispy biscuit
will snap when you bite it, while the same biscuit when dipped into a cup of tea
too long will slowly tear apart under the force of gravity. In general behavior of

                                                          
¹ A.A. Rzepiela, J.H.J. van Opheusden and T. van Vliet, submitted to J.Rheol.
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materials have been classified broadly into two types of fracture, namely brittle
and ductile [4]. Within this scope, many detailed fracture mechanisms can be
distinguished for materials like for example foods [5]. Fracture behavior is
sensitive to different conditions like temperature, deformation rate, and
presence of cracks or notches in a material. Notches tend to encourage fracture
owing to the increase in stress concentration near the notch tip. The relation
between notch length and fracture stress may help in distinguishing ductile and
brittle material. Typical relations between fracture stress and notch length are
plotted for both ductile and brittle material in figure 1. For ductile material this
relation is simply linear, for brittle material the fracture stress decreases more
rapidly with increasing notch length.

In a ductile material, built of essentially parallel independent strings or
fibers, the fracture stress simply scales with the size of the notch, the fewer
connections to break the lower the fracture stress. The total stress needed is just
proportional to the number of strings. In a brittle, highly cross-connected
structure, fracture of one element influences the other elements and energy
released from the fracture of one element can be transmitted to other elements,
inducing fracture propagation. The overall fracture stress is then lower than that
based on the reduction in the number of connections to break when a notch is
formed. Crack initiation and propagation depend on the shape of the notch tip,
blunt notches usually require greater fracture loads than sharp ones. Dynamics
of crack propagation in tensile deformation experiments has been investigated
through simulations on atomic level [6]. Compared to atomic systems particle
gels have a much larger energy dissipation, and we do not expect to have
problems with stress waves travelling through the system at sound speed,
reflecting at the sample boundaries. In the viscous gel system these waves will
damp out relatively quickly, and artificial damping is not needed.

Most functional properties of particle gels, such as shaping, handling,
slicing and eating characteristics are related to their large deformation and

Fig. 1. Fracture stress versus notch length for ductile and brittle material.
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fracture characteristics and only partly to their small deformation
characteristics. Large deformation properties depend much more on the detailed
structure of the gels than small deformation properties do [7]. Previous studies
of particle gels under large shear deformation showed that those structures are
not stable to shearing, they fracture into lumps that compactify due to local
reorganization, destroying their fractal character [8].

Experimental tensile tests have been extensively performed in a range
of materials from ceramic composite [9], through biscuit and pasta dough [10,
11], potatoes [12] up to polymer gels [13, 14]. Experimentally a large tensile
deformation test on a gel is difficult to perform, particularly if the gel is weak.
Particle aggregates have been studied under elongation flows by experiments
[15] and simulations [16]. Tensile deformation has been used to study particle
gels like cheese [17, 18], and more recently weak gels like yogurt [19].
Simulations do not share many of the practical problems of a laboratory
experiment, and the available detailed data can help to explain the underlying
mechanisms of tensile deformation and fracture.

5.2 Simulation Details
The simulation model contains N elastic spheres of radius a, with a

harmonic central repulsion, placed in a three-dimensional box. Prior to gel
formation the particles move through the solvent due to random displacements,
and they form a bond when two particle surfaces come within a bonding
distance Rbond. The attachment points are fixed on the surface, and rotate with
the particle. The bond is completely flexible for lengths below b0, it is Hookean
beyond this value and breaks when it is stretched above a specified length for
bond breaking, Rsplit. After aggregation, relative particle motion is possible due
to rotational and translational motion of the particles, which leads to cluster and
gel reorganization.

5.2.1 Particle interactions

The particles interact through potentials which consist of the core
potential VC, equation 1, and the bonding interaction VB, equation 2, both
represented by a harmonic force,
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where rij = |ri - rj| is the distance between particle positions ri and rj, and
bij = |bi – bj| is the distance between bond attach points bi and bj on the particle
surfaces. Further b0 is the maximum unstretched bond length, in fact b0 = Rbond,
and K is the force constant. This can be represented graphically as in figure 2.
The force on particle i due to j, Fij, is then simply:

)).()(( ijBijCiij bVrVF +−∇= (3)

The total potential force on a particle is the sum of the pair forces.
This model using forces is a straightforward extension of a similar model with
holonomic constraints for particle overlaps and stretched bonds, that was
developed to investigate aggregation and reorganization [20].

Fig. 2. Particle interactions: central core repulsion and non-central bonding attraction.

