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Abstract

Marsman, A., 2002, The influence of water percolation on flow of
light non aqueous phase liquids in soil, Doctoral Thesis, Wageningen
University, Wageningen, The Netherlands.

In this thesis the physical behavior of Light Non-Aqueous Phase Liquids
(LNAPL) at the capillary fringe, is studied with multiphase flow models.
Phenomena like a fluctuating water table or percolation of (infiltration)
water have a large impact on this behavior. Both the geometry and the
mobility of the LNAPL lens are affected. These two physical phenomena
mentioned imply downwards and upwards water flow through the LNAPL
lens. Different techniques were used in this investigation. Numerical cal-
culations show that fluctuations of the phreatic groundwater level result in
retardation of the horizontal migration of the LNAPL lens over the ground-
water level. An expression is derived which quantifies the part of the sim-
ulated time during which the LNAPL can actually flow. This expression
is implemented in an existing analytical solution that describes horizontal
LNAPL migration, to enable that the effect of a fluctuating water level can
be calculated analytically. Laboratory experiments are performed which
verify these results. The effect of water flow through an LNAPL lens also
affects the mobility of LNAPL. Numerical results show that both for up-
wards and for downwards water invasion of a lens, the mobility of the
LNAPL has increased significantly. To obtain more qualitative insight on
the pore scale, percolation theory is used. Percolation theory is applied
to this problem and the appropriate series of drainage and imbibition pro-
cesses are calculated to simulate the water percolation. The accompanying
relative permeabilities show that the mobility increases after water per-
colation. Qualitative insight on the pore scale shows that the LNAPL is
displaced to a larger amount of pore radii which advances the mobility of
the LNAPL. This observation is in agreement with the numerical results.

Keywords : multi-phase flow, entrapment, numerical modeling, similarity
solution, horizontal migration, percolation theory, relative permeability.
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Chapter 1

General introduction

1.1 Background

During the previous century, soil in the Netherlands has become increas-
ingly polluted by NAPL’s through uncareful use of the soil and through
ignorance. NAPL’s (Non-Aqueous Phase Liquids) are organic fluids that
are only slightly miscible with water. As a comprehensive term they may
be referred to as ’oil’. These organic fluids form a serious threat to e.g.
our drinking water supplies. To prevent health risks for humans and dam-
age to nature, the contaminated soils should be remediated. To illustrate
the hazards of this type of contamination: one liter of oil can significantly
affect the quality of 100.000 liters of water, i.e. because of health reasons
this water cannot be used as drinking water for humans.

Two types of oil can be distinguished: oil that is less denser than water
and that will accumulate on the groundwater level. This type of oil is called
LNAPL, where the ’L’ stands for ’lighter’ than water. The other type of
oil is denser than water so that it may percolate much deeper into the soil
layers through the groundwater. This type of oil is called DNAPL, where
the ’D’ stands for ’denser’ than water. New techniques were developed to
clean up these types of contamination, where the soil is not excavated to
clean it up. A few examples of such of in-situ techniques are: 1. pump
and treat: contaminated groundwater is pumped out of the soil, cleaned
and possibly returned into the soil 2. air sparging: injection of air into
the saturated zone, which both may enhance microbial degradation and
removes volatile contaminants in the flowing gas phase. 3. steam injection:
steam decreases the viscosity of oil contamination and therefore increases
the mobility so that pump and treat will be more efficient, furthermore,
the interfacial tension can decrease and oil volatilization increases, which

1



2 Chapter 1

will enhance the efficiency of air sparging. At this moment many in-situ
techniques are available. For an overview we refer to Hamby [12] who gave
a well readable account about these techniques.

Until now, the knowledge about the physical behavior of NAPL’s as
a free phase in soil is very limited. The simple situation, where oil floats
above a static water level, has been explored during the last decades and we
are now capable of understanding and modeling this situation quite well.
In reality, however, the water balances change as a function of time due
to: seasonal changes, intermittent pumping or heavy rainfall. Such changes
have a large impact on the behavior of NAPL. Both the geometry of a NAPL
plume as its distribution in the pores is affected. An oil contaminant can be
entrapped by water. This means that droplets of oil become surrounded by
water which renders the oil as a liquid to be immobile. Whereas the mobile
fraction of the oil may be removed by classical pumping approaches, this is
not possible for the remaining entrapped oil. Otherwise these droplets can
still form a threat to the environment by dissolution in the groundwater
and by vaporization. If oil has become entrapped, it may be removed by
pumping up groundwater, because it will contain dissolved oil. However,
both dissolution rates and solubility of oil are usually such, that this way
of removing entrapped oil is slow, inefficient and costly. Hence, either
alternative in-situ remediation approaches or methods for the reduction
of oil entrapment are needed. In both cases, a good anticipation of the
entrapment mechanisms and the quantities of oil involved are essential.
The objective in this thesis is to obtain more insight in oil entrapment
and specifically, the effects that physical conditions have on the quantity
of entrapped oil.

1.2 Problem description

This thesis is focussed on one type of oil contamination: LNAPL. If LNAPL
is spilled at the ground surface, it will flow into the unsaturated zone and,
after which, due to gravitational and capillary forces, it will accumulate in
the form of a lens above the groundwater table, under reserve that the oil
release is sufficiently large to reach the groundwater table (see Figure 1.1).

When a fluid or gas enters a porous medium, it depends on the interfa-
cial tension, which pores and which part of these pores will be entered by
this fluid/gas. We can distinguish different behavior for different soil types
and fluid/gas types, which are classified by the so called wettability of the
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LNAPL

Unsaturated zone

Saturated zone

Groundwater
level

Fluctuating groundwater level

Percolation of precipitation

Figure 1.1: The multiphase system that is considered. The arrows represent
main water flow directions.

phases. Wettability describes the preferential spreading of one fluid over
solid surfaces in a two-fluid system. Whereas the wetting fluid will tend to
coat the surface of grains and occupy smaller pores in porous media, the
nonwetting fluid will tend to be restricted to the largest pores. We assume
that this affinity of the three phases in our problem (water, oil and gas) to
enter in soil pores of the porous medium decreases in the following order:
water is the wetting phase, oil is the intermediate wetting phase and gas
is the non-wetting phase. Because of the assumption that oil is the non-
wetting phase compared to the water phase, oil will enter the largest pores
and water will coat the surface of the grains. Consequently, the oil lens
will spread above the groundwater table until it loses its mobility and the
oil becomes entrapped into the water phase i.e. blobs of oil are enclosed by
water.

The multiphase flow process, where water, oil and gas flow through the
soil, is affected by oil entrapment and the physical conditions affecting en-
trapment. These conditions can be for example a fluctuating groundwater
level caused by seasonal changes or pumping. Also the percolation of infil-
trating water through an oil lens affects entrapment. For instance, Lenhard
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et al. [28], Van Geel and Sykes [48], Kaluarachchi and Parker [18] and Pan-
tazidou and Sitar [33] already showed the large impact of a fluctuating
water level on the behavior of LNAPL: both the geometry and the amount
of oil entrapment are affected. We focus on these physical conditions to
understand their effects on the entrapment of oil into the water phase. A
fluctuating groundwater level and percolating water can be interpreted by
water infiltrating into the oil lens from two opposite sides. This is shown
in Figure 1.1, where the situation is represented in a schematic way. The
saturated zone consists of water filled pores. The unsaturated zone consist
of water and gas. The LNAPL lens consists of oil, water and gas, where
the LNAPL saturation is so large that the LNAPL is mobile. The ground-
water level is represented as a sudden transition between the saturated and
unsaturated zone. In reality, the saturated zone consist of a zone below
the groundwater level and of a capillary fringe (which also consists of pores
filled with water) that is formed above the water phase through capillary
forces. The oil will float on the capillary fringe. The arrows in Figure 1.1
represent water invasion, either upwards as a fluctuating groundwater level,
or downwards as percolation of precipitation. Infiltrating water will entrap
the oil phase into the water phase in the form of isolated blobs. In case of
a fluctuating groundwater level, water periodically invades and leaves the
oil lens. A similar process holds for the percolation of precipitation: water
enters the upper surface and flows through the subsurface until the oil lens
is reached. Water invades the oil lens, oil becomes entrapped in the water
phase and subsequently due to gravitational forces water leaves the oil lens.
The questions that arise for these two types of water infiltration are:

• How does the mobility of the LNAPL change during the water infil-
tration?

• What happens when the water leaves the oil lens?

• What happens to the geometry of the lens?

In this thesis, we use different techniques to find an answer to these
questions. A numerical model, an analytical solution in the form of the
similarity solution, an analytical solution in the form of percolation theory
and a laboratory experiment will be used to obtain more insight into this
problem. In the next sections, these techniques will be introduced briefly.
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1.3 Numerical model

To analyze the above described situations, multi-phase flow models are
necessary. Petroleum reservoir codes to simulate the flow of water, oil
and gas were already developed over 30 years ago. These codes can be
used for environmental problems as well. Multiphase flow models for oil
reservoirs, where water and oil flow simultaneously, have been investigated
thoroughly. In the unsaturated zone, however, the gas phase (air) should
be taken into account, and this additional phase makes the flow processes
much more complex. Abriola and Pinder [1] developed such a multiphase
flow model, where hysteresis was ignored. Kaluarachchi and Parker [18]
showed that disregarding hysteresis results in significant errors in predicted
fluid distributions. Subsequently Lenhard and Parker [25], [26], [24], [30]
and Parker and Lenhard [34], [35], [36] incorporated hysteretic constitutive
relations. Although we model a three phase system including water, oil and
air, we assume that air is so mobile that the air pressure is approximately
constant. The flow equations for two phases (water and oil) describe the
flow phenomena sufficiently since our main interest is the flow behavior of
oil. Therefore, the air entrapment and the effect it has on the relative water
and oil permeability are neglected. This assumption is incorporated in the
so called Richard’s equation. Furthermore, Kaluarachchi and Parker [18]
derived a simplified model of fluid entrapment by restricting hysteresis to
entrapment of oil by water.

White, Oostrom and Lenhard [51] [29] developed a code to predict envi-
ronmental restoration studies: STOMP (Subsurface Transport Over Mul-
tiple Phases). This is a three-dimensional, three-phase, compositional en-
gineering simulator for modeling contaminant migration and remediation
technologies for the cleanup of subsurface sites contaminated with organic
compounds. The code is based on the Richard’s equation and on the consti-
tutive relations developed by Lenhard and Parker. The initial version of the
code included the hysteretic relations developed by Lenhard and Parker [25]
and later they included the simplified model for fluid entrapment developed
by Kaluarachchi and Parker [18]. Flow and transport are solved numeri-
cally using an integrated-volume finite-difference scheme to discretize the
governing equations. A comparison was made with experimental results by
Lenhard et al [29] to verify the numerical results. It appeared that there
is a good agreement between measured and predicted fluid contents. The
capillary pressure-saturation relationships can be chosen from different em-
pirical relations. Throughout this research we use either the relationship



6 Chapter 1

based on the Van Genuchten capillary pressure-saturation relationship [49]
or the relationship based on the Brooks-Corey capillary pressure-saturation
relationship [6]. The main difference between these two methods is the con-
cept of entry pressure, that is restricted to the Brooks-Corey relationship.

We use STOMP to calculate the effects of water infiltration on LNAPL
numerically. An advantage of numerical calculations is that relatively few
assumptions have to be made and the problem is mathematically well de-
fined so that all aspects of multiphase flow can be kept under consideration.
Disadvantages are the sometimes large calculation times (depending on the
type of computer) and the complexity of the model, which makes it difficult
to obtain qualitative insight into the problem without thorough parameter
variation analyses. Furthermore, in some cases, the numerical calculations
do not converge to a solution, so that the problem can not be solved.

1.4 Similarity solution

Numerical computer simulations require a lot of computational efforts and
are often too complex to comprehend the processes that lead to a particular
result. Analytical solutions can be very useful to do the same calculations
with minor efforts, to obtain insight into the accompanying processes and
to verify the numerical calculations for more constrained situations. To our
knowledge, no 2-D analytical solution for three phase flow in porous media
including oil entrapment is available for the problem represented in Figure
1.1. Van Dijke and Van der Zee [44] developed an analytical solution for
the situation of a static groundwater level. Oil lens distribution, where
capillary forces and oil entrapment are included was found to behave in a
self-similar way. This means that the spatial distributions of its proper-
ties at various moments of time can be obtained from one another by a
similarity transformation (see for example Barenblatt [2] and Hulshof and
Vazquez [17]). The similarity solution consists of one part that represents
the similarity profile and of one part that represents the changes in the
behavior of the solution in time.

Numerical solutions for one case at two moments in time are used to
derive parameters for the analytical solution. The profile of this numeri-
cal solution is used to explore the similarity solution to a larger time scale
and to various parameter values. Comparison with numerical calculations
showed that this similarity solution provides a good estimation for oil redis-
tribution, where oil entrapment is included. We manipulate the similarity
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solution used by Van Dijke and Van der Zee [44] in such a way, that a
fluctuating groundwater level (see Figure 1.1) can be incorporated.

The main advantages of this method are the simplified calculations and
consequently the small computational effort. A disadvantage of this ana-
lytical solution is that numerical calculations are still necessary to derive
parameters.

1.5 Percolation theory

To approach the infiltration problem in a qualitative way, percolation the-
ory can be used to gain more qualitative insight on the pore scale. Broad-
bent and Hammersly first published in 1957 the mathematical concept
of percolation theory. They associated the spread of a fluid in a porous
medium with the flow of coffee in a percolator, which explains the name
percolation process. The theory pertains to network models that consist of
bonds and nodes. We focus solely on the bonds and we assume that the
nodes are just zero-dimensional markers. The bonds of the network are
either occupied, which means that the bond is open to flow, or the bonds
are vacant, which means that they are closed to flow. Pore bonds are called
connected if there is a path between them of occupied bonds, i.e. if a fluid
enters the model, it will start at one pore at the boundary of the model
and from there it can flow into pores that are connected to this occupied
pore and so on: a path of occupied bonds will be formed. The collection of
connected pores surrounded by vacant bonds, is called a cluster (see Figure
1.2).

The transition of a macroscopically disconnected structure, where there
are only single occupied pores that are not connected to a cluster, to a con-
nected structure is characterized by the percolation threshold. The perco-
lation threshold is the concentration where for the first time a percolating
cluster is formed.

Percolation theory in general is well reviewed by Stauffer et al. [41],
Kirkpatrick [19], Sahimi [39] [38] and Heiba [13]. The first random perco-
lation model for two-phase flow in porous media was suggested by Larson
et al. [23][22]. Heiba [13][14][15] further developed these ideas and applied
them to the calculation of relative permeabilities. Furthermore, Heiba dis-
tinguished between the fraction of the pores that is allowed to a phase, and
the fraction that is actually occupied by this phase. This means that a
pore bond is enterable for a fluid concerning the thickness of the pore bond
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Figure 1.2: Definition of percolation and its clusters. The first figure shows
parts of a square lattice, in the second figure some squares are occupied with big
dots, in the last figure the ’clusters’, groups of neighboring occupied squares, are
encircled except when the ’cluster’ consists of a single square.

and concerning the pressure of the fluid: this is called allowed. However,
if a pore is not connected to a cluster containing this fluid, the pore bond
will not be occupied by this fluid, even though it is allowed. This is called:
the pore bond is not accessible. A three phase flow system was already
proposed by Heiba [13] but limited to two specific cases where oil is always
the shielding phase between water and gas.

We expand Heiba’s ideas for three phase to a system which initially
consists of water and gas. Oil will enter the system and a succession of
drainage and imbibition processes will be imposed to obtain the complete
range of compositions of a three phase system. Furthermore, we apply this
theory to the mentioned water infiltration problem (Figure 1.1), to obtain
more insight into the phenomena that take place during water infiltration
into an oil lens.

One of the advantages of percolation theory is that it is a very straight-
forward method that uses a minor amount of computation time. Further-
more, it gives qualitative insight into the problem. Especially for this prob-
lem, where the quantitative phenomena are well known from numerical
calculations while the physical meanings of the results are unknown, this
theory gives a surplus value to the results. The assumption made that
the sites of the network can be neglected so that the system consists of
nodes solely, deviates from real soil. Moreover, percolation theory calcu-
lates average relative permeabilities and cannot be used as a quantitative
tool.
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1.6 Laboratory experiment

To verify theories that are developed for numerical and analytical pur-
poses, it is very useful to perform an experiment in the laboratory. Exper-
iments can establish whether the main phenomena have been accurately
accounted for and whether the assumptions made are acceptable. In ear-
lier work researchers performed experiments to investigate the behavior of
LNAPL and to verify recently developed numerical codes. Lenhard et al.
[27] used a one-dimensional column experiment to study a succession of
drainage processes. They concluded that the model they developed [25],
where hysteresis and fluid entrapment for three fluid phases are included,
gives a good approach. Host-Madsen and Jensen [16] affirmed this ap-
proach by performing capillary pressure-saturation experiments. Eckberg
and Sunada [8] performed an experiment where oil is introduced at the
top of a vertical soil column containing water. The static fluid distribution
was compared to the calculated distribution based on the Brooks-Corey
[6] capillary pressure-saturation relations. They concluded that the water
saturation at static conditions in a three-phase system was a function of
the two-phase water-oil capillary pressure-saturation relation. Carey et al.
[7] investigated the importance of hysteresis on the distribution of oil for
a column that was infiltrated first by water, followed by oil and then wa-
ter again. They concluded that the water infiltration could be modeled
reasonably. The oil infiltration, however, resulted in less than satisfactory
results because of the neglected hysteresis effects. Lenhard et al. [29] mod-
eled a one-dimensional laboratory experiment in which oil infiltrates into
a variably saturated sand column. Subsequently fluctuations of the water
level are introduced. They clearly showed the importance of hysteresis in
a dynamic multiphase flow system. Pantazidou and Citar [33] showed the
same for a two-dimensional experiment with a fluctuating water table. Van
Geel and Sykes [46] [47] [48] also performed a two-dimensional experiment
where the water pressure at the base of the experimental box was increased
and decreased to simulate fluctuating water table conditions. A compar-
ison of their experimental data to the model results illustrates once more
the effects and importance of fluid entrapment and saturation hysteresis.

In this thesis, we performed a two-dimensional experiment (see Figure
1.3) where oil floats above the capillary fringe. Fluctuations of the water
level are incorporated and we quantify the retardation in horizontal mi-
gration. Disadvantages of a laboratory experiment are the restrictions in
scale and time. The main advantage of such a laboratory experiment is
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Figure 1.3: Set up of the 2-D laboratory experiment.

that no assumptions are made and all processes involved in a three phase
flow system will actually take place. Furthermore, an experiment can give
insight in the justification of assumptions and simplifications made in nu-
merical/analytical calculations.

1.7 Outline

In Chapter 2 of this thesis we investigate numerically the effects of rising
and lowering of the water level on oil entrapment and on the horizontal
oil spreading. We analyze the effects quantitatively and we developed an
equation for the effect on the geometry of the oil lens. This equation can
be incorporated into the similarity solution for oil lens redistribution to
account for a fluctuating groundwater level.

Chapter 3 describes a laboratory experiment where both the numerical
and the analytical (similarity solution) results obtained in Chapter 1 are
compared with the experiment.

In Chapter 4 we introduce percolation theory and we show how it can
be used for a three-phase system such as an LNAPL lens that floats at the
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capillary fringe. Subsequently, we simulate a succession of imbibition and
drainage processes to obtain the complete range of compositions of a three
phase system.

In Chapter 5 we use percolation theory for a three phase system to
obtain more qualitative insight into more complex processes that occur
during water infiltration into an oil lens. The results are compared with
numerical calculations.
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Chapter 2

The effects of a fluctuating groundwater level on

the spreading of LNAPL*

2.1 Introduction

Contamination of aquifers by hydrocarbons is a serious problem because
the contaminants slowly infiltrate into the groundwater and adversely af-
fect groundwater quality. We consider Light Non Aqueous Phase Liquids
(LNAPL) that are less dense than water and accumulate as a lens above
the phreatic surface. Knowledge of the geometrical distribution of LNAPL
below the ground surface is essential to effectively remediate a contami-
nated site by pumping or to investigate the possibilities of biodegradation.
Correspondingly, it is important to investigate the horizontal migration
of the LNAPL lens and the quantity and location of entrapped LNAPL.
Therefore we focus on the migration and the entrapped quantity. This
is a multiphase flow problem that involves the three phases air, LNAPL
and water. Henceforth we use the term oil as a comprehensive term for
LNAPLs.

To model this flow problem Parker and Lenhard [34] and Lenhard and
Parker [25] introduced saturation-pressure relationships which account for
hysteresis and fluid entrapment in porous media containing up to three
immiscible fluid phases. Later Lenhard et al. [30] and Kaluarachchi and
Parker [18] derived a simplified model of fluid entrapment by restricting
hysteresis to entrapment of oil by water. They found that their results
were almost identical to the full model where hysteresis was also included.
White, Oostrom and Lenhard [51] used the formulation of Lenhard et al.
[25] for fluid entrapment to develop a three-dimensional, three-phase, com-

*by A. Marsman and S.E.A.T.M. van der Zee

submitted to Advances in Water Resources
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positional engineering simulator for modeling contaminant migration and
remediation technologies. Later they also included the possibility to use
the simplified model for fluid entrapment. We use this simulator for our
calculations.

Additionally, approximate analytical solutions can be very helpful to
reduce computation times and to verify numerical solutions. Van Dijke and
Van der Zee [44] developed an analytical solution for oil lens redistribution
by assuming that the oil lens is at vertical equilibrium and that water and
oil flow are segregated. This reduces the multi-phase flow problem to a
single equation for oil flow. Van Dijke and Van der Zee [44] compared this
solution with a numerical model that accounts for the saturation-pressure
relations from Parker and Lenhard [34] and the entrapment approximation
from Kaluarachchi and Parker [18]. It appears that this analytical solution
provides a good approximation of the free oil distribution.

We assume that an oil lens migrates through the unsaturated zone until
it reaches the capillary fringe where it will spread laterally above the sat-
urated zone. Most previous studies assume that the groundwater level is
static, i.e., at a fixed level. However, in reality the location of the ground-
water level and capillary fringe may vary as a function of time as a result
of seasonal changes. The redistribution of the oil lens as a result of the
groundwater level fluctuations may affect the migration process. Lenhard
et al. [28] concluded from experiments with groundwater level fluctuations
that oil and air were entrapped during water imbibition. Additionally, Van
Geel and Sykes [48] experimentally and numerically showed the importance
of fluid entrapment in a variably saturated medium during fluctuation of
the groundwater level by comparison of the non-hysteretic and hysteretic
model results and the experimental data. Kaluarachchi and Parker [18]
concluded from numerical experiments that fluid entrapment remarkably
reduces the horizontal migration since the trapped oil volume is immobile.
Pantazidou and Sitar [33] showed experimentally that fluctuations of the
phreatic surface result in trapping of oil below the groundwater level. These
features will remarkably disturb the predictions of the dimensions of an oil
lens and therefor the remediation. Until now the effect of fluctuations on
the horizontal migration rate has not been investigated quantitatively.