5.2.2 Brownian Dynamics

The Brownian Dynamics (BD) simulation model is based on the
Langevin equation of motion for a system of diffusing particles. The total force
here is the sum of the net force of interaction between particles, the random
Brownian force and hydrodynamic interactions. The solvent is regarded as
continuous and the Brownian force mimics thermal collisions between the
solvent and the dispersed particles. The force on particle i is given by the
equation:
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with Fij given by equation (3), Ri the random (Brownian) force and Hi the force
modeling hydrodynamic interactions. We approximate Hi by simple Stokesian
friction, neglecting hydrodynamic interactions between particles. The liquid
drag force on a single particle, Hi, is proportional to the particle velocity,
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where ζ = 6πηa is the Stokes drag, with η the solvent shear viscosity, and a is
the particle radius. The size of the simulation box indirectly determines the
volume fraction of the particles. Periodic boundary conditions in all three
directions are used to avoid edge effects. All parameters corresponding to sizes
or distances are normalized to the radius of a particle (a = 1) and all parameters
corresponding to energies are normalized to units of kBT (kBT = 1).

5.2.3 Numerical models

Taking particle velocities and positions as variables this second order
differential equation is written in form of two coupled first order equations:
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which are solved numerically to give:
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where m is particle mass and vi is particle velocity. The effect of the random
force Ri gives uncorrelated particle displacements <∆si

2> = 2DT∆t
independently in all three directions s = x,y,z, with DT = kBT /6πηa the
translational diffusion coefficient. The particles similarly undergo rotational
motion and diffusion, with a rotational diffusion coefficient DR = 3DT/4a2. This
description applies to systems with low damping (ζ). In the limit of high
damping the time step is much larger than the relaxation time of the particle
velocities. In a highly viscous system the equations of motion reduce to
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This leads to a model with only particle positions, which is solved with the
Euler forward method:
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A more detailed description of the high damping limit model is given in an
earlier paper [1]. The high damping limit, in combination with the constraint
model, was used in gel formation, where the simulation time step used could be
relatively big. First we used the high damping model for tensile deformation.
The inertia model was used later to investigate possible brittle fracture.

5.2.4 Rheology

The uniaxial extension (tensile) tests are fundamental and probably
most frequently used fracture tests, although for particle gels it is more often
uniaxial compression that is applied. The obtained data, e.g. fracture or yield
stress, can be exploited for quality control, material specification and
development work. In a tensile test a material is subjected to a continuous
increasing tensile strain, and the resulting stress is measured or vice versa. In
experimental measurements sophisticated apparatus has been developed to grip
a test piece and maintain an approximately constant extension rate, while it is
assumed that the stress is uniformly distributed over the cross section of the
sample. To simulate such a test, in affine deformation models extension is
applied in the y direction, and an extra term is added to the particle positions:

ttyS yyi ∆=∆ ε�)( (10)

where yyε� is the extension rate. Also the length of the periodic image box in the

y-direction is adjusted according to the applied tensile deformation. In this
study the extension forces act only on two parallel (external) surfaces of the
structure, omitting the gradient in the bulk, deforming only the box. The forces
acting on the surface, and the stresses they give, are mediated into the bulk of
the material by displacements of particles in the network itself, rather than by
flow patterns in the interpenetrating solvent.  The box adjustments we used are
analogous to Lees-Edwards boundary conditions [21] for shear deformation.
The interparticle stress tensor σαβ is determined from the virial:
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where V is the volume of the simulation box. Here it is assumed that the stress is
homogeneously distributed on the length scales of the box size; equation (11)
can also be applied to smaller volumes. Using equation (10) and the Lees-
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Edwards boundary conditions, the system is subjected to a time-dependent
extension. The Cauchy elongation strain is
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where ybox is the simulation box dimension in the y direction. The resulting
stress response can be analyzed to reveal rheological characteristics. The
technique bears a deliberately close relationship to rheological tensile
deformation experiments.

5.3 Results
We started by preparing particle gel configurations to be used for the

tensile tests. The gels were prepared using the high damping BD algorithm with
constraint dynamics. In this model N (where N = 1,000 or 10,000 in some larger
samples) particles are placed randomly, without particle overlaps, in a 3D
periodic box with volume fraction φ = 0.3, and aggregation at rest is simulated.
This resulted in aggregation and gel aging in short computing time [2]. Rather
then employing the cubic sample that we used for shear deformation [8],
specific samples were developed for the tensile simulations. These samples
were thin in the direction of the deformation, allowing fracture to occur in the
relatively large perpendicular fracture plane.

From the continuous gel structures obtained in the above simulations
notches of different shape and size were cut. The notch length was in the x
direction (perpendicular to the tensile force), the notch thickness in the y
direction (in the direction of the force), and in the z direction the notch stretched
through the full gel sample). Thick notches were formed by removing all the
bonds and particles from the notch space. The removed particles were randomly
but without overlaps placed back in the simulation box. This configuration was
equilibrated by running it for a short period without external forcing and
allowing the box size to relax, thus minimizing stresses on sample walls. During
equilibration the monomers were allowed to form new bonds outside of the
notch, and more new bonds were formed due to relaxation and reorganization of
the structure. This led to an increase of particle volume fraction in the gel
structure, especially so around the cut out notch. Cutting only bonds in a
specified xz plane was used to cut out narrow notches, with a thickness of the
order of a bond length. Those structures were equilibrated while bonds were not
allowed to form, as it could close the notch. Configurations with notches were
used to investigate the impact of notch length and radius of the notch tip on
fracture behavior.
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The prepared gels, with and without notches, were subjected to a tensile
deformation, which was applied in the y direction. In several test simulations,
where x and z box dimensions were fixed there was an increase in stress
components xx and zz as well. In simulations where the volume of the box was
artificially kept constant up to and after fracture, compressive stresses
developed; the stress components xx and zz had negative values. To avoid these
unphysical effects in all final simulations we allowed the samples to shrink, by
gradually relaxing the stresses in x and z directions, thus decreasing the size of
periodical image box. The stress components xx and zz remained about zero
during the whole deformation.

We have performed simulations using the non-affine deformation
model for both the high damping and the inertia model. The model parameters
we varied were the extension rate (ε�  = 0.1 to 1), and the bond breaking length
(Rsplit = 0.2 to 0.4). The particle distance for bond formation was Rbond = 0.1
during both gel formation and aging. During deformation of structures with
very narrow notches, bond formation was disabled to avoid closing up of the
notch. In all simulations the characteristic unstretched bond length was b0 = 0.1.
The value of the harmonic force constant varied from K = 1,000 to 10,000. The
harmonic constant controls the rate of relaxation of particle overlaps and bond
stretches, the values used in the simulations were the largest ones not leading to
numerical problems for a given time step. The size of the time step we used is
related to thermal translational and rotational diffusion. We come back on the
relation between the harmonic constant and the time step in the discussion
section.

The reduced time step for the high damping model was ∆t = 10-4, small
enough to result in particle movements small with respect to particle radius and
bond length. For the inertia model the time step varied, ∆t = 10-4 to ∆t = 10-7 as
did the viscosity, η = 0.01 to 0.1 and particle mass, m = 10-6 to 0.01. In both

Fig. 3. Layer scheme. 2D projection of 3D gel structure divided into layers across the xz plane.
Gray scale is used as the depth cue; for clarity particle size is reduced to half of its actual size, so
bonds are much longer then in reality.
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models the dimensionless time step has to be related to the external tensile
force, which is system independent. In the high damping model the viscosity
enters the equation through ∆t/6πη only, so there is little point in varying this
parameter. Varying the extension rate, ε� , which equals Pe in this approach, has
the same effect.

For data analysis the results on detailed particle positions, bonds and
stresses were used. Sample averaged stress tensor elements were plotted versus
extension. For the simulation the computational box was divided into layers
perpendicular to the y direction as shown in figure 3, and within each of the
layers the stress and average bond length were calculated. The layers count
from 1 to 10 from top to bottom of the box, so layer 1 and 10 are the outer
layers of the simulation box, where the deformation is applied.

Several representative results selected from all the available data will be
discussed to present the observed behavior. The behavior of particle gels under
tensile deformation will be presented both for simulations with the high
damping model and the inertia model.

5.3.1 High damping model

Figure 4 shows a typical set of configuration plots of a gel with a notch under
tensile deformation. The starting structure plotted in fig. 4a contains a notch of
0.06 × box length in the x-direction, 0.06 xbox, and thickness of 2 × particle
radius, 2a. In the early stages of deformation the notch grows in thickness,
changes shape and is roughly cylindrical at an extension of about 0.2, see
figure 4b. Later both thickness and length increase, while simultaneously an
independent void opens, originating from another naturally existing notch. This
is shown in fig. 4c. The notch increases in length mainly due to joining of
smaller voids, rather than to growth from the notch edge onwards. The stress
does not seem to be concentrated around the notch, but stretched substructures
are rather scattered over the sample, which is gradually being torn apart rather
than cracking instantaneously. Breaking bonds are also scattered over the
structure, and the ones breaking first are at a distance from the notch. Generally
there are no breaking bonds directly above and below the notch, where the
network is not box spanning in the direction of the tensile force. Stresses around
the notch induce notch deformation instead of bond breaking. In the end the gel
structure fractures in the xz plane. Fig. 4d shows a configuration just before that
happened. While extending in the y direction, the whole gel sample shrinks in
the x direction, see figures 4a through 4d, and it does so similarly in the z
direction. This will be further illustrated in figures 7 and 8.
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Fig. 4. Configuration plots of a gel structure, with a notch of 0.06 xbox by 2a, under tensile
deformation. High damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000. Extension, ε  = a) 0, b) 0.2,
c) 0.5, d) 1.