In this work, we have investigated quantitatively the changes in the
amount of oil entrapped in the water phase and the changes in horizontal
migration caused by rising or lowering of the groundwater level. Further-
more we have investigated how these changes in entrapment and migration
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are related to each other. For this purpose, we used the model developed by
White, Oostrom and Lenhard [51]. In particular we considered the relation
between the height of rising and lowering of the groundwater level and the
changes in horizontal migration. The aim of this work is to expand the
already known analytical solutions for oil redistribution above the ground-
water level (Van Dijke and Van der Zee, [44]) to a more complex situation
where the groundwater level fluctuates as a result of seasonal changes. The
results of our numerical investigation were used to perform this adaptation.

2.2 Model

2.2.1 General equations

We consider a two-dimensional isotropic and homogeneous vertical cross-
section of the soil. The basic equations that describe a three-phase model
(water, oil and air) are the mass balance equations, Darcy’s Law and the
constitutive relations. We assume that air has such a high mobility that
the air pressure is approximately constant and that the equations for two
phases describe the flow sufficiently. And therefore, we will neglect air
entrapment and the effect it has on the relative water and oil permeability.
The mass balance equations for water and oil in a 2-D model are:

φ
∂Si
∂T

+
∂Ui
∂X

+
∂Vi
∂Z

= 0, i = w, o (2.1)

where the subscript i denotes either the water (w) or the oil (o) phase. Si
is the effective phase saturation, Ui and Vi are respectively the horizontal
and vertical phase velocities. T is time and X and Z are respectively the
horizontal and vertical coordinates, and φ is the porosity. The velocities
follow from Darcy’s Law, which is given by:

Ui = -
Kkri
µi

∂Pi
∂X

(2.2)

Vi = -
Kkri
µi

(
∂Pi
∂Z

+ ρig), i = w, o (2.3)

where K is the absolute permeability, kri is the relative phase permeability,
and µi is the phase viscosity. P is the phase pressure, ρi is the phase density,
and g the gravity acceleration. Combination of Equations (2.1), (2.2) and
(2.3) yields the Richards equation:
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φ
∂Si
∂T

-
∂

∂X
(
Kkri
µi

∂Pi
∂X

)-
∂

∂Z
(
Kkri
µi

∂Pi
∂Z

)-ρig
∂

∂Z
(
Kkri
µi

) = 0, i = w, o (2.4)

The constitutive relations are defined by Parker and Lenhard [34]:

Sw + So = St

St + Sa = 1

Sw + Sot = Swa

Sof + Sot = So

Pow = Po-Pw

Pao = -Po

where St is the total liquid saturation and Sa is the air saturation. Swa is
the apparent water saturation, Sot is the trapped oil saturation and Sof is
the free oil saturation. Pow is the oil-water capillary pressure and Pao is
the air-oil capillary pressure which is identical to -Po since we assume Pa
to be zero.

To describe entrapment of oil, a linearized equation is used according to
Kaluarachchi and Parker [18] that can be easily implemented in numerical
multiphase flow codes:

Sot = min[(
1-Sminw

1 + FL(1-Sminw )
-

1-Swa
1 + FL(1-Swa)

), So] (2.5)

FL =
1

Smaxor

-1 (2.6)

where Sot is the trapped oil saturation and Sminw is the minimum water
saturation. FL is Land’s factor, where Smaxor is the maximum residual oil
saturation. Equation (2.5) prevents that the trapped oil saturation becomes
larger than the oil saturation.

We use the dimensionless variables for the oil phase as defined by Van
Dijke Van der Zee [44]:

z =
αβowZ

1-D
, x =

(1-D)X

V1αβow
, t =

Kρog(1-D)T

µoV1αβow
, po =

αβowPo
ρog(1-D)

(2.7)
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i.e. the characteristic lengths and time are:

Zc =
1-D

αβow
, Xc =

V1αβow
(1-D)

, Tc =
µoV1αβow
Kρog(1-D)

, Pc =
ρog(1-D)

αβow
(2.8)

where D = βow∆ρ
βaoρo

is an indication of the thickness of the lens and V1 is the
initial oil volume or oil surface since we consider a two-dimensional problem
(V1 = φ

∫

∞

-∞

∫

∞

0 So(X,Z)dXdZ). Equation (2.4) expressed in dimensionless
variables becomes :

φ
∂So
∂t

-
(1-D)2

V1(αβow)2
∂

∂x
(kro

∂po
∂x

)-
V1(αβow)2

(1-D)2
∂

∂z
kro(

∂po
∂z

+ 1) = 0 (2.9)

2.2.2 Retention functions

Different retention functions that relate saturation and pressure have been
developed. The most commonly used retention functions are those given
by Van Genuchten [49] and by Brooks-Corey [6]. The function suggested
by Van Genuchten assumes that the wetting fluid drains from a porous
medium whenever the capillary pressure is greater than zero. The Brooks-
Corey function, however, assumes that the wetting fluid does not drain
until a critical capillary pressure, i.e. the non-wetting fluid entry pressure,
is exceeded.

The retention function defined by Van Genuchten [49] and extended to
three phases by Parker, Lenhard and Kuppusamy [36] is given by:

Swa =















1 if Pw > 0 and Po < Pw

(1 + (αβow

ρw g
Pow)n)-m if

{

0 < Pw < Po or
Pw < 0 and Po >

1
βao

Pw
(1 + ( -α

ρw g
Pw)n)-m if Po <

1
βao
Pw < 0

(2.10)

St =











1 if Po > 0 or Pw > 0

(1 + (αβao

ρw g
Pao)

n)-m if 1
βao

Pw < Po < 0

Swa if Po <
1
βao

Pw < 0

(2.11)

where α and n are parameters, m = 1 - 1
n
, βow is the oil-water surface

tension and βao is the air-oil surface tension. We use VG to denote the Van
Genuchten equations. The Brooks-Corey retention function is given by:
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Swa =

{

1 if βowPow ≤ Peρwg

(βowPow

Peρwg
)-λ if βowPow > Peρwg

(2.12)

and

St =

{

1 if βaoPao ≤ Peρwg

(βaoPao

Peρwg
)-λ if βaoPao > Peρwg

(2.13)

where Pe is the entry pressure for the capillary pressure and λ is a param-
eter. We use BC to denote the Brooks-Corey equations.

2.2.3 Entrapment

From previous studies (Lenhard, Oostrom and White [29] , Van Geel and
Sykes [48], Kaluarachchi and Parker [18], Pantazidou and Sitar [33]), we
know that rising and lowering of the groundwater level causes respectively
entrapment of the oil in the water phase and mobilization of the oil phase.
Kaluarachchi and Parker [18] noticed that oil entrapment caused by the
fluctuating groundwater level markedly reduces the lateral migration. To
investigate the influence of fluctuations on lateral migration in more detail,
it is important to determine the amount of entrapped oil in the water phase
quantitatively. It is logical to suspect that the amount of entrapped oil
depends on the changes in the depth of the groundwater level. Therefore
we relate the total change in depth of the fluctuating groundwater level
during one fluctuation to the amount of entrapment. Figure 2.1 represents
the domain with the situation that we are modeling, where we restrict the
calculations to the right part of the domain for symmetry reasons. Since we
have chosen to simulate the fluctuations by changing the water pressure at
the bottom of the domain (Z = 0, see Figure 2.1) as a sinusoidal function,
we will call the total change in depth of the fluctuating groundwater level
the amplitude (A) of the fluctuation. The amplitude A together with the
angular velocity of the sinusoidal function ($) are the resolving parameters
for the determination of the lateral migration.

We assume vertical hydrostatic pressure distributions:

Po(X,Z, T ) = Po(X, 0, T )-ρogZ (2.14)

Pw(X,Z, T ) = Pw(X, 0, T )-ρwgZ (2.15)

Pow(X,Z, T ) = ∆ρgZ + Po(X, 0, T )-Pw(X, 0, T ) (2.16)
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Symmetry axis:
no flow boundary
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Z=0
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Figure 2.1: 2-D model with boundary conditions.

where Po(X, 0, T ) and Pw(X, 0, T ) are respectively the oil pressure and the
water pressure at the bottom of the domain where Z = 0. ∆ρ = ρw-ρo. The
fluctuations of the groundwater level are accomplished by imposing a time
dependent function Pw(X, 0, T ) in the form of a sine function. To determine
the change in Pw(X, 0, T ) for which the oil is completely entrapped in the
water phase we relate the change in Pw(X, 0, T ) to the initial value for
Po(X, 0, 0) by a factor f . We determine the depth where no mobile oil is
present and where consequently the oil pressure is lower or equal to zero.
Since the water level should reach this depth for complete entrapment the
capillary pressure is negative. The conditions for complete entrapment of
oil in the water phase are:

Pw(X, 0, T ) = Po(X, 0, 0) · f (2.17)

Po(X,Z, 0) ≤ 0 (2.18)

Pow(X,Z, 0) ≤ 0 (2.19)

Substitution in Equations (2.14) and (2.16) results in:
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Property Value

Air-water scaling factor βaw 1.00
Air-NAPL scaling factor βao 2.25
NAPL-water scaling factor βow 1.80
Intrinsic permeability K 2.14×10-11[m2]
Porosity φ 0.4
NAPL density ρ 830 [kg/m3]
NAPL viscosity µ 2.046×10-3[Pa s]
Length of column 0.7 [m]

Table 2.1: Parameters used in the computations.

f ≥
ρw
ρo

(2.20)

for complete entrapment i.e.

Pw(X, 0, T ) ≥
ρw
ρo
Po(X, 0, 0) (2.21)

The accompanying water head is:

hw =
Po(X, 0, 0)

ρog
(2.22)

We assume that the ratio between the chosen amplitude and this specific
water head has a linear relation with the entrapped oil ratio (A ∼ Sot

So
).

With this relation it is possible to relate the relative quantity of entrapment
and the amplitude of the fluctuating groundwater level:

Sot
So

=

{

Aρog
Po(X,0,0) if A ≤ Po(X,0,0)

ρog

1 if A >Po(X,0,0)
ρog

(2.23)

Later we use Equation (2.23) to analyze the effects of A on the distribution
of the oil lens.

2.3 Numerical methods

2.3.1 1-D

To simulate the infiltration and redistribution of the oil under fluctuating
groundwater level conditions, we first perform a one-dimensional three-
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phase numerical calculation and compare the results with experimental
data. This experiment was performed by Lenhard et al. [29] in a ho-
mogeneous sand column and, since it is very similar to our fluctuating
groundwater level problem, it is appropriate to use it for our purposes.
The numerical model is based on the mixed form of the Richards Equation
(2.4), where we consider X to be very small to simulate a one-dimensional
model. The governing flow equations are solved numerically by following
an integrated finite-difference method. Spatial discretization of the compu-
tational domain with the integrated finite-difference method is limited to
orthogonal grid systems. The algebraic forms of the nonlinear governing
equations are solved with a multivariable residual-based Newton-Raphson
iteration technique. The parameter values that are used in this experiment
are given in Table 2.1. We use an orthogonal Cartesian domain of height
0.7 m, discretized by 71 nodes, and of width 0.06 m, discretized by 1 nodal
point. The initial time step is 10 s and the maximum allowable timestep is
10 min.

At the base (Z = 0) of the domain, a water pressure is prescribed that
ascertains that the complete domain only contains water, i.e. the initial
groundwater level is located at the upper boundary of the domain (0.70
m). The initial oil pressures are set equal to the water pressures, which is
the critical oil pressure for water saturated conditions (White, Oostrom and
Lenhard, [51]). The critical oil pressure in general is the pressure that agrees
with the situation where no free oil is present, i.e. Swa = St. Furthermore,
the initial lowering of the groundwater level is simulated by a step-wise
linearly declining Dirichlet boundary condition for aqueous pressure on the
base of the domain so that a lower groundwater level is achieved of 0.07 m:

Pw(X, 0, Ti) = max[(0.7ρwg-i · 0.05ρwg), 0.07ρwg] (2.24)

In this equation for the water pressure the accompanying heads are the
initial water head of 0.70 m, the lower groundwater level of 0.07 m and the
decrease of the head in steps of 0.05 m. Infiltration of the oil into the domain
from the top is modeled by a Neumann boundary condition on the upper
surface by implementing a flux on the upper surface of the domain. Two
fluctuations of the groundwater level are simulated by changes in the water
pressure on the lower boundary surface. These fluctuations are modeled as
linear changes in the water-pressure-head on the lower boundary surface.
The first rise in the groundwater level elevation caused by these boundary
conditions changed the water pressure head from 0.07 m to 42 cm at T =
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Figure 2.2: 2-D redistribution of an LNAPL lens above the groundwater level.

17.4 h from the start of the experiment until T = 19.4 h. The lowering
changes the water pressure head from 0.42 m to 0.17 m (from T = 19.4
h until T = 21.1 h). The second rise in the groundwater level elevation
changes the water pressure head from 0.17 m to 0.52 m (from T = 21.1 h
until T = 25 h).

To investigate which retention function is suitable for our problem we
compare this experiment in which the groundwater level was fluctuated with
numerical simulation results based on either the BC or the VG function
(see Section 2.2.2). Lenhard et al. compared their experimental data with
a simulation based only on the VG retention function. They explained the
main discrepancy between the simulated and measured data at the bottom
of their model by pointing out that the BC relations which assume that
wetting fluid will not drain until a critical capillary pressure, i.e. the entry
pressure, is exceeded (Lenhard, Oostrom and White, [29]).

2.3.2 2-D

We expand the one-dimensional fluctuating water level problem to a two-
dimensional problem, namely a vertical cross-section of the soil. The oil
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Figure 2.3: Water pressure at the bottom of the sandbox as a function of time,
where the solid line represents the water pressure in the fluctuation case and the
dashed line represents the water pressure in the reference case.

accumulates at the groundwater level in the form of a lens. Due to gravity
and capillary forces, the oil lens spreads out further along the groundwater
level with increasing time. This is shown in Figure 2.2. The distribution
depends on water, oil and air pressures and the pore size distribution. At
locations within the lens where the water saturation increases, part of the
oil becomes entrapped as discrete drops become enclosed by water. En-
trapment implies immobilized oil, hence it adversely influences the velocity
of the horizontal migration of the lens.

The model parameters we used are the same as for the one-dimensional
situation (see Table 2.1), except for the horizontal dimension that is chosen
to be 2 m, discretized over 40 nodes. The initial conditions for this porous
medium are as follows: we have a 2-D domain homogeneously filled with
sand. At the bottom of the domain (X, 0, T ) a water pressure is imposed
that ascertains that the complete domain is filled with water. This is shown
in Figure 2.3 at T = 0 h. Hence the groundwater level is located at the
upper boundary of the domain (0.70 m). The initial oil pressures are set
equal to the initial water pressures, which is the critical oil pressure for sat-



24 Chapter 2

urated aqueous-phase conditions (White, Oostrom and Lenhard, [51]). The
boundary conditions are: zero flux Neumann conditions at the left bound-
ary of the domain to simulate a vertical symmetry axis. Furthermore, the
initial lowering of the groundwater level is simulated by a step-wise linearly
declining Dirichlet boundary condition for water pressure at the bottom of
the domain (see Figure 2.3 from T = 0 h until T = 1 h) so that a groundwa-
ter level of 0.07 m is achieved in agreement with the experiment (Lenhard,
Oostrom and White, [29]). Infiltration of 70 ml of oil into the domain from
the top is modeled by a Neumann boundary condition on top surface by
imposing a flux on the top of the symmetry axis and the nearest 3 hori-
zontal nodal points from T = 12.2 h until T = 12.3 h. The oil accumulates
above the groundwater level until T = 17.4 h. From this moment where
the oil is situated above the groundwater level, we distinguish two different
situations: one where the groundwater level remains stable at 0.025 m from
the bottom of the domain (see the dashed line in Figure 2.3). This situation
is referred to as the reference case to compare with the effects of another
more complex model. For the other situation, after the accumulation of the
oil on the groundwater, the groundwater level fluctuates due to varying the
water pressure at the bottom of the domain. This pressure is a sinusoidal
function of time such that the groundwater level varies between 0.025 m
and 0.25 m (see the solid line in Figure 2.3). The situation that concerns
the fluctuations is referred to as the fluctuation case.

2.4 Results

2.4.1 Numerical results

To assess which one of the retention functions is the most appropriate
for our case, we test both functions by comparing numerical calculations
based on either BC or VG with experimental data that were obtained
from Lenhard (Lenhard and Parker [25]; Lenhard, Johnson and Parker
[28]; Lenhard, Oostrom and White [29]; Lenhard, Parker and Kaluarachchi
[31]). These data were measured during a one-dimensional three-phase flow
experiment in which the groundwater level fluctuated two times. The wa-
ter and oil content have been measured during 25 h from the start at six
elevations.

The fluctuations in the results in Figure 2.4 indicate the fluctuations
of the groundwater level. At T = 12.5 h the oil was applied to the upper
boundary which results in an increase of So and a slight decrease of Sw in
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Figure 2.4: Numerically calculated fluid saturations using the Van Genuchten
and Brooks-Corey retention function versus experimentally measured fluid satura-
tions. Every graph represents a depth (top left corner) in the domain i.e. 67-, 57-,
47-, 37-, 27-, and 17-cm position. The different lines in the graphs represent the
water saturation (solid line) and the oil saturation (dotted line) calculated by the
van Genuchten function and the water saturation (dashed line) and oil saturation
(dash-dotted line) calculated by the Brooks-Corey function. The dots indicate the
experimental water saturation and oil saturation.
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Depth [cm] σV Gw σV Go σBCw σBCo
17 0.125 8.676e-2 0.145 0.137
27 7.093e-2 9.730e-2 7.295e-2 0.126
37 5.650e-2 8.263e-2 5.547e-2 0.103
47 6.923e-2 7.082e-2 7.098e-2 8.073e-2
57 6.123e-2 4.245e-2 6.949e-2 6.713e-2
67 8.451e-2 6.025e-2 8.670e-2 7.767e-2

Table 2.2: Standard deviations between the measured water and oil satura-
tions, VG numerically calculated water and oil saturations and BC numerically
calculated water and oil saturations.

the lower part of the domain. The oil moves downwards which results in a
decrease of So in the upper areas. At T = 17.5 h and at T = 21.1 h the
water table was raised which results in fluctuations of both Sw and So. For
a more detailed description of the experimental and simulation results, see
Lenhard et al. [28] and Lenhard et al. [29]. They particularly noted that
air was entrapped during oil imbibition, which is shown in Figure 2.4 at
67 cm where the largest total saturation of water and oil is 0.96 after oil
imbibition at T = 12.5 h. Oil and air are entrapped during water imbibition
since the oil-water capillary pressure head was measured to be < 0 at the
47-cm position which indicates that the oil and air phase present at 47-cm
should be discontinuous blobs. Since the air entrapment is small, compared
to the oil entrapment, we assume the air entrapment to be zero.

Comparison of the experimental and numerical data show that the VG
function gives better results in the upper area of the domain, while at the
lowest depth the BC function is more accurate. This is shown in Figure 2.4.
At the 67-cm and 57-cm position we see that especially the oil saturation
is better approximated by VG while the water saturation does not give a
clear indication which function provides a better fit. At the 47-cm, 37-cm
and 27-cm position both the water and oil saturation do not clearly show
which function fits better. However at the 17-cm position the oil saturation
is better approximated by VG while BC fits the water saturation during
the two-phase (water and air) segment from T = 0h until T = 12.5 h
much better than VG. This better accuracy at small depths is caused by
the entry pressure that needs to be exceeded before drainage takes place,
which is accounted for by the BC function but not by the VG function.
For a more detailed comparison, we calculated the standard deviation σ
(σ2 =

∫

∞

-∞(x-X)2dx, where x is the mean value and X is the true value of
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case n α [m-1] V1 [m2] Smaxor Smin βow
1 3.16 1 6.9e-4 0.395 0.20 1.8
2 3.16 6 6.9e-4 0.395 0.20 1.8
3 2.00 1 6.9e-4 0.395 0.20 1.8
4 4.00 1 6.9e-4 0.395 0.20 1.8
5 3.16 1 3.4e-4 0.395 0.20 1.8
6 3.16 1 1.4e-3 0.395 0.20 1.8
7 3.16 1 6.9e-4 0.195 0.20 1.8
8 3.16 1 6.9e-4 0.595 0.20 1.8
9 3.16 1 6.9e-4 0.395 0.00 1.8
10 3.16 1 6.9e-4 0.395 0.60 1.8
11 3.16 1 6.9e-4 0.395 0.20 1.125
12 3.16 1 6.9e-4 0.395 0.20 2.25

Table 2.3: Parameters and characteristic lengths and times used in the compu-
tations. Case 1 is identical to the parameters described in Table 2.1

the quantity) between both the VG and BC function and the experimental
data at different depths (see Table 2.2). Since the VG function gives for
all depths the best average results for the complete domain and since the
numerical calculations converge much faster to a solution for this function,
we chose to use this function for further calculations.

We also consider a two-dimensional problem where we distinguish be-
tween a reference case where the oil accumulates above a stationary ground-
water level and between a fluctuation case where the groundwater level
fluctuates as a function of time. A typical computation time varies be-
tween a few minutes and a few days depending on the chosen parameters.
Especially the BC retention function results in large computation times.
The results of the reference case where the parameters described in Table
2.1 ( case 1 in Table 2.3) are used, are shown in Figure 2.5.a, where we
see the redistribution of the oil in terms of the vertically integrated free
oil saturations (wf ) and in terms of the vertically integrated trapped oil
saturations (wt), at two dimensionless moments in time t1 and t2:

wf (ti) = φ

∫

Sof (t)dz (2.25)

wt(ti) = φ

∫

Sot(t)dz (2.26)
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Figure 2.5: Reference situation. Free and trapped oil volumes per unit lateral
area for (a) case 1 with α = 1m-1 and (b) for case 2 with α = 6m-1, at two times
(note the differences in scale).
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We integrate vertically because we want to emphasize the effect of the
fluctuations on the horizontal migration and therefore we want to exclude
the vertical redistribution.

To evaluate the effect of the VG parameter α, two cases were consid-
ered, namely Case 1 (α = 1m-1) and Case 2 (α = 6m-1). The results are
presented in Figures 2.5.a and 2.5.b for the situation where no water table
fluctuations were simulated, and in Figures 2.6.a and 2.6.b for the situation
where fluctuations were considered. It is clear that for Case 1 the horizontal
migration is faster than for Case 2 while for Case 2 wf is larger per unit
lateral area. We see that α has a large impact on the horizontal migration
of the oil. In the reference case we see that when α = 1m-1 there is a higher
degree of horizontal movement compared to the situation where α = 6m-1.
Figure 2.7 shows that Case 1 (α = 1m-1) is fine sand and therefore has
a rather steep capillary pressure-saturation curve, which means that the
water saturation in the capillary fringe (zone directly above the saturated
zone) is higher than for Case 2 (α = 6m-1) which is coarse sand and pro-
duces a flatter capillary pressure curve (see Equation (2.10)). Due to the
higher water saturation in the capillary fringe, vertical downwards move-
ment of oil is retarded in Case 1. As a consequence, the oil moves laterally,
so that the total contact area between oil and water is larger. The oil phase
eventually breaks up into blobs of entrapped oil, which are immobilized by
capillary forces. If we compare Figures 2.5.a and 2.6.a to examine the effect
of the fluctuations, we see for α equal to 1m-1 that after 10 fluctuations
(T = 32.2 h) horizontal migration of the mobile phase has been retarded.
In the middle of the lens (the symmetry axis) the amount of mobile oil is
larger than in the reference case. After 21 fluctuations (T = 78 h) these
effects are even more profound. The same is shown in Figures 2.5.b and
2.6.b for α = 6m-1, i.e. fluctuations cause a retardation in the horizontal
migration. The amount of mobile oil in the middle of the lens however is
approximately the same in the fluctuation case and the reference case. A
comparison of Figures 2.5.a and 2.6.a with 2.5.b and 2.6.b indicates that
there is a difference in the amount of entrapment at the symmetry axis.
Retardation in horizontal migration varies with α-values.