In figure 5, the xx, yy and zz components of the stress tensor are plotted
versus extension for the high damping model. The yy stress component steeply
increases upon extension as bonds start to carry stress, but do not break initially.
The xx and zz components of the stress tensor are approximately zero during the
whole deformation, as the system is allowed to relax in those directions. New
bonds are formed due to the ongoing process of local reorganization caused by
thermal Brownian motion. Also the average bond length increases as a function
of tensile strain. Bonds in the most outer layers at the top and bottom of the
sample stretch first, which is quickly transmitted through the network to the
middle layers. For the external extension rate chosen all layers stretch with
roughly the same rate, see figure 6. At an extension of approximately 0.2 (i.e. a
sample thickness of 1.2 times the initial thickness) bonds break and the normal
stress starts declining, as the structure gains freedom for relaxation. The fracture
does not seem to be local but global, as the stress release is the same in all
layers. The average bond length decreases too, but it varies between different
layers in a non-systematic way.



90 Chapter 5

Fig. 5. Stress response of a gel structure, with a notch of 0.06 xbox by 2a, as a function of
extension. High damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000. Stress tensor component: (--) xx,
() yy, and (···) zz.

Fig. 6. Average bond length as a function of extension plotted in layers. Gel structure with a
notch of 0.06 xbox by 2a. High damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000. (− −) layer 1 &
10; (− −) layer 2 & 9; () layer 3 & 8; (--) layer 4 & 7; (···) layer 5 & 6.

Upon tensile deformation the simulation box expands in the y direction
and it shrinks in the x and z directions, see figure 7. At first there is some
flexibility in the structure due to presence of unstretched bonds, the rate of
increase of the thickness of the structures it is not matched by the rate of
shrinking in the two perpendicular directions. The system takes up liquid as the
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Fig. 7. Box dimensions versus extension in (--) x, () y, and (···) z direction. Gel structure
with a notch of 0.06 xbox by 2a. High damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000.

Fig. 8. Box volume versus extension. Gel structure with a notch of 0.06 xbox by 2a. High
damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000.

volume of the box increases, see figure 8. Once the backbone of the network is
stretched the extension in y is fully compensated by a contraction in the x and z
direction. The sample behaves as a linearly elastic material, in the sense that the
volume stays constant. At an extension of 0.2 the structure starts to break and
the volume of the simulation box increases from this point on as the extension
continues without much further effect on the x and z dimensions.
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Under tensile deformation the relative size of the notch in the x
direction remains approximately constant for extensions up to 0.4, see figure 9.
The fracture occurring at tensile strain below  0.4 is not due to crack
propagation from the notch. The simulation box shrinks in the x direction
equally rapidly as the notch. At a strain of 0.4 the notch starts to grow in the x
direction and it does so in a successive distinguished steps, when smaller voids

Fig. 9. Notch size relative to box size versus extension, in y dimension (), and x dimension
(--), a) small extension up to ε = 0.4, b) large extension up to ε = 1.3. Gel structure with a notch of
0.06 xbox by 2a. High damping model, ε�  = 0.1, Rsplit = 0.4, K = 1000.
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merge with the notch. At ε = 1.1 the notch is system spanning, and sample
fracture is complete. The relative size of the notch in the y direction increases
from the onset of the tensile deformation with a roughly constant rate. The
whole extension of the gel in the column above and below the middle of the
notch is accommodated by the increase in the thickness of the notch.

In figure 10 fracture stress is plotted for a range of systems with
different notch lengths and radius of the notch tip. We observed almost linear
relations between fracture stress and size of the notch for three different values
of the notch tip radius. Fracture stress in structures without bond formation,
which was used for very narrow notches, was lower than in structures with bond
formation, compare the points for notch thickness b0 = 0.1a ( ) with those for
notch thickness 2a (�) in figure 10. The fracture stress for a system with a small
and relatively thick notch (notch thickness 2a and relative notch length below
0.2) was found to be higher than for a system with no notch at all, the point
indicated at relative notch length zero. The notch introduces some possibility for
relaxation and if bonds are allowed to form, the structure can strengthen up,
particularly around the notch. This does not happen in structures with very
narrow notches, where no bond formation after notch formation was allowed,
the fracture stress for notch thickness 0.1a and relative notch length 0.06 is
lower than that the system without notch. The relation is nearly linear for the
full range of notch lengths and for all notch thicknesses considered.

Fig. 10. Fracture stress versus relative notch size, notch tip � 2a,  4a,  0.1a. High damping
model, ε�  = 0.1, Rsplit = 0.4, K = 1000.
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5.3.2 Inertia model

In figure 11 the xx, yy and zz components of the stress tensor are plotted
versus extension for a simulated tensile strain experiment using the inertia
model. The inertia model has a lower viscosity than a system in the high
damping limit. All other parameters, such as notch size, radius of the notch tip,
limit for bond breaking (Rsplit), harmonic constant (K), extension rate (ε� ),
bonding probability, were identical in the two models. The initial slope of the
stress-extension curve in the inertia model is the same as for the high damping
model. The fracture stress is about 10% lower than in the high damping model
10 and 12, respectively, for the latter see point ( ) at notch thickness 0.1a and
relative notch size 0.1 in fig. 10. The fracture strain is lower too.

The gel network in the inertia model breaks in similar fashion as in the
high damping model. Breaking bonds are scattered throughout the sample. The
notch becomes thicker due to the increasing tensile strain, while independent
voids appear in the structure, see figure 12 (configuration at ε = 0.5).

Most characteristics, box dimensions, box volume, and average bond
lengths are similar between the high damping model and the inertia model with
only a smaller viscosity. The main difference between the calculated data for
the inertia and high damping model is the evolution of the bond breaking
(figure 13). Fracture proceeds more rapidly in the inertia model. Bonds start to
break sooner and the number of bonds per particle versus extension decreases
faster. Moreover the curve for the high damping model levels off earlier then for

Fig. 11. Stress response of a gel structure, with a notch of 0.1xbox by 0.1a, as a function of
extension. Inertia model, ε�  = 0.1, Rsplit = 0.4, K = 1000, m = 0.01, η = 0.1. Stress tensor
component: (--) xx, () yy, and (···) zz.
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Fig. 12. Configuration plot of a gel structure, with a notch of 0.1xbox by 0.1a, under tensile
deformation at extension ε  = 0.5. Inertia model, ε�  = 0.1, Rsplit = 0.4, K = 1000, m = 0.01,
η = 0.1.

Fig. 13. Number of bonds per particle, in a gel structure with a notch of 0.1xbox by 0.1a, versus
extension, ε�  = 0.1. Three systems: () high damping model, Rsplit = 0.4, K = 1000; (--) inertia
model, Rsplit = 0.4, K = 1000, m = 0.01, η = 0.1; (-·-) inertia model, Rsplit = 0.3, K = 10,000,
m = 0.01, η = 0.1.
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the inertia model. Bond breaking proceeds increasingly rapidly on lowering the
limit for bond breaking and increasing the harmonic constant.

Nevertheless, also for the inertia model, the relation between fracture
stress and relative notch length is close to linear, see figure 14. Fracture stress in
a structure with a notch of 0.1 xbox and K = 1000 in the inertia model is lower
than in the high damping limit, while for a structure with a notch of 0.95 xbox

and K = 1000 in the inertia model it is higher than in the high damping limit.
The dependence of the fracture stress on relative notch length is weaker in the
inertia model. Fracture stresses for the inertia model with a lower limit for bond
breaking and a higher harmonic constant are higher because of this higher value
K = 10,000. Results also appear to follow a linear relation.

Fracture strain is plotted as a function of relative notch size in figure 15.
For two of the three different systems plotted here, fracture strain is roughly
independent of the relative notch size except for the extreme system with a
relative notch length of 0.95. At these very large notches, almost system
spanning, the observed fracture strain is somewhat lower. In structures without
any notch the fracture strain is lower than in structures with a small notch, both
for the inertia and the high damping systems. A fracture strain decreasing with
notch length is found for the inertia systems with K = 10,000 and Rsplit = 0.3, see
symbols ∗, but this observation is based on only three data points. We were not
able to distinguish the underlying mechanisms for the fracture strain
dependence on relative notch size within these models and samples.

Fig. 14. Fracture stress versus relative notch size, notch tip 0.1a, for two inertia models, ε�  = 0.1
m = 0.01, η = 0.1; × Rsplit = 0.4, K = 1000; ∗ Rsplit = 0.3, K = 10,000.
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Fig. 15. Fracture strain versus relative notch size, notch tip 0.1a, extension rate ε�  = 0.1. Three
systems:  high damping model, Rsplit = 0.4, K = 1000; × inertia model, Rsplit = 0.4, K = 1000,
m = 0.01, η = 0.1; ∗ inertia model, Rsplit = 0.3, K = 10,000, m = 0.01, η = 0.1.

5.4 Discussion
Some materials, when subjected to a tensile deformation at specific

conditions, undergo brittle fracture. In a brittle material, released energy from
the fracture of one element can be transmitted to other elements, inducing
fracture propagation. The overall fracture stress is then strongly dependent on
the size of notches in the material. In ductile materials fracture of one element
does not directly influence other elements and the energy that comes free on
bond fracture is dissipated as heat due to flow of material.