The development of wf during a fluctuation is as follows: when the
groundwater level rises, the oil phase is entrapped (or immobilized); as the
water table falls, oil becomes mobile again. The effects of the fluctuations
on wf are shown in Figure 2.6.a and 2.6.b. The results of the fluctuation
case are calculated at the moments in time when the groundwater level is
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Figure 2.6: Profiles situations with fluctuations included: wf as function of
unit lateral area at two times for (a) case 1 where α = 1m-1 and (b) case 2 where
α = 6m-1 (note the differences in scale).
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Figure 2.7: Apparent water saturation-capillary pressure relations using the
Van Genuchten retention relation for Case 1, 2, 3 and 4.

at its lowest position which coincides with the groundwater level in the ref-
erence case. That moment seems to be the most straight forward choice for
a comparison with the reference case. We see that the horizontal migration
in the fluctuation case is smaller (x = 700 until x = 850 for Case 1 and
x = 70 until x = 100 for Case 2) than in the reference case (x = 800 until
x = 1000 for Case 1 and x = 100 until r = 160 for Case 2) from T = 32.2
h until T = 78 h. Comparison between the fluctuation case and the ref-
erence case reveals that the horizontal migration of the lens is impeded in
the fluctuation case and that the amount of mobile oil decreases slower in
the fluctuation case. During the raise of groundwater, the oil is entrapped
into the water phase, i.e. the oil becomes immobile. As it is not able to
migrate in the horizontal direction, the horizontal migration is retarded.
In the reference case the oil migrates through the unsaturated zone until it
reaches the capillary fringe where it migrates horizontally above the satu-
rated zone. During this horizontal migration part of the oil gets entrapped
into the water phase. Since the horizontal migration of the oil in time is
related to the entrapment in time, retardation of horizontal migration in
the fluctuation case means that also the entrapment of oil in the water
phase is retarded in time.
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To show the effect of redistribution on the amount of mobile oil we
calculate the total amount of free oil vf at a certain moment in time Ti for
the reference case and for the fluctuation case:

vf (ti) =

∫

wfdx (2.27)

We calculate at T1 = 32.2 h, vf (T1) ≈ 7.1 and at T2 = 78 h, vf (T2) ≈ 6.1
where the initial total oil volume per unit width vt is 15.8. The dimension-
less free oil volumes per unit width in a fluctuating case are: vf (T1) ≈ 9.2
and vf (T2) ≈ 9.1 again with vt is 15.8. This means that the total amount
of mobile oil in the reference case decreases faster than in the fluctuation
case. During the rising of the groundwater level, imbibition occurs and the
oil becomes entrapped. This entrapment is reversed during the lowering
of the groundwater level (drainage) to the original position when the oil
becomes mobile again. Only during the periods when the oil is mobile,
the oil can migrate and becomes entrapped because of the larger contact
area between water and oil. This process is not reversible and is the same
process as the entrapment process that occurs continuous in the reference
case. The discontinuity in the migration of the fluctuation case results in
a retardation in horizontal migration and in a larger amount of mobile oil.

To show the effect of varying parameter values on the amount of mobile
oil we compute the volume of free oil and the maximum horizontal distance
that is covered by the oil lens for the different parameters that are presented
in Table 2.3. Since we are looking at the amount of entrapment, we decided
to vary the parameters that influence the entrapment (Equations (2.5) and
(2.10)), namely α, n, V1, S

max
or , Smin and βow.

We vary the parameter n in Cases 3 and 4 and present the results in
Figure 2.8.a at T = 32.2 h. At previous moments in time the same features
are visible

and at later moments in time the oil lens will reach the boundary. As
has been mentioned, n has a large influence on the migration rate, which
increases if n decreases. In the fluctuation case we see that the horizon-
tal migration is retarded and the amount of mobile oil on the symmetry
axis is larger. If we change the initial oil volume, a few features are seen:
the horizontal migration is retarded and the amount of mobile oil on the
symmetry axis is larger in the fluctuation case compared with the reference
case (Figure 2.8.b. (Cases 5 and 6)). Since we have used α = 1m-1 in
Cases 5 and 6, it is logical that the same features appear as in Figure 2.6.a
and 2.6.b. The same is done for Smax

or (Figure 2.8.c (Cases 7 and 8)), Smin
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Figure 2.8: Parameter variation for free oil at T = 32.2h.: a. Case 3 and 4. b.
Case 5 and 6. c. Case 7 and 8. d. Case 9 and 10. e. Case 11 and 12.

(Figure 2.8.d (Cases 9 and 10)) and βow (Figure 2.8.e (Cases 11 and 12).
Comparing the reference case with the fluctuation case we see for all cases
with different values for α, n, V1, S

max
or , Smin and βow that retardation of

migration and retardation in the amount of entrapment takes place in the
fluctuation cases.

To account for the amount of entrapment quantitatively, we first studied
this phenomenon in relation to the groundwater level numerically. We
looked at the difference in the amount of mobile oil between the reference
case and the fluctuation case at certain x-coordinates. Since wf diminishes
from the middle of the lens to the borders, we scale this difference to the
amount of mobile oil in the reference case (

wf -wf,f

w
), where wf and wf,f are

respectively the free oil volume in the reference and in the fluctuation case.
This means that if this value is 1, the oil in the fluctuation case is entrapped
and if it is 0, all oil in the fluctuation case is mobile. To show that this
scaled difference behaves sinusoidal, we implement the scaled groundwater
fluctuation. It can be seen in Figure 2.9 that the amount of mobile oil has
a relation with the groundwater level during the complete fluctuation. We
can use this information to develop an analytical method to predict the
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horizontal migration.

2.4.2 Analytical approximation

As has been mentioned, it may require considerable computational effort
(CPU time, memory demand) to compute some of the cases. Furthermore,
if the main phenomena to be studied concerns vertically averaged proper-
ties in view of their robustness, much of the numerical model details are
not really necessary. Hence we assess in this section whether recent an-
alytical results are able to capture the main observed trends with minor
computational efforts. Van Dijke and Van der Zee developed a 2-D semi-
analytical solution for oil redistribution with entrapment. This solution
takes the form of the similarity solution (Van Dijke and Van der Zee [44])
for a vertical cross-section of the soil. Similarity solutions can be used for
a phenomenon that is self-similar which means that the spatial distribu-
tions of its properties at various moments of time can be obtained from one
another by a similarity transformation.

Van Dijke and Van der Zee assumed that the oil lens is at vertical
equilibrium so that consequently the vertical component in Equation (2.9)
may be omitted and the vertical capillary pressure distributions (Pao en
Pow) are approximately hydrostatic. With f = ρw

ρo
(see Equation (2.20))

and Po(X, 0, T ) = ρogZao, where we assume Z = 0 at the bottom of the
domain:

Pow(X,Z, T ) = ∆ρg(Zow-Z) (2.28)

Pao(X,Z, T ) = ρog(Zao-Z) (2.29)

where Zow is the level above which oil is present and Zao is the level above
which air is present. Substitution of the dimensionless variables in Equation
(2.7) in Equations (2.28) and (2.29) results in:

po = z-zao (2.30)

If we substitute this in the Richard’s Equation (2.9) and if we neglect the
vertical flow velocity, the Richard’s equation for the oil phase becomes:

φ
∂So
∂t

-
(1-D)2

V1(αβow)2
∂

∂x
(kro

∂zao
∂x

) = 0 (2.31)

Because vertical pressure distributions are hydrostatic, we further reduce
Equation (2.31) by vertical integration, which requires evaluation of:
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wf = φ

∫

Sofdz and k =

∫

kro(Swa, St)dz (2.32)

where wf (x, t) represents the free oil volume per unit lateral area and k(x, t)
the vertically integrated relative permeability. zao and k in Equation (2.31)
are rewritten in terms of wf :

zao = λ1w
1

n+1

f and k = λ2w
5n-2

2(n+1)

f (2.33)

where λ1 and λ2 are constants. The vertically integrated time derivative of
Equation (2.31) can be written as:

∂wo
∂t

=

{

∂wf

∂t
if

∂wf

∂t
≥ 0

∂wf

∂t
(1-ct) if

∂wf

∂t
< 0

(2.34)

This yields for Equation (2.31) :

F (
∂wf
∂t

) = γ
∂

∂x
(wqf

∂wf
∂x

) (2.35)

where

p =
1

1-ct
, p ≥ 1 (2.36)

γ =
(1-D)2pλ1λ2

(αβow)2V1(n+ 1)
(2.37)

q =
3n-2

2(n+ 1)
(2.38)

F (y) =

{

py if y ≥ 0
y if y < 0

(2.39)

and ct is the trapping constant. Equation (2.35) is the modified porous
medium equation, that according to Hulshof and Vazquez [17] admits a
similarity solution of the form:

wfa(x, t) = t
-µ
h(xν

1
2 t

-ν
) (2.40)

t = γ · (t-t0) (2.41)
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Figure 2.10: Numerical and analytical free oil volumes per unit lateral area
(wof ) at t is 15533.8.

where wfa is the analytically calculated free oil volume per unit lateral
area, x is the dimensionless horizontal coordinate and t the time. h is the
similarity profile, µ and ν are powers that are determined by the decrease
of the total free oil volume and the free oil volume in the middle of the lens
(Van Dijke and Van der Zee [44]), γ is a dimensionless parameter defined
by Equation (2.37) in the nonlinear diffusion equation and t0 represents the
time at which the solution becomes singular. For more detailed information
about the assumptions made and the derivation of the similarity solution
we refer to Van Dijke and Van der Zee [44]. The similarity solution is
initially not applicable; however, shortly after the start of the simulations
the similarity solution provides a good approximation (Van Dijke and Van
der Zee [44]). The initial conditions do not have the similarity shape of wfa,
however for increasing times the shape of wf converges reasonably fast to
the shape of wfa. The similarity solution contains a part that represents
the shape of the wfa curve (h) and it contains a part that represents the
changes in the behavior of the solution in time (t), i.e. the multiplicator of
h.
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After comparison of the similarity solution with numerical calculations,
it appeared to provide a good approximation of the computed horizontal
extension of the lens and the fraction of mobile oil. This is shown in Fig-
ure 2.10 at an arbitrarily chosen moment in time. For a more detailed
description of this solution we refer to Van Dijke and Van der Zee [44], who
show that this solution is applicable for a wide range of time and different
parameter values.

Since the similarity solution ( Equations (2.40) and (2.41)) is based on
vertical flow equilibrium, we account for a fluctuating groundwater level by
mathematically manipulating the similarity solution. Since the fluctuating
groundwater level has an effect solely on the changes of the solution in
time and not on the shape of the solution, it is logical that we have to
concentrate on t. In view of the earlier results this means that we determine
the retardation in time of horizontal migration for the fluctuation case.
Additionally we investigate how the retardation in time can be predicted
so that t can be manipulated in such a way that the fluctuation case can
be simulated analytically. The assumption of vertical flow equilibrium is
not in conflict with a vertical dynamic situation as in the fluctuation case,
because we only focus on the situations where the groundwater level has
returned to its original lower level and on the retardation in the horizontal
dimension.

We consider the retardation in horizontal migration for the case where
the lowest groundwater level is almost at the bottom of the domain and the
highest level is at z = Pw(X,0,0)

ρog
(see Equation (2.21)). When the ground-

water level rises, oil becomes entrapped and is prevented from migration.
Figure 2.9 shows the scaled groundwater level as a function of time. As
mentioned before, it is clear from Figure 2.9 that the amount of mobile oil
in time has a relation with the scaled groundwater level in time. During
the period when the scaled groundwater level is zero, the same amount
of mobile oil is present as in the reference case and during this period it
can migrate horizontally as fast as in the reference case. However, when
the scaled groundwater level is one, the total amount of oil is entrapped in
the fluctuation case and it can not migrate horizontally during this period.
This means that the oil can migrate during the period when the scaled
groundwater level is zero. Since the fluctuation of the groundwater level is
not a block function, we assume that integration of the scaled groundwater
level in time represents that part of the actual simulated time in which
the oil cannot spread horizontally. This integration should satisfy the time
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that the oil does not migrate in the case that the fluctuation amplitude
results in total oil entrapment at its highest position. For smaller ampli-
tudes where the oil does not become completely entrapped, the integration
must be corrected by the relative quantity of entrapment that goes with
the fluctuation amplitude. For this purpose we use Equation (2.23) (see
Section 2.2.3) where we assume a linear relation between the amplitude of
the fluctuation and the amount of entrapment. The time that the oil does
migrate horizontally is called flow time (τ) and is related to the simulated
time by substraction the time that the oil is not able to migrate:

τ = t-
0.5Aρog

Po(X, 0, 0)

∫ t

0
(1 + cos$t)dt (2.42)

where A is the amplitude of the fluctuation. This means that since we
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Figure 2.12: Numerical and analytical solution for fluctuation model: free oil
volume per unit lateral area for case 1 at t is 10776.8.

have chosen in this situation to use a sinusoidal fluctuation and since A =
Po(X,0,0)

ρog
, oil can spread only half of the time:

τ = t-

∫ t

t1

(0.5 + 0.5 cos$t)dt (2.43)

where t1 is the point in time where the fluctuations begin. This flow time
can be substituted in t in Equation (2.41). To test this approximation, we
compare the fluctuation case at a certain time t and the reference case at the
flow time τ . The maximum migration which is defined by the x-coordinate
where wf becomes zero is calculated numerically at the simulated time in
the fluctuation case and analytically at τ in the similarity solution and
these values are plotted against each other. In Figure 2.11 we see that
the flow time approximation fits rather well for different amplitudes of the
fluctuation at different moments in time. The deviations all have the same
values and are identical to the size of one grid cell which is very small, i.e.
the deviations are caused by the numerical grid and shall become smaller
by decreasing the grid.

τ (Equation (2.43)) can be substituted for t in Equation (2.41) to obtain
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the correct horizontal migration analytically. The result is shown in Figure
2.12 where we can see that the horizontal migration is approximately the
same for the analytical and numerical solutions at a certain moment in time,
i.e. both the solutions show that the oil has reached x ≈ 570. From Figure
2.11 we can conclude that this solution is applicable for a wide range of time.
Conversely it is clear from this figure that the amount of dimensionless free
oil in the middle of the lens is much smaller for the analytical solution.
This means that the flow time approximation (Equation (2.43)) can not
be used to predict the retardation in the decrease in mobile oil and it is
solely applicable for predicting the horizontal migration (see Figure 2.11).
The reason for that is that approximately the total volume of oil becomes
mobile after lowering of the groundwater level, i.e. the total volume of free
oil is decreasing very slowly and there is no relation between the volume of
free oil and the integration of the relative groundwater level. We suggest
that this should be implemented in the similarity solution by manipulation
of the mathematically determined similarity powers µ and ν, since these
powers are determined by the decrease of the total free oil volume and the
decrease of the free oil volume in the middle of the lens. The advantage of
this analytical method to predict the horizontal migration is less computing
time compared to the numerical calculations and it is a verification of the
numerical results.

The approximation can be adapted to homogeneous situations with dif-
ferent values for the parameters, in a very simple way. Since the similarity
solution is a semi-analytical solution, based on two numerical measurements
of wf , we test whether different cases could be calculated by just adapt-
ing the dimensionless variables or if for each case a new similarity solution
should be developed based on new numerical calculations. The parameters
that are used to determine the dimensionless variables are shown in Equa-
tion (2.7). From the definitions, we see that it is possible that changes in
parameters cancel each other, e.g. K and µo so that there is no change
in the dimensionless variable. Furthermore other changes in parameter
values will affect the dimensionless variables (Equation (2.7)) which can
easily be implemented in the similarity solution. We tested the assump-
tions that changes in parameters can cancel each other and that changes
in parameter values solely result in a change in a dimensionless param-
eter value by comparing numerical and analytical results and the results
show the same agreement between numerical and analytical solutions as
in Figure 2.12. Since we use the numerically calculated free oil profile to
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develop the semi-analytical solution, the choices for the retention function
and the relative permeability function will not influence the applicability of
the semi-analytical solution. The entrapment function however (Equation
(2.5)) will influence the solution and adaptions should be made in case of
a different entrapment function. This means that the horizontal migration
can be predicted by one similarity solution for situations based on various
parameter values.

In reality a fluctuating groundwater level will behave in a more complex
way than a simple sinusoidal function. Considering the different amplitudes
and the different parameter values, we expect that other fluctuation func-
tions than a sinusoidal function can also be incorporated in Equation 2.42.
The basic idea of the flow time is to integrate the fluctuation function to
achieve the time that the oil can actually flow and it should be investi-
gated whether this flow time depends on the type of fluctuation function or
not. Furthermore, in reality the soil is mostly not homogeneous. Since we
have seen that different parameter values for α, n, V1, S

max
or , Smin and βow

all result in retardation of horizontal migration (see Section 2.4.1), we as-
sume that a fluctuating groundwater level in a heterogeneous medium with
horizontal layers, where these parameter values will vary through the lay-
ers, will also result in retardation of horizontal migration. Equation (2.42)
should be adapted for a heterogeneous medium in such a way, that the time
that the oil is not able to migrate is calculated for each layer. Furthermore
the oil will become entrapped since the interfaces between the layers form
a capillary resistance. This phenomena should also be taken into account.

2.5 Conclusion

From a numerical study of the differences between a situation where oil
redistribution above the groundwater level is investigated and the same
situation where fluctuations of the groundwater level are included, the fol-
lowing can be concluded. During rising and lowering of the groundwater
level the oil becomes respectively entrapped and mobile again. As long
as the oil is entrapped horizontal migration of the oil lens is impeded and
therefore the migration is retarded compared to the case without fluctu-
ations. The extent of the retardation depends on the amplitude of the
fluctuation. We found a criterion which the amplitude must fulfill to yield
complete entrapment of the oil phase into the water phase. In accordance
with this criterion we derived an equation for the retardation and for pro-
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viding a flow time for the reference situation where the solution coincides
with the fluctuation case at the simulated time.

An analytical solution for oil redistribution above the groundwater level
was already available in the form of the similarity solution that describes
the free oil volume per unit lateral area. This similarity solution consists of
a part that represents the shape of the solution and a part that represents
the development in time. We manipulated the part that represents the
development in time by using the flow time instead of the simulated time
to simulate the fluctuation case. It appeared that this analytical solution
gives a very good approximation of the horizontal migration. This way
it is possible in a relative simple and fast way to calculate the horizontal
migration of an oil lens above a groundwater level that fluctuates in time
for different situations.

Notation

A the amplitude of the fluctuation
ct trapping constant
D parameter determining finiteness of lens thickness
f multiplicator of Po(0, 0) to obtain Pw(0, 0)
F trapping function
FL Land’s factor
g gravity [m s-2]
h similarity profile
hw waterhead [m]
K absolute permeability [m2]
kri phase i relative permeability
k̄ vertically integrated oil relative permeability
n van Genuchten parameter
p trapping constant in function F
Pe entry pressure for the capillary pressure [Pa]
Pi phase i pressure [Pa]
Pc characteristic pressure [Pa]
Pik phases i, k capillary pressure [Pa]
q power in coefficient of diffusion equation
X (x) (dimensionless) horizontal coordinate [m]
Xc characteristic horizontal length [m]
Si phase i saturation
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Sof free oil saturation
Sot trapped oil saturation
Smax
or maximum residual oil saturation
St total fluid saturation
Swa apparent water saturation
Smin
w minimum water saturation
T (t) (dimensionless) time [h]
Tc characteristic time [h]
t0 starting time of similarity solution
t1 starting time of the fluctuations
t̄ time in similarity solution
Ui phase i horizontal flow velocity [m s-1]
Vi phase i vertical flow velocity [m s-1]
V1 initial oil volume in 2-D[m2]
vf dimensionless free oil volume
vt dimensionless total oil volume
wf dimensionless free oil volume per unit lateral area [m]
wt dimensionless trapped oil volume per unit lateral area [m]
Z (z) (dimensionless) vertical coordinate [m]
Zao (zao) (dimensionless) elevation beyond which air is present [m]
Zc characteristic vertical length [m]
Zow (zow) (dimensionless) elevation beyond which oil is present [m]
α van Genuchten parameter [m-1]
βao, βow ratios of air-oil and oil-water to air-water surface tensions
γ dimensionless parameter in nonlinear diffusion equation
λ Brooks-Corey parameter
λ1, λ2 constants in power law approximations of zao and k̄
µ, ν powers in similarity solution
µi phase i viscosity [Pa s]
ρi phase i density [kg m-3]
σ standard deviation
τ part of the actual simulated time in which the LNAPL can spread

horizontally (flow time)
φ porosity
ω angular velocity of the fluctuation
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Comparison of experiments and modeling: the

influence of a fluctuating groundwater level on

the migration of an LNAPL lens*

3.1 Introduction

The contamination of groundwater by Light Non Aqueous Phase Liquids
(LNAPL) as a result of improper disposal practices, spills and leaking stor-
age facilities, poses a serious threat to drinking water resources. In this
chapter we consider LNAPLs which are less dense than water and may
accumulate as a lens above the phreatic surface. Knowledge of the distri-
bution of LNAPLs in the soil environment is essential in order to effectively
remediate a contaminated site. Correspondingly, it is important to investi-
gate the horizontal migration of the oil lens and the quantity and location
of trapped oil. This is a multiphase flow problem that involves the three
phases air, oil and water. Henceforth we use the term oil as a comprehensive
term for LNAPLs.

To model this flow problem Parker and Lenhard [34] and Lenhard and
Parker [25] introduced saturation-pressure relationships which account for
hysteresis and fluid entrapment in porous media containing up to three
immiscible fluid phases. Later, Lenhard et al. [30] and Kaluarachchi and
Parker [18] derived a simplified model of fluid entrapment by restricting
hysteresis to entrapment of oil by water. They found that their results were
almost identical to the full model where hysteresis was also included. White
et al. [51] used the same formulation to develop a three-dimensional, three-

*by A. Marsman, M.A. Ness, E.L. Wipfler, G.D. Breedveld and S.E.A.T.M. van der

Zee

submitted to Journal of Contaminant Hydrology
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phase, compositional engineering simulator for modeling LNAPL migration
and remediation technologies. Later they also included the possibility to
use the simplified model for fluid entrapment. We use this simulator for
our numerical calculations.

An oil plume migrates through the unsaturated zone until it reaches the
capillary fringe where the oil will spread laterally above the saturated zone.
Seasonal changes, intermittent pumping or heavy rainfall will change the
depth of both the groundwater level and the capillary fringe. The ground-
water level will fluctuate vertically as a function of time. Earlier numerical
experiments on oil entrapment and a fluctuating groundwater level were
done by Kaluarachchi and Parker [18]. Their results showed that fluid
entrapment markedly reduces the lateral migration since much of the oil
volume is trapped and thus immobile. Lenhard et al. [28] concluded from
experiments that to predict the movement of oil in the subsurface, where the
water table elevation may fluctuate, constitutive relations among fluid satu-
rations and pressures need to account for nonwetting fluid entrapment. The
same conclusion was made by Pantazidou and Sitar [33], who performed
two-dimensional experiments. Van Geel and Sykes [48] showed numerically
and experimentally fluid entrapment during fluctuation of the groundwater
level. They focussed on the importance of a hysteretic model. The effect of
fluctuations was investigated in Chapter 2 more quantitatively. We showed
numerically that fluctuations of the groundwater level results in retardation
in the horizontal migration of the oil lens. This retardation is a function of
the amplitude of the fluctuation. Additionally, we found a semi-analytical
solution that predicts the retardation as a function of the amplitude. Al-
though the agreement between analytical and numerical calculations was
good, only a test with experimental results can establish whether the main
phenomena have been accurately accounted for.