In this paper fracture behavior of particle gels was studied for tensile
deformation. A linear relation was found between fracture stress and relative
notch length from simulation runs within high damping limit, i.e. high viscosity
systems. In this approximation the energy released from a broken bond is
rapidly dissipated and as can be expected no fracture propagation was observed.
To be able to describe low viscosity systems, which longer preserve kinetic
energy, inertia effects were included in the simulation model. At lower
viscosities the released energy from a broken bond gives particle accelerations
and velocities that are not rapidly dissipated, and these may induce a chain of
bond breaking events identified as spontaneous fracture. In the inertia models
bonds were found to break more rapidly than in the high damping model, for the
parameter range studied. The fracture stress and strain for a system with lower
viscosity were found to be lower than for the high damping limit. The structure
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breaks easier due to energy transmission through the network but possibly also
due to larger particle diffusion in the low drag medium. Decreasing the friction
effect by either lowering the viscosity or increasing the particle mass led to
more rapid bond breaking. Lowering of the limit for bond breaking gave a
similar effect. For systems of low viscosity (η ≤ 0.05) and/or high mass
(m ≥ 0.1) and/or low limit for bond breaking (Rsplit ≤ 0.3) strengthening of the
bonds, i.e. a higher value of K, was necessary to avoid structure breakdown
prior to tensile deformation. We have not been able to distinguish whether the
increased ease of bond breaking in the low damping systems leads to fracture
propagation. As we have not investigated correlation between bonds being
disrupted, we do not know whether bond breaking is enhanced preferably near a
broken bond or in the system in general.

Despite the effects on bond breaking, the relation between fracture
stress and relative notch length for the inertia model was also found to be nearly
linear, suggesting ductile fracture. It may be necessary to go to a system with
much lower viscosity or higher particle mass or lower limit for bond breaking,
to see brittle fracture in those particle gel systems. To avoid bonds being broken
by random local stresses induced by thermal fluctuations, the bond stiffness, or
harmonic constant needs to be increased substantially, possibly by a few orders
of magnitude. As that leads to faster oscillations, a higher value for the
harmonic constant, K, requires smaller simulation time steps to avoid numerical
problems, thus making the calculations CPU expensive. The values of the
harmonic constant used in this paper give rather weak gels, real bonds are
stiffer, i.e. have higher K values. A further reduction of simulation time step,
while maintaining the total deformation, would have made the calculations
unfeasible on the computers to our disposition. Earlier simulation for crystalline
atomic systems [6] were performed on supercomputers, where we used a simple
top of the line PC. Moreover in crystalline samples the fracture strain is much
smaller than in a fractal particle structure. The parameter regime for brittle
fracture may be difficult to find or even non-existing in these types of gel
structures, or for the approximated models we use. A somewhat artificial
solution would be removing of the temperature effects when looking for brittle
fracture behavior. That also removes the possibility of bond breaking through
thermal fluctuations, and allows stress concentration to build up around a crack
tip. Essentially removing temperature effects removes the diffusional timescale
from the model, leaving only the time scale of the bond oscillation, associated
with the value of K, and that of the tensile extension rate. In practice these
values will still be far apart, leading to lengthy calculations.

Fracture initiation and propagation from a notch depends on the shape
of the notch. A notch introduces a stress concentration at the notch tip, which is

proportional to 1+ notchrl , where l is the notch length and rnotch is the radius of
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the notch tip [4]. The stress concentration at the tip of a sharp notch is higher
than at the tip of a blunt notch. Generally a notch is a weak spot in a structure,
from which fracture can originate. However in the particle gels we have
investigated, cutting out of a notch introduced possibilities for relaxation and
reorganization in the structure, particularly in the vicinity of the notch. For some
structures with thick notches, where new bonds could form, it resulted in
strengthening of the structure instead of introducing a weak point. We have
investigated structures with the widest range of notches possible in this
geometry. Regardless of notch shape the stress was not concentrated around the
notch, but distributed over the network. Bond breaking was scattered over the
structure rather than concentrated at the notch tip. The fracture taking place did
not originate at the notch but was a result of a global failure due to extensive
tear.

The ductile character of particle gels may be a result of their structure.
They are formed by a highly cross-connected network, which on a short length
scale, at most two particle diameters, is fractal and on a longer length scale is
random. Their structure is more that of an amorphous solid than of a crystalline
solid.

5.5 Conclusions
Particle gels under tensile deformation as simulated by both a high

damping and an inertia model were found to be notch insensitive. No fracture
propagation from a notch could be observed and the material fracture was due
to extensive tear. The relation between fracture stress and notch size was found
to be nearly linear, regardless of the model used. Within the parameter range
used in this paper particle gels were found to exhibit ductile fracture behavior
under tensile deformation. This behavior could be explained by the fractal or
random structure of the gel network on relevant length scales.
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Chapter 6

In this thesis we have investigated the rheological properties of a model
particle gel using Brownian Dynamics simulations with different
approximations. Particle gels are systems of colloidal particles that form weakly
bonded percolating networks interpenetrated by a suspending fluid. They are
characterized as soft, deformable, elastic solids. Examples in the food domain
are yogurt and cheese, in which the particles are casein aggregates. We
formulate our conclusions in the order of the chapters.

Chapter 2. The aggregation kinetics of the colloidal particle suspension into
larger clusters has been investigated for different volume fractions, and
compared with standard Schmoluchowski models. It was found that contrary to
general practice, the initial particle distribution could not be neglected. The
asymptotic aggregation rate is reached only when a substantial amount of the
particles has already aggregated into larger clusters. A modified description,
taking into account the homogeneous random particle distribution at
destabilization of the suspension, was shown to follow the numerically obtained
aggregation curves extremely well over a large range of volume fractions.
Deviations occur only when really large clusters form, and the system is close to
forming a gel or a space spanning cluster. The uniform nature of the models
does not allow for a description of the fractal structure of the clusters, which is
necessary to explain the fact that a gel can be formed.

Chapter 3. For small periodic shear deformation of a model gel sample we
have tried to determine the storage and loss moduli as a function of frequency.
We conclude that an affine or a non-affine description of the sample
deformation leads to very different results. In the affine deformation mode the
gel is sheared homogeneously, and the rheological behavior is very similar to
that of a single damped oscillator. Details of the network play no important role,
except at very low frequencies. In the non-affine mode, there is an
inhomogeneity in the deformation of the network as certain parts of the network
carry stress whereas other parts do not. Much more important is that with
increasing frequency a transition can be observed from a surface load
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experiment to a bulk load experiment. For the parameter values used in the
calculations it turned out that the resonance frequency of the gel sample was
below the range that we investigated.

Chapter 4. Large shear deformation of simulated particle gels within our model
shows that the space spanning structure of the system is eventually lost at larger
shear. Rather than yielding and maintaining its gel structure, the sample shows
progressive ductile fraction by which the network is finally destroyed, and a still
highly viscous suspension of large clusters is obtained. Prolonged shearing of
the system leads to reorganization and irreversible compactification within these
clusters. The cluster volume fraction within the sample is very high, and when
the shear deformation is stopped, the individual clusters rapidly form a space-
spanning network again, but with substantially fewer connections than the
original gel formed at rest. The external distortion has irreversibly altered the
microscopic structure of the model material. In general fractal particle gel
networks probably do not yield, but fracture. At large deformations little
difference has been found between affine and non-affine model calculations,
probably because the rate of deformation was slow compared to the internal
reorganization rate of the gel.

Chapter 5. Tensile deformation of simulated gels has only been performed in
the non-affine mode. Allowing the sample to shrink in the directions
perpendicular to the tensile deformation resulted in a material with an almost
constant volume, apart from a small initial volume increase. Experiments with
different notches, regarding size and shape, indicate that fracture behavior is
always ductile. The random fractal structure of the gel apparently results in a
large number of naturally occurring voids that act as notches, and fractures start
in the bulk of the material, instead of near the prepared notch. Investigation at a
lower suspension viscosity, where the limit on the viscosity was set by limits of
the computational facilities, indicate still ductile fracture behavior. Probably
brittle fraction in particle gels occurs only at very low viscosity of the
suspending fluid, for instance when that fluid is a gas.
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Samenvatting

Gelen zijn in het algemeen zachte, vervormbare, elastische vaste
stoffen. Het is echter niet eenvoudig een sluitende definitie voor gelen te geven.
Vanuit het gezichtspunt van de fenomenologische reologie kan een gel worden
gedefinieerd als een materiaal dat zich gedraagt als een vaste stof wanneer het
wordt geobserveerd over een korte tijd, of met een hoge frequentie bij een
oscillerende belasting en zich gedraagt als een vloeistof over een lange
tijdschaal, of bij een lage frequentie. Om discussie over de precieze afbakening
tussen lange en korte tijdschalen te voorkomen, zullen we in dit proefschrift een
meer structurele definitie hanteren. We gebruiken de term gel om materialen
aan te duiden die bestaan uit een min of meer willekeurig netwerk van
mechanische elementen in een continue vloeistoffase en met bindingen tussen
de elementen die eenvoudig kunnen worden gevormd of verbroken.

We kunnen twee hoofdtypen gelen onderscheiden: polymeergelen en de
deeltjesgelen. Polymeergelen bestaan uit lange ketenmoleculen, waarbij
fysische of chemische interacties verantwoordelijk zijn voor de verbindingen
tussen de ketens. Deeltjesgelen bestaan in het algemeen uit netwerken van vaak
min of meer bolvormige deeltjes, die met elkaar verbonden zijn door fysische of
zwakke chemische interacties. Voorbeelden van dit type zijn standyoghurt en
jonge kaas, waarbij de deeltjes caseïneaggregaten zijn.

In dit proefschrift hebben we de reologische eigenschappen van
gemodelleerde deeltjesgelen onderzocht door gebruik te maken van Brownse
Dynamica. Hieronder geven we een kort overzicht van de verschillende
hoofdstukken van het proefschrift.