Since this semi-analytical solution in Chapter 2 is verified by numeri-
cal calculations solely, we performed laboratory experiments to verify the
results more extensively. Reported experimental data were not sufficient
for this goal, since no earlier research used a reference experiment, with
a stagnant groundwater level. This chapter presents the comparison be-
tween experimental results and model results concerning an oil spill in a
laboratory chamber and the effects of a fluctuating groundwater level on
the entrapment of the oil. The oil spill was numerically modeled using the
same code as in Chapter 2 is used, i.e. the code developed by White et
al.[51]. The aim of this work is to verify whether earlier numerical and
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analytical solutions are adequate to predict the retardation in horizontal
migration caused by a fluctuating groundwater level. In contrast to the
earlier experimental works on a fluctuating groundwater level [29][33][48],
we quantify the retardation in migration, which will contribute significantly
to the knowledge of the geometrical distribution of the oil lens.

3.2 Theory

3.2.1 Governing equations

The governing equations for the flow of water, oil and air in a three-phase
system are the mass balance equations:

φ
∂Si
∂T

+
∂Ui
∂X

+
∂Vi
∂Z

= 0, i = w, o (3.1)

and Darcy’s Law:

Ui = -
Kkri
µi

∂Pi
∂X

(3.2)

Vi = -
Kkri
µi

(
∂Pi
∂Z

+ ρig), i = w, o (3.3)

where the subscript i denotes either the water (w) or the oil (o) phase. The
equations for the air phase are omitted since the air phase is assumed to
be a passive phase i.e. the porespace that is not filled with oil or water, is
filled with air. Si is the effective phase saturation, Ui and Vi are respectively
the horizontal and vertical phase velocities. T is time and X and Z are
respectively the horizontal and vertical coordinates, and φ is the porosity.
K is the absolute permeability, kri is the relative phase permeability, and
µi is the phase viscosity. P is the phase pressure, ρi is the phase density,
and g the gravity acceleration. Combination of equations (3.1), (3.2) and
(3.3) yields the Richards equation:

φ
∂Si
∂T

-
∂

∂X
(
Kkri
µi

∂Pi
∂X

)-
∂

∂Z
(
Kkri
µi

∂Pi
∂Z

)-ρig
∂

∂Z
(
Kkri
µi

) = 0, i = w, o (3.4)

The constitutive relations are as defined by Parker and Lenhard [34]:
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Sw + So = St

St + Sa = 1

Sw + Sot = Swa

Sof + Sot = So

Pow = Po-Pw

Pao = -Po (3.5)

where St is the total liquid saturation and Sa is the air saturation. Swa is
the apparent water saturation, Sot is the trapped oil saturation and Sof is
the free oil saturation. Pow is the oil-water capillary pressure and Pao is
the air-oil capillary pressure which is identical to -Po since we assume the
atmospheric pressure (Pa) to be constantly zero.

To describe entrapment of oil, a linearized equation is used according to
Kaluarachchi and Parker [18] that can be easily implemented in numerical
multiphase flow codes :

Sot = min[(
1-Sminw

1 + FL(1-Sminw )
-

1-Swa
1 + FL(1-Swa)

), So] (3.6)

FL =
1

Smaxor

-1 (3.7)

where Sot is the trapped oil saturation and Sminw is the minimum water
saturation. FL is Land’s factor, where Smaxor is the maximum residual oil
saturation. Equation (3.6) prevents that the trapped oil saturation becomes
larger than the oil saturation.

The capillary pressure-saturation relationships based on the Van Genuch-
ten capillary pressure-saturation relationship[49] and extended to three
phases by Parker, Lenhard and Kuppusamy [36] are given by:

Swa =















1 if Pw > 0 and Po < Pw (a)

(1 + (αβow

ρw g
Pow)n)-m if

{

0 < Pw < Po or
Pw < 0 and Po >

1
βao

Pw
(b)

(1 + ( -α
ρw g

Pw)n)-m if Po <
1
βao

Pw < 0 (c)

(3.8)
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St =











1 if Po > 0 or Pw > 0 (a)

(1 + (αβao

ρw g
Pao)

n)-m if 1
βao

Pw < Po < 0 (b)

Swa if Po <
1
βao

Pw < 0, (c)

(3.9)

where α and n are parameters, m = 1- 1
n
, βow is the oil-water surface tension

and βao is the air-oil surface tension.

The relative permeability functions that are used are according to Len-
hard and Parker [24]:

krw = S
1
2
w(1-(1-S

n
n-1
w )1-

1
n )2 (3.10)

kro = (St-Swa)
1
2 ((1-S

n
n-1
wa )1-

1
n -(1-S

n
n-1
t )1-

1
n )2 (3.11)

3.2.2 Similarity solution

It may require considerable computational efforts to calculate the equa-
tions numerically. Therefore Van Dijke and Van der Zee developed a two-
dimensional semi-analytical solution for oil redistribution with entrapment,
based on vertical flow equilibrium. Their semi-analytical solution assumes
the form of a similarity solution, i.e., a function of a transformed variable
η = xν

1
2 t

-ν
.

For the derivation of the semi-analytical solution, Equation (3.4) is
solved after dimensionless transformation according to the following char-
acteristic lengths and times:

Zc =
1-D

αβow
, Xc =

V1αβow
(1-D)

, Tc =
µoV1αβow
Kρog(1-D)

, Pc =
ρog(1-D)

αβow
(3.12)

where D = βow∆ρ
βaoρo

is an indication of the thickness of the lens and V1 is the
initial oil volume or oil surface since we concern a two-dimensional problem
(V1 = φ

∫

∞

-∞

∫

∞

0 So(X,Z)dXdZ). This results in the following dimensionless
variables:

z =
αβow
1-D

Z, x =
(1-D)

V1αβow
X, t =

Kρog(1-D)

µoV1αβow
T, po =

αβow
ρog(1-D)

Po (3.13)

Equation (3.4) expressed in dimensionless variables becomes :
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φ
∂So
∂t

-
(1-D)2

V1(αβow)2
∂

∂x
(kro

∂po
∂x

)-
V1(αβow)2

(1-D)2
∂

∂z
kro(

∂po
∂z

+ 1) = 0 (3.14)

Furthermore we assume that vertical flow velocities are negligible as the
result of a balance of vertical capillary and gravitational forces, i.e. we
assume that the oil lens is at vertical equilibrium so that consequently
the vertical component in Equation (3.14) can be averaged vertically and
the vertical capillary pressure distributions are hydrostatic. Hydrostatic
pressure distributions result in [44]:

Pow(X,Z, T ) = ∆ρg(Zow-Z) (3.15)

Pao(X,Z, T ) = ρog(Zao-Z) (3.16)

where Zow is the level above which oil is present and Zao is the level above
which air is present. Substitution of the dimensionless variables in Equation
(3.12) in Equations (3.15) and (3.16) results in:

po = z-zao (3.17)

If we substitute this in Equation (3.14) and if we neglect the vertical flow
velocity, the Richard’s equation for the oil phase becomes:

φ
∂So
∂t

-
(1-D)2

V1(αβow)2
∂

∂x
(kro

∂zao
∂x

) = 0 (3.18)

This particular solution takes the form of the similarity solution [44] for a
vertical cross-section of the soil:

wf (x, t) = t
-µ
h(xν

1
2 t

-ν
) (3.19)

t = γ · (t-t0) (3.20)

where wf is the analytically calculated free oil volume per unit lateral
area (wf = φ

∫

Sofdz), x is the dimensionless horizontal coordinate. h is
the similarity profile that describes the shape of the solution that remains
constant, µ and ν are similarity powers that are related to the numerical
decrease of the total free oil volume and the free oil volume in the middle
of the lens [44]. The exact derivation of µ and ν is out of the scope of this
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study. γ is a dimensionless parameter and t0 represents the time at which
the solution becomes unique. t is the dimensionless time in the model.
This similarity solution consists of a part that represents the shape of the
solution (h) and a part that represents the development in time (t).

In Chapter 2 this similarity solution is manipulated in such a way that
it accounts for the retardation in horizontal spreading caused by a fluctu-
ating groundwater level that causes temporal entrapment. We assumed a
linear relation between the amplitude of the fluctuation and the amount
of entrapment. The vertical flow equilibrium assumption is not in conflict
with this vertical dynamic situation caused by the fluctuations, since we
focussed on the situation where the groundwater level has returned to its
original constant lower level solely. Their approach involved substitution
of a flow time τ for the time t, where the flow time is the time the oil does
migrate horizontally:

τ = t-
0.5Aρog

Po(0, 0)

∫ t

0
(1 + cosωt)dt (3.21)

where A is the amplitude of the fluctuation, ρo is the oil density, g is gravity
and Po(0, 0) is the oil pressure at t = 0 and x = 0. ω is the angular velocity
of the fluctuation. In Chapter 2 it is assumed that integration of the scaled
groundwater level in time (0.5

∫ t

o
(1 + cosωt)dt) represents that part of the

actual simulated time in which the oil can not spread horizontally. In other
words: we scale the time in such a way, that during the time the oil is
entrapped, τ evolves slower than t. This integration should satisfy the time
that the oil does not migrate in the case that the fluctuation amplitude
results in total entrapment at its highest position (A = Po(X,0,0)

ρog
). For

smaller amplitudes where the oil does not become completely entrapped,
the integration must be corrected by the relative quantity of entrapment
that goes with the fluctuation amplitude ( Aρog

Po(0,0) ). This approximation was
tested for situations with different values for the parameters by comparison
with numerical calculations. It appeared that this semi-analytical solution
gives a very good approximation of the retardation in horizontal migration.

3.3 Method

3.3.1 Experimental setup

In the laboratory, oil was spilled in a plexiglass chamber, 40 cm in horizontal
length, 40 cm in height and 2.5 cm in horizontal depth at a temperature of
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40 cm

air pressure (atmospheric)

40 cm
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well well

inlet inlet

groundwater level

capillary fringe

Figure 3.1: Setup and boundary conditions.

18◦ C. This chamber has vertical wells at each side that control the changes
in the water head during the experiment (Figure 3.1).

The chamber was filled up until 35 cm with materials composed of
artificially crushed white silica sands (AWK, Hirschau, D) with grain size
distribution in the range 0.25-0.50 mm. Then the chamber was water filled
and sand was added through a funnel until it reached 35 cm height. Water
was drained from the model, until the sand contains constant residual water
after 2 hours. Yellow dyed (Fluoresceine) tap water was added to the well
on the right hand side until a stable groundwater table was achieved of
10 cm from the bottom of the box. Water was pumped through the sand
to create steady state conditions. After 2 hours the pumping stopped and
red dyed (Sudan IV) oil was introduced in the center of the model via a
plastic tube that was connected to a peristaltic pump. A total amount of
15 ml oil (Jetfuel A-1, Statoil, Norway) was added to the packed sand with
a constant infiltration rate of 3 ml/min. The density of this oil is 0.8 g/cm3

and the viscosity is 0.019 Pa s.

After the oil was introduced in the center of the box at the top of the
sand pack, the oil plume development was studied through digital imaging
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taken at given intervals. After 360 Min the oil had reached the capillary
fringe of 8-9 cm above the groundwater table, and the oil started to spread
laterally on top of the capillary fringe. The fluctuations as described were
now introduced.

The fluctuations in water level were induced by pumping dyed tap water
in or out through the wells of the chamber. At first water was pumped into
the model to increase the water table from 10 cm to 12 cm. Next, water
was slowly pumped out of the model during a period of 12 hours until the
groundwater level was at 2 cm, the pump was instantly reversed and water
was pumped into the model during the next 12 hours. One complete cycle
where the water table is set to fluctuate between 12 cm and 2 cm was thus
completed in 24 hours. The experiment continued until the oil started to
flow out of the experimental domain. In addition, a reference experiment
was performed without fluctuations.

Digital pictures were taken 5 Min, 60 Min, 360 Min after oil introduc-
tion, and then every 12 hours during the fluctuations. They were taken both
at the lower and upper position of the complete cycle of the fluctuation.

3.3.2 Measurement and analysis of hydraulic parameters

In order to define the hydraulic parameters of the sand types used in the
experiment, we performed multi step outflow analyses using an inverse
modeling approach developed by Van Dam et al. [43]. This experiment
is performed independently of the fluctuation experiment but in the same
plexiglass chamber. The multi step outflow analysis is a variant of the one-
step outflow method in which the inverse modeling approach was originally
developed by Kool et al.[20]. In the multi step outflow experiment they
performed, a soil sample is placed in a pressure cell on top of a saturated
ceramic plate which has a relative large hydraulic conductivity and a high
entree pressure for air. The soil sample is initially saturated with water (the
wetting fluid), introduced through the ceramic plate at the bottom. From
above the pneumatic air pressure is increased stepwise and water outflow
through the plate is measured. The inverse model [43] solves the Richards
equation for unsaturated flow in porous media for the given boundary con-
ditions. The used hydraulic functions were the Van Genuchten function
and the Mualem function [49].

We applied a similar procedure for the plexiglass chamber as is described
in section 3.3.1. Instead of increasing the air pressure we decreased the
water pressure stepwise and measured the outflowing water. Initially the
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Figure 3.2: Cumulative water outflow as a function of time.

sand filled plexiglass chamber was completely water saturated. Next the
water pressure head was decreased stepwise in 5 or 6 steps. One experiment
took approximately 15 hours. The results are shown in Figure 3.2, where
cumulative outflow is plotted as a function of time. As the bottom of the
column was continuously completely water saturated, no ceramic plate was
needed (a ceramic plate is normally used to prevent air entry, since it has
a high entry pressure for air). Measuring the outflow at near saturation
gives less accurate results as it introduces non-uniform flow [43]. However,
the advantage of this variant is that the same packing technique is used
for determination of the hydraulic parameters as for the main experiments.
The optimized hydraulic functions are applied in the inverse model. From
the total volume of water that could be introduced in the sand box (resp.
1160 ml and 1090 ml) we calculated the porosity to be φ = 0.55.

In addition, we performed experiments to determine the vertical con-
ductivity. If we rewrite Darcy’s Law (3.3) for water expressed in hydraulic
heads:

Qw = KhcG
dH

dZ
(3.22)



Comparison of experiments and modeling 57

fine sand

Smin
w 0.08 ± 0.04
n 3.1 ± 0.4

Table 3.1: The hydraulic parameters calculated by inverse modeling.

where Qw is the flux of water out of the model, Khc is the hydraulic con-
ductivity, G is the flux area and H is the hydraulic head. This experiment
was conducted in the same plexiglass chamber where the hydraulic head
on top of the sand was kept constant and where the volume of water out of
the model was measured as a function of time. The hydraulic conductivity
was 0.05 cm/s ± 0.007. The inverse model optimizes for 2 parameters: the
residual water saturation, Smin

w , and the van Genuchten parameter n. The
results are shown in Table 3.1. Wipfler et al. [53] optimized in similar work
using the same experimental data for 3 parameters: Smin

w (=0.19), α (=8.0
m-1) and n (=3.9). Since these parameter values did not simulate the 2-D
experimental results satisfactorily, we chose to fix α = 7.0m-1 to obtain a
larger capillary fringe. According to the good approximation in Figure 3.2
for both this paper and for the optimized curve obtained by Wipfler et al.,
this means that the method developed by Van Dam [43] does not give a
unique optimization.

3.3.3 Numerical setup

The multiphase flow code STOMP developed by White et al. [51] was
used to model the two-dimensional laboratory experiment. This code is
based on the equations described in Section 3.2. The governing flow and
transport equations are in this case solved numerically by following an inte-
grated finite-difference method. Spatial discretization of the computational
domain with the integrated finite-difference method is limited to orthogo-
nal grid systems. The algebraic forms of the nonlinear governing equations
are solved with a multi-variable residual-based Newton-Raphson iteration
technique.

The parameters used in this experiment are described in Table 3.2. The
surface tensions were measured in the laboratory. We used an orthogonal
Cartesian domain of height 35 cm, discretized by 72 nodes, and of width
20 cm, discretized by 80 nodes. For symmetry reasons we only model half
the domain and therefore the left boundary presents the vertical symmetry
axis. The initial time step was 10 s and the maximum allowable timestep
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Property Value

Irreducible water saturation Sm 0.08
Genuchten parameter α 7.0 m-1

Genuchten parameter n 3.1
Air-water scaling factor βaw 1.0
Air-NAPL scaling factor βao 2.28
NAPL-water scaling factor βow 1.78
Intrinsic permeability K 1.9×10-11[m2]
Porosity φ 0.55
NAPL density ρ 800 [kg/m3]
NAPL viscosity µ 2.046×10-3[Pa s]
Length of sandbox 0.35 [m]
Width of sandbox 0.40 [m]

Table 3.2: Parameters used in the computations.

was 10 min.

The initial conditions for this experiment are as follows: the 2-D domain
is homogeneously filled with sand (see Figure 3.1). At the bottom of the
domain a water pressure is applied that results in a completely water satu-
rated domain. The initial oil pressure at the bottom of the domain is equal
to the water pressure so that an imaginary amount of oil is situated above
the domain. The boundary conditions are: 1. Zero flux Neumann condi-
tions at the left boundary of the domain in view of the vertical symmetry
axis. 2. Lowering of the groundwater level was simulated by a step-wise
linearly declining Dirichlet boundary condition for water pressure at the
bottom of the domain to accomplish a groundwater level of 16 cm (see
Figure 3.3 from T = 0 h until T = 0.5 h). 3. A flux on the top of the
symmetry axis and the 3 nearest nodal points in the horizontal direction
are the Neumann boundary condition that describes the oil infiltration of
7.5 ml from T = 12.2 h until T = 12.3 h.

Due to gravity and capillary forces the oil spreads along the groundwater
level. Here we distinguish between two different situations: one where the
groundwater level remains stable at 16 cm from the bottom of the domain
(see the dashed line in Figure 3.3). This situation is referred to as the
reference case to compare with the effects of the more complex fluctuation
model. The fluctuations of the groundwater level are simulated by changing
the water pressure at the bottom of the domain and the resulting height of
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Figure 3.3: Water level from the bottom of the sandbox as a function of time,
where the solid line represents the waterlevel in the fluctuation model and the
dashed line represents the waterlevel in the reference model.

the groundwater level is shown in Figure 3.3. The situation that concerns
the fluctuations is referred to as the fluctuation case.

The height of the water level for the numerical simulations is chosen to
be 16 cm instead of the 10 cm that is used in the experiment. This was
done to account for the heterogeneities that occur in the experiment. In
the experiments, these heterogeneities were apparent as layers of slightly
different textures and coloring. The thickness of such layers vary from mil-
limeters to centimeters. These heterogeneities form a capillary barrier for
the water phase causing water to accumulate above these capillary barriers.
This was shown by e.g. Wipfler et al. [53] and Ross [37]. Consequently
the water level in the two wells (see Figure 3.1) does not give the correct
indication for the total water saturation in the chamber. Visually the cap-
illary fringe was found to be centimeters higher than expected solely from
the applied water pressure at the bottom and therefore we have chosen
to increase the water level for the numerical experiment. In view of both
the visual inspection of the experiments and the outcome of trial simula-
tions, the waterlevel was taken to be 16 cm in the numerical approach. An
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time exp. num. exp. num.
fluct. case fluct. case ref. case ref. case

(hours) depth (cm) oil front

12.3 29 29.1
13.2 21.8 24.5
18.2 20.8 19.2
20.2 18.3 19.2
32.2 16.1 14.6 18.6 18.2
44.2 16.1 14.6 18.6 18.2
67.2 15.8 11.9 18.6 18.2

width (cm) oil front

20.2 7.8 7.3
32.2 9.4 7.9 12.7 10.0
44.2 9.4 7.9 14.0 11.7
67.2 8.6 8.0 16.5 13.1

Table 3.3: The geometry of the oil lens in the different cases.

alternative approach, where either the heterogeneities or anisotropy were
accounted for was disregarded as computationally more involved as well as
equally arbitrary in view of the lack of an adequate parameterization.

3.4 Results

3.4.1 Experimental results

The experimental results for the fluctuation case are shown in Figure 3.4.a
and 3.5.a. Figure 3.4.a represents the oil front at time T = 12.3 h and at
T = 13.2 h. This oil front is determined by the boundary where the red dye
in the oil is visible. The oil front has not yet reached the groundwater level
which is situated at Z = 10 cm and no fluctuations are incorporated at this
point in time. The depth that is reached by the oil front is approximately
29 cm at T = 12.3 h and 21.8 cm at T = 13.2 h from the bottom of the
chamber. This is also shown in Table 3.3, where the maximum depth and
maximum width of the oil lens for these calculations are shown.

In Figure 3.5.a the oil front is shown at T = 18.2 h, at T = 20.2 h, at
T = 32.2 h, at T = 44.2 h and at T = 67.2 h, where the oil lens is floating
above the groundwater level at approximately 20.8 cm, 18.3 cm, 16.1 cm,
16.1 cm and 15.8 cm from the bottom. The groundwater level is situated
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Figure 3.4: Fluctuation Case: the oil front at times T=12.3 h and T=13.2 h
The oil front is defined by So = 0.02 (numerical) and visually (experiment). The
groundwater level is not yet reached. (a) experimental results and (b) numerical
results.
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Figure 3.6: Reference case: the oil front at T=32.2 h, T=42.2 h and T=67.2 h.
(a) experimental results (b) numerical results with increased waterlevel (c) original
numerical results.
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at respectively Z = 10 cm, Z = 12 cm, Z = 2 cm, Z = 12 cm and at
Z = 11.5 cm (Figure 3.3). From Figure 3.3 it is known that from T = 20.2
h, the fluctuations are incorporated which means that the contour line at
T = 18.2 h is derived from the stable situation previous to the fluctuations.
The maximum width of the oil lens (at T = 44.2 h) is 9.4 cm, measured
perpendicular to the symmetry axis.

Figure 3.6.a shows the oil front for the reference case, where the ground-
water level remains at Z = 10 cm, solely at the moments in time T = 32.2
h, at T = 44.2 h and at T = 67.2 h, since the development of the oil
lens in the reference case and the fluctuation case is identical before the
fluctuations are incorporated, i.e. before T = 20.2 h. A number of experi-
ments showed the reproducibility of this experiment before the water level
is reached. The maximum depth that is reached by the oil front is 18.6 cm.
The maximum spreading in the horizontal direction is 16.5 cm.