Hoofdstuk 2. In dit hoofdstuk is de kinetiek van de aggregatie van colloïdale
deeltjessuspensies tot grotere clusters onderzocht voor verschillende
volumefracties, en vergeleken met de standaard Schmoluchowski modellen.
Gebleken is dat, in tegenstelling tot wat algemeen verondersteld wordt, de
aanvangsverdeling van de deeltjes niet kan worden verwaarloosd. De
asymptotische aggregatiesnelheid zoals beschreven door de Smoluchowski
vergelijking wordt pas bereikt als een aanzienlijk deel van de deeltjes al is
geaggregeerd tot grotere clusters. In het hoofdstuk is aangetoond dat een
aangepaste beschrijving, die rekening houdt met een homogene
deeltjesverdeling bij de destabilisatie van de suspensie, de numeriek verkregen
aggregatiecurven zeer goed beschrijft over een ruim gebied van volumefracties.
Afwijkingen treden pas op als zeer grote clusters worden gevormd, en het
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systeem op het punt staat een gel of een ruimtespannend cluster te vormen. De
uniforme aard van de modellen staat geen beschrijving toe van fractale
clusterstructuur, hetgeen noodzakelijk is om de mogelijkheid  dat een gel wordt
gevormd te verklaren.

Hoofdstuk 3. Getracht is de opslag- en verliesmoduli van deeltjesgelen te
bepalen als functie van de frequentie waarmee een kleine oscillerende
vervorming in afschuiving opgelegd werd. Zowel affiene als niet-affiene
vervormingen werden opgelegd. Hierbij hebben we kunnen concluderen dat het
gebruik van een niet-affiene vervorming leidt tot resultaten die sterk afwijken
van resultaten die verkregen worden voor een affiene vervorming.

Voor affiene vervorming is de schuifvervorming van het gel homogeen
en is het reologische gedrag sterk gelijkend op het gedrag van een gedempte
enkelvoudige oscillator. Details met betrekking tot het netwerk spelen in dit
geval geen belangrijke rol, behalve bij zeer lage frequenties. Voor niet-affiene
vervorming  is  de vervorming van het netwerk inhomogeen als gevolg van het
feit dat sommige delen van het netwerk belast worden en andere niet.  Daarnaast
werd bij toenemende frequentie een overgang waargenomen van een
oppervlaktebelastingsexperiment naar een volumebelastingsexperiment.

Hoofdstuk 4. In dit hoofdstuk gebruiken we ons model om grote
schuifvervormingen van deeltjesgelen te onderzoeken. Hierbij is gebleken dat
de ruimtespannende structuur van het systeem uiteindelijk verdwijnt bij het
opleggen van een toenemende schuifspanning. De gelstructuur blijft dus niet
behouden, het monster breekt ductiel. Hierbij ontstaat een suspensie van grote
clusters die nog steeds hoogvisceus is. Aanhoudende vervorming van het
systeem leidt tot herschikking van de deeltjes binnen het cluster en tot een
onomkeerbare compactie van de clusters. De volumefractie van de clusters in
het monster is zeker aanvankelijk nog hoog, en wanneer dan de
schuifvervorming wordt gestopt, vormen de individuele clusters weer snel een
ruimtespannend netwerk, zij het met aanzienlijk minder onderlinge
verbindingen dan in het oorspronkelijke gel. De externe verstoring heeft de
microscopische structuur van het modelmateriaal onomkeerbaar veranderd.
Voor grote vervormingen hebben we weinig verschil gevonden tussen affiene
en niet-affiene modelberekeningen, waarschijnlijk omdat de
vervormingsnelheid klein was in vergelijking met de snelheid van interne
herschikking van de gelen.

Hoofdstuk 5. Vervorming van gesimuleerde gelen in rek is alleen onderzocht
voor  het opleggen van een niet-affiene vervorming. Als het monster de vrijheid
werd gegeven te krimpen in richtingen loodrecht op de richting van de
trekvervorming, bleef het volume afgezien van een kleine volumetoename in
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het begin nagenoeg constant. Experimenten met verschillende inkepingen wat
betreft omvang en vorm, geven aan dat het breekgedrag steeds ductiel is. De
fractale structuur van de onderzochte gesimuleerde gelen resulteert kennelijk in
een groot aantal natuurlijk optredende gaten in het netwerk die zich gedragen
als inkepingen.  Breuken beginnen daarom in de bulk van het materiaal in plaats
van bij de geprepareerde inkeping. Ook simulaties met een lagere viscositeit van
de suspensie, waarbij de kleinst onderzochte viscositeit uiteindelijk afhing van
de rekensnelheid van onze computers, gaven nog steeds ductiel breekgedrag te
zien. Waarschijnlijk treedt brosse breuk in deeltjesgelen alleen op bij een zeer
lage viscositeit van het suspenderende fluïdum, bijvoorbeeld wanneer dit een
gas is en bij een zeer steile interactiepotentiaal.
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