3.4.2 Numerical results

We again considered the two-dimensional problem where we distinguish
between a reference case where the oil accumulates above a stationary
groundwater level and between a fluctuation case where the groundwater
level fluctuates as a function of time. In Figure 3.4.b and Figure 3.5.b, the
results for the fluctuation case are shown, where again the parameter values
described in Table 3.2 are used. We again resolved the oil front which is
determined by an oil saturation contour line of 0.02. During the first 20.2 h
the results are the same as in the reference case. The depth reached by the
oil front at T = 12.3 h and T = 13.2 h (Figure 3.5.b) are respectively ap-
proximately 29.1 cm and 24.5 cm from the bottom of the model. In Figure
3.5.b the oil front has reached respectively 19.2 cm, 14.6 cm, and 11.9 cm
at T = 18.2 h, T = 32.2 h and T = 67.2 h. The oil front does not spread
as a lens on top of the capillary fringe. The results of the reference case
where the parameters described in Table 3.2 are used, are shown in Figure
3.6.b, where we see the redistribution of oil above the groundwater level.
The results before T = 18.2 h are not shown for the reference case, since
they are the same as for the fluctuation case, which indicates reproducibil-
ity. After 20 h, the oil has reached the groundwater level (± 0.16 m) and
migrates horizontally after that moment. The maximum depth of the oil
lens is 18.2 cm from the bottom of the model and the maximum horizontal
spreading is 13.1 cm. Figure 3.6.c shows the result if the water level was
not increased from 10 cm to 16 cm.
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3.5 Discussion

Comparison of the experimental and numerical results (Figure 3.4-3.6 and
Table 3.3) leads to the following: Comparison between Figure 3.4.a and
Figure 3.4.b and between Figure 3.6.a and Figure 3.6.b are used to assess
whether the variables chosen in the numerical code are correct or not. The
reasonable good agreement between Figure 3.4.a and Figure 3.4.b and the
good agreement between Figure 3.6.a and Figure 3.6.b confirms that correct
parameter values are used (see Table 3.2). The good results show that the
Van Dam approximation [43] does not give a unique solution since we have
optimized for 2 parameters only and achieve comparable results (see Figure
3.2) as Wipfler et al. [53]. As is apparent from the discrepancies between
the optimized curves and the experimental data of Figure 3.2, the inverse
model [43] does not fit well enough to capture the strong curves of the data.
The detail that may have been missed this way could well be responsible
for smaller discrepancies between numerical and experimental results (for
instance the oil thickness in Figure 3.6). Hence, we conclude that for the
present purpose of a detailed comparison of experimental and numerical
three phase flow, the parameterization is still a weak point if standard
methods are used.

The water level in the numerical experiment was increased by 6 cm to
account for the small heterogeneities that occur in the experimental set up.
This shows the large impact of spatial variability of hydraulic properties,
as the porous medium was not designed to be heterogeneous. Apparently
it is difficult to establish a homogeneous model in the laboratory and even
more difficult to find a homogeneous field site. This is in agreement with
results from Essaid et al. [9], who measured distributions of oil at a field site
in Minnesota, USA. They concluded that the LNAPL redistribution could
not be numerically reproduced without including heterogeneities, fluid en-
trapment, saturation hysteresis and water table fluctuations. Furthermore
Glass et al. [11] performed a laboratory 2-D homogeneous experiment and
they also mentioned that heterogeneity is almost inevitable.

It may be worthwhile to observe that trial simulations that combine dif-
ferent combinations of parameter values from the realistic ranges of Sminw ,
α, and n did not explain the shallow depth of the oil lens of Figure 3.6(a).
Among others for this reason, the groundwater level was adjusted in the
simulations. After this adjustment, the results are in close agreement except
for some deviations. The most important deviations are the penetration
depth in Figure 3.5.a and 3.5.b, and the thickness of the accumulating lens
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in Figure 3.6.a and 3.6.b. There can be several reasons for these discrep-
ancies: the oil lens front geometry is defined by visually inspecting where
the red dye is not visible to the human eye anymore. In the numerical
approach the So = 0.02 contour was used to define this front. Further-
more, the numerical model assumes that there is no residual oil in the
unsaturated zone, which is in contradiction with experimental observations
(Wipfler and van der Zee [52]). The discrepancies are probably caused also
by the heterogeneity in the experimental set up that made adjustment of
the groundwater level necessary.

The development of the oil lens during a fluctuation is as follows: rising
of the groundwater level causes entrapment of the oil phase in the water
phase(i.e. discrete drops of oil become enclosed by water) which results in
immobilization of the oil phase. Lowering, however, causes the oil to be-
come a mobile phase again. During the immobilization the oil is not able to
migrate in the horizontal direction. Retardation in horizontal migration for
both numerical and experimental results is obvious from Figures 3.5.a and
3.6.a and Figures 3.5.b and 3.6.b and from Table 3.3. Both numerically and
experimentally, there is no spreading at all in the fluctuation case whereas
in the reference case the maximum spreading is 13.1 cm (numerically) and
16.5 cm (experimentally).

Notation

A the amplitude of the fluctuation
D parameter determining finiteness of lens thickness
FL Land’s factor
g gravity [m s-2]
G flux area [m2]
H hydraulic head [m]

h (h̃) (scaled) similarity profile
K absolute permeability [m2]
Khc hydraulic conductivity [m/s]
kri phase i relative permeability
n,m van Genuchten parameter
Pi(pi) (dimensionless) phase i pressure [Pa]
Pc charateristic pressure [Pa]
Pik phases i, k capillary pressure [Pa]
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Qw water flux [m3/s]
Si phase i saturation
Sof free oil saturation
Sot trapped oil saturation
Smax
or maximum residual oil saturation
St total fluid saturation
Swa apparent water saturation
Smin
w minimum water saturation
T (t) (dimensionless) time [h]
Tc characteristic time [hours]
t0 starting time of similarity solution
t̄ time in similarity solution
Ui phase i horizontal flow velocity [m s-1]
Vi phase i vertical flow velocity [m s-1]
V1 initial oil volume [m3]
wf dimensionless free oil volume per unit lateral area [m]
X (x) (dimensionless) horizontal coordinate [m]
Xc characteristic horizontal length [m]
Z (z) (dimensionless) vertical coordinate [m]
Zc characteristic vertical length [m]
Zao (zao) (dimensionless) elevation beyond which air is present [m]
Zow (zow) (dimensionless) elevation beyond which oil is present [m]
α van Genuchten parameter [m-1]
βao, βow ratios of air-oil and oil-water to air-water surface tensions
γ dimensionless parameter in nonlinear diffusion equation
η similarity variable
µ, ν powers in similarity solution
µi phase i viscosity [Pa s]
ρi phase i density [kg m-3]
τ part of the actual simulated time in which the LNAPL can spread

horizontally: flow time
φ porosity
ω angular velocity of the fluctuation
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Chapter 4

An application of three phase percolation theory

to describe the behavior of an LNAPL spill*

4.1 Introduction

Light Non Aqueous Phase Liquids (LNAPL) can flow into the subsurface
and contaminate an aquifer in such a way, that it will be a threat to the
quality of drinking water supplies. A large amount of the contamination
can be removed from the soil by pumping, except for the immobile oil that
is entrapped by the water phase. This small amount of contamination
can still pollute large amounts of drinking water and consequently forms a
threat to our drinking water supplies. An important issue in remediation
of such a contaminated aquifer, is to obtain knowledge about the amount
of entrapped LNAPL. Physical phenomena such as a fluctuating ground-
water level or rainfall infiltration have a large impact on the entrapment of
LNAPL in the water phase: oil can be trapped as immobile droplets into
the water phase in a porous medium predominantly saturated with water.
Through the relative permeabilities of the present phases, it is possible to
predict the mobility and thus the amount of entrapment of the LNAPL.
Henceforth, we use the term oil as a comprehensive term for LNAPL.

In earlier work, Stauffer [41], Sahimi [39], Heiba [13] and Yortsos et
al. [54] used percolation theory to describe the relative permeabilities of
two immiscible fluids in a porous medium. Sahimi [39] concluded that
percolation theory has given a much deeper understanding of two-phase
flow in porous media and especially of the macroscopic connectivity of a
fluid phase. Heiba [13] presented an extensive explanation of how this
specific pore-network theory works and how it can be adapted to a porous

*by A. Marsman and G.A. Bartelds

submitted to Transport in Porous Media
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Gas

Water

Oil

Volume of interest

Figure 4.1: The three phase system that is considered. The dashed square shows
the volume of interest for this work. The subdomains represent the areas where
one phase dominates whereas all three phases are present in each subdomain.

medium like the subsurface. Bartelds [3][4] used percolation theory for a
semi-three phase system, namely, water, oil and water with polymer gel. It
is shown that percolation theory can describe the effects of drainage and
imbibition on the relative permeabilities and that the theory is capable of
predicting the experimentally and numerically observed trends in two-phase
relative permeabilities of systems in which one phase is strongly wetting.
For a more detailed description of the basic principles of percolation theory,
we refer to Stauffer [41], Sahimi [39][38] and Heiba [13].

Since the oil is lighter than water and floats above the capillary fringe in
the subsurface, we also deal with a three-phase problem that involves water,
oil and air (see Figure 4.1). The volume of interest is shown in this Figure.
The competition among these three phases for the individual segments of
the porespace determines for instance the relative permeability. We assume
that water is the wetting phase, gas is the non-wetting phase and oil is the
intermediate wetting phase. This means that in the situation where three
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phases are present, gas and water are everywhere shielded from each other
by the oil phase. Mani and Mohanty [32] already investigated the situation
where three phases are initially present. This model combines a description
of pore space morphological features and three-phase displacement physics
to model capillary controlled gas invasion into a water-wet medium contain-
ing oil and water. Heiba [13] also extended two-phase percolation theory
to three-phase percolation theory. He studied two specific cases: 1. gas
and water are displacing oil (imbibition where water displaces oil; drainage
where gas displaces oil) and 2. water is displacing oil and oil is displac-
ing gas (imbibition). He concluded that the theory for two-phases can be
successfully extended to three phase flow for these two specific cases. In
reality it is not common to have initially a three phase system and there-
fore it is necessary to simulate a three phase problem where contamination
flows into the subsurface (two-phase system where water and gas coexist).
This means that it is necessary to simulate iterative processes of drainage
and imbibition (where oil enters the domain) to include all phases in the
model.

In this work, we applied the ideas of Heiba for three-phase percolation
theory and we simulate a succession of imbibition and drainage processes to
obtain the complete range of compositions of a three phase system, where
oil is the shielding phase between water and gas. How a three phase system
can be used for complex situations where water will infiltrate from different
directions into an oil lens will be left for future work. By expanding this
theory to a three phase system, it is a useful instrument for predicting the
relative permeabilities of oil contamination in the unsaturated zone. We
build on the code that Heiba [13] developed for a two-phase system and we
extend it to a three-phase system.

4.2 Elements of percolation theory

Percolation theory can be used to improve our understanding of relative
permeability and capillary pressure curves in porous media. It enables us to
assess whether a fluid is macroscopically connected or not. The macroscopic
connectivity is of fundamental importance involving flow in porous media
for recovery or remediation purposes. The basic concept of this theory is
to statistically describe the probability that a porespace is accessible for a
wetting or non-wetting fluid. Percolation theory is defined as the generation
of a continuous path of connectedness, and thus of transport, through a
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Figure 4.2: Example of accessibility function X(Qj) as a function of allowability
Qj for phase j. Qc is the percolation threshold.

random set of different bonds and sites of a network. This network consist
of bonds and nodes. Percolation theory simplifies the network by assuming
that all the properties of the porespace are assigned to the bonds whereas
the nodes are zero-dimensional markers for branching. The coordination
number z is defined as the average number of bonds that originate from
one node. The bonds are assumed to be capillary cylindrical tubes with
various radii.

To treat the network in a statistical way, we represent all the bonds of
the network by a number fraction function. The number fraction ψ(R) of
bonds with a radius in between R and R + dR is described as a function
of R. This can be for example a Rayleigh distribution or a Gamma distri-
bution. Some definitions that are used in percolation theory are as follows:
Bonds above a certain radius are allowed for oil due to the capillary effects.
This means that a phase can enter a pore bond with radius R if the cap-
illary pressure exceeds the accompanying capillary pressure of this bond:
Pc = 2σ

R
, where σ is the interfacial tension. The accessible fraction is the

fraction of bonds connected to some continuous path across the network,
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i.e. accessible means that both the bonds are allowed by the phase, and the
surrounding bonds will not inhibit the fluid to invade. Occupied means that
the bonds are actually occupied by that phase. The percolation threshold
is the largest fraction of allowed bonds below which the accessible fraction,
and thus the equivalent conductivity, is zero. The accessibility function is
the relation between the allowed fraction of bonds for a certain phase j and
the fraction of bonds that is accessible to that phase. An example of a com-
mon accessibility function that will be used later in this chapter is shown
in Figure 4.2. The horizontal axis shows the allowed pore fraction Qj and
the vertical axis shows the accessible fraction XA(Qj). This figure reveals
that the allowed fraction must be larger than the percolation threshold Qc

to become accessible for phase j:

XA(Qj) =

{

0 , Qj ≤ Qc
Qj , if Qj → 1

(4.1)

The straight line shows the accessibility function when all the allowed radii
would be accessible. The model that corresponds with this straight line is
also referred to as the capillary bundle model.

4.3 Model equations

The ultimate goal of this study is to investigate the effects of water infil-
tration into an oil lens that floats at the capillary fringe. To simulate this
infiltration, a sequence of drainage and imbibition processes will be calcu-
lated and these processes will be described in this chapter in the following
chronological order of appearance. The initial situation is a completely
water saturated domain. During primary drainage, gas enters the domain
and the unsaturated zone develops. If then a finite amount of oil enters
the two-dimensional domain by displacing the gas phase (primary imbibi-
tion), a three phase system is obtained. Secondary imbibition occurs during
water infiltration, where water displaces the oil phase. Finally, secondary
drainage occurs where gas displaces water. The processes of drainage as
well as the processes of imbibition continue until a connate saturation is
reached where the phase that is receding has become immobile. This means
that the whole range of pore radii that are enterable by one of the three
phases is comprehended in this study. Furthermore this implies that only
two of the three phases are above its connate saturation and thus only two
phases are flowing. The connate wetting phase occupies the smallest pores,
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Figure 4.3: The Bethe tree.

the connate non-wetting phase occupies the largest pores and the connate
intermediate wetting phase can occupy all the pores in between. Conse-
quently, all three phases are never present in one pore throat at the same
time. Because of their wettability, the water and gas phase are shielded
from each other by the oil phase.

The pore space is represented by the Bethe tree (see Figure 4.3 ). This
pore space is completely characterized by the variable local coordination
number z, i.e. the number of bonds that join at each node. In previous
research [40], it is shown that the Bethe tree remarkably well predicts the
bond accessibility and equivalent conductivity of three-dimensional net-
works. Another advantage is that expressions have been worked out the-
oretically for the accessibility function XA and for the effective network
conductivity. The accessibility function for a Bethe tree with coordination
number z according to Fisher and Essam [10] is given by:

XA(Qj) =

{

Qj[1-(
Q∗

j

Qj
)

2z-2
z-2 ] , Qc < Qj ≤ 1

0 , Qj ≤ Qc
(4.2)

where Q∗

j is the non-trivial root of the equation:

Q∗

j(1-Q
∗

j )
z-2-Qj(1-Qj)

z-2 = 0 (4.3)

Equation (4.2) is identical to Equation (4.1) for limQj→1 X
A(Qj)
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Fraction Number fraction function

Total ψ(R)
Allowability Qj

Accessibility XA
j

Occupancy XO
j ψOj (R)

Table 4.1: The different statistics and notations used to describe the percolation
theory.

(limQ∗

j→0 X
A(Q∗

j)). The percolation threshold Qc for a Bethe tree is ac-

cording to Fisher and Essam [10] and Stinchcombe [42]:

Qc =
1

z-1
(4.4)

We have chosen to use the Rayleigh distribution to describe the pore size
distribution function of bonds since it describes the pore size distribution
of a realistic porous medium appropriately. The Rayleigh distribution is
given by [13]:

ψ(R) = 2Re-R
2

(4.5)

In the following sections, the allowability and occupancy statistics for
the three phases during the two drainage processes and the two imbibition
processes will be described. See Table 4.1 for an overview of the different
statistics and notations.

To derive the relative permeabilities for the three phases from the ac-
cessibility and allowability of the model that can describe the drainage and
imbibition process model, it is necessary to calculate the accompanying con-
ductivity. We have chosen to use the conductivity distribution as defined
by Stinchcombe [42]:

Gj(g) = (1-Qj)δ(g) +Qjψ
a
j (R)

∣

∣

∣

∣

dR

dg

∣

∣

∣

∣

(4.6)

where Gj is the phase conductivity function of phase j, δ(g) is Dirac delta
function and g is the conductivity of a bond. To account for the percolation
threshold, we replaced Qj in Equation (4.6) by XA(Qj) to account for the
percolation threshold. Earlier work by Heiba [13] and Bartelds [3] included
Qj instead of XA(Qj), so that the effect of the percolation threshold is
neglected in the calculations of their relative permeabilities.
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Using this conductivity equation and the allowability statistics, the rel-
ative permeability is calculated. The relative permeability is the ratio of
the effective conductivity of a specific phase by the effective conductivity
of all the bonds. The effective conductivity is, as defined by Stinchcombe
[42]:

θj = -zC
′

(0) (4.7)

where C(x) is a generating function, the Laplace transformation of which
is defined by the nonlinear integral equation:

∫

∞

0
e-txC(x)dx =

∫

∞

0
dgGj(g) · [

1

t+ g

+
g2

(t+ g)2

∫

∞

0
exp[-

gtx

g + t
[C(x)]z-1dx] (4.8)

subject to the boundary condition C(0) = 1. t is the Laplace transforma-
tion variable. For more details about the derivation of these conductivity
and relative permeability equations, we refer to Heiba [13], Bartelds [3]
and Stinchcombe [42]. In the next paragraphs the processes of primary
drainage, primary imbibition, secondary imbibition and secondary drainage
will be described.

4.3.1 Primary drainage

In the initial situation, the domain is completely saturated with the wetting
fluid water, prior to migration of gas (air, the non-wetting ’fluid’) into the
domain. This is shown in Figure 4.4. Rmax is the maximum radius in the
network model and Rmin is the minimum radius in the network model. For
a Rayleigh distribution Rmax is ∞ and Rmin is 0. Initially all the bonds are
allowed to and occupied by water:

Qiniw,d = XO,ini
w,d = 1 (4.9)

ψO,iniw,d (R) = ψ(R) (4.10)

where the subscripts d means drainage and w means water. XO is the
occupied pore fraction. The superscript ini means initial and O means oc-
cupied. Equation (4.9) and (4.10) imply that initially before the drainage
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ψψψψ(R)

occupied water

Rmin Rmax

Figure 4.4: The total number fraction ψ(R) as a function of the radius R where

all the pore throats are filled with water.

process starts, all the pores are allowed and occupied by water. Equation
(4.10) is graphically shown in Figure 4.4 where the complete number frac-
tion function ψ(R) is allowed for and occupied by water. For the gas phase,
which is initially not present in the domain, (4.9) and (4.10) imply:

Qinig,d = XO,ini
g,d = 0 (4.11)

ψO,inig,d (R) = 0 (4.12)

where the subscript g means gas.
The key parameter characterizing this process is provided by the radius

of the smallest bond that the invading gas can enter at a capillary pres-
sure of Pc =

2σwg

R
, where σwg is the interfacial tension between water and

gas: during drainage Pc increases and consequently R decreases (see Figure
4.5.a). The accompanying drainage radius is called Rd. All the bonds that
are larger than Rd are potentially allowed for gas (see Figure 4.5.a). The
resulting allowability equation for gas during drainage is as follows:

Qg,d =

∫ Rmax

Rd

ψ(R)dR (4.13)

where Qg,d is the number fraction of bonds allowed to the gas phase. As
Rd decreases, more of the pore space becomes allowed and accessible for



78 Chapter 4

R

ψψψψ (R)

occupied water occupied gas allowed for gas
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Rmin RmaxRd
end
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Figure 4.5: Number fraction functions of pore throat radii and the occupied
and allowed fractions for gas and water described by the drainage radius Rd, R

end
d

is the limiting pore radius. a. during primary drainage. b. at the end of the
drainage process.



An application of three phase percolation theory 79

gas.

The fraction of bonds occupied by gas consists of one term that is pro-

portional to the fraction of allowed bonds that are also accessible (
XA(Qg,d)
Qg,d

),

where XA(Qg,d) is the accessible pore fraction, plus one term which con-
tains the bond fraction previously containing gas (which is zero in this
case). ψ(R) is multiplied by 1

XO
g,d

to normalize the fraction number func-

tion. This means that the occupied and accessible fraction may overlap.
Furthermore, in this case, the occupied pore-size distribution function is
identical to the allowed pore-size distribution function. The occupancy
equations (the fractions that will actually be filled by gas) are:

XO
g,d = XA(Qg,d) (4.14)

ψOg,d(R) =







0 , Rmin ≤ R < Rd

ψ(R)
XA

g,d

Qg,d

1
XO

g,d

= ψ(R)
Qg,d

, Rd ≤ R ≤ Rmax
(4.15)

where XO
g,d is the number fraction of bonds that become occupied by gas

during primary drainage and ψOg,d(R) is their distribution of radii. The
allowability and occupancy equations for water are:

Qw,d = XO
w,d = 1-XA(Qg,d) (4.16)

ψOw,d(R) =







ψ(R)
Qw,d

, Rmin ≤ R < Rd
ψ(R)
Qw,d

[1-
XA(Qg,d)
Qg,d

] , Rd ≤ R ≤ Rmax

(4.17)

where again ψ(R) is divided by Qw,d for normalization purposes.

This process continues until Rd reaches the limiting value Rendd (Figure
4.5.b), below which no further drainage can occur, since the connate water
saturation is attained and no further flow of water is possible.

Comparing Figure 4.5.a and 4.5.b shows that at low capillary pressures,
i.e. when the limiting pore radius Rd is large, the pores with R ≥ Rd that
become occupied by gas form a comparatively small subset of all pores
with R ≥ Rd, whereas at high capillary pressures, i.e. when Rd is small,
the gas phase comes to occupy nearly all pores with R ≥ Rd. This is a
consequence of the trend indicated in Equation (4.2) (Figure 4.2), where
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we see that when Qend
g,d becomes much larger than Qc, the accessible fraction

(XA(Qendg,d )) tends to the allowed fraction (Qend
g,d ).

The consequence of the increasing amount of the gas phase is a decrease
of the amount of the water phase and eventually Qw,d becomes smaller
than the percolation threshold Qc. The accompanying radius Rendd where
Qendw,d = Qc can be calculated from:

Qendw,d = 1-XA(Qendg,d ) = 1-XA(

∫ Rmax

Rend
d

ψ(R)dR) = Qc (4.18)

where the superscript end denotes the end situation of this drainage process.

The resulting allowability and occupancy equations for gas are:

Qendg,d = XO,end
g,d =

∫ Rmax

Rend
d

ψ(R)dR (4.19)

ψO,endg,d (R) =

{

0 , Rmin ≤ R < Rendd
ψ(R)

Qend
g,d

, Rendd ≤ R ≤ Rmax
(4.20)

where all the bonds that are allowed for gas are also accessible for gas and
occupied by it. For water the final allowability and occupancy equations
are Equation (4.18) and:

ψO,endw,d (R) =

{

ψ(R)

Qend
w,d

, Rmin ≤ R < Rendd

0 , Rendd ≤ R ≤ Rmax

(4.21)

The water saturation during this process is as follows related to the pore
radius Rd:

Sw = 1-
XA(Qg,d)

Qg,d

∫ Rmax

Rd
ψ(R)v(R)dR

∫ Rmax

Rmin
ψ(R)v(R)dR

(4.22)

where v(R) is the volume of a bond as a function of the radius (v(R) = Rn),
0 ≤ n ≤ 2. At the end of the primary drainage process the connate water
saturation is:

Swc =

∫ Rend
d

Rmin
ψ(R)v(R)dR

∫ Rmax

Rmin
ψ(R)v(R)dR

(4.23)
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The corresponding gas saturation Sg follows from Sw + Sg = 1. The sat-
uration parameters are the input parameters in the code and are used to
calculate the accompanying radii.

4.3.2 Primary imbibition

In the second process, the oil phase will enter the network model. Since oil
is the non-wetting phase towards the water phase and the wetting phase
towards the gas phase, it will displace the gas phase. Oil will enter in
the radii that are bigger than the ones occupied by the water phase, but
smaller than the ones occupied by the gas phase (see Figure 4.6.a). This
process is called imbibition since oil (the wetting phase ) displaces gas
(the non-wetting phase). The displacement of gas instead of water can be
explained by comparing the phase entry pressures between the situation
where oil displaces water and the situation where oil displaces gas (see also
Van Dijke et al. [45]).
When oil displaces water, the capillary pressure is:

Pc,ow =
2σow
R

(4.24)

so that the entry pressure for oil is:

P ino = Pw + Pc,ow = Pw +
2σow
R

(4.25)

When oil displaces gas, the capillary pressure is:

Pc,go =
2σgocosθgo

R
(4.26)

where

cosθgo =
σgw-σow
σgo

(4.27)

so that the entry pressure for oil is:

P ino = Pg-Pc,go = Pw +
2σgw
Rgw

+
2(σow-σgw)

R
(4.28)

where Rgw is the radius that separates the water and gas phase at the
beginning of the primary imbibition process and where the oil will enter (in
this case Rgw = Rendd ). Comparing Equations (4.25) and (4.28) shows that
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Figure 4.6: Number fraction functions of pore throat radii and the occupied
and allowed fractions for gas and oil described by the imbibition radius Ri, R

end
i

is the limiting pore radius for imbibition. a. during primary imbibition. b. at the
end of the primary imbibition process.
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oil will displace the gas phase and not the water phase: initially Equations
(4.25) and (4.28) are identical. Next P in

o where oil displaces gas will increase
slower than P ino where oil displaces water and therefore oil will displace the
gas phase.

The initial conditions for water remain the same as the water condi-
tions at the end of the primary drainage process (see Equation (4.18) and
Equation (4.21)). The accompanying imbibition radius is called Ri. All the
bonds that are larger than Rendd and smaller than Ri will be allowed for
oil. The occupancy statistics for oil are obtained by defining the pores with

Rendd ≤ R < Ri that formerly contained gas, in the proportion
XA(Qo,i)
Qo,i

.

The resulting allowability and occupancy equations for oil during imbibition
are as follows:

Qo,i =

∫ Ri

Rend
d

ψ(R)dR (4.29)

XO
o,i = XA(Qo,i) (4.30)

ψOo,i(R) =











0 , Rmin ≤ R ≤ Rendd

ψ(R)

XO
o,i

XA
o,i(Qo,i)

Qo,i
, Rendd < R ≤ Ri

0 , Ri < R ≤ Rmax

(4.31)

where the subscript o denotes the oil phase.

The gas phase previously filled the pore throats between Rend
d and Rmax,

while the pore throats between Rend
d and Ri are now allowed to be filled by

oil. The allowability and occupancy equations for gas are:

Qg,i = XO
g,i =

∫ Rmax

Rend
d

ψ(R)dR-
XA(Qo,i)

Q0,i

∫ Ri
end

Rend
d

ψ(R)dR (4.32)

ψOg,i(R) =











0 , Rmin ≤ R < Rendd
ψ(R)
Qg,i

[1-
XA(Qo,i)
Qo,i

] , Rendd ≤ R < Ri
ψ(R)
Qg,i

, Ri ≤ R ≤ Rmax

(4.33)

The occupancy equations for gas are the allowability equations for gas,
since this is the displaced phase. The area that was occupied by gas after
primary drainage minus the pore throats that are filled with oil during this
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primary imbibition process are allowed for gas and occupied by gas. This
process continues until the connate gas saturation and the accompanying
radius Rendi (see Figure 4.6.b) is reached. This radius can be calculated
from:

Qendg,i =

∫ Rmax

Rend
d

ψ(R)dR-
XA(Qo,i)

Q0,i

∫ Ri
end

Rend
d

ψ(R)dR = Qc (4.34)

We assume that Qend
o,i is so much larger than Qc, that the accessible fraction

(XA(Qendo,i )) becomes equal to the allowable fraction (Qend
o,i )(see Figure 4.2).

Therefore the resulting final allowability and occupancy equations for water,
oil and gas at the end of primary imbibition (see Figure 4.6.b) are:

Qendw,i = XO,end
w,i =

∫ Rend
d

Rmin

ψ(R)dR (4.35)

ψO,endw,i (R) =

{

ψ(R)

Qend
w,i

, Rmin ≤ R < Rendd

0 , Rendd ≤ R ≤ Rmax

(4.36)

Qendo,i = XO,end
o,i =

∫ Rend
i

Rend
d

ψ(R)dR (4.37)

ψO,endo,i (R) =











0 , Rmin ≤ R < Rendd
ψ(R)

Qend
o,i

, Rendi > R ≥ Rendd

0 , Rendi < R ≤ Rmax

(4.38)

Qendg,i = XO,end
g,i =

∫ Rmax

Rend
i

ψ(R)dR (4.39)

ψO,endg,i (R) =

{

0 , Rmin ≤ R < Rendi
ψ(R)

Qend
g,i

, Rendi ≤ R ≤ Rmax
(4.40)

where we see that both the water and gas phase have lost their conductivity
and have become immobile phases.

The oil saturation during this process is as follows related to the pore
radius Ri:

So =
XA(Qo,i)

Qo,i

∫ Ri

Rend
d

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

(4.41)
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The corresponding gas saturation is as follows: Sg = 1-So-Swc.

4.3.3 Secondary imbibition

During secondary imbibition, water displaces oil (Figure 4.7.a). Since we
assume that the connate gas saturation was reached at the end of the pri-
mary imbibition process, the secondary imbibition consists solely of water
displacing oil. The radius that controls the imbibition of water displacing
oil is called Ri2. We are describing controlled imbibition, which implies
that water enters pores of increasing radius. The allowability equation for
water is:

Qw,i2 =

∫ Ri2

Rmin

ψ(R)dR (4.42)

Water is allowed to all the pore-segments occupied by water at connate wa-
ter saturation, i.e. all radii between Rmin and Rendd , plus any pore-segment
that is accessible between Rendd and Ri2. The accompanying occupancy
equations for water are:

XO
w,i2 =

∫ Rend
d

Rmin

ψ(R)dR +
XA(Qw,i2, X

O,end
w,d )

Qw,i2

∫ Ri2

Rend
d

ψ(R)dR (4.43)

ψOw,i2(R) =



















ψ(R)

XO
w,i2

, Rmin ≤ R < Rendd

ψ(R)

XO
w,i2

XA(Qw,i2 ,X
O,end
w,d

)

Qw,i2
, Rendd ≤ R < Ri2

0 , Ri2 ≤ R ≤ Rmax

(4.44)

Note that the accessibility for water depends both on the allowability for
water and on the occupancy for water at the end of the primary drainage
process (XO,end

w,d ). Consequently, the connate water at the end of the pri-
mary drainage process is taken into account for the calculation of the ac-
cessibility.

The radii that are allowed for oil are those radii that were allowed at
the end of the primary imbibition, i.e. all the radii between Rend

d and Rendi ,
minus the radii (between Rendd and Ri2) that are enterable by water. The
allowability and occupancy equations for oil are:
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allowed for water occupied oil occupied gas

Rmin Rd
end RmaxRi

endRi2

(a)

R

ψψψψ (R)

allowed for water occupied oil occupied gas

Rmin Rd
end RmaxRi

end

Ri2
end

(b)

Figure 4.7: Number fraction functions of pore throat radii and the occupied
and allowed fractions for oil and water described by the imbibition radius Ri2,
Rend

i2 is the limiting pore radius. a. during secondary imbibition. b. at the end of
the secondary imbibition process.



An application of three phase percolation theory 87

Qo,i2 = XO
o,i2 =

∫ Ri2

Rend
d

ψ(R)dR[1-
XA(Qw,i2)

Qw,i2
] +

∫ Rend
i

Ri2

ψ(R)dR (4.45)

ψOo,i2(R) =



















0 , Rmin ≤ R < Rendd
ψ(R)
Qo,i2

[1-
XA(Qw,i2)
Qw,i2

] , Rendd ≤ R < Ri2
ψ(R)
Qo,i2

, Ri2 ≤ R < Rendi

0 , Rendi ≤ R ≤ Rmax

(4.46)

The occupancy equations for oil are the same as the allowability equations
for oil since it is the displaced phase. The area that was occupied by oil
after primary imbibition minus the radii that are filled with water during
this secondary imbibition process are allowed for oil and occupied by oil.
This process continues until the connate oil saturation is reached: Rend

i2 (see
Figure 4.7.b). This radius can be calculated from:

Qendo,i2 =

∫ Rend
i

Rend
d

ψ(R)dR-
XA(Qw,i2)

Qw,i2

∫ Rend
i2

Rend
d

ψ(R)dR = Qc (4.47)

Again we assume that Qend
w,i2 is so much larger than Qc so that the accessible

fraction (XA(Qendw,i2)) becomes equal to the allowable fraction (Qend
w,i2)(see

Figure 4.2).The resulting final allowability and occupancy equations for
water, oil and gas (see Figure 4.7.b) are:

Qendw,i2 = XO,end
w,i2 =

∫ Rend
i2

Rmin

ψ(R)dR (4.48)

ψO,endw,i2 (R) =

{

ψ(R)

Qend
w,i2

, Rmin ≤ R ≤ Rendi2

0 , Rendi2 < R ≤ Rmax

(4.49)

Qendo,i2 = XO,end
o,i2 =

∫ Rend
i

Rend
i2

ψ(R)dR (4.50)

ψO,endo,i2 (R) =











0 , Rmin ≤ R ≤ Rendi2
ψ(R)

Qend
o,i2

, Rendi2 < R ≤ Rendi

0 , Rendi < R ≤ Rmax

(4.51)
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Qendg,i2 = XO,end
g,i2 =

∫ Rmax

Rend
i

ψ(R)dR (4.52)

ψO,endg,i2 =

{

0 , Rmin ≤ R ≤ Rendi
ψ(R)

Qend
g,i2

, Rendi < R ≤ Rmax
(4.53)

The water saturation during this process is as follows related to the pore
radius Ri2:

Sw =

∫ Rend
d

Rmin
ψ(R)v(R)dR +

XA(Qw,i2)
Qw,i2

∫ Ri2

Rend
d

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

(4.54)

The corresponding oil saturation is as follows: So = 1-Sw-Sgc.

4.3.4 Secondary drainage

Since the water pressure at a chosen level underneath the oil lens is kept
constant, the water will leave the model and is replaced by the gas phase,
since the model has an open connection to air at the upper surface of the
domain. This secondary drainage is controlled by the parameter Rd2. We
assume that the water phase is solely displaced by gas and the oil remains
at the residual oil saturation. Since the oil phase has no conductivity and
is immobile, gas can not displace oil and enter at R = Rend

i . Therefore it
will enter at the maximum radius that is enterable namely R = Rend

i2 . This
implies that the oil phase does not exist as an oil lens but that scattered
pores are filled with oil and therefore the oil phase loses all its connectivity.
The allowability equation for gas is determined by the radii that were filled
with gas after secondary imbibition (between Rend

i and Rmax) plus the radii
where gas will displace the water phase (between Rd2 and Rendi2 ) (Figure
4.8.a):

Qg,d2 =

∫ Rend
i2

Rd2

ψ(R)dR +

∫ Rmax

Rend
i

ψ(R)dR (4.55)

The occupancy equations for gas are the occupancy equations for gas after
secondary imbibition (complete occupancy between Rend

i and Rmax) plus
the part that becomes allowed (between Rd2 and Rendi2 ) times the accessi-
bility fraction :
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Figure 4.8: Number fraction functions of pore throat radii and the occupied
and allowed fractions for gas and water described by the drainage radius Rd2. a.
during secondary drainage. b. at the end of the secondary process.
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XO
g,d2 =

∫ Rend
i2

Rd2

ψ(R)dR[
XA(Qg,d2, X

O,end
g,i2 )

Qg,d2
] +

∫ Rmax

Rend
i

ψ(R)dR (4.56)

ψOg,d2(R) =



























0 , Rmin ≤ R ≤ Rd2
ψ(R)

XO
g,d2

[1-
XA(Qg,d2,X

O,end
g,i2 )

Qg,d2
] , Rd2 < R ≤ Rendi2

0 , Rendi2 < R ≤ Rendi
ψ(R)

XO
g,d2

, Rendi < R ≤ Rmax

(4.57)

The allowability equations for water are the radii that were filled with water
after secondary imbibition (between Rmin and Rendi2 ) minus the radii where
water is displaced by gas (between Rd2 and Rendi2 ):

Qw,d2 = XO
w,d2 =

∫ Rd2

Rmin

ψ(R)dR +

∫ Rend
i2

Rd2

ψ(R)dR[1-
XA(Qg,d2)

Qg,d2
] (4.58)

ψOw,d2(R) =











ψ(R)
Qw,d2

, Rmin ≤ R ≤ Rd2
ψ(R)
Qw,d2

[1-
XA(Qg,d2)
Qg,d2

] , Rd2 < R ≤ Rendi2

0 , Rendi2 < R ≤ Rmax

(4.59)

The occupancy equations for water are the same as the allowability equa-
tions for water, since it is the displaced phase.

This secondary drainage process ends at Rend
d , determined by (Rendd is

identical to Rendd calculated in Equation (4.18)):

Qendw,d2 =

∫ Rend
d

Rmin

ψ(R)dR +

∫ Rend
i2

Rend
d

ψ(R)dR[1-
XA(Qg,d2)

Qg,d2
] = Qc (4.60)

When we assume that Qend
g,d is much larger than Qc and therefore XA(Qendg,d )

= Qendg,d , the allowability and occupancy for the three phases are as follows
(see Figure 4.8.b):

Qendg,d2 = XO,end
g,d2 =

∫ Rend
i2

Rend
d

ψ(R)dR +

∫ Rmax

Rend
i

ψ(R)dR (4.61)
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ψO,endg,d2 (R) =























0 , Rmin ≤ R ≤ Rendd
ψ(R)

Qend
g,d2

, Rendd < R ≤ Rendi2

0 , Rendi2 < R ≤ Rendi
ψ(R)

Qend
g,d2

, Rendi < R ≤ Rmax

(4.62)

Qendw,d2 = XO,end
w,d2 =

∫ Rend
d

Rmin

ψ(R)dR (4.63)

ψO,endw,d2 (R) =

{

ψ(R)
Qw,d2

, Rmin ≤ R ≤ Rendd

0 , Rendd < R ≤ Rmax

(4.64)

Qendo,d2 = XO,end
o,d2 =

∫ Rend
i

Rend
i2

ψ(R)dR (4.65)

ψO,endo,d2 =











0 , Rmin ≤ R ≤ Rendi2
ψ(R)
Qo,d2

, Rendi2 < R ≤ Rendi

0 , Rendi < R ≤ Rmax

(4.66)

The gas saturation during this process is as follows related to the pore
radius Rd2:

Sg =

XA(Qg,d2)
Qg,d2

∫ Rend
i2

Rd2
ψ(R)v(R)dR +

∫ Rmax

Rend
i

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

(4.67)

The corresponding water saturation is as follows: Sw = 1-Sg-Soc.

4.4 Model results

With the percolation model simulations we show the qualitative accuracy of
the percolation theory for predicting the flow behavior of the three phases
in a porous medium. We calculated the relative permeabilities of water,
oil and air during the iterative processes of drainage and imbibition. We
changed z (coordination number which is related to the percolation thresh-
old Qc, see Equation (4.1)) to investigate the influence of the threshold.
For the calculations we use Rmax = 4, where ψ(R) is approximately zero.

In Figure 4.9 the relative permeabilities for water and gas
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Primary drainage
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Figure 4.9: Relative permeabilities for water and gas as a function of the gas
saturation during primary drainage.

as a function of the gas saturation during primary drainage are shown
for z = 5 (Qc = 0.25) and z = 9 (Qc = 0.125). We have chosen to show
the relative permeability as a function of the gas saturation since the gas
saturation is the advancing phase during primary drainage. This figure
shows the well-known development of the relative permeabilities during
primary drainage until the connate water saturation is reached. The ef-
fect of the percolation threshold is visible in the relative gas permeability
curve, which becomes only larger than zero after exceeding the percolation
threshold. We see that a smaller value for z (larger threshold value) re-
duces the relative permeability of the advancing phase (gas) significantly.

Simulation S ′

w S′

g Swc k
′

rw k
′

rg

z=5 0.098 0.902 0.098 0 0.962
z=9 0.034 0.966 0.034 0 0.998

Table 4.2: The connate saturations, end point relative permeabilities and end-
point saturations during primary drainage for z=5 and z=9.
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Figure 4.10: Relative permeabilities for gas and oil as a function of the oil
saturation during primary imbibition.

The reason for that is that a larger threshold value results in a larger con-
nate saturation and therefore the relative permeability will be smaller. The
accompanying values for the endpoint relative permeability for water and
gas (k′) the endpoint saturations for water and gas (S

′

) and the connate
water saturation are shown in Table 4.2.

Figure 4.10 shows the relative permeabilities for gas and oil as a func-
tion of the oil saturation (the advancing phase) during primary imbibition,
where water remains at the connate water saturation and oil displaces the
gas phase until the connate gas saturation is reached. The continuation of
the relative permeability for one phase from one process to the other (in

Simulation S ′

w S
′

g S
′

o Swc Sgc k
′

ro k
′

rg

z=5 0.098 0.428 0.470 0.098 0.428 0.147 0
z=9 0.034 0.245 0.721 0.034 0.245 0.417 0

Table 4.3: The connate saturations, end point relative permeabilities and end
point saturations during primary imbibition for z=5 and z=9.
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Secondary imbibition
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Figure 4.11: Relative permeabilities for water and oil as a function of the water
saturation during secondary imbibition.

Simulation S ′

w S
′

g S
′

o Swc Sgc Sor k
′

rw k
′

ro

z=5 0.291 0.428 0.281 0.098 0.428 0.281 0.020 0
z=9 0.572 0.245 0.183 0.034 0.245 0.183 0.193 0

Table 4.4: The connate saturations, end point relative permeabilities and end
point saturations during secondary imbibition for z=5 and z=9.
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this case from primary drainage to primary imbibition) is preserved. This
can be seen in Figure 4.10 where the starting points of the relative perme-
ability for gas (krg = 0.962 (z = 5) and krg = 0.998 (z = 9) at So = 0)
are identical to the end point relative permeabilities for gas in Figure 4.9
(at Sg = 0.902 and Sg = 0.966) (see also Table 4.2). Also the continuation
of the saturation from one process to another is preserved. The end point
gas saturation after primary drainage is 0.902 (z = 5). At the beginning of
primary imbibition So = 0 and Sg = 1-So-Swc = 1-0-0.098 = 0.902, which
shows continuation. The same applies for So (z = 9). Furthermore it can
be seen in Figure 4.10 that oil can continue to displace gas until the connate
gas saturation and connate water saturation are reached. The final values
for the oil saturation (So) are: for z = 5, So = 1-0.098-0.428 = 0.470, for
z = 9, So = 1-0.034-0.245 = 0.721 (see Table 4.3). The end point rela-
tive permeabilities for oil and gas, the end point saturations for oil and
gas and the connate water and gas saturations after primary imbibition
are shown in Table 4.3. Next a cross over of relative permeabilities can be
noticed for the two z values at So ≈ 0.4. The reason for this cross over is
the connate gas saturation which is larger for z = 5 (Sgc = 0.428) than for
z = 9 (Sgc = 0.245) and therefore the relative gas permeability will decrease
faster for a smaller z value. Consequently the relative oil permeability will
increase faster for a smaller z value.

Figure 4.11 shows the relative permeabilities for water and oil as a
function of the water saturation (the advancing phase) during secondary
imbibition, where gas remains at the connate gas saturation and water dis-
places oil until the connate oil saturation is reached. Again we see that the
continuation of the relative oil permeability is preserved: at the beginning
of secondary imbibition the relative oil permeability (kro = 0.265 (z = 5)
and kro = 0.475 (z = 9)) is identical to the endpoint relative oil permeabil-
ity after primary imbibition. The end point relative permeabilities for oil
and water, the end point saturations for oil and water and the residual oil
and connate gas saturations after secondary imbibition are shown in Table
4.4. The connate water saturation is very small, while the residual oil sat-
uration is very high. This is to be attributed to the fact that we disregard
the existence of the volume of the pore bodies. At Sw = 0.098, the oil
phase infiltrates which results in So = 1-Sw-Sgc = 1-0.098-0.428 = 0.474
(for z = 5). This is identical to the end point oil saturation after primary
imbibition, which implies continuation of the oil saturation.

Figure 4.12 shows the relative permeabilities for water and gas as a func-
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Figure 4.12: Relative permeabilities for gas and water as a function of the gas
saturation during secopndary drainage.

tion of the gas saturation (the advancing phase) during secondary drainage,
where oil remains at the connate oil saturation and gas displaces the wa-
ter phase until the connate water saturation is reached. The continuation
of the relative permeabilities is again preserved. Also the continuation of
the water saturation is preserved. The relative water permeability starts at
Sg = 0.438 (for z = 5), which implies that Sw = 1-Sg-Sor = 1-0.438-0.281 =
0.281, which is the endpoint water saturation at the end of secondary imbi-
bition. The accompanying endpoint relative permeabilities and end point
saturations are shown in Table 4.5.

An effect of an increasing coordination number z is the decrease of

Simulation S ′

w S
′

g S
′

o Swc Sgc Sor k
′

rw k
′

rg

z=5 0.098 0.621 0.281 0.098 0.428 0.281 0 0.306
z=9 0.034 0.783 0.183 0.034 0.245 0.183 0 0.599

Table 4.5: The connate saturations, end point relative permeabilities and end
point saturations during secondary drainage for z=5 and z=9.
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the predicted hydraulically irreducible saturations of all the phases. This
explains the relative sensitivity to the coordination number.

4.5 Conclusion

We have found the relative permeabilities for a specific sequence of events
for an oil spill, based on percolation theory. We extended the two-phase
(water and oil) code that Heiba [13] developed to a three phase system
(water, oil and gas). This system is based on the subsurface where an
oil lens floats above the groundwater level. We started with a two phase
system including water and gas and introduce the oil phase as the third
phase (the infiltration of the oil lens). Furthermore we simulate water
infiltration (water displaces oil) and subsequently drainage (gas displaces
water) since we assume a constant water pressure below the oil lens. All
these drainage and imbibition processes last until a connate saturation is
reached where a phase becomes immobile. This implies that there is always
one phase immobile and therefore only two phases are able to flow.

The relative permeabilities calculated using the percolation theory are
in close qualitative agreement with data typical of three-phase systems
where the same wettability order is assumed [5]. This means that this
theory does adequately describe the qualitative behavior of iterations of
drainage and imbibition processes for three phases including hysteresis.
The relatively high residual oil saturation or small connate water saturation
due to the cylindrical tubes, however, are a shortcoming of this theory. The
main virtue of percolation theory in its present form is that it gives a good
qualitative understanding of a three-phase system.

Notation

C generating function employed by Stinchcombe
Gj conductivity function
g conductivity [m/s]
kri relative permeability of phase i

k
′

ri end point relative permeability of phase i
n exponent in the volume definition
Pc capillary pressure [Pa]
Qj allowed fraction for phase j
Qc critical fraction= percolation threshold
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R radius of a bond [m]
S saturation
t Laplace transform in equation of Stinchcombe
v volume of a bond [m2]
X fraction of the bonds that is accessible/occupied
x variable of equation of Stinchcombe
z average number of bonds that originate from one node
δ Dirac delta function
θ effective conductivity
σ interfacial tension [N/m2]
ψ(R) number fraction function

Subscripts

d drainage
d2 secondary drainage
g gas
gc connate gas
i imbibition
i2 secondary imbibition
max maximum
min minimum
o oil
or residual oil
w water
wc connate water

Superscripts

a allowed
A accessible
end end situation of a process
ini initial
O occupied



Chapter 5

Numerical and analytical analysis of water

infiltration into an LNAPL spill*

5.1 Introduction

Contamination in the subsurface by Light Non Aqueous Phase Liquids
(LNAPL) forms a serious threat to our drinking water supplies. Modern
technologies supply numerous techniques to clean up the LNAPL. It is very
important to obtain as much knowledge about the behavior of LNAPL to
choose a technique that will effectively remove the contamination. In this
case, we want to obtain more knowledge about the amount of entrapped
LNAPL into the water phase and more specific about the influence of wa-
ter infiltration on the entrapment. Henceforth, we use the term oil as a
comprehensive term for LNAPL.

Petroleum engineers already use water infiltration and gas infiltration
as a technique to reduce capillary entrapment of oil in small scale reser-
voir heterogeneities. This is called WAG (water-alternate-gas injection) or
SWAG (simultaneous-water-and-gas injection). Examples of this method
are described by Larsen et al. [21] and van Lingen [50]. Entrapped oil
contamination in the subsurface is a similar problem to oil in small scale
reservoir heterogeneities and therefore it could be a useful tool for envi-
ronmental sciences. The basic principle and the optimization of WAG and
SWAG is based on experimental and empirical results and no theoretical
background is available yet.

Heiba [13] and Chapter 4 of this thesis have shown how percolation the-
ory can be used for a three phase system, where drainage and imbibition
processes take place. These processes continued until a connate saturation

*by A. Marsman and G.A. Bartelds

submitted to Transport in Porous Media
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was reached for one of the three phases, i.e. water, gas or oil is immobile.
This means that during these processes two phases are flowing. Further-
more they assume that water and gas are always shielded from each other
by the oil phase, since the order of wettability is: water is the most wet-
ting phase, oil is the intermediate wetting phase and gas is the non-wetting
phase.

In this study, we expand this three phase model to an application where
we will compare two situations where water infiltrates into an oil lens that
floats above the groundwater level. In the first situation water is injected at
the upper surface of the domain and infiltrates downwards into the oil lens.
In the second situation the water pressure at a certain level beneath the
oil lens is increased so that water infiltrates upwards. After the water infil-
tration, the water pressure beneath the oil lens returns to its initial value
for both situations so that drainage occurs. The accompanying drainage
and imbibition processes do not necessarily continue until a connate satu-
ration is reached and therefore more complicated situations can arise where
three phases can flow. These two situations are calculated numerically and
percolation theory is used to obtain more insight into the phenomena that
take place.

5.2 Problem description

The first case that will be investigated is Case A where water infiltrates
downwards into the oil lens. This is shown in Figure 5.1. The history of the
oil lens before the water infiltration is as follows: 1. Initially the domain is
water saturated. 2. Drainage takes place where gas displaces water and the
unsaturated zone in the subsurface is developed. 3. Oil floats downwards
into the domain, which in this case is called imbibition since oil displaces
gas. 4. Water infiltrates into the oil lens. 5. Water flows through the oil
lens and leaves at the bottom of the domain: gas displaces water. These 5
processes must be simulated to accomplish the correct hysteresis.

In Case B (see Figure 5.1) water infiltrates upwards. In this case the
hysteresis is as follows: 1. The domain is water saturated. 2. Drainage
takes place where gas displaces the water phase (in Case B only a small
amount of gas displaces the water phase so that this is still called the
saturated zone). 3. Oil floats downwards into the domain and displaces
the water phase: drainage occurs. 4. Water infiltrates upwards into the oil
lens: fluctuating groundwater level (water displaces oil). 5. Water leaves



Numerical and analytical analysis of water infiltration 101

Gas

Water

Oil

Volume of interest

Case B

Case A

Figure 5.1: The three phase system that is considered. The dashed square shows
the volume of interest for this work. The arrows represent the downwards water
infiltration (Case A) and the upwards water infiltration (Case B). The subdomains
represent the areas where one phase dominates whereas all three phases are present
in each subdomain.

the domain (the groundwater level lowers and oil displaces water).

5.3 Numerical model

5.3.1 Case A: downwards water infiltration

The multiphase flow code STOMP, developed by White et al. [51] was
used to model this two-dimensional numerical experiment. This numeri-
cal model we use is based on the mixed form of the Richard’s Equation.
The governing flow and transport equations are solved numerically by fol-
lowing an integrated finite difference method. Spatial discretization of the
computational domain with the integrated finite difference method is lim-
ited to orthogonal systems. The algebraic forms of the nonlinear governing
equations are solved with a multi-variable residual-based Newton-Rapson
iteration technique. The parameter values that are used in this experi-
ment are given in Table 5.1. The height (70 cm) is discretized by 36 nodes
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Property Value

Irreducible water saturation Swc 0.20
Air-water scaling factor βaw 1.00
Air-NAPL scaling factor βao 2.25
NAPL-water scaling factor βow 1.80
Intrinsic permeability K 2.14×10-11[m2]
Porosity φ 0.40
NAPL density ρo 830 [kg/m3]
NAPL viscosity µo 2.046×10-3[Pas]
Length of column 70 [cm]
Width of column 200 [cm]
Van Genuchten parameter α 1 [m-1]
Van Genuchten parameter n 3.16
Initial oil volume V1 6.9×10-4[m]
Maximum residual oil saturation Smax

or 0.395

Table 5.1: Parameters and characteristic lengths and times used in the compu-
tations.

and the width (200 cm) is discretized by 40 nodes. For symmetry reasons
we only model half the domain and therefore the left boundary conditions
present the vertical symmetry axis. The initial timestep was 10 s and the
maximum allowable timestep was 10 Min.

The initial conditions for this experiment are as follows: the 2-D domain
is homogeneously filled with sand. At the lower boundary of the domain
a water pressure is applied that results in a completely water saturated
domain. The initial oil pressure at the bottom of the domain is equal to
the water pressure so that an imaginary amount of oil is situated above the
domain. The boundary conditions are: 1. Zero flux Neumann conditions
at the left boundary of the domain in view of the vertical symmetry axis.
2. Lowering of the groundwater level was simulated by a step-wise linearly
declining Dirichlet boundary condition for water pressure at the bottom of
the domain to accomplish a groundwater level of 10 cm. 3. A flux on top of
the symmetry axis and the 3 nearest nodal points in the horizontal direction
are the Neumann boundary condition that describes the oil infiltration of
0.7 l from t = 12.2 h until t = 12.3 h. Due to gravity and capillary forces
the oil spreads along the groundwater level. Here we distinguish between
two different situations: one where the groundwater level remains stable at
10 cm from the bottom of the domain. This situation is referred to as the
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reference case to compare with the effects of the more complex infiltration
model. The infiltration of the rainwater is simulated by imposing a water
flux at the upper surface of the domain. The flux is imposed for 109 minutes
(from t = 17.4 h until t = 19.2 h) and the magnitude is 1.6055×10-7 m3/s.
That means that approximately 1.05×10-3m3 water is added to this domain.
The water pressure at the bottom of the domain remains constant so that
the water level eventually will not increase.

5.3.2 Case B: upwards water infiltration

The same numerical model is used for this simulation as in section 5.3.1.
Also the used parameter values (Table 5.1) and the boundary conditions
are the same as in section 5.3.1. Solely the imposed water flux at the upper
surface is not incorporated in this simulation and instead a changing wa-
ter pressure at the bottom of the domain is imposed to simulate upwards
water infiltration. The water pressure at the bottom is initially 686 Pa at
t = 17.4 h (groundwater level is approximately 7 cm) and it is increased
until 4114 Pa at t = 19.2 h (42 cm). This means that similar to Case A
approximately 1.05×10-3m3 water is added to the domain. Subsequently
the water pressure at the bottom will be diminished until the original val-
ues are reached so that water will move downwards. More details of this
fluctuating water level simulation can be found in Chapter 2.

5.4 Numerical results

To enable a comparison, we use a reference case where no water infiltra-
tion takes place and the parameter values used are the same as in Table
5.1. The oil can spread above the capillary fringe without being disturbed
by infiltration processes. The results of this experiment are shown in Fig-
ure 5.2, where the vertically integrated free oil saturations (Wf = φ

∫

Sof
(T )dz, where Sof is the free oil saturation) are plotted as a function of the
horizontal dimension x at two moments in time. The development of Wf

in the reference case is as follows: the integrated free oil in the middle of
the lens decreases and the horizontal dimension of the lens increases. This
is a consequence of the spreading above the capillary fringe.

Figure 5.3 shows Wf at the same moments in time for Case A where
downwards water infiltration takes place. At t = 17.4 h, before the infiltra-
tion starts, there is no difference between Case A and the reference case.
Since the water pressure at the bottom is constant, the water floats down-
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reference
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Figure 5.2: Reference situation where no water infiltration takes place: the
integrated free oil volume as function of the horizontal coordinate at two moments
in time.
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downwards water infiltration
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Figure 5.3: Case A where water infiltrates downwards into the oil lens. The
integrated free oil volume is plotted as a function of the horizontal coordinate
before (t=17.4 h) and after (t=20.7 h) the infiltration.
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upwards water infiltration
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Figure 5.4: Case B where water infiltrates upwards into the oil lens. The
integrated free oil volume is plotted as a function of the horizontal coordinate
before (t=17.4 h) and after (t=20.7 h) the infiltration.

wards through the bottom surface of the model and at t = 20.7 h the oil
has become more mobile than before the water infiltration, which is shown
in Figure 5.3.

The same is done for Case B and the results are shown in Figure 5.4.
The most important feature of this Figure is the free oil at t = 20.7 h
after the water level has returned to its original position. We see that the
mobility of the oil lens has increased after the upwards water infiltration like
in Case A. To obtain more insight into this infiltration phenomenon and
to understand the differences between the two cases, we use percolation
theory to investigate the water infiltration qualitatively and on the pore
scale.

5.5 Percolation theory

Percolation theory is a statistical method that describes, on the pore scale,
the probability that a pore space is accessible for a wetting or non-wetting
fluid. It can be used to improve our understanding of relative permeabilities
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and capillary pressure curves in porous media. The theory pertains to
network models that consist of bonds and nodes. We will briefly define some
definitions of percolation theory in this section. The coordination number
Z is defined as the average number of bonds that join at each node. Bonds
with a radius bigger than a certain radius are due to capillary effects allowed
for a phase (Qj). The accessible fraction (XA(Qj)) is the fraction of bonds
connected to some continuous path across the network, i.e. accessible means
that both the bonds are allowed by the phase, and the surrounding bonds do
not inhibit the fluid to invade. Occupied (XO(Qj)) means that the bonds
are actually occupied by that phase. The percolation threshold (Qc) is the
largest fraction of allowed bonds below which the accessible fraction and
thus the equivalent conductivity, is zero. Furthermore we have chosen to
use the Bethe tree to represent the pore space and the Rayleigh distribution
to represent the pore size distribution as a function of the radius ψ(R). For
more details and background information we refer to Heiba [13], Stauffer
[41], Sahimi [39][38] and also Chapter 4 of this thesis.

In the next paragraphs the processes of primary drainage, primary imbi-
bition, secondary imbibition and secondary drainage will be described with
the aid of percolation theory. During primary drainage, gas displaces the
water phase until it reaches a water saturation comparable to the numerical
values. Primary imbibition means that oil displaces the gas phase until a
fixed oil saturation is reached. Water infiltration into the oil lens is sim-
ulated by secondary imbibition, where water displaces the oil phase. This
process is followed up by secondary drainage, where gas again displaces the
water phase.

5.5.1 Primary drainage

Initially the situation is completely water saturated (water is the wetting
fluid) prior to migration of gas (air, the non-wetting ’fluid’) into the domain.
This is shown in Figure 5.5. Rmax is the maximum radius in the network
model and Rmin is the minimum radius in the network model. All the
bonds are allowed to and occupied by water. Figures 5.6.a and 5.6.b show
the number fraction function during the primary drainage process and at
the end of the primary drainage process, where all the bonds larger than Rd

are allowable for gas. We refer to Chapter 4 for a more detailed description
of this process. The process continues until Rd reaches Rendd , which is the
connate water radius.
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R

ψψψψ(R)

occupied water

Rmin Rmax

Figure 5.5: The number fraction ψ(R) as a function of the radius R where all
the radii are filled with water.

5.5.2 Primary imbibition

During the second process, the oil phase enters the network model. Since
oil is the non-wetting phase compared with the water phase and the wetting
phase compared with the gas phase, it will enter in the radii that separate
the water and gas phase (see Figure 5.7.a). This process is called imbibition
since oil (the wetting phase ) displaces gas (the non-wetting phase). For a
more detailed explanation of this displacement, we refer to Chapter 4. The
initial conditions for water remain the same as the water conditions at the
end of the primary drainage process since water has reached the connate
water saturation. The accompanying imbibition radius is called Ri. All the
bonds that are larger than Rendd and smaller than Ri will be allowed for
oil. The resulting allowability equations (Qo,i , ψao,i(R), Qg,i and ψag,i(R))

and occupancy equations (Xo,i , ψOo,i(R), Xg,i and ψOg,i(R)) for oil and gas
during imbibition are described in the Appendix.

We see at the end of this process (Figure 5.7.b) that only the water
phase has lost its conductivity and is still an immobile phase. The main
difference between this case and the general case as described in Chapter 4
is that the oil imbibition does not continue until the gas becomes immobile
(R = Rendi ), which results in an end situation where both oil and gas can
exist between Rendd and R∗

i (the radius where the process stops, is denoted
by ∗).
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Figure 5.6: Number fraction functions of pore throat radii and the occupied
and allowed fractions for gas and water described by the drainage radius Rd, R

end
d

is the limiting pore radius. a. during primary drainage. b. at the end of the
drainage process.
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R

ψψψψ(R)
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Rmin RmaxRd
end Ri
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allowed for oil occupied gas occupied oil

Rmin
RmaxRd

end Ri
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Figure 5.7: Number fraction functions of pore throat radii and the occupied and
allowed fractions for gas and oil described by the imbibition radius Ri.This process
continues until R∗

i . R
end
i is the limiting connate gas pore radius for imbibition. a.

during primary imbibition. b. at the end of the primary imbibition process.
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5.5.3 Secondary imbibition

During secondary imbibition, water displaces oil and oil displaces gas (Fig-
ure 5.8.a). Since we assume that solely the connate water saturation was
reached at the end of the primary imbibition process, the secondary imbibi-
tion consists of both water displacing oil as well as oil displacing gas. Four
regions in the radii distribution will exist: the region where water is the
only phase present (connate water), a region where water, oil and gas can
exist as a consequence of water imbibition, a region where both oil and gas
exist and a region where gas occupies all the pores. Since two imbibition
processes take place: water displaces oil and oil displaces gas, two radii
must be defined: a radius that controls the imbibition process of water
displacing oil is called Ri2,w and the radius of oil displacing gas is called
Ri2,o. This process continues until a chosen water saturation is reached.
The accompanying radii are called R∗

i2,w and R∗

i2,o (see Figure 5.8.b). The
allowability and occupancy equations for water, oil and gas are described
in the Appendix.

Water is allowed to all the pore-segments it occupied at connate water
saturation, i.e. all radii between Rmin and Rendd , plus any pore-segment
that it could enter between Rendd and R∗

i2,w. The accompanying occupancy
equations for water are however different from the equations where gas is
at its connate saturation, since water will displace both the oil and the gas
phase.

5.5.4 Secondary drainage

Since the water pressure at a chosen level underneath the oil lens is kept
constant, the water will leave the model and is replaced by the gas phase.
This is possible since the model has an open connection to air at the upper
surface of the domain. This secondary drainage is controlled by the param-
eters Rd2,o and Rd2,g. We assume that the water phase is displaced by the
oil phase and the oil phase is replaced by the gas phase. Six regions in the
radii distribution can exist (see Figure 5.9) : the region where connate wa-
ter is the only phase present (Rmin-R

end
d ), a region where water, oil and gas

can exist as a consequence of the previous water imbibition (Rend
d -Rd2,o), a

region where water, oil and gas exist (Rd2,o-R
∗

i2,w), a region where oil and
gas exist (R∗

i2,w-Rd2,g), a region where gas displaces oil (Rd2,g-Ri2,o) and
a region where gas occupies all the pores (Ri2,o-Rmax). The allowability
equations for gas are the radii that were filled with gas after secondary



112 Chapter 5

R

ψψψψ (R)

allowed for oil occupied oil occupied gas allowed for water

Rmin Rd
end RmaxRi2,oRi2,w

(a)

R

ψψψψ (R)

allowed for oil occupied oil occupied gas allowed for water

Rmin Rd
end RmaxRi2,o

*Ri2,w
*

(b)

Figure 5.8: Number fraction functions of pore throat radii and the occupied and
allowed fractions during secondary imbibition described by Ri2,w(water displaces
oil) and Ri2,o (oil displaces gas). This process continues until R∗

i2,w and R∗

i2,o. a.
during secondary imbibition. b. at the end of the secondary imbibition process.



Numerical and analytical analysis of water infiltration 113

R

ψψψψ (R)

allowed for oil occupied gas occupied oil allowed for gas

Rmin Rd
end Rmax

Ri2,w
* Ri2,o

*Rd2,gRd2,o

Figure 5.9: Number fraction functions of pore throat radii and the allowed
fractions during secondary drainage described by Rd2,o (oil displaces water) and
Rd2,g (gas displaces oil).

imbibition (between Rendd and Rmax) plus the radii where gas will displace
the oil phase (between Rd2,g and Rendi2,o). All the allowability and occupancy
equations are described in the Appendix. The main feature is that, after
the secondary drainage, the radii between Rend

d and R∗

i2,o contain oil, which
means that in total, more bonds are filled with oil which leads to an in-
crease of mobility. Figure 5.7.b can be used as a reference case where no
water infiltration has taken place. Comparing Figure 5.9 and Figure 5.7.b
shows that the oil occupies more bonds after the water infiltration.

5.6 Analytical results

The percolation model simulations show the qualitative behavior of the oil
lens during water infiltration. We calculated the relative permeabilities of
water, oil and air during the iterative processes of drainage and imbibition.
We have chosen to use the coordination number Z = 9 since these results
agree best with the numerical results.

Figure 5.10 shows the relative permeabilities for water and gas as a func-
tion of the gas saturation (the advancing phase) during primary drainage.
This process continues until the connate water saturation is reached. The
accompanying values for the endpoint relative permeability for water and
gas (k

′

), the endpoint saturations for water and gas (S
′

) and the connate
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Figure 5.10: Relative permeabilities for water and gas as a function of the gas
saturation during primary drainage.

water saturation are shown in Table 5.2. These results are similar to the
primary drainage results in Chapter 4 where the process similarly continues
until the connate water saturation is reached.

Figure 5.11 shows the relative permeabilities for gas and oil as a func-
tion of the oil saturation (the advancing phase) during primary imbibition,
where water remains at the connate water saturation (and consequently
the relative water permeability remains zero) and oil displaces gas until
the oil saturation has reached a chosen value: So = 0.3. This is the point
where we deviate from Chapter 4, since the imbibition does not continue
until the connate gas saturation is reached. The continuation of the relative
permeability for one phase from one process to the other (in this case from

S′

w S′

g Swc k
′

rw k
′

rg

0.034 0.966 0.034 0 0.998

Table 5.2: The connate saturations, end point relative permeabilities and end-
point saturations during primary drainage.
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Figure 5.11: Relative permeabilities for gas and oil as a function of the oil
saturation during primary imbibition.

S′

w S
′

g S
′

o Swc Sgc k
′

ro k
′

rg

0.034 0.666 0.3 0.034 0.245 0.044 0.837

Table 5.3: The connate saturations, end point relative permeabilities and end
point saturations during primary imbibition.
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Secondary imbibition
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Figure 5.12: Relative permeabilities for water and oil as a function of the water
saturation during secondary imbibition.

primary drainage to primary imbibition) is preserved. This follows from
the endpoint relative permeabilities after primary drainage (k

′

rg = 0.998)
and the starting points in Figure 5.11 (krg = 0.998). The same accounts
for the continuation of saturations: the end point saturations after primary
drainage (S

′

w = 0.034 and S
′

g = 0.966) which are identical to the starting
points in Figure 5.11 (Sg = 1-So-Swc = 1-0-0.034 = 0.966). Since the imbi-
bition of oil does not continue until the connate gas saturation is reached,
the endpoint relative permeability for gas is not zero. The end point rela-
tive permeabilities for oil and gas, the end point saturations for water, oil
and gas and the connate saturations for water and gas are shown in Table
5.3.

S′

w S
′

g S
′

o Swc Sgc Sor k
′

rw k
′

ro k
′

rg

0.134 0.566 0.3 0.034 0.245 0.183 0.003 0.069 0.703

Table 5.4: The connate saturations, end point relative permeabilities and end
point saturations during secondary imbibition.
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Figure 5.13: Relative permeabilities for gas and water as a function of the gas
saturation during secondary drainage.

S′

w S
′

g S
′

o Swc Sgc Sor k
′

rw k
′

ro k
′

rg

0.034 0.666 0.3 0.034 0.245 0.183 0 0.087 0.703

Table 5.5: The connate saturations, end point relative permeabilities and end
point saturations during secondary drainage.
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Figure 5.12 shows the relative permeabilities for water, oil and gas as
a function of the water saturation (the advancing phase) during secondary
imbibition, where water displaces oil and oil displaces gas. Table 5.4 shows
the accompanying endpoint relative permeabilities, end point saturations
and connate saturations. The continuation of the relative permeabilities
and saturations is preserved. The oil saturation remains constant at So =
0.3, the water saturation increases from Sw = 0.034 to Sw = 0.134, which
results in a decrease of the gas saturation from Sg = 0.666 to Sg = 0.566.
Consequently the relative gas permeability decreases and the relative water
permeability increases. The relative oil permeability, however, increases
while the oil saturation remains constant. This is due to the fact that the
oil is moved by the water to the larger pore radii and to the fact that the
oil is pressed together (the range of pore radii filled by oil is smaller). This
is shown in Figure 5.8.

Figure 5.13 shows the relative permeabilities for water, oil and gas as a
function of the gas phase (the advancing phase) during secondary drainage,
where gas displaces the oil phase and the oil phase displaces the water phase.
The water saturation decreases until its previous value (from Sw = 0.134
until Sw = 0.034), the oil saturation remains 0.3 and the gas saturation
increases from Sg = 0.566 until Sg = 0.666. The accompanying endpoint
relative permeabilities, endpoint saturations and connate saturations are
shown in Table 5.5. Once more, continuation of the relative permeabilities
and saturations is preserved. As a consequence of secondary drainage, the
relative water permeability decreases until zero (since the connate water
saturation is reached) and the relative gas permeability increases by such
a small amount that it is not visible in Figure 5.13, nor can it be seen in
the three decimals in Table 5.5. The relative oil permeability, however,
increases again. Due to the secondary drainage and secondary imbibition
process, the oil is situated into a smaller range of pore radii and the accessi-
ble fraction in these pores has increased (see Figure 5.8 and 5.9). This is in
agreement with the increasing mobility found in the numerical experiments
(see Figure 5.3 and 5.4).

These results are valid for this specific iteration with these specific sat-
urations, which are comparable with the conditions in the numerical exper-
iments. Figure 5.8 and 5.9 and the accompanying relative permeabilities
would be significantly different if for example the increase of the water sat-
uration during secondary imbibition would be much higher. In this case,
we have chosen to start the water infiltration from a situation where water
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is at the connate water saturation (see Figure 5.8). Increasing this initial
water saturation gives the same results for the relative oil permeability,
since the oil will again be displaced to larger pore radii and will be pressed
together.

5.7 Conclusions

Numerical experiments have shown that temporary water infiltration into
an oil lens increases the mobility of the oil. Both upwards and downwards
water infiltration reveal this effect. To obtain more insight into this feature,
we used percolation theory to describe the problem qualitatively. From the
comparison between these two techniques we can conclude the following:
both numerically and analytically the mobility of oil increases after tempo-
rary water infiltration. Furthermore, percolation theory shows that the oil
is divided over a broader pore size range. More pores where oil is present
will enhance the continuous path and therefore the mobility.

Upwards water infiltration increase the mobility even more than down-
wards water infiltration. Since percolation theory calculates the average
permeabilities for a chosen volume of interest, it is not possible to explain
the difference between these two types of water infiltration. This should be
found in the gravitational forces.

Appendix 5A

Equations used for the analytical solution

For the primary drainage equations, we refer to Chapter 4

Primary imbibition (see Figure 5.7.a and Figure 5.7.b)

The main characterization is now to include all pores with Rend
d < R < Ri

by oil, where Ri is always smaller than the connate gas radius Rgc. The
allowability (Qo,i and ψao,i(R)) and occupancy equations (Xo,i and ψOo,i(R))
for oil during imbibition are:

Qo,i =

∫ Ri

Rend
d

ψ(R)dR (5.1)

XO
o,i = XA(Qo,i) (5.2)
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ψOo,i(R) =











0 , Rmin < R 6 Rendd

ψ(R)

XA
o,i

XA
o,i(Qo,i)

Qo,i
, Rendd < R 6 Ri

0 , Ri < R < Rmax

(5.3)

where the subscript o denotes the oil phase. The occupancy statistics for
oil are obtained by defining the pores with Rend

d 6 R < Ri that formerly

contained gas, in the proportion
XA(Qo,i)
Qo,i

that they come to be occupied by

oil.
The gas phase previously filled the radii between Rend

d and Rmax, while
the radii between Rendd and Ri are now allowed to be filled by oil. The
allowability and occupancy equations for gas are:

Qg,i = XO
g,i =

∫ Rmax

Rend
d

ψ(R)dR-
XA(Qo,i)

Qo,i

∫ Ri

Rend
d

ψ(R)dR (5.4)

ψOg,i(R) =















0 , Rmin < R < Rendd
ψ(R)

XO
g,i

[1-
XA(Qo,i)
Qo,i

] , Rendd 6 R < Ri
ψ(R)

XO
g,i

, Ri 6 R < Rmax

(5.5)

This process can continue until the oil displacement stops at R = R∗

i (see
Figure 5.7.b), where R∗

i is smaller than the connate gas radius Rend
i . This

radius is determined from the oil saturation (So) that we have chosen to
enter the domain:

So =

XA(Qo,i)
Qo,i

∫ R∗

i

Rend
d

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

(5.6)

Secondary imbibition (see Figure 5.8.a and Figure 5.8.b)

The allowability equation for water is:

Qw,i2 =

∫ Ri2,w

Rmin

ψ(R)dR (5.7)

The occupancy equations for water are:

XO
w,i2 =

∫ Rend
d

Rmin

ψ(R)dR +
XA(Qw,i2, X

O,end
w,d )

Qw,i2

∫ Ri2,w

Rend
d

ψ(R)dR (5.8)
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ψOw,i2(R) =



















ψ(R)

XO
w,i2

, Rmin < R < Rendd

ψ(R)

XO
w,i2

XA(Qw,i2,X
O,end
w,d

)

Qw,i2
, Rendd 6 R < Ri2,w

0 , Ri2,w < R < Rmax

(5.9)

The radii that are allowed for oil are those radii that were occupied at
the end of the primary imbibition, i.e. part of the radii between Rend

d and
R∗

i , minus the radii (between Rendd and Ri2) that have become allowed for
water. The allowability and occupancy equations for oil are:

Qo,i2 =

∫ Ri2,w

Rend
d

ψ(R)dR[1-
XA(Qw,i2)

Qw,i2
]

+

∫ Ri2,o

Ri2,w

ψ(R)dR (5.10)

XO
o,i2 =

XA(Qo,i2)

Qo,i2

∫ Ri2,w

Rend
d

ψ(R)dR[1-
XA(Qw,i2)

Qw,i2
]

+
XA(Qo,i2)

Qo,i2

∫ Ri2,o

Ri2,w

ψ(R)dR (5.11)

ψOo,i2(R) =























0 , Rmin < R < Rendd
ψ(R)
Qo,i2

XA(Qo,i2)
Qo,i2

[1-
XA(Qw,i2)
Qw,i2

] , Rendd 6 R < Ri2,w
ψ(R)
Qo,i2

XA(Qo,i2)
Qo,i2

, Ri2,w < R < Ri2,o

0 , Ri2,o < R < Rmax

(5.12)

Since gas is not immobile during primary imbibition, the allowability and
occupancy equations for gas must be added to the equations that describe
the primary imbibition process. In the pores where three phases are present
(between Rendd and Ri2,w) we add the water and oil phase to be the wetting
phase that displaces the gas phase. In the radii between Ri2,w and Ri2,o
the oil phase solely displaces the gas phase.
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Qg,i2 = XO
g,i2 =

∫ Ri2,w

Rend
d

ψ(R)dR[1-
XA(Qw,i2 +Qo,i2)

Qw,i2 +Qo,i2
]

+

∫ Ri2,o

Ri2,w

ψ(R)dR[1-
XA(Qo,i2)

Qo,i2
] +

∫ Rmax

Ri2,o

ψ(R)dR (5.13)

ψOg,i2 =























0 , Rmin < R 6 Rendd
ψ(R)
Qg,i2

[1-
XA(Qw,i2+Qo,i2)
Qw,i2+Qo,i2

] , Rendd < R 6 Ri2,w
ψ(R)
Qg,i2

[1-
XA(Qo,i2)
Qo,i2

] , Ri2,w < R 6 Ri2,o
ψ(R)
Qg,i2

, Ri2,o < R < Rmax

(5.14)

This process continues until a certain water saturation has entered the
domain at R∗

i2,w (see Figure 5.8). The values for R∗

i2,w and R∗

i2,o can be
calculated from the water saturation (Sw) and the oil saturation (So):

Sw =

∫ Rend
d

Rmin
ψ(R)v(R)dR +

XA(Qw,i2)
Qw,i2

∫ R∗

iw,o

Rend
d

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

(5.15)

So =

∫ Rend
d

Rmin
ψ(R)v(R)dR +

XA(Qw,i2)
Qw,i2

∫ R∗

i2,o

Rend
d

ψ(R)v(R)dR
∫ Rmax

Rmin
ψ(R)v(R)dR

-Sw (5.16)

The water saturation consists of the volume that is occupied by water
(XO

w,i2) divided by the total volume. Furthermore the oil saturation is
calculated by dividing the volume occupied by water and oil by the total
volume and substracting the known value for the water saturation. From
these equations the radii R∗

i2,w and R∗

i2,o can be calculated.

Secondary drainage (see Figure 5.9)

The allowability equation for gas is:

Qg,d2 =

∫ R∗

i2,w

Rend
d

ψ(R)dR[1-
XA(Qendw,i2 +Qendo,i2)

Qendw,i2 +Qendo,i2

] +

∫ Rd2,g

R∗

i2,w

ψ(R)dR[1-
XA(Qendo,i2)

Qendo,i2

] +

∫ Rmax

Rd2,g

ψ(R)dR (5.17)
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The occupancy equations for gas are the occupancy equations for gas after
secondary imbibition plus the part that becomes allowed (between Rd2,o

and R∗

i2,o) times the accessibility fraction.

XO
g,d2 =

∫ R∗

i2,w

Rend
d

ψ(R)dR[1-
XA(Qendw,i2 +Qendo,i2)

Qendw,i2 +Qendo,i2

] +

∫ Rd2,g

R∗

i2,w

ψ(R)dR

·[1-
XA(Qendo,i2)

Qendo,i2

] +
XA(Qg,d2)

Qg,d2

∫ R∗

i2,o

Rd2,g

ψ(R)dR

+

∫ Rmax

R∗

i2,o

ψ(R)dR (5.18)

ψOg,d2(R) =







































0 , Rmin < R 6 Rendd

ψ(R)
Qg,d2

[1-
XA(Qend

w,i2+Qend
o,i2)

Qend
w,i2+Qend

o,i2
] , Rendd < R 6 R∗

i2,w

ψ(R)
Qg,d2

[1-
XA(Qend

o,i2)

Qend
o,i2

] , R∗

i2,w < R 6 Rd2,g

ψ(R)
Qg,d2

XA(Qg,d2)
Qg,d2

, Rd2,g 6 R < R∗

i2,o
ψ(R)
Qg,d2

, R∗

i2,o 6 R < Rmax

(5.19)

The allowability equations for oil consist of the part that was occupied
by oil after secondary imbibition plus the part where oil is displacing wa-
ter (between Rd2,w and R∗

i2,w) minus the part where gas is displacing oil
(between Rd2,o and R∗

i2,o).

Qo,d2 =
XA(Qendo,i2)

Qendo,i2

∫ Rd2,o

Rend
d

ψ(R)dR[1-
XA(Qendw,i2)

Qendw,i2

] +

∫ R∗

i2,w

Rd2,o

ψ(R)dR

+
XA(Qendo,i2)

Qendo,i2

∫ Rd2,g

R∗

i2,w

ψ(R)dR

+

∫ R∗

i2,o

Rd2,o

ψ(R)dR[1-
XA(Qg,d2)

Qg,d2
] (5.20)

Since Qo,d2 and Qg,d2 contain linking formulations (Qo,d2 uses Qg,d2 in its
calculation and vice versa), we use the mass balance of the domain to

calculate
XA(Qg,d2)
Qg,d2

in a different way. The decrease of Sw is identical to the

increase of Sg since So remains constant:
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∆Sw =
XA(Qendw,i2)

Qendw,i2

∫ R∗

i2,w

Rd2,o
ψ(R)v(R)dR

∫ Rmax

Rmin
ψ(R)v(R)dR

(5.21)

∆Sg = [
XA(Qendo,i2)

Qendo,i2

XA(Qg,d2)

Qg,d2
]

∫ R∗

i2,o

Rd2,g
ψ(R)v(R)dR

∫ Rmax

Rmin
ψ(R)v(R)dR

(5.22)

From these two equations we can calculate:

XA(Qg,d2)

Qg,d2
= [

XA(Qendw,i2)

Qendw,i2

Qendo,i2

XA(Qendo,i2)
]

∫ R∗

i2,w

Rd2,o
ψ(R)v(R)dR

∫ R∗

i2,o

Rd2,g
ψ(R)v(R)dR

(5.23)

which can be used in Equation 5.20 to calculate Qo,d2 and subsequently
Equation 5.17 can be calculated.

XO
o,d2 =

XA(Qendo,i2)

Qendo,i2

∫ Rd2,o

Rend
d

ψ(R)dR[1-
XA(Qendw,i2)

Qendw,i2

] +

XA(Qo,d2)

Qo,d2

∫ R∗

i2,w

Rd2,o

ψ(R)dR +
XA(Qendo,i2)

Qendo,i2

∫ Rd2,g

R∗

i2,w

ψ(R)dR +

∫ R∗

i2,o

Rd2,o

ψ(R)dR[1-
XA(Qg,d2)

Qg,d2
] (5.24)

ψOo,d2(R) =




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
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

























0 , Rmin < R 6 Rendd

ψ(R)
Qo,d2

XA(Qend
o,i2)

Qend
o,i2

[1-
XA(Qend

w,i2)

Qend
w,i2

] , Rendd < R 6 Rd2,o

ψ(R)
Qo,d2

XA(Qo,d2)
Qo,d2

, Rd2,o < R 6 R∗

i2,w

ψ(R)
Qo,d2

XA(Qend
o,i2)

Qend
o,i2

, R∗

i2,w < R 6 Rd2,g

ψ(R)
Qo,d2

[1-
XA(Qg,d2)
Qg,d2

] , Rd2,g < R 6 R∗

i2,o

0 , R∗

i2,o 6 R < Rmax

(5.25)

The allowability equations for water are the radii that were filled with water
after secondary imbibition (between Rmin and R∗

i2,w) minus the radii where
water is displaced by gas (between Rd2,w and R∗

i2,w):
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Qw,d2 = XO
w,d2 =

∫ Rend
d

Rmin

ψ(R)dR +
XA(Qendw,i2)

Qendw,i2

∫ Rd2,o

Rend
d

ψ(R)dR

+
XA(Qendw,i2)

Qendw,i2

∫ R∗

i2,w

Rd2,o

ψ(R)dR(1-
XA(Qo,d2)

Qo,d2
) (5.26)

ψOw,d2(R) =
















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











ψ(R)
Qw,d2

, Rmin < R 6 Rendd

ψ(R)
Qw,d2

XA(Qend
w,i2)

Qend
w,i2

, Rendd < R 6 Rd2,o

ψ(R)
Qw,d2

XA(Qend
w,i2)

Qend
w,i2

(1-
XA(Qo,d2)
Qo,d2

) , Rd2,o < R 6 R∗

i2,w

0 , R∗

i2,w < R < Rmax

(5.27)

This process continues until the water saturation is decreased until a certain
level and from this water saturation and from the gas saturation we can
calculate the accompanying radii R∗

d2,o and R∗

d2,g :

Sw = {

∫ Rend
d

Rmin

ψ(R)v(R)dR +
XA(Qendw,i2)

Qendw,i2

∫ R∗

d2,o

Rend
d

ψ(R)v(R)dR +

XA(Qendw,i2)

Qendw,i2

∫ R∗

i2,w

R∗

d2,o

ψ(R)dR(1-
XA(Qo,d2)

Qo,d2
)}

/

∫ Rmax

Rmin

ψ(R)v(R)dR (5.28)

Sg = ([1-(
XA(Qendo,i2) +XA(Qendw,i2)

Qendo,i2 +Qendw,i2

)]

∫ R∗

d2,g

Rend
d

ψ(R)v(R)dR +

{[1-(
XA(Qendo,i2) +XA(Qendw,i2)

Qendo,i2 +Qendw,i2

)]
XA(Qg,d2)

Qg,d2
}

∫ R∗

i2,o

R∗

d2,g

ψ(R)v(R)dR)

/

∫ Rmax

Rmin

ψ(R)v(R)dR (5.29)

Notation

kri relative permeability of phase i
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k
′

ri end point relative permeability of phase i
Qj allowed fraction for phase j
Qc critical fraction= percolation threshold
R radius of a bond [m]
S saturation
t time (hrs)
v volume of a bond [m2]
Wf free oil volume per unit lateral area [m]
X fraction of the bonds that is accessible/occupied
x horizontal coordinate [cm]
Z average number of bonds that originate from one node
z vertical coordinate [cm]
φ porosity
ψ(R) number fraction function

Subscripts

d drainage
d2 secondary drainage
g gas
gc connate gas
i imbibition
i2 secondary imbibition
max maximum
min minimum
o oil
of free oil
or residual oil
w water
wc connate water

Superscripts

∗ end situation of a process
A accessible
end limiting end situation of a process
ini initial
O occupied



Samenvatting

Sinds de jaren zeventig in de vorige eeuw zijn er in Nederland op grote
schaal NAPL verontreinigingen in de bodem aangetroffen die het gevolg
zijn van onzorgvuldig handelen of onwetendheid. NAPL’s (Non-Aqueous
Phase Liquids) zijn organische vloeistoffen die nauwelijks mengen met wa-
ter. Dit type verontreiniging wordt ook wel ’olie’ verontreiniging genoemd.
De effecten van NAPL’s op de drinkwater kwaliteit en dus op de gezondheid
van de mens zijn van dien aard dat deze verontreinigingen zo efficiënt mo-
gelijk opgeruimd dienen te worden. De impact van een NAPL op drinkwa-
terkwaliteit blijkt uit het feit dat 1 liter olie 100.000 liter grondwater dat
bedoeld is voor de bereiding van drinkwater zodanig kan vervuilen dat het
vanwege gezondheidsredenen niet meer gebruikt kan worden.

Wij hebben ons gericht op olieverontreiniging die lichter is dan water en
dus op het freatische vlak blijft drijven. Dit type olie wordt L(ight)NAPL
genoemd. De uitgangssituatie waar LNAPL zich boven een statisch freatisch
vlak bevindt, is uitgebreid onderzocht en deze situatie kunnen we inmiddels
vrij goed begrijpen en modelleren. Echter, in werkelijkheid is het freatisch
niveau niet statisch en veroorzaken fysische verschijnselen zoals seizoens-
fluctuaties in grondwater standen, het afpompen van grondwater en regen-
val een fluctuerend freatisch vlak. Tot op heden is er weinig bekend over de
gevolgen van deze verschijnselen op het fysische gedrag van LNAPL in de
bodem. Wij vestigen de aandacht op dergelijke fysische processen en hun
invloed op zowel de geometrie van de olielens als de verdeling van water,
olie en lucht in de poriën van de bodem. In het vervolg gebruiken we de
term ’olie’ in plaats van ’LNAPL’.

Olie kan als kleine druppeltjes worden ingesloten in de waterfase, zodat
de oliefase immobiel wordt. Mobiele olie kan vrij eenvoudig verwijderd wor-
den uit de bodem door middel van afpompen; het immobiele gedeelte van
de olie blijft echter achter en kan nog steeds een bedreiging vormen voor
het milieu doordat het verdampt of doordat het oplost in het grondwater.
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Teneinde deze immobiele olie te verwijderen, worden andere zogenaamde
’in situ’ sanerings technieken gebruikt. Om deze technieken zo efficient mo-
gelijk te gebruiken, is het noodzakelijk om onze kennis over de immobiliteit
van olie en de kwantificering ervan te vergroten.

Wij hebben twee situaties bekeken waarbij water infiltreert in de olielens
waarbij een dynamisch freatisch vlak wordt gecreëerd: 1. Een fluctuerend
waterniveau, waarbij de waterdruk op een bepaald niveau onder de olie-
lens een sinusöıdale functie heeft, zodat water van onderaf infiltreert in de
olielens. Dit zou in de realiteit veroorzaakt kunnen worden door seizoens-
fluctuaties in grondwater standen. 2. Waterinfiltratie van bovenaf, waarbij
water aan de bovenkant van het domein wordt gëınjecteerd. De waterdruk
op een bepaald niveau onder de olielens blijft constant zodat het water
door de lens zal gaan. Dit zou in de realiteit regenwater kunnen zijn, dat
infiltreert in de bodem.

Hoofdstuk 2 en 3 beschrijven het gedrag van olie onder invloed van een
fluctuerend waterniveau. Numerieke berekeningen in een homogeen twee-
dimensionaal domein tonen aan, dat een fluctuerend waterniveau resulteert
in vertraging van de horizontale spreiding van de olie op het freatische vlak.
Stijging van het waterniveau immobiliseert de olie en daardoor kan de olie
niet meer horizontaal spreiden. Bij de daarop volgende verlaging van het
water niveau mobiliseert de olie weer zodat de horizontale spreiding van
olie weer kan continueren. Deze vertraging is verdisconteerd door een ’stro-
mingstijd’ te definiëren die aangeeft gedurende welk deel van de totale tijd
de olie daadwerkelijk mobiel is en kan spreiden. Een bestaande analytische
oplossing voor olie spreiding op een statisch freatisch vlak kan door ge-
bruik van deze stromingstijd ook gebruikt worden voor een fluctuerend wa-
terniveau, wat aanzienlijk minder computer rekentijd kost dan numerieke
berekeningen. Aanvullend zijn er tweedimensionale experimenten in het
laboratorium uitgevoerd, waaruit bleek dat het vrijwel onmogelijk is om
een homogeen domein te creëeren. De ontstane heterogeniteiten vormen
een capillaire barriére waarboven water accumuleert. Ter compensatie van
deze waterlenzen in de onverzadigde zone, is in de numerieke berekenin-
gen de waterdruk aan de onderkant van het domein verhoogd. Vervolgens
bleek na vergelijking met de experimentele resultaten, dat de numerieke en
analytische oplossingen de belangrijkste verschijnselen accuraat weergeven.

Hoofdstuk 4 en 5 beschrijven het effect van waterpercolatie op de verde-
ling van de verschillende fasen in de poriën. De methode die daarvoor ge-
bruikt wordt is de percolatie theorie. De effecten van percolatie van wa-
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ter door de olielens op de mobiliteit van olie zijn eerst numeriek bekeken,
waaruit bleek dat na de waterpercolatie, op het moment dat de situatie sta-
biel is geworden, de mobiliteit van de olie is toegenomen. Beide types water
infiltratie (van bovenaf en onderaf) vertonen dit effect. Om meer inzicht te
krijgen in de processen die zich afspelen tijdens de waterpercolatie hebben
we percolatie theorie gebruikt. Deze theorie beschrijft op porieschaal de
verbindbaarheid van de vloeistoffen/gassen die aanwezig zijn. Statistisch
wordt de kans beschreven dat een porie toegankelijk is voor een bepaalde
vloeistof. Tot nu toe werd deze theorie hoofdzakelijk voor 2-fasen systemen
(olie en water) gebruikt en was de uitwerking naar een 3-fasen systeem
(olie, water en lucht) nog beperkt. Wij hebben de percolatie theorie voor
een 3-fasen systeem uitgewerkt en toegepast op de twee types waterperco-
latie. De analytische resultaten bevestigen de numerieke resultaten dat de
mobilisatie van olie toeneemt na waterinfiltratie van beide types. De reden
hiervoor is, dat de olie gedurende water infiltratie verplaatst wordt naar
een groter aantal poriën, wat de connectiviteit bevordert. Met deze kennis
is het nu mogelijk om een olielens met behulp van waterinfiltratie zodanig
te manipuleren dat de mobiliteit wordt bevorderd.
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York gemaakt. Ik heb dat als zeer prettig ervaren: je was altijd aanwezig
voor inhoudelijke vragen, om te brainstormen, om mijn hart te luchten
en natuurlijk voor de gezelligheid. Ten tweede Anke Wolthoorn: bedankt

131



132

voor je steun, de gezelligheid en voor het corrigeren van mijn nederlandse
teksten. Ik hoop dat we elkaar ook in de toekomst vaak blijven zien!
